
A Formal Methodology for Engineering Heterogeneous
Railway Signalling Systems

Paulius Stankaitis

A thesis submitted for the degree of Doctor of Philosophy

School of Computing

Newcastle University

Newcastle upon Tyne, UK

August 2021

Abstract
Over the last few decades, the safety assurance of cyber-physical systems has become one of the

biggest challenges in the field of model-based system engineering. The challenge arises from an

immense complexity of cyber-physical systems which have deeply intertwined physical, software

and network system aspects.

With significant improvements in a wireless communication and microprocessor technologies,

the railway domain has become one of the frontiers for deploying cyber-physical signalling

systems. However, because of the safety-critical nature of railway signalling systems, the

highest level of safety assurance is essential. This study attempts to address the challenge of

guaranteeing the safety of cyber-physical railway signalling systems by proposing a development

methodology based on formal methods. In particular, this study is concerned with the safety

assurance of heterogeneous cyber-physical railway signalling systems, which have emerged by

gradually replacing outdated signalling systems and integrating mainline with urban signalling

systems. The main contribution of this work is a formal development methodology of railway

signalling systems. The methodology is based on the Event-B modelling language, which

provides an expressive modelling language, a stepwise model development and a proof-based

model verification. At the core of the methodology is a generic communication-based railway

signalling Event-B model, which can be further refined to capture specific heterogeneous or

homogeneous railway signalling configurations. In order to make signalling modelling more

systematic we developed communication and hybrid railway signalling modelling patterns.

The proposed methodology and modelling patterns have been evaluated on two case studies.

The evaluation shows that the methodology does provide a system-level railway signalling

modelling and verification method. This is crucial for verifying the safety of cyber-physical

systems, as safety is dependent on interactions between different subsystems. However, the study

has also shown that automatic formal verification of hybrid systems is still a major challenge and

must be addressed in the future work in order to make this methodology more practical.

Acknowledgments

First and foremost, I would like to express my enormous gratitude and thank my supervisor,

Alexander Romanovsky, especially for his patient support and guidance throughout the entire

journey. I also would like to thank for the opened opportunities to collaborative with some many

talented and wonderful people from all across the world.

I would like to express a special thanks to Alexei Iliasov for all the valuable discussions and

collaboration from which I learnt so much. I am also very grateful to Simon Chadwick and other

colleagues from Siemens Rail Automation for useful feedback and hospitality. For insightful

feedback, I also would like to thank Leon Freitas.

Throughout my studies, I had an amazing opportunity to collaborate with colleagues from

INPT – ENSEEIHT (Toulouse, France), National Institute of Informatics (Tokyo, Japan) and

Systra Scott Lister (London, United Kingdom). In particular, I would like to thank Yamine Aı̈t-

Ameur, Fuyuki Ishikawa, Tsutomu Kobayashi, Guillaume Dupont, Guillaume Babin, Dominic

Taylor and Milo Lloyd for the fruitful discussions and hospitality.

Special thanks goes to the thesis examiners Michael Harrison and Marc Frappier for productive

discussions and highly valuable feedback on this work.

I would like to thank and dedicate this thesis to my amazing family, friends and Claire without

their encouragement and support I would not have done this.

The work presented in this thesis is supported by an iCASE studentship (EPSRC and Siemens

Rail Automation).

Publications
Some of the work presented in this thesis has been published and presented at the international

conferences.

1. P. Stankaitis and A. Iliasov, ”Safety Verification of Heterogeneous Railway Networks,” in

Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and

Certification (T. Lecomte, R. Pinger, and A. Romanovsky, eds.), pp. 150–159, Springer

International Publishing, 2016.

The student-category paper introduced a new problem of safety assurance of heterogeneous

railway signalling networks and discussed key challenges to formal modelling and verifica-

tion of such systems. The research and paper was lead (and written) by P. Stankaitis under

a supervision of the co-author.

2. P. Stankaitis, A. Iliasov, Y. Aı̈t-Ameur, T. Kobayashi, F. Ishikawa, and A. Romanovsky,

”A Refinement Based Method For Developing Distributed Protocols,” in IEEE 19th

International Symposium on High Assurance Systems Engineering (HASE), pp. 90–97,

2019.

The paper introduces Event-B patterns for communication modelling and distributed

protocol refinement (presented in Chapter 4 of this thesis). The research was carried out

by P. Stankaitis while the co-authors provided useful feedback throughout a number of

discussions. The paper was primarily written by P. Stankaitis with significant changes made

due to co-authors corrections and suggestions.

3. P. Stankaitis, G. Dupont, N. K. Singh, Y. Aı̈t-Ameur, A. Iliasov and A. Romanovsky, ”Mod-

elling Hybrid Train Speed Controller using Proof and Refinement,” in 24th International

Conference on Engineering of Complex Computer Systems (ICECCS), pp. 107-113, 2019.

In this paper Event-B hybrid modelling patterns developed by G. Dupont have been applied

to modelling and verification of train speed controllers (presented in Chapter 5 of this thesis).

The research was jointly lead by P. Stankaitis and G. Dupont who jointly developed the

formal Event-B model and co-wrote the paper. The remaining co-authors have significantly

contributed towards improving the quality of the paper.

4. P. Stankaitis, A. Iliasov, T. Kobayashi, Y. Aı̈t-Ameur, F. Ishikawa, and A. Romanovsky,

”Formal distributed protocol development for reservation of railway sections,” in Rigorous

State-Based Methods (A. Raschke, D. Méry, and F. Houdek, eds.), pp. 203–219, Springer

International Publishing, 2020.

This paper describes a novel distributed protocol for reservation of railway sections formally

developed by utilizing the methodology proposed in this thesis (presented as a case study in

Chaoter 6 of this thesis). The formal protocol Event-B model was developed by P. Stankaitis

while T. Kobayashi helped completing few proofs in the final refinement and A. Iliasov

developed a stochastic Monte-Carlo protocol model for a performance analysis. The paper

was primarily written by P. Stankaitis with changes made due to co-authors corrections and

suggestions.

5. A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, and A. Romanovsky, ”Rodin Platform Why3

Plug-in,” in Abstract State Machines, Alloy, B, TLA, VDM, and Z (M. Butler, K.-D.

Schewe, A. Mashkoor, and M. Biro, eds.), pp. 275–281, Springer International Publishing,

2016.

The author of this thesis has developed an axiomatic Why3 library of Event-B operators in

order to support Event-B proof obligation verification in Why3.

Research Reproducibility

The formal Event-B and PRISM models presented in this thesis are available online for the

research reproducibility purposes as Portable Document Format files or in the Rodin and PRISM

modelling environment formats.

A generic communication-based signalling Event-B model (discussed in Chapter 5) available at:

http://stankaitis.uk/2019/06/

The Event-B and PRISM models of a distributed signallig system (discussed in Chapter 6)

available at:

http://stankaitis.uk/2019/02/ [Event-B model]

http://stankaitis.uk/2019/04/ [PRISM model]

A heterogeneous railway signalling Event-B model (discussed in Chapter 6) available at:

http://stankaitis.uk/2019/06/

i

http://stankaitis.uk/2019/06/
http://stankaitis.uk/2019/02/
http://stankaitis.uk/2019/04/
http://stankaitis.uk/2019/06/

