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Abstract

In recent decades, flood early warning systems (FEWSs) have been widely used as
complementary non-structural mitigation measures in order to improve the
population resilience to floods. FEWS research focusses mainly on flood
forecasting techniques or social aspects of warning response, and end-to-end
modelling frameworks that represent the entire FEWS forecast-decision-

response/impact chain are rarely developed.

A generic Monte Carlo simulation framework has been developed that represents
an end-to-end FEWS in a versatile way, allowing factors influencing FEWS
performance to be explored which cannot be analysed easily based on limited real-
world data. The framework has been applied to a simulated generic fluvial case,
where factors influencing FEWS performance in terms of reliability and economic
effectiveness are explored. A new reliability performance measure based on
inundation maps has been proposed. The framework has also been used to explore
factors controlling the performance of a simulated FEWS representing an urban
polder in Nanjing, China, with performance metrics based on waterlogging and
pumping costs.

For the generic fluvial case, the main results show that: i) the correlation between
forecasts and observed values controls reliability; ii) probabilistic forecasts based
on optimising a probabilistic threshold are robust to forecast biases in the mean and
variance, iii) a FEWS based on uncertain forecasts is characterised by an optimal
lead time that represents a balance between an adequate time to act in response and
a reasonably good forecast; iv) the performance of the proactive action is the most
important factor influencing the economic effectiveness of a FEWS. For the
simulated flood-prone polder system case study, the results show that probabilistic
forecasts of storm rainfall and runoff volume can considerably enhance the

waterlogging and pumping metrics.

The results of this research can be used to improve the performance of fluvial
FEWSs, and to design FEWSs for polder systems.
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Chapter 1. Introduction

1.1 Background

Climate change and the intense urbanization of flood-prone areas evidenced in the
last decades have altered the hydrological responses of catchments, increasing the
frequency and magnitude of floods in many countries across the globe. As existing
standards of protection based on structural measures are proving to be inadequate
under climate change, and the concept of flood protection has given way to that of
flood risk management, effective and reliable flood early warning systems (FEWSSs)
are becoming vital complementary non-structural mitigation measures in order to
improve the population resilience to this natural hazard (WMO, 2011; Milionis and
Owen, 2018). As a result, a new science, known as Flood Warning Science, which
covers a wide range of disciplines ranging from hydrometeorological science to
social psychology, has emerged from the need to assess, research, and improve the

process chain characterizing these systems (Parker, 2017).

Figure 1.1. lllustration of a Flood Early Warning System (FEWS)

A FEWS aims to provide timely and meaningful warning information to people
threatened by floods to allow them to act in advance to reduce the risks involved.
This system can be represented by three main subsystems (Parker and Fordham,
1996; Carsell et al., 2004): i) a flood forecasting subsystem, ii) a warning and
dissemination subsystem, and iii) a response subsystem (Figure 1.1).
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The flood forecasting subsystem is the most well-recognized and studied element
and uses a forecasting model to generate forecasts on which warnings are based.
These forecasts can be generated by, for example, conceptual or physically-based
or rainfall-runoff and/or flooding routing models, such as the Stanford Watershed
Model (Crawford and Linsley, 1966), ARNO (Todini, 1996), or TOPKAPI (Liu
and Todini, 2002) models, among others. Advanced data-driven models, e.g.,
machine learning models based on fuzzy systems, artificial neural networks, or

support vector regression, are also used for these purposes (Mosavi et al., 2018).

The forecasting model's inherent uncertainty means that flood warnings are based
on uncertain information (Basher et al., 2006). The quantification and reduction of
this uncertainty (hereafter called predictive uncertainty) are the main challenges
faced by forecasters (Perera,2020). Despite the significant research progress made
in the last two decades on this topic, operational flood warnings have been largely
based on deterministic forecasts, though probabilistic forecasting is starting to be
considered in practice (see the English case in Arnal et al., (2020)).

One of the reasons for the slow uptake of probabilistic forecasting can be the
confusion in the literature over the appropriate measure of uncertainty to use in
flood warning. Predictive Uncertainty (PU) is the appropriate measure to use
(Krzysztofowicz, 1999a; Todini, 2016). Todini (2008) defines PU as the predictive
density function of the unknown future quantity, typically the observed peak water
level or discharge at a specific cross-section, conditional on the forecast of that level
for a given lead time (t). To introduce the reader to this concept without the formal
mathematical definitions that come later, the example shown in Figure 1.2 is used.
Deterministic and probabilistic forecasts of the water levels for a lead time of 1 =6

hours are shown Figure 1.2a and 1.2b.

To understand the concept of PU, the following question is posed: flood damage in
Figure 1.2a will occur: (1) when the forecasted water level overtops the dykes, or
(2) when the actual future water level overtops the dykes? The obvious answer is
(2), i.e., when the actual future water level overtops the dykes. Therefore, the model
forecast must not be considered as a reality but just as a virtual reality, which,
however, contains essential information to reduce our uncertainty on what will
actually occur. PU is, thus, the uncertainty about a real future value (not the model

forecast) i.e., the water level to be observed in 6 hours from now, conditional upon
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the model forecast (Figure 1.2b). Knowing the probability distribution of the future
water level conditional on the forecast value which is the formal definition of PU,
one can estimate the probability of exceedance (PE) of the flooding level (red area
in Figure 1.2b), and make a warning decision based on this (Todini, 2010). If the
value of PE exceeds a predefined probability threshold PT, a warning is issued. PU,
PE and PT are used throughout this thesis to inform simulated flood warning
decisions, and any proactive actions taken in response to reduce flood damage. The

results are compared with those from deterministic forecasting.

% b) '

=6 hr =6 hr Probability of overflow

R fer‘:t:l:al Expected value y critical
Forecast \ = Forecast level

Figure 1.2. Hlustration of the PU concept

Adapted from Todini (2004) and Todini (2010)
On the other hand, the warning and dissemination subsystem and the response
subsystem have not received the same attention as the flood forecasting subsystem
(Figure 1.1). The former involves all the processes needed to make the flood
warnings reach those at risk, whereas the latter component has to do with the
capacity of an at-risk community to take actions that mitigate the flood impact
(Molinari et al., 2013). These elements cover vulnerability factors, which are
important to reduce flood risk, and are as important as the flood forecasting
subsystem as it has been proved that a high-quality forecast is not enough to reduce
flood impact (Basher et al., 2006).

Although it is not always the case, there is usually a real-time information flow
among components of the FEWS. This information can be either intrinsic, when it
is part of the system and incorporate formal warnings, or extrinsic, which involves
informal warnings used by floodplain users (Parker and Fordham, 1996). Therefore,
the success of the FEWS heavily depends on how effective the communication is

among the personnel involved in each component.

3



1.2 Research needs

Many studies have focused on improving individual components of a FEWS, such
as forecasts or social vulnerability. These studies often imply that an improvement
to a component of the system suggests an improvement in the performance of the
integrated system. Thus, in the literature, one can find many studies that include
only the technical components (often related to flood forecasting techniques) or
social components (often related to the warning response) of a FEWS. End-to-end
modelling frameworks that analyse the performance of a full FEWS chain of
components (Figure 1.1) are, thus, rarely developed. Such frameworks should allow
forecast outputs to be linked with warning decisions and the associated responses
and flood impacts and, at the same time, evaluate the main factors influencing the
performance of the integrated system encompassing the forecast, warning, and
response processes. A FEWS is only as good as its weakest link, which such an

evaluation should help identify.

The end-to-end simulation of a FEWS is no easy task. Even though FEWSs started
to be studied between the 1960s and 1970s (Williams, 1964; McLuckie, 1970;
Mileti and Beck, 1975), it was not until the 1980s that Krzysztofowicz and Davis
(1983) proposed a simulation framework to represent this system. In this work, the
FEWS chain is reduced to a flood forecast-response process, where a forecast
system is viewed as an information system providing forecasts to a response system,
which is, in turn, viewed as a decision system where floodplain dwellers make their
own decisions about evacuation based on a sequence of forecasts they receive.
Krzysztofowicz (1993) also proposed a methodology to represent the FEWS until
the warning component based on a monitor-forecast-decision chain. This
framework is used to evaluate the performance of a FEWS, where Bayesian
decision theory is used to represent warning decisions by a rule that maximizes the
expected utility. The flood warning reliability and economic benefits are used to

define the FEWS performance.

Verkade and Werner (2011) proposed a methodology to compare the benefits of a
deterministic FEWS with its probabilistic version based on the relative economic
value theory. In their methodology, the forecast-warning-decision chain is used to
obtain the relative economic value (REV) in terms of hits, false alarms, and misses.

REV is subsequently used to scale between the flood risk of two benchmark
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scenarios: the no warning and perfect forecast scenarios. The flood risks of these
benchmark scenarios are computed through the response and impact components
of the framework. In this work, real-world data and modelling are used to represent
the flood forecasting and the response/impact component. This work was the first
attempt to include the economic consequences of predictive uncertainty, PU, in the
economic effectiveness of a FEWS. However, this methodology assumes that the
cost of the warning response is independent of the magnitude of the forecast
flooding, and it only considers the economic consequences of “wrong” decisions
(false alarms or misses) and negates the fact that the PU can also (negatively) impact
the economic effectiveness of flood warnings after a “good decision”, i..e, a flood
preceded by a warning (hit), due to the flood magnitude’s uncertainty. Thus, there
is a need to explore the negative impact of the economic consequences of PU in a
FEWS in all possible situations, i.e., hits, misses, and false alarms situations. Other

restrictive assumptions limit the applicability of this framework.

Girons Lopez et al. (2017) also considered the end-to-end modelling of a FEWS.
They used a Monte Carlo analytical framework to represent a FEWS through a
forecast-decision-response-and-impact chain. Based on this framework, they
explored the impact of social preparedness on the economic effectiveness of a
FEWS and how it is related to the flood warning reliability. A strong limitation of
this study is that it does not consider the impact of the lead time on the FEWS

performance, which is an important factor to be considered in this type of analysis.

Bischiniotis et al. (2019) also used a forecast-decision-response-and-impact chain
to represent a FEWS. Based on this chain, they developed a framework to analyse
the economic value of a FEWS in which actions in the response component can be
taken at different time points. The economic value is obtained based on the
economic consequences of hits, misses, and false alarms that characterise the flood
warning reliability of the system. Like Verkade and Werner (2011), this work also
considered limited real-world data to represent the flood forecasting component;
therefore, they are not able to base their results by considering a considerable range
of potential flood events and warning decision situations that the area monitored by
the FEWS may be subject to.

None of the works mentioned above uses the forecast-decision-response-and-

impact chain to evaluate the flood warning reliability in terms of affected houses,

5



i.e.,, warned and flooded houses. With this information, one can evaluate the
reliability of flood warnings based on whether a warned property was or not
subsequently flooded. It is a more reliable approach than those used by these
research works and other related works, which is based on whether a warning
preceded a flood event's occurrence or non-occurrence in the floodplain or in a
specific flood risk zone, where a pre-defined threshold defines the occurrence of
the event. This common approach does not consider the flood magnitude’s
uncertainty. Note that, due to PU, there is always a difference between the
magnitude of the forecast and observed flooding and, therefore, a difference
between the warned and flood properties. Moreover, this approach does not exploit
the information provided by inundation maps which are now become a routine

element of the forecast component of a FEWS.

The author of the thesis could also identify that there is no generic framework to
underpin the end-to-end simulation of a FEWS. Note that beyond each specific
purpose, the research works mentioned above have idealized the FEWS through the
forecast, warning, and response/impact/components. However, they have used ad-
hoc frameworks that have been designed for a specific flood type (often river
floods) or a specific response action using restrictive analytical assumptions. In this
sense, there is a need to design a generic framework that defines well the main
generic components involved in the end-to-end simulation of a FEWS and the type
of information generated and used by each of them during the simulation of a flood
threat. Also, to avoid the limitations imposed by real-world data, such as a limited
time span or a small number of registered extreme events, this generic framework
should consider synthetic observed and forecast information that is based on the
properties of real data. This would parallel the seminal work performed by Hosking
and Wallis (1988, 1997), who demonstrated how Monte Carlo sampling can be used
to explore the sensitivity of the estimate of T-year flood to various factors and
assumptions, leading to more robust new approaches. This generic framework
should underpin the end-to-end simulation of a FEWS monitoring and warning any

type of flood-prone area.

The author of the thesis could not identify any research works that use an end-to-
end modelling framework to explore the performance of a FEWS monitoring and
warning a flood-prone polder system. No research works could be identified

reporting on either the design, implementation, or evaluation of FEWSs operating
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for flood-prone polder areas. Polders are areas that lie below the levels of the sea or
adjacent outer rivers, and, therefore, pumping systems must be used during storm
events to remove water from the inner rivers (artificial rivers inside the polder area)
to the outer rivers to enable water to drain from the polder areas into the inner rivers.
In a flood-prone polder area, the pumping capacity is invariably lower than the
drainage capacity (maximum runoff entering the inner rivers). Since the polder
system's storage capacity is defined by the water level of the inner rivers when the
storm arrives, flood warnings can provide time in advance to decrease that water
level (increase the storage capacity) and avoid the storage capacity being

overwhelmed.

Based on the above assessment, there is a clear need for a generic simulation
framework that can be used to represent the three main components of a FEWS,
and which will be driven by Monte Carlo simulations of floods and their forecasts.
This will allow the long-term performance of FEWSs to be assessed under a wide
range of conditions. Moreover, the framework can be used as a virtual test-bed to
support the design of FEWSs by exploring the sensitivity of FEWS performance to

various controlling factors.
1.3 Aim and objectives

Based on the research needs outlined above, the overall aim of this thesis is to
build a generic framework that can simulate and identify important factors
controlling the performance of a FEWS monitoring and warning a flood-prone

area. To achieve this aim, the thesis is structured around the following objectives:

1. To design a flexible generic simulation framework that can represent the
forecast, warning, and response/impact/components of a FEWS.

2. To design a Monte Carlo flood and forecast generator (MCFG) applicable
to a generic fluvial case and a flood-prone polder system case.

3. To design the flood warning decision component (FWDC) of a FEWS and
to simulate and identify important factors controlling the flood warning
reliability of a FEWS for a generic fluvial river case under deterministic and
probabilistic forecast information.

4. To design the response and impact component (RIC) of a FEWS and to

simulate and identify important factors controlling the economic



effectiveness of a FEWS for a generic fluvial river case under deterministic
and probabilistic forecast information.
5. To apply the generic framework to a case study of the operation of a flood-

prone polder system in Nanjing, China
1.4  Thesis structure

The remaining part of the thesis is structured as follows. Chapter 2 reports on a
literature review covering the forecast, warning, and impact/response components
of a FEWS and discusses the research needs highlighted above. This helps to
introduce some key background information required to understand the rationale
behind the development of the generic framework. This generic framework is
explained in Chapter 3 and has three components: the Monte Carlo flood and
forecast generator (MCFG), the flood warning decision component (FWDC), and
the response and impact component (RIC) (Objective 1).

Chapter 4 gives a full description of the architecture of the MCFG (Objective 2).
Chapter 5 integrates the MCFG and the FWDC components of the framework for
simulating a generic fluvial FEWS and identifies the important factors controlling
FEWS reliability under deterministic and probabilistic forecasting (Objective 3). In
Chapter 6, the RIC component of the framework is added to explore important
factors influencing the economic effectiveness of a (deterministic and probabilistic)
FEWS based on real-time flood maps (Objective 4). In Chapter 7, the generic
framework is applied to the case study, and a full description of the building of each
of the components for simulating a FEWS monitoring a flood-prone polder system
case is provided. This model is then used to explore factors influencing the
performance of this FEWS in polder flood management operation (Objective 5). A
discussion, conclusions, and recommendations for further work are finally provided
in Chapter 8.

Figure 1.3 illustrates the structure of the thesis and the relationship between the

objectives and chapters.
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Chapter 2. Literature review

2.1 Introduction

Previous research on the operation, evaluation, and simulation of a flood early
warning system (FEWS) is reviewed here. This chapter i) describes important
factors influencing the performance of a FEWS, ii) provides some background
information about the actual operation and evaluation of FEWSs, iii) references
relevant studies whose aims have been to improve the performance of a single
component of the FEWS or the overall performance of the system, and iv) supports

the research gaps identified in Chapter 1.

The Chapter is structured as follows: In section 2.2, a full description of a FEWS is
given. In section 2.3, the forecasting component of the FEWS is explained. This
section describes several options available to set up a flood forecasting system
(FFS) in a catchment and how they affect the quality of the forecasts. Here the trade-
off between uncertainty and forecasting lead time and the types of forecast errors
are described. Section 2.4 explains the methods available to estimate predictive
uncertainty (PU) in flood forecasting and shows different uncertainty measures can
be derived from them. The concept of ensembles is discussed briefly, and the
section focuses more on statistical models (also known as post-processors and
which are the methods considered in this research) and the concept of PU. Section
2.5 explains how flood warning decisions are made in operational FEWS, and the
most common warning criteria used in a local context, and how several research
works have simulated flood warning decisions considering these warning criteria.
This section also describes the methods available for issuing flood warnings by
using probabilistic information. Section 2.6 explains the response to flood warnings
and describes several potential proactive actions that can be part of the response
component of a FEWS. Section 2.7 describes some attributes used to define the
performance of FEWSs. Substantial emphasis is placed on the reliability of flood
warnings and economic effectiveness, and several relevant studies are referred to in
this field. The term economic effectiveness is used in this research to refer to
the economic flood risk reduction achieved by a FEWS relative to the economic
flood risk of the no warning scenario. Section 2.8 compiles all relevant
information provided in the prior sections, and other research works to describe
how FEWSs are actually operated and evaluated. Section 2.9 references research
10



works that have analysed the performance of a FEWS through an end-to-end
modelling framework. Through the development of the Chapter, important factors
influencing the performance of a FEWS are described and the research gaps
identified are highlighted; they are then summarised in section 2.10, and the relation

between the considered topics and this research is explained.
2.2 Flood early warning in a system context

Flood warnings are part of an integrated system that can be idealized as a cascade
coupling four components that are supported by several processes (Figure 2.1). That
integrated end-to-end system is often referred to as a Flood Early Warning System
(FEWS) (Girons Lopez et al., 2017), or flood forecasting, warning, and response
system (Verkade and Werner, 2011; Parker, 2017). In this research, the first

designation has been chosen. The system is explained as follows.
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Figure 2.1: Flood early warning system
Adapted from Parker and Fordham, (1996) and Carsell et al., (2004).
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The first milestone in a flood event is the occurrence of a forecast trigger, and the
last one is the exceedance of a stage level (flood threshold) at which flood losses,
such as economic damage, trauma to residents, and potential loss of lives, start.
Although trauma is important - floods can cause social and mental health problems
that may continue over extended periods of time (Stanke et al., 2012) - it is very
difficult to quantify. As shall be seen later, the current work concentrates on
economic damage only, and no attempt is made to represent psychological damage

to residents, or in the worst case, loss of life.

All components of the FEWS are between these two milestones. This period is
theoretically the maximum time that is available for conducting proactive action,
and it is known as the maximum potential warning time (Carsell et al., 2004). If one

or more components fail within this time period, the FEWS is ineffective.

The forecast trigger controls the maximum potential warning time. It is a simple or
compound event that is likely to precede every flood and triggers the preparation of
flood forecasts. This event is defined in terms of hydrometeorological variables
which are routinely monitored and/or forecasted (Krzysztofowicz, 1993). On large
and medium rivers, examples of these triggers are thresholds of an observed river
stage and observed rainfall intensity and duration, respectively. The monitoring
may be done by a local system or may also be done by a meteorological agency that
triggers the preparation of the forecasts through the issue of a severe weather
warning (Parker, 2017). In any case, once the preparation of the forecasts is
triggered, time is required to collect data and transmit hydrometeorological data
from the field to a central site to be examined. Meteorological forecasts usually
provided by meteorological agencies in the form of numerical weather predictions
(NWP) may also be used in this stage. This process is called data collection and is

carried out by technical personnel and automated detection equipment.

At the central site, forecasters use hardware, software, and hydrometeorological
data and apply all their knowledge to create relevant information to recognize the
potential flood threat (the forecast is generated). This process is called evaluation
and often compares future discharge or water level with a pre-defined flooding
threshold (yr), which is often set based on experience, historical data, and/or
detailed hydraulic modelling of river response. If the potential flood threat is

recognized, the time known as forecasting lead time starts, and time is needed to
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provide this forecast to the Warner (a word adopted in this research to refer to a
person involved in preparing and issuing flood warnings, usually a member of a
governmental entity). This process is known as notification and triggers the flood
warning decision in the FEWS. In some countries, this responsibility may fall on
the forecasters (where the notification time is negligible) or professionals who have
the appropriate technical background to interpret the real-time forecast information
(Bloschl, 2008). Nevertheless, in other cases, this responsibility rests with non-
technical decision-makers (Orr and Twigger-Ross, 2009). The implementation of
this decision marks the beginning of the process known as dissemination. The flood
warnings are disseminated to local flood authorities and the population at risk and
may be based on real-time flood hazard maps or pre-defined flood hazard maps
obtained from a pre-flood risk assessment of the area monitored by the FEWS. This
process may be carried out by media agencies, internet, text messages (SMS,
MMS), door-knocking, or phone calls, whereby sometimes intermediate warning

dissemination agents, such as local civil protection authorities, are involved.

Once the recipients receive the warning, the response begins, and the proactive
actions are implemented. These actions can be done by emergency services and
others, e.g., local flood defense units or military personnel, and might include, for
example, raising demountable defenses or rescuing residents. The proactive actions
can also be executed by the warned householders who can move and/or evacuate
residential contents to a safe place (Carsell et al., 2004; Rai et al., 2020). The time
between the response beginning and onset of the flooding is called the mitigation
time or warning lead time and is the time available for mitigation. As can be noted,
this time is different from the forecasting lead time due to the time needed to make

the warning decision and disseminate warnings (Carsell et al., 2004).

Although it is not always the case, there is usually an information flow among
components of the FEWS. This information can be either intrinsic, when it is part
of the system and incorporate formal warnings, or extrinsic, which involves
informal warnings used by floodplain users(Parker and Fordham, 1996). Therefore,
the success of the FEWS heavily depends on how effective the communication is
among the personnel involved in each component. In all of the above, it is implicit
that the flows of information take place in real-time. Therefore, factors associated

with the failure of instruments/telemetry system (FITS), the failure of
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communication networks (FCN), and human errors in the forecast and warning

process (HFWP) can affect the FEWS performance.
2.3 Flood forecasting systems (FFSs) and sources of uncertainty

A FFS is part of a FEWS and has an associated forecasting lead time, which is a
key technical factor in the integrated system as it provides time in advance to the
concerned authorities to warn and take effective proactive actions in the face of a
potential flood. In essence, the FFS must help the concerned authorities answer as
accurately as possible the following two questions: What will be the magnitude of
the flood event? And when is it going to arrive? Having an exact answer to these
questions would imply having a perfect forecast, which is impossible as flood
forecasts are inherently uncertain. In the last two decades, a lot of research has
focussed on flood forecasting techniques with the aim of reducing this uncertainty.
This literature review does not attempt to provide a comprehensive description of
all these studies but focuses on the flood forecasting techniques that are considered
or assumed in this research, and in particular, on uncertainty (for a detailed
description of all flood forecasting techniques, the reader is referred to
Hapuarachchi et al., (2011) and Jain et al., (2018)).

Thus, through a literature review, this section of the chapter explains the concept of
uncertainty and the type of forecast errors associated with it. This section also
explains the forecast chain often used in FEWS and how the FFSs used in this chain

are related to the forecasting lead time and predictive uncertainty, PU.
2.3.1 Sources of uncertainty

Uncertainty can be defined in simple terms as the lack of knowledge of the observed
value (Gouldby and Samuels, 2009). In flood forecasting, it produces a difference
between the forecast and “true” value of the quantity being forecasted, frequently
referred to as the predictand. That uncertainty can be split into two types: aleatory
and epistemic uncertainty. The aleatory uncertainty is associated with the natural
variability and describes the inherent randomness in nature, whereas the epistemic
uncertainty is associated with the limited knowledge of the system being studied
and with the inability to measure and model the physical world(Wasson, 2016).

These two uncertainties are included in the formal assessment of uncertainty in
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flood forecasting, and only the epistemic uncertainty can be reduced (Boelee et al.,
2019).

2.3.2 Uncertainty and lead time

There is a trade-off between the forecasting lead time and uncertainty in flood
forecasting (Bloschl, 2008; Parker, 2017). This issue will be explained through an
illustrative example (Figure 2.2) that shows a community threatened by river floods
due to its low standard of protection (SoP), which needs to install an FFS as a part
of a FEWS to improve the population resilience to this natural hazard. In this case,
it is assumed forecasts of future discharges or water levels at the forecast points

(cross-sections of the river adjacent to the at-risk community).
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Figure 2.2: Flood forecasting techniques, forecasting lead time, and uncertainty in flood
forecasting

Adapted from O’Connell (2018). An illustrative example to explain the trade-off between
forecasting lead time and uncertainty in flood forecasting through the potential forecasting models
described in Table 2.1. The flooding threshold y is defined by the standard of protection (SoP) of
the at-risk community. The light and dark grey between the lead times t + Lz and t + L + Ly,
illustrates the uncertainty associated with gauge-based and gauge-radar based QPE, respectively.
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As can be seen in Figure 2.2, the catchment area is monitored by a gauging station
(point A), and by a telemetric rain gauge network in the upper area. The forecast
point is represented by point B (Figure 2.2a). Due to the catchment's characteristics,
the lag between points A and B is mainly dominated by the routing of the flood
through the main channel. Thus, one potential flood forecasting technique to be
used may be a channel routing model based on the gauging station's records at A.
Assuming that there is a good quality of the hydrologic information, as well as of
the predictions, which is usually easily fulfilled by this flood forecasting technique
(Barbetta et al., 2016), one would expect that this forecasting model would have a
small level of uncertainty. However, the forecasting lead time of this model would
be equal to the lag time between points A and B, i.e. Lg, (Figure 2.2c), which would
be the smallest one compared with other flood forecasting techniques that can be

applied in the catchment.

To increase the forecasting lead time, one can consider the telemetric rain gauge
network and use, in addition to the flood routing model, a rainfall-runoff model by
using gauge-based catchment rainfall estimate as an input which can be recorded
until the time of forecasting t. This time is, in essence, defined by the forecast
trigger that, in this example, can be a rainfall-based variable. With this forecasting
chain, one can gain forecasting lead time; however, one also increases the
uncertainty (Figure 2.2d). In this situation, the main source of uncertainty comes
from rainfall data (Todini, 2004) as, for practical reasons, the density of rain gauges
in the network will often be too low to properly characterize the spatial and temporal
distribution of rainfall throughout the catchment. This problem can be partly solved
using weather radars (Cluckie and Han, 2000; Reichel et al., 2009) since they offer
an alternative method to capture rainfall data in remote areas of the catchment and
enhance the gauge-based catchment rainfall estimate (referred to sometimes as a
Quantitative Precipitation Estimate (QPE) (Arheimer et al., 2011; Adams, 2016).
In this context, a forecasting chain based on gage-radar based QPE that includes a
good bias correction technique will have the same forecasting lead time of the
gauge-based one, i.e., L = Ly + Lg. However, its level of uncertainty is expected
to be smaller (Figure 2.2b and Figure 2.2d), the residual uncertainty will be due to
the remaining uncertainty in the rainfall estimate and the rainfall-runoff model
error. Finally, suppose one desires to increase the forecasting lead time even more,

i.e., longer than the hydrological lead time L (catchment response). In that case, one
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must add a rain-forecast lead time by using rainfall forecast, which is typically
derived from quantitative precipitation forecasts (QPFs) by NWP, i.e., from a
Numerical Weather Prediction model. Nowadays, a QPF is delivered in the form of
an ensemble forecast which mainly encapsulates the uncertainty deriving from the
NWP initial conditions (Cloke and Pappenberger, 2009; Liguori et al., 2009).
Shorter lead time precipitation forecasts can also be derived in the form of Nowcasts
based on the propagation of weather radar images forward in space/time using a
nowcasting algorithm (Heuvelink et al., 2020). A forecasting chain under these
considerations records the rainfall until the time of forecasting t and forecasts future
rainfall for a time interval into the future Lg. Even though this forecasting chain
provides the longest lead time relative to the previous scenarios, the uncertainty
level deriving from the Nowecasting and/or the QPF for the lead-time extension Lr
is the highest due mainly to the uncertainties related to meteorological predictions
(Marty et al., 2013) (Figure 2.2¢).

There are several other sources of uncertainty that can be substantial in the flood
forecasting chain. For example, errors associated with initial conditions, e.g., soil
moisture, are particularly important when using rainfall-runoff models. Table 2.1
describes the four scenarios illustrated in Figure 2.2 and their primary sources of

uncertainty.

As one can see, this example explains clearly why uncertainty increases as the lead
time increases and the rationality of the trade-off between these two variates. This
rationality is used in this research to explore the reliability of flood warnings and
the economic effectiveness of river flood warnings associated with different

forecasting lead times in Chapters 5 and 6, respectively.

The preceding depiction of how uncertainty increases with lead time implicitly
assumes that data assimilation/forecast updating is carried out as new data are
received at each time point, so that, at the current time point t, the model forecast
and the observed value agree within the limits of measurement error, before the
next forecast is issued. The effect of data assimilation dies out as the lead time
increases, and the forecast reverts to the simulation mode model forecast, i.e., that
resulting from the forcing input variable(s). This is also the case with NWP model

forecasts.
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Table 2.1 Source of uncertainty for four potential flood forecasting techniques in a FEWS
The four forecasting models described in this table are the ones described in Figure 2.2.

. Model configuration Forecasting VS [EITTE Levels_ of
Scenario . . source of uncertainty
option. lead time .
uncertainty
¢ High Flow
Ratings
o Hydraulic/Rout
ing Model
Structure and
1 Flood routing model Lp Parameters The lowest one
o River
channel/floodpl
ain
o Survey
Flood routing model+ o Type of rainfall
2 rainfall-runoff model event Higher than
(precipitation data from (convective, scenarios 1 and 3.
rain gauge network) frontal,
orographic,
etc.)
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Also, it is important to note that the example shown in Figure 2.2 assumes that

forecasts are done by using a rainfall-runoff model and/or flood routing model that

can be physically based or conceptual. Note, however, that forecasts can also be

generated through data-driven models that rely on historical data without directly
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considering the underlying physical hydrological processes. These methods can
represent the existing nonlinear rainfall-runoff relationship with high computational
speed. The sources of uncertainty of these models are related to the aleatory
uncertainty - included in the training data - and the inability of the algorithm to
represent the observed values. The popularity of advanced data-driven models, e.g.,
machine learning models, has dramatically increased in recent years (Mosavi et al.,
2018). Machine learning methods, e.g., fuzzy systems or artificial neural networks,
have been used for forecasting rainfall, discharge, water levels, or for
assimilation/forecast updating (Tareghian and Kashefipour, 2007; Kambalimath
and Deka, 2020).

2.3.3 Types of forecasting errors

Given the existence of inherent uncertainty, flood forecasts are subject to several
types of forecasting errors, which have to do with the lack of fit between the
predictand, often a discharge or water level, and predictor. Based on a forecast and
observed hydrograph of a potential flood, they are classified as amplitude, phase,
and shape errors (WMO, 2011), and their presence also affects the forecast of the

main variables involved during the forecast process, i.e., peak (y), timing (t,), and

volume (V) of the potential flood.

The amplitude error implies both errors in the magnitude (e,) and volume (ey)

(Figure 2.3a). They often occur due to structural deficiencies in the hydrological
model, parameter estimation errors, and errors in the input and/or output data. The

phase errors show errors in the timing of the hydrograph (e, ), i.e., although y is

correctly estimated, it is delayed or advanced in time (Figure 2.3b). Finally, shape

errors may show e,,, ey, and et This type of error may be attributable to the routing

component of the model not representing well the redistribution of the generated
runoff volumes over time (Figure 2.3c). If the error is systematic for any of these
scenarios, it is said that the forecasts are biased. FFSs operating in non-updating
mode, i.e., the ones that do not consider real-time information to modify forecasts,
are more likely to have these errors than the FFSs operating in updating mode, i.e.,
the ones that consider forecast updating based on recent hydro-climatic
observations (this is a post-processing technique named data assimilation). The

literature offers several bias-correction methods when dealing with streamflow
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forecasts (Hashino et al., 2007). These methods often address the issue of the bias
in the mean value of the predictand, and the issue of the bias in the variance of the

predictand has been poorly analysed in flood forecasting and warning process.

Hydrograph - based - errors

a) Amplitude errors b) Phase errors ¢) Shape errors

Discharges or
water level
Discharges or
water level
Discharges or
water level

Time Time Time

Figure 2.3: Types of forecast errors
Adapted from WMO (2011).
In this research, a potential flood is represented by its peak flow ordinate, i.e., y,
and only the error e, is considered in the representation of its forecast. The primary
impact is created by the magnitude of the flood peak. The timing of the flood can

be considered a secondary impact and neglecting e, mainly affects the economic

effectiveness of flood warnings because the damage saved by a proactive action
depends on the mitigation time, which, in turn, depends on the onset of the flooding.

The error et is not considered in the analysis done in Chapter 6 since it is assumed

that e,, will dominate over these timing errors. The impact of the bias in the mean

and variance on the reliability of flood warnings is explored in Chapter 5.
2.4 Estimation of predictive uncertainty (PU)

From more than one decades ago, the concept of uncertainty in flood forecasting
has started to be considered more and more in research and practice
(Krzysztofowicz and Kelly, 2000; Todini, 2004; Cloke and Pappenberger, 2009).
This issue has been studied through two philosophies: ensembles methods and
statistical methods (also known as post-processors)(Boelee et al., 2019). Ensembles
methods define uncertainty from a set of plausible forecasts, whereas the statistical
methods use prior forecast and observed values to define PU through statistical
analysis. Some methods also use these two philosophies to estimate it.

Ensembles methods assume that the space of the forcing data, forecasting model
structure, and parameters can be defined. Thus, ensembles are often obtained by

running the forecasting model several times, frequently from different initial
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conditions, and where each run is within this assumed space (Xuan et al., 2009).
Since ensemble methods measure the spread of the forecasts descending from these
multiple scenarios, it is said that they do not provide an appropriate measure of PU,

but rather a measure of forecasting sensitivity (Todini, 2017) (Figure 2.4a).
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Figure 2.4: lllustration of methods used to characterise (a) uncertainty in forecasts and (b)
predictive uncertainty
The flood even is defined by the Standard of protection (SoP). a) Uncertainty in forecasts described
by ensembles and b) predictive uncertainty defined by conditional distributions for different forecast

horizons.
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Figure 2.5: Uncertainty measures
From the methods used to quantify uncertainty from ensembles, several uncertainty measures
(confidence limits, error bars, probability distributions) can be obtained. Note that in practice, only
1 or 2 measures would be used on the same figure. The flood event is defined by the standard of

protection SoP.

Statistical methods assess the uncertainty in flood forecasts in terms of PU. They
use historical observed and predicted values to derive PU as the predictive density
of the unknown future quantity conditional on the forecasted one. PU is quantified
when forecasting a predictand (often water level or discharges) with a specific

forecast horizon (forecasting lead time) (Figure 2.4b).
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Figure 2.5 illustrates the uncertainty measures that can be derived from the
ensembles. Given that this research considers the statistical philosophy to represent
PU, the PU concept, and the methods used to estimate it, are analysed in the

following subsections.
2.4.1 Predictive uncertainty (PU) definition

In studies of hydrological forecasting, the terminology “predictive uncertainty” has
been widely used. PU is defined by Todini (2016) as the probability that the
predictand, typically the observed peak water level or discharge at a specific cross
section at the time t + L ( where L is forecast lead time) conditional on a single or
multiple predictor(s), namely model prediction(s). The predictand is conditional on
the structure, parameters, and forcing data of the forecasting model(s). The
terminology “predictive uncertainty” has been popular because it highlights that it
is associated with the uncertainty around the prediction of the predictand, rather
than the “simulation uncertainty” (SU), also known as “emulation uncertainty” or
“validation uncertainty”, that defines the uncertainty of the predictor given the
knowledge of what actually occurred. SU, in essence, defines the skill of the
forecasting model to reproduce the reality (Klein et al., 2016). If one assumes peak
water level as the predictand, i.e., y, and only one predictor (the forecast peak water
level of a forecasting model), i.e., y, the joint probability of y and y, PU and SU
are defined by f(y,9), f(y:|9.) and f(9.|v.), respectively. Since, in the case of
SU, ¥ is the uncertainty quantity, it can only be based on past observations and not
in predictive mode, whereas PU can be used in both simulation (or hindcast) and

predictive mode. Figure 2.6 illustrates the concepts of SU and PU.

It is important to realise that PU encapsulates all the different sources of uncertainty
in the forecast chain into one measure, thus making it unnecessary to consider the

sources themselves.

Throughout this thesis, the terms ‘predictive uncertainty’ and ‘forecast
uncertainty’ are used interchangeably, where it is understood that the latter

term has exactly the same interpretation as the former.
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Figure 2.6: Illustration of SU and PU
a) Simulation uncertainty (SU). Once the joint distribution between the observed and forecast
values is built, knowing an observed value y; , one can evaluate the uncertainty of the predictor
¥ (forecasting model). b) Predictive uncertainty (PU). With the joint distribution, knowing the
predictor y;, one can assess the uncertainty on the predictand. Adapted from Todini (2016).

2.4.2 Predictive uncertainty (PU) estimation

The statistical methods (which are the methods considered in this research), in
essence, calculate the forecasting model's error and assume the model's errors,
obtained from past observations and their forecasts, are representative of the
uncertainty in the future. These methods estimate the PU of a predictand (often
water level/discharge) for a specific forecast horizon (forecasting lead time) and
location. Thus, statistical methods have been applied to a fixed location with

discharge/water level data (Boelee et al., 2019).

The statistical methods most commonly used in hydrology are the Hydrological
Uncertainty processor (HUP)(Krzysztofowicz and Kelly, 2000), Model Conditional
Processor (MCP)(Todini, 2008; Barbetta et al., 2016), and Bayesian Joint
Probability (BJP) model (Wang et al., 2009; Zhao et al., 2015). All of these
methods, which have been reviewed by Li et al. (2017), share similarities; for
example, 1) they use parametric approaches based on Bayes’ theorem to derive the
distributions needed to estimate PU; ii) a sample of forecasts and the resulting
observations, obtained from historical records or simulated forecasts (hindcast), is
used to identify the distributions involved in the Bayes’ theorem; iii) the
distributions of the original samples are transformed to Gaussian to apply the
Bayesian inference technique; and iv) the samples used are comprised of values that
represent the four different states when dealing with flood forecasting, i.e., peak
flow, base flow, and transitory states occurring during the rising and recession

limbs.
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In the same way, these methods have their own particularities. For example, HUP
takes into account the strong autocorrelation property of hydrological time series to
base the derived probability distributions on recent past observations
(Krzysztofowicz, 1999a; Bogner and Pappenberger, 2011). MCP is an alternative
to HUP, but it has the advantage that the derivation for univariate situations (a single
model provides probabilistic forecasts at a specific forecasting lead time and
location) can be conveniently extended to multivariate situations, which can be
used, for example for multimodel, multisite, and multi-lead time problems (Coccia
and Todini, 2011). Both HUP and MCP use the normal quantile transformation
(NQT) as a Gaussian-transform method (Bogner et al., 2012). BJP differs from
these two models in that: i) the log-sinh transformation is used instead of NQT; and
i) it considers the uncertainty of the parameters used to describe the PU, where the
Bayesian inference technique is applied for the estimation of these parameters
(Zhao et al., 2015). MCP and BJP deal with the exiting heteroscedasticity of the
residuals when forecasting streamflow — that is, the error between forecasts and
observations tend to be much higher at high flow than at low flow- through the use
of the multivariate truncated Normal (MTN) distributions and the log-sinh

transformation, respectively.

The main disadvantage of these statistical methods is that they rely on observed
values. This problem is particularly important for the methods that use NQT as a
Gaussian-transform method. It might happen that, during operational use for
forecasting, the sampled data points in the normal space fall outside the range of
the historical sample, and the inversion of the empirical NQT is not possible. These
methods deal with this issue as extreme values are rarely observed in the historical
records due to the limited amount of available data. Thus, to estimate future possible
extreme values, different approaches have been proposed, which in essence seek to
identify the best curve for fitting the sample distribution tails. One of them is, for
example, to extend the historical observed sample with extreme values estimated
by fitting a Peaks-Over Threshold (POT) model to the upper tail of the sample and
apply a non-parametric regression method called Generalized Additive Model
(GAM) as an extrapolation method (Bogner et al., 2012). Other approaches suggest
extending the sample by the hyperbolic approximation for the uppermost-tail of the
distribution (Seo et al., 2006) or applying a linear extrapolation on a number of
points in the tails of the sample distribution (Weerts et al., 2011). Coccia (2011)
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suggests applying a specific model to the tails of the historical sample by setting,
for the upper tail, the maximum value, for which the probability is assumed to be
equal to 1, to twice the maximum value ever observed, and, for the lower tail, by

setting the minimum value, for which the probability is assumed to be null, to zero.

This research does not explicitly use a statistical method to estimate PU from
observed data. Rather, it selects realistic parameter values for the distributions used
in deriving PU (Figure 2.6b) within a Monte Carlo sampling framework; these
parameter values are supported by the analysis of observed flood peak data. A joint
distribution is assumed for the predictand and predictor. Then, using the method
known as the conditional approach (Lewis and Orav, 2018), bivariate values
associated with a conditional distribution (representing PU) are generated from this
assumed joint distribution. This is done for a simulated fluvial case (Chapter 5 and
Chapter 6) and the case study (Chapter 7). Chapter 3 describes the predictands
considered in each case, whereas Chapter 4 details the statistical concepts used in
this approach.

2.5 Warning decisions in flood early warning systems

The prediction problem in FEWS has been addressed by a plethora of research
studies, ranging from simple to complex methods and forecasting models. In
contrast, the warning problem, particularly the warning decision issue, has received
relatively little attention. FEWSs often have an associated warning criterion that
determines which warning decision process must be conducted. This warning
criterion, in turn, depends on the flood forecasting technique used in the system.
Based on a literature review, this section of the Chapter explains how flood warning
decisions are actually made in operational FEWSs and the forecast type often used.
Furthermore, it describes the most common warning criteria used in a local context
and how several research works have simulated flood warning decisions

considering these warning criteria.
2.5.1 Common forecast type and warning decision

Most FEWSs use deterministic forecasts in the warning-decision-making process.

However, due to the significant progress in the last two decades in assessing and

estimating PU, the probabilistic forecast is starting to be considered in operational

FEWSs. For example, the Environmental Agency (EA), the entity responsible for
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managing the risk of flooding in England, is transitioning toward using this forecast

type through the use of ensembles (Arnal et al., 2020).

Regardless of the type of forecast used, the warning-decision-making process is
complex. Before issuing a warning, the Warner often meticulously assesses the
forecasts and uses his/her previous experience (built up over past events) to make
the best decision (Ramos et al., 2010; Verkade and Werner, 2011). Other factors
such as the type of event (e.g., local small flood events vs large-scale extreme flood
events), the cost-benefit analysis of warning vs not warning, risk attitude (e.g., risk
aversion vs risk loving), and the cultural environment in which decisions are made,
also influence the warning decision (Arnal et al., 2020). All these factors associated
with the human behaviour of the Warner have been encapsulated in this research in
a factor called the human component of the flood warning decisions (HFWD),
which, as was mentioned above, affects the flood warning decision and, therefore,

the FEWS performance.
2.5.2 Warning criteria in a local context

FEWSs may use for the warning criterion a single-discharge water level threshold
(e.g., defining defence overtopping or first property flooding), where forecast
values (often discharge or water levels) are compared with the pre-defined
threshold, which is, in essence, the flooding threshold y;. If the forecast values
cross yr, a warning should be issued (Figure 2.7a). These FEWSs do not target
warnings to individual properties or small areas within the at-risk community but
mainly aim to alert flood authorities of a potential flood that, in turn, uses proactive
actions to mitigate the flood impact. A common proactive action in this type of
FEWSs is raising demountable defenses, which can need a 24-h ahead warning to
be erected. Flooding-threshold-based warning decisions have been the basis of
some important research (Verkade and Werner, 2011; Dale et al., 2014).

FEWSs may also use several warning criteria based on different discharge/water
level thresholds. These thresholds are often associated with different return periods
and are called flood warning thresholds. They split the level of impact in the
floodplain into flood zones (also called flood warning areas) which allows warnings
to be targeted on small areas (Sene, 2008). This warning criterion represents a more

phased approach to warning or evacuating properties than the single flooding-
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threshold-based criterion since each flood zone has its own flood warning threshold.
In this case, a flood zone is warned if its corresponding flood warning threshold is
exceeded (Figure 2.7b). These thresholds are often set based on prior hydraulic

modelling and flood risk assessment of the area monitored by the FEWSs.
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Figure 2.7: lllustration of warning criteria based on discharge or water levels thresholds

a) Single flood warning-threshold-based criterion, b) multiple flood-warning-thresholds based
criterion (adapted from (Sene, 2008)).

Some FEWSs may use a hydraulic inundation/hydrodynamic model in the forecast
chain to transform the hydrograph of a potential flood into the expected socio-
economic impacts through real-time flood hazard maps. In this case, these maps
and the flooding threshold y; are used in the warning criterion. Warning decisions
are based on the direct comparison of future discharge or water levels and the
flooding threshold y;, and the real-time flood hazard maps are used to identify
individual vulnerable properties and disseminate flood warnings (Figure 2.8a).
Flood hazard maps are built by intersecting the maps of the property locations and
the inundation forecasting. This flood warning service is considered the most
sophisticated one and is considered complex and computationally expensive, and
its use has been limited in FEWSs (Fernandez-No6voa et al., 2020). Despite that,
with the development of high-performance computing techniques, it is now feasible
to use these flood forecasting techniques in flood warning services (Ming et al.,
2020; Ritter et al., 2020). In some cases, a library of pre-generated hazard maps
corresponding to different flood levels is created and stored, and the maps are then

interpolated in real-time, which is computationally light.

Some FEWSs may use a warning criterion based on relatively simple forecasting
tools, such as the rainfall threshold (RT) method (Georgakakos, 2006; Golian et al.,

2015). These methods allow the forecaster to use local precipitation and predict
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flooding without running complex forecasting models. Furthermore, they can be
used as a backup approach when there is failure or instability in the main FFS
(O’Connell, 2005). In this method, a critical RT value is defined as the minimum
cumulative rainfall volume necessary to cause a critical river discharge at the
forecast point (a cross section of the river). A rainfall threshold curve is then built
by plotting critical RT values versus time, all corresponding to the same critical
river discharge. When the cumulative rainfall volume of an event crosses the RT
curve, the peak discharge at the forecast point is expected to be equal to or greater
than the RT curve's critical river discharge. Thus, FEWSs that use this flood
forecasting technique use a warning criterion based on future precipitation (often
expressed in terms QPF) and the RT curve. In that case, a warning is issued if the
QPF crosses the RT curve (Martina et al., 2006)(Figure 2.8b). Like the FEWSs
based on a flooding threshold (Figure 2.7a), these systems do not target warnings
to small areas or individual properties but aim to alert the general public and lead
local flood authorities of a potential flood in the floodplain. These methods often
assume a pre-defined rainfall pattern, pre-defined soil conditions, and fixed
catchment characteristics, and, therefore, relatively large uncertainty in the flood
predictions may come from these assumptions (Martina et al., 2006; Hapuarachchi
etal., 2011; Wu et al., 2015).
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Figure 2.8: Illustration of warning criteria based on a) inundation forecasting and b) rainfall
threshold curve

This research in Chapter 5 explores the reliability of flood warnings of FEWS
whose warning criterion is based on real-time flood hazard maps and/or the
flooding threshold y; (Figure 2.8a and Figure 2.7a, respectively). Furthermore, in
Chapter 6, the reliability of flood warnings and the economic effectiveness of a
FEWS based on the first warning criterion are explored. In Chapter 7, the case

study, a rainfall-threshold-based warning criterion is used. This research does not
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simulate the warning criterion illustrated in Figure 2.8b; however, it takes the

concept of the RT curve to adapt it to a flood-prone polder system.
2.5.3 Simulation of warning decisions

Most research works that have considered the warning decision problem in FEWSs
have assumed that they can be made following a set of forecast-driven rules. For
example, a common method when simulating deterministic-forecast-based warning
decisions is to assume that a warning is automatically issued when the forecasting
model's deterministic output(s) cross a pre-defined threshold/s. Under this
assumption, Verkade and Werner (2011) show, using a quasi-analytical framework
with some limiting assumptions, how flooding-threshold-based warning decisions
based on deterministic-single-value forecasts, in which forecast errors are not

acknowledged, lead to sub-optimal decisions in a FEWS.

The use of probabilistic forecasts allows, on the other hand, optimal flood warnings
to be issued as PU is explicitly quantified. It can be used within appropriate
decision-making procedures to minimize costs, economic losses, loss of life, and
social disruption. These procedures can be split into probabilistic thresholds-based
methods and risk-based methods. In essence, the former ones assume that a warning
is automatically issued when the probability of exceedance of a pre-defined
threshold of the predictand (discharge, water level, rainfall amount, etc.) exceeds a
predefined probabilistic threshold. This method has been considered by assuming a
warning criterion based on a flooding threshold (Verkade and Werner, 2011) or
flood warning thresholds (Alfieri et al., 2012; Bischiniotis et al., 2019)(Figure 2.7).
Probabilistic thresholds are often set in such a way that they meet specific
requirements, such as maximizing the reliability or economic effectiveness of the
FEWS.

Risk-based methods are often used in a Bayesian decision scheme where the
predictive density, i.e., the PU, and a utility/loss function, are used to set rules
based on expected values (Economou et al., 2016; Todini, 2017). The utility/loss
function gives information about the utilities/losses in the FEWS with and without
the warning action. This function, along with the predictive density, is used in real-
time. Bayesian warning decisions assume that the warning is automatically issued

when the warning action's expected utility /losses are higher/lower than that without
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the warning action. Bayesian FEWSs have been designed to predict floods based
on rainfall (Martina et al., 2006; Economou et al., 2016) or water levels
(Krzysztofowicz, 1993). Bayesian warning decisions are rarely used in operational
systems, and they have mainly been considered in research works to show the

advantage of using probabilistic forecasts in FEWS.

This research simulates warning decisions through forecast-driven decision rules.
Deterministic-warning decisions assume that the warning is automatically issued
when the deterministic forecast crosses a predefined threshold. The probabilistic-
threshold approach is, on the other hand, used to represent the probabilistic warning
decisions. These approaches are used to simulate warning decisions in a FEWS
operating for a river-flood-prone area (Chapters 5 and 6) and a flood-prone polder

system (Chapter 7).
2.6 Response to flood warnings

The aim of a FEWS is to reduce human and damage losses through the
implementation of several proactive actions triggered by the flood warnings. These
actions represent the response of the FEWS and define the benefits of the system.
Priest et al., (2011) developed a model to quantify the benefits of a FEWS based on
several response pathways to flood warnings or risk reduction actions (RRAS). In
their work, eight principal RRAs were identified, which cover the mitigation of the
economic and human losses (Figure 2.9). These RRAs provide a good insight into
the potential proactive actions that can be part of the response component of a

FEWS and are explained as follows.

Six of these RRAs relate to damage-reducing responses and two to the reduction of
human losses. The former responses cover a flood defence operation (FDO) and
community-based options (CBO) that consider, for example, community pumping
schemes or the placement of measures to protect properties at a community scale.
The damage-reducing responses also involve actions at the household level, such as
contingent resilience measures (CRM) or the contents moved or evacuated (CME)
by householders. CRM is a set of planned measures to be conducted in advance of
a flood, such as the use of sandbags. Watercourse capacity maintenance (WCM)
also reduces flood damage. Activities to mitigate the economic damage in business,

such as moving equipment or stock out of the path of floodwater, are also included
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in the damage-reducing responses. On the other hand, the RRAs associated with the

reduction of human losses relate to search and rescue (SAR) and evacuation

measures (EVAC).
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Figure 2.9: Potential RRAs used in a FEWS

Source: Priest et al., (2011).

Several research works that have studied the response component of the FEWS
through a modelling framework have considered one of these RRAs. For example,
Dawson et al. (2011) and Liu and Lim (2018) used an agent-based modelling
framework to explore the benefits of EVAC in a FEWS. Verkade and Werner
(2011) and Bischiniotis et al. (2019) used a quasi-analytical framework to analyse
the economic effectiveness of a FEWS based on CME and CMR, respectively. In
this research, the response component of the FEWS is represented through CME
for the fluvial case (Chapter 6) and CRM for the flood-prone polder system case
(Chapter 7). The CME is simulated by using the functions proposed by Carsell et
al. (2004), which represent the damage reduction of this RRA in a floodplain
property as a function of the mitigation time (which is assumed in this thesis to be
equal to the forecasting lead time) and flood depth. The functions were developed
from the statistical analysis of surveys completed by floodplain management and
flood damage experts. The CRM in the case study represents a pumping scheme
operating in the flood-prone polder before or during storm events to remove water
from the inner rivers to the outer rivers, to enable water to drain from the polder

areas into the inner rivers. An overview of these RRAs is provided in Chapter 3,
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and a detailed explanation of its simulation is provided in each corresponding

Chapter.

As was mentioned at the beginning of this section, the RRAs shown in Figure 2.9
define the benefits of a FEWS. Particularly, the RRAs relate to damage-reducing
responses define the economic effectiveness of the system, which is considered as
one of the performance measures of a FEWS (Parker, 2017). Since this performance
measure is one of the measures to be explored in this research, the potential damage

saved associated with damage-reducing responses are analysed in the next section.
2.7 Evaluation of the performance of a FEWS

Parker (2017) suggests several measures to define the performance of a FEWS. He
split them into technical and social measures. The former ones consider technical
aspects associated with forecast quality, such as the accuracy, reliability, timeliness
of flood warnings and flood detection, as well as aspects related to the geographical
coverage. These measures can be characteristics of the FEWS or be evaluated based
on a record of observed data and their forecasts. On the other hand, social measures
are evaluated based on social survey responses and measure the acceptance of the
flood warning service. Social aspects include information quality and satisfaction
of the warning service, life protection, and economic factors such as damage
reduction and benefit-cost ratio. Social measures could also consider the reduction
of psychosocial impacts of flood events, as it has been proved that floods can cause
social and mental health problems that may continue over extended periods of time
(Stanke et al., 2012); however, these measures are rarely considered. From these
measures, reliability and economic effectiveness have been the attributes of a FEWS
that have received more attention in research works. This research is based on these
two performance attributes, and, therefore, substantial emphasis is placed on them
in this section. This literature review supports the research gaps identified in
Chapter 1, which are, in turn, highlighted in Chapters 5, 6, and 7.

