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Abstract 

In recent decades, flood early warning systems (FEWSs) have been widely used as 

complementary non-structural mitigation measures in order to improve the 

population resilience to floods. FEWS research focusses mainly on flood 

forecasting techniques or social aspects of warning response, and end-to-end 

modelling frameworks that represent the entire FEWS forecast-decision-

response/impact chain are rarely developed.  

A generic Monte Carlo simulation framework has been developed that represents 

an end-to-end FEWS in a versatile way, allowing factors influencing FEWS 

performance to be explored which cannot be analysed easily based on limited real-

world data. The framework has been applied to a simulated generic fluvial case, 

where factors influencing FEWS performance in terms of reliability and economic 

effectiveness are explored. A new reliability performance measure based on 

inundation maps has been proposed. The framework has also been used to explore 

factors controlling the performance of a simulated FEWS representing an urban 

polder in Nanjing, China, with performance metrics based on waterlogging and 

pumping costs.  

For the generic fluvial case, the main results show that: i) the correlation between 

forecasts and observed values controls reliability; ii) probabilistic forecasts based 

on optimising a probabilistic threshold are robust to forecast biases in the mean and 

variance, iii) a FEWS based on uncertain forecasts is characterised by an optimal 

lead time that represents a balance between an adequate time to act in response and 

a reasonably good forecast; iv) the performance of the proactive action is the most 

important factor influencing the economic effectiveness of a FEWS. For the 

simulated flood-prone polder system case study, the results show that probabilistic 

forecasts of storm rainfall and runoff volume can considerably enhance the 

waterlogging and pumping metrics.  

The results of this research can be used to improve the performance of fluvial 

FEWSs, and to design FEWSs for polder systems. 
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 Chapter 1. Introduction 

1.1 Background  

Climate change and the intense urbanization of flood-prone areas evidenced in the 

last decades have altered the hydrological responses of catchments, increasing the 

frequency and magnitude of floods in many countries across the globe. As existing 

standards of protection based on structural measures are proving to be inadequate 

under climate change, and the concept of flood protection has given way to that of 

flood risk management, effective and reliable flood early warning systems (FEWSs)  

are becoming vital complementary non-structural mitigation measures in order to 

improve the population resilience to this natural hazard (WMO, 2011; Milionis and 

Owen, 2018). As a result, a new science, known as Flood Warning Science, which 

covers a wide range of disciplines ranging from hydrometeorological science to 

social psychology, has emerged from the need to assess, research, and improve the 

process chain characterizing these systems (Parker, 2017). 

 

Figure 1.1. Illustration of a Flood Early Warning System (FEWS) 

A FEWS aims to provide timely and meaningful warning information to people 

threatened by floods to allow them to act in advance to reduce the risks involved. 

This system can be represented by three main subsystems (Parker and Fordham, 

1996; Carsell et al., 2004): i) a flood forecasting subsystem, ii) a warning and 

dissemination subsystem, and iii) a response subsystem  (Figure 1.1).  
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The flood forecasting subsystem is the most well-recognized and studied element 

and uses a forecasting model to generate forecasts on which warnings are based. 

These forecasts can be generated by, for example, conceptual or physically-based 

or rainfall-runoff and/or flooding routing models, such as the Stanford Watershed 

Model (Crawford and Linsley, 1966), ARNO (Todini, 1996), or TOPKAPI (Liu 

and Todini, 2002) models, among others. Advanced data-driven models, e.g., 

machine learning models based on fuzzy systems, artificial neural networks, or 

support vector regression, are also used for these purposes (Mosavi et al., 2018). 

The forecasting model's inherent uncertainty means that flood warnings are based 

on uncertain information  (Basher et al., 2006). The quantification and reduction of 

this uncertainty (hereafter called predictive uncertainty) are the main challenges 

faced by forecasters (Perera,2020). Despite the significant research progress made 

in the last two decades on this topic, operational flood warnings have been largely 

based on deterministic forecasts, though probabilistic forecasting is starting to be 

considered in practice (see the English case in Arnal et al., (2020)). 

One of the reasons for the slow uptake of probabilistic forecasting can be the 

confusion in the literature over the appropriate measure of uncertainty to use in 

flood warning. Predictive Uncertainty (PU) is the appropriate measure to use 

(Krzysztofowicz, 1999a; Todini, 2016). Todini (2008) defines PU as the predictive 

density function of the unknown future quantity, typically the observed peak water 

level or discharge at a specific cross-section, conditional on the forecast of that level 

for a given lead time (τ). To introduce the reader to this concept without the formal 

mathematical definitions that come later, the example shown in Figure 1.2 is used. 

Deterministic and probabilistic forecasts of the water levels for a lead time of τ = 6 

hours are shown Figure 1.2a and 1.2b. 

To understand the concept of PU, the following question is posed: flood damage in 

Figure 1.2a will occur: (1) when the forecasted water level overtops the dykes, or 

(2) when the actual future water level overtops the dykes? The obvious answer is 

(2), i.e., when the actual future water level overtops the dykes. Therefore, the model 

forecast must not be considered as a reality but just as a virtual reality, which, 

however, contains essential information to reduce our uncertainty on what will 

actually occur. PU is, thus, the uncertainty about a real future value (not the model 

forecast) i.e., the water level to be observed in 6 hours from now, conditional upon 
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the model forecast (Figure 1.2b). Knowing the probability distribution of the future 

water level conditional on the forecast value which is the formal definition of PU, 

one can estimate the probability of exceedance (PE) of the flooding level (red area 

in Figure 1.2b), and make a warning decision based on this (Todini, 2010). If the 

value of PE exceeds a predefined probability threshold PT, a warning is issued. PU, 

PE and PT are used throughout this thesis to inform simulated flood warning 

decisions, and any proactive actions taken in response to reduce flood damage. The 

results are compared with those from deterministic forecasting.  

 

Figure 1.2. Illustration of the PU concept 

Adapted from Todini (2004) and  Todini (2010) 

On the other hand, the warning and dissemination subsystem and the response 

subsystem have not received the same attention as the flood forecasting subsystem 

(Figure 1.1). The former involves all the processes needed to make the flood 

warnings reach those at risk, whereas the latter component has to do with the 

capacity of an at-risk community to take actions that mitigate the flood impact 

(Molinari et al., 2013). These elements cover vulnerability factors, which are 

important to reduce flood risk, and are as important as the flood forecasting 

subsystem as it has been proved that a high-quality forecast is not enough to reduce 

flood impact (Basher et al., 2006).   

Although it is not always the case, there is usually a real-time information flow 

among components of the FEWS. This information can be either intrinsic, when it 

is part of the system and incorporate formal warnings, or extrinsic, which involves 

informal warnings used by floodplain users (Parker and Fordham, 1996). Therefore, 

the success of the FEWS heavily depends on how effective the communication is 

among the personnel involved in each component.  
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1.2 Research needs 

Many studies have focused on improving individual components of a FEWS, such 

as forecasts or social vulnerability. These studies often imply that an improvement 

to a component of the system suggests an improvement in the performance of the 

integrated system. Thus, in the literature, one can find many studies that include 

only the technical components (often related to flood forecasting techniques) or 

social components (often related to the warning response) of a FEWS. End-to-end 

modelling frameworks that analyse the performance of a full FEWS chain of 

components (Figure 1.1) are, thus, rarely developed. Such frameworks should allow 

forecast outputs to be linked with warning decisions and the associated responses 

and flood impacts and, at the same time, evaluate the main factors influencing the 

performance of the integrated system encompassing the forecast, warning, and 

response processes. A FEWS is only as good as its weakest link, which such an 

evaluation should help identify. 

The end-to-end simulation of a FEWS is no easy task. Even though FEWSs started 

to be studied between the 1960s and 1970s (Williams, 1964; McLuckie, 1970; 

Mileti and Beck, 1975),  it was not until the 1980s that Krzysztofowicz and Davis 

(1983) proposed a simulation framework to represent this system. In this work, the 

FEWS chain is reduced to a flood forecast-response process, where a forecast 

system is viewed as an information system providing forecasts to a response system, 

which is, in turn,  viewed as a decision system where floodplain dwellers make their 

own decisions about evacuation based on a sequence of forecasts they receive. 

Krzysztofowicz (1993) also proposed a methodology to represent the FEWS until 

the warning component based on a monitor-forecast-decision chain. This 

framework is used to evaluate the performance of a FEWS, where Bayesian 

decision theory is used to represent warning decisions by a rule that maximizes the 

expected utility. The flood warning reliability and economic benefits are used to 

define the FEWS performance. 

Verkade and Werner (2011) proposed a methodology to compare the benefits of a 

deterministic FEWS with its probabilistic version based on the relative economic 

value theory. In their methodology, the forecast-warning-decision chain is used to 

obtain the relative economic value (REV) in terms of hits, false alarms, and misses.  

REV is subsequently used to scale between the flood risk of two benchmark 
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scenarios: the no warning and perfect forecast scenarios. The flood risks of these 

benchmark scenarios are computed through the response and impact components 

of the framework. In this work, real-world data and modelling are used to represent 

the flood forecasting and the response/impact component.  This work was the first 

attempt to include the economic consequences of predictive uncertainty, PU, in the 

economic effectiveness of a FEWS. However, this methodology assumes that the 

cost of the warning response is independent of the magnitude of the forecast 

flooding, and it only considers the economic consequences of “wrong” decisions 

(false alarms or misses) and negates the fact that the PU can also (negatively) impact 

the economic effectiveness of flood warnings after a “good decision”, i..e, a flood 

preceded by a warning (hit), due to the flood magnitude’s uncertainty. Thus, there 

is a need to explore the negative impact of the economic consequences of PU in a 

FEWS in all possible situations, i.e., hits, misses, and false alarms situations.  Other 

restrictive assumptions limit the applicability of this framework. 

Girons Lopez et al. (2017) also considered the end-to-end modelling of a FEWS. 

They used a Monte Carlo analytical framework to represent a FEWS through a 

forecast-decision-response-and-impact chain. Based on this framework, they 

explored the impact of social preparedness on the economic effectiveness of a 

FEWS and how it is related to the flood warning reliability. A strong limitation of 

this study is that it does not consider the impact of the lead time on the FEWS 

performance, which is an important factor to be considered in this type of analysis.  

Bischiniotis et al. (2019) also used a forecast-decision-response-and-impact chain 

to represent a FEWS. Based on this chain, they developed a framework to analyse 

the economic value of a FEWS in which actions in the response component can be 

taken at different time points. The economic value is obtained based on the 

economic consequences of hits, misses, and false alarms that characterise the flood 

warning reliability of the system.  Like Verkade and Werner (2011), this work also 

considered limited real-world data to represent the flood forecasting component; 

therefore, they are not able to base their results by considering a considerable range 

of potential flood events and warning decision situations that the area monitored by 

the FEWS may be subject to. 

None of the works mentioned above uses the forecast-decision-response-and-

impact chain to evaluate the flood warning reliability in terms of affected houses, 
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i.e., warned and flooded houses. With this information, one can evaluate the 

reliability of flood warnings based on whether a warned property was or not 

subsequently flooded. It is a more reliable approach than those used by these 

research works and other related works, which is based on whether a warning 

preceded a flood event's occurrence or non-occurrence in the floodplain or in a 

specific flood risk zone, where a pre-defined threshold defines the occurrence of 

the event. This common approach does not consider the flood magnitude’s 

uncertainty. Note that, due to PU, there is always a difference between the 

magnitude of the forecast and observed flooding and, therefore, a difference 

between the warned and flood properties. Moreover, this approach does not exploit 

the information provided by inundation maps which are now become a routine 

element of the forecast component of a FEWS. 

The author of the thesis could also identify that there is no generic framework to 

underpin the end-to-end simulation of a FEWS. Note that beyond each specific 

purpose, the research works mentioned above have idealized the FEWS through the 

forecast, warning, and response/impact/components. However, they have used ad-

hoc frameworks that have been designed for a specific flood type (often river 

floods) or a specific response action using restrictive analytical assumptions. In this 

sense, there is a need to design a generic framework that defines well the main 

generic components involved in the end-to-end simulation of a FEWS and the type 

of information generated and used by each of them during the simulation of a flood 

threat. Also, to avoid the limitations imposed by real-world data, such as a limited 

time span or a small number of registered extreme events, this generic framework 

should consider synthetic observed and forecast information that is based on the 

properties of real data. This would parallel the seminal work performed by Hosking 

and Wallis (1988, 1997), who demonstrated how Monte Carlo sampling can be used 

to explore the sensitivity of the estimate of T-year flood to various factors and 

assumptions, leading to more robust new approaches. This generic framework 

should underpin the end-to-end simulation of a FEWS monitoring and warning any 

type of flood-prone area.  

The author of the thesis could not identify any research works that use an end-to-

end modelling framework to explore the performance of a FEWS monitoring and 

warning a flood-prone polder system. No research works could be identified 

reporting on either the design, implementation, or evaluation of FEWSs operating 
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for flood-prone polder areas. Polders are areas that lie below the levels of the sea or 

adjacent outer rivers, and, therefore, pumping systems must be used during storm 

events to remove water from the inner rivers (artificial rivers inside the polder area) 

to the outer rivers to enable water to drain from the polder areas into the inner rivers. 

In a flood-prone polder area, the pumping capacity is invariably lower than the 

drainage capacity (maximum runoff entering the inner rivers). Since the polder 

system's storage capacity is defined by the water level of the inner rivers when the 

storm arrives, flood warnings can provide time in advance to decrease that water 

level (increase the storage capacity) and avoid the storage capacity being 

overwhelmed. 

Based on the above assessment, there is a clear need for a generic simulation 

framework that can be used to represent the three main components of a FEWS, 

and which will be driven by Monte Carlo simulations of floods and their forecasts. 

This will allow the long-term performance of FEWSs to be assessed under a wide 

range of conditions. Moreover, the framework can be used as a virtual test-bed to 

support the design of FEWSs by exploring the sensitivity of FEWS performance to 

various controlling factors.  

1.3 Aim and objectives  

Based on the research needs outlined above, the overall aim of this thesis is to 

build a generic framework that can simulate and identify important factors 

controlling the performance of a FEWS monitoring and warning a flood-prone 

area. To achieve this aim, the thesis is structured around the following objectives: 

1. To design a flexible generic simulation framework that can represent the 

forecast, warning, and response/impact/components of a FEWS. 

2. To design a Monte Carlo flood and forecast generator (MCFG) applicable 

to a generic fluvial case and a flood-prone polder system case. 

3. To design the flood warning decision component (FWDC) of a FEWS and 

to simulate and identify important factors controlling the flood warning 

reliability of a FEWS for a generic fluvial river case under deterministic and 

probabilistic forecast information. 

4. To design the response and impact component (RIC) of a FEWS and to 

simulate and identify important factors controlling the economic 
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effectiveness of a FEWS for a generic fluvial river case under deterministic 

and probabilistic forecast information. 

5. To apply the generic framework to a case study of the operation of a flood-

prone polder system in Nanjing, China 

1.4 Thesis structure 

The remaining part of the thesis is structured as follows. Chapter 2 reports on a 

literature review covering the forecast, warning, and impact/response components 

of a FEWS and discusses the research needs highlighted above.  This helps to 

introduce some key background information required to understand the rationale 

behind the development of the generic framework. This generic framework is 

explained in Chapter 3 and has three components: the Monte Carlo flood and 

forecast generator (MCFG), the flood warning decision component (FWDC), and 

the response and impact component (RIC) (Objective 1).  

Chapter 4 gives a full description of the architecture of the MCFG (Objective 2). 

Chapter 5 integrates the MCFG and the FWDC components of the framework for 

simulating a generic fluvial FEWS and identifies the important factors controlling 

FEWS reliability under deterministic and probabilistic forecasting (Objective 3). In 

Chapter 6, the RIC component of the framework is added to explore important 

factors influencing the economic effectiveness of a (deterministic and probabilistic) 

FEWS based on real-time flood maps (Objective 4). In Chapter 7, the generic 

framework is applied to the case study, and a full description of the building of each 

of the components for simulating a FEWS monitoring a flood-prone polder system 

case is provided. This model is then used to explore factors influencing the 

performance of this FEWS in polder flood management operation (Objective 5).  A 

discussion, conclusions, and recommendations for further work are finally provided 

in Chapter 8.  

Figure 1.3 illustrates the structure of the thesis and the relationship between the 

objectives and chapters. 
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Figure 1.3: Schematic representation of thesis structure and relationship between the 

objectives and Chapters 2 to 8. 
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 Chapter 2. Literature review 

2.1 Introduction 

Previous research on the operation, evaluation, and simulation of a flood early 

warning system (FEWS) is reviewed here. This chapter i) describes important 

factors influencing the performance of a FEWS, ii) provides some background 

information about the actual operation and evaluation of FEWSs, iii) references 

relevant studies whose aims have been to improve the performance of a single 

component of the FEWS or the overall performance of the system, and iv) supports 

the research gaps identified in Chapter 1.  

The Chapter is structured as follows: In section 2.2, a full description of a FEWS is 

given. In section 2.3, the forecasting component of the FEWS is explained. This 

section describes several options available to set up a flood forecasting system 

(FFS) in a catchment and how they affect the quality of the forecasts. Here the trade-

off between uncertainty and forecasting lead time and the types of forecast errors 

are described. Section 2.4 explains the methods available to estimate predictive 

uncertainty (PU) in flood forecasting and shows different uncertainty measures can 

be derived from them. The concept of ensembles is discussed briefly, and the 

section focuses more on statistical models (also known as post-processors and 

which are the methods considered in this research) and the concept of PU. Section 

2.5 explains how flood warning decisions are made in operational FEWS, and the 

most common warning criteria used in a local context, and how several research 

works have simulated flood warning decisions considering these warning criteria. 

This section also describes the methods available for issuing flood warnings by 

using probabilistic information. Section 2.6 explains the response to flood warnings 

and describes several potential proactive actions that can be part of the response 

component of a FEWS. Section 2.7 describes some attributes used to define the 

performance of FEWSs. Substantial emphasis is placed on the reliability of flood 

warnings and economic effectiveness, and several relevant studies are referred to in 

this field. The term economic effectiveness is used in this research to refer to 

the economic flood risk reduction achieved by a FEWS relative to the economic 

flood risk of the no warning scenario. Section 2.8 compiles all relevant 

information provided in the prior sections, and other research works to describe 

how FEWSs are actually operated and evaluated. Section 2.9 references research 
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works that have analysed the performance of a FEWS through an end-to-end 

modelling framework. Through the development of the Chapter, important factors 

influencing the performance of a FEWS are described and the research gaps 

identified are highlighted; they are then summarised in section 2.10, and the relation 

between the considered topics and this research is explained.  

2.2 Flood early warning in a system context 

Flood warnings are part of an integrated system that can be idealized as a cascade 

coupling four components that are supported by several processes (Figure 2.1). That 

integrated end-to-end system is often referred to as a Flood Early Warning System 

(FEWS) (Girons Lopez et al., 2017), or flood forecasting, warning, and response 

system (Verkade and Werner, 2011; Parker, 2017). In this research, the first 

designation has been chosen. The system is explained as follows.  

 
Figure 2.1: Flood early warning system 

Adapted from Parker and Fordham, (1996) and Carsell et al., (2004). 
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The first milestone in a flood event is the occurrence of a forecast trigger, and the 

last one is the exceedance of a stage level (flood threshold) at which flood losses, 

such as economic damage, trauma to residents, and potential loss of lives, start. 

Although trauma is important - floods can cause social and mental health problems 

that may continue over extended periods of time (Stanke et al., 2012) - it is very 

difficult to quantify. As shall be seen later, the current work concentrates on 

economic damage only, and no attempt is made to represent psychological damage 

to residents, or in the worst case, loss of life.  

 All components of the FEWS are between these two milestones. This period is 

theoretically the maximum time that is available for conducting proactive action, 

and it is known as the maximum potential warning time (Carsell et al., 2004). If one 

or more components fail within this time period, the FEWS is ineffective. 

The forecast trigger controls the maximum potential warning time. It is a simple or 

compound event that is likely to precede every flood and triggers the preparation of 

flood forecasts. This event is defined in terms of hydrometeorological variables 

which are routinely monitored and/or forecasted (Krzysztofowicz, 1993). On large 

and medium rivers, examples of these triggers are thresholds of an observed river 

stage and observed rainfall intensity and duration, respectively. The monitoring 

may be done by a local system or may also be done by a meteorological agency that 

triggers the preparation of the forecasts through the issue of a severe weather 

warning (Parker, 2017). In any case, once the preparation of the forecasts is 

triggered, time is required to collect data and transmit hydrometeorological data 

from the field to a central site to be examined. Meteorological forecasts usually 

provided by meteorological agencies in the form of numerical weather predictions 

(NWP) may also be used in this stage. This process is called data collection and is 

carried out by technical personnel and automated detection equipment.  

At the central site, forecasters use hardware, software, and hydrometeorological 

data and apply all their knowledge to create relevant information to recognize the 

potential flood threat (the forecast is generated). This process is called evaluation 

and often compares future discharge or water level with a pre-defined flooding 

threshold (𝑦𝑇), which is often set based on experience, historical data, and/or 

detailed hydraulic modelling of river response. If the potential flood threat is 

recognized, the time known as forecasting lead time starts, and time is needed to 
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provide this forecast to the Warner (a word adopted in this research to refer to a 

person involved in preparing and issuing flood warnings, usually a member of a 

governmental entity). This process is known as notification and triggers the flood 

warning decision in the FEWS. In some countries, this responsibility may fall on 

the forecasters (where the notification time is negligible) or professionals who have 

the appropriate technical background to interpret the real-time forecast information 

(Blöschl, 2008). Nevertheless, in other cases, this responsibility rests with non-

technical decision-makers (Orr and Twigger-Ross, 2009). The implementation of 

this decision marks the beginning of the process known as dissemination. The flood 

warnings are disseminated to local flood authorities and the population at risk and 

may be based on real-time flood hazard maps or pre-defined flood hazard maps 

obtained from a pre-flood risk assessment of the area monitored by the FEWS. This 

process may be carried out by media agencies, internet, text messages (SMS, 

MMS), door-knocking, or phone calls, whereby sometimes intermediate warning 

dissemination agents, such as local civil protection authorities, are involved.  

Once the recipients receive the warning, the response begins, and the proactive 

actions are implemented. These actions can be done by emergency services and 

others, e.g., local flood defense units or military personnel, and might include, for 

example, raising demountable defenses or rescuing residents. The proactive actions 

can also be executed by the warned householders who can move and/or evacuate 

residential contents to a safe place (Carsell et al., 2004; Rai et al., 2020). The time 

between the response beginning and onset of the flooding is called the mitigation 

time or warning lead time and is the time available for mitigation. As can be noted, 

this time is different from the forecasting lead time due to the time needed to make 

the warning decision and disseminate warnings (Carsell et al., 2004).  

Although it is not always the case, there is usually an information flow among 

components of the FEWS. This information can be either intrinsic, when it is part 

of the system and incorporate formal warnings, or extrinsic, which involves 

informal warnings used by floodplain users(Parker and Fordham, 1996). Therefore, 

the success of the FEWS heavily depends on how effective the communication is 

among the personnel involved in each component. In all of the above, it is implicit 

that the flows of information take place in real-time. Therefore, factors associated 

with the failure of instruments/telemetry system (FITS), the failure of 
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communication networks (FCN), and human errors in the forecast and warning 

process (HFWP) can affect the FEWS performance.  

2.3 Flood forecasting systems (FFSs) and sources of uncertainty 

A FFS is part of a FEWS and has an associated forecasting lead time, which is a 

key technical factor in the integrated system as it provides time in advance to the 

concerned authorities to warn and take effective proactive actions in the face of a 

potential flood. In essence, the FFS must help the concerned authorities answer as 

accurately as possible the following two questions: What will be the magnitude of 

the flood event? And when is it going to arrive? Having an exact answer to these 

questions would imply having a perfect forecast, which is impossible as flood 

forecasts are inherently uncertain. In the last two decades, a lot of research has 

focussed on flood forecasting techniques with the aim of reducing this uncertainty. 

This literature review does not attempt to provide a comprehensive description of 

all these studies but focuses on the flood forecasting techniques that are considered 

or assumed in this research, and in particular, on uncertainty (for a detailed 

description of all flood forecasting techniques, the reader is referred to 

Hapuarachchi et al., (2011) and Jain et al., (2018)).   

Thus, through a literature review, this section of the chapter explains the concept of 

uncertainty and the type of forecast errors associated with it. This section also 

explains the forecast chain often used in FEWS and how the FFSs used in this chain 

are related to the forecasting lead time and predictive uncertainty, PU. 

2.3.1 Sources of uncertainty 

Uncertainty can be defined in simple terms as the lack of knowledge of the observed 

value (Gouldby and Samuels, 2009). In flood forecasting, it produces a difference 

between the forecast and “true” value of the quantity being forecasted, frequently 

referred to as the predictand. That uncertainty can be split into two types: aleatory 

and epistemic uncertainty. The aleatory uncertainty is associated with the natural 

variability and describes the inherent randomness in nature, whereas the epistemic 

uncertainty is associated with the limited knowledge of the system being studied 

and with the inability to measure and model the physical world(Wasson, 2016). 

These two uncertainties are included in the formal assessment of uncertainty in 
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flood forecasting, and only the epistemic uncertainty can be reduced (Boelee et al., 

2019).  

2.3.2 Uncertainty and lead time 

There is a trade-off between the forecasting lead time and uncertainty in flood 

forecasting (Blöschl, 2008; Parker, 2017). This issue will be explained through an 

illustrative example (Figure 2.2) that shows a community threatened by river floods 

due to its low standard of protection (SoP), which needs to install an FFS as a part 

of a FEWS to improve the population resilience to this natural hazard. In this case, 

it is assumed forecasts of future discharges or water levels at the forecast points 

(cross-sections of the river adjacent to the at-risk community).  

 
Figure 2.2: Flood forecasting techniques, forecasting lead time, and  uncertainty in flood 

forecasting 

Adapted from O’Connell (2018). An illustrative example to explain the trade-off between 

forecasting lead time and uncertainty in flood forecasting through the potential forecasting models 

described in Table 2.1. The flooding threshold 𝑦𝑇  is defined by the standard of protection (SoP) of 

the at-risk community.  The light and dark grey between the lead times 𝑡 + 𝐿𝐵 and 𝑡 + 𝐿𝐵 + 𝐿𝐴 

illustrates the uncertainty associated with gauge-based and gauge-radar based QPE, respectively. 
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As can be seen in Figure 2.2, the catchment area is monitored by a gauging station 

(point A), and by a telemetric rain gauge network in the upper area. The forecast 

point is represented by point B (Figure 2.2a). Due to the catchment's characteristics, 

the lag between points A and B is mainly dominated by the routing of the flood 

through the main channel. Thus, one potential flood forecasting technique to be 

used may be a channel routing model based on the gauging station's records at A. 

Assuming that there is a good quality of the hydrologic information, as well as of 

the predictions, which is usually easily fulfilled by this flood forecasting technique 

(Barbetta et al., 2016), one would expect that this forecasting model would have a 

small level of uncertainty. However, the forecasting lead time of this model would 

be equal to the lag time between points A and B, i.e. LB, (Figure 2.2c), which would 

be the smallest one compared with other flood forecasting techniques that can be 

applied in the catchment.  

To increase the forecasting lead time, one can consider the telemetric rain gauge 

network and use, in addition to the flood routing model, a rainfall-runoff model by 

using gauge-based catchment rainfall estimate as an input which can be recorded 

until the time of forecasting 𝑡. This time is, in essence, defined by the forecast 

trigger that, in this example, can be a rainfall-based variable. With this forecasting 

chain, one can gain forecasting lead time; however, one also increases the 

uncertainty (Figure 2.2d). In this situation, the main source of uncertainty comes 

from rainfall data (Todini, 2004) as, for practical reasons, the density of rain gauges 

in the network will often be too low to properly characterize the spatial and temporal 

distribution of rainfall throughout the catchment. This problem can be partly solved 

using weather radars (Cluckie and Han, 2000; Reichel et al., 2009) since they offer 

an alternative method to capture rainfall data in remote areas of the catchment and 

enhance the gauge-based catchment rainfall estimate (referred to sometimes as a 

Quantitative Precipitation Estimate (QPE) (Arheimer et al., 2011; Adams, 2016). 

In this context, a forecasting chain based on gage-radar based QPE that includes a 

good bias correction technique will have the same forecasting lead time of the 

gauge-based one, i.e., L = LA + LB. However, its level of uncertainty is expected 

to be smaller (Figure 2.2b and Figure 2.2d), the residual uncertainty will be due to 

the remaining uncertainty in the rainfall estimate and the rainfall-runoff model 

error.  Finally, suppose one desires to increase the forecasting lead time even more, 

i.e., longer than the hydrological lead time L (catchment response). In that case, one 
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must add a rain-forecast lead time by using rainfall forecast, which is typically 

derived from quantitative precipitation forecasts (QPFs) by NWP, i.e., from a 

Numerical Weather Prediction model. Nowadays, a QPF is delivered in the form of 

an ensemble forecast which mainly encapsulates the uncertainty deriving from the 

NWP initial conditions (Cloke and Pappenberger, 2009; Liguori et al., 2009). 

Shorter lead time precipitation forecasts can also be derived in the form of Nowcasts 

based on the propagation of weather radar images forward in space/time using a 

nowcasting algorithm (Heuvelink et al., 2020). A forecasting chain under these 

considerations records the rainfall until the time of forecasting 𝑡 and forecasts future 

rainfall for a time interval into the future LR. Even though this forecasting chain 

provides the longest lead time relative to the previous scenarios, the uncertainty 

level deriving from the Nowcasting and/or the QPF for the lead-time extension Lr 

is the highest due mainly to the uncertainties related to meteorological predictions 

(Marty et al., 2013) (Figure 2.2e).  

 There are several other sources of uncertainty that can be substantial in the flood 

forecasting chain. For example, errors associated with initial conditions, e.g., soil 

moisture, are particularly important when using rainfall-runoff models. Table 2.1 

describes the four scenarios illustrated in Figure 2.2 and their primary sources of 

uncertainty.  

As one can see, this example explains clearly why uncertainty increases as the lead 

time increases and the rationality of the trade-off between these two variates.  This 

rationality is used in this research to explore the reliability of flood warnings and 

the economic effectiveness of river flood warnings associated with different 

forecasting lead times in Chapters 5 and 6, respectively. 

The preceding depiction of how uncertainty increases with lead time implicitly 

assumes that data assimilation/forecast updating is carried out as new data are 

received at each time point, so that, at the current time point t, the model forecast 

and the observed value agree within the limits of measurement error, before the 

next forecast is issued. The effect of data assimilation dies out as the lead time 

increases, and the forecast reverts to the simulation mode model forecast, i.e., that 

resulting from the forcing input variable(s). This is also the case with NWP model 

forecasts.  
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Table 2.1 Source of uncertainty for four potential flood forecasting techniques in a FEWS 

The four forecasting models described in this table are the ones described in Figure 2.2. 

Also, it is important to note that the example shown in Figure 2.2 assumes that 

forecasts are done by using a rainfall-runoff model and/or flood routing model that 

can be physically based or conceptual. Note, however, that forecasts can also be 

generated through data-driven models that rely on historical data without directly 

Scenario 
Model configuration 

option. 

Forecasting 

lead time  

The primary 

source of 

uncertainty 

Levels of 

uncertainty 

1 Flood routing model LB 

 High Flow 

Ratings 

 Hydraulic/Rout

ing Model 

Structure and 

Parameters 

 River 

channel/floodpl

ain 

 Survey 

The lowest one 

2 

Flood routing model+ 

rainfall-runoff model 

(precipitation data from 

rain gauge network) 

L = LA + LB 

 Type of rainfall 

event 

(convective, 

frontal, 

orographic, 

etc.) 

 Rainfall-Runoff 

Model 

Structure and 

Parameters 

 Antecedent 

Conditions 

Higher than 

scenarios 1 and 3. 

3 

Flood routing model+ 

rainfall-runoff model 

(precipitation data from 

rain gauge network 

and/or weather radars) 

Smaller than 

scenario 2. 

4 

Flood routing model+ 

rainfall-runoff model 

(observed rainfall and 

quantitative 

precipitation forecast 

(QPF) from a  

numerical weather 

prediction (NWP) 

model) 

LR + L 

 Type of rainfall 

event 

(convective, 

frontal, 

orographic, 

etc.) 

 Nowcasting 

Algorithm 

Structure and 

Parameterizatio

n 

 NWP Model 

Structure and 

Parameterizatio

n 

 Rainfall-Runoff 

Model Strucure 

and Parameters 

The highest one. 
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considering the underlying physical hydrological processes. These methods can 

represent the existing nonlinear rainfall-runoff relationship with high computational 

speed. The sources of uncertainty of these models are related to the aleatory 

uncertainty - included in the training data - and the inability of the algorithm to 

represent the observed values. The popularity of advanced data-driven models, e.g., 

machine learning models, has dramatically increased in recent years (Mosavi et al., 

2018). Machine learning methods, e.g., fuzzy systems or artificial neural networks, 

have been used for forecasting rainfall, discharge, water levels, or for 

assimilation/forecast updating (Tareghian and Kashefipour, 2007; Kambalimath 

and Deka, 2020). 

2.3.3 Types of forecasting errors 

Given the existence of inherent uncertainty, flood forecasts are subject to several 

types of forecasting errors, which have to do with the lack of fit between the 

predictand, often a discharge or water level, and predictor. Based on a forecast and 

observed hydrograph of a potential flood, they are classified as amplitude, phase, 

and shape errors (WMO, 2011), and their presence also affects the forecast of the 

main variables involved during the forecast process, i.e., peak (𝑦), timing (𝑡𝑦), and 

volume (V) of the potential flood. 

The amplitude error implies both errors in the magnitude (𝑒𝑦) and volume (𝑒𝑉) 

(Figure 2.3a). They often occur due to structural deficiencies in the hydrological 

model, parameter estimation errors, and errors in the input and/or output data. The 

phase errors show errors in the timing of the hydrograph (𝑒𝑡𝑦
), i.e., although 𝑦 is 

correctly estimated, it is delayed or advanced in time (Figure 2.3b). Finally, shape 

errors may show 𝑒𝑦, 𝑒𝑉, and 𝑒𝑡𝑦
. This type of error may be attributable to the routing 

component of the model not representing well the redistribution of the generated 

runoff volumes over time (Figure 2.3c). If the error is systematic for any of these 

scenarios, it is said that the forecasts are biased. FFSs operating in non-updating 

mode, i.e., the ones that do not consider real-time information to modify forecasts, 

are more likely to have these errors than the FFSs operating in updating mode, i.e., 

the ones that consider forecast updating based on recent hydro-climatic 

observations (this is a post-processing technique named data assimilation). The 

literature offers several bias-correction methods when dealing with streamflow 
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forecasts (Hashino et al., 2007). These methods often address the issue of the bias 

in the mean value of the predictand, and the issue of the bias in the variance of the 

predictand has been poorly analysed in flood forecasting and warning process.  

 
Figure 2.3: Types of forecast errors 

Adapted from WMO (2011). 

In this research, a potential flood is represented by its peak flow ordinate, i.e., 𝑦, 

and only the error 𝑒𝑦 is considered in the representation of its forecast. The primary 

impact is created by the magnitude of the flood peak. The timing of the flood can 

be considered a secondary impact and neglecting 𝑒𝑡𝑦
 mainly affects the economic 

effectiveness of flood warnings because the damage saved by a proactive action 

depends on the mitigation time, which, in turn, depends on the onset of the flooding. 

The error 𝑒𝑡𝑦
 is not considered in the analysis done in Chapter 6 since it is assumed 

that 𝑒𝑦 will dominate over these timing errors. The impact of the bias in the mean 

and variance on the reliability of flood warnings is explored in Chapter 5. 

2.4 Estimation of predictive uncertainty (PU) 

From more than one decades ago, the concept of uncertainty in flood forecasting 

has started to be considered more and more in research and practice 

(Krzysztofowicz and Kelly, 2000; Todini, 2004; Cloke and Pappenberger, 2009). 

This issue has been studied through two philosophies: ensembles methods and 

statistical methods (also known as post-processors)(Boelee et al., 2019). Ensembles 

methods define uncertainty from a set of plausible forecasts, whereas the statistical 

methods use prior forecast and observed values to define PU through statistical 

analysis. Some methods also use these two philosophies to estimate it.  

Ensembles methods assume that the space of the forcing data, forecasting model 

structure, and parameters can be defined. Thus, ensembles are often obtained by 

running the forecasting model several times, frequently from different initial 
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conditions, and where each run is within this assumed space (Xuan et al., 2009). 

Since ensemble methods measure the spread of the forecasts descending from these 

multiple scenarios, it is said that they do not provide an appropriate measure of PU, 

but rather a measure of forecasting sensitivity (Todini, 2017) (Figure 2.4a).  

 
Figure 2.4: Illustration of methods used to characterise  (a) uncertainty in forecasts and (b) 

predictive uncertainty 

The flood even is defined by the Standard of protection (SoP). a) Uncertainty in forecasts described 

by ensembles and b) predictive uncertainty defined by conditional distributions for different forecast 

horizons. 

 
Figure 2.5: Uncertainty measures 

From the methods used to quantify uncertainty from ensembles, several uncertainty measures 

(confidence limits, error bars, probability distributions) can be obtained. Note that in practice, only 

1 or 2 measures would be used on the same figure. The flood event is defined by the standard of 

protection SoP. 

Statistical methods assess the uncertainty in flood forecasts in terms of PU. They 

use historical observed and predicted values to derive PU as the predictive density 

of the unknown future quantity conditional on the forecasted one. PU is quantified 

when forecasting a predictand (often water level or discharges) with a specific 

forecast horizon (forecasting lead time) (Figure 2.4b).  
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Figure 2.5 illustrates the uncertainty measures that can be derived from the 

ensembles. Given that this research considers the statistical philosophy to represent 

PU, the PU concept, and the methods used to estimate it, are analysed in the 

following subsections. 

2.4.1 Predictive uncertainty (PU) definition 

In studies of hydrological forecasting, the terminology “predictive uncertainty” has 

been widely used. PU is defined by Todini (2016) as the probability that the 

predictand, typically the observed peak water level or discharge at a specific cross 

section at the time 𝑡 + 𝐿 ( where L is forecast lead time) conditional on a single or 

multiple predictor(s), namely model prediction(s). The predictand is conditional on 

the structure, parameters, and forcing data of the forecasting model(s). The 

terminology “predictive uncertainty” has been popular because it highlights that it 

is associated with the uncertainty around the prediction of the predictand, rather 

than the “simulation uncertainty” (SU), also known as “emulation uncertainty” or 

“validation uncertainty”, that defines the uncertainty of the predictor given the 

knowledge of what actually occurred.  SU, in essence, defines the skill of the 

forecasting model to reproduce the reality (Klein et al., 2016). If one assumes peak 

water level as the predictand, i.e., 𝑦, and only one predictor (the forecast peak water 

level of a forecasting model), i.e., 𝑦̂, the joint probability of 𝑦 and 𝑦̂, PU and SU 

are defined by 𝑓(𝑦, 𝑦̂), 𝑓(𝑦𝑡|𝑦̂𝑡) and 𝑓(𝑦̂𝑡|𝑦𝑡), respectively. Since, in the case of 

SU, 𝑦̂ is the uncertainty quantity, it can only be based on past observations and not 

in predictive mode, whereas PU can be used in both simulation (or hindcast) and 

predictive mode. Figure 2.6 illustrates the concepts of SU and PU.  

It is important to realise that PU encapsulates all the different sources of uncertainty 

in the forecast chain into one measure, thus making it unnecessary to consider the 

sources themselves.  

Throughout this thesis, the terms ‘predictive uncertainty’ and ‘forecast 

uncertainty’ are used interchangeably, where it is understood that the latter 

term has exactly the same interpretation as the former. 
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Figure 2.6: Illustration of SU and PU 

a) Simulation uncertainty (SU). Once the joint distribution between the observed and forecast 

values is built, knowing an observed value 𝑦𝑡
∗ , one can evaluate the uncertainty of the predictor 

𝑦̂ (forecasting model). b) Predictive uncertainty (PU). With the joint distribution, knowing the 

predictor 𝑦̂𝑡
∗, one can assess the uncertainty on the predictand. Adapted from Todini (2016). 

2.4.2 Predictive uncertainty (PU) estimation 

The statistical methods (which are the methods considered in this research), in 

essence, calculate the forecasting model's error and assume the model's errors, 

obtained from past observations and their forecasts, are representative of the 

uncertainty in the future. These methods estimate the PU of a predictand (often 

water level/discharge) for a specific forecast horizon (forecasting lead time) and 

location. Thus, statistical methods have been applied to a fixed location with 

discharge/water level data (Boelee et al., 2019).  

The statistical methods most commonly used in hydrology are the Hydrological 

Uncertainty processor (HUP)(Krzysztofowicz and Kelly, 2000), Model Conditional 

Processor  (MCP)(Todini, 2008; Barbetta et al., 2016), and Bayesian Joint 

Probability (BJP) model (Wang et al., 2009; Zhao et al., 2015). All of these 

methods, which have been reviewed by  Li et al. (2017), share similarities; for 

example, i) they use parametric approaches based on  Bayes’ theorem to derive the 

distributions needed to estimate PU;  ii) a sample of forecasts and the resulting 

observations, obtained from historical records or simulated forecasts (hindcast), is 

used to identify the distributions involved in the Bayes’ theorem; iii) the 

distributions of the original samples are transformed to Gaussian to apply the 

Bayesian inference technique; and iv) the samples used are comprised of values that 

represent the four different states when dealing with flood forecasting, i.e., peak 

flow, base flow, and transitory states occurring during the rising and recession 

limbs.  
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In the same way, these methods have their own particularities. For example, HUP 

takes into account the strong autocorrelation property of hydrological time series to 

base the derived probability distributions on recent past observations 

(Krzysztofowicz, 1999a; Bogner and Pappenberger, 2011). MCP is an alternative 

to HUP, but it has the advantage that the derivation for univariate situations (a single 

model provides probabilistic forecasts at a specific forecasting lead time and 

location) can be conveniently extended to multivariate situations, which can be 

used, for example for multimodel, multisite, and multi-lead time problems (Coccia 

and Todini, 2011). Both HUP and MCP use the normal quantile transformation 

(NQT) as a Gaussian-transform method (Bogner et al., 2012). BJP differs from 

these two models in that: i) the log-sinh transformation is used instead of NQT; and 

ii) it considers the uncertainty of the parameters used to describe the PU, where the 

Bayesian inference technique is applied for the estimation of these parameters 

(Zhao et al., 2015). MCP and BJP deal with the exiting heteroscedasticity of the 

residuals when forecasting streamflow – that is, the error between forecasts and 

observations tend to be much higher at high flow than at low flow- through the use 

of the multivariate truncated Normal (MTN) distributions and the log-sinh 

transformation, respectively.   

The main disadvantage of these statistical methods is that they rely on observed 

values. This problem is particularly important for the methods that use NQT as a 

Gaussian-transform method. It might happen that, during operational use for 

forecasting, the sampled data points in the normal space fall outside the range of 

the historical sample, and the inversion of the empirical NQT is not possible. These 

methods deal with this issue as extreme values are rarely observed in the historical 

records due to the limited amount of available data. Thus, to estimate future possible 

extreme values, different approaches have been proposed, which in essence seek to 

identify the best curve for fitting the sample distribution tails. One of them is, for 

example, to extend the historical observed sample with extreme values estimated 

by fitting a Peaks-Over Threshold (POT) model to the upper tail of the sample and 

apply a non-parametric regression method called Generalized Additive Model 

(GAM) as an extrapolation method (Bogner et al., 2012). Other approaches suggest 

extending the sample by the hyperbolic approximation for the uppermost-tail of the 

distribution (Seo et al., 2006) or applying a linear extrapolation on a number of 

points in the tails of the sample distribution (Weerts et al., 2011). Coccia (2011) 
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suggests applying a specific model to the tails of the historical sample by setting, 

for the upper tail, the maximum value, for which the probability is assumed to be 

equal to 1, to twice the maximum value ever observed, and, for the lower tail, by 

setting the minimum value, for which the probability is assumed to be null, to zero. 

This research does not explicitly use a statistical method to estimate PU from 

observed data. Rather, it selects realistic parameter values for the distributions used 

in deriving PU (Figure 2.6b) within a Monte Carlo sampling framework; these 

parameter values are supported by the analysis of observed flood peak data. A joint 

distribution is assumed for the predictand and predictor. Then, using the method 

known as the conditional approach (Lewis and Orav, 2018), bivariate values 

associated with a conditional distribution (representing PU) are generated from this 

assumed joint distribution. This is done for a simulated fluvial case (Chapter 5 and 

Chapter 6) and the case study (Chapter 7). Chapter 3 describes the predictands 

considered in each case, whereas Chapter 4 details the statistical concepts used in 

this approach.  

2.5 Warning decisions in flood early warning systems 

The prediction problem in FEWS has been addressed by a plethora of research 

studies, ranging from simple to complex methods and forecasting models. In 

contrast, the warning problem, particularly the warning decision issue, has received 

relatively little attention. FEWSs often have an associated warning criterion that 

determines which warning decision process must be conducted. This warning 

criterion, in turn, depends on the flood forecasting technique used in the system. 

Based on a literature review, this section of the Chapter explains how flood warning 

decisions are actually made in operational FEWSs and the forecast type often used. 

Furthermore, it describes the most common warning criteria used in a local context 

and how several research works have simulated flood warning decisions 

considering these warning criteria.      

2.5.1 Common forecast type and warning decision  

Most FEWSs use deterministic forecasts in the warning-decision-making process. 

However, due to the significant progress in the last two decades in assessing and 

estimating PU, the probabilistic forecast is starting to be considered in operational 

FEWSs. For example, the Environmental Agency (EA), the entity responsible for 
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managing the risk of flooding in England, is transitioning toward using this forecast 

type through the use of ensembles (Arnal et al., 2020).  

Regardless of the type of forecast used, the warning-decision-making process is 

complex. Before issuing a warning, the Warner often meticulously assesses the 

forecasts and uses his/her previous experience (built up over past events) to make 

the best decision (Ramos et al., 2010; Verkade and Werner, 2011). Other factors 

such as the type of event (e.g., local small flood events vs large-scale extreme flood 

events), the cost-benefit analysis of warning vs not warning, risk attitude (e.g., risk 

aversion vs risk loving), and the cultural environment in which decisions are made, 

also influence the warning decision (Arnal et al., 2020). All these factors associated 

with the human behaviour of the Warner have been encapsulated in this research in 

a factor called the human component of the flood warning decisions (HFWD), 

which, as was mentioned above, affects the flood warning decision and, therefore, 

the FEWS performance.  

2.5.2 Warning criteria in a local context 

FEWSs may use for the warning criterion a single-discharge water level threshold 

(e.g., defining defence overtopping or first property flooding), where forecast 

values (often discharge or water levels) are compared with the pre-defined 

threshold, which is, in essence, the flooding threshold 𝑦𝑇. If the forecast values 

cross 𝑦𝑇, a warning should be issued (Figure 2.7a). These FEWSs do not target 

warnings to individual properties or small areas within the at-risk community but 

mainly aim to alert flood authorities of a potential flood that, in turn, uses proactive 

actions to mitigate the flood impact. A common proactive action in this type of 

FEWSs is raising demountable defenses, which can need a 24-h ahead warning to 

be erected. Flooding-threshold-based warning decisions have been the basis of 

some important research (Verkade and Werner, 2011; Dale et al., 2014).  

FEWSs may also use several warning criteria based on different discharge/water 

level thresholds. These thresholds are often associated with different return periods 

and are called flood warning thresholds.  They split the level of impact in the 

floodplain into flood zones (also called flood warning areas) which allows warnings 

to be targeted on small areas (Sene, 2008). This warning criterion represents a more 

phased approach to warning or evacuating properties than the single flooding-
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threshold-based criterion since each flood zone has its own flood warning threshold. 

In this case, a flood zone is warned if its corresponding flood warning threshold is 

exceeded (Figure 2.7b). These thresholds are often set based on prior hydraulic 

modelling and flood risk assessment of the area monitored by the FEWSs. 

 
Figure 2.7: Illustration of warning criteria based on discharge or water levels thresholds 

a) Single flood warning-threshold-based criterion, b) multiple flood-warning-thresholds based 

criterion (adapted from (Sene, 2008)). 

Some FEWSs may use a hydraulic inundation/hydrodynamic model in the forecast 

chain to transform the hydrograph of a potential flood into the expected socio-

economic impacts through real-time flood hazard maps. In this case, these maps 

and the flooding threshold 𝑦𝑇 are used in the warning criterion.  Warning decisions 

are based on the direct comparison of future discharge or water levels and the 

flooding threshold 𝑦𝑇, and the real-time flood hazard maps are used to identify 

individual vulnerable properties and disseminate flood warnings (Figure 2.8a). 

Flood hazard maps are built by intersecting the maps of the property locations and 

the inundation forecasting. This flood warning service is considered the most 

sophisticated one and is considered complex and computationally expensive, and 

its use has been limited in FEWSs (Fernández-Nóvoa et al., 2020). Despite that, 

with the development of high-performance computing techniques, it is now feasible 

to use these flood forecasting techniques in flood warning services (Ming et al., 

2020; Ritter et al., 2020). In some cases, a library of pre-generated hazard maps 

corresponding to different flood levels is created and stored, and the maps are then 

interpolated in real-time, which is computationally light. 

Some FEWSs may use a warning criterion based on relatively simple forecasting 

tools, such as the rainfall threshold (RT) method (Georgakakos, 2006; Golian et al., 

2015). These methods allow the forecaster to use local precipitation and predict 
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flooding without running complex forecasting models. Furthermore, they can be 

used as a backup approach when there is failure or instability in the main FFS 

(O’Connell, 2005).  In this method, a critical RT value is defined as the minimum 

cumulative rainfall volume necessary to cause a critical river discharge at the 

forecast point (a cross section of the river). A rainfall threshold curve is then built 

by plotting critical RT values versus time, all corresponding to the same critical 

river discharge. When the cumulative rainfall volume of an event crosses the RT 

curve, the peak discharge at the forecast point is expected to be equal to or greater 

than the RT curve's critical river discharge. Thus, FEWSs that use this flood 

forecasting technique use a warning criterion based on future precipitation (often 

expressed in terms QPF) and the RT curve. In that case, a warning is issued if the  

QPF crosses the RT curve (Martina et al., 2006)(Figure 2.8b). Like the FEWSs 

based on a flooding threshold (Figure 2.7a), these systems do not target warnings 

to small areas or individual properties but aim to alert the general public and lead 

local flood authorities of a potential flood in the floodplain. These methods often 

assume a pre-defined rainfall pattern, pre-defined soil conditions, and fixed 

catchment characteristics, and, therefore, relatively large uncertainty in the flood 

predictions may come from these assumptions (Martina et al., 2006; Hapuarachchi 

et al., 2011; Wu et al., 2015). 

 
Figure 2.8: Illustration of warning criteria based on a) inundation forecasting and b) rainfall 

threshold curve 

This research in Chapter 5 explores the reliability of flood warnings of FEWS 

whose warning criterion is based on real-time flood hazard maps and/or the 

flooding threshold 𝑦𝑇 (Figure 2.8a and Figure 2.7a, respectively). Furthermore, in 

Chapter 6, the reliability of flood warnings and the economic effectiveness of a 

FEWS based on the first warning criterion are explored. In Chapter 7, the case 

study, a rainfall-threshold-based warning criterion is used. This research does not 
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simulate the warning criterion illustrated in Figure 2.8b; however, it takes the 

concept of the RT curve to adapt it to a flood-prone polder system. 

2.5.3 Simulation of warning decisions 

Most research works that have considered the warning decision problem in FEWSs 

have assumed that they can be made following a set of forecast-driven rules. For 

example, a common method when simulating deterministic-forecast-based warning 

decisions is to assume that a warning is automatically issued when the forecasting 

model's deterministic output(s) cross a pre-defined threshold/s. Under this 

assumption, Verkade and Werner (2011) show, using a quasi-analytical framework 

with some limiting assumptions, how flooding-threshold-based warning decisions 

based on deterministic-single-value forecasts, in which forecast errors are not 

acknowledged, lead to sub-optimal decisions in a FEWS.  

The use of probabilistic forecasts allows, on the other hand, optimal flood warnings 

to be issued as PU is explicitly quantified. It can be used within appropriate 

decision-making procedures to minimize costs, economic losses, loss of life, and 

social disruption. These procedures can be split into probabilistic thresholds-based 

methods and risk-based methods. In essence, the former ones assume that a warning 

is automatically issued when the probability of exceedance of a pre-defined 

threshold of the predictand (discharge, water level, rainfall amount, etc.) exceeds a 

predefined probabilistic threshold. This method has been considered by assuming a 

warning criterion based on a flooding threshold (Verkade and Werner, 2011) or 

flood warning thresholds (Alfieri et al., 2012; Bischiniotis et al., 2019)(Figure 2.7). 

Probabilistic thresholds are often set in such a way that they meet specific 

requirements, such as maximizing the reliability or economic effectiveness of the 

FEWS. 

Risk-based methods are often used in a Bayesian decision scheme where the 

predictive density, i.e., the PU,  and a utility/loss function, are used to set rules 

based on expected values (Economou et al., 2016; Todini, 2017). The utility/loss 

function gives information about the utilities/losses in the FEWS with and without 

the warning action. This function, along with the predictive density, is used in real-

time. Bayesian warning decisions assume that the warning is automatically issued 

when the warning action's expected utility /losses are higher/lower than that without 
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the warning action. Bayesian FEWSs have been designed to predict floods based 

on rainfall (Martina et al., 2006; Economou et al., 2016) or water levels 

(Krzysztofowicz, 1993). Bayesian warning decisions are rarely used in operational 

systems, and they have mainly been considered in research works to show the 

advantage of using probabilistic forecasts in FEWS.   

This research simulates warning decisions through forecast-driven decision rules. 

Deterministic-warning decisions assume that the warning is automatically issued 

when the deterministic forecast crosses a predefined threshold. The probabilistic-

threshold approach is, on the other hand, used to represent the probabilistic warning 

decisions. These approaches are used to simulate warning decisions in a FEWS 

operating for a river-flood-prone area (Chapters 5 and 6) and a flood-prone polder 

system (Chapter 7). 

2.6 Response to flood warnings 

The aim of a FEWS is to reduce human and damage losses through the 

implementation of several proactive actions triggered by the flood warnings. These 

actions represent the response of the FEWS and define the benefits of the system. 

Priest et al., (2011) developed a model to quantify the benefits of a FEWS based on 

several response pathways to flood warnings or risk reduction actions (RRAs). In 

their work, eight principal RRAs were identified, which cover the mitigation of the 

economic and human losses (Figure 2.9). These RRAs provide a good insight into 

the potential proactive actions that can be part of the response component of a 

FEWS and are explained as follows.  

Six of these RRAs relate to damage-reducing responses and two to the reduction of 

human losses. The former responses cover a flood defence operation (FDO) and 

community-based options (CBO) that consider, for example, community pumping 

schemes or the placement of measures to protect properties at a community scale. 

The damage-reducing responses also involve actions at the household level, such as 

contingent resilience measures (CRM) or the contents moved or evacuated (CME) 

by householders. CRM is a set of planned measures to be conducted in advance of 

a flood, such as the use of sandbags. Watercourse capacity maintenance (WCM) 

also reduces flood damage. Activities to mitigate the economic damage in business, 

such as moving equipment or stock out of the path of floodwater, are also included 
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in the damage-reducing responses. On the other hand, the RRAs associated with the 

reduction of human losses relate to search and rescue (SAR) and evacuation 

measures (EVAC). 

 

Figure 2.9: Potential RRAs used in a FEWS 

Source: Priest et al., (2011). 

Several research works that have studied the response component of the FEWS 

through a modelling framework have considered one of these RRAs. For example, 

Dawson et al. (2011) and Liu and Lim (2018) used an agent-based modelling 

framework to explore the benefits of EVAC in a FEWS. Verkade and Werner 

(2011) and Bischiniotis et al. (2019) used a quasi-analytical framework to analyse 

the economic effectiveness of a FEWS based on CME and CMR, respectively. In 

this research, the response component of the FEWS is represented through CME 

for the fluvial case (Chapter 6) and CRM for the flood-prone polder system case 

(Chapter 7). The CME is simulated by using the functions proposed by Carsell et 

al. (2004), which represent the damage reduction of this RRA in a floodplain 

property as a function of the mitigation time (which is assumed in this thesis to be 

equal to the forecasting lead time) and flood depth. The functions were developed 

from the statistical analysis of surveys completed by floodplain management and 

flood damage experts. The CRM in the case study represents a pumping scheme 

operating in the flood-prone polder before or during storm events to remove water 

from the inner rivers to the outer rivers, to enable water to drain from the polder 

areas into the inner rivers. An overview of these RRAs is provided in Chapter 3, 
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and a detailed explanation of its simulation is provided in each corresponding 

Chapter. 

As was mentioned at the beginning of this section, the RRAs shown in Figure 2.9 

define the benefits of a FEWS. Particularly, the RRAs relate to damage-reducing 

responses define the economic effectiveness of the system, which is considered as 

one of the performance measures of a FEWS (Parker, 2017). Since this performance 

measure is one of the measures to be explored in this research, the potential damage 

saved associated with damage-reducing responses are analysed in the next section.  

2.7 Evaluation of the performance of a FEWS 

Parker (2017) suggests several measures to define the performance of a FEWS. He 

split them into technical and social measures. The former ones consider technical 

aspects associated with forecast quality, such as the accuracy, reliability, timeliness 

of flood warnings and flood detection, as well as aspects related to the geographical 

coverage. These measures can be characteristics of the FEWS or be evaluated based 

on a record of observed data and their forecasts. On the other hand, social measures 

are evaluated based on social survey responses and measure the acceptance of the 

flood warning service. Social aspects include information quality and satisfaction 

of the warning service, life protection, and economic factors such as damage 

reduction and benefit-cost ratio.  Social measures could also consider the reduction 

of psychosocial impacts of flood events, as it has been proved that floods can cause 

social and mental health problems that may continue over extended periods of time 

(Stanke et al., 2012); however, these measures are rarely considered.  From these 

measures, reliability and economic effectiveness have been the attributes of a FEWS 

that have received more attention in research works. This research is based on these 

two performance attributes, and, therefore, substantial emphasis is placed on them 

in this section. This literature review supports the research gaps identified in 

Chapter 1, which are, in turn, highlighted in Chapters 5, 6, and 7. 

2.7.1 Reliability  

The reliability of the flood warnings is one of the foremost attributes of a FEWS. 

In general terms, reliability is defined as an object's capability to achieve a required 

function under stated conditions for a stated period of time (George and Modarres, 

1994). Thus, Sättele et al. (2015) state that reliable warning systems for natural 
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hazards can be considered as those that detect all hazard events in a timely manner 

and transfer the warning to the affected people, leading to actions that avoid damage 

and loss of life. They also split the reliability of a warning system for natural hazards 

into technical reliability and inherent system reliability based on this concept. The 

former has to do with the system's ability to work correctly in extreme 

circumstances, and the latter with the skill of the system to detect and alert the 

hazard event. 

In terms of flood warning systems, the reliability of the flood warnings is often 

evaluated only in terms of the inherent system reliability. Therefore, it is defined 

by skill scores that determine warning decision-observations combination results. 

Thus, it has been analysed based on the concept of signal detection theory through 

the probability of detection (POD) and the probability of false detection, also known 

as false alarm rate (F)(Krzysztofowicz et al., 1994). It has also been evaluated in 

terms of hits, missed events, and false alarms for different thresholds (Montesarchio 

et al., 2009; Alfieri et al., 2012). In line with this,  Parker (2017) defines POD, F, 

and the false alarm ratio (FAR) as reliability measures of a FEWS (Table 2.2). Other 

works define this attribute of the FEWS through the critical success index (CSI), 

also known as threat score (Jolliffe and Stephenson, 2012). 

The works mentioned above have evaluated the reliability of flood warnings based 

on whether a warning preceded a flood event's occurrence or non-occurrence in the 

floodplain or in a specific flood risk zone, where a pre-defined threshold defines 

the occurrence of the event (Figure 2.7). The skill scores used to define this 

attribute, in essence, gives a “snap-shot” of the reliability of the flood warnings in 

the floodplain or a specific flood risk zone. Even though these works suggest 

methods to reasonably estimate the reliability of flood warnings, they do not 

consider the uncertainty in the estimation of the flood magnitude. Note that, due to 

the forecast’s inherent uncertainty, there is always a difference between the 

magnitude of the forecast and observed flooding, and, therefore, a difference 

between the warned and flood properties. This undoubtedly impacts the reliability 

of flood warnings. For example, Parker et al. (2007) found in a flood-warning-

customer-oriented research project that, due to a bad performance in the 

dissemination procedure,  only 37.5% of flooded properties received a warning 

before flooding. This occurs due to not only poor communication but also due to 

uncertainty in the estimation of the flood magnitude.  
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Therefore, a more reliable approach would be the one that evaluates the reliability 

of flood warnings based on whether a warned property was or not subsequently 

flooded. This target information for this approach is the number of warned and 

flooded houses after the observed realization of a potential flood in the area 

monitored by the FEWS. To the best of the author’s knowledge, a modelling-based 

framework that explores the reliability of flood warnings based on this criterion has 

not been reported in the literature.  

This criterion, which is becoming increasingly relevant to operational FEWS as 

flood hazard maps are being used to assess which properties might be flooded 

(Figure 2.8a), is called in this research a floodplain property-based criterion (FPC) 

and is used to explore flood warning reliability for a simulated fluvial case in 

Chapters 5 and 6. In these Chapters, the FPC is compared with the criterion that 

evaluates the reliability of flood warnings based on whether a warning preceded a 

flood event's occurrence or non-occurrence in the floodplain, where the flooding 

threshold 𝑦𝑇 at a specific river cross-section defines the occurrence of the event.  

This criterion is called in this research a flooding threshold-based criterion (FTC) 

and can be used to evaluate the reliability of flood warnings of FEWS with the 

warning criterion illustrated in Figure 2.7a. The same skill scores can define the 

reliability of flood warnings in the FTC and FPC. Table 2.2 indicates the 

interpretation of the skills scores POD and FAR in the FTC and FPC.  

Table 2.2 Metrics to evaluate the flood warning performance. 

Metric 
Abbrev

iation 

In the FTC, 

answer the 

question: 

In the FPC, 

answer the 

question: 

Equation Interpretation 

Probability 

of 

detection 

or hit rate 

POD 

What is the 

probability of an 

observed event 

being warned in 

the floodplain? 

What is the 

probability of 

a flooded 

house being 

warned in the 

floodplain? 

𝑃𝑂𝐷 =
ℎ

ℎ + 𝑚
 

Ranges from 

0-1.  

Perfect 

forecast 1. 

False 

alarm ratio 
FAR 

What is the 

probability of a 

forecast event 

being incorrectly 

warned in the 

floodplain? 

What is the 

probability of 

a warned 

house being 

incorrectly 

warned in the 

floodplain? 

 

𝐹𝐴𝑅 =
𝑓

ℎ + 𝑓
 

Ranges from 

0-1.  

Perfect 

forecast 0. 

Legend:ℎ=hits; 𝑚=misses, 𝑓=false alarms. 
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2.7.2 Economic effectiveness 

The term economic effectiveness has been used to refer to the flood risk reduction 

of a FEWS relative to the flood risk of the no warning scenario (Sättele et al., 2015; 

Parker, 2017). As was mentioned in section 2.6, the RRAs relate to damage-

reducing responses define the economic effectiveness of a FEWS which is, in turn, 

considered as a performance measure of the system. The potential damage saved 

associated with these RRAs has been often estimated through social survey research 

projects. From the RRAs shown in Figure 2.9, CME was perhaps the first RRA that 

was researched. Day (1970)  was the first to do this. Based on research conducted 

in Susquehanna River basin, he developed what is commonly known as the ‘Day 

curve’, which shows the relationship between the mitigation time and potential 

damage saved (expressed in percentage) associated with CME. Based on this curve, 

Day (1970) suggest predicting the economic effectiveness of the FEWS as a 

percentage of a metric that defines the flood damage of the floodplain without the 

warning service, where the expected annual damage (EAD) is often used for these 

purposes. After this work, a long series of social survey research projects were 

developed to improve the Day’s method. For example, Carsell et al. (2004) criticise 

the Day’s method and mentions that the flood depth is an important factor 

influencing the damage reduction. Therefore, it should be considered in the 

estimation of the potential damage saved. They also mention that Day’s method is 

too optimistic as it assumes that floodplain residents act rationally and efficiently. 