Contents

Acknowledgments

Publications

Research Reproducibility i

Contents i

List of Figures v

List of Listings vii

List of Tables x

1 Introduction 1

1.1 Cyber-Physical Systems . 1

1.1.1 Cyber-Physical Transportation Systems 2

1.1.2 Cyber-Physical Railway Signalling Systems 3

1.2 Formal Methods for Railway Signalling Systems 4

1.3 Research Questions . 5

1.4 Research Objectives . 6

1.5 Thesis Structure and Contributions . 6

2 Requirements and Formal Methods 9

2.1 Railway Signalling and Interlocking . 9

ii

2.1.1 Communication-Based Signalling Systems 12

2.1.2 Heterogeneous Railway Signalling Systems 14

2.1.3 Generic Heterogeneous Railway Signalling System Model 16

2.1.4 Railway-Based Engineering Methodology Requirements 17

2.2 Cyber-Physical System Modelling . 18

2.2.1 Hybrid System Modelling and Verification 22

2.2.2 Formal Specification Languages . 24

2.2.3 Event-B Method . 25

2.2.4 Vienna Development Method . 27

2.2.5 Differential Dynamic Logic . 28

2.3 Formal Methods Evaluation . 29

3 Development Methodology 31

3.1 Methodology Overview . 31

3.2 Development Stages . 33

3.2.1 System Specifications and Requirements 33

3.2.2 Functional Event-B Model . 34

3.3 Methodology Summary . 38

4 Communication Modelling Patterns 39

4.1 Communication Modelling Patterns . 39

4.1.1 System Context Pattern . 41

4.1.2 Message Modelling Patterns . 41

4.1.3 Loop Modelling Pattern for Iterative Actions 43

4.1.4 Message Sending/Receiving Event Patterns 44

4.2 Chapter Summary . 45

5 Hybrid Signalling Modelling 47

5.1 Hybrid System Modelling Patterns in Event-B 48

5.2 Hybrid Railway Signalling Model in Event-B 53

5.2.1 Informal Communication-Based Railway Signalling Model 53

5.2.2 Continuous Railway Signalling System Features 56

iii

5.2.3 Hybrid Railway Signalling System Model: Theory and Context 58

5.2.4 Hybrid Railway Signalling System Model: Machine Events 59

5.2.5 Hybrid Railway Signalling System Model: Communication Aspects . . . 61

5.2.6 Proving Generic Hybrid Signalling Model: Proof Statistics 65

5.3 Chapter Summary . 66

6 Methodology Evaluation 67

6.1 Case Study 1: Distributed Resource Allocation Protocol 69

6.1.1 High-Level Distributed System Model and Requirements 70

6.1.2 Problematic Distributed Resource Allocation Scenarios 72

6.1.3 Semi-Formal Protocol Description . 73

6.1.4 Protocol Model Refinement Strategy . 77

6.1.5 Event-B: Abstract Context . 78

6.1.6 Event-B: Machine m0 . 79

6.1.7 Event-B: Machine m1 . 81

6.1.8 Event-B: Machine m2 . 82

6.1.9 Event-B: Machine m3 . 87

6.1.10 Event-B: Machine m4 . 88

6.1.11 Proving Functional Protocol Correctness 93

6.1.12 Proving Protocol Probabilistic Termination with PRISM 95

6.1.13 Proving Protocol Probabilistic Termination with PRISM: Results 98

6.2 Case Study 2: Heterogeneous Railway Signalling System 99

6.2.1 Heterogeneous Signalling Model Description and Requirements 100

6.2.2 Formal Event-B Model of a Heterogeneous Railway Signalling System . 103

6.3 Evaluation Summary and Discussion . 108

7 Conclusions 114

7.1 Summing Up . 114

7.2 Future Work . 117

Bibliography 120

iv

List of Figures

1.1 Thesis structure with objectives and contributions of each chapter 8

2.1 An example of a railway layout (field elements) with a fixed block operation . . . 10

2.2 An example of a railway layout with fixed block operation (block reservation) . . 11

2.3 An example of a railway layout with moving block operation 11

2.4 An example of ETCS Level 2 layout and operation 13

2.5 ETCS Level 2 (with signals) and CBTC Interface on Crossrail (East Direction) . 15

2.6 A visual representation of the generic heterogeneous railway signalling model . . 16

2.7 A two-mode Hybrid Automata example model 23

2.8 The structure of the Event-B model . 26

2.9 The syntax of hybrid programs and an example model 29

3.1 Formal modelling and verification methodology of heterogeneous signalling systems 32

3.2 An example of an annotated Event-B model (event and invariant) in the Rodin tool 34

3.3 The main activity of the proposed methodology is refining a generic signalling

Event-B model M with heterogeneous signalling system modelling machine M

and context C models . 35

3.4 The process of applying communication modelling patterns 37

4.1 The communication modelling patterns . 40

5.1 Structure of the hybrid railway signalling Event-B model. This figure provides a

more detailed view of the functional pivot Event-B model (in Figure 3.1), which

captures a generic hybrid railway signalling system. 48

v

5.2 The generic hybrid system representation . 50

5.3 An example of the abstract railway signalling model with three trains 53

5.4 Sequence diagram of the signalling model . 54

5.5 An abstract train speed controller hybrid automata model with two modes 57

6.1 Problematic scenarios: Scenario 1 (left) and Scenario 2 (right) 72

6.2 Scenario 2 with varied resource promised pointer offset and queue depth. 98

6.3 An example of the heterogeneous railway signalling model with two transitioning

trains . 99

6.4 Sequence diagram of the heterogeneous signalling model 102

vi

Listings

3.1 An Event-B context model of the hybrid train speed controller 36

3.2 An Event-B context model of the generic signalling system 36

4.1 A context pattern for defining communicating objects 41

4.2 A context pattern of defining a new message . 42

4.3 A machine pattern for importing new messages and creating channels 42

4.4 A pattern for modelling iterative object actions (loop body part) 43

4.5 A pattern for modelling iterative object actions (loop completion part) 43

4.6 An event pattern for replying to a received message 44

4.7 An event pattern for sending an initiating message 45

5.1 Differential equation theory excerpt . 49

5.2 A generic hybrid Event-B model: machine model structure 50

5.3 A generic hybrid Event-B model: Transition event 51

5.4 A generic hybrid Event-B model: Sense event 51

5.5 A generic hybrid Event-B model: Behave event 52

5.6 A generic hybrid Event-B model: Actuate event 52

5.7 An excerpt of the signalling Event-B model: train model theory 57

5.8 An excerpt of the signalling Event-B model: system context 58

5.9 Event restricting train’s movement (transition type) 59

5.10 Event that captures train controller switching to a restricted move mode 60

5.11 Event modelling environment induced changes to the train plant model 60

5.12 Event updating train’s plant (actuate type) . 61

5.13 Communication signalling model context . 61

vii

5.14 Movement authority extension message context 62

5.15 Movement authority channel variables for messages 62

5.16 Refined event for requesting EoA extension . 63

5.17 Event for modelling radio-block centre reply to the extension request message

(line part) . 64

5.18 Refined transition event with updated EoA . 65

6.1 A context of the abstract resource allocation model 79

6.2 A context model defining program counter values of an agent 79

6.3 The invariants of the abstract distributed resource allocation model 80

6.4 The event modelling an agent capturing an objective 80

6.5 The event modelling an agent releasing an objective 80

6.6 Variables and invariants of the refinement step m1 81

6.7 The event modelling an agent consuming a free resource: loop body event 81

6.8 The event modelling an agent consuming a free resource: loop completion event . 82

6.9 Variables and invariants of the refinement step m2 82

6.10 The context model of the resource response type message 83

6.11 The event modelling an agent locking resources: loop body event 84

6.12 The event modelling an agent locking resources: loop completion event 84

6.13 The event modelling a resource sending a response message: READY type 85

6.14 The event modelling a resource sending a response message: DENY type 86

6.15 The event modelling agents decision between restarting stage2 or consuming

resources . 86

6.16 The safety invariant for prohibiting mutual resource locking by different agents . 86

6.17 The event modelling an agent capturing an objective 87

6.18 The event modelling a resource replying to write message with a pready message 88

6.19 The event modelling a resource sending a pready message to an agent in a memory 88

6.20 Variables and invariants of the machine model m4 89

6.21 The event modelling an agent requesting a resource: loop body event 89

6.22 The event modelling an agent requesting a resource: loop completion event . . . 90

6.23 The event modelling a resource replying to a request message 90

6.24 The event modelling agent’s decision on whether to restart stage1 or start stage2 . 91

viii

6.25 The event modelling an agent renegotiating a resource: loop body event 91

6.26 The event modelling an agent renegotiating a resource: loop completion event . . 92

6.27 The event modelling a resource replying to a srequest message 92

6.28 The event modelling a resource replying to a request message with history

variable extension . 93

6.29 Additional variables and invariants added for providing safety property SAF4 . . 94

6.30 Communication signalling model context . 104

6.31 The machine model of the heterogeneous signalling system 104

6.32 The context model of the position report message 105

6.33 An event modelling a train passing over a level announcement balise 105

6.34 An event modelling communication centre requesting a route locking upon

receiving level transition announcement . 106

6.35 The safety invariants of the heterogeneous signalling system 107

ix

List of Tables

2.1 Event-B proof obligations: A (axioms, T - theorems, I - invariants, G - guards, BA

- before/after predicates, V - variants) . 27

5.1 Proof statistics of the communication-based signalling Event-B model 66

6.1 High-level distributed signalling system specifications 71

6.2 High-level system safety and liveness requirements 71

6.3 Low-level protocol stage1 safety and liveness requirements 75

6.4 Event-B protocol model proof statistics . 95

6.5 Specifications of the heterogeneous signalling model 101

6.6 Safety requirements of the heterogeneous signalling system model 103

6.7 Proof statistics of the Event-B heterogeneous railway signalling model 106

x

Chapter 1

Introduction

This chapter describes the motivations behind the thesis and the main topics related to this work.

Research problems, objectives and thesis contributions are also defined in this chapter. In this

chapter, we also discuss the related work and provide the structure of the thesis.

1.1 Cyber-Physical Systems

Over the last few decades, the complexity of computer-based systems has grown significantly

(software aspect [1], hardware aspect [2]) as did society’s reliance on them. The advance of

computer-based systems has been so significant that in the early 2000s a new, more comprehensive

term has been coined to describe modern computer-based systems - cyber-physical systems [3].

Today, they are paramount in transportation, medical care and the financial sector and are often

classified as a safety (or mission) critical as their failure is likely to have tragic implications on

human lives, property and the environment. Because of their universal application, complexity

and safety-critical nature, one of the grand challenges in computer science is to develop rigorous

and practical methods, which would allow to design and reason about complex cyber-physical

systems.

1

1.1.1 Cyber-Physical Transportation Systems

For years, the transportation sector has been at the forefront of using computer-based systems

with the first use of computers (with software) on aircraft in 1968 (Litton LTN-51 Inertial

Navigation Systems [1]), 1980s for railway signalling (Solid State Interlocking [4], United

Kingdom) and automotive systems. Due to significant advances in communication and computing

technologies, modern computer-based transportation systems with tight integration of computing,

communication and control are called cyber-physical transportation systems [3]. The objective of

a cyber-physical transport system is to observe and safely control the physical processes of a plant

through a network of distributed embedded computers.

To some extent, many challenges in designing cyber-physical transportation systems have been

studied (e.g. physical environment constraints) in the field of embedded systems. Generally,

an embedded application would be considered a small, closed box that does not interact with

other systems and so extensive bench testing could be performed to assure its safety [5]. On the

other hand, cyber-physical transportation systems cannot be considered a simple closed system

due to networking, and so system bench testing is no longer an adequate verification technique.

The verification problem becomes significant for safety-critical transportation systems, as the

properties of an entire system must be analysed [6]. There are many cyber-physical transport

system development and verification challenges, such as ensuring cyber-physical transportation

systems dependability, safety, availability, security and many others properties. The general

challenges of cyber-physical systems are more widely and excellently discussed in the surveys

by Gunes et al. [7], Broy & Schmidt [8] and Cyber-Physical Systems Steering Group [9]. In the

following, we would like to emphasise four system’s properties-challenges, which are particularly

relevant to the particular cyber-physical transportation systems we considered and addressed in

this research.

Heterogeneity Heterogeneous systems encompass sub-systems with different characteristics,

requirements and they are common in the cyber-physical transportation system domain. The

classic component-based design approaches were successfully used to develop complex systems

due to their components and requirements homogeneity [9]. Cyber-physical transportation

systems are inherently heterogeneous and, therefore, new theories, methodologies and tools are

needed to integrate the system’s heterogeneity into the design process [10].

2

Concurrency By nature, the cyber-physical transportation systems are concurrent and time-

sensitive, which has historically complicated system verification. As discussed by Edward A.

Lee in his seminal paper [5], current concurrency models and the missing temporal semantics in

computing could obstruct the deployment of next-generation cyber-physical systems.

Unpredictability The cyber-physical transportation systems do not operate in a completely

controlled environment; some uncertainty can be introduced by the real world or by using

computer systems based on statistical models (e.g. machine learning). Over the many years,

the deterministic modelling approaches (e.g. ODEs) have proven extremely useful for designing

and analysing systems [11]. However, it is often necessary to introduce uncertainty into the model,

for example, to capture the system’s disturbances [12]. Also, as correctly pointed out in [12], in

the real-world engineering practices requirements are often probabilistic.

Interoperability It is a capability of a network of systems to work together and complete a task.

As discussed by Baheti and Gill [13], currently there is no standardised methodology to support

the development of interoperable cyber-physical systems.

1.1.2 Cyber-Physical Railway Signalling Systems

Over the last few decades, developments in communication and computing technologies have

enabled railway engineers to develop novel railway signalling systems. The modern railway

signalling systems, such as European Train Control System (ETCS) [14] or Communication-

Based Train Control (CBTC) [15], are safety-critical cyber-physical transportation systems,

potentially improving the capacity, interoperability and reliability of railway networks. In modern

signalling systems a train continuously receives a permitted travelling distance via wireless

communication and an on-board train computer calculates the fitting speed profile. The calculated

speed profile of a train is then dynamically followed and supervised by a driver or a computer-

based speed controller. The increased dependability on the on-board computers and algorithms

for computing, controlling and monitoring the speed profile of a train requires the highest level of

system assurance and poses new challenges to signalling engineers on ensuring the safety of the

cyber-physical railway signalling systems.

3

Another engineering challenge arises by gradually modernising and replacing parts of a large

regional railway network with novel railway signalling systems, thus creating a heterogeneous

railway signalling network. In other instances, mainline railway networks are integrated with

urban networks (e.g Crossrail Network, London [16]), similarly creating another type of a

heterogeneous signalling system. The rolling stock in a heterogeneous signalling system must

safely and efficiently transition from one signalling area to another. Demonstrating a safe and

efficient train signalling transition has been a major issue in developing the Crossrail signalling

system, resulting in significant deployment delays [17].

1.2 Formal Methods for Railway Signalling Systems

To address the challenges of engineering complex safety-critical systems, some companies and

industries have turned their attention to formal methods. Formal methods are mathematical,

model-driven methods that provide a systematic and rigorous approach to developing complex

systems. Even though there has been an increase, their adaptation in the industry is still scarce

[18]. However, one domain that had success in applying formal methods is the railway domain.

In 1989, the SACEM system was introduced in Paris (RER Line A) for controlling regional

express trains. Today, the SACEM system is considered a major breakthrough for formal methods

in railway, as a large part of that system was formally specified and verified using the B method

[19]. The B method was further used in developing other systems in Paris (Line 14, Paris Roissy

Airport shuttle), New York (Canarsie line) and showed that project costs could be significantly

saved by investing resources in formal system specification and verification. These projects also

significantly impacted on standards for developing safety-critical railway control systems and

industry; currently, formal methods are rated as highly recommended [20] and several companies

provide formal railway system verification as a service.