2.7.1 Reliability

The reliability of the flood warnings is one of the foremost attributes of a FEWS.

In general terms, reliability is defined as an object's capability to achieve a required

function under stated conditions for a stated period of time (George and Modarres,

1994). Thus, Sattele et al. (2015) state that reliable warning systems for natural
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hazards can be considered as those that detect all hazard events in a timely manner
and transfer the warning to the affected people, leading to actions that avoid damage
and loss of life. They also split the reliability of a warning system for natural hazards
into technical reliability and inherent system reliability based on this concept. The
former has to do with the system's ability to work correctly in extreme
circumstances, and the latter with the skill of the system to detect and alert the

hazard event.

In terms of flood warning systems, the reliability of the flood warnings is often
evaluated only in terms of the inherent system reliability. Therefore, it is defined
by skill scores that determine warning decision-observations combination results.
Thus, it has been analysed based on the concept of signal detection theory through
the probability of detection (POD) and the probability of false detection, also known
as false alarm rate (F)(Krzysztofowicz et al., 1994). It has also been evaluated in
terms of hits, missed events, and false alarms for different thresholds (Montesarchio
et al., 2009; Alfieri et al., 2012). In line with this, Parker (2017) defines POD, F,
and the false alarm ratio (FAR) as reliability measures of a FEWS (Table 2.2). Other
works define this attribute of the FEWS through the critical success index (CSI),
also known as threat score (Jolliffe and Stephenson, 2012).

The works mentioned above have evaluated the reliability of flood warnings based
on whether a warning preceded a flood event's occurrence or non-occurrence in the
floodplain or in a specific flood risk zone, where a pre-defined threshold defines
the occurrence of the event (Figure 2.7). The skill scores used to define this
attribute, in essence, gives a “snap-shot” of the reliability of the flood warnings in
the floodplain or a specific flood risk zone. Even though these works suggest
methods to reasonably estimate the reliability of flood warnings, they do not
consider the uncertainty in the estimation of the flood magnitude. Note that, due to
the forecast’s inherent uncertainty, there is always a difference between the
magnitude of the forecast and observed flooding, and, therefore, a difference
between the warned and flood properties. This undoubtedly impacts the reliability
of flood warnings. For example, Parker et al. (2007) found in a flood-warning-
customer-oriented research project that, due to a bad performance in the
dissemination procedure, only 37.5% of flooded properties received a warning
before flooding. This occurs due to not only poor communication but also due to

uncertainty in the estimation of the flood magnitude.
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Therefore, a more reliable approach would be the one that evaluates the reliability
of flood warnings based on whether a warned property was or not subsequently
flooded. This target information for this approach is the number of warned and
flooded houses after the observed realization of a potential flood in the area
monitored by the FEWS. To the best of the author’s knowledge, a modelling-based
framework that explores the reliability of flood warnings based on this criterion has
not been reported in the literature.

This criterion, which is becoming increasingly relevant to operational FEWS as
flood hazard maps are being used to assess which properties might be flooded
(Figure 2.8a), is called in this research a floodplain property-based criterion (FPC)
and is used to explore flood warning reliability for a simulated fluvial case in
Chapters 5 and 6. In these Chapters, the FPC is compared with the criterion that
evaluates the reliability of flood warnings based on whether a warning preceded a
flood event's occurrence or non-occurrence in the floodplain, where the flooding
threshold y; at a specific river cross-section defines the occurrence of the event.
This criterion is called in this research a flooding threshold-based criterion (FTC)
and can be used to evaluate the reliability of flood warnings of FEWS with the
warning criterion illustrated in Figure 2.7a. The same skill scores can define the
reliability of flood warnings in the FTC and FPC. Table 2.2 indicates the
interpretation of the skills scores POD and FAR in the FTC and FPC.

Table 2.2 Metrics to evaluate the flood warning performance.

Abbrev In the FTC, In the FPC,
Metric iation answer the answer the Equation Interpretation
question: question:
. What is the
Probability Whatisthe | opability of Ranges from
of probability of an a flooded n 0-1.
. POD observed event - POD =
detection . ; house being h+m Perfect
or hit rate being warnex_j n warned in the
the floodplain? ; forecast 1.
floodplain?
What is the
What is the probability of
probability of a a warned Ranges from
False forecast event house being f 0-1.
: FAR o incorrectl FAR = ——
alarm ratio being incorrectly Clly h+f Perfect
warned inthe | warned in the forecast .
floodplain? floodplain?
Legend: h=hits; m=misses, f=false alarms.
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2.7.2 Economic effectiveness

The term economic effectiveness has been used to refer to the flood risk reduction
of a FEWS relative to the flood risk of the no warning scenario (Séttele et al., 2015;
Parker, 2017). As was mentioned in section 2.6, the RRAs relate to damage-
reducing responses define the economic effectiveness of a FEWS which is, in turn,
considered as a performance measure of the system. The potential damage saved
associated with these RRAs has been often estimated through social survey research
projects. From the RRAs shown in Figure 2.9, CME was perhaps the first RRA that
was researched. Day (1970) was the first to do this. Based on research conducted
in Susquehanna River basin, he developed what is commonly known as the ‘Day
curve’, which shows the relationship between the mitigation time and potential
damage saved (expressed in percentage) associated with CME. Based on this curve,
Day (1970) suggest predicting the economic effectiveness of the FEWS as a
percentage of a metric that defines the flood damage of the floodplain without the
warning service, where the expected annual damage (EAD) is often used for these
purposes. After this work, a long series of social survey research projects were
developed to improve the Day’s method. For example, Carsell et al. (2004) criticise
the Day’s method and mentions that the flood depth is an important factor
influencing the damage reduction. Therefore, it should be considered in the
estimation of the potential damage saved. They also mention that Day’s method is
too optimistic as it assumes that floodplain residents act rationally and efficiently.
In this context, based on a social survey research project, Carsell et al. (2004)
developed damage reduction curves associated with CME as a function of the
mitigation time and flood depth and suggest a method to estimate the economic
effectiveness of a FEWS as the difference between the EAD of the floodplain
associated with and without a warning scenario. The latter EAD is estimated based
on these damage reduction curves. The economic effectiveness is then reduced by

considering an efficiency parameter of the RRA.

The potential damage saved by other damage-reducing responses has also been
studied. For example, Priest et al. (2011) propose a method to estimate the
economic effectiveness of a FEWS considering several RRASs in the response
component of the system. Their method considers all the damage-reducing
responses shown in Figure 2.9 and defines the economic effectiveness of the FEWS

as:
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FDA = [EAD x PFP x FDO]
+ [EAD x UFP x (CBO + WCM + BCP + CRM  Eq. 2.1
+ CME)]

Where FDA is the potential flood damage avoided by the FEWS (economic
effectiveness), PFP and UFP is the proportion of properties at risk that are protected
and unprotected by structural flood defence systems, respectively. The other
parameter corresponds to the proportion of EAD that is likely to be saved by each
RRA shown in Figure 2.9. Table 2.3 shows the values suggested by Priest et al.
(2011) to be used for each of them. These values were obtained from several social
survey research projects conducted in England and Wales.

Table 2.3 Damage avoided for several RRAs.

RRA Avoided damages due to early warnings [%6]
Flood defence operations (FDO) 28
Watercourse capacity maintenance (WCM) 10
Community based operations (CBO) 1
Contingent resilience measures (CRM) 2
Contents moved and evacuated (CME) 5
Business continuity planning (BCP) 5

The methods mentioned above do not consider technical or social factors associated
with the FEWS that can influence its economic benefits. The Environment Agency
National Flood Warning Centre (2003) proposed a method that considers these
factors in the economic effectiveness of flood warnings for the residential sector.
This model was based on the work done by Parker (1991) and has been applied in
England and Wales mainly to estimate the economic benefits associated with CME.
This method gives a good insight into factors influencing the FEWS performance,

which considers the following equation.

FDA = (EAD x DRx C)+ (R x RAx PR x RE) Eq.2.2

Where FDA has already introduced above (Eq. 2.1), DR is the proportion of EAD
that is likely to be saved by a pre-flooding action, C is the coverage of the flood
warning service represented by the proportion of houses in the floodplain monitored
by the system, R is the service effectiveness understood as the proportion of flooded

serviced properties that received a timely, accurate and reliable flood warning, RA
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is the availability of the flood warnings defined by the proportion of flooded
services properties that received such a warning, PR is the ability of the floodplain
dwellers to respond to a flood warning defined as the portion of residents able to
understand and respond to such a warning, and RE is the effective action
(proportion of serviced properties either willing to take effective action or which
have actually taken effective action following a flood warning to reduce flood
damages). In this research, PR and RE were encapsulated in a factor named the

response human factor (RHF).

All the methods described above are often considered in a cost-benefit analysis of
a FEWS where the costs of setting up, operating, and maintaining the system can
be included (Pappenberger et al., 2015). These approaches fail in that the cost of
the warning response C,, (per-event costs) cannot be included in the cost-benefit
analysis. It is a cost incurred every time a warning is issued and considers the cost
of issuing a warning and any cost incurred in the dissemination process and by the
RRA. It is, therefore, an important factor controlling the economic effectiveness of
a FEWS. It depends on the forecasts because it is the only information available
when the warning is issued. The cost of the warning response, C,,, is, therefore,
affected by the accuracy of the forecasts, and its inclusion in the economic
effectiveness of a FEWS is considered a difficult task. VVerkade and Werner (2011)
proposed a quasi-analytical framework to include C,, into the economic
effectiveness of a FEWS by combining a hydro-economic EAD model with the
theory of relative economic value. However, their framework has two main
assumptions: i) The cost of the warning response is assumed to be independent of
the magnitude of the forecast flooding, and it is not estimated as a function of this
variate, and ii) cost and damage (net damage) associated with PU are only estimated
as a result of “wrong” flood warning decisions (misses and false alarms). Their
framework, therefore, negates the fact that the net damage associated with the PU
can also be present in a hit event (a flood proceeded by a warning in the floodplain)
; this net damage is present in hits due to the difference between the warned and

flooded houses

In Chapter 6, the economic effectiveness of a FEWS is quantified for a simulated
fluvial case which considers the net damage associated with PU in all possible
situations. This analysis, to the best of the author’s knowledge, has not been done

before. In the case study (a FEWS operating for a flood-prone polder system),
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Chapter 7, the proactive action benefits are jointly analysed together with their

costs.
2.8 Operational FEWS

This section of the Chapter compiles relevant information about real operational
FEWSs to describe how these real-world FEWSs are actually operated and
evaluated. It is important to understand the relevance and motivation of the
research. The actual operation of FEWS can be summarized as follows.

v' Lead time: A hydro-meteorological modelling chain - QPE/QPF plus a
hydrological model - for long-term flood forecasts (1-5 days) have not been
used very extensively due primarily to that: i) the technology for QPE/ QPF
procedures are not available and applied easily in many countries and
regions; ii) the lack of techniques that include hydrological models in the
calibration/validation of the QPE/ QPF products; and iii) its inadequate
spatial and temporal resolution for hydrological modelling purposes (Liu,
2012). Thus, long-term flood forecasts have been generated by local FFS
through meteorological forecasts, mainly QPF, (global- or national-scale
products) often provided by meteorological agencies in the form of NWP
(Rabuffetti and Barbero, 2005; Dugar et al., 2017; Flack et al., 2019).
However, these forecasts have been used only qualitatively, i.e., to track the
threat of flooding and sometimes to warn only flood authorities (not specific
risk zones) to prepare the warning response. Thus, in practice, real-time
FFSs have been used in FEWS and, therefore, flood warning decisions have
been based on forecasts based on real-time hydro-meteorological
information (Arheimer et al., 2011; Adams, 2016; Javelle et al., 2016; Liu
et al., 2018; BOM, 2019). That has caused FEWSs to consider short lead
times (lower than the hydrological lead time), especially for small to
medium size catchments. For example, in England, the EA issues flood
warnings with a forecasting lead time between 30 min and 6 hours (Arnal
et al., 2020).

v Forecast variates: The timing and the peak of the floods, along with the
inundation extent, at key locations, are the most relevant variables to be
forecasted (Ibbitt and Woods, 2003; WMO, 2011; Parker, 2017; Jain et al.,
2018). From these variates, the peak and timing of floods are often
forecasted because FEWSs often predict floods based on discharge or water
levels; the inundation extent is rarely forecasted (Fernandez-Novoa et al.,
2020). Some FEWSs also predict the flood peaks based on rainfall, where
the rainfall threshold (RT) method (Golian et al., 2015) is a common choice.

v Forecast type and warning decisions: Flood warning decisions have been
based on deterministic forecasts, though probabilistic forecast is starting to
be considered in operational FEWSs due to the significant progress in the
last two decades in the assessment and estimation of uncertainty in flood
forecasting through ensembles (see the case for England in Arnal et al.,
(2020)). The warning-decision-making process is complex, and forecasts
represent only one factor influencing this decision. Factors such as expert
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judgement, type of event, risk attitude, and cultural environment in which
decisions are made also influence the warning decision (Ramos et al., 2010;
Verkade and Werner, 2011; Arnal et al., 2020).

v" Common methods to evaluate performance: Operational FEWSs have
been often evaluated in terms of the reliability of flood warnings and their
economic effectiveness. The former attribute is often evaluated based on
whether a warning preceded a flood event's occurrence or non-occurrence
in the floodplain or in a specific flood risk zone, where a pre-defined
threshold defines the occurrence of the event. The metrics such as POD,
FAR, F, or CSI are often used to have a “snap-shot” of the flood warnings'
reliability in the floodplain or a specific flood risk zone (section 2.7.1).
Operational FEWSs often compute these metrics based on a flood warning
validation database. This is a common practice in, for example, England
(Arnal et al., 2020). These metrics do not consider the uncertainty in the
estimation of the flood magnitude and, therefore, the difference between the
warned and flooded properties. Quantifying the economic effectiveness of
an operational FEWS is, on the other hand, considered a challenging task
due to the complex nature of the warning response processes (Pappenberger
et al., 2015; Girons Lopez et al., 2017). Thus, operational FEWSs rarely
have information about the economic benefits they may produce
(Economou et al., 2016). Most studies in this field have estimated this
attribute by doing the ex-post evaluation of the system's benefits based on
interviews or surveys. Several methods to estimate the economic
effectiveness of a FEWS have emerged from these studies, which often
neglect the net damage associated with the accuracy of a forecast (e.g., costs
of false alarms and damage resulting from misses).

Based on the operational characteristics of the real FEWS mentioned above, it
would not be easy, but not impossible, to obtain relevant information associated
with the influence of the factors described through this Chapter and Chapter 1 on
the FEWS performance. This research considers flexible Monte Carlo frameworks
for these purposes that consider the end-to-end modelling of a FEWS. In this sense,
the next section of this chapter describes research works that have done the end-to-
end simulation of these systems. This research takes some concepts of them to build
a generic framework (explained in Chapter 3), which is the basis to do the

investigations of this research.
2.9 End-to-end modelling of FEWS

Few research projects have considered an end-to-end-modelling framework to
analyse the performance of a FEWS. Section 1.2 provides a discussion of about
several important research works in this field, whereas Table 2.4 a summary of their
aims and their main assumptions. Beyond each particular work's specifics, all of

these works have idealized the FEWS through the forecast-decision-
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response/impact chain illustrated in Figure 2.10. By doing that, they have simplified
several processes considerably involved in the integrated system obtaining, thus,
more or less versatile frameworks that meet their goals. Even though these works
provide good insights into the representation and evaluation of the performance of
a FEWS, none of them i) have explored the impact of the flood magnitude’s
uncertainty on the FEWS performance, ii) have explored the impact of the bias in
the variance on the reliability of flood warnings, iv) have explored the impact of
several factors on the economic effectiveness of a FEWS, and v) have used the
forecast-decision-response/impact chain to represent a FEWS operating for a flood-

prone polder system.

Table 2.4 Important research works that have addressed the FEWS performance through an

end-to-end modelling framework.

Research work

Aim

Representation of the FEWS
and main assumptions

Krzysztofowicz and Davis
(1983)

To evaluate the economic
effectiveness of FEWS

The FEWS chain is reduced to
a flood forecast-response
process; warning decisions are
not considered

Krzysztofowicz (1993)

To evaluate the reliability and
economic effectiveness of a
FEWS

The FEWS is represented
through a monitor-forecast-
decision chain; the response is
not simulated.

Verkade and Werner
(2011)

To evaluate the economic
effectiveness of a (probability
and deterministic) FEWS
based on the relative economic
value (REV) theory.

FEWS is represented through a
forecast-decision-response-
and-impact chain. REV is used
to scale the imperfect-forecast-
based-economic flood risk
between the economic flood
risk of the perfect and no
warning scenario; the
imperfect forecast is not
explicitly simulated.

Girons Lopez et al. (2017)

To explore the impact of social
preparedness on the economic
effectiveness of a FEWS

FEWS is represented through a
forecast-decision-response-
and-impact chain; the impact
of the lead time on the FEWS
performance is not explored.

Bischiniotis et al. (2019)

To explore the decision-
makers’ dilemma between
acting upon limited-quality

forecast information and taking
less effective actions

FEWS is represented through a
forecast-decision-response-
and-impact chain; results are
not based on a considerable

range of potential flood events

and warning decision
situations that the area
monitored by the FEWS may
be subject to.
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Figure 2.10: Forecast-decision-response/impact chain often used to analyse FEWS

Adapted from Verkade (2019).

This research uses the forecast-decision-response/impact chain and Monte Carlo
simulation to fill the research gaps mentioned above. Monte Carlo simulation has
for many decades been used to address uncertainties in hydrologic series and the
impact these have on decision making. In the seminal work of Hosking and Wallis
(1997), it was demonstrated how Monte Carlo sampling can be used to explore the
sensitivity of the estimate of T-year flood to various factors and assumptions.
However, few studies have utilised Monte Carlo simulation in flood forecasting.
Examples include Van Steenbergen and Willems (2014), who investigated whether
ensemble predicting systems (EPS) cover the uncertainty produced by Numerical
Weather Prediction model rainfall forecasts, and Golian et al. (2010), who
developed a probabilistic rainfall threshold curve for flood forecasting. Chapter 3

describes how this research addresses these issues and the methodology used.
2.10 Main Findings

Based on the research gaps identified in this literature review, flexible Monte Carlo
frameworks have been designed to do the end-to-end modelling of a FEWS
operating for a fluvial-flood-prone area (Chapters 5 and 6) and a flood-prone polder
system (case study, Chapter 7). These frameworks allow simulating some of the

factors influencing the performance of a FEWS identified through this Chapter.

Table 2.5 summarises all of them according to the component they correspond to
in the FEWS. Factors as the failure of instruments/telemetry system (FITS), the
failure of communication networks (FCN), the flood warning service effectiveness
(R), and the coverage of the flood warning service (C) are not considered in this
thesis. Likewise, human errors in the forecast and warning process (HFWP) are also
ignored. These omissions are supported by the fact that perfect operability and
communication and coverage of 100% of the flood warning service is assumed in

the frameworks designed to simulate the FEWSs. The human component in the
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flood warning decision-making process (HFWD) is also ignored since it is assumed

that warning decisions are made based on pre-stated decision rules.

Table 2.5 Main factors influencing the performance of a FEWS

Symbol or acronym Description Factor associated with:
HEWP Human errors in the forecast
and warning process

The human component in the

HFWD flood warning decision-
making process
LT Lead time
FBM Forecast bias in the mean
FBV Forecast bias in the variance

_ Flood forecasting and warning
Fallure Of System

FITS instruments/telemetry system
FCN Failure of communication
networks
Flood warning service
R .
effectiveness
c Coverage of the flood warning
service

Cy Cost of the warning response

HRF Human response factor
CRRA Costof the RRA Response s_ystem and the at-
risk area

SoP Standard of protection

Factors influencing the performance of the FEWS considered in this research were
forecast bias in the mean (FBM) and variance (FBV) of the predictand, the cost of
the warning response (C,,), the cost of the RRA (CRRA), the lead time (LT), and
the standard of protection (SoP). On the other hand, only one human factor was
considered; the response human factor (RHF), which, as was mentioned in section
2.7.2, includes the ability of the floodplain dwellers to respond to a flood warning
and the effectiveness of the RRA. These factors have been parametrised in flexible
Monte Carlo frameworks designed in this research. Thanks to the versatility of these
frameworks, this research obtains relevant information associated with the
influence of these factors on a FEWS performance based on several scenarios
associated with the setting of the systems. Part of this information represents a
contribution of this research, and it would not be easy to be derived from

information provided by real-world FEWSs due to its operational characteristics
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detailed in section 2.8. This information was generated by answering the following

main research questions:

v" What levels of correlation between observed flood and their forecasts are
needed to obtain target levels of reliability of flood warnings, and how this
varies with the lead time? (Chapter 5)

v How sensitive is flood warning reliability to biases in the mean and variance
of deterministic and probabilistic forecasts? (Chapter 5)

v How is the economic effectiveness of FEWSs affected by various factors?

Other questions that do not involve these factors but can be answered with the

adopted methodology are:

v" How should the impact of the flood magnitude’s uncertainty on FEWS
performance be explored?(Chapter 5)

v How does the uncertainty in forecasts and its quantification through PU
impact the performance of a FEWS? (Chapter 5, 6, and 7)

v Can the management of floods in polder areas be improved through the use
of flood forecast and warnings, and how the response component be
designed? (Chapter 7)

The answer to these questions and the MC frameworks considered to fill out the
research gaps mentioned above are described through the thesis and highlighted in

the thesis conclusions (Chapter 8).
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Chapter 3. Methodology

A generic framework has been designed to address the research needs identified in
Chapter 1 and highlighted in Chapter 2. Here, the aim is to provide an overview of
the framework, to introduce the components that are developed in the following
chapters, and to show how they relate to each other. This can be viewed as a thesis
roadmap, thus helping the reader to navigate the thesis. In addition, after the
introduction of this generic framework, this Chapter closes by describing the type
of sensitivity analysis (SA) adopted in this research to identify the sensitivity of
important factors controlling the performance of the FEWSs considered in this

thesis, which is one of the primary research objectives of this research.
3.1 The generic framework

The generic framework has been designed based on the forecast-decision-
response/impact chain used to characterize the end-to-end modelling of a flood
early warning system (FEWS) (Figure 2.10). When it was designed, it was thought
that it should represent this chain through sampled Monte Carlo realizations of
observed values and their forecasts, the resulting decision(s) taken, and the impact
of the observed realizations on the floodplain, conditional on the decision(s) taken.
Based on this approach, the resulting generic framework is made up of three

components, as illustrated in Figure 3.1. It is explained as follows.

Obaservations

\ \ 4
Monte Carlo Flood Forecasts Flood wamning ‘ Response and
and Forecast Generator P < decision component >———>|  Impact Component
(RIC)

(MCFG) J . (FWDC)

Figure 3.1: Generic framework of this research

v" Monte Carlo flood and forecast generator (MCFG): It is used to generate
the full range of flood forecasts in terms of deterministic and probabilistic
forecasts and their observed realizations for an at-risk community.

v" Flood warning decision component (FWDC): It represents the warning
decision, and it is simulated by decision rules which represent rational
decision-making. The FWDC is driven by the forecasting information
generated by the MCFG.

v" Response and impact component (RIC): This component is used to
simulate the proactive action and the resulting impact. The proactive action
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is driven by forecast information and warning decisions, whereas the impact
is estimated based on the observed realizations generated from the MCFG
and conditional on the warning decisions.

3.2 Component description

The generic framework depicted in Figure 3.1 has been used to explore the
performance of a FEWS operating for a generic fluvial flood case (Chapters 5 and
6 ) and a real flood-prone polder system (Chapters 7). Event-based modelling and
continuous simulation are used in the former and latter cases, respectively; the
MCFG is used to sample the driving forecasts and their observed realizations
(Chapter 4). The parameters of the components vary according to the research
objectives addressed and the assumptions considered to explore them; they are
supported by the analysis of observed data.

3.2.1 The Monte Carlo Flood and Forecast Generator (MCFG)

The MCFG assumes a bivariate parametric probabilistic model for the predictand
(the observed value) and predictor (the forecast) and assumes perfect knowledge
about its parameter values, which are varied to explore the FEWS performance
sensitivity to different factors.  Under this assumption, the MCFG generates
bivariate values of these two variates based on the method known as the conditional
approach (Lewis and Orav, 2018). Thus, it first obtains the conditional probability
density of the predictand given a value of the predictor; and, then, the (observed)
realization of the predictor is obtained as a value sampled from this conditional
probability distribution. The predictor's value represents the deterministic forecast,
and the probabilistic forecast is derived from the conditional probability
distribution. Even though the aim of the MCFG for the simulated generic fluvial
case and flood-prone-polder system case is the same, i.e., to generate potential long-
term scenarios of flooding in an at-risk community, the predictand and predictor

considered, and the architecture of the MCFG, is different in each of them.

Generic Fluvial Case

In the simulated fluvial case (Chapters 5 and 6), a potential flood in the at-risk
community is defined by observed peak water levels (y). Thus, here, y is assumed
to be the predictand, and its forecast (¥), the predictor. The bivariate parametric
probabilistic model is, therefore, defined by the parameters that describe the
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marginal distributions of y and §, and the correlation coefficient (p, ) that defines
the dependence structure of the pairs (y,y). The MCFG in the generic fluvial case,
therefore, generates a deterministic-single-value forecast, represented by the values
of 9, and its associated probabilistic forecasts derived from the conditional

distribution of y given 9, i.e., f(¥]9).
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Figure 3.2: Schematic of the MCFG for the simulated fluvial case
This figure illustrates the bivariate modelling of pairs (y,y) from a pre-assumed parametric bivariate
model (b), where the value of p,,; of this bivariate model is associated with a given value of lead
time t and derived from the subjective lead-time-correlation function (a).

The correlation coefficient p,; in the bivariate parametric model, in essence,
establishes the scatter of the bivariate points and is one of the parameters of the
bivariate model that define the predictive uncertainty (PU). In this sense, the
MCFG, in the simulated fluvial case, uses a subjective lead-time-correlation
function to associate p,,5 with a given forecast horizon or forecasting lead time (t).
This function is analogous to that found by Schréter et al. (2008) and aims to
represent the trade-off between t and PU. This function, depicted graphically in
Figure 3.2a, describes the common behaviour of forecasting models forced with

precipitation. That is, it represents the fact that, for T values lower than catchment
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lag time (L), with a well-calibrated hydrological model, and forecast updating in
real-time, the performance of a forecasting model is relatively high as forecasts are
based on observed precipitation by using, for example, gauge-based quantitative
precipitation estimation (QPE). Past this value L, the forecasting model has to be
forced with quantitative precipitation forecasts (QPF)(Figure 2.2), and its
performance is hypothesized to drop monotonically (Schroter et al.2008). The slope
of this function before L defines the quality of forecasting models based on QPE,
such as models based on gauge-based QPE or gauge-radar-based QPE, and the
slope after L defines the quality of the forecasts based on QPF. The architecture of
the MCFG in the simulated fluvial case is, therefore, made up of the bivariate
parametric model of the pairs (y,p) and the subjective lead-time-correlation
function. Figure 3.2b illustrates the bivariate modelling of pairs (y,y) from a pre-
assumed parameteric bivariate model, where the value of p,y of this bivariate
model is associated with a given value of t and derived from the subjective lead-
time-correlation function. In this sense, the MCFG in the fluvial case generates
(deterministic and probabilistic) single-value forecasts associated with a t value,
which are provided to the FWDC, and their single-value- observed realizations,

which are delivered to the RIC.
Polder Case

In the simulated flood-prone-polder system case (Chapter 7), a flood in the polder
area is predicted based on forecasting rainfall over a 24-hour forecast horizon
(forecast lead time). A Rainfall Forecast Generator (RFG) is constructed that first
uses the space-time rainfall generator RAINSIM v3 to generate 24-hour forecasts
and observed values at hourly resolution with a prescribed correlation using the
model in spatial mode; here, spatial correlation is used as a surrogate for the
correlation between forecast and observed values. Then, to obtain a probabilistic
24-h rainfall forecast, a bivariate model is constructed based on the daily observed
rainfalls R4, and their forecasts I?da”yfrom RAINSIM. Thus, here, the daily
rainfall (Rgqi,) is assumed to be the predictand, and its forecast (I?daily), the
predictor. The bivariate parametric probabilistic model is, thus, defined by the
parameters that describe the marginal distributions of Ry, and ﬁdauy, and the
correlation coefficient (pg daityR da”y) that defines the dependence structure of the

pairs (Rdal-ly,Rdaily).Therefore, the MCFG, in this case, generates (deterministic
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and probabilistic) 24-h rainfall forecasts, which are provided to the FWDC, and
their 24-h hourly observed realizations, which are delivered to the RIC to perform
continuous hourly simulations of the polder operation over a 24-hour storm period.

A detailed description of the potential bivariate parametric probabilistic models one
can use to represent the pairs (y,y) is provided in Chapter 4, together with
supporting data analysis for some UK rivers. The data analysis supporting the

choice of a bivariate distribution for (Rda”y,l?da”y) Is described in Chapter 7.

3.2.2 The flood warning decision component (FWDC)

The FWDC is used in the framework to simulate the warning decision of a FEWS.
The warning decision, driven by the forecast, is represented by decision rules set

based on the warning criteria adopted in the analysis of the FEWS.

Generic Fluvial Case

In the simulated fluvial case, this research considers FEWSs based on a flooding
threshold (y;) with and without real-time flood maps. Figure 3.3 illustrates the
deterministic and probabilistic rules used in the simulated generic fluvial case.
Chapter 5 uses these rules to explore the flood warning reliability of these two types
of FEWs. In the deterministic forecast scenario, the warning decisions in these two
systems assume that a warning is automatically issued when the single-value
forecast is greater than the warning threshold y; which is determined by the T-year
standard of protection (SoP). In the probabilistic forecast scenario, warning
decisions are simulated through a probabilistic threshold (PT) approach. In the
FEWS without real-time flood maps, probabilistic warning decisions assume that a
warning is automatically issued when the probability of exceedance (PE) of y;
conditional on the forecast exceeds a pre-defined probabilistic threshold PT
(Chapter 5). In the FEWSs with real-time flood inundation maps, probabilistic
warning decisions assume that a warning is automatically issued when a warning
level (9,,) defined from f(y|y) is greater than y,, where J,, is also defined by a
PT. In both types of FEWS (without/with real-time flood maps), PT is a value to be
optimized by assuming that the Warner acts to increase the reliability of flood
warnings evaluated based on the flooding threshold-based criterion (FTC) for the
FEWS without real-time flood maps, or floodplain property-based criterion (FPC),

for the FEWS with real-time flood maps (see section 2.7.1 to recall the difference
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between FTC and FPC). In Chapter 6, the economic effectiveness of flood warnings
based on real-time flood maps is explored, and those decision rules used for this
type of FEWS in Chapter 5 are also considered there. However, in this case, the PT
associated with the probabilistic rule is optimized by assuming that the Warner acts

to increase the economic effectiveness of flood warnings.

Decision rules in the simulated generic fluvial case

Deterministic decision rule in

Deterministic decision rule in - -
FEWS with real-time flood map

FEWS wihtout real-time flood map

(Chapter 5) (Chapters 5 and 6)
n P>y ) w
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B - e mmm - T
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2 5 5
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& Flooding =W Flooding
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A
Probabilistic decision rule in Probabilistic decision rule in 4
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(Chapter 5) (Chapters 5 and 6)
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& Flooding o Flooding

threshold y; threshold y; Fleodplain

Figure 3.3: Description of the FWDC for the simulated fluvial case

To analyse the flood warning reliability of a FEWS through the FPC, one needs to
distinguish between houses that have been warned and those which have been
flooded, and POD and FAR are estimated from these quantities. In this context, the
framework does not simulate the generation of the real-time forecast and observed
flood maps explicitly but simulates their target information, i.e., the number of

warned houses (n)/red) which is determined by 9,,, and the number of flooded

warned

houses which is determined by y where y>y.. The numbers of warned ny 2 v and

flooded

houses are obtained by interpolating the values of 3, and y, respectively,

flooded n
in an assumed impact curve, which gives an estimate of the percentage of floodplain
properties affected by different floods (Figure 3.4). The impact curve assumes that
when the SoP is overtopped, and water spills into the flood plain, houses start to be

flooded above yp,ankfuu-
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Impact Curve
(Chapters 5 and 6)

A

at-risk
houses

Tas% N

flooded
houses
>

n

.Vb(ml{ﬁl/] y
Figure 3.4: Description of the FWDC for the case study

This impact curve assumes that the flood impact starts when the bankfull level is overtopped. The

figure illustrates the computation of n/%7¢? and n/'°°%* for a pair (y, ).

Polder Case

Figure 3.5 illustrates the deterministic and probabilistic rules used in the polder case
study. A rainfall threshold (RT) curve is used as a tool for issuing flood warnings.
The RT curve defines critical volumes of daily rainfall on the polder area that bring
the inner rivers to the critical condition. This curve is made up of different critical
values associated with several initial conditions of the water level of the inner rivers
(hy) at the time the forecast is issued. Thus, in the deterministic forecast scenario,
it is assumed that warnings are automatically issued when the deterministic 24h-
forecasts, i.e., Rgqiy, Cross the RT curve. In the probabilistic forecast scenario,
probabilistic warning decisions assume that a warning is automatically issued when
the PE of the RT curve exceeds a pre-defined probabilistic threshold PT. PE is
obtained from f(Rdauy |I?da”y), and PT is a value to be determined when analysing

the performance of the FEWS in terms of the costs of the response.
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Decision rules in simulated flood-prone polder system
(Case study,Chapter 7)

A : A if (PE > PT) warn
T if Raany > RTaany) warn, Probabilistic decision = {Plse TRt
else not warn
) 4 PE
® Raaily
_; » RTdaily _"; T
2 X ) (-4 R1 daily
> >

h, h,

Figure 3.5: Description of the FWDC for the case study

3.2.3 The response and impact component (RIC)

After the warning decision is made, the response and the occurrence or non-
occurrence of the flooding, along with its impact, have to be simulated. These

processes are simulated in the RIC.

Generic fluvial Case

In Chapter 6, the economic effectiveness of flood warnings based on real-time flood
maps is analysed. In this case, the RIC is used to estimate the flood impact and the

response to flood warnings. The observed flood impact is estimated in terms of

flooded
nhouses

curve-based approach adopted in Chapter 5 to estimate the flood warning reliability

and flood depth. The former variate is estimated based on the impact

in terms of FPC, whereas the flood depth in the houses is computed as the difference
between the magnitude of the flooding (defined by the values of y greater than y;)
and the bankfull level (ypankrvun)- The economic flood damage in each floodplain
property is estimated by using a damage function, which represents the damage to
the residential content as a function of the mitigation time (which is assumed in this
research to be equal to the forecasting lead time) and flood depth. A schematic of a
damage function associated with a specific mitigation time is shown in Figure 3.6.
A family of these curves prepared by Carsell et al. (2004) for a sample of US houses
and range of mitigation times is used in Chapter 6. The RIC is also used to emulate
the real-time forecast of flood damage. This information is obtained based on the

same approach adopted for the observed number of houses flooded. In this case, the
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forecast values of y are used to estimate n}'%™e¢ the forecast flood depth, and the

associated flood damage.

Response simulation in the generic fluvial case
(Chapters 6)

% Damage to Content (D)

Depth [m]
Figure 3.6: Schematic of a damage function used in the RIC for a specific mitigation time in
the generic fluvial case
The RIC simulates the response of householders to flood warnings through the functions found by
Carsell et al. (2004).

Polder Case

The RIC in the polder case (Figure 3.7) considers a polder system where pumping
systems operate before or during storm events to remove water from the inner rivers
to the outer rivers in a selected polder area of Nanjing, to enable water to drain from
the polder areas into the inner rivers. In that case, the response represents a pumping
scheme operating in a polder system, and the impact is estimated as the resulting
area of waterlogging (W) in the polder after the pumping action has been done.
These two processes are simulated in a lumped water balance model that uses an
assumed impact curve to estimate the inundated area as a function of W. A lumped
water balance model is used to represent the response of the polder to rainfall and
to represent the effects of the proactive and reactive pumping actions (responses).
The forecasts and the warning decisions drive the responses, and, therefore, they
start before the storm arrives in the polder area. The reactive pumping actions start
when the storms arrive in the polder area and are driven by the inflow entering the
polder's inner rivers. The tradeoff between the waterlogged area and the pumping
cost is explored as a function of the proactive and reactive actions and both the

deterministic and probabilistic forecast scenarios.
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Response and impact simulation in simulated flood-prone polder system
(Case study,Chapter 7)

Impact curve
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Figure 3.7: Description of RIC in the polder system case study

3.2.4 Benchmark scenarios

When evaluating a FEWS in economic terms, it is customary to simulate the no
warning scenario and the perfect forecast scenario. The aim is to compare the
economic performance of the FEWS, assuming the warning service does not exist
in the area monitored by the FEWS, or assuming perfect knowledge of the future
values. Thus, these two scenarios are used as benchmark cases to analyse the
‘location’ of the economic performance of the imperfect FEWS between them. By
definition, the perfect forecast scenario results are never outperformed by the results
of the imperfect FEWS, but the results of the no warning scenario may be better
than the imperfect-forecast-based results due to the economic consequences of high
PU. Benchmark scenarios are used in Chapters 6 and 7. Since there are no forecasts

in the no warning scenario, the FWDC is removed in this case

Generic fluvial Case

For the perfect forecast scenario and no warning scenario in the simulated generic
fluvial case (Chapter 6), potential floods in the at-risk community are simulated
from the marginal distribution of y of the bivariate parametric model considered in
the MCFG. The flood depth is estimated by the approach described above for the
imperfect forecast FEWS.

flooded

For the no warning scenario, ny . c.c

is simulated through the assumed impact
curve, and the flood damage in each floodplain property is estimated by using the

functions proposed by Carsell et al. (2004) and assuming a mitigation time of zero.

flooded

These functions are also used to estimate n; ., ...
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perfect forecast scenario, which assumes that each warned house is subsequently

. flooded __ warned
fIOOdedl Iea nhouses _nhouses )

Polder Case

In the simulated flood-prone-polder system case, the no warning scenario is
simulated by considering only reactive pumping actions in the lumped water
balance model. The perfect forecast scenario is simulated by considering only
proactive pumping actions in the lumped water balance model and assuming perfect

knowledge of the storm’s profile and volume.
3.3 Performance measure estimation

As one can see, the generic end-to-end modelling framework allows forecast
outputs to be linked with warning decisions and the associated responses and flood
impacts. Thus, based on a representative sample of (deterministic or probabilistic)
forecasts and their observed realizations, the average performance of a FEWS can
be synthetized based on metrics computed from the outputs of the end-to-end

simulation of the system associated with the sample.

For the simulated fluvial case, the metrics used to analyse the reliability of a FEWS
are the probability of detection (POD) and false alarm ratio (FAR) for each lead
time (Table 2.2), while the economic metric used is the expected damage (ED)
derived by taking the convolution of the frequency distribution of flood depth with
the house damage function for each lead time. The reliability of flood warnings is
explored through FAR and POD estimated based on the FTC and FPC criteria in
Chapter 5, whereas ED values are used in Chapter 6 to define the economic
effectiveness of flood warnings relative to the no warning scenario. In the simulated
flood-prone-polder system case, metrics such as the average of the maximum
inundated area (MIA) and the waterlogging duration (d,,) are considered for
evaluating the performance of the FEWS. Since these performance measures are
related to the pumping costs, the average pumping costs (PC) are also included in

the analysis.
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3.4 Sensitivity analysis

One of the primary research objectives of this thesis is to explore how the
performance of a FEWS behaves under different factors controlling the
performance of the system. Since these factors have been parametrised in the Monte
Carlo frameworks that represent the FEWSs considered in this research, this overall
research aim of the thesis was addressed by conducting a (sensitivity analysis) SA
of the parameters representing these factors. The methods commonly adopted for
doing a SA can be classified as two: local and global (Pianosi et al., 2016; Devak
and Dhanya, 2017). Local SA is a one-at-a-time (OAT) technique that, in essence,
analyses the effect of one parameter change at a time on the model being evaluated,
keeping the other parameters fixed. Global SA, on the other hand, considers
variations within the entire space of variability of the parameters. Since the main
aim in the SA was to doa first-order analysis that would reveal the main
sensitivities of the factors controlling the FEWS performance, a local SA analysis
was adopted. Thus, this type of SA was conducted in the simulated generic fluvial

case (Chapter 5 and 6) and flood-prone polder system case (Chapter 7).
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Chapter 4. Monte Carlo Flood Peak and Forecast Generator
(MCFG)

4.1 Introduction

This document gives a detailed description of the first component of the generic
framework of the research; the Monte Carlo flood and forecast generator (MCFG)
(see Figure 4.1). The MCFG is associated with a given forecast horizon or lead time
(t) and is based on a bivariate probabilistic model of the peak flows (y) and their
forecasts () whose marginals are represented by appropriate distributions. Here,
the generic fluvial case is taken as a reference. The deterministic and probabilistic
forecasts, and a measure of predictive uncertainty (PU), are derived from that

Y
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Figure 4.1 lllustration of a type of forecasting model to be represented in the generic fluvial case.
The figure shows a potential configuration of a forecasting system operating for an at-risk community when
the lead time () is bigger than the response time of the catchment. In this case, the hydrological model is
forced with quantitative precipitation forecasts (QPFs).

Thus, this Chapter is organized as follow: Section 4.2 gives a description of the
probability distributions considered as candidates to represent y and y; section 4.3
describe the theory used when doing the bivariate modelling of these two variates
and shows the algorithms built to simulate pairs (y,y) and to build the PU assuming
they can be represented by a five-parameter bivariate Exponential distribution

(BED) and a seven-parameters bivariate Log-normal distribution (BLND). Section
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4.5 presents data analysis which validates some assumptions made when choosing
the shape of the marginal distributions of y and ¥, and when choosing the bivariate
model of these two variates. Section 4.6 explains the criteria used to associate the
dependence structure of the pairs (y,y), embedded in the bivariate probabilistic
model, with T and a given forecasting performance measure. Finally, section 4.7
shows the parametrization of the MCFG and the sensitivity analysis (SA) strategy
adopted to define the parameters of the MCFG, which are considered in the SA of
the performance of a flood early warning system (FEWS).

4.2 Univariate distributions

It is well-known that Exponential and generalized Pareto (GP) distributions can be
used to simulate peaks through the peak over threshold-method (POT-method)
(Claps and Laio, 2003; Bezak et al., 2014). However, some works suggest that this
variable can also be simulated through the Lognormal (LN)(Adamson and
Zucchini, 1984), Gamma (Bacova-Mitkova and Onderka, 2010), or the Generalized
Logistic (GL) distributions (Bhunya et al., 2012). In this work, three of these
distributions were considered as candidates for describing real data: the two-
parameter exponential distribution, the three-parameter log-Normal distribution,
and the three-parameter Gamma distribution. Since y and y will be analyzed based
on the same probability distributions, to avoid too many different symbols, the
following notation is used throughout this section:
v w: variable used to represent y or §.
v' w,: variable used to represent the location parameter of y or y, i.e. y, or j,,
respectively.
v' z: for the two-parameter Exponential distribution and three-parameter
Gamma distribution, it represents the transformed variables: x =y — y, or

X =9y —79,. For the case of the three-parameter Lognormal distribution, it
represents the natural log of x or x.

A summary of the equations of the cumulative density function (CDF), mean, and
variance for the three probabilistic models considered in this work as candidates to
represent y and y is shown in Table 4.1. A brief description of each of them,

including the moment equations, is detailed as follows.
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Table 4.1 Equations of the CDF, mean, and variance of the probabilistic models considered
as candidates to represent y and y.
The equations of the random variables Y and ¥ can be obtained by replacing w with y and , and,
for the case of the Exponential and Gamma distributions, z with x and X.

CDF Mean Variance
Two parameter-Exponential distribution
w — W,
1- (— "), > wy, w, + B Bz
F(W) _ { exp 3 w Wo [ z z
0, w < w,

Three-parameter Log-normal distribution
w, + exp (i, exp (o7 + 2u,)[exp(a7)

In(w—w,) —y,
F(w) = CD(%)W > w, + 0.502) —1]

Three-parameter Gamma distribution

w =W, w, + kzﬁz kzﬁzz

F(w) :F(llcz)y<kz' 7 ),w>w0

Notation:
w: Variable to represent y or j.
w,: Location parameter of y or 9.

z: For the two-parameter Exponential distribution and three-parameter Gamma distribution, it
represents the transformed variables: x = y —y, or £ = y — J,. For the case of the three-
parameter Lognormal distribution, it represents the natural log of x or X.

B, Shape parameter for the two-parameters Exponential distribution and the three-parameter
gamma distribution.

k,: Scale parameter for the three-parameter Gamma distribution.

1, Scale parameter of the three-parameter Log-normal distribution.
o, Shape parameter for the three-parameter log-normal distribution.
@: The CDF of the standard normal distribution.

4.2.1 The one and two two-parameter Exponential distributions

If Z =W — w, has an exponential distribution with scale parameter ,, and w, is
known, then the distribution of Z becomes a one-parameter Exponential distribution

with parameter £3,.

The CDF of Z in this case is:

Z
1-— —\w>
F(w) = ex”( ,BZ)’W = "o, Eq. 4.1
0, w < Wy,
with mean:
Hy = W, + .BZ Eq. 4.2
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variance:

o2 = B2 Eq. 4.3

and skewness coefficient:

Y, =2 Eq. 4.4

If Z =W — w, has an exponential distribution with scale parameter S,, and w, is
unknown, then the distribution of W becomes a two-parameter Exponential
distribution with parameters @ = (w,, 8,)(Thomopoulos, 2017). The CDF of this
distribution is obtained by replacing z by w — w, in Eq. 4.1.

Parameter estimation: Method of moments

If w, is known (one-parameter Exponential distribution), 5, can be estimated from

the sample mean by:

B,=w—w, Eq. 4.5
where w is the sample mean of W.

If w, is unknown (two-parameter Exponential distributions), then g, and w, can

be estimated from the mean and the standard deviation of the sample by:

Bz = Sy Eq. 4.6
W, =W —5, Eq. 4.7

where s,, is the sample standard deviation of I/

4.2.2 The two and three-parameter Lognormal distribution

If Z = In(W — w,) is normally distributed with a mean p, and standard deviation
o,, and w, is known, then the distribution of Z becomes a two-parameter
Lognormal distribution with parameters 8 = (u,, ;) (Stedinger, 1980; Stedinger
et al., 1993; Thomopoulos, 2017).

The CDF of Z in this case is:
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F(w) = & <l"(z)—_”z>w > W, Eq. 4.8

0z
with mean:
Wy = w, + exp(u, + 0.562) Eq.4.9
variance:
02 = exp(c? + 2uy)[exp(c?) — 1] Eq. 4.10

and skewness coefficient:

Y, =3¢ + ¢ Eq. 4.1

where @ is the CDF of the standardized normal distribution and ¢ =
lexp(a?) — 1]°°.

If Z=In(W —w,) is normally distributed with mean p, and standard deviation
o4, and w, is unknown, then the distribution of W becomes a three-parameter
Lognormal distribution with parameters 8 = (w,, Uz, g,)(Thomopoulos, 2017).

The CDF of this distribution is obtained by replacing z by w — w,, in Eq. 4.8.

Parameter estimation: Method of moments

If w, is known (two-parameter Lognormal distribution), then p, and o, can be

estimated from the mean and variance of the sample by:

i, = 2In(w) — 0.5In(s2 + w?) Eq. 4.12

G, = \/—2In(Ww) + In(s2 + w?2) Eq. 4.13
where s2 is the variance of the sample of W.

If w, is unknown (three-parameter Lognormal distribution), then g, has to be first
estimated from the sample estimate of the skewness coefficient Y,, based on the
following relationship given by Chow (1954) and by Wilson & Worcester (1945).
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exp(62) = {1+05[T2 +7,,(4 + st)"'s]}l/ :

N /3 Eq. 4.14
+{1+05|7% -7, (4+72)")} " -1
u, and w, can be then estimated by:
SZ
fi, = 0.5In —— Eq.4.15
: lexp(a;)[expw;) = 1]] |
W, = w — exp(fi, + 0.567 Eq.4.16

4.2.3 The two and three-parameter Gamma distribution

If Z =W —w, isarandom variable distributed according to a Gamma distribution
with scale parameter [, and shape parameter k,, and w, is known, then the
distribution of Z becomes a two-parameter Gamma distribution with parameter 8 =
(B k,) (Bowman and Shenton, 2011).

The CDF of Z is:

F(w) = — (k W_W°> > Eq. 417
ST LA T A &
with mean:
W, = w, + kB, Eq.4.18
variance:
02 = k,p2 Eq.4.19

and skewness coefficient:

Al
N

Where T is the gamma function.

If Z =W —w, is arandom variable distributed according to a Gamma distribution

with scale parameter 8, and shape parameter k,, and w, is unknown, then the
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distribution of Z becomes a three-parameter Gamma distribution with parameter
0 =W, ,PBzk;)

Parameter estimation: Method of moments

If w, is known (two-parameter Gamma distribution), then g, and k, can be

estimated from the mean and variance of the sample by:

k=L Yo Eq. 4.21
=— q. 4.
2

SZ 0.5
5 = (5w Eq. 4.22
= (3)

If w, is unknown (three-parameter Gamma distribution), then k, has to be first

estimated from the sample estimate of the skewness coefficient Y,, by:

2
k, = (i) Eq. 4.23

W, =w — Bk, Eq.4.24
4.3 Bivariate distributions.

This section describes/explains the theory of some bivariate distributions, which are
important to understand the criteria used in this work to do the bivariate modelling

of yand y.
4.3.1 The standardized bivariate Normal distribution (BND).

The bivariate normal distribution (BND) in its standard form is usually the basis,
and this work is not an exception, of algorithms used to simulate any bivariate
distribution. The BND is not in itself a suitable model of flood peaks and their
forecasts, but it underpins models that can be, for example, the Lognormal.
Therefore, this section of the chapter describes the properties of this bivariate
distribution in the standardized form with N(0,1) variables which are important to

understand the algorithms which can be used to simulate y and .
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Univariate properties

Both marginal distributions are Normal. Thus, suppose that H and H are correlated

standardized Normal random variables; the corresponding CDFs of these marginals

are defined by:
1
F(n) == erf (<L Eq. 4.25
2 V2
. .
F() = erf (%) Eq. 4.26

where erf is a function called the error function.

Bivariate properties

The joint probability density function (PDF) is:

1

1
————exp|[-—=(H* + 1% — 2n7ipyy) Eq.
2n [1- p2, [ 2(1-piy) " 427

where p.s is the product-moment correlation coefficient between the two

f(77» ﬁ) =

standardized variables.

Conditional properties

The conditional density of (]#) is Normal and, for the case of H given H = fj, has

the following characteristics:

Eq.

———exp (pZh2 + 1% — 2nfipys)
2m /1—pA [ 2(1 ) "l 428

with conditional mean:

fln) =

E(H|H = 8) = pyp = fiong Eq. 4.29

and conditional variance:
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var(H|H =) = 0,5 = 1 - pl4 Eq. 4.30

The mean regression of H on H, i.e., the regression of the values defined by
E(H|H = 1)), is linear, the conditional variance is constant, and the probability
distribution of the estimation errors, namely € = n — u,5 is a Normal distribution

with mean u, = 0 and variance 62 = 1 — pﬁﬁ.
4.3.2 The bivariate Exponential distribution (BED).

If y and ¥ can be represented by the Exponential distribution, then the BED can be
a potential candidate to conduct the bivariate modelling of these variates. The
properties of this distribution can be derived from the Moran—Downton BED
(Downton, 1970). An extensive discussion of this BED is found in Nagao & Kadoya
(1971). Thus, this section first describes the standardized BED, which is the basis
for describing the three- and five-parameters BED.

4.3.2.1 The standardized BED

The following considerations are for a BED distribution function in which every

variable is standardized.

Univariate properties

Both marginal distributions are exponential. Thus, suppose that VV and V are
correlated standardized exponential variables; the corresponding CDFs of these
marginals are defined by:

Fv)=1—-e7" Eq. 4.31
F®)=1—e" Eq. 4.32
Bivariate properties
The joint PDF is:
v+7D 2 v0pyp
(v, D) = [ ] < ) Eq. 4.33
f exp 1- Pvo 1- Pvo
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where 1, is the modified Bessel function of the first kind of order zero, and p,; is
the product-moment correlation coefficient between the two random variates
(Balakrishna and Lai, 2009).

Expressed as an infinite series, the joint CDF is (Balakrishna and Lai, 2009):

— eV pvv €y D rav,0,—w+p)  EQ.
Flv,i)=(10—-e¢ )(1 e )+Z(]+1)2Lf (v)Lj (D)vie 434

where the Lj(.l) are Laguerre polynomials.