In this context, based on a social survey research project, Carsell et al. (2004) 

developed damage reduction curves associated with CME as a function of the 

mitigation time and flood depth and suggest a method to estimate the economic 

effectiveness of a FEWS as the difference between the EAD of the floodplain 

associated with and without a warning scenario. The latter EAD is estimated based 

on these damage reduction curves. The economic effectiveness is then reduced by 

considering an efficiency parameter of the RRA.  

The potential damage saved by other damage-reducing responses has also been 

studied. For example, Priest et al. (2011) propose a method to estimate the 

economic effectiveness of a FEWS considering several RRAs in the response 

component of the system. Their method considers all the damage-reducing 

responses shown in Figure 2.9 and defines the economic effectiveness of the FEWS 

as: 
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 𝐹𝐷𝐴 = [𝐸𝐴𝐷 𝑥 𝑃𝐹𝑃 𝑥 𝐹𝐷𝑂]
+ [𝐸𝐴𝐷 𝑥 𝑈𝐹𝑃 𝑥 (𝐶𝐵𝑂 + 𝑊𝐶𝑀 + 𝐵𝐶𝑃 + 𝐶𝑅𝑀
+ 𝐶𝑀𝐸)] 

Eq. 2.1 

Where FDA is the potential flood damage avoided by the FEWS (economic 

effectiveness), PFP and UFP is the proportion of properties at risk that are protected 

and unprotected by structural flood defence systems, respectively. The other 

parameter corresponds to the proportion of EAD that is likely to be saved by each 

RRA shown in Figure 2.9. Table 2.3 shows the values suggested by Priest et al. 

(2011) to be used for each of them. These values were obtained from several social 

survey research projects conducted in England and Wales. 

Table 2.3 Damage avoided for several RRAs. 

The methods mentioned above do not consider technical or social factors associated 

with the FEWS that can influence its economic benefits. The Environment Agency 

National Flood Warning Centre (2003) proposed a method that considers these 

factors in the economic effectiveness of flood warnings for the residential sector. 

This model was based on the work done by Parker (1991)  and has been applied in 

England and Wales mainly to estimate the economic benefits associated with CME. 

This method gives a good insight into factors influencing the FEWS performance, 

which considers the following equation.  

 
𝐹𝐷𝐴 = (𝐸𝐴𝐷 𝑥 𝐷𝑅 𝑥 𝐶) + (𝑅 𝑥 𝑅𝐴 𝑥 𝑃𝑅 𝑥 𝑅𝐸) Eq. 2.2 

Where FDA has already introduced above (Eq. 2.1),   DR is the proportion of EAD 

that is likely to be saved by a pre-flooding action, C is the coverage of the flood 

warning service represented by the proportion of houses in the floodplain monitored 

by the system, R is the service effectiveness understood as the proportion of flooded 

serviced properties that received a timely, accurate and reliable flood warning, RA 

RRA Avoided damages due to early warnings [%] 

Flood defence operations        (FDO) 28 

Watercourse capacity maintenance (WCM) 10 

Community based operations (CBO) 1 

Contingent resilience measures (CRM) 2 

Contents moved and evacuated (CME) 5 

Business continuity planning  (BCP) 5 
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is the availability of the flood warnings defined by the proportion of flooded 

services properties that received such a warning, PR is the ability of the floodplain 

dwellers to respond to a flood warning defined as the portion of residents able to 

understand and respond to such a warning,  and RE is the effective action 

(proportion of serviced properties either willing to take effective action or which 

have actually taken effective action following a flood warning to reduce flood 

damages). In this research, PR and RE were encapsulated in a factor named the 

response human factor (RHF).  

All the methods described above are often considered in a cost-benefit analysis of 

a FEWS where the costs of setting up, operating, and maintaining the system can 

be included (Pappenberger et al., 2015). These approaches fail in that the cost of 

the warning response 𝐶𝑤 (per-event costs) cannot be included in the cost-benefit 

analysis. It is a cost incurred every time a warning is issued and considers the cost 

of issuing a warning and any cost incurred in the dissemination process and by the 

RRA. It is, therefore, an important factor controlling the economic effectiveness of 

a FEWS. It depends on the forecasts because it is the only information available 

when the warning is issued. The cost of the warning response, 𝐶𝑤, is, therefore, 

affected by the accuracy of the forecasts, and its inclusion in the economic 

effectiveness of a FEWS is considered a difficult task. Verkade and Werner (2011) 

proposed a quasi-analytical framework to include 𝐶𝑤 into the economic 

effectiveness of a FEWS by combining a hydro-economic EAD model with the 

theory of relative economic value. However, their framework has two main 

assumptions: i) The cost of the warning response is assumed to be independent of 

the magnitude of the forecast flooding, and it is not estimated as a function of this 

variate, and ii) cost and damage (net damage) associated with PU are only estimated 

as a result of “wrong” flood warning decisions (misses and false alarms). Their 

framework, therefore, negates the fact that the net damage associated with the PU 

can also be present in a hit event (a flood proceeded by a warning in the floodplain) 

; this net damage is present in hits due to the difference between the warned and 

flooded houses  

In Chapter 6, the economic effectiveness of a FEWS is quantified for a simulated 

fluvial case which considers the net damage associated with PU in all possible 

situations. This analysis, to the best of the author’s knowledge, has not been done 

before. In the case study (a FEWS operating for a flood-prone polder system), 
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Chapter 7, the proactive action benefits are jointly analysed together with their 

costs.  

2.8 Operational FEWS  

This section of the Chapter compiles relevant information about real operational 

FEWSs to describe how these real-world FEWSs are actually operated and 

evaluated. It is important to understand the relevance and motivation of the 

research. The actual operation of FEWS can be summarized as follows.  

 Lead time: A hydro-meteorological modelling chain - QPE/QPF plus a 

hydrological model -  for long-term flood forecasts (1-5 days) have not been 

used very extensively due primarily to that: i) the technology for QPE/ QPF 

procedures are not available and applied easily in many countries and 

regions; ii) the lack of techniques that include hydrological models in the 

calibration/validation of the QPE/ QPF products; and iii) its inadequate 

spatial and temporal resolution for hydrological modelling purposes (Liu, 

2012). Thus, long-term flood forecasts have been generated by local FFS 

through meteorological forecasts, mainly QPF, (global- or national-scale 

products) often provided by meteorological agencies in the form of NWP 

(Rabuffetti and Barbero, 2005; Dugar et al., 2017; Flack et al., 2019). 

However, these forecasts have been used only qualitatively, i.e., to track the 

threat of flooding and sometimes to warn only flood authorities (not specific 

risk zones) to prepare the warning response. Thus, in practice, real-time 

FFSs have been used in FEWS and, therefore, flood warning decisions have 

been based on forecasts based on real-time hydro-meteorological 

information (Arheimer et al., 2011; Adams, 2016; Javelle et al., 2016; Liu 

et al., 2018; BOM, 2019). That has caused FEWSs to consider short lead 

times (lower than the hydrological lead time), especially for small to 

medium size catchments. For example, in England, the EA issues flood 

warnings with a forecasting lead time between 30 min and 6 hours (Arnal 

et al., 2020). 

 

 Forecast variates: The timing and the peak of the floods, along with the 

inundation extent, at key locations, are the most relevant variables to be 

forecasted (Ibbitt and Woods, 2003; WMO, 2011; Parker, 2017; Jain et al., 

2018).  From these variates, the peak and timing of floods are often 

forecasted because FEWSs often predict floods based on discharge or water 

levels; the inundation extent is rarely forecasted (Fernández-Nóvoa et al., 

2020). Some FEWSs also predict the flood peaks based on rainfall, where 

the rainfall threshold (RT) method (Golian et al., 2015) is a common choice.   

 

 Forecast type and warning decisions: Flood warning decisions have been 

based on deterministic forecasts, though probabilistic forecast is starting to 

be considered in operational FEWSs due to the significant progress in the 

last two decades in the assessment and estimation of uncertainty in flood 

forecasting through ensembles (see the case for England in Arnal et al., 

(2020)). The warning-decision-making process is complex, and forecasts 

represent only one factor influencing this decision. Factors such as expert 
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judgement, type of event, risk attitude, and cultural environment in which 

decisions are made also influence the warning decision (Ramos et al., 2010; 

Verkade and Werner, 2011; Arnal et al., 2020). 

 

 Common methods to evaluate performance: Operational FEWSs have 

been often evaluated in terms of the reliability of flood warnings and their 

economic effectiveness. The former attribute is often evaluated based on 

whether a warning preceded a flood event's occurrence or non-occurrence 

in the floodplain or in a specific flood risk zone, where a pre-defined 

threshold defines the occurrence of the event. The metrics such as POD, 

FAR, F, or CSI are often used to have a “snap-shot” of the flood warnings' 

reliability in the floodplain or a specific flood risk zone (section 2.7.1). 

Operational FEWSs often compute these metrics based on a flood warning 

validation database. This is a common practice in, for example, England 

(Arnal et al., 2020). These metrics do not consider the uncertainty in the 

estimation of the flood magnitude and, therefore, the difference between the 

warned and flooded properties. Quantifying the economic effectiveness of 

an operational FEWS is, on the other hand, considered a challenging task 

due to the complex nature of the warning response processes (Pappenberger 

et al., 2015; Girons Lopez et al., 2017). Thus, operational FEWSs rarely 

have information about the economic benefits they may produce 

(Economou et al., 2016). Most studies in this field have estimated this 

attribute by doing the ex-post evaluation of the system's benefits based on 

interviews or surveys. Several methods to estimate the economic 

effectiveness of a FEWS have emerged from these studies, which often 

neglect the net damage associated with the accuracy of a forecast (e.g., costs 

of false alarms and damage resulting from misses).   

Based on the operational characteristics of the real FEWS mentioned above, it 

would not be easy, but not impossible, to obtain relevant information associated 

with the influence of the factors described through this Chapter and Chapter 1 on 

the FEWS performance. This research considers flexible Monte Carlo frameworks 

for these purposes that consider the end-to-end modelling of a FEWS. In this sense, 

the next section of this chapter describes research works that have done the end-to-

end simulation of these systems. This research takes some concepts of them to build 

a generic framework (explained in Chapter 3), which is the basis to do the 

investigations of this research. 

2.9 End-to-end modelling of FEWS 

Few research projects have considered an end-to-end-modelling framework to 

analyse the performance of a FEWS. Section 1.2 provides a discussion of about 

several important research works in this field, whereas Table 2.4 a summary of their 

aims and their main assumptions.  Beyond each particular work's specifics, all of 

these works have idealized the FEWS through the forecast-decision-
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response/impact chain illustrated in Figure 2.10. By doing that, they have simplified 

several processes considerably involved in the integrated system obtaining, thus, 

more or less versatile frameworks that meet their goals. Even though these works 

provide good insights into the representation and evaluation of the performance of 

a FEWS, none of them i) have explored the impact of the flood magnitude’s 

uncertainty on the FEWS performance, ii) have explored the impact of the bias in 

the variance on the reliability of flood warnings, iv) have explored the impact of 

several factors on the economic effectiveness of a FEWS,  and v) have used the 

forecast-decision-response/impact chain to represent a FEWS operating for a flood-

prone polder system. 

Table 2.4 Important research works that have addressed the FEWS performance through an 

end-to-end modelling framework. 

Research work Aim 
Representation of the FEWS 

and main assumptions 

Krzysztofowicz and Davis 

(1983) 

To evaluate the economic 

effectiveness of FEWS 

The FEWS chain is reduced to 

a flood forecast-response 

process; warning decisions are 

not considered 

Krzysztofowicz (1993) 

To evaluate the reliability and 

economic effectiveness of a 

FEWS 

The FEWS is represented 

through a monitor-forecast-

decision chain; the response is 

not simulated. 

 

Verkade and Werner 

(2011) 

To evaluate the economic 

effectiveness of a (probability 

and deterministic) FEWS 

based on the relative economic 

value (REV) theory. 

FEWS is represented through a 

forecast-decision-response-

and-impact chain. REV is used 

to scale the imperfect-forecast-

based-economic flood risk 

between the economic flood 

risk of the perfect and no 

warning scenario; the 

imperfect forecast is not 

explicitly simulated. 

Girons Lopez et al. (2017) 

To explore the impact of social 

preparedness on the economic 

effectiveness of a FEWS 

FEWS is represented through a 

forecast-decision-response-

and-impact chain; the impact 

of the lead time on the FEWS 

performance is not explored. 

Bischiniotis et al. (2019) 

To explore the decision-

makers’ dilemma between 

acting upon limited-quality 

forecast information and taking 

less effective actions 

FEWS is represented through a 

forecast-decision-response-

and-impact chain; results are 

not based on a considerable 

range of potential flood events 

and warning decision 

situations that the area 

monitored by the FEWS may 

be subject to. 
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Figure 2.10: Forecast-decision-response/impact chain often used to analyse FEWS 

Adapted from Verkade (2019). 

This research uses the forecast-decision-response/impact chain and Monte Carlo 

simulation to fill the research gaps mentioned above. Monte Carlo simulation has 

for many decades been used to address uncertainties in hydrologic series and the 

impact these have on decision making. In the seminal work of Hosking and Wallis 

(1997), it was demonstrated how Monte Carlo sampling can be used to explore the 

sensitivity of the estimate of T-year flood to various factors and assumptions. 

However, few studies have utilised Monte Carlo simulation in flood forecasting. 

Examples include Van Steenbergen and Willems (2014), who investigated whether 

ensemble predicting systems (EPS) cover the uncertainty produced by Numerical 

Weather Prediction model rainfall forecasts, and Golian et al. (2010), who 

developed a probabilistic rainfall threshold curve for flood forecasting. Chapter 3 

describes how this research addresses these issues and the methodology used.  

2.10 Main Findings 

Based on the research gaps identified in this literature review, flexible Monte Carlo 

frameworks have been designed to do the end-to-end modelling of a FEWS 

operating for a fluvial-flood-prone area (Chapters 5 and 6) and a flood-prone polder 

system (case study, Chapter 7). These frameworks allow simulating some of the 

factors influencing the performance of a FEWS identified through this Chapter.  

Table 2.5 summarises all of them according to the component they correspond to 

in the FEWS. Factors as the failure of instruments/telemetry system (FITS), the 

failure of communication networks (FCN), the flood warning service effectiveness 

(R), and the coverage of the flood warning service (C) are not considered in this 

thesis. Likewise, human errors in the forecast and warning process (HFWP) are also 

ignored. These omissions are supported by the fact that perfect operability and 

communication and coverage of 100% of the flood warning service is assumed in 

the frameworks designed to simulate the FEWSs. The human component in the 
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flood warning decision-making process (HFWD) is also ignored since it is assumed 

that warning decisions are made based on pre-stated decision rules.  

Table 2.5 Main factors influencing the performance of a FEWS 

Factors influencing the performance of the FEWS considered in this research were 

forecast bias in the mean (FBM) and variance (FBV) of the predictand, the cost of 

the warning response (𝐶𝑤), the cost of the RRA (CRRA), the lead time (LT), and 

the standard of protection (SoP). On the other hand, only one human factor was 

considered; the response human factor (RHF), which, as was mentioned in section 

2.7.2, includes the ability of the floodplain dwellers to respond to a flood warning 

and the effectiveness of the RRA. These factors have been parametrised in flexible 

Monte Carlo frameworks designed in this research. Thanks to the versatility of these 

frameworks, this research obtains relevant information associated with the 

influence of these factors on a FEWS performance based on several scenarios 

associated with the setting of the systems. Part of this information represents a 

contribution of this research, and it would not be easy to be derived from 

information provided by real-world FEWSs due to its operational characteristics 

Symbol or acronym  Description Factor associated with: 

HFWP 
Human errors in the forecast 

and warning process 

Flood forecasting and warning 

system 

HFWD 

The human component in the 

flood warning decision-

making process 

LT Lead time 

FBM Forecast bias in the mean 

FBV Forecast bias in the  variance 

FITS 
Failure of 

instruments/telemetry system 

FCN 
Failure of communication 

networks 

R 
Flood warning service 

effectiveness 

C 
Coverage of the flood warning 

service 

𝐶𝑤 Cost of the warning response 

HRF Human response factor 

Response system and the at-

risk area  
CRRA Cost of the RRA 

SoP Standard of protection 
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detailed in section 2.8. This information was generated by answering the following 

main research questions:  

 What levels of correlation between observed flood and their forecasts are 

needed to obtain target levels of reliability of flood warnings, and how this 

varies with the lead time? (Chapter 5) 

 How sensitive is flood warning reliability to biases in the mean and variance 

of deterministic and probabilistic forecasts? (Chapter 5) 

 How is the economic effectiveness of FEWSs affected by various factors? 

Other questions that do not involve these factors but can be answered with the 

adopted methodology are:  

 How should the impact of the flood magnitude’s uncertainty on FEWS 

performance be explored?(Chapter 5) 

 How does the uncertainty in forecasts and its quantification through PU 

impact the performance of a FEWS? (Chapter 5, 6, and 7)  

 Can the management of floods in polder areas be improved through the use 

of flood forecast and warnings, and how the response component be 

designed? (Chapter 7) 

The answer to these questions and the MC frameworks considered to fill out the 

research gaps mentioned above are described through the thesis and highlighted in 

the thesis conclusions (Chapter 8). 
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 Chapter 3. Methodology  

A generic framework has been designed to address the research needs identified in 

Chapter 1 and highlighted in Chapter 2. Here, the aim is to provide an overview of 

the framework, to introduce the components that are developed in the following 

chapters, and to show how they relate to each other. This can be viewed as a thesis 

roadmap, thus helping the reader to navigate the thesis. In addition, after the 

introduction of this generic framework, this Chapter closes by describing the type 

of sensitivity analysis (SA) adopted in this research to identify the sensitivity of 

important factors controlling the performance of the FEWSs considered in this 

thesis, which is one of the primary research objectives of this research. 

3.1 The generic framework 

The generic framework has been designed based on the forecast-decision-

response/impact chain used to characterize the end-to-end modelling of a flood 

early warning system (FEWS) (Figure 2.10). When it was designed, it was thought 

that it should represent this chain through sampled Monte Carlo realizations of 

observed values and their forecasts, the resulting decision(s) taken, and the impact 

of the observed realizations on the floodplain, conditional on the decision(s) taken. 

Based on this approach, the resulting generic framework is made up of three 

components, as illustrated in Figure 3.1. It is explained as follows. 

 
Figure 3.1: Generic framework of this research 

 Monte Carlo flood and forecast generator (MCFG): It is used to generate 

the full range of flood forecasts in terms of deterministic and probabilistic 

forecasts and their observed realizations for an at-risk community.  

 

 Flood warning decision component (FWDC): It represents the warning 

decision, and it is simulated by decision rules which represent rational 

decision-making. The FWDC is driven by the forecasting information 

generated by the MCFG. 

 

 Response and impact component (RIC): This component is used to 

simulate the proactive action and the resulting impact. The proactive action 



45 

 

is driven by forecast information and warning decisions, whereas the impact 

is estimated based on the observed realizations generated from the MCFG 

and conditional on the warning decisions. 

3.2 Component description 

The generic framework depicted in Figure 3.1 has been used to explore the 

performance of a FEWS operating for a generic fluvial flood case (Chapters 5 and 

6 ) and a real flood-prone polder system (Chapters 7). Event-based modelling and 

continuous simulation are used in the former and latter cases, respectively; the 

MCFG is used to sample the driving forecasts and their observed realizations 

(Chapter 4). The parameters of the components vary according to the research 

objectives addressed and the assumptions considered to explore them; they are 

supported by the analysis of observed data.  

3.2.1 The Monte Carlo Flood and Forecast Generator (MCFG) 

The MCFG assumes a bivariate parametric probabilistic model for the predictand 

(the observed value) and predictor (the forecast) and assumes perfect knowledge 

about its parameter values, which are varied to explore the FEWS performance 

sensitivity to different factors.   Under this assumption, the MCFG generates 

bivariate values of these two variates based on the method known as the conditional 

approach (Lewis and Orav, 2018). Thus, it first obtains the conditional probability 

density of the predictand given a value of the predictor; and, then, the (observed) 

realization of the predictor is obtained as a value sampled from this conditional 

probability distribution. The predictor's value represents the deterministic forecast, 

and the probabilistic forecast is derived from the conditional probability 

distribution. Even though the aim of the MCFG for the simulated generic fluvial 

case and flood-prone-polder system case is the same, i.e., to generate potential long-

term scenarios of flooding in an at-risk community, the predictand and predictor 

considered, and the architecture of the MCFG, is different in each of them.  

Generic Fluvial Case 

In the simulated fluvial case (Chapters 5 and 6), a potential flood in the at-risk 

community is defined by observed peak water levels (𝑦). Thus, here, 𝑦 is assumed 

to be the predictand, and its forecast (𝑦̂), the predictor. The bivariate parametric 

probabilistic model is, therefore, defined by the parameters that describe the 
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marginal distributions of 𝑦 and 𝑦̂, and the correlation coefficient (𝜌𝑦𝑦̂) that defines 

the dependence structure of the pairs (𝑦,𝑦̂). The MCFG in the generic fluvial case, 

therefore, generates a deterministic-single-value forecast, represented by the values 

of 𝑦̂, and its associated probabilistic forecasts derived from the conditional 

distribution of 𝑦 given 𝑦̂, i.e., 𝑓(𝑦|𝑦̂). 

 

 
Figure 3.2: Schematic  of the MCFG for the simulated fluvial case 

This figure illustrates the bivariate modelling of pairs (𝑦,𝑦̂) from a pre-assumed parametric bivariate 

model (b), where the value of 𝜌𝑦𝑦̂  of this bivariate model is associated with a given value of lead 

time τ and derived from the subjective lead-time-correlation function (a). 

The correlation coefficient 𝜌𝑦𝑦̂ in the bivariate parametric model, in essence, 

establishes the scatter of the bivariate points and is one of the parameters of the 

bivariate model that define the predictive uncertainty (PU). In this sense, the 

MCFG, in the simulated fluvial case, uses a subjective lead-time-correlation 

function to associate 𝜌𝑦𝑦̂ with a given forecast horizon or forecasting lead time (τ). 

This function is analogous to that found by Schröter et al. (2008) and aims to 

represent the trade-off between τ and PU.  This function, depicted graphically in 

Figure 3.2a, describes the common behaviour of forecasting models forced with 

precipitation. That is, it represents the fact that, for τ values lower than catchment 
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lag time (L), with a well-calibrated hydrological model, and forecast updating in 

real-time, the performance of a forecasting model is relatively high as forecasts are 

based on observed precipitation by using, for example, gauge-based quantitative 

precipitation estimation (QPE). Past this value L, the forecasting model has to be 

forced with quantitative precipitation forecasts (QPF)(Figure 2.2), and its 

performance is hypothesized to drop monotonically (Schröter et al.2008). The slope 

of this function before L defines the quality of forecasting models based on QPE, 

such as models based on gauge-based QPE or gauge-radar-based QPE, and the 

slope after L defines the quality of the forecasts based on QPF.  The architecture of 

the MCFG in the simulated fluvial case is, therefore, made up of the bivariate 

parametric model of the pairs (𝑦,𝑦̂) and the subjective lead-time-correlation 

function. Figure 3.2b illustrates the bivariate modelling of pairs (𝑦,𝑦̂) from a pre-

assumed parameteric bivariate model, where the value of 𝜌𝑦𝑦̂ of this bivariate 

model is associated with a given value of τ and derived from the subjective lead-

time-correlation function. In this sense, the MCFG in the fluvial case generates 

(deterministic and probabilistic) single-value forecasts associated with a τ value, 

which are provided to the FWDC, and their single-value- observed realizations, 

which are delivered to the RIC.  

Polder Case 

In the simulated flood-prone-polder system case (Chapter 7), a flood in the polder 

area is predicted based on forecasting rainfall over a 24-hour forecast horizon 

(forecast lead time). A Rainfall Forecast Generator (RFG) is constructed that first 

uses the space-time rainfall generator RAINSIM v3 to generate 24-hour forecasts 

and observed values at hourly resolution with a prescribed correlation using the 

model in spatial mode; here, spatial correlation is used as a surrogate for the 

correlation between forecast and observed values. Then, to obtain a probabilistic 

24-h rainfall forecast, a bivariate model is constructed based on the daily observed 

rainfalls 𝑅𝑑𝑎𝑖𝑙𝑦 and their forecasts 𝑅̂𝑑𝑎𝑖𝑙𝑦from RAINSIM. Thus, here, the daily 

rainfall (𝑅𝑑𝑎𝑖𝑙𝑦) is assumed to be the predictand, and its forecast (𝑅̂𝑑𝑎𝑖𝑙𝑦), the 

predictor. The bivariate parametric probabilistic model is, thus, defined by the 

parameters that describe the marginal distributions of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦, and the 

correlation coefficient (𝜌𝑅𝑑𝑎𝑖𝑙𝑦𝑅̂𝑑𝑎𝑖𝑙𝑦
) that defines the dependence structure of the 

pairs (𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦).Therefore, the MCFG, in this case, generates (deterministic 
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and probabilistic) 24-h rainfall forecasts, which are provided to the FWDC, and 

their 24-h hourly observed realizations, which are delivered to the RIC to perform 

continuous hourly simulations of the polder operation over a 24-hour storm period.  

A detailed description of the potential bivariate parametric probabilistic models one 

can use to represent the pairs (𝑦,𝑦̂) is provided in Chapter 4, together with 

supporting data analysis for some UK rivers. The data analysis supporting the 

choice of a bivariate distribution for (𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦) is described in Chapter 7. 

3.2.2 The flood warning decision component (FWDC) 

The FWDC is used in the framework to simulate the warning decision of a FEWS. 

The warning decision, driven by the forecast, is represented by decision rules set 

based on the warning criteria adopted in the analysis of the FEWS.   

Generic Fluvial Case 

In the simulated fluvial case, this research considers FEWSs based on a flooding 

threshold (𝑦𝑇) with and without real-time flood maps. Figure 3.3 illustrates the 

deterministic and probabilistic rules used in the simulated generic fluvial case. 

Chapter 5 uses these rules to explore the flood warning reliability of these two types 

of FEWs. In the deterministic forecast scenario, the warning decisions in these two 

systems assume that a warning is automatically issued when the single-value 

forecast is greater than the warning threshold 𝑦𝑇 which is determined by the T-year 

standard of protection (SoP). In the probabilistic forecast scenario, warning 

decisions are simulated through a probabilistic threshold (PT) approach. In the 

FEWS without real-time flood maps, probabilistic warning decisions assume that a 

warning is automatically issued when the probability of exceedance (PE) of 𝑦𝑇 

conditional on the forecast exceeds a pre-defined probabilistic threshold PT 

(Chapter 5). In the FEWSs with real-time flood inundation maps, probabilistic 

warning decisions assume that a warning is automatically issued when a warning 

level (𝑦̂𝑤) defined from 𝑓(𝑦|𝑦̂) is greater than 𝑦𝑇, where 𝑦̂𝑤 is also defined by a 

PT. In both types of FEWS (without/with real-time flood maps), PT is a value to be 

optimized by assuming that the Warner acts to increase the reliability of flood 

warnings evaluated based on the flooding threshold-based criterion (FTC) for the 

FEWS without real-time flood maps, or floodplain property-based criterion (FPC), 

for the FEWS with real-time flood maps (see section 2.7.1 to recall the difference 
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between FTC and FPC). In Chapter 6, the economic effectiveness of flood warnings 

based on real-time flood maps is explored, and those decision rules used for this 

type of FEWS in Chapter 5 are also considered there. However, in this case, the PT 

associated with the probabilistic rule is optimized by assuming that the Warner acts 

to increase the economic effectiveness of flood warnings.  

 

 

Figure 3.3: Description of the FWDC for the simulated fluvial case 

 

To analyse the flood warning reliability of a FEWS through the FPC, one needs to 

distinguish between houses that have been warned and those which have been 

flooded, and POD and FAR are estimated from these quantities. In this context, the 

framework does not simulate the generation of the real-time forecast and observed 

flood maps explicitly but simulates their target information, i.e., the number of 

warned houses (𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑) which is determined by 𝑦̂𝑤, and the number of flooded 

houses which is determined by 𝑦 where 𝑦>𝑦𝑇. The numbers of warned 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 

flooded 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 are obtained by interpolating the values of 𝑦̂𝑤 and 𝑦, respectively, 

in an assumed impact curve, which gives an estimate of the percentage of floodplain 

properties affected by different floods (Figure 3.4). The impact curve assumes that 

when the SoP is overtopped, and water spills into the flood plain, houses start to be 

flooded above 𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙. 
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Figure 3.4: Description of the FWDC for the case study 

This impact curve assumes that the flood impact starts when the bankfull level is overtopped. The 

figure illustrates the computation of 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 for a pair (𝑦, 𝑦̂). 

Polder Case 

Figure 3.5 illustrates the deterministic and probabilistic rules used in the polder case 

study.  A rainfall threshold (RT) curve is used as a tool for issuing flood warnings. 

The RT curve defines critical volumes of daily rainfall on the polder area that bring 

the inner rivers to the critical condition. This curve is made up of different critical 

values associated with several initial conditions of the water level of the inner rivers 

(ℎ0) at the time the forecast is issued. Thus, in the deterministic forecast scenario, 

it is assumed that warnings are automatically issued when the deterministic 24h- 

forecasts, i.e., 𝑅̂𝑑𝑎𝑖𝑙𝑦, cross the RT curve.  In the probabilistic forecast scenario, 

probabilistic warning decisions assume that a warning is automatically issued when 

the PE of the RT curve exceeds a pre-defined probabilistic threshold PT. 𝑃𝐸 is 

obtained from 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦), and PT is a value to be determined when analysing 

the performance of the FEWS in terms of the costs of the response.  
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Figure 3.5: Description of the FWDC for the case study 

3.2.3 The response and impact component (RIC) 

After the warning decision is made, the response and the occurrence or non-

occurrence of the flooding, along with its impact, have to be simulated. These 

processes are simulated in the RIC.  

Generic fluvial Case 

In Chapter 6, the economic effectiveness of flood warnings based on real-time flood 

maps is analysed. In this case, the RIC is used to estimate the flood impact and the 

response to flood warnings. The observed flood impact is estimated in terms of 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 and flood depth. The former variate is estimated based on the impact 

curve-based approach adopted in Chapter 5 to estimate the flood warning reliability 

in terms of FPC, whereas the flood depth in the houses is computed as the difference 

between the magnitude of the flooding (defined by the values of 𝑦 greater than 𝑦𝑇) 

and the bankfull level (𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙). The economic flood damage in each floodplain 

property is estimated by using a damage function, which represents the damage to 

the residential content as a function of the mitigation time (which is assumed in this 

research to be equal to the forecasting lead time) and flood depth. A schematic of a 

damage function associated with a specific mitigation time is shown in Figure 3.6.  

A family of these curves prepared by Carsell et al. (2004) for a sample of US houses 

and range of mitigation times is used in Chapter 6. The RIC is also used to emulate 

the real-time forecast of flood damage. This information is obtained based on the 

same approach adopted for the observed number of houses flooded. In this case, the 
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forecast values of  𝑦 are used to estimate 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑, the forecast flood depth, and the 

associated flood damage. 

 
Figure 3.6: Schematic of a damage function used in the RIC for a specific mitigation time in 

the generic fluvial case 

The RIC simulates the response of householders to flood warnings through the functions found by 

Carsell et al. (2004). 

Polder Case 

The RIC in the polder case (Figure 3.7) considers a polder system where pumping 

systems operate before or during storm events to remove water from the inner rivers 

to the outer rivers in a selected polder area of Nanjing, to enable water to drain from 

the polder areas into the inner rivers. In that case, the response represents a pumping 

scheme operating in a polder system, and the impact is estimated as the resulting 

area of waterlogging (𝑊) in the polder after the pumping action has been done. 

These two processes are simulated in a lumped water balance model that uses an 

assumed impact curve to estimate the inundated area as a function of 𝑊. A lumped 

water balance model is used to represent the response of the polder to rainfall and 

to represent the effects of the proactive and reactive pumping actions (responses). 

The forecasts and the warning decisions drive the responses, and, therefore, they 

start before the storm arrives in the polder area. The reactive pumping actions start 

when the storms arrive in the polder area and are driven by the inflow entering the 

polder's inner rivers. The tradeoff between the waterlogged area and the pumping 

cost is explored as a function of the proactive and reactive actions and both the 

deterministic and probabilistic forecast scenarios. 
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Figure 3.7: Description of RIC in the polder system case study 

3.2.4 Benchmark scenarios  

When evaluating a FEWS in economic terms, it is customary to simulate the no 

warning scenario and the perfect forecast scenario. The aim is to compare the 

economic performance of the FEWS, assuming the warning service does not exist 

in the area monitored by the FEWS, or assuming perfect knowledge of the future 

values. Thus, these two scenarios are used as benchmark cases to analyse the 

‘location’ of the economic performance of the imperfect FEWS between them. By 

definition, the perfect forecast scenario results are never outperformed by the results 

of the imperfect FEWS, but the results of the no warning scenario may be better 

than the imperfect-forecast-based results due to the economic consequences of high 

PU. Benchmark scenarios are used in Chapters 6 and 7. Since there are no forecasts 

in the no warning scenario, the FWDC is removed in this case 

Generic fluvial Case 

For the perfect forecast scenario and no warning scenario in the simulated generic 

fluvial case (Chapter 6), potential floods in the at-risk community are simulated 

from the marginal distribution of 𝑦 of the bivariate parametric model considered in 

the MCFG. The flood depth is estimated by the approach described above for the 

imperfect forecast FEWS.  

For the no warning scenario, 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 is simulated through the assumed impact 

curve, and the flood damage in each floodplain property is estimated by using the 

functions proposed by Carsell et al. (2004) and assuming a mitigation time of zero. 

These functions are also used to estimate 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 and the economic damage in the 
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perfect forecast scenario, which assumes that each warned house is subsequently 

flooded, i.e.,  𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

=𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑.  

Polder Case 

In the simulated flood-prone-polder system case, the no warning scenario is 

simulated by considering only reactive pumping actions in the lumped water 

balance model. The perfect forecast scenario is simulated by considering only 

proactive pumping actions in the lumped water balance model and assuming perfect 

knowledge of the storm's profile and volume.  

3.3 Performance measure estimation 

As one can see, the generic end-to-end modelling framework allows forecast 

outputs to be linked with warning decisions and the associated responses and flood 

impacts. Thus, based on a representative sample of (deterministic or probabilistic) 

forecasts and their observed realizations, the average performance of a FEWS can 

be synthetized based on metrics computed from the outputs of the end-to-end 

simulation of the system associated with the sample.  

For the simulated fluvial case, the metrics used to analyse the reliability of a FEWS 

are the probability of detection (POD) and false alarm ratio (FAR) for each lead 

time (Table 2.2), while the economic metric used is the expected damage (ED) 

derived by taking the convolution of the frequency distribution of flood depth with 

the house damage function for each lead time. The reliability of flood warnings is 

explored through FAR and POD estimated based on the FTC and FPC criteria in 

Chapter 5, whereas ED values are used in Chapter 6 to define the economic 

effectiveness of flood warnings relative to the no warning scenario. In the simulated 

flood-prone-polder system case, metrics such as the average of the maximum 

inundated area (𝑀𝐼𝐴̅̅ ̅̅ ̅̅ ) and the waterlogging duration (𝑑̅𝑤) are considered for 

evaluating the performance of the FEWS. Since these performance measures are 

related to the pumping costs, the average pumping costs (𝑃𝐶̅̅̅̅ ) are also included in 

the analysis. 
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3.4 Sensitivity analysis 

One of the primary research objectives of this thesis is to explore how the 

performance of a FEWS behaves under different factors controlling the 

performance of the system. Since these factors have been parametrised in the Monte 

Carlo frameworks that represent the FEWSs considered in this research, this overall 

research aim of the thesis was addressed by conducting a (sensitivity analysis) SA 

of the parameters representing these factors. The methods commonly adopted for 

doing a SA can be classified as two: local and global (Pianosi et al., 2016; Devak 

and Dhanya, 2017). Local SA is a one-at-a-time (OAT) technique that, in essence, 

analyses the effect of one parameter change at a time on the model being evaluated, 

keeping the other parameters fixed. Global SA, on the other hand, considers 

variations within the entire space of variability of the parameters. Since the main 

aim in the SA was to do a first-order analysis that would reveal the main 

sensitivities of the factors controlling the FEWS performance, a local SA analysis 

was adopted. Thus, this type of SA was conducted in the simulated generic fluvial 

case (Chapter 5 and 6) and flood-prone polder system case (Chapter 7).  
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 Chapter 4. Monte Carlo Flood Peak and Forecast Generator 

(MCFG) 

4.1 Introduction 

This document gives a detailed description of the first component of the generic 

framework of the research; the Monte Carlo flood and forecast generator (MCFG) 

(see Figure 4.1). The MCFG is associated with a given forecast horizon or lead time 

(τ) and is based on a bivariate probabilistic model of the peak flows (𝑦) and their 

forecasts (𝑦̂) whose marginals are represented by appropriate distributions. Here, 

the generic fluvial case is taken as a reference. The deterministic and probabilistic 

forecasts, and a measure of predictive uncertainty (PU), are derived from that 

model.  

Thus, this Chapter is organized as follow: Section 4.2 gives a description of the 

probability distributions considered as candidates to represent 𝑦 and 𝑦̂; section 4.3 

describe the theory used when doing the bivariate modelling of these two variates 

and shows the algorithms built to simulate pairs (𝑦,𝑦̂) and to build the PU  assuming 

they can be represented by a five-parameter bivariate Exponential distribution 

(BED) and a seven-parameters bivariate Log-normal distribution (BLND). Section 

 

Figure 4.1 Illustration of a type of forecasting model to be represented in the generic fluvial case. 
The figure shows a potential configuration of a forecasting system operating for an at-risk community when 

the lead time (𝜏) is bigger than the response time of the catchment. In this case, the hydrological model is 
forced with quantitative precipitation forecasts (QPFs). 
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4.5 presents  data analysis which validates some assumptions made when choosing 

the shape of the marginal distributions of 𝑦 and 𝑦̂, and when choosing the bivariate 

model of these two variates. Section 4.6 explains the criteria used to associate the 

dependence structure of the pairs (𝑦,𝑦̂), embedded in the bivariate probabilistic 

model, with τ and a given forecasting performance measure. Finally, section 4.7 

shows the parametrization of the MCFG and the sensitivity analysis (SA) strategy 

adopted to define the parameters of the MCFG, which are considered in the SA of 

the performance of a flood early warning system (FEWS).  

4.2 Univariate distributions 

It is well-known that Exponential and generalized Pareto (GP) distributions can be 

used to simulate peaks through the peak over threshold-method (POT-method)  

(Claps and Laio, 2003; Bezak et al., 2014). However, some works suggest that this 

variable can also be simulated through the Lognormal (LN)(Adamson and 

Zucchini, 1984), Gamma (Bačová-Mitková and Onderka, 2010), or the Generalized 

Logistic (GL) distributions (Bhunya et al., 2012). In this work, three of these 

distributions were considered as candidates for describing real data: the two-

parameter exponential distribution, the three-parameter log-Normal distribution, 

and the three-parameter Gamma distribution. Since 𝑦 and 𝑦̂ will be analyzed based 

on the same probability distributions, to avoid too many different symbols,  the 

following notation is used throughout this section: 

 𝑤: variable used to represent 𝑦 or ŷ. 

 𝑤𝑜: variable used to represent the location parameter of 𝑦 or 𝑦̂, i.e. 𝑦𝑜 or 𝑦̂𝑜, 

respectively. 

 𝑧: for the two-parameter Exponential distribution and three-parameter 

Gamma distribution, it represents the transformed variables: 𝑥 = 𝑦 − 𝑦𝑜 or 

𝑥̂ = 𝑦̂ − 𝑦̂𝑜. For the case of the three-parameter Lognormal distribution, it 

represents the natural log of 𝑥 or 𝑥̂. 

A summary of the equations of the cumulative density function (CDF), mean, and 

variance for the three probabilistic models considered in this work as candidates to 

represent 𝑦 and 𝑦̂ is shown in Table 4.1. A brief description of each of them, 

including the moment equations, is detailed as follows.  
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Table 4.1 Equations of the CDF, mean, and variance of the probabilistic models considered 

as candidates to represent 𝒚 and 𝒚̂.  

The equations of the random variables 𝑌 and 𝑌̂ can be obtained by replacing 𝑤 with 𝑦 and 𝑦̂, and, 

for the case of the Exponential and Gamma distributions, 𝑧 with 𝑥 and 𝑥̂. 

4.2.1 The one and two two-parameter Exponential distributions  

If 𝑍 = 𝑊 − 𝑤𝑜 has an exponential distribution with scale parameter 𝛽𝑧, and 𝑤𝑜 is 

known, then the distribution of 𝑍 becomes a one-parameter Exponential distribution 

with parameter 𝛽𝑧. 

The CDF of 𝑍 in this case is: 

 

𝐹(𝑤) = {
1 − 𝑒𝑥𝑝 (−

𝑧

𝛽𝑍
) , 𝑤 ≥ 𝑤0,

0,                                   𝑤 < 𝑤0 
 Eq. 4.1 

with mean: 

 µ𝑤 = 𝑤𝑜 + 𝛽𝑍 Eq. 4.2 

CDF Mean Variance 

Two parameter-Exponential distribution 

𝐹(𝑤) = {
1 − 𝑒𝑥𝑝 (−

𝑤 − 𝑤𝑜

𝛽𝑧

) , 𝑤 ≥ 𝑤0,

0,                                   𝑤 < 𝑤0 
 

𝑤𝑜 + 𝛽𝑧 𝛽𝑧
2 

Three-parameter Log-normal distribution 

𝐹(𝑤) = Φ (
𝑙𝑛(𝑤 − 𝑤𝑜) − µ𝑧

𝜎𝑧

) , 𝑤 > 𝑤0 

𝑤𝑜 + 𝑒𝑥𝑝 (µ𝑧

+ 0.5𝜎𝑧
2) 

𝑒𝑥𝑝 (𝜎𝑧
2 + 2µ𝑧)[𝑒𝑥𝑝(𝜎𝑧

2)
− 1] 

Three-parameter Gamma distribution 

𝐹(𝑤) =
1

Γ(𝑘𝑧)
𝛾 (𝑘𝑧,

𝑤 − 𝑤𝑜

𝛽𝑧

) , 𝑤 > 𝑤0 
𝑤𝑜 + 𝑘𝑧𝛽𝑧 𝑘𝑧𝛽𝑧

2 

Notation:  

𝑤: Variable to represent  𝑦 or 𝑦̂. 

𝑤𝑜: Location parameter of 𝑦 or 𝑦̂. 

𝑧: For the two-parameter Exponential distribution and three-parameter Gamma distribution, it 

represents the transformed variables: 𝑥 = 𝑦 − 𝑦𝑜 or 𝑥̂ = 𝑦̂ − 𝑦̂𝑜. For the case of the three-

parameter Lognormal distribution, it represents the natural log of 𝑥 or 𝑥̂. 

𝛽𝑧: Shape parameter for the two-parameters Exponential distribution and the three-parameter 

gamma distribution. 

𝑘𝑧: Scale parameter for the three-parameter Gamma distribution. 

µ𝑧: Scale parameter of the three-parameter Log-normal distribution. 

𝜎𝑧: Shape parameter for the three-parameter log-normal distribution. 

Φ: The CDF of the standard normal distribution. 
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variance: 

 𝜎𝑤
2 = 𝛽𝑍

2 Eq. 4.3 

and skewness coefficient: 

 ϒ𝑤 = 2   Eq. 4.4 

If 𝑍 = 𝑊 − 𝑤𝑜 has an exponential distribution with scale parameter 𝛽𝑧, and 𝑤𝑜 is 

unknown, then the distribution of 𝑊 becomes a two-parameter Exponential 

distribution with parameters 𝜽 = (𝑤𝑜 , 𝛽𝑧)(Thomopoulos, 2017). The CDF of this 

distribution is obtained by replacing 𝑧 by 𝑤 − 𝑤𝑜 in Eq. 4.1. 

Parameter estimation: Method of moments 

If 𝑤𝑜 is known (one-parameter Exponential distribution), 𝛽𝑧 can be estimated from 

the sample mean by: 

 𝛽̂𝑧 = 𝑤̅ − 𝑤𝑜 Eq. 4.5 

where 𝑤̅ is the sample mean of 𝑊. 

If 𝑤𝑜 is unknown (two-parameter Exponential distributions), then  𝛽𝑧 and 𝑤𝑜 can 

be estimated from the mean and the standard deviation of the sample by: 

 𝛽̂𝑧 = 𝑠𝑤  Eq. 4.6 

 𝑤̂𝑜 = 𝑤̅ − 𝑠𝑤 Eq. 4.7 

where 𝑠𝑤 is the sample standard deviation of 𝑊. 

4.2.2 The two and three-parameter Lognormal distribution  

If 𝑍 = 𝑙𝑛(𝑊 − 𝑤𝑜) is normally distributed with a mean µ𝑧 and standard deviation 

𝜎𝑧, and 𝑤𝑜 is known, then the distribution of 𝑍 becomes a two-parameter 

Lognormal distribution with parameters 𝜽 = (µ𝑍, 𝜎𝑍) (Stedinger, 1980; Stedinger 

et al., 1993; Thomopoulos, 2017). 

The CDF of 𝑍 in this case is: 
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𝐹(𝑤) = 𝛷 (

𝑙𝑛(𝑧) − µ𝑍

𝜎𝑍
) , 𝑤 > 𝑤0 Eq. 4.8 

with mean: 

 µ𝑤 = 𝑤𝑜 + 𝑒𝑥𝑝 (µ𝑧 + 0.5𝜎𝑧
2) Eq. 4.9 

variance: 

 𝜎𝑤
2 = 𝑒𝑥𝑝 (𝜎𝑧

2 + 2µ𝑧)[𝑒𝑥𝑝(𝜎𝑧
2) − 1] Eq. 4.10 

and skewness coefficient: 

 ϒ𝑤 = 3ϕ + ϕ3 Eq. 4.11 

where 𝛷 is the CDF of the standardized normal distribution and ϕ =

[𝑒𝑥𝑝(𝜎𝑧
2) − 1]0.5. 

If 𝑍 = 𝑙𝑛(𝑊 − 𝑤𝑜) is normally distributed with mean µ𝑧 and standard deviation 

𝜎𝑧, and 𝑤𝑜 is unknown, then the distribution of 𝑊 becomes a three-parameter 

Lognormal distribution with parameters 𝜽 = (𝑤𝑜, µ𝑍, 𝜎𝑍)(Thomopoulos, 2017). 

The CDF of this distribution is obtained by replacing 𝑧 by 𝑤 − 𝑤𝑜 in Eq. 4.8. 

Parameter estimation: Method of moments 

If 𝑤𝑜 is known (two-parameter Lognormal distribution), then µ𝑧 and 𝜎𝑧 can be 

estimated from the mean and variance of the sample by: 

 µ̂𝑧 = 2𝑙𝑛(𝑤̅) − 0.5𝑙𝑛(𝑠𝑤
2 + 𝑤̅2) Eq. 4.12 

 𝜎̂𝑧 = √−2𝑙𝑛(𝑤̅) + 𝑙𝑛(𝑠𝑤
2 + 𝑤̅2) Eq. 4.13 

where 𝑠𝑤
2  is the variance of the sample of 𝑊. 

If  𝑤𝑜 is unknown (three-parameter Lognormal distribution), then 𝜎𝑧 has to be first 

estimated from the sample estimate of the skewness coefficient ϒ̂𝑤 based on the 

following relationship given by Chow (1954) and by Wilson & Worcester (1945). 
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𝑒𝑥𝑝(𝜎̂𝑧

2) = {1 + 0.5 [ϒ̂𝑤
2 + ϒ̂𝑤(4 + ϒ̂𝑤

2 )
0.5

]}
1/3

+ {1 + 0.5 [ϒ̂𝑤
2 − ϒ̂𝑤(4 + ϒ̂𝑤

2 )
0.5

]}
1/3

− 1   
Eq. 4.14 

µ𝑧 and 𝑤𝑜 can be then estimated by: 

 
µ̂𝑧 = 0.5𝑙𝑛 [

𝑠𝑤
2

𝑒𝑥𝑝(𝜎̂𝑧
2)[𝑒𝑥𝑝(𝜎̂𝑧

2) − 1]
] Eq. 4.15 

 𝑤̂𝑜 = 𝑤̅ − 𝑒𝑥𝑝(𝑢̂𝑧 + 0.5𝜎̂𝑧
2) Eq. 4.16 

4.2.3 The two and three-parameter Gamma distribution  

If 𝑍 = 𝑊 − 𝑤𝑜 is a random variable distributed according to a Gamma distribution 

with scale parameter 𝛽𝑧 and shape parameter 𝑘𝑧, and 𝑤𝑜 is known, then the 

distribution of 𝑍 becomes a two-parameter Gamma distribution with parameter 𝜽 =

(𝛽𝑧, 𝑘𝑧) (Bowman and Shenton, 2011). 

The CDF of 𝑍 is: 

 
𝐹(𝑤) =

1

Γ(𝑘𝑧)
𝛾 (𝑘𝑧 ,

𝑤 − 𝑤𝑜

𝛽𝑧
) , 𝑤 > 𝑤0 Eq. 4.17 

with mean: 

 µ𝑤 = 𝑤𝑜 + 𝑘𝑧𝛽𝑧 Eq. 4.18 

variance: 

 𝜎𝑤
2 = 𝑘𝑧𝛽𝑧

2 Eq. 4.19 

and skewness coefficient: 

 
ϒ𝑊 =

2

√𝑘𝑧

 Eq. 4.20 

Where Γ is the gamma function.  

If 𝑍 = 𝑊 − 𝑤𝑜 is a random variable distributed according to a Gamma distribution 

with scale parameter 𝛽𝑧 and shape parameter 𝑘𝑧, and 𝑤𝑜 is unknown, then the 
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distribution of 𝑍 becomes a three-parameter Gamma distribution with parameter 

𝜽 = (𝑤𝑜 , 𝛽𝑧 , 𝑘𝑧) 

Parameter estimation: Method of moments 

If 𝑤𝑜 is known (two-parameter Gamma distribution), then 𝛽𝑧 and 𝑘𝑧 can be 

estimated from the mean and variance of the sample by: 

 
𝑘̂𝑧 =

𝑤̅ − 𝑤𝑜

𝛽̂𝑧

 Eq. 4.21 

 
𝛽̂𝑧 = (

𝑠𝑤
2

𝑘̂𝑧

)

0.5

 Eq. 4.22 

If  𝑤𝑜 is unknown (three-parameter Gamma distribution), then 𝑘𝑧 has to be first 

estimated from the sample estimate of the skewness coefficient ϒ̂𝑤 by: 

 
𝑘̂𝑧 = (

2

ϒ̂𝑤

)

2

 Eq. 4.23 

𝛽𝑧 can be then estimated by using Eq. 4.22. Finally,  𝑤𝑜 can be estimated by: 

 𝑤̂𝑜 = 𝑤̅ − 𝛽̂𝑍𝑘̂𝑍 Eq. 4.24 

4.3 Bivariate distributions. 

This section describes/explains the theory of some bivariate distributions, which are 

important to understand the criteria used in this work to do the bivariate modelling 

of 𝑦 and 𝑦̂. 

4.3.1 The standardized bivariate Normal distribution (BND). 

The bivariate normal distribution (BND) in its standard form is usually the basis, 

and this work is not an exception, of algorithms used to simulate any bivariate 

distribution. The BND is not in itself a suitable model of flood peaks and their 

forecasts, but it underpins models that can be, for example, the Lognormal. 

Therefore, this section of the chapter describes the properties of this bivariate 

distribution in the standardized form with 𝑁(0,1) variables which are important to 

understand the algorithms which can be used to simulate 𝑦 and 𝑦̂. 
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Univariate properties 

Both marginal distributions are Normal. Thus, suppose that Η and Η̂ are correlated 

standardized Normal random variables; the corresponding CDFs of these marginals 

are defined by: 

 
𝐹(η) =

1

2
𝑒𝑟𝑓 (

𝜂

√2
) Eq. 4.25 

 
𝐹(𝜂̂) =

1

2
𝑒𝑟𝑓 (

𝜂̂

√2
)    Eq. 4.26 

where 𝑒𝑟𝑓 is a function called the error function.  

Bivariate properties 

The joint probability density function (PDF) is: 

 
𝑓(𝜂, 𝜂̂) =

1

2𝜋√1 − 𝜌ƞƞ̂
2

𝑒𝑥𝑝 [−
1

2(1 − 𝜌ƞƞ̂
2 )

(𝜂̂2 + 𝜂2 − 2𝜂𝜂̂𝜌ƞƞ̂)]   Eq. 
4.27 

where 𝜌ƞƞ̂ is the product-moment correlation coefficient between the two 

standardized variables. 

Conditional properties  

The conditional density of (𝜂|𝜂̂) is Normal and, for the case of Η given Η̂ = ƞ̂, has 

the following characteristics: 

 
𝑓(𝜂|𝜂̂) =

1

2𝜋√1 − 𝜌ƞƞ̂
2

𝑒𝑥𝑝 [−
1

2(1 − 𝜌ƞƞ̂
2 )

(𝜌ƞƞ̂
2 𝜂̂2 + 𝜂2 − 2𝜂𝜂̂𝜌ƞƞ̂)] Eq. 

4.28 

with conditional mean: 

 𝐸(Η|Η̂ = ƞ̂) = 𝜇𝜂|𝜂̂ = 𝜂̂𝜌ƞƞ̂ Eq. 4.29 

and conditional variance: 
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 𝑣𝑎𝑟(Η|Η̂ = ƞ̂) = 𝜎𝜂|𝜂̂
2 = 1 − 𝜌ƞƞ̂

2  Eq. 4.30 

The mean regression of Η on Η̂, i.e., the regression of the values defined  by 

𝐸(Η|Η̂ = ƞ̂), is linear, the conditional variance is constant, and the probability 

distribution of the estimation errors, namely 𝜀 = 𝜂 − 𝜇𝜂|𝜂̂ is  a Normal distribution 

with mean 𝜇𝜀 = 0 and variance 𝜎𝜀
2 = 1 − 𝜌ƞƞ̂

2 . 

4.3.2 The bivariate Exponential distribution (BED). 

If 𝑦 and 𝑦̂ can be represented by the Exponential distribution, then the BED can be 

a potential candidate to conduct the bivariate modelling of these variates. The 

properties of this distribution can be derived from the Moran–Downton BED 

(Downton, 1970). An extensive discussion of this BED is found in Nagao & Kadoya 

(1971).  Thus, this section first describes the standardized BED, which is the basis 

for describing the three- and five-parameters BED.   

4.3.2.1 The standardized BED 

The following considerations are for a BED distribution function in which every 

variable is standardized. 

Univariate properties 

Both marginal distributions are exponential. Thus, suppose that 𝑉 and 𝑉̂ are 

correlated standardized exponential variables; the corresponding CDFs of these 

marginals are defined by: 

 𝐹(𝑣) = 1 − 𝑒−𝑣 Eq. 4.31 

 𝐹(𝑣) = 1 − 𝑒−𝑣̂ Eq. 4.32 

Bivariate properties 

The joint PDF is: 

 
𝑓(𝑣, 𝑣) =

1

(1 − 𝜌𝑣𝑣̂)
𝑒𝑥𝑝 [−

𝑣 + 𝑣

1 − 𝜌𝑣𝑣̂
] 𝐼𝑜 (

2√𝑣𝑣𝜌𝑣𝑣̂

1 − 𝜌𝑣𝑣̂
) Eq. 4.33 
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where 𝐼𝑜 is the modified Bessel function of the first kind of order zero, and  𝜌𝑣𝑣̂ is 

the product-moment correlation coefficient between the two random variates 

(Balakrishna and Lai, 2009). 

Expressed as an infinite series, the joint CDF is (Balakrishna and Lai, 2009):  

 
𝐹(𝑣, 𝑣) = (1 − 𝑒−𝑣)(1 − 𝑒𝑣̂) + ∑

𝜌𝑣𝑣̂
𝑗+1

(𝑗 + 1)2
𝐿𝑗

(1)(𝑣)

∞

𝑗=0

𝐿𝑗
(1)(𝑣̂)𝑣𝑣𝑒−(𝑣+𝑣̂) 

Eq. 
4.34 

where the 𝐿𝑗
(1)

 are Laguerre polynomials.  

Conditional properties  

The conditional PDF, for the case of 𝑉 given 𝑉̂ = 𝑣, has the following 

characteristics: 

 
𝑓(𝑣|𝑣) =

1

(1 − 𝜌𝑣𝑣̂)
𝑒𝑥𝑝 [−

𝑣 + 𝑣𝜌𝑣𝑣̂

1 − 𝜌𝑣𝑣̂
] 𝐼𝑜 (

2√𝑣𝑣𝜌𝑣𝑣̂

1 − 𝜌𝑣𝑣̂
) Eq. 4.35 

with conditional mean: 

 𝐸(𝑉|𝑉̂ = 𝑣) = 𝜇𝑣|𝑣̂ = 1 + 𝜌𝑣𝑣̂(𝑣 − 1) Eq. 4.36 

and conditional variance: 

 𝑉𝑎𝑟(𝑉|𝑉̂ = 𝑣) = 𝜎𝑣|𝑣̂
2 = (1 − 𝜌𝑣𝑣̂)2 + 2𝑣𝜌𝑣𝑣̂(1 − 𝜌𝑣𝑣̂) Eq. 4.37 

The mean regression of 𝑉 on 𝑉̂, i.e., the regression of the values defined  by 

𝐸(𝑉|𝑉̂ = 𝑣), is linear with varying dispersion. The latter is based on the fact that, 

unlike the Normal distribution, the conditional variance is a function of the 

independent variable, in this case, denoted by 𝑣. That means that, in the BED, the 

conditional variance increases as the value of the independent variable increases. 

This is an important property for modelling the conditional variance of an observed 

peak water value, given the forecast, as it has been observed to increase with the 

forecast value (Coccia and Todini, 2011; Zhao et al., 2015). 
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4.3.2.2 The three-parameters BED 

If 𝑦 and 𝑦̂ are correlated and 𝑦𝑜 and 𝑦̂𝑜 are known a priori, then the transformed 

variables: 

 𝑥 = 𝑦 − 𝑦𝑜 Eq. 4.38 

 𝑥̂ = 𝑦̂ − 𝑦̂𝑜 Eq. 4.39 

can be represented by a one-parameter Exponential distribution with parameters 𝛽𝑥 

and 𝛽𝑥̂, respectively (see section 4.2.1). These variables are usually known as 

threshold exceedances (Claps and Laio, 2003; Bezak et al., 2014), and they will be 

referred to as such here. Pairs (𝑥, 𝑥̂) can be, therefore, represented by a three-

parameter BED with parameters 𝜽𝒙𝒙̂ = (𝛽𝑥, 𝛽𝑥̂, 𝜌𝑥𝑥̂), where 𝜌𝑥𝑥̂ is the product-

moment correlation between 𝑥 and 𝑥̂. The designation of these variables is 

(𝑥, 𝑥̂)~𝐵𝐸𝐷(𝛽𝑥, 𝛽𝑥̂, 𝜌𝑥𝑥̂). 

For this BED, the analytical expression of 𝑓(𝑥, 𝑥̂) and 𝑓(𝑥|𝑥̂) can be easily obtained 

from the analytical expressions of the standardized BED (Eqs. 4.36 and 4.37) by 

doing the following replacement: 

 𝑣 =
𝑥

𝛽𝑋
 Eq. 4.40 

 
𝑣 =

𝑥̂

𝛽𝑋̂

 Eq. 4.41 

 𝜌𝑣𝑣̂ = 𝜌𝑥𝑥̂ Eq. 4.42 

and adding the product 𝛽𝑥𝛽𝑥̂ and 𝛽𝑥 to the denominators of the factors that represent 

the normalizing constant in 𝑓(𝑥, 𝑥̂) and 𝑓(𝑥|𝑥̂), respectively. The expression of 

𝐹(𝑥, 𝑥̂) is not needed as 𝐹(𝑣, 𝑣) = 𝐹(𝑥, 𝑥̂). The conditional moments are defined 

as: 

 
𝐸(𝑋|𝑋̂ = 𝑥̂) = 𝜇𝑥|𝑥̂ = 𝛽𝑋 (1 − 𝜌 +

𝜌𝑥̂

𝛽𝑋̂

) Eq. 4.43 

 
𝑉𝑎𝑟(𝑋|𝑋̂ = 𝑥̂) = 𝜎𝑥|𝑥̂

2 = 𝛽𝑋 [(1 − 𝜌)2 +
2

𝛽𝑋̂

𝜌(1 − 𝜌)𝑥̂] Eq. 4.44 
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4.3.2.3 The five-parameter BED 

If 𝑦 and 𝑦̂ can be represented by the two-parameter Exponential distribution with 

parameters 𝜽𝑦 = (𝑦𝑜 , 𝛽𝑥) and 𝜽𝑦̂ = (𝑦̂𝑜 , 𝛽𝑥̂) respectively and they are correlated, 

the direct bivariate modelling of 𝑦 and 𝑦̂ should be based on the five-parameter 

BED with parameters 𝜽𝑦𝑦̂ = (𝛽𝑥 , 𝛽𝑥̂, 𝜌𝑦𝑦̂, 𝑦𝑜 , 𝑦̂𝑜), where 𝜌𝑦𝑦̂ is the product-

moment correlation between 𝑦 and 𝑦̂. The designation of these variables is 

(𝑦, 𝑦̂)~𝐵𝐸𝐷(𝛽𝑥, 𝛽𝑥̂, 𝜌𝑦𝑦̂, 𝑦𝑜 , 𝑦̂𝑜). The standardized BED can also be used to obtain 

the analytical expressions for this distribution. In this case, to obtain 𝑓(𝑦, 𝑦̂) and 

𝑓(𝑦|𝑦̂) the replacements in Eq. 4.33 and 4.35  should be: 

 𝑣 =
𝑦 − 𝑦𝑜

𝛽𝑥
 Eq. 4.45 

 
𝑣 =

𝑦̂ − 𝑦̂𝑜

𝛽𝑥̂
 Eq. 4.46 

 𝜌𝑣𝑣̂ = 𝜌𝑦𝑦̂ Eq. 4.47 

Since the bivariate modelling of the pairs (𝑦, 𝑦̂) can be based on the conditional 

moments of the standardized exponential variables,  this work did not derive the 

equations of the conditional moments 𝜇𝑦|𝑦̂ and 𝜎𝑦|𝑦̂
2  which should include the 

location and scale parameters and which can be obtained from Eq 4.36 and Eq 4.37, 

respectively. 

The five-parameter  BED is convenient since it allows us to explore the case when 

the means of 𝑦 and 𝑦̂ are the same but their variances are different. This analysis 

could not be done if they would be represented by the three-parameter BED where 

the mean and standard deviation are equal. 

4.3.3 The bivariate Log-normal distribution (BLND) 

If 𝑦 and 𝑦̂ can be represented by univariate Log-normal distributions, then the 

BLND can be a potential candidate to conduct the bivariate modelling of these 

variates. A description of this bivariate distribution is found in Yue (2000) and 

Thomopoulos (2017). This section first describes the five-parameter BLND, which 

is the basis for describing the seven-parameter BLND.   
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4.3.3.1 The five-parameters BLND 

If 𝑦 and 𝑦̂ are correlated and 𝑦𝑜 and 𝑦̂𝑜 are known a priori, then the natural log of 

their thresholds exceedances, i.e., 𝑧 = 𝑙𝑛(𝑥) and 𝑧̂ = 𝑙𝑛(𝑥̂), are normally 

distributed with means µ𝑧 and µ𝑧̂ and standard deviations 𝜎𝑧 and 𝜎𝑧̂ , respectively 

(see section 4.2.2). Therefore, the pairs (𝑥, 𝑥̂) can be represented by a five-

parameter BLND with parameters 𝜽𝑥𝑥̂ = (µ𝑧 , 𝜎𝑧 , µ𝑧̂ , 𝜎𝑧̂, 𝜌𝑧𝑧̂), where 𝜌𝑧𝑧̂ is the 

product-moment correlation coefficient between 𝑧 and 𝑧̂. The designation of these 

variables is (𝑥,𝑥̂) ~𝐵𝐿𝑁𝐷(µ𝑧 , 𝜎𝑧 , µ𝑧̂ , 𝜎𝑧̂ , 𝜌𝑧𝑧̂). 