Due to early industrial success in the railway domain, academic researchers have also

been interested in developing and applying new techniques and tools to the railway domain.

In particular, the interlocking verification has raised the interest in the automatic verification

community (model checking), as so-called control tables could be easily formalised with safety

properties expressed in the model checking native temporal logic [21].

4

However, despite formal methods progress in the railway domain, little has been done

to address the cyber-physical nature of modern railway systems. First, the more traditional

verification approaches, like model checking, do not scale well for larger, more complex systems.

Furthermore, cyber-physical systems have both discrete and continuous behaviours, which are

best captured by a hybrid automaton model. However, an algorithmic verification of hybrid

models with available model checking tools is very limited, even under severe restrictions [22,23].

Second, the formal specification languages used so far lack the expressivity to formalise systems

such as the European Train Control System or heterogeneous signalling systems, described in

Section 1.1.2.

1.3 Research Questions

Cyber-physical railway signalling systems increasingly play a more important role in the

transportation domain by replacing out-of-date signalling systems. A gradual replacement of

older signalling systems or integration of signalling systems (e.g. mainline and metro) creates

heterogeneous signalling systems, where rolling stock must safely transition from one system to

another. In this research, we aim to address the problem of engineering safe heterogeneous cyber-

physical railway signalling systems. In the following, we formulate the main research problem as

the following research question:

Research Question1 Can heterogeneous cyber-physical railway signalling systems be pragmati-

cally engineered by using formal methods?

The second set of research questions arise from the selected approach to apply formal methods.

Research Question2 Can a multifaceted methodology be developed for modelling and reasoning

about heterogeneous cyber-physical railway signalling systems with existing theories and tools?

Research Question3 Are there (or is it possible to develop) adequate and scalable verification

tools to reason about hybrid, stochastic heterogeneous cyber-physical railway signalling systems

properties?

5

1.4 Research Objectives

The big picture challenge we address in this research is the difficulty of modelling and verifying

cyber-physical systems. Specifically, we are interested in classes of cyber-physical railway

signalling systems, which are distributed and heterogeneous. In the paragraph below, we outline

our five main research objectives.

Objective1 To define modelling and verification requirements for the engineering methodology

of heterogeneous cyber-physical railway signalling systems.

Objective2 To evaluate the existing modelling and verification approaches and their integration

possibility into a multifaceted methodology.

Objective3 To develop a multifaceted methodology architecture and an engineering process

using selected techniques and tools.

Objective4 To improve (or develop) techniques, tools, simplifying heterogeneous cyber-physical

railway signalling system modelling and improving verification automation.

Objective5 Evaluating the proposed architecture and engineering methodology with railway-

related case studies, which could address cyber-physical railway signalling systems properties,

such as heterogeneity, unpredictability, and distributivity.

1.5 Thesis Structure and Contributions

The structure of the thesis (see Figure 1.1) follows a top-down approach where we begin

by describing the high-level research problem of heterogeneous railway signalling safety,

specifically, its origins and importance - followed by, introduction to formal methods as a system

development method and our solution for guaranteeing the highest level of heterogeneous railway

signalling system safety and its shortcoming for our research problem. Moreover, we elicit key

research objectives, which initially provided the structure for addressing the research problem

(Chapter 1).

6

The following chapter (Chapter 2) aims to refine the problem by constructing a high-level

general heterogeneous signalling system model and extracting key requirements for the solution

implementation. The second objective is to evaluate (and justify) formal methods regarding other

approaches to developing cyber-physical transportation systems and select an adequate formal

method based on requirements acquired from describing the high-level heterogeneous system

model.

The following chapter (Chapter 3) discusses the first contribution of the thesis - c1) a

formal development methodology of heterogeneous railway signalling systems. First, the chapter

provides an overall architecture of the methodology with the Event-B formal specification

language forming its foundations. Second, the chapter discusses the three-step process of

formally developing heterogeneous railway signalling systems using the introduced methodology.

The chapter concludes by again discussing the overall methodology regarding all previous

requirements.

Chapter 4 and Chapter 5 introduce three other thesis contributions: c2) Event-B patterns

for communication modelling, c3) Event-B patterns for modelling hybrid signalling systems

and c4) a generic Event-B model of hybrid communication-based signalling systems. The

methodology evaluation chapter (Chapter 6) presents two case studies that are used to analyse

the applicability of the proposed formal methodology. The first case study focuses on formally

developing distributed signalling systems using introduced communication modelling patterns.

The contribution of this case study is a c5) a novel and formally proved distributed protocol for a

distributed reservation of railway sections. The second case study focuses on refining the generic

heterogeneous signalling Event-B model with specific signalling configurations. Therefore,

the following contribution is c6) a formal model of a specific heterogeneous signalling system

configuration with hybrid system aspects.

In the final thesis chapter Chapter 7 we summarise the thesis, discuss methodology limitations

and potential directions for future work.

7

Research Problem: Safety Assurance of Heterogeneous Railway Signalling Systems

Proposed Solution: Development Methodology Based On Formal Methods

refines

Railway Signalling and Interlocking Concepts

An Informal Heterogeneous Railway Signalling Model

CPS Modelling and Verification Approaches

Formal Methods for CPS Development

A State-Based Formal Modelling Language

c1) Methodology architecture and development process

c2) Event-B communication modelling patterns

c3) Event-B hybrid railway signalling modelling patterns

c4) Generic communication-based railway signalling Event-B model

Case studies:

c5) A distributed railway protocol developed by using multifaceted methodology

c6) An instantiated heterogeneous signalling Event-B model

Multifaceted Methodology Applicability Evaluation

Thesis Summary and Future Work

derives

justifies

selects

formalises

evaluates

summarises

describes

describes

describes

C
ha

pt
er

1

C
ha

pt
er

2

C
ha

pt
er

3
C

ha
pt

er
s

4
C

ha
pt

er
s

5
C

ha
pt

er
s

6
C

ha
pt

er
s

7

Figure 1.1: Thesis structure with objectives and contributions of each chapter

8

Chapter 2

Requirements and Formal Methods

This chapter presents a generic communication-based model of hybrid railway signalling systems

with elicited requirements to facilitate their formal development and a justification for selecting

the Event-B formal language as a basis for the formal engineering methodology. The chapter

utilises a top-down approach to describe heterogeneous railway signalling systems by firstly

introducing general railway signalling concepts, reasons for heterogeneous signalling system

emergence and requirements for their model-based development. Since we have formulated

heterogeneous signalling systems as a class of cyber-physical transportation systems, we provide

a landscape of methods that are used in a cyber-physical system development. In the end, we

attempt to justify the Event-B method as a basis for the formal engineering methodology we

propose.

2.1 Railway Signalling and Interlocking

Railway signalling systems are paramount for safe and efficient railway operation. By means

of information gathering, processing and communication, a railway signalling system authorises

safe rolling stock movement and controls railway infrastructure [24].

The functional structure of the railway signalling systems can have several fine-grained levels

but it is primarily made of the field elements and an interlocking level. The former are railway

infrastructure elements, which make it possible to detect and direct rolling stock as well as

transmit information to the train drivers. Examples of the field elements include:

9

P1

P2

S10 S12 S14

S16

S15

S13S11

Figure 2.1: An example of a railway layout (field elements) with a fixed block operation

– Points or switches (Pn in Figure 2.1) are mechanical railway devices, which allow rolling

stock to change tracks;

– Colour or mechanical signals (Sn in Figure 2.1) are devices which visually communicate a

permitted travelling distance (and speed) to the rolling stock drivers;

– Track clear detection systems (track circuits) are railway devices which make it possible to

detect the presence and absence of the trains;

These elements are connected to the interlocking device - in this day and age, mainly a

computer-based device. An interlocking device gathers data from the field elements, ensures

that conflicting trains and unsafe movable infrastructure movements are prevented and displays a

signal to the train driver.

Even though there are many technological and operational differences between various

signalling systems, the fundamental signalling principles are very similar. The most traditional

principle to control train separation is a fixed block signalling. The fundamental principle of the

fixed block signalling is to divide a railway network into block sections and protect them with

an entry and exit signal. Separation of trains is ensured by only allowing block sections to be

occupied by a single train. An example of the railway layout with the fixed block operation is

shown in Figure 2.1.

The operational aspects of the fixed block signalling are controlled by the interlocking device.

An interlocking device implements an interlocking (control) table, which specifies conditions

under which a specific block can be reserved or released. An example in Figure 2.2 illustrates a

situation in which an interlocking has received a request to reserve block B1 for train T1. The

interlocking will check whether track circuit TR1 is clear, point P1 is in a normal position and

conflicting blocks are not set. If these conditions are satisfied, the interlocking will reserve the

block and set the entry signal to proceed.

10

TR1

Block ID Entry Signal Exit Signal Tracks Clear Points Locked Blocks Locked

B1 S12 S14 TR1 P1(N) B2, B3

Figure 2.2: An example of a railway layout with fixed block operation (block reservation)

The modern alternative to a fixed block signalling operation is a moving block operation,

where a block is dynamic and associated with a moving train (see Figure 2.3). The moving block

operation technology allows reduction of spatial separation between trains, and thus increases

the overall capacity of the railway network. To achieve that, a moving block system requires a

continuous and precise localisation of rolling stock and safe on-board algorithms for computing

speeds profiles given the permitted travelling distance. The moving block technology is currently

only available for urban lines and still to be deployed on the inter-city lines.

EoA
T2 T1

Communication Centre

v
pos EoA

Figure 2.3: An example of a railway layout with moving block operation

In addition to an interlocking subsystem, a moving block signalling systems relies on an

additional subsystem for managing rolling stock operation. The subsystem can be generally

considered as a communication centre, as the main functionality of the communication centre is

commanding rolling stock movement by exchanging information with trains and an interlocking

(further discussed in the following section). In the moving block signalling systems, trains

periodically report their position to the communication centre and receive back a distance they

are allowed to travel, specifically the end of the movement authority (EoA). The main difference

from a fixed block signalling operation is that a movement authority is generally issued to the

11

rear of next train or track switch. As illustrated in Figure 2.3, a train will use received EoA

information together with train-borne equipment readings to compute a safe speed profile (or

braking curve) which it needs to follow. The following section discusses modern communication-

based signalling systems, which have been proposed to enable moving block signalling operation.

2.1.1 Communication-Based Signalling Systems

For decades, railway signalling systems have relied on mechanical semaphores or coloured lights

to communicate a movement authority to trains. The advances in communication and computing

technologies have enabled railway engineers to develop novel signalling systems based on the

continuous radio-based communication and dynamic speed supervision.

The benefits of such systems are significant. Firstly, trains can run closer together as their

movement authority can be updated continuously and speed profile calculated more accurately.

The reduced headways between trains can significantly increase network capacity without major

infrastructure modifications. Furthermore, the radio-based signalling system reduces reliance

on the trackside equipment as most of information can be wirelessly transmitted and displayed

in-cab. The reduced reliance on the trackside equipment not only increases reliability but also

decreases maintenance costs. Communication-Based Train Control (CBTC) and European Rail

Traffic Management System (ERTMS) have been the two most widely deployed communication-

based signalling systems.

The European Rail Traffic Management System is a set of standards for the operation and

communication-based control of railway networks. Originally the ERTMS commenced as the

European Commission [25] initiative to address the cross-border interoperability problem in

Europe but since then ERTMS and its versions have been widely accepted as a mature standard

and deployed world-wide. The management system is made of two crucial subsystems: Global

System for Mobile Communications - Railway (GSM-R) and European Train Control System

(ETCS). Depending on network specific requirements, project costs and other parameters, the

latter can be implemented as one of five application levels (ETCS 0, NTC, 1, 2, or 3).