Conditional properties

The conditional PDF, for the case of V given V =¥, has the following
characteristics:

v+ vpvv 2 vﬁpvﬁ
VD) = [ ] < ) Eq. 4.35
f( ) P 1= pyp 1= pyp

with conditional mean:
E(V|V=0)=pypp =1+ ppp(® — 1) Eq. 4.36

and conditional variance:

Var(VIV =) = 625 = (1 = pyp)? + 20pys(1 — pyp) Eq. 4.37

The mean regression of VV on ¥, i.e., the regression of the values defined by
E(V|V = ), is linear with varying dispersion. The latter is based on the fact that,
unlike the Normal distribution, the conditional variance is a function of the
independent variable, in this case, denoted by ¥. That means that, in the BED, the
conditional variance increases as the value of the independent variable increases.
This is an important property for modelling the conditional variance of an observed
peak water value, given the forecast, as it has been observed to increase with the
forecast value (Coccia and Todini, 2011; Zhao et al., 2015).
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4.3.2.2 The three-parameters BED

If y and y are correlated and y, and 9, are known a priori, then the transformed

variables:

X=y—=Y, Eq.4.38
X=y-9, Eq. 4.39

can be represented by a one-parameter Exponential distribution with parameters £,
and B, respectively (see section 4.2.1). These variables are usually known as
threshold exceedances (Claps and Laio, 2003; Bezak et al., 2014), and they will be
referred to as such here. Pairs (x,x) can be, therefore, represented by a three-
parameter BED with parameters 0,z = (By, Bz, Pxz), Where p,5 is the product-

moment correlation between x and X. The designation of these variables is
(x, X)~BED (B, Bz) Pxz)-

For this BED, the analytical expression of f (x, X) and f (x|X) can be easily obtained
from the analytical expressions of the standardized BED (Egs. 4.36 and 4.37) by

doing the following replacement:

> Eq. 4.40
V=- 4.
B |
x
P =— Eq. 4.41
ﬁ,\
Pvp = Pxz Eq. 4.42

and adding the product S, 85 and 3, to the denominators of the factors that represent
the normalizing constant in f(x,x) and f(x|x), respectively. The expression of
F(x,%) is not needed as F (v, ?) = F(x,%). The conditional moments are defined

as:

o pX
E(X|X = ) = ez = By (1 o+ —A> Eq. 4.43
Bz
o _ o 2 2 2 s
Var(X|X = x) = 042 = PBx [(1 —p)+ Fp(l — p)x] Eq. 4.44
X
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4.3.2.3 The five-parameter BED

If y and y can be represented by the two-parameter Exponential distribution with
parameters 8,, = (y,, B,) and 85 = (J,, fz) respectively and they are correlated,
the direct bivariate modelling of y and y should be based on the five-parameter
BED with parameters 6,5 = (Bx, Bz, Py9, Yor Jo), Where p,5 is the product-
moment correlation between y and y. The designation of these variables is
(v,9)~BED(By, Bz, Pys» Yo, 9o )- The standardized BED can also be used to obtain
the analytical expressions for this distribution. In this case, to obtain f(y,y) and
f (y|9) the replacements in Eq. 4.33 and 4.35 should be:

V= Eq. 4.45
B ]
5} - yo
U= Eq. 4.46
Bz
Pv = Pyyp Eq. 4.47

Since the bivariate modelling of the pairs (y, ¥) can be based on the conditional
moments of the standardized exponential variables, this work did not derive the
equations of the conditional moments w5 and ajly which should include the
location and scale parameters and which can be obtained from Eq 4.36 and Eq 4.37,

respectively.

The five-parameter BED is convenient since it allows us to explore the case when
the means of y and y are the same but their variances are different. This analysis
could not be done if they would be represented by the three-parameter BED where
the mean and standard deviation are equal.

4.3.3 The bivariate Log-normal distribution (BLND)

If y and y can be represented by univariate Log-normal distributions, then the
BLND can be a potential candidate to conduct the bivariate modelling of these
variates. A description of this bivariate distribution is found in Yue (2000) and
Thomopoulos (2017). This section first describes the five-parameter BLND, which
is the basis for describing the seven-parameter BLND.
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4.3.3.1 The five-parameters BLND

If y and y are correlated and y, and y, are known a priori, then the natural log of
their thresholds exceedances, i.e., z=In(x) and 2 = In(X), are normally
distributed with means p, and p; and standard deviations o, and o, respectively
(see section 4.2.2). Therefore, the pairs (x,x) can be represented by a five-
parameter BLND with parameters 0,; = (1, 05, Uz, 03, P52), Where p,, is the
product-moment correlation coefficient between z and Z. The designation of these

variables is (x,X) ~BLND (u,, 0, U3, 03, Pzz)-

Univariate properties

Both marginal distributions are lognormally distributed. Assuming that the pairs

(x, x) have these distributions; the corresponding CDFs are defined as:

l —
F(x) = @ (M> x>0 Eq. 448
0z
n®) — us
F(R) = ® <M>f >0 Eq. 4.49
0z
Bivariate properties
The joint PDF is:
-~ 1 q
f(x,%) = exp (— E)

2nxR0,07 /1 —-pZs

g = 1_:2A l(ln(X) uz) _ (ln(x) uz) (ln(x) uz>+
Z

l

Eq. 4.50

Conditional properties

The conditional PDF is lognormally distributed and, for the case of X given X = %,

has the following characteristics:
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0.5
fx|®) = ;exp —1<M> ] Eq. 4.51

with conditional mean:

O—Z ~
Hxjz = Mz T P; [In(X) — ps] Eq. 4.52

Z

and conditional variance:

Oxiz = 0,0/ 1 — p? Eq.4.53

Note that, for the sake of simplicity, the properties of BLND (u,, g, 1z, 03, pz2)
characterising the pairs (x, x) have been described by taking the natural log of each
of the two variables where the Normal distribution emerges, and this distribution is
easier to handle. Thus, in fact, the above equations represent the BND of the
variables z = In(x) and Z = In(x). Therefore, the characteristics of the mean
regression and conditional variance are the same as those described in section 4.3.1.
Some further properties of the BLND (uy, 0z, 1z,02,p52) in terms of the log-
normal variables, in this case, denoted as x and X, can be found in Balakrishna and
Lai (2009). It should be noted that, while the conditional variance in the Normal
space is constant, this is not the case in the logNormal space where it is a function

of x as a result of the logarithmic transformation (Eq 4.53).
4.3.3.2 The seven-parameters BLND.

If y and y can be represented by a three-parameter Log-Normal distribution with
parameters 8, = (¥,, 1z, 07) and 85 = (3,, 1z, 02) respectively, and they are
correlated, the bivariate modelling of y and y should be based on the seven-
parameters BLND with parameters 6,5 = (1, 0, Mz, 03, Yo, Vor Pz2).  The
designation of these variables is (y,y) ~BLND (l,, 0, U3, 03, Yo, Vo, Pz2)- FOr this
BLND, the analytical expression of univariate and bivariate properties can be easily
obtained from the analytical expressions of the five-parameter BLND by

substituting x = y —y, and X = y — J,, respectively (see the previous section).
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4.4 Bivariate simulation.

The simulation of any bivariate distribution can be tackled by different approaches
(Balakrishna & Lai, 2009; Lewis et al., 2017). In this research, the bivariate
simulation of y and ¥ was based on the method known as the conditional approach
(Lewis and Orav, 2018) by using algorithms that have no restrictions on the shapes
of the marginal distributions. The Gaussian copula was employed for these
purposes. This section thus starts by explaining the conditional approach and how
it is related to the concept of PU, then describes the Gaussian copula approach, and
finally shows the algorithms built to simulate pairs (y,y) and to build the PU of
y|y assuming they can be represented by a BED or a BLND. By way of example,
for the case when the pairs (v,9) ~BED(By, B, Yor 9o, Pyy), @n algorithm that
considers restrictions on the shape of the marginal distribution was considered. This
algorithm is based on the Moran-Downton BED, and an analysis of its advantages

and disadvantages with respect to the Gaussian-copula-based algorithm is provided.
4.4.1 The conditional simulation approach and predictive uncertainty (PU)

Since PU can be defined as the uncertainty of a future realization of a predictand
(the future quantity of interest) conditional on, for example, one model forecast
(Todini, 2016), the conditional distribution of y given y;, i.e. f(y|y;), can be used
to derive PU. This concept can be further used to represent the realization of y;, i.e.
v;, through a value drawn from f(y|9;). This approach is known in bivariate
simulation as the conditional approach (Lewis and Orav, 2018). When using this
approach, the ideal situation is when one has the moment equations of f(y|y;). If
these equations are not available or are not easy to handle, f(y|y;) can be built via
a sampling technique where the conditional approach is applied in a different space,
and, then, these values are converted to the real space by using a transformation
technique. In the next subsections, it is shown how this approach can be used to do
the bivariate simulation of y and y assuming different bivariate probabilistic models

(BED and BLND) through a Gaussian copula-based approach.
4.4.2 Bivariate simulation based on the Gaussian copula

The most convenient approaches to do a bivariate simulation are those that do not
impose any restriction on the range of association between variates or with the form

of the marginal distributions (Kelly and Krzysztofowicz, 1997), i.e., marginal-free
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bivariate generators. In this work, one of these methods, the Gaussian copula, was

employed to do the bivariate simulation of y and y.

The Gaussian copula, in the bivariate version, is, in essence, the bivariate CDF
derived from the standard bivariate Normal distribution (BND), whose univariate
marginal CDFs are uniformly distributed on the range [0,1]. Thus, this method
basically uses the standard BND to simulate bivariate variables with a specific
correlation structure and then transform the standardized normal distributions into
uniform distributions through the probability integral transform (PIT). Finally, the
uniform distributions are transformed into any required distributions by computing
the inverses of the required distributions associated with the values of the uniform

distributions.

The Gaussian copula approach must first generate jointly standardized Normal

random variables, i.e., pairs (n, fj) with a specified correlation p,5 (according to the

notation used in section 4.3.1). Based on these bivariate points, a generic Gaussian
copula generator is constructed as follows. Let (S, Q) denote a vector of continuous
random variables with arbitrarily specified, strictly increasing, and continuous
probability distributions. Then, the bivariate simulation of the joint distribution of

the bivariate pairs (s, q) can be done by the following approach.

v' Step 1: Generate a set of n random values of H, i.e.5 , from N~(0,1).

v Step 2: Generate n; from f(n|fi;) (see Eq. 4.28), i.e., the conditional
distribution of H given the value fj; of A generated in Step 1, by drawing a
random value from each of these conditional distributions.

v' Step 4: Compute the CDFs of each of the corresponding pairs (1,1j),
denoted as F(n) and F(§j); these then define Uniformly distributed pairs of
random variables as

u=F() and r = F(1))

v' Step 5: Using the probability integral transform (PIT), obtain s and q as:
s =Fg'(w) and q = F3'(r)
where F5! and Fy 1 are the inverses of the CDFs of s and g, respectively.

Figure 4.2 illustrates the bivariate simulation of pairs (), fj) through Steps 1 and 2

of the algorithm mentioned above.
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Figure 4.2: lllustration of how pairs (n,5j) are generated from a standard BND based on the
conditional approach

4.4.3 Bivariate simulation of y and y based on the BED

The bivariate simulation of y and ¥ based on the BED was addressed by considering
two algorithms: i) an algorithm based on the Moran—-Downton BED; and ii) an
algorithm based on the Gaussian copula. The concepts, procedures, and advantages

and disadvantages of each of them are explained as follows.
4.4.3.1 Simulation of y and ¥ based on the Moran-Downton BED

The Moran-Downton BED algorithm is based on the generation of standardized
bivariate Exponential random variables; thus, this section first explains how it is
done based on the conditional approach and then describes the algorithms used to

simulate pairs (y,y) and to derive the PU.

Using the notation of section 4.3.2, pairs (v, D) of a standard BED with a specified
correlation p,; can be simulated based on the conditional approach by:
v Step 1: Generate a random value of V, i.e. ¥;, from Exp~(1) i.e.,
standardised exponential distribution with a mean 1.

v' Step 2: Generate v; from f(v|D;) (see Eq. 4.35), i.e., the conditional

distribution of V given the value ¥; of 7 generated in Step 1, by drawing a
random value from this conditional distribution.

Assuming (y,9) ~BED(Bx, Bx, Yo or Pyy ), PAirs (y,9) can be simulated from the
Moran-Downton BED by following the steps:

v' Step 1: Define the moments g, and f3¢, the coefficient of correlation p,5,
and the thresholds y, and J,.
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v Step 2: Use the relationship p,; = p,; to generate pairs (v, ¥) based on the
conditional approach (see Figure 4.3a).
v' Step 3: Obtain the exceedances of y, and j, i.e., the pairs (x,X), by:

X = Byv
56\ = ﬁ,@ﬁ
v' Step 4: Obtain the values of yand § by adding the thresholds to the
exceedances:
Y=Y tx
y=%+%

Figure 4.3 illustrates the above algorithm.

VBx+Yo

y

X =Py y =0+,

<>

Figure 4.3: llustration of the Moran-Downton model-based algorithm used to generate pairs
.9

The algorithm starts generating pairs (v,v) based on the conditional approach (Figure a); then the

pairs (x,x) are obtained by multiplying v and ¥ by the scale parameters S, and B; respectively

(Figure b); Finally, the pairs (y,9) are obtained by adding to each value of x and x a constant value

defined by the thresholds y, and y,, respectively (Figure c). In this algorithm, the following

relationship is met: p,y = pyz = Pyy-

Building of PU

The PU can be built by simply sampling n values from the conditional distribution
f(v|?;) obtained in the algorithm used to obtain the pairs (y,y) (Step 2) and then
conveying the resulting values to real space by following the steps of the algorithm
in terms of y. PU can be finally expressed in terms of density values by, for
example, computing the Kernel density estimations (Sheather and Jones, 1991) of

the sampling values.

4.4.3.2 Bivariate simulation of y and ¥ based on the Gaussian copula

Assuming (v,9) ~BED(By, B, Yo, 9o Pyy), PAIrs (y,9) can be simulated based on
the Gaussian copula through the following algorithm.
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v Step 1: Define the moments S, and B, the coefficient of correlation p,4
associated with p,, and the thresholds y, and 3,,.
Step 2: Generate pairs (n, fj) based on the conditional approach (Figure 4.2).
Step 3: Compute the CDF of the corresponding pairs (1), fj).
u=F(n) and r = F(§{)
v’ Step 4: Compute standardized exponential variables v and ¥ as:
v =F;(u) and 9 = F;'(r)
where F;;* and F; " are the inverse of the distributions of v and © which are
in turn defined as:

AN

v=y;y" andﬁ=—y;fl"
v’ Step 5: Pairs (y, ) can be finally obtained as:
Y =Yoot Bxv

Y =3+ BsV

Building the PU

The PU can be built by simply sampling n values from the conditional distribution
f(n|fj;) obtained in the algorithm used to obtain the pairs (y,y) (Step 2) and then
converting the resulting values to real space by following the steps of the algorithm
in terms of y. PU can be finally expressed in terms of density values by computing

the Kernel density estimations of the sampling values.

4.4.3.3 Advantages and disadvantages of Moran-Downton-model- and Gaussian

copula-based algorithm

The advantages and disadvantages of the algorithms used to simulate pairs (y,y)
based on the BED are listed below.

v' The Moran-Downton model-based algorithm uses the value of the
correlation coefficient in the real space, i.e., pyy. It can be considered an
advantage with respect to the Gaussian copula-based approach as the latter
bases the bivariate modelling on the normal space, for which they must use
a transformation technique to obtain the value of the correlation coefficient
in the real space. This could be an issue if one does not have an analytical
relationship between these two variables.

v Both algorithms have no restriction with the range of association between y
and y.

v' The Moran-Downton model has a restriction with the shape of the
marginals; they must be exponentially distributed, i.e., it is a non-marginal
free bivariate generator. The Gaussian copula is a marginal-free bivariate
generator.

v" The Moran-Downton-model- based algorithm allows the theoretical joint
probabilities to be computed (see Eq. 4.34). It can be considered an
advantage in terms of the Bivariate Goodness of fit test (GoF) since one can
compare them with the resulting empirical joint probabilities obtained from
the standardized variables of a sample of pairs (y,9).
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4.4.4 Bivariate Simulation of y and y based on the seven-parameters BLND

Since there is a close relationship between Normal and Lognormal distributions,
several analytical expression has been developed to show that relationship (Lai et
al., 1999; Thomopoulos, 2017). In this work, some of these expressions have been
used to build an algorithm that allows us to simulate pairs
(y,9) ~BLND (W, 05, Uz, 02, Vo, Vo, Pz2) (S€€ Section 4.3.3.2) and build the PU. This

algorithm is detailed below.

Considering the notation used in section 4.3.3 and assuming
(y,9) ~BLND (W, 05, U3, 03, Vo, o, Pz2), Pairs (y,y) can be simulated through the
following algorithm.
v' Step 1: Define the moments p,, py, o, 0y, the coefficient of correlation
Pyy, and the thresholds y, and 3,.

v\ Step 2: Use the expression , = W, — ¥,, Hg = Hy — J,, 0% = 03, and
0% = 0} to obtain the mean and variance of the log-transformed values of

y and ¥ in the Normal space by using the following analytical relationships
between the Normal and log-Normal distribution:

i, = 2In(p,) — 0.5In(f + o%)

o7 = —2In(l,) + In(kf + o)

uz = 2In(ug) — 0.5In(p% + af)

a7 = =2In(ug) + In(p + o)

v’ Step 3: Use the expression p,z= py,y to compute the coefficient of
correlation of z=In(x) and Z = In(Xx) in the normal space by:

In pry  Jlexp(o2) — 1)« (exp(o?) - 1)) - 1]

0, %0y

zZ —

v Step 4: Use the relationship p,; = py; to generate pairs (n, fj) based on the
conditional approach (see Figure 4.2).

v' Step 5: Obtain the values of the transformed variables of y and J in the
normal space, i.e., the pairs (z,2), by:
Z=;+0;x1
2=+ o0z*10]

v’ Step 6: Obtain the pairs (y,9) by.
y =exp(z) +,
y=exp(2) + 7,

75



Building the PU

The PU of each pair (y;,y;) can be built by simply sampling n values from the
conditional distribution f(n|fj;) obtained in the algorithm used to obtain the pairs
(v,9) (Step 4) and then conveying the resulting values to real space by following
the steps of the algorithm in terms of y. PU can be finally expressed in terms of

density values by computing the Kernel density estimations of the sampling values.
4.5 Data analysis.

Data analysis was conducted to support the assumptions made when doing the
bivariate modelling of pairs (y,y), which basically consisted of doing a univariate

and bivariate analysis of these variates.
45.1 Observed data (y)

The analysis of y was based on the records of four gauging stations located close to
or in a floodplain in England (see Figure 4.4). These stations were selected because
they are at locations with known flooding. The observed discharges were converted
into water levels y by using the rating curves of the at-site gauges taken from the
National River Flow Archive (NRFA, see https://nrfa.ceh.ac.uk/).
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Figure 4.4: Geographical location of the gauging stations used to analyse y and y

Table 4.2 shows general information for the stations used in the univariate and

bivariate analysis of y.
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Table 4.2 Description of the available information used to analyse y and y.

NRFA Name Lat | Lon Record length (15-min Period
Code 9 time step) simulated
24003 | River Wear at Stanhope | 54.75 | -2.03 | Jan-1961/ Apr-2014 -

River South Tyne at

23006 5494 | -251 | Oct-1967/ Apr-2014

Featherstone

22007 | RiverWansbeckat | oo 171 4 23| \ar-1063/ Jan-2015
Mitford

76007 River Eden at 54.90 | -2.95 | Jan-1976/ Nov-2012 | Jan-1990/ Dec-
Sheepmount 2006

4.5.2 Simulated forecast data (y)

The analysis of ¥ was done for only one of these gauging stations, the River Eden
at Sheepmount, for which a previously calibrated SHETRAN model was available.
The main criterion to be satisfied was that a sufficiently long record was available
to calibrate and validate the model, to support the analysis of y and y, and the Eden
SHETRAN model met this criterion. Setting up and calibrating models for other
stations would have taken a disproportionate amount of time and was not the main

focus of the study.

SHETRAN (Ewen et al., 2000) is a state-of-the-art physically-based, spatially
distributed model that has been developed at Newcastle University and applied
widely to catchments in the UK and across the world (Lewis et al., 2018).
SHETRAN uses a grid-based representation of the catchment, and inputs are often
gridded at a resolution between 50 m and 5km. The timestep used is often hourly
or daily, although this temporal resolution decreases during storm events to better
represent rapid infiltration and surface runoff processes. It has been used in
countless applications in hydrology, such as in the analysis of the impact of
groundwater abstractions on streamflows (Parkin et al., 2007), deforestation
impacts on peak flows and sediments yields (Birkinshaw et al., 2011), nitrate
transport (Koo and O’Connell, 2006), and real-time flood forecasting (Mellor et al.,
2000) to name but a few.

Detailed information on the SHETRAN model used to derive y (the Eden

SHETRAN model) can be found in Janes et al. (2018). It was built to study the bank

erosion process in the Eden catchment, and its calibrated hydrological component
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was used in this research to represent simulated discharges of the River Eden at
Sheepmount (Figure 4.5). The Eden SHETRAN model was applied to a 2400 km?
predominately rural Eden catchment. A 1-km? grid resolution and a timestep of 1
hour were considered. A GIS methodology was used to set up the model based on
a 30 m digital elevation model, land-use, and soil maps. The spatial hourly rainfall
was derived by disaggregating a daily 1 km? gridded daily rainfall product from
1990-2007. The 1991-2001 period was used for the calibration procedure, whereas
the 2001-2007 period for validation (with 1-year ‘start-up’ period). The calibration
and validation procedure considered hourly and daily data from the NRFA gauging
stations and HiFlows data sets. The hourly hydrological performance of the model
based on the data of the River Eden at Sheepmount was characterised by a value
of the Nash-Sutcliffe Efficiency (NSE) of 0.90, and a coefficient of determination
(R?) of 0.91. Figure 4.6 shows the simulated and observed hourly discharges for

the validation period.

e Sediment data

m Flow data

Figure 4.5: Eden catchment, Cumbria UK.
Locations of gauging stations (black) and sediment data (brown) used for the calibration and
validation of the model are shown (taken from Janes et al.(2018)).
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The SHETRAN model was developed for simulation, not real-time forecasting, and
so no data assimilation/ forecast updating was undertaken. The forecasts of the peak
discharges were therefore represented through simulation mode values, i.e., with no
data assimilation/updating. These ‘simulation mode’ forecasts can therefore be

thought of as representing longer lead time forecasts where the effect of updating

has died out.
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Figure 4.6: Simulated and observed discharges of the River Eden at Sheepmount.
The simulated and observed discharge corresponds to the validation period (2001-2007). The NSE
of the Eden SHETRAN model in the validation procedure was 0.90.

4.5.3 Selection of peak flows and their forecasts.

The peak flows y and their forecasts y are sampled in later chapters from a bivariate
distribution with marginal distributions represented by a POT model. The variable
y is here defined as the crest of the resulting hydrograph generated by a given
rainfall event that crosses a given threshold level (y,) of the river. The value of y,
must be set neither so high that only a few floods are considered in the hydrologic
frequency analysis (HFA), i.e., it should be lower than the flooding threshold (y7),
nor so low that too many peaks are considered, which are not relevant to the HFA

(see Figure 4.7).

As one can imply, the peak flow selection is strongly linked to y,. The problem
with y,, arises from the fact that the basic model hypothesis of any statistical model
to be applied to y, the independence of consecutive peaks, can be affected when

considering low thresholds (see, for example, the first peak in Figure 4.7). This
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issue can be tackled by imposing further requirements on the basic criterion of
choosing all the peak flows above y,,. These requirements are usually based on the
area of the catchment, the time period between two consecutive peaks (tp) and the
difference between the magnitudes of the latter. For example, Cunnane (1979)
imposes that consecutive peaks must be separated by three times the average time
to peak of the hydrographs, or that the smallest discharge value between the
magnitude of two consecutive peaks must be higher than two-thirds of the
magnitude of the first peak. The Water Resources Council (USWRC, 1982) also
suggests that two consecutive peaks are considered independent if they are
separated by at least as many days as five plus the natural logarithm of square miles
of the basin area. Other authors simply consider that consecutive independent peaks
are characterized by a value of tp > 8 or 15 days (Bogner et al, 2012; Karim et al,
2017).
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Figure 4.7: lllustration of y and ¥ and the main thresholds (y, and yg) involved in the
selection criterion for performing an HFA of these variates

On the other hand, ¥ is defined as the crest of the forecast hydrograph used to
forecast the peak flow y. The selection of y is, therefore, linked to the selected
values of y where the forecast values might or might not fall above y,,. This could,
for example, occur when the value of y is relatively close to y,, such as the last
peak in Figure 4.7. Thus, one has two criteria to select y and y. The first one has
to do with selecting the values of y and then selecting the values of y associate with
v, and the other with selecting only the values of y whose associated values of y

fall above y,,, such as the first three peaks shown in Figure 4.7. The latter option
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increases the chances of using the same POT model (probability distribution) to

represent y and .

Thus, the value of y, considered in this work was a threshold level that has been
set for all gauging stations used for flood warning purposes in England. When the
water level of the river reaches that threshold, minor flooding is possible in the
floodplain. Table 4.3 and Table 4.4 describes the value of this threshold for each
gauging station analysed, whereas Figure 4.8 shows an example of the threshold

value against actual readings for one of the gauging stations.

River level
River Eden at Sheepmount Now
8.00m Y
6.00m
4.00
" Yb
2.00m
0.00m
Fri, 20 Sep 12:00 PM Sat, 21Sep Sun, 22 Sep Mon, 23 Sep Tue, 24 Sep 6:00 PM
When the water
levelreaches
== Measured level 3.45m here, == Highest recorded
minor flooding is level.

possible in this
area

Figure 4.8: Value of y, considered for one of the gauging stations considered in the analysis
(River Eden at Sheepmount)
Source: (Environment Agency, 2019)

Table 4.3 Value of the threshold y, and the resulting values of y, s,, and A, for the gauging
stations where only the values of y were available.

Code Name Yo | V| Sy |y
[m] | [m] | [m]
24003 River Wear at Stanhope 2.10 | 2.48 | 0.40 | 1.45

23006 | River South Tyne at Featherstone | 1.90 | 2.06 | 0.20 | 1.29
22007 River Wansbeck at Mitford 2.00 | 2.49 | 0.46 | 1.60
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Table 4.4 Value of the threshold y,, for the gauging station River Eden at Sheepmount and
the resulting values of y, s,,,y, s3 ,and A.

Vb y Sy 5’_\ Sy A
(m] | [m] | [m] | [m] | [m]
76007 | River Eden at Sheepmount | 3.45 | 4.16 | 0.73 | 424 | 0.64 | 2.86

Code Name

Once the values of y, were defined for each gauging station, the values of y were
selected, first defining the individual peaks above y,, and then selecting the peaks,
which were separated by at least eight days. For the case where the values of y were
represented (River Eden at Sheepmount), the criterion for choosing the pairs (y, 9)
was to select only the values of y whose associated values of ¥ fall above y,. Table
4.3 and 4.4 show the resulting value of the average number of peaks per year (1),
the means (¥ and ), and standard deviations (s,, and s;) of y and § when applying
that criteria to each gauging station analysed, whereas Figure 4.9 illustrates some

values of y for the river Eden at Sheepmount.

64 — River level

Peak

River level (m)

T T T L
00 01 ene. 1990 00 01 ene. 1995 00 01 ene. 2000 00 01 ene. 2005
Date

Figure 4.9: Hydrologic time series, and values of y for the period 1990:2006 obtained at the
gauging station 76007 River Eden at Sheepmount
The green squares indicate the values of y and the red line the value of the threshold y,.
The average number of peaks per year A can be used to estimate the value of y
associated with the return period of a Standard of protection (Ts,p). TO compute

Ysop, first the probability of exceedance associated with T, p is estimated by:
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1

P =
Tsop (TSOP)/1

Eq. 4.54

Then, ys,p is estimated as the Pr._, quantile in the marginal distribution of y. This

approach will be used to estimate important variables described in Chapter 5 and 6,

such as the flooding threshold y;.
4.5.4 Univariate analysis of y and y

The aim of the univariate analysis of y and y was to analyse what the best
probabilities distributions are to represent the marginal distributions in the bivariate
analysis. It was done based on the GoF of the values of y and 9, for which, as was
mentioned in section 4.2, three distributions were considered: the two-parameter
exponential distribution, the three-parameter log-normal distribution, and the three-

parameter Gamma distribution (see Table 4.1).
4.5.4.1 Parameter estimation

The distribution parameters can be estimated through different methods, such as the
method of moments (MOM), the method of L-moments (ML), and the maximum
likelihood estimation (MLE). In this work, the MOM was used, whose equations
were previously described in section 4.2 (achieving high statistical efficiency in the
estimates is not important here). To apply these equations, one can assume that the
threshold parameter is known or unknown. The parameter estimation of the
Lognormal distribution for the latter option is not straightforward (see section
4.2.2); thus, for the sake of simplicity, one can take the first option whose value can
be assumed as the minimum value of the sample of y and 9. It isa common practice

in a peak-over threshold analysis (Claps and Laio, 2003).

Table 4.5 and Table 4.6 shows the parameter estimates obtained when applying the

moment equations described in section 4.2 and the above-mentioned assumptions.
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Table 4.5 Estimation of the parameters of the three probabilistic models considered as
candidates to represent y.

Location Exponential | Log-Normal | Gamma
Code Name parameter

yO Bx I”]’Z aZ BZ kz

24003 River Wear at 2.12 0.36 -1.60 | 1.29 | 0.40 | 0.94
Stanhope

23006 | TIver South Tyne at 1.01 0.15 233 | 097 | 024 | 0.64
Featherstone

22007 |  River Wansbeck at 2.03 0.46 1.06 | 0.80 | 0.44 | 1.10
Mitford

76007 River Eden at 3.46 0.70 -0.68 | 0.83 | 0.72 | 1.0
Sheepmount

Table 4.6 Estimation of the parameters of the three probabilistic models considered as
candidates to represent y.

Location . Log-
Exponential Gamma
Code Name parameter Normal
Yo Bx | 6 | B | ks
River Eden at
76007 3.47 0.77 -0.50 | 0.70 | 0.50 | 1.56
Sheepmount

4.5.4.2 Goodness of fit (GoF) of y

A Goodness of Fit test (GoF) can be based on a visual inspection and/or through
statistical GoF tests (D’ Agostino and Stephens, 1986; Kottegoda and Rosso, 2008).
A common approach for the first one has to do with plotting the theoretical CDF
against the empirical one. For this purpose, the empirical probabilities can be
computed by using the Weibull equation.

m
F = Eq. 4.55
n+1

where F,, is the probability of non-exceedance of the event m, which is defined

through the rank of descending values, and n is the sample size.

Since the visual inspection of GoF can be quite subjective, the computation of
statistical GoF tests is usually suggested, which can be used to know whether or not

it is reasonable to assume that the random sample of y comes from an assumed
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probability distribution based on a hypothesis testing where the null and alternative

hypotheses are:
Ho: Sample data come from the assumed probability distribution.
Ha: Sample data do not come from the assumed probability distribution.

The null hypothesis is rejected if the probability of the computed value, i.e., the p-
value, is lower than a defined level of significance. The level of significance
considered in this work was 5%.

When the population parameters are unknown and must be estimated by sample
statistics, the Lilliefors-corrected Kolmogorov-Smirnov (correct-KS) test can be
used to check the model assumption (Lilliefors, 1969; Crutcher, 1975). These
values were estimated by using the R package “KScorrect” (Novack-Gottshall and
Wang, 2019), which is based on MLE.

a - b
1.00 1.00 4
aa
s
ar
++
0.751 0.75
L W
0 0.504 0 0504
Q (@]
0.251 0.25
23006
0.00 4 0.00 4
1 2 3
y(m)
c d
1.00 1.00 4 -
e +
0.754 075
L W
0 0.50 0 0.50 4
Q (@]
0.254 0.25 4
22007 76007
0.00 1 0.00
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y(m) y (m)
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Figure 4.10: Comparison of the empirical and theoretical CDF for the values of y obtained
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The GoF results of y are shown in Table 4.7 and Figure 4.10. As one can see, only
for one of the gauging stations (23006 River South Tyne at Featherstone), the
statistical GoF test indicates the suitability of one of the probabilistic models (Log-
normal distribution) by rejecting the null hypothesis of the others. For some
samples, one must, therefore, choose one probability distribution among the ones
that pass the statistical test. When this occurs, it is usually suggested to consider the
complexity of the probabilistic model as a discriminatory factor. Therefore, for
these cases, the Exponential distribution can be considered as the main option to
represent the values of y given the low complexity of the univariate probabilistic
model (two parameters: see Table 4.1). However, any of the distributions accepted
under the null hypothesis for each station can be used.
Table 4.7 Statistical GoF of y based on the correct-KS test for each gauging station

In this table Yes means that the null hypothesis was not rejected, i.e., the sample data passed the
test. No means the null hypothesis was rejected, i.e., the sample data did not pass the test.

Kolmogorov Smirnov test

Code Name =
Lognormal | Gamma | Exponential

24003 River Wear at Stanhope Yes Yes Yes

23006 | River South Tyne at Featherstone Yes No No

22007 River Wansbeck at Mitford Yes Yes Yes

76007 River Eden at Sheepmount No Yes Yes

4.5.4.3 Goodness of fit (GoF) of y

As was mentioned before, the GoF of y was only done for the gauging station 76007
River Eden at Sheepmount. The results based on the correct-KS test and the
comparison of the empirical and theoretical CDF are shown in Table 4.8 and Figure
4.11, respectively. As one can see, the null hypothesis is not rejected for all the
assumed probability distributions, so the same conclusion drawn above for the case
of y applies here.
Table 4.8 Statistical GoF based on the correct-KS test for the values of ¥ corresponding to
the values of y obtained from the gauging station 76007 River Eden at Sheepmount.

In this table Yes means that the null hypothesis was not rejected, i.e. the sample data passed the
test. No means the null hypothesis was rejected, i.e. the sample data did not pass the test.

Kolmogorov Smirnov test

Variable Lognormal | Gamma | Exponential

Values of y corresponding to the values of y obtained
from the gauging station 76007 River Eden at Yes Yes Yes
Sheepmount.
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Figure 4.11: Comparison of the empirical and theoretical CDF for the values of y
corresponding to the values of y obtained from the gauging station 76007 River Eden at
Sheepmount

4.5.5 Bivariate analysis of y and y based on the Moran-Downton BED

In terms of GoF, the principle of bivariate frequency analysis should be the same
as in the case of single-variable frequency analysis. Although the statistical GoF
test for bivariate frequency analysis is not straightforward, an intuitive investigation
of the agreement between empirical and theoretical joint probabilities such as the
approaches used in the work of Yue (2000) and Yue (2001) might be useful for
checking the suitability of any bivariate probabilistic model. In this approach, n
bivariate observations (s;, q;), are arranged in ascending order, thus obtaining pairs

(sj, qj). The empirical non-exceedance joint probabilities are then computed as:

R #pairs (s;, q;) with s; < s; and q; < q;

F(sj,q;) can be then compared with the theoretical joint probabilities of

F(S <s;,Q < gq;) of the bivariate model to be tested.

In this work, that method was applied to the sample of the pairs (y,¥) obtained from
the gauging station River Eden at Sheepmount. The aim was to test the assumption

that the sample of pairs (y,9) ~BED(By, Bx, Yo, 9o, Pyy) is COnsistent with the
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Moran-Downton BED. Figure 4.12 shows the estimation of p,; based on the
sample correlation coefficient between y and y, whereas Table 4.9 shows the
estimated MOM values of the parameters of the five-parameter BED. Figure 4.12
shows that the values of y show a relatively small error for high values of y which
is not the bahaviour commonly observed when making forecasts. However, the
upper range of values is poorly sampled because of the small sample size, so this
can have happened by chance, but also perhaps through overfitting to the highest
peaks when calibrating the SHETRAN model.

76007 O
1 p=0.94
8-
E
. ofe}
o 00
6 00
4 O O
4 5 6 7
y(m)

Figure 4.12: plot y versus y for the values obtained from the gauging station 76007 River
Eden at Sheepmount

Table 4.9 Estimated values of the parameters of the five-parameters BED for the gauging
station River Eden at Sheepmount.

Code Name Yo Vo 33? ﬂAx Pys
76007 | River Eden at Sheepmount | 3.46 | 3.47 | 0.77 | 0.70 | 0.94

The bivariate GoF of the pairs (y,y) based on the Moran-Downton BED was thus

based on the following steps:

v/ Step 1: Based on the estimated values of the parameters, compute the
standardized exponential variables of the pairs (y,y) as:

v = y/’;yo and _9 — y:yo

v Step 2: Arrange the observations (v;, ¥;) in ascending order and obtain the
pairs (v}, 9;).
v' Step 3: Compute the empirical non-exceedance joint probabilities of the
pairs (v;,9;), i.e. F(v;,9;), based on Eq. 4.56.
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v Step 4: By using the relationship p,; = p,s, compute the theoretical joint
probabilities of the pairs (v;,7;), i.e., F (v;,D;), based on Eq. 4.34.

v Step 5: Do a bivariate GOF via visual inspection by plotting in the x-axis
the order of the pairs (v;,9;) and in the y-axis, the values of F (v, ?) and
F(v, D).

The results of the above-mentioned steps are shown in Figure 4.13. As one can see,
the plot indicates that there is no significant difference between the observed and
theoretical probabilities. Therefore, one can conclude that the five-parameters BED
Is suitable to represent the joint probabilities of the pairs (y,y) obtained from the

gauging station River Eden at Sheepmount.
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0.75 — Theoretical

Joint CDF
o
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Order number of (vi,{\ri)

Figure 4.13: Bivariate GoF of the pairs (y,y) based on the Moran-Downton BED for the
values obtained from the gauging station 76007 River Eden at Sheepmount

Based on the outcome of this test, it is assumed that observed peak levels, and their
forecasts from a calibrated model with a relatively high NSE and correlation, can
be described by the BED model. Moreover, it is reasonably assumed, although not
proven here, that any of the candidate distributions that passed the GOF test for y
at the other sites can be used to describe y, thereby allowing corresponding bivariate

distributions to be used for simulation experiments in later chapters.
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4.6 Forecast performance

The prior sections showed how to represent pairs (y,y) with a given dependence
structure and associated errors through different bivariate probabilistic models; it
provides the basis of the MCFG. This also provides the starting point for the
sensitivity analysis used to explore the importance of the different factors
influencing the performance of a FEWS. However, the description of the
dependence structure of pairs (¥,y) through a correlation coefficient is not enough
since one needs to associate it with a given forecast horizon or lead time (t), and a
performance measure, which is a common characteristic used to define a
forecasting model. A MCFG can be set fully if these two characteristics are taken
into account. This section, therefore, explains how the dependence structure of pairs

(¥,y) was associated with t and the forecasting performance.

It is well known that there is a trade-off between the forecast performance and the
forecast horizon or lead time t (Bloschl, 2008; Parker, 2017).The correlation p,,; is
therefore necessarily associated with a given t. In this research, that relationship
was represented through a subjective lead-time-correlation function (see Figure
4.14) analogous to that found by Schroter et al. (2008). This function describes the
common behaviour of forecasting models forced with precipitation. That is, it
represents the fact that, for T values lower than basin lag time (L), with a well-
calibrated hydrological model, the performance of a forecasting model is relatively
high, as the forecasts are based on observed precipitation by using, for example,
gauge-based quantitative precipitation estimation (QPE). Moreover, forecast
updating will improve the correlation for short lead times. Past this value L, the
forecasting model has to be forced with quantitative precipitation forecasts (QPFs),
and its performance drops monotonically. The slope of this function before L
defines the quality of forecasting models based on QPE, such us models based on
gauge-based QPE or gauge-radar based QPE, and the slope after L defines the
quality of the forecasts based on QPFs. This function is defined by:

Eq. 4.57

—0.015* (r — L) + IF, T<L
Pyy =

—0.030 = (r — L) + IF, T>1L

where [P, is the value of p,; at the inflection point of the correlation-lead-time

function and represent the correlation associated to a catchment lag L. In Eq. 4.57,
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L and t are defined in the same units, e.g., hours. The sensitivity of forecast

performance to perturbations in the IF, value is explored in Chapters 5 and 6.

Biases in the mean and variance of forecasts relative to the observed values also
affect the forecast performance, and these are explored in the sensitivity

experiments in Chapter 5.

~

Lead time,T

Figure 4.14: Lead-time-correlation function used to represent the forecast performance as a
function of lead time.

4.7  Sensitivity analysis

In Chapters 5 and 6, sensitivity analyses (SA) of the factors controlling the
performance of a FEWS are performed. The basic approach to the SA is to state a
baseline scenario and then test several scenarios which take into account the main
assumptions in the estimation of the performance. The forecast performance was
one of them, which, as was explained above, is linked with the setting of the MCFG
parameters. Therefore, this section of the chapter describes the parameters used to

represent the MCFG and which of them were considered in the SA.

The baseline scenario considered the results obtained for the gauging station River
Wansbeck at Mitford as reference values. Based on the results in Table 4.7, it is
assumed that y and ¥ can be represented by the same Lognormal POT model type,
which, in  turn, leads to the assumption that the pairs

(y,9) ~BLND (W, 05, Uz, 02, Vo, Yo, Pz2)- Furthermore, the baseline model assumes
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an ideal case of the forecasting system where the marginal distribution of the
observations is equal to that of their forecasts; therefore, the moments of y are
equal to those of y. The lead time T was assumed to be equal to the catchment
lagtime L, which, in turn, was assumed to be equal to 6 hours. Finally, the /P, value
was assumed to be 0.85; the justification for this is discussed in Chapter 5. Based
on this analysis, the MCFG was represented by eleven parameters in the SA
framework, where five of them represent the characteristics of the basin and the
others the characteristics of the forecasting model. Table 4.10 shows these

parameters and their assumed values for the baseline scenario.

Table 4.10: Assumed input parameter values for the MCFG in the baseline generic fluvial

case
Parameter
. _— Value -
Abbreviation Description associated
adopted o
with:
Uy Mean of y. 251
of The variance of y. 0.20 The river
Yo Location parameter of y 2.03 basin
L Basin lagtime L 6 hrs
Uy Mean of the forecasts of y Uy
03% The variance of the forecasts of y 033
_ Flood
Yo Location parameter of the forecasts of y Yo forecasting
The inflection point of the lead time-performance system
IP, . 0.85
p function
T Lead time 6 hr

4.8 Main findings

The architecture of the MCFG is novel; it allows forecast uncertainty to be linked
with a forecasting lead time in the simulated generic fluvial case. The univariate
analysis of POT data for y and y at selected gauging stations suggested that the
probability distribution type of ¥ is that of y, and that a number of different
distributions could be used to describe y. This allowed the assumption to be made
that the five-parameter bivariate exponential distribution (BED), the seven-
parameters bivariate log-normal distribution (BLND), and the seven-parameter
bivariate gamma distribution (BGM) are suitable models to represent the pairs
(v, ). Algorithms for sampling bivariate pairs of y and y from two of these
bivariate distributions (BED and BLND) were presented. The algorithm relates to

BGM will be described in Chapter 7.
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A formal criterion for selecting the threshold y, defining the peak water levels in

the POT frequency analysis was proposed.
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Chapter 5. Evaluation of flood warning performance in terms

of reliability

There are a considerable number of acronyms in this Chapter. Therefore, the
Chapter starts with a list of them with the aim of helping the reader from the
beginning to be familiar with the concepts used in the analysis of this part of the
thesis. The concepts of several acronyms have already been introduced in the prior
Chapters; therefore, the list of acronyms can also be used by the reader to navigate
the thesis to look for more detailed information.

Acronym Meaning
BLND Bivariate Log-normal distribution
DFDR Deterministic forecast-based decision rule. Decision rule used in a deterministic
FEWS to represent warning decisions based on the values of 9 (section 3.2.2). Used
in conjunction with the Floodplain property-based criterion (FPC) and the
Floodplain threshold-based criterion (FTC).

FAR False alarm ratio. Skill score used to define the reliability of flood warnings defined

as the ratio of the number of hits and the sum of hits and false alarms (section 2.7.1).
FEWS Flood early warning system

FPC Floodplain property-based criterion. Criterion to evaluate the reliability of flood
warnings in terms of warned and flooded houses. Values of FAR and POD can be
derived from this criterion (section 2.7.1).

FWDC Flood warning decision component. Component of the generic framework (section
3.2.1)

FTC Flooding-threshold criterion. Criterion to evaluate the reliability of flood warnings
based on whether the occurrence or non-occurrence of a flood event in the at-risk
community was preceded by a warning. Values of FAR and POD can be derived
from this criterion (section 2.7.1).

NSE Nash-Sutcliffe Efficiency

MCFG Monte Carlo flood and forecast generator. Component of the generic framework
(section 3.2.1)
PE Probability of exceedance of a predefined level derived from the conditional
distribution of y given 9, i.e., f(v|¥). Variate used by the probabilistic rules PTDR
and PDR (section 3.2.2)

PDR Probabilistic decision rule. Decision rule used in a probabilistic FEWS to represent
warning decision based on a warning level 9, derived from f(y|9) (section 3.2.2)
Used in conjunction with the Floodplain property-based criterion (FPC).

POD Probability of detection. Skill score used to define the reliability of flood warnings
defined as the ratio of the number of hits and the sum of hits and misses (section
2.7.1).

PT Probabilistic threshold used for the probabilistic rules PDR and PTDR (section
3.2.2).
PTDR Probabilistic-threshold-based decision rule.
Decision rule used in a probabilistic FEWS to represent warning decision based on
the PE of the flooding threshold y; derived from f(y|9) (section 3.2.2). Used in
conjunction with the Floodplain threshold-based criterion (FTC)

PU Predictive uncertainty.

RIC Response and impact component. Component of the generic framework (section
3.2.1)

RRA Risk-reduction action. A proactive action conducted after a warning has been
issued.

SoP Standard of protection.
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5.1 Introduction

In the Monte Carlo (MC) framework used to explore the performance of a flood
early warning system (FEWS) for the generic fluvial case (Chapter 3), the peak
river levels (y) and their forecasts (¥) are generated from the MC flood and forecast
generator (MCFG). Chapter 4 gives a detailed description of how this component
of the framework can create pairs (y,y) and the predictive uncertainty (PU)
associated with y. Different bivariate probabilistic models are assumed, and the
dependence structure of this model (represented by the correlation coefficient p,,5)
is associated with a lead time (1) through a lead time-correlation function. In this

component, a return period is also associated with each value of y.

In this chapter, a full description of the second and part of the third component of
this MC framework is provided. The former component is called the flood warning
decision component (FWDC) and represents the decisions made by a Warner (a
word adopted in this research to refer to a person involved in preparing and issuing
flood warnings, usually a member of a governmental entity) based on the forecasts
generated by the MCFG and a flooding threshold (y;) associated with an at-risk
community. The third component, i.e., the response and impact component (RIC),
is used partially to only represent the forecast and observed impact in terms of
affected houses. The adopted bivariate model used in the MCFG to represent the
peak river levels y and their forecasts y is the bivariate Lognormal distribution
(BLND). The reliability or credibility of a FEWS is the flood warning performance
characteristic to be explored in this chapter. This analysis depends on warning
decisions and the uncertainty of the forecasts and requires the addition of two
parameters to the ones considered in the MCFG. These parameters are associated
with the characterization of the at-risk community and have to do with the return
period of its standard of protection (SoP) (Ts,p), and the number of houses at risk
in the floodplain (n%.7k). How these parameters are included in the MC
framework is explained later. The generic framework (Figure 3.1) is, thus, partially
used to build a MC framework to explore the reliability of flood warnings (Figure
5.1). Thus, in this case, the response is left out, which is the basis of its economic
component that, in turn, allows the performance of a FEWS to be explored in terms
of the economic effectiveness. This analysis will be done in Chapter 6.
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Sample a peak water level y and Sample a peak water level y and
» its (deterministic or probabilistic) > its (deterministic or probabilistic)
forecast from the MCFG forecast [rom the MCFG

\_Repeat [ Use the observed peak value y and its | \( Repeat / Use the obscrved peak value y and its
BT (deterministic or probabilistic) forecast (7 or PE), A (deterministic or probabilistic) forecast (i or J,),
the (deterministic or probabilistic) the (deterministic or probabilistic)
warning strategy (DFDR or PTDR), warning strategy (DFDR or PDR),
and flooding threshold y, to define event as and flooding threshold y; to define houscs as
hit,miss, falsc alarm, or correct ncgative | hit,miss, falsc alarm, or correct negative
v v
Build the contingency table and Build the contingency table and
compute POD and FAR compute POD and FAR

FTC: Flooding-threshold criterion. Criterion to evaluate the reliability of flood warnings based on whether the occurrence or non-occurrence of a flood event in the
al-risk community was preceded by a warning.

FPC: Floodplain property-based criterion. Criterion to evaluate the reliability of flood warnings in terms of warned and flooded houses.

MCFG: Component of the MC framework to gencrate pairs (y,y) with its associated conditional distribution f(y | ).

¥: Decision variable in a determinsitic scenario. Used in conjunction with FTC and FPC.

PE: Decision variable in a probabilistic scenario. Probability of exceedance of the flooding threshold y, derived from the conditional distribution of y given ¥, i.e.,
f{y | ). Used in conjunction with FTC.

Yw: Decision variable in a probabilistic scenario. Forecast level derived from f{y | ) as the probability of exceedence of probabilistic threshold PT.

DFDR: Deterministic [orecast-based decision rule. . Decision rule used in a deterministic scenario o represent warning decision based on the values of y. Used in
conjunction with FPC and FTC.

PTDR: Probabilistic-threshold-based decision rule. Decision rule used in a probabilistic scearion  to represent warning decision based on the PE. Used in
conjunction with FTC

PDR: Probabilistic decision rule. Decision rule used in a probabilistic scenario to represent warning decision based on a warning level ¥, derived from f{y | ¥). Used
in conjunction with FPC.

Figure 5.1: Hlustration of the MC framework to explore the reliability of flood warnings.
The MC framework explores the flood warning reliability estimated based on the flooding threshold-
based criterion FTC (a) and floodplain property-based criterion FPC (b) by using a (deterministic or
probabilistic) warning strategy.

The reliability of a FEWS, which, according to Parker (2017), is associated with
the presence of false and missed alarms, is evaluated through the skill scores known
as the probability of detection (POD) and false alarm ratio (FAR). This flood
warning performance attribute is captured based on a contingency-table-based
method that represents the outcomes of deterministic-based and probabilistic-based
warning decisions. Contingency tables are built based on two criteria: a flooding
threshold-based (FTC) and floodplain property-based (FPC) criterion. The former
assesses the performance of a FEWS based on whether the occurrence or non-
occurrence of a flood in the at-risk community was preceded by a warning, whereas
the latter based on whether a warned property was or was not subsequently flooded
(Figure 5.1). The FTC is a well-known criterion used in several research works
(Verkade and Werner, 2011; Pappenberger et al., 2015; Bischiniotis et al., 2019),
whereas the FPC is a contribution of this research which gives a more consistent
estimation of flood warnings' reliability because it is estimated based on warned

and flooded houses.
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The MC framework is used to explore the reliability of a FEWS through several
sensitivity experiments. To do so, a set of values for the input parameters is first
assumed to characterise the baseline scenario, where the at-risk community, the
river system, and the flood forecasting system are characterised. Then, the
sensitivity of the reliability to perturbations of the main parameters is fully explored

through a one-at-time method.

This chapter is structured as follows: In section 5.2, the rationality of the FTC and
FPC used to define the performance of a FEWS is explained based on the warning
criterion used in two types of FEWSs. Then, in section 5.3, the simulation of the
target information for evaluating the performance of a FEWS based on the FPC is
described. Next, in section 5.4, the contingency-table-based method for the FTC
and FPC used to evaluate the reliability of flood warnings is explained. After this,
in section 5.5, the skill scores used to describe the performance of a FEWS are
introduced, and, in section 5.6, the decision rules used to describe the FWDC based
on different types of forecast information are explained. Finally, in section 5.7, the

results of the sensitivity experiments are shown.
5.2 Flood warning criteria for fluvial floods

The FTC and FPC utilised in this work to explore the performance of a FEWS have
been defined based on the warning criterion usually used in two types of FEWSs.
Based on the flood forecasting technique they use, they have been called in this
work a hydrologic forecast-based FEWS and an inundation forecasting-based
FEWS. Table 5.1 gives a brief description of these systems, and Figure 5.2
illustrates the warning criterion for each of them. They are explained as follows.

The flood forecasting techniques applied in hydrologic forecast-based FEWS are
usually based on hydrological and/or flood routing models (hydrologic or hydraulic
models) and offer a relatively simple approach for flood predictions. They have
been the dominant choice of river flood warning systems, where a threshold-based
approach for issuing a warning is normally used. The FTC evaluates the
performance of this type of FEWS where the warning criterion is based on a
flooding threshold approach. In this case, forecast water levels at a river section in
or close to the at-risk community are compared with a pre-defined flooding

threshold y;, which is often set based on experience, a pre-defined return period,
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historical data, and/or detailed hydraulic modelling of river response. Here, yr is
assigned a return period. The warning decision is based on the direct comparison
between the forecasts and y,. Figure 5.2a shows an example when considering a
deterministic forecast; in this case, a warning is issued when the forecast indicates
the exceedance of this threshold. This type of FEWS does not target warnings on
individual properties or small areas within the at-risk community but aims to alert
the flood authority of a potential flood that, in turn, uses a risk-reduction action
(RRA) to mitigate the flood impact. A common RRA in this type of FEWS is raising
demountable defenses, which can need a 24-h warning lead-time to be erected.
Flooding threshold-based warning decisions have been the basis of some important
research (Verkade and Werner, 2011; Dale et al., 2014).

Table 5.1 Description of two types of FEWS

Type of river flood . CLELTLI Risk reduction
. Aim decision .
warning system o action (RRA)
criterion
Hydrologic forecast- | Issue flood warnings ) deri?usért]gble
based FEWS to flood authority Direct def
comparison efenses
Issue flood warnings petuween Moving house
Inundation o vulnerable g forecasts and contents upstairs
forecasting-based ies in th the flooding and/or evacuating
FEWS propertiesinthe | threshold y; them and the
flood risk community :
residents

Iy
Warning decision

Flooding .
threshold y J

Wamning decision

Flooding
{hreshold v,

T
. 0y
3

1 ~

.
.
[y
~
s

— (Yhserved
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——Observed
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|
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model
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Figure 5.2: Illustration of the warning criterion for a flooding threshold-based (a) and
inundation forecasting-based (b) warning system.

The inundation forecasting-based FEWS is considered to be the most sophisticated
flood warning service (WMO, 2011). The flood forecasting system of this FEWS
is usually made up of a hydrological and hydraulic inundation model, e.g., a
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hydrodynamic model, where the output of the former is used to feed the latter to
forecast the floodplain inundation. Even though these flood forecasting systems are
considered complex and computationally expensive (particularly for a catchment-
wide integrated hydrological and hydrodynamic modelling approach), with the
development of high-performance computing techniques, it is now feasible to use
these flood forecasting techniques in flood warning services (Ming et al., 2020).
The FPC evaluates the performance of this type of FEWS. In this case, the warning
decisions can also be based on the direct comparison between forecast water levels
and the flooding threshold y, and the forecast of the flood extent can be used to
disseminate flood warnings (Figure 5.2b). Vulnerable properties are identified by
intersecting the maps of the property locations and the forecast inundation area. In
this context, an inundation forecasting-based FEWS aims to target warning on
vulnerable properties in the at- risk community, and the RRA, in this case, is done
by houseowners, which can be, for example, by mounting flood defences for
individual flood properties and/or moving house contents upstairs or evacuating

contents and residents.
5.3 Simulation of the flooded and warned properties

As was explained above, evaluating the performance of a FEWS based on the FPC
is one of the aims in this chapter. To the best of the author’s knowledge, there is not
a work that has reported such an analysis. The target information for this task is the
flooded and warned properties in the flood risk community after a flood event
occurs. A rational method to do that would be one that represents: i) the
infrastructure of the at-risk community, ii) the observed and forecast hydrograph of
potential floods event at a river section in or close to the at-risk community, and iii)
the associated observed and forecast flood extent through a hydraulic inundation
model (Figure 5.3a). The MC framework represents this rational approach
indirectly. The aim of this section of the chapter is, therefore, to explain this indirect

method.

flooded
houses

To quantify the number of flooded properties (n ), the MC framework uses
an assumed impact curve for the flood risk community, i.e., a curve that relates the
return period of a current or future flood event to the magnitude of the impact
(Sayers et al., 2018); in this case, the number of properties that would be flooded.