Univariate properties 

Both marginal distributions are lognormally distributed. Assuming that the pairs 

(𝑥, 𝑥̂) have these distributions; the corresponding CDFs are defined as: 

 
𝐹(𝑥) = 𝛷 (

𝑙𝑛(𝑥) − µ𝑍

𝜎𝑍
) , 𝑥 > 0 Eq. 4.48 

 
𝐹(𝑥̂) = 𝛷 (

𝑙𝑛(𝑥̂) − µ𝑍̂

𝜎𝑍̂

) , 𝑥̂ > 0 Eq. 4.49 

Bivariate properties 

The joint PDF is: 

 
𝑓(𝑥, 𝑥̂) =

1

2𝜋𝑥𝑥̂𝜎𝑍𝜎𝑍̂√1 − 𝜌𝑍𝑍̂
2

𝑒𝑥𝑝 (−
𝑞

2
)  

where 

 𝑞 =  
1

1−𝜌
𝑍𝑍̂
2 [(

𝑙𝑛(𝑥)−µ𝑍

𝜎𝑍
)

2

− 2𝜌𝑍𝑍̂ (
𝑙𝑛(𝑥)−µ𝑍

𝜎𝑍
) (

𝑙𝑛(𝑥̂)−µ𝑍̂

𝜎𝑍̂

) +

(
𝑙𝑛(𝑥̂)−µ𝑍̂

𝜎𝑍̂

)
2

]  

Eq. 4.50 

Conditional properties  

The conditional PDF is lognormally distributed and, for the case of 𝑋 given 𝑋̂ = 𝑥̂,  

has the following characteristics: 
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𝑓(𝑥|𝑥̂) =  

1

𝑥𝜎𝑧|𝑧̂√2𝜋
𝑒𝑥𝑝 [−

1

2
(

𝑙𝑛(𝑥) − 𝜇𝑧|𝑧̂

𝜎𝑧|𝑧̂
)

0.5

] Eq. 4.51 

with conditional mean: 

 𝜇𝑥|𝑥̂ = 𝜇𝑧 + 𝜌
𝜎𝑧

𝜎𝑧̂

[𝑙𝑛(𝑥̂) − 𝜇𝑧̂] Eq. 4.52 

and conditional variance: 

 𝜎𝑥|𝑥̂ = 𝜎𝑧√1 − 𝜌2 Eq. 4.53 

 

Note that, for the sake of simplicity, the properties of BLND (µ𝑧 , 𝜎𝑧, µ𝑧̂ , 𝜎𝑧̂, 𝜌𝑧𝑧̂) 

characterising the pairs (𝑥, 𝑥̂) have been described by taking the natural log of each 

of the two variables where the Normal distribution emerges, and this distribution is 

easier to handle. Thus, in fact, the above equations represent the BND of the 

variables 𝑧 = 𝑙𝑛(𝑥) and 𝑧̂ = 𝑙𝑛(𝑥̂). Therefore, the characteristics of the mean 

regression and conditional variance are the same as those described in section 4.3.1. 

Some further properties of the BLND (µ𝑍, 𝜎𝑍, µ𝑍̂, 𝜎𝑍̂, 𝜌𝑍𝑍̂) in terms of the log-

normal variables, in this case, denoted as 𝑥 and 𝑥̂,  can be found in Balakrishna and 

Lai (2009). It should be noted that, while the conditional variance in the Normal 

space is constant, this is not the case in the logNormal space where it is a function 

of 𝑥 as a result of the logarithmic transformation (Eq 4.53). 

4.3.3.2 The seven-parameters BLND.  

If 𝑦 and 𝑦̂ can be represented by a three-parameter Log-Normal distribution with 

parameters 𝜽𝒚 = (𝑦𝑜 , µ𝑍, 𝜎𝑍) and 𝜽𝒚̂ = (𝑦̂𝑜 , µ𝑍̂, 𝜎𝑍̂) respectively, and they are 

correlated, the bivariate modelling of 𝑦 and 𝑦̂ should be based on the seven-

parameters BLND with parameters 𝜽𝒚,𝒚̂ = (µ𝑧 , 𝜎𝑧, µ𝑧̂ , 𝜎𝑧̂ , 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑧𝑧̂). The 

designation of these variables is (𝑦,𝑦̂) ~𝐵𝐿𝑁𝐷(µ𝑧 , 𝜎𝑧 , µ𝑧̂ , 𝜎𝑧̂ , 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑧𝑧̂). For this 

BLND, the analytical expression of univariate and bivariate properties can be easily 

obtained from the analytical expressions of the five-parameter BLND by 

substituting 𝑥 =  𝑦 − 𝑦𝑜 and 𝑥̂ = 𝑦̂ − 𝑦̂𝑜 , respectively (see the previous section).  



70 

 

4.4 Bivariate simulation. 

The simulation of any bivariate distribution can be tackled by different approaches 

(Balakrishna & Lai, 2009; Lewis et al., 2017). In this research, the bivariate 

simulation of 𝑦 and 𝑦̂ was based on the method known as the conditional approach 

(Lewis and Orav, 2018) by using algorithms that have no restrictions on the shapes 

of the marginal distributions. The Gaussian copula was employed for these 

purposes. This section thus starts by explaining the conditional approach and how 

it is related to the concept of PU, then describes the Gaussian copula approach, and 

finally shows the algorithms built to simulate pairs (𝑦,𝑦̂) and to build the PU of  

 𝑦|𝑦̂ assuming they can be represented by a BED or a BLND. By way of example, 

for the case when the pairs (𝑦,𝑦̂) ~𝐵𝐸𝐷(𝛽𝑥, 𝛽𝑥, 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑦𝑦), an algorithm that 

considers restrictions on the shape of the marginal distribution was considered. This 

algorithm is based on the Moran-Downton BED, and an analysis of its advantages 

and disadvantages with respect to the Gaussian-copula-based algorithm is provided.  

4.4.1 The conditional simulation approach and predictive uncertainty (PU) 

Since PU can be defined as the uncertainty of a future realization of a predictand 

(the future quantity of interest) conditional on, for example, one model forecast 

(Todini, 2016), the conditional distribution of 𝑦  given  𝑦̂𝑖, i.e. 𝑓(𝑦|𝑦̂𝑖), can be used 

to derive PU. This concept can be further used to represent the realization of 𝑦̂𝑖, i.e. 

𝑦𝑖, through a value drawn from 𝑓(𝑦|𝑦̂𝑖). This approach is known in bivariate 

simulation as the conditional approach (Lewis and Orav, 2018). When using this 

approach, the ideal situation is when one has the moment equations of 𝑓(𝑦|𝑦̂𝑖). If 

these equations are not available or are not easy to handle, 𝑓(𝑦|𝑦̂𝑖) can be built via 

a sampling technique where the conditional approach is applied in a different space, 

and, then, these values are  converted to the real space by using a transformation 

technique. In the next subsections, it is shown how this approach can be used to do 

the bivariate simulation of 𝑦 and 𝑦̂ assuming different bivariate probabilistic models 

(BED and BLND) through a Gaussian copula-based approach.  

4.4.2 Bivariate simulation based on the Gaussian copula 

The most convenient approaches to do a bivariate simulation are those that do not 

impose any restriction on the range of association between variates or with the form 

of the marginal distributions (Kelly and Krzysztofowicz, 1997), i.e., marginal-free 
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bivariate generators. In this work, one of these methods, the Gaussian copula, was 

employed to do the bivariate simulation of 𝑦 and 𝑦̂.  

The Gaussian copula, in the bivariate version, is, in essence, the bivariate CDF 

derived from the standard bivariate Normal distribution (BND), whose univariate 

marginal CDFs are uniformly distributed on the range [0,1]. Thus, this method 

basically uses the standard BND to simulate bivariate variables with a specific 

correlation structure and then transform the standardized normal distributions into 

uniform distributions through the probability integral transform (PIT). Finally, the 

uniform distributions are transformed into any required distributions by computing 

the inverses of the required distributions associated with the values of the uniform 

distributions. 

The Gaussian copula approach must first generate jointly standardized Normal 

random variables, i.e., pairs (ƞ, ƞ̂) with a specified correlation 𝜌ƞƞ̂ (according to the 

notation used in section 4.3.1). Based on these bivariate points, a generic Gaussian 

copula generator is constructed as follows. Let (𝑆, 𝑄) denote a vector of continuous 

random variables with arbitrarily specified, strictly increasing, and continuous 

probability distributions. Then, the bivariate simulation of the joint distribution of 

the bivariate pairs (𝑠, 𝑞) can be done by the following approach.  

 Step 1: Generate a set of 𝑛 random values of Η̂, i.e.𝜂̂ ,  from 𝑁~(0,1). 

 Step 2: Generate ƞ𝑖 from 𝑓(𝑛|𝑛̂𝑖) (see Eq. 4.28), i.e., the conditional 

distribution of 𝛨 given the value ƞ̂𝑖 of 𝛨̂ generated in Step 1,  by drawing a 

random value from each of these conditional distributions.  

 Step 4: Compute the CDFs of each of the corresponding pairs (ƞ, ƞ̂), 

denoted as 𝐹(ƞ) and 𝐹(ƞ̂); these then define Uniformly distributed pairs of 

random variables as     

  𝑢 = 𝐹(ƞ)   and  𝑟 = 𝐹(ƞ̂) 

 Step 5: Using the probability integral transform (PIT), obtain 𝑠 and 𝑞 as: 

𝑠 = 𝐹𝑆
−1(𝑢)  and  𝑞 = 𝐹𝑄

−1(𝑟) 

where 𝐹𝑆
−1 and 𝐹𝑄

−1 are the inverses of the CDFs of 𝑠 and 𝑞, respectively. 

Figure 4.2 illustrates the bivariate simulation of pairs (ƞ, ƞ̂) through Steps 1 and 2 

of the algorithm mentioned above. 
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Figure 4.2: Illustration of how pairs (ƞ,ƞ̂)  are generated from a standard BND based on the 

conditional approach 

4.4.3 Bivariate simulation of 𝒚 and 𝒚̂ based on the BED 

The bivariate simulation of 𝑦 and 𝑦̂ based on the BED was addressed by considering 

two algorithms: i) an algorithm based on the Moran–Downton BED; and ii) an 

algorithm based on the Gaussian copula. The concepts, procedures, and advantages 

and disadvantages of each of them are explained as follows. 

4.4.3.1 Simulation of 𝑦 and 𝑦 ̂ based on the Moran-Downton BED 

The Moran-Downton BED algorithm is based on the generation of standardized 

bivariate Exponential random variables; thus, this section first explains how it is 

done based on the conditional approach and then describes the algorithms used to 

simulate pairs (𝑦,𝑦̂) and to derive the PU. 

Using the notation of section 4.3.2, pairs (𝑣, 𝑣) of a standard BED with a specified 

correlation 𝜌𝑣𝑣̂ can be simulated based on the conditional approach by:       

 Step 1: Generate a random value of 𝑉̂, i.e. 𝑣𝑖,  from 𝐸𝑥𝑝~(1) i.e., 

standardised exponential distribution with a mean 1. 

 Step 2: Generate 𝑣𝑖 from 𝑓(𝑣|𝑣𝑖) (see Eq. 4.35), i.e., the conditional 

distribution of  𝑉 given the value 𝑣𝑖 of 𝑉̂ generated in Step 1,  by drawing a 

random value from this conditional distribution.  

Assuming (𝑦,𝑦̂) ~𝐵𝐸𝐷(𝛽𝑥 , 𝛽𝑥, 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑦𝑦), pairs (𝑦,𝑦̂) can be simulated from the 

Moran-Downton BED by following the steps: 

 Step 1: Define the moments 𝛽𝑥 and 𝛽𝑥̂, the coefficient of correlation 𝜌𝑦𝑦̂, 

and the thresholds 𝑦𝑜 and 𝑦̂𝑜.    
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 Step 2: Use the relationship 𝜌𝑦𝑦̂ = 𝜌𝑣𝑣̂ to generate pairs (𝑣, 𝑣) based on the 

conditional approach (see Figure 4.3a). 

 Step 3: Obtain the exceedances of 𝑦𝑜 and 𝑦̂𝑜 i.e., the pairs (𝑥,𝑥̂), by: 

𝑥 = 𝛽𝑥𝑣 

𝑥̂ = 𝛽𝑥̂𝑣̂ 

 Step 4: Obtain the values of 𝑦 and 𝑦̂ by adding the thresholds to the 

exceedances: 

𝑦 = 𝑦𝑜 + 𝑥 

𝑦̂ = 𝑦̂𝑜 + 𝑥̂ 

Figure 4.3  illustrates the above algorithm. 

 

Figure 4.3: Illustration of the Moran-Downton model-based algorithm used to generate pairs 

(𝒚,𝐲̂) 

The algorithm starts generating pairs (𝑣,𝑣) based on the conditional approach (Figure a); then the 

pairs (𝑥,𝑥) are obtained by multiplying 𝑣 and 𝑣̂ by the scale parameters 𝛽𝑥 and 𝛽𝑥 respectively 

(Figure b); Finally, the pairs (𝑦,𝑦̂) are obtained by adding to each value of 𝑥 and 𝑥̂ a constant value 

defined by the thresholds 𝑦𝑜 and 𝑦̂𝑜, respectively (Figure c). In this algorithm, the following 

relationship is met: 𝜌𝑣𝑣̂ = 𝜌𝑥𝑥 = 𝜌𝑦𝑦̂. 

Building of PU 

The PU    can be built by simply sampling 𝑛 values from the conditional distribution 

𝑓(𝑣|𝑣𝑖) obtained in the algorithm used to obtain the pairs (𝑦,𝑦̂) (Step 2) and then 

conveying the resulting values to real space by following the steps of the algorithm 

in terms of 𝑦. PU can be finally expressed in terms of density values by, for 

example, computing the Kernel density estimations (Sheather and Jones, 1991) of 

the sampling values.  

4.4.3.2 Bivariate simulation of 𝑦 and 𝑦̂ based on the Gaussian copula 

Assuming (𝑦,𝑦̂) ~𝐵𝐸𝐷(𝛽𝑥, 𝛽𝑥, 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑦𝑦), pairs (𝑦,𝑦̂) can be simulated based on 

the Gaussian copula through the following algorithm.  
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 Step 1: Define the moments 𝛽𝑥 and 𝛽𝑥̂, the coefficient of correlation 𝜌𝑛𝑛̂ 

associated with 𝜌𝑦𝑦̂, and the thresholds 𝑦𝑜 and 𝑦̂𝑜. 

 Step 2: Generate pairs (ƞ, ƞ̂) based on the conditional approach (Figure 4.2). 

 Step 3: Compute the CDF of the corresponding pairs (ƞ, ƞ̂). 

      𝑢 = 𝐹(ƞ)  and  𝑟 = 𝐹(ƞ̂) 

 Step 4: Compute standardized exponential variables 𝑣 and 𝑣  as:  

      𝑣 = 𝐹𝑉
−1(𝑢)  and  𝑣 = 𝐹𝑉

−1(𝑟) 

where 𝐹𝑉
−1 and 𝐹𝑉

−1 are the inverse of the distributions of  𝑣 and 𝑣 which are  

in turn defined as: 

      𝑣 =
𝑦−𝑦𝑜

𝛽𝑥
  𝑎𝑛𝑑 𝑣 =

𝑦̂−𝑦̂𝑜

𝛽𝑥̂
 

 Step 5: Pairs (𝑦, 𝑦̂) can  be finally obtained as: 

𝑦 = 𝑦𝑜 + 𝛽𝑥𝑣 

𝑦̂ = 𝑦̂𝑜 + 𝛽𝑥̂𝑣̂ 

Building the PU 

The PU can be built by simply sampling 𝑛 values from the conditional distribution 

𝑓(ƞ|ƞ̂𝑖) obtained in the algorithm used to obtain the pairs (𝑦,𝑦̂) (Step 2) and then 

converting the resulting values to real space by following the steps of the algorithm 

in terms of 𝑦. PU can be finally expressed in terms of density values by computing 

the Kernel density estimations of the sampling values.  

4.4.3.3 Advantages and disadvantages of Moran-Downton-model- and Gaussian 

copula-based algorithm 

The advantages and disadvantages of the algorithms used to simulate pairs (𝑦,𝑦) 

based on the BED are listed below.  

 The Moran–Downton model-based algorithm uses the value of the 

correlation coefficient in the real space, i.e., 𝜌𝑦𝑦̂. It can be considered an 

advantage with respect to the Gaussian copula-based approach as the latter 

bases the bivariate modelling on the normal space, for which they must use 

a transformation technique to obtain the value of the correlation coefficient 

in the real space. This could be an issue if one does not have an analytical 

relationship between these two variables. 

 Both algorithms have no restriction with the range of association between 𝑦 

and 𝑦̂. 

 The Moran–Downton model has a restriction with the shape of the 

marginals; they must be exponentially distributed, i.e., it is a non-marginal 

free bivariate generator. The Gaussian copula is a marginal-free bivariate 

generator. 

 The Moran–Downton-model- based algorithm allows the theoretical joint 

probabilities to be computed (see Eq. 4.34). It can be considered an 

advantage in terms of the Bivariate Goodness of fit test (GoF) since one can 

compare them with the resulting empirical joint probabilities obtained from 

the standardized variables of a sample of pairs (𝑦,𝑦̂). 
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4.4.4 Bivariate Simulation of 𝒚 and 𝒚̂ based on the seven-parameters BLND  

Since there is a close relationship between Normal and Lognormal distributions, 

several analytical expression has been developed to show that relationship (Lai et 

al., 1999; Thomopoulos, 2017). In this work, some of these expressions have been 

used to build an algorithm that allows us to simulate pairs 

(𝑦,𝑦̂) ~𝐵𝐿𝑁𝐷(µ𝑧 , 𝜎𝑧, µ𝑧̂ , 𝜎𝑧̂ , 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑧𝑧̂) (see section 4.3.3.2) and build the PU. This 

algorithm is detailed below. 

Considering the notation used in section 4.3.3 and assuming 

(𝑦,𝑦̂) ~𝐵𝐿𝑁𝐷(µ𝑧 , 𝜎𝑧, µ𝑧̂ , 𝜎𝑧̂ , 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑧𝑧̂), pairs (𝑦,𝑦̂)  can be simulated through the 

following algorithm.  

 Step 1: Define the moments µ𝑦, µ𝑦̂, σ𝑦, 𝜎𝑦̂, the coefficient of correlation 

𝜌𝑦𝑦̂, and the thresholds 𝑦𝑜  and 𝑦̂𝑜.    

 

 Step 2: Use the expression µ𝑥 = µ𝑦 − 𝑦𝑜, µ𝑥̂ = µ𝑦̂ − 𝑦̂𝑜, σ𝑥
2 = σ𝑦

2 , and 

σ𝑥
2 = σ𝑦̂

2  to obtain the mean and variance of the log-transformed values of   

𝑦 and 𝑦̂ in the Normal space by using the following analytical relationships 

between the Normal and log-Normal distribution: 

      µ𝑧 = 2 ln(µ𝑥) − 0.5ln (µ𝑥
2 + 𝜎𝑥

2)                                 

      𝜎𝑧
2 = −2 ln(µ𝑥) + ln (µ𝑥

2 + 𝜎𝑥
2)                                

            µ𝑧̂ = 2 ln(µ𝑥̂) − 0.5ln (µ𝑥̂
2 + 𝜎𝑥̂

2)                                

      𝜎𝑧̂
2 = −2 ln(µ𝑥̂) + ln (µ𝑥̂

2 + 𝜎𝑥̂
2)  

 

 Step 3: Use the expression 𝜌𝑥𝑥̂= 𝜌𝑦𝑦̂ to compute the coefficient of 

correlation of z=ln(𝑥) and 𝑧̂ = ln (𝑥̂) in the normal space by: 

𝜌𝑧𝑧̂ =

ln [(𝜌𝑦𝑦̂ ∗ √(exp(𝜎𝑧
2) − 1) ∗ (exp(𝜎𝑧̂

2) − 1)) − 1]

𝜎𝑧 ∗ 𝜎𝑧̂
   

 

 Step 4: Use the relationship 𝜌𝑧𝑧̂ = 𝜌ƞƞ̂ to generate pairs (ƞ, ƞ̂) based on the 

conditional approach (see Figure 4.2). 

 

 Step 5: Obtain the values of the transformed variables of 𝑦 and 𝑦̂ in the 

normal space, i.e., the pairs (𝑧,𝑧̂), by:  

𝑧 = µ𝑧 + 𝜎𝑧 ∗ ƞ                                      

𝑧̂ = µ𝑧̂ + 𝜎𝑧̂ ∗ ƞ̂                      
                 

 Step 6: Obtain the pairs (𝑦,𝑦̂) by. 

𝑦 = exp(𝑧) + 𝑦𝑜   

            𝑦̂ = exp(𝑧̂) + 𝑦̂𝑜 



76 

 

Building the PU 

The PU of each pair (𝑦𝑖,𝑦̂𝑖) can be built by simply sampling 𝑛 values from the 

conditional distribution 𝑓(ƞ|ƞ̂𝑖) obtained in the algorithm used to obtain the pairs 

(𝑦,𝑦̂) (Step 4) and then conveying the resulting values to real space by following 

the steps of the algorithm in terms of 𝑦. PU can be finally expressed in terms of 

density values by computing the Kernel density estimations of the sampling values.  

4.5 Data analysis. 

Data analysis was conducted to support the assumptions made when doing the 

bivariate modelling of pairs (𝑦,𝑦̂), which basically consisted of doing a univariate 

and bivariate analysis of these variates.  

4.5.1 Observed data (y) 

The analysis of 𝑦 was based on the records of four gauging stations located close to 

or in a floodplain in England (see Figure 4.4). These stations were selected because 

they are at locations with known flooding. The observed discharges were converted 

into water levels 𝑦 by using the rating curves of the at-site gauges taken from the 

National River Flow Archive (NRFA, see https://nrfa.ceh.ac.uk/). 

 

Figure 4.4: Geographical location of the gauging stations used to analyse 𝒚 and 𝒚̂ 

Table 4.2 shows general information for the stations used in the univariate and 

bivariate analysis of 𝑦. 

https://nrfa.ceh.ac.uk/
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Table 4.2 Description of the available information used to analyse 𝒚 and 𝒚̂. 

4.5.2 Simulated forecast data (𝒚̂) 

The analysis of 𝑦̂ was done for only one of these gauging stations, the River Eden 

at Sheepmount, for which a previously calibrated SHETRAN model was available. 

The main criterion to be satisfied was that a sufficiently long record was available 

to calibrate and validate the model, to support the analysis of 𝑦 and 𝑦̂, and the Eden 

SHETRAN model met this criterion. Setting up and calibrating models for other 

stations would have taken a disproportionate amount of time and was not the main 

focus of the study. 

SHETRAN (Ewen et al., 2000) is a state-of-the-art physically-based, spatially 

distributed model that has been developed at Newcastle University and applied 

widely to catchments in the UK and across the world (Lewis et al., 2018). 

SHETRAN uses a grid-based representation of the catchment, and inputs are often 

gridded at a resolution between 50 m and 5km. The timestep used is often hourly 

or daily, although this temporal resolution decreases during storm events to better 

represent rapid infiltration and surface runoff processes. It has been used in 

countless applications in hydrology, such as in the analysis of the impact of 

groundwater abstractions on streamflows (Parkin et al., 2007), deforestation 

impacts on peak flows and sediments yields (Birkinshaw et al., 2011), nitrate 

transport (Koo and O’Connell, 2006), and real-time flood forecasting (Mellor et al., 

2000) to name but a few.  

Detailed information on the SHETRAN model used to derive 𝑦̂ (the Eden 

SHETRAN model) can be found in Janes et al. (2018). It was built to study the bank 

erosion process in the Eden catchment, and its calibrated hydrological component 

NRFA 

Code 
Name Lat Long 

Record length (15-min 

time step) 

Period 

simulated 

24003 River Wear at Stanhope 54.75 -2.03 Jan-1961/ Apr-2014 - 

23006 
River South Tyne at 

Featherstone 
54.94 -2.51 Oct-1967/ Apr-2014 - 

22007 
River Wansbeck at 

Mitford 
55.17 -1.73 Mar-1963/ Jan-2015 - 

76007 
River Eden at 

Sheepmount 
54.90 -2.95 Jan-1976/ Nov-2012 

Jan-1990/ Dec-

2006 
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was used in this research to represent simulated discharges of the River Eden at 

Sheepmount (Figure 4.5). The Eden SHETRAN model was applied to a 2400 km2 

predominately rural Eden catchment. A 1-km2 grid resolution and a timestep of 1 

hour were considered. A GIS methodology was used to set up the model based on 

a 30 m digital elevation model, land-use, and soil maps. The spatial hourly rainfall 

was derived by disaggregating a daily 1 km2 gridded daily rainfall product from 

1990–2007. The 1991-2001 period was used for the calibration procedure, whereas 

the 2001-2007 period for validation (with 1-year ‘start-up’ period). The calibration 

and validation procedure considered hourly and daily data from the NRFA gauging 

stations and HiFlows data sets. The hourly hydrological performance of the model 

based on the data of  the River Eden at Sheepmount  was characterised by a value 

of the Nash-Sutcliffe Efficiency (NSE) of 0.90, and a coefficient of determination 

(𝑅2) of 0.91. Figure 4.6 shows the simulated and observed hourly discharges for 

the validation period.  

 

Figure 4.5: Eden catchment, Cumbria UK.  

Locations of gauging stations (black) and sediment data (brown) used for the calibration and 

validation of the model are shown (taken from Janes et al.(2018)). 
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The SHETRAN model was developed for simulation, not real-time forecasting, and 

so no data assimilation/ forecast updating was undertaken. The forecasts of the peak 

discharges were therefore represented through simulation mode values, i.e., with no 

data assimilation/updating. These ‘simulation mode’ forecasts can therefore be 

thought of as representing longer lead time forecasts where the effect of updating 

has died out.  

 

Figure 4.6: Simulated and observed discharges of the River Eden at Sheepmount.  

The simulated and observed discharge corresponds to the validation period (2001-2007). The NSE 

of the Eden SHETRAN model in the validation procedure was 0.90. 

4.5.3 Selection of peak flows and their forecasts. 

The peak flows 𝑦 and their forecasts 𝑦̂ are sampled in later chapters from a bivariate 

distribution with marginal distributions represented by a POT model. The variable  

𝑦 is here defined as the crest of the resulting hydrograph generated by a given 

rainfall event that  crosses a given threshold level (𝑦𝑏) of the river. The value of 𝑦𝑏 

must be set neither so high that only a few floods are considered in the hydrologic 

frequency analysis (HFA), i.e., it should be lower than the flooding threshold (𝑦𝑇), 

nor so low that too many peaks are considered, which are not relevant to the HFA 

(see Figure 4.7).  

As one can imply, the peak flow selection is strongly linked to 𝑦𝑏. The problem 

with 𝑦𝑏 arises from the fact that the basic model hypothesis of any statistical model 

to be applied to 𝑦, the independence of consecutive peaks, can be affected when 

considering low thresholds (see, for example, the first peak in Figure 4.7). This 
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issue can be tackled by imposing further requirements on the basic criterion of 

choosing all the peak flows above 𝑦𝑏. These requirements are usually based on the 

area of the catchment, the time period between two consecutive peaks (tP) and the 

difference between the magnitudes of the latter. For example,  Cunnane (1979) 

imposes that consecutive peaks must be separated by three times the average time 

to peak of the hydrographs, or that the smallest discharge value between the 

magnitude of two consecutive peaks must be higher than two-thirds of the 

magnitude of the first peak. The Water Resources Council (USWRC, 1982) also 

suggests that two consecutive peaks are considered independent if they are 

separated by at least as many days as five plus the natural logarithm of square miles 

of the basin area. Other authors simply consider that consecutive independent peaks 

are characterized by a value of tP ≥ 8 or 15 days (Bogner et al, 2012; Karim et al, 

2017).  

 

Figure 4.7: Illustration of 𝒚 and 𝒚̂ and the main thresholds (𝒚𝒃 and 𝒚𝑭) involved in the 

selection criterion for performing an HFA of these variates 

On the other hand, 𝑦̂ is defined as the crest of the forecast hydrograph used to 

forecast the peak flow 𝑦. The selection of 𝑦̂ is, therefore, linked to the selected 

values of 𝑦 where the forecast values might or might not fall above 𝑦𝑏. This could, 

for example, occur when the value of 𝑦 is relatively close to 𝑦𝑏, such as the last 

peak in Figure 4.7.  Thus, one has two criteria to select 𝑦 and 𝑦̂. The first one has 

to do with selecting the values of 𝑦 and then selecting the values of 𝑦̂ associate with 

𝑦, and the other with selecting only the values of 𝑦 whose associated values of 𝑦̂ 

fall above 𝑦𝑏, such as the first three peaks shown in Figure 4.7. The latter option 
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increases the chances of using the same POT model (probability distribution) to 

represent 𝑦 and 𝑦̂. 

Thus, the value of 𝑦𝑏 considered in this work was a threshold level that has been 

set for all gauging stations used for flood warning purposes in England. When the 

water level of the river reaches that threshold, minor flooding is possible in the 

floodplain. Table 4.3 and Table 4.4 describes the value of this threshold for each 

gauging station analysed, whereas Figure 4.8 shows an example of the threshold 

value against actual readings for one of the gauging stations.  

 

Figure 4.8: Value of 𝒚𝒃 considered for one of the gauging stations considered in the analysis 

(River Eden at Sheepmount) 

Source: (Environment Agency, 2019) 

Table 4.3 Value of the threshold 𝒚𝒃 and the resulting values of 𝒚̅, 𝒔𝒚, and λ, for the gauging 

stations where only the values of y were available. 

 

 

 

 

 

Code Name 
𝑦𝑏   

[m] 

𝑦̅  

[m] 

𝑠𝑦   

[m] 
λ 

24003 River Wear at Stanhope 2.10 2.48 0.40 1.45 

23006 River South Tyne at Featherstone 1.90 2.06 0.20 1.29 

22007 River Wansbeck at Mitford 2.00 2.49 0.46 1.60 
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Table 4.4 Value of the threshold 𝒚𝒃 for the gauging station River Eden at Sheepmount and 

the resulting values of 𝒚̅, 𝒔𝒚,𝒚̅̂, 𝒔𝒚̂ ,and λ. 

Once the values of 𝑦𝑏 were defined for each gauging station, the values of  𝑦 were 

selected, first defining the individual peaks above 𝑦𝑏, and then selecting the peaks, 

which were separated by at least eight days. For the case where the values of 𝑦̂ were 

represented (River Eden at Sheepmount),  the criterion for choosing the pairs (𝑦, 𝑦̂) 

was to select only the values of 𝑦 whose associated values of 𝑦̂ fall above 𝑦𝑏. Table 

4.3 and 4.4 show the resulting value of the average number of peaks per year (λ), 

the means (𝑦̅ and 𝑦̅̂), and standard deviations (𝑠𝑦 and 𝑠𝑦̂) of 𝑦 and 𝑦̂ when applying 

that criteria to each gauging station analysed, whereas Figure 4.9 illustrates some 

values of 𝑦 for the river Eden at Sheepmount. 

 

Figure 4.9: Hydrologic time series, and values of 𝒚 for the period 1990:2006 obtained at the 

gauging station 76007 River Eden at Sheepmount 

The green squares indicate the values of 𝑦 and the red line the value of the threshold 𝑦𝑏 . 

The average number of peaks per year λ can be used to estimate the value of 𝑦 

associated with the return period of a Standard of protection (𝑇𝑆𝑜𝑃). To compute 

𝑦𝑆𝑜𝑃, first the probability of exceedance associated with 𝑇𝑆𝑜𝑃 is estimated by: 

 

Code Name 
𝑦𝑏   

[m] 

𝑦̅  

[m] 

𝑠𝑦   

[m] 

𝑦̅̂  

[m] 

𝑠𝑦̂  

[m] 
λ 

76007 River Eden at Sheepmount 3.45 4.16 0.73 4.24 0.64 2.86 



83 

 

 
𝑃𝑇𝑆𝑜𝑃

=
1

(𝑇𝑆𝑜𝑃)𝜆
 Eq. 4.54 

Then, 𝑦𝑆𝑜𝑃 is estimated as the 𝑃𝑇𝑆𝑜𝑃
 quantile in the marginal distribution of 𝑦. This 

approach will be used to estimate important variables described in Chapter 5 and 6, 

such as the flooding threshold 𝑦𝑇. 

4.5.4 Univariate analysis of 𝒚 and 𝒚̂ 

The aim of the univariate analysis of 𝑦 and 𝑦̂ was to analyse what the best 

probabilities distributions are to represent the marginal distributions in the bivariate 

analysis. It was done based on the GoF of the values of 𝑦 and 𝑦̂, for which, as was 

mentioned in section 4.2, three distributions were considered: the two-parameter 

exponential distribution, the three-parameter log-normal distribution, and the three-

parameter Gamma distribution (see Table 4.1).  

4.5.4.1 Parameter estimation  

The distribution parameters can be estimated through different methods, such as the 

method of moments (MOM), the method of L-moments (ML), and the maximum 

likelihood estimation (MLE). In this work, the MOM was used, whose equations 

were previously described in section 4.2 (achieving high statistical efficiency in the 

estimates is not important here). To apply these equations, one can assume that the 

threshold parameter is known or unknown. The parameter estimation of the 

Lognormal distribution for the latter option is not straightforward (see section 

4.2.2); thus, for the sake of simplicity, one can take the first option whose value can 

be assumed as the minimum value of the sample of 𝑦 and 𝑦̂. It is a common practice 

in a peak-over threshold analysis (Claps and Laio, 2003).  

Table 4.5 and Table 4.6 shows the parameter estimates obtained when applying the 

moment equations described in section 4.2 and the above-mentioned assumptions. 
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Table 4.5 Estimation of the parameters of the three probabilistic models considered as 

candidates to represent 𝒚.  

 

Table 4.6 Estimation of the parameters of the three probabilistic models considered as 

candidates to represent 𝒚̂.  

4.5.4.2 Goodness of fit (GoF) of 𝑦 

A Goodness of Fit test (GoF) can be based on a visual inspection and/or through 

statistical GoF tests (D’Agostino and Stephens, 1986; Kottegoda and Rosso, 2008). 

A common approach for the first one has to do with plotting the theoretical CDF 

against the empirical one. For this purpose, the empirical probabilities can be 

computed by using the Weibull equation. 

 𝐹𝑚 =
𝑚

𝑛 + 1
 Eq. 4.55 

where 𝐹𝑚 is the probability of non-exceedance of the event m, which is defined 

through the rank of descending values, and 𝑛 is the sample size.  

Since the visual inspection of GoF can be quite subjective, the computation of 

statistical GoF tests is usually suggested, which can be used to know whether or not 

it is reasonable to assume that the random sample of 𝑦 comes from an assumed 

Code Name 

Location 

parameter 
Exponential Log-Normal Gamma 

𝒚𝒐 𝜷̂𝒙 µ̂𝒛 𝝈̂𝒛 𝜷̂𝒛 𝒌̂𝒛 

24003 
River Wear at 

Stanhope 
2.12 0.36 -1.60 1.29 0.40 0.94 

23006 
River South Tyne at 

Featherstone 
1.91 0.15 -2.33 0.97 0.24 0.64 

22007 
River Wansbeck at 

Mitford 
2.03 0.46 -1.06 0.80 0.44 1.10 

76007 
River Eden at 

Sheepmount 
3.46 0.70 -0.68 0.83 0.72 1.0 

Code Name 

Location 

parameter 
Exponential 

Log-

Normal 
Gamma 

𝒚̂𝒐 𝜷̂𝒙̂ µ̂𝒛̂ 𝝈̂𝒛̂ 𝜷̂𝒛̂ 𝒌̂𝒛̂ 

76007 
River Eden at 

Sheepmount 
3.47 0.77 -0.50 0.70 0.50 1.56 
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probability distribution based on a hypothesis testing where the null and alternative 

hypotheses are: 

H0: Sample data come from the assumed probability distribution. 

HA: Sample data do not come from the assumed probability distribution. 

The null hypothesis is rejected if the probability of the computed value, i.e., the p-

value, is lower than a defined level of significance. The level of significance 

considered in this work was 5%.  

When the population parameters are unknown and must be estimated by sample 

statistics, the Lilliefors-corrected Kolmogorov-Smirnov (correct-KS) test can be 

used to check the model assumption (Lilliefors, 1969; Crutcher, 1975). These 

values were estimated by using the R package “KScorrect” (Novack-Gottshall and 

Wang, 2019), which is based on MLE.  

 

Figure 4.10: Comparison of the empirical and theoretical CDF for the values of 𝒚 obtained 

for each gauging station 
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The GoF results of 𝑦 are shown in Table 4.7 and Figure 4.10. As one can see, only 

for one of the gauging stations (23006 River South Tyne at Featherstone), the 

statistical GoF test indicates the suitability of one of the probabilistic models (Log-

normal distribution) by rejecting the null hypothesis of the others. For some 

samples, one must, therefore, choose one probability distribution among the ones 

that pass the statistical test. When this occurs, it is usually suggested to consider the 

complexity of the probabilistic model as a discriminatory factor. Therefore, for 

these cases, the Exponential distribution can be considered as the main option to 

represent the values of 𝑦 given the low complexity of the univariate probabilistic 

model (two parameters: see Table 4.1). However, any of the distributions accepted 

under the null hypothesis for each station can be used. 

Table 4.7 Statistical GoF of 𝒚 based on the correct-KS test for each gauging station 

In this table Yes means that the null hypothesis was not rejected, i.e., the sample data passed the 

test. No means the null hypothesis was rejected, i.e., the sample data did not pass the test.  

4.5.4.3 Goodness of fit (GoF) of 𝑦̂ 

As was mentioned before, the GoF of 𝑦̂ was only done for the gauging station 76007 

River Eden at Sheepmount. The results based on the correct-KS test and the 

comparison of the empirical and theoretical CDF are shown in Table 4.8 and Figure 

4.11, respectively. As one can see, the null hypothesis is not rejected for all the 

assumed probability distributions, so the same conclusion drawn above for the case 

of 𝑦 applies here.  

Table 4.8 Statistical GoF based on the correct-KS test for the values of 𝒚̂ corresponding to 

the values of 𝒚 obtained from the gauging station 76007 River Eden at Sheepmount.   

In this table Yes means that the null hypothesis was not rejected, i.e. the sample data passed the 

test. No means the null hypothesis was rejected, i.e. the sample data did not pass the test.  

Code Name 
Kolmogorov Smirnov test 

Lognormal Gamma Exponential 

24003 River Wear at Stanhope Yes Yes Yes 

23006 River South Tyne at Featherstone Yes No No 

22007 River Wansbeck at Mitford Yes Yes Yes 

76007 River Eden at Sheepmount No Yes Yes 

Variable 
Kolmogorov Smirnov test 

Lognormal Gamma Exponential 

Values of 𝑦̂ corresponding to the values of 𝑦 obtained 

from the gauging station 76007 River Eden at 

Sheepmount. 

Yes Yes Yes 
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Figure 4.11: Comparison of the empirical and theoretical CDF for the values of 𝒚̂ 

corresponding to the values of 𝒚 obtained from the gauging station 76007 River Eden at 

Sheepmount 

4.5.5 Bivariate analysis of 𝒚 and 𝒚̂ based on the Moran-Downton BED 

In terms of GoF, the principle of bivariate frequency analysis should be the same 

as in the case of single-variable frequency analysis. Although the statistical GoF 

test for bivariate frequency analysis is not straightforward, an intuitive investigation 

of the agreement between empirical and theoretical joint probabilities such as the 

approaches used in the work of  Yue (2000) and Yue (2001) might be useful for 

checking the suitability of any bivariate probabilistic model. In this approach, 𝑛  

bivariate observations (𝑠𝑖, 𝑞𝑖), are arranged in ascending order, thus obtaining pairs 

(𝑠𝑗 , 𝑞𝑗). The empirical non-exceedance joint probabilities are then computed as: 

 
𝐹̂(𝑠𝑗 , 𝑞𝑗) =

#𝑝𝑎𝑖𝑟𝑠 (𝑠𝑖, 𝑞𝑖) 𝑤𝑖𝑡ℎ 𝑠𝑖 ≤ 𝑠𝑗  𝑎𝑛𝑑 𝑞𝑖 ≤ 𝑞𝑗

𝑛 + 1
 Eq. 4.56 

𝐹̂(𝑠𝑗 , 𝑞𝑗) can be then compared with the theoretical joint probabilities of 

𝐹(𝑆 ≤ 𝑠𝑗 , 𝑄 ≤ 𝑞𝑗) of the bivariate model to be tested.   

In this work, that method was applied to the sample of the pairs (𝑦,𝑦̂) obtained from 

the gauging station River Eden at Sheepmount. The aim was to test  the assumption 

that the sample of pairs (𝑦,𝑦̂) ~𝐵𝐸𝐷(𝛽𝑥, 𝛽𝑥, 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑦𝑦) is consistent with the 
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Moran-Downton BED. Figure 4.12 shows the estimation of 𝜌𝑦𝑦̂ based on the 

sample correlation coefficient  between 𝑦 and 𝑦̂, whereas Table 4.9 shows the 

estimated MOM values of the parameters of the five-parameter BED. Figure 4.12 

shows that the values of 𝑦̂ show a relatively small error for high values of 𝑦 which 

is not the bahaviour commonly observed when making forecasts. However, the 

upper range of values is poorly sampled because of the small sample size, so this 

can have happened by chance, but also perhaps through overfitting to the highest 

peaks when calibrating the SHETRAN model. 

 

Figure 4.12: plot 𝒚̂ versus 𝒚 for the values obtained from the gauging station 76007 River 

Eden at Sheepmount 

Table 4.9 Estimated values of the parameters of the five-parameters BED for the gauging 

station River Eden at Sheepmount. 

 

 

The bivariate GoF of the pairs (𝑦,𝑦) based on the Moran-Downton BED was thus 

based on the following steps: 

 Step 1: Based on the estimated values of the parameters, compute the 

standardized exponential variables of the pairs (𝑦,𝑦) as: 

      𝑣 =
𝑦−𝑦𝑜

𝛽̂𝑥
  𝑎𝑛𝑑 𝑣 =

𝑦̂−𝑦̂𝑜

𝛽̂𝑥̂
 

 Step 2: Arrange the observations (𝑣𝑖 , 𝑣𝑖) in ascending order and obtain the 

pairs (𝑣𝑗 , 𝑣𝑗). 

 Step 3: Compute the empirical non-exceedance joint probabilities of the 

pairs (𝑣𝑗 ,𝑣𝑗), i.e. 𝐹̂(𝑣𝑗,𝑣𝑗), based on Eq. 4.56. 

Code Name 𝑦𝑜 𝑦̂𝑜 𝛽̂𝑥 𝛽̂𝑥 𝜌̂𝑦𝑦̂  

76007 River Eden at Sheepmount 3.46 3.47 0.77 0.70 0.94 
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 Step 4: By using the relationship 𝜌𝑦𝑦̂ = 𝜌𝑣𝑣̂, compute the theoretical joint 

probabilities of the pairs (𝑣𝑗 ,𝑣𝑗), i.e., 𝐹(𝑣𝑗,𝑣𝑗), based on Eq. 4.34. 

 Step 5: Do a bivariate GOF via visual inspection by plotting in the x-axis 

the order of the pairs (𝑣𝑗 ,𝑣𝑗) and in the y-axis, the values of 𝐹̂(𝑣, 𝑣) and 

𝐹(𝑣, 𝑣). 

The results of the above-mentioned steps are shown in Figure 4.13. As one can see, 

the plot indicates that there is no significant difference between the observed and 

theoretical probabilities. Therefore, one can conclude that the five-parameters BED 

is suitable to represent the joint probabilities of the  pairs (𝑦,𝑦̂) obtained from the 

gauging station River Eden at Sheepmount. 

 

 

Figure 4.13: Bivariate GoF of the pairs (𝒚,𝒚̂) based on the Moran-Downton BED for the 

values obtained from the gauging station 76007 River Eden at Sheepmount 

 

Based on the outcome of this test, it is assumed that observed peak levels, and their 

forecasts from a calibrated model with a relatively high NSE and correlation, can 

be described by the BED model. Moreover, it is reasonably assumed, although not 

proven here, that any of the candidate distributions that passed the GOF test for 𝑦 

at the other sites can be used to describe 𝑦̂, thereby allowing corresponding bivariate 

distributions to be used for simulation experiments in later chapters.  
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4.6 Forecast performance 

The prior sections showed how to represent pairs (𝑦̂,𝑦) with a given dependence 

structure and associated errors through different bivariate probabilistic models; it 

provides the basis of the MCFG. This also provides the starting point for the 

sensitivity analysis used to explore the importance of the different factors 

influencing the performance of a FEWS.  However, the description of the 

dependence structure of pairs (𝑦̂,𝑦) through a correlation coefficient is not enough 

since one needs to associate it with a given forecast horizon or lead time (τ), and a 

performance measure, which is a common characteristic used to define a 

forecasting model. A MCFG can be set fully if these two characteristics are taken 

into account. This section, therefore, explains how the dependence structure of pairs 

(𝑦̂,𝑦) was associated with τ and the forecasting performance.  

It is well known that there is a trade-off between the forecast performance and the 

forecast horizon or lead time τ (Blöschl, 2008; Parker, 2017).The correlation 𝜌𝑦𝑦̂ is 

therefore necessarily associated with a given τ. In this research, that relationship 

was represented through a subjective lead-time-correlation function (see Figure 

4.14) analogous to that found by Schröter et al. (2008). This function describes the 

common behaviour of forecasting models forced with precipitation. That is, it 

represents the fact that, for τ values lower than basin lag time (L), with a well-

calibrated hydrological model, the performance of a forecasting model is relatively 

high, as the forecasts are based on observed precipitation by using, for example, 

gauge-based quantitative precipitation estimation (QPE). Moreover, forecast 

updating will improve the correlation for short lead times. Past this value L, the 

forecasting model has to be forced with quantitative precipitation forecasts (QPFs), 

and its performance drops monotonically. The slope of this function before L 

defines the quality of forecasting models based on QPE, such us models based on 

gauge-based QPE or gauge-radar based QPE, and the slope after L defines the 

quality of the forecasts based on QPFs. This function is defined by: 

𝜌𝑦𝑦̂ = {
−0.015 ∗ (𝜏 − 𝐿) + 𝐼𝑃𝜌                   𝜏 ≤ 𝐿

−0.030 ∗ (𝜏 − 𝐿) + 𝐼𝑃𝜌                  𝜏 > 𝐿
            Eq. 4.57 

where 𝐼𝑃𝜌 is the value of 𝜌𝑦𝑦̂ at the inflection point of the correlation-lead-time 

function and represent the correlation associated to a catchment lag L. In Eq. 4.57, 
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L and τ are defined in the same units, e.g., hours.  The sensitivity of forecast 

performance to perturbations in the 𝐼𝑃𝜌 value is explored in Chapters 5 and 6. 

Biases in the mean and variance of forecasts relative to the observed values also 

affect the forecast performance, and these are explored in the sensitivity 

experiments in Chapter 5. 

 

Figure 4.14: Lead-time-correlation function used to represent the forecast performance as a 

function of lead time. 

4.7 Sensitivity analysis 

In Chapters 5 and 6, sensitivity analyses (SA) of the factors controlling the 

performance of a FEWS are performed. The basic approach to the SA is to state a 

baseline scenario and then test several scenarios which take into account the main 

assumptions in the estimation of the performance. The forecast performance was 

one of them, which, as was explained above, is linked with the setting of the MCFG 

parameters. Therefore, this section of the chapter describes the parameters used to 

represent the MCFG and which of them were considered in the SA. 

The baseline scenario considered the results obtained for the gauging station River 

Wansbeck at Mitford as reference values. Based on the results in Table 4.7,  it is 

assumed that 𝑦 and  𝑦̂ can be represented by the same Lognormal POT model type, 

which, in turn, leads to the assumption that the pairs 

(𝑦,𝑦̂) ~𝐵𝐿𝑁𝐷(µ𝑧 , 𝜎𝑧, µ𝑧̂ , 𝜎𝑧̂ , 𝑦𝑜 , 𝑦̂𝑜 , 𝜌𝑧𝑧̂). Furthermore, the baseline model assumes 
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an ideal case of the forecasting system where the marginal distribution of the 

observations is equal to that of their forecasts; therefore,  the moments of 𝑦̂ are 

equal to those of 𝑦. The lead time τ was assumed to be equal to the catchment 

lagtime L, which, in turn, was assumed to be equal to 6 hours. Finally, the 𝐼𝑃𝜌 value 

was assumed to be 0.85; the justification for this is discussed in Chapter 5. Based 

on this analysis, the MCFG was represented by eleven parameters in the SA 

framework, where five of them represent the characteristics of the basin and the 

others the characteristics of the forecasting model. Table 4.10 shows these 

parameters and their assumed values for the baseline scenario.  

Table 4.10: Assumed input parameter values for the MCFG in the baseline generic fluvial 

case 

4.8 Main findings 

The architecture of the MCFG is novel; it allows forecast uncertainty to be linked 

with a forecasting lead time in the simulated generic fluvial case. The univariate 

analysis of  POT data for 𝑦 and 𝑦̂ at selected gauging stations suggested that the 

probability distribution type of 𝑦̂ is that of 𝑦, and that a number of different 

distributions could be used to describe 𝑦.   This allowed the assumption to be made 

that the five-parameter bivariate exponential distribution (BED), the seven-

parameters bivariate log-normal distribution (BLND), and the seven-parameter 

bivariate gamma distribution (BGM) are suitable models to represent the pairs 

(𝑦, 𝑦̂). Algorithms for sampling bivariate pairs of 𝑦 and 𝑦̂  from two of these 

bivariate distributions (BED and BLND) were presented. The algorithm relates to 

BGM will be described in Chapter 7. 

Abbreviation  Description 
Value 

adopted 

Parameter 

associated 

with: 

𝜇𝑦 Mean of 𝑦. 2.51 

The river 

basin 

𝜎𝑦
2 The variance of 𝑦.  0.20 

𝑦𝑜 Location parameter of 𝑦 2.03 

L Basin lagtime L 6 hrs 

𝜇𝑦̂ Mean of the forecasts of 𝑦 𝜇𝑦 

Flood 

forecasting 

system 

𝜎𝑦̂
2 The variance of the forecasts of 𝑦 𝜎𝑦

2 

𝑦̂𝑜  Location parameter of the forecasts of 𝑦 𝑦𝑜 

𝐼𝑃𝜌  
The inflection point of the lead time-performance 

function 
0.85 

𝜏 Lead time 6 hr 
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A formal criterion for selecting the threshold 𝑦𝑏 defining the peak water levels in 

the POT frequency analysis was proposed.  
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 Chapter 5. Evaluation of flood warning performance in terms 

of reliability 

There are a considerable number of acronyms in this Chapter. Therefore, the 

Chapter starts with a list of them with the aim of helping the reader from the 

beginning to be familiar with the concepts used in the analysis of this part of the 

thesis. The concepts of several acronyms have already been introduced in the prior 

Chapters; therefore, the list of acronyms can also be used by the reader to navigate 

the thesis to look for more detailed information.  

 

Acronym Meaning 
BLND Bivariate Log-normal distribution 

DFDR Deterministic forecast-based decision rule. Decision rule used in a deterministic 

FEWS to represent warning decisions based on the values of 𝑦̂ (section 3.2.2). Used 

in conjunction with the Floodplain property-based criterion (FPC) and the 

Floodplain threshold-based criterion (FTC). 

FAR False alarm ratio. Skill score used to define the reliability of flood warnings defined 

as the ratio of the number of hits and the sum of hits and false alarms (section 2.7.1). 

FEWS Flood early warning system 

FPC Floodplain property-based criterion. Criterion to evaluate the reliability of flood 

warnings in terms of warned and flooded houses. Values of FAR and POD can be 

derived from this criterion (section 2.7.1). 

FWDC Flood warning decision component. Component of the generic framework (section 

3.2.1) 

FTC Flooding-threshold criterion. Criterion to evaluate the reliability of flood warnings 

based on whether the occurrence or non-occurrence of a flood event in the at-risk 

community was preceded by a warning. Values of FAR and POD can be derived 

from this criterion (section 2.7.1). 

NSE Nash-Sutcliffe Efficiency 

MCFG Monte Carlo flood and forecast generator. Component of the generic framework 

(section 3.2.1) 

PE Probability of exceedance of a predefined level derived from the conditional 

distribution of 𝑦 given 𝑦̂, i.e., 𝑓(𝑦|𝑦̂). Variate used by the probabilistic rules PTDR 

and PDR (section 3.2.2) 

PDR Probabilistic decision rule. Decision rule used in a probabilistic FEWS to represent 

warning decision based on a warning level 𝑦̂𝑤 derived from 𝑓(𝑦|𝑦̂) (section 3.2.2) 

Used in conjunction with the Floodplain property-based criterion (FPC). 

POD Probability of detection. Skill score used to define the reliability of flood warnings 

defined as the ratio of the number of hits and the sum of hits and misses (section 

2.7.1). 

PT Probabilistic threshold used for the probabilistic rules PDR and PTDR (section 

3.2.2).  

PTDR Probabilistic-threshold-based decision rule.  

Decision rule used in a probabilistic FEWS to represent warning decision based on 

the PE of the flooding threshold 𝑦𝑇  derived from 𝑓(𝑦|𝑦̂) (section 3.2.2). Used in 

conjunction with the Floodplain threshold-based criterion (FTC) 

PU Predictive uncertainty. 

RIC Response and impact component. Component of the generic framework (section 

3.2.1) 

RRA Risk-reduction action. A proactive action conducted after a warning has been 

issued. 

SoP Standard of protection. 
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5.1 Introduction 

In the Monte Carlo (MC) framework used to explore the performance of a flood 

early warning system (FEWS) for the generic fluvial case (Chapter 3), the peak 

river levels (𝑦) and their forecasts (𝑦̂) are generated from the MC flood and forecast 

generator (MCFG). Chapter 4 gives a detailed description of how this component 

of the framework can create pairs (𝑦, 𝑦̂) and the predictive uncertainty (PU) 

associated with 𝑦̂. Different bivariate probabilistic models are assumed, and the 

dependence structure of this model (represented by the correlation coefficient 𝜌𝑦𝑦̂) 

is associated with a lead time (τ) through a lead time-correlation function. In this 

component, a return period is also associated with each value of 𝑦. 

In this chapter, a full description of the second and part of the third component of 

this MC framework is provided. The former component is called the flood warning 

decision component (FWDC) and represents the decisions made by a Warner (a 

word adopted in this research to refer to a person involved in preparing and issuing 

flood warnings, usually a member of a governmental entity) based on the forecasts 

generated by the MCFG and a flooding threshold (𝑦𝑇) associated with an at-risk 

community. The third component, i.e., the response and impact component (RIC), 

is used partially to only represent the forecast and observed impact in terms of 

affected houses. The adopted bivariate model used in the MCFG to represent the 

peak river levels 𝑦 and their forecasts 𝑦̂ is the bivariate Lognormal distribution 

(BLND). The reliability or credibility of a FEWS is the flood warning performance 

characteristic to be explored in this chapter. This analysis depends on warning 

decisions and the uncertainty of the forecasts and requires the addition of two 

parameters to the ones considered in the MCFG. These parameters are associated 

with the characterization of the at-risk community and have to do with the return 

period of its standard of protection (SoP) (𝑇𝑆𝑜𝑃), and the number of houses at risk 

in the floodplain (𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑎𝑡−𝑟𝑖𝑠𝑘). How these parameters are included in the MC 

framework is explained later. The generic framework (Figure 3.1) is, thus, partially 

used to build a MC framework to explore the reliability of flood warnings (Figure 

5.1). Thus, in this case, the response is left out, which is the basis of its economic 

component that, in turn, allows the performance of a FEWS to be explored in terms 

of the economic effectiveness. This analysis will be done in Chapter 6.  
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Figure 5.1: Illustration of the MC framework to explore the reliability of flood warnings. 

The MC framework explores the flood warning reliability estimated based on the flooding threshold-

based criterion FTC (a) and floodplain property-based criterion FPC (b) by using a (deterministic or 

probabilistic) warning strategy. 

The reliability of a FEWS, which, according to Parker (2017), is associated with 

the presence of false and missed alarms, is evaluated through the skill scores known 

as the probability of detection (POD) and false alarm ratio (FAR). This flood 

warning performance attribute is captured based on a contingency-table-based 

method that represents the outcomes of deterministic-based and probabilistic-based 

warning decisions. Contingency tables are built based on two criteria: a flooding 

threshold-based (FTC) and floodplain property-based (FPC) criterion. The former 

assesses the performance of a FEWS based on whether the occurrence or non-

occurrence of a flood in the at-risk community was preceded by a warning, whereas 

the latter based on whether a warned property was or was not subsequently flooded 

(Figure 5.1). The FTC is a well-known criterion used in several research works 

(Verkade and Werner, 2011; Pappenberger et al., 2015; Bischiniotis et al., 2019), 

whereas the FPC is a contribution of this research which gives a more consistent 

estimation of flood warnings' reliability because it is estimated based on warned 

and flooded houses. 
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The MC framework is used to explore the reliability of a FEWS through several 

sensitivity experiments. To do so, a set of values for the input parameters is first 

assumed to characterise the baseline scenario, where the at-risk community, the 

river system, and the flood forecasting system are characterised. Then, the 

sensitivity of the reliability to perturbations of the main parameters is fully explored 

through a one-at-time method.  

This chapter is structured as follows: In section 5.2, the rationality of the FTC and 

FPC used to define the performance of a FEWS is explained based on the warning 

criterion used in two types of FEWSs. Then, in section 5.3, the simulation of the 

target information for evaluating the performance of a FEWS based on the FPC is 

described. Next, in section 5.4, the contingency-table-based method for the FTC 

and FPC used to evaluate the reliability of flood warnings is explained. After this, 

in section 5.5, the skill scores used to describe the performance of a FEWS are 

introduced, and, in section 5.6, the decision rules used to describe the FWDC based 

on different types of forecast information are explained. Finally, in section 5.7, the 

results of the sensitivity experiments are shown.  

5.2 Flood warning criteria for fluvial floods 

The FTC and FPC utilised in this work to explore the performance of a FEWS have 

been defined based on the warning criterion usually used in two types of FEWSs. 

Based on the flood forecasting technique they use, they have been called in this 

work a hydrologic forecast-based FEWS and an inundation forecasting-based 

FEWS. Table 5.1 gives a  brief description of these systems, and Figure 5.2 

illustrates the warning criterion for each of them. They are explained as follows. 

The flood forecasting techniques applied in hydrologic forecast-based FEWS are 

usually based on hydrological and/or flood routing models (hydrologic or hydraulic 

models) and offer a relatively simple approach for flood predictions. They have 

been the dominant choice of river flood warning systems, where a threshold-based 

approach for issuing a warning is normally used. The FTC evaluates the 

performance of this type of FEWS where the warning criterion is based on a 

flooding threshold approach. In this case, forecast water levels at a river section in 

or close to the at-risk community are compared with a pre-defined flooding 

threshold 𝑦𝑇, which is often set based on experience, a pre-defined return period, 
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historical data, and/or detailed hydraulic modelling of river response. Here, 𝑦𝑇 is 

assigned a return period. The warning decision is based on the direct comparison 

between the forecasts and 𝑦𝑇. Figure 5.2a shows an example when considering a 

deterministic forecast; in this case, a warning is issued when the forecast indicates 

the exceedance of this threshold. This type of FEWS does not target warnings on 

individual properties or small areas within the at-risk community but aims to alert 

the flood authority of a potential flood that, in turn, uses a risk-reduction action 

(RRA) to mitigate the flood impact. A common RRA in this type of FEWS is raising 

demountable defenses, which can need a 24-h warning lead-time to be erected. 

Flooding threshold-based warning decisions have been the basis of some important 

research (Verkade and Werner, 2011; Dale et al., 2014). 

Table 5.1 Description of two types of FEWS  

 

Figure 5.2: Illustration of the warning criterion for a flooding threshold-based (a) and 

inundation forecasting-based (b) warning system. 

The inundation forecasting-based FEWS is considered to be the most sophisticated 

flood warning service (WMO, 2011). The flood forecasting system of this FEWS 

is usually made up of a hydrological and hydraulic inundation model, e.g., a 

Type of river flood 

warning system 
Aim  

Warning 

decision 

criterion 

Risk reduction 

action (RRA) 

Hydrologic forecast-

based FEWS  

Issue flood warnings 

to flood authority  Direct 

comparison 

between 

forecasts and 

the flooding 

threshold 𝑦𝑇  

Raising 

demountable 

defenses 

Inundation 

forecasting-based 

FEWS  

Issue flood warnings 

to  vulnerable 

properties in the 

flood risk community 

Moving house 

contents upstairs 

and/or evacuating 

them and the 

residents 
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hydrodynamic model, where the output of the former is used to feed the latter to 

forecast the floodplain inundation. Even though these flood forecasting systems are 

considered complex and computationally expensive (particularly for a catchment-

wide integrated hydrological and hydrodynamic modelling approach), with the 

development of high-performance computing techniques, it is now feasible to use 

these flood forecasting techniques in flood warning services (Ming et al., 2020). 

The FPC evaluates the performance of this type of FEWS. In this case, the warning 

decisions can also be based on the direct comparison between forecast water levels 

and the flooding threshold 𝑦𝑇, and the forecast of the flood extent can be used to 

disseminate flood warnings (Figure 5.2b). Vulnerable properties are identified by 

intersecting the maps of the property locations and the forecast inundation area. In 

this context, an inundation forecasting-based FEWS aims to target warning on 

vulnerable properties in the at- risk community, and the RRA, in this case, is done 

by houseowners, which can be, for example, by mounting flood defences for 

individual flood properties and/or moving house contents upstairs or evacuating 

contents and residents.  

5.3 Simulation of the flooded and warned properties  

As was explained above, evaluating the performance of a FEWS based on the FPC 

is one of the aims in this chapter. To the best of the author’s knowledge, there is not 

a work that has reported such an analysis. The target information for this task is the 

flooded and warned properties in the flood risk community after a flood event 

occurs. A rational method to do that would be one that represents: i) the 

infrastructure of the at-risk community, ii) the observed and forecast hydrograph of 

potential floods event at a river section in or close to the at-risk community, and iii) 

the associated observed and forecast flood extent through a hydraulic inundation 

model (Figure 5.3a). The MC framework represents this rational approach 

indirectly. The aim of this section of the chapter is, therefore, to explain this indirect 

method. 

To quantify the number of flooded properties (𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

), the MC framework uses 

an assumed impact curve for the flood risk community, i.e., a curve that relates the 

return period of a current or future flood event to the magnitude of the impact 

(Sayers et al., 2018); in this case, the number of properties that would be flooded. 

This type of curve has been used for performing a national flood risk assessment in 



100 

 

the United Kingdom through the UK Future Flood Explorer (Sayers et al., 2015); a 

flexible tool to simulate flood risk scenarios throughout the country. 

 

Figure 5.3: Illustration of the impact curve used to quantify the number of flooded and 

warned houses. 

Figure 5.3b shows the impact curve used by the MC framework. The values of this 

impact curve were taken from Table 4.6 of the Multi-Coloured Manual Handbook 

(Penning-Rowsell et al., 2020), which suggests using these values in a method to 

estimate the economic damage in a floodplain. This method is used when 

knowledge of flood depth and its associated return period is poor, but the Standard 

of Protection SoP, property type, and numbers are known. The number of houses 

flooded was set to zero at the water level that defines the bankfull condition; the 

return periods reported in the literature for the latter appear to fall somewhere in the 

range1-4 years based on annual maximum series (Williams, 1978; Andrews, 1980; 

Petit and Pauquet, 1997; Castro and Jackson, 2007; Ahilan et al., 2013). These 

values would be longer if partial-duration series are considered as it contains more 

flood events than the annual maximum series(Edwards et al., 2019). In this context, 

a 2.5 year-return period was assumed in this work to represent the bankfull 

condition.  
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The assumed impact curve (Figure 5.3b) gives an estimate of the number of 

properties affected by different floods by taking as reference the number of 

properties flooded by a 200-year flood (𝑛ℎ𝑜𝑢𝑠𝑒𝑠
200−𝑦𝑒𝑎𝑟−𝑓𝑙𝑜𝑜𝑑

). The MC framework 

assumes that the floodplain is defined by a 200-year flood extent. The total number 

of houses at risk 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑎𝑡−𝑟𝑖𝑠𝑘 is, therefore, assumed to be affected by a 200-year flood 

extent, i.e., 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑎𝑡−𝑟𝑖𝑠𝑘 = 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

200−𝑦𝑒𝑎𝑟−𝑓𝑙𝑜𝑜𝑑
. Thus, 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 are computed based on the 

return period of  𝑦 by taking as reference 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑎𝑡−𝑟𝑖𝑠𝑘 that is an input parameter of the 

MC framework.  