GSM-R The Global System for Mobile Communications provides a standardised wireless

train-to-trackside communication medium customised for railway signalling systems. The

communication solution provides a functionality for a driver to directly communicate with a

signalling centre as well as a channel for train-related data transmission.

12

ETCS European Train Control System is an essential part of the ERTMS systems responsible

for managing and protecting rolling stock. ETCS provides automatic train protection (ATP) with

an on-board computer which calculates the safe speed profile to which a driver must adhere and

the system will take actions if the current speed exceeds the calculated safe speed. The on-board

computer (or European Vital Computer) is also responsible for controlling and interacting with

other rolling stock subsystems.

ETCS also provides an in-cab signalling system with the Driver-Machine Interface (DMI)

which displays information such as the current speed, speed limit and travelling distance to a

target speed. The interactive DMI display also enables a driver to enter information for starting

the mission, changing operation mode or overriding an end-of-the-movement authority.

P1
M1 M2 M3 M4

M5

BL2 BL3
T1

RBCA RBCB

Interlocking

(1)(5)

(4)(2)
(3)

Figure 2.4: An example of ETCS Level 2 layout and operation

ETCS Level 2 application introduces two main new trackside field elements: Eurobalises and

Radio Block Centres (RBC).

Eurobalises are fixed transmitters that are placed on the track and transmit the same

information to all passing trains. The train passing over a balise will use an on-board device

to read information stored on the balise such as its position, track gradient and speed limit. The

information received from the Eurobalise together with an on-board odometry system enables a

train to determine speed and distance travelled.

Radio Block Centre is another vital ETCS component responsible for issuing a movement

authority - the distance train is allowed to travel. To compute a movement authority for a train

RBC interacts with all major ETCS railway signalling subsystems, including interlocking, rolling

stock and traffic management systems.

13

In the following paragraphs (with Figure 2.4) we discuss three key (simplified) ETCS Level

2 operation scenarios which are related to research problems we address in this thesis. The

first procedure is linked to the process of updating the movement authority of a train while the

remaining are concerned with homogeneous/heterogeneous train handovers.

Train approaching the EoA. The train approaching the end of its movement authority sends a

movement authority extension request (1) via GSM-R to the Radio Block Centre it is currently

connected RBCA. When the Radio Block Centre receives an extension request message, it sends

a particular route lock message (2) to the interlocking. The interlocking checks the status of the

requested route field elements (3); if track circuits of the requested route are free and points are

correctly positioned, the interlocking locks the route and sends a confirmation message to RBC

(4). RBC sends an updated movement authority (5) to the train which together with the newly

calculated speed profile is displayed on the DMI.

RBC-RBC Handover. Because of areal coverage limitations of the Radio Block Centre, larger

railway networks with ETCS Level 2 must operate with multiple Radio Block Centres. ETCS

standards describe a homogeneous handover mechanism between accepting and handing-over

Radio Block Centres as well as the train involved [26].

System Level Transition. ETCS also provides a standard for trains operating in heterogeneous

signalling systems via a so-called Specific Transmission Module [27]. The Specific Transmission

Module enables ETCS equipped rolling stock to operate on non-ETCS lines by providing

communication interface between ETCS on-board system (European Vital Computer) and non-

ETCS trackside. ETCS standards also provide a heterogeneous transition mechanism for trains

switching from ETCS system to a non-ETCS system, vice versa or between ETCS lines with

different application levels via System Level Transition protocol (see Annex [27]).

2.1.2 Heterogeneous Railway Signalling Systems

The modern communication-based signalling systems are increasingly replacing more traditional

and out-of-date signalling systems. Railway signalling modernisation processes on the national

level are extremely time consuming and costly while a level of railway service must be maintained.

The only practical solution is to modernise the network gradually and on a smaller scale, as

14

a result, creating heterogeneous railway signalling systems. The other type of heterogeneous

signalling systems are created by integrating urban and mainline signalling systems. In Figure

2.5 we visualise and in the following paragraphs describe a section of a real-world heterogeneous

signalling system deployed on the Crossrail network [28].

P1

B1 B2 B3
T1

WSSRBC

IXLXRIXLNR

SN94

SN112

SN92

SN99

XR018

Figure 2.5: ETCS Level 2 (with signals) and CBTC Interface on Crossrail (East Direction)

The Crossrail network signalling area, visualised in Figure 2.5, illustrates an interface between

ETCS Level 2 (with signals) and Communication-Based Train Control (CBTC)1 systems. Despite

the fact that both systems are functionally and architecturally very similar, their interface is not

standardised, and there, customised signalling solutions must be developed for a safe and on-the-

move rolling stock transition.

The interface area comprises two interlocking systems IXLNR and IXLXR which respectively

manage routes on the ETCS and CBTC signalling areas. For rolling stock transition, interlocking

systems jointly control a network section between signal SN92 and block marker XR018 to prevent

opposing trains arriving from the CBTC area. The IXLNR will not allow a train T1 to pass signal

SN112 until route from signal SN92 has been jointly reserved.

After receiving a proceed signal from SN112 train T1 will pass over the first CBTC balise

group B1 called level transition announcement balises, which informs ETCS on-board computer

to essentially instruct the CBTC on-board computer to prepare for controlling a train. The ETCS

on-board system will also ask the driver to acknowledge the transition procedure. The train

will send the first position report to CBTC trackside (WSS - Wayside System) upon passing

localisation balise group B2 but will not be driven by CBTC until it passes balise group B3, which

informs the ETCS on-board computer to handover train control to the CBTC on-board unit.
1Communication-Based Train Control is a signalling system predominantly used on urban rail lines. The system is architecturally

and functionally similar to ETCS Level 2-3 systems.

15

2.1.3 Generic Heterogeneous Railway Signalling System Model

Because of the large number of existing national and international signalling systems, the

number of possible heterogeneous signalling system configurations is enormous. Therefore, in

the following paragraphs we describe a generic heterogeneous railway signalling model which

would capture the fundamental concepts of heterogeneous signalling systems and could then be

instantiated to capture a specific heterogeneous signalling configuration.

RS(S, x′, v′) RS′(S, x′, v′)

CCn(S) CCn(S) CCn(S) CCn(S)

IXn(S) IXn(S)

FEn(S) FEt(S) FEt(S) FEn(S)

Interlocking Level

Rolling Stock Level

Communication Centre Level

Figure 2.6: A visual representation of the generic heterogeneous railway signalling model

A heterogeneous railway signalling system is a composite system which is created by

interfacing two or more distinct homogeneous signalling systems. The fundamental property of

a heterogeneous signalling system is that the same signalling principles (or their implementation)

are not uniformly applied for the entire railway network. In spite of that, the objective of

the heterogeneous signalling system remains to ensure a safe rolling stock operation within

homogeneous parts of the network and guaranteeing safe and efficient transitions between non-

homogeneous parts of the network.

The generic heterogeneous railway signalling model can be considered as a quintuple which

consists of the following sets of elements: field elements, interlocking systems, communication

centres, rolling stock and protocols (see Figure 2.6). By nature the model we present is a hybrid

model, meaning that, some subsystems of the model can exhibit both discrete and continuous

aspects of the system. In the following paragraphs we briefly describe each subsystem of the

generic heterogeneous signalling model.

16

Rolling Stock An element of the rolling stock set is a single train characterised by differential

equations and a transition system. A train has the functionality to communicate with other

signalling subsystems and operate in different signalling areas of a heterogeneous signalling

system.

Communication Centre The abstract model generalises methods which are used by signalling

systems to communicate a movement authority to trains as a communication centre. A communi-

cation centre interacts with all major signalling subsystems which include communication centres,

rolling stock and interlocking systems.

Interlocking Systems An interlocking is a signalling subsystem responsible for preventing

conflicting rolling stock movements and controlling a subset of field elements. An interlocking

has the functionality to communicate with adjacent interlocking systems, communication centres

and field elements.

Field Elements A subset of railway infrastructure, which directs, detects and protects rolling

stock can be broadly categorised as field elements. Field elements can include equipment such as

train detection sensors, rail switches, semaphores, level crossings and others.

Protocols An integral part of the heterogeneous signalling model are protocols which define

communications between different subsystems of the heterogeneous signalling system. The model

we present can generally have two types of protocols: homogeneous signalling area protocols and

signalling handover protocols.

2.1.4 Railway-Based Engineering Methodology Requirements

In this section, we elicit the main formal engineering methodology requirements with respect to

the listed challenges in Section 1.1.1 and specifications of the generic heterogeneous signalling

model in the previous section.

Requirement1 The formal engineering methodology should support system-level modelling as

the safety of heterogeneous signalling systems relies on the correctness of subsystems and their

interaction.

17

Requirement2 The methodology should provide a generic formal signalling model and support

a model extension with specific signalling solutions.

Requirement3 The formal engineering methodology should support the specification and verifi-

cation of system-level properties.

Requirement4 The methodology and generic formal signalling model should make it possible to

capture and reason about continuous, discrete and stochastic aspects of a system.

2.2 Cyber-Physical System Modelling

System modelling is a powerful tool and universal practice in the world of engineering used to

analyse various system aspects. System models represent a more abstract, often mathematical

interpretation of the same system and makes it possible to analyse a system without constructing

it. This enables engineers to detect system’s problems earlier and without implementing and

exhaustively testing an actual system. Of course, this comes at a cost. Firstly, there is the monetary

cost of having human resources and expertise in the system modelling. Secondly, investing time in

the modelling phase might result in a product launch delay. The latter cost is sometimes rejected,

as the modelling and model verification phase can reduce system testing effort.

A model-based design approach is particularly crucial for developing complex cyber-physical

systems. Their heterogeneous nature means that different engineering disciplines are involved

in the design process and models can be used to address challenges of the interdisciplinary

communication [29]. Over the decades, three main model-based cyber-physical system design

approaches have been used: simulation-based, programming-based and formal methods.

Simulation-based design The simulation-based design of cyber-physical systems provides an

economical method to prototype and analyse systems. Contrary to the manual testing of complex

cyber-physical systems, a system validation via a simulation can produce a wider verification

coverage at a lower cost and flexibility to validate different operational scenarios. Khaitan and

McCalley [30] provide an excellent survey of design techniques and application of cyber-physical

systems, while in the following paragraphs we overview the most commonly used tool-based

approaches that support system simulation.

18

Simulink [31] is one of the most popular block-based tool suites used in modelling cyber-

physical systems, or more specifically, in co-modelling digital and physical system characteristics.

A Simulink model can be constructed by interconnecting discrete and continuous blocks (actors)

from available pre-defined or custom-made libraries. To verify a model, Simulink provides a

design verifier (SDV) to perform formal testing, which is limited to discrete Simulink models,

and model verification blocks to monitor continuous aspects of linear systems during simulation.

SCICOS (the SCILAB package) [32] is another popular block-based simulation tool-set which

also allows generating executable C code of discrete-time system models.

Another class of simulation-based design methods can be categorised as equation-based. The

block-based simulation methods require a user to manually transform a physical system model,

typically defined by differential equations, to a block diagram. This can be an error-prone process

[33]. The equation-based approaches makes it possible to define systems in their innate structure

of differential equations. Simulation tools can then automatically provide the simulation code.

OpenModelica [33, 34] and 20-sim [35] are two of the most popular tool suites for the equation-

based simulation of cyber-physical systems.