This type of curve has been used for performing a national flood risk assessment in
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the United Kingdom through the UK Future Flood Explorer (Sayers et al., 2015); a
flexible tool to simulate flood risk scenarios throughout the country.
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Figure 5.3: Illustration of the impact curve used to quantify the number of flooded and
warned houses.

Figure 5.3b shows the impact curve used by the MC framework. The values of this
impact curve were taken from Table 4.6 of the Multi-Coloured Manual Handbook
(Penning-Rowsell et al., 2020), which suggests using these values in a method to
estimate the economic damage in a floodplain. This method is used when
knowledge of flood depth and its associated return period is poor, but the Standard
of Protection SoP, property type, and numbers are known. The number of houses
flooded was set to zero at the water level that defines the bankfull condition; the
return periods reported in the literature for the latter appear to fall somewhere in the
rangel-4 years based on annual maximum series (Williams, 1978; Andrews, 1980;
Petit and Pauquet, 1997; Castro and Jackson, 2007; Ahilan et al., 2013). These
values would be longer if partial-duration series are considered as it contains more
flood events than the annual maximum series(Edwards et al., 2019). In this context,
a 2.5 year-return period was assumed in this work to represent the bankfull

condition.
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The assumed impact curve (Figure 5.3b) gives an estimate of the number of

properties affected by different floods by taking as reference the number of

properties flooded by a 200-year flood (n200-Y¢%"~/°dy The MC framework

assumes that the floodplain is defined by a 200-year flood extent. The total number

of houses at risk n#L " s, therefore, assumed to be affected by a 200-year flood

200—year—flood Thus nflooded

houses nouses are computed based on the

extent, i.e., nt TSk —
return period of y by taking as reference n%: 75k that is an input parameter of the

MC framework.

The assumed impact curve is also used to estimate the number of warned properties
(nwarned) “which represents the vulnerable properties warned by the inundation
forecasting-based FEWS (Figure 5.2b). The number of houses warned n}*%med jn
the MC framework is estimated as a function of y by interpolating this value on the
impact curve. With this approach, one tries to explore/represent the uncertainty of

the inundation forecasting related to the magnitude of the flood event (peak water

flooded

houses TOr @ pair

level). Figure 5.3b illustrates the computation of n)’%"e? and n
(y,¥) based on the impact curve-based method and what they would represent in

reality.
5.4  Analysis of the flood warning performance

Parker (2017) defines reliability as one of the common flood warning performance
characteristics. This attribute of the FEWS is associated with the presence of false
and missed alarms. The skill scores known as the probability of detection (POD)
and the false alarm ratio (FAR) are often used as reliability measures which, in
essence, give a “snap-shot” of this attribute of the FEWS (see section 2.7.1)

Based on this concept, a contingency table-based method was used to define the
reliability of a FEWS based on the FTC and FPC. In the former, it is evaluated
based on whether the occurrence or non-occurrence of a flood event in the flood
risk community was preceded by a warning. In the latter, the reliability is, on the
other hand, evaluated based on whether a warned property was or not subsequently

flooded. They are explained as follows.
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5.4.1 Flooding threshold-based criterion (FTC)

A flood in an at-risk community is defined as the overtopping of the flooding
threshold y;, which is the river level at which the flood impacts begin (Figure 5.2a).
This value is set at Tg,p, i.€., the return period that defines SoP, the Standard of
Protection, which is an input parameter of the MC framework. As was mentioned
above, the FTC evaluates the performance of a FEWS based on whether the
occurrence or non-occurrence of a flood event in the at-risk community was
preceded by a warning. In other words, both the warning decision and the
continuous value of y defined by f(y|y) are viewed categorically (or binary for
‘yes’/ ‘no’ decisions and events respectively) according to whether a value of y that
exceeded or not the flooding threshold y, was preceded by a warning. The two-by-
two contingency table shown in Table 5.2 was used to describe the resulting four
potential outcomes one can find under this criterion. They are defined as: a hit, if
the flood event occurred and a warning was issued (h describes the total number of
hits); a miss, if the flood event occurred and a warning was not issued (m describes
the total number of misses); a false alarm, if the flood event did not occur and a
warning was issued (f describes the total number of false alarms); and a correct
negative, if the flood event did not occur and a warning was not issued (cn describes
the total number of correct negatives). The sum of the total number of occurrences
(e) and non-occurrences (e') of a flood event define the total number of events
analysed (n). The total number of warnings is denoted as w, and the total number
of no-warnings as w'.

Table 5.2 Two-by-two contingency table to analyse the performance of a FEWS based on the
flooding threshold-based criterion FTC.

Observations | Warning | No Warning | Total
Flood event h m e
Non-flood event f cn e
Total w w' n

5.4.2 Floodplain property-based criterion (FPC)

As was explained in section 5.2, the FPC can be used in FEWSs that consider the
forecast of the flood extent to warn vulnerable properties. In this case, the warning
procedure can first include a ‘yes’/ ‘no’ warning decision based on the river level

forecasts and the flooding threshold y;, and, then, a dissemination process can be
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done based on the inundation forecasting. Thus, the performance of this type of
FEWSs depends on the warning decision and the uncertainty of the inundation
forecast, and its analysis can be based on whether the warned properties were or

were not subsequently flooded. The target information for this analysis is, therefore,

flooded

warned
the number of houses warned np s and the number of houses flooded n, ..

which, as was explained in section 5.3, in this work, is represented by an impact-
curve-based method. A two-by-two contingency table (Table 5.3) can also be built
based on this information. In this case, the four potential outcomes after the
occurrence or non-occurrence of a flood event are defined as: a hit, if a house is
warned and flooded (h describes the total number of hits); a miss, if a house is not
warned and flooded (m describes the total number of misses), a false alarm, if a
house was warned and not flooded (f describes the total number of false alarms);
and correct negative, if a house is not warned and not flooded (cn describes the total
number of correct negatives). The sum of the total number of houses flooded and
not flooded defines the total number of houses analysed.

Table 5.3 Two-by-two contingency table to analyse the performance of a FEWS based on the
floodplain property-based criterion FPC.

Observations Warning No Warning Total
House flooded h m Total no. houses flooded
House not f on Total no. of no flooded
flooded houses
Total no. houses Total no. of no warned Total no. houses
Total
warned houses analysed

Figure 5.4 illustrates how the warning decision and uncertainty of the inundation
forecasting affect the performance of this type of FEWS. Figure 5.4a shows the case
when a flood was preceded by a warning. Note that this would represent a hit in
the FTC; in the FPC, however, depending on the magnitude of the forecast and
observed flood event, i.e., y and ¥, one can find misses or false alarms. Figure 5.4b
and Figure 5.4c show the case when a wrong warning decision was made. In this
case, misses are due to the fact that the warning dissemination was not conducted
before a flood occurred (Figure 5.4b), and false alarms (Figure 5.4c) due to the fact

that the dissemination was conducted when a flood did not occur.
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Figure 5.4: llustration of the potential outcomes in the floodplain property-based criterion
FPC.

5.5 Metrics for evaluating the flood warning performance

As was mentioned in sections 5.4 and 2.7.1, the probability of detection POD and
the false alarm ratio FAR have been defined by Parker (2017) as two measures of
the reliability of a FEWS. In this work, two of these measures have been chosen to
describe this important characteristic of the flood warning performance. These
metrics are computed based on the two-by-two contingency tables explained in the
prior section. Table 2.2 gives a description of them, which are briefly described as

follows.

POD is also known as hit rate and provides an estimate of the probability that an
observed event being warned. It ranges from 0 to 1, and a perfect forecast is 1. It is
computed as the ratio between the total number of hits h and the total number of
observed events (h+m). As it is based only on observed events, it is only sensitive
to miss events and not to false alarms. This skill score is, therefore, incomplete by
itself and should be used in conjunction with, for example, FAR that provides an
estimate of the probability that a forecast event being incorrectly warned. It ranges
from 0 to 1, with O representing a perfect forecast. It is computed as the ratio
between the total number of false alarms f and the total number of forecast events
(h+f). This skill score is also incomplete, as it is not sensitive to miss events. POD
can be artificially inflated by issuing more warnings, and FAR can be artificially

reduced by issuing fewer warnings; hence these metrics are used together
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In the FTC, the POD and FAR answer the following questions: What is the
probability of an observed event being correctly warned? and What is the
probability of a forecast event being incorrectly warned? respectively. In the FPC,
the POD and FAR answer the following questions: What is the probability of a
flooded house being correctly warned? What is the probability of a warned house

being incorrectly warned? respectively.
5.6 Flood warning decision rule approaches

As was explained in section 5.4, the contingency table-based method used in the
MC framework to define the reliability of a FEWS depends on the warning
decisions. This section of the chapter describes how these decisions are represented
in the MC framework in the FTC and FPC. Deterministic forecast-based and
probabilistic forecast-based decisions are considered in the analysis. They are

represented through a decision rule approach and are described as follows.
5.6.1 The deterministic forecast-based decision rule

The notation used for this rule is DFDR. This decision rule assumes that the warning
decision is driven by the deterministic forecast of the flood magnitude, i.e., y. For
the FTC and FPC, the DFDR assumes that a warning is issued when ¥ is greater

than the flooding threshold y;.

(¥ > yr) warn,
Eq. 5.1

, not warn

For the FPC, the number of warned properties n}’4"¢4 associated with a value of
¥ is derived from the impact curve of the at-risk community (Figure 5.3b). Figure
5.5 gives an illustration of the DFDR for the FTC and FPC, whereas Table 5.4

describes them.
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Figure 5.5: lllustration of the deterministic forecast-based decision rule (DFDR) for a pair
(y, ) for the flooding threshold-based criterion FTC (a) and floodplain property-based

criterion FPC (b).

Table 5.4 Description of the deterministic forecast-based decision rule (DFDR) for the
flooding threshold-based criterion FTC and floodplain property-based criterion FPC.

Decision rule | Abbreviation Criterion Decision rule
(¥>yr) warn,
Deterministic FTC t
forecast- , hot warn
based DFDR (},/\>y ) warn narned
decision rule FPC T houses
, hot warn

5.6.2 The probabilistic-based decision rules

Two types of probabilistic decision rules were considered. One was optimized
based on the FTC, and the other based on the FPC. The notation used for the former
is PTDR, which assumes that the Warner makes a decision based on a probabilistic
threshold (PT) and the probability of exceedance (PE) of the flooding threshold y.
i.e., the probability of having an observed river peak level y greater or equal than
yr. The probability of exceedance PE is a value delivered by the MCFG which is
obtained through the conditional distribution of y given y, i.e., f(y|y), derived
from the joint probability of these two variates f(y, ¥) that is assumed here to be a

bivariate Lognormal distribution. The decision rule, in this case, is given by:

(PE > PT) warn,
Eq.5.2

, not warn

The notation of the other probabilistic rule is PDR. It also uses a probabilistic

threshold PT. However, in this case, PT defines the warning level y,, from f(y|9)
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at which the Warner should base his/her decisions. Then, the warning decision can
be based on the direct comparison between ¥, and the flooding threshold y; as:

S warned
(yw > yT) warn Nyoyses »

Eq.5.3
, not warn

The aim of the PTDR and PDR is, thus, to find an optimal probabilistic threshold
PT* that maximises the difference between POD and FAR based on the FTC and
FPC, respectively. Figure 5.6 illustrates the application of PTDR and PDR for the
FTC and FPC, respectively, whereas Table 5.5 gives a description of them.

Table 5.5 Description of the probabilistic threshold-based decision rule (PTDR) for the

flooding threshold-based and floodplain property-based criterion, FTC and FPC,
respectively.

Decision rule | Abbreviation Criterion Decision rule Description
(PE>PT) PT optimized
Probabilistic PTDR FTC warn, based on FTC
threshold- _not warn
based
decision rules Ow>yr) imized
warn nl/arned. PT optimize
PDR FPC houses based on FPC
, hot warn
a) b)
¥, >y, ) wam, i
5| Tl K
If (PE>PT ) warn, %3 <
else, not warn. ‘ A~ e, T
5 PE ’
s 5 A
= 9 A
§ T . v
A 4 Leyend ;
F]OOdiI‘lg S Warned property
threshold y; A Atrisk property -\

Floodplain

Figure 5.6: lllustration of the probabilistic rules PTDR and PDR for flooding threshold-
based criterion FTC (a) and floodplain property-based criterion FPC (b), respectively.

5.7 Sensitivity experiments

In the prior sections, the criteria, metrics, and warning decision rules considered in
the MC framework to explore the reliability of a FEWS were introduced. As was

mentioned in the introductory part, the analysis of this characteristic of the FEWS
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requires the addition of two parameters to the ones considered in the MCFG. In this
last section of the chapter, the sensitivity of FEWS performance to several of these
parameters that represent the main assumptions in the estimation of the reliability
of a FEWS is explored. This is done through several sensitivity experiments based
on the one-at-a-time (OAT) method (Pianosi et al., 2016), which, in essence,
varies/perturbs the input parameters of the MC framework from its reference
parameter values (baseline scenario) one at a time and assesses the impacts on the
metrics used to define the reliability of a FEWS. Thus, in this section, the
parameters and reliability that define the baseline scenario are first described, and

then, the results of the sensitivity analysis are shown.
5.7.1 Baseline Case

The key parameter controlling the performance of a flood forecasting model is the
correlation between the forecast and observed values for a specified lead time .
There is a large and varied literature on the performance of rainfall-runoff models
when used in simulation mode; this is typically measured by the Nash-Sutcliffe
Efficiency (NSE), which, for an unbiased model, equals p2. Values of NSE are
computed from continuous simulations and are dependent on the time unit. The
most widely quoted values in the literature are for daily streamflow simulations; for
example, a study where TOPMODEL was calibrated for a set of 1013 UK
catchments reported a range of NSE values ranging from -2.47 to 0.94 with a
median of 0.77(Lane et al., 2019). Similar studies for hourly streamflow are not
reported due to the lack of long records of hourly rainfall data. Views of what is an
acceptable value of NSE vary widely and depend on the intended application, but
typically, a value greater than 0.80 might be considered acceptable. For hourly
streamflow, there are no definitive findings on whether the NSE values might be
larger or smaller than for daily values. Consequently, if just the peaks are sampled
from continuous simulations, the NSE can be expected to be lower than for the
continuous simulation case where the smaller errors in recession periods will

increase the correlation.

In the case of a real-time forecasting model, forecast updating will lead to much
higher NSE values for short lead times; as the lead-time t increases up to the
catchment lag L, the effect of updating will die out, and the NSE values will decline

towards the simulation mode value. The selected time unit will be a function of the
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catchment lag L. Values of NSE for real-time flood forecasts are rarely quoted by
agencies responsible for operational flood forecasting. A research study for the
Eden at Sheepmount (Leedal et al., 2013) quoted a value of NSE = 0.98 for six hour
ahead forecasts of water levels (using hourly data, with updating) for levels less
than 2m, and 0.45 for values greater than 2m; the latter figure represents only a
small percentage of the data but highlights the problem of declining performance in
forecasting large floods. It should be noted that the bivariate sampling of forecast
and observed flood levels from the BLND represents this very well, as the

forecasting errors increase with level.

Taking the above points into account, it was decided to adopt a correlation of 0.85
for the peak levels in the baseline case, which, for an unbiased model, corresponds
to an NSE of 0.72; the corresponding NSE for continuous simulation would be
higher. This correlation was taken to correspond to a catchment lag L and lead time
T of 6 hours, i.e., the IB, value in the lead time-correlation function (Figure 4.14).
The aim then is first to find where in the POD/FAR performance space this model
is located and then to explore how perturbations to the set of chosen baseline
parameters, and the correlation, in particular, can enhance or degrade POD/FAR
performance. In particular, the aim is to identify the levels of correlation and NSE
needed to achieve different levels of reliability for flood warnings, as measured by
POD and FAR.

The baseline case assumes that there are 1000 houses at-risk in the floodplain, and
it has 1 in 5-year SoP (Tsop=byears). When the water level overtops the SoP, houses
are assumed flooded from the bankfull height upwards (Figure 5.7). MC
simulations were performed using 30 replications, where each replication consisted
of 10,000 events. Finally, the MC estimates were obtained from the average values
of 30 replications, where each replication consisted of 10,000 simulated events.

Table 5.6 depicts the input parameters of the MC framework and the values which
define the baseline scenario. They are split according to the component they
represent. The baseline model assumes an ideal case of the forecasting system
where the marginal distribution of the observations is equal to that of their forecasts;
therefore, the moments of y are equal to those of y. The moments of y have been
adopted by taking as reference the parameters obtained for the station River
Wansbeck at Mitford (Chapter 4).
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Figure 5.7: The impact curve used to quantify the number of flooded houses.

Table 5.6: Assumed input parameter values for the baseline case

Value Parameter
Abbreviation Description associated
adopted o
with:
Uy Mean of y. 2,51
o; The variance of y. 0.20
- The river
Vo Location parameter of y 2.03 basin
Yy The average number of peaks per year 1.60
L Basin lagtime L 6 hrs
Uy Mean of the forecasts of y Uy
03% Variance of the forecasts of y aﬁ
Y Location parameter of the forecasts of
Yo p y Yo Flood
R The average number of peaks per year of the forecasting
Yy forecasts of y Yy system
IP, The inflection point ?f the_ lead time-performance 085
unction
T Lead time 6 hr
T Return period associated with the flooding 5
Tos threshold y. years The at-risk
i __ i community
at-risk Total number of houses at risk in the benefit area 1000
Sample size or number of simulated events (30 Monte Carlo
n o 10000 . g
replications) simulation

Figure 5.8a shows the joint density of 10,000 pairs (y, ¥) generated from the MCFG
which, as was explained above, uses a bivariate Lognormal distribution, BLND, to
represent the bivariate values. Since the moments of y are equal to those of y, the
generated bivariate values represent an ideal forecast scenario where the statistics

of the observations are equal to their forecasts. This bivariate simulation was done
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based on the algorithm shown in section 4.4.4. Figure 5.8b shows an example of
the PU expressed as f(y|y) for a forecast y, and the probability of the flooding

threshold being exceeded.
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Figure 5.8: Joint density of pairs (y,y) generated from the Monte Carlo flood and forecast
generator (MCFG) assuming a bivariate lognormal distribution (BLND).

Figure a shows the joint density of 10,000 bivariate pairs (y, ¥) generated from the MCFG assuming
a BLND defined by the values of moments of y and § assumed in the baseline scenario. Figure b
shows the conditional distribution f(y|y) associated with the forecast value of § represented by a
grey dot in Figure a. f(y|y) is obtained by slicing the joint distribution through a grey line that
crosses the forecast value (grey dot). Knowing this predictive density, one can estimate the
probability of exceedance (PE) of the flooding level (red area), which is the probability value
considered in the PTDR. The flooding level is defined by the assumed SoP in the baseline scenario
(5 years).

The analysis of the performance of the baseline FEWS under the above-mentioned
criteria is summarised in Figure 5.9. This figure shows the optimization procedure
to find the optimal probabilistic threshold PT* for the PTDR and PDR. In Figure
5.9a and Figure 5.9b, the blue and grey lines indicate how the values of POD and
FAR change when considering several values of the probabilistic threshold PT for
the PTDR and PDR, respectively. These values are summarised in the FAR-POD
curve shown in c. A point on these lines is associated with a value of PT. The values
associated with the optimal probabilistic threshold PT* are represented with a
square and circle for the PTDR and PDR, respectively. The figure also shows the
results of the DFDR for the FTC and FPC. They represent a point on the FAR-POD
curve and are represented with a triangle and diamond, respectively. The main

conclusions of this figure are explained as follows.
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Figure 5.9: Analysis of the performance of the baseline FEWS through the POD-FAR curves
for the flooding threshold-based and floodplain-property-based criterion, FTC and FPC,
respectively.

This figure shows the FAR and POD results for different values of PT for the PTDR (a) and PDR
(b). These values are summarised in the FAR-POD curve shown in ¢. These decision rules' optimal
values are represented with a square (PTDR) and circle (PDR). A triangle and diamond are used to
show the results of the DFDR for the FTC and FPC, respectively.

POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR:
probabilistic rule based on a PT and the PE of y,,.
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The performance of the baseline FEWS based on the probabilistic decision rules
PTDR and PDR can be regarded as better than that obtained with the deterministic
decision rule DFDR for the FTC and FPC, respectively, because the associated
difference between POD and FAR is higher (Table 5.7, column 8). The results also
show that the POD and FAR values associated with the probabilistic rules are higher
than those obtained with DFDR(Table 5.7, columns 6 and 7). That means that the
former decision rules tend to increase the value of POD, which necessarily increases
FAR. Thus, even though the flood warning performance associated with PTDR and
PDR is better than its deterministic version, the probabilistic-decision-rules- based
results tend to deliver relatively high values of FAR, 0.43 and 0.55 for PTDR and
PDR, respectively (Table 5.7). These values are higher than those obtained with
DFDR, and it is due to the fact that the optimization criterion for PTDR and PDR
does not place any restriction on the value of FAR, and it looks for the biggest
difference between POD and FAR, regardless of the value of the latter. It can be
understood as the price being paid for obtaining a high value of POD, which is
considerably higher than for the deterministic case (Table 5.7). Thus, the
optimization criterion adopted in this research (maximize POD minus FAR) gives
higher weight to the reduction of missed events whose economic consequences, in
terms of floods, far outweigh those associated with false alarms. The effect of
having high values of FAR in a warning system is known as ‘cry wolf’, which has
to do with the disregarding of flood warnings due to their loss of credibility as a
result of the high percentage of false alarms. Target values of FAR are usually
between 0.2 and 0.5 (Jolliffe and Stephenson, 2012). However, Barnes et al. (2007)
advocate that there is little evidence that a high value of FAR causes users to ignore
warnings of severe events.

Table 5.7: Contingency table based on the flooding threshold-based and floodplain property-

based criterion, FTC and FPC, respectively, for the baseline FEWS for deterministic and
probabilistic decision rules and optimal probabilistic thresholds.

Lead
time | Prob. POD- | Decision | Criteri
(tr) | Thres. U m L ORI FAR rule on
[h]
858 395 389 0.68 | 0.31 0.36 FTC
DFDR
6 170315 | 110467 | 110668 | 0.61 | 0.39 0.20 FPC
0.62 1041 212 812 0.83 | 0.43 0.39 PTDR FTC
0.59 | 220819 | 59962 | 283208 | 0.79 | 0.55 0.23 PDR FPC
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An interesting point in the analysis is to see how the performance of a FEWS
obtained based on FPC is related to the performance one would obtain if it is
quantified in terms of FTC. These results can be analysed directly from the values
obtained based on FTC and FPC for the DFDR (first and second row in Table 5.7).
The results show that the performance based on the FPC is lower than that obtained
based on the FTC. That difference is directly related to the uncertainty of the flood
magnitude, i.e., the difference between y and y which define the difference between
the warned and flooded properties. Note that a hit in the FTC does not mean a hit
in the FPC; due to the difference between these two variables, a hit in the former
might include misses or false alarms in the latter (Figure 5.4a). This implies that if
inundation level forecasting is undertaken (FPC), then the performance in terms of
POD and FAR will drop relative to the FTC, which implies improved forecasts

would be needed to achieve the same performance level as for FTC.
5.7.2  Sensitivity experiments

In this last sub-section of the chapter, the sensitivity of several parameters with
respect to the results shown in Table 5.7 is explored. Three sensitivity experiments.

have been carried out.
5.7.2.1 Sensitivity experiment 1

It is well known that the forecast performance decreases as the lead time increases
(Bldschl, 2008; Parker, 2017). The forecast performance in the joint distribution is
controlled by the moments of $ and the correlation coefficient p,,;. The latter is
assigned to a lead time t through the lead time-correlation function shown in Figure
4.14. As has been explained, 7 is an input parameter of the framework. One can
assume that ¥ are outputs of different flood forecasting systems associated with
different lead times t and that forecasts are represented by the same moments.
Under this assumption, it is hypothesized that the forecast performance is mainly
controlled by p,5 (a bias in the mean or variance of the forecasts can also affect
performance) which, in turns, depends on the input value of t. This first experiment
is based on this assumption and aims to analyse how the outcomes of the baseline
scenario change when considering different forecast performances represented by
different values of t and assuming the same moments of y for each of them. Table

5.8 gives a description of this experiment and the range of values to be explored.
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Table 5.8: Description of sensitivity experiment 1

Parameter to Lower Baseline Upper Aim
be modified bound bound
Analyse how the flood
warning performances
T (-gohf;o) 6 hr (+22‘(1)85/0) obta.ined in the baseline
scenario changes as the lead
time changes.

The results of the sensitivity experiment are described in Figure 5.10, which shows
two diagram types that show, for each value of , its associated pair of values of
POD and FAR obtained from the FTC and FPC for DFDR, PTDR, and PDR. Points
on the blue line are skill scores computed based on FTC, and points on the grey line
are those computed by considering FPC. One of the diagram types (a and ¢) shows
POD and FAR on the left axis and lead-time on the abscissa, whereas the other, a
quadrant plot (b and d), shows these values on the POD/FAR performance space.
In the quadrant plots, the value of POD and FAR equal to 0.5 have also been added
as a reference. These values define four quadrants: the left-upper quadrant with
values of POD > 0.5 and FAR < 0.5; right-upper quadrant with values of POD >
0.5 and FAR > 0.5; left-bottom guadrant with values of POD < 0.5 and FAR < 0.5;
and right-bottom quadrant with values of POD < 0.5 and FAR > 0.5. The 1:1 line
(grey dashed line) also defines points with values of POD greater than FAR (points
above this line) or the opposite (points below this line). Three target levels of
reliability are defined here based on POD and FAR:

Low: POD > 0.5, FAR < 0.5
Medium: POD >0.7, FAR < 0.3
High: POD > 0.8, FAR < 0.2

These levels represent a simplified form of that used in England for the national
assessment of flood forecasting systems(Robson et al., 2017). The results of the
sensitivity experiments can be judged against these target levels. They are explained

as follows.
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Figure 5.10: Results of the sensitivity experiment 1 for the flooding threshold-based and
floodplain property-based criterion, FTC and FPC, respectively, based on the deterministic
rule DFDR and probabilistic rules PTDR and PDR.

Figure a shows FAR and POD results for different lead times t based on the DFDR, whereas Figure
b shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for the DFDR
and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The values of these

figures are summarised in the FAR-POD curves shown in b and d, respectively.
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR: probabilistic rule
based on a PT and PE of y,,, FTC: flooding threshold-based criterion, FPC: floodplain property-based criterion.

Figure 5.10a and Figure 5.10b shows how POD and FAR change with lead time t
based on the deterministic decision rule DFDR for the FTC and FPC cases. These
figures confirm, what was shown in the baseline case, that the POD and FAR values

are lower for the FPC than the FTC. As was explained, it is due to the results based
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on the FPC depend on the warning decision and the uncertainty of the inundation
forecasting (Figure 5.4). The latter is represented in this framework as the difference
between the warned and flooded properties which are obtained as a function of y
and y respectively (Figure 5.3). In addition, as one can see in the quadrant plot, as
the value of 1 increases, the skill scores tend to move from the left upper quadrant
to the right bottom quadrant, which is one of the worse scenarios of the system as
the value of POD is lower than 0.5 and lower than FAR, which, in turn, is higher
than 0.5. The lead time at which this occurs is approximately 13 hr (p,,;=0.64) for
the performance based on the FTC, and 10 hr (p,y=0.73) for the skills scores based
on the FPC. FEWS with POD and FAR values in this quadrant can be considered
as not operationally useful. In this sense, the results show that, for the FTC,
deterministic FEWS can have medium (=3, p,;=0.89 , or 1=6, p,;=0.85) or low
reliability (1=9, p,5=0.76, or t=12, p,,;,=0.67). However, if one considers the FPC,
deterministic FEWS can have low reliability (1=3, p,;=0.89, or 1=6, p,3=0.85).

Figure 5.10c and Figure 5.10d show how POD and FAR change with the lead time
T based on the probabilistic decision rules PTDR (based on the FTC) and PDR
(based on the FPC). These figures again confirm that the flood warning reliability
based on the FPC is worse than that based on the FTC. In addition, the quadrant
plot shows that as the value of t increases, the skill scores tend to move from the
left upper quadrant to the right upper quadrant. This occurs because, as was
mentioned above, these probabilistic-based decision rules tend to deliver high
values of POD and FAR due to the fact their optimization criterion does not place
any restriction on the value of FAR, and it looks for the biggest difference between
POD and FAR, regardless of the value of the latter. The results show that this
drawback of the optimization criterion makes the FAR value increases as the lead
time 1 increases. The right upper quadrant is the other worse scenario of the system
as the value of FAR is higher than 0.5. The lead time at which this occurs is

approximately 8 hr (p,4=0.79) for the performance based on the PTDR, and
approximatly 5 hr (p, ;=0.87) for the skills scores based on the PDR. FEWS with

POD and FAR values in this quadrant can also be considered as not operationally
useful. In this sense, the results show that probabilistic FEWSs based on the PTDR
can have medium (t=3 hr, p,4=0.89) or low reliability (1=6 hr, p,4=0.85).

However, if one considers the probabilistic decision rule PDR, a probabilistic
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FEWS can have low reliability (=3 hr, p,y=0.89). These results suggest that the
deterministic decision rule allows the FEWS to use longer lead times (lower p,
values) with POD and FAR values operationally useful. The probabilistic decision
rules tend to deliver high FAR values, as, as was mentioned above, they give higher
weight to the reduction of missed events whose economic consequences, in terms

of floods, far outweigh those associated with false alarms.

An interesting point in the DFDR-based results is to have an idea about the scatter
of the pairs (y,y) associated with the lead time at which the skill scores start to be
in the right bottom quadrant in Figure 5.10b (13 hrs and 10 hrs approximately for
the FTC and FPC, respectively). This allows us to have a good insight into how the
bivariate values look for these poor performance cases. Figure 5.11 shows a sample
of the bivariate values of the critical lead time for the FPC (10 hrs). These pairs
(v,p) are characterised by the moments of y and ¥ used in the baseline scenario and
the value of p,;=0.73 assigned to this critical lead time based on the lead time-

correlation function shown in Figure 4.14

y[m]

Figure 5.11: Scatter of the pairs (y,y) associated with the critical lead time in the floodplain
property-based criterion FPC based on the deterministic decision rule DFDR.
This figure illustrates a bivariate sample of the joint distribution that defines the critical lead time in
the FPC based on the DFDR (10 hr) in the sensitivity experiment 1 (Figure 5.10b). The red dashed
lines define the value of the flooding threshold y; that define the hits, misses, false alarms, correct
negative in DFDR in FTC. The value of p,; for this joint distribution is 0.73.

118



5.7.2.2 Sensitivity experiment 2

This experiment explores the sensitivity to a change in the inflexion point /B, of the
lead time-correlation function shown in Figure 4.14 in conjunction with a change
in lead time. Thus, the sensitivity of 1F, with respect to the results of the baseline
scenario (Table 5.7) is analysed by modifying this parameter by a small percentage
( £ 10%). For a better interpretation of the results, this experiment also includes
other values of 1, perturbed from the baseline case of 6 hours. Table 5.9 gives a
description of this experiment and the range of values to be explored. In this case,
several values within the range for t were considered, whereas, for the IF,, only the

values of the lower and upper bound were included in the analysis.

Table 5.9: Description of sensitivity experiment 2

Parameter to Lower Baseline Upper Aim
be modified bound bound
. 3hr 6 hr 24 hr Analyse how the results of the
(-50%) (+200%) baseline scenario change as the
assumed forecast quality
P 0.77 0.85 94 assigned to the lead time
’ (-10%) (+10%) changes.

The results of this sensitivity experiment are described in Figure 5.12 for the FTC
and in Figure 5.13 for the FPC. These figures show how the values of POD and
FAR associated with the baseline lead time t (6hr) change when modifying IF, and
the lead time 1. The same diagram types used in the prior experiment are also used
in this analysis. In the quadrant plots, points on the solid blue line are skill scores
computed by considering the baseline value of 1P, (.85), points on the solid grey
line are those computed by considering the lower bound of 1B, (.77), and points on
the solid green line are those computed based on the upper bound of /P, (.94), all
for different values of 1. The black circle in Figure 5.12 and Figure 5.13 (6hr lead
times) provides a reference point for showing how the results of the baseline
scenario for the FTC and FPC (Table 5.7), respectively, change when modifying

the value IP,.

The upper plots in Figure 5.12 and Figure 5.13 show the results based on the
deterministic decision rule DFDR for the FTC and FPC, respectively. Only the
baseline lead time is considered here, and, as one can see, the results are very

sensitive to changes in IF,. For the upper bound value of IF,, the values of POD
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and FAR are improved considerably (higher values and lower values, respectively).
For the lower bound value, they worsen to a lesser degree, but the change is still
considerable. The same behaviour can be seen in the probabilistic forecast-based
decisions, PTDR (bottom plots in Figure 5.12) and PDR (bottom plots Figure 5.13).
To have a broader view of this behaviour, the analysis included other lead times.
Note that this behaviour is the same if the baseline lead time would be 3hr (black
square); however, if it would be 24h (black cross), the sensitivity of IF, is reduced
considerably. This occurs in larger degree in the results based on probabilistic
forecast-based decisions, PTDR (bottom plots in Figure 5.12) and PDR (bottom
plots Figure 5.13). These results bring an interesting conclusion; small
improvements in the forecast quality (represented in this work as an increase of
10% of the value of 1P, (Table 5.9) ) improve considerably the reliability of FEWS
whose forecast quality is relatively good, the same benefits cannot be seen in FEWS
whose forecast quality is relatively bad. Systems with good or bad forecast quality
are presented in Figure 5.12 and Figure 5.13 as the points with small or long lead
times whose values of p,,; is relatively high and low according to the lead time-

correlation function shown in Figure 4.14, respectively.

The quadrant plots depicted in Figure 5.12 and Figure 5.13 also show further
interesting points. Note that for the upper bound value of IF,, more points are
moved to the upper left quadrant which should be the target quadrant for a FEWS;
this occurs for the deterministic and probabilistic scenarios for lead time beyond
the assumed catchment lag L (6 hr). This shows how FEWSs improving the forecast
quality can extend the lead time and, at the same time, have levels of POD and FAR
that are operational useful. Furthermore, the quadrant plots for the probabilistic
results (Figure 5.12d and Figure 5.13d) show different behaviour of the POD and
FAR values for the FEWS with high correlation (upper bound value of IF,). The
results show that the probabilistic decision rules tends to decrease the FAR value
until a given level of correlation p,5. This correlation value can be obtained by
analysing the correlation associated with the lead time at which the FAR value start
to increase. For the PTDR (Figure 5.12d) and PDR (Figure 5.13d), it occurs
between a lead time of 6 and 9 hrs. According to the correlation-lead time function

and the IF, of this case (1F,=0.94), the p,;, values associated with these lead times
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are 0.94 and 0.85, respectively. The level of correlation p,y until which the

probabilistic results decrease the FAR value fall in this range.

d

0.75-
i
<
[N
S 0.50-
)
(@]
a

0.25 -

5 10 15 20 25
Lead time t
= . P -
*

0.75 .
m »
< *
. .
(@] ]

L 3
8 0.501 .
D_ >
*
*
*
0.25 -
5 10 15 20 25
Lead time t
:’F’p
- BS LB UB = POD
== FAR

POD

n |
0.81 Y |
|
\n :
0.6 |
:'g
0.41 B
X
0.2 0.4 06
FAR
1.0 ! ﬁ
o lm i /
. 1
0.8- r{i.
1
0.7 X
1
0.6 !
1
05+ -=======-=-= : ———————————
0.25 0.50 0.75
FAR
W3 A9 O 15+ 21
Lead times
¢ 12 A 18 X 24

Figure 5.12: Results of the sensitivity experiment 2 based on the flooding threshold-based
criterion FTC
Figures a and ¢ shows FAR and POD results for different lead times T based on the DFDR and PTDR
and different values of IF,, respectively. The values of these figures are summarised in the FAR-

POD curves shown in b and d, respectively.

POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (FTC) of y,, BS: baseline value of
IF,, LB: the lower bound value of /P, considered in the sensitivity analysis, UB: the upper bound value of IP, considered

in the sensitivity analysis. FTC: flooding threshold-based criterion
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Figure 5.13: Results of the sensitivity experiment 2 based on the floodplain property-based
criterion FPC
Figures a and ¢ shows FAR and POD results for different lead times t based on the DFDR and PDR
and different values of IF,, respectively. The values of these figures are summarised in the FAR-

POD curves shown in b and d, respectively.

POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule , PDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y,,, BS: baseline value of
IF,, LB: the lower bound value of IP, considered in the sensitivity analysis, UB: the upper bound value of /F, considered
in the sensitivity analysis. FPC: floodplain property-based criterion.

5.7.2.3 Sensitivity experiment 3

The sensitivity experiments 1 and 2 analysed the sensitivity of 1P, and p,5 with
respect to the baseline results. These experiments, in essence, explored how the

forecast quality can affect flood warning performance and assumed that the
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moments of y are the same for each condition analysed. This last experiment
assumes the opposite, i.e., IP, and p,,; are assumed to be fixed values, and two
moments of § (uy and 03%) that also control the forecast quality are perturbed one

at a time. The upper and lower bounds for the perturbations are shown in Table
5.10. The impacts of the perturbations on the marginal distribution of the forecasts

relative to that of the observed values are shown schematically in Figure 5.14.

Table 5.10: Description of sensitivity experiment 3

Parameter to Lower Baseline Upper Aim
be modified bound bound
0.36 0.48 0.6 o
Hy (-25%) : (+25%) Analyse the bias in the
mean and variance for the
o2 0.10 0.20 0.30 baseline case
y (-50%) ' (+50%)
a) b)
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Figure 5.14: lllustration of how the marginal distribution of the forecast is perturbed in
Experiment 3
The left and right upper and diagrams illustrate how the variations to u; and a}% perturbs the

marginal distribution of § with respect to the marginal distribution of y, respectively.

It is well known that most forecasting models suffer from biases in the mean and
variance, so the aim here is to provide insight into the impacts of these biases on
POD and FAR for the deterministic and probabilistic forecasting cases. While a

bias in the mean can be corrected, it is much less obvious what to do about a bias
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in the variance. For all models which are fitted using least squares, there will be a
loss of variance, expressed by the Nash-Sutcliffe Efficiency (NSE). In the case of
forecasts of peak levels, a value of NSE = 0.80 implies that there is a 20% loss of
variance in the forecasts, so the experiment conducted here investigates the impact
of this on POD and FAR, as well as an increase in variance relative to the baseline

case.

The upper and lower bounds for perturbations to the mean and variance of y are

given in Table 5.10.

Bias in the mean

Figure 5.15 shows the results of the sensitivity experiment with the forecast mean
for the DFDR (Figure 5.15a and b) and PTDR and PDR (Figure 5.15c and d) based
on the FTC and FPC criteria. The immediate impression gained from Figure 5.15
is that there is strong sensitivity for the deterministic case (Figures 5.15a and b)
while there is weak sensitivity for the probabilistic case (Figures 5.15c¢ and d). The

results are now analysed in this order.

a) Deterministic forecasts

FTC Criterion: A negative bias makes the values of y lower than the values of y.
It reduces the number of hits and false alarms and increases the misses, and
therefore reduces the POD and FAR values (Figure 5.15 and Table 5.11). Positive
bias produces the contrary effect, i.e., it makes the values of y greater than the

values of y and makes the POD and FAR values increase.

FPC Criterion: To recapitulate, in the FPC case, a hit represents a flooded house
that was warned, a miss represents a flooded house that was not warned, and a false
alarm represents a house that was warned and not flooded. The FPC results are
different from the FTC results because FPC considers, apart from the misses and
false alarms produced due to “wrong decisions” (misses and false alarms in the
FTC), “additional” misses or false alarms existing after a “good” decision, i.e.,
when a warning in the at-risk community preceded a flood, but the event magnitude

was incorrectly forecast (considered a hit in the FTC).

The results show that, for the FPC-based POD, the greater the negative bias of the

mean, the lower the weight of misses due to “wrong decisions” (misses in the FTC)
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in this metric. In other words, the negative impact of the ‘“additional” misses
considered in the FPC decreases as the negative bias of the mean increases. Figure
5.15a shows that there is a point when FPC-based POD equals FTC-based POD,
which means that the negative impact of the “additional” misses on the FPC-based
POD is negligible. The FPC-based FAR shows different behaviour. The negative
impact of the “additional” false alarms considered in the FPC increases as the

negative bias of the mean increases.

When there is a positive bias, the opposite effect occurs. The negative impact of the
“additional” misses considered in the FPC increases as the positive bias of the mean
increases. In addition, the negative impact of the “additional” false alarms
considered in the FPC decreases as the positive bias of the mean increases. Figure
5.15a shows that there is a point when FPC-based FAR equals FTC-based FAR,
which means that the negative impact of the “additional” false alarms on the FPC-

based FAR is negligible.
a) Probabilistic Forecasts

FTC Criterion: As already observed, the POD and FAR results are largely
insensitive to perturbations in the mean. To understand this result, it is necessary to
consider what is happening to the bivariate distribution of (y, ¥) and the predictive
density f (y|¥). Figure 5.16 shows plots of the bivariate distributions corresponding
to the lower bound (Figure 5.16a) and the upper bound (Figure 5.16b) perturbations.
The baseline case is also shown in the plots. The predictive density for a given value
of y is obtained by slicing the bivariate distribution in the vertical, as shown in
Figure 5.8. The mean of the predictive density is ¥, and once that is defined, the
predictive density is controlled by the variability of y, but this, and the marginal
distribution of y remain unchanged in this experiment. Figure 5.16 illustrates this
graphically where the bivariate plots for the perturbations shift left or right for the
negative and positive perturbations, respectively. This can be explained further by
considering the expression for the mean of the predictive density in the Normal

case, which is reproduced here from equation (Eg. 4.52) as

o
Uxiz = Uz T Pﬁ [In(%) — us]

zZ
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Figure 5.15: Results of the sensitivity experiment for p; for the flooding threshold-based and
floodplain property-based criterion, FTC and FPC, respectively, based on the deterministic

rule DFDR, and probabilistic rules PTDR and PDR.
Figure a shows FAR and POD results for different variations of u; based on the DFDR, whereas
Figure c shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for the
DFDR and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The values

of these figures are summarised in the FAR-POD curves shown in b and d, respectively.

POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR: probabilistic rule
based on a PT and PE of y,,, FTC: flooding threshold-based criterion, FPC: floodplain property based criterion.
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Table 5.11: Contingency table used to build the plots of POD and FAR in Figure 5.15
h, m, f, cn averaged over 30 replications.

Variation . FTC FPC FTC FPC
of 115 PT Decision
Y h m f cn h m f POD FAR POD FAR
-0.25 DFDR 667.25 591.05 142.25 8599.5 146660 135444 64076 0.53 0.18 0.52 0.30
-0.15 DFDR 742.4 510.7 221.55 8525.4 154851 126050 80479 0.59 0.23 0.55 0.34
-0.1 DFDR 782.15 464.6 275.55 8477.7 158075 119941 91266 0.63 0.26 0.57 0.37
-0.05 DFDR 817.3 4415 334.2 8407 167184 117329 101036 0.65 0.29 0.59 0.38
0 DFDR 869.35 386.05 395.8 8348.8 171716 110644 112030 0.70 0.31 0.61 0.40
0.05 DFDR 886.2 353.1 465.4 8295.3 173886 104115 122879 0.72 0.34 0.62 0.41
0.1 DFDR 927.6 323.6 531.35 8217.5 176779 101010 134280 0.74 0.36 0.64 0.43
0.15 DFDR 966.3 283.7 622.6 8127.4 185704 96093 144924 0.77 0.39 0.66 0.44
0.25 DFDR 1029.7 223.75 821.9 7924.7 195418 84666 180995 0.82 0.44 0.70 0.48
-0.25 0.63 PTDR 1012.9 245.45 623.7 8118 0.80 0.38
-0.15 0.63 PTDR 1007.7 245.4 674.05 8072.9 0.80 0.39
-0.1 0.62 PTDR 1024.4 222.35 762.4 7990.9 0.82 0.42
-0.05 0.61 PTDR 1052.7 206.1 845.95 7895.3 0.84 0.44
0 0.63 PTDR 1024.4 231.05 751.4 7993.2 0.82 0.41
0.05 0.63 PTDR 1004.9 234.4 770.85 7989.9 0.82 0.43
0.1 0.63 PTDR 1027.1 224.15 801.75 7947.1 0.82 0.43
0.15 0.63 PTDR 1003.8 246.2 747.75 8002.3 0.80 0.42
0.25 0.64 PTDR 989.65 263.75 691.45 8055.2 0.79 0.40
-0.25 0.60 PDR 1076.2 182.1 856.95 7884.8 216502 65603 219893 0.77 0.49
-0.15 0.59 PDR 1088.5 164.65 992.35 7754.6 219574 61327 257640 0.78 0.53
-0.1 0.58 PDR 1105.8 140.95 1098.9 7654.4 222747 55269 291396 0.80 0.56
-0.05 0.58 PDR 1104.3 154.5 1107 7634.2 224665 59848 291191 0.79 0.55
0 0.59 PDR 1100.2 155.2 1050.4 7694.2 221480 60880 273767 0.79 0.55
0.05 0.57 PDR 1100.7 138.6 1218.1 7542.6 225803 52199 323607 0.81 0.58
0.1 0.58 PDR 1103.8 147.4 1139.4 7609.5 220750 57039 302536 0.79 0.57
0.15 0.58 PDR 1099.4 150.65 1140.3 7609.7 223162 58634 294506 0.79 0.56
0.25 0.57 PDR 1116.5 136.9 1237.4 7509.2 228067 52017 336869 0.81 0.58
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So for a given X (recall that £ = (¥ - ¥,) and 2 = [n(X), the mean of the predictive

density will be shifted up or down relative to u, by the second term in brackets on

the rhs, scaled by p % which is a constant in this experiment. The mean of this term

will be zero across all the forecasts considered, which means that the optimal
probabilistic threshold PT and POD and FAR will not change as i, and gy change,
bearing in mind that the conditional mean in the Normal space is related to the

mean in the real space (Table 4.1) as:

Uylp = yo + exp(“z|2 + 0-5022|2)
The minor fluctuations shown in Figure 5.15 are due to sampling variability.

As a consequence of this lack of sensitivity, the optimal POD and FAR values for
all the perturbations cluster closely around the baseline case in the POD-FAR plot,
with all POD values around 0.8 and FAR values around 0.4. This is in contrast to
the deterministic forecast case where POD degrades towards 0.5 for the lower
bound, but on the other hand, POD increases to just above 0.8 at the upper bound,
with FAR tending towards 0.5. Therefore, probabilistic forecasting can be seen to
be robust to biases in the mean by maintaining stability in POD and FAR, while
this is not the case for deterministic forecasting. However, the results obtained here
suggest that there might be merit in increasing the mean of ¥ to be greater than that

of y in deterministic forecasting models to get higher values of POD.

FPC Criterion: the results for this criterion mimic those for the FTC case in terms
of lack of sensitivity, with POD being slightly lower than for the FTC case, but with
much higher values of FAR, thus placing nearly all the values of POD and FAR in
a cluster in the upper right quadrant (POD>0.5,FAR>0.5). Therefore, probabilistic
forecasting is also robust to biases in the mean of ¥ based on the FPC criterion,
while deterministic forecasting is not. However, the deterministic results suggest
that increasing the mean of y relative to that of y can lead to higher values of POD,

but with increasing FAR.
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Figure 5.16: Pairs (y,y) for the baseline scenario and for the cases of the lower (a) and upper
(b) bounds of the sensitivity experiment of uy

These bivariate plots represent one replication of 10,000 values of the thirty used to build Figure

5.15

BS: Baseline scenario.

Bias in the variance

Figure 5.17 shows the results of the sensitivity experiment with the forecast
variance for the DFDR (Figure 5.17a and Figure 5.17b) and PTDR and PDR (Figure
5.17c and Figure 5.17d) based on the FTC and FPC criteria. The values of this
Figure are described in Table 5.12. The immediate impression gained from Figure
5.17 is that there is strong sensitivity for the deterministic case (Figure 5.17 and b)
while there is very weak sensitivity for the probabilistic case (Figure 5.17c and d).

The results are now analysed in this order.
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a) Deterministic forecasts

FTC and FPC Criteria: The results in Figure 5.17a show that, for the FPC-based
POD, the greater the negative bias in the variance, the greater the weight of misses
after “good” decisions (hits in the FTC) on this metric. In other words, the negative
impact of “additional misses” considered in the FPC case increases as the negative
bias in the variance increases (Figure 5.17a). The FPC-based FAR, however, shows
different behaviour, i.e., the negative impact of “additional false alarms” considered
in the FPC decreases as the negative bias in the variance increases (Figure 5.17a).
Figure 5.17a also shows that there is a point when FPC-based FAR equals FTC-
based FAR, which means that the negative impact of the “additional” false alarms

on the FPC-based FAR is negligible.

When there is a positive bias in the variance, the opposite effect occurs. The
negative impact of the “additional” misses considered in the FPC decreases as the
positive bias increases. Figure 5.17a shows that there is a point when FPC-based
POD equals FTC-based POD, which means that the negative impact of the
“additional” misses on the FPC-based POD is negligible. The FPC-based FAR
shows different behaviour. The negative impact of “additional false alarms”
considered in the FPC increases as the positive bias in the variance increases
(Figure 5.17a).

The POD-FAR plot in Figure 5.17b shows again that the FPC plot is below that of
the FTC, reflecting the more demanding FPC criterion. In the FPC case, POD and
FAR show a much wider range of variation than FTC, with a negative bias in the
variance resulting in values in the lower left quadrant. On the other hand, a positive
bias increases the POD value towards 0.7, but the FAR value also increases towards
0.5.

A comparison of Figure 5.17b with Figure 5.15b shows that in the FTC case, there
is higher sensitivity to a bias in the mean than for FPC, while the opposite is the

case for bias in the variance.
a) Probabilistic Forecasts

FTC Criterion: As already observed, the POD and FAR results are largely
insensitive to perturbations in the variance for both the FTC and FPC criteria. To
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understand this result, it is necessary, as in the case of the mean, to consider what
is happening to the bivariate distribution of (y, y) and the predictive density f (y|9).
Figure 5.18 shows plots of the bivariate distributions corresponding to the lower
bound (Figure 5.18a) and the upper bound (Figure 5.18b) perturbations. The
baseline case is also shown in the plots. The predictive density for a given value of
¥ is obtained by slicing the bivariate distribution in the vertical, as shown in Figure
5.8. The mean of the predictive density is ¥, and once that is defined, the predictive
density is largely controlled by the variability of y, but this, and the marginal
distribution of y remain unchanged in this experiment. Figure 5.18 illustrates this
graphically where the bivariate plots for the perturbations contract and expand
along the x-axis for the negative and positive perturbations, respectively. This can
be explained further by considering the expression for the variance of the predictive
density in the Normal space which is reproduced here from equation (4.53) as

Oxjz = 074/ 1 — p?

So the variance of the predictive density in the Normal space is uniquely controlled
by the variance of z, as the correlation p is unchanged in this experiment. This
means that the optimal probabilistic threshold PT and POD and FAR will not

change as o and ay3 change, bearing in mind that the conditional variance in the

Normal space is related to that in the real space (Table 4.1) as:
oyy = exp(o]j; + 2uy) [exp(o7;) — 1],
and that p, is unchanged for this experiment.
The minor fluctuations shown in Figure 5.17 are due to sampling variability.

As a consequence of this lack of sensitivity, the optimal POD and FAR values for
all the perturbations cluster closely around the baseline case in the POD-FAR plot,
with all POD values just above 0.8 and FAR values around 0.4. This is in contrast
to the deterministic forecast case where POD degrades towards 0.6 for the lower
bound and to just above 0.7 at the upper bound, with FAR tending towards 0.3.
Therefore, as in the case of the mean, probabilistic forecasting can be seen to be
robust to bias in the variance by maintaining stability in POD and FAR, while this
is not the case for deterministic forecasting. However, the results obtained here

suggest that there might be some merit in increasing the variance of y to be equal
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to or greater than that of y in deterministic forecasting models to get higher values
of POD.
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Figure 5.17: Results of the sensitivity experiment for cr; for the flooding threshold-based and
floodplain property-based criterion, FTC and FPC, respectively, based on the deterministic
rule DFDR, and probabilistic rules PTDR and PDR.

Figures a shows POD and FAR results for different variations of 092 based on the DFDR, whereas
Figure ¢ shows these values for the PTDR and PDR. FTC-based results (blue line) are shown for
the DFDR and PTDR, and FPC-based results (grey line) are shown for the DFDR and PDR. The

values of these figures are summarised in the POD-FAR curves shown in b and d, respectively.
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based
decision rule, PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR: probabilistic rule
based on a PT and PE of y,,, FTC: flooding threshold-based criterion, FPC: floodplain property based criterion.
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Table 5.12: Contingency table used to build the plots of POD and FAR in Figure 5.17
h, m, f, cn averaged over 30 replications.