The assumed impact curve is also used to estimate the number of warned properties 

(𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑), which represents the vulnerable properties warned by the inundation 

forecasting-based FEWS (Figure 5.2b). The number of houses warned 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 in 

the MC framework is estimated as a function of 𝑦̂ by interpolating this value on the 

impact curve. With this approach, one tries to explore/represent the uncertainty of 

the inundation forecasting related to the magnitude of the flood event (peak water 

level). Figure 5.3b illustrates the computation of 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 for a pair 

(𝑦, 𝑦̂) based on the impact curve-based method and what they would represent in 

reality.  

5.4 Analysis of the flood warning performance 

Parker (2017) defines reliability as one of the common flood warning performance 

characteristics. This attribute of the FEWS is associated with the presence of false 

and missed alarms. The skill scores known as the probability of detection (POD) 

and the false alarm ratio (FAR) are often used as reliability measures which, in 

essence, give a “snap-shot” of this attribute of the FEWS (see section 2.7.1) 

Based on this concept, a contingency table-based method was used to define the 

reliability of a FEWS based on the FTC and FPC.  In the former, it is evaluated 

based on whether the occurrence or non-occurrence of a flood event in the flood 

risk community was preceded by a warning. In the latter, the reliability is, on the 

other hand, evaluated based on whether a warned property was or not subsequently 

flooded. They are explained as follows. 
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5.4.1 Flooding threshold-based criterion (FTC) 

A flood in an at-risk community is defined as the overtopping of  the flooding 

threshold 𝑦𝑇, which is the river level at which the flood impacts begin (Figure 5.2a). 

This value is set at 𝑇𝑆𝑜𝑃, i.e., the return period that defines SoP, the Standard of 

Protection, which is an input parameter of the MC framework. As was mentioned 

above, the FTC evaluates the performance of a FEWS based on whether the 

occurrence or non-occurrence of a flood event in the at-risk community was 

preceded by a warning. In other words, both the warning decision and the 

continuous value of 𝑦 defined by 𝑓(𝑦|𝑦̂) are viewed categorically (or binary for 

‘yes’/ ‘no’ decisions and events respectively) according to whether a value of 𝑦 that 

exceeded or not the flooding threshold 𝑦𝑇 was preceded by a warning. The two-by-

two contingency table shown in Table 5.2 was used to describe the resulting four 

potential outcomes one can find under this criterion. They are defined as: a hit, if 

the flood event occurred and a warning was issued (ℎ describes the total number of 

hits); a miss, if the flood event occurred and a warning was not issued (𝑚 describes 

the total number of misses); a false alarm, if the flood event did not occur and a 

warning was issued (𝑓 describes the total number of false alarms); and a correct 

negative, if the flood event did not occur and a warning was not issued (𝑐𝑛 describes 

the total number of correct negatives). The sum of the total number of occurrences 

(𝑒) and non-occurrences (𝑒′) of a flood event define the total number of events 

analysed (𝑛). The total number of warnings is denoted as 𝑤, and the total number 

of no-warnings as 𝑤′. 

Table 5.2 Two-by-two contingency table to analyse the performance of a FEWS based on the 

flooding threshold-based criterion FTC. 

 

 

5.4.2 Floodplain property-based criterion (FPC) 

As was explained in section 5.2, the FPC can be used in FEWSs that consider the 

forecast of the flood extent to warn vulnerable properties. In this case, the warning 

procedure can first include a ‘yes’/ ‘no’ warning decision based on the river level 

forecasts and the flooding threshold 𝑦𝑇, and, then, a dissemination process can be 

Observations Warning No Warning Total 

Flood event ℎ 𝑚 𝑒 

Non-flood event 𝑓 𝑐𝑛 𝑒′ 

Total 𝑤 𝑤′ 𝑛 
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done based on the inundation forecasting. Thus, the performance of this type of 

FEWSs depends on the warning decision and the uncertainty of the inundation 

forecast, and its analysis can be based on whether the warned properties were or 

were not subsequently flooded. The target information for this analysis is, therefore, 

the number of houses warned 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and the number of houses flooded 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 

which, as was explained in section 5.3, in this work, is represented by an impact-

curve-based method. A two-by-two contingency table (Table 5.3) can also be built 

based on this information. In this case, the four potential outcomes after the 

occurrence or non-occurrence of a flood event are defined as: a hit, if a house is 

warned and flooded (ℎ describes the total number of hits); a miss, if a house is not 

warned and flooded (𝑚 describes the total number of misses), a false alarm, if a 

house was warned and not flooded (𝑓 describes the total number of false alarms); 

and correct negative, if a house is not warned and not flooded (𝑐𝑛 describes the total 

number of correct negatives). The sum of the total number of houses flooded and 

not flooded defines the total number of houses analysed. 

Table 5.3 Two-by-two contingency table to analyse the performance of a FEWS based on the 

floodplain property-based criterion FPC. 

Figure 5.4 illustrates how the warning decision and uncertainty of the inundation 

forecasting affect the performance of this type of FEWS. Figure 5.4a shows the case 

when a flood was preceded by a warning.   Note that this would represent a hit in 

the FTC; in the FPC, however, depending on the magnitude of the forecast and 

observed flood event, i.e., 𝑦 and 𝑦̂, one can find misses or false alarms. Figure 5.4b 

and Figure 5.4c show the case when a wrong warning decision was made. In this 

case,  misses are due to the fact that the warning dissemination was not conducted 

before a flood occurred (Figure 5.4b), and false alarms (Figure 5.4c) due to the fact 

that the dissemination was conducted when a flood did not occur. 

Observations Warning No Warning Total 

House flooded ℎ 𝑚 Total no. houses flooded 

House not 

flooded 
𝑓 𝑐𝑛 

Total no. of no flooded 

houses  

Total 
Total no. houses 

warned 

Total no. of no warned 

houses 

Total no. houses 

analysed 
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Figure 5.4: Illustration of the potential outcomes in the floodplain property-based criterion 

FPC. 

5.5 Metrics for evaluating the flood warning performance 

As was mentioned in sections 5.4 and 2.7.1, the probability of detection POD and 

the false alarm ratio FAR have been defined by Parker (2017) as two measures of 

the reliability of a FEWS. In this work, two of these measures have been chosen to 

describe this important characteristic of the flood warning performance. These 

metrics are computed based on the two-by-two contingency tables explained in the 

prior section. Table 2.2 gives a description of them, which are briefly described as 

follows. 

POD is also known as hit rate and provides an estimate of the probability that an 

observed event being warned. It ranges from 0 to 1, and a perfect forecast is 1. It is 

computed as the ratio between the total number of hits ℎ and the total number of 

observed events (ℎ+𝑚). As it is based only on observed events, it is only sensitive 

to miss events and not to false alarms. This skill score is, therefore, incomplete by 

itself and should be used in conjunction with, for example, FAR that provides an 

estimate of the probability that a forecast event being incorrectly warned. It ranges 

from 0 to 1, with 0 representing a perfect forecast. It is computed as the ratio 

between the total number of false alarms 𝑓 and the total number of forecast events 

(ℎ+𝑓). This skill score is also incomplete, as it is not sensitive to miss events.  POD 

can be artificially inflated by issuing more warnings, and FAR can be artificially 

reduced by issuing fewer warnings; hence these metrics are used together 
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In the FTC, the POD and FAR answer the following questions: What is the 

probability of an observed event being correctly warned? and What is the 

probability of a forecast event being incorrectly warned? respectively. In the FPC, 

the POD and FAR answer the following questions: What is the probability of a 

flooded house being correctly warned? What is the probability of a warned house 

being incorrectly warned? respectively. 

5.6 Flood warning decision rule approaches 

As was explained in section 5.4, the contingency table-based method used in the 

MC framework to define the reliability of a FEWS depends on the warning 

decisions. This section of the chapter describes how these decisions are represented 

in the MC framework in the FTC and FPC. Deterministic forecast-based and 

probabilistic forecast-based decisions are considered in the analysis. They are 

represented through a decision rule approach and are described as follows. 

5.6.1 The deterministic forecast-based decision rule 

The notation used for this rule is DFDR. This decision rule assumes that the warning 

decision is driven by the deterministic forecast of the flood magnitude, i.e., 𝑦̂. For 

the FTC and FPC, the DFDR assumes that a warning is issued when 𝑦̂ is greater 

than the flooding threshold 𝑦𝑇.  

𝑖𝑓 (𝑦̂ > 𝑦𝑇)  𝑤𝑎𝑟𝑛,  

𝑒𝑙𝑠𝑒, 𝑛𝑜𝑡 𝑤𝑎𝑟𝑛    
Eq. 5.1 

For the FPC, the number of warned properties 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 associated with a value of 

𝑦̂ is derived from the impact curve of the at-risk community (Figure 5.3b). Figure 

5.5 gives an illustration of the DFDR for the FTC and FPC, whereas Table 5.4 

describes them. 
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Figure 5.5: Illustration of the deterministic forecast-based decision rule (DFDR) for a pair 

(𝒚, 𝒚̂) for the flooding threshold-based criterion FTC (a) and floodplain property-based 

criterion FPC (b). 

Table 5.4 Description of the deterministic forecast-based decision rule (DFDR) for the 

flooding threshold-based criterion FTC and floodplain property-based criterion FPC.  

5.6.2 The probabilistic-based decision rules 

Two types of probabilistic decision rules were considered. One was optimized 

based on the FTC, and the other based on the FPC. The notation used for the former  

is PTDR, which assumes that the Warner makes a decision based on a probabilistic 

threshold (𝑃𝑇) and the probability of exceedance (𝑃𝐸) of the flooding threshold 𝑦𝑇. 

i.e., the probability of having an observed river peak level 𝑦 greater or equal than 

𝑦𝑇. The probability of exceedance 𝑃𝐸 is a value delivered by the MCFG which is 

obtained through the conditional distribution of 𝑦 given 𝑦̂, i.e., 𝑓(𝑦|𝑦̂), derived 

from the joint probability of these two variates 𝑓(𝑦, 𝑦̂) that is assumed here to be a 

bivariate Lognormal distribution. The decision rule, in this case, is given by: 

𝑖𝑓 (𝑃𝐸 > 𝑃𝑇)  𝑤𝑎𝑟𝑛,  

𝑒𝑙𝑠𝑒, 𝑛𝑜𝑡 𝑤𝑎𝑟𝑛    
Eq. 5.2 

The notation of the other probabilistic rule is PDR. It also uses a probabilistic 

threshold 𝑃𝑇. However, in this case, 𝑃𝑇 defines the  warning level 𝑦̂𝑤 from 𝑓(𝑦|𝑦̂) 

Decision rule Abbreviation Criterion Decision rule 

Deterministic 

forecast-

based 

decision rule 

DFDR 

FTC 
If (𝑦̂>𝑦𝑇) warn, 

else, not warn 

FPC 
If (𝑦̂>𝑦𝑇) warn 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑, 

else, not warn 
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at which the Warner should base his/her decisions. Then, the warning decision can 

be based on the direct comparison between 𝑦̂𝑤 and the flooding threshold 𝑦𝑇 as: 

𝑖𝑓 (𝑦̂𝑤 > 𝑦𝑇)  𝑤𝑎𝑟𝑛 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑,   

𝑒𝑙𝑠𝑒, 𝑛𝑜𝑡 𝑤𝑎𝑟𝑛    
Eq. 5.3 

The aim of the PTDR and PDR is, thus, to find an optimal probabilistic threshold 

𝑃𝑇∗ that maximises the difference between POD and FAR based on the FTC and 

FPC, respectively. Figure 5.6 illustrates the application of  PTDR and PDR for the 

FTC and FPC, respectively, whereas Table 5.5 gives a description of them.  

Table 5.5 Description of the probabilistic threshold-based decision rule (PTDR) for the 

flooding threshold-based and floodplain property-based criterion, FTC and FPC, 

respectively.  

 

Figure 5.6: Illustration of the probabilistic rules PTDR and PDR for flooding threshold-

based criterion FTC (a) and floodplain property-based criterion FPC (b), respectively. 

5.7 Sensitivity experiments 

In the prior sections, the criteria, metrics, and warning decision rules considered in 

the MC framework to explore the reliability of a FEWS were introduced. As was 

mentioned in the introductory part, the analysis of this characteristic of the FEWS 

Decision rule Abbreviation Criterion Decision rule Description 

Probabilistic 

threshold-

based 

decision rules 

PTDR FTC 

 

If (PE>PT) 

warn, 

else, not warn 

PT optimized  

based on FTC 

PDR FPC  

If (𝑦̂𝑤>𝑦𝑇) 

warn 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑,  

else, not warn 

PT optimized  

based on FPC 
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requires the addition of two parameters to the ones considered in the MCFG. In this 

last section of the chapter, the sensitivity of FEWS performance to several of these 

parameters that represent the main assumptions in the estimation of the reliability 

of a FEWS is explored. This is done through several sensitivity experiments based 

on the one-at-a-time (OAT) method (Pianosi et al., 2016), which, in essence, 

varies/perturbs the input parameters of the MC framework from its reference 

parameter values (baseline scenario) one at a time and assesses the impacts on the 

metrics used to define the reliability of a FEWS. Thus, in this section, the 

parameters and reliability that define the baseline scenario are first described, and 

then, the results of the sensitivity analysis are shown. 

5.7.1  Baseline Case 

The key parameter controlling the performance of a flood forecasting model is the 

correlation between the forecast and observed values for a specified lead time τ. 

There is a large and varied literature on the performance of rainfall-runoff models 

when used in simulation mode; this is typically measured by the Nash-Sutcliffe 

Efficiency (NSE), which, for an unbiased model, equals 𝜌2. Values of NSE are 

computed from continuous simulations and are dependent on the time unit. The 

most widely quoted values in the literature are for daily streamflow simulations; for 

example, a study where TOPMODEL was calibrated for a set of 1013 UK 

catchments reported a range of NSE values ranging from -2.47 to 0.94 with a 

median of 0.77(Lane et al., 2019). Similar studies for hourly streamflow are not 

reported due to the lack of long records of hourly rainfall data. Views of what is an 

acceptable value of NSE vary widely and depend on the intended application, but 

typically, a value greater than 0.80 might be considered acceptable. For hourly 

streamflow, there are no definitive findings on whether the NSE values might be 

larger or smaller than for daily values. Consequently, if just the peaks are sampled 

from continuous simulations, the NSE can be expected to be lower than for the 

continuous simulation case where the smaller errors in recession periods will 

increase the correlation.  

In the case of a real-time forecasting model, forecast updating will lead to much 

higher NSE values for short lead times; as the lead-time τ increases up to the 

catchment lag L, the effect of updating will die out, and the NSE values will decline 

towards the simulation mode value. The selected time unit will be a function of the 
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catchment lag L. Values of NSE for real-time flood forecasts are rarely quoted by 

agencies responsible for operational flood forecasting. A research study for the 

Eden at Sheepmount (Leedal et al., 2013) quoted a value of NSE = 0.98 for six hour 

ahead forecasts of water levels (using hourly data, with updating) for levels less 

than 2m, and 0.45 for values greater than 2m; the latter figure represents only a 

small percentage of the data but highlights the problem of declining performance in 

forecasting large floods. It should be noted that the bivariate sampling of forecast 

and observed flood levels from the BLND represents this very well, as the 

forecasting errors increase with level.  

Taking the above points into account, it was decided to adopt a correlation of 0.85 

for the peak levels in the baseline case, which, for an unbiased model, corresponds 

to an NSE of 0.72; the corresponding NSE for continuous simulation would be 

higher.  This correlation was taken to correspond to a catchment lag L and lead time 

τ of 6 hours, i.e., the 𝐼𝑃𝜌 value in the lead time-correlation function (Figure 4.14). 

The aim then is first to find where in the POD/FAR performance space this model 

is located and then to explore how perturbations to the set of chosen baseline 

parameters, and the correlation, in particular, can enhance or degrade POD/FAR 

performance. In particular, the aim is to identify the levels of correlation and NSE 

needed to achieve different levels of reliability for flood warnings, as measured by 

POD and FAR. 

The baseline case assumes that there are 1000 houses at-risk in the floodplain, and 

it has 1 in 5-year SoP (TSOP=5years). When the water level overtops the SoP, houses 

are assumed flooded from the bankfull height upwards (Figure 5.7). MC 

simulations were performed using 30 replications, where each replication consisted 

of 10,000 events. Finally, the MC estimates were obtained from the average values 

of 30 replications, where each replication consisted of 10,000 simulated events. 

 Table 5.6 depicts the input parameters of the MC framework and the values which 

define the baseline scenario. They are split according to the component they 

represent. The baseline model assumes an ideal case of the forecasting system 

where the marginal distribution of the observations is equal to that of their forecasts; 

therefore,  the moments of 𝑦̂ are equal to those of 𝑦. The moments of 𝑦 have been 

adopted by taking as reference the parameters obtained for the station River 

Wansbeck at Mitford (Chapter 4).  
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Figure 5.7: The impact curve used to quantify the number of flooded houses. 

Table 5.6: Assumed input parameter values for the baseline case 

Figure 5.8a shows the joint density of  10,000 pairs (𝑦, 𝑦̂) generated from the MCFG 

which, as was explained above, uses a bivariate Lognormal distribution, BLND, to 

represent the bivariate values. Since the moments of 𝑦̂ are equal to those of 𝑦, the 

generated bivariate values represent an ideal forecast scenario where the statistics 

of the observations are equal to their forecasts. This bivariate simulation was done 

Abbreviation  Description 
Value 

adopted 

Parameter 

associated 

with: 

𝜇𝑦 Mean of 𝑦. 2.51 

The river 

basin 

𝜎𝑦
2 The variance of 𝑦.  0.20 

𝑦𝑜 Location parameter of 𝑦 2.03 

𝛾𝑦 The average number of peaks per year 1.60 

L Basin lagtime L 6 hrs 

𝜇𝑦̂ Mean of the forecasts of 𝑦 𝜇𝑦 

Flood 

forecasting 

system 

𝜎𝑦̂
2 Variance of the forecasts of 𝑦 𝜎𝑦

2 

𝑦̂𝑜  Location parameter of the forecasts of 𝑦 𝑦𝑜 

𝛾𝑦̂ 
The average number of peaks  per year of the 

forecasts of 𝑦 
𝛾𝑦 

𝐼𝑃𝜌  
The inflection point of the lead time-performance 

function 
0.85 

𝜏 Lead time 6 hr 

𝑇𝑇𝑜𝑆 
Return period associated with the flooding 

threshold 𝑦𝑇. 
5 years The at-risk 

community 
𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑎𝑡−𝑟𝑖𝑠𝑘 Total number of houses at risk in the benefit area 1000 

𝑛 
Sample size or number of simulated events (30 

replications) 
10000 

Monte Carlo 

simulation 
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based on the algorithm shown in section 4.4.4. Figure 5.8b shows an example of 

the PU expressed as 𝑓(𝑦|𝑦̂) for a forecast 𝑦̂, and the probability of the flooding 

threshold being exceeded. 

 

Figure 5.8: Joint density of pairs (𝒚,𝒚̂) generated from the Monte Carlo flood and forecast 

generator (MCFG) assuming a bivariate lognormal distribution (BLND). 

Figure a shows the joint density of 10,000 bivariate pairs (𝑦, 𝑦̂) generated from the MCFG assuming 

a BLND defined by the values of moments of 𝑦 and 𝑦̂ assumed in the baseline scenario. Figure b 

shows the conditional distribution 𝑓(𝑦|𝑦̂) associated with the forecast value of 𝑦̂ represented by a 

grey dot in Figure a. 𝑓(𝑦|𝑦̂) is obtained by slicing the joint distribution through a grey line that 

crosses the forecast value (grey dot). Knowing this predictive density, one can estimate the 

probability of exceedance (PE) of the flooding level (red area), which is the probability value 

considered in the PTDR. The flooding level is defined by the assumed SoP in the baseline scenario 

(5 years).  

The analysis of the performance of the baseline FEWS under the above-mentioned 

criteria is summarised in Figure 5.9. This figure shows the optimization procedure 

to find the optimal probabilistic threshold 𝑃𝑇∗ for the PTDR and PDR. In Figure 

5.9a and Figure 5.9b, the blue and grey lines indicate how the values of POD and 

FAR change when considering several values of the probabilistic threshold PT for 

the PTDR and PDR, respectively. These values are summarised in the FAR-POD 

curve shown in c. A point on these lines is associated with a value of PT. The values 

associated with the optimal probabilistic threshold 𝑃𝑇∗ are represented with a 

square and circle for the PTDR and PDR, respectively. The figure also shows the 

results of the DFDR for the FTC and FPC. They represent a point on the FAR-POD 

curve and are represented with a triangle and diamond, respectively. The main 

conclusions of this figure are explained as follows.  
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Figure 5.9: Analysis of the performance of the baseline FEWS through the POD-FAR curves 

for the flooding threshold-based and floodplain-property-based criterion, FTC and FPC, 

respectively. 

This figure shows the FAR and POD results for different values of PT for the PTDR (a) and PDR 

(b). These values are summarised in the FAR-POD curve shown in c. These decision rules' optimal 

values are represented with a square (PTDR) and circle (PDR). A triangle and diamond are used to 

show the results of the DFDR for the FTC and FPC, respectively.                                                
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: 

probabilistic rule based on a PT and the PE of 𝑦𝑤. 
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The performance of the baseline FEWS based on the probabilistic decision rules 

PTDR and PDR can be regarded as better than that obtained with the deterministic 

decision rule DFDR for the FTC and FPC, respectively, because the associated 

difference between POD and FAR is higher (Table 5.7, column 8). The results also 

show that the POD and FAR values associated with the probabilistic rules are higher 

than those obtained with DFDR(Table 5.7, columns 6 and 7). That means that the 

former decision rules tend to increase the value of POD, which necessarily increases 

FAR. Thus, even though the flood warning performance associated with PTDR and 

PDR is better than its deterministic version, the probabilistic-decision-rules- based 

results tend to deliver relatively high values of FAR, 0.43 and 0.55 for PTDR and 

PDR, respectively (Table 5.7). These values are higher than those obtained with 

DFDR, and it is due to the fact that the optimization criterion for PTDR and PDR 

does not place any restriction on the value of FAR, and it looks for the biggest 

difference between POD and FAR, regardless of the value of the latter. It can be 

understood as the price being paid for obtaining a high value of POD, which is 

considerably higher than for the deterministic case (Table 5.7). Thus, the 

optimization criterion adopted in this research (maximize POD minus FAR) gives 

higher weight to the reduction of missed events whose economic consequences, in 

terms of floods, far outweigh those associated with false alarms. The effect of 

having high values of FAR in a warning system is known as ‘cry wolf’, which has 

to do with the disregarding of flood warnings due to their loss of credibility as a 

result of the high percentage of false alarms. Target values of FAR are usually 

between 0.2 and 0.5 (Jolliffe and Stephenson, 2012). However, Barnes et al. (2007) 

advocate that there is little evidence that a high value of FAR causes users to ignore 

warnings of severe events.  

Table 5.7: Contingency table based on the flooding threshold-based and floodplain property-

based criterion, FTC and FPC, respectively, for the baseline FEWS for deterministic and 

probabilistic decision rules and optimal probabilistic thresholds. 

Lead 

time 

(τ) 

[h] 

Prob. 

Thres. 
h m f POD FAR 

POD-

FAR 

Decision 

rule 

Criteri

on 

6 

- 858 395 389 0.68 0.31 0.36 
DFDR 

FTC 

- 170315 110467 110668 0.61 0.39 0.20 FPC 

0.62 1041 212 812 0.83 0.43 0.39 PTDR FTC 

0.59 220819 59962 283208 0.79 0.55 0.23 PDR FPC 
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An interesting point in the analysis is to see how the performance of a FEWS 

obtained based on FPC is related to the performance one would obtain if it is 

quantified in terms of FTC. These results can be analysed directly from the values 

obtained based on FTC and FPC for the DFDR (first and second row in Table 5.7). 

The results show that the performance based on the FPC is lower than that obtained 

based on the FTC. That difference is directly related to the uncertainty of the flood 

magnitude, i.e., the difference between 𝑦 and 𝑦̂ which define the difference between 

the warned and flooded properties. Note that a hit in the FTC does not mean a hit 

in the FPC; due to the difference between these two variables, a hit in the former 

might include misses or false alarms in the latter (Figure 5.4a). This implies that if 

inundation level forecasting is undertaken (FPC), then the performance in terms of 

POD and FAR will drop relative to the FTC, which implies improved forecasts 

would be needed to achieve the same performance level as for FTC. 

5.7.2  Sensitivity experiments 

In this last sub-section of the chapter, the sensitivity of several parameters with 

respect to the results shown in Table 5.7 is explored. Three sensitivity experiments. 

have been carried out.  

5.7.2.1  Sensitivity experiment 1 

It is well known that the forecast performance decreases as the lead time increases 

(Blöschl, 2008; Parker, 2017). The forecast performance in the joint distribution is 

controlled by the moments of 𝑦̂ and the correlation coefficient 𝜌𝑦𝑦̂. The latter is 

assigned to a lead time τ through the lead time-correlation function shown in Figure 

4.14. As has been explained, τ is an input parameter of the framework. One can 

assume that 𝑦̂ are outputs of different flood forecasting systems associated with 

different lead times τ  and that forecasts are represented by the same moments. 

Under this assumption, it is hypothesized that the forecast performance is mainly 

controlled by 𝜌𝑦𝑦̂ (a bias in the mean or variance of the forecasts can also affect 

performance) which, in turns, depends on the input value of τ. This first experiment 

is based on this assumption and aims to analyse how the outcomes of the baseline 

scenario change when considering different forecast performances represented by 

different values of τ and assuming the same moments of 𝑦̂ for each of them. Table 

5.8 gives a description of this experiment and the range of values to be explored. 
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 Table 5.8: Description of sensitivity experiment 1 

The results of the sensitivity experiment are described in Figure 5.10, which shows 

two diagram types that show, for each value of τ, its associated pair of values of 

POD and FAR obtained from the FTC and FPC for DFDR, PTDR, and PDR. Points 

on the blue line are skill scores computed based on FTC, and points on the grey line 

are those computed by considering FPC. One of the diagram types (a and c) shows 

POD and FAR on the left axis and lead-time on the abscissa, whereas the other, a 

quadrant plot (b and d), shows these values on the POD/FAR performance space. 

In the quadrant plots, the value of POD and FAR equal to 0.5 have also been added 

as a reference. These values define four quadrants: the left-upper quadrant with 

values of POD > 0.5 and FAR < 0.5; right-upper quadrant with values of POD > 

0.5 and FAR > 0.5; left-bottom quadrant with values of POD < 0.5 and FAR < 0.5; 

and right-bottom quadrant with values of POD < 0.5 and FAR > 0.5. The 1:1 line 

(grey dashed line) also defines points with values of POD greater than FAR (points 

above this line) or the opposite (points below this line). Three target levels of 

reliability are defined here based on POD and FAR: 

Low: POD > 0.5, FAR < 0.5 

Medium: POD > 0.7, FAR < 0.3 

High: POD > 0.8, FAR < 0.2 

These levels represent a simplified form of that used in England for the national 

assessment of flood forecasting systems(Robson et al., 2017).  The results of the 

sensitivity experiments can be judged against these target levels. They are explained 

as follows.  

 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝜏  
3 hr         

(-50%) 
6 hr 

24 hr 

(+200%) 

Analyse how the flood 

warning performances 

obtained in the baseline 

scenario changes as the lead 

time changes. 
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Figure 5.10: Results of the sensitivity experiment 1 for the flooding threshold-based and 

floodplain property-based criterion, FTC and FPC, respectively, based on the deterministic 

rule DFDR and probabilistic rules PTDR and PDR.  

Figure a shows FAR and POD results for different lead times τ based on the DFDR, whereas Figure 

b shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for the DFDR 

and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The values of these 

figures are summarised in the FAR-POD curves shown in b and d, respectively.                                     
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: probabilistic rule 

based on a PT and PE of 𝑦𝑤, FTC: flooding threshold-based criterion, FPC: floodplain property-based criterion. 

                                                           

Figure 5.10a and Figure 5.10b shows how POD and FAR change with lead time τ  

based on the deterministic decision rule DFDR for the FTC and FPC cases. These 

figures confirm, what was shown in the baseline case, that the POD and FAR values 

are lower for the FPC than the FTC. As was explained, it is due to the results based 
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on the FPC depend on the warning decision and the uncertainty of the inundation 

forecasting (Figure 5.4). The latter is represented in this framework as the difference 

between the warned and flooded properties which are obtained as a function of 𝑦̂ 

and 𝑦 respectively (Figure 5.3). In addition, as one can see in the quadrant plot, as 

the value of τ increases, the skill scores tend to move from the left upper quadrant 

to the right bottom quadrant, which is one of the worse scenarios of the system as 

the value of POD is lower than 0.5 and lower than FAR, which, in turn, is higher 

than 0.5. The lead time at which this occurs is approximately 13 hr (𝜌𝑦𝑦̂=0.64) for 

the performance based on the FTC, and 10 hr (𝜌𝑦𝑦̂=0.73)  for the skills scores based 

on the FPC. FEWS with POD and FAR values in this quadrant can be considered 

as not operationally useful. In this sense, the results show that, for the FTC, 

deterministic FEWS can have medium (τ=3, 𝜌𝑦𝑦̂=0.89 , or τ=6, 𝜌𝑦𝑦̂=0.85) or low 

reliability (τ=9, 𝜌𝑦𝑦̂=0.76,  or τ=12, 𝜌𝑦𝑦̂=0.67). However, if one considers the FPC, 

deterministic FEWS can have low reliability (τ=3, 𝜌𝑦𝑦̂=0.89,  or τ=6, 𝜌𝑦𝑦̂=0.85). 

Figure 5.10c and Figure 5.10d show how POD and FAR change with the lead time 

τ  based on the probabilistic decision rules PTDR (based on the FTC) and PDR 

(based on the FPC). These figures again confirm that the flood warning reliability 

based on the FPC is worse than that based on the FTC. In addition, the quadrant 

plot shows that as the value of τ increases, the skill scores tend to move from the 

left upper quadrant to the right upper quadrant. This occurs because, as was 

mentioned above, these probabilistic-based decision rules tend to deliver high 

values of POD and FAR due to the fact their optimization criterion does not place 

any restriction on the value of FAR, and it looks for the biggest difference between 

POD and FAR, regardless of the value of the latter. The results show that this 

drawback of the optimization criterion makes the FAR value increases as the lead 

time τ increases. The right upper quadrant is the other worse scenario of the system 

as the value of FAR is higher than 0.5. The lead time at which this occurs is 

approximately 8 hr (𝜌𝑦𝑦̂=0.79) for the performance based on the PTDR, and 

approximatly 5 hr (𝜌𝑦𝑦̂=0.87) for the skills scores based on the PDR. FEWS with 

POD and FAR values in this quadrant can also be considered as not operationally 

useful. In this sense, the results show that probabilistic FEWSs based on the PTDR 

can have medium (τ=3 hr, 𝜌𝑦𝑦̂=0.89) or low reliability (τ=6 hr, 𝜌𝑦𝑦̂=0.85). 

However, if one considers the probabilistic decision rule PDR, a probabilistic 
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FEWS can have low reliability (τ=3 hr, 𝜌𝑦𝑦̂=0.89). These results suggest that the 

deterministic decision rule allows the FEWS to use longer lead times (lower 𝜌𝑦𝑦̂ 

values) with POD and FAR values operationally useful. The probabilistic decision 

rules tend to deliver high FAR values, as, as was mentioned above, they give higher 

weight to the reduction of missed events whose economic consequences, in terms 

of floods, far outweigh those associated with false alarms.  

An interesting point in the DFDR-based results is to have an idea about the scatter 

of the pairs (𝑦,𝑦̂) associated with the lead time at which the skill scores start to be 

in the right bottom quadrant in Figure 5.10b  (13 hrs and 10 hrs approximately for 

the FTC and FPC, respectively). This allows us to have a good insight into how the 

bivariate values look for these poor performance cases. Figure 5.11 shows a sample 

of the bivariate values of the critical lead time for the FPC (10 hrs). These pairs 

(𝑦,𝑦̂) are characterised by the moments of 𝑦 and 𝑦̂ used in the baseline scenario and 

the value of 𝜌𝑦𝑦̂=0.73 assigned to this critical lead time based on the lead time-

correlation function shown in Figure 4.14 

 

Figure 5.11: Scatter of the pairs (𝒚,𝒚̂) associated with the critical lead time in the floodplain 

property-based criterion  FPC based on the deterministic decision rule DFDR. 

This figure illustrates a bivariate sample of the joint distribution that defines the critical lead time in 

the FPC based on the DFDR (10 hr) in the sensitivity experiment 1 (Figure 5.10b). The red dashed 

lines define the value of the flooding threshold 𝑦𝑇  that define the hits, misses, false alarms, correct 

negative in DFDR in FTC. The value of 𝜌𝑦𝑦̂ for this joint distribution is 0.73. 
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5.7.2.2 Sensitivity experiment 2 

This experiment explores the sensitivity to a change in the inflexion point 𝐼𝑃𝜌 of the 

lead time-correlation function shown in Figure 4.14 in conjunction with a change 

in lead time. Thus, the sensitivity of 𝐼𝑃𝜌 with respect to the results of the baseline 

scenario (Table 5.7) is analysed by modifying this parameter by a small percentage 

( ± 10%). For a better interpretation of the results, this experiment also includes 

other values of τ, perturbed from the baseline case of 6 hours.  Table 5.9 gives a 

description of this experiment and the range of values to be explored. In this case, 

several values within the range for τ were considered, whereas, for the 𝐼𝑃𝜌, only the 

values of the lower and upper bound were included in the analysis.  

Table 5.9: Description of sensitivity experiment 2 

The results of this sensitivity experiment are described in Figure 5.12 for the FTC 

and in  Figure 5.13 for the FPC. These figures show how the values of POD and 

FAR associated with the baseline lead time τ (6hr) change when modifying 𝐼𝑃𝜌 and 

the lead  time τ. The same diagram types used in the prior experiment are also used 

in this analysis. In the quadrant plots, points on the solid blue line are skill scores 

computed by considering the baseline value of 𝐼𝑃𝜌 (.85), points on the solid grey 

line are those computed by considering the lower bound of 𝐼𝑃𝜌 (.77), and points on 

the solid green line are those computed based on the upper bound of 𝐼𝑃𝜌 (.94), all 

for different values of τ. The black circle in Figure 5.12 and Figure 5.13 (6hr lead 

times) provides a reference point for showing how the results of the baseline 

scenario for the FTC and FPC (Table 5.7), respectively,  change when modifying 

the value 𝐼𝑃𝜌. 

The upper plots in Figure 5.12 and Figure 5.13 show the results based on the 

deterministic decision rule DFDR for the FTC and FPC, respectively. Only the 

baseline lead time is considered here, and, as one can see, the results are very 

sensitive to changes in  𝐼𝑃𝜌. For the upper bound value of 𝐼𝑃𝜌, the values of POD 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝜏  
3 hr         

(-50%) 
6 hr 

24 hr 

(+200%) 

Analyse how the results of the 

baseline scenario change as the 

assumed forecast quality 

assigned to the lead time 

changes. 
𝐼𝑃𝜌   

0.77         

(-10%) 
0.85 

.94   

(+10%) 
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and FAR are improved considerably (higher values and lower values, respectively). 

For the lower bound value, they worsen to a lesser degree, but the change is still 

considerable. The same behaviour can be seen in the probabilistic forecast-based 

decisions, PTDR (bottom plots in Figure 5.12) and PDR (bottom plots Figure 5.13). 

To have a broader view of this behaviour, the analysis included other lead times.  

Note that this behaviour is the same if the baseline lead time would be 3hr (black 

square); however, if it would be 24h (black cross), the sensitivity of 𝐼𝑃𝜌 is reduced 

considerably. This occurs in larger degree in the results based on probabilistic 

forecast-based decisions, PTDR (bottom plots in Figure 5.12) and PDR (bottom 

plots Figure 5.13). These results bring an interesting conclusion; small 

improvements in the forecast quality (represented in this work as an increase of 

10% of the value of 𝐼𝑃𝜌 (Table 5.9) ) improve considerably the reliability of FEWS 

whose forecast quality is relatively good, the same benefits cannot be seen in FEWS 

whose forecast quality is relatively bad. Systems with good or bad forecast quality 

are presented in Figure 5.12 and Figure 5.13 as the points with small or long lead 

times whose values of 𝜌𝑦𝑦̂ is relatively high and low according to the lead time-

correlation function shown in Figure 4.14, respectively. 

The quadrant plots depicted in Figure 5.12 and Figure 5.13 also show further 

interesting points. Note that for the upper bound value of 𝐼𝑃𝜌, more points are 

moved to the upper left quadrant which should be the target quadrant for a FEWS; 

this occurs for the deterministic and probabilistic scenarios for lead time beyond 

the assumed catchment lag L (6 hr). This shows how FEWSs improving the forecast 

quality can extend the lead time and, at the same time, have levels of POD and FAR 

that are operational useful. Furthermore, the quadrant plots for the probabilistic 

results (Figure 5.12d and Figure 5.13d) show different behaviour of the POD and 

FAR values for the FEWS with high correlation (upper bound value of 𝐼𝑃𝜌). The 

results show that the probabilistic decision rules tends to decrease the FAR value 

until a given level of correlation 𝜌𝑦𝑦̂. This correlation value can be obtained by 

analysing the correlation associated with the lead time at which the FAR value start 

to increase. For the PTDR (Figure 5.12d) and PDR (Figure 5.13d), it occurs 

between a lead time of 6 and 9 hrs. According to the correlation-lead time function 

and the 𝐼𝑃𝜌 of this case (𝐼𝑃𝜌=0.94), the 𝜌𝑦𝑦̂ values associated with these lead times 
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are 0.94 and 0.85, respectively. The level of correlation 𝜌𝑦𝑦̂ until which the 

probabilistic results decrease the FAR value fall in this range.  

 

 

Figure 5.12: Results of the sensitivity experiment 2 based on the  flooding threshold-based 

criterion FTC 

Figures a and c shows FAR and POD results for different lead times τ based on the DFDR and PTDR 

and different values of 𝐼𝑃𝜌, respectively. The values of these figures are summarised in the FAR-

POD curves shown in b and d, respectively. 
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (FTC) of 𝑦𝑇, BS: baseline value of 

𝐼𝑃𝜌, LB: the lower  bound  value of 𝐼𝑃𝜌 considered in the sensitivity analysis, UB: the upper  bound  value of 𝐼𝑃𝜌 considered 

in the sensitivity analysis. FTC: flooding threshold-based criterion 
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Figure 5.13: Results of the sensitivity experiment 2 based on the  floodplain property-based 

criterion FPC 

Figures a and c shows FAR and POD results for different lead times τ based on the DFDR and PDR 

and different values of 𝐼𝑃𝜌, respectively. The values of these figures are summarised in the FAR-

POD curves shown in b and d, respectively.  
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule , PDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑤, BS: baseline value of 

𝐼𝑃𝜌, LB: the lower  bound  value of 𝐼𝑃𝜌 considered in the sensitivity analysis, UB: the upper  bound  value of 𝐼𝑃𝜌 considered 

in the sensitivity analysis. FPC: floodplain property-based criterion. 

5.7.2.3 Sensitivity experiment 3 

The sensitivity experiments 1 and 2 analysed the sensitivity of 𝐼𝑃𝜌 and 𝜌𝑦𝑦̂ with 

respect to the baseline results. These experiments, in essence, explored how the 

forecast quality can affect flood warning performance and assumed that the 
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moments of 𝑦̂ are the same for each condition analysed. This last experiment 

assumes the opposite, i.e., 𝐼𝑃𝜌 and 𝜌𝑦𝑦̂ are assumed to be fixed values, and two 

moments of 𝑦̂ (𝜇𝑦̂ and 𝜎𝑦̂
2) that also control the forecast quality are perturbed one 

at a time. The upper and lower bounds for the perturbations are shown in Table 

5.10. The impacts of the perturbations on the marginal distribution of the forecasts 

relative to that of the observed values are shown schematically in Figure 5.14. 

Table 5.10: Description of sensitivity experiment 3 

 

Figure 5.14: Illustration of how the marginal distribution of the forecast is perturbed in 

Experiment 3 

The left and right upper and  diagrams illustrate how the variations to 𝜇𝑦̂  and 𝜎𝑦̂
2 perturbs the 

marginal distribution of 𝑦̂ with respect to the marginal distribution of 𝑦, respectively. 

It is well known that most forecasting models suffer from biases in the mean and 

variance, so the aim here is to provide insight into the impacts of these biases on 

POD and FAR for the deterministic and probabilistic forecasting cases. While a 

bias in the mean can be corrected, it is much less obvious what to do about a bias 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝜇𝑦̂ 
0.36         

(-25%) 
0.48 

0.6     

(+25%) Analyse the bias in the 

mean and variance for the 

baseline case 𝜎𝑦̂
2 

0.10        

(-50%) 
0.20 

0.30    

(+50%) 
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in the variance. For all models which are fitted using least squares, there will be a 

loss of variance, expressed by the Nash-Sutcliffe Efficiency (NSE). In the case of 

forecasts of peak levels, a value of NSE = 0.80 implies that there is a 20% loss of 

variance in the forecasts, so the experiment conducted here investigates the impact 

of this on POD and FAR, as well as an increase in variance relative to the baseline 

case.  

The upper and lower bounds for perturbations to the mean and variance of 𝑦̂ are 

given in Table 5.10. 

Bias in the mean 

Figure 5.15 shows the results of the sensitivity experiment with the forecast mean 

for the DFDR (Figure 5.15a and b) and PTDR and PDR (Figure 5.15c and d) based 

on the FTC and FPC criteria. The immediate impression gained from Figure 5.15 

is that there is strong sensitivity for the deterministic case (Figures 5.15a and b) 

while there is weak sensitivity for the probabilistic case (Figures 5.15c and d). The 

results are now analysed in this order. 

a) Deterministic forecasts 

FTC Criterion: A negative bias makes the values of 𝑦̂ lower than the values of 𝑦. 

It reduces the number of hits and false alarms and increases the misses, and 

therefore reduces the POD and FAR values (Figure 5.15 and Table 5.11). Positive 

bias produces the contrary effect, i.e., it makes the values of 𝑦̂  greater than the 

values of 𝑦 and makes the POD and FAR values increase.  

FPC Criterion: To recapitulate, in the FPC case, a hit represents a flooded house 

that was warned, a miss represents a flooded house that was not warned, and a false 

alarm represents a house that was warned and not flooded. The FPC results are 

different from the FTC results because FPC considers, apart from the misses and 

false alarms produced due to “wrong decisions” (misses and false alarms in the 

FTC), “additional” misses or false alarms existing after a “good” decision, i.e., 

when a warning in the at-risk community preceded a flood, but the event magnitude 

was incorrectly forecast (considered a hit in the FTC).   

The results show that, for the FPC-based POD, the greater the negative bias of the 

mean, the lower the weight of misses due to “wrong decisions” (misses in the FTC) 
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in this metric. In other words, the negative impact of the “additional” misses 

considered in the FPC decreases as the negative bias of the mean increases. Figure 

5.15a shows that there is a point when FPC-based POD equals FTC-based POD, 

which means that the negative impact of the “additional” misses on the FPC-based 

POD is negligible. The FPC-based FAR shows different behaviour. The negative 

impact of the “additional” false alarms considered in the FPC increases as the 

negative bias of the mean increases.  

When there is a positive bias, the opposite effect occurs. The negative impact of the 

“additional” misses considered in the FPC increases as the positive bias of the mean 

increases. In addition, the negative impact of the “additional” false alarms 

considered in the FPC decreases as the positive bias of the mean increases. Figure 

5.15a shows that there is a point when FPC-based FAR equals FTC-based FAR, 

which means that the negative impact of the “additional” false alarms on the FPC-

based FAR is negligible. 

a) Probabilistic Forecasts 

FTC Criterion: As already observed, the POD and FAR results are largely 

insensitive to perturbations in the mean. To understand this result, it is necessary to 

consider what is happening to the bivariate distribution of (𝑦, 𝑦̂) and the predictive 

density 𝑓(𝑦|𝑦̂). Figure 5.16 shows plots of the bivariate distributions corresponding 

to the lower bound (Figure 5.16a) and the upper bound (Figure 5.16b) perturbations. 

The baseline case is also shown in the plots. The predictive density for a given value 

of 𝑦̂ is obtained by slicing the bivariate distribution in the vertical, as shown in 

Figure 5.8. The mean of the predictive density is 𝑦̂, and once that is defined, the 

predictive density is controlled by the variability of 𝑦, but this, and the marginal 

distribution of 𝑦 remain unchanged in this experiment. Figure 5.16 illustrates this 

graphically where the bivariate plots for the perturbations shift left or right for the 

negative and positive perturbations, respectively. This can be explained further by 

considering the expression for the mean of the predictive density in the Normal 

case, which is reproduced here from equation (Eq. 4.52) as  

𝜇𝑥|𝑥̂ = 𝜇𝑧 + 𝜌
𝜎𝑧

𝜎𝑧̂

[𝑙𝑛(𝑥̂) − 𝜇𝑧̂] 
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Figure 5.15: Results of the sensitivity experiment for 𝝁𝒚̂ for the flooding threshold-based and 

floodplain property-based criterion, FTC and FPC, respectively,  based on the deterministic 

rule DFDR, and probabilistic rules PTDR and PDR.  

Figure a shows FAR and POD results for different variations of 𝜇𝑦̂ based on the DFDR, whereas 

Figure c shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for the 

DFDR and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The values 

of these figures are summarised in the FAR-POD curves shown in b and d, respectively.  
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: probabilistic rule 

based on a PT and PE of 𝑦𝑤, FTC: flooding threshold-based criterion, FPC: floodplain property based criterion. 
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Table 5.11: Contingency table used to build the plots of POD and FAR in Figure 5.15 

 h, m, f, cn averaged over 30 replications. 

Variation 

of 𝝁𝒚̂ 
PT Decision 

 FTC FPC FTC FPC 

h m f cn h m f POD FAR POD FAR 
-0.25   DFDR 667.25 591.05 142.25 8599.5 146660 135444 64076 0.53 0.18 0.52 0.30 

-0.15   DFDR 742.4 510.7 221.55 8525.4 154851 126050 80479 0.59 0.23 0.55 0.34 

-0.1   DFDR 782.15 464.6 275.55 8477.7 158075 119941 91266 0.63 0.26 0.57 0.37 

-0.05   DFDR 817.3 441.5 334.2 8407 167184 117329 101036 0.65 0.29 0.59 0.38 

0   DFDR 869.35 386.05 395.8 8348.8 171716 110644 112030 0.70 0.31 0.61 0.40 

0.05   DFDR 886.2 353.1 465.4 8295.3 173886 104115 122879 0.72 0.34 0.62 0.41 

0.1   DFDR 927.6 323.6 531.35 8217.5 176779 101010 134280 0.74 0.36 0.64 0.43 

0.15   DFDR 966.3 283.7 622.6 8127.4 185704 96093 144924 0.77 0.39 0.66 0.44 

0.25   DFDR 1029.7 223.75 821.9 7924.7 195418 84666 180995 0.82 0.44 0.70 0.48 

-0.25 0.63 PTDR 1012.9 245.45 623.7 8118       0.80 0.38     

-0.15 0.63 PTDR 1007.7 245.4 674.05 8072.9       0.80 0.39     

-0.1 0.62 PTDR 1024.4 222.35 762.4 7990.9       0.82 0.42     

-0.05 0.61 PTDR 1052.7 206.1 845.95 7895.3       0.84 0.44     

0 0.63 PTDR 1024.4 231.05 751.4 7993.2       0.82 0.41     

0.05 0.63 PTDR 1004.9 234.4 770.85 7989.9       0.82 0.43     

0.1 0.63 PTDR 1027.1 224.15 801.75 7947.1       0.82 0.43     

0.15 0.63 PTDR 1003.8 246.2 747.75 8002.3       0.80 0.42     

0.25 0.64 PTDR 989.65 263.75 691.45 8055.2       0.79 0.40     

-0.25 0.60 PDR 1076.2 182.1 856.95 7884.8 216502 65603 219893     0.77 0.49 

-0.15 0.59 PDR 1088.5 164.65 992.35 7754.6 219574 61327 257640     0.78 0.53 

-0.1 0.58 PDR 1105.8 140.95 1098.9 7654.4 222747 55269 291396     0.80 0.56 

-0.05 0.58 PDR 1104.3 154.5 1107 7634.2 224665 59848 291191     0.79 0.55 

0 0.59 PDR 1100.2 155.2 1050.4 7694.2 221480 60880 273767     0.79 0.55 

0.05 0.57 PDR 1100.7 138.6 1218.1 7542.6 225803 52199 323607     0.81 0.58 

0.1 0.58 PDR 1103.8 147.4 1139.4 7609.5 220750 57039 302536     0.79 0.57 

0.15 0.58 PDR 1099.4 150.65 1140.3 7609.7 223162 58634 294506     0.79 0.56 

0.25 0.57 PDR 1116.5 136.9 1237.4 7509.2 228067 52017 336869     0.81 0.58 
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So for a given 𝑥̂ (recall that 𝑥̂ = (𝑦̂ - 𝑦̂𝑜) and 𝑧̂ = 𝑙𝑛(𝑥̂), the mean of the predictive 

density will be shifted up or down relative to 𝜇𝑧  by the second term in brackets on 

the rhs, scaled by 𝜌
𝜎𝑧

𝜎𝑧̂
  which is a constant in this experiment. The mean of this term 

will be zero across all the forecasts considered, which means that the optimal 

probabilistic threshold PT and POD and FAR will not change as 𝜇𝑧̂ and 𝜇𝑦̂ change, 

bearing in mind that the conditional mean in the Normal space is related to the 

mean  in the real space (Table 4.1) as:  

   𝜇𝑦|𝑦̂ =  𝑦̂𝑜 + 𝑒𝑥𝑝 (𝜇𝑧|𝑧̂ + 0.5𝜎𝑧|𝑧̂
2 ) 

The minor fluctuations shown in Figure 5.15 are due to sampling variability. 

As a consequence of this lack of sensitivity, the optimal POD and FAR values for 

all the perturbations cluster closely around the baseline case in the POD-FAR plot, 

with all POD values around 0.8 and FAR values around 0.4. This is in contrast to 

the deterministic forecast case where POD degrades towards 0.5 for the lower 

bound, but on the other hand, POD increases to just above 0.8 at the upper bound, 

with FAR tending towards 0.5. Therefore, probabilistic forecasting can be seen to 

be robust to biases in the mean by maintaining stability in POD and FAR, while 

this is not the case for deterministic forecasting. However, the results obtained here 

suggest that there might be merit in increasing the mean of 𝑦̂ to be greater than that 

of 𝑦 in deterministic forecasting models to get higher values of POD.  

FPC Criterion: the results for this criterion mimic those for the FTC case in terms 

of lack of sensitivity, with POD being slightly lower than for the FTC case, but with 

much higher values of FAR, thus placing nearly all the values of POD and FAR in 

a cluster in the upper right quadrant (POD>0.5,FAR>0.5). Therefore, probabilistic 

forecasting is also robust to biases in the mean of 𝑦̂  based on the FPC criterion, 

while deterministic forecasting is not. However, the deterministic results suggest 

that increasing the mean of 𝑦̂ relative to that of 𝑦 can lead to higher values of POD, 

but with increasing FAR. 
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Figure 5.16: Pairs (𝒚,𝒚̂) for the baseline scenario and for the cases of the lower (a) and upper 

(b) bounds of the sensitivity experiment of 𝝁𝒚̂ 

These bivariate plots represent one replication of 10,000 values of the thirty used to build Figure 

5.15 
BS: Baseline scenario. 

Bias in the variance 

Figure 5.17 shows the results of the sensitivity experiment with the forecast 

variance for the DFDR (Figure 5.17a and Figure 5.17b) and PTDR and PDR (Figure 

5.17c and Figure 5.17d) based on the FTC and FPC criteria. The values of this 

Figure are described in Table 5.12. The immediate impression gained from Figure 

5.17 is that there is strong sensitivity for the deterministic case (Figure 5.17 and b) 

while there is very weak sensitivity for the probabilistic case (Figure 5.17c and d). 

The results are now analysed in this order. 
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a) Deterministic forecasts 

FTC and FPC Criteria: The results in Figure 5.17a show that, for the FPC-based 

POD, the greater the negative bias in the variance, the greater the weight of misses 

after “good” decisions (hits in the FTC) on this metric. In other words, the negative 

impact of “additional misses” considered in the FPC case increases as the negative 

bias in the variance increases (Figure 5.17a). The FPC-based FAR, however, shows 

different behaviour, i.e., the negative impact of “additional false alarms” considered 

in the FPC decreases as the negative bias in the variance increases (Figure 5.17a). 

Figure 5.17a  also shows that there is a point when FPC-based FAR equals FTC-

based FAR, which means that the negative impact of the “additional” false alarms 

on the FPC-based FAR is negligible. 

When there is a positive bias in the variance, the opposite effect occurs. The 

negative impact of the “additional” misses considered in the FPC decreases as the 

positive bias increases. Figure 5.17a shows that there is a point when FPC-based 

POD equals FTC-based POD, which means that the negative impact of the 

“additional” misses on the FPC-based POD is negligible. The FPC-based FAR 

shows different behaviour. The negative impact of “additional false alarms” 

considered in the FPC increases as the positive bias in the variance increases 

(Figure 5.17a).  

The POD-FAR plot in Figure 5.17b shows again that the FPC plot is below that of 

the FTC, reflecting the more demanding FPC criterion. In the FPC case, POD and 

FAR show a much wider range of variation than FTC, with a negative bias in the 

variance resulting in values in the lower left quadrant. On the other hand, a positive 

bias increases the POD value towards 0.7, but the FAR value also increases towards 

0.5.  

A comparison of Figure 5.17b with Figure 5.15b shows that in the FTC case, there 

is higher sensitivity to a bias in the mean than for FPC, while the opposite is the 

case for bias in the variance.   

a) Probabilistic Forecasts 

FTC Criterion: As already observed, the POD and FAR results are largely 

insensitive to perturbations in the variance for both the FTC and FPC criteria. To 
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understand this result, it is necessary, as in the case of the mean, to consider what 

is happening to the bivariate distribution of (𝑦, 𝑦̂) and the predictive density 𝑓(𝑦|𝑦̂). 

Figure 5.18 shows plots of the bivariate distributions corresponding to the lower 

bound (Figure 5.18a) and the upper bound (Figure 5.18b) perturbations. The 

baseline case is also shown in the plots. The predictive density for a given value of 

𝑦̂ is obtained by slicing the bivariate distribution in the vertical, as shown in Figure 

5.8. The mean of the predictive density is 𝑦̂, and once that is defined, the predictive 

density is largely controlled by the variability of 𝑦, but this, and the marginal 

distribution of 𝑦 remain unchanged in this experiment. Figure 5.18 illustrates this 

graphically where the bivariate plots for the perturbations contract and expand 

along the x-axis for the negative and positive perturbations, respectively. This can 

be explained further by considering the expression for the variance of the predictive 

density in the Normal space which is reproduced here from equation (4.53) as  

𝜎𝑥|𝑥 = 𝜎𝑧√1 − 𝜌2 

So the variance of the predictive density in the Normal space is uniquely controlled 

by the variance of 𝑧, as the correlation 𝜌 is unchanged in this experiment. This 

means that the optimal probabilistic threshold PT and POD and FAR will not 

change as 𝜎𝑧̂
2 and  𝜎𝑦̂

2 change, bearing in mind that the conditional variance in the 

Normal space is related to that  in the real space (Table 4.1) as:  

𝜎𝑦|𝑦̂
2 = 𝑒𝑥 𝑝(𝜎𝑧|𝑧̂

2 + 2𝜇𝑧|𝑧̂) [𝑒𝑥𝑝(𝜎𝑧|𝑧̂
2 ) − 1], 

and that 𝜇𝑧̂ is unchanged for this experiment.  

The minor fluctuations shown in Figure 5.17 are due to sampling variability. 

As a consequence of this lack of sensitivity, the optimal POD and FAR values for 

all the perturbations cluster closely around the baseline case in the POD-FAR plot, 

with all POD values just above 0.8 and FAR values around 0.4. This is in contrast 

to the deterministic forecast case where POD degrades towards 0.6 for the lower 

bound and to just above 0.7 at the upper bound, with FAR tending towards 0.3. 

Therefore, as in the case of the mean, probabilistic forecasting can be seen to be 

robust to bias in the variance by maintaining stability in POD and FAR, while this 

is not the case for deterministic forecasting. However, the results obtained here 

suggest that there might be some merit in increasing the variance of 𝑦̂ to be equal 
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to or greater than that of 𝑦 in deterministic forecasting models to get higher values 

of POD.  

 

Figure 5.17: Results of the sensitivity experiment for 𝝈𝒚̂
𝟐 for the flooding threshold-based and 

floodplain property-based criterion, FTC and FPC, respectively,   based on the deterministic 

rule DFDR, and probabilistic rules PTDR and PDR.  

Figures a shows POD and FAR results for different variations of 𝜎𝑦̂
2 based on the DFDR, whereas 

Figure c  shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for 

the DFDR and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The 

values of these figures are summarised in the POD-FAR curves shown in b and d, respectively.  
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: probabilistic rule 

based on a PT and PE of 𝑦𝑤, FTC: flooding threshold-based criterion, FPC: floodplain property based criterion. 
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Table 5.12: Contingency table used to build the plots of POD and FAR in Figure 5.17  

h, m, f, cn averaged over 30 replications. 

Variation 

of 

 PT Decision 
FTC FPC FTC FPC 

  H  m f Cn h m f POD FAR POD FAR 

-0.5   DFDR 748.85 516.85 243.8 8490.5 111581 171468 33933 0.59 0.246 0.39 0.23 

-0.25   DFDR 827.2 423.95 340.45 8408.4 151198 132433 74061 0.66 0.291 0.53 0.33 

-0.15   DFDR 834.2 417.5 364.3 8384 155661 124191 88184 0.67 0.3035 0.56 0.36 

-0.05   DFDR 849.4 402.35 377.7 8370.6 169254 115800 103354 0.68 0.3085 0.59 0.38 

0   DFDR 860.75 388.3 393.15 8357.8 166485 110574 111090 0.69 0.314 0.60 0.40 

0.05   DFDR 868.55 387.4 400.7 8343.4 174652 107950 119561 0.69 0.3145 0.62 0.41 

0.15   DFDR 872.65 379.7 406.4 8341.3 180153 103605 129422 0.69 0.3185 0.63 0.42 

0.25   DFDR 886.35 376.35 419.4 8317.9 187547 96908 142766 0.70 0.3205 0.66 0.43 

0.5   DFDR 900.85 346.4 434.5 8318.3 192498 85472 169217 0.72 0.325 0.69 0.47 

-0.5 0.63 PTDR 1022.6 243.1 722.9 8011.4       0.81 0.40     

-0.25 0.63 PTDR 1011.6 239.6 735.65 8013.2       0.81 0.41     

-0.15 0.63 PTDR 1027 224.75 791.25 7957.1       0.82 0.43     

-0.05 0.63 PTDR 1016.4 235.35 770.15 7978.1       0.81 0.42     

0 0.63 PTDR 1021.2 227.9 751.4 7999.6       0.82 0.42     

0.05 0.63 PTDR 1012.5 243.5 715.05 8029       0.81 0.41     

0.15 0.63 PTDR 1013.7 238.7 709.5 8038.2       0.81 0.40     

0.25 0.62 PTDR 1040.2 222.5 775.85 7961.5       0.82 0.42     

0.5 0.63 PTDR 1014.5 232.8 684.75 8068       0.81 0.40     

-0.5 0.58 PDR 1116.5 149.25 1098.9 7635.4 225300 57748 288296     0.80 0.55 

-0.25 0.60 PDR 1081.3 169.85 1004.7 7744.2 218747 64885 258115     0.78 0.53 

-0.15 0.58 PDR 1108.6 143.1 1144.9 7603.4 223263 56590 299956     0.80 0.57 

-0.05 0.59 PDR 1089.2 162.55 1065.6 7682.7 222940 62114 276753     0.78 0.54 

0 0.58 PDR 1109.2 139.85 1150.7 7600.3 222143 54916 306534     0.80 0.57 

0.05 0.58 PDR 1112.3 143.65 1138.7 7605.4 225486 57115 302658     0.80 0.56 

0.15 0.59 PDR 1087.1 165.3 1040.5 7707.2 218713 65045 268172     0.78 0.53 

0.25 0.59 PDR 1097.7 165.05 1018 7719.4 222144 62310 262491     0.78 0.53 

0.5 0.58 PDR 1109 138.25 1086.3 7666.5 223423 54547 285619     0.80 0.55 
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FPC Criterion: The results for this criterion mimic those for the FTC case in terms 

of lack of sensitivity, with POD being slightly lower than for the FTC case, but with 

much higher values of FAR, thus placing nearly all the values of POD and FAR in 

a cluster in the upper right quadrant (POD>0.5,FAR>0.5). Therefore, probabilistic 

forecasting is also robust to a bias in the variance of 𝑦̂  based on the FPC criterion, 

while deterministic forecasting is not. In particular, the POD values degrade 

substantially towards the lower bound, suggesting that increasing the variance of 𝑦̂ 

to be equal to or greater than that of 𝑦 can lead to higher values of POD, but with 

increasing FAR. 

 

Figure 5.18: Pairs (𝒚,𝒚̂) for the baseline scenario and for the cases of the lower (a) and upper 

(b) bounds of the sensitivity experiment of 𝝈𝒚̂
𝟐 

These bivariate plots represent one replication of 10,000 values of the thirty used to build Figure 

5.17 
BS: Baseline scenario. 
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5.7.2.4 Relevance to the case of Morpeth flooding 

The baseline scenario is based on the statistics of observed peak water levels 

derived for the Mitford gauging station on the River Wansbeck which is adjacent 

to Morpeth (Section 4.5.2). However, it was intended that the baseline should be 

generic and not be viewed as particular to a FEWS system for any specific location. 

However, by modifying the SoP from a 5-year to a 10-year flood, this reflects the 

Morpeth case more accurately and allows an assessment of what level of correlation 

between forecast and observed peak levels might be needed to provide a FEWS 

with a medium to high warning standard, as defined in section 5.7.2.1 above for 

POD and FAR. Moreover, it allows the effect of increasing the SoP on POD and 

FAR to be assessed. 

Figure 5.19 shows the effect of an increase in the SoP from 5 to 10 years on the 

behaviour of POD and FAR; this figure is directly comparable to Figure 5.9 for the 

baseline case. As the correlation between the forecast and observed values will 

decrease as a higher threshold (SoP) is applied, the overall levels of POD drop for 

the FTC criterion, but interestingly, the POD-FAR curve in Figure 5.19c for the 

FPC criterion is closer to that for the FTC criterion than for the baseline case (Figure 

5.9c). This suggests that the results for FPC are less affected than FTC for the SoP 

of 10 years. 