Often, a single simulation suite does not provide all the functionality needed to model a

system. Particularly, considering the heterogeneous nature of cyber-physical systems, integrating

multiple simulation tools can be necessary. The co-simulation approach provides an algorithmic

mechanism to transfer intermediate simulation results between different tools responsible for

simulating separate sub-models. Functional Mock-up Interface (FMI) [36] is an open source

and a tool-independent co-simulation framework which is widely used in academia and in the

industry. In a FMI-based co-simulation environment, a master algorithm orchestrates discrete

data exchanges between different sub-models, slaves, which are simulated with their innate

solvers. In some researches, authors have attempted to utilise different cyber-physical system

design approaches with co-simulation standards. For example, Savicks [37] and Larsen et al. [37]

developed methodologies for integrating formal and simulation-based design approaches of cyber-

physical systems. These methodologies make it possible to validate systems via simulation as well

as verify system properties formally by using theorem proving or model checking techniques.

In summary, the simulation-based design of cyber-physical systems enables engineers to

efficiently design, analyse and modify systems in their early development phase. The simulation

tools provide engineers graphical notations which simplify virtual prototyping and make models

19

more readable. Still, in spite of these advantages, system verification only via simulation is not

sufficient as critical scenarios might be missed due to the low coverage [30]. A promising direction

to improving verification quality is integrating simulation-based approaches with methods based

on formal verification.

Programming-based design Software plays a crucial role in the majority of cyber-physical

applications. Programming cyber-physical systems is a particularly challenging task which

requires to consider system concurrency, timeliness and physical system characteristics. In

the paper by Lee [11] the author critically discusses limitations and wide use of imperative

programming languages (e.g. the C language) to developing cyber-physical systems.

Imperative programming languages have been successfully used to capture cyber aspects of

cyber-physical systems. However, once programmed cyber-physical systems are deployed, they

interact with a physical world and real-time processes [38]. And still, the majority of imperative

programming languages have no mechanism to express or control timing behaviour. The temporal

constructs have been introduced in synchronous reactive programming languages [39, 40] where

the notion of time is viewed as the order of instantaneous events [41]. A time-triggered Giotto

[42] programming language provides a similar synchronous approach but with non-instantaneous

execution of events. The programming languages discussed have strong formal semantics and

have been combined with formal verification tools [43]. More widely known languages Ada

[44] and Java [45] have also been extended with real-time programming concepts and used on

industrial-level applications [46].

Papers by Hnat et al. [47] and Gummadi et al. [48] present a macroprogramming approach

to developing cyber-physical systems. Unlike a node-level programming (microprogramming)

concept where cyber-physical sub-systems are programmed individually, macroprogramming

approaches with MacroLAB and Kairos make it possible to write a single program, which is

then automatically decomposed into microprograms. The macroprogramming approach makes

it possible to tackle the issue of scalability and interoperability to developing cyber-physical

systems, but lacks foundations to address the physical nature of these systems. Overall, the

programming-based methods provide an intuitive development approach to software engineers.

However, the use of languages with temporal features in the industry is still scarce and software-

based system validation still relies heavily on implementation testing.

20

Formal methods Formal methods are mathematical model-driven methods, which provide a

systematic approach for developing complex systems. They offer an approach to specify systems

precisely via a mathematically defined syntax and semantics as well as support a formal system

validation by using semi-automatic or automatic techniques.

Over the years various classical formal languages and tools have been used or extended to

specify and verify cyber-physical systems. Unified Modelling Language (UML) [49] has been one

of the most commonly used modelling languages for software development. Given the importance

of timeliness properties for many cyber-physical systems UML was extended [50] with a real-

time system modelling profile and used to model industry-level systems [51]. The semantics of

Statecharts, a popular formalism for modelling reactive systems, have been extended with the

real-time bound notion [52]. Formalisms, like Timed Statecharts, can provide a more hierarchical

complex system view, which is particularly useful for capturing multi-layered cyber-physical

systems [29]. However, languages like UML-RT or Timed Statecharts are more applicable for

a formal system documentation and not their formal verification.

The integration of different formalisms has been another approach to capturing different cyber-

physical system characteristics and take advantage of different development methods. Enriching

block-based system development methods with a back-end formal verification has been a popular

approach to improve the quality of model verification (e.g [53, 54]). Similarly, an integration of

different formal specification languages has been attempted to enable the capturing of different

systems characteristics formally. In work by Hoenicke et al. [55], the authors semantically

integrated three well-known methods which were successfully used to model certain system

aspects but not suited to cover all cyber-physical system aspects.

The popular state-based formal specification languages such as the B-method [19], Event-

B [56] and Vienna Development Method (VDM) [57] have been successfully used for a formal

safety-critical system development [18]. However, they have not been originally developed to

capture hybrid or real-time system aspects and, therefore their application to developing cyber-

physical systems has been limited. In the last few decades, there have been several works

towards extending these languages. The Event-B method has been extended with time constraint

[58] and hybrid modelling patterns [59–61]. The ADVANCE project [62] developed a formal

cyber-physical systems modelling and verification methodology based on Event-B and UML

methods. The methodology was used to develop two industrially led case studies in energy and

21

transportation domains. The VDM modelling framework has been extended with the notion

of time [63] and integrated into the cyber-physical system development framework based on

the model exchange and co-simulation [37]. Several industrially driven case studies have been

conducted with the framework where VDM-RT was used to model discrete elements of the

cyber-physical system [64]. The other well-known state-based formal specifications languages

TLA+ [65] and Z [66] have been extended with real-time and hybrid modelling concepts.

In particular, due to an automated verification, formal verification approaches based on the

model checking have been used to demonstrate system correctness. UPPAAL [67] is a popular

tool-set for verifying hybrid models with linear dynamics which has been used to verify various

cyber-physical systems [68, 69]. The model checker SPIN, which has been widely used to verify

concurrent systems, was extended (RT-SPIN [70]) to capture real-time system aspects and used to

verify cyber-physical energy systems [71]. The survey by Khaitan et al. [30] provides an extensive

list of works where model checkers were used to verify cyber-physical systems.

Formal methods are increasingly gaining recognition in the domain of cyber-physical sys-

tems. The two main trends we have identified are: a modification of formal specifica-

tion semantics to capture temporal and hybrid system aspects and integration with existing

simulation/programming-based approaches. Overall, in comparison to alternatives, formal

methods can provide a much higher system quality of assurance, but problems such as formal

verification scalability must be addressed.

2.2.1 Hybrid System Modelling and Verification

One of the key aspects of the cyber-physical systems is a tight integration of digital and

physical system aspects. In particular, for cyber-physical transportation systems, physical system

characteristics play a crucial role in guaranteeing the safety of the system. Over the years, many

hybrid model structures have been proposed for engineering safe cyber-physical and embedded

systems [72] but generally a hybrid automaton structure [73] has been viewed as the most popular

choice. Hybrid automata can be viewed as a finite state machine extension with real-valued states

and can be mathematically defined in the following way:

22

Hybrid Automata H = (X,G, I, In,F , J)

Variables X = {x1,x2, . . . ,xn} where xn ∈ R

Control Graph directed graph G = (V ,E) where V - vertices and E - edges

Initial Conditions i ∈ I is a predicate which holds in v ∈ V

Invariant Conditions i ∈ In is a predicate which holds in v ∈ V

Flow Conditions f ∈ F is a predicate which holds in v ∈ V

Jump Conditions j ∈ J is a predicate which holds in e ∈ E

In Figure 2.7 we provide a hybrid system example that is modelled as a hybrid automaton. The

hybrid system has two modes - Mode1 and Mode2 - with differential equations as flow conditions,

which update a state variable x. Initially, the hybrid system is in Mode1, which decreases a

state variable x according to the flow condition x′ = −0.5x until the jump condition x < 19 or

node invariant x ≤ 18 is satisfied. Similarly, a state variable x will evolve according to the flow

condition x′ = x in Mode2 but return to Mode1 once x rises above 21.

Mode1

x′ = −0.5x

x ≥ 18

Mode2

x′ = x

x ≤ 22

x = 20
x > 21

x < 19

Figure 2.7: A two-mode Hybrid Automata example model

A formal verification of hybrid systems has been a major challenge and an active research area.

The challenges of formally verifying hybrid systems arise mainly due to real-valued state variables

and systems with non-linear dynamics [22, 23]. Even under severe system dynamic restrictions,

an algorithmic verification of hybrid systems (with a single exception of classes of linear hybrid

systems [74, 75]) have been very limited and undecidable. Over the years, traditional algorithmic

approaches based on computing an exact state-space of hybrid systems have been replaced by

computing approximate state-spaces. The so-called lazy representation approach makes it possible

to significantly increase the number of continuous state variables an algorithmic verification tools

like SpaceEx and Checkmate [76, 77] could handle.

23

The approximation approach has also been extended to the verification of hybrid systems

with non-linear dynamics. For instance, the hybridisation method [78] partitions a non-linear

system and then approximates its local regions with a simpler dynamical form. The HSolver [79]

formal verification tool supports a formal safety verification of non-linear hybrid systems. Other

formal verification tools for linear and non-linear are discussed extensively in a survey by Carloni

et al. [80]. In spite of significant advances in the algorithmic verification of hybrid systems

important challenges like the precision of approximations and capturing dynamical systems with

uncertainties remain to be addressed [81].

An alternative approach to verifying hybrid systems by exploring their state-space with model

checkers is mathematically proving them. The logic-based approaches, in particular, based on the

first-order logic have been widely and successfully applied to proving discrete system properties.

However, verifying hybrid systems requires reasoning about its real-valued state transitions over a

time period which is not inherently supported by first-order logic. The logics with modal operators

such as dynamic logic [82] make it possible to refer to reachable states of a system α with modal

operators [α] and 〈α〉. Therefore, few modal logics [83, 84] have been generalised to allow the

system α to be a hybrid system.

In general, deductive verification methods are not limited by the state-space and combined

with computer algebra systems can deal with non-linear dynamics. In spite of that, an automated

deductive verification is still a major challenge [85] and for an industrial application an interactive

proof effort should be dramatically reduced. Nonetheless, there have been several researches,

which developed deductive verification methods for hybrid systems. For example, in a seminal

work [83] Platzer developed a formalism and logic for reasoning about hybrid systems which uses

a deductive verification and can be implemented in the KeYmaera X verification tool [86]. The

state-based formal specification languages, which have been extended to capture hybrid system

aspects [59], also support a deductive hybrid model verification.

2.2.2 Formal Specification Languages

Over the years, numerous formal specifications languages have been developed, often particular

methods being better suited for specific problems. To avoid an increased modelling time and

project costs, or even unsatisfactory results, selecting an appropriate formal method for a given

project becomes crucial.

24

Different classes of formal methods are based on different modelling paradigms that are

better suited to emphasise specific system characteristics [87]. The history-based specification

languages such as a linear temporal logic [88] aim to model a system as a set of of all behaviours

over a period of time. The intrinsic notion of time in these models has been used widely,

adapted for modelling reactive real-time systems. The state-based formal methods such as

Event-B [56], VDM [57] or Alloy [89] capture a state of the system at a single moment via

state-mapping functions that define a relationship between an old and a new state. The stepwise

model development, expressivity and compositional reasoning are the central features of these

languages. Transition-based models capture all transitions a system can potentially take via

transition triggering events. The Statecharts [90] diagrammatic language is a popular formalism,

particularly due to its comprehensible specification format and a state decomposition option.

In our opinion, formally specifying and verifying safety properties of cyber-physical systems

can be best addressed with state-based methods. The state-based methods are built upon

comprehensible, yet expressive mathematical notions, which can be used to capture heterogeneity

and different cyber-physical system aspect cohesion. The state-based models can be constrained

by safety invariants, which can be used to express and mathematically prove system-level safety-

properties. Formal methods that are based upon a state-based modelling paradigm are not new

to various industry domains and have been successfully used to develop complex industrial-level

systems [18].