Variation
of . FTC FPC FTC FPC
PT Decision
H m f Cn h m f POD FAR POD FAR
-0.5 DFDR 748.85 516.85 | 243.8 | 8490.5 111581 171468 | 33933 0.59 0.246 0.39 0.23
-0.25 DFDR 827.2 423.95 | 340.45 | 8408.4 151198 132433 | 74061 0.66 0.291 0.53 0.33
-0.15 DFDR 834.2 4175 | 364.3 8384 155661 124191 | 88184 0.67 0.3035 0.56 0.36
-0.05 DFDR 849.4 402.35 | 377.7 | 8370.6 169254 115800 | 103354 0.68 0.3085 0.59 0.38
0 DFDR 860.75 388.3 | 393.15 | 8357.8 166485 110574 | 111090 0.69 0.314 0.60 0.40
0.05 DFDR 868.55 387.4 | 400.7 | 8343.4 174652 107950 | 119561 0.69 0.3145 0.62 0.41
0.15 DFDR 872.65 379.7 | 406.4 | 8341.3 180153 103605 | 129422 0.69 0.3185 0.63 0.42
0.25 DFDR 886.35 376.35 | 419.4 | 8317.9 187547 96908 | 142766 0.70 0.3205 0.66 0.43
0.5 DFDR 900.85 346.4 | 4345 | 8318.3 192498 85472 | 169217 0.72 0.325 0.69 0.47
-0.5 0.63 PTDR 1022.6 2431 | 7229 | 8011.4 0.81 0.40
-0.25 0.63 PTDR 1011.6 239.6 | 735.65 | 8013.2 0.81 0.41
-0.15 0.63 PTDR 1027 224,75 | 791.25 | 7957.1 0.82 0.43
-0.05 0.63 PTDR 1016.4 235.35 | 770.15 | 7978.1 0.81 0.42
0 0.63 PTDR 1021.2 2279 | 751.4 | 7999.6 0.82 0.42
0.05 0.63 PTDR 1012.5 2435 | 715.05 | 8029 0.81 0.41
0.15 0.63 PTDR 1013.7 238.7 | 709.5 | 8038.2 0.81 0.40
0.25 0.62 PTDR 1040.2 2225 | 775.85 | 7961.5 0.82 0.42
0.5 0.63 PTDR 1014.5 232.8 | 684.75 | 8068 0.81 0.40
-0.5 0.58 PDR 1116.5 149.25 | 1098.9 | 7635.4 225300 57748 | 288296 0.80 0.55
-0.25 0.60 PDR 1081.3 169.85 | 1004.7 | 7744.2 218747 64885 | 258115 0.78 0.53
-0.15 0.58 PDR 1108.6 143.1 | 1144.9 | 7603.4 223263 56590 | 299956 0.80 0.57
-0.05 0.59 PDR 1089.2 162.55 | 1065.6 | 7682.7 222940 62114 | 276753 0.78 0.54
0 0.58 PDR 1109.2 139.85 | 1150.7 | 7600.3 222143 54916 | 306534 0.80 0.57
0.05 0.58 PDR 1112.3 143.65 | 1138.7 | 7605.4 225486 57115 | 302658 0.80 0.56
0.15 0.59 PDR 1087.1 165.3 | 1040.5 | 7707.2 218713 65045 | 268172 0.78 0.53
0.25 0.59 PDR 1097.7 165.05 | 1018 | 7719.4 222144 62310 | 262491 0.78 0.53
0.5 0.58 PDR 1109 138.25 | 1086.3 | 7666.5 223423 54547 | 285619 0.80 0.55
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FPC Criterion: The results for this criterion mimic those for the FTC case in terms
of lack of sensitivity, with POD being slightly lower than for the FTC case, but with
much higher values of FAR, thus placing nearly all the values of POD and FAR in
a cluster in the upper right quadrant (POD>0.5,FAR>0.5). Therefore, probabilistic
forecasting is also robust to a bias in the variance of y based on the FPC criterion,
while deterministic forecasting is not. In particular, the POD values degrade
substantially towards the lower bound, suggesting that increasing the variance of y
to be equal to or greater than that of y can lead to higher values of POD, but with

increasing FAR.
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Figure 5.18: Pairs (y,y) for the baseline scenario and for the cases of the lower (a) and upper
(b) bounds of the sensitivity experiment of a%
These bivariate plots represent one replication of 10,000 values of the thirty used to build Figure

5.17
BS: Baseline scenario.
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5.7.2.4 Relevance to the case of Morpeth flooding

The baseline scenario is based on the statistics of observed peak water levels
derived for the Mitford gauging station on the River Wansbeck which is adjacent
to Morpeth (Section 4.5.2). However, it was intended that the baseline should be
generic and not be viewed as particular to a FEWS system for any specific location.
However, by modifying the SoP from a 5-year to a 10-year flood, this reflects the
Morpeth case more accurately and allows an assessment of what level of correlation
between forecast and observed peak levels might be needed to provide a FEWS
with a medium to high warning standard, as defined in section 5.7.2.1 above for
POD and FAR. Moreover, it allows the effect of increasing the SoP on POD and
FAR to be assessed.

Figure 5.19 shows the effect of an increase in the SoP from 5 to 10 years on the
behaviour of POD and FAR; this figure is directly comparable to Figure 5.9 for the
baseline case. As the correlation between the forecast and observed values will
decrease as a higher threshold (SoP) is applied, the overall levels of POD drop for
the FTC criterion, but interestingly, the POD-FAR curve in Figure 5.19c for the
FPC criterion is closer to that for the FTC criterion than for the baseline case (Figure
5.9¢). This suggests that the results for FPC are less affected than FTC for the SoP
of 10 years.

Table 5.13: Optimal values of POD and FAR for the three cases described by Figures 5.9,

5.19 and 5.20
Case Prob. POD | FAR | POD-FAR | DECISION |~ iierion
threshold rule
- 0.68 0.32 0.36 FTC
DFDR
Baseline - 0.60 0.40 0.20 FPC
(Figure 5.9) 0.62 0.83 0.44 0.39 PTDR FTC
0.58 0.80 0.57 0.23 PDR FPC
- 0.63 0.37 0.26 FTC
Morfeth case DEDR
(SoP=10 years, ; 0.58 0.42 0.16 FPC
IP, = 0.85)
0.61 0.78 0.48 0.30 PTDR FTC
(Figure 5.19) 0.55 0.82 0.63 0.19 PDR FPC
Morpeth case - 0.76 0.24 052 DFDR FTC
(SoP=10 years, ; 0.72 0.27 0.45 DFDR FPC
IP, = 0.94)
0.60 0.80 0.27 053 PTDR FTC
(Figure 5.20) 0.58 0.77 0.32 0.45 PDR FPC
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Table 5.13 gives the optimal values of POD and FAR that are shown graphically in
Figures 5.19a and 5.19b; for probabilistic forecasting, they are POD = 0.78 and
FAR 0.48 (FTC) and POD = 0.82 and FAR = 0.63 (FPC). The values of FAR are
too high to be classified in the Medium Performance category, so a further
experiment was performed in which the /P, value (correlation for a lead time of 6
hours) was increased by 10% to 0.94. The corresponding metrics are POD = 0.80
and FAR 0.27 (FTC) and POD = 0.77 and FAR = 0.32 (FPC), showing significant
reductions in FAR, and placing the performance in the Medium to High category.
This would require a model with a high level of performance in forecasting peak

water levels.

Overall, improving by 10% the assumed forecast performance of Morpeth case
(expressed as 1P,=0.94 and no biases in the mean and variance), the reliability of
flood warning improves significantly under both the deterministic and probabilistic
scenarios (Table 5.13). The results of experiment 2 show that this significant
improvement occurs only in FEWSs with relatively good forecast performance; the

assumed forecast performance of the Morpeth case falls in this category.

The advantage of using probabilistic forecasting is more noticeable in FEWS with
considerable forecast uncertainty. If one assumes that an optimal FEWS is obtained
by optimizing the difference between POD and FAR, Table 5.13 shows that when
the forecast performance of a FEWS is very good (expressed as 1F,=0.94 and no
biases in the mean and variance), the reliability of flood warnings under the

deterministic and probabilistic scenario is practically the same.
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Figure 5.19: Analysis of the performance of the baseline FEWS for the flooding threshold-
based and floodplain property-based criterion, FTC and FPC, respectively, by assuming a
standard of protection SoP of 10 years
This figure shows the results one would obtain by perturbing the baseline case (Figure 5.9) by

assuming an SoP of 10 years.
POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based

decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR:
probabilistic rule based on a PT and the PE of y,,.
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Figure 5.20: Analysis of the performance of the baseline FEWS for the flooding threshold-
based and floodplain-property based, FTC and FPC, respectively, by assuming a standard
of protection SoP of 10 years and IP,=0.94 (correlation value to the catchment lag L).
This figure shows the results one would obtain by perturbing the baseline case (Figure 5.9) by

assuming an SoP of 10 years and /F,=0.94.

POD: Probability of detection; FAR: false alarm ratio; PT: probabilistic threshold, DFDR: deterministic forecast-based

decision rule (DFDR), PTDR: probabilistic rule based on a PT and the probability of exceedance (PE) of y;, PDR:
probabilistic rule based on a PT and the PE of y,,,.
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5.8 Main Findings

A threshold-based approach has been used as a warning criterion, where
deterministic and probabilistic decision rules were used to simulate them. The
probabilistic-based decision rule PDR used to simulate FEWSs with real-time flood
maps is novel. This rule uses a warning level y,, derived from f(y|y) to make the
warning decision, where 3, is defined by a probabilistic threshold PT, which has
to be optimised based on a pre-defined criterion. The PDR was used because FEWS
based on real-time flood maps must use a magnitude’s prediction of the potential
flood to generate them. Impact curves defining the number of affected houses can
be used for exploring the flood warning’s reliability in terms of affected houses (the
FPC). An impact curve can be built with few flood events, and its use exploits the
process done by inundation models well and contributes to the integrated
framework's versatility defining a FEWS.

It was analysed that the performance based on the FPC is lower than that obtained
based on the FTC. That difference was directly related to the uncertainty of the
flood magnitude, i.e., the difference between y and ¥, which defines the difference
between the warned and flooded properties. In this context, it was concluded that
the flood magnitude's uncertainty is an important factor influencing the flood
warning reliability of a FEWS.

The warning strategy is another important factor influencing the reliability of flood
warnings. This research showed that a deterministic-based warning strategy in the
FEWS produces sub-optimal decisions and that a probabilistic-based warning
strategy, where the forecast errors are acknowledged, can use an optimization
criterion to improve the reliability of flood warnings. In this research, the biggest
difference between POD and FAR was used as an optimization criterion. The results
showed that an optimal warning strategy based on this criterion tends to deliver
FAR values greater than the one one would obtain based on deterministic forecasts.
Thus, this strategy can be used when one wants to give more weight to the reduction
of missed events whose economic consequences, in terms of floods, are far greater
than those associated with false alarms. The forecasting lead time t was also
identified as important factor influencing the flood warning reliability. As expected,
flood warning reliability declines with lead time according to the performance

function used, which shows a faster decline in correlation for lead times greater
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than the catchment lag, reflecting the greater uncertainty resulting from QPFs. In
particular, probabilistic forecasting copes much better with the increasing
uncertainty than deterministic forecasting, where the POD values are much higher
for the probabilistic case but at the expense of higher FAR values. The SoP was a
factor impacting the reliability of the FEWS. As the correlation between the forecast
and observed values will decrease as a higher threshold SoP is applied, this flood
warning attribute decreases as the SoP increases.

The biases in the forecast mean and variance were also identified as important
factors influencing the flood warning reliability. Remarkable robustness to biases
in these two variates has been observed for probabilistic forecasting, which is a
consequence of using PU, which is based on the conditional density of y given 7y,
whereas deterministic forecasting shows high sensitivity. The results for the latter
case suggest that increasing the mean and variance of the forecasts relative to those

of the observed could improve reliability in this case (Figures 5.17a and b).

The correlation between the observed and forecast peak water levels has been
shown to be an important factor controlling flood warning reliability. The analysis
done in this Chapter (section 5.7.2.2) suggests that if the forecast performance is
mainly controlled by p,; (a bias in the mean or variance of the forecasts can also
affect performance), an improvement of 10% of this factor, in terms of flood
warning reliability, is more beneficial in FEWSs with relatively small than
considerable forecast uncertainty. Furthermore, some indicative results for the case
of a hypothetical Morpeth FEWS suggest that a correlation of 0.94 in peak
discharges would be needed to obtain POD and FAR values in the Medium to High

category for probabilistic forecasting.
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Chapter 6. Hydro-economic modelling of the benefits of flood

early warning systems (FEWS)

6.1 Introduction

In chapter 5, the generic framework was partially used to explore the performance
of a river flood early warning system (FEWS) in terms of reliability. The Monte
Carlo flood and forecast generator (MCFG), the flood warning-decision making
model (FWDC), and part of the response and impact component (RIC) were
considered to analyse this flood warning performance attribute based on two
performance criteria and considering deterministic- and probabilistic-based

warning decisions.

In this Chapter, the generic framework is employed fully to build a hydro-economic
expected damage (ED) model (Figure 6.1a) which is used to explore the
performance of an inundation forecasting-based FEWS in terms of both economic
effectiveness and reliability. The hydro-economic ED model is based on three
components: i) the MCFG that defines the univariate and bivariate probability of
the magnitude of flood threats, i.e., peak water levels (y) and their forecasts (), ii)
the FWDC that simulates warning decisions in the FEWS, and iii) the RIC that
simulates the ‘actual’ and forecast flood impact in the floodplain, considering the
flood extent and depth as the main variates measuring damage. These three linked
components are used to do a Monte Carlo (MC) flood risk analysis in the no
warning scenario (NWS), the perfect forecast scenario (PFS), and in the imperfect
forecast scenarios, i.e., the deterministic forecast scenario (DFS) and the
probabilistic forecast scenario (PrFS). This flood risk analysis provides a single
aggregated value of the relationship between flood threats in the at-risk community
and its economic consequences. That single value is the expected damage ED. In
the NWS and PFS, part of the MCFG and RIC is used, and the ED is estimated from
events generated from the probability distribution of y (Figure 6.1b and Figure
6.1c), whereas in the imperfect forecast scenarios (the DFS and PrFS), the three
components of the hydro-economic ED model are fully exploited, and the ED is
estimated from bivariate events generated from the joint distribution of y and y
(Figure 6.1d). The ED in each scenario is obtained based on damage functions and
the frequencies of that damage obtained from the MC results. Since the ED

associated with the with-warning scenarios includes the cost of the warning
141



response (C,,), the word ‘damage’ in these scenarios is defined as the net damage
that considers flood damage, mitigated and not mitigated by a proactive action, and
C,,. The net damage associated with forecast uncertainty due to ‘wrong’ warning
decisions (false alarms and misses) and ‘good’ warning decisions (hits) are
considered in the analysis (this net damage is present in hits due to the difference

between the warned and flooded houses).

Since the hydro-economic ED model in the imperfect forecast scenarios simulates,
the warning decision and the resulting warned and flooded houses, it evaluates the
reliability of flood warnings in terms of the floodplain property-based criterion
(FPC) and the economic consequences. The reliability is evaluated in terms of the
probability of detection (POD) and false alarm ratio (FAR).

The ED values are used to estimate the economic effectiveness of a FEWS as:

ED,,, — ED,,
E,=—%_"""100 Eq. 6.1
W ED,, q

where E,, is the economic effectiveness of a FEWS, ED,,,, is the ED of the at-risk
community under the NWS, and ED,, is the ED of the at-risk community with the
warning service. Since the ED is the metric used in this work to define the economic
flood risk, The economic effectiveness E,,, in essence, represents the expected

economic benefits associated with a warning service relative to the NWS.

The hydro-economic ED model is, thus, used to gain an insight into the relationship
between the reliability (POD/FAR) and E,, of a FEWS , as these are different
measures of performance, and into the impact of the forecast uncertainty on its
economic benefits. That is done by evaluating the sensitivity of E,, to the main input

parameters and controlling factors through a one-at-time method.

This chapter is structured as follows. In section 6.2, the concept of net damage
associated with forecast uncertainty is explained. Then, from sections 6.3 to 6.6, the
hydro-economic ED model is introduced. Thus, in section 6.3, the metrics and
concepts used by the model to define the reliability and E,, of flood warnings are
explained. In section 6.4, each component of the hydro-economic ED model is
described. In section 6.5, the concept of flood risk and the basis of the MC flood

risk analysis is introduced. In section 6.6, the algorithms of the hydro-economic ED
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model to estimate the economic effectiveness E,, and reliability in terms of POD
and FAR, are introduced. Finally, in section 6.7 the results of the sensitivity

experiments are presented.
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Figure 6.1: lllustration of the MC framework to explore the reliability and economic
effectiveness of flood warnings.

The hydro-economic ED model has three main components (a) that are fully used only in the
imperfect forecast scenarios (d). In each scenario, the model estimates the economic consequences
within the full range of potential flood events in the at-risk community. The concept of expected
damage (ED) is then used to obtain a single aggregated value of these consequences in the no
warning scenario (b), perfect forecast scenario (c), and in an imperfect forecast scenario (d). The ED
values are then used to estimate the flood warning’s economic effectiveness as the ED reduction of
a forecasting scenario relative to the NWS. The flood warning reliability is estimated in terms of
POD and FAR based on warned and flooded houses
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6.2 Net damage associated with forecast uncertainty

As was explained in the introductory part of this Chapter, the economic
effectiveness E,, is evaluated in this work in terms of the expected economic
benefits of a FEWS, and it should, therefore, include the costs incurred by the
system. These costs should be somehow derived by considering the costs for setting
up, operating, and maintaining the system, and the cost of the warning response C,,
(per-event costs). All these costs, except C,,, can be considered ‘fixed’, and they
can be included in the analysis of the expected economic benefits by prorating them
through the economic lifespan of the system. The cost of the warning response C,,
is, on the other hand, a cost incurred every time a warning is issued and depends on
the magnitude of the forecast flooding and the lead time t. It considers the cost of
issuing a warning and any cost incurred in the dissemination process and by the
public taking action due to the flood warning (proactive action). This cost is affected
by the forecast uncertainty, and since this research is related to this topic, it is the

only cost included in the analysis of E,,,.

In an inundation-forecasting based FEWS, the warning decision is first made, and
then, the warning dissemination is done based on the forecast of the flood extent.
In this process, the number of houses warned (n}’4'e4) can be overestimated or
underestimated due to the forecast uncertainty. They are overestimated or
underestimated in the sense that the system warns more or fewer houses than it

should warn, i.e., nj/@med js higher or lower than the number of houses flooded

flooded

houses )» fespectively. A FEWS mitigates flood damage in an at-risk community

(n
through a proactive action that is driven by a flood warning. Therefore, the damage
pro

mitigated by the proactive action (D, ~) only occurs in flooded houses previously

warned.

The overestimation of n}’%"e? (Figure 6.2a) produces D2 and a necessary (C)
and/or unnecessary cost of the warning response (C%). CJ is the cost associated
with warning houses that were subsequently flooded, whereas C} is the cost
associated with warned properties that were not subsequently flooded. CY occurs
when 1) there was a “wrong” decision due to a warning that was issued, and a flood
did not occur in the at-risk community (false alarm) (Figure 6.2a2), or ii) there is a

‘good’ decision, and the magnitude of the forecast flooding was higher than the
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observed one (Figure 6.2al). A ‘good’ decision refers to a situation when a flood

in the at-risk community is preceded by a warning (hit). In the case of false alarms,

the following condition is fulfilled: n/'°°%? = o, pWarned 5 o and C,, = C%;

houses houses
whereas in the case of hits: nl/@rned > pfleoded o o ¢ — cu 4 cn and DP° >

houses
0 (Figure 6.2a).
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Figure 6.2: lllustration of the net damage associated with forecast uncertainty
Figure a and b illustrate the economic consequences of the four potential situations during the
operation of an imperfect FEWS. In these systems, the net damage associate with forecast
uncertainty (DF"° and C%) are present in misses (b2), false alarms (a2), and hits (al and b1) events.
Figure c illustrates the economic consequences in the PFS.
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The underestimation of nye? (Figure 6.2b) produces D% and C? and/or
damage not mitigated by the proactive action (DF"°). The latter damage occurs
when 1) there was a “wrong” decision due to a warning not being issued, and a flood
occurred in the at-risk community (miss) (Figure 6.2b2), or ii) there is a hit, and the

magnitude of the forecast flooding was lower than the observed one(Figure 6.2b1).

In the case of misses, the following condition is fulfilled: n/'°%%°¢ > o, pirarned —

0, DP" > 0; in the second case: n/'°%%¢¢ 5 pwarned - o pPTo 5 o pPTe 5 0

houses
and C,, = Cy; (Figure 6.2b).

Since Ci and DE™ occur when njr@rned = pflooded ywhich in turn, only occurs

when there is forecast uncertainty, this cost and damage are defined in this work as
the net damage associated with forecast uncertainty. When analysing the benefits
of a FEWS based on imperfect forecasts, this net damage should be considered. The
only scenario when this net damage is nil is the PFS. Under this scenario, there is

no forecast uncertainty, and n}*#'¢4 js neither overestimated nor underestimated,

i.e., nyarned = pflooded Tharefore, the economic consequences in this scenario are

associate with C and DP° (Figure 6.2c). Note that all these variables are a function
of the observed or forecasted depths of water causing damage which will be made
explicit later, but this dependence is excluded here for simplicity.

To the best of the author’s knowledge, a framework that analyses the economic
effectiveness of a FEWS in terms of the expected economic benefits by considering
the net damage associated with the forecast uncertainty in all possible situations
(Figure 6.2a and Figure 6.2b) has not been created before. Verkade and Werner
(2011) propose a framework to have an approximation of these benefits by
combining a hydro-economic model with the theory of relative economic value.

However, their framework has two main limiting assumptions:

v' The cost of the warning response is assumed to be independent of the
magnitude of the forecast flooding, and it is not estimated as a function of
this variate.

v' C¥and DE"° are only estimated as a result of misses and false alarms (Figure
6.2a2 and Figure 6.2b2). Their framework, therefore, negates the fact that
the net damage associated with the forecast uncertainty can also be present
in a hit event (Figure 6.2al and Figure 6.2b1).
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The hydro-economic ED model used in this chapter overcomes the assumptions
mentioned above. As was mentioned in the introductory part, it is based on a MC
simulation framework and can be used to gain insight into i) the estimation and
relationship of the economic effectiveness and reliability of a FEWS based on
inundation forecasting and ii) the effects of the predictive uncertainty on its
economic benefits. The hydro-economic ED model and the main results of this

analysis are shown in the following sections.
6.3 Analysis of the flood warning performance

The hydro-economic ED model evaluates the flood warning performance in terms
of economic effectiveness and reliability. The metrics used by the framework to
represent these two flood warning performance attributes are explained as follows.

6.3.1 Economic effectiveness

The economic effectiveness of a FEWS, E,,, in essence, represents the expected
economic benefits associated with a warning service and with a forecasting
scenario. It is defined in this work as the economic flood risk reduction relative to
the economic flood risk of the NWS (Eq. 6.1). For a totally ineffective FEWS, E,,
= 0, but a perfect FEWS will not yield a value of 1 as it can only mitigate a
proportion of the damage. The forecasting scenarios can be split into the perfect
case, PFS, and imperfect forecast scenarios, i.e., the DFS or PrFS. Since ED,, in
Eq. 6.1 includes C,,, this metric represents the expected net damage associated with
the warning scenario. Only if E,,>0 will the forecasts of a FEWS have value or

utility in the at-risk community.

Figure 6.3 illustrates the concept of ED for each scenario considered by the hydro-
economic ED model to estimate E,, through Eq. 6.1. In the NWS, a proactive action
is not conducted in the at-risk community; ED,, (Figure 6.3a), is, therefore,
obtained by integrating a damage function that represents the damage D2"°. In the
PFS, it is assumed that flood damage in the at-risk community is always mitigated
by the proactive action, and the net damage associated with forecast uncertainty is
nil; the ED of the PFS (EDfl’,f) (Figure 6.3b) is ,therefore, obtained by integrating

a damage function based on the depth of flooding with the frequency of flooding

that represents the net damage DE/which includes D" and €7 (Figure 6.2c). In
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the imperfect forecast scenarios, there is forecast uncertainty and, therefore,

flooded,
houses '

nwarned
houses

=n the ED of an imperfect scenario (EDvif) (Figure 6.3c) is,
therefore, obtained by integrating a bivariate damage function that represents the
net damage D‘f{ which includes all the economic consequences illustrated in Figure
6.2a and Figure 6.2b. In an imperfect forecast scenario, the net damage associated
with forecast uncertainty (C% and DF™) impact negatively on EDY by increasing
its value. Since this net damage is nil in the PFS (Figure 6.2c), the value EDv’f,f is
always lower than the values obtained based on an imperfect forecast scenario. That

also means that the value of E,, (Eq. 6.1) based on the PFS (E,’j’,f ) represents the
maximum economic benefits that can be achieved by the system; the economic

benefits of an imperfect forecast scenario, i.e., the DFS or PrFS, cannot overcome

EY’

a) No warning scenario b) Perfect forecast scenario

ED"'

c) Imperfect forecast Scenario

warned flooded | Hit l[?;‘??ﬁ;’e" < nggzg:g ) Miss False Alarm

:\nhouses > Mhouses )

c.2) f

c.3)

c.4)

Z/ﬁ Predicted flood extent

A\ Actual flood extent

< Floodplain

AW\ Residential property A Residential property(action taken) —  River
Figure 6.3: Illlustration of the estimation of ED for each scenario considered by the hydro-
economic ED model.

The ED is obtained by integrating a damage function that represents the damage DY™°, D?/ and
D,f;f in the NWS, PFS, and imperfect forecast scenario, respectively. The net damage Dﬁf includes

D™ and ¢ (Figure 6.2c), and D‘f{ includes all the economic consequences illustrated in Figure
6.2a and Figure 6.2b.
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6.3.2 Reliability

To estimate the ED in the imperfect forecast scenarios, one should represent, for
each potential flood in the at-risk community, the flood warning decision which,

for the case of an inundation map forecast, will be the number of houses warned,

nparned and the outcome will be the number of flooded houses, n/'°%%°?, with
that information, one can also evaluate the reliability of a FEWS in terms of whether
the warned properties were or were not subsequently flooded. This criterion was
called in Chapter 5 floodplain property-based criterion (FPC). Section 5.4.2
explains how the FPC defines hits, misses, and false alarms events in terms of
affected houses to evaluate the flood warning reliability, whereas section 5.5
explains how the metrics known as POD and FAR can be used to aggregate the
outcomes of the FPC into a single value to have a snap-shot of the reliability of the
FEWS. In essence, the FPC uses the POD and FAR to answer the following
questions: What is the probability of a flooded house being correctly warned? What
is the probability of a warned house being incorrectly warned? (Table 2.2). The
hydro-economic ED model uses these concepts to evaluate the reliability of the

inundation-forecasting based FEWS in the DFS and PrFS cases.
6.4 Main components of the hydro-economic ED model

The hydro-economic ED model has three main components: the MCFG, the
FWDC, and the RIC (Figure 6.1a). Each of them is introduced in the following

subsections.
6.4.1 The Monte Carlo flood and forecast generator (MCFG)

The hydro-economic ED model uses a MCFG to generate bivariate values of
observed peak water levels y and their forecasts y, where y defines the magnitude
of potential floods in the at-risk community. The MCFG uses a bivariate probability
distribution for this purpose. The adopted bivariate model in the MCFG was the
bivariate Lognormal distribution, and the bivariate simulation is done based on the
algorithm shown in section 4.4.4. The marginal distribution f(y) of the bivariate
distribution f (y, y) is used to represent the magnitude of the potential floods in the
at-risk community in the NWS and PFS. This component also uses a lead time-

performance function (Figure 4.14) to assign to a lead time t a value of p,5.
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6.4.2 The flood warning decision-making component (FWDC)

The flood warning decision-making component FWDC is used in the hydro-
economic ED model to simulate warning decisions in the DFS and PrFS. These
decisions are represented by decision rules and consider deterministic and
probabilistic forecasts, respectively. In the DFS, the deterministic forecast-based
flood-warning decision is represented by the decision rule DFDR explained in
section 5.6.1, which assumes that a warning is issued when ¥ is greater than the
flooding threshold (y;) of the at-risk community defined by the Standard of
Protection (SoP)(Figure 5.5b). In the PrFS, the probabilistic forecast-based flood
warning decision is represented by the decision rule PDR explained in section 5.6.2.
This rule uses a probabilistic threshold PT to define a warning level y,, from
f(y|y) at which the Warner should base his/her decisions, where PT, in essense,
represents the probability of exceedance of J,,. Then, the warning decision is based
on the direct comparison between 3, and the flooding threshold y; (Figure 5.6b).
In the hydro-economic model, it is assumed that, in the PDR case, the Warner acts
to increase E,, (decrease the flood risk) in the at-risk community. The aim is, thus,
to find an optimal probabilistic threshold (PT*) that fulfils this purpose. Note that
PT™ in this case will be different from that obtained in Chapter 5 which used the

maximum value of POD minus FAR as the optimization criterion
6.4.3 The response and impact component (RIC)

The response and impact component RIC is used by the hydro-economic ED model
to represent the flood damage in the floodplain without the warning service and net
flood damage with the warning service. Here, the impact is only measured in terms
of damage to house contents, and no attempt is made to represent psychological
damage to residents, or in the worst case, loss of life. These damages are represented
by this component through several expressions that depend on the variates
describing damage considered in this work (flood depth and extension). In this
section, the development of these equations and the rationality behind them are
presented. These equations are used to build the damage functions used to estimate
the ED of the scenarios shown in Figure 6.3. Before describing them, the section
starts by explaining how the damage variates needed to use these equations are

simulated in this component of the hydro-economic ED model.
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6.4.3.1 Simulation of observed and forecast floods

To represent the flood damage in the floodplain without and with the provision of
a FEWS, one must simulate the observed and forecast inundation in the at-risk
community. The damaging variates considered in this work are the flood depth and
extension. The RIC does not simulate these variates directly but simulates their

target information. The target information in such an analysis is i) nj/4ed and

flooded
nhouses

in this work through the impact curve-based method used in Chapter 5 (Figure 5.3).

and ii) the flood depth reached in each of them. The former is represented

To estimate the flood depth, the RIC assumes that the elevation of the floodplain
properties with respect to the ground is 0.25 m (Figure 6.4). It is also assumed that
the water surface elevation at a floodplain property is not significantly different
from the water surface elevation in the channel. In this case, the flood depth can be
estimated as the difference between the magnitude of the flooding and the bankfull
level (Ypankruu), ONCE the water level has overtopped the flooding threshold (yr)
defined by the SoP, and water spills into the floodplain. A small allowance is made
for the level of the property floors above y;, gk - Section 4.5.3 (Eq. 4.54) explains

how y; is computed based on the assumed SoP. The bankfull condition is assumed

in this work to be defined by a 2.5-year return period

T

1‘{ vid)

Figure 6.4: lllustration of the flood depth estimation in the RIC for an observed flood and its
forecast

The RIC assumes that the elevation of the floodplain properties with respect to the ground is 0.25

m. The figure illustrates the case when the observed peak level y and its forecast, represented by y

and y,, in the DFS and PrFS, respectively, overtop the flooding threshold y; defined by the standard

of protection (SoP).

Under these assumptions, the RIC simulates the target information of the observed

and forecast flood inundation through two basic steps:

v Step 1: Estimate nf/@m? and n/'°%2°? through the impact curve-based
method explained in section 5.3 (Figure 5.3). n}*@™ed js estimated based on

the variate on which the warning decision is based (v). In the DFS, v
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represents ¥ (Figure 5.5b), whereas, in the PrFS, v represents a warning
level y,, estimated from f(y|y) (Figure 5.6b).
v’ Step 2: Estimate the observed flood depth and its forecast as:

d =Y — Ypankfruu + 0.25) Eq.6.2

A

d=v-— (ybankfull + 025) Eq 6.3

where d and d is the observed flood depth and its forecast estimated as a
function of y and v, respectively.

By conducting the two steps mentioned above, the RIC simulates, for each observed

or forecast flooding event (defined as the values of y or v greater than y;),

warned ., flooded

nparned pl 90¢ee, d and d, which is the information needed to use the expressions

that represent the flood damage and net flood damage in the floodplain without and
with the flood warning service, respectively. They are described in the next

subsections.
6.4.3.2 The damage without the warning service

The flood damage in an at-risk community depends on the flooding characteristics
and the vulnerability (the lack of resistance to damaging forces), and exposure of
the floodplain assets. Without the warning service, this exposure and vulnerability
depend on the standard of protection, SoP, and the vulnerability and exposure of
the floodplain assets. In this scenario, the SoP (structural measures such as river
banks, flood dykes, and dams) reduces but does not eliminate the flood risk (Figure
6.4), and no proactive action is taken to reduce that residual flood risk because there
is no warning service. To represent the flood damage, the RIC considers only the
direct economic damage, and the floodplain assets considered are only the contents
of properties. An expression that represents the direct economic damage to these

contents for every flood in the at-risk community can be expressed by:

flooded
houses

DI(d)= ) i DE(dy) Eq.64
k=1

flooded

where DE"® and n] "¢

, as explained above, represent the damage in the
floodplain unmitigated by a proactive action (without the warning service) and the
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number of flooded houses, respectively, 9, is the monetary value of the content of
the flooded property k, Dg, expressed as a percentage, is the damage to this content
without warning service as a function of the flood depth, and dj, is the flood depth

at the flooded property k.

The number of flooded houses is expressed in Figure 5.7 as a function of y, and
therefore d in Eq. 6.2. This function assumes a gently varying terrain where the
number of flooded houses increases with y and therefore d. If the terrain in the
floodplain is complex because of variable topography, the estimation of D"°may
need hydraulic inundation modelling to represent d, at each flooded property.
However, this work is limited to the analysis of floodplains with gently varying
terrain, where d;, can be assumed to be the same in each flooded property and can
be considered as an average depth across the number of houses flooded (Figure 6.4).
In addition, if one assumes an average monetary value of the residential content in
each floodplain property, DF"°can be expressed by:

DP™(d) = 9D, (d)n/ 2% Eq. 6.5

houses

where 9 is the average monetary value of the residential content in the floodplain
properties, and D.(d), expressed as a percentage, is the damage to this content
without a proactive action as a function of the flood depth d in the floodplain
computed based on Eq. 6.2. The average monetary value ¥ is an input parameter of
the framework and the value of D.(d) is obtained from the family of damage curves
proposed by Carsell et al. (2004), which represent the percentage damage to the
residential content as a function of the mitigation time and flood depth (Figure 6.5).
In this thesis, it is assumed that the mitigation time is equal to the lead time t, and
D.(d) is represented by damage to the content when the (mitigation) lead time is
zero, i.e., DF=°. The assumptions made to estimate DF"° (d) through Eg. 6.5 reduce

considerably the computational resources required to estimate the flood damage.
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Figure 6.5: The residential content depth-percentage damage relationship with flood
mitigation time
Source: Carsell et al., (2004).
Eq. 6.5 is used by the hydro-economic ED model to represent the flood damage in
the NWS (Figure 6.3a) and to represent the flood damage of misses (Figure 6.2b2)

in the imperfect forecast scenarios.
6.4.3.3 The damage with the proactive action

A FEWS mitigates the residual risk in the at-risk community associated with an
SoP through the proactive action conducted in the warning response. The proactive
action can modify i) the exposure probability of persons or mobile items or ii) if the
lead time is long enough, the vulnerability of the structural assets through the
implementation of supplementary intervention measures, e.g., demountable
defences. The proactive action considered in the RIC has to do with moving and/or
evacuating the contents of the floodplain properties after a flood warning is issued.
Taking into account the same assumptions made to estimate DP"°(d) through Eq.
6.5, an expression that represents the potential damage avoided in the floodplain
when that proactive action is conducted can be defined by:

DE(d) = 9[D.(d) — DE(d)nflo0%ed Eq. 6.6

houses

where Dy (d) represents the potential damage avoided by the proactive action
conducted after a flood warning within a lead time t was issued and when there is

a flood depth d in the at-risk community, and DZ(d) is the percentage damage to
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residential contents after the proactive action has been conducted, which is obtained

from the functions shown in Figure 6.5.

D;(d) can be affected when householders i) do not heed the warning and act
effectively or ii) are involved in evacuation decisions when the flood is not shallow,
and their lives are at risk, and iii) are not notified in time. To account for this, D} (d)
is multiplied by an economic efficiency parameter a which ranges from 0 to 1 and
represents the uncertainty of the proactive action. It is analogue to those proposed
by Parker (1991) and Carsell et al. (2004), as it decreases the potential damage
avoided to obtain the value known as the actual flood damage avoided. This

avoidable damage can be expressed by:

DX(d) = aD}(d) Eq. 6.7

where a is an input parameter of the hydro-economic ED model and DZ(d)
represents the actual flood damage avoided by the proactive action conducted after

a flood warning with a lead time t was issued and a flood depth d occurred in the

flooded

houses or

at-risk community. According to Eq. 6.7, DZ(d) increases when d and n
T increases. Thus it represents well the damage saved by FEWSs, which is likely to
be greater for high than for low flood stages and increase as the lead time increases

(Carsell et al., 2004).

The flood damage in the floodplain mitigated by the proactive action can be

computed by subtracting DE(d) from D?"°(d)(Eq. 6.5).

DP"*(d) = D™ (d) — DZ(d) Eq. 6.8

where DP"°*(d) represents the flood damage in the floodplain mitigated by the
proactive action (moving and or evacuating the residential contents) conducted after
a flood warning with lead time t was issued. If DX"°(d) and DZ(d) are replaced in
Eq. 6.8 by Eq. 6.5 and Eq. 6.7 and Eq. 6.6, respectively, DE"*"(d) can be expressed
by:

DR (d) = 01 grsves (De(d) — alDc(d) — DI(A)]} Eq. 6.9

houses
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Eq. 6.9 is used by the hydro-economic ED model to represent the mitigated flood
damage in the at-risk community in the PFS case (Figure 6.3b) and to represent the
mitigated flood damage when n}’4red js gverestimated in a hit event (Figure
6.2al). The latter is possible because, in this situation, all the flooded houses are

warned.
6.4.3.4 The damage with and without the proactive action

The expressions used by the hydro-economic ED model to represent the flood
damage of most of the potential situations in an imperfect forecast scenario have
already been explained in the prior subsections. There is only one type of flood
damage associated with these potential situations whose equation has not been
described yet. It has to do with the representation of the flood damage when
nparned js ynderestimated in a hit event (Figure 6.2b1). In this case, the flood
damage has to be split into flood damage mitigated and not mitigated by the
proactive action, respectively, and can be described by:

Dg;rtz,r(d) — 19Dc(d)nflooded,nw + ﬁDg(d)nﬂOOdEd’W Eq 6.10

houses houses

ro,T

where D}f’m (d) represents the flood damage mitigated and unmitigated by the

proactive action in the at-risk community in a hit event when y<v, i.e. njyaned<

flooded
nhouses !

no warned, respectively. The other parameters have already been introduced above.

flooded,w
houses

flooded,nw

and nhouses

and n represent the flooded houses warned and

flooded,w__ warned and nflooded,nw_ flooded_ warned

Note that in this situation ny o, ...~ =Mhouses houses =Ny puses -~ Mhouses

(Figure 6.2b1).
6.4.3.5 The cost of the warning response

A flood warning system mitigates the residual risk associated with an SoP through
the warning response, which can only be made at a cost C,,. As was explained in
section 6.2, this cost refers to the cost of issuing a warning and any cost incurred in
the dissemination process and by the public taking action (proactive action). That
cost is driven by the forecast flood because it is the only information available when
the warning is issued. The cost of the warning response C,, is here assumed to be a
continuous variate proportional to the economic benefits (damage saved) of the

FEWS during a flood event. Since the avoidable damage in the at-risk community
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(Eq. 6.7), in essence, represents those economic benefits, the RIC uses D;(d) to

estimate C,,, in the PFS case as:

C3(d) = yDI(d) Eq. 6.11

where CJ, (d) is the cost of the warning response associated with a lead time 1, y iS
a parameter (0 <y < 1) used to represent C,,(d) as a proportion of D;(d). If D;(d)
is replaced in Eq. 6.11 by Eq. 6.7 and Eqg. 6.6, C%(d) can be expressed by:

CT(d) = yad[D,(d) — DI(d)]n] 0% Eq. 6.12

houses

The parameter y is an input parameter of the hydro-economic ED model, and it uses
Eq. 6.12 to represent C. (d) in the PFS case. Note that C,(d) in that equation is a

flooded
houses

therefore, C,(d) = C(d) (see Figure 6.2c to see the definition of C}(d)). That

means, in essence, that we are assuming perfect knowledge about the flooding

flooded

function of n because in the PFS it is assumed np&r7e?® = ny 2°°°% and,

characteristics. However, in the imperfect forecast scenarios, the only information

available when the warning is issued is its forecast. In this case, nj@rned -«

flooded
nhouses !

a function of v, i.e., y or ¥, for the DFS or PrFS, respectively, and then, it uses y

and the RIC first estimates the economic benefits of the potential flood as

to compute CZ(d) as a percentage of that benefits. This process is represented by

simply replacing in Eq. 6.12 n/'°°%°® and d by n¥%med and d, respectively, to
give:
Ciy(d) = yad[Dc(d) — DI (d)|nisise Eq. 6.13

where d, as was explained above, is computed through Eq. 6.3. Since €% (d) in Eq.
6.13 is proportional to n@ed the RIC model uses that expression to represent
Cn(d) and C%(d) in all possible conditions in an imperfect forecast scenario (see
Figure 6.2). Thus, in a false alarm event (Figure 6.2a2), CL (d) respresents C%(d).
When n}'@rned js gverestimated in a hit event (Figure 6.2al), CL(d) represents
Cr(d) + C¥(d). Finally, when ni¥4rned js ynderestimated in a hit event (Figure

6.2b1), CL(d) respresents C(d).
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Note that according to Eq. 6.12 and Eq. 6.13, €% (d) and CZ(d) in the perfect and
imperfect forecast scenario, respectively, increases as the affected houses and flood
depth and t increase. Therefore, these expressions represent the behaviour of the
cost of the warning response in FEWSs as the higher the level of damage, the higher
the spending needed to mitigate this damage. Furthermore, the cost of the warning
response may increase as the lead time increases (Verkade and Werner, 2011; Matte
etal., 2017).

6.4.3.6 The net damage with the perfect warning service (perfect forecast

scenario)

Flood damage in the floodplain with the warning service should include the
mitigated damage by the proactive action and the cost associated with the warning
response associated with a lead time 1, i.e., D} °(d) and CF (d), respectively. The

net damage in the PFS can be, therefore, represented by:

D" (d) = D" (d) + Ci () Fq.0.14

where D@f "T(d) represents the economic net damage in the floodplain associated
with a flood depth d, and the warning service with a given lead time t, and

considering a PFS. If one replaces in Eq. 6.14 DX (d) and €% (d) by Eqg. 6.9 and
Eq. 6.12, DP/*(d) can be represented by:

D/ (d) = 9nfo0d(De(d) — a(1 = P)[D(d) — DE(A)]}  Eq.6.15

houses

Eq. 6.15 is used by the hydro-economic ED model to represent the net damage in
the PFS (Figure 6.2c).

6.4.3.7 The net damage with the imperfect warning service

The net damage of an imperfect warning service Dvif'f(d) is simulated through

several expressions described in the prior subsections, which represent the

flooded

economic consequences of all potential situations when njy&ried = nj °°°¢

(Figure
6.2a and Figure 6.2b). Thus, the different values that Df{'T(d) can take are

dependent on whether the outcome of the warning is a hit, miss, or false alarm
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(defined in terms of flood warning decisions). The expressions for each case are

tabulated in Table 6.1 and are explained as follows.

As was explained in section 6.2, a hit in terms of a warning decision is referred to
as the situation when a flood in the at-risk community is preceded by a warning.
These events produce mitigated flood damage because the proactive action was
conducted between the issue of the warning and the onset of the flood with
magnitude y. These events can also produce unmitigated damage when n}/4rned js
underestimated (Figure 6.2b1). The damage reduction is achieved at a cost CZ,(d)
estimated in this work as a function of v (and d (Eq. 6.3)), which, as was explained
above, represents y and y,, in the DFS and PrFS, respectively. Thus, the net damage

for any pair (y,v) defined as a hit where y <v (these events are noted in this work

as hits 1), i.e., n/'20%¢ < pwarned (Figure 6.2al) is represented by D% **(d) plus

CL(d), Eq. 6.9 and Eq. 6.13, respectively. If y > v (these events are noted in this

work as hits 2), i.e., nfl°0%¢ > pwarned (Figure 6.2b1), this net damage is

pro,T

represented by D;, ,,," (d) plus CL(d), Eq. 6.10 and Eq. 6.13, respectively.

Table 6.1: Description of the equations used by the hydro-economic model to represent the
economic consequences of an imperfect flood warning system

Event el Equation
conseguence
Hits 1 (y <v) | DI (d) + INfguses. (Dc(d) = alDe(d) = DE(@)]}
14 ; ]
cx(d) + rad[D,(d) — DE(d)]nigess
Hits2(y >v) | Dem(@+ [9Dc (g gises™™ + ODE () grices™™
Ci(d) + rad[D.(d) — DI(d)|npsized
False alarms cH(d) rad[D.(d) — D (d) |nysncd
Misses DY (d) ID(d)nfose’
Correct
. 0 -
negative

Missed events in terms of warning decisions are defined when a flood event
occurred in the at-risk community and a warning was not issued (Figure 6.2b2).
These events result in unmitigated damage because a proactive action was not
conducted, and, therefore, C%(d)=0. For any pair (y,v) defined as a miss, the
damage of misses is, therefore, represented by DE"°* (d)(Eq. 6.5). If the flood event
did not occur and a warning was issued, this is considered a false alarm (Figure

6.2a2). In this case, there is no damage in the at-risk community, and the warning
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response was conducted in vain; thus, the economic consequences for any pair

(y,v) defined as false alarm is represented by ¢>/*(d) (Eq. 6.13). Finally, if the
flood event did not occur, and a warning was not issued, this is considered a correct
negative. If the operational costs are excluded from the analysis, this situation does

not represent any cost to the system.
6.5 Flood risk model

In general terms, flood risk is defined as the combination of the probability of an
event and its negative consequences associated with damage to human health and
life, the environment, and economic activity (European Parliament, 2007). The
flood risk of a flood-prone area is defined by a metric that in essence aggregates all
the potential damages into a single value. It can be estimated quantitatively if the
losses are measurable, e.g., monetary or loss of life units, or qualitatively, e.g.,
allocation in classes, in the case of intangible damages associated with the social,
environmental, and cultural impacts (Laoupi and Tsakiris, 2007). Since this thesis
concentrates on economic damage only, in this section, the concept of flood risk is
used by the model to aggregate all the potential economic damages or net damage
values into a single value for all scenarios considered. That single value is the ED,
which is the target information when estimating E,, (Eq. 6.1). Thus, this section

explains the computation of the ED for each scenario.
6.5.1 The no warning scenario

Flood risk is usually defined as the product of the probability of flooding and the
associated consequences, integrated over all possible events. The expected damage
ED is the metric traditionally used to define the economic flood risk and give us a
snap-shot of flood risk at present or in a future scenario in the at-risk community.

The ED for the NWS can be defined by:

ED,, = f DP™(d)f(d)dd Eq. 6.16

where ED,,,, as was explained in section 6.3.1, is the ED of the at-risk community
in the NWS (Figure 6.3a), DX"°(d) is a damage function expressed as a function

of d (Eq. 6.5), and f(d) is the probability density function of this variate.
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6.5.2 The perfect forecast scenario

If the FEWS is based on perfect forecasts, a flood event is always preceded by a
warning, and there is no uncertainty in the inundation forecasts. Thus, the reliability
of the flood warning system is assumed perfect, i.e., every flood is preceded by a
warning, and every warned property is then flooded (Figure 6.2c). The flood risk in
the PFS is defined by:

EDP/T = f DI (d)f (d)dd Eq. 6.17

where EDP/ is the ED of the at-risk community in the PFS (Figure 6.3b), and

D‘f,’,f'r(d) is a damage function expressed as a function of d (Eq. 614). Since the

damage saved by the proactive action depends on the lead time 1, there is a specific

value of EDP/ for each t.
6.5.3 The imperfect forecast scenario

The ED of the at-risk community with the warning service based on imperfect

forecasts is defined by:

ED)J" = ff D" (d,d)f(d,d)dddd Eq.6.18

where EDVif'T is the ED of the at-risk community with the warning service assuming
an imperfect forecast scenario (Figure 6.3c), and Dvif *(d,d) is a bivariate net
damage function that describes the economic consequences of hits, misses, and
false alarms (defined in terms of flood warning decisions) according to Table 6.1,
and f(d, d) is the joint distribution of d and d. Since D" (d, d) represents the net
damage of a FEWS with a given lead time t, and the economic consequences
depend on the warning decision, there is a specific value of EDvi{ for a given

warning decision rule and lead time t.
6.5.4 Estimation of ED

The analytical expression of the ED (economic flood risk) for each warning
scenario considered in the analysis was defined in the prior subsections. To estimate

it, one must solve the integrals shown in Eq. 6.16, Eqg. 6.17, and Eq. 6.18. An
161



estimation of these integrals can be obtained by first building the functions that
describe the damage or net damage as described in section 6.4 above and then
solving the integrals via an analytical solution or numerical integration (Olsen et
al., 2015). In this framework, the latter approach was used. Based on this approach,
the integral of the NWS (Eqg. 6.16) can be estimated by:

K

— 1

AR CIACH Eq.6.19
i=1

where n represents the number of values sampled from the marginal distribution
of d, K is the number of intervals considered in the numerical integration defined
by an increment of integration Ad, d; is the flood depth located at the midpoint of

the interval i, DY’

(d;) is the unmitigated damage associated with d;, and f;(d;)

is the number of sampled values falling in the interval i.

A similar approach is used to estimate the integral of the perfect forecast scenario
(Eq. 6.17) as:

K

— 1
EDY " (v) = ;Z DY (dp)fi(dy) Eq. 6.20
i=1
where D‘%'T(di) is the PFS-based net damage associated with d;.

The estimate of the double integral of the imperfect forecast scenario (Eg. 6.18) can
be obtained by dividing the bivariate space into four quadrants corresponding to
hits, misses, false alarms, and correct negatives (defined in terms of flood warning
decisions), and applying the above estimation approach to each expression of Table

6.1. Therefore, the total expected damage will be:
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K

1
1 ZDY;::{),T (dhl)ﬁ dhl) +Z C‘r 1 (dhl)fl dhl)
i=1

FDY" =~

+ DT (dl2)f(dl2) +Z Col? (d2)f,(d2)  Eq.6.21
+ ) Gl @A) + Z Dy (d{”)ﬁ-(d{”)‘

where the superscript hy and h; are used to reference the economic variates and
observed and forecast flood depths associated with hits 1 and hits 2, respectively,
whereas for false alarms and misses, the superscripts fa and m are used for these
purposes. The damage variables in Eq. 6.21 are taken from Table 6.1 for the four

Ccases.

6.6 Algorithms used to define the reliability and effectiveness of the flood

warning system

The hydro-economic ED model is used in this work to explore the reliability and
economic effectiveness of a FEWS based on inundation forecasting. In the prior
sections, the components, metrics, and concepts used by the model to define these
two flood warning attributes were explained. This section of the chapter describes
the algorithms used by the hydro-economic ED model to estimate the ED for the

three warning scenarios considered in section 6.5.

The bivariate Lognormal distribution (BLND) is wused for all the
sampling/sensitivity experiments carried out in this chapter. The economic
effectiveness of the FEWS for each with-warning scenario is computed relative to
the ED of the NWS, which is described by Eq. 6.19 and computed as follows.

v’ Step 1: Use the MCFG to sample n values from f(y).
v’ Step 2: For each sampled value y;, use the RIC to estimate i) the number of

houses flooded n/"°°%% through the impact-curve base method, and the

houses
flood depth d; by applying Eq. 6.2 (section 6.4.3.1); and ii) D?"°(d,), i.e.,
the flood damage in the at-risk community without the warning service, by
applying Eq. 6.5

v’ Step 3: Estimate ED,,,, (Figure 6.3a) by applying Eq. 6.19.
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6.6.1

Perfect forecast scenario

The ED of the PFS, which represents the maximum economic benefits that can be

achieved by a FEWS, is estimated by following the algorithm.

v
v

v
v

6.6.2

Step 1: Use the MCFG to sample n values from f(y).

Step 2: For each sampled value y;, use the RIC to estimate i) the number of
houses flooded n/'°°%¢%! through the impact-curve base method, and the

flood depth d; by applying Eq. 6.2 (section 6.4.3.1).

Step 3: For each d;, uses the RIC to compute D‘f,f'r(di), i.e., the net damage
in the at-risk community with the warning service based on perfect forecast,
by applying Eq. 6.15.

Step 4: Estimate ED,ﬁf’T(Figure 6.3b) through Eq. 6.20.

Step 5: Compute the economic effectiveness of the FEWS by using Eg. 6.1

Imperfect deterministic forecast scenario

The DFS assumes that the warning decision and the inundation forecasting are

A

based only on y. The algorithm used to estimate the metrics that define the

reliability and economic effectiveness under this scenario is detailed as follows.

v

v

AN

6.6.3

Step 1: Uses the MCFG to sample n bivariate values from f(y, ¥) based on
the BLND algorithm described in section 4.4.4.

Step 2: For each forecast value y;, uses the FWDC to simulate the warning
decision according to the DFDR (Eg. 5.1), i.e., warn only if y; > y.

Step 3: Use the flooding threshold criterion (FTC) described in Chapter 5
to define each pair (y;, 9;) as (¥, 1), ™, 9™, and (v/,9/), i.e., as hit,
miss, and false alarm events, respectively (Table 5.2). In addition, define
each pair (y,9!') as (y!,9!") and (y/2,9!*), i.e., hits 1 and hits 2,
respectively.

Step 4: Use the RIC to define the economic consequences of each pair
(P 9M), (yh2,982),(y™ ™), and (y/, /) according to Table 6.1,
Step 5: Estimate the ED for the DFS (EADZ¢"") through Eq. 6.21, where
the superscript det replaces if.

Step 6: Compute the economic effectiveness of the FEWS by using Eq. 6.1.
Step 7: Build the contingency tables according to the FPC (Table 5.3) and
estimate the reliability of the FEWS in terms of POD and FAR (Table 5.4).

Imperfect probabilistic forecast scenario

The PrFS assumes that the warning decision and the inundation forecasting is based

on a warning level y,, estimated from f(y|y). The algorithm used to estimate the

metrics that define the reliability and effectiveness is detailed as follows.

164



v Step 1: Uses the MCFG to sample n bivariate values from f(y,#) and its
associated conditional distribution f(y|y) based on the BLND algorithm
described in section 4.4.4.

v' Step 2: Define a set of values between 0 and 1, e.g., [0.1,0.15,0.2 ,... 0.975]
to define PT;, as the value assumed for the probabilistic threshold PT within
this set.

v’ Step 3: Based on PTy, define for each conditional distribution f(y|y;) the
warning level 9,,;, and use the FWDC to simulate the warning decision
according to the PDR (Eq. 5.3), i.e., warn only if 9, ; > yr.

v’ Step 4: Use the FTC described in Chapter 5 to define each pair (yi,fzw,i) as

hk), mvm), and (v7,970),), ie., as hit, miss, and false alarm
events, respectively (Table 5.2). In addition, define each pair (y!, 91 ;) as

(', 9hL) and (v, 9112), i.e., hits 1 and hits 2, respectively.
v Step 5: Use the RIC to define the economic consequences of each pair

(I, 98), (v12,912), (y™, 9, and (y/ ,le) according to Table 6.1
v’ Step 6: Estimate the ED in the PrFS associate with PT; (ED,,") through

Eq. 6.21, where the superscript pr replaces if.
v’ Step 7: Repeat Steps from 3 to 6 for each PT;.

v’ Step 8: For each ED}, ", compute the economic effectiveness E}, ;" of the

flood warning system by using Eq. 6.1.
v’ Step 9: Define PT* as the PT} associated with max(E},;").

v' Step 10: Estimate the reliability of the FEWS by repeating Step 7 of the
DFS case above.