Table 5.13: Optimal values of POD and FAR for the three cases described by Figures 5.9, 

5.19 and 5.20 

Case 
Prob. 

threshold 
POD FAR POD- FAR 

Decision 

rule 
Criterion 

Baseline       

(Figure 5.9) 

- 0.68 0.32 0.36 
DFDR 

FTC 

- 0.60 0.40 0.20 FPC 

0.62 0.83 0.44 0.39 PTDR FTC 

0.58 0.80 0.57 0.23 PDR FPC 

Morpeth case 

(SoP=10 years, 

𝐼𝑃𝜌 = 0.85) 

(Figure 5.19) 

- 0.63 0.37 0.26 
DFDR 

FTC 

- 0.58 0.42 0.16 FPC 

0.61 0.78 0.48 0.30 PTDR FTC 

0.55 0.82 0.63 0.19 PDR FPC 

Morpeth case 

(SoP=10 years, 

𝐼𝑃𝜌 = 0.94) 

(Figure 5.20) 

- 0.76 0.24 0.52 DFDR FTC 

- 0.72 0.27 0.45 DFDR FPC 

0.60 0.80 0.27 0.53 PTDR FTC 

0.58 0.77 0.32 0.45 PDR FPC 
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Table 5.13 gives the optimal values of POD and FAR that are shown graphically in 

Figures 5.19a and 5.19b; for probabilistic forecasting, they are POD = 0.78 and 

FAR 0.48 (FTC) and POD = 0.82 and FAR = 0.63 (FPC). The values of FAR are 

too high to be classified in the Medium Performance category, so a further 

experiment was performed in which the 𝐼𝑃𝜌 value (correlation for a lead time of 6 

hours) was increased by 10% to 0.94. The corresponding metrics are POD = 0.80 

and FAR 0.27 (FTC) and POD = 0.77 and FAR = 0.32 (FPC), showing significant 

reductions in FAR, and placing the performance in the Medium to High category. 

This would require a model with a high level of performance in forecasting peak 

water levels. 

Overall, improving by 10% the assumed forecast performance of Morpeth case 

(expressed as 𝐼𝑃𝜌=0.94 and no biases in the mean and variance), the reliability of 

flood warning improves significantly under both the deterministic and probabilistic 

scenarios (Table 5.13). The results of experiment 2 show that this significant 

improvement occurs only in FEWSs with relatively good forecast performance; the 

assumed forecast performance of the Morpeth case falls in this category. 

The advantage of using probabilistic forecasting is more noticeable in FEWS with 

considerable forecast uncertainty. If one assumes that an optimal FEWS is obtained 

by optimizing the difference between POD and FAR, Table 5.13 shows that when 

the forecast performance of a FEWS is very good (expressed as 𝐼𝑃𝜌=0.94 and no 

biases in the mean and variance), the reliability of flood warnings under the 

deterministic and probabilistic scenario is practically the same. 
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Figure 5.19: Analysis of the performance of the baseline FEWS for the flooding threshold-

based and floodplain property-based criterion, FTC and FPC, respectively, by assuming a 

standard of protection SoP of 10 years 

This figure shows the results one would obtain by perturbing the baseline case (Figure 5.9) by 

assuming an SoP of 10 years.  
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: 

probabilistic rule based on a PT and the PE of 𝑦𝑤.  
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Figure 5.20: Analysis of the performance of the baseline FEWS for the flooding threshold-

based and floodplain-property based, FTC and FPC, respectively,  by assuming a standard 

of protection SoP of 10 years and 𝑰𝑷𝝆=0.94 (correlation value to the catchment lag L). 

This figure shows the results one would obtain by perturbing the baseline case (Figure 5.9) by 

assuming an SoP of 10 years and 𝐼𝑃𝜌=0.94. 
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based 

decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of 𝑦𝑇, PDR: 

probabilistic rule based on a PT and the PE of 𝑦𝑤.  
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5.8 Main Findings  

A threshold-based approach has been used as a warning criterion, where 

deterministic and probabilistic decision rules were used to simulate them.  The 

probabilistic-based decision rule PDR used to simulate FEWSs with real-time flood 

maps is novel. This rule uses a warning level 𝑦̂𝑤 derived from 𝑓(𝑦|𝑦̂) to make the 

warning decision, where 𝑦̂𝑤 is defined by a probabilistic threshold PT, which has 

to be optimised based on a pre-defined criterion. The PDR was used because FEWS 

based on real-time flood maps must use a magnitude’s prediction of the potential 

flood to generate them. Impact curves defining the number of affected houses can 

be used for exploring the flood warning’s reliability in terms of affected houses (the 

FPC). An impact curve can be built with few flood events, and its use exploits the 

process done by inundation models well and contributes to the integrated 

framework's versatility defining a FEWS. 

It was analysed that the performance based on the FPC is lower than that obtained 

based on the FTC. That difference was directly related to the uncertainty of the 

flood magnitude, i.e., the difference between y and ŷ, which defines the difference 

between the warned and flooded properties. In this context, it was concluded that 

the flood magnitude's uncertainty is an important factor influencing the flood 

warning reliability of a FEWS.  

The warning strategy is another important factor influencing the reliability of flood 

warnings. This research showed that a deterministic-based warning strategy in the 

FEWS produces sub-optimal decisions and that a probabilistic-based warning 

strategy, where the forecast errors are acknowledged, can use an optimization 

criterion to improve the reliability of flood warnings. In this research, the biggest 

difference between POD and FAR was used as an optimization criterion. The results 

showed that an optimal warning strategy based on this criterion tends to deliver 

FAR values greater than the one one would obtain based on deterministic forecasts. 

Thus, this strategy can be used when one wants to give more weight to the reduction 

of missed events whose economic consequences, in terms of floods, are far greater 

than those associated with false alarms. The forecasting lead time τ was also 

identified as important factor influencing the flood warning reliability. As expected, 

flood warning reliability declines with lead time according to the performance 

function used, which shows a faster decline in correlation for lead times greater 
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than the catchment lag, reflecting the greater uncertainty resulting from QPFs. In 

particular, probabilistic forecasting copes much better with the increasing 

uncertainty than deterministic forecasting, where the POD values are much higher 

for the probabilistic case but at the expense of higher FAR values. The SoP was a 

factor impacting the reliability of the FEWS. As the correlation between the forecast 

and observed values will decrease as a higher threshold SoP is applied, this flood 

warning attribute decreases as the SoP increases.  

The biases in the forecast mean and variance were also identified as important 

factors influencing the flood warning reliability. Remarkable robustness to biases 

in these two variates has been observed for probabilistic forecasting, which is a 

consequence of using PU, which is based on the conditional density of 𝑦 given 𝑦̂, 

whereas deterministic forecasting shows high sensitivity. The results for the latter 

case suggest that increasing the mean and variance of the forecasts relative to those 

of the observed could improve reliability in this case (Figures 5.17a and b). 

The correlation between the observed and forecast peak water levels has been 

shown to be an important factor controlling flood warning reliability. The analysis 

done in this Chapter (section 5.7.2.2) suggests that if the forecast performance is 

mainly controlled by 𝜌𝑦𝑦̂ (a bias in the mean or variance of the forecasts can also 

affect performance), an improvement of 10% of this factor, in terms of flood 

warning reliability, is more beneficial in FEWSs with relatively small than 

considerable forecast uncertainty. Furthermore, some indicative results for the case 

of a hypothetical Morpeth FEWS suggest that a correlation of 0.94 in peak 

discharges would be needed to obtain POD and FAR values in the Medium to High 

category for probabilistic forecasting. 
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 Chapter 6. Hydro-economic modelling of the benefits of flood 

early warning systems (FEWS) 

6.1 Introduction 

In chapter 5, the generic framework was partially used to explore the performance 

of a river flood early warning system (FEWS) in terms of reliability. The Monte 

Carlo flood and forecast generator (MCFG), the flood warning-decision making 

model (FWDC), and part of the response and impact component (RIC) were 

considered to analyse this flood warning performance attribute based on two 

performance criteria and considering deterministic- and probabilistic-based 

warning decisions.  

In this Chapter, the generic framework is employed fully to build a hydro-economic 

expected damage (ED) model (Figure 6.1a) which is used to explore the 

performance of an inundation forecasting-based FEWS in terms of both economic 

effectiveness and reliability. The hydro-economic ED model is based on three 

components: i) the MCFG that defines the univariate and bivariate probability of 

the magnitude of flood threats, i.e.,  peak water levels (𝑦) and their forecasts (𝑦̂), ii) 

the FWDC that simulates warning decisions in the FEWS, and iii) the RIC that 

simulates the ‘actual’ and forecast flood impact in the floodplain, considering the 

flood extent and depth as the main variates measuring damage. These three linked 

components are used to do a Monte Carlo (MC) flood risk analysis in the no 

warning scenario (NWS), the perfect forecast scenario (PFS), and in the imperfect 

forecast scenarios, i.e., the deterministic forecast scenario (DFS) and the 

probabilistic forecast scenario (PrFS). This flood risk analysis provides a single 

aggregated value of the relationship between flood threats in the at-risk community 

and its economic consequences. That single value is the expected damage ED. In 

the NWS and PFS, part of the MCFG and RIC is used, and the ED is estimated from 

events generated from the probability distribution of 𝑦 (Figure 6.1b and Figure 

6.1c), whereas in the imperfect forecast scenarios (the DFS and PrFS), the three 

components of the hydro-economic ED model are fully exploited, and the ED is 

estimated from bivariate events generated from the joint distribution of 𝑦 and 𝑦̂ 

(Figure 6.1d). The ED in each scenario is obtained based on damage functions and 

the frequencies of that damage obtained from the MC results. Since the ED 

associated with the with-warning scenarios includes the cost of the warning 
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response (𝐶𝑤), the word ‘damage’ in these scenarios is defined as the net damage 

that considers flood damage, mitigated and not mitigated by a proactive action, and 

𝐶𝑤. The net damage associated with forecast uncertainty due to ‘wrong’ warning 

decisions (false alarms and misses) and ‘good’ warning decisions (hits) are 

considered in the analysis (this net damage is present in hits due to the difference 

between the warned and flooded houses). 

Since the hydro-economic ED model in the imperfect forecast scenarios simulates, 

the warning decision and the resulting warned and flooded houses, it evaluates the 

reliability of flood warnings in terms of the floodplain property-based criterion 

(FPC) and the economic consequences. The reliability is evaluated in terms of the 

probability of detection (POD) and false alarm ratio (FAR). 

The ED values are used to estimate the economic effectiveness of a FEWS as:  

𝐸𝑤 =
𝐸𝐷𝑛𝑤 − 𝐸𝐷𝑤

𝐸𝐷𝑛𝑤
100 Eq. 6.1 

where 𝐸𝑤 is the economic effectiveness of a FEWS, 𝐸𝐷𝑛𝑤 is the ED of the at-risk 

community under the NWS, and 𝐸𝐷𝑤 is the ED of the at-risk community with the 

warning service. Since the ED is the metric used in this work to define the economic 

flood risk, The economic effectiveness 𝐸𝑤, in essence, represents the expected 

economic benefits associated with a warning service relative to the NWS. 

The hydro-economic ED model is, thus, used to gain an insight into the relationship 

between the reliability (POD/FAR) and 𝐸𝑤 of a FEWS , as these are different 

measures of performance, and into the impact of the forecast uncertainty on its 

economic benefits. That is done by evaluating the sensitivity of 𝐸𝑤 to the main input 

parameters and controlling factors through a one-at-time method.  

This chapter is structured as follows. In section 6.2,  the concept of net damage 

associated with forecast uncertainty is explained. Then, from sections 6.3 to 6.6, the 

hydro-economic ED model is introduced. Thus, in section 6.3, the metrics and 

concepts used by the model to define the reliability and 𝐸𝑤 of flood warnings are 

explained. In section 6.4, each component of the hydro-economic ED model is 

described. In section 6.5, the concept of flood risk and the basis of the MC flood 

risk analysis is introduced. In section 6.6, the algorithms of the hydro-economic ED 
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model to estimate the economic effectiveness 𝐸𝑤 and reliability in terms of POD 

and FAR, are introduced. Finally, in section 6.7 the results of the sensitivity 

experiments are presented.  

 

Figure 6.1: Illustration of the MC framework to explore the reliability and economic 

effectiveness of flood warnings. 

The hydro-economic ED model has three main components (a) that are fully used only in the 

imperfect forecast scenarios (d). In each scenario, the model estimates the economic consequences 

within the full range of potential flood events in the at-risk community. The concept of expected 

damage (ED) is then used to obtain a single aggregated value of these consequences in the no 

warning scenario (b), perfect forecast scenario (c), and in an imperfect forecast scenario (d). The ED 

values are then used to estimate the flood warning’s economic effectiveness as the ED reduction of 

a forecasting scenario relative to the NWS. The flood warning reliability is estimated in terms of 

POD and FAR based on warned and flooded houses 
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6.2 Net damage associated with forecast uncertainty 

As was explained in the introductory part of this Chapter, the economic 

effectiveness 𝐸𝑤 is evaluated in this work in terms of the expected economic 

benefits of a FEWS, and it should, therefore, include the costs incurred by the 

system.  These costs should be somehow derived by considering the costs for setting 

up, operating, and maintaining the system, and the cost of the warning response 𝐶𝑤 

(per-event costs). All these costs, except 𝐶𝑤, can be considered ‘fixed’, and they 

can be included in the analysis of the expected economic benefits by prorating them 

through the economic lifespan of the system. The cost of the warning response 𝐶𝑤 

is, on the other hand, a cost incurred every time a warning is issued and depends on 

the magnitude of the forecast flooding and the lead time τ. It considers the cost of 

issuing a warning and any cost incurred in the dissemination process and by the 

public taking action due to the flood warning (proactive action). This cost is affected 

by the forecast uncertainty, and since this research is related to this topic, it is the 

only cost included in the analysis of 𝐸𝑤. 

In an inundation-forecasting based FEWS, the warning decision is first made, and 

then, the warning dissemination is done based on the forecast of the flood extent. 

In this process, the number of houses warned (𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑) can be overestimated or 

underestimated due to the forecast uncertainty. They are overestimated or 

underestimated in the sense that the system warns more or fewer houses than it 

should warn, i.e., 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is higher or lower than the number of houses flooded 

(𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

), respectively. A FEWS mitigates flood damage in an at-risk community 

through a proactive action that is driven by a flood warning. Therefore, the damage 

mitigated by the proactive action (𝐷𝑚
𝑝𝑟𝑜

) only occurs in flooded houses previously 

warned. 

The overestimation of 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 (Figure 6.2a) produces 𝐷𝑚

𝑝𝑟𝑜
 and a necessary (𝐶𝑤

𝑛)  

and/or unnecessary cost of the warning response (𝐶𝑤
𝑢). 𝐶𝑤

𝑛 is the cost associated 

with warning houses that were subsequently flooded, whereas 𝐶𝑤
𝑢 is the cost 

associated with warned properties that were not subsequently flooded. 𝐶𝑤
𝑢 occurs 

when i) there was a “wrong” decision due to a warning that was issued, and a flood 

did not occur in the at-risk community (false alarm) (Figure 6.2a2), or ii) there is a 

‘good’ decision, and the magnitude of the forecast flooding was higher than the 
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observed one (Figure 6.2a1). A ‘good’ decision refers to a situation when a flood 

in the at-risk community is preceded by a warning (hit). In the case of false alarms, 

the following condition is fulfilled: 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

= 0, 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 > 0, and 𝐶𝑤 = 𝐶𝑤

𝑢; 

whereas in the case of hits:  𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 > 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
> 0, 𝐶𝑤 = 𝐶𝑤

𝑢 + 𝐶𝑤
𝑛, and 𝐷𝑚

𝑝𝑟𝑜 >

0 (Figure 6.2a). 

 

 
Figure 6.2: Illustration of the net damage associated with forecast uncertainty 

Figure a and b illustrate the economic consequences of the four potential situations during the 

operation of an imperfect FEWS. In these systems, the net damage associate with forecast 

uncertainty (𝐷𝑢
𝑝𝑟𝑜

 and 𝐶𝑤
𝑢) are present in misses (b2), false alarms (a2), and hits (a1 and b1) events. 

Figure c illustrates the economic consequences in the PFS. 
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The underestimation of 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 (Figure 6.2b) produces 𝐷𝑚

𝑝𝑟𝑜
 and 𝐶𝑤

𝑛 and/or 

damage not mitigated by the proactive action (𝐷𝑢
𝑝𝑟𝑜

). The latter damage occurs 

when i) there was a “wrong” decision due to a warning not being issued, and a flood 

occurred in the at-risk community (miss) (Figure 6.2b2), or ii) there is a hit, and the 

magnitude of the forecast flooding was lower than the observed one(Figure 6.2b1). 

In the case of misses, the following condition is fulfilled: 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

> 0, 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 =

0, 𝐷𝑢
𝑝𝑟𝑜 > 0; in the second case:  𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
> 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑 > 0, 𝐷𝑢
𝑝𝑟𝑜 > 0, 𝐷𝑚

𝑝𝑟𝑜 > 0, 

and 𝐶𝑤 = 𝐶𝑤
𝑛 (Figure 6.2b). 

Since 𝐶𝑤
𝑢 and 𝐷𝑢

𝑝𝑟𝑜
 occur when 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑 ≠ 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 which, in turn, only occurs 

when there is forecast uncertainty, this cost and damage are defined in this work as 

the net damage associated with forecast uncertainty. When analysing the benefits 

of a FEWS based on imperfect forecasts, this net damage should be considered. The 

only scenario when this net damage is nil is the PFS. Under this scenario, there is 

no forecast uncertainty, and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is neither overestimated nor underestimated, 

i.e., 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 = 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
. Therefore, the economic consequences in this scenario are 

associate with 𝐶𝑤
𝑛 and 𝐷𝑚

𝑝𝑟𝑜
(Figure 6.2c).  Note that all these variables are a function 

of the observed or forecasted depths of water causing damage which will be made 

explicit later, but this dependence is excluded here for simplicity. 

To the best of the author’s knowledge, a framework that analyses the economic 

effectiveness of a FEWS in terms of the expected economic benefits by considering 

the net damage associated with the forecast uncertainty in all possible situations 

(Figure 6.2a and Figure 6.2b) has not been created before. Verkade and Werner 

(2011) propose a framework to have an approximation of these benefits by 

combining a hydro-economic model with the theory of relative economic value. 

However, their framework has two main limiting assumptions: 

 The cost of the warning response is assumed to be independent of the 

magnitude of the forecast flooding, and it is not estimated as a function of 

this variate. 

 𝐶𝑤
𝑢 and 𝐷𝑢

𝑝𝑟𝑜
 are only estimated as a result of misses and false alarms (Figure 

6.2a2 and Figure 6.2b2). Their framework, therefore, negates the fact that 

the net damage associated with the forecast uncertainty can also be present 

in a hit event (Figure 6.2a1 and Figure 6.2b1). 
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The hydro-economic ED model used in this chapter overcomes the assumptions 

mentioned above. As was mentioned in the introductory part, it is based on a MC 

simulation framework and can be used to gain insight into i) the estimation and 

relationship of the economic effectiveness and reliability of a FEWS based on 

inundation forecasting and ii) the effects of the predictive uncertainty on its 

economic benefits. The hydro-economic ED model and the main results of this 

analysis are shown in the following sections. 

6.3 Analysis of the flood warning performance 

The hydro-economic ED model evaluates the flood warning performance in terms 

of economic effectiveness and reliability. The metrics used by the framework to 

represent these two flood warning performance attributes are explained as follows. 

6.3.1 Economic effectiveness  

The economic effectiveness of a FEWS, 𝐸𝑤, in essence, represents the expected 

economic benefits associated with a warning service and with a forecasting 

scenario. It is defined in this work as the economic flood risk reduction relative to 

the economic flood risk of the NWS (Eq. 6.1). For a totally ineffective FEWS, 𝐸𝑤 

= 0, but a perfect FEWS will not yield a value of 1 as it can only mitigate a 

proportion of the damage. The forecasting scenarios can be split into the perfect 

case, PFS, and imperfect forecast scenarios, i.e., the DFS or PrFS. Since 𝐸𝐷𝑤 in 

Eq. 6.1 includes 𝐶𝑤, this metric represents the expected net damage associated with 

the warning scenario. Only if 𝐸𝑤>0 will the forecasts of a FEWS have value or 

utility in the at-risk community. 

Figure 6.3 illustrates the concept of ED for each scenario considered by the hydro-

economic ED model to estimate 𝐸𝑤 through Eq. 6.1. In the NWS, a proactive action 

is not conducted in the at-risk community; 𝐸𝐷𝑛𝑤(Figure 6.3a), is, therefore, 

obtained by integrating  a damage function that represents the damage 𝐷𝑢
𝑝𝑟𝑜

. In the 

PFS, it is assumed that flood damage in the at-risk community is always mitigated 

by the proactive action, and the net damage associated with forecast uncertainty is 

nil; the ED of the PFS (𝐸𝐷𝑤
𝑝𝑓

) (Figure 6.3b)  is ,therefore, obtained by integrating 

a damage function based on the depth of flooding with the frequency of flooding 

that represents the net damage 𝐷𝑤
𝑝𝑓

which includes 𝐷𝑚
𝑝𝑟𝑜

 and 𝐶𝑤
𝑛 (Figure 6.2c). In 
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the imperfect forecast scenarios, there is forecast uncertainty and, therefore, 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 ≠ 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
; the ED of an imperfect  scenario (𝐸𝐷𝑤

𝑖𝑓
) (Figure 6.3c)  is , 

therefore, obtained by integrating a bivariate damage function that represents the 

net damage 𝐷𝑤
𝑖𝑓

 which includes all the economic consequences illustrated in Figure 

6.2a and Figure 6.2b. In an imperfect forecast scenario, the net damage associated 

with forecast uncertainty (𝐶𝑤
𝑢 and 𝐷𝑢

𝑝𝑟𝑜
) impact negatively on 𝐸𝐷𝑤

𝑖𝑓
 by increasing 

its value. Since this net damage is nil in the PFS (Figure 6.2c), the value 𝐸𝐷𝑤
𝑝𝑓

 is 

always lower than the values obtained based on an imperfect forecast scenario. That 

also means that the value of 𝐸𝑤 (Eq. 6.1) based on the PFS (𝐸𝑤
𝑝𝑓

) represents the 

maximum economic benefits that can be achieved by the system; the economic 

benefits of an imperfect forecast scenario, i.e., the DFS or PrFS, cannot overcome 

𝐸𝑤
𝑝𝑓

.  

 
Figure 6.3: Illustration of the estimation of ED for each scenario considered by the hydro-

economic ED model. 

The ED is obtained by integrating a damage function that represents the damage 𝐷𝑢
𝑝𝑟𝑜

, 𝐷𝑤
𝑝𝑓

 and 

𝐷𝑤
𝑖𝑓

in the NWS, PFS, and imperfect forecast scenario, respectively. The net damage 𝐷𝑤
𝑝𝑓

 includes 

𝐷𝑚
𝑝𝑟𝑜

 and 𝐶𝑤
𝑛 (Figure 6.2c), and 𝐷𝑤

𝑖𝑓
 includes all the economic consequences illustrated in Figure 

6.2a and Figure 6.2b. 
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6.3.2 Reliability 

To  estimate the ED in the imperfect forecast scenarios, one should represent, for 

each potential flood in the at-risk community, the flood warning decision which, 

for the case of an inundation map forecast, will be the number of houses warned, 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 , and the outcome will be the number of flooded houses,  𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
. With 

that information, one can also evaluate the reliability of a FEWS in terms of whether 

the warned properties were or were not subsequently flooded. This criterion was 

called in Chapter 5 floodplain property-based criterion (FPC). Section 5.4.2 

explains how the FPC defines hits, misses, and false alarms events in terms of 

affected houses to evaluate the flood warning reliability, whereas section 5.5 

explains how the metrics known as POD and FAR can be used to aggregate the 

outcomes of the FPC into a single value to have a snap-shot of the reliability of the 

FEWS. In essence, the FPC uses the POD and FAR to answer the following 

questions: What is the probability of a flooded house being correctly warned? What 

is the probability of a warned house being incorrectly warned? (Table 2.2). The 

hydro-economic ED model uses these concepts to evaluate the reliability of the 

inundation-forecasting based FEWS in the DFS and PrFS cases. 

6.4 Main components of the hydro-economic ED model 

The hydro-economic ED model has three main components: the MCFG, the 

FWDC, and the RIC (Figure 6.1a). Each of them is introduced in the following 

subsections.   

6.4.1 The Monte Carlo flood and forecast generator (MCFG) 

The hydro-economic ED model uses a MCFG to generate bivariate values of 

observed peak water levels 𝑦 and their forecasts 𝑦̂, where 𝑦 defines the magnitude 

of potential floods in the at-risk community. The MCFG uses a bivariate probability 

distribution for this purpose. The adopted bivariate model in the MCFG was the 

bivariate Lognormal distribution, and the bivariate simulation is done based on the 

algorithm shown in section 4.4.4. The marginal distribution 𝑓(𝑦) of the bivariate 

distribution 𝑓(𝑦, 𝑦̂) is used to represent the magnitude of the potential floods in the 

at-risk community in the NWS and PFS. This component also uses a lead time-

performance function (Figure 4.14) to assign to a lead time τ a value of 𝜌𝑦𝑦̂. 
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6.4.2 The flood warning decision-making component (FWDC) 

The flood warning decision-making component FWDC is used in the hydro-

economic ED model to simulate warning decisions in the DFS and PrFS.  These 

decisions are represented by decision rules and consider deterministic and 

probabilistic forecasts, respectively. In the DFS, the deterministic forecast-based 

flood-warning decision is represented by the decision rule DFDR explained in 

section 5.6.1, which assumes that a warning is issued when 𝑦̂ is greater than the 

flooding threshold (𝑦𝑇) of the at-risk community defined by the Standard of 

Protection (SoP)(Figure 5.5b). In the PrFS, the probabilistic forecast-based flood 

warning decision is represented by the decision rule PDR explained in section 5.6.2. 

This rule uses a probabilistic threshold 𝑃𝑇 to define a  warning level 𝑦̂𝑤 from 

𝑓(𝑦|𝑦̂) at which the Warner should base his/her decisions, where 𝑃𝑇, in essense, 

represents the probability of exceedance of 𝑦̂𝑤. Then, the warning decision is based 

on the direct comparison between 𝑦̂𝑤 and the flooding threshold 𝑦𝑇 (Figure 5.6b). 

In the hydro-economic model, it is assumed that, in the PDR case, the Warner acts 

to increase 𝐸𝑤 (decrease the flood risk) in the at-risk community. The aim is, thus, 

to find an optimal probabilistic threshold (𝑃𝑇∗) that fulfils this purpose. Note that 

𝑃𝑇∗ in this case will be different from that obtained in Chapter 5 which used the 

maximum value of POD minus FAR as the optimization criterion 

6.4.3 The response and impact component (RIC) 

The response and impact component RIC is used by the hydro-economic ED model 

to represent the flood damage in the floodplain without the warning service and net 

flood damage with the warning service. Here, the impact is only measured in terms 

of damage to house contents, and no attempt is made to represent psychological 

damage to residents, or in the worst case, loss of life. These damages are represented 

by this component through several expressions that depend on the variates 

describing damage considered in this work (flood depth and extension). In this 

section, the development of these equations and the rationality behind them are 

presented. These equations are used to build the damage functions used to estimate 

the ED of the scenarios shown in Figure 6.3. Before describing them, the section 

starts by explaining how the damage variates needed to use these equations are 

simulated in this component of the hydro-economic ED model.  
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6.4.3.1 Simulation of observed and forecast floods 

To represent the flood damage in the floodplain without and with the provision of 

a FEWS, one must simulate the observed and forecast inundation in the at-risk 

community. The damaging variates considered in this work are the flood depth and 

extension. The RIC does not simulate these variates directly but simulates their 

target information. The target information in such an analysis is i) 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 and ii) the flood depth reached in each of them. The former is represented 

in this work through the impact curve-based method used in Chapter 5 (Figure 5.3). 

To estimate the flood depth, the RIC assumes that the elevation of the floodplain 

properties with respect to the ground is 0.25 m (Figure 6.4). It is also assumed that 

the water surface elevation at a floodplain property is not significantly different 

from the water surface elevation in the channel. In this case, the flood depth can be 

estimated as the difference between the magnitude of the flooding and the bankfull 

level (𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙), once the water level has overtopped the flooding threshold (𝑦𝑇) 

defined by the SoP, and water spills into the floodplain. A small allowance is made 

for the level of the property floors above 𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙. Section 4.5.3 (Eq. 4.54) explains 

how 𝑦𝑇 is computed based on the assumed SoP. The bankfull condition is assumed 

in this work to be defined by a 2.5-year return period 

 
Figure 6.4: Illustration of the flood depth estimation in the RIC for an observed flood and its 

forecast 

The RIC assumes that the elevation of the floodplain properties with respect to the ground is 0.25 

m. The figure illustrates the case when the observed peak level 𝑦 and its forecast, represented by 𝑦̂ 

and 𝑦̂𝑤 in the DFS and PrFS, respectively, overtop the flooding threshold 𝑦𝑇  defined by the standard 

of protection (SoP).  

Under these assumptions, the RIC simulates the target information of the observed 

and forecast flood inundation through two basic steps: 

 Step 1: Estimate 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 through the impact curve-based 

method explained in section 5.3 (Figure 5.3). 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is estimated based on 

the variate on which the warning decision is based (ν). In the DFS, ν 
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represents 𝑦̂ (Figure 5.5b), whereas, in the PrFS, ν represents a warning 

level 𝑦̂𝑤 estimated from 𝑓(𝑦|𝑦̂) (Figure 5.6b). 

 Step 2: Estimate the observed flood depth and its forecast as: 

where 𝑑 and 𝑑̂ is the observed flood depth and its forecast estimated as a 

function of 𝑦 and 𝜈, respectively. 

By conducting the two steps mentioned above, the RIC simulates, for each observed 

or forecast flooding event (defined as the  values of 𝑦 or 𝜈  greater than 𝑦𝑇),  

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 , 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
, 𝑑̂ and 𝑑, which is the information needed to use the expressions 

that represent the flood damage and net flood damage in the floodplain without and 

with the flood warning service, respectively. They are described in the next 

subsections. 

6.4.3.2 The damage without the warning service 

The flood damage in an at-risk community depends on the flooding characteristics 

and the vulnerability (the lack of resistance to damaging forces), and exposure of 

the floodplain assets. Without the warning service, this exposure and vulnerability 

depend on the standard of protection, SoP, and the vulnerability and exposure of 

the floodplain assets. In this scenario, the SoP (structural measures such as river 

banks, flood dykes, and dams) reduces but does not eliminate the flood risk (Figure 

6.4), and no proactive action is taken to reduce that residual flood risk because there 

is no warning service. To represent the flood damage, the RIC considers only the 

direct economic damage, and the floodplain assets considered are only the contents 

of properties.  An expression that represents the direct economic damage to these 

contents for every flood in the at-risk community can be expressed by: 

𝐷𝑢
𝑝𝑟𝑜(𝑑) = ∑ 𝜗𝑘

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

𝑘=1

𝐷𝑘
𝑐(𝑑𝑘) Eq. 6.4 

where 𝐷𝑢
𝑝𝑟𝑜

 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 , as explained above, represent  the damage in the 

floodplain  unmitigated by a proactive action (without the warning service) and the 

𝑑 = 𝑦 − (𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙 + 0.25) Eq. 6.2 

𝑑̂ = 𝜈 − (𝑦𝑏𝑎𝑛𝑘𝑓𝑢𝑙𝑙 + 0.25) Eq. 6.3 
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number of flooded houses, respectively, 𝜗𝑘 is the monetary value of the content of 

the flooded property 𝑘, 𝐷𝑘
𝑐, expressed as a  percentage, is the damage to this content 

without warning service as a function of the flood depth, and 𝑑𝑘 is the flood depth 

at the flooded property 𝑘. 

The number of flooded houses is expressed in Figure 5.7 as a function of 𝑦, and 

therefore 𝑑 in Eq. 6.2. This function assumes a gently varying terrain where the 

number of flooded houses increases with 𝑦 and therefore 𝑑. If the terrain in the 

floodplain is complex because of variable topography, the estimation of  𝐷𝑢
𝑝𝑟𝑜

may 

need  hydraulic inundation modelling  to represent 𝑑𝑘 at each flooded property. 

However, this work is limited to the analysis of floodplains with gently varying 

terrain, where 𝑑𝑘 can be assumed to be the same in each flooded property and can 

be considered as an average depth across the number of houses flooded (Figure 6.4). 

In addition, if one assumes an average monetary value of the residential content in 

each floodplain property, 𝐷𝑢
𝑝𝑟𝑜

can be expressed by: 

𝐷𝑢
𝑝𝑟𝑜(𝑑) = 𝜗𝐷𝑐(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
 Eq. 6.5 

where 𝜗 is the average monetary value of the residential content in the floodplain 

properties, and 𝐷𝑐(𝑑), expressed as a percentage,  is the damage to this content 

without a proactive action as a function of the flood depth 𝑑 in the floodplain 

computed based on Eq. 6.2. The average monetary value 𝜗 is an input parameter of 

the framework and the value of 𝐷𝑐(𝑑) is obtained from the family of damage curves 

proposed by Carsell et al. (2004), which represent the percentage damage to the 

residential content as a function of the mitigation time and flood depth (Figure 6.5). 

In this thesis, it is assumed that the mitigation time is equal to the lead time τ, and  

𝐷𝑐(𝑑) is represented by damage to the content when the (mitigation) lead time is 

zero, i.e., 𝐷𝑐
𝜏=0. The assumptions made to estimate 𝐷𝑢

𝑝𝑟𝑜
(𝑑) through Eq. 6.5 reduce 

considerably the computational resources required to estimate the flood damage. 
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Figure 6.5: The residential content depth-percentage damage relationship with flood 

mitigation time 

Source: Carsell et al., (2004). 

Eq. 6.5 is used by the hydro-economic ED model to represent the flood damage in 

the NWS (Figure 6.3a) and to represent the flood damage of misses (Figure 6.2b2) 

in the imperfect forecast scenarios. 

6.4.3.3 The damage with the proactive action 

A FEWS mitigates the residual risk in the at-risk community associated with an 

SoP through the proactive action conducted in the warning response. The proactive 

action can modify i) the exposure probability of persons or mobile items or ii) if the 

lead time is long enough, the vulnerability of the structural assets through the 

implementation of supplementary intervention measures, e.g., demountable 

defences. The proactive action considered in the RIC has to do with moving and/or 

evacuating the contents of the floodplain properties after a flood warning is issued.  

Taking into account the same assumptions made to estimate  𝐷𝑢
𝑝𝑟𝑜(𝑑) through Eq. 

6.5, an expression that represents the potential damage avoided in the floodplain 

when that proactive action is conducted can be defined by:  

𝐷𝑝
𝜏(𝑑) = 𝜗[𝐷𝑐(𝑑) − 𝐷𝑐

𝜏(𝑑)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 Eq. 6.6 

where 𝐷𝑝
𝜏(𝑑) represents the potential damage avoided by the proactive action 

conducted after a flood warning within a lead time τ was issued and when there is 

a flood depth 𝑑 in the at-risk community, and 𝐷𝑐
𝜏(𝑑) is the percentage damage to 
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residential contents after the proactive action has been conducted, which is obtained 

from the functions shown in Figure 6.5. 

𝐷𝑝
𝜏(𝑑) can be affected when householders i) do not heed the warning and act 

effectively or ii) are involved in evacuation decisions when the flood is not shallow, 

and their lives are at risk, and iii) are not notified in time. To account for this, 𝐷𝑝
𝜏(𝑑)  

is multiplied by an economic efficiency parameter 𝛼 which ranges from 0 to 1 and 

represents the uncertainty of the proactive action. It is analogue to those proposed 

by Parker (1991) and Carsell et al. (2004), as it decreases the potential damage 

avoided to obtain the value known as the actual flood damage avoided. This 

avoidable damage can be expressed by: 

𝐷𝑎
𝜏(𝑑) = 𝛼𝐷𝑝

𝜏(𝑑) Eq. 6.7 

where 𝛼 is an input parameter of the hydro-economic ED model and 𝐷𝑎
𝜏(𝑑) 

represents the actual flood damage avoided by the proactive action conducted after 

a flood warning with a lead time τ was issued and a flood depth 𝑑 occurred in the 

at-risk community. According to Eq. 6.7, 𝐷𝑎
𝜏(𝑑) increases when 𝑑 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
  or 

τ increases. Thus it represents well the damage saved by FEWSs, which is likely to 

be greater for high than for low flood stages and increase as the lead time increases 

(Carsell et al., 2004). 

The flood damage in the floodplain mitigated by the proactive action can be 

computed by subtracting 𝐷𝑎
𝜏(𝑑) from 𝐷𝑢

𝑝𝑟𝑜(𝑑)(Eq. 6.5). 

𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) = 𝐷𝑢

𝑝𝑟𝑜(𝑑) − 𝐷𝑎
𝜏(𝑑) Eq. 6.8 

where 𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) represents the flood damage in the floodplain mitigated by the 

proactive action (moving and or evacuating the residential contents) conducted after 

a flood warning with lead time τ was issued. If 𝐷𝑢
𝑝𝑟𝑜(𝑑) and 𝐷𝑎

𝜏(𝑑)  are replaced in 

Eq. 6.8 by Eq. 6.5 and Eq. 6.7 and Eq. 6.6, respectively,  𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) can be expressed 

by: 

𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) = 𝜗𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑{𝐷𝑐(𝑑) − 𝛼[𝐷𝑐(𝑑) − 𝐷𝑐
𝜏(𝑑)]} Eq. 6.9 
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Eq. 6.9 is used by the hydro-economic ED model to represent the mitigated flood 

damage in the at-risk community in the PFS case (Figure 6.3b) and to represent the 

mitigated flood damage when 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is overestimated in a hit event (Figure 

6.2a1). The latter is possible because, in this situation, all the flooded houses are 

warned.  

6.4.3.4 The damage with and without the proactive action  

The expressions used by the hydro-economic ED model to represent the flood 

damage of most of the potential situations in an imperfect forecast scenario have 

already been explained in the prior subsections. There is only one type of flood 

damage associated with these potential situations whose equation has not been 

described yet. It has to do with the representation of the flood damage when 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is underestimated in a hit event (Figure 6.2b1). In this case, the flood 

damage has to be split into flood damage mitigated and not mitigated by the 

proactive action, respectively, and can be described by: 

𝐷𝑢,𝑚
𝑝𝑟𝑜,𝜏(𝑑) =  𝜗𝐷𝑐(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑛𝑤
+  𝜗𝐷𝑐

𝜏(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑤

 Eq. 6.10 

where 𝐷𝑢,𝑚
𝑝𝑟𝑜,𝜏(𝑑) represents the flood damage mitigated and unmitigated by the 

proactive action in the at-risk community in a hit event when 𝑦< 𝜈, i.e. 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑< 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

, and  𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑤

 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑛𝑤

 represent the flooded houses warned and 

no warned, respectively. The other parameters have already been introduced above.  

Note that in this situation 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑤

=𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑  and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑛𝑤
= 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
- 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑 

(Figure 6.2b1). 

6.4.3.5 The cost of the warning response 

A flood warning system mitigates the residual risk associated with an SoP through 

the warning response, which can only be made at a cost 𝐶𝑤. As was explained in 

section 6.2, this cost refers to the cost of issuing a warning and any cost incurred in 

the dissemination process and by the public taking action (proactive action). That 

cost is driven by the forecast flood because it is the only information available when 

the warning is issued. The cost of the warning response 𝐶𝑤 is here assumed to be a 

continuous variate proportional to the economic benefits (damage saved) of the 

FEWS during a flood event. Since the avoidable damage in the at-risk community 
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(Eq. 6.7), in essence, represents those economic benefits, the RIC uses 𝐷𝑎
𝜏(𝑑) to 

estimate 𝐶𝑤, in the PFS case as: 

𝐶𝑤
𝜏 (𝑑) = 𝛾𝐷𝑎

𝜏(𝑑) Eq. 6.11 

where 𝐶𝑤
𝜏 (𝑑) is the cost of the warning response associated with a lead time τ,  𝛾 is 

a parameter (0 < γ < 1) used to represent 𝐶𝑤
𝜏 (𝑑) as a proportion of  𝐷𝑎

𝜏(𝑑). If 𝐷𝑎
𝜏(𝑑) 

is replaced in Eq. 6.11 by Eq. 6.7 and Eq. 6.6, 𝐶𝑤
𝜏 (𝑑)  can be expressed by: 

𝐶𝑤
𝜏 (𝑑) = 𝛾𝛼𝜗[𝐷𝑐(𝑑) − 𝐷𝑐

𝜏(𝑑)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 Eq. 6.12 

The parameter γ is an input parameter of the hydro-economic ED model, and it uses 

Eq. 6.12 to represent 𝐶𝑤
𝜏 (𝑑) in the PFS case.  Note that 𝐶𝑤

𝜏 (𝑑) in that equation is a 

function of 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 because in the PFS it is assumed 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 = 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
, and, 

therefore, 𝐶𝑤
𝜏 (𝑑) = 𝐶𝑤

𝑛(𝑑) (see Figure 6.2c to see the definition of 𝐶𝑤
𝑛(𝑑)). That 

means, in essence, that we are assuming perfect knowledge about the flooding 

characteristics. However, in the imperfect forecast scenarios, the only information 

available when the warning is issued is its forecast. In this case, 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 ≠

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

, and the RIC first estimates the economic benefits of the potential flood as 

a function of ν, i.e., 𝑦̂ or 𝑦̂𝑤 for the DFS or PrFS, respectively, and then, it uses 𝛾 

to compute 𝐶𝑤
𝜏 (𝑑̂) as a percentage of that benefits. This process is represented by 

simply replacing in Eq. 6.12 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 and 𝑑 by 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 𝑑̂, respectively, to 

give: 

𝐶𝑤
𝜏 (𝑑̂) = 𝛾𝛼𝜗[𝐷𝑐(𝑑̂) − 𝐷𝑐

𝜏(𝑑̂)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 Eq. 6.13 

where 𝑑̂, as was explained above, is computed through Eq. 6.3. Since 𝐶𝑤
𝜏 (𝑑̂) in Eq. 

6.13 is proportional to 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑, the RIC model uses that expression to represent 

𝐶𝑤
𝑛(𝑑̂) and 𝐶𝑤

𝑢(𝑑̂) in all possible conditions in an imperfect forecast scenario (see 

Figure 6.2). Thus, in a false alarm event (Figure 6.2a2),  𝐶𝑤
𝜏 (𝑑̂) respresents 𝐶𝑤

𝑢(𝑑̂).  

When 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is overestimated in a hit event (Figure 6.2a1), 𝐶𝑤

𝜏 (𝑑̂) represents 

𝐶𝑤
𝑛(𝑑̂) + 𝐶𝑤

𝑢(𝑑̂). Finally, when 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is underestimated in a hit event (Figure 

6.2b1), 𝐶𝑤
𝜏 (𝑑̂) respresents 𝐶𝑤

𝑛(𝑑̂). 
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Note that according to Eq. 6.12 and Eq. 6.13,  𝐶𝑤
𝜏 (𝑑) and 𝐶𝑤

𝜏 (𝑑̂) in the perfect and 

imperfect forecast scenario, respectively,  increases as the affected houses and flood 

depth and τ increase.  Therefore, these expressions represent the behaviour of the 

cost of the warning response in FEWSs as the higher the level of damage, the higher 

the spending needed to mitigate this damage. Furthermore,  the cost of the warning 

response may increase as the lead time increases (Verkade and Werner, 2011; Matte 

et al., 2017). 

6.4.3.6 The net damage with the perfect warning service (perfect forecast 

scenario)  

Flood damage in the floodplain with the warning service should include the 

mitigated damage by the proactive action and the cost associated with the warning 

response associated with a lead time τ, i.e.,  𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) and 𝐶𝑤

𝜏 (𝑑), respectively. The 

net damage in the PFS can be, therefore, represented by: 

𝐷𝑤
𝑝𝑓,𝜏

(𝑑) = 𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) + 𝐶𝑤

𝜏 (𝑑) Eq. 6.14 

where 𝐷𝑤
𝑝𝑓,𝜏

(𝑑) represents the economic net damage in the floodplain associated 

with a flood depth 𝑑, and the warning service with a given lead time τ, and 

considering a PFS. If one replaces in Eq. 6.14 𝐷𝑚
𝑝𝑟𝑜,𝜏(𝑑) and 𝐶𝑤

𝜏 (𝑑) by Eq. 6.9 and 

Eq. 6.12, 𝐷𝑤
𝑝𝑓,𝜏

(𝑑) can be represented by: 

𝐷𝑤
𝑝𝑓,𝜏

(𝑑) = 𝜗𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑{𝐷𝑐(𝑑) − 𝛼(1 − 𝛾)[𝐷𝑐(𝑑) − 𝐷𝑐

𝜏(𝑑)]} Eq. 6.15 

Eq. 6.15 is used by the hydro-economic ED model to represent the net damage in 

the PFS (Figure 6.2c). 

6.4.3.7 The net damage with the imperfect warning service  

The net damage of an imperfect warning service 𝐷𝑤
𝑖𝑓,𝜏

(𝑑) is simulated through 

several expressions described in the prior subsections, which represent the 

economic consequences of all potential situations when 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 ≠ 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
(Figure 

6.2a and Figure 6.2b). Thus, the different values that 𝐷𝑤
𝑖𝑓,𝜏

(𝑑) can take are 

dependent on whether the outcome of the warning is a hit, miss, or false alarm 
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(defined in terms of flood warning decisions). The expressions for each case are 

tabulated in Table 6.1 and are explained as follows.  

As was explained in section 6.2, a hit in terms of a warning decision is referred to 

as the situation when a flood in the at-risk community is preceded by a warning. 

These events produce mitigated flood damage because the proactive action was 

conducted between the issue of the warning and the onset of the flood with 

magnitude 𝑦. These events can also produce unmitigated damage when 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 is 

underestimated (Figure 6.2b1).  The damage reduction is achieved at a cost 𝐶𝑤
𝜏 (𝑑̂) 

estimated in this work as a function of 𝜈 (and 𝑑̂ (Eq. 6.3)), which, as was explained 

above, represents 𝑦̂ and 𝑦̂𝑤 in the DFS and PrFS, respectively. Thus, the net damage 

for any pair (𝑦, 𝜈) defined as a hit where 𝑦 < ν (these events are noted in this work 

as hits 1), i.e., 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 < 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 (Figure 6.2a1) is represented by 𝐷𝑚

𝑝𝑟𝑜,𝜏(𝑑) plus 

𝐶𝑤
𝜏 (𝑑̂), Eq. 6.9 and Eq. 6.13, respectively. If 𝑦 > ν (these events are noted in this 

work as hits 2), i.e., 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 > 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 (Figure 6.2b1),  this net damage is 

represented by 𝐷𝑢,𝑚
𝑝𝑟𝑜,𝜏(𝑑) plus 𝐶𝑤

𝜏 (𝑑̂), Eq. 6.10 and Eq. 6.13, respectively.  

Table 6.1: Description of the equations used by the hydro-economic model to represent the 

economic consequences of an imperfect flood warning system 

Event 
Economic 

consequence 
Equation 

Hits 1 (𝑦 < 𝜈) 

                      

𝐷𝑚
𝑝𝑟𝑜,𝜏

(𝑑) +

𝐶𝑤
𝜏 (𝑑̂)  

𝜗𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑{𝐷𝑐(𝑑) − 𝛼[𝐷𝑐(𝑑) − 𝐷𝑐

𝜏(𝑑)]}

+ 𝑟𝛼𝜗[𝐷𝑐(𝑑̂) − 𝐷𝑐
𝜏(𝑑̂)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑 

Hits 2 (𝑦 > 𝜈) 
𝐷𝑢,𝑚

𝑝𝑟𝑜
(𝑑) +

𝐶𝑤
𝜏 (𝑑̂)  

[𝜗𝐷𝑐(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑛𝑤

+ 𝜗𝐷𝑐
𝜏(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑤
]

+ 𝑟𝛼𝜗[𝐷𝑐(𝑑̂) − 𝐷𝑐
𝜏(𝑑̂)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑 

False alarms                                  𝐶𝑤
𝜏,𝑓𝑎

(𝑑̂)  𝑟𝛼𝜗[𝐷𝑐(𝑑̂) − 𝐷𝑐
𝜏(𝑑̂)]𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑤𝑎𝑟𝑛𝑒𝑑  

Misses           𝐷𝑢
𝑝𝑟𝑜,𝜏

(𝑑) 𝜗𝐷𝑐(𝑑)𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑

 

Correct 

negative           
0 - 

Missed events in terms of warning decisions are defined when a flood event 

occurred in the at-risk community and a warning was not issued (Figure 6.2b2). 

These events result in unmitigated damage because a proactive action was not 

conducted, and, therefore, 𝐶𝑤
𝜏 (𝑑̂)=0.  For any pair (𝑦, 𝜈) defined as a miss, the 

damage of misses is, therefore, represented by 𝐷𝑢
𝑝𝑟𝑜,𝜏(𝑑)(Eq. 6.5). If the flood event 

did not occur and a warning was issued, this is considered a false alarm (Figure 

6.2a2). In this case, there is no damage in the at-risk community, and the warning 
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response was conducted in vain; thus, the economic consequences for any pair 

(𝑦, 𝜈) defined as false alarm is represented by 𝐶𝑤
𝜏,𝑓𝑎

(𝑑̂) (Eq. 6.13). Finally, if the 

flood event did not occur, and a warning was not issued, this is considered a correct 

negative. If the operational costs are excluded from the analysis, this situation does 

not represent any cost to the system. 

6.5 Flood risk model 

In general terms, flood risk is defined as the combination of the probability of an 

event and its negative consequences associated with damage to human health and 

life, the environment, and economic activity (European Parliament, 2007). The 

flood risk of a flood-prone area is defined by a metric that in essence aggregates all 

the potential damages into a single value. It can be estimated quantitatively if the 

losses are measurable, e.g., monetary or loss of life units, or qualitatively, e.g., 

allocation in classes, in the case of intangible damages associated with the social, 

environmental, and cultural impacts (Laoupi and Tsakiris, 2007). Since this thesis 

concentrates on economic damage only, in this section, the concept of flood risk is 

used by the model to aggregate all the potential economic damages or net damage 

values into a single value for all scenarios considered. That single value is the ED, 

which is the target information when estimating 𝐸𝑤 (Eq. 6.1). Thus, this section 

explains the computation of the ED for each scenario. 

6.5.1 The no warning scenario 

Flood risk is usually defined as the product of the probability of flooding and the 

associated consequences, integrated over all possible events. The expected damage 

ED is the metric traditionally used to define the economic flood risk and give us a 

snap-shot of flood risk at present or in a future scenario in the at-risk community.  

The ED for the NWS can be defined by: 

𝐸𝐷𝑛𝑤 = ∫ 𝐷𝑢
𝑝𝑟𝑜(𝑑)𝑓(𝑑)𝑑𝑑 Eq. 6.16 

where 𝐸𝐷𝑛𝑤, as was explained in section 6.3.1, is the ED of the at-risk community 

in the NWS (Figure 6.3a),  𝐷𝑢
𝑝𝑟𝑜(𝑑) is a damage function expressed as a function 

of 𝑑 (Eq. 6.5), and 𝑓(𝑑) is the probability density function of this variate. 

https://www.linguee.es/ingles-espanol/traduccion/quantitatively.html
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6.5.2 The perfect forecast scenario 

If the FEWS is based on perfect forecasts, a flood event is always preceded by a 

warning, and there is no uncertainty in the inundation forecasts. Thus, the reliability 

of the flood warning system is assumed perfect, i.e., every flood is preceded by a 

warning, and every warned property is then flooded (Figure 6.2c). The flood risk in 

the PFS is defined by: 

𝐸𝐷𝑤
𝑝𝑓,𝜏

= ∫ 𝐷𝑤
𝑝𝑓,𝜏(𝑑)𝑓(𝑑)𝑑𝑑 Eq. 6.17 

where 𝐸𝐷𝑤
𝑝𝑓,𝜏

 is the ED of the at-risk community in the PFS (Figure 6.3b), and 

𝐷𝑤
𝑝𝑓,𝜏(𝑑) is a damage function expressed as a function of 𝑑 (Eq. 614). Since the 

damage saved by the  proactive action depends on the lead time τ,  there is a specific 

value of  𝐸𝐷𝑤
𝑝𝑓,𝜏

 for each τ.  

6.5.3 The imperfect forecast scenario 

The ED of the at-risk community with the warning service based on imperfect 

forecasts is defined by:  

𝐸𝐷𝑤
𝑖𝑓,𝜏

= ∬ 𝐷𝑤
𝑖𝑓,𝜏

(𝑑, 𝑑̂)𝑓(𝑑, 𝑑̂)𝑑𝑑𝑑𝑑̂ Eq. 6.18 

where 𝐸𝐷𝑤
𝑖𝑓,𝜏

 is the ED of the at-risk community with the warning service assuming 

an imperfect forecast scenario (Figure 6.3c), and 𝐷𝑤
𝑖𝑓,𝜏

(𝑑, 𝑑̂) is a bivariate net 

damage function that describes the economic consequences of hits, misses, and 

false alarms (defined in terms of flood warning decisions) according to Table 6.1, 

and 𝑓(𝑑, 𝑑̂) is the joint distribution of 𝑑 and 𝑑̂. Since 𝐷𝑤
𝑖𝑓,𝜏

(𝑑, 𝑑̂) represents the net 

damage of a FEWS with a given lead time τ, and the economic consequences 

depend on the warning decision, there is a specific value of 𝐸𝐷𝑤
𝑖𝑓

  for a given 

warning decision rule and lead time τ. 

6.5.4 Estimation of ED 

The analytical expression of the ED (economic flood risk) for each warning 

scenario considered in the analysis was defined in the prior subsections. To estimate 

it, one must solve the integrals shown in Eq. 6.16, Eq. 6.17, and Eq. 6.18. An 
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estimation of these integrals can be obtained by first building the functions that 

describe the damage or net damage as described in section 6.4 above and then 

solving the integrals via an analytical solution or numerical integration (Olsen et 

al., 2015). In this framework, the latter approach was used. Based on this approach,  

the integral of the NWS (Eq. 6.16) can be estimated by: 

𝐸𝐷̂𝑛𝑤 =
1

𝑛
∑ 𝐷𝑢,𝑖

𝑝𝑟𝑜(𝑑𝑖)𝑓𝑖(𝑑𝑖)

𝐾

𝑖=1

 Eq. 6.19 

where  𝑛 represents the number of values sampled from the marginal distribution 

of 𝑑, 𝐾  is the number of intervals considered in the numerical integration defined 

by an increment of integration ∆𝑑, 𝑑𝑖 is the flood depth located at the midpoint of 

the interval 𝑖,  𝐷𝑢,𝑖
𝑝𝑟𝑜(𝑑𝑖) is the unmitigated damage associated with 𝑑𝑖, and 𝑓𝑖(𝑑𝑖) 

is the number of sampled values falling in the interval 𝑖.  

A similar approach is used to estimate the integral of the perfect forecast scenario 

(Eq. 6.17) as: 

 

𝐸𝐷̂𝑤
𝑝𝑓,𝜏

(𝜏) =
1

𝑛
∑ 𝐷𝑤,𝑖

𝑝𝑓,𝜏

𝐾

𝑖=1

(𝑑𝑖)𝑓𝑖(𝑑𝑖) Eq. 6.20 

where 𝐷𝑤,𝑖
𝑝𝑓,𝜏

(𝑑𝑖) is the PFS-based net damage associated with 𝑑𝑖.  

The estimate of the double integral of the imperfect forecast scenario (Eq. 6.18) can 

be obtained by dividing the bivariate space into four quadrants corresponding to 

hits, misses, false alarms, and correct negatives (defined in terms of flood warning 

decisions), and applying the above estimation approach to each expression of Table 

6.1. Therefore, the total expected damage will be:  
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𝐸𝐷̂𝑤
𝑖𝑓,𝜏

=
1

𝑛
[∑ 𝐷𝑚,𝑖

𝑝𝑟𝑜,𝜏

𝐾

𝑖=1

(𝑑𝑖
ℎ1)𝑓𝑖(𝑑𝑖

ℎ1) + ∑ 𝐶𝑤,𝑖
𝜏,ℎ1

𝐾

𝑖=1

(𝑑̂𝑖
ℎ1)𝑓𝑖(𝑑̂𝑖

ℎ1)

+ ∑ 𝐷𝑢𝑚,𝑖
𝑝𝑟𝑜,𝜏

𝐾

𝑖=1

(𝑑𝑖
ℎ2)𝑓𝑖(𝑑𝑖

ℎ2) + ∑ 𝐶𝑤,𝑖
𝜏,ℎ2

𝐾

𝑖=1

(𝑑̂𝑖
ℎ2)𝑓𝑖(𝑑̂𝑖

ℎ2)

+ ∑ 𝐶𝑤,𝑖
𝜏,𝑓𝑎

𝐾

𝑖=1

(𝑑̂𝑖
𝑓𝑎

)𝑓𝑖(𝑑̂𝑖
𝑓𝑎

) + ∑ 𝐷𝑢,𝑖
𝑝𝑟𝑜,𝜏

𝐾

𝑖=1

(𝑑𝑖
𝑚)𝑓𝑖(𝑑𝑖

𝑚)] 

Eq. 6.21 

where the superscript h1 and h2 are used to reference the economic variates and 

observed and forecast flood depths associated with hits 1 and hits 2, respectively, 

whereas for false alarms and misses, the superscripts 𝑓𝑎 and 𝑚 are used for these 

purposes. The damage variables in Eq. 6.21 are taken from Table 6.1 for the four 

cases. 

6.6 Algorithms used to define the reliability and effectiveness of the flood 

warning system 

The hydro-economic ED model is used in this work to explore the reliability and 

economic effectiveness of a FEWS based on inundation forecasting. In the prior 

sections, the components, metrics, and concepts used by the model to define these 

two flood warning attributes were explained. This section of the chapter describes 

the algorithms used by the hydro-economic ED model to estimate the ED for the 

three warning scenarios considered in section 6.5. 

The bivariate Lognormal distribution (BLND) is used for all the 

sampling/sensitivity experiments carried out in this chapter. The economic 

effectiveness of the FEWS for each with-warning scenario is computed relative to 

the 𝐸𝐷 of the NWS, which is described by Eq. 6.19 and computed as follows. 

 Step 1: Use the MCFG to sample 𝑛 values from 𝑓(𝑦). 

 Step 2: For each sampled value 𝑦𝑖, use the RIC to estimate i) the number of 

houses flooded 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑖

, through the impact-curve base method, and the 

flood depth 𝑑𝑖 by applying Eq. 6.2 (section 6.4.3.1); and ii) 𝐷𝑢
𝑝𝑟𝑜(𝑑𝑖), i.e., 

the flood damage in the at-risk community without the warning service,  by 

applying Eq. 6.5 

 Step 3: Estimate 𝐸𝐷𝑛𝑤 (Figure 6.3a) by applying Eq. 6.19. 
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6.6.1 Perfect forecast scenario 

The ED of the PFS, which represents the maximum economic benefits that can be 

achieved by a FEWS, is estimated by following the algorithm. 

 Step 1: Use the MCFG to sample 𝑛 values from 𝑓(𝑦). 

  Step 2: For each sampled value 𝑦𝑖, use the RIC to estimate i) the number of 

houses flooded 𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑓𝑙𝑜𝑜𝑑𝑒𝑑,𝑖

, through the impact-curve base method, and the 

flood depth 𝑑𝑖 by applying Eq. 6.2 (section 6.4.3.1). 

 Step 3: For each 𝑑𝑖, uses the RIC to compute 𝐷𝑤
𝑝𝑓,𝜏

(𝑑𝑖), i.e., the net damage 

in the at-risk community with the warning service based on perfect forecast, 

by applying Eq. 6.15. 

 Step 4: Estimate 𝐸𝐷𝑤
𝑝𝑓,𝜏

(Figure 6.3b) through Eq. 6.20. 

 Step 5: Compute the economic effectiveness of the FEWS by using Eq. 6.1 

6.6.2 Imperfect deterministic forecast scenario 

The DFS assumes that the warning decision and the inundation forecasting are 

based only on 𝑦̂. The algorithm used to estimate the metrics that define the 

reliability and economic effectiveness under this scenario is detailed as follows. 

 Step 1: Uses the MCFG to sample 𝑛 bivariate values from 𝑓(𝑦, 𝑦̂) based on 

the BLND algorithm described in section 4.4.4. 

 Step 2: For each forecast value 𝑦̂𝑖, uses the FWDC to simulate the warning 

decision according to the DFDR (Eq. 5.1), i.e., warn only if 𝑦̂𝑖 > 𝑦𝑇. 

 Step 3: Use the flooding threshold criterion (FTC) described in Chapter 5 

to define each pair (𝑦𝑖, 𝑦̂𝑖) as (𝑦𝑖
ℎ, 𝑦̂𝑖

ℎ), (𝑦𝑖
𝑚, 𝑦̂𝑖

𝑚), and (𝑦𝑖
𝑓

, 𝑦̂𝑖
𝑓

), i.e., as hit, 

miss, and false alarm events, respectively (Table 5.2). In addition, define 

each pair (𝑦𝑖
ℎ, 𝑦̂𝑖

ℎ) as (𝑦𝑖
ℎ1, 𝑦̂𝑖

ℎ1) and (𝑦𝑖
ℎ2, 𝑦̂𝑖

ℎ2), i.e., hits 1 and hits 2, 

respectively. 

 Step 4: Use the RIC to define the economic consequences of each pair 

(𝑦𝑖
ℎ1, 𝑦̂𝑖

ℎ1),  (𝑦𝑖
ℎ2, 𝑦̂𝑖

ℎ2),(𝑦𝑖
𝑚, 𝑦̂𝑖

𝑚), and (𝑦𝑖
𝑓

, 𝑦̂𝑖
𝑓

) according to Table 6.1. 

 Step 5: Estimate the ED for the DFS (𝐸𝐴𝐷̂𝑤
𝑑𝑒𝑡,𝜏

) through Eq. 6.21, where 

the superscript det replaces if. 

 Step 6: Compute the economic effectiveness of the FEWS by using Eq. 6.1.   

 Step 7: Build the contingency tables according to the FPC (Table 5.3) and 

estimate the reliability of the FEWS in terms of POD and FAR (Table 5.4). 

6.6.3 Imperfect probabilistic forecast scenario 

The PrFS assumes that the warning decision and the inundation forecasting is based 

on a warning level 𝑦̂𝑤 estimated from 𝑓(𝑦|𝑦̂). The algorithm used to estimate the 

metrics that define the reliability and effectiveness is detailed as follows. 
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 Step 1: Uses the MCFG to sample 𝑛 bivariate values from 𝑓(𝑦, 𝑦̂) and its 

associated conditional distribution 𝑓(𝑦|𝑦̂) based on the BLND algorithm 

described in section 4.4.4. 

 Step 2: Define a set of values between 0 and 1, e.g., [0.1,0.15,0.2 ,… 0.975] 

to define 𝑃𝑇𝑘 as the value assumed for the probabilistic threshold 𝑃𝑇 within 

this set. 

 Step 3: Based on 𝑃𝑇𝑘,   define for each conditional distribution 𝑓(𝑦|𝑦̂𝑖) the 

warning level 𝑦̂𝑤,𝑖, and use the FWDC to simulate the warning decision 

according to the PDR (Eq. 5.3), i.e., warn only if 𝑦̂𝑤,𝑖 > 𝑦𝑇. 

 Step 4: Use the FTC described in Chapter 5 to define each pair (𝑦𝑖, 𝑦̂𝑤,𝑖) as 

(𝑦𝑖
ℎ, 𝑦̂𝑤,𝑖

ℎ ), (𝑦𝑖
𝑚, 𝑦̂𝑤,𝑖

𝑚 ), and (𝑦𝑖
𝑓

, 𝑦̂𝑤,𝑖
𝑓

), i.e., as hit, miss, and false alarm 

events, respectively (Table 5.2). In addition, define each pair (𝑦𝑖
ℎ, 𝑦̂𝑤,𝑖

ℎ ) as 

(𝑦𝑖
ℎ1, 𝑦̂𝑤,𝑖

ℎ1 ) and (𝑦𝑖
ℎ2, 𝑦̂𝑤,𝑖

ℎ2 ), i.e., hits 1 and hits 2, respectively. 

 Step 5: Use the RIC to define the economic consequences of each pair 

(𝑦𝑖
ℎ1, 𝑦̂𝑤,𝑖

ℎ1 ), (𝑦𝑖
ℎ2, 𝑦̂𝑤,𝑖

ℎ2 ), (𝑦𝑖
𝑚, 𝑦̂𝑤,𝑖

𝑚 ), and (𝑦𝑖
𝑓

, 𝑦̂𝑤,𝑖
𝑓

) according to Table 6.1 

 Step 6: Estimate the ED in the PrFS associate with 𝑃𝑇𝑘 (𝐸𝐷̂𝑤,𝑘
𝑝𝑟,𝜏

) through 

Eq. 6.21, where the superscript pr replaces if. 

 Step 7: Repeat Steps from 3 to 6 for each 𝑃𝑇𝑘. 