In the following sections, we overview three formal methods and discuss their suitability for

a formal engineering methodology of heterogeneous signalling systems. The methods we review

support a form of stepwise development or system decomposition which is particularly useful

to developing complex cyber-physical systems. To deal with the state-space explosion problem

of cyber-physical systems, methods under review are primarily based on a model verification

by mathematical proof. Good tool support is crucial for a formal modelling and verification,

therefore, selected methods have an established and extensible tool-base.

2.2.3 Event-B Method

The Event-B mathematical language used in the system development and analysis is an evolution

of the classical B method [19] and Action Systems [91]. The formal specification language offers

a fairly high-level mathematical language based on a first-order logic and Zermelo-Fraenkel set

25

theory as well as an economical yet expressive modelling notation. The formalism belongs to a

family of state-based modelling languages where a state of a discrete system is simply a collection

of variables and constants whereas the transition is a guarded variable transformation.

machine M
sees Context
variables v

invariant I(c, s, v)
initialisation R(c, s, v′)
events

E1 = any vl where g(c, s, vl, v) then S(c, s, vl, v, v′) end
. . .

end

Figure 2.8: The structure of the Event-B model

A cornerstone of the Event-B method is the step-wise development that facilitates a gradual

design of a system implementation through a number of correctness preserving refinement steps.

The model development starts with the creation of a very abstract specification and the model is

completed when all requirements and specifications are covered. The Event-B model is made of

two key components - machines and contexts which respectively describe dynamic and static parts

of the system (see Figure 2.8). The context contains modeller declared constants and associated

axioms which can be made visible in machines. The dynamic part of the model contains variables

which are constrained by invariants and initialised by an action. The state variables are then

transformed by actions which are part of events and the modeller may use predicate guards to

denote when an event is triggered. The Event-B method is a proof-driven specification language

where model correctness is demonstrated by generating and discharging proof obligations -

theorems in the first-order logic. Table 2.1 shows the important proof obligations of the Event-B

language. The model is considered to be correct when all proof obligations are discharged.

Rodin [92] is an open source Eclipse-based integrated development environment (IDE) for

Event-B model development. Rodin is a core set of plug-ins for project management, formal

development, syntactic analysis, proof assistance and proof-based verification. Moreover, it

also allows extension points for supporting a range of additional plugins to provide different

functionalities and features related to model checking, animation, code generation, additional

proof capabilities using SMTs and external theorem provers (i.e., Why3, Isabelle), UML-B,

Theory plug-ins, composition and decomposition, refactoring framework, and model editors.

26

Theorems A(s, c) =⇒ Tc(s, c)

Invariant Preservation A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) =⇒ I(s, c, v′)

Event Feasibility A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) =⇒ ∃v′ ·BA(s, c, v, x, v′)

Variant Progress A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) ∧BA(s, c, v, x, v′) =⇒ V(s, c, v′) < V(s, c, v)

Table 2.1: Event-B proof obligations: A (axioms, T - theorems, I - invariants, G - guards, BA - before/after

predicates, V - variants)

Even though the Event-B mathematical language is expressive enough for a lot of useful

mathematical concepts, it is still desirable to allow users to extend the language. For that reason,

a theory extension process has been developed and realised as a Rodin platform plug-in. With the

theory extension approach, new theories which include datatypes, operators and proof rules can

be defined and proved to be sound through generated proof obligations.

The paper by Banach et al. [60] has proposed an extension to Event-B - Hybrid Event-B -

to allow modelling continuous system behaviours. The hybrid extension formalises semantics

and syntax for accommodating continuous aspects of hybrid systems. Hybrid Event-B makes

it possible to define pliant variables, which are updated via pliant events and a read-only clock.

Their proposed approach also introduces additional proof obligations. In a different approach [59]

Dupont et al. proposed to support hybrid system modelling by utilising the Event-B language

extension tool - Theory plug-in [93]. The paper makes use of the previously developed theory of

dense reals [94] and further extends it to support the theory of continuous functions and ordinary

differential equation. Their work also provides a generic hybrid model with template discrete and

continuous events to simplify modelling of hybrid systems. The advantage of this approach is its

practicality, as the method is based on the already existing Event-B and Rodin infrastructure and

it does not require further semantical or tooling extensions.

2.2.4 Vienna Development Method

Vienna Development Method (VDM) is one of the most established state-based formal methods,

that was originally developed at the IBM Vienna laboratory [57]. The computer-based systems

are modelled using the VDM-SL (Specification Language) formal specification language, which

throughout the years has been extended to support a modelling of object-oriented and concurrent

27

systems [95] and real-time systems [63].

The modelling principle of abstraction, which proposes to suppress less relevant system

details is at the core of the VDM modelling approach. Theoretically modelling in VDM starts

with the specification of an abstract system model, then through refinement methods based on

data reitification and operation decomposition an implementable model is derived. However,

the refinement mechanism has not been implemented in tools which facilitate VDM modelling.

Structurally, models described in VDM-SL are made of declarations of abstract data types and

operations over data which jointly make up a module.

The mission of the VDM method is to provide a rigorous system development, meaning that

the properties of the model must be formally proved to ensure a correct-by-construction system

implementation. The available VDM tools, such as VDMTools, Overture and others, provide a

mechanism for a model validation and verification with static analysis and proof methods.

Throughout few large research projects, DESTECS [96] and INTO-CPS [97], the Overture

(with VDM) tool has been integrated into a cyber-physical system development framework that

relies on model-exchange and co-simulation paradigms. In particular, the co-simulation mech-

anism enabled VDM to formally analyse physical system aspects by co-modelling continuous

systems aspects with external tools, such as OpenModelica [34] and 20-sim [35].

2.2.5 Differential Dynamic Logic

Differential Dynamic Logic (dL) is a rigorous formal approach for modelling and deductive

verification of hybrid systems [83]. The approach proposes to address hybrid system’s verification

complexity and scalability challenges by utilising a verification approach, which is based on a

compositional deductive system verification.

First of all, in dL a hybrid system is described textually, as a hybrid program α, with

its state-space constrained by a predicate [α]φ. In contrary of hybrid systems described as a

hybrid automaton, dL approach with hybrid programs makes it possible to decompose a system

and verify properties about a hybrid system [α]φ by conjunctively proving subproperties of its

subsystems [α1]φ1 ∧ [α2]φ2. In Figure 2.9 we provide a list of available operators in hybrid

programs and an example model of the system depicted in Figure 2.7.

28

x′ = f(x) (continuous evolution)

x := f(x) (discrete jump)

if (X) α else β (conditional execution)

α;β (seq. composition)

α∪β (nondet. choice)

α∗ (nondet. repetition)

x := 10; q = Mode1;

(

∪ (?q = Mode1; x′ = 0.5x & x ≥ 10)

∪ (?q = Mode1 ∧ x > 20; q := Mode2)

∪ (?q = Mode2; x′ = −x & x ≤ 21)

∪ (?q = Mode2 ∧ x < 12; q := Mode1)

)

Figure 2.9: The syntax of hybrid programs and an example model

Secondly, the fundamental idea of dL is to verify systems by mathematically proving them,

instead of using methods, which are based on a state exploration. The dL is a tool-supported

method with a theorem prover KeYmaera [86] that makes it possible to describe hybrid programs

and prove them with dL calculus. The dL approach has already been applied for modelling

and verification of railway [98], aviation [99] and automotive [100] system examples. Over the

years, the logical dL foundations have been further extended to address stochastic [101] and

distributive [102] aspects of hybrid systems.

2.3 Formal Methods Evaluation

The methods we reviewed have significant individual strengths and strong cases for using them

for a formal cyber-physical system development. The evaluation is based upon our personal as

well as external analysis [59, 103] of these formalisms.

Differential Dynamic Logic (dL) and KeyMaera provide a strong framework for reasoning

about the hybrid aspects of cyber-physical systems. The built-in logic requires minimal effort

to define continuous system dynamics or no effort in specifying proof tactics, as proof rules are

already part of the tool. However, we find the scalability of the framework to be the main obstacle

for specifying larger systems. The Vienna Development Method is an integrated and multifaceted

method, very suitable for formal cyber-physical development. The maturity of the approach and

effort of integrating VDM with co-simulation-based frameworks has made the approach more

deployable, as it can be used with already popular development processes. The extension of the

29

VDM-SL specification language, VDM-RT, improved modelling of cyber-physical systems by

making it possible to specify crucially important real-time system features. The tool is open-

source and based on the Eclipse IDE that allows it to be easily extensible. However, there

are some technical tool-related issues that are further discussed in (§3.8.3, [103]). One of the

main issues is that a stepwise system development has not been implemented practically (Event-

B supports) in the Overture tool. This can significantly increase modelling and, particularly,

deductive verification support, which has been identified as inadequate in comparison to Event-

B [103].

Overall, our analysis indicates that Event-B [56] has some important strengths and advantages

that can be used as a base for the proposed formal engineering methodology. Firstly, it has

been successfully used for a formal development of various distributed protocols [104–106] and

hybrid systems [107, 108]. The Event-B method provides an expressive modelling language (and

extensible [109]), flexible (and practical) refinement mechanism and is also proof driven, meaning

model correctness is demonstrated by generating and discharging proof obligations with many

available automated theorem provers [110, 111]. The method is supported by tools such as ProB

[112] which enable animating and model checking a model and co-simulation extension [113].

However, the Event-B method does not have an adequate probabilistic reasoning support, which

is essential for addressing stochastic aspects of heterogeneous railway systems.

30

Chapter 3

Development Methodology

This chapter proposes a formal engineering methodology for the top-down development of

heterogeneous cyber-physical signalling systems. First of all, in the chapter, we describe the

overall structure of the proposed methodology, which includes two formal development phases as

well as modelling and verification tools of the methodology. In the second part of the chapter, we

provide more detail on the process of formally developing heterogeneous signalling systems with

the proposed methodology.

3.1 Methodology Overview

The proposed multifaceted methodology is a two-stage formal development methodology with the

Event-B formal specification language at its core (illustrated in Figure 3.1). The main outcome

of the methodology is a formal Event-B model of a heterogeneous signalling system, which is

developed by refining a provided generic communication-based signalling Event-B model M

with particular signalling system specifications (defined in the first step of the methodology).

Safety system aspects are of the utmost importance and are ensured by mathematically proving

an instantiated model with respect to user-defined safety requirements.

31

Cyber System Aspects Physical System Aspects

Requirements and Specifications

Functional Pivot Event-B Model

Label Description Label Description

[FUNm]

[SAFn]

..
.

[ENVm]

[ENVn]

..
.

T t0 tn

M

m0

mn

C

c1 cmsgs.

cn cmsgs.

refines

extends
. . .

V

POs

Scenario Validation Model Verification

Automatic ProversPRISM ProB

Figure 3.1: Formal modelling and verification methodology of heterogeneous signalling systems

The proposed development methodology is built upon an established Event-B formal mod-

elling environment. The development of the functional Event-B model of a heterogeneous

signalling system is facilitated by the Rodin platform, which provides a graphical user interface

to develop models, automated proof obligation generation and verification tools as well as other

available plug-ins. One of the essential Rodin extensions is the Theory plug-in, which enables

extending the Event-B mathematical language with new mathematical theories. The developed

32

generic communication-based hybrid signalling Event-B model depends on continuous system

modelling theories and patterns introduced and implemented using the Theory plug-in by Dupont

et al. [59]. As previously discussed, one of our main contributions was extending hybrid modelling

theories [59] with railway specific aspects T using the Theory plug-in. The communication

modelling patterns were developed and implemented outside of the Theory plug-in.