6.7 Sensitivity analysis

In the prior sections, the criteria, metrics, and algorithms considered in the hydro-
economic EAD model to explore the effectiveness and reliability of a FEWS were
described. In this last section of the chapter, the sensitivity of several parameters of
the model that represents the main assumptions in the estimation of these flood
warning performance attributes is analysed. This is done through several sensitivity
experiments based on the one-at-a-time (OAT) method (Pianosi et al., 2016),
which, in essence, varies/perturbs the input parameters of the hydro-economic ED
model from its reference parameter values (baseline scenario) one at a time and
assess the impacts on the metrics used to define the reliability and economic
effectiveness Thus, in this section, the parameters and the flood warning
performance attributes that define the baseline scenario are first described, and then,

the results of the sensitivity analysis are shown.
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6.7.1 Baseline scenario

The hydro-economic ED model can be considered an extension of the framework
used in Chapter 5 to explore the reliability of flood warning systems based on
inundation forecasting. Thus, the hydro-economic ED model uses three additional
parameters (v,0, ) to those considered in the framework shown in Chapter 5 (Table
5.6).

Table 6.2: Assumed input parameter values for the baseline scenario

Value Parameter
Abbreviation Description associated
adopted e
with:
Uy Mean of y. 2.51
af The coefficient of variation of y. 0.20
- The river
Vo Location parameter of y 2.03 basin
Yy The average number of peaks per year 1.60
L Basin lagtime L 6 hrs
Uy Mean of the forecasts of y Uy
ayz The variance of the forecasts of y 033
A Location parameter of the forecasts of y Vo
) The average number of peaks per year of the F|°°0!
Yy forecasts of y Yy forecasting
and warning
P The inflection point of the_ lead time-performance 085 system
p function
T Lead time 6 hr
A parameter that defines the cost of the warning
y . . 0.1
response as a percentage of potential benefits.
T Return period associated with the flooding 5 vears
Sop threshold y. y
ngt o risk Total number of houses at risk in the benefit area 1000 The at-risk
community
) The monetary value of residential contents 1 unit.
a Efficiency parameter of the proactive action 0.5
n Sample size or number of simulated events 10000 M_onte Qarlo
simulation

Table 6.2 depicts the input parameters of the model and the values which define the
baseline scenario. They are split according to the component they represent. The
baseline hydro-economic ED model assumes that the cost of the warning response
C,, represents 10% of the value of the damage avoided, i.e., y =0.1 in Eq.6.17, and
the efficiency of the proactive action o is assumed to be 50 %. Thus, the values set
for y and o were 0.1 and 0.5, respectively. The monetary value for the residential

contents in each floodplain property was assumed to be 1 unit. The adopted values
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for the remaining parameters, which match with the framework shown in Chapter
5, were the same as those considered in Table 5.6. The rationality of these adopted
values is explained in section 5.7.1, and it is also used in this work to represent the
baseline scenario in this sensitivity analysis. Finally, the number of simulated
events was set to 500,000 for the Monte Carlo estimates. It is worth noting that
Figure 5.7 can also be used to represent the effect of the standard of protection SoP
on functions that describe the flood damage without the warning services (Eq. 6.16)
and the net damage in the PFS (Eq. 6.17). In this case, the impact represents the
flood damage or net flood damage, and the SoP shifts the value at which the flood
impact begins to the value of Ts,p. The results of the baseline scenario are explained

as follows.

The analysis of the baseline scenario, under the criteria mentioned above, is
summarised in Figure 6.6 and Figure 6.7, whose main values are shown in Table
6.3. Figure 6.6 shows the results of the optimization procedure used to find the
optimal probabilistic threshold PT* for the probabilistic decision rule PDR in the
PrES based on the algorithm described in section 6.6.3. The solid grey curve
indicates how the value of E,, changes when considering several values of the
probabilistic threshold PT for the PDR. The figure also shows the values of E,,
based on the PFS and DFS obtained from the algorithms described in sections 6.6.1
and 6.6.2, represented by a solid black and blue line, respectively. Figure 6.7
shows, on the other hand, the reliability of the flood warning system in terms of
POD and FAR based on the FPC for the DFS and PrFS. These figures can be used
to analyse how the effectiveness and reliability are related.

Table 6.3: Flood warning performance attributes of the baseline scenario
These values correspond to the Figures 6.6 and 6.7

Scenario Decision PT Lead time POD FAR E,
rule [] hr] [] L] [%]

DFS DFDR - 0.60 0.39 4.13
PrFs PDR 0.54 6 0.84 0.61 5.24
PFS - - 1 0 7.5

167



75
+ Scenarios
5.0 m— DFS
=— PFS
oy
= PrFS
uf 257
Optimal PT
0.0- + Pm
0.25 0.50 0.75

PT

Figure 6.6: Estimation of the economic effectiveness of the baseline model under different
forecasting scenarios.
The grey line shows the results of the optimization procedure used to find the optimal value of the
probabilistic threshold PT used in the warning strategy of PrFS; the optimal value PT™ is described

with a red cross. The effectiveness of the DFS and PFS are illustrated with horizontal lines.
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; PT:
probabilistic threshold.
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Figure 6.7: Estimation of the reliability of the baseline model under the imperfect forecasting
scenarios
The reliability is evaluated in terms of POD and FAR and evaluated based on the FPC (5.4.2).

DFDR: Decision rule used in the deterministic forecast scenario; PDR: Decision rule used in the probabilistic forecast
scenario; POD: probability of detection; FAR: false alarm ratio.

The PFS delivers the maximum economic benefits one can obtain from the FEWS.
Figure 6.6 shows that, as expected, the value of E,, for this scenario is highest. The
economic effectiveness of the PrFS is higher than that of the DFS; it is due to the
decision rule used in that scenario, i.e., the PDR, assumes that the Warner acts to
increase the economic benefits, i.e., E,,, in the at-risk community. In terms of
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reliability, Figure 6.7 shows that this flood warning performance attribute of the
baseline model based on the FPC for the DFS is in the Low category (section
5.7.2.1), as the values of POD and FAR are higher and lower than 0.5, respectively.
The probabilistic decision rule PDR, on the other hand, delivers a FAR value higher
than 0.5, which might be considered not useful in operational FEWS. These results
show that when the cost of the warning response C,(d) is low, represented in this
case as 10% of the forecast economic benefits, i.e., y =0.1, one can “sacrifice” the
reliability of the FEWS in terms of increasing false alarms, to increase the economic
effectiveness, as avoiding misses has the biggest impact on damage mitigation and
E,.

An interesting point here is to compare the reliability results of the PDR (0.84 and
0.61 for POD and FAR, respectively (Table 6.3)) based on the optimisation criterion
adopted in this Chapter, i.e., maximizing E,,, with the ones obtained in Chapter 5
based on the POD-FAR optimisation criterion (0.79 and 0.55 for POD and FAR,
respectively (Table 5.7)). The results indicate that both optimization criteria
generate high values of POD and FAR and that the values of PDR based on the
optimization of E,, are greater than those obtained in terms of POD-FAR. As was
concluded in Chapter 5, the high values of FAR associated with the POD-FAR
criterion are due to this optimization criterion does not place any restriction on the
value of FAR, and it looks for the biggest difference between POD and FAR,
regardless of the value of the latter. On the other hand, as was concluded above, the
high FAR value associated with the optimization criterion adopted in this Chapter
is due to the low cost of the warning response CZ (d) (y =0.1). Note, however, that
the reliability of flood warnings associated with this criterion is strongly controlled
by CZ(d); therefore, one would expect that when increasing CZ (d), the values

shown in Table 6.3 will change; it will be analysed in section 6.7.2.3.

As was discussed in Chapter 5 (section 5.7.2.1), the effect of having high values of
FAR in a FEWS is known as ‘cry wolf’, which has to do with the disregarding of
flood warnings due to their loss of credibility as a result of the high percentage of
false alarms. However, Barnes et al. (2007) advocate that there is little evidence

that a high value of FAR causes users to ignore warnings of severe events.
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6.7.2 Sensitivity experiments

In this last sub-section of the chapter, the sensitivity of several parameters with
respect to the results shown in Table 6.3 is explored. This was done based on three

sensitivity experiments.
6.7.2.1 Sensitivity experiment 1

In principle, there is a trade-off between the economic benefits and reliability of a
FEWS when analysing these two flood warning performance attributes as a function
of the lead time, i.e., the longer the lead time, the higher the damage saved and the
lower the reliability, respectively (Schroter et al., 2008). However, it has been
demonstrated that when including the net damage associated with forecast
uncertainty (section 6.2), that trade-off can be undermined. For example, Verkade
and Werner (2011) showed that the expected annual benefits of a FEWS could
decrease when the lead time and reliability are long and low, respectively, due to
the economic consequences of false alarms and misses. This experiment aims to
explore the relationship between these two flood warning performance attributes
for each forecasting scenario. For this purpose, it is assumed that the forecasts of
several FEWSs with several lead times shorter or longer than that of the baseline
model (6hr) (Table 6.2) are represented by the same moments of y (which are taken
to be equal to those of y), and that the forecast uncertainty is only controlled by
pyy- In this experiment, p,,5 , defined by the lead time-correlation function in Eq.
4.57, describes the forecast uncertainty relationship with lead time which, at the
same time, reduces or increases the forecast uncertainty, respectively. Table 6.4

gives a description of this experiment and the range of values of t to be analysed.

Table 6.4: Description of sensitivity experiment 1

Parameter to Lower Baseline Upper Aim
be modified bound bound
Analyse how the flood
warning performance
3hr 24 hr attrlb_utes (rel_lablllty and
T 6 hr economic effectiveness) of the
(-50%) (+200%) baseline model, for e)ach
forecasting scenario, changes
as the lead time changes.
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The results of this experiment are shown in Figure 6.8 and Figure 6.9, which shows
how these flood warning performance attributes of the baseline scenario change as
the lead time t changes. The results indicate that the economic benefits of a FEWS
based on a PFS increase as t increases, and that, when considering the net damage
associated with forecast uncertainty, there is not a trade-off between the reliability
and economic benefits; they show that for the DFS and PrFS there is an optimal
lead time (t = 12hrs) that maximizes the economic benefits in the at-risk
community. Furthermore, the DFS-based and PrFs-based economic benefits of
FEWSs with short lead times (t values shorter than the basin lagtime L) are close
to the maximum economic benefits that can be achieved by the system, i.e., those

obtained from the PFS. The rationality of all these results is explained as follows.

As was explained in section 6.3.1, the PFS-based economic effectiveness represents
the maximum economic benefits that can be achieved by the FEWS as they are not
affected by the net damage associate with forecast uncertainty (Figure 6.2c). That
means this scenario delivers the highest values of E,, (solid black line) and
represents the theoretical limit of the economic benefits, which according to Figure
6.8 ranges from 4 to 15% approximately for FEWS with lead times between 1 and
24h. Note that these values depend on the adopted values for the economic
parameters y and a in the baseline FEWS (Table 6.2). Note also that the net damage
associated with forecast uncertainty is present in false alarms, misses, and hits
(Figure 6.2), and they increase ED,, in Eq. 6.1, which, in turn, decrease the
economic effectiveness E,,. Since the DFS and PrFS are characterised by the
presence of these events, neither of these scenarios can overcome the economic
benefits of the PFS.
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Figure 6.8: Analysis of the effectiveness of the baseline model based on the sensitivity
experiment 1

In this experiment, the effectiveness of the baseline model is analysed by reducing or extending
the lead time 1, which, at the same time, reduces or increases the forecast uncertainty, respectively.
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario.
According to the results shown in Figure 6.8, the economic effectiveness of a
deterministic FEWS (solid blue line) with forecasting lead times between 1 and 24h
can range from 1% and 4% approximately. The economic effectiveness increases
up to 12 hours but then decreases. These results also indicate that the net damage
associated with forecast uncertainty increases as the lead time t increases beyond
12 hours since these economic benefits move away from the PFS-based benefits
and drop as the lead time t increases. Figure 6.9 also shows that the reliability of
flood warnings based on deterministic forecasts decreases as the lead time t
increases, which is expressed with lower and higher values of POD and FAR,
respectively. There is not, therefore, a trade-off between the economic benefits and
reliability for the DFS case, since the former decreases after a certain lead time.
Thus, the DFS-based effectiveness allows an optimal lead time to be analysed.

Figure 6.8 shows that this lead time is 12 hours approximately.
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Figure 6.9: Analysis of the reliability of the baseline model based on the sensitivity
experiment 1
In this experiment, the reliability of the baseline model is analysed by reducing or extending the
lead time T which, at the same time, reduces or increases the forecast uncertainty, respectively. The
reliability is evaluated in terms of POD and FAR based on the FPC (5.4.2). Figure a shows FAR
and POD as a function of the lead time t. The values of this figure are summarised in the FAR-
POD curves shown in b.

DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; POD:
Probability of detection; FAR: False alarm ratio; FPC: floodplain property criterion.

The economic effectiveness of the DFS with short lead times (t values lower than
the assumed basin lagtime L (6hr)) are close to the PFS-based benefits because their
forecast uncertainty is small, and, therefore, the (negative) impact of the net damage
associated with forecast uncertainty (Figure 6.2) on the economic effectiveness is
small. This small forecast uncertainty also produces high reliability (Figure 6.9a).
The hydro-economic ED model assumes that these systems have small forecast
uncertainty because they use forecasting models based on observed data (real-time
data), such as gauge-based quantitative precipitation (QPE), and may also employ
forecast updating. The forecast uncertainty of FEWSs with long lead times (t values
beyond L) drastically increases because the forecasting models have to be forced
with quantitative precipitation forecasts (QPFs). The hydro-economic ED model
represents this by decreasing the value of p,,; according to the lead time-correlation
function shown in Figure 4.14 (note that in this experiment, the moments of y are
assumed to be the same for each lead time t, and the forecast uncertainty is only

controlled by p,,5).

The considerable forecast uncertainty of deterministic FEWSs with long lead times

reflect the difference between y and y, (the forecast error) and therefore, between

nyarned and pflooded o qycing the benefits of ‘good’ decisions (hit events) and

houses >
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increasing the presence of “wrong’ decisions (false alarms and misses events) in the
system. That increases the net damage associated with forecast uncertainty (Figure
6.2) and, in turn, decreases the effectiveness E,,. The economic benefits of these
systems can be lower than those obtained from FEWSs with shorter lead times. A
decrease in E,, means that the value of ED,, approaches that of ED,,,, (Eq. 6.1); if
the former is higher than the latter, the forecasts of the FEWS do not have value in
the at-risk community. Note that, even though the DFS-based results are affected
by considerable forecast uncertainty for long lead times, which produces low
reliability (Figure 6.9), these systems still have value in the at-risk community since

the value of E,, is higher than zero.

Like the DFS-based results, the PrFS-based economic effectiveness (solid grey line
in Figure 6.8) shows an optimal lead time of approximately 12 hours. These results
indicate that an imperfect FEWS is characterised by a lead time that represents the
balance between an adequate time to act and a reasonably good forecast. Likewise,
the economic effectiveness of probabilistic FEWSs with short lead times
approaches the PFS-based effectiveness due to the small forecast uncertainty but is
slightly better than that obtained from the deterministic FEWS. However, as the
lead time increase, the economic effectiveness of the PrFS separates from
deterministic-forecast-based economic effectiveness as is clearly better. These
results tell us that the benefits of using probabilistic information in a FEWS in
comparison to the deterministic information are most noticeable in FEWSs based

on forecasts with relatively high forecast uncertainty.

Figure 6.8 shows that these economic benefits of the PrFS can range from 3% to
55 % approximately. That increase (1.5% with respect to the maximum
deterministic-forecast-based value) is due to the adopted warning strategy in this
scenario, which assumes that the warner acts to increase the economic benefits in
the at-risk community (section 6.4.2). To increase the economic effectiveness of
FEWSs with longer lead times, the Warner has to warn more frequently with respect
to the DFS. This is intended to avoid the high economic impact of having flooded
houses not being warned in the at-risk community, characterised as ‘misses’ in the
FPC (section 5.4.2). That strategy, however, increases the probability of having
warned houses that are not subsequently flooded (section 5.4.2). These probabilities

are described by FAR, and that is the reason why Figure 6.9 shows high values of
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these metrics. That means that due to the low cost of the warning response CZ(d)
of the baseline scenario (defined by the parameter r=0.1 (Eq. 6.13 )), the best
economic strategy is to warn more frequently accepting or “sacrificing” the low
economic impact of having warned houses that are not subsequently flooded to
avoid the high economic impact of having flooded houses not being warned. Note
that this warning strategy also reduces the probability of having flooded houses that
were not warned, characterised as missed events in the FPC(section 5.4.2). These
probabilities are described in Figure 6.9 by 1-POD (grey line). The values of this
probability indicate that even though the warning strategy of the PrFS warns more
frequently for long t values with respect to the DFS, the probability of having
flooded houses that are not warned is still considerable, reflecting the high

uncertainty.

One should bear in mind that, even though the warning strategy in the PrFS
produces greater economic benefits than the DFS-based results, the high values of
FAR might produce a loss of credibility in the FEWS (‘cry wolf” effect), and an
increase in worry for flood plain residents (psychological impact). That might
decrease the effectiveness of the proactive action, which is represented in the hydro-
economic ED model by the parameter o. The adopted value of this parameter for
the baseline scenario is 0.5 (Table 6.2), which is a fixed value in this experiment
for each lead time 1, regardless of the value of FAR. The PrFS-based results do not
take this into account, and the economic effectiveness depicted in Figure 6.8 (solid
grey line) might be, thus, overestimated. However, as was mentioned above, Barnes
et al. (2007) advocate that there is little evidence that a high value of FAR causes

users to ignore warnings of severe flood events.
6.7.2.2 Sensitivity experiment 2

The sensitivity experiment 1 explores the economic effectiveness and reliability of
the baseline FEWS based on forecasts for several t values. That experiment
assumes that these forecasts are represented by the same moments, and, therefore,
the forecast uncertainty can be only modified through the value of p,5, which, in
turn, is related to t through the lead time-correlation function shown in Figure 4.14.
One can also use this function to evaluate the impact of decreasing or increasing
the forecast uncertainty on the results shown in the sensitivity experiment 1. That
is done by considering the baseline parameters (Table 6.2) and modifying the
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parameter 1P, , where the latter represents the inflexion point of the lead time-
correlation function, and exploring the effect as a function of t. A higher or lower
value of this parameter means a smaller or larger forecast uncertainty (better or
worse forecast quality) for each lead time 1, respectively. Thus, in this experiment,
the sensitivity of 1P, with respect to the reliability and economic effectiveness of
the baseline FEWS characterised by different t values, under different forecasting
scenarios, is analysed. Since research works indicate that an improvement of 10%
per decade in the forecast performance is achievable in FEWSs (Pappenberger et
al., 2015), this parameter was modified by a percentage of £ 10%. Table 6.5 gives
a description of this experiment and the range of values to be explored. In this case,

several values within the range t were considered, whereas for the IP,, only the

values of the lower and upper bound were included in the analysis.

Table 6.5: Description of sensitivity experiment 2

Parameter to Lower Baseline Upper Aim
be modified bound bound
. 3hr 6 hr 24 hr Analyse how the increase or
(-50%) (+200%) reduction of forecast

uncertainty impact on the
flood warning performance
P .77 0.85 94 attributes (reliability and
’ (-10%) ' (+10%) | effectiveness) of a FEWS with
a given lead time.

The results of the experiment are depicted in Figure 6.10 and Figure 6.11, which
shows how the economic effectiveness and reliability of the baseline FEWS (1=
6hr) based on forecasts for several T values change when modifying the values of
IP,. The dashed blue and grey lines in Figure 6.10 indicate how the DFS-based and
PrFS-based effectiveness, respectively, change when modifying the baseline value
of IP, (.85) to 0.94 (Figure 6.10Figure 6.10) and 0.77 (Figure 6.10b). Similarly, the
solid green and grey lines in Figure 6.11 indicate how POD and FAR change when
making these changes to the baseline value of IP,. Note that in this experiment,
the moments of ¥ are assumed to be the same for each lead time 1, and are equal to

those of y, so the forecast uncertainty is only controlled by p,,5.

Figure 6.10 shows that the sensitivity of the DFS-based effectiveness with respect
to IF, is more or less the same (variation of approximately +1.5% of the baseline
value) for all lead times, whereas the PrFS-based effectiveness shows poor

sensitivity to the lower bound IF, values and high sensitivity to the upper bound IF,
176



values for long lead times t (t >12 hr). These results indicate the benefits of
improving the forecast performance (expressed here as an increase of 10% of the
IF, value), in economic terms, are most noticeable in probabilistic FEWSs whose

forecast uncertainty is relatively high, expressed in this experiment as long t values.

In terms of reliability, Figure 6.11 shows that the DFS-based reliability's sensitivity
is higher for short lead times (t < 9 hr); the same occurs for the PrFS-based
reliability, particularly for FAR values. This suggests that the benefits of improving
the forecast performance (expressed here as an increase of 10% of the 1B, value),
in terms of reliability, are most noticeable in (deterministic and probabilistic)
FEWSs whose forecast uncertainty is relatively low, expressed in this experiment

as short t values.

a Scenario b Scenario

m— DFS = DFS

= = DFS_UB == DFS_LB

PrFs PiFS
PrFS_UB PIFS_LB

= FF5

E. [%]
E, [%]

Figure 6.10: Analysis of the economic effectiveness of the baseline model based on the
sensitivity experiment 2

In this experiment, the impact of the forecast uncertainty, controlled by correlation through /P, on
the effectiveness of the baseline model is analysed. The dashed blue and grey lines indicate when
the forecast uncertainty is improved (a) or deteriorated (b), respectively, in the DFS and PrFS. In
this experiment, the forecast uncertainty associated with a given lead time t is changed by
modifying the value of the parameter IF,.
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; DFS_UB:
Deterministic forecast scenario based on the upper bound of 1B,; PriS_UB: Probabilistic forecast scenario based on the

upper bound of IF,; DFS_LB: Deterministic forecast scenario based on the lower bound of IP,; PrES_UB: Probabilistic
forecast scenario based on the lower bound of /P,
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Figure 6.11: Analysis of the reliability of the baseline model based on the sensitivity
experiment 2
In this experiment, the impact of the forecast uncertainty on the reliability of the baseline FEWS
based on several lead times is analysed. The reliability is expressed in terms of POD and FAR
based on the FPC. a) DFS-based results evaluated based on the FPC as a function of the lead time
T; these values are summarised in the POD-FAR curve shown in b). The same figures are used to
show the PrFS-based results (c and d).

LB: lower bound of IF, ; BS: Baseline scenario; UB: upper bound of /F,; POD: Probability of detection; FAR: False
alarm ratio

6.7.2.3 Sensitivity experiment 3

In this last experiment, the two input parameters that control the economic
effectiveness, i.e., y and a, are perturbed. The parameter y controls the cost of the
warning response CZ (d) and o represents the performance of the proactive action.
The aim of the third sensitivity experiment is, therefore, to analyse the sensitivity

of the economic effectiveness to perturbations of these economic parameters.
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It is estimated that the emergency costs represent 10% of the property
damage(Penning-Rowsell et al., 2020); therefore, values between 0.05 and 0.5 for
y were considered to analyse how an increase or decrease in C, (d) affects the
economic effectiveness E,, and the reliability of the PrFS-based results. On the
other hand, the parameter a was varied between 0 and 1 to explore how an increase
or decrease in the performance of the proactive action impacts on E,,. Table 6.6

gives a general description of this experiment.

Table 6.6: Description of sensitivity experiment 3

Parameter to Lower Baseline Upper

be modified bound bound Aim

Analyse the sensitivity of the
Y 0.05 01 0.5 economic parameters of the
hydro-economic ED model
when estimating the economic
effectiveness.

a 0.1 0.5 1

Parameter o

Figure 6.12 shows the results of the sensitivity experiment in terms of economic
effectiveness E,,,, and Figure 6.13 in terms of reliability for the economic parameter
a reflecting the efficiency of the proactive action. Figure 6.12 shows, as expected,
that the economic effectiveness E,, increases as o increases. A perfect scenario of
the baseline FEWS (perfect response and forecast) produces economic
effectiveness of 15% approximately. Based on the Carsell functions (Figure 6.5),
this represents the maximum economic benefits that can be achieved by a FEWS
with a lead time of 6 hours. This economic effectiveness E,, cannot be achieved by
imperfect FEWSs due to the net damage associated with forecast uncertainty and
the inefficiency of the response. Figure 6.12 shows that if the baseline FEWS
improves the efficiency of the proactive action to 70%, it can increase the economic
effectiveness E, to 55 and 7.5 % approximately for the DFS and PrFS,
respectively. This figure also shows that the economic effectiveness for the DFS
and PrFS are practically the same for low values of a (0<0.25). These results
indicate the benefits of using probabilistic information in a FEWS with respect to
the deterministic information are most noticeable in FEWSs where the potential

economic benefits of the system are relatively high.

Figure 6.13 shows that the reliability results for both the DFS and PrFS cases are

not sensitive to perturbations to the parameter a. Note how, in the DFS, for all
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values of a, the POD and FAR values are the same as for the baseline FEWS, 0.61
and 0.39 (Table 6.3), respectively. This is represented by a horizontal line in Figure
6.13a and by several points clustering at the point representing the baseline results
in the POD-FAR curve. For the case of the PrFS, even though the sample size used
is large (500,000), there is some instability in the results. However, one can note
that the values of POD and FAR delivered by the probabilistic decision rule PDR
are on average 0.85 and 0.6, respectively.

Based on these results shown in Figure 6.12 and Figure 6.13, one can also conclude
that the performance of the proactive action is the main factor controlling the
economic benefits of the FEWS. Note that, whatever the values of POD and FAR
(this includes the baseline values and good values of POD and FAR), if the
performance of the proactive action is poor, the economic effectiveness of the
FEWS will be low.

Scenario

m— DFS
PrFS

— PFS

Figure 6.12: Sensitivity analysis of the performance of the proactive action on the economic
effectiveness of a FEWS
This figure shows how the economic effectiveness of the baseline FEWS changes as the parameter

a changes for several forecasting scenarios.
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario.
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Figure 6.13: Sensitivity analysis of the performance of the proactive action on the reliability
of the baseline FEWS
This figure shows how the reliability of the baseline FEWS changes as the parameter o changes for
several forecasting scenarios. The reliability is expressed in terms of POD and FAR. a) Results

evaluated based on the FPC as a function of the lead time t; these values are summarised in the

POD-FAR curve shown in b).
DFS: Deterministic forecast scenario; PFS: Perfect forecast scenario; PrFS: Probabilistic forecast scenario; POD:
Probability of detection; FAR: False alarm ratio

Parameter y

Figure 6.14 shows the results of the sensitivity experiment in terms of economic
effectiveness E,,, and Figure 6.15 in terms of reliability for the parameter y. This
parameter controls the cost of the warning response CZ,(d), and represents the value
adopted by the hydro-economic ED model to estimate CZ (d) as a percentage of the
economic benefits of the FEWS if a forecast with the magnitude ¥ or ¥, occurs in
the DFS or PrFS, respectively (section 6.4.3.5). Figure 6.14 shows that, as expected,
the higher the value of vy, the lower E,, and vice versa. This occurs because, when
increasing or decreasing C (d), the economic consequences of false alarms and
hits increases or decreases, respectively. Note that, even for the high upper bound
value of y considered (50%), E,, is still positive (> zero) for both scenarios. Note,
however, that with the increase of y, the PrFS does not impact E,, in the same
proportion as it impacts in the DFS. It is due to the economic warning strategy
adopted in the PrFS which modifies the warning criterion to avoid E,, decreasing
significantly. That is why reliability is sensitive to y for the PrFS. Figure 6.15 shows
that when increasing CZ,(d) , the best economic strategy is to warn less frequently
as the values of POD and FAR decrease. If CT(d) decreases, the opposite effect
occurs. These results tell us the importance of estimating CZ,(d) when quantifying
the economic benefits of a FEWS, as an optimal warning strategy depends on this
variate. The sensitivity of E,, to the perturbations in vy is nil for the DFS which is
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represented by a horizontal line in Figure 6.15a, and by several points that cluster
at the point representing the baseline results in the POD-FAR curve (Figure 6.15b).
For the case of the PrFS, even though the sample size used is large (500,000), there

is some instability in the results.
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Figure 6.14: Sensitivity analysis of the parameter y on the economic effectiveness of the
baseline FEWS
In this experiment, the impact of the parameter y on the economic effectiveness of the baseline
model is analysed for all warning scenarios.
PFS: Perfect forecast scenario; DFS: Deterministic forecast scenario; PrFS: Probabilistic forecast scenario
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Figure 6.15: Sensitivity analysis of the reliability of the baseline FEWS to changes in the
parameter y.
In this experiment, the impact of the parameter y on the flood warning reliability of the baseline
model is analysed for the imperfect warning scenarios.

DFS: Deterministic forecast scenario; PrFS: Probabilistic forecast scenario; POD: Probability of detection; FAR: False
alarm ratio.
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6.8 Main findings

Thanks to the integrated framework'’s versatility, the economic consequences of
forecast uncertainty in a wide range of possible situations could be included in the
analysis. The results showed that the warning strategy is an important factor
influencing the economic effectiveness E,, of an imperfect FEWS. This research
showed that an optimal warning strategy based on probabilistic forecasts and an
estimation of E,, produced by the FEWS for each potential flood can obtain greater
benefits than those obtained with a deterministic-forecast warning strategy.
Furthermore, it was observed that the cost of the warning response CZ,(d) controls
the flood warnings’ reliability and the warning strategy in a probabilistic FEWS
where warning decisions are based on a probabilistic threshold. Depending on the
value of CF(d), an optimal warning strategy for the system could be warning less
or more frequently. If C%(d) is low, an optimal economic strategy could have high
FAR values. Furthermore, this Chapter shows that a probabilistic-forecast-based-
optimal warning strategy, in economic terms, should be set for each lead time 1
since the forecast uncertainty and its associated economic consequences increase as
T increases. Furthermore, the results of this Chapter indicate the benefits of using a
probabilistic warning strategy with respect to a deterministic one are most
noticeable in FEWSs based on forecasts with relatively high forecast uncertainty

and where the potential economic benefits of the system are relatively high.

The forecasting lead time T was also an important factor influencing the economic
effectiveness E,, of a (deterministic and probabilistic) FEWS. The results showed
that, when increasing t, the economic effectiveness E,, of an imperfect FEWS move
away from the maximum economic effectiveness one can obtain from the system,
i.e., those obtained from a perfect forecast scenario, due to the (negative) impact of
the net damage associated with forecast uncertainty on the economic benefits. This
research shows that an imperfect FEWS is characterised by an optimal lead time
that represents the balance between an adequate time to act and a reasonably good
forecast.

This Chapter also showed that the economic effectiveness E,, of a FEWS, based on
the residents moving/ evacuating contents and a 6-hour lead time, can reach 15%
in a perfect warning scenario (perfect forecast and response). This value cannot be

achieved by imperfect FEWS due to the economic consequences of forecast
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uncertainty and inefficiency of the proactive action. It was found that if one
considers an efficiency parameter o of 70% and low cost of the warning response
(10% of the forecast economic benefits), the economic effectiveness E,, of an
imperfect FEWS, based on a 6h lead time, can reach 5.5 and 7.5 % for the
deterministic and probabilistic forecasts, respectively. In this sense, it was
concluded that the performance of the proactive action is an important factor
influencing the economic effectiveness of a FEWS. Further, it was found that a
FEWS could have good flood warning reliability but low economic effectiveness

E,, due to the bad performance of the proactive action.

Finally, it was analysed that if an efficiency parameter o of 50% in the proactive
action and a low cost of the warning response CZ,(d), with y = 0.1, are considered
in the FEWS, the economic effectiveness E,, of deterministic forecasts can range
from 1 to 4% for lead times of 1 and 24 hours. These E,, values were improved by
probabilistic FEWS whose E,, ranged from 3% to 5.5 % (section 6.7.2.1).
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Chapter 7. The Nanjing Case Study

7.1 Introduction

The city of Nanjing has been chosen for the case study. Nanjing has suffered from
severe pluvial flooding in recent years due to intense summer rain storms, notably
in 2016, resulting in the inundation of a number of areas in the city. Most of these
areas are polders that lie below the levels of the adjacent inner rivers, which are
connected to outer rivers and ultimately the Yangtse river. Pumping systems are
operated during storm events to remove water from the inner rivers to the outer
rivers, to enable water to drain from the polder areas into the inner rivers. Even
though storm warnings are issued in Nanjing, the pumping operations of these
polders can be considered as reactive pump operations because they are mainly
driven by the observed inflow. This case study is attractive because (a) rainfall
forecasts can be used to conduct proactive pumping operations, and (b) the pumping
represents a Risk Response Action (RRA) within the generic framework developed
in this thesis. It, therefore, provides an excellent opportunity to demonstrate the
value of probabilistic forecasts in making better decisions about pumping
operations.

In this context, a framework to analyse different pumping strategies in the polder
systems under different forecast scenarios based on 24-h forecasts has been
developed. The simulation of the pumping operations is done through continuous
simulation. Pumping strategies are assessed in terms of the average pumping cost
and average inundated area of the rainiest month in Nanjing (July). Figure 7.1
illustrates the framework. It is made up of three components: i) a rainstorm-and-
forecast generator (RFG) which generates hourly rainfall and deterministic and
probabilistic 24-forecasts of runoff, ii) a flood warning decision component
(FWDC) that simulates warning decisions based on the type of forecast generated
by the RFG, and ii) a response and impact component (RIC) which represents
forecast-based pumping strategies and gives an estimation of its impact on the
polder system. Even though the algorithm designed to represent the response
component can be considered simple, where the simulation time for a month can be
done in a matter of seconds, the stochastic component of the framework, and the

approach used to represent the RFG, requires a high computational effort. Most of
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the analysis shown in this chapter has been done by using a computing cluster with

50 cores.
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Figure 7.1: Hlustration of the framework used in this chapter.

As shall be seen later, and in line with the Monte Carlo (MC) simulation of
forecasts in Chapters 5 and 6, the framework’s application was based on
simulated forecasts generated from a stochastic spatial/temporal rainfall
model (RainSim) to demonstrate the benefits that could be derived from the
use of forecasts in the management of polder flooding. Therefore, the reader
should have in mind that the use of the word "forecast™ throughout the
chapter refers to a MC simulated forecast which implies that the proposed
framework can be applied with real-world forecasts and observed rainfall
data.

This chapter is structured as follows: Section 7.2 introduces the research area and
the algorithm that has been built to represent the response component of the
framework. In section 7.3, the structure of the RFG is explained. In sections 7.4
and 7.5, the rainfall-threshold-based approach adopted to represent the warning
decisions in the polder system and decision rules used to simulate that decisions
under deterministic and probabilistic forecasts are explained. In sections 7.6 and
7.7, the algorithms developed to represent the pumping strategies and to analyse the
operation of the polder system under different forecast scenarios are defined.

Finally, in sections 7.8 and 7.9, the results are presented.
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7.2 Water Balance Model for the Operation of the Shazou Polder
7.2.1 Research Area

The research area is the Shazhou polder situated in Hexi New Town, located in the
southwest of Nanjing City (54.7km?). This area is surrounded by the Yangtze,
Qinhuai, Nanhe, and New Qinhuai rivers (the outer rivers). The topography of Hexi
New Town is plain and low lying, lower than the normal water level of the adjacent
outer rivers. The town is protected from flooding by embankments and draining
stormwater, collected in inner rivers, to the adjacent outer rivers by using pumping
stations (Gao et al., 2013)(Figure 7.2).

Legend
Embankments _—
Outer river
Gate
Inner river

, O"’/ﬁﬁuA -
57 %%, NANJING
Water pump ' :
xR

Shazhou'polder
R //)/7@/-

& {(Hexi.New Town) \(

ainver «

Qinhu

Figure 7.2: Map of the Shazhou polder (Hexi New Town) and its surrounding areas,
Nanjing-China
The capacity of the water pumps is described in Appendix A and was provided by Nanjing Hydraulic
Research Institute (NHRI).

The Shazhou polder is surrounded on two sides by the Qinhuai river due to its main
channel dividing upstream into two branches at Heding Bridge of Dongshan Town.
The west branch, the New Qinhuai river, with a total length of 18 km and a
previously designed flood capacity of 900 m3s?, flows into the Yangtze River via
the New Qinhuai river floodgate, whereas the north branch has a length of 22.4 km
and a previously designed flood capacity of 600 m3.s* (NMG, 2016). The latter is
further split into two branches at Tong Ji Gate. One branch passes through Nanjing
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city proper and is called the inner Qinhuai river, and the other is known as the outer
Qinhuai river. The inner Qinhuai river flows downstream into the outer Qinhuai
river, which then flows into the Yangtze River via the Wuding gate. The
Wudingmen gate, located just downstream of the Tong Ji Gate, controls the
discharges of the inner Qinhuai river, which in turn, receives the discharges of its
tributaries coming from the northern area of Nanjing City and the Qianhu lake
(Zhao et al., 2017) (Figure 7.2). The aim of the floodgates is to improve the urban
water environment and beauty of the city image, which, in the dry season, raises the
water level of the Qinhuai River and, in the flood season, releases the urban water
flow (Lui and Zhang, 2004).

This research only focuses on the simulation of the water fluxes of the polder system

and the inner rivers and neglects any interaction with the adjacent outer rivers.
7.2.2 Water balance model for the operation of the Shazhou polder

In this section, the algorithm used in the framework to represent the water fluxes in
the Shazhou polder is explained. As will be seen later, this algorithm will be used
for all scenarios considered in this work (the no warning, the perfect forecast, and
the imperfect forecast scenarios), which will be modified according to the pumping

strategy adopted in each of them.

Owing to the characteristics of polders, the Shazhou polder is assumed in the
analysis to be a tank with inputs and outputs (an input-output system). Thus, five
processes have been identified to be simulated in the system during a storm: runoff,

waterlogging, inflow to inner rivers, pumped water, and storage in the inner rivers.

There are two benchmark water levels during a storm: the water level at the outlet
of the pipe hereinafter called the critical water level (h.), and the initial water level
of the inner rivers before the storm arrives (h,). If the water level exceeds the pipe
outlet level, runoff cannot drain from the polder, the critical condition. The storage
capacity of the inner rivers (S;%7) is defined by the difference between h. and h,
(Figure 7.3); expressed in length units (mm). Figure 7.3 shows the system working
under non-critical conditions, i.e., when the water level of the inner rivers is below
the critical level h.. However, waterlogging may still occur in this situation if the
runoff from the polder exceeds the drainage capacity of the pipe. Currently, a

reactive pumping strategy is implemented by the flood managers, in which the rate
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of pumping is based on the inflow rate. (The impact of pumping on the outer river
levels, which drain to the Yangtze, is not considered.) A critical condition occurs if
the pumping is insufficient to prevent the water levels submerging the pipe outlet.
Thus, there are two potential states of the system during a storm: the non-critical
condition, when the water level of the inner rivers (h) is < h., and the critical

condition, when h > h,.

Under the assumptions detailed above, the system simulation is represented through
Eq. 7.1-Eq. 7.7, where the water balance is done at each time step, and all variates
are represented in mm.h™t. The model used in this analysis is not a precisely
calibrated model, but it does capture the key components of the polder system and

has been validated against a historical storm event.

Outer river

Pumping
water

I |
'Il'gl Rainfall |

»

Inner river

Figure 7.3: Conceptual model of water fluxes in the Shazhou polder system during a
rainstorm

This figure shows the scenario when the water level is lower than k. (non-critical condition) and
when g, is surpassed by the inflow. The dashed green arrow indicates the behaviour of the water
level of the inner rivers under this condition during the pumping

7.2.2.1 Runoff

The runoff process is represented through Eq. 7.1, which is based on the rainfall-
runoff relationship used by Gao et al. (2008) in representing the rainfall-runoff

process of a neighboring polder.

RO, = 0.55R, + 0.15R,_, Eq. 7.1

where R, [mm] and RO, [mm] represent the rainfall and runoff value at the time
step t [hrs]. As one can note, this equation states that the average runoff coefficient

(C,,) in the polder system is 0.7, which can be considered a reasonable value
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considering that the impervious area in the polder has been reported to be about
78.5% (Gao et al., 2009). No data were available to recalibrate this relationship for
the Shazou polder.

7.2.2.2 Waterlogging

Under non-critical conditions, this process is simulated by using the equation of
Gao et al. (2008), which uses the capacity of pipe-network drainage as the upper
limit to derive the inflow process of inner rivers. Under critical conditions, it is, on
the other hand, assumed that the inflow process is blocked and, therefore, the

waterlogging cannot be drained. These processes are represented by

_ { Wi + RO, if (he > he) }

£ | max{0,W,_; + RO, — 1}, if (hy <h.) Eq. 7.2

here r [mm.h™1] is the capacity of the municipal pipe network, h, [mm] is the water
level of the inner rivers at the time step t, W, is the cumulative excess runoff or
waterlogging on the polder at the time step t, and h, has already been introduced

above, which is defined in mm.
7.2.2.3 Inflow

Under non-critical conditions, the inflow to the inner rivers is also represented by
using the conceptual model of Gao et al. (2008). Under critical conditions, it is
assumed that the inflow process is blocked, and the inflow to the inner rivers is null.
These processes are represented by:

- 0. if (he = he) }
Ie = { min{r, W,_; + RO,}, if (hy < h) Eq.7.3

where I, is the inflow at the time step t.
7.2.2.4 Pumping strategy

The time variable pumping rate (g;) to be considered in this algorithm will depend

on the pumping strategy used to simulate the Shazou Polder. According to the

current pump operation of the Shazou polder, the runoff is pumped to the adjacent

outer rivers according to the observed inflow I (reactive pumping) (Gao et al., 2008,

2009), i.e., q¢ = I, when I; < qmax » ad When I; = gpax » the runoff is pumped
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at the maximum pumping rate q,,q.- If hs > h, (critical condition), it is assumed,
based on the analysis of pumping records, that pumping operators will drop the
inner rivers to a normal water level (h,) following the storm event. This normal
water level h,, defines the lowest level that pumping operators will draw down the
inner rivers, and this only occurs following a critical condition. This strategy and
other pumping strategies considered in the framework are explained in detail later

on.
7.2.2.5 Storage in the inner rivers

The water storage can be expressed by:

St — { St—l ~ Qmax> lf (ht = h'C) } Eq 74

St—1 + max{0,I; — Qimax}, if (hy <hg)
where S, [mm] is the water storage in the inner rivers at a given time t . Since the
variables used in Eq. 7.4 are areal variables (taking the area of the polder as
reference), S, should be understood as a volume of water spreads over the polder

area. This “areal” value is related to the actual value of the storage as:

SiA, = S{"Ap, Eq.75

where A, and A;, are the areas of the polder and inner rivers respectively in the
same units, and S is the actual value of the water storage in the inner rivers at a
given time step t taking mm as unit. If we consider k as the water surface ratio of

the polder (ratio between A;, and Ap), Si™ can be expressed from Eq. 7.5 as:

s,
in - _° Eq.7.6
AY: X q

7.2.2.6 The water level in the inner rivers

The water levels of inner rivers in a polder system are usually obtained by
simulating the flow processes of the rivers by using, for example, the de St-Venant
equations (Liu Jun et al., 2010; Gao et al., 2013). Since this research considers the
polder as just an input-output system, these flow processes are not simulated, and

the water level in the inner rivers is simply expressed by:
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he = he_q + S Eq.7.7

At the start of each simulation, it is assumed that the initial water level is equal to

the normal water level h,,.
7.2.2.7 Inundated area

A relationship is required that expresses the inundated area as a function of water
level in the inundated polder. In this sense, an impact curve was assumed for these
purposes. This curve is shown in Figure 7.4 and was added to the conceptual model
to represent the area inundated in the polder as a function of the depth of water that
accumulates in the polder, i.e., the waterlogging. The shape of the function reflects
the substantial development in lower areas of the polder, with substantial inundation

occurring with initial waterlogging.

o o
~ o

Inundated area [-]
o
S ]

0.01
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W [mm]
Figure 7.4: Inundated area-waterlogging function
This function was added to the conceptual model to represent the inundated area in the polder system

as a function of the depth of waterlogging W [mm]. The inundated area is expressed as a portion of
the area of the polder 4,.

7.2.3 Calibration of the model

Particular efforts have been recently made to simulate polder systems in China for

flood risk analysis (Gao et al., 2017, 2018; Fang et al., 2018; Wei et al., 2018).

However, none of the studies has considered a calibration procedure for the urban

drainage system. One of the main reasons could be the lack of data/information.

This issue is not the exception in this research; since to calibrate the conceptual

model, an average value of the water level of the inner rivers would be needed that
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should be derived from several observed points in the river network. In this context,
the objective pursued by the calibration process in this research was to represent the
conditions that give rise a critical condition situation in the Shazhou polder, rather
than the correct simulation of the average observed water level h. For these
purposes, this research used the observed rainfall of the 7-July-2016 event that is
known to have caused a critical condition in the polder system. This calibration

procedure is explained as follows.

Table 7.1 shows the parameter values needed to implement the algorithm for the
Shazhou polder (Figure 7.2). Most of the adopted values have been taken from
previous studies performed in this case study area (Liu Jun et al., 2010; Gao et al.,
2013), while the value of g,,4, Was initially obtained by summing the pumping
capacity of all pumping stations (Annex 1) and dividing by the polder area (4,=54.7
km?). This information has been confirmed based on interaction with the Nanjing
Hydraulic Research Institute (NHRI).

Table 7.1 Adopted parameter values for the water balance model of the Shazhou polder.

Parameter Description Unit Value Source

The capacity of pipe-network

drai mm. h? 22.14
rainage

Difference between the critical
and normal water level of the (LiuJunetal.,

Ay inner rivers, i.e. h, and h,,, mm 500 2010)
respectively.
k Water surface ratio - 0.065
G | T max"fr(‘)L:Tth:)'QI%':rg capacity | m. bt | 9.62 (14.8) NHRI
Cry Average runoff coefficient. - 0.7 Based on Gao et

al. (2009)

The initial value obtained for g,,,, Was taken as a reference, and it was subjected
to calibration. The calibration procedure consisted of adjusting the value of g4
to produce a critical condition situation for the 7-July-2016 event. The calibrated
value of g,,4, (9.62 mm.h?) represented 65% of the value obtained based on the
theoretical maximum(14.8 mm.h1), which seems reasonable. Figure 7.5 shows the

simulated inflow and water level for the 7-July-2016 event. According to the model,
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the critical condition started at 5:00 and, and the storage capacity was practically
full during the following 4 hours (8:00 am). This result corresponds with observed
records, which state that the inundation associated with the 7-July-2016 event
occurred around these hours. Thus by using the calibrated value of g4, and the
additional parameters values shown in Table 7.1, the model simulates the critical

condition that was known to occur for that event.

6000
Duration: 7 hours
60 Volume: 138 mm
5600
E 5200
% 40 =
8 £
= =
‘© 4800
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h\ 4400
dmax
0 i ‘ 4000

12:00 AM  5:00 AM  10:00 AM 3:00 PM  8:00 PM
Time [hr]

— Simulated water level [l Rainfall [ Inflow

Figure 7.5: Calibration of the conceptual model
This figure shows the simulated water level for the 7-July-2016 rainfall event by using the parameter

values shown in Table 7.1. Also shown is the simulated inflow process I,.
7.3 Monte Carlo generation of rainstorms and their forecasts

The conceptual model explained in section 7.2, which represents the response and
impact component RIC of the generic framework (Figure 7.1), has rainfall as the
driving input variable. In this section, it is explained how the framework represents
the rainstorm-and-forecast generator RFG which uses RainSim V3, a robust and
well tested stochastic rainfall field generator (Burton et al., 2008), to represent: i) a
daily rainfall (R4q;,) and its forecast (ﬁdaily), and ii) the hourly rainfall R;. As will
be seen later on, I?da”y will be used in the framework to represent the 24-h forecast
in the deterministic forecast scenario, whereas R; will be used to simulate the water
fluxes in the polder system. Note, however, that this framework also needs to

represent the 24-h probabilistic forecast, which cannot be derived directly from
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RainSim V3. Therefore, to represent this type of forecast, the framework uses a
joint distribution of R4, and R\daily to derive the uncertainty of Ry, given
}?daily. This section thus first describes the stochastic rainfall field generator and
the criteria adopted for calibrating and validating it, and, at the end of the section,

the approach used to derive the joint distribution of R;4;;,, and Rda”y is explained.

7.3.1 RainSim rainfall field model

The stochastic rainfall modelling in RainSim V3 is based on the Neyman-Scott
Rectangular Pulses (NSRP) model, and it can be used for a single site application
(a point rainfall generator) or for spatial applications (a spatio-temporal rainfall
generator). RainSim V3 operates in three modes: First, the model computes several
required statistics from the observed time series; the aim of this stage is to do a
statistical characterisation of the rainfall time series. This mode is called analysis.
Then, the model identifies the parameter set that, according to analytical
expectation, best matches the observed statistics. This mode is calling fitting.
Finally, the model generates synthetic time series using the fitted parameters. This

mode is called simulation.
7.3.1.1 Spatio-temporal model structure

The spatio-temporal Neyman-Scott Rectangular Pulses (NSRP) model used by
RainSim V3 for this application is summarized below (Burton et al., 2008) and
illustrated in Figure 7.6. A summary of its parameters is shown in Table 7.2.

v' Step 1: Storm origins arrive in time in a Poisson process with an occurrence
rate A (Figure 7.6(a));

v’ Step 2: A random number of raincells is generated in space and time for
each storm. A parameter S controls the arrival times of the cells after the
storm origin; these have an exponential distribution. The centres of the
spatially circular raincells are generated by a uniform Poisson process in
space with density p (Figure 7.7(b)). The radius of each of these raincells is
exponentially distributed with parameter y.

v Step 3: Each raincell produces a uniform rainfall rate generating, thus,
rectangular pulses. The duration and intensity of each of them are
independent and exponentially distributed with parameters n and &,
respectively;

v’ Step 4: The total rainfall at any time is the sum of all active raincells in time
and space.
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To account for orography, the rainfall sampled at each site is scaled by a factor ¢

proportional to each site's mean rainfall.

Table 7.2 Input parameters of RainSim V3 for spatio-temporal applications

A 1/mean waiting time between adjacent storm origins (1/h)
B 1/ mean waiting time for raincell origins after storm origin (1/n)
n 1/mean duration of raincell (1/h)
& 1/mean intensity of a raincell (h/mm)
Y 1/mean radius of raincells (1/km)
Spatial density of raincell centres (km)
0} A vector of scale factors, ¢, , one for each raingauge ()
Step 1 ° o o
a) time
Step 2 e —esch o o oich
time
Step 3 g
8 a]
time
£
Step 4 "*Z
b) time

X raingauge

Figure 7.6: Schematic of the Neyman-Scott Rectangular Pulses model used by RainSim V3
in spatial mode
Adapted from Burton et al., (2008)
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7.3.1.2 Model fitting procedure

Equations have been developed relating the statistical rainfall model properties to
the model parameters (Burton et al. 2008):

f} = f(/L B.p,n<.Y, (1)) Eq.7.8

where f; is a model property, j= 1,2, ...,m, and m is the number of properties
employed in fitting the model. These properties are typically the mean, variance,
skewness, autocovariance at a given time lag, probability of an h-hour dry period,
wet/wet and dry/dry transition probabilities, and cross-correlations between stations
for selected rainfall durations. They can be estimated from the available rainfall
time series, and the parameters are then estimated by minimizing the following sum

of squares function:

Eq.7.9

m f]>2
SS = \1—=
;W’< f

where f] is an estimated statistic from the observed data, f; is its model equivalent,

and w; is a preferential weight applied to one or more selected statistics.

7.3.2 Model calibration and validation
7.3.2.1 Available data

RainSim V3 first requires a set of statistics to be computed from an observed sample
to provide a statistical characterization of the rainfall time series. These statistics
are calculated from hourly and daily data. This subsection describes the sources of

the data used for that purpose and other important information.

The daily data were obtained from the Global Historical Climatology Network -
Daily (GHCN-Daily) dataset(Menne et al., 2012), which provides a long daily
record (62 years) at Nanjing Station (Figure 7.7 and Table 7.3).

The hourly data were collected from the five rainfall stations shown in Figure 7.7.
The record length and other important information about the stations are described
in Table 7.4.
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Table 7.3 Source of the daily records used in RainSim V3.

Length
record

Nanjing | 1950-2012 | 118°43’ | 32°05' China | NOAA/NCEI

Lat. Long. | Country Institution Source

GHCN-Daily dataset
[reference]

Station

Table 7.4: Characteristics of the rainfall stations used in RainSim V3

Code Name Lat. Long. Record period
62724050 Nanjing 118°43' 32°05'
62935200 Xiaogiao 118°34' 32°10'
62936600 Liuhe 118°53' 32020 2012-2016
62936660 Getang 118°44' 32015
63129400 Dongshan 118°51' 31°57

Legend ",.

Nagnng

Rain gauges
@ Shazhou polder

J

Pongshan

Figure 7.7: Geographical location of the four hourly rainfall stations

7.3.2.2 Results

The calibration (fitting) of the model was done through a numerical optimization
based on the procedure described in section 7.3.1.2. The observed statistics used for
fitting are shown in Table 7.5. The daily statistics were calculated from the long
daily record of the Nanjing station obtained from the GHCN-Daily dataset (Table
7.3), whereas the hourly statistics were calculated from the Dongshan record. The

spatial-temporal rainfall model simulated rainfall at five locations (Fig 7.7), with
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the same observed statistics at each location, but with different spatial correlation
(parameter xcorr in Table 7.5) obtained from the records of the five hourly rainfall
stations. (Note, for brevity, the spatial correlation in Table 7.5 is only shown for the
Nanjing and Dongshan stations.) This was done based on the criterion adopted to
represent the observed rainfalls and their forecasts and will be explained in the next
subsection. The fitted parameters are shown in Table 7.6.