 Step 8: For each 𝐸𝐷𝑤,𝑘
𝑝𝑟𝑜,𝜏

, compute the economic effectiveness 𝐸𝑤,𝑘
𝑝𝑟,𝜏

 of the 

flood warning system by using Eq. 6.1. 

 Step 9: Define 𝑃𝑇∗ as the 𝑃𝑇𝑘 associated with  𝑚𝑎𝑥(𝐸𝑤,𝑘
𝑝𝑟,𝜏

). 

 Step 10: Estimate the reliability of the FEWS by repeating Step 7 of the 

DFS case above. 

6.7 Sensitivity analysis 

In the prior sections, the criteria, metrics, and algorithms considered in the hydro-

economic EAD model to explore the effectiveness and reliability of a FEWS were 

described. In this last section of the chapter, the sensitivity of several parameters of 

the model that represents the main assumptions in the estimation of these flood 

warning performance attributes is analysed. This is done through several sensitivity 

experiments based on the one-at-a-time (OAT) method (Pianosi et al., 2016), 

which, in essence, varies/perturbs the input parameters of the hydro-economic ED 

model from its reference parameter values (baseline scenario) one at a time and 

assess the impacts on the metrics used to define the reliability and economic 

effectiveness Thus, in this section, the parameters and the flood warning 

performance attributes that define the baseline scenario are first described, and then, 

the results of the sensitivity analysis are shown. 



166 

 

6.7.1 Baseline scenario 

The hydro-economic ED model can be considered an extension of the  framework 

used in Chapter 5 to explore the reliability of flood warning systems based on 

inundation forecasting. Thus, the hydro-economic ED model uses three additional 

parameters (γ,α, 𝜗) to those considered in the framework shown in  Chapter 5 (Table 

5.6).  

Table 6.2: Assumed input parameter values for the baseline scenario 

Table 6.2 depicts the input parameters of the model and the values which define the 

baseline scenario. They are split according to the component they represent. The 

baseline hydro-economic ED model assumes that the cost of the warning response 

𝐶𝑤
𝜏  represents 10% of the value of the damage avoided, i.e., γ =0.1 in Eq.6.17, and 

the efficiency of the proactive action α is assumed to be 50 %. Thus, the values set 

for γ and α were 0.1 and 0.5, respectively.  The monetary value for the residential 

contents in each floodplain property was assumed to be 1 unit. The adopted values 

Abbreviation  Description 
Value 

adopted 

Parameter 

associated 

with: 

𝜇𝑦 Mean of 𝑦. 2.51 

The river 

basin 

𝜎𝑦
2 The coefficient of variation of 𝑦.  0.20 

𝑦𝑜 Location parameter of 𝑦 2.03 

𝛾𝑦 The average number of peaks per year 1.60 

L Basin lagtime L 6 hrs 

𝜇𝑦̂ Mean of the forecasts of 𝑦 𝜇𝑦 

Flood 

forecasting 

and warning 

system 

𝜎𝑦̂
2 The variance of the forecasts of 𝑦 𝜎𝑦

2 

𝑦̂𝑜  Location parameter of the forecasts of 𝑦 𝑦𝑜 

𝛾𝑦̂ 
The average number of peaks  per year of the 

forecasts of 𝑦 
𝛾𝑦 

𝐼𝑃𝜌  
The inflection point of the lead time-performance 

function 
0.85 

𝜏 Lead time 6 hr 

γ 
A parameter that defines the cost of the warning 

response as a percentage of potential benefits. 
0.1 

𝑇𝑆𝑜𝑃 
Return period associated with the flooding 

threshold 𝑦𝑇. 
5 years 

The at-risk 

community 
𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑎𝑡−𝑟𝑖𝑠𝑘 Total number of houses at risk in the benefit area 1000 

𝜗 The monetary value of residential contents 1 unit. 

𝛼 Efficiency parameter of the proactive action 0.5 

𝑛 Sample size or number of simulated events 10000 
Monte Carlo 

simulation 
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for the remaining parameters, which match with the framework shown in Chapter 

5, were the same as those considered in Table 5.6. The rationality of these adopted 

values is explained in section 5.7.1, and it is also used in this work to represent the 

baseline scenario in this sensitivity analysis. Finally, the number of simulated 

events was set to 500,000 for the Monte Carlo estimates. It is worth noting that 

Figure 5.7 can also be used to represent the effect of the standard of protection SoP 

on functions that describe the flood damage without the warning services (Eq. 6.16) 

and the net damage in the PFS (Eq. 6.17). In this case, the impact represents the 

flood damage or net flood damage, and the SoP  shifts the value at which the flood 

impact begins to the value of 𝑇𝑆𝑜𝑃. The results of the baseline scenario are explained 

as follows.  

The analysis of the baseline scenario, under the criteria mentioned above, is 

summarised in Figure 6.6 and Figure 6.7, whose main values are shown in Table 

6.3. Figure 6.6 shows the results of the optimization procedure used to find the 

optimal probabilistic threshold 𝑃𝑇∗ for the probabilistic decision rule PDR in the 

PrFS based on the algorithm described in section 6.6.3. The solid grey curve 

indicates how the value of 𝐸𝑤 changes when considering several values of the 

probabilistic threshold PT for the PDR. The figure also shows the values of 𝐸𝑤 

based on the PFS and DFS obtained from  the algorithms described in sections 6.6.1 

and 6.6.2,  represented by a solid black and blue line, respectively. Figure 6.7 

shows, on the other hand, the reliability of the flood warning system in terms of 

POD and FAR based on the FPC for the DFS and PrFS. These figures can be used 

to analyse how the effectiveness and reliability are related. 

Table 6.3: Flood warning performance attributes of the baseline scenario 

These values correspond to the Figures 6.6 and 6.7 

 

 

 

Scenario  
Decision 

rule 

PT            

[-] 

Lead time     

[hr] 

POD                   

[-] 

FAR                                             

[-] 
𝐸𝑤                       
[%] 

DFS DFDR - 

6 

0.60 0.39 4.13 

PrFS PDR 0.54 0.84 0.61 5.24 

PFS - - 1 0 7.5 
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Figure 6.6: Estimation of the economic effectiveness of the baseline model under different 

forecasting scenarios. 

The grey line shows the results of the optimization procedure used to find the optimal value of the 

probabilistic threshold PT used in the warning strategy of PrFS; the optimal value 𝑃𝑇∗ is described 

with a red cross. The effectiveness of the DFS and PFS are illustrated with horizontal lines.                                                   
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; PT: 

probabilistic threshold. 

 

Figure 6.7: Estimation of the reliability of the baseline model under the imperfect forecasting 

scenarios 

The reliability is evaluated in terms of POD and FAR and evaluated based on the FPC (5.4.2).                              
DFDR: Decision rule used in the deterministic forecast scenario; PDR: Decision rule used in the probabilistic forecast 

scenario; POD: probability of detection; FAR: false alarm ratio. 

The PFS delivers the maximum economic benefits one can obtain from the FEWS. 

Figure 6.6 shows that, as expected,  the value of 𝐸𝑤 for this scenario is highest. The 

economic effectiveness of the PrFS is higher than that of the DFS; it is due to the 

decision rule used in that scenario, i.e., the PDR, assumes that the Warner acts to 

increase the economic benefits, i.e., 𝐸𝑤,  in the at-risk community. In terms of 
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reliability, Figure 6.7 shows that this flood warning performance attribute of the 

baseline model based on the FPC for the DFS is in the Low category (section 

5.7.2.1), as the values of POD and FAR are higher and lower than 0.5, respectively. 

The probabilistic decision rule PDR, on the other hand, delivers a FAR value higher 

than 0.5, which might be considered not useful in operational FEWS. These results 

show that when the cost of the warning response 𝐶𝑤
𝜏 (𝑑̂) is low,  represented in this 

case as 10% of the forecast economic benefits, i.e., γ =0.1, one can “sacrifice” the 

reliability of the FEWS in terms of increasing false alarms, to increase the economic 

effectiveness, as avoiding misses has the biggest impact on damage mitigation and 

𝐸𝑤. 

An interesting point here is to compare the reliability results of the PDR (0.84 and 

0.61 for POD and FAR, respectively (Table 6.3)) based on the optimisation criterion 

adopted in this Chapter, i.e., maximizing 𝐸𝑤, with the ones obtained in Chapter 5 

based on the POD-FAR optimisation criterion (0.79 and 0.55 for POD and FAR, 

respectively (Table 5.7)). The results indicate that both optimization criteria 

generate high values of POD and FAR and that the values of PDR based on the 

optimization of 𝐸𝑤 are greater than those obtained in terms of POD-FAR. As was 

concluded in Chapter 5, the high values of FAR associated with the POD-FAR 

criterion are due to this optimization criterion does not place any restriction on the 

value of FAR, and it looks for the biggest difference between POD and FAR, 

regardless of the value of the latter. On the other hand, as was concluded above, the 

high FAR value associated with the optimization criterion adopted in this Chapter 

is due to the low cost of the warning response 𝐶𝑤
𝜏 (𝑑̂) (γ =0.1). Note, however, that 

the reliability of flood warnings associated with this criterion is strongly controlled 

by  𝐶𝑤
𝜏 (𝑑̂); therefore, one would expect that when increasing 𝐶𝑤

𝜏 (𝑑̂), the values 

shown in Table 6.3 will change; it will be analysed in section 6.7.2.3.  

As was discussed in Chapter 5 (section 5.7.2.1), the effect of having high values of 

FAR in a FEWS is known as ‘cry wolf’, which has to do with the disregarding of 

flood warnings due to their loss of credibility as a result of the high percentage of 

false alarms. However, Barnes et al. (2007) advocate that there is little evidence 

that a high value of FAR causes users to ignore warnings of severe events.  
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6.7.2 Sensitivity experiments 

In this last sub-section of the chapter, the sensitivity of several parameters with 

respect to the results shown in Table 6.3 is explored. This was done based on three 

sensitivity experiments.  

6.7.2.1 Sensitivity experiment 1  

In principle, there is a trade-off between the economic benefits and reliability of a 

FEWS when analysing these two flood warning performance attributes as a function 

of the lead time, i.e., the longer the lead time, the higher the damage saved and the 

lower the reliability, respectively (Schröter et al., 2008). However, it has been 

demonstrated that when including the net damage associated with forecast 

uncertainty (section 6.2), that trade-off can be undermined. For example, Verkade 

and Werner (2011) showed that the expected annual benefits of a FEWS could 

decrease when the lead time and reliability are long and low, respectively, due to 

the economic consequences of false alarms and misses. This experiment aims to 

explore the relationship between these two flood warning performance attributes 

for each forecasting scenario. For this purpose, it is assumed that the forecasts of 

several FEWSs with several lead times shorter or longer than that of the baseline 

model (6hr) (Table 6.2) are represented by the same moments of 𝑦̂ (which are taken 

to be equal to those of y), and that the forecast uncertainty is only controlled by 

𝜌𝑦𝑦̂. In this experiment, 𝜌𝑦𝑦̂ , defined by the lead time-correlation function in Eq. 

4.57, describes the forecast uncertainty relationship with lead time which, at the 

same time, reduces or increases the forecast uncertainty, respectively. Table 6.4 

gives a description of this experiment and the range of values of τ to be analysed. 

Table 6.4: Description of sensitivity experiment 1 

 

 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝜏  
3 hr         

(-50%) 
6 hr 

24 hr 

(+200%) 

Analyse how the flood 

warning performance 

attributes (reliability and 

economic effectiveness) of the 

baseline model, for each 

forecasting scenario, changes 

as the lead time changes. 
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The results of this experiment are shown in Figure 6.8 and Figure 6.9, which shows 

how these flood warning performance attributes of the baseline scenario change as 

the lead time τ changes. The results indicate that the economic benefits of a FEWS 

based on a PFS increase as τ increases, and that, when considering the net damage 

associated with forecast uncertainty, there is not a trade-off between the reliability 

and economic benefits; they show that for the DFS and PrFS there is an optimal 

lead time (τ = 12hrs) that maximizes the economic benefits in the at-risk 

community. Furthermore, the DFS-based and PrFs-based economic benefits of 

FEWSs with short lead times (τ values shorter than the basin lagtime L) are close 

to the maximum economic benefits that can be achieved by the system, i.e., those 

obtained from the PFS. The rationality of all these results is explained as follows. 

As was explained in section 6.3.1, the PFS-based economic effectiveness represents 

the maximum economic benefits that can be achieved by the FEWS as they are not 

affected by the net damage associate with forecast uncertainty (Figure 6.2c). That 

means this scenario delivers the highest values of 𝐸𝑤 (solid black line) and 

represents the theoretical limit of the economic benefits, which according to Figure 

6.8 ranges from 4 to 15% approximately for FEWS with lead times between 1 and 

24h. Note that these values depend on the adopted values for the economic 

parameters γ and α in the baseline FEWS (Table 6.2). Note also that the net damage 

associated with forecast uncertainty is present in false alarms, misses, and hits 

(Figure 6.2), and they increase 𝐸𝐷𝑤 in Eq. 6.1, which, in turn, decrease the 

economic effectiveness 𝐸𝑤. Since the DFS and PrFS are characterised by the 

presence of these events, neither of these scenarios can overcome the economic 

benefits of the PFS.   
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Figure 6.8: Analysis of the effectiveness of the baseline model based on the sensitivity 

experiment 1 

In this experiment, the effectiveness of the baseline model is analysed by reducing or extending 

the lead time τ, which, at the same time, reduces or increases the forecast uncertainty, respectively.                                                                                                                    
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario. 

According to the results shown in Figure 6.8,  the economic effectiveness of a 

deterministic FEWS (solid blue line) with forecasting lead times between 1 and 24h  

can range from 1% and 4% approximately. The economic effectiveness increases 

up to 12 hours but then decreases. These results also indicate that the net damage 

associated with forecast uncertainty increases as the lead time τ increases beyond 

12 hours since these economic benefits move away from the PFS-based benefits 

and drop as the lead time τ increases. Figure 6.9 also shows that the reliability of 

flood warnings based on deterministic forecasts decreases as the lead time τ 

increases, which is expressed with lower and higher values of POD and FAR, 

respectively. There is not, therefore, a trade-off between the economic benefits and 

reliability for the DFS case, since the former decreases after a certain lead time. 

Thus, the DFS-based effectiveness allows an optimal lead time to be analysed. 

Figure 6.8 shows that this lead time is 12 hours approximately.  
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Figure 6.9: Analysis of the reliability of the baseline model based on the sensitivity 

experiment 1 

In this experiment, the reliability of the baseline model is analysed by reducing or extending the 

lead time τ which, at the same time, reduces or increases the forecast uncertainty, respectively. The 

reliability is evaluated in terms of POD and FAR based on the FPC (5.4.2). Figure a shows FAR 

and POD as a function of the lead time τ. The values of this figure are summarised in the FAR-

POD curves shown in b.                                                                                                                                                                          
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; POD: 

Probability of detection; FAR: False alarm ratio; FPC: floodplain property criterion. 

The economic effectiveness of the DFS with short lead times (τ values lower than 

the assumed basin lagtime L (6hr)) are close to the PFS-based benefits because their 

forecast uncertainty is small, and, therefore, the (negative) impact of the net damage 

associated with forecast uncertainty (Figure 6.2) on the economic effectiveness is 

small. This small forecast uncertainty also produces high reliability (Figure 6.9a). 

The hydro-economic ED model assumes that these systems have small forecast 

uncertainty because they use forecasting models based on observed data (real-time 

data), such as gauge-based quantitative precipitation (QPE), and may also employ 

forecast updating. The forecast uncertainty of FEWSs with long lead times (τ values 

beyond L) drastically increases because the forecasting models have to be forced 

with quantitative precipitation forecasts (QPFs). The hydro-economic ED model 

represents this by decreasing the value of 𝜌𝑦𝑦̂ according to the lead time-correlation 

function shown in Figure 4.14 (note that in this experiment, the moments of 𝑦̂ are 

assumed to be the same for each lead time τ, and the forecast uncertainty is only 

controlled by 𝜌𝑦𝑦̂).  

The considerable forecast uncertainty of deterministic FEWSs with long lead times 

reflect the difference between 𝑦 and 𝑦̂, (the forecast error) and therefore, between 

𝑛ℎ𝑜𝑢𝑠𝑒𝑠
𝑤𝑎𝑟𝑛𝑒𝑑 and 𝑛ℎ𝑜𝑢𝑠𝑒𝑠

𝑓𝑙𝑜𝑜𝑑𝑒𝑑
, reducing the benefits of ‘good’ decisions (hit events) and 
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increasing the presence of ‘wrong’ decisions (false alarms and misses events) in the 

system. That increases the net damage associated with forecast uncertainty (Figure 

6.2) and, in turn, decreases the effectiveness 𝐸𝑤. The economic benefits of these 

systems can be lower than those obtained from FEWSs with shorter lead times. A 

decrease in 𝐸𝑤 means that the value of 𝐸𝐷𝑤 approaches that of 𝐸𝐷𝑛𝑤 (Eq. 6.1); if 

the former is higher than the latter,  the forecasts of the FEWS do not have value in 

the at-risk community. Note that, even though the DFS-based results are affected 

by considerable forecast uncertainty for long lead times, which produces low 

reliability (Figure 6.9), these systems still have value in the at-risk community since 

the value of 𝐸𝑤 is higher than zero.  

Like the DFS-based results, the PrFS-based economic effectiveness (solid grey line 

in  Figure 6.8) shows an optimal lead time of approximately 12 hours. These results 

indicate that an imperfect FEWS is characterised by a lead time that represents the 

balance between an adequate time to act and a reasonably good forecast. Likewise, 

the economic effectiveness of probabilistic FEWSs with short lead times 

approaches the PFS-based effectiveness due to the small forecast uncertainty but is 

slightly better than that obtained from the deterministic FEWS. However, as the 

lead time increase, the economic effectiveness of the PrFS separates from 

deterministic-forecast-based economic effectiveness as is clearly better. These 

results tell us that the benefits of using probabilistic information in a FEWS in 

comparison to the deterministic information are most noticeable in FEWSs based 

on forecasts with relatively high forecast uncertainty.  

Figure 6.8 shows that these economic benefits of the PrFS can range from 3% to 

5.5 % approximately. That increase (1.5% with respect to the maximum 

deterministic-forecast-based value)  is due to the adopted warning strategy in this 

scenario, which assumes that the warner acts to increase the economic benefits in 

the at-risk community (section 6.4.2). To increase the economic effectiveness of 

FEWSs with longer lead times, the Warner has to warn more frequently with respect 

to the DFS. This is intended to avoid the high economic impact of having flooded 

houses not being warned in the at-risk community, characterised as ‘misses’ in the 

FPC (section 5.4.2). That strategy, however, increases the probability of having 

warned houses that are not subsequently flooded (section 5.4.2). These probabilities 

are described by FAR, and that is the reason why Figure 6.9 shows high values of 
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these metrics. That means that due to the low cost of the warning response 𝐶𝑤
𝜏 (𝑑̂) 

of the baseline scenario (defined by the parameter 𝑟=0.1 (Eq. 6.13 )), the best 

economic strategy is to warn more frequently accepting or “sacrificing” the low 

economic impact of having warned houses that are not subsequently flooded to 

avoid the high economic impact of having flooded houses not being warned. Note 

that this warning strategy also reduces the probability of having flooded houses that 

were not warned, characterised as missed events in the FPC(section 5.4.2). These 

probabilities are described in Figure 6.9 by 1-POD (grey line). The values of this 

probability indicate that even though the warning strategy of the PrFS warns more 

frequently for long τ values with respect to the DFS, the probability of having 

flooded houses that are not warned is still considerable, reflecting the high 

uncertainty.  

One should bear in mind that, even though the warning strategy in the PrFS 

produces greater economic benefits than the DFS-based results, the high values of 

FAR might produce a loss of credibility in the FEWS (‘cry wolf’ effect), and an 

increase in worry for flood plain residents (psychological impact). That might 

decrease the effectiveness of the proactive action, which is represented in the hydro-

economic ED model by the parameter α. The adopted value of this parameter for 

the baseline scenario is 0.5 (Table 6.2), which is a fixed value in this experiment 

for each lead time τ, regardless of the value of FAR. The PrFS-based results do not 

take this into account, and the economic effectiveness depicted in  Figure 6.8 (solid 

grey line) might be, thus, overestimated. However, as was mentioned above, Barnes 

et al. (2007) advocate that there is little evidence that a high value of FAR causes 

users to ignore warnings of severe flood events.  

6.7.2.2 Sensitivity experiment 2  

The sensitivity experiment 1 explores the economic effectiveness and reliability of 

the baseline FEWS based on forecasts for several τ values. That experiment 

assumes that these forecasts are represented by the same moments, and, therefore, 

the forecast uncertainty can be only modified through the value of 𝜌𝑦𝑦̂, which, in 

turn, is related to τ through the lead time-correlation function shown in Figure 4.14. 

One can also use this function to evaluate the impact of decreasing or increasing 

the forecast uncertainty on the results shown in the sensitivity experiment 1. That 

is done by considering the baseline parameters (Table 6.2) and  modifying the 
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parameter 𝐼𝑃𝜌 , where the latter represents the inflexion point of the lead time-

correlation function, and exploring the effect as a function of τ. A higher or lower 

value of this parameter means a smaller or larger forecast uncertainty (better or 

worse forecast quality) for each lead time τ, respectively. Thus, in this experiment, 

the sensitivity of 𝐼𝑃𝜌 with respect to the reliability and economic effectiveness of 

the baseline FEWS characterised by different τ values, under different forecasting 

scenarios, is analysed. Since research works indicate that an improvement of 10% 

per decade in the forecast performance is achievable in FEWSs (Pappenberger et 

al., 2015), this parameter was modified by a percentage of ± 10%. Table 6.5 gives 

a description of this experiment and the range of values to be explored. In this case, 

several values within the range τ were considered, whereas for the 𝐼𝑃𝜌, only the 

values of the lower and upper bound were included in the analysis.  

Table 6.5: Description of sensitivity experiment 2 

The results of the experiment are depicted in Figure 6.10 and Figure 6.11, which 

shows how the economic effectiveness and reliability of the baseline FEWS (τ= 

6hr) based on forecasts for  several τ values change when modifying the values of 

𝐼𝑃𝜌. The dashed blue and grey lines in Figure 6.10 indicate how the DFS-based and 

PrFS-based effectiveness, respectively,  change when modifying the  baseline value 

of 𝐼𝑃𝜌 (.85) to 0.94 (Figure 6.10Figure 6.10) and 0.77 (Figure 6.10b). Similarly, the 

solid green and grey lines in Figure 6.11 indicate how POD and FAR change when 

making these changes to the  baseline value of 𝐼𝑃𝜌.  Note that in this experiment, 

the moments of 𝑦̂ are assumed to be the same for each lead time τ, and are equal to 

those of y, so the forecast uncertainty is only controlled by 𝜌𝑦𝑦̂.  

Figure 6.10 shows that the sensitivity of the DFS-based effectiveness with respect 

to 𝐼𝑃𝜌 is more or less the same (variation of approximately ±1.5% of the baseline 

value) for all lead times, whereas the PrFS-based effectiveness shows poor 

sensitivity to the lower bound 𝐼𝑃𝜌 values and high sensitivity to the upper bound 𝐼𝑃𝜌 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝜏  
3 hr         

(-50%) 
6 hr 

24 hr 

(+200%) 

Analyse how the increase or 

reduction of forecast 

uncertainty impact on the 

flood warning performance 

attributes (reliability and 

effectiveness) of a FEWS with 

a given lead time. 

𝐼𝑃𝜌   
0.77         

(-10%) 
0.85 

.94   

(+10%) 
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values for long lead times τ (τ >12 hr). These results indicate the benefits of 

improving the forecast performance (expressed here as an increase of 10% of the 

𝐼𝑃𝜌 value), in economic terms,  are most noticeable in probabilistic FEWSs whose 

forecast uncertainty is relatively high, expressed in this experiment as long τ values.  

In terms of reliability, Figure 6.11 shows that the DFS-based reliability's sensitivity 

is higher for short lead times (τ < 9 hr); the same occurs for the PrFS-based 

reliability, particularly for FAR values.  This suggests that the benefits of improving 

the forecast performance (expressed here as an increase of 10% of the 𝐼𝑃𝜌 value), 

in terms of reliability, are most noticeable in (deterministic and probabilistic) 

FEWSs whose forecast uncertainty is relatively low, expressed in this experiment 

as short τ values. 

 

 

Figure 6.10: Analysis of the economic effectiveness of the baseline model based on the 

sensitivity experiment 2 

In this experiment, the impact of the forecast uncertainty, controlled by correlation through 𝐼𝑃𝜌 on 

the effectiveness of the baseline model is analysed. The dashed blue and grey lines indicate when 

the forecast uncertainty is improved (a) or deteriorated (b), respectively, in the DFS and PrFS. In 

this experiment, the forecast uncertainty associated with a given lead time τ is changed by 

modifying the value of the parameter 𝐼𝑃𝜌.                                                                                                           
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; DFS_UB: 

Deterministic forecast scenario based on the upper bound of 𝐼𝑃𝜌; PrFS_UB: Probabilistic  forecast scenario based on the 

upper bound of 𝐼𝑃𝜌; DFS_LB: Deterministic forecast scenario based on the lower bound of 𝐼𝑃𝜌; PrFS_UB: Probabilistic  

forecast scenario based on the lower bound of 𝐼𝑃𝜌 
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Figure 6.11: Analysis of the reliability of the baseline model based on the sensitivity 

experiment 2 

In this experiment, the impact of the forecast uncertainty on the reliability of the baseline FEWS 

based on several lead times is analysed. The reliability is expressed in terms of POD and FAR 

based on the FPC. a) DFS-based results evaluated based on the FPC as a function of the lead time 

τ; these values are summarised in the POD-FAR curve shown in b). The same figures are used to 

show the PrFS-based results (c and d).                                                                                                                          
LB: lower bound of 𝐼𝑃𝜌 ; BS: Baseline scenario; UB: upper bound of 𝐼𝑃𝜌; POD: Probability of detection; FAR: False 

alarm ratio 

6.7.2.3 Sensitivity experiment 3 

In this last experiment,  the two input parameters that control the economic 

effectiveness, i.e., γ and α,  are perturbed. The parameter γ controls the cost of the 

warning response 𝐶𝑤
𝜏 (𝑑̂) and α represents the performance of the proactive action. 

The aim of the third sensitivity experiment is, therefore, to analyse the sensitivity 

of the economic effectiveness to perturbations of these economic parameters.  
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It is estimated that the emergency costs represent 10% of the property 

damage(Penning-Rowsell et al., 2020); therefore, values between 0.05 and 0.5 for 

γ were considered to analyse how an increase or decrease in 𝐶𝑤(𝑑̂) affects the 

economic effectiveness 𝐸𝑤 and the reliability of the PrFS-based results. On the 

other hand, the parameter 𝛼 was varied between 0 and 1 to explore how an increase 

or decrease in the performance of the proactive action impacts on 𝐸𝑤. Table 6.6 

gives a general description of this experiment.  

Table 6.6: Description of sensitivity experiment 3 

Parameter α 

Figure 6.12 shows the results of the sensitivity experiment in terms of economic 

effectiveness 𝐸𝑤, and Figure 6.13 in terms of reliability for the economic parameter 

α reflecting the efficiency of the proactive action. Figure 6.12 shows, as expected, 

that the economic effectiveness 𝐸𝑤 increases as α increases. A perfect scenario of 

the baseline FEWS (perfect response and forecast) produces economic 

effectiveness of 15% approximately. Based on the Carsell functions (Figure 6.5), 

this represents the maximum economic benefits that can be achieved by a FEWS 

with a lead time of 6 hours. This economic effectiveness 𝐸𝑤 cannot be achieved by 

imperfect FEWSs due to the net damage associated with forecast uncertainty and 

the inefficiency of the response. Figure 6.12 shows that if the baseline FEWS 

improves the efficiency of the proactive action to 70%, it can increase the economic 

effectiveness 𝐸𝑤  to 5.5 and 7.5 % approximately  for the DFS and PrFS, 

respectively. This figure also shows that the economic effectiveness for the DFS 

and PrFS are practically the same for low values of α (α<0.25). These results 

indicate the benefits of using probabilistic information in a FEWS with respect to 

the deterministic information are most noticeable in FEWSs where the potential 

economic benefits of the system are relatively high.  

Figure 6.13 shows that the reliability results for both the DFS and PrFS cases are 

not sensitive to perturbations to the parameter α. Note how, in the DFS, for all 

Parameter to 

be modified  

Lower 

bound 
Baseline 

Upper 

bound 
Aim 

𝛾 0.05           0.1 0.5     
Analyse the sensitivity of the 

economic parameters of the 

hydro-economic ED model 

when estimating the economic 

effectiveness. 𝛼 0.1           0.5 1    
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values of α, the POD and FAR values are the same as for the baseline FEWS, 0.61 

and 0.39 (Table 6.3), respectively. This is represented by a horizontal line in Figure 

6.13a and by several points clustering at the point representing the baseline results 

in the POD-FAR curve. For the case of the PrFS, even though the sample size used 

is large (500,000), there is some instability in the results. However, one can note 

that the values of POD and FAR delivered by the probabilistic decision rule PDR 

are on average 0.85 and 0.6, respectively.  

Based on these results shown in Figure 6.12 and Figure 6.13, one can also conclude 

that the performance of the proactive action is the main factor controlling the 

economic benefits of the FEWS. Note that, whatever the values of POD and FAR  

(this includes the baseline values and good values of POD and FAR), if the 

performance of the proactive action is poor, the economic effectiveness of the 

FEWS will be low. 

 

Figure 6.12: Sensitivity analysis of the performance of the proactive action on the economic 

effectiveness of a FEWS 

This figure shows how the economic effectiveness of the baseline FEWS changes as the parameter 

α changes for several forecasting scenarios.                   
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario. 
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Figure 6.13: Sensitivity analysis of the performance of the proactive action on the reliability 

of the baseline FEWS 

This figure shows how the reliability of the baseline FEWS changes as the parameter α changes for 

several forecasting scenarios. The reliability is expressed in terms of POD and FAR. a) Results 

evaluated based on the FPC as a function of the lead time τ; these values are summarised in the 

POD-FAR curve shown in b).                                                                                                                   
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; POD: 

Probability of detection; FAR: False alarm ratio                                                                                                     

Parameter γ 

Figure 6.14 shows the results of the sensitivity experiment in terms of economic 

effectiveness 𝐸𝑤, and Figure 6.15 in terms of reliability for the parameter γ. This 

parameter controls the cost of the warning response 𝐶𝑤
𝜏 (𝑑̂), and represents the value 

adopted by the hydro-economic ED model to estimate 𝐶𝑤
𝜏 (𝑑̂) as a percentage of the 

economic benefits of the FEWS if a forecast with the magnitude 𝑦̂ or 𝑦̂𝑤 occurs in 

the DFS or PrFS, respectively (section 6.4.3.5). Figure 6.14 shows that, as expected, 

the higher the value of γ, the lower 𝐸𝑤 and vice versa. This occurs because, when 

increasing or decreasing 𝐶𝑤
𝜏 (𝑑̂), the economic consequences of false alarms and 

hits increases or decreases, respectively. Note that, even for the high upper bound 

value of 𝛾 considered (50%), 𝐸𝑤 is still positive (> zero) for both scenarios. Note, 

however, that with the increase of 𝛾, the PrFS does not impact 𝐸𝑤 in the same 

proportion as it impacts in the DFS. It is due to the economic warning strategy 

adopted in the PrFS which modifies the warning criterion to avoid 𝐸𝑤 decreasing 

significantly. That is why reliability is sensitive to 𝛾 for the PrFS. Figure 6.15 shows 

that when increasing 𝐶𝑤
𝜏 (𝑑̂) , the best economic strategy is to warn less frequently 

as the values of POD and FAR decrease. If 𝐶𝑤
𝜏 (𝑑̂) decreases, the opposite effect 

occurs. These results tell us the importance of estimating 𝐶𝑤
𝜏 (𝑑̂) when quantifying 

the economic benefits of a FEWS, as an optimal warning strategy depends on this 

variate. The sensitivity of 𝐸𝑤 to the perturbations in γ is nil  for the DFS which is 



182 

 

represented by a horizontal line in Figure 6.15a, and by several points that cluster 

at the point representing the baseline results in the POD-FAR curve (Figure 6.15b). 

For the case of the PrFS, even though the sample size used is large (500,000), there 

is some instability in the results. 

 

Figure 6.14: Sensitivity analysis of the parameter γ on the economic effectiveness of the 

baseline FEWS 

In this experiment, the impact of the parameter γ on the economic effectiveness of the baseline 

model is analysed for all warning scenarios.                                                                                                                               
PFS: Perfect forecast scenario; DFS: Deterministic forecast scenario; PrFS: Probabilistic forecast scenario 

 

 

Figure 6.15: Sensitivity analysis of the reliability of the baseline FEWS to changes in the 

parameter γ. 

In this experiment, the impact of the parameter γ on the flood warning reliability of the baseline 

model is analysed for the imperfect warning scenarios.                                                                                                                
DFS: Deterministic forecast scenario; PrFS: Probabilistic forecast scenario; POD: Probability of detection; FAR: False 
alarm ratio.   
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6.8 Main findings  

Thanks to the integrated framework's versatility, the economic consequences of 

forecast uncertainty in a wide range of possible situations could be included in the 

analysis. The results showed that the warning strategy is an important factor 

influencing the economic effectiveness 𝐸𝑤 of an imperfect FEWS. This research 

showed that an optimal warning strategy based on probabilistic forecasts and an 

estimation of 𝐸𝑤 produced by the FEWS for each potential flood can obtain greater 

benefits than those obtained with a deterministic-forecast warning strategy. 

Furthermore, it was observed that the cost of the warning response 𝐶𝑤
𝜏 (𝑑̂) controls 

the flood warnings’ reliability and the warning strategy in a probabilistic FEWS 

where warning decisions are based on a probabilistic threshold. Depending on the 

value of 𝐶𝑤
𝜏 (𝑑̂), an optimal warning strategy for the system could be warning less 

or more frequently. If 𝐶𝑤
𝜏 (𝑑̂) is low, an optimal economic strategy could have high 

FAR values. Furthermore, this Chapter shows that a probabilistic-forecast-based-

optimal warning strategy, in economic terms, should be set for each lead time τ 

since the forecast uncertainty and its associated economic consequences increase as 

τ increases. Furthermore, the results of this Chapter indicate the benefits of using a 

probabilistic warning strategy with respect to a deterministic one are most 

noticeable in FEWSs based on forecasts with relatively high forecast uncertainty 

and where the potential economic benefits of the system are relatively high. 

The forecasting lead time τ was also an important factor influencing the economic 

effectiveness 𝐸𝑤 of a (deterministic and probabilistic) FEWS. The results showed 

that, when increasing τ, the economic effectiveness 𝐸𝑤 of an imperfect FEWS move 

away from the maximum economic effectiveness one can obtain from the system, 

i.e., those obtained from a perfect forecast scenario, due to the (negative) impact of 

the net damage associated with forecast uncertainty on the economic benefits. This 

research shows that an imperfect FEWS is characterised by an optimal lead time 

that represents the balance between an adequate time to act and a reasonably good 

forecast. 

This Chapter also showed that the economic effectiveness 𝐸𝑤 of a FEWS, based on 

the residents moving/ evacuating contents and a 6-hour lead time, can reach 15% 

in a perfect warning scenario (perfect forecast and response). This value cannot be 

achieved by imperfect FEWS due to the economic consequences of forecast 
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uncertainty and inefficiency of the proactive action. It was found that if one 

considers an efficiency parameter α of  70% and low cost of the warning response 

(10% of the forecast economic benefits), the economic effectiveness 𝐸𝑤 of an 

imperfect FEWS, based on a 6h lead time, can reach 5.5 and 7.5 % for the 

deterministic and probabilistic forecasts, respectively. In this sense, it was 

concluded that the performance of the proactive action is an important factor 

influencing the economic effectiveness of a FEWS. Further, it was found that a 

FEWS could have good flood warning reliability but low economic effectiveness 

𝐸𝑤 due to the bad performance of the proactive action.  

Finally, it was analysed that if an efficiency parameter α of  50% in the proactive 

action and a low cost of the warning response 𝐶𝑤
𝜏 (𝑑̂), with 𝛾 = 0.1, are considered 

in the FEWS, the economic effectiveness 𝐸𝑤 of deterministic forecasts can range 

from 1 to 4% for lead times of 1 and 24 hours. These 𝐸𝑤 values were improved by 

probabilistic FEWS whose 𝐸𝑤 ranged from 3% to 5.5 % (section 6.7.2.1).  
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 Chapter 7. The Nanjing Case Study 

7.1 Introduction 

The city of Nanjing has been chosen for the case study. Nanjing has suffered from 

severe pluvial flooding in recent years due to intense summer rain storms, notably 

in 2016, resulting in the inundation of a number of areas in the city. Most of these 

areas are polders that lie below the levels of the adjacent inner rivers, which are 

connected to outer rivers and ultimately the Yangtse river. Pumping systems are 

operated during storm events to remove water from the inner rivers to the outer 

rivers, to enable water to drain from the polder areas into the inner rivers. Even 

though storm warnings are issued in Nanjing, the pumping operations of these 

polders can be considered as reactive pump operations because they are mainly 

driven by the observed inflow. This case study is attractive because (a) rainfall 

forecasts can be used to conduct proactive pumping operations, and (b) the pumping 

represents a Risk Response Action (RRA) within the generic framework developed 

in this thesis. It, therefore, provides an excellent opportunity to demonstrate the 

value of probabilistic forecasts in making better decisions about pumping 

operations.  

In this context, a framework to analyse different pumping strategies in the polder 

systems under different forecast scenarios based on 24-h forecasts has been 

developed. The simulation of the pumping operations is done through continuous 

simulation. Pumping strategies are assessed in terms of the average pumping cost 

and average inundated area of the rainiest month in Nanjing (July). Figure 7.1 

illustrates the framework. It is made up of three components: i) a rainstorm-and-

forecast generator (RFG) which generates hourly rainfall and deterministic and 

probabilistic 24-forecasts of runoff, ii) a flood warning decision component 

(FWDC) that simulates warning decisions based on the type of forecast generated 

by the RFG, and ii) a response and impact component (RIC) which represents 

forecast-based pumping strategies and gives an estimation of its impact on the 

polder system. Even though the algorithm designed to represent the response 

component can be considered simple, where the simulation time for a month can be 

done in a matter of seconds, the stochastic component of the framework, and the 

approach used to represent the RFG, requires a high computational effort. Most of 
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the analysis shown in this chapter has been done by using a computing cluster with 

50 cores.  

 

Figure 7.1: Illustration of the framework used in this chapter.  

 

As shall be seen later, and in line with the Monte Carlo (MC) simulation of 

forecasts in Chapters 5 and 6, the framework’s application was based on 

simulated forecasts generated from a stochastic spatial/temporal rainfall 

model (RainSim) to demonstrate the benefits that could be derived from the 

use of forecasts in the management of polder flooding. Therefore, the reader 

should have in mind that the use of the word "forecast" throughout the 

chapter refers to a MC simulated forecast which implies that the proposed 

framework can be applied with real-world forecasts and observed rainfall 

data. 

This chapter is structured as follows: Section 7.2 introduces the research area and 

the algorithm that has been built to represent the response component of the 

framework.  In section 7.3, the structure of the RFG is explained. In sections 7.4 

and 7.5, the rainfall-threshold-based approach adopted to represent the warning 

decisions in the polder system and decision rules used to simulate that decisions 

under deterministic and probabilistic forecasts are explained. In sections 7.6 and 

7.7, the algorithms developed to represent the pumping strategies and to analyse the 

operation of the polder system under different forecast scenarios are defined. 

Finally, in sections 7.8 and 7.9, the results are presented. 
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7.2 Water Balance Model for the Operation of the Shazou Polder 

7.2.1 Research Area 

The research area is the Shazhou polder situated in Hexi New Town, located in the 

southwest of Nanjing City (54.7km2).  This area is surrounded by the Yangtze, 

Qinhuai, Nanhe, and New Qinhuai rivers (the outer rivers). The topography of Hexi 

New Town is plain and low lying, lower than the normal water level of the adjacent 

outer rivers. The town is protected from flooding by embankments and draining 

stormwater, collected in inner rivers, to the adjacent outer rivers by using pumping 

stations (Gao et al., 2013)(Figure 7.2).  

 

Figure 7.2: Map of the Shazhou polder (Hexi New Town) and its surrounding areas, 

Nanjing-China 

The capacity of the water pumps is described in Appendix A and was provided by Nanjing Hydraulic 

Research Institute (NHRI).  

The Shazhou polder is surrounded on two sides by the Qinhuai river due to its main 

channel dividing upstream into two branches at Heding Bridge of Dongshan Town. 

The west branch, the New Qinhuai river, with a total length of 18 km and a 

previously designed flood capacity of 900 m3s-1, flows into the Yangtze River via 

the New Qinhuai river floodgate, whereas the north branch has a length of 22.4 km 

and a previously designed flood capacity of 600 m3.s-1 (NMG, 2016). The latter is 

further split into two branches at Tong Ji Gate. One branch passes through Nanjing 
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city proper and is called the inner Qinhuai river, and the other is known as the outer 

Qinhuai river. The inner Qinhuai river flows downstream into the outer Qinhuai 

river, which then flows into the Yangtze River via the Wuding gate. The 

Wudingmen gate, located just downstream of the Tong Ji Gate, controls the 

discharges of the inner Qinhuai river, which in turn, receives the discharges of its 

tributaries coming from the northern area of Nanjing City and the Qianhu lake 

(Zhao et al., 2017) (Figure 7.2).  The aim of the floodgates is to improve the urban 

water environment and beauty of the city image, which, in the dry season, raises the 

water level of the Qinhuai River and, in the flood season, releases the urban water 

flow (Lui and Zhang, 2004). 

This research only focuses on the simulation of the water fluxes of the polder system 

and the inner rivers and neglects any interaction with the adjacent outer rivers. 

7.2.2 Water balance model for the operation of the Shazhou polder 

In this section, the algorithm used in the framework to represent the water fluxes in 

the Shazhou polder is explained. As will be seen later, this algorithm will be used 

for all scenarios considered in this work (the no warning, the perfect forecast, and 

the imperfect forecast scenarios), which will be modified according to the pumping 

strategy adopted in each of them. 

Owing to the characteristics of polders, the Shazhou polder is assumed in the 

analysis to be a tank with inputs and outputs (an input-output system). Thus, five 

processes have been identified to be simulated in the system during a storm: runoff, 

waterlogging, inflow to inner rivers, pumped water, and storage in the inner rivers.  

There are two benchmark water levels during a storm: the water level at the outlet 

of the pipe hereinafter called the critical water level (ℎ𝑐), and the initial water level 

of the inner rivers before the storm arrives (ℎ𝑜). If the water level exceeds the pipe 

outlet level, runoff cannot drain from the polder, the critical condition. The storage 

capacity of the inner rivers (𝑆𝑜
𝑐𝑎𝑝

) is defined by the difference between ℎ𝑐 and ℎ𝑜 

(Figure 7.3); expressed in length units (mm). Figure 7.3 shows the system working 

under non-critical conditions, i.e., when the water level of the inner rivers is below 

the critical level ℎ𝑐. However, waterlogging may still occur in this situation if the 

runoff from the polder exceeds the drainage capacity of the pipe.  Currently, a 

reactive pumping strategy is implemented by the flood managers, in which the rate 
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of pumping is based on the inflow rate. (The impact of pumping on the outer river 

levels, which drain to the Yangtze, is not considered.) A critical condition occurs if 

the pumping is insufficient to prevent the water levels submerging the pipe outlet. 

Thus, there are two potential states of the system during a storm: the non-critical 

condition, when the water level of the inner rivers (ℎ) is ≤ ℎ𝑐, and the critical 

condition, when ℎ > ℎ𝑐.   

Under the assumptions detailed above, the system simulation is represented through 

Eq. 7.1-Eq. 7.7, where the water balance is done at each time step, and all variates 

are represented in mm.h-1. The model used in this analysis is not a precisely 

calibrated model, but it does capture the key components of the polder system and 

has been validated against a historical storm event. 

 

 

Figure 7.3: Conceptual model of water fluxes in the Shazhou polder system during a 

rainstorm 

This figure shows the scenario when the water level is lower than ℎ𝑐 (non-critical condition) and 

when 𝑞𝑚𝑎𝑥 is surpassed by the inflow.  The dashed green arrow indicates the behaviour of the water 

level of the inner rivers under this condition during the pumping 

7.2.2.1 Runoff 

The runoff process is represented through Eq. 7.1, which is based on the rainfall-

runoff relationship used by Gao et al. (2008) in representing the rainfall-runoff 

process of a neighboring polder. 

𝑅𝑂𝑡 = 0.55𝑅𝑡 + 0.15𝑅𝑡−1 Eq. 7.1 

where 𝑅𝑡 [mm] and 𝑅𝑂𝑡 [mm] represent the rainfall and runoff value at the time 

step t [hrs].  As one can note, this equation states that the average runoff coefficient 

(𝐶𝑟𝑢) in the polder system is 0.7, which can be considered a reasonable value 
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considering that the impervious area in the polder has been reported to be about 

78.5% (Gao et al., 2009). No data were available to recalibrate this relationship for 

the Shazou polder. 

7.2.2.2 Waterlogging 

Under non-critical conditions, this process is simulated by using the equation of 

Gao et al. (2008), which uses the capacity of pipe-network drainage as the upper 

limit to derive the inflow process of inner rivers. Under critical conditions, it is, on 

the other hand, assumed that the inflow process is blocked and, therefore, the 

waterlogging cannot be drained. These processes are represented by 

𝑊𝑡 = {  
𝑊𝑡−1 + 𝑅𝑂𝑡,                                 𝑖𝑓 (ℎ𝑡 > ℎ𝑐) 

𝑚𝑎𝑥{0, 𝑊𝑡−1 + 𝑅𝑂𝑡 − 𝑟},          𝑖𝑓 (ℎ𝑡 ≤ ℎ𝑐) 
  } Eq. 7.2 

here 𝑟 [mm.h-1] is the capacity of the municipal pipe network, ℎ𝑡 [mm] is the water 

level of the inner rivers at the time step t, 𝑊𝑡 is the cumulative excess runoff or 

waterlogging on the polder at the time step t, and ℎ𝑐 has already been introduced 

above, which is defined in mm. 

7.2.2.3 Inflow 

Under non-critical conditions, the inflow to the inner rivers is also represented by 

using the conceptual model of Gao et al. (2008). Under critical conditions, it is 

assumed that the inflow process is blocked, and the inflow to the inner rivers is null. 

These processes are represented by: 

𝐼𝑡 = {
                   0,                                    𝑖𝑓 (ℎ𝑡 ≥ ℎ𝑐)  

𝑚𝑖𝑛{𝑟, 𝑊𝑡−1 + 𝑅𝑂𝑡},                   𝑖𝑓 (ℎ𝑡 < ℎ𝑐)
 } Eq. 7.3 

where It is the inflow at the time step t.  

7.2.2.4 Pumping strategy 

The time variable pumping rate (𝑞𝑡) to be considered in this algorithm will depend 

on the pumping strategy used to simulate the Shazou Polder. According to the 

current pump operation of the Shazou polder, the runoff is pumped to  the adjacent 

outer rivers according to the observed inflow 𝐼 (reactive pumping) (Gao et al., 2008, 

2009), i.e., 𝑞𝑡 = 𝐼𝑡, when 𝐼𝑡 < 𝑞𝑚𝑎𝑥 , and  when 𝐼𝑡 ≥ 𝑞𝑚𝑎𝑥 , the runoff is pumped 
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at the maximum pumping rate 𝑞𝑚𝑎𝑥. If ℎ𝑡 > ℎ𝑐 (critical condition), it is assumed, 

based on the analysis of pumping records, that pumping operators will drop the 

inner rivers to a normal water level (ℎ𝑛) following the storm event.  This normal 

water level ℎ𝑛 defines the lowest level that pumping operators will draw down the 

inner rivers, and this only occurs following a critical condition.  This strategy and 

other pumping strategies considered in the framework are explained in detail later 

on. 

7.2.2.5 Storage in the inner rivers 

The water storage can be expressed by: 

𝑆𝑡 = {
𝑆𝑡−1 − 𝑞𝑚𝑎𝑥 ,                               𝑖𝑓 (ℎ𝑡 ≥ ℎ𝑐) 

𝑆𝑡−1 + 𝑚𝑎𝑥{0, 𝐼𝑡 − 𝑞𝑚𝑎𝑥},         𝑖𝑓 (ℎ𝑡 < ℎ𝑐)  
} Eq. 7.4 

where  𝑆𝑡 [mm] is the water storage in the inner rivers at a given time 𝑡 . Since the 

variables used in Eq. 7.4 are areal variables (taking the area of the polder as 

reference), 𝑆𝑡 should be understood as a volume of water spreads over the polder 

area. This “areal” value is related to the actual value of the storage as: 

𝑆𝑡𝐴𝑝 =  𝑆𝑡
𝑖𝑛𝐴𝑖𝑛 Eq. 7.5 

where  𝐴𝑝  and  𝐴𝑖𝑛 are the areas of the polder and inner rivers respectively in the 

same units, and 𝑆𝑡
𝑖𝑛 is the actual value of the water storage in the inner rivers at a 

given time step 𝑡 taking mm as unit. If we consider 𝑘 as the water surface ratio of 

the polder (ratio between Ain and Ap), 𝑆𝑡
𝑖𝑛 can be expressed from  Eq. 7.5 as: 

𝑆𝑡
𝑖𝑛 =

𝑆𝑡

𝑘
 Eq. 7.6 

7.2.2.6 The water level in the inner rivers 

The water levels of inner rivers in a polder system are usually obtained by 

simulating the flow processes of the rivers by using, for example, the de St-Venant 

equations (Liu Jun et al., 2010; Gao et al., 2013). Since this research considers the 

polder as just an input-output system, these flow processes are not simulated, and 

the water level in the inner rivers is simply expressed by: 
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ℎ𝑡 = ℎ𝑡−1 + 𝑆𝑡
𝑖𝑛 Eq. 7.7 

At the start of each simulation, it is assumed that the initial water level is equal to 

the normal water level ℎ𝑛. 

7.2.2.7 Inundated area 

A relationship is required that expresses the inundated area as a function of water 

level in the inundated polder. In this sense, an impact curve was assumed for these 

purposes. This curve is shown in Figure 7.4 and was added to the conceptual model 

to represent the area inundated in the polder as a function of the depth of water that 

accumulates in the polder, i.e., the waterlogging. The shape of the function reflects 

the substantial development in lower areas of the polder, with substantial inundation 

occurring with initial waterlogging. 

 

Figure 7.4: Inundated area-waterlogging function 

This function was added to the conceptual model to represent the inundated area in the polder system 

as a function of the depth of waterlogging 𝑊 [mm]. The inundated area is expressed as a portion of 

the area of the polder 𝐴𝑝. 

7.2.3 Calibration of the model  

Particular efforts have been recently made to simulate polder systems in China for 

flood risk analysis (Gao et al., 2017, 2018; Fang et al., 2018; Wei et al., 2018). 

However, none of the studies has considered a calibration procedure for the urban 

drainage system. One of the main reasons could be the lack of data/information. 

This issue is not the exception in this research; since to calibrate the conceptual 

model, an average value of the water level of the inner rivers would be needed that 
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should be derived from several observed points in the river network. In this context, 

the objective pursued by the calibration process in this research was to represent the 

conditions that give rise a critical condition situation in the Shazhou polder, rather 

than the correct simulation of the average observed water level ℎ. For these 

purposes, this research used the observed rainfall of the 7-July-2016 event that is 

known to have caused a critical condition in the polder system. This calibration 

procedure is explained as follows. 

Table 7.1 shows the parameter values needed to implement the algorithm for the 

Shazhou polder (Figure 7.2). Most of the adopted values have been taken from 

previous studies performed in this case study area (Liu Jun et al., 2010; Gao et al., 

2013), while the value of  𝑞𝑚𝑎𝑥 was initially obtained by summing the pumping 

capacity of all pumping stations (Annex 1) and dividing by the polder area (𝐴𝑝=54.7 

km2). This information has been confirmed based on interaction with the Nanjing 

Hydraulic Research Institute (NHRI). 

Table 7.1 Adopted parameter values for the water balance model of the Shazhou polder. 

The initial value obtained for 𝑞𝑚𝑎𝑥 was taken as a reference, and it was subjected 

to calibration. The calibration procedure consisted of adjusting the value of 𝑞𝑚𝑎𝑥 

to produce a critical condition situation for the 7-July-2016 event. The calibrated 

value of 𝑞𝑚𝑎𝑥 (9.62 mm.h-1) represented 65% of the value obtained based on the 

theoretical maximum(14.8 mm.h-1), which seems reasonable. Figure 7.5 shows the 

simulated inflow and water level for the 7-July-2016 event. According to the model, 

Parameter Description Unit Value Source 

𝑟 
The capacity of pipe-network 

drainage 
mm. h-1 22.14 

(Liu Jun et al., 

2010) 
∆ℎ𝑛 

Difference between the critical 

and normal water level of the 

inner rivers, i.e. ℎ𝑐 and ℎ𝑛, 

respectively. 

mm 500 

k Water surface ratio - 0.065 

qmax 
The maximum pumping capacity 

for the polder   
mm. h-1 9.62 (14.8) NHRI 

𝐶𝑟𝑢 Average runoff coefficient. - 0.7 
Based on Gao et 

al. (2009) 
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the critical condition started at 5:00 and, and the storage capacity was practically 

full during the following 4 hours (8:00 am). This result corresponds with observed 

records, which state that the inundation associated with the 7-July-2016 event 

occurred around these hours. Thus by using the calibrated value of 𝑞𝑚𝑎𝑥 and the 

additional  parameters values shown in Table 7.1, the model simulates the critical 

condition that was known to occur for that event.  

 

Figure 7.5: Calibration of the conceptual model 

This figure shows the simulated water level for the 7-July-2016 rainfall event by using the parameter 

values shown in Table 7.1. Also shown is the simulated inflow process It. 

7.3 Monte Carlo generation of rainstorms and their forecasts 

The conceptual model explained in section 7.2, which represents the response and 

impact component RIC of the generic framework (Figure 7.1), has rainfall as the 

driving input variable. In this section, it is explained how the framework represents 

the rainstorm-and-forecast generator RFG which uses RainSim V3, a robust and 

well tested stochastic rainfall field generator (Burton et al., 2008), to represent: i) a 

daily rainfall (𝑅𝑑𝑎𝑖𝑙𝑦) and its forecast (𝑅̂𝑑𝑎𝑖𝑙𝑦), and ii) the hourly rainfall 𝑅𝑡. As will 

be seen later on, 𝑅̂𝑑𝑎𝑖𝑙𝑦 will be used in the framework to represent the 24-h forecast 

in the deterministic forecast scenario, whereas 𝑅𝑡 will be used to simulate the water 

fluxes in the polder system. Note, however, that this framework also needs to 

represent the 24-h probabilistic forecast, which cannot be derived directly from 
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RainSim V3. Therefore, to represent this type of forecast, the framework uses a 

joint distribution of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 to derive the uncertainty of 𝑅𝑑𝑎𝑖𝑙𝑦 given 

𝑅̂𝑑𝑎𝑖𝑙𝑦. This section thus first describes the stochastic rainfall field generator and 

the criteria adopted for calibrating and validating it, and, at the end of the section, 

the approach used to derive the joint distribution of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 is explained. 

7.3.1 RainSim rainfall field model 

The stochastic rainfall modelling in RainSim V3 is based on the Neyman–Scott 

Rectangular Pulses (NSRP) model, and it can be used for a single site application 

(a point rainfall generator) or for spatial applications (a spatio-temporal rainfall 

generator). RainSim V3 operates in three modes: First, the model computes several 

required statistics from the observed time series; the aim of this stage is to do a 

statistical characterisation of the rainfall time series. This mode is called analysis. 

Then, the model identifies the parameter set that, according to analytical 

expectation, best matches the observed statistics. This mode is calling fitting. 

Finally, the model generates synthetic time series using the fitted parameters. This 

mode is called simulation.  

7.3.1.1 Spatio-temporal model structure 

The spatio-temporal Neyman-Scott Rectangular Pulses (NSRP) model used by 

RainSim V3 for this application is summarized below (Burton et al., 2008) and 

illustrated in Figure 7.6. A summary of its parameters is shown in Table 7.2. 

 Step 1: Storm origins arrive in time in a Poisson process with an occurrence 

rate λ (Figure 7.6(a)); 

 Step 2: A random number of raincells is generated in space and time for 

each storm. A parameter 𝛽 controls the arrival times of the cells after the 

storm origin; these have an exponential distribution. The centres of the 

spatially circular raincells are generated by a uniform Poisson process in 

space with density ρ (Figure 7.7(b)). The radius of each of these raincells is 

exponentially distributed with parameter γ.  

 Step 3: Each raincell produces a uniform rainfall rate generating, thus, 

rectangular pulses. The duration and intensity of each of them are 

independent and exponentially distributed with parameters ղ and ξ, 

respectively; 

 Step 4: The total rainfall at any time is the sum of all active raincells in time 

and space. 
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To account for orography, the rainfall sampled at each site is scaled by a factor ɸ 

proportional to each site's mean rainfall. 

Table 7.2 Input parameters of RainSim V3 for spatio-temporal applications 

 

 

 

Figure 7.6: Schematic of the Neyman–Scott Rectangular Pulses model used by RainSim V3 

in spatial mode  

Adapted from Burton et al., (2008) 

Symbol Statistic Units 

λ 1/mean waiting time between adjacent storm origins (1/h) 

𝛽 1/ mean waiting time for raincell origins after storm origin  (1/h) 

ղ 1/mean duration of raincell (1/h) 

ξ 1/mean intensity of a raincell (h/mm) 

γ 1/mean radius of raincells (1/km) 

ρ Spatial density of raincell centres    (km-2) 

ɸ A vector of scale factors, ɸ𝑚 , one for each raingauge (-) 
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7.3.1.2 Model fitting procedure 

Equations have been developed relating the statistical rainfall model properties to 

the model parameters (Burton et al. 2008): 

𝑓𝑗 = 𝑓(𝜆, 𝛽, ρ, ղ, 𝜉, γ, ɸ) Eq. 7.8 

where 𝑓𝑗 is a model property, j= 1,2, …,m, and m is the number of properties 

employed in fitting the model. These properties are typically the mean, variance, 

skewness, autocovariance at a given time lag, probability of an h-hour dry period, 

wet/wet and dry/dry transition probabilities, and cross-correlations between stations 

for selected rainfall durations. They can be estimated from the available rainfall 

time series, and the parameters are then estimated by minimizing the following sum 

of squares function: 

𝑆𝑆 = ∑ 𝑤𝑗

𝑚

𝑗=1

(1 −
𝑓𝑗

𝑓𝑗

)

2

 
Eq. 7.9 

where 𝑓𝑗 is an estimated statistic from the observed data, 𝑓𝑗 is its model equivalent, 

and 𝑤𝑗 is a preferential weight applied to one or more selected statistics. 

7.3.2 Model calibration and validation  

7.3.2.1 Available data 

RainSim V3 first requires a set of statistics to be computed from an observed sample 

to provide a statistical characterization of the rainfall time series. These statistics 

are calculated from hourly and daily data. This subsection describes the sources of 

the data used for that purpose and other important information. 

The daily data were obtained from the Global Historical Climatology Network - 

Daily (GHCN-Daily) dataset(Menne et al., 2012), which provides a long daily 

record (62 years) at Nanjing Station (Figure 7.7 and Table 7.3).  

The hourly data were collected from the five rainfall stations shown in Figure 7.7. 

The record length and other important information about the stations are described 

in Table 7.4. 



198 

 

Table 7.3 Source of the daily records used in RainSim V3. 

Table 7.4: Characteristics of the rainfall stations used in RainSim V3 

 

Figure 7.7: Geographical location of the four hourly rainfall stations 

7.3.2.2 Results 

The calibration (fitting) of the model was done through a numerical optimization 

based on the procedure described in section 7.3.1.2. The observed statistics used for 

fitting are shown in Table 7.5. The daily statistics were calculated from the long 

daily record of the Nanjing station obtained from the GHCN-Daily dataset (Table 

7.3), whereas the hourly statistics were calculated from the Dongshan record. The 

spatial-temporal rainfall model simulated rainfall at five locations (Fig 7.7),  with 

Station 
Length 

record 
Lat. Long. Country Institution Source 

Nanjing 1950-2012 118°43′ 32°05′ China NOAA/NCEI 
GHCN-Daily dataset 

[reference] 

Code Name Lat. Long. Record period 

62724050 Nanjing 118°43′ 32°05′ 

2012-2016 

62935200 Xiaoqiao 118°34′ 32°10′ 

62936600 Liuhe 118°53′ 32°20′ 

62936660 Getang 118°44′ 32°15′ 

63129400 Dongshan 118°51′ 31°57′ 
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the same observed statistics at each location, but with different spatial correlation 

(parameter xcorr in Table 7.5) obtained from the records of the five hourly rainfall 

stations. (Note, for brevity, the spatial correlation in Table 7.5 is only shown for the 

Nanjing and Dongshan stations.) This was done based on the criterion adopted to 

represent the observed rainfalls and their forecasts and will be explained in the next 

subsection.  The fitted parameters are shown in Table 7.6. 

Table 7.5 Statistics for RainSim V3.  

The statistics correspond to July, which is the rainiest month in Nanjing  

 

 

 

 

 

 

Abbreviation Statistic 
Type of 

information 
Observed Fitted Weight 

mean 
The mean h hour rainfall 

accumulation 
Daily 6.45 6.42 5 

pdyr 

The probability that an h hour 

accumulation is dry, that is strictly 

less than a specified threshold 

Daily 0.69 0.81 6 

var 
The variance of the h hour 

accumulation 
Daily 334.95 334.97 2 

corr 
The auto-correlation of the h hour 

accumulation of two-time series.  
Daily 0.16 0.30 3 

xcorr 
The cross-correlation of the h hour 

accumulation of two-time series.  
Daily 0.90 0.96 2 

skew 
The skewness coefficient of h hour 

accumulation 
Daily 4.86 3.88 3 

pdyr 

The probability that an h hour 

accumulation is dry, that is strictly 

less than a specified threshold 

Hourly 0.91 0.93 5 

var 
The variance of the h hour 

accumulation 
Hourly 2.83 2.84 3 

skew 
The skewness coefficient of h hour 

accumulation 
Hourly 11.36 11.28 3 
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Table 7.6. Fitted parameter for RainSim V3 model 

Parameter Value 

λ 0.003967 

𝛽 0.077682 

ρ 0.001050 

ղ 5.381274 

ξ 0.169332 

γ 0.015000 

The observed and simulated daily annual maximum rainfall are shown by means of 

a Gumbel plot in Figure 7.8. Each dot represents the maximum daily rainfall 

recorded in a July in the observed record, and the corresponding vertical lines show 

the extremes from a 10 member ensemble extracted from the simulation. The range 

of extremes matches the observed data. 

 

Figure 7.8: A comparison of observed and simulated daily annual maximum for July. The 

range of the simulated results from a 10 member ensemble is shown at each return period 
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A scatter plot of the simulated daily rainfall values at Dongshan (63129400) and 

Nanjing (62724050) is shown in Figure 7.9. As the same statistics are specified at 

each site during the fitting of RainSim, there is no bias, with the scatter due to the 

spatial correlation specified between the pair of sites (Table 7.5; xcorr) 

 

Figure 7.9: Scatter plot of simulated daily rain values (mm) at Dongshan (63129400) and 

Nanjing (62724050) 

7.3.3 Generation of observed and forecast rainfall time series 

The rationale for fitting a spatio-temporal model is the following. A relatively 

simple procedure was needed for generating forecasts of the observed storms 

generated by a point NSRP model. This was done by selecting one of the five sites 

to represent observed rainfall and a second site to represent its forecast, but with the 

same underlying temporal statistics and corresponding parameters, as the observed 

rainfall site. The cross-correlation between the pair of sites (parameter xcorr in 

Table 7.5) was used to control the level of agreement between the observed and 

forecast rainfall time series. Dongshan station was chosen as the location that 

represents the observed time series and the time series at Nanjing station as its 

forecast. Since they share the same statistics, there is no bias between them, and the 

forecast uncertainty is only expressed by the correlation parameter. The Dongshan 

station was chosen as the observed time series because the records of this station 

best represented the 7-July-2016 event which was used to calibrate the conceptual 
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model of the Shazou polder (section 7.2.3). The fitted parameters are shown in 

Table 7.6. As the means are the same at the two sites, the scale factors in Table 7.2 

were the same. 