The second group of Rodin extensions our methodology relies upon are concerned with the

verification and validation of a model. To support a deductive model verification, Rodin provides

extensions to a number of automated provers (e.g. [111]) that attempt to discharge generated

proof obligations automatically. Models developed in the Rodin platform can also be validated

and animated using the ProB toolset, which can be particularly useful in early modelling stages

where it could be too onerous to deductively verify a model. Furthermore, deductively verifying

properties like deadlock-freedom or liveness in Event-B is challenging. Therefore, in some

instances, ProB can provide a more pragmatic model checking based validation solution for

verifying properties that are not concerned with safety. The current Rodin version does not

provide a practical method for reasoning about stochastic system properties. In order to meet

the requirement for our methodology, we utilised a well-known probabilistic model checker

PRISM [114] and prove probabilistic properties outside of the Rodin environment.

By using the Event-B method, our methodology aims to demonstrate that the heterogeneous

signalling system satisfies the formulated safety requirements.

3.2 Development Stages

In the previous section, we examined the overall structure of the proposed methodology which is

visualised in Figure 3.1. In the following sections, we provide more detail on the methodological

steps of system specification and functional Event-B model development.

3.2.1 System Specifications and Requirements

The generally accepted approach to any formal system development is starting the development

process by informally describing system specifications and requirements. Therefore, the

first development step in our methodology is defining system specifications and requirements

concerned with the specific heterogeneous signalling system configuration (generic heterogeneous

signalling system requirements are provided in Chapter 5).

33

event label =̂ [specificationid]

ANY

parameters

WHEN

guards

THEN

actions

INVARIANTS

invariant label invariant [requirementid]

Figure 3.2: An example of an annotated Event-B model (event and invariant) in the Rodin tool

At this formal development stage, the proposed methodology requires labelling system

specifications and requirements. By labelling requirements and specifications we intend to

ensure traceability between informal and formal methodology artefacts. The traceability

aspect guarantees the completeness of the model, meaning that all informal specifications and

requirements have been captured by the formal model. On the formal Event-B artefact side,

the methodology makes it necessary to annotate events and invariants of the Event-B model

with labelled references to a specific informal artefact (Figure 3.2). The Rodin platform tools

like ProR [115] or others [116, 117] exist for ensuring traceability between formal and informal

artefacts but both are no longer supported or not realised as the Rodin tool extension.

Furthermore, the heterogeneous railway signalling model we consider is a hybrid model,

meaning that system dynamics and physical aspects (e.g. rolling stock properties) must be defined.

The generic theory of train dynamics we provide in a model theory T extension is parametrised

and can be instantiated with specific constants (e.g. train mass, rail resistance).

3.2.2 Functional Event-B Model

The formal development of a heterogeneous signalling system Event-B model is the central

activity of the methodology. For the formal modelling, the methodology provides a generic

railway signalling system Event-B model, railway-related Event-B theories and Event-B patterns

for modelling protocols. In order to derive a heterogeneous signalling system Event-B model, a

developer is required to refine a provided generic Event-B railway model with specific signalling

system configurations by using the Event-B refinement mechanism (depicted in Figure 3.3).

34

T
M

C

Mh0 Ch0

Mhn Chn

heterogeneous signalling model..
.

refines

mS0

mS1

mS2

mHS0

mHS1

cS0

cS1

cS2

cHS0 tTR

cms0 cmsn

generic hybrid model

hybrid train and signalling model

t0 tn

extends

. . .

. . .

Figure 3.3: The main activity of the proposed methodology is refining a generic signalling Event-B model

M with heterogeneous signalling system modelling machine M and context C models

The generic railway signalling system Event-B model (hybrid train and signalling model in

Figure 3.3) was built using hybrid modelling patterns introduced by Dupont et al. [59]. Their

method introduced an Ordinary Differential Equation (and others) Event-B theory which makes it

possible to formally describe physical system properties in the Event-B model. Their method also

provides Event-B events for modelling (continuous) plant and (discrete) controller behaviours,

and a generic hybrid system Event-B model (generic hybrid model in Figure 3.3).

The generic railway signalling model provided by our methodology includes a new Event-B

theory (T in Figure 3.3) which defines continuous rolling stock dynamics with a parametrised

first-order non-linear differential equation. Furthermore, the railway model also provides the

Event-B context model (C in Figure 3.3) with a pre-defined train stopping distance function,

constants related to the engine traction effort and parameters for the equation of train dynamics

(see Listing 3.1). The context model of the rolling stock can be further extended by specifying

new parameters of the train physical model and updating train speed controller modes defined by

axiom axm5 (see Listing 3.1).

35

Listing 3.1: An Event-B context model of the hybrid train speed controller

CONTEXT Train
EXTENDS ControlledSystemCtx
CONSTANTS

free move, restricted move
StopDist
a, b, c
fmin, fmax, fdec min

AXIOMS
axm1 a, b, c ∈ R+

axm2 fmin, fmax, fdec min ∈ R

axm5 partition(STATES, {free move}, {restricted move})
...
END

The proposed development methodology enables extending a generic signalling system Event-

B context model CommunicationCtx (see Listing 3.2) which introduces signalling sub-systems

and field elements (e.g. communication centres, interlocking boxes, points) with signalling

specifications defined in the first phase of the methodology. The system context model can be

extended by including new axioms (e.g. constraining the number of trains) or sets. The process of

extending the signalling context model with heterogeneous system aspects is visualised in Figure

3.4 as the first step.

Listing 3.2: An Event-B context model of the generic signalling system

CONTEXT CommunicationCtx
SETS

TRN, CC, IXL, PNT, PSTATUS
CONSTANTS

FREE, RESERVED
AXIOMS

axm1..4 : finite(TRN, CC, IXL, PNT)
axm5 : partition(PSTATUS, {FREE}, {RESERVED})

36

To model an inter-subsystem communication of heterogeneous railway signalling systems, our

methodology provides Event-B modelling patterns for a systematic modelling of protocols with

Event-B. For example, patterns make it possible to introduce signalling protocol messages and

capture message sending/receiving events in the Event-B model (Steps 2 and 3 in Figure 3.4).

Communication modelling patterns are templates for defining Event-B variables, machine events

and context models. In the actual Event-B model templates are instantiated, or in other words,

replaced with variables, events and context models, which represent the actual system and adhere

to the rules and structure of the template.

Event-B Protocol Model Signalling System Communication Protocol

Mh0

Mh1

Mn

Ch0

cmsgs.

refines

extends
OBJ1 OBJ2

...
...

msgn

msgm

msg0

msgz

1) define the heterogeneous signalling system

2) define msgn in a context model

3) model sending/receiving msgn as machine events

Figure 3.4: The process of applying communication modelling patterns

The standard approach to modelling systems in Event-B is to start with an abstract system

model and incrementally add more detail through a new Event-B machine and context files with

refined events, new variables and invariants. The proposed development process follows a similar

approach, where a provided abstract railway signalling model M shall be refined using one

of the template events and communication modelling patterns. The refinement process for the

communication part of the model follows a backward unfolding style, where the last protocol

message exchanges are introduced into the model first. At each refinement step, a modeller is

required to provide invariants about the system, which together with other proof conditions must

37

be proved. The methodology primarily relies on deductive property verification using Rodin

built-in and external automated provers. In the early model refinement phases, a deductive model

verification might be too onerous, and so model checkers ProB and PRISM can provide a level of

model correctness assurance.

3.3 Methodology Summary

In Section 2.1.4 we elicited the essential requirements for the formal development methodology

of heterogeneous railway signalling systems. Two of the key requirements (Requirement1

and Requirement3) relate to the cyber-physical complexity of heterogeneous railway signalling

systems, meaning that the system safety of these systems heavily depends on correct interactions

between interlocking, communication centres and rolling stock. Therefore, these requirements

necessitate the modelling of a whole system and reasoning about the system-level properties. The

methodology proposes to addresses these requirements by building a formal Event-B model of a

heterogeneous railway signalling system. Our evaluation indicated that the Event-B specification

language can be used for system-level modelling. While, compared to simulation-based methods,

Event-B requires the developer to have a mathematical background, systems formally developed

using Event-B can provide a higher safety assurance, which is the main concern of this research.

The multi-aspect reasoning requirement Requirement4 relates to the heterogeneous nature of

cyber-physical railway signalling systems. The proposed methodology addresses this issue by

extending Event-B language with hybrid modelling theories, which makes it possible to reason

about continuous system aspects. For the stochastic property verification, our approach utilises

the PRISM model checker. In Chapters 4 and 5, we provide technical contributions on modelling

communication and hybrid heterogeneous signalling systems aspects.

38

Chapter 4

Communication Modelling Patterns

Distributed protocols are an essential and safety-critical element of heterogeneous railway

signalling systems. Therefore, it is necessary that a formal system-level railway signalling

model captures communication between different signalling sub-systems. In this chapter, we

describe the communication modelling patterns of distributed protocols in Event-B. This chapter

defines patterns for systematically introducing new messages into a model and modelling message

exchanges between different signalling sub-systems. These modelling patterns will enable us to

implement a generic heterogeneous railway signalling model (see Figure 2.6) and provide our

multifaceted development methodology with a systematic communication modelling method for

refining a generic signalling model. In this chapter, we provide general Event-B patterns, while

the following chapters will describe how these patterns can be used for modelling communication-

based and heterogeneous signalling systems.

4.1 Communication Modelling Patterns

The Event-B model is made of two key components: machines and contexts, which respectively

describe dynamic and static parts of the system. The dynamic part of the model contains

variables which are modified by machine events and invariants which constrain a model. The

context contains modeller declared constants and associated axioms which can be made visible in

machines. In the following sections, we describe generic Event-B modelling patterns for capturing

39

communication aspects of a distributed protocol. The patterns will provide a systematic method

for modelling distributed communication of heterogeneous signalling systems.

The communication modelling patterns consists of Event-B modelling patterns for defining

communicating actors of a system, introducing protocol messages into a model through context

models (and machine variables) and event patterns for modelling message exchanges. Following

our modelling patterns, a communication protocol (on the right in Figure 4.1) is modelled in

Event-B by first defining communicating objects (OBJ1, OBJ2) which, in the system, exchange

messages. Then, all different protocol messages are formally defined in individual Event-B

context models. In the last step message channels (msgn) and machine events modelling message

sending/receiving are introduced. In this chapter Event-B patterns are described using generic

types and sets (e.g. OBJ1, msgn). In the actual Event-B model of the protocol, these patterns

would be instantiated, meaning that, generic variables, types and events would be replaced with

variables, types and events, which represent an actual system and adhere to the structure of

communication modelling patterns.

Event-B Protocol Model Protocol

M

m0

mn

cab.

cmsgs.

refines

extends

system context
SET OBJ1, OBJ2
CONSTANTS

...

OBJ1 OBJ2

...
...

msgn

msgm

msg0

msgz

context msgn n
SET MSGn, MSGm
CONSTANTS
msgns, msgnd · · ·

...

machine 0
SEES
context msgn n
INVARIANTS
msgn ⊆ MSGn...
EVENTS
object initiating MSGn

...

Figure 4.1: The communication modelling patterns

40

4.1.1 System Context Pattern

The first group of contexts (system context) axiomatically defines all communicating objects

present in the model (Listing 4.1). For example, communicating objects in the heterogeneous

railway signalling systems are rolling stock, interlocking systems and communication centres

(Section 2.1.3). An object is often required to go through a number of protocol steps to achieve its

goal. Therefore, in addition to physical status (e.g. braking), some signalling objects can have a

communication mode or status. In the context pattern we define a carrier set OBJ and enumerated

set OBJ STATUS to denote an abstract communicating object and a set of its statuses.