Table 7.5 Statistics for RainSim V3.
The statistics correspond to July, which is the rainiest month in Nanjing

Type of

Abbreviation Statistic . .
information

Observed | Fitted | Weight

mean The mean h hou_r rainfall Daily 6.45 6.42 5
accumulation

The probability that an h hour
pdyr accumulation is dry, that is strictly Daily 0.69 0.81 6
less than a specified threshold

The variance of the h hour

var X Daily 33495 | 334.97 2
accumulation
corr The auto-cgrrelatlon of_ the h hour Daily 016 0.30 3
accumulation of two-time series.
XCOIT The cross-c_orrelatlon o_f the h r_]our Daily 0.90 0.96 5
accumulation of two-time series.
skew The skewness coefficient of h hour Daily 486 388 3

accumulation

The probability that an h hour
pdyr accumulation is dry, that is strictly Hourly 0.91 0.93 5
less than a specified threshold

var The variance of t_he h hour Hourly 283 284 3
accumulation

skew The skewness coefflc_lent of h hour Hourly 11.36 11.28 3
accumulation

199




Table 7.6. Fitted parameter for RainSim V3 model

Parameter Value
A 0.003967
B 0.077682
p 0.001050
n 5.381274
& 0.169332
Y 0.015000

The observed and simulated daily annual maximum rainfall are shown by means of
a Gumbel plot in Figure 7.8. Each dot represents the maximum daily rainfall
recorded in a July in the observed record, and the corresponding vertical lines show
the extremes from a 10 member ensemble extracted from the simulation. The range

of extremes matches the observed data.
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Figure 7.8: A comparison of observed and simulated daily annual maximum for July. The
range of the simulated results from a 10 member ensemble is shown at each return period
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A scatter plot of the simulated daily rainfall values at Dongshan (63129400) and
Nanjing (62724050) is shown in Figure 7.9. As the same statistics are specified at
each site during the fitting of RainSim, there is no bias, with the scatter due to the

spatial correlation specified between the pair of sites (Table 7.5; xcorr)
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Figure 7.9: Scatter plot of simulated daily rain values (mm) at Dongshan (63129400) and
Nanjing (62724050)

7.3.3 Generation of observed and forecast rainfall time series

The rationale for fitting a spatio-temporal model is the following. A relatively
simple procedure was needed for generating forecasts of the observed storms
generated by a point NSRP model. This was done by selecting one of the five sites
to represent observed rainfall and a second site to represent its forecast, but with the
same underlying temporal statistics and corresponding parameters, as the observed
rainfall site. The cross-correlation between the pair of sites (parameter xcorr in
Table 7.5) was used to control the level of agreement between the observed and
forecast rainfall time series. Dongshan station was chosen as the location that
represents the observed time series and the time series at Nanjing station as its
forecast. Since they share the same statistics, there is no bias between them, and the
forecast uncertainty is only expressed by the correlation parameter. The Dongshan
station was chosen as the observed time series because the records of this station
best represented the 7-July-2016 event which was used to calibrate the conceptual
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model of the Shazou polder (section 7.2.3). The fitted parameters are shown in
Table 7.6. As the means are the same at the two sites, the scale factors in Table 7.2

were the same.

7.3.4 The joint distribution of generated observed 24-h rainfall and their

forecasts

The generated ‘observed’ and ‘forecast’ time series from the RainSim V3 model
can be sampled at any required time interval. As NWP rainfall forecasts are
typically available for up to 24 hours in advance, it was decided to adopt a 24 hour
(daily) lead time for the forecasts. As explained at the beginning of section 7.3, the
24-h probabilistic forecast to be used in the probabilistic scenario will be derived
from the joint distribution of the values of R4, and ﬁdaizy obtained from RainSim
V3. This section shows the procedure conducted to i) build this joint distribution

and i) derive the conditional distribution of ﬁda”y given Rggiry, €.,
f (Raaity|Raairy ), which will be used as a measure of predictive uncertainty (PU).
To build this joint distribution, a univariate analysis of Ryq;;,, and Ryqy,, Was first
performed. Then the bivariate distribution of R4, and ﬁdaizy was derived. This

analysis was carried out generated a time series of 1000 years in length, i.e., with
365000 daily values.

7.3.4.1 Univariate analysis of generated observed daily rainfalls and their

forecasts

The univariate analysis of Rga;, and Rgq, @ims to find the best probabilities
distributions to represent the marginal distributions in the bivariate analysis. This
was done based on the goodness of fit (GoF) of different distributions to values of
R4qiry and ﬁdaily. Since this work focuses on rainfall events that could potentially
produce significant runoff events in the polder system, the univariate analysis only
considered pair of values that were both greater than 50 mm. After applying this
filter, the sample size was reduced to 17,998 daily values. When the sample size is
large, it is not suggested basing the GoF on a traditional statistical test (tests based
on the p-value)(Tanaka, 1987). Thus, this work used a visual inspection technique
to analyse the GoF, which involves plotting the theoretical quantiles against the
empirical ones. This plot is known as the quantile-quantile (g-q) plot; If the

probability distribution fits the sample data well, the points should fall
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approximately along the 1:1 line. The empirical probabilities can be computed by
using the Weibull equation (Eqg. 4.55).

Among the several probability distributions tested, which were the two-parameter
exponential distribution, the three-parameter log-normal distribution, and the three-
parameter Gamma distribution, the latter was found to be the best distribution to
represent the values of Ry, and I?daily. The distribution parameters were
computed through the maximum likelihood estimation (MLE) and assuming that
the location parameter is known, taken as 50mm for each case. The results for the
Gamma distributions are shown in Table 7.7 and Figure 7.10 (the results of the
other distributions are not showed to save space in the thesis).

Table 7.7 Estimation of the parameters of the three-parameter gamma distribution for the
values of Rgqiry and Rgiry

Location Shape Scale
parameter parameter parameter
Rdaily ﬁdaily

0o 0o YRdaily yr\’daily BRdaily Bf\’daily
50 50 1.45 1.44 23.2 23.3

300 4 \
300 300 4 [}

Rdafly [mm]

A

100

100 200 300

A 100 200 300 100 200 300
Raairy [mm] Theo. quantiles [mm] Theo. quantiles [mm]

Figure 7.10: Scatter plot of R4, and ﬁdm-ly and visual inspection of GoF

Figure a shows the pairs of values of Ry, and R 441, > 50 mm, and Figure b and c the gg-plots of
each of them assuming a three-parameter gamma distribution.

7.3.4.2 Bivariate simulation of observed daily storms and their forecasts

The visual GoF inspection of R4, and }?daily suggested that the three-parameter

Gamma distribution is the best distribution to represent these variables. Thus, one
can assume that their bivariate relationship is described by a bivariate Gamma
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distribution (BGD). The generator of pairs (Rdaily,ﬁdaily) and the building of PU

expressed as f(Raairy|Raqiry ) based on this distribution is explained as follows.

The generator of pairs (Ryqisy. Ragiy)

The bivariate generator is based on the Gaussian copula (section 4.4.2). Thus,

assuming (Rdm-ly,}?daily) ~BGD, whose marginals are defined by the parameters
shown in Table 7.7, pairs (Rqqiy, ﬁdaily) can be simulated based on the following

algorithm.

. . daily pdaily
v’ Step 1: Define the parametersﬁRda”y,dea”y,Bﬁda”y,yﬁdaﬂy,RO SR,

and the coefficient of correlation pg daity Raaily in the normal space, i.e., p, 7.

v’ Step 2: Generate n bivariate normal standardized pairs, i.e., (n,1j), with
correlation p, 7 based on the conditional approach, i.e., building f(nlf;),
and, then, drawing a random value from this conditional distribution.

v Step 3: Compute the CDF of the resulting pairs (1, §j).

u=F(n) and r = F(§)

v Step 4: Compute standardized gamma variables w and W associated with

the shape parameters y daily and yz daily respectively as:

w = Fpt(u) and W = F3'(r)
where F;* and F;" are the inverse CDFs of the distributions of w and W
which are in turn defined as:

daily 5 sdaily
__ Raaity—R, and W = Raaily—R,
PRaaity PRaaity

where, as was explained above, Ry™"™ and R;™™ and Br,,,, and Bz ..,
are the location and scale parameters of R4;;, and I?da”y, respectively.

v Step 5: Pairs (Ryqiry, }?daily) can be finally obtained as:
pdail
Rdaily = Roal Y + BRdailyW
o) sdail ~
Rdaily = ROal Y + ﬂﬁdailyw

To compute the value of PRagiyRaaily in the normal space, i.e., p,4, one can first

ﬁdail
find the relationship between the correlation coefficient in the normal (py) and

gamma (psqm) Space associated with the parameter set 8, daity Raaily” Itis performed

ﬁdail
by following the steps of the above-mentioned algorithm, assuming several
arbitrary values of py in Step 2, and computing the associated value of pgum
numerically. For any specified value of p;.m, the value of p,,; can then be obtained

via interpolation based on the pairs of values (p¢am: Pn)-
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The building of PU

The framework uses the above-mentioned bivariate gamma generator to build the
conditional distribution of  f(Ryai1y|Raairy) Which will be used to provide a
measure of PU in the probabilistic forecast scenario. This is done by simply
sampling n values from the conditional distribution f(n|fj;) obtained in the
bivariate-gamma generator (Step 2) and then conveying the resulting values to
gamma space by following the steps of the algorithm in terms of R4;;,,. PU can be
finally expressed in terms of density values by computing the kernel density

estimations of the sampled values.

Example of application

The value of PRaaity i.e., the correlation in the Gamma space pggm, Was

ﬁdaily !
estimated through the sample correlation coefficient of the pair of values shown in

Figure 7.10a. Table 7.8 shows the seven parameters of the BGD of R4, and
ﬁdaily-

Table 7.8 Values of the parameters of bivariate gamma distribution of R4, and Tzdm-,y

daily pdaily ~ ~ N
R, Ry YRaqity YRaairy ﬁRdaily ﬁRdaily PRaairyRaaity

50 50 1.45 1.44 23.2 23.3 0.93

The results of the bivariate simulation based on the generator explained above are
illustrated in Figure 7.11. Figure 7.11a shows the joint density of 50,000 pairs

(Raaity, I?daily) from the the bivariate gamma distribution. Figure 7.11b shows an
example of the PU expressed as f(R|Rqqi1,) for a forecast value Ryqi1y, Shown in
Figure 7.11a (grey dot). Note that in the framework Rda”yi is obtained from

RainSim and its associated f(R|R g1, ) Will be derived from the BGD.
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Figure 7.11: Results of the bivariate simulation of R4, and T?d,u-,y
In this figure, a shows the joint density of 50,000 pair of values of the bivariate gamma distribution
defined by the values of the parameters shown in Table 7.8; the pairs of values were obtained through
the bivariate gamma generator. Figure b shows the conditional distribution f(Rauqiry|Raairy)
associated with the forecast value Ry, represented by a grey dot in Figure a. £ (Ruqiry |Raquy ) is
obtained by slicing the joint distribution through the grey line that crosses the forecast value (grey
dot).

7.4 Daily rainfall forecast thresholds for the polder system

In the previous section, the procedures for deriving the deterministic and
probabilistic 24-h rainfall forecasts within the RFG component of the framework
were described. As will be seen in the next section, storm warning decisions based
on these forecasts will be represented through a rainfall-threshold approach. Thus,
in this section, the methodology adopted to derive the daily rainfall thresholds in
the Shazou polder is described. As will be seen below, this methodology considers
the uncertainty of the profile of the daily rainfall and the initial condition of the
water level in the inner rivers at the time the forecast is issued h,.There are few
works that have considered the uncertainty of rainfall characteristics when
analysing rainfall thresholds for flood warning systems (Wu et al., 2015), and, to
the best of my knowledge, a methodology to quantify rainfall thresholds for flood
warning purposes in a polder system has not been published to date. The

methodology used in this work is explained as follows.

A daily rainfall threshold (RT4;,) for a polder system can be defined as the volume
of a daily rainfall which brings the water level of the inner rivers to the critical level
h., 1.e., a daily rainfall that fills up the storage capacity of the inner rivers. Thus,
daily rainfall values greater than RT,,;;, falling on the polder area bring the inner

rivers to critical conditions. In this context, RT,,;;, has to be associated with h,,
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i.e., the initial condition of the water level of the inner rivers at the time the forecast
Is issued. Note also that a critical condition situation depends not only on the
volume but also on the rainfall profile of the storm, causing critical conditions in
the polder. Daily rainfalls with significant rainfall volumes spread uniformly
during the day might not cause critical conditions in the polder due to the runoff
rate reaching the inner river being equal to or lower than the pumping capacity of
the polder g,,4,- In this case, water is not stored in the inner rivers, and the polder
manager can drain the runoff smoothly if he pumps in proportion to the drainage
from the polder. However, other daily rainfalls with similar rainfall volumes, but
concentrated in relatively short time periods, might cause critical conditions in the
polder system due to the runoff rate might be higher than the maximum pumping
capacity g,,q- In this case, the water is pumped at a rate equal to g,,,4,, but the
water level rises, and a critical condition situation can be reached. To account for
this uncertainty, the stochastic rainfall model explained in section 7.3 provides
daily rainfall profiles based on the generated hourly values of those events that
could potentially produce significant runoff events in the polder system (the 17,998
profiles associated with the R,q;;, Values are shown in Figure 7.10a). A value of
RT 441, can be computed for each profile using a trial-and-error approach with the
water balance model of the Shazhou polder described in section 7.2 with the
pumping strategy that represents the current reactive pump operation in the Shazou
polder (section 7.2.2.4). Then, RTq;;, is estimated as a p-quantile of the resulting

PDF of these values. The algorithm can be summarized as follows:

v Step 1: From the RainSim V3 simulations, define observed daily rainfalls
that could potentially produce significant runoff events in the polder system
(daily rainfalls > 50 mm).

v' Step 2: Define different initial conditions as:

Ah,

hzj):hn‘l'j n,

Eq. 7.10

where h! is the initial condition j; n, is the number of initial conditions
considered, h,, is the normal level, and Ah,, is the difference between the
critical water level h, and the normal water level h,, here taken as 0.5m
with h,,= 4000 mm.
v Step 3: For each h, perform the following sub-steps:
a) By using the conceptual model of the polder system described in
section 7.2 and the pumping strategy that describes the current
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pump operation in the Shazou polder (section 7.2.2.4), obtain
values of RT,,;;, by rescaling all the values of the daily rainfalls
obtained in Step 1 to make them larger or smaller until the
resulting water level of the inner rivers hits the critical level k..
b) Define the PDF of RT.4i1y, i.8., f(RTgqi,), With the values
obtained in sub-step a.
c) Define the rainfall threshold associated with hg, ie., RT/

daily’ as
the p-probability quantiles of f(RTyq4i1y).

Thus, if we have an initial condition h{; in the inner rivers at the time the 24-h

forecast of rainfall is issued, and that forecast is greater than RTU{ a critical

aily’
condition will be reached, and a proactive response action should be conducted to

avoid the inner rivers reaching the critical level.
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Figure 7.12: Rainfall thresholds for the Shazhou polder

Figure a shows the dimensionless mass curve of the proportion of observed daily rainfalls considered
to obtain RT4q;;, Values. Figure b shows the values of h! against RTC{ The value of RT g, are

computed as the 0.01-probability quantile of f(RT4q4;1,)

aily*

The results of applying the above-mentioned approach are illustrated in Figure
7.12, which considers twenty initial conditions (n, = 20 in Eq. 7.10). Figure 7.12a
shows the 17,998 daily rainfall profiles obtained from RainSim V3 as

dimensionless mass curves. Figure 7.12b shows the values adopted for RTC{auyby

assuming them as the 0.01-probability quantile of f(RT4q4,). By doing that, one

expected to remove all the uncertainty with respect to the rainfall profile. Thus, the

framework assumes that the values greater than these quantiles will bring the inner

rivers to a critical condition. Finally, it is worth noting that the rainfall thresholds

for the normal condition h,= 4000 mm is > 100 mm which corresponds to the

warning categorised as “yellow” for Nanjing. A yellow warning is the second
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lowest on the 4 colour coded rainstorm warning system used in Nanjing; it triggers

a consultation meeting headed by the Commander of Flood Control.
7.5 Warning decisions for the polder system based on 24-h forecasts

A storm warning aims to provide time in advance to the polder manager to conduct
a proactive action in the polder system to avoid a critical condition situation. As
was mentioned above, the framework considers a storm warning based on a 24-h
total rainfall forecast. Figure 7.13 shows the chronology adopted by the framework
for the operation of the polder system by considering this type of warning system.
It is assumed that the warning is issued at midnight, and, thus, the polder manager
can conduct a proactive strategy based on the 24-h forecast. Note that the end of the
proactive action depends on the pumping strategy adopted by the polder manager
and where t,,, is located, and the storm might arrive before or after the proactive
period (the types of pumping strategies considered in this work are explained in the
next section). The warning decision made at midnight can be based on deterministic
and probabilistic rainfall thresholds. The framework represents those decisions

based on the values of daily rainfall thresholds RT,;;,, obtained in the prior section.

This is explained as follows.

End of
proactive action

|

! ! I >
Midnight tpro Midﬂight

| Proactive action | Reactive action |

[ T

1

Figure 7.13: Chronology of the operation of the polder system by considering a storm
warning based on a 24-h forecast horizon
This framework assumes that storm warnings are issued at midnight; after that, the polder manager
can conduct a proactive pumping action. The end of this action, designated t,,, in this figure,
depends on the strategy adopted by the polder manager. The storm might arrive before or after t,,,.,,.

7.5.1 Deterministic warning decisions

This warning decision is based on the deterministic-24h forecasts ﬁda”y, generated
from RFG, and the daily rainfall threshold values, (RTgq4,,). A warning is issued
if ﬁdaily is greater than RTq;;,,. The decision rule of this warning decision is given

by Eq. 7.11 and illustrated in Figure 7.14.
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if (Rdaily > RTdaily) warn,

Eq. 7.11
else, not warn

Det.warning decision = {

Det.warning decision = if Raaity > RTaany) Wart,
else, not warn
A
@ Raily
> k % RTdaily
o
[+ 4
“\
\
\

Figure 7.14: lllustration of the deterministic warning decision based on a daily rainfall
threshold
This figure shows the illustration of the decision rule used to represent the deterministic warning
decision described by Eq. 7.11. Note that RT4;,, Is associated with h,

7.5.2  Probabilistic warning decisions

The probabilistic warning decision considers the probabilistic-24h forecast and a
probabilistic threshold (PT). The former has to do with the exceedance probability
(PE) of the daily rainfall threshold RTg,jy, i.€., the probability of having an
observed daily rainfall volume R, greater or equal than RTyy,1,. PE is obtained
through the conditional distribution of R4, given Ryguy, i€., f(Raaity|Raairy),
derived from the joint probability of R4, and }?da”y (section 7.3.4). PT is a
probabilistic threshold value on which the warning decision is based. A warning is
issued if PE is greater than PT, the latter is a value to be analysed in the framework.
The decision rule of this warning decision is shown in Eq. 7.12 and illustrated in
Figure 7.15.

if (PE > PT) warn,

Eq.7.12
else, not warn

Probabilistic decision = {

210



if (PE > PT) warn,

Probabilistic decision = {
else, not warn

Rdaily

Figure 7.15: lllustration of the probabilistic warning decision based on a daily rainfall
threshold
This figure shows the illustration of the decision rule used to represent the probabilistic warning
decision described by Eq. 7.12. The probabilistic threshold PT is a value to be analysed in the
framework

7.6 Pumping strategies under different forecast scenarios.

In the prior section, we defined the probabilistic and deterministic warning
decisions that should drive a proactive pumping strategy in the polder system. In
this section, the representation of these pumping strategies in the framework will
be explained. Here, we also explain the pumping strategies adopted for the no
warning and perfect forecast scenarios, which will be considered as the two
benchmark cases in the analysis of the framework. Before explaining these
pumping strategies, this section starts by explaining two important concepts: i) the
water balance of an observed daily runoff causing a critical condition in the polder,
and ii) the proactive criterion used to represent a proactive pumping strategy.
Understanding these two concepts is important to comprehend the rationality

adopted in the pumping strategies.

7.6.1 Water balance of an observed daily runoff causing critical conditions

under a reactive action

If one wishes to analyse/add a proactive action in the current pumping operation of

the Shazhou polder (where pumping actions are mainly driven by the observed
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inflow to the inner rivers) to avoid a critical condition situation, one should first
understand the water balance of the polder for an observed daily runoff causing that
condition under that pumping strategy (reactive strategy). This helps to identify
target variables that should be considered in the proactive strategies to avoid a
critical condition in the inner rivers. This water balance will be explained in terms
of areal values and length units. The values of volumes can therefore be understood
as the depth of the volume of water spread over a reference area, e.g., the area of
the polder or the inner rivers. Hence, the water balance of a critical observed daily

runoff can be expressed by:

ROG4iy = Vi + S50 + S, Eq.7.13

where ROgq;;,, is the observed daily runoff causing critical conditions, V; is the
portion of this critical runoff reactively pumped during the storm to the adjacent
outer rivers, S:?7, as was explained in section 7.2.2, is the storage capacity of the
inner river before the storm arrives, and S, is the portion of the critical runoff that
brings the water level of the inner rivers beyond the critical level. Figure 7.16 shows
a conceptualization of the water balance explained above. This figure illustrates
how the volume of a critical runoff ROg;, is split into the drainage system
according to the current pump operation of the Shazou polder (reactive one, see
section 7.2.2.4). When the critical storm starts, the initial condition of the water
level of the inner rivers is h, and the storage capacity of the inner rivers is S;“". V;
is the volume of the critical runoff drained to the adjacent outer rivers during the
critical storm, and S, is the volume of this critical runoff that brings the water level
of the inner rivers beyond the critical level. As one can note, S;* is the only
variable known before the storm arrives, and V7 and S, are, therefore, the target
variables in a proactive pumping strategy. To know the values of these variables,
one should have perfect knowledge of the profile and volume of the coming daily
rainfall causing critical conditions in the polder. If the polder manager would have
perfect knowledge about these two variables, he or she could pump S, before the
storm and ¥, during the storm; the resulting scenario would then be that the storage
capacity of the inner rivers would be exactly full at the end of the storm, thus

avoiding a critical condition situation.
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Figure 7.16: Conceptualization of the water balance of an observed daily runoff causing
critical conditions in the polder system based on a reactive pumping strategy
According to the current pump operation of the Shazou polder, the runoff is mainly pumped to the
adjacent outer rivers according to the observed inflow I (reactive pumping), i.e., g, = I, when [, <
Qmazx » and when I, > qnq » the runoff is pumped at a pumping rate g4, (Section 7.2.2.4). The

water level of the inner rivers starts to rise in the latter condition.

7.6.2 Criteria for the proactive pumping strategy

In the prior section, the target variables to be considered in a proactive pumping
strategy were identified, i.e., V7" and S.. Now, one should adopt a proactive criterion
to pump the volume of water associated with those variables to avoid a critical
condition situation. For example, assuming perfect knowledge of the values of these
variables, one criterion could be pump V7 and S, together once the storm arrives.
Note that, even for the perfect-knowledge assumption, this strategy could not be a
good one since the inflow I of some storms can exceed the pumping capacity of the
polder g, during all the storm (this is the case for high-intensity storms), leaving
no capacity to pump S, during the storm. Thus, another valid criterion could also
be to try to pump S,, or a portion of it, before the storm arrives, and then wait for
the storm to arrive before completing the pumping strategy. This proactive criterion
has been adopted in this framework to represent the proactive pumping strategy
under the perfect and imperfect-forecast scenarios, where the former is based on the

true values of these variables, and the latter use their forecasts.

Thus, the proactive pumping strategies explained later will be made up of a

proactive and reactive action. The proactive action has to do with the volume of

water pumped before the storm arrives (V,/°"), and the reactive action has to do
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with the volume of water pumped during the storm (1},). The proactive pumping

strategy, P.strategy, can be, therefore, defined by:

b . .
efore t < tyros proactive action

P.strategy = { } Eq.7.14

P
/4 t = max(tarrives tpro); reactive action

where t,,rive IS the time at which the observed storm arrives in the polder and tpro
is the proactive action period (Figure 7.13). Thus, several pumping rules can be set
based on this proactive criterion and under different types of forecast information.
This proactive criterion will be the basis for the proactive pumping strategies

considered in the framework.
7.6.3 Reactive strategy — no forecast

Based on the case study, a proactive pumping strategy can be understood as a
proactive pumping action that can be added to the current operational pumping
procedure, which can be considered as a reactive one. Thus, before introducing the
proactive pumping strategies, an explanation is provided of how the current reactive
pumping actions conducted in the Shazou polder for the critical and no critical

conditions will be simulated in the framework.

A reactive pumping strategy can be defined as a pumping action driven by the
inflow of the inner rivers I. Under non-critical conditions, this pumping strategy is
represented by the following operational principle (Gao et al., 2008, 2009): When

the water level starts to rise,
If: the inflow exceeds the pumping capacity of the polder system ¢,,,4x,

pump the water at the latter rate, while the excess water is stored in the inner rivers,

raising the water level
Else: pump the water at the inflow rate I,.

For the critical condition, it is assumed that the maximum pumping capacity g,ax
is used in the polder. It is also considered that, after the critical condition has been
reached and the inflow has stopped, the polder manager drops the water level of the
inner river to the normal level h,, by using the maximum pumping capacity g,

Furthermore, if the resulting water level of the inner rivers after the storm is below
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the critical level h,, it is assumed that the polder manager keeps the water level of

the inner rivers at that level. These principles are represented by:

Qmax if (hy > h.) until h = h,
q: = min{qmax, It}l lf (h’t < h’C &It > 0) Eq 715
0, lf (ht<hC&It:0)

Where, as was explained in section 7.2.2, g, [mm.h™!] is the pumping rate at time

step t; the other variables have also been introduced in this section.

The adopted reactive pumping strategy has three mains assumptions: i) the pumping
starts when a storm starts —reactive action-, ii) once the dropped water level reaches
a given water level — here assumed as h,-, the pumping ends, and iii) the water
level of the inner rivers can be higher than the level that defines the end of the
pumping. This behaviour has been observed in the operation of the Shazhou polder
(Song, 2019).

7.6.4 Proactive strategy under perfect forecast information

In this section, one of the two proactive pumping strategies analysed in the
framework is explained. This proactive pumping strategy is designed under the
assumption of a perfect forecast and is the best scenario when simulating the polder

system as one is assuming perfect knowledge about the target variables S, and V.

Adopting the proactive criterion described in Eq. 7.14, V,*/°™ in this equation
should be equal to S; and then, when the storm arrives, 1, will be equal to V1. Note,
however, that, when applying this strategy, the storage capacity of the inner rivers
at the end of the 24hr period will be full, which would produce a critical condition
situation for the next day, even for a weak storm. To avoid this, Vpbef "¢ under this
scenario is expressed by:

VYT = S, + (he — Ryey) Eq.7.16

where S is expressed as length units (section 7.6.1), and h,..; is a reference level
of the inner rivers. The reference level h,. is the level at which one wants the
water level to be at after the pumping actions; it must be neither too high nor too

low. In this first case, a critical condition situation can be produced in the next day,
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even by a weak storm. In the second case, the strategy can be considered expensive.

before
Vo

When considering the value of based on this equation, one makes sure that

the level of the inner rivers after the end of the storm will be equal to h,..

In this strategy, the volume of water pumped during the reactive action, i.e., V5, is

simulated by Eq. 7.15, i.e., the current pump operation of the polder system. For the
proactive action, it is assumed that the polder manager pumps a volume of water

equal to S.+(h. — h,.f) With a pumping rate equal to g4,

S. should be computed prior to the analysis of the daily storm by performing in
advance the 24h-water balance of the polder system based on the current pump
operation of the polder system, i.e., reactive pumping actions, and using the
observed profile and volume of the daily rainfall to be analysed (perfect forecast).

It can be computed through the following algorithm.

v Step 1: Assume the polder system to be a tank - an input-output system -
and compute the hourly runoff RO, by using Eqg. 7.1, and its associated
waterlogging W; and inflow I, through Eq. 7.2 and Eq. 7.3, respectively, for
the no critical condition situation.

v’ Step 2: Compute the hourly water storage as:

0' if (It < Qmax) }
S ={ ; Eq. 7.17
t St—l - (Qmax - It): lf (It > qmax) g

v’ Step 3: Compute the maximum value of S;, i.e., Sjax(S1,S2,S3, ... S24), and
compute S, as:

S, = Spax — SE¥ Eq.7.18

The chronology of the perfect forecast pumping strategy can be summarized as

follows.

v At midnight, the value of S, is delivered to the polder manager, and the
polder manager conducts the proactive action by pumping a volume of water
equal to S; + (he — hyer) (EQ. 7.16) with a pumping rate = gpqy.

v Then, the polder manager waits for the arrival of the storm. If the storm
arrives before S; + (h; — hyef) has been pumped, the manager will
continue with the proactive strategy, and also implement the reactive
strategy. Here, the pumping rate used is g,,4, Until the target volume has
been pumped.
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v" Finally, the polder manager completes the pumping strategy by conducting
the reactive action once the storm arrives, which is represented by Eq. 7.15.
The volume of water pumped during the reactive period will be equal to
and the level of the inner river at the end of the storm will be equal to h,...

Note that the representation of the perfect forecast pumping strategy does not mean
that the polder system will not be affected by waterlogging. There are two
conditions causing waterlogging under the perfect forecast scenario:

v" Condition 1: When the runoff rate RO overcomes the capacity of the
drainage system r (EqQ. 7.2).

v Condition 2: When the runoff starts at midnight, and the inflow overcomes
the pumping capacity of the polder system g, i.€., before the proactive
strategy can be implemented. Under this condition, ¢,,..,. in EQ. 7.14 is zero,
and the proactive action cannot be conducted. In this case, the polder
manager does not have response capacity for the critical storm, and he/she
is only able to use a pumping rate equal to g,,4,,» Whereas the water level
of inner rives rises until a critical condition situation is reached.

7.6.5 Proactive strategy under imperfect forecast information

In the prior section, it was explained how the framework will represent the best
scenario when simulating the polder system, i.e., the perfect forecast scenario, so
there is no  uncertainty about the target variables S, and V. Here, a proactive
pumping strategy based on imperfect forecast information is explained, where the
uncertainty of the target variables is fully considered. This proactive pumping
strategy can be applied by considering probabilistic and deterministic forecast
information and will be the response to the deterministic and probabilistic warning
decisions explained in section 7.5. It will, therefore, be used for both scenarios in
the analysis of the framework. This proactive pumping strategy is detailed below

There are a number of proactive strategies one can design to operate the polder
system under the proactive criterion described in Eq. 7.14. In this work, only one
of them has been used to describe a proactive strategy under different levels of
imperfect forecast information. This strategy was called Type-1 pumping strategy.
The reactive pumping action is represented by Eq. 7.15 (the current pump operation
of the polder system), and the proactive pumping action, which can be based on
deterministic and probabilistic forecasts, is a pumping action driven by a storm

warning, i.e., it is only conducted if a storm warning is issued.
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The Type-1 pumping strategy assumes that, once a storm warning is issued, the
polder manager has a forecast of the total critical daily runoff RO*" (Eq. 7.13),

designated by ROZ*™ , but has no knowledge of the daily rainfall profile. Thus, the
polder manager has to deal with the proactive action based on knowledge of
I?Df“”y and S°; the latter is assumed known because he/she knows the storage
capacity of the inner rivers before the storm arrives. This equation can be expressed

in terms of the true values of these two variables as:

RO — vy, o+ SEP Eq.7.19

where Ve,cess IS the portion of the critical daily runoff expressed by V7 + S, in Eq.
7.13. Based on Eq. 7.19 and the information assumed known by the polder manager;
one can, therefore, say that he/she has an estimate of V,,..ss Which can be computed
as:

‘7excess = Ebcdaily - SoCap Eq.7.20

where 7, ess 1S the estimate of V,,.ss. Thus, the estimate of S, in Eq. 7.13 can be

computed as a portion of V,,cess aS:

)

Eq. 7.21

S¢ = aVexcess

where S. is the estimate of S, and « is a parameter with a value between 0 and 1
and represents the portion of V,,..ss that represents S., i.e., a represents the
proactive pumping factor in the pumping strategy. Based on Eq. 7.21, the estimate

of V7 is given by:

"/;c =(1- a)f}excess Eq.7.22

Thus, the Type-1 pumping strategy assumes that Vpbef"re in Eg. 7.14 should be

equal to S, (Eq. 7.21); and then, when the storm arrives, it assumes that V, will be

equal to V;f (Eq. 7.22).

To summarize, S, represents the estimate of the portion of a critical observed daily
runoff that brings the water level of the inner rivers beyond the critical level h..

Since the forecast of the rainfall profile is not available, it is computed as a
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percentage of the estimate of the volume expressed by V1 + S, which is here called
Voxcess (EQ. 7.19); this proportion is represented by a in Eq. 7.21. Note that V,,cess
(Eq. 7.20) depends on the magnitude of ROZ*™ and SE% | i.e., the storage capacity
of the inner river before the storm arrives. Thus, if S5 is small, 7,,¢ess could be
small if ROZ*™ is small. How large or small V... is depends on the value of

RO2™™ and o, where the latter it is a value to be analysed in the framework.

As was mentioned above, the Type-1 pumping strategy can be applied by
considering probabilistic and deterministic forecast information. The application
and chronology of this pumping strategy when using these two types of information
is explained as follows.

7.6.5.1 Type-1 pumping strategy based on deterministic forecast

The Type-1 pumping strategy under deterministic forecast information requires a
forecast of the total daily runoff ﬁb(ﬁa”y based on the deterministic forecast of a
critical daily rainfall (Rg,;;,) (a daily rainfall causing critical conditions in the
polder), designed as ﬁga”y. By definition, the values of this latter variable are
values greater than a daily rainfall threshold RTg,;;, (section 7.4), and, therefore,
they are provided to the polder manager when a storm warning is issued. ﬁbga”y

is computed here as:

ROSui1y = 0.7RSuu, Eq.7.23

where the value of 0.7 represents the average runoff coefficient of the polder system

used in the conceptual model to compute the runoff rate RO (Eq. 7.1).

The chronology of the operation of the polder system under the Type-1 pumping

strategy based on deterministic-24 forecasts can be summarized as follows.

v At midnight, a deterministic 24h-forecast of rainfall is generated and a
warning decision is conducted based on Eq. 7.11. If a storm warning is
issued, the deterministic forecast of the daily runoff that will cause critical

conditions ROZ™ in the next 24 hours is delivered to the polder manager
(Eq. 7.23). If a storm warning is not issued, only a reactive pumping action
is conducted.
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v' If a storm warning is issued, the polder manager conducts the proactive
action by pumping a volume of water equal to S, = aV,,c.ss With a pumping
rate = Gmax, Where U, cess is computed as ROZ4Y — s, (Eq. 7.20).

v Then, the polder manager waits for the arrival of the storm. If the storm
arrives before S. has been pumped, the manager will continue with the
proactive strategy and also implement the reactive strategy. Here, the
pumping rate used IS g,,4, Until the target volume has been pumped.

v" Finally, the polder manager completes the pumping strategy by conducting
the reactive action once the storm arrives, which is represented by Eq. 7.15.

7.6.5.2 Type-1 pumping strategy based on probabilistic forecast

The Type-1 pumping strategy under probabilistic forecast information uses the

expected value of the forecast of a daily rainfall R4, to compute Ebga”y.

ROG4i1y = 0.7E(Raquy|Raainy) Eq.7.24

where E(Rdailylﬁdaily) Is the expected value of the conditional distribution of
Raairy 9iVeN Rygiy, i€, f(Raaity|Raairy), Obtained from the joint probability of

Raairy and Ryqpy (section 7.3.4).

The chronology of the operation of the polder system under the Type-1 pumping

strategy based on probabilistic forecasts can be summarized as follows.

v' At midnight, a probabilistic 24h-forecast of rainfall is generated, and a
warning decision is conducted based on Eg. 7.12. If a storm warning is
issued, the probabilistic-forecast based estimate of the daily runoff that will
cause critical conditions RO in the next 24 hours is delivered to the
polder manager (Eq. 7.24). If a storm warning is not issued, only a reactive
pumping is conducted.

v If a storm warning was issued, the polder manager conducts the proactive
action by pumping a volume of water equal to S. = aV, . .ss With a pumping

rate = gax, Where U cess is computed as ROZ*Y — S5% (Eq. 7.20).

v' Then, the polder manager waits for the arrival of the storm. If the storm
arrives before V,,...ss has been pumped, the manager will continue with the
proactive strategy, and also implement the reactive strategy. Here, the
pumping rate used is g,,4, until the target volume has been pumped.

v Finally, the polder manager completes the pumping strategy by conducting
the reactive action once the storm arrives, which is represented by Eq. 7.15.
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7.7 Operation of the Shazhou polder system under different forecast

scenarios

In this section, an explanation is provided of how the framework links the concepts
explained above to build the algorithms to simulate the operation of the polder
system under different forecast scenarios. In essence, the framework couples the
RFG (section 7.3) with different warning decisions (section 7.5) and the conceptual
model of the polder system (section 7.2.2) with different pumping strategies
(section 7.6) according to the scenario to be analysed. Before introducing these

algorithms, the metrics used to compare all the scenarios are explained.
7.7.1 Metrics to be analysed

A polder manager could use a warning system to reduce the time and magnitude of
the waterlogging W by conducting a pumping strategy based on the forecasts (in
this work 24-h forecasts). This pumping strategy can involve proactive and reactive
actions with an inevitable pump operating cost, which should also be considered.
There are, therefore, two criteria to be considered, waterlogging and pumping cost,
and metrics to represent them are detailed below. Since the stochastic rainfall model
on which the RFG is based represents the rainfall characteristics of July in Nanjing,
when extreme events are most likely to occur, the metrics used in this work have
been designed to represent the average values for that month. These values were
computed by considering several replications of the operation of the polder system
over the month of July. Each July replication is performed using continuous
simulation, with the hourly simulation of the hydrology of the polder system carried
out based on synthetic ‘real’ rainfall time series and the proactive decisions made

using their corresponding (24hr) forecast values provided by the RFG.
7.7.1.1 Maximum Inundated area

The maximum inundated area (MIA) represents the maximum area inundated
during each replication of the operation of the polder system during July. The
inundated area (/A) is a value provided by the conceptual model of the polder
system through simulating hourly runoff and calculating hourly inundation using

Figure 7.4. MIA and its average value can be expressed by:
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MIA = max(1A;,14,,14s, ... 14;) Eq.7.25
n
MIA = ! Z MIA
= L, i Eq.7.26

where j is the total number of simulated hours in a simulated July, MIA is the
average maximum inundated area in July, n represents the total number of July
replications, and i is a simulated July. The MIA will be a function of the pumping

strategy adapted, and the forecast information used.
7.7.1.2 Pumping costs

The pumping cost (C,) represent the total cost of the pumping actions during July.
The cost will depend on the given pumping strategy (and also the forecast
information used) and can be split into proactive (Cy,.,) and reactive (Cyq)

pumping costs. The average values of these pumping costs can be thus expressed
as:

Clro Eq. 7.27
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Cp = Cypro + Crea Eq. 7.29

where C{,m and Cl,, represent the total proactive and reactive pumping cost for a
simulated July i, C_pm and C,., represent the average proactive and reactive

pumping costs during July, and C,, is the average total pumping cost during July.

The pumping costs were computed according to the assumed pumped tariff shown
in Table 7.9. As one can see, the number of steps considered in the pumping rate is
equal to 6. The number of steps in the pumping rate has been assumed considering
that the number of pumps at each pumping station in the Shazou polder, which is
also 6.
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Table 7.9: Assumed pumping tariff to compute the pumping costs

q Pumping tariff
[mm h?] [Units]

1.6 15

3.2 30

4.8 45

6.4 60

8 75
Gmax =9.62 100

7.7.1.3 Duration of waterlogging

The duration of waterlogging (D,,) represents the number of hours of waterlogging

during a simulated July. The average value is given by:

S|

D, =

L

n
D, Eq.7.30
=1

Where D, represents the number of hours of waterlogging in the polder system

during a simulated July i, and D,, is its average.
7.7.2 The no forecast scenario

The no forecast scenario will be one of the benchmark cases in the framework. It
represents the current pump operation procedure in the polder system, which is
based on reactive pumping actions. It will be represented by using the algorithm we
built to represent the water balance in the polder (section 7.2.2) with the pumping
strategy described in section 7.6.3. The algorithm designed for its analysis is
detailed below.
v’ Step 1: Obtain a continuous set of ‘observed’ hourly synthetic rainfall time
series for July from the RFG.
v Step 2: Run the analysis in no-warning mode using the conceptual model
of the polder system with the pumping strategy described in 7.6.3.

v' Step 3: For all the simulated Julys, compute the metrics explained in section
7.7.1

7.7.3 The perfect forecast scenario

The perfect forecast scenario will be the second benchmark scenario in the

framework. It is an idealized scenario in which there is no uncertainty for the target
223



variables in the proactive pumping strategy, i.e., it is assumed that the hourly
rainfall values are known, and 24hr forecasts are not used. It will be represented by
using the algorithm built to characterize the water balance in the polder (section
7.2.2) with the pumping strategy described in section 7.6.4. The algorithm designed
for its analysis is detailed below.
v’ Step 1: Obtain a continuous set of ‘observed’ hourly synthetic rainfall time
series for July from the RFG.
v Step 2: Run the analysis in no-warning mode using the conceptual model
of the polder system with the pumping strategy described in 7.6.3.

v’ Step 3: For all the simulated Julys, compute the metrics explained in section
1.7.1

7.7.4 The deterministic-forecast scenario

The deterministic forecast scenario is one of the imperfect forecast scenarios
considered in the framework. It uses deterministic 24hr-forecasts to represent both
the warning decision and the proactive pumping strategy. It will be represented by
using the decision rule that describes the deterministic warning decision (section
7.5.1) and the algorithm built to characterize the water balance in the polder (section
7.2.2) with the Type-1 pumping strategy described in 7.6.5.1. The algorithm
designed for its analysis is detailed below.

v/ Step 1: Obtain a continuous set of ‘observed’ and ‘forecast” hourly
synthetic rainfall time series for July from the RFG. Aggregate the ‘forecast’
hourly rainfall to obtain 24-h forecasts.

v’ Step 2: For each July replication, run the analysis in deterministic-forecast
mode, i.e., by using the conceptual model of the polder system, for each
day:

o Compute }?da”y and simulate the deterministic warning decision

based on Eq. 7.11
o Run the conceptual model of the polder system in concert with the
Type-1 pumping strategy described in 7.6.5.1.
v Step 3: For all simulated Julys, compute the metrics explained in section
1.7.1

7.7.5 The probabilistic-forecast scenario

The probabilistic forecast scenario is the other imperfect forecast scenario
considered in the framework. It uses 24-hr probabilistic forecasts to represent both
the warning decision and the proactive pumping strategy. It will be represented by
using the decision rule that describes the probabilistic warning decision (section
7.5.2) and the algorithm that was built to characterize the water balance in the polder
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(section 7.2.2) with the chronology of the Type-1 pumping strategy described in
7.6.5.2. The algorithm designed for its analysis is detailed below.

v' Step 1: Obtain a continuous set of ‘observed” hourly synthetic rainfall time
series for July from the RFG. Aggregate the ‘forecast’ hourly rainfall to
obtain 24-h forecasts.

v’ Step 2: For each July replication, run the analysis in probabilistic-forecast
mode, i.e., by using the conceptual model of the polder system, for each
day:

o Compute Ryq;, and its associated f(Raqiry|Raaiy) from the joint
distribution of R, and I?daly (section 7.3.4.2), and compute PE
based on RT g4z -

o Simulate the probabilistic warning decision based on Eq. 7.12.

Step 3: Run the conceptual model of the polder system in concert with the
Type-1 pumping strategy described in 7.6.5.2.

v’ Step 4: For all simulated Julys, , compute the metrics explained in section

7.7.1

7.8 Scenario simulation for a single storm

The prior section explains the framework algorithms used to compare the operation
of the polder system under different forecast scenarios. The outputs of these
algorithms are the metrics explained in section 7.7.1. If one shows only the results
of the framework based on these algorithms, one cannot fully appreciate how the
several pumping strategies considered in the analysis work during a critical storm.
This section, therefore, shows an example of the simulation of the polder system
under all scenarios during the same observed storm causing critical conditions. This
analysis will give us a good insight into how the pumping criteria adopted for the
different strategies are reflected when trying to mitigate a critical condition
situation. Figure 7.17 and Figure 7.18 show this example, and the results for each
scenario are explained below. In this case, the initial condition for all scenarios
matches. Note on the first day, the storm magnitude is insufficient to trigger a
warning in the proactive scenarios, and reactive pumping is performed in all cases.
During day 2, a storm triggers proactive action in all cases, except for the reactive

strategy. A general description of the scenarios is given in Table 7.10.
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Figure 7.17: Example of the simulation of the operation of the polder system (water level)

during an observed storm causing critical conditions for all scenarios
In the figure, DF: deterministic forecast scenario; NW: no warning scenario; PF: perfect forecast;
PrF: probabilistic forecast scenario. This figure shows how the pumping strategies considered in
each scenario work during an observed storm causing critical conditions. Table 7.10 gives a general
description of these scenarios. In this case, the initial condition for all scenarios matches. The normal
water is 4000 mm, and a« = 0.05 and 0.025 for the deterministic and probabilistic scenario,
respectively. h,.., = 4400 for the perfect forecast scenario.
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Figure 7.18: Example of the simulation of the operation of the polder system (pumping rate
and Inflow) during an observed storm causing critical conditions for all scenarios
In the figure, DF: deterministic forecast scenario; NW: no warning scenario; PF: perfect forecast;
PrF: probabilistic forecast scenario. This figure shows the inflow I and pumping rate q of the
example shown in Figure 7.17. The maximum inflow I is equal to the r, the capacity of the
municipal pipe network, and the maximum q is equal to the pumping capacity of the polder g, qx-

v" Non-warning scenario: This scenario represents the current pump
operation for the Shazou polder, which is a reactive pumping strategy
(section 7.6.3). When the water level starts to rise, the inflow I is greater
than g,,4., and the polder manager will pump the water with a pumping rate
equal to g,,4. After the critical condition situation, the water level of the
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inner rivers is dropped to the normal water level h,, with a pumping rate

equal to gax-
Perfect forecast scenario: Under this scenario, the polder manager has

perfect knowledge about S, and the value of Vpb efore adopted in Eq. 7.14 is
Sc¢ + (he — hyep)(EQ. 7.16). Thus, the water level is dropped before the
storm arrives, and the maximum water level matches with h,.. that is here
assumed to be 4400 mm.

Deterministic-forecast scenario: Under this scenario, the value of V7, efore
adopted in Eq. 7.14 is S, (Eq. 7.21) estimated based on the deterministic
forecast of daily rainfall. Figure 7.17 shows the results when adopting a
value of a=0.05. As can be seen, for this storm, a warning was issued, and
the value adopted for a is not enough to avoid the critical condition.
Therefore, after the critical condition situation, the water level is dropped to
the normal water level h,, with a pumping rate equal t0 q,,,4-
Probabilistic-forecast scenario: Under this scenario, the value of V;,bef ore
adopted in Eq. 7.14 is S, (Eq. 7.21) estimated from Rg,;;,, computed based
on the expected value of forecast of daily rainfall (Eq. 7.24). Figure 7.17
shows the results when adopting a value of a=0.025. As can be seen, for
this storm, a warning was issued, and the value adopted for a is not enough
to avoid the critical condition. Therefore, after the critical condition
situation, the water level is dropped to the normal water level h, with a
pmping rate equal t0 gqx

Table 7.10 General description of the scenarios considered in the framework

Scenario Warning decision Pumping strategy
The no-warning No Reactive pumping strategy (section
scenario (NW) 7.6.3).
The perfect forecast It assumes perfect knowledge of the
scenario (PF- add for No target variables S, and 1 (section
each) 7.6.4)

v" Based on the forecast of the

The deterministic
forecast scenario

Based on the
deterministic forecast
of the daily rainfall
R 4411y and the daily
rainfall threshold
RTyqi1y

daily rainfall R4,

The critical daily runoff
ROy, is computed as
Rdaily*OJ.

The proactive pumping is a
function of the parameter o
(proactive pumping factor).

The probabilistic-
forecast scenario

Based on the
probabilistic threshold
PT and the exceedance

probability PE of
RTdaily

Based on the expected value
of Raqgiry, i.€.,
E(Rda'ilylk\daily)'

ROZ2™™ s computed as
E(Rdailledaily)*O'7

The proactive pumping is a
function of the parameter a
(proactive pumping factor).
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7.9 Tradeoff between inundated area and pumping cost

In this section, the framework is used to compare the performance of the drainage
system in the Shazhou polder in July under different forecast scenarios. As the title
of this section implies, the results show a tradeoff between the metrics that represent
the inundated area and the pumping costs. Two parameters will be analysed in the
framework through the scenarios: a and PT. The aim of the analysis of these
parameters in each scenario is described in Table 7.11. The results of the
deterministic and probabilistic scenarios will be first shown separately, and, then,
all the scenarios will be analysed together. The imperfect forecast scenarios will be
compared with the benchmark scenarios, i.e., the no warning and the perfect
forecast scenarios. The analysis considered Julys with at least one rainfall event that
could potentially produce a significant runoff event in the polder system (daily
rainfalls > 50 mm). After this filter, the sample size was reduced to 8730 Julys. The

results are provided below.

Table 7.11 Parameters to be analysed in the framework

Scenario Parameter Range Aim
The Analyse the tradeoff
deterministic o 0-0.5 between pumping cost C_p
scenario and inundated area MTA.
The 0=0-0.5 Analyse the best solutions
probabilistic o, PT (Pareto curve) in terms of
scenario PT=0.1-1 C, and MIA.

7.9.1 Analysis of the tradeoff for the deterministic-forecast scenario

The results of the deterministic forecast scenario are provided in Figure 7.19,
showing the tradeoff between the pumping costs and the inundated area. Note that
the average proactive pumping costs C_pm represents between 1 and 3 % of total
average costs C, due to the latter considering not only the reactive and proactive

pumping for a critical daily rainfall but also the reactive pumping cost of all daily

rainfalls in the month.

The results of the benchmark cases are also plotted in Figure 7.19. The no warning
condition defines the worst scenario in the analysis due to no proactive action being
taken in the polder. In contrast, the perfect forecast scenario represents the best

scenario due to perfect knowledge of the target variables in the pumping strategy.
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Note that the pumping costs of this scenario are slightly lower than the no warning
scenario. That occurs because the number of critical condition situations decreases
significantly in this scenario, and thereby the number of times the polder manager
drops the water level of the inner rivers with a pumping rate equal to g, 4. This is
reflected in the reduction of the reactive pumping costs, which also reduce the total
pumping costs. Thus, any strategy of the deterministic forecast scenario (and any

imperfect forecast strategy) cannot overcome these results; they are explained as

follows.
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Figure 7.19: Tradeoff between pumping costs and inundated area for the deterministic
forecast scenario and comparison with the two benchmark scenarios
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure
shows the tradeoff between C, and MIA (a) and C,,, and MIA (b) for the deterministic forecast
scenario. The values of a considered were the following: 0,
0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two
benchmark scenarios. In these figures, the values of MTA decrease as the values of « increase.

The worst strategy of the deterministic forecast scenario is when a = 0 (the highest
triangle on the plots), i.e., when the volume of water pumped before a critical storm
is zero, which can be considered as a reactive pumping strategy. Therefore, as one
can expect, this strategy matches the results of the no warning scenario. As «
increases, the inundated area decreases, and the pumping costs increase. However,
there is a point («=0.25) where the inundated area stops decreasing, and it stays
constant, which means that, after this point, critical storms cannot be avoided. That
occurs because, after this point, most of the remaining critical storms to be avoided
are those whose runoff starts at midnight (or close to this time) and whose inflow
rate overcomes the pumping capacity of the polder g,,4,. These storms are also a
problem for the perfect forecast strategy. Under this condition, the polder manager

does not have the required response capacity for the critical storm, and he/she can
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only use a pumping rate equal to q,,4,, Whereas the water level of the inner rivers
rises until a critical condition situation occurs. Thus, after « > 0.25, the values of
MIA are associated with waterlogging caused by these storms and by storms whose

runoff overcomes the capacity of the drainage system.

Another important variable to be analysed is D,,, i.e., the number of hours of
waterlogging in the polder system during July. The relation of this variable with the
pumping cost is shown in Annex 2. They have the same shape as the figures
explained above; therefore, they do not need any further explanation. To have a
measure of the magnitude of this variable, the 99-percentile of values of D,, greater
than 1 hour was computed (D). The results are shown in Figure 7.20. As one can
see, the behaviour of the scenarios is the same as the one shown in the prior figures,
where the no warning and perfect forecast scenario represents the worst and the best

ones, respectively, with the deterministic forecast located in the middle.
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Figure 7.20: Values of D?? for the deterministic strategy and the benchmark cases
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. The values
of a assumed for the deterministic pumping strategy was 0.15

7.9.2 Analysis of the tradeoff for the probabilistic forecast scenario

In this section, the analysis of the probabilistic scenario is conducted. It aims to find
the best solutions for the set of parameters (PT,a) considered when simulating the
polder system under this scenario. The approach consisted of simulating the polder
system by considering different values of PT in the warning decision for each value

of a in the Type-1-pumping strategy based on probabilistic information (section
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7.6.5.2). Then, the plot of C, vs MIA was used to define a set of “best” points as
the Pareto front. The results are shown in Figure 7.21, and the values of the best

strategies are shown in Appendix B.

The best points showed different combinations of probability PT and «, with
several values of PT sharing the same value of a. However, if the polder manager
chooses a value of «, it would be preferable to have just one value of PT that
performs better than the deterministic scenario. This analysis was performed by
plotting the best Pareto solutions associated with the same « with different values
of PT and comparing them with the deterministic result associated with the same
value of a. Then, the point that overcomes the deterministic result and is closest to
the perfect forecast scenario was chosen. Figure 7.22 shows one example of this
analysis for one of these sets of best solutions. After this analysis, the set of best
solutions were reduced to seven pairs with unique values of a with different PT

values. The values of this set of best probabilistic solutions are shown in Table 7.12.
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Figure 7.21: Tradeoff between pumping costs and inundated area for the probabilistic
forecast scenario and comparison with the two benchmark scenarios
In the figure, NW: no warning scenario; PF: perfect forecast. This figure shows the tradeoff between
C, and MIA (a) and C,,, and MIA (b) for the probabilistic forecast scenario. when assuming
different values of a and PT. The values of «a considered were the following: O,
0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5., whereas the values of PT were
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 It also shows the values of the two benchmark scenarios.
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Figure 7.22: Example of when one should choose among best probability solutions with the
same value of a based on the deterministic results and perfect forecast scenario
In the figure, DF: Deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure
shows one of the sets of best solutions shown in Figure 7.21 with the same values of « =0.25 and
different PT values. Only one pair of this set of values was chosen. The criterion adopted was to
choose the pair whose point overcomes the deterministic result and is closest to the perfect forecast
scenario.