7.3.4 The joint distribution of generated observed 24-h rainfall and their 

forecasts 

The generated ‘observed’ and ‘forecast’ time series from the RainSim V3 model 

can be sampled at any required time interval. As NWP rainfall forecasts are 

typically available for up to 24 hours in advance, it was decided to adopt a 24 hour 

(daily) lead time for the forecasts. As  explained at the beginning of section 7.3, the 

24-h probabilistic forecast to be used in the probabilistic scenario will be derived 

from the joint distribution of the values of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 obtained from RainSim 

V3. This section shows the procedure conducted to i) build this joint distribution 

and ii) derive the conditional distribution of 𝑅̂𝑑𝑎𝑖𝑙𝑦 given 𝑅𝑑𝑎𝑖𝑙𝑦, i.e., 

𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦), which will be used as a measure of predictive uncertainty (PU). 

To build this joint distribution, a univariate analysis of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 was first 

performed. Then the bivariate distribution of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 was derived. This 

analysis was carried out generated a time series of 1000 years in length, i.e., with 

365000 daily values. 

7.3.4.1 Univariate analysis of generated observed daily rainfalls and their 

forecasts 

The univariate analysis of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 aims to find the best probabilities 

distributions to represent the marginal distributions in the bivariate analysis. This 

was done based on the goodness of fit  (GoF) of different distributions to values of 

𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦. Since this work focuses on rainfall events that could potentially 

produce significant runoff events in the polder system, the univariate analysis only 

considered pair of values that were both greater than 50 mm. After applying this 

filter, the sample size was reduced to 17,998 daily values. When the sample size is 

large, it is not suggested basing the GoF on a traditional statistical test (tests based 

on the 𝑝-value)(Tanaka, 1987). Thus, this work used a visual inspection technique 

to analyse the GoF, which involves plotting the theoretical quantiles against the 

empirical ones. This plot is known as the quantile-quantile (q-q) plot; If the 

probability distribution fits the sample data well, the points should fall 
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approximately along the 1:1 line. The empirical probabilities can be computed by 

using the Weibull equation (Eq. 4.55). 

Among the several probability distributions tested, which were the two-parameter 

exponential distribution, the three-parameter log-normal distribution, and the three-

parameter Gamma distribution, the latter was found to be the best distribution to 

represent the values of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦. The distribution parameters were 

computed through the maximum likelihood estimation (MLE) and assuming that 

the location parameter is known, taken as 50mm for each case. The results for the 

Gamma distributions are shown in Table 7.7 and Figure 7.10 (the results of the 

other distributions are not showed to save space in the thesis). 

Table 7.7 Estimation of the parameters of the three-parameter gamma distribution for the 

values of  𝑹𝒅𝒂𝒊𝒍𝒚 and 𝑹̂𝒅𝒂𝒊𝒍𝒚  

 

 

 

 

Figure 7.10: Scatter plot of 𝑹𝒅𝒂𝒊𝒍𝒚 and 𝑹̂𝒅𝒂𝒊𝒍𝒚 and visual inspection of GoF 

Figure a shows the pairs of values of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅𝑑𝑎𝑖𝑙𝑦 > 50 mm, and Figure b and c the qq-plots of 

each of them assuming a three-parameter gamma distribution.  

7.3.4.2 Bivariate simulation of observed daily storms and their forecasts 

The visual GoF inspection of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 suggested that the three-parameter 

Gamma distribution is the best distribution to represent these variables. Thus, one 

can assume that their bivariate relationship is described by a bivariate Gamma 

Location 

parameter 

Shape 

parameter 

Scale 

parameter 

𝑹𝒐
𝒅𝒂𝒊𝒍𝒚

 𝑹̂𝒐
𝒅𝒂𝒊𝒍𝒚

 𝜸𝑹𝒅𝒂𝒊𝒍𝒚
 𝜸𝑹̂𝒅𝒂𝒊𝒍𝒚

 𝜷𝑹𝒅𝒂𝒊𝒍𝒚
 𝜷𝑹̂𝒅𝒂𝒊𝒍𝒚

 

50 50 1.45 1.44 23.2 23.3 
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distribution (BGD). The generator of pairs (𝑅𝑑𝑎𝑖𝑙𝑦, 𝑅̂𝑑𝑎𝑖𝑙𝑦) and the building of PU 

expressed as 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) based on this distribution is explained as follows. 

The generator of pairs (𝑅𝑑𝑎𝑖𝑙𝑦 , 𝑅̂𝑑𝑎𝑖𝑙𝑦) 

The bivariate generator is based on the Gaussian copula (section 4.4.2). Thus, 

assuming (𝑅𝑑𝑎𝑖𝑙𝑦, 𝑅̂𝑑𝑎𝑖𝑙𝑦) ~𝐵𝐺𝐷, whose marginals are defined by the parameters 

shown in Table 7.7,  pairs (𝑅𝑑𝑎𝑖𝑙𝑦, 𝑅̂𝑑𝑎𝑖𝑙𝑦) can be simulated based on  the following 

algorithm. 

 Step 1: Define the parameters 𝛽𝑅𝑑𝑎𝑖𝑙𝑦
, 𝛾𝑅𝑑𝑎𝑖𝑙𝑦

, 𝛽𝑅̂𝑑𝑎𝑖𝑙𝑦
, 𝛾𝑅̂𝑑𝑎𝑖𝑙𝑦

, 𝑅𝑜
𝑑𝑎𝑖𝑙𝑦

, 𝑅̂𝑜
𝑑𝑎𝑖𝑙𝑦

, 

and the coefficient of correlation 𝜌𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦
 in the normal space, i.e., 𝜌𝑛,𝑛̂. 

 Step 2: Generate 𝑛 bivariate normal standardized pairs, i.e., (ƞ, ƞ̂), with 

correlation 𝜌𝑛,𝑛̂ based on the conditional approach, i.e., building 𝑓(ƞ|ƞ̂𝑖), 

and, then, drawing a random value from this conditional distribution. 

 Step 3: Compute the CDF of the resulting pairs (ƞ, ƞ̂). 

      𝑢 = 𝐹(ƞ)  and  𝑟 = 𝐹(ƞ̂) 

 Step 4: Compute standardized gamma variables 𝑤 and 𝑤̂  associated with 

the shape parameters 𝛾𝑅𝑑𝑎𝑖𝑙𝑦
 and 𝛾𝑅̂𝑑𝑎𝑖𝑙𝑦

 respectively as:  

      𝑤 = 𝐹𝑊
−1(𝑢)  and  𝑤̂ = 𝐹𝑊̂

−1(𝑟) 

where 𝐹𝑊
−1 and 𝐹𝑊̂

−1 are the inverse CDFs of the distributions of 𝑤 and 𝑤̂ 

which are in turn defined as: 

      𝑤 =
𝑅𝑑𝑎𝑖𝑙𝑦−𝑅𝑜

𝑑𝑎𝑖𝑙𝑦

𝛽𝑅𝑑𝑎𝑖𝑙𝑦

  𝑎𝑛𝑑 𝑤̂ =
𝑅̂𝑑𝑎𝑖𝑙𝑦−𝑅̂𝑜

𝑑𝑎𝑖𝑙𝑦

𝛽𝑅̂𝑑𝑎𝑖𝑙𝑦

 

where, as was explained above, 𝑅𝑜
𝑑𝑎𝑖𝑙𝑦

 and 𝑅̂𝑜
𝑑𝑎𝑖𝑙𝑦

 and 𝛽𝑅𝑑𝑎𝑖𝑙𝑦
 and 𝛽𝑅̂𝑑𝑎𝑖𝑙𝑦

 

are the location and scale parameters of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦, respectively. 

 Step 5: Pairs (𝑅𝑑𝑎𝑖𝑙𝑦 , 𝑅̂𝑑𝑎𝑖𝑙𝑦) can  be finally obtained as: 

𝑅𝑑𝑎𝑖𝑙𝑦 = 𝑅̂𝑜
𝑑𝑎𝑖𝑙𝑦

+ 𝛽𝑅𝑑𝑎𝑖𝑙𝑦
𝑤 

𝑅̂𝑑𝑎𝑖𝑙𝑦 = 𝑅̂𝑜
𝑑𝑎𝑖𝑙𝑦

+ 𝛽𝑅̂𝑑𝑎𝑖𝑙𝑦
𝑤̂ 

To compute the value of 𝜌𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦
 in the normal space, i.e., 𝜌𝑛𝑛̂, one can first 

find the relationship between the correlation coefficient in the normal (𝜌𝑁) and 

gamma (𝜌𝐺𝑎𝑚) space associated with the parameter set 𝜽𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦
. It is performed 

by following the steps of the above-mentioned algorithm, assuming several 

arbitrary values of 𝜌𝑁 in Step 2, and computing the associated value of 𝜌𝐺𝑎𝑚 

numerically. For any specified value of 𝜌𝐺𝑎𝑚, 𝑡he value of 𝜌𝑛𝑛̂ can then be obtained 

via interpolation based on the pairs of values (𝜌𝐺𝑎𝑚, 𝜌𝑁). 
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The building of 𝑃𝑈 

The framework uses the above-mentioned bivariate gamma generator to build the 

conditional distribution of  𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) which will be used to provide a 

measure of PU in the probabilistic forecast scenario. This is done by simply 

sampling 𝑛 values from the conditional distribution 𝑓(ƞ|ƞ̂𝑖) obtained in the 

bivariate-gamma generator (Step 2) and then conveying the resulting values to 

gamma space by following the steps of the algorithm in terms of 𝑅𝑑𝑎𝑖𝑙𝑦. PU can be 

finally expressed in terms of density values by computing the kernel density 

estimations of the sampled values.  

Example of application 

The value of 𝜌𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦
 , i.e., the correlation in the Gamma space 𝜌𝐺𝑎𝑚, was 

estimated through the sample correlation coefficient of the pair of values shown in 

Figure 7.10a. Table 7.8 shows the seven parameters of the BGD of 𝑅𝑑𝑎𝑖𝑙𝑦 and 

𝑅̂𝑑𝑎𝑖𝑙𝑦. 

Table 7.8 Values of the parameters of bivariate gamma distribution of 𝑹𝒅𝒂𝒊𝒍𝒚 and 𝑹̂𝒅𝒂𝒊𝒍𝒚 

The results of the bivariate simulation based on the generator explained above are 

illustrated in Figure 7.11.  Figure 7.11a shows the joint density of 50,000 pairs 

(𝑅𝑑𝑎𝑖𝑙𝑦, 𝑅̂𝑑𝑎𝑖𝑙𝑦) from the the bivariate gamma distribution. Figure 7.11b shows an 

example of the PU expressed as 𝑓(𝑅|𝑅̂𝑑𝑎𝑖𝑙𝑦) for a forecast value 𝑅̂𝑑𝑎𝑖𝑙𝑦𝑖
 shown in 

Figure 7.11a (grey dot). Note that in the framework 𝑅̂𝑑𝑎𝑖𝑙𝑦𝑖
 is obtained from 

RainSim and its associated 𝑓(𝑅|𝑅̂𝑑𝑎𝑖𝑙𝑦) will be derived from the BGD. 

𝑅𝑜
𝑑𝑎𝑖𝑙𝑦

 𝑅̂𝑜
𝑑𝑎𝑖𝑙𝑦

 𝛾𝑅𝑑𝑎𝑖𝑙𝑦
 𝛾𝑅̂𝑑𝑎𝑖𝑙𝑦

 𝛽𝑅𝑑𝑎𝑖𝑙𝑦
 𝛽𝑅̂𝑑𝑎𝑖𝑙𝑦

 𝜌𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦
 

50 50 1.45 1.44 23.2 23.3 0.93 
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Figure 7.11: Results of the bivariate simulation of 𝑹𝒅𝒂𝒊𝒍𝒚 and 𝑹̂𝒅𝒂𝒊𝒍𝒚 

In this figure, a shows the joint density of 50,000  pair of values of the bivariate gamma distribution 

defined by the values of the parameters shown in Table 7.8; the pairs of values were obtained through 

the bivariate gamma generator. Figure b shows the conditional distribution 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) 

associated with the forecast value 𝑅̂𝑑𝑎𝑖𝑙𝑦𝑖
 represented by a grey dot in Figure a. 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) is 

obtained by slicing the joint distribution through the grey line that crosses the forecast value (grey 

dot). 

7.4 Daily rainfall forecast thresholds for the polder system  

In the previous section, the procedures for deriving the deterministic and 

probabilistic 24-h rainfall forecasts within the RFG component of the framework 

were described. As will be seen in the next section, storm warning decisions based 

on these forecasts will be represented through a rainfall-threshold approach. Thus, 

in this section, the methodology adopted to derive the daily rainfall thresholds in 

the Shazou polder is described. As will be seen below, this methodology considers 

the uncertainty of the profile of the daily rainfall and the initial condition of the 

water level  in the inner rivers at the time the forecast is issued ℎ𝑜.There are few 

works that have considered the uncertainty of rainfall characteristics when 

analysing rainfall thresholds for flood warning systems (Wu et al., 2015), and, to 

the best of my knowledge, a methodology to quantify rainfall thresholds for flood 

warning purposes in a polder system has not been published to date. The 

methodology used in this work is explained as follows. 

A daily rainfall threshold (𝑅𝑇𝑑𝑎𝑖𝑙𝑦) for a polder system can be defined as the volume 

of a daily rainfall which brings the water level of the inner rivers to the critical level 

ℎ𝑐, i.e., a daily rainfall that fills up the storage capacity of the inner rivers. Thus, 

daily rainfall values greater than 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 falling on the polder area bring the inner 

rivers to critical conditions. In this context, 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 has to be associated with ℎ𝑜, 
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i.e., the initial condition of the water level of the inner rivers at the time the forecast 

is issued. Note also that a critical condition situation depends not only on the 

volume but also on the rainfall profile of the storm, causing critical conditions in 

the polder. Daily rainfalls with  significant rainfall volumes spread uniformly 

during the day might not cause critical conditions in the polder due to the runoff 

rate reaching the inner river  being equal to or lower than the pumping capacity of 

the polder 𝑞𝑚𝑎𝑥. In this case, water is not stored in the inner rivers, and the polder 

manager can drain the runoff smoothly if he pumps in proportion to the drainage 

from the polder. However, other daily rainfalls with similar rainfall volumes, but 

concentrated in relatively short time periods, might cause critical conditions in the 

polder system due to the runoff rate might be higher than the maximum pumping 

capacity  𝑞𝑚𝑎𝑥. In this case, the water is pumped at a rate equal to 𝑞𝑚𝑎𝑥,  but the 

water level rises, and a critical condition situation can be reached. To account for 

this uncertainty,  the stochastic rainfall model explained in section 7.3 provides 

daily rainfall profiles based on the generated hourly values of those events that 

could potentially produce significant runoff events in the polder system (the 17,998 

profiles associated with the 𝑅𝑑𝑎𝑖𝑙𝑦 values are shown in Figure 7.10a). A value of 

𝑅𝑇𝑑𝑎𝑖𝑙𝑦 can be computed for each profile using a trial-and-error approach with the 

water balance model of the Shazhou polder described in section 7.2 with the 

pumping strategy that represents the current reactive pump operation in the Shazou 

polder (section 7.2.2.4). Then, 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 is estimated as a p-quantile of the resulting 

PDF of these values. The algorithm can be summarized as follows: 

 Step 1: From the RainSim V3 simulations, define observed daily rainfalls 

that could potentially produce significant runoff events in the polder system 

(daily rainfalls > 50 mm). 

 Step 2: Define different initial conditions as: 

ℎ𝑜
𝑗

= ℎ𝑛 + 𝑗
∆ℎ𝑛

𝑛𝑜
  Eq. 7.10 

where ℎ𝑜
𝑗
 is the initial condition j; 𝑛𝑜 is the number of initial conditions 

considered, ℎ𝑛 is the normal level, and 𝛥ℎ𝑛 is the difference between the 

critical water level ℎ𝑐 and the normal water level ℎ𝑛, here taken as 0.5m 

with ℎ𝑛= 4000 mm. 

 Step 3: For each ℎ𝑜
𝑗
, perform the following sub-steps: 

a) By using the conceptual model of the polder system described in 

section 7.2 and the pumping strategy that describes the current 
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pump operation in the Shazou polder (section 7.2.2.4), obtain 

values of 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 by rescaling all the values of the daily rainfalls 

obtained in Step 1 to make them larger or smaller until the 

resulting water level of the inner rivers hits the critical level ℎ𝑐. 

b) Define the PDF of 𝑅𝑇𝑑𝑎𝑖𝑙𝑦, i.e., 𝑓(𝑅𝑇𝑑𝑎𝑖𝑙𝑦), with the values 

obtained in sub-step a. 

c) Define the rainfall threshold associated with ℎ𝑜
𝑗
, i.e., 𝑅𝑇𝑑𝑎𝑖𝑙𝑦

𝑗
, as 

the  p-probability quantiles of 𝑓(𝑅𝑇𝑑𝑎𝑖𝑙𝑦). 

Thus, if we have an initial condition ℎ𝑜
𝑗
 in the inner rivers at the time the 24-h 

forecast of rainfall is issued, and that forecast is greater than 𝑅𝑇𝑑𝑎𝑖𝑙𝑦
𝑗

, a critical 

condition will be reached, and a proactive response action should be conducted to 

avoid the inner rivers reaching the critical level.  

 

Figure 7.12: Rainfall thresholds for the Shazhou polder 

Figure a shows the dimensionless mass curve of the proportion of observed daily rainfalls considered 

to obtain 𝑅𝑇𝑑𝑎𝑖𝑙𝑦  values. Figure b shows the values of ℎ𝑜
𝑗
  against  𝑅𝑇𝑑𝑎𝑖𝑙𝑦

𝑗
. The value of 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 are 

computed as the 0.01-probability quantile of 𝑓(𝑅𝑇𝑑𝑎𝑖𝑙𝑦) 

The results of applying the above-mentioned approach are illustrated in  Figure 

7.12, which considers twenty initial conditions (𝑛𝑜 = 20 in Eq. 7.10). Figure 7.12a 

shows the 17,998 daily rainfall profiles obtained from RainSim V3 as 

dimensionless mass curves. Figure 7.12b shows the values adopted for 𝑅𝑇𝑑𝑎𝑖𝑙𝑦
𝑗

by 

assuming them as the 0.01-probability quantile of 𝑓(𝑅𝑇𝑑𝑎𝑖𝑙𝑦). By doing that, one 

expected to remove all the uncertainty with respect to the rainfall profile. Thus, the 

framework assumes that the values greater than these quantiles will bring the inner 

rivers to a critical condition. Finally, it is worth noting that the rainfall thresholds 

for the normal condition ℎ𝑛= 4000 mm is > 100 mm which corresponds to the 

warning categorised as “yellow” for Nanjing. A yellow warning is the second 
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lowest on the 4 colour coded rainstorm warning system used in Nanjing; it triggers 

a consultation meeting headed by the Commander of Flood Control. 

7.5 Warning decisions for the polder system based on 24-h forecasts 

A storm warning aims to provide time in advance to the polder manager to conduct 

a proactive action in the polder system to avoid a critical condition situation. As 

was mentioned above, the framework considers a storm warning based on a 24-h 

total rainfall forecast. Figure 7.13 shows the chronology adopted by the framework 

for the operation of the polder system by considering this type of warning system. 

It is assumed that the warning is issued at midnight, and, thus, the polder manager 

can conduct a proactive strategy based on the 24-h forecast. Note that the end of the 

proactive action depends on the pumping strategy adopted by the polder manager 

and where 𝑡𝑝𝑟𝑜 is located, and the storm might arrive before or after the proactive 

period (the types of pumping strategies considered in this work are explained in the 

next section). The warning decision made at midnight can be based on deterministic 

and probabilistic rainfall thresholds. The framework represents those decisions 

based on the values of daily rainfall thresholds 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 obtained in the prior section. 

This is explained as follows. 

 

Figure 7.13: Chronology of the operation of the polder system by considering a storm 

warning based on a 24-h forecast horizon 

This framework assumes that storm warnings are issued at midnight; after that, the polder manager 

can conduct a proactive pumping action. The end of this action, designated  𝑡𝑝𝑟𝑜 in this figure, 

depends on the strategy adopted by the polder manager. The storm might arrive before or after 𝑡𝑝𝑟𝑜. 

7.5.1 Deterministic warning decisions 

This warning decision is based on the deterministic-24h forecasts 𝑅̂𝑑𝑎𝑖𝑙𝑦, generated 

from RFG, and the daily rainfall threshold   values, (𝑅𝑇𝑑𝑎𝑖𝑙𝑦). A warning is issued 

if  𝑅̂𝑑𝑎𝑖𝑙𝑦 is greater than 𝑅𝑇𝑑𝑎𝑖𝑙𝑦.  The decision rule of this warning decision is given 

by Eq. 7.11 and illustrated in Figure 7.14. 
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𝐷𝑒𝑡. 𝑤𝑎𝑟𝑛𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
𝑖𝑓 (𝑅̂𝑑𝑎𝑖𝑙𝑦 >  𝑅𝑇𝑑𝑎𝑖𝑙𝑦)              𝑤𝑎𝑟𝑛,

𝑒𝑙𝑠𝑒,                                       𝑛𝑜𝑡 𝑤𝑎𝑟𝑛
 Eq. 7.11 

 

 

Figure 7.14: Illustration of the deterministic warning decision based on a daily rainfall 

threshold 

This figure shows the illustration of the decision rule used to represent the deterministic warning 

decision described by Eq. 7.11. Note that 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 is associated with ℎ𝑜 

7.5.2 Probabilistic warning decisions 

The probabilistic warning decision considers the probabilistic-24h forecast and a 

probabilistic threshold (𝑃𝑇). The former has to do with the exceedance probability 

(𝑃𝐸) of the daily rainfall threshold RTdaily, i.e., the probability of having an 

observed daily rainfall volume 𝑅𝑑𝑎𝑖𝑙𝑦 greater or equal than RTdaily. 𝑃𝐸 is obtained 

through the conditional distribution of 𝑅𝑑𝑎𝑖𝑙𝑦 given 𝑅̂𝑑𝑎𝑖𝑙𝑦, i.e., 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦), 

derived from the joint probability of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 (section 7.3.4). 𝑃𝑇 is a 

probabilistic threshold value on which the warning decision is based.  A warning is 

issued if 𝑃𝐸 is greater than 𝑃𝑇, the latter is a value to be analysed in the framework. 

The decision rule of this warning decision is shown in Eq. 7.12 and illustrated in 

Figure 7.15. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {
𝑖𝑓 (𝑃𝐸 >  𝑃𝑇)         𝑤𝑎𝑟𝑛,
𝑒𝑙𝑠𝑒,                     𝑛𝑜𝑡 𝑤𝑎𝑟𝑛

 Eq. 7.12 
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Figure 7.15: Illustration of the probabilistic warning decision based on a daily rainfall 

threshold 

This figure shows the illustration of the decision rule used to represent the probabilistic warning 

decision described by Eq. 7.12. The probabilistic threshold 𝑃𝑇 is a value to be analysed in the 

framework 

7.6 Pumping strategies under different forecast scenarios. 

In the prior section, we defined the probabilistic and deterministic warning 

decisions that should drive a proactive pumping strategy in the polder system. In 

this section, the representation of these pumping strategies in the framework will 

be explained. Here, we also explain the pumping strategies adopted for the no 

warning and perfect forecast scenarios, which will be considered as the two 

benchmark cases in the analysis of the framework. Before explaining these 

pumping strategies, this section starts by explaining two important concepts: i) the 

water balance of an observed daily runoff causing a critical condition in the polder, 

and ii) the proactive criterion used to represent a proactive pumping strategy. 

Understanding these two concepts is important to comprehend the rationality 

adopted in the pumping strategies. 

7.6.1 Water balance of an observed daily runoff causing critical conditions 

under a reactive action 

If one wishes to analyse/add a proactive action in the current pumping operation of 

the Shazhou polder (where pumping actions are mainly driven by the observed 
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inflow to the inner rivers) to avoid a critical condition situation, one should first 

understand the water balance of the polder for an observed daily runoff causing that 

condition under that pumping strategy (reactive strategy). This helps to identify 

target variables that should be considered in the proactive strategies to avoid a 

critical condition in the inner rivers. This water balance will be explained in terms 

of areal values and length units. The values of volumes can therefore be understood 

as the depth of the volume of water spread over a reference area, e.g., the area of 

the polder or the inner rivers. Hence, the water balance of a critical observed daily 

runoff can be expressed by: 

𝑅𝑂𝑑𝑎𝑖𝑙𝑦
𝑐 = 𝑉𝑝

𝑐 + 𝑆𝑜
𝑐𝑎𝑝 + 𝑆𝑐 Eq. 7.13 

where 𝑅𝑂𝑑𝑎𝑖𝑙𝑦
𝑐  is the observed daily runoff causing critical conditions, 𝑉𝑝

𝑐 is the 

portion of this critical runoff reactively pumped during the storm to the adjacent 

outer rivers, 𝑆𝑜
𝑐𝑎𝑝

, as was explained in section 7.2.2, is the storage capacity  of the 

inner river before the storm arrives, and 𝑆𝑐 is the portion of the critical runoff that 

brings the water level of the inner rivers beyond the critical level. Figure 7.16 shows 

a conceptualization of the water balance explained above.  This figure illustrates 

how the volume of a critical runoff 𝑅𝑂𝑑𝑎𝑖𝑙𝑦
𝑐  is split into the drainage system 

according to the current pump operation of the Shazou polder (reactive one, see 

section 7.2.2.4). When the critical storm starts, the initial condition of the water 

level of the inner rivers is ℎ𝑜 and the storage capacity of the inner rivers is 𝑆𝑜
𝑐𝑎𝑝

. 𝑉𝑝
𝑐 

is the volume of the critical runoff drained to the adjacent outer rivers during the 

critical storm, and 𝑆𝑐  is the volume of this critical runoff that brings the water level 

of the inner rivers beyond the critical level. As one can note, 𝑆𝑜
𝑐𝑎𝑝

 is the only 

variable known before the storm arrives, and  𝑉𝑝
𝑐 and 𝑆𝑐 are, therefore,  the target 

variables in a proactive pumping strategy. To know the values of these variables, 

one should have perfect knowledge of the profile and volume of the coming daily 

rainfall causing critical conditions in the polder. If the polder manager would have 

perfect knowledge about these two variables, he or she could pump 𝑆𝑐 before the 

storm and 𝑉𝑝
𝑐 during the storm; the resulting scenario would then be that the storage 

capacity of the inner rivers would be exactly full at the end of the storm, thus 

avoiding a critical condition situation.  
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Figure 7.16: Conceptualization of the water balance of an observed daily runoff causing 

critical conditions in the polder system based on a reactive pumping strategy 

According to the current pump operation of the Shazou polder, the runoff is mainly pumped to  the 

adjacent outer rivers  according to the observed inflow 𝐼 (reactive pumping), i.e., 𝑞𝑡 = 𝐼𝑡, when 𝐼𝑡 <
𝑞𝑚𝑎𝑥  , and  when 𝐼𝑡 ≥ 𝑞𝑚𝑎𝑥  , the runoff is pumped at a pumping rate 𝑞𝑚𝑎𝑥  (section 7.2.2.4). The 

water level of the inner rivers starts to rise in the latter condition.  

7.6.2 Criteria for the proactive pumping strategy  

In the prior section, the target variables to be considered in a proactive pumping 

strategy were identified, i.e., 𝑉𝑝
𝑐 and 𝑆𝑐. Now, one should adopt a proactive criterion 

to pump the volume of water associated with those variables to avoid a critical 

condition situation. For example, assuming perfect knowledge of the values of these 

variables, one criterion could be pump 𝑉𝑝
𝑐 and 𝑆𝑐 together once the storm arrives. 

Note that, even for the perfect-knowledge assumption, this strategy could not be a 

good one since the inflow 𝐼 of some storms can exceed the pumping capacity of the 

polder 𝑞𝑚𝑎𝑥 during all the storm (this is the case for high-intensity storms), leaving 

no capacity to pump 𝑆𝑐 during the storm. Thus, another valid criterion could also 

be to try to pump 𝑆𝑐, or a portion of it, before the storm arrives, and then wait for 

the storm to arrive before completing the pumping strategy. This proactive criterion 

has been adopted in this framework to represent the proactive pumping strategy 

under the perfect and imperfect-forecast scenarios, where the former is based on the 

true values of these variables, and the latter use their forecasts.  

Thus, the proactive pumping strategies explained later will be made up of a 

proactive and reactive action. The proactive action has to do with the volume of 

water pumped before the storm arrives (𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

), and the reactive action has to do 
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with the volume of water pumped during the storm (𝑉𝑝). The proactive pumping 

strategy, P.strategy, can be, therefore, defined by: 

𝑃. 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = {
𝑉𝑝

𝑏𝑒𝑓𝑜𝑟𝑒
         𝑡 ≤ 𝑡𝑝𝑟𝑜;                                    𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛

𝑉𝑝                    𝑡 ≥ max (𝑡𝑎𝑟𝑟𝑖𝑣𝑒 , 𝑡𝑝𝑟𝑜);           𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑐𝑡𝑖𝑜𝑛
} Eq. 7.14 

where 𝑡𝑎𝑟𝑟𝑖𝑣𝑒 is the time at which the observed storm arrives in the polder and tpro 

is the proactive action period (Figure 7.13). Thus, several pumping rules can be set 

based on this proactive criterion and under different types of forecast information. 

This proactive criterion will be the basis for the proactive pumping strategies 

considered in the framework.  

7.6.3 Reactive strategy – no forecast 

Based on the case study, a proactive pumping strategy can be understood as a 

proactive pumping action that can be added to the current operational pumping 

procedure, which can be considered as a reactive one. Thus, before introducing the 

proactive pumping strategies, an explanation is provided of how the current reactive 

pumping actions conducted in the Shazou polder for the critical and no critical 

conditions will be simulated in the framework.  

A reactive pumping strategy can be defined as a pumping action driven by the 

inflow of the inner rivers 𝐼. Under non-critical conditions, this pumping strategy is 

represented by the following operational principle (Gao et al., 2008, 2009): When 

the water level starts to rise, 

If: the inflow exceeds the pumping capacity of the polder system 𝑞𝑚𝑎𝑥,  

pump the water at the latter rate, while the excess water is stored in the inner rivers, 

raising the water level 

Else: pump the water at the inflow rate 𝐼𝑡.  

For the critical condition, it is assumed that the maximum pumping capacity 𝑞𝑚𝑎𝑥 

is used in the polder. It is also considered that, after the critical condition has been 

reached and the inflow has stopped, the polder manager drops the water level of the 

inner river to the normal level ℎ𝑛 by using the maximum pumping capacity 𝑞𝑚𝑎𝑥. 

Furthermore, if the resulting water level of the inner rivers after the storm is below 
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the critical level ℎ𝑐, it is assumed that the polder manager keeps the water level of 

the inner rivers at that level. These principles are represented by: 

𝑞𝑡 = {

𝑞𝑚𝑎𝑥,                         𝑖𝑓 (ℎ𝑡 > ℎ𝑐)  𝑢𝑛𝑡𝑖𝑙 ℎ = ℎ𝑛            

𝑚𝑖𝑛{𝑞𝑚𝑎𝑥, 𝐼𝑡},              𝑖𝑓 (ℎ𝑡 ≤ ℎ𝑐 & 𝐼𝑡 > 0)                             

0,                          𝑖𝑓 (ℎ𝑡 < ℎ𝑐  & 𝐼𝑡 = 0)                   
} Eq. 7.15 

Where, as was explained in section 7.2.2,  𝑞𝑡 [mm.h-1] is the pumping rate at time 

step t; the other variables have also been introduced in this section. 

The adopted reactive pumping strategy has three mains assumptions: i) the pumping 

starts when a storm starts –reactive action-, ii) once the dropped water level reaches 

a given water level – here assumed as ℎ𝑛-, the pumping ends, and iii) the water 

level of the inner rivers can be higher than the level that defines the end of the 

pumping. This behaviour has been observed in the operation of the Shazhou polder 

(Song, 2019).  

7.6.4 Proactive strategy under perfect forecast information  

In this section, one of the two proactive pumping strategies analysed in the 

framework is explained. This proactive pumping strategy is designed under the 

assumption of a perfect forecast and is the best scenario when simulating the polder 

system as one is assuming perfect knowledge about the target variables 𝑆𝑐 and 𝑉𝑝
𝑐. 

Adopting the proactive criterion described in Eq. 7.14,  𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

  in this equation 

should be equal to 𝑆𝑐; and then, when the storm arrives, 𝑉𝑝 will be equal to 𝑉𝑝
𝑐. Note, 

however, that, when applying this strategy, the storage capacity of the inner rivers 

at the end of the 24hr period will be full, which would produce a critical condition 

situation for the next day, even for a weak storm. To avoid this, 𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 under this 

scenario is expressed by: 

𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

= 𝑆𝑐 + (ℎ𝑐 − ℎ𝑟𝑒𝑓)    Eq. 7.16 

where 𝑆𝑐 is expressed as length units (section 7.6.1), and ℎ𝑟𝑒𝑓 is a reference level 

of the inner rivers. The reference level ℎ𝑟𝑒𝑓 is the level at which one  wants the 

water level to be at after the pumping actions; it must be neither too high nor too 

low. In this first case, a critical condition situation can be produced in the next day, 
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even by a weak storm. In the second case, the strategy can be considered expensive. 

When considering the value of 𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 based on this equation, one makes sure that 

the level of the inner rivers after the end of the storm will be equal to ℎ𝑟𝑒𝑓.  

In this strategy, the volume of water pumped during the reactive action, i.e., 𝑉𝑝
𝑐,  is 

simulated by Eq. 7.15, i.e., the current pump operation of the polder system. For the 

proactive action, it is assumed that the polder manager pumps a volume of water 

equal to 𝑆𝑐+(ℎ𝑐 − ℎ𝑟𝑒𝑓) with a pumping rate equal to  𝑞𝑚𝑎𝑥.  

𝑆𝑐 should be computed prior to the analysis of the daily storm by performing in 

advance the 24h-water balance of the polder system based on the current pump 

operation of the polder system, i.e., reactive pumping actions, and using the 

observed profile and volume of the daily rainfall to be analysed (perfect forecast). 

It can be computed through the following algorithm.  

 Step 1: Assume the polder system to be a tank - an input-output system - 

and compute the hourly runoff 𝑅𝑂𝑡 by using Eq. 7.1, and its associated 

waterlogging 𝑊𝑡 and inflow 𝐼𝑡 through Eq. 7.2 and Eq. 7.3, respectively, for 

the no critical condition situation. 

 Step 2: Compute the hourly water storage as: 

𝑆𝑡 = {
0,                                             𝑖𝑓 (𝐼𝑡 ≤ 𝑞𝑚𝑎𝑥) 

𝑆𝑡−1 − (𝑞𝑚𝑎𝑥 − 𝐼𝑡),              𝑖𝑓 (𝐼𝑡 > 𝑞𝑚𝑎𝑥)  
} Eq. 7.17 

 Step 3: Compute the maximum value of 𝑆𝑡, i.e., 𝑆𝑚𝑎𝑥(𝑆1, 𝑆2, 𝑆3, … 𝑆24), and 

compute 𝑆𝑐 as: 

𝑆𝑐 = 𝑆𝑚𝑎𝑥 − 𝑆𝑜
𝐶𝑎𝑝

 Eq. 7.18 

The chronology of the perfect forecast pumping strategy can be summarized as 

follows.  

 At midnight, the value of 𝑆𝑐 is delivered to the polder manager, and the 

polder manager conducts the proactive action by pumping a volume of water 

equal to 𝑆𝑐 + (ℎ𝑐 − ℎ𝑟𝑒𝑓) (Eq. 7.16) with a pumping rate = 𝑞𝑚𝑎𝑥.  

 Then, the polder manager waits for the arrival of the storm. If the storm 

arrives before 𝑆𝑐 + (ℎ𝑐 − ℎ𝑟𝑒𝑓) has been pumped, the manager will 

continue with the proactive strategy, and also implement the reactive 

strategy. Here, the pumping rate used is 𝑞𝑚𝑎𝑥 until the target volume has 

been pumped.  
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 Finally, the polder manager completes the pumping strategy by conducting 

the reactive action once the storm arrives, which is represented by Eq. 7.15. 

The volume of water pumped during the reactive period will be equal to 𝑉𝑝
𝑐 

and the level of the inner river at the end of the storm will be equal to ℎ𝑟𝑒𝑓. 

Note that the representation of the perfect forecast pumping strategy does not mean 

that the polder system will not be affected by waterlogging. There are two 

conditions causing waterlogging under the perfect forecast scenario: 

 Condition 1: When the runoff rate 𝑅𝑂 overcomes the capacity of the 

drainage system 𝑟 (Eq. 7.2). 

 Condition 2: When the runoff starts at midnight, and the inflow overcomes 

the pumping capacity of the polder system 𝑞𝑚𝑎𝑥, i.e., before the proactive 

strategy can be implemented. Under this condition, 𝑡𝑎𝑟𝑟𝑖𝑣𝑒 in Eq. 7.14 is zero, 

and the proactive action cannot be conducted. In this case, the polder 

manager does not have response capacity for the critical storm, and he/she 

is only  able to use a pumping rate equal to 𝑞𝑚𝑎𝑥, whereas the water level 

of inner rives rises until a critical condition situation is reached. 

7.6.5 Proactive strategy under imperfect forecast information 

In the prior section,  it was explained how the framework will represent the best 

scenario when simulating the polder system, i.e., the perfect forecast scenario, so 

there is no   uncertainty about the target variables 𝑆𝑐 and 𝑉𝑝
𝑐. Here, a proactive 

pumping strategy based on imperfect forecast information is explained, where the 

uncertainty of the target variables is fully considered. This proactive pumping 

strategy can be applied by considering probabilistic and deterministic forecast 

information and will be the response to the deterministic and probabilistic warning 

decisions explained in section 7.5. It will, therefore, be used for both scenarios in 

the analysis of the framework. This proactive pumping strategy is detailed below 

There are a number of proactive strategies one can design to operate the polder 

system under the proactive criterion described in Eq. 7.14.  In this work, only one 

of them has been used to describe a proactive strategy under different levels of 

imperfect forecast information. This strategy was called Type-1 pumping strategy. 

The reactive pumping action is represented by Eq. 7.15 (the current pump operation 

of the polder system), and the proactive pumping action, which can be based on 

deterministic and probabilistic forecasts, is a pumping action driven by a storm 

warning, i.e., it is only conducted if a storm warning is issued.  
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The Type-1 pumping strategy assumes that, once a storm warning is issued, the 

polder manager has a forecast of the total critical daily runoff 𝑅𝑂𝑐
𝑑𝑎𝑖𝑙𝑦

(Eq. 7.13), 

designated by 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

, but has no knowledge of the daily rainfall profile. Thus, the 

polder manager has to deal with the proactive action based on knowledge of   

𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 and 𝑆𝑜
𝐶𝑎𝑝

; the latter  is assumed known because he/she knows the storage 

capacity of the inner rivers before the storm arrives. This equation can be expressed 

in terms of the true values of these two variables as: 

𝑅𝑂𝑐
𝑑𝑎𝑖𝑙𝑦

= 𝑉𝑒𝑥𝑐𝑒𝑠𝑠 + 𝑆𝑜
𝐶𝑎𝑝

 Eq. 7.19 

where 𝑉𝑒𝑥𝑐𝑒𝑠𝑠 is the portion of the critical daily runoff expressed by 𝑉𝑝
𝑐 + 𝑆𝑐 in Eq. 

7.13. Based on Eq. 7.19 and the information assumed known by the polder manager; 

one can, therefore, say that he/she has an estimate of  𝑉𝑒𝑥𝑐𝑒𝑠𝑠 which can be computed 

as: 

𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

− 𝑆𝑜
𝐶𝑎𝑝

 Eq. 7.20 

where 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 is the estimate of 𝑉𝑒𝑥𝑐𝑒𝑠𝑠. Thus, the estimate of 𝑆𝑐 in Eq. 7.13 can be 

computed as a portion of  𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠  as: 

𝑆̂𝑐 = 𝛼𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠   Eq. 7.21 

where 𝑆̂𝑐 is the estimate of 𝑆𝑐 and 𝛼 is a parameter with a value between 0 and 1 

and represents the portion of 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 that represents 𝑆̂𝑐, i.e., α represents the 

proactive pumping factor in the pumping strategy. Based on Eq. 7.21, the estimate 

of 𝑉𝑝
𝑐 is given by: 

𝑉̂𝑝
𝑐 = (1 − 𝛼)𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠  Eq. 7.22 

Thus, the Type-1 pumping strategy assumes that  𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 in Eq. 7.14 should be 

equal to 𝑆̂𝑐 (Eq. 7.21); and then, when the storm arrives, it assumes that 𝑉𝑝 will be 

equal to  𝑉̂𝑝
𝑐 (Eq. 7.22).  

To summarize, 𝑆̂𝑐 represents the estimate of the portion of a critical observed daily 

runoff that brings the water level of the inner rivers beyond the critical level ℎ𝑐. 

Since the forecast of the rainfall profile is not available, it is computed as a 
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percentage of the estimate of the volume expressed by 𝑉𝑝
𝑐 + 𝑆𝑐 which is here called 

𝑉𝑒𝑥𝑐𝑒𝑠𝑠 (Eq. 7.19); this proportion is represented by α in Eq. 7.21.  Note that  𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 

(Eq. 7.20) depends on the magnitude of 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 and 𝑆𝑜
𝐶𝑎𝑝

 , i.e., the storage capacity 

of the inner river before the storm arrives. Thus, if 𝑆𝑜
𝐶𝑎𝑝 is small, 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 could be 

small if 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

  is small. How large or small 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 is depends on the value of 

𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 and α, where the latter it is a value to be analysed in the framework. 

As was mentioned above, the Type-1 pumping strategy can be applied by 

considering probabilistic and deterministic forecast information. The application 

and chronology of this pumping strategy when using these two types of information 

is explained as follows. 

7.6.5.1 Type-1 pumping strategy based on deterministic forecast 

The Type-1 pumping strategy under deterministic forecast information requires a 

forecast of the total daily runoff  𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐  based on the deterministic forecast of a 

critical daily rainfall (𝑅𝑑𝑎𝑖𝑙𝑦
𝑐 ) (a daily rainfall causing critical conditions in the 

polder), designed as 𝑅̂𝑑𝑎𝑖𝑙𝑦
𝑐 . By definition, the values of this latter variable are 

values greater than a daily rainfall threshold 𝑅𝑇𝑑𝑎𝑖𝑙𝑦 (section 7.4), and, therefore, 

they are provided to the polder manager when a storm warning is issued. 𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐  

is computed here as: 

𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐 = 0.7𝑅̂𝑑𝑎𝑖𝑙𝑦

𝑐  Eq. 7.23 

where the value of 0.7 represents the average runoff coefficient of the polder system 

used in the conceptual model to compute the runoff rate 𝑅𝑂 (Eq. 7.1). 

The chronology of the operation of the polder system under the Type-1 pumping 

strategy based on deterministic-24 forecasts can be summarized as follows. 

 At midnight, a deterministic 24h-forecast of rainfall is generated and a 

warning decision is conducted based on Eq. 7.11. If a storm warning is 

issued, the deterministic forecast of the daily runoff that will cause critical 

conditions  𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 in the next 24 hours is delivered to the polder manager 

(Eq. 7.23). If a storm warning is not issued, only a reactive pumping action 

is conducted. 
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 If a storm warning is issued, the polder manager conducts the proactive 

action by pumping a volume of water equal to 𝑆̂𝑐 = 𝛼𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 with a pumping 

rate = 𝑞𝑚𝑎𝑥, where 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 is computed as 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

− 𝑆𝑜 (Eq. 7.20). 

 Then, the polder manager waits for the arrival of the storm. If the storm 

arrives before 𝑆̂𝑐 has been pumped, the manager will continue with the 

proactive strategy and also implement the reactive strategy. Here, the 

pumping rate used is 𝑞𝑚𝑎𝑥 until the target volume has been pumped.  

 Finally, the polder manager completes the pumping strategy by conducting 

the reactive action once the storm arrives, which is represented by Eq. 7.15. 

7.6.5.2 Type-1 pumping strategy based on probabilistic forecast 

The Type-1 pumping strategy under probabilistic forecast information uses the 

expected value of the forecast of a daily rainfall 𝑅𝑑𝑎𝑖𝑙𝑦 to compute 𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐 .  

𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐 = 0.7𝐄(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) Eq. 7.24 

where 𝐄(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) is the expected value of the conditional distribution of 

𝑅𝑑𝑎𝑖𝑙𝑦 given 𝑅̂𝑑𝑎𝑖𝑙𝑦, i.e., 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦), obtained from the joint probability of 

𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 (section 7.3.4). 

The chronology of the operation of the polder system under the Type-1 pumping 

strategy based on probabilistic forecasts can be summarized as follows. 

 At midnight, a probabilistic 24h-forecast of rainfall is generated, and a 

warning decision is conducted based on Eq. 7.12. If a storm warning is 

issued, the probabilistic-forecast based estimate of the daily runoff that will 

cause critical conditions  𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 in the next 24 hours is delivered to the 

polder manager (Eq. 7.24). If a storm warning is not issued, only a reactive 

pumping is conducted. 

 If a storm warning was issued, the polder manager conducts the proactive 

action by pumping a volume of water equal to 𝑆̂𝑐 = 𝛼𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 with a pumping 

rate = 𝑞𝑚𝑎𝑥, where 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 is computed as 𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

− 𝑆𝑜
𝑐𝑎𝑝

 (Eq. 7.20). 

 Then, the polder manager waits for the arrival of the storm. If the storm 

arrives before 𝑉̂𝑒𝑥𝑐𝑒𝑠𝑠 has been pumped, the manager will continue with the 

proactive strategy, and also implement the reactive strategy. Here, the 

pumping rate used is 𝑞𝑚𝑎𝑥 until the target volume has been pumped. 

 Finally, the polder manager completes the pumping strategy by conducting 

the reactive action once the storm arrives, which is represented by Eq. 7.15. 
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7.7 Operation of the Shazhou polder system under different forecast 

scenarios 

In this section, an explanation is provided of how the framework links the concepts 

explained above to build the algorithms to simulate the operation of the polder 

system under different forecast scenarios. In essence, the framework couples the 

RFG (section 7.3) with different warning decisions (section 7.5) and the conceptual 

model of the polder system (section 7.2.2) with different pumping strategies 

(section 7.6) according to the scenario to be analysed. Before introducing these 

algorithms, the metrics used to compare all the scenarios are explained. 

7.7.1 Metrics to be analysed  

A polder manager could use a warning system to reduce the time and magnitude of 

the waterlogging 𝑊 by conducting a pumping strategy based on the forecasts (in 

this work 24-h forecasts). This pumping strategy can involve proactive and reactive 

actions with an inevitable pump operating cost, which should also be considered. 

There are, therefore, two criteria to be considered, waterlogging and pumping cost, 

and metrics to represent them are detailed below. Since the stochastic rainfall model 

on which the RFG is based represents the rainfall characteristics of July in Nanjing, 

when extreme events are most likely to occur, the metrics used in this work have 

been designed to represent the average values for that month. These values were 

computed by considering several replications of the operation of the polder system 

over the month of July. Each July replication is performed using continuous 

simulation, with the hourly simulation of the hydrology of the polder system carried 

out based on synthetic ‘real’ rainfall time series and the proactive decisions made 

using their corresponding (24hr) forecast values provided by the RFG. 

7.7.1.1 Maximum Inundated area 

The maximum inundated area (𝑀𝐼𝐴) represents the maximum area inundated 

during each replication of the operation of the polder system during July. The 

inundated area (𝐼𝐴) is a value provided by the conceptual model of the polder 

system through simulating hourly runoff and calculating hourly inundation using 

Figure 7.4. 𝑀𝐼𝐴  and its average value can be expressed by: 
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𝑀𝐼𝐴 = 𝑚𝑎𝑥(𝐼𝐴1, 𝐼𝐴2, 𝐼𝐴3, … 𝐼𝐴𝑗) Eq. 7.25 

 

𝑀𝐼𝐴̅̅ ̅̅ ̅̅ =
1

𝑛
∑ 𝑀𝐼𝐴𝑖

𝑛

𝑖=1

 Eq. 7.26 

 

where 𝑗 is the total number of simulated hours in a simulated July,   𝑀𝐼𝐴̅̅ ̅̅ ̅̅  is the 

average maximum inundated area in July, 𝑛 represents the total number of  July 

replications, and 𝑖 is a simulated July. The 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  will be a function of the pumping 

strategy adapted, and the forecast information used. 

7.7.1.2 Pumping costs 

The pumping cost (𝐶𝑝) represent the total cost of the pumping actions during July. 

The cost will depend on  the given pumping strategy (and also the forecast 

information used) and can be split into proactive (𝐶𝑝𝑟𝑜) and reactive (𝐶𝑟𝑒𝑎)  

pumping costs. The average values of these pumping costs can be thus expressed 

as: 

𝐶𝑝̅𝑟𝑜 =
1

𝑛
∑ 𝐶𝑝𝑟𝑜

𝑖

𝑛

𝑖=1

 Eq. 7.27 

𝐶𝑟̅𝑒𝑎 =
1

𝑛
∑ 𝐶𝑟𝑒𝑎

𝑖

𝑛

𝑖=1

 Eq. 7.28 

𝐶𝑝̅ = 𝐶𝑝̅𝑟𝑜 + 𝐶𝑟̅𝑒𝑎 Eq. 7.29 

where 𝐶𝑝𝑟𝑜
𝑖  and  𝐶𝑟𝑒𝑎

𝑖  represent the total proactive and reactive pumping cost for a 

simulated July 𝑖, 𝐶𝑝̅𝑟𝑜 and 𝐶𝑟̅𝑒𝑎 represent the average proactive and reactive 

pumping costs during July, and  𝐶𝑝̅ is the average total pumping cost during July. 

The pumping costs were computed according to the assumed pumped tariff shown 

in Table 7.9. As one can see, the number of steps considered in the pumping rate is 

equal to 6. The number of steps in the pumping rate has been assumed considering 

that the number of pumps at each pumping station in the Shazou polder, which is 

also 6.  
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Table 7.9: Assumed pumping tariff to compute the pumping costs 

 

 

 

 

 

 

7.7.1.3 Duration of waterlogging 

The duration of waterlogging (𝐷𝑤) represents the number of hours of waterlogging 

during a simulated July. The average value is given by: 

𝐷̅𝑤 =
1

𝑛
∑ 𝐷𝑤

𝑖

𝑛

𝑖=1

 Eq. 7.30 

Where 𝐷𝑤
𝑖  represents the number of hours of waterlogging in the polder system 

during a simulated July i, and 𝐷̅𝑤 is its average.   

7.7.2 The no forecast scenario 

The no forecast scenario will be one of the benchmark cases in the framework. It 

represents the current pump operation procedure in the polder system, which is 

based on reactive pumping actions. It will be represented by using the algorithm we 

built to represent the water balance in the polder (section 7.2.2) with the pumping 

strategy described in section 7.6.3. The algorithm designed for its analysis is 

detailed below. 

 Step 1: Obtain a continuous set of ‘observed’ hourly synthetic rainfall time 

series for July from the RFG.  

 Step 2: Run the analysis in no-warning mode using the conceptual model 

of the polder system with the pumping strategy described in 7.6.3. 

 Step 3: For  all the simulated Julys, compute the metrics explained in section 

7.7.1  

7.7.3 The perfect forecast scenario 

The perfect forecast scenario will be the second benchmark scenario in the 

framework. It is an idealized scenario in which there is no uncertainty for the target 

𝑞  
[mm h-1] 

Pumping tariff  

[Units] 

1.6 15 

3.2 30 

4.8 45 

6.4 60 

8 75 

𝑞𝑚𝑎𝑥 =9.62 100 
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variables in the proactive pumping strategy, i.e., it is assumed that the hourly 

rainfall values are known, and 24hr forecasts are not used. It will be represented by 

using the algorithm built to characterize the water balance in the polder (section 

7.2.2) with the pumping strategy described in section 7.6.4. The algorithm designed 

for its analysis is detailed below. 

 Step 1: Obtain a continuous set of ‘observed’ hourly synthetic rainfall time 

series for July from the RFG.  

 Step 2: Run the analysis in no-warning mode using the conceptual model 

of the polder system with the pumping strategy described in 7.6.3. 

 Step 3: For  all the simulated Julys, compute the metrics explained in section 

7.7.1  

7.7.4 The deterministic-forecast scenario 

The deterministic forecast scenario is one of the imperfect forecast scenarios 

considered in the framework. It uses deterministic 24hr-forecasts to represent both 

the warning decision and the proactive pumping strategy. It will be represented by 

using the decision rule that describes the deterministic warning decision (section 

7.5.1) and the algorithm built to characterize the water balance in the polder (section 

7.2.2) with the Type-1 pumping strategy described in 7.6.5.1. The algorithm 

designed for its analysis is detailed below. 

 Step 1:  Obtain a continuous set of ‘observed’ and ‘forecast’ hourly 

synthetic rainfall time series for July from the RFG. Aggregate the ‘forecast’ 

hourly rainfall to obtain 24-h forecasts.  

 Step 2: For each July replication, run the analysis in deterministic-forecast 

mode, i.e., by using the conceptual model of the polder system, for each 

day: 

o Compute 𝑅̂𝑑𝑎𝑖𝑙𝑦 and simulate the deterministic warning decision 

based on Eq. 7.11  

o  Run the conceptual model of the polder system in concert with the 

Type-1 pumping strategy described in 7.6.5.1. 

 Step 3: For all simulated Julys, compute the metrics explained in section 

7.7.1  

7.7.5 The probabilistic-forecast scenario 

The probabilistic forecast scenario is the other imperfect forecast scenario 

considered in the framework. It uses 24-hr probabilistic forecasts to represent both 

the warning decision and the proactive pumping strategy. It will be represented by 

using the decision rule that describes the probabilistic warning decision (section 

7.5.2) and the algorithm that was built to characterize the water balance in the polder 
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(section 7.2.2) with the chronology of the Type-1 pumping strategy described in 

7.6.5.2. The algorithm designed for its analysis is detailed below. 

 Step 1:  Obtain a continuous set of ‘observed’ hourly synthetic rainfall time 

series for July from the RFG. Aggregate the ‘forecast’ hourly rainfall to 

obtain 24-h forecasts.  

 Step 2: For each July replication, run the analysis in probabilistic-forecast 

mode, i.e., by using the conceptual model of the polder system, for each 

day: 

o Compute 𝑅̂𝑑𝑎𝑖𝑙𝑦 and its associated 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑙𝑦) from the joint 

distribution of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑙𝑦 (section 7.3.4.2), and compute 𝑃𝐸 

based on 𝑅𝑇𝑑𝑎𝑖𝑙𝑦. 

o Simulate the probabilistic warning decision based on Eq. 7.12. 

Step 3: Run the conceptual model of the polder system in concert with the 

Type-1 pumping strategy described in 7.6.5.2. 

 Step 4: For all simulated Julys, , compute the metrics explained in section 

7.7.1  

7.8 Scenario simulation for a single storm 

The prior section explains the framework algorithms used to compare the operation 

of the polder system under different forecast scenarios. The outputs of these 

algorithms are the metrics explained in section 7.7.1. If one shows only the results 

of the framework based on these algorithms, one cannot fully appreciate how the 

several pumping strategies considered in the analysis work during a critical storm. 

This section, therefore, shows an example of the simulation of the polder system 

under all scenarios during the same observed storm causing critical conditions. This 

analysis will give us a good insight into how the pumping criteria adopted for the 

different strategies are reflected when trying to mitigate a critical condition 

situation. Figure 7.17 and Figure 7.18 show this example, and the results for each 

scenario are explained below. In this case, the initial condition for all scenarios 

matches. Note on the first day, the storm magnitude is insufficient to trigger a 

warning in the proactive scenarios, and reactive pumping is performed in all cases. 

During day 2, a storm triggers proactive action in all cases, except for the reactive 

strategy.  A general description of the scenarios is given in Table 7.10. 
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Figure 7.17: Example of the simulation of the operation of the polder system (water level) 

during an observed storm causing critical conditions for all scenarios 

In the figure, DF: deterministic forecast scenario; NW: no warning scenario; PF: perfect forecast; 

PrF: probabilistic forecast scenario. This figure shows how the pumping strategies considered in 

each scenario work during an observed storm causing critical conditions. Table 7.10 gives a general 

description of these scenarios. In this case, the initial condition for all scenarios matches. The normal 

water is 4000 mm, and  𝛼 =  0.05 and 0.025 for the deterministic and probabilistic scenario, 

respectively. ℎ𝑟𝑒𝑓  = 4400 for the perfect forecast scenario. 

 

 

Figure 7.18: Example of the simulation of the operation of the polder system (pumping rate 

and Inflow) during an observed storm causing critical conditions for all scenarios 

In the figure, DF: deterministic forecast scenario; NW: no warning scenario; PF: perfect forecast; 

PrF: probabilistic forecast scenario. This figure shows the inflow 𝐼 and pumping rate q of the 

example shown in Figure 7.17. The maximum inflow 𝐼 is equal to the 𝑟,  the capacity of the 

municipal pipe network, and the maximum 𝑞 is equal to the pumping capacity of the polder 𝑞𝑚𝑎𝑥 . 

 Non-warning scenario: This scenario represents the current pump 

operation for the Shazou polder, which is a reactive pumping strategy 

(section 7.6.3). When the water level starts to rise, the inflow 𝐼 is greater 

than 𝑞𝑚𝑎𝑥, and the polder manager will pump the water with a pumping rate 

equal to 𝑞𝑚𝑎𝑥. After the critical condition situation, the water level of the 
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inner rivers is dropped to the normal water level ℎ𝑛 with a pumping rate 

equal to  𝑞𝑚𝑎𝑥. 

 Perfect forecast scenario: Under this scenario, the polder manager has 

perfect knowledge about 𝑆𝑐, and the value of 𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 adopted in Eq. 7.14 is 

𝑆𝑐 + (ℎ𝑐 − ℎ𝑟𝑒𝑓)(Eq. 7.16). Thus, the water level is dropped before the 

storm arrives, and the maximum water level matches with ℎ𝑟𝑒𝑓 that is here 

assumed to be 4400 mm. 

 Deterministic-forecast scenario: Under this scenario, the value of 𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 

adopted in Eq. 7.14 is 𝑆̂𝑐 (Eq. 7.21) estimated based on the deterministic 

forecast of daily rainfall. Figure 7.17 shows the results when adopting a 

value of α=0.05. As can be seen, for this storm, a warning was issued, and 

the value adopted for α is not enough to avoid the critical condition. 

Therefore, after the critical condition situation, the water level is dropped to 

the normal water level ℎ𝑛 with a pumping rate equal to  𝑞𝑚𝑎𝑥. 

 Probabilistic-forecast scenario: Under this scenario, the value of 𝑉𝑝
𝑏𝑒𝑓𝑜𝑟𝑒

 

adopted in Eq. 7.14 is 𝑆̂𝑐 (Eq. 7.21) estimated from 𝑅̂𝑑𝑎𝑖𝑙𝑦
𝑐  computed based 

on the expected value of forecast of daily rainfall (Eq. 7.24). Figure 7.17 

shows the results when adopting a value of 𝑎=0.025. As can be seen, for 

this storm, a warning was issued, and the value adopted for α is not enough 

to avoid the critical condition. Therefore, after the critical condition 

situation, the water level is dropped to the normal water level ℎ𝑛 with a 

pmping rate equal to  𝑞𝑚𝑎𝑥 

Table 7.10 General description of the scenarios considered in the framework 

Scenario Warning decision Pumping strategy 

The no-warning 

scenario (NW) 
No 

Reactive pumping strategy (section 

7.6.3). 

The perfect forecast 

scenario (PF- add for 

each) 

No 

It assumes perfect knowledge of  the 

target variables 𝑆𝑐 and 𝑉𝑝
𝑐 (section 

7.6.4) 

The deterministic 

forecast scenario 

Based on the 

deterministic forecast 

of the daily rainfall 

𝑅̂𝑑𝑎𝑖𝑙𝑦 and the daily 

rainfall threshold 

𝑅𝑇𝑑𝑎𝑖𝑙𝑦  

 Based on the forecast of the 

daily rainfall 𝑅̂𝑑𝑎𝑖𝑙𝑦  

 The critical daily runoff 

𝑅𝑂̂𝑑𝑎𝑖𝑙𝑦
𝑐  is computed as 

𝑅̂𝑑𝑎𝑖𝑙𝑦*0.7. 

 The proactive pumping is a 

function of the parameter α 

(proactive pumping factor).  

The probabilistic-

forecast scenario 

Based on the 

probabilistic threshold 

𝑃𝑇 and the exceedance 

probability 𝑃𝐸 of 

RTdaily 

 Based on the expected value 

of 𝑅𝑑𝑎𝑖𝑙𝑦, i.e., 

𝐄(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦). 

  𝑅𝑂̂𝑐
𝑑𝑎𝑖𝑙𝑦

 is computed as 

𝐄(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦)*0.7 

 The proactive pumping is a 

function of the parameter α 

(proactive pumping factor).  
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7.9 Tradeoff between inundated area and pumping cost 

In this section, the framework is used to compare the performance of the drainage 

system in the Shazhou polder in July under different forecast scenarios. As the title 

of this section implies, the results show a tradeoff between the metrics that represent 

the inundated area and the pumping costs. Two parameters will be analysed in the 

framework through the scenarios: α and 𝑃𝑇. The aim of the analysis of these 

parameters in each scenario is described in Table 7.11. The results of the 

deterministic and probabilistic scenarios will be first shown separately, and, then, 

all the scenarios will be analysed together. The imperfect forecast scenarios will be 

compared with the benchmark scenarios, i.e., the no warning and the perfect 

forecast scenarios. The analysis considered Julys with at least one rainfall event that 

could potentially produce a significant runoff event in the polder system (daily 

rainfalls > 50 mm). After this filter, the sample size was reduced to 8730 Julys. The 

results are provided below. 

Table 7.11 Parameters to be analysed in the framework 

7.9.1 Analysis of the tradeoff for the deterministic-forecast scenario 

The results of the deterministic forecast scenario are provided in Figure 7.19, 

showing the tradeoff between the pumping costs and the inundated area. Note that 

the average proactive pumping costs 𝐶𝑝̅𝑟𝑜 represents between 1 and 3 % of  total 

average costs 𝐶𝑝̅ due to the latter considering not only the reactive and proactive 

pumping for a critical daily rainfall but also the reactive pumping cost of all daily 

rainfalls in the month.  

The results of the benchmark cases are also plotted in Figure 7.19. The no warning 

condition defines the worst scenario in the analysis due to no proactive action being 

taken in the polder. In contrast, the perfect forecast scenario represents the best 

scenario due to perfect knowledge of the target variables in the pumping strategy. 

Scenario Parameter Range Aim 

The 

deterministic 

scenario 

α 0-0.5 

Analyse the tradeoff 

between pumping cost 𝐶𝑝̅ 

and inundated area 𝑀𝐼𝐴̅̅ ̅̅ ̅̅ . 

The 

probabilistic 

scenario 

α, 𝑃𝑇 
α=0-0.5 

𝑃𝑇=0.1-1 

Analyse the best solutions 

(Pareto curve) in terms of 

𝐶𝑝̅ and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅ . 
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Note that the pumping costs of this scenario are slightly lower than the no warning 

scenario. That occurs because the number of critical condition situations decreases 

significantly in this scenario, and thereby the number of times the polder manager 

drops the water level of the inner rivers with a pumping rate equal to 𝑞𝑚𝑎𝑥. This is 

reflected in the reduction of the reactive pumping costs, which also reduce the total 

pumping costs. Thus, any strategy of the deterministic forecast scenario (and any 

imperfect forecast strategy) cannot overcome these results; they are explained as 

follows.  

 

Figure 7.19: Tradeoff between pumping costs and inundated area for the deterministic 

forecast scenario and comparison with the two benchmark scenarios 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure 

shows the tradeoff between 𝐶𝑝̅ and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  (a) and 𝐶𝑝̅𝑟𝑜 and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  (b) for the deterministic forecast 

scenario. The values of α considered were the following: 0, 

0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two 

benchmark scenarios. In these figures, the values of  𝑀𝐼𝐴̅̅ ̅̅ ̅̅  decrease as the values of α increase. 