Table 7.12. The final set of the parameters for the probabilistic forecast scenario

Set (v} PT
1 0.05 0.9
2 0.075 0.8
3 0.1 0.8
4 0.15 0.9
5 0.2 0.7
6 0.25 0.7
7 0.3 0.8

7.9.3 Analysis of the tradeoff for all scenarios

The final analysis in the framework consisted of comparing all scenarios together.
This section primarily focuses on comparing the results of the deterministic and
probabilistic forecast scenarios. Figure 7.23 and Figure 7.24 show the results for all
scenarios analysed above in terms of pumping costs, inundated area and D’
respectively. As one would expect, the results of the probabilistic scenario are better
than the deterministic one, i.e., the points in the plot are closer to the perfect
information point. Thus, one can conclude that the probabilistic strategy is the best
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one of the imperfect forecast scenarios; but understandably, it cannot be as good

the perfect forecast strategy.

To summarise, the framework shows that the non-warning scenario defines the
highest flood impact which is expressed by the highest values of MIA and D,,
across all scenarios The perfect-forecast scenario is clearly best ; any strategy based
on imperfect information cannot match the results of this scenario. The strategy
used in the imperfect forecast scenario (Type-1 pumping strategy, section 7.6.5)
demonstrates the benefits of the warning system when using imperfect forecasts of
the daily rainfall. The benefits can be valued when comparing C,, with MIA or D,,.
The results of the probabilistic forecast scenario are better than those for the
deterministic-forecast scenario. One can see clearly that when using probabilistic

information, the benefits of the warning system increase.

The perfect forecast point in Figure 7.23 and Figure 7.24 provide an important
benchmark against which to judge how improvements to the imperfect forecasts
could be made. e.g., by improving the rainfall forecasts. The correlation between
the observed and forecasts 24-h rainfalls was 0.90 (Table 7.5), which roughly
corresponds to an explained variance of Ry, This gives an idea of how useful
such forecasts would be in the management of the polder and the quality of 24-h

forecasts needed to achieve the results demonstrated.

Depending on how the polder manager views the tradeoff between cost and
inundated area, a value of o can be chosen to reflect the tradeoff. If he/she wishes
to minimize inundation and cost, then the best value would be that corresponding
to the point where the plots flatten out, i.e., no reduction in inundated area can be
achieved by incurring additional pumping costs.

For the framework simulation experiments conducted here, the focus has been on
demonstrating the value of rainfall forecasts in polder management. A perfect
model of the polder system has been assumed to do this. For an operational system,
a fully calibrated model would be needed, and the uncertainty associated with

polder model predictions would have to be taken into account.
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Figure 7.23: Analysis of the tradeoff for the deterministic and probabilistic scenarios and
comparison with the benchmark scenarios
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast; ProF:
Probabilistic forecast. This figure compares the results of the deterministic and probabilistic forecast
scenarios explained above.
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Figure 7.24: Values of DJ? for all scenarios
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast, PrF:
probabilistic forecast. The values of « assumed for the deterministic and probabilistic pumping
strategy was 0.15

7.10 Main findings

In this Chapter, it has been shown that the warning and pumping strategies adopted
in a FEWS operating for flood-prone polder were important factors controlling the
performance of the system. Through simulation experiments, it was observed that
deterministic-forecasts-based strategies produced performance measures that can

be enhanced by probabilistic-forecasts-based strategies. The results of the research
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showed a trade-off between the average pumping costs C, and the measures

defining the performance of the FEWS (MIA and d,,).

Given the modelling approach adopted to obtain the results mentioned above, this
Chapter also provides new knowledge in the simulation and design of this type
FEWSs. In this topic, one can say that the architecture of the RFG is novel; it gives
a criterion to represent forecast and observed rainfall for the analysis of forecast-
rainfall-based FEWSs. The results showed that R4, and ﬁda”y fitted well to the
three-parameter Gamma distribution, suggesting, thus, that the seven-parameter
BGM was a suitable model to represent the bivariate relationship of these variates.
Furthermore, it was observed that the bivariate simulation of bivariate Gamma
variates through the Gaussian copula is not versatile since this bivariate distribution
does not hold an analytical expression that links its dependence structure with the

correlation coefficient of the Gaussian copula ;5.

A rainfall threshold RT curve was used as a tool for issuing flood warnings. The
methodology used to build that curve and the (deterministic and probabilistic)
decision rules used to simulate warning decisions are novel. They represent a
significant contribution in this field. Furthermore, the pumping strategies and the
resulting waterlogging W in the polder area after they have been done were
simulated based on the simple stylized model. This model has not been applied
before in a flood warning context and was linked with an impact curve to represent
the response and impact component (RIC) in the integrated framework. This model
was not meant to be a precisely calibrated model but an approximate representation

of reality.
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Chapter 8. Discussion, conclusions and recommendations for

future work

This thesis evaluates the performance of a simulated flood early warning system
(FEWS) monitoring and warning a generic fluvial and fluvial flood-prone area as a
function of several controlling factors. The evaluation is carried out within a novel
generic framework where FEWS performance depends on the effectiveness of each
of the components of a FEWS and on component linkages. The research
contributions have provided a new understanding of the factors controlling the
performances of FEWSs that can support their design. The knowledge gained can,
thus, be used to i) understand the main factors controlling the performance of an
operational FEWS and identify which of them can be positively modified to
improve the system's performance, and ii) to design and/or simulate each of these
FEWSs.

A real-world application of this versatile framework has been demonstrated through
a case study of a flood-prone polder area in which a FEWS has been designed and
simulated and shown to have significant potential operational benefits in managing

waterlogging while having the opportunity to also reduce pumping costs.

In the next subsection, a general discussion of the main results obtained in this thesis
is given. Then, the general conclusions are highlighted, and, finally, future work is
suggested.

8.1 General discussion

The general discussion has been split into topics that are related to the research
objectives. This subsection first discusses the main results according to these topics
and ends by emphasizing this thesis's main contributions.

8.1.1 The design of the generic fluvial framework

An integrated and versatile generic simulation framework has been designed, which
has achieved Objective 1. Moreover, this framework has enabled the overall aim of
the thesis to be achieved by linking forecast model outputs with warning decisions
and the associated responses and flood impacts, thus allowing the main factors

influencing the performance of the integrated system to be evaluated. The
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framework’s versatility is due to the ability to sample extensively synthetic forecast
and observed data using appropriate analytical expressions to represent their
properties which are representative of real catchment data. The warning and
response/impact processes are evaluated in terms of reliability and economic
effectiveness. This versatility has allowed situations to be explored that are
impossible with real-world modelling due to a lack of data or limited computational

resources.

The framework is versatile because several bivariate distributions and generation
algorithms (Ch4), warning performance measures and decision rules (Ch5 and
Ch7), and impact and response functions, based on damage and cost (Ch6 and Ch7),
can be employed. Moreover, deterministic and probabilistic forecasts can be
simulated, and the predictive uncertainty (PU) of the latter can be used to optimize
flood warning decision rules. The new framework avoids the restrictive

assumptions made in previous frameworks.
8.1.2 The building of the MCFG

In recent years, a lot of effort has been put into the design of flood forecasting
techniques to quantify or reduce PU in operational FEWS. Thus, in the literature,
one can find many studies suggesting forecasting models for these purposes
(Krzysztofowicz and Kelly, 2000; Coccia and Todini, 2011; Hapuarachchi et al.,
2011; Jain et al., 2018). These flood forecasting techniques are complex and are
rarely used in frameworks that include the completed integrated system (the
FEWS). In this context, the benefits of quantifying or reducing PU have been poorly
studied in an integrated framework. To overcome this issue, this research has used
a Monte Carlo flood and forecast generator (MCFG), which, in essence, simulates
the forecasts generated by these forecasting models with their associated

observations, and most importantly, enables the PU of the forecast to be quantified.

In both the simulated generic fluvial case and flood-prone-polder system case study,
the MCFG has used the concept of PU to represent/quantify the uncertainty about
the future value, conditional on a single-value forecast of the predictand. Even
though the aim of the MCFG for each case was the same, i.e., generate potential
scenarios of flooding in an at-risk community, the predictand and predictor

considered and the architecture of the MCFG was different in each of them. In the

237



simulated generic fluvial case, a potential flood in the at-risk community was
defined by observed peak water levels (y). Thus, y was assumed to be the
predictand, and its forecast (¥), the predictor. In the simulated flood-prone-polder
system case study, a flood in the polder area was predicted based on a 24-hour
forecast of significant rainfall. Thus, here, the significant daily rainfall (Rg4;,) was
assumed to be the predictand, and its forecast (I?daily), the predictor. The
architecture of the MCFG is novel; it allows PU to be expressed as a function of
forecasting lead time in the simulated generic fluvial case and, in the simulated
flood-prone polder system case study, gives a criterion that allows rainfall PU to be

expressed for the analysis of rainfall forecast-based FEWSs.

A Dbivariate parametric model was used within the MCFG to do a bivariate
simulation of pairs (y, y) with its associated conditional distribution f(y|y) in the
simulated generic fluvial case, and to estimate PU in terms of f(Rda”ymda”y) in
the simulated flood-prone polder system case study. Since a FEWS should serve its
function during every potential flood, not just the largest potential flood in a year
or month, the marginal distributions of these bivariate parametric models were
represented by peak-over-threshold (POT) models. The bivariate parametric model
used in each case was based on univariate analysis of observed sample data. In the
simulated generic fluvial case, the sample data consisted of values of y for four
gauging stations located close to or at a floodplain in northern England (Figure 4.4),
and of the values of ¥ of one of these stations. The latter values were represented
by simulated discharges from an existing calibrated model, which were then
converted into water levels using the at-site gauge rating curve. The results relating
to y for each gauging station showed that at least two of the following univariate
parametric distributions fit this variate well: the two-parameter Exponential
distribution, the three-parameter Lognormal distribution, and the three-parameter
Gamma distribution, whereas the two-parameter exponential distribution fitted the
values of ¥ well (a goodness of fit test could only be applied in this case). For the
station where values of y and y were both available, the same probability
distribution (the two-parameters exponential) fitted both sample values well. This
result allowed the assumption to be made that the probability distribution type of y
is the same as that of y which can be used when values of the former variate are not
available, which is very common in operational FEWSs. Based on this assumption,

and the results of the univariate analysis, the five-parameter bivariate Exponential
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distribution (BED), the seven-parameters bivariate Lognormal distribution
(BLND), and the seven-parameter bivariate Gamma distribution (BGM) were
considered to be suitable models to represent the pairs (y, ¥). Since the simulated
generic fluvial case was based on a virtual floodplain and did not represent any of
the floodplains for which the frequency analysis was carried out, the seven-
parameters BLND was chosen for simulating the pairs (y, ¥) used in the sensitivity

experiments carried out in Chapters 5 and 6.

The results of the univariate analysis of y and y match with other POT-frequency
analysis studies of extreme hydrological variables (Choulakian et al., 1990; Bezak
et al., 2014) that have been carried out. Since none of these works and other related
works (Claps and Laio, 2003; Bogner et al., 2012) have done a frequency analysis
of y and y, there is no formal criterion to define the pre-assumed threshold above
which all peak water levels occur. In the univariate analysis of y and ¥, a stage level
(yp) must be set neither so high that only few floods are considered in the
hydrologic frequency analysis, i.e., it should be lower than the flooding threshold
(y7), nor so low that too many peaks are considered which are not relevant in the
analysis. The value of y,, considered in this work was a stage level that has been set
by the Environment Agency for each gauging station used for flood warning
purposes in England. When the river's water level reaches that threshold, a minor
flood is possible in the floodplain. In this context, this research gives, at least for
England, a formal criterion to define y, which is a very sensitive parameter in the

POT frequency analysis.

The univariate analysis in the simulated flood-prone polder system case study was
based on a sample of synthetic data obtained from the stochastic rainfall field
generator (RainSim V3) embedded in the MCFG; the RainSim model was
calibrated using hourly and daily data records for the case study site. Pairs of
correlated daily rainfall totals (Raauyﬁaauy) greater than 50 mm were obtained
from the generated sample to include in the analysis; daily rainfall above this
threshold could potentially produce significant runoff in the polder system. The
results showed that the three-parameter univariate Gamma distribution fitted well
both  Rgqi,, and ﬁaauy, suggesting, thus, that the seven-parameter BGM was a

suitable model to represent the bivariate relationship of these variates.
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A Gaussian copula-based algorithm was used within the MCFG to build f(y|y)
and f(Raqity|Raairy)- To define the value of the correlation coefficient of the
Gaussian copula (p,5) associated with the correlation coefficient in the real space,
which controls the PU, different techniques were used in each case. In the simulated
generic fluvial case, an analytical expression that defines the relationship between

the correlation coefficient of the (real) Lognormal space (p,y) and p,5 in the

Normal space was used. In the flood-prone polder system case study, an equation
that defines the relationship between the correlation coefficient of the (real) Gamma
space (pg) and p,5 in the transformed space for the assumed marginal distribution
of Ryairy and Rgqi, Was built via Monte Carlo (MC) simulation. These results
suggested that, when using a parametric bivariate model to represent the predictand
and predictor based on the approach described in this research, one should try to
use a model that incorporates an analytical expression that links its dependence
structure with p,.5. By doing that, the MCFG and the integrated framework (Figure
3.1) gain versatility. This was a significant reason for choosing the bivariate

Lognormal for the simulation experiments in Chapters 5 and 6.
8.1.3 Warning decisions and warning criteria

In the analysis of FEWSs, the flood warning decision issue has not received the
same attention as the prediction problem. The flood warning decision process is
complex, as several factors are involved (Arnal et al., 2020). This process is
conducted according to the warning criterion adopted in the FEWS. A common
practice is to simplify this process through decision rules representing rational
decisions (Verkade and Werner, 2011; Girons Lopez et al., 2017; Bischiniotis et
al., 2019). This research used decision rules for representing warning decisions
based on deterministic and probabilistic forecasts, which were set based on the

warning criterion adopted in each simulated case.

In the simulated generic fluvial case, FEWSs with and without real-time flood maps
were considered, and deterministic and probabilistic warning decision rules were
set for each of them; they are explained in Chapter 3 (Figure 3.3). The probabilistic-
threshold-based decision rule (PTDR) used to simulate FEWSs without real-time-
flood maps have been widely used in several research works (Coccia and Todini,
2011; Verkade and Werner, 2011; Girons Lopez et al., 2017); however, the
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probabilistic-based decision rule (PDR) used to simulate FEWSs with real-time
flood maps is introduced in this thesis, and is novel. This rule uses a warning level
(9,,) derived from f(y|y) to make the warning decision, where J,, is defined by a
probabilistic threshold (PT), which has to be optimised based on a pre-defined
criterion. This level defines the number of houses that should be warned in the
floodplain using a surrogate function that represents the number of houses to be
warned as a function of 9,,. The PDR was used because FEWSs based on real-time-
flood maps must use the flood map corresponding to ¥, which in turn must be
defined by optimizing a probabilistic threshold. Since PTDR is based on a
probability value that determines whether or not to warn ALL houses in the
floodplain, it cannot be used to simulate this type of FEWS. That can be considered
a drawback of the PTDR if it is used to simulate a FEWS as the impact or the cost
of the warning response (C,) cannot be estimated as a function of the flood
magnitude’s prediction (Verkade and Werner, 2011). Moreover, it is proposed here
that performance measures such as POD and FAR should be computed based on
the house warned and flooded/not flooded. This criterion, called the floodplain
property-based criterion (FPC) in Ch5, has been shown to be a more demanding
criterion as it differentiates between warned and flooded houses when a flood is
preceded by a warning (hit), unlike the flooding threshold-based criterion (FTC)
that was also considered in Ch5 and other research works (Verkade and Werner,
2011; Pappenberger et al., 2015; Bischiniotis et al., 2019), which assumes that all
houses are flooded if it is hit (Figure 5.4).

In the simulated flood-prone polder system case study, a rainfall threshold (RT)
curve was used as a tool for simulating flood warnings. This curve was built
considering the uncertainty of the daily rainfall profile and the initial condition of
the water level of the inner rivers when the forecast is issued. The RT curve and
two decision rules were then used to simulate flood warning decisions under the
deterministic and probabilistic forecast scenarios. There are few works that have
considered the uncertainty of rainfall characteristics when analysing rainfall
thresholds for flood warning systems (Wu et al., 2015), and, to the best of the
author’s knowledge, a methodology to quantify rainfall thresholds for flood
warning purposes in a polder system has not been published yet.
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8.1.4 The response and impact simulation

The study of the response and impact component (RIC) for the analysis of FEWSs
through real-world modelling is challenging due to the small number of registered
extreme events and/or the excessive computational resources required by the
hydraulic/hydrodynamic simulation models to estimate flood damage. This
research has used simplified analytical functions to represent this component in
each simulated case. That has made the integrated framework versatile, which
allows the full range of potential flood events and warning decision situations, and
the economic consequences of the resulting responses and impacts to be explored.
The social aspect of how flood plain residents respond to flood warnings has been
embedded in flood damage mitigation functions published in the literature.

In the simulated generic fluvial case, in Chapter 5, the forecast and observed flood
impact in the at-risk community was simulated by emulating the generation of
forecast and observed flood maps through a pre-assumed impact curve that
estimates the percentage of floodplain properties affected by different floods. Thus,
the impact was evaluated in terms of affected houses (warned and flooded houses),
which was used to estimate the flood warning reliability of a FEWS based on the
criterion named in this thesis as the floodplain property criterion FPC. In Chapter
6, this curve was also used to estimate the forecast and observed flood impact of an
at-risk community located in a floodplain area. In this case, the flood impact was
estimated in terms of flood damage and was the basis for estimating the economic
effectiveness of a FEWS based on real-time flood maps. Impact curves defining the
number of affected houses have been used before for doing a flood risk assessment
at a national scale (Sayers et al., 2015, 2018); however, to the best of the author’s

knowledge, they have not been used for analysing FEWSs.

In the simulated flood-prone polder system case study, an impact curve was also
used to estimate the inundated area in the polder as a function of the resulting
waterlogging depth (W). An impact curve can be built with relatively few flood
events, and this thesis has shown that this curve type could be used to emulate
rationally the process done by inundation models and contributes to the integrated

framework’s versatility in evaluating the benefits of a FEWS.

242



The response to flood warnings in the simulated generic fluvial case was simulated
by using the socio-economic response functions proposed by Carsell et al. (2004)
for houses in California, which represent the damage to the residential content after
movable assets have been raised and/or evacuated. These functions assume that the
residents respond to the flood warnings in a rational manner by seeking to minimise
damage to their property. In reality, flood warnings may not reach the residents;
they may not respond as they should, etc. These aspects have not been represented

in the simulations.

The response to flood warnings in the flood-prone polder system case study was,
on the other hand, simulated through pumping decision rules that represented
proactive and reactive actions controlling the pumping scheme operating in the
polder system. Since polder systems have not been studied before in a flood warning
context, this research proposed pumping rules representing pumping strategies
under different forecast scenarios. These pumping strategies and the resulting
waterlogging W in the polder area after they have been done were simulated based
on the simple stylized polder runoff simulation model proposed by Gao et al.
(2008). This model has not been applied before in a flood warning context and was
linked with an impact curve to represent the response and impact component (RIC)

in the integrated framework.

The use of impact curves and analytical expressions or functions representing the
RIC's main processes made the integrated framework versatile. Thanks to this
versatility, the long-term performance of a FEWS under stationary conditions could
be explored through a MC simulation approach, which would be impossible within

a real-world modelling framework.
8.1.5 Factors influencing the performance of a FEWS

The MC simulation experiments conducted in this thesis identified several
important factors influencing the performance of a FEWS. This was done by doing
a sensitivity analysis (SA) of several parameters that define the model representing
the FEWS in each simulated case. Several findings are in line with some relevant
literature, whereas others represent a new contribution of this research to the overall

understanding of the performance of a FEWS in each simulated case.
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8.1.5.1 Simulated generic fluvial case

Reliability of flood warnings

Flood warning reliability was one of the performance attributes explored in the
simulated generic fluvial case, the analysis of which considered a FEWS with and
without real-time flood maps. Flood warning’s reliability was defined by the
metrics known as the probability of detection (POD) and false alarms ratio (FAR)
evaluated based on the flooding threshold-based criterion FTC, for the FEWSs
without real-time flood maps, or floodplain property-based criterion FPC, for the
FEWSs with real-time flood maps. The FTC is a well-known criterion used in
several research works (Verkade and Werner, 2011; Pappenberger et al., 2015;
Bischiniotis et al., 2019), whereas the FPC is a contribution of this research which
gives a more consistent estimation of flood warning reliability because it is
estimated based on warned and flooded houses. The results show that the
performance based on the FPC is lower than that obtained based on the FTC. That
difference is directly related to the uncertainty of the flood magnitude, i.e., the
difference between y and y which define the difference between the warned and
flooded properties. Note that a hit in the FTC does not mean a hit in the FPC; due
to the difference between these two variables, a hit in the former might include
misses or false alarms in the latter (Figure 5.4a). These results suggested that i) the
uncertainty of the flood magnitude is an important factor influencing the reliability
of flood warnings, and ii) if inundation level forecasting is undertaken (FPC),
improved forecasts would be needed to achieve the same performance level as for
FTC.

The warning strategy is also one of the important factors influencing the reliability
of flood warnings. This research has shown that a deterministic-based warning
strategy in the FEWS produces sub-optimal decisions and that a probabilistic-based
warning strategy, where the forecast errors are acknowledged, can use an
optimization criterion to improve the reliability of flood warnings. This is a well-
known concept and has been demonstrated in several research works (Verkade and
Werner, 2011; Pagano et al., 2014; Economou et al., 2016). The results showed that
an optimal warning strategy based on the maximum POD minus FAR optimization
criterion tends to deliver higher POD and FAR values than those based on

deterministic forecasts. Thus, this strategy can be used when one wants to give more
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weight to the reduction of missed events whose economic consequences, in terms
of floods, far overcome those associated with false alarms. FAR's target values are
usually between 0.2 and 0.5, and it is the verification score of interest to

humanitarians (Jolliffe and Stephenson, 2012; Bischiniotis et al., 2019).

The forecasting lead time T was also identified as an important factor influencing
the flood warning reliability. As expected, flood warning reliability declines with
lead time according to the performance function used, which shows a faster decline
in correlation for lead times greater than the catchment lag, reflecting the greater
uncertainty resulting from quantitative precipitation forecast (QPF). In particular,
probabilistic forecasting, based on the maximum POD minus FAR optimization
criterion, copes much better with the increasing uncertainty than deterministic
forecasting, where the POD values are much higher for the probabilistic case but at

the expense of higher FAR values.

The biases in the forecast mean and variance were also identified as important
factors influencing the flood warning reliability. Remarkable robustness to biases
in these two variates has been observed for probabilistic forecasting that is a
consequence of using PU, which is based on the conditional density of y given ¥,
whereas deterministic forecasting, which is just based on y, shows high sensitivity.
The results for the latter case suggest that increasing the variance of the forecasts
relative to those of the observed (models fitted by least squares lose variance) could

improve reliability in this case.

Some research works indicate that an improvement of 10% per decade in the
forecast performance is achievable in FEWSs (Pappenberger et al., 2015). Through
a sensitivity experiment (section 5.7.2.2), this thesis has shown that if the forecast
performance is mainly controlled by p, 4 (a bias in the mean or variance of the
forecasts can also affect performance), these achievable benefits, in terms of flood
warning’s reliability, are more noticeable in FEWSs with relatively small than
considerable forecast uncertainty. In line with this, some indicative results for the
case of a hypothetical Morpeth FEWS suggest that a correlation of 0.94 in peak
water levels would be needed to obtain POD and FAR values in the levels defined
in this thesis as Medium to High category (section 5.7.2.1) for probabilistic
forecasting.
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Economic effectiveness

Factors influencing the economic effectiveness (E,,) of a simulated (deterministic
or probabilistic) FEWS based on real-time flood maps were also explored. The
economic effectiveness E,, was defined based on the expected benefits of a FEWS
relative to the no warning scenario. A hydro-economic expected damage (ED)
model (Figure 6.1a) was constructed that generates ED values for (a) a perfect
forecast warning and (a) no warning scenario to define the reference points for
measuring E,, for a FEWS based on imperfect forecasts. Thanks to the integrated
framework's versatility, the economic consequences of PU in all possible situations
could be included in the analysis. These economic consequences included the cost
and unmitigated damage of a “wrong” flood warning decision and the
“unnecessary” cost of the warning response or unmitigated damage after a “good”
decision, i.e., when a flood is preceded by a warning (Figure 6.2a and Figure 6.2b).
This analysis represents a contribution of this research since other research works
in this field (Verkade and Werner, 2011; Bischiniotis et al., 2019) have considered
only the economic consequences of “wrong” flood warning decisions and
neglected the economic consequences of flood magnitude uncertainty which is

produced due to the difference between warned and flooded houses.

The results have shown that, like flood warning reliability, the warning strategy is
an important factor influencing E,,, of a (deterministic and probabilistic) FEWS. An
optimal warning strategy based on probabilistic forecasts and an estimation of the
economic benefits produced by the FEWS for each potential flood could increase
the deterministic forecast-based E,,. Furthermore, it was observed that the cost of
the warning response C,, controls flood warning reliability and the warning strategy
in a probabilistic FEWS where warning decisions are based on optimising a
probabilistic threshold. Depending on the value of C,,, an optimal warning strategy
of the system could be warning more or less frequently. If C,, is low, an optimal
economic strategy could suggest having high FAR values. Finally, it was shown
that the benefits of using a probabilistic warning strategy with respect to a
deterministic one are most noticeable in FEWSs based on forecasts with relatively
high PU and where the potential economic benefits of the system are relatively high
(section 6.7.2.3).
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The forecasting lead time t was also found to be an important factor influencing the
E,, of a (deterministic and probabilistic) FEWS. Based on the hydro-economic ED
model, and assuming that the forecast errors and uncertainty are only controlled by
Py , this research explored how E,, of a (deterministic and probabilistic) FEWS
with a relatively small value of C,, as should be the case in reality, changes as t
increases. The results showed that the E,, of a (deterministic and probabilistic)
FEWS reduces from the maximum E,, one can obtain from the system, i.e., that
obtained from a perfect forecast scenario, as t changes. That occurs because the PU
and its economic consequences increase as the t increases, and, therefore, its
(negative) impact on E,, also increases. This E,, behaviour is in line with results
obtained by Verkade and Werner (2011). However, since they assume that C,, is
independent of the magnitude of the forecast flood and only consider the economic

consequences of “wrong” flood warning decisions, their results overestimate E,,.

Furthermore, based on the particular analysis mentioned above (low value of C,,
and forecast errors controlled only by p,), it was found that the E, of a

(deterministic and probabilistic) FEWS does not necessarily increase when
increasing t, even though the mitigation time increases. When these FEWSs reaches
considerable PU, the (negative) impact of this predictive uncertainty's economic
consequences made E,, decreases as the damage is increasing. Thus, in an imperfect
FEWS, it was observed that there is an optimal forecasting lead time t that
maximises the E,, of the FEWS; this lead time represents the balance between an
adequate time to act and a reasonably good forecast. That E,, behaviour was found
by Bischiniotis et al. (2019) for a probabilistic FEWS; however, there is a
difference between that research work and the analysis done here; Bischiniotis et
al. (2019) use a fixed warning strategy for the probabilistic FEWSs, whereas in this
research, thanks to the versatility of the integrated framework, the warning strategy
of the probabilistic FEWSs was obtained for each forecasting lead time t, which
looks for the best strategy according to T and its associated PU. For example, in this

particular analysis (low value of C,, and forecast errors controlled only by p, ), it

was observed that, due to the low value of C,,, when the PU was considerable (t >
6 hours), the best economic strategy was to increase the level of warning, accepting
or “sacrificing” the low economic impact of warning more houses than one should
warn, to avoid the high economic impact of having flooded houses not being

warned. The results of this research, thus, lead to the conclusion that, in a FEWS,
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a probabilistic-forecast-based-optimal warning strategy should be set for each lead
time t since PU, and its associated economic consequence in terms of net damage,

increase as t increases.

It is worth mentioning that, in the particular analysis mentioned above, the optimal
warning strategies of the probabilistic FEWSs produced high values of FAR for
FEWS with considerable PU (t > 6 hours), which might generate the loss of
credibility of the flood warning system (‘cry wolf” effect). The ‘cry wolf” effect
might decrease the effectiveness of the proactive action, which is represented in the
hydro-economic ED model by the parameter a. The value of this parameter was
fixed for each lead time t and is independent of the FAR value. Thus, the E,, of the
probabilistic FEWS associated with considerable uncertainty (Figure 6.8) might be,
thus, overestimated. However, Barnes et al. (2007) advocate that there is little
evidence that a high value of FAR causes users to ignore warnings of severe flood

gvents.

It was found that the E,, of a FEWS, based on residential contents moved and
evacuated, a 6-hour lead time, and low cost of the warning response (10% of the
forecast E,,), can reach approximately 15% in a perfect warning scenario (perfect
forecast and response). This value cannot be achieved by imperfect FEWS due to
the economic consequences of PU and the inefficiency of the proactive action
(represented by the parameter o in the hydro-economic ED model). Furthermore, it
was analysed that if one considers an efficiency of 70%, the E,, of an imperfect
FEWS can reach 5.5 and 7.5 % for the deterministic and probabilistic forecasts,
respectively (section 6.7.2.3). Furthermore, it was found that a FEWS could have
good flood warning reliability but low E,, due to the poor performance of the
proactive action. In this sense, it was concluded that the performance of the

proactive action is an important factor influencing the E,, of a FEWS.

The values of E,, mentioned above approach that, for example, suggested by Priest
et al. (2011) (5%, see Table 2.3); note, however, that E,, of a FEWS based on this
proactive action depends on the response performance, lead time, and warning
strategy (which is associated with the forecast type used). If the efficiency of 50%
for the proactive action and a low cost of the warning response C,, are considered,

the E,, values of deterministic FEWSs can range from 1 to 4% for lead times
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between 1 and 24h. These E,, values can be improved by probabilistic FEWS,
ranging from 3% to 5.5 % (section 6.7.2.1).

8.1.5.2 Flood-prone polder system case study

For the Nanjing flood-prone polder system case study, the polder manager pumps
water from the inner rivers to the outer rivers to enable water to drain from the
polder areas into the inner rivers. In such a flood-prone polder system, the pumping
capacity is usually lower than the drainage capacity (maximum runoff entering the
inner rivers). If these polder systems are operated based on reactive pumping
actions (water pumped based on the observed runoff (inflow) entering the inner
rivers), the probability of the inner rivers' storage capacity being overwhelmed
increases. When this occurs, the runoff cannot drain freely to the inner rivers, and
the waterlogging, and, therefore, the flood impact on the polder area, increases. The
duration of waterlogging and the maximum inundated area are, for example,
variates that measure damage which increases when this critical condition occurs
in the polder system. Since the polder system's storage capacity is defined by the
water level of the inner rivers when the storm arrives, flood warnings can provide
time in advance to decrease that water level (increase the storage capacity) and
avoid this critical condition situation. Based on this concept, a FEWS can be
designed and implemented, which is characterised by a forecasting model
providing, for example, forecasts of future storms, warning decisions made based
on those forecasts, and responses defined by the pumping scheme operating in the
flood-prone polder system. FEWSs operating for flood-prone polder systems of this
kind have not, to the author’s knowledge, been studied and designed before. Urban
polders, particularly in the region of the case study, have been studied in another
context, for example, by analysing how they impact the hydrology of the adjacent
outer rivers during extreme events (Gao et al., 2017; Fang et al., 2018) or how they
impact the flood risk of areas located downstream of these rivers (Gao et al., 2018).
In this sense, the FEWS proposed to mitigate the waterlogging risk in the Shazhou
polder located in Nanjing, China, is a significant contribution in this field and is
timely, as more intense rainfall is being experienced in recent years. The averages
of the waterlogging duration (d,,) and maximum inundated area (MIA) in the polder
were used as performance measures for this system, and the following factors

influencing these measures were identified.
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Since flood warnings drive the pumping actions, the warning and pumping
strategies adopted in the FEWS were important factors controlling the performance
of the system. Warning decisions were made based on a rainfall threshold RT curve,
and the pumping strategy considered proactive and reactive response actions. The
former action is triggered by the flood warning and defines the volume of water
pumped before the storm arrives, whereas the reactive action defines the volume of
water pumped during the storm. The volume of water pumped in the proactive
action is based on an estimation of the excess runoff, defined as a proportion a of
the forecast of the total runoff generated by the forecasted critical storm’, defined
as a storm that will bring the level of the inner rivers to a critical condition. Since
this total runoff varies according to the characteristics of the forecasted critical
storm, the performance of the FEWS was explored by using several pre-assumed
values of a in the MC simulation of the system. Furthermore, since a impacts on
the pumping costs, the average pumping costs (C_p) were also included in the
analysis. Results showed a very nice trade-off between C_p and MIA or d,,, which
defined a Pareto curve. Depending on the polder manager’s attitude to risk, he/she
can choose a value of a that represents an acceptable tradeoff between waterlogging

and pumping cost.

In addition, it was observed that the performance measures that assume warning
and pumping strategies based on deterministic forecasts can be improved through
the use of probabilistic forecasts. Deterministic forecast-based results were
improved by considering warning and pumping strategies based on probabilistic
forecasts of the rainfall and runoff volume, respectively, of the predetermined

critical storm.
8.1.6 The main contributions of the thesis

In the prior subsections, some important methodological contributions of this
research were identified that are generic and can be implemented on any flood-
prone fluvial or polder system. This section gives a summary of them so that the
reader can confirm his/her understanding of the relevance of this research. These
contributions are detailed below.

v A versatile generic framework based on MC simulation has been designed
that can be used to assess the performance of an end-to-end FEWS in terms
of reliability and economic efficiency without restrictive assumptions and

250



to evaluate the sensitivity of these performance measures to a range of
controlling factors.

v" The novel architecture of the MCFG facilitates the generation of large
bivariate samples of peak water levels and their forecasts using different
distributions. The predictive uncertainty PU is controlled by a
correlation/lead-time performance function that represents the increase in
PU with a lead time for the simulated generic fluvial case.

v" A novel probabilistic forecast-based warning criterion that exploits real-
time flood inundation maps has been proposed and evaluated. The
floodplain property criterion FPC has been used to represent warned and
flooded houses based on an impact curve that is a surrogate for flood
inundation maps. This allows warnings to be issued only to properties that
are forecast to be flooded, rather than all properties, and POD and FAR to
be evaluated on this basis.

v" A novel methodology to include the economic consequences of flood
magnitude's uncertainty in the economic analysis of a FEWS for a generic
fluvial case was described. It was also observed that the flood magnitude's
uncertainty is an important factor to be considered when estimating the
performance of a FEWS.

v The principles for the design of a FEWS operating for a flood-prone polder
system were stated.

v A novel methodology for building a rainfall threshold (RT) curve for flood
warning purposes in a flood-prone polder system case study was designed.

v In the simulated flood-prone-polder system case study, the results were
derived to show a trade-off between the average pumping costs C_p and the

measures defining the performance of the FEWS (MIA4 and d,,).

The following conclusions cover the understanding and contributions to knowledge
gained from applying the generic framework and its novel elements summarized
above to a generic fluvial case and the flood-prone polder case study. The above

innovations are not repeated below.
8.2 Conclusions

This thesis has opened up a new area of flood warning science that has parallels
with seminal work performed by Hosking and Wallis (1988, 1997). They
demonstrated how MC sampling can be used to explore the sensitivity of the
estimate of T-year flood to various factors and assumptions. For example, MC
simulation was used to assess the simplifying assumption that flood records from

different sites are statistically independent when performing a regional flood
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frequency analysis. By stochastically generating multisite annual maximum flood
series, with correlations between sites, it was demonstrated that, even in the
presence of intersite dependence, the bias in flood quantile estimates is unchanged.
Controlled experiments employing MC simulation allow the exploration of the

entire space of the problem domain, from which robust conclusions can be drawn.

The main conclusions of this research are emphasised below, according to the
research objectives.

Obijective 1: To design a flexible generic simulation framework that can represent

the forecast, warning and response/impact components of a FEWS.

A flexible generic framework has been designed that incorporates the innovative
elements summarised in section 8.1.6 above. This has enabled the overall aim of
the thesis to be achieved, which is: to build a generic framework that can
simulate and identify important factors controlling the performance of a

FEWS monitoring and warning a flood-prone area.

Objective 2: To design a Monte Carlo flood and forecast generator (MCFG)

applicable to a generic fluvial case and a flood-prone polder system case.

v The architecture used to build the MCFG allows PU to be controlled by a
lead-time-correlation function that links a forecasting lead time with PU in
the simulated generic fluvial case. Several bivariate distributions and MC
generation algorithms can be employed to generate large samples of forecast
and observed water levels for the generic fluvial case.

v Based on the univariate analysis of peak water levels for four gauging
stations in the North of England, the five-parameter BED, the seven-
parameters BLND, and the seven-parameter BGM were considered to be
suitable models to represent these data.

v" A bivariate analysis of observed peak water levels and their forecasts
derived from a previously calibrated model for one of the four stations
showed that the same distribution could be used to describe both observed
and forecast levels. This allowed any of the three distributions identified
above to be employed for bivariate simulation.

v For the Nanjing polder case study, a univariate analysis of observed and
forecast daily rainfalls showed that the three-parameter Gamma distribution
fitted the data well, suggesting, thus, that the seven-parameter BGM was a
suitable model to represent the bivariate relationship of these variates.
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v

These results have suggested that, when using a parametric bivariate model
to represent the predictand and predictor based on the approach described
in this research, one should try to use a model that incorporates an analytical
expression that links its dependence structure in the transformed domain
with that in the real domain. By doing that, the MCFG and the integrated
framework gain versatility.

Obijective 3: To design the flood warning decision component (FWDC) of a FEWS,

and to simulate and identify important factors controlling the flood warning

reliability of a FEWS for a generic fluvial river case under deterministic and

probabilistic forecast information.

v

Predictive uncertainty PU, estimated from the predictive density of the
observed value conditional on the forecast, is an essential factor to be
considered when estimating the flood warning reliability of a FEWS.
Probabilistic forecasting that employed this concept outperformed
deterministic forecasting across all the sensitivity experiments conducted in
this thesis. This was achieved by optimizing a probabilistic threshold to
maximise flood warning reliability, characterised by the metrics POD and
FAR.

The warning strategy is also one of the important factors influencing the
reliability of flood warnings. This research showed that a deterministic-
based warning strategy in FEWS operation produces sub-optimal decisions
and that a warning strategy based on optimising a probabilistic threshold,
where the forecast errors are acknowledged, can improve the reliability of
flood warnings.

In this research, the maximum difference between POD and FAR was used
as an optimization criterion for probabilistic forecasting. The results showed
that an optimal warning strategy based on this criterion delivers POD and
FAR values greater than those based on deterministic forecasts. Thus, this
strategy can be used when one wants to give more weight to the reduction
of missed events whose economic consequences, in terms of floods, far
overcomes those associated with false alarms.

The use of the floodplain property-based criterion FPC results in lower
values of POD and FAR than the traditional flooding threshold-based
criterion FTC, and is, therefore, a more demanding reliability criterion.
Impact curves defining the number of affected houses can be used for
exploring the flood warning’s reliability in terms of affected houses. An
impact curve can be built with relatively few flood events, and it can exploit
very well the information produced by inundation models and contributes
to the integrated framework's versatility

The correlation between the observed and forecast peak water levels has
been shown to be the most important factor controlling flood warning
reliability, which improves as the correlation increases. The simulation
framework used here allows the level of correlation needed to deliver a
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target reliability to be estimated a priori, before any investment is made in
improving an existing model or developing a new model.

v As the lead time increases beyond the catchment lag, and the uncertainty
grows due to the use of QPFs, the decline in correlation results in decline in
POD and FAR to poor levels for deterministic forecasting. However, with
probabilistic forecasting, used to describe this POD and FAR both increase
using the maximum POD minus FAR optimization criterion, reflecting a
strategy that avoids misses at the expense of more false alarms as noted
above.

v Negative biases in the mean and variance, i.e., underestimation, lead to a
decline in the reliability of deterministic flood warnings, whereas the
reliability of probabilistic forecasts based on optimising a probabilistic
threshold is robust to such biases. This is a remarkable property of
probabilistic forecasts that have not been clearly demonstrated before.

Obijective 4: To design the response and impact component in the FEWS for each
simulated case, and to simulate and identify important factors controlling the
economic effectiveness of a FEWS for a generic fluvial river case under

deterministic and probabilistic forecast information.

v"Impact curves and analytical expressions or functions representative of US
socio-economic conditions were used to represent the RIC's main flood
damage processes for the generic fluvial case, which has made the
integrated framework versatile, as these can be modified to represent socio-
economic conditions in other countries. Thanks to this versatility, the long-
term socio-economic performance of a FEWS can be explored through a
MC simulation approach, which would be impossible within a real-world
modelling framework.

v" The RIC component for the generic fluvial case exploits the novel use of the
FPC criterion introduced in this thesis. By combining a house-based flood
impact curve that is a surrogate for flood inundation maps with a house-
based family of damage functions, the long-term economic effectiveness of
a FEWS can be evaluated.

v' Thanks to the integrated framework's versatility, the economic
consequences of utilising PU in decision-making could be included in all
possible situations in the analysis. Other research works in this field have
considered only the economic consequences of “wrong” flood warning
decisions and neglected the economic consequences of flood magnitude
uncertainty which is produced due to the difference between warned and
flooded houses.

v Although damage mitigation from proactive action should increase with
lead time and mitigation time, the E,, of (deterministic and probabilistic)
FEWSs does not necessarily increase when increasing 1. When imperfect
FEWSs reached considerable PU, the (negative) impact of this predictive
uncertainty's economic consequences make E,, decreases. Thus, in an
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imperfect FEWS, it was observed that there is an optimal forecasting lead
time 7 that maximises E,,; this lead time represents the balance between an
adequate time to act and a reasonably good forecast.

v The results showed that, as for the flood warning reliability performance
measure, the warning strategy is an important factor influencing E,, . Based
on the particular analysis (low value of C,(y=0.10), forecast errors
controlled only by p,5, and, an efficiency of 50% for the proactive action
(0=0.5)), it was found that E, based on deterministic-forecast-based
warning decisions can range from 1 to 4% for lead times between 1 and 24h.
These E,,, values were improved by probabilistic warning decisions, ranging
from 3% to 5.5 %.

v The results showed that the benefits of using a probabilistic warning strategy
with respect to a deterministic one are most noticeable in FEWSs based on
forecasts with relatively high predictive uncertainty and where the potential
economic benefits of the system are relatively high.

v The cost of the warning response C,, has been shown to control the flood
warning reliability and the warning strategy in a probabilistic FEWS where
warning decisions are based on a probabilistic threshold. Depending on the
value of C,,, an optimal warning strategy of the system could be warning
less or more frequently.

v" It was concluded that the performance of the proactive action is the most
important factor influencing the E,, of a FEWS. It was found that a FEWS
could have good flood warning reliability but low E,, due to the poor
performance of the proactive action.

Objective 5: To apply the generic framework to a case study of the operation of a
flood-prone polder system in Nanjing, China

v The design principles for a FEWS operating in a flood-prone polder system
have been formulated. The FEWS proposed to mitigate the waterlogging
risk in the Shazhou polder located in Nanjing, China, is a significant
contribution in this field.

v The pumping strategies and the resulting waterlogging W in the polder area
were simulated based on a simple stylized water balance model. This model
has not been applied before in a flood warning context and was linked with
an impact curve to represent the response and impact component (RIC) in
the integrated framework.

v" The warning and pumping strategies adopted in the FEWS were important
factors controlling the performance of the system. Deterministic forecasts-
based strategies produced performance measures that could be improved by
considering warning and pumping strategies based on probabilistic forecasts
of the rainfall and runoff volume, respectively, of the impending critical
storm.
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v" The proactive action was formulated such that a parameter a representing
the amount of proactive pumping could be used to define a Pareto tradeoff
curve between average waterlogged area and pumping cost. It was shown
that probabilistic forecasts could outperform deterministic forecasts by
generating points closer to Utopia on the Pareto curve.

v The Nanjing authority responsible for the operation of the Shazou and other
polders in the city could gain considerable operational benefits in managing
flooding by adopting the FEWS design explored in this research.

8.3 Recommendation for future work

This is an appropriate juncture at which to consider the limitations of the generic
framework and its constituent components; these can form the basis of some further
work. For example, important assumptions made in the framework are that forecast
performance does not change in the future, i.e., stationarity is assumed, and that
warning decisions are made based on a predefined decision rule. In addition, the
representation of the response and impact process through analytical expressions
can neglect some physical and social processes in the forecast of the flood impact
and in representing the response and impact processes. Therefore, the models and
analyses described in this thesis for each simulated case can be subject to several
improvements or adaptations that could be done in future work. These are discussed

in turn below.

At the beginning of this thesis, the overarching issue of climate change was
mentioned in the context of a FEWS having a very important role to play in
managing the increasing flood risk. A 10% improvement per decade in FEWS
performance has been set (Pappenberger et al., 2015) as a general target to be aimed
for which should contribute to managing the increasing flood risk, and the research
conducted here has provided some insight into how this might be achieved.
However, the impact of changes in rainfall and flood extremes on FEWS
performance is a specific topic that should be investigated in further work.
Guerreiro et al. (2018) have shown how the characteristics of hourly rainfall
extremes are changing at the continental scale, and these changes could be
embedded in RainSim to explore, for specific catchments such as the Eden for
which a calibrated SHETRAN model is available, how the performance of a FEWS
might change under these transient conditions, and how the estimation of PU and

flood warning decision rules should adapt. Furthermore, significant changes in
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hourly rainfall extremes associated with urbanisation and the heat-island effect in
mega-cities are also being observed (Li et al., 2020). The parameters of a bivariate
simulation model could be adapted fairly simply to reflect indirectly these changes,
e.g., by changing the parameters of the marginal distribution of y while leaving

those of § unchanged.

The MCFG could be extended to incorporate continuous simulation in which
rainstorms and their forecasts generated by RainSim are used to derive long-term
continuous simulations of flood hydrographs and their forecasts. Such simulations
would provide considerable additional information for the assessment of impacts
but at a high computational cost. The use of the simpler MCFG developed here with
selective sampling from the continuous simulation approach could overcome this

difficulty. This would also support the work suggested above.

In all the sensitivity analysis experiments carried out in this thesis, perfect
knowledge of the population of flood events and their forecasts has been assumed.
In a real-world setting, the bivariate distribution of peak levels and their forecasts
would have to be built to estimate PU. MC sampling experiments should be
conducted to establish the sample sizes needed to estimate the PU reliably and the
consequent FEWS reliability and economic effectiveness.

The sensitivity analysis, SA, conducted in the simulated generic fluvial case to
identify the influence of parameters (factors) on the performance of a FEWS was
based on the one-at-a-time (OAT) method. This analysis, in essence, represented a
local SA of the model representing the FEWS. The local SA does not allow
interactions among the model's input parameters to be detected and how these
interactions are related to the performance of the model. This analysis can be done
based on a global SA of the model, which explores the interactions among the
parameters. The use of scatter plots or coloured scatter plots are useful tools for

these purposes (Pianosi et al., 2016).

In the simulated generic fluvial case, the hydro-economic ED model was used to
explore the economic effectiveness of a FEWS as a function of the forecasting lead
time t, and the results showed that for a FEWS with a low value of the cost of the
warning response C,,, an (optimal) probabilistic-forecast-based warning strategy

produced high values of FAR, which might generate a loss of credibility of the flood
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warning system (‘cry wolf” effect). The ‘cry wolf” effect might, in turn, decrease
the effectiveness of the proactive action, which is represented in the hydro-
economic ED model by the parameter o that is an input parameter and is
independent of the FAR value. In this context, even though the negative impact of
the ‘cry wolf” effect on the FEWS is an arguable topic (Barnes et al., 2007), it would
be interesting to link the parameter o with the FAR value through an internal model
function to connect the proactive action's effectiveness from the ‘cry wolf” effect.
Another improvement of this model would be to include the householders'
decisions, which in essence, would be to represent the decisions in the response of
the FEWS, which is something considered in the simulated flood-prone polder

system case study.

The performance of the FEWS designed for the flood-prone polder system case
study based on different pumping strategies is something that can also be explored
in future work. The pumping strategy adopted is characterised by a proactive and
reactive action, where the latter action is conducted before the storm arrives and the
latter action during the storm, which assumes that the water is pumped based on the
observed runoff (inflow) entering the inner rivers. Another pumping strategy would
be, for example, to consider that the proactive action is conducted during the storm
in which the water is pumped at a different rate to the observed runoff entering the
inner rivers. The pumping rate could be defined by assuming that updated real-time
forecasts are provided to the polder manager from time to time. Pumping strategies
based on the forecast of the rainfall profile and volume of the impending critical
storm is another option to be explored.

Based on the design of the Shazou polder FEWS, a serious game could be designed
that would allow the managers of polder flooding in Nanjing the effectiveness of
different proactive and reactive actions to be explored virtually using the Pareto
curve, as a way of enhancing confidence about the potential benefits that could be
gained, and establishing an acceptable balance between waterlogging and pumping

cost.

The approach used to represent probabilistic forecast-based flood warning decisions
in each simulated case was based on a probabilistic threshold PT approach. Based
on this approach, the probability of exceedance, obtained by integrating the

predictive density, i.e., PU, above a predefined level, is compared with an optimised
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PT that triggers the decision. Probabilistic warning decisions can also be
represented based on a Bayesian decision scheme where the predictive density and
a utility/loss function are used to set rules based on expected values (Todini, 2017).
Bayesian FEWSs have been designed based on rainfall (Martina et al., 2006;
Economou et al., 2016) or water levels (Krzysztofowicz, 1993). In this sense,
exploring the performance of the simulated FEWSs based on Bayesian flood

warning decisions is something that can be done in future work.

Another improvement to the proposed generic framework would be to include the
human component in the simulation of the FEWSs to explore the influence of
human behaviour on its performance. The human behaviour in FEWSs has been
simulated based on analytical expressions (Ferrell and Krzysztofowicz, 1983,
Girons Lopez et al., 2017) or agent-based models (ABMs) (computational methods
that simulate autonomous decision-making entities' actions and interactions in a
system)(Dawson et al., 2011; Du et al., 2016; Yang et al., 2018; O’Shea et al.,
2020). The framework components built in this thesis are in a very good position to
obtain relatively rapid results through the first approach and to accommodate a

more complex framework extension based on ABMs.

Finally, in the Shazou polder FEWS, simulated rainfall generated from RainSim
was used to represent forecasts and explore what might be gained by using forecasts
in reality. Thus, the assumed statistical properties defining the relationship between
the observations and their forecasts are not based on real-world records, and one
can argue that they represent a very positive situation. For example, the special
correlation coefficient defining the predictive uncertainty PU can be considered too
optimistic (0.93). In this context, a future work could be to use real-world pair
forecast and observed values in this analysis to explore how the outcomes shown in
this work behave under (actual) different statistical properties defining the
observation-forecast relationship. This real-world data-based analysis would
involve two basic steps: i) to use the hourly and daily statistics of the observed daily
rainfall and their forecasts to set the parameters in RainSim, and ii) to define the
joint distribution of the observed daily rainfall and their forecasts based on the real-

world records.

The use of “simulation mode” forecasts in this thesis can be considered a valid

approach to explore the benefits of using longer lead time forecasts in FEWSs
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where the effect of updating has died out. This simulated method-based approach
also responded to the present-day reality about the lack of or limited records of
observed extreme values and their forecasts in operational flood forecasting
systems. If real-world data were the basis of this thesis, many of the methodological
contributions given in this work would not be possible to achieve because the lack
of data does not allow one to study the full FEWS chain. Despite this, it is also true
that flood warning/forecast validation databases are starting to be available for
operational flood forecasting systems (Ayzel et al., 2019; Harrigan et al., 2020),
and the number of registered extreme events is increasing. Therefore, the imperative
next step to be done in this work would be to use one day that information in the
methodologies suggested here to explore the FEWS performance. Since these
methodologies are mainly based on the statistical relationship between the
predictand and predictor, the information generated from any flood forecasting
technique can be used, such as forecasts generated from rainfall-runoff and/or
flooding routing models or by advanced data-driven models, e.g., machine learning
models. However, it is the case that forecasts generated by operational agencies are
not always archived or made available for analysis in external research, but the
framework can still demonstrate to these agencies what target correlations are
needed to achieve the required performance as measured, for example, by POD and
FAR.
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Appendix A. Additional tables

Appendix Table A-1: The pumping capacity of the pumping stations in the Shazou polder

No | Pumping station Pumpi[frﬁlgfgpacity
1 Qingjiang Bridge 45
2 Dadoumen 3
3 Xiaodoumen 6
4 Liwei 15
5 Mochou 8
6 South Lake 11.55
7 City station 15
8 Xiangyang 21
9 Hujia gate 21
10 Haner 15
11 Lotus 8
12 Xingeng 24
13 Luotang 14
14 Touguan 8
15 Honggi 15.45
16 Black bridge 30
17 Zhongbao 6
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Appendix Table A-2: Set of parameters defined as the best points as the Pareto front in the
Probabilistic scenario (black dots in Figure 7.21)

PT a
0.5 0.2
0.5 0.25
0.6 0.2
0.6 0.25
0.7 0.2
0.7 0.25
0.8 0.075
0.8 0.1
0.8 0.2
0.8 0.25
0.8 0.3
0.9 0.05
0.9 0.075
0.9 0.1
0.9 0.15
0.9 0.2
0.9 0.25
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Appendix B. Additional figures
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Appendix Figure B-1: : Tradeoff between pumping costs and the average number of hours
of waterlogging (D,,) for the deterministic forecast scenario and comparison with the two
benchmark scenarios
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure
shows the tradeoff between C_p and d,, and C_pro and d,, for the deterministic forecast scenario. The
values of a considered were the following: 0,
0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two

benchmark scenarios.
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Appendix Figure B-2: Tradeoff between pumping costs and the average number of hours of
waterlogging (D,,) for the probabilistic forecast scenario and comparison with the two
benchmark scenarios
In the figure, DF: deterministic forecast; NW: no warning scenario; PF: perfect forecast. This figure
shows the tradeoff between C_p and d,, and C_pm and d,,, for the deterministic forecast scenario. The
values of a considered were the following: 0,
0.025,0.05,0.075,0.10,0.15,0.2,0.25,0.30,0.35,0.40,0.45,0.5. It also shows the values of the two

benchmark scenarios.
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