The worst strategy of the deterministic forecast scenario is when 𝛼 = 0 (the highest 

triangle on the plots), i.e., when the volume of water pumped before a critical storm 

is zero, which can be considered as a reactive pumping strategy. Therefore, as one 

can expect, this strategy matches the results of the no warning scenario. As 𝛼 

increases, the inundated area decreases, and the pumping costs increase. However, 

there is a point (𝛼=0.25) where the inundated area stops decreasing, and it stays 

constant, which means that, after this point, critical storms cannot be avoided. That 

occurs because, after this point, most of the remaining critical storms to be avoided 

are those whose runoff starts at midnight (or close to this time)  and whose inflow 

rate overcomes the pumping capacity of the polder 𝑞𝑚𝑎𝑥. These storms are also a 

problem for the perfect forecast strategy. Under this condition, the polder manager 

does not have the required response capacity for the critical storm, and he/she can 
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only use a pumping rate equal to 𝑞𝑚𝑎𝑥, whereas the water level of the inner rivers 

rises until a critical condition situation occurs. Thus, after 𝛼 ≥ 0.25, the values of 

𝑀𝐼𝐴̅̅ ̅̅ ̅̅  are associated with waterlogging caused by these storms and by storms whose 

runoff overcomes the capacity of the drainage system. 

Another important variable to be analysed is 𝐷𝑤, i.e., the number of hours of 

waterlogging in the polder system during July. The relation of this variable with the 

pumping cost is shown in Annex 2. They have the same shape as the figures 

explained above; therefore, they do not need any further explanation. To have a 

measure of the magnitude of this variable, the 99-percentile of values of 𝐷𝑤 greater 

than 1 hour was computed (𝐷𝑤
99). The results are shown in Figure 7.20. As one can 

see, the behaviour of the scenarios is the same as the one shown in the prior figures, 

where the no warning and perfect forecast scenario represents the worst and the best 

ones, respectively, with the deterministic forecast located in the middle. 

 

Figure 7.20: Values of 𝑫𝒘
𝟗𝟗 for the deterministic strategy and the benchmark cases 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. The values 

of α assumed for the deterministic pumping strategy was 0.15 

7.9.2 Analysis of the tradeoff for the probabilistic forecast scenario 

In this section, the analysis of the probabilistic scenario is conducted. It aims to find 

the best solutions for the set of parameters (𝑃𝑇,𝛼) considered when simulating the 

polder system under this scenario. The approach consisted of simulating the polder 

system by considering different values of 𝑃𝑇 in the warning decision for each value 

of α in the Type-1-pumping strategy based on probabilistic information (section 
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7.6.5.2). Then, the plot of 𝐶𝑝̅ vs 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  was used to define a set of “best” points as 

the Pareto front. The results are shown in Figure 7.21, and the values of the best 

strategies are shown in Appendix B.  

The best points showed different combinations of probability 𝑃𝑇 and 𝛼, with 

several values of 𝑃𝑇 sharing the same value of 𝛼. However, if the polder manager 

chooses a value of 𝛼, it would be preferable to have just one value of 𝑃𝑇 that 

performs better than the deterministic scenario. This analysis was performed by 

plotting the best Pareto solutions associated with the same 𝛼 with different values 

of 𝑃𝑇 and comparing them with the deterministic result associated with the same 

value of 𝛼. Then, the point that overcomes the deterministic result and is closest to 

the perfect forecast scenario was chosen. Figure 7.22 shows one example of this 

analysis for one of these sets of best solutions. After this analysis, the set of best 

solutions were reduced to seven pairs with unique values of 𝛼 with different 𝑃𝑇 

values. The values of this set of best probabilistic solutions are shown in Table 7.12. 

 

 

Figure 7.21: Tradeoff between pumping costs and inundated area for the probabilistic 

forecast scenario and comparison with the two benchmark scenarios 

In the figure, NW: no warning scenario; PF: perfect forecast. This figure shows the tradeoff between 

𝐶𝑝̅ and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  (a) and 𝐶𝑝̅𝑟𝑜 and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  (b) for the probabilistic forecast scenario. when assuming 

different values of 𝛼 and 𝑃𝑇. The values of α considered were the following: 0, 

0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5., whereas the values of PT were 

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 It also shows the values of the two benchmark scenarios. 
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Figure 7.22: Example of when one should choose among best probability solutions with the 

same value of α based on the deterministic results and perfect forecast scenario 

In the figure, DF: Deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure 

shows one of the sets of best solutions shown in Figure 7.21 with the same values of α =0.25 and 

different 𝑃𝑇 values. Only one pair of this set of values was chosen. The criterion adopted was to 

choose the pair whose point overcomes the deterministic result and is closest to the perfect forecast 

scenario. 

Table 7.12. The final set of the parameters for the probabilistic forecast scenario 

 

 

 

 

 

7.9.3 Analysis of the tradeoff for all scenarios 

The final analysis in the framework consisted of comparing all scenarios together. 

This section primarily focuses on comparing the results of the deterministic and 

probabilistic forecast scenarios. Figure 7.23 and Figure 7.24 show the results for all 

scenarios analysed above in terms of pumping costs, inundated area and 𝐷𝑤
99  

respectively. As one would expect, the results of the probabilistic scenario are better 

than the deterministic one, i.e.,  the points in the plot are closer to the perfect 

information point. Thus, one can conclude that the probabilistic strategy is the best 

Set α PT 
1 0.05 0.9 

2 0.075 0.8 

3 0.1 0.8 

4 0.15 0.9 

5 0.2 0.7 

6 0.25 0.7 

7 0.3 0.8 
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one of the imperfect forecast scenarios; but understandably, it cannot be as good 

the perfect forecast strategy. 

To summarise, the framework shows that the non-warning scenario defines the 

highest flood impact which is expressed by the highest values of 𝑀𝐼𝐴̅̅ ̅̅ ̅̅   and 𝐷̅𝑤 

across all scenarios The perfect-forecast scenario is clearly best ; any strategy based 

on imperfect information cannot  match the results of this scenario. The strategy 

used in the imperfect forecast scenario (Type-1 pumping strategy, section 7.6.5) 

demonstrates the benefits of the warning system when using imperfect forecasts of 

the daily rainfall. The benefits can be valued when comparing 𝐶𝑝̅ with 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  or 𝐷̅𝑤. 

The results of the probabilistic forecast scenario are better than those for the 

deterministic-forecast scenario. One can see clearly that when using probabilistic 

information, the benefits of the warning system increase.  

The perfect forecast point in Figure 7.23 and Figure 7.24 provide  an important 

benchmark against which to judge how improvements to the imperfect forecasts 

could be made. e.g., by improving the rainfall forecasts. The correlation between 

the observed and forecasts 24-h rainfalls was 0.90 (Table 7.5), which roughly 

corresponds to an explained variance of 𝑅𝑑𝑎𝑖𝑙𝑦. This gives an idea of how useful 

such forecasts would be in the management of the polder and the quality of 24-h 

forecasts needed to achieve the results demonstrated. 

 Depending on how the polder manager views the tradeoff between cost and 

inundated area, a value of α can be chosen to reflect the tradeoff. If he/she wishes 

to minimize inundation and cost, then the best value would be that corresponding 

to the point where the plots flatten out, i.e., no reduction in inundated area can be 

achieved by incurring additional pumping costs. 

For the framework simulation experiments conducted here, the focus has been on 

demonstrating the value of rainfall forecasts in polder management. A perfect 

model of the polder system has been assumed to do this. For an operational system, 

a fully calibrated model would be needed, and the uncertainty associated with 

polder model predictions would have to be taken into account.  
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Figure 7.23: Analysis of the tradeoff for the deterministic and probabilistic scenarios and 

comparison with the benchmark scenarios 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast; ProF: 

Probabilistic forecast. This figure compares the results of the deterministic and probabilistic forecast 

scenarios explained above. 

 

Figure 7.24: Values of 𝑫𝒘
𝟗𝟗 for all scenarios 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast, PrF: 

probabilistic forecast. The values of α assumed for the deterministic and probabilistic pumping 

strategy was 0.15 

7.10 Main findings  

In this Chapter, it has been shown that the warning and pumping strategies adopted 

in a FEWS operating for flood-prone polder were important factors controlling the 

performance of the system. Through simulation experiments, it was observed that 

deterministic-forecasts-based strategies produced performance measures that can 

be enhanced by probabilistic-forecasts-based strategies. The results of the research 
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showed a trade-off between the average pumping costs 𝐶𝑝̅ and the measures 

defining the performance of the FEWS (𝑀𝐼𝐴̅̅ ̅̅ ̅̅  and 𝑑̅𝑤).  

Given the modelling approach adopted to obtain the results mentioned above, this 

Chapter also provides new knowledge in the simulation and design of this type 

FEWSs. In this topic, one can say that the architecture of the RFG is novel; it gives 

a criterion to represent forecast and observed rainfall for the analysis of forecast-

rainfall-based FEWSs. The results showed that  𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 fitted well to the 

three-parameter Gamma distribution, suggesting, thus, that the seven-parameter 

BGM was a suitable model to represent the bivariate relationship of these variates. 

Furthermore, it was observed that the bivariate simulation of bivariate Gamma 

variates through the Gaussian copula is not versatile since this bivariate distribution 

does not hold an analytical expression that links its dependence structure with  the 

correlation coefficient of the Gaussian copula 𝜌𝜂𝜂̂. 

A rainfall threshold RT curve was used as a tool for issuing flood warnings. The 

methodology used to build that curve and the (deterministic and probabilistic) 

decision rules used to simulate warning decisions are novel. They represent a 

significant contribution in this field. Furthermore, the pumping strategies and the 

resulting waterlogging 𝑊 in the polder area after they have been done were 

simulated based on the simple stylized model. This model has not been applied 

before in a flood warning context and was linked with an impact curve to represent 

the response and impact component (RIC) in the integrated framework. This model 

was not meant to be a precisely calibrated model but an approximate representation 

of reality. 
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 Chapter 8. Discussion, conclusions and recommendations for 

future work 

This thesis evaluates the performance of a simulated flood early warning system 

(FEWS) monitoring and warning a generic fluvial and fluvial flood-prone area as a 

function of several controlling factors. The evaluation is carried out within a novel 

generic framework where FEWS performance depends on the effectiveness of each 

of the components of a FEWS and on component linkages. The research 

contributions have provided a new understanding of the factors controlling the 

performances of FEWSs that can support their design. The knowledge gained can, 

thus, be used to i) understand the main factors controlling the performance of an 

operational FEWS and identify which of them can be positively modified to 

improve the system's performance, and ii) to design and/or simulate each of these 

FEWSs. 

A real-world application of this versatile framework has been demonstrated through 

a case study of a flood-prone polder area in which a FEWS has been designed and 

simulated and shown to have significant potential operational benefits in managing 

waterlogging while having the opportunity to also reduce pumping costs. 

In the next subsection, a general discussion of the main results obtained in this thesis 

is given. Then, the general conclusions are highlighted, and, finally, future work is 

suggested. 

8.1 General discussion 

The general discussion has been split into topics that are related to the research 

objectives. This subsection first discusses the main results according to these topics 

and ends by emphasizing this thesis's main contributions.        

8.1.1 The design of the generic fluvial framework  

An integrated and versatile generic simulation framework has been designed, which 

has achieved Objective 1. Moreover, this framework has enabled the overall aim of 

the thesis to be achieved by linking forecast model outputs with warning decisions 

and the associated responses and flood impacts, thus allowing the main factors 

influencing the performance of the integrated system to be evaluated. The 
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framework’s versatility is due to the ability to sample extensively synthetic forecast 

and observed data using appropriate analytical expressions to represent their 

properties which are representative of real catchment data. The warning and 

response/impact processes are evaluated in terms of reliability and economic 

effectiveness. This versatility has allowed situations to be explored that are 

impossible with real-world modelling due to a lack of data or limited computational 

resources.  

The framework is versatile because several bivariate distributions and generation 

algorithms (Ch4), warning performance measures and decision rules (Ch5 and 

Ch7), and impact and response functions, based on damage and cost (Ch6 and Ch7), 

can be employed. Moreover, deterministic and probabilistic forecasts can be 

simulated, and the predictive uncertainty (PU) of the latter can be used to optimize 

flood warning decision rules. The new framework avoids the restrictive 

assumptions made in previous frameworks. 

8.1.2 The building of the MCFG 

In recent years, a lot of effort has been put into the design of flood forecasting 

techniques to quantify or reduce PU in operational FEWS. Thus, in the literature, 

one can find many studies suggesting forecasting models for these purposes 

(Krzysztofowicz and Kelly, 2000; Coccia and Todini, 2011; Hapuarachchi et al., 

2011; Jain et al., 2018). These flood forecasting techniques are complex and are 

rarely used in frameworks that include the completed integrated system (the 

FEWS). In this context, the benefits of quantifying or reducing PU have been poorly 

studied in an integrated framework. To overcome this issue, this research has used 

a Monte Carlo flood and forecast generator (MCFG), which, in essence, simulates 

the forecasts generated by these forecasting models with their associated 

observations, and most importantly, enables the PU of the forecast to be quantified. 

In both the simulated generic fluvial case and flood-prone-polder system case study, 

the MCFG has used the concept of PU to represent/quantify the uncertainty about 

the future value, conditional on a single-value forecast of the predictand. Even 

though the aim of the MCFG for each case was the same, i.e., generate potential 

scenarios of flooding in an at-risk community, the predictand and predictor 

considered and the architecture of the MCFG was different in each of them. In the 
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simulated generic fluvial case, a potential flood in the at-risk community was 

defined by observed peak water levels (𝑦). Thus, 𝑦 was assumed to be the 

predictand, and its forecast (𝑦̂), the predictor. In the simulated flood-prone-polder 

system case study, a flood in the polder area was predicted based on a 24-hour 

forecast of significant rainfall. Thus, here, the significant daily rainfall (𝑅𝑑𝑎𝑖𝑙𝑦) was 

assumed to be the predictand, and its forecast (𝑅̂𝑑𝑎𝑖𝑙𝑦), the predictor. The 

architecture of the MCFG is novel; it allows PU to be expressed as a function of 

forecasting lead time in the simulated generic fluvial case and, in the simulated 

flood-prone polder system case study, gives a criterion that allows rainfall PU to be 

expressed for the analysis of rainfall forecast-based FEWSs. 

A bivariate parametric model was used within the MCFG to do a bivariate 

simulation of pairs (𝑦, 𝑦̂) with its associated conditional distribution 𝑓(𝑦|𝑦̂) in the 

simulated generic fluvial case, and to estimate PU in terms of 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦) in 

the simulated flood-prone polder system case study. Since a FEWS should serve its 

function during every potential flood, not just the largest potential flood in a year 

or month, the marginal distributions of these bivariate parametric models were 

represented by peak-over-threshold (POT) models. The bivariate parametric model 

used in each case was based on univariate analysis of observed sample data. In the 

simulated generic fluvial case, the sample data consisted of values of 𝑦 for  four 

gauging stations located close to or at a floodplain in northern England (Figure 4.4), 

and of the values of 𝑦̂ of one of these stations. The latter values were represented 

by simulated discharges from an existing calibrated model, which were then 

converted into water levels using the at-site gauge rating curve. The results relating 

to 𝑦 for each gauging station showed that at least two of the following univariate 

parametric distributions fit this variate well: the two-parameter Exponential 

distribution, the three-parameter Lognormal distribution, and the three-parameter 

Gamma distribution, whereas the two-parameter exponential distribution fitted the 

values of 𝑦̂ well (a goodness of fit test could only be applied in this case). For the 

station where values of 𝑦 and 𝑦̂ were both available, the same probability 

distribution (the two-parameters exponential) fitted both sample values well. This 

result allowed the assumption to be made that the probability distribution type of 𝑦̂ 

is the same as that of 𝑦 which can be used when values of the former variate are not 

available, which is very common in operational FEWSs. Based on this assumption, 

and the results of the univariate analysis, the five-parameter bivariate Exponential 
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distribution (BED), the seven-parameters bivariate Lognormal distribution 

(BLND), and the seven-parameter bivariate Gamma distribution (BGM) were 

considered to be suitable models to represent the pairs (𝑦, 𝑦̂). Since the simulated 

generic fluvial case was based on a virtual floodplain and did not represent any of 

the floodplains for which the frequency analysis was carried out, the seven-

parameters BLND was chosen for simulating the pairs (𝑦, 𝑦̂) used in the sensitivity 

experiments carried out in Chapters 5 and 6.  

The results of the univariate analysis of 𝑦 and 𝑦̂ match with other POT-frequency 

analysis studies of extreme hydrological variables (Choulakian et al., 1990; Bezak 

et al., 2014) that have been carried out. Since none of these works and other related 

works (Claps and Laio, 2003; Bogner et al., 2012)  have done a frequency analysis 

of 𝑦 and 𝑦̂, there is no formal criterion to define the pre-assumed threshold above 

which all peak water levels occur. In the univariate analysis of 𝑦 and 𝑦̂, a stage level 

(𝑦𝑏) must be set neither so high that only few floods are considered in the 

hydrologic frequency analysis, i.e., it should be lower than the flooding threshold 

(𝑦𝑇), nor so low that too many peaks are considered which are not relevant in the 

analysis. The value of 𝑦𝑏 considered in this work was a stage level that has been set 

by the Environment Agency for each gauging station used for flood warning 

purposes in England. When the river's water level reaches that threshold, a minor 

flood is possible in the floodplain. In this context, this research gives, at least for 

England, a formal criterion to define 𝑦𝑏 which is a very sensitive parameter in the 

POT frequency analysis.  

The univariate analysis in the simulated flood-prone polder system case study was 

based on a sample of synthetic data obtained from the stochastic rainfall field 

generator (RainSim V3) embedded in the MCFG; the RainSim model was 

calibrated using hourly and daily data records for the case study site.   Pairs of 

correlated daily rainfall totals (𝑅𝑑𝑎𝑖𝑙𝑦,𝑅̂𝑑𝑎𝑖𝑙𝑦) greater than 50 mm were obtained 

from the generated sample to include in the analysis;  daily rainfall above this 

threshold could potentially produce significant runoff in the polder system. The 

results showed that  the three-parameter univariate Gamma distribution fitted well 

both  𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦, suggesting, thus, that the seven-parameter BGM was a 

suitable model to represent the bivariate relationship of these variates.  
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A Gaussian copula-based algorithm was used within the MCFG to build 𝑓(𝑦|𝑦̂) 

and 𝑓(𝑅𝑑𝑎𝑖𝑙𝑦|𝑅̂𝑑𝑎𝑖𝑙𝑦). To define the value of the correlation coefficient of the 

Gaussian copula (𝜌𝜂𝜂̂) associated with the correlation coefficient in the real space, 

which controls the PU, different techniques were used in each case. In the simulated 

generic fluvial case, an analytical expression that defines the relationship between 

the correlation coefficient of the (real) Lognormal space (𝜌𝐿𝑁) and 𝜌𝜂𝜂̂ in the 

Normal space was used. In the flood-prone polder system case study, an equation 

that defines the relationship between the correlation coefficient of the (real) Gamma 

space (𝜌𝐺) and 𝜌𝜂𝜂̂ in the transformed space for the assumed marginal distribution 

of 𝑅𝑑𝑎𝑖𝑙𝑦 and 𝑅̂𝑑𝑎𝑖𝑙𝑦 was built via Monte Carlo (MC) simulation. These results 

suggested that, when using a parametric bivariate model to represent the predictand 

and predictor based on the approach described in this research, one should try to 

use a model that incorporates an analytical expression that links its dependence 

structure with 𝜌𝜂𝜂̂. By doing that, the MCFG and the integrated framework (Figure 

3.1) gain versatility. This was a significant reason for choosing the bivariate 

Lognormal for the simulation experiments in Chapters 5 and 6. 

8.1.3 Warning decisions and warning criteria 

In the analysis of FEWSs, the flood warning decision issue has not received the 

same attention as the prediction problem. The flood warning decision process is 

complex, as several factors are involved (Arnal et al., 2020). This process is 

conducted according to the warning criterion adopted in the FEWS. A common 

practice is to simplify this process through decision rules representing rational 

decisions (Verkade and Werner, 2011; Girons Lopez et al., 2017; Bischiniotis et 

al., 2019). This research used decision rules for representing warning decisions 

based on deterministic and probabilistic forecasts, which were set based on the 

warning criterion adopted in each simulated case.  

In the simulated generic fluvial case, FEWSs with and without real-time flood maps 

were considered, and deterministic and probabilistic warning decision rules were 

set for each of them; they are explained in Chapter 3 (Figure 3.3). The probabilistic-

threshold-based decision rule (PTDR) used to simulate FEWSs without real-time-

flood maps have been widely used in several research works (Coccia and Todini, 

2011; Verkade and Werner, 2011; Girons Lopez et al., 2017); however, the 



241 

 

probabilistic-based decision rule (PDR) used to simulate FEWSs with real-time 

flood maps is introduced in this thesis, and is novel. This rule uses a warning level 

(𝑦̂𝑤) derived from 𝑓(𝑦|𝑦̂) to make the warning decision, where 𝑦̂𝑤 is defined by a 

probabilistic threshold (PT), which has to be optimised based on a pre-defined 

criterion. This level defines the number of houses that should be warned in the 

floodplain using a surrogate function that represents the number of houses to be 

warned as a function of 𝑦̂𝑤. The PDR was used because FEWSs based on real-time-

flood maps must use the flood map corresponding to 𝑦̂𝑤 which in turn must be 

defined by optimizing a probabilistic threshold. Since PTDR is based on a 

probability value that determines whether or not to warn ALL houses in the 

floodplain, it cannot be used to simulate this type of FEWS. That can be considered 

a drawback of the PTDR if it is used to simulate a FEWS as the impact or the cost 

of the warning response (𝐶𝑤) cannot be estimated as a function of the flood 

magnitude’s prediction (Verkade and Werner, 2011). Moreover, it is proposed here 

that performance measures such as POD and FAR should be computed based on 

the house warned and flooded/not flooded.  This criterion, called the floodplain 

property-based criterion (FPC) in Ch5, has been shown to be a more demanding 

criterion as it differentiates between warned and flooded houses when a flood is 

preceded by a warning (hit), unlike the flooding threshold-based criterion (FTC) 

that was also considered in Ch5 and other research works (Verkade and Werner, 

2011; Pappenberger et al., 2015; Bischiniotis et al., 2019), which assumes that all 

houses are flooded if it is hit (Figure 5.4). 

In the simulated flood-prone polder system case study, a rainfall threshold (RT) 

curve was used as a tool for simulating flood warnings. This curve was built 

considering the uncertainty of the daily rainfall profile and the initial condition of 

the water level of the inner rivers when the forecast is issued. The RT curve and 

two decision rules were then used to simulate flood warning decisions under the 

deterministic and probabilistic forecast scenarios. There are few works that have 

considered the uncertainty of rainfall characteristics when analysing rainfall 

thresholds for flood warning systems (Wu et al., 2015), and, to the best of the 

author’s knowledge, a methodology to quantify rainfall thresholds for flood 

warning purposes in a polder system has not been published yet.  
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8.1.4 The response and impact simulation 

The study of the response and impact component (RIC) for the analysis of FEWSs 

through real-world modelling is challenging due to the small number of registered 

extreme events and/or the excessive computational resources required by the 

hydraulic/hydrodynamic simulation models to estimate flood damage. This 

research has used simplified analytical functions to represent this component in 

each simulated case. That has made the integrated framework versatile, which 

allows the full range of potential flood events and warning decision situations, and 

the economic consequences of the resulting responses and impacts to be explored. 

The social aspect of how flood plain residents respond to flood warnings has been 

embedded in flood damage mitigation functions published in the literature. 

In the simulated generic fluvial case, in Chapter 5, the forecast and observed flood 

impact in the at-risk community was simulated by emulating the generation of 

forecast and observed flood maps through a pre-assumed impact curve that 

estimates the percentage of floodplain properties affected by different floods. Thus, 

the impact was evaluated in terms of affected houses (warned and flooded houses), 

which was used to estimate the flood warning reliability of a FEWS based on the 

criterion named in this thesis as the floodplain property criterion FPC. In Chapter 

6, this curve was also used to estimate the forecast and observed flood impact of an 

at-risk community located in a floodplain area. In this case, the flood impact was 

estimated in terms of flood damage and was the basis for estimating the economic 

effectiveness of a FEWS based on real-time flood maps. Impact curves defining the 

number of affected houses have been used before for doing a flood risk assessment 

at a national scale (Sayers et al., 2015, 2018); however, to the best of the author’s 

knowledge, they have not been used for analysing FEWSs. 

In the simulated flood-prone polder system case study, an impact curve was also 

used to estimate the inundated area in the polder as a function of the resulting 

waterlogging depth (𝑊). An impact curve can be built with relatively few flood 

events, and this thesis has shown that this curve type could be used to emulate 

rationally the process done by inundation models and contributes to the integrated 

framework's versatility in evaluating the benefits of a FEWS.  
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The response to flood warnings in the simulated generic fluvial case was simulated 

by using the socio-economic response functions proposed by Carsell et al. (2004) 

for houses in California, which represent the damage to the residential content after 

movable assets have been raised and/or evacuated. These functions assume that the 

residents respond to the flood warnings in a rational manner by seeking to minimise 

damage to their property. In reality, flood warnings may not reach the residents; 

they may not respond as they should, etc. These aspects have not been represented 

in the simulations. 

The response to flood warnings in the flood-prone polder system case study was, 

on the other hand, simulated through pumping decision rules that represented 

proactive and reactive actions controlling the pumping scheme operating in the 

polder system. Since polder systems have not been studied before in a flood warning 

context, this research proposed pumping rules representing pumping strategies 

under different forecast scenarios. These pumping strategies and the resulting 

waterlogging 𝑊 in the polder area after they have been done were simulated based 

on the simple stylized polder runoff simulation model proposed by Gao et al. 

(2008). This model has not been applied before in a flood warning context and was 

linked with an impact curve to represent the response and impact component (RIC) 

in the integrated framework.  

The use of impact curves and analytical expressions or functions representing the 

RIC's main processes made the integrated framework versatile. Thanks to this 

versatility, the long-term performance of a FEWS under stationary conditions could 

be explored through a MC simulation approach, which would be impossible within 

a real-world modelling framework.  

8.1.5 Factors influencing the performance of a FEWS 

The MC simulation experiments conducted in this thesis identified several 

important factors influencing the performance of a FEWS. This was done by doing 

a sensitivity analysis (SA) of several parameters that define the model representing 

the FEWS in each simulated case. Several findings are in line with some relevant 

literature, whereas others represent a new contribution of this research to the overall 

understanding of the performance of a FEWS in each simulated case.   
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8.1.5.1 Simulated generic fluvial case 

Reliability of flood warnings 

Flood warning reliability was one of the performance attributes explored in the 

simulated generic fluvial case, the analysis of which considered a FEWS with and 

without real-time flood maps. Flood warning’s reliability was defined by the 

metrics known as the probability of detection (POD) and false alarms ratio (FAR) 

evaluated based on the flooding threshold-based criterion FTC, for the FEWSs 

without real-time flood maps, or floodplain property-based criterion FPC, for the 

FEWSs with real-time flood maps. The FTC is a well-known criterion used in 

several research works (Verkade and Werner, 2011; Pappenberger et al., 2015; 

Bischiniotis et al., 2019), whereas the FPC is a contribution of this research which 

gives a more consistent estimation of flood warning reliability because it is 

estimated based on warned and flooded houses. The results show that the 

performance based on the FPC is lower than that obtained based on the FTC. That 

difference is directly related to the uncertainty of the flood magnitude, i.e., the 

difference between 𝑦 and 𝑦̂ which define the difference between the warned and 

flooded properties. Note that a hit in the FTC does not mean a hit in the FPC; due 

to the difference between these two variables, a hit in the former might include 

misses or false alarms in the latter (Figure 5.4a). These results suggested that i) the 

uncertainty of the flood magnitude is an important factor influencing the reliability 

of flood warnings, and ii) if inundation level forecasting is undertaken (FPC), 

improved forecasts would be needed to achieve the same performance level as for 

FTC. 

The warning strategy is also one of the important factors influencing the reliability 

of flood warnings. This research has shown that a deterministic-based warning 

strategy in the FEWS produces sub-optimal decisions and that a probabilistic-based 

warning strategy, where the forecast errors are acknowledged, can use an 

optimization criterion to improve the reliability of flood warnings. This is a well-

known concept and has been demonstrated in several research works (Verkade and 

Werner, 2011; Pagano et al., 2014; Economou et al., 2016). The results showed that 

an optimal warning strategy based on the maximum POD minus FAR optimization 

criterion tends to deliver higher POD and FAR values than those based on 

deterministic forecasts. Thus, this strategy can be used when one wants to give more 
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weight to the reduction of missed events whose economic consequences, in terms 

of floods, far overcome those associated with false alarms. FAR's target values are 

usually between 0.2 and 0.5, and it is the verification score of interest to 

humanitarians (Jolliffe and Stephenson, 2012; Bischiniotis et al., 2019).  

The forecasting lead time τ was also identified as an important factor influencing 

the flood warning reliability. As expected, flood warning reliability declines with 

lead time according to the performance function used, which shows a faster decline 

in correlation for lead times greater than the catchment lag, reflecting the greater 

uncertainty resulting from quantitative precipitation forecast (QPF). In particular, 

probabilistic forecasting, based on the maximum POD minus FAR optimization 

criterion, copes much better with the increasing uncertainty than deterministic 

forecasting, where the POD values are much higher for the probabilistic case but at 

the expense of higher FAR values.  

The biases in the forecast mean and variance were also identified as important 

factors influencing the flood warning reliability. Remarkable robustness to biases 

in these two variates has been observed for probabilistic forecasting that is a 

consequence of using PU, which is based on the conditional density of 𝑦 given 𝑦̂, 

whereas deterministic forecasting, which is just based on 𝑦̂,  shows high sensitivity. 

The results for the latter case suggest that increasing the variance of the forecasts 

relative to those of the observed (models fitted by least squares lose variance) could 

improve reliability in this case. 

Some research works indicate that an improvement of 10% per decade in the 

forecast performance is achievable in FEWSs (Pappenberger et al., 2015). Through 

a sensitivity experiment (section 5.7.2.2), this thesis has shown that if the forecast 

performance is mainly controlled by 𝜌𝑦𝑦̂ (a bias in the mean or variance of the 

forecasts can also affect performance), these achievable benefits, in terms of flood 

warning’s reliability, are more noticeable in FEWSs with relatively small than 

considerable forecast uncertainty. In line with this, some indicative results for the 

case of a hypothetical Morpeth FEWS suggest that a correlation of 0.94 in peak 

water levels would be needed to obtain POD and FAR values in the levels defined 

in this thesis as Medium to High category (section 5.7.2.1) for probabilistic 

forecasting. 
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Economic effectiveness 

Factors influencing the economic effectiveness (𝐸𝑤) of a simulated (deterministic 

or probabilistic) FEWS based on real-time flood maps were also explored. The 

economic effectiveness 𝐸𝑤 was defined based on the expected benefits of a FEWS 

relative to the no warning scenario. A hydro-economic expected  damage (ED) 

model (Figure 6.1a) was constructed that generates ED values for (a) a perfect 

forecast warning and (a) no warning scenario to define the reference points for 

measuring 𝐸𝑤 for a FEWS based on imperfect forecasts. Thanks to the integrated 

framework's versatility, the economic consequences of PU in all possible situations 

could be included in the analysis. These economic consequences included the cost 

and unmitigated damage of a “wrong” flood warning decision and the 

“unnecessary” cost of the warning response or unmitigated damage after a “good” 

decision, i.e., when a flood is preceded by a warning (Figure 6.2a and Figure 6.2b). 

This analysis represents a contribution of this research since other research works 

in this field (Verkade and Werner, 2011; Bischiniotis et al., 2019) have considered 

only the economic consequences of  “wrong” flood warning decisions and 

neglected the economic consequences of flood magnitude uncertainty which is 

produced due to the difference between warned and flooded houses.  

The results have shown that, like flood warning reliability, the warning strategy is 

an important factor influencing 𝐸𝑤 of a (deterministic and probabilistic) FEWS. An 

optimal warning strategy based on probabilistic forecasts and an estimation of the 

economic benefits produced by the FEWS for each potential flood could increase 

the deterministic forecast-based 𝐸𝑤. Furthermore, it was observed that the cost of 

the warning response 𝐶𝑤 controls flood warning reliability and the warning strategy 

in a probabilistic FEWS where warning decisions are based on optimising a 

probabilistic threshold. Depending on the value of 𝐶𝑤, an optimal warning strategy 

of the system could be warning more or less frequently. If 𝐶𝑤 is low, an optimal 

economic strategy could suggest  having high FAR values. Finally, it was shown 

that the benefits of using a probabilistic warning strategy with respect to a 

deterministic one are most noticeable in FEWSs based on forecasts with relatively 

high PU and where the potential economic benefits of the system are relatively high 

(section 6.7.2.3). 
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The forecasting lead time τ was also found to be an important factor influencing the 

𝐸𝑤 of a (deterministic and probabilistic) FEWS. Based on the hydro-economic ED 

model, and assuming that the forecast errors and uncertainty are only controlled by 

𝜌𝑦𝑦̂ , this research explored how 𝐸𝑤 of a (deterministic and probabilistic) FEWS 

with a relatively small value of  𝐶𝑤 as should be the case in reality, changes as τ 

increases. The results showed that the 𝐸𝑤 of a (deterministic and probabilistic) 

FEWS reduces from the maximum 𝐸𝑤 one can obtain from the system, i.e., that 

obtained from a perfect forecast scenario, as τ changes. That occurs because the PU 

and its economic consequences increase as the τ increases, and, therefore, its 

(negative) impact on 𝐸𝑤 also increases. This 𝐸𝑤 behaviour is in line with results 

obtained by Verkade and Werner (2011). However, since they assume that  𝐶𝑤 is 

independent of the magnitude of the forecast flood and only  consider the economic 

consequences of “wrong” flood warning decisions, their results overestimate 𝐸𝑤. 

Furthermore, based on the particular analysis mentioned above (low value of 𝐶𝑤 

and forecast errors controlled only by 𝜌𝑦𝑦̂), it was found that the 𝐸𝑤 of a 

(deterministic and probabilistic) FEWS does not necessarily increase when 

increasing τ, even though the mitigation time increases. When these FEWSs reaches 

considerable PU, the (negative) impact of this predictive uncertainty's economic 

consequences made 𝐸𝑤 decreases as the damage is increasing. Thus, in an imperfect 

FEWS, it was observed that there is an optimal forecasting lead time τ that 

maximises the 𝐸𝑤 of the FEWS; this lead time represents the balance between an 

adequate time to act and a reasonably good forecast. That 𝐸𝑤 behaviour was found 

by Bischiniotis et al. (2019) for a probabilistic FEWS; however, there is a  

difference between that research work and the analysis done here; Bischiniotis et 

al. (2019) use a fixed warning strategy for the probabilistic FEWSs, whereas in this 

research, thanks to the versatility of the integrated framework, the warning strategy 

of the probabilistic FEWSs was obtained for each forecasting lead time τ, which 

looks for the best strategy according to τ and its associated PU. For example, in this 

particular analysis (low value of 𝐶𝑤 and forecast errors controlled only by 𝜌𝑦𝑦̂), it 

was observed that, due to the low value of 𝐶𝑤, when the PU was considerable (τ > 

6 hours), the best economic strategy was to  increase the level of warning, accepting 

or “sacrificing” the low economic impact of warning more houses than one should 

warn, to avoid the high economic impact of having flooded houses not being 

warned.  The results of this research, thus, lead to the conclusion that, in a FEWS, 
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a probabilistic-forecast-based-optimal warning strategy should be set for each lead 

time τ since PU, and its associated economic consequence in terms of net damage, 

increase as τ increases.  

It is worth mentioning that, in the particular analysis mentioned above, the optimal 

warning strategies of the probabilistic FEWSs produced high values of FAR for 

FEWS with considerable PU (τ > 6 hours), which might generate the loss of 

credibility of the flood warning system (‘cry wolf’ effect). The ‘cry wolf’ effect 

might decrease the effectiveness of the proactive action, which is represented in the 

hydro-economic ED model by the parameter α. The value of this parameter was 

fixed for each lead time τ and is independent of the FAR value. Thus, the 𝐸𝑤 of the 

probabilistic FEWS associated with considerable uncertainty (Figure 6.8) might be, 

thus, overestimated. However, Barnes et al. (2007) advocate that there is little 

evidence that a high value of FAR causes users to ignore warnings of severe flood 

events.  

It was found that the 𝐸𝑤 of a FEWS, based on residential contents moved and 

evacuated,  a 6-hour lead time, and low cost of the warning response (10% of the 

forecast 𝐸𝑤), can reach approximately 15% in a perfect warning scenario (perfect 

forecast and response). This value cannot be achieved by imperfect FEWS due to 

the economic consequences of PU and the inefficiency of the proactive action 

(represented by the parameter α in the hydro-economic ED model). Furthermore, it 

was analysed that if one considers an efficiency of 70%, the 𝐸𝑤 of an imperfect 

FEWS can reach 5.5 and 7.5 % for the deterministic and probabilistic forecasts, 

respectively (section 6.7.2.3). Furthermore, it was found that a FEWS could have 

good flood warning reliability but low 𝐸𝑤 due to the poor performance of the 

proactive action. In this sense, it was concluded that the performance of the 

proactive action is an important factor influencing the 𝐸𝑤 of a FEWS.  

The values of 𝐸𝑤 mentioned above approach that, for example,  suggested by Priest 

et al. (2011) (5%, see Table 2.3); note, however, that 𝐸𝑤 of a FEWS based on this 

proactive action depends on the response performance, lead time, and warning 

strategy (which is associated with the forecast type used). If the efficiency of 50% 

for the proactive action and a low cost of the warning response 𝐶𝑤 are considered, 

the 𝐸𝑤 values of deterministic FEWSs can range from 1 to 4% for lead times 
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between 1 and 24h. These 𝐸𝑤 values can be improved by probabilistic FEWS, 

ranging from 3% to 5.5 % (section 6.7.2.1).  

8.1.5.2 Flood-prone polder system case study 

For the Nanjing flood-prone polder system case study, the polder manager pumps 

water from the inner rivers to the outer rivers to enable water to drain from the 

polder areas into the inner rivers. In such a flood-prone polder system, the pumping 

capacity is usually lower than the drainage capacity (maximum runoff entering the 

inner rivers). If these polder systems are operated based on reactive pumping 

actions (water pumped based on the observed runoff (inflow) entering the inner 

rivers), the probability of the inner rivers' storage capacity being overwhelmed 

increases. When this occurs, the runoff cannot drain freely to the inner rivers, and 

the waterlogging, and, therefore, the flood impact on the polder area, increases. The 

duration of waterlogging and the maximum inundated area are, for example, 

variates that measure damage which increases when this critical condition occurs 

in the polder system. Since the polder system's storage capacity is defined by the 

water level of the inner rivers when the storm arrives, flood warnings can provide 

time in advance to decrease that water level (increase the storage capacity) and 

avoid this critical condition situation. Based on this concept, a FEWS can be 

designed and implemented, which is characterised by a forecasting model 

providing, for example, forecasts of future storms, warning decisions made based 

on those forecasts, and responses defined by the pumping scheme operating in the 

flood-prone polder system. FEWSs operating for flood-prone polder systems of this 

kind have not, to the author’s knowledge, been studied and designed before. Urban 

polders, particularly in the region of the case study, have been studied in another 

context, for example, by analysing how they impact the hydrology of the adjacent 

outer rivers during extreme events (Gao et al., 2017; Fang et al., 2018) or how they 

impact the flood risk of areas located downstream of these rivers (Gao et al., 2018).  

In this sense, the FEWS proposed to mitigate the waterlogging risk in the Shazhou 

polder located in Nanjing, China, is a significant contribution in this field and is 

timely, as more intense rainfall is being experienced in recent years. The averages 

of the waterlogging duration (𝑑̅𝑤) and maximum inundated area (𝑀𝐼𝐴̅̅ ̅̅ ̅̅ ) in the polder 

were used as performance measures for this system, and the following factors 

influencing these measures were identified.  
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Since flood warnings drive the pumping actions, the warning and pumping 

strategies adopted in the FEWS were important factors controlling the performance 

of the system. Warning decisions were made based on a rainfall threshold RT curve, 

and the pumping strategy considered proactive and reactive response actions. The 

former action is triggered by the flood warning and defines the volume of water 

pumped before the storm arrives, whereas the reactive action defines the volume of 

water pumped during the storm. The volume of water pumped in the proactive 

action is based on an estimation of the excess runoff, defined as a proportion α of 

the forecast of the total runoff generated by the forecasted ‘critical storm’, defined 

as a storm that will bring the level of the inner rivers to a critical condition. Since 

this total runoff varies according to the characteristics of the forecasted critical 

storm, the performance of the FEWS was explored by using several pre-assumed 

values of α in the MC simulation of the system. Furthermore, since α impacts on 

the pumping costs, the average pumping costs (𝐶𝑝̅) were also included in the 

analysis. Results showed a very nice trade-off between 𝐶𝑝̅ and 𝑀𝐼𝐴̅̅ ̅̅ ̅̅  or 𝑑̅𝑤, which 

defined a Pareto curve. Depending on the polder manager’s attitude to risk, he/she 

can choose a value of α that represents an acceptable tradeoff between waterlogging 

and pumping cost.   

In addition, it was observed that the performance measures that assume warning 

and pumping strategies based on deterministic forecasts can be improved through 

the use of probabilistic forecasts. Deterministic forecast-based results were 

improved by considering warning and pumping strategies based on probabilistic 

forecasts of the rainfall and runoff volume, respectively, of the predetermined 

critical storm. 

8.1.6 The main contributions of the thesis 

In the prior subsections, some important methodological contributions of this 

research were identified that are generic and can be implemented on any flood-

prone fluvial or polder system. This section gives a summary of them so that the 

reader can confirm his/her understanding of the relevance of this research. These 

contributions are detailed below. 

 A versatile generic framework based on MC simulation has been designed 

that can be used to assess the performance of an end-to-end FEWS in terms 

of reliability and economic efficiency without restrictive assumptions and 
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to evaluate the sensitivity of these performance measures to a range of 

controlling factors. 

 

 The novel architecture of the MCFG facilitates the generation of large 

bivariate samples of peak water levels and their forecasts using different 

distributions. The predictive uncertainty PU is controlled by a 

correlation/lead-time performance function that represents the increase in 

PU with a lead time for the simulated generic fluvial case. 

 

 A novel probabilistic forecast-based warning criterion that exploits real-

time flood inundation maps has been proposed and evaluated. The 

floodplain property criterion FPC has been used to represent warned and 

flooded houses based on an impact curve that is a surrogate for flood 

inundation maps. This allows warnings to be issued only to properties that 

are forecast to be flooded, rather than all properties, and POD and FAR to 

be evaluated on this basis. 

 

 A novel methodology to include the economic consequences of flood 

magnitude's uncertainty in the economic analysis of a FEWS for a generic 

fluvial case was described. It was also observed that the flood magnitude's 

uncertainty is an important factor to be considered when estimating the 

performance of a FEWS. 

 

 The principles for the design of a FEWS operating for a flood-prone polder 

system were stated. 

 

 A novel methodology for building a rainfall threshold (RT) curve for flood 

warning purposes in a flood-prone polder system case study was designed. 

 

 In the simulated flood-prone-polder system case study, the results were 

derived to show a trade-off between the average pumping costs 𝐶𝑝̅ and the 

measures defining the performance of the FEWS (𝑀𝐼𝐴̅̅ ̅̅ ̅̅  and 𝑑̅𝑤). 

The following conclusions cover the understanding and contributions to knowledge 

gained from applying the generic framework and its novel elements summarized 

above to a generic fluvial case and the flood-prone polder case study. The above 

innovations are not repeated below. 

8.2 Conclusions 

This thesis has opened up a new area of flood warning science that has parallels 

with seminal work performed by Hosking and Wallis (1988, 1997). They 

demonstrated how MC sampling can be used to explore the sensitivity of the 

estimate of T-year flood to various factors and assumptions. For example, MC 

simulation was used to assess the simplifying assumption that flood records from 

different sites are statistically independent when performing a regional flood 
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frequency analysis. By stochastically generating multisite annual maximum flood 

series, with correlations between sites, it was demonstrated that, even in the 

presence of intersite dependence, the bias in flood quantile estimates is unchanged. 

Controlled experiments employing MC simulation allow the exploration of the 

entire space of the problem domain, from which robust conclusions can be drawn. 

The main conclusions of this research are emphasised below, according to the 

research objectives.  

Objective 1: To design a flexible generic simulation framework that can represent 

the forecast, warning and response/impact components of a FEWS. 

A flexible generic framework has been designed that incorporates the innovative 

elements summarised in section 8.1.6 above. This has enabled the overall aim of 

the thesis to be achieved, which is:  to build a generic framework that can 

simulate and identify important factors controlling the performance of a 

FEWS monitoring and warning a flood-prone area. 

Objective 2: To design a Monte Carlo flood and forecast generator (MCFG) 

applicable to a generic fluvial case and a flood-prone polder system case. 

 The architecture used to build the MCFG allows PU to be controlled by a 

lead-time-correlation function that links a forecasting lead time with PU in 

the simulated generic fluvial case. Several bivariate distributions and MC 

generation algorithms can be employed to generate large samples of forecast 

and observed water levels for the generic fluvial case. 

 

 Based on the univariate analysis of peak water levels for four gauging 

stations in the North of England, the five-parameter BED, the seven-

parameters BLND, and the seven-parameter BGM were considered to be 

suitable models to represent these data. 

 

 A bivariate analysis of observed peak water levels and their forecasts 

derived from a previously calibrated model for one of the four stations 

showed that the same distribution could be used to describe both observed 

and forecast levels. This allowed any of the three distributions identified 

above to be employed for bivariate simulation. 

 

 For the Nanjing polder case study, a univariate analysis of observed and 

forecast daily rainfalls showed that the three-parameter Gamma distribution 

fitted the data well, suggesting, thus, that the seven-parameter BGM was a 

suitable model to represent the bivariate relationship of these variates.  
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 These results have suggested that, when using a parametric bivariate model 

to represent the predictand and predictor based on the approach described 

in this research, one should try to use a model that incorporates an analytical 

expression that links its dependence structure in the transformed domain 

with that in the real domain. By doing that, the MCFG and the integrated 

framework gain versatility.  

Objective 3: To design the flood warning decision component (FWDC) of a FEWS, 

and to simulate and identify important factors controlling the flood warning 

reliability of a FEWS for a generic fluvial river case under deterministic and 

probabilistic forecast information. 

 Predictive uncertainty PU, estimated from the predictive density of the 

observed value conditional on the forecast, is an essential factor to be 

considered when estimating the flood warning reliability of a FEWS. 

Probabilistic forecasting that employed this concept outperformed 

deterministic forecasting across all the sensitivity experiments conducted in 

this thesis. This was achieved by optimizing a probabilistic threshold to 

maximise flood warning reliability, characterised by the metrics POD and 

FAR. 

 

 The warning strategy is also one of the important factors influencing the 

reliability of flood warnings. This research showed that a deterministic-

based warning strategy in FEWS operation produces sub-optimal decisions 

and that a warning strategy based on optimising a probabilistic threshold, 

where the forecast errors are acknowledged, can improve the reliability of 

flood warnings. 

 

 In this research, the maximum difference between POD and FAR was used 

as an optimization criterion for probabilistic forecasting. The results showed 

that an optimal warning strategy based on this criterion delivers POD and 

FAR values greater than those based on deterministic forecasts. Thus, this 

strategy can be used when one wants to give more weight to the reduction 

of missed events whose economic consequences, in terms of floods, far 

overcomes those associated with false alarms. 

 

 The use of the floodplain property-based criterion FPC results in lower 

values of POD and FAR than the traditional flooding threshold-based 

criterion FTC, and is, therefore, a more demanding reliability criterion. 

Impact curves defining the number of affected houses can be used for 

exploring the flood warning’s reliability in terms of affected houses. An 

impact curve can be built with relatively few flood events, and it can exploit 

very well the information produced by inundation models and contributes 

to the integrated framework's versatility 

 

 The correlation between the observed and forecast peak water levels has 

been shown to be the most important factor controlling flood warning 

reliability, which improves as the correlation increases. The simulation 

framework used here allows the level of correlation needed to deliver a 
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target reliability to be estimated a priori, before any investment is made in 

improving an existing model or developing a new model. 

 

 As the lead time increases beyond the catchment lag, and the uncertainty 

grows due to the use of QPFs, the decline in correlation results in decline in 

POD and FAR to poor levels for deterministic forecasting. However, with 

probabilistic forecasting, used to describe this POD and FAR both increase 

using the maximum POD minus FAR optimization criterion, reflecting a 

strategy that avoids misses at the expense of more false alarms as noted 

above.  

 

 Negative biases in the mean and variance, i.e., underestimation, lead to a 

decline in the reliability of deterministic flood warnings, whereas the 

reliability of probabilistic forecasts based on optimising a probabilistic 

threshold is robust to such biases. This is a remarkable property of 

probabilistic forecasts that have not been clearly demonstrated before. 

Objective 4: To design the response and impact component in the FEWS for each 

simulated case, and to simulate and identify important factors controlling the 

economic effectiveness of a FEWS for a generic fluvial river case under 

deterministic and probabilistic forecast information. 

 Impact curves and analytical expressions or functions representative of US 

socio-economic conditions were used to represent the RIC's main flood 

damage processes for the generic fluvial case, which has made the 

integrated framework versatile, as these can be modified to represent socio-

economic conditions in other countries.  Thanks to this versatility, the long-

term socio-economic performance of a FEWS can be explored through a 

MC simulation approach, which would be impossible within a real-world 

modelling framework. 

 

 The RIC component for the generic fluvial case exploits the novel use of the 

FPC criterion introduced in this thesis. By combining a house-based flood 

impact curve that is a surrogate for flood inundation maps with a house-

based family of damage functions, the long-term economic effectiveness of 

a FEWS can be evaluated.  

 

 Thanks to the integrated framework's versatility, the economic 

consequences of utilising PU in decision-making could be included in all 

possible situations in the analysis. Other research works in this field have 

considered only the economic consequences of “wrong” flood warning 

decisions and neglected the economic consequences of flood magnitude 

uncertainty which is produced due to the difference between warned and 

flooded houses. 

 

 Although damage mitigation from proactive action should increase with 

lead time and mitigation time, the 𝐸𝑤 of (deterministic and probabilistic) 

FEWSs does not necessarily increase when increasing τ. When imperfect 

FEWSs reached considerable PU, the (negative) impact of this predictive 

uncertainty's economic consequences make 𝐸𝑤 decreases. Thus, in an 
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imperfect FEWS, it was observed that there is an optimal forecasting lead 

time τ that maximises 𝐸𝑤; this lead time represents the balance between an 

adequate time to act and a reasonably good forecast. 

 

 The results showed that, as for the flood warning reliability performance 

measure, the warning strategy is an important factor influencing  𝐸𝑤. Based 

on the particular analysis (low value of 𝐶𝑤(γ=0.10), forecast errors 

controlled only by 𝜌𝑦𝑦̂, and, an efficiency of 50% for the proactive action 

(α=0.5)), it was found that 𝐸𝑤 based on deterministic-forecast-based 

warning decisions can range from 1 to 4% for lead times between 1 and 24h. 

These 𝐸𝑤 values were improved by probabilistic warning decisions, ranging 

from 3% to 5.5 %. 

 

 The results showed that the benefits of using a probabilistic warning strategy 

with respect to a deterministic one are most noticeable in FEWSs based on 

forecasts with relatively high predictive uncertainty and where the potential 

economic benefits of the system are relatively high. 

 

 The cost of the warning response 𝐶𝑤 has been shown to control the flood 

warning reliability and the warning strategy in a probabilistic FEWS where 

warning decisions are based on a probabilistic threshold. Depending on the 

value of 𝐶𝑤, an optimal warning strategy of the system could be warning 

less or more frequently. 

 

 It was concluded that the performance of the proactive action is the most 

important factor influencing the 𝐸𝑤 of a FEWS. It was found that a FEWS 

could have good flood warning reliability but low 𝐸𝑤 due to the poor 

performance of the proactive action. 

Objective 5: To apply the generic framework to a case study of the operation of a 

flood-prone polder system in Nanjing, China 

 The design principles for a FEWS operating in a flood-prone polder system 

have been formulated. The FEWS proposed to mitigate the waterlogging 

risk in the Shazhou polder located in Nanjing, China, is a significant 

contribution in this field. 

 

 The pumping strategies and the resulting waterlogging 𝑊 in the polder area 

were simulated based on a simple stylized water balance model. This model 

has not been applied before in a flood warning context and was linked with 

an impact curve to represent the response and impact component (RIC) in 

the integrated framework. 

 

 The warning and pumping strategies adopted in the FEWS were important 

factors controlling the performance of the system. Deterministic forecasts-

based strategies produced performance measures that could be improved by 

considering warning and pumping strategies based on probabilistic forecasts 

of the rainfall and runoff volume, respectively, of the impending critical 

storm. 
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 The proactive action was formulated such that a parameter α representing 

the amount of proactive pumping could be used to define a Pareto tradeoff 

curve between average waterlogged area and pumping cost. It was shown 

that probabilistic forecasts could outperform deterministic forecasts by 

generating points closer to Utopia on the Pareto curve. 

 

 The Nanjing authority responsible for the operation of the Shazou and other 

polders in the city could gain considerable operational benefits in managing 

flooding by adopting the FEWS design explored in this research.  

 

8.3 Recommendation for future work 

This is an appropriate juncture at which to consider the limitations of the generic 

framework and its constituent components; these can form the basis of some further 

work. For example, important assumptions made in the framework are that forecast 

performance does not change in the future, i.e., stationarity is assumed, and that 

warning decisions are made based on a predefined decision rule. In addition, the 

representation of the response and impact process through analytical expressions 

can neglect some physical and social processes in the forecast of the flood impact 

and in representing the response and impact processes. Therefore, the models and 

analyses described in this thesis for each simulated case can be subject to several 

improvements or adaptations that could be done in future work. These are discussed 

in turn below.  

At the beginning of this thesis, the overarching issue of climate change was 

mentioned in the context of a FEWS having a very important role to play in 

managing the increasing flood risk. A 10% improvement per decade in FEWS 

performance has been set (Pappenberger et al., 2015) as a general target to be aimed 

for which should contribute to managing the increasing flood risk, and the research 

conducted here has provided some insight into how this might be achieved. 

However, the impact of changes in rainfall and flood extremes on FEWS 

performance is a specific topic that should be investigated in further work. 

Guerreiro et al. (2018) have shown how the characteristics of hourly rainfall 

extremes are changing at the continental scale, and these changes could be 

embedded in RainSim to explore, for specific catchments such as the Eden for 

which a calibrated SHETRAN model is available, how the performance of a FEWS 

might change under these transient conditions, and how the estimation of PU and 

flood warning decision rules should adapt. Furthermore, significant changes in 
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hourly rainfall extremes associated with urbanisation and the heat-island effect in 

mega-cities are also being observed (Li et al., 2020). The parameters of a bivariate 

simulation model could be adapted fairly simply to reflect indirectly these changes, 

e.g.,  by changing the parameters of the marginal distribution of 𝑦 while leaving 

those of 𝑦̂ unchanged. 

The MCFG could be extended to incorporate continuous simulation in which 

rainstorms and their forecasts generated by RainSim are used to derive long-term 

continuous simulations of flood hydrographs and their forecasts. Such simulations 

would provide considerable additional information for the assessment of impacts 

but at a high computational cost. The use of the simpler MCFG developed here with 

selective sampling from the continuous simulation approach could overcome this 

difficulty. This would also support the work suggested above. 

In all the sensitivity analysis experiments carried out in this thesis, perfect 

knowledge of the population of flood events and their forecasts has been assumed. 

In a real-world setting, the bivariate distribution of peak levels and their forecasts 

would have to be built to estimate PU. MC sampling experiments should be 

conducted to establish the sample sizes needed to estimate the PU reliably and the 

consequent FEWS reliability and economic effectiveness. 

The sensitivity analysis, SA, conducted in the simulated generic fluvial case to 

identify the influence of parameters (factors) on the performance of a FEWS was 

based on the one-at-a-time (OAT) method. This analysis, in essence, represented a 

local SA of the model representing the FEWS. The local SA does not allow 

interactions among the model's input parameters to be detected and how these 

interactions are related to the performance of the model. This analysis can be done 

based on a global SA of the model, which explores the interactions among the 

parameters. The use of scatter plots or coloured scatter plots are useful tools for 

these purposes (Pianosi et al., 2016).  

In the simulated generic fluvial case, the hydro-economic ED model  was used to 

explore the economic effectiveness of a FEWS as a function of the forecasting lead 

time τ, and the results showed that for a FEWS with a low value of the cost of the 

warning response 𝐶𝑤, an (optimal) probabilistic-forecast-based warning strategy 

produced high values of FAR, which might generate a loss of credibility of the flood 
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warning system (‘cry wolf’ effect). The ‘cry wolf’ effect might, in turn, decrease 

the effectiveness of the proactive action, which is represented in the hydro-

economic ED model by the parameter α that is an input parameter and is 

independent of the FAR value. In this context, even though the negative impact of 

the ‘cry wolf’ effect on the FEWS is an arguable topic (Barnes et al., 2007), it would 

be interesting to link the parameter α with the FAR value through an internal model 

function to connect the proactive action's effectiveness from the ‘cry wolf’ effect. 

Another improvement of this model would be to include the householders' 

decisions, which in essence, would be to represent the decisions in the response of 

the FEWS, which is something considered in the simulated flood-prone polder 

system case study. 

The performance of the FEWS designed for the flood-prone polder system case 

study based on different pumping strategies is something that can also be explored 

in future work. The pumping strategy adopted is characterised by a proactive and 

reactive action, where the latter action is conducted before the storm arrives and the 

latter action during the storm, which assumes that the water is pumped based on the 

observed runoff (inflow) entering the inner rivers. Another pumping strategy would 

be, for example, to consider that the proactive action is conducted during the storm 

in which the water is pumped at a different rate to the observed runoff entering the 

inner rivers. The pumping rate could be defined by assuming that updated real-time 

forecasts are provided to the polder manager from time to time.  Pumping strategies 

based on the forecast of the rainfall profile and volume of the impending critical 

storm is another option to be explored. 

Based on the design of the Shazou polder FEWS, a serious game could be designed 

that would allow the managers of polder flooding in Nanjing the effectiveness of 

different proactive and reactive actions to be explored virtually using the Pareto 

curve, as a way of enhancing confidence about the potential benefits that could be 

gained, and establishing an acceptable balance between waterlogging and pumping 

cost.  

The approach used to represent probabilistic forecast-based flood warning decisions 

in each simulated case was based on a probabilistic threshold PT approach. Based 

on this approach, the probability of exceedance, obtained by integrating the 

predictive density, i.e., PU, above a predefined level, is compared with an optimised 
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PT that triggers the decision. Probabilistic warning decisions can also be 

represented based on a Bayesian decision scheme where the predictive density and 

a utility/loss function are used to set rules based on expected values (Todini, 2017). 

Bayesian FEWSs have been designed based on rainfall (Martina et al., 2006; 

Economou et al., 2016) or water levels (Krzysztofowicz, 1993). In this sense, 

exploring the performance of the simulated FEWSs based on Bayesian flood 

warning decisions is something that can be done in future work. 

Another improvement to the proposed generic framework would be to include the 

human component in the simulation of the FEWSs to explore the influence of 

human behaviour on its performance. The human behaviour in FEWSs has been 

simulated based on analytical expressions (Ferrell and Krzysztofowicz, 1983; 

Girons Lopez et al., 2017) or agent-based models (ABMs) (computational methods 

that simulate autonomous decision-making entities' actions and interactions in a 

system)(Dawson et al., 2011; Du et al., 2016; Yang et al., 2018; O’Shea et al., 

2020). The framework components built in this thesis are in a very good position to 

obtain relatively rapid results through the first approach and to accommodate a 

more complex framework extension based on ABMs.  

Finally, in the Shazou polder FEWS, simulated rainfall generated from RainSim 

was used to represent forecasts and explore what might be gained by using forecasts 

in reality. Thus, the assumed statistical properties defining the relationship between 

the observations and their forecasts are not based on real-world records, and one 

can argue that they represent a very positive situation. For example, the special 

correlation coefficient defining the predictive uncertainty PU can be considered too 

optimistic (0.93). In this context, a future work could be to use real-world pair 

forecast and observed values in this analysis to explore how the outcomes shown in 

this work behave under (actual) different statistical properties defining the 

observation-forecast relationship. This real-world data-based analysis would 

involve two basic steps: i) to use the hourly and daily statistics of the observed daily 

rainfall and their forecasts to set the parameters in RainSim, and ii) to define the 

joint distribution of the observed daily rainfall and their forecasts based on the real-

world records.  

The use of “simulation mode” forecasts in this thesis can be considered a valid 

approach to explore the benefits of using longer lead time forecasts in FEWSs 
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where the effect of updating has died out.  This simulated method-based approach 

also responded to the present-day reality about the lack of or limited records of 

observed extreme values and their forecasts in operational flood forecasting 

systems. If real-world data were the basis of this thesis, many of the methodological 

contributions given in this work would not be possible to achieve because the lack 

of data does not allow one to study the full FEWS chain. Despite this, it is also true 

that flood warning/forecast validation databases are starting to be available for 

operational flood forecasting systems (Ayzel et al., 2019; Harrigan et al., 2020), 

and the number of registered extreme events is increasing. Therefore, the imperative 

next step to be done in this work would be to use one day that information in the 

methodologies suggested here to explore the FEWS performance. Since these 

methodologies are mainly based on the statistical relationship between the 

predictand and predictor, the information generated from any flood forecasting 

technique can be used, such as forecasts generated from rainfall-runoff and/or 

flooding routing models or by advanced data-driven models, e.g., machine learning 

models. However, it is the case that forecasts generated by operational agencies are 

not always archived or made available for analysis in external research, but the 

framework can still demonstrate to these agencies what target correlations are 

needed to achieve the required performance as measured, for example, by POD and 

FAR.    
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Appendix A. Additional tables 

Appendix Table A-1: The pumping capacity of the pumping stations in the Shazou polder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Pumping station 
Pumping capacity 

[m3/s] 

1 Qingjiang Bridge 4.5  

2 Dadoumen 3  

3 Xiaodoumen 6  

4 Liwei 15  

5 Mochou 8  

6 South Lake 11.55  

7 City station 15  

8 Xiangyang 21  

9 Hujia gate 21  

10 Haner 15 

11 Lotus 8  

12 Xingeng 24  

13 Luotang 14 

14 Touguan 8  

15 Honggi 15.45  

16 Black bridge 30  

17 Zhongbao 6  
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Appendix Table A-2: Set of parameters defined as the best points as the Pareto front in the 

Probabilistic scenario (black dots in Figure 7.21) 

 

 

 

 

 

 

 

 

 

 

 

 

PT α 

0.5 0.2 

0.5 0.25 

0.6 0.2 

0.6 0.25 

0.7 0.2 

0.7 0.25 

0.8 0.075 

0.8 0.1 

0.8 0.2 

0.8 0.25 

0.8 0.3 

0.9 0.05 

0.9 0.075 

0.9 0.1 

0.9 0.15 

0.9 0.2 

0.9 0.25 
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Appendix B. Additional figures 

 

Appendix Figure B-1: :  Tradeoff between pumping costs and the average number of hours 

of waterlogging (𝑫̅𝒘) for the deterministic forecast scenario and comparison with the two 

benchmark scenarios 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure 

shows the tradeoff between 𝐶𝑝̅ and 𝑑̅𝑤 and 𝐶𝑝̅𝑟𝑜 and 𝑑̅𝑤 for the deterministic forecast scenario. The 

values of α considered were the following: 0, 

0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two 

benchmark scenarios. 

 

 

Appendix Figure B-2: Tradeoff between pumping costs and the average number of hours of 

waterlogging (𝑫̅𝒘)  for the probabilistic forecast scenario and comparison with the two 

benchmark scenarios 

In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure 

shows the tradeoff between 𝐶𝑝̅ and 𝑑̅𝑤 and 𝐶𝑝̅𝑟𝑜 and 𝑑̅𝑤 for the deterministic forecast scenario. The 

values of α considered were the following: 0, 

0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two 

benchmark scenarios. 