Listing 4.1: A context pattern for defining communicating objects

CONTEXT
context abstract

SETS
OBJ, OBJ STATUS

CONSTANTS
STATUS1, STATUS2 . . . STATUSn

AXIOMS
partition(OBJ STATUS, {STATUS1}, . . . {STATUSn})

4.1.2 Message Modelling Patterns

The second context pattern is introduced to provide a general approach for introducing individual

protocol messages into a model (Listing 4.2). In order to define the context pattern we first define

a generic message type - MSG. In this context pattern, we introduce three constant functions for

capturing source, destination and (optionally) value of a message type.

Depending on the message type, the source of the message in the protocol can be any

of the objects defined in system context. Therefore, in our message pattern we abstract all

communicating objects to a general source - SRC. Similarly, for message destination constant

function form, we give a general destination set - DST. In a protocol a message can carry a value,

so the last generic set we define is VAL with associated constant function (msgv) necessary for

extracting value from the message. All constant message functions are surjective (�) functions

meaning they are total in a domain and range. Lastly, each message type context contains an

axiom, which states that there exists a suitable message between any source and destination with

any possible value.

41

Listing 4.2: A context pattern of defining a new message

CONTEXT
context message type

EXTENDS
context abstract

SETS
MSG

CONSTANTS
msgs, msgd, msgv

AXIOMS
msgs ∈ MSG� SRC
msgd ∈ MSG�DST
msgv ∈ MSG�VAL
∀s, d, v · s ∈ SRC∧ d ∈ DST∧ v ∈ VAL ⇒ ∃m ·msgs(m) = s∧msgd(m) = d∧msgv(m) = v

Once a new message type context has been introduced, a message can be used in a machine

model (Listing 4.3). The first step in introducing a new message into a machine is extending that

machine with a message associated context. The following step is creating a three-letter variable

msg (type inv1) to model the channel of that message. The message sending events will use

channel variables to add and remove elements from a msg set to model the action of sending or

receiving a message of type MSG. As messages are added and removed from the channel msg,

we require a second generic local variable of type inv2 to locally store what messages have been

sent.

Listing 4.3: A machine pattern for importing new messages and creating channels

MACHINE
M

SEES
context message type

INVARIANTS
inv1 msg ⊆ MSG
inv2 msgo ∈ OBJ→P(MSG)

42

4.1.3 Loop Modelling Pattern for Iterative Actions

In protocols, a communicating object is often required to send multiple messages or repeat some

processes numerous times. For such scenarios we created a two-event loop pattern, which would

generally be combined with message sending patterns to model burst message sending or objects’

iterative actions (Listings 4.4 and 4.5).

Listing 4.4: A pattern for modelling iterative object actions (loop body part)

object STATUS b =̂

ANY
ob

WHEN
grd1 pctn(ob) = STATUS
grd2..n select guards

THEN
act1 (send receive) message

The first event in this pattern is the loop body event object STATUS b, where b event

name indicates loop body type. The STATUS and object in the event name would be

modified to a corresponding communicating object and its loop starting status, for instance,

train REQUESTMA b. The generic event pattern has a single parameter communicating object

og and is enabled once the object’s status variables (grd1) becomes some STATUS, where

STATUS is an element of OBJ STATUS defined in context system context. The remaining event

guards (grd2..n) would be used to further constrain the event (e.g. select a specific message to

send/receive) while event action act1 executes an iterative step.

Listing 4.5: A pattern for modelling iterative object actions (loop completion part)

object STATUS c =̂

ANY
ob

WHEN
grd1 pctn(ob) = STATUS
grd2..n loop completed guard

THEN
act1 pctn(ob) := NEXT STATUS

43

Another event in this pattern is a loop completion event with c event name. As the name

suggests this event detects when the iterative process has been completed. The loop completed

guard would be typically predicated on locally saved message receipt variable msgo. The action

of this event simply updates objects’ status to the next value.

4.1.4 Message Sending/Receiving Event Patterns

We identified two message sending event patterns. The most widely encountered communication

situation is responding to a received message - a reply event type. We define a reply event pattern

object reply MSG, where the main principle of this event is to take a message from one channel

and create a response message in a different channel (Listing 4.6).

Listing 4.6: An event pattern for replying to a received message

object reply MSG =̂

ANY
ms1, ms2

WHEN
grd1 ms1 ∈ msg1
grd2 ms2 ∈ MSG2 \msg2
grd3 msg2d(ms2) = msg1s(ms1)

grd4 msg2s(ms2) = msg1d(ms1)

grd5 pctn(msg1s(ms1)) = STATUS
THEN

act1 msg2 := msg2 ∪ {ms2}
act2 msg1 := msg1 \ {ms1}
act3 msgo2(msg2s(ms2)) := msgo2(msg2s(ms2)) \ {ms2}

In this pattern, we use constant message functions defined in the context files to select the

source and destination of the new message. The reply event pattern has two event parameters

- messages ms1 (received message) and ms2 (reply message), where a message type must be

defined. The first guard (grd1) of this event states that a message ms1 must have been sent or, in

other words, is already an element of the channel msg1. Guards grd2..4 select an appropriate reply

message ms2 by using constant functions defined in the message contexts. They state that a reply

message destination is the source of the received message and that the source of the new message

is a destination of the received message. Guard grd5 will only allow sending a reply message if

the status of the source object is a specific status. Actions of this event create a new message by

44

adding it to the channel variable (act1), removing a received message (act2) and saving the sent

message’s receipt locally.

Listing 4.7: An event pattern for sending an initiating message

object initiating MSG =̂

ANY
ms1

WHEN
grd1 ms1 ∈ MSG1 \msg1
grd2 pctn(msg1s(ms1)) = STATUS
grd3 msg1d(ms1) ∈ ran(msg1d)
grd4..n select guards

THEN
act1 msg1 := msg1 ∪ {ms1}
act2 msgo1(msg1s(ms1)) := msgo1(msg1s(ms1)) \ {ms1}

Another type of message sending event we define is an initiating message sending as

formalised in Listing 4.7. The principle of this event is to create a new message once the status

variable of an object changes to the specific status. This event pattern only has one event parameter

ms1, denoting a new message which must not be already sent (grd1). The second event guard

states that the program counter (pctn) of the source message must be at some STATUS defined in

the abstract context. The actions of the event add a new message to the message channel msg1

and save the message receipt locally.

4.2 Chapter Summary

In this chapter, we introduced Event-B communication modelling patterns, which was a nec-

essary contribution towards our objective of the systematic modelling of communication-based

heterogeneous signalling systems. The developed modelling patterns provide a standardised

method for defining a protocol model, introducing new messages through context models and

modelling message exchanges in the Event-B machine models. In addition, we defined a loop

event modelling pattern which enables modelling an iterative process, such as sending multiple

messages to different communicating objects.

The communication modelling patterns we introduced in this chapter were generic and could

be applied for modelling any communication-based system. Nonetheless, in the following

45

chapter we will demonstrate how communication modelling patterns could be applied for

modelling communication-based railway signalling systems. In particular, we will present how

communication and hybrid modelling patterns allow one to model and reason about heterogeneous

railway signalling systems on a system-level.

46

Chapter 5

Hybrid Signalling Modelling

Cyber-physical systems, such as railway signalling systems, exhibit both discrete and continuous

behaviours, which are best captured by hybrid models. Hybrid models allow for the capturing of

complex systems more accurately and thus provide a higher degree of system safety assurance.

The safety of communication-based heterogeneous signalling systems heavily depends on the

correctness of the rolling stock on-board system (hybrid system), which computes and controls

the movement of the train. Therefore, it is important that our proposed development methodology

(and the generic signalling model) provides patterns for modelling and reasoning about hybrid

features of heterogeneous signalling systems.

The contributions of this chapter are Event-B modelling patterns for the formal development of

railway signalling systems with discrete and continuous (hybrid) dynamics (the hybrid signalling

model in Figure 5.1). The modelling patterns are then applied to defining a generic heterogeneous

hybrid railway signalling model. Before we describe a railway specific modelling patterns,

the chapter introduces the Event-B hybrid modelling theory [59] implemented by utilizing the

Theory plug-in [93] of the Rodin platform (the generic hybrid model in Figure 5.1), which

provides a formal foundation for defining hybrid signalling modelling patterns. Generic hybrid

modelling patterns and a model consisting of the Event-B language extension theories (t0..n),

which introduce the notion of continuous functions and ordinary differential equations, context

models (cS0..2) and abstract machine models (mS0..2) with generic events for modelling discrete

and continuous state-variable transitions. Furthermore, in order to formalise a hybrid railway

47

signalling model we informally define a generic communication-based signalling model with

a moving-block operation principle. The generalised communication-based signalling model

relies on a simplified railway communication protocol between three main signalling sub-systems.

Moreover, to facilitate hybrid railway signalling features of the model, we derive a rolling stock

continuous dynamics model based on Davis’ rolling stock resistance equation and a hybrid

automata model of the train speed controller.

The hybrid signalling Event-B model refines the generic hybrid model and implements a

generic communication-based signalling model. The generic hybrid signalling model includes

additional machine models, which capture the speed controller of rolling stock (mHS0) and

system-level railway signalling system (cHS1). The machine models are extended with context

models (cHS0, and cms0..n) and the generic train theory model (tTR), which respectively define

messages of the communication-based signalling system and rolling stock continuous dynamics.

T

M
C

mS0

mS1

mS2

mHS0

mHS1

cS0

cS1

cS2

cHS0 tTR

cms0 cmsn

generic hybrid model

hybrid signalling model

t0 tn

extends

. . .

. . .

Figure 5.1: Structure of the hybrid railway signalling Event-B model. This figure provides a more detailed

view of the functional pivot Event-B model (in Figure 3.1), which captures a generic hybrid railway

signalling system.

5.1 Hybrid System Modelling Patterns in Event-B

Even though the Event-B mathematical language is expressive enough for a lot of useful

mathematical concepts, it is still desirable to allow users to extend the language. For that reason a

theory extension process has been developed and realised as a Rodin platform plug-in [93]. With

48

the theory extension approach, new theories - which include data types, operators, and proof rules

- can be defined and their correctness proved by discharging generated proof obligations.

A theory of real numbers is of particular interest for reasoning about hybrid systems properties.

This work reuses the theory of dense reals. originally developed by Abrial and Butler [94] and

then extended by Dupont et al. [59], to support the theory of continuous functions and ordinary

differential equations. In this section, we overview the main modelling features of the [59]

framework for hybrid systems in Event-B. We first describe a theory for differential equations,

then expose a generic hybrid model as well as a methodology for deriving a specific controller.

To handle a hybrid system we need to employ both discrete and continuous concepts. If

discrete parts are, in essence, natively supported by Event-B, this not really the case for continuous

features. Listing 5.1 gives an excerpt of the theory defined and used throughout Event-B

development.

Listing 5.1: Differential equation theory excerpt

THEORY
TYPE PARAMETERS E, F
DATA TYPES

DE(F)
CONSTRUCTORS

ode(fun : P(R× F× F), initial : F, initialArg : R)

OPERATORS
solutionOf < predicate > (DR : P(R), η : DR → F, eq : DE(F))
Solvable < predicate > (DR : P(R), eq : DE(F))

DIRECT DEFINITION
∃x · x ∈ (DR → F) ∧ solutionOf(DR, x, eq)
...

END

In particular, it defines the following operator and expressions:

– ode(F, η0, t0) is an ordinary differential equation (ODE) η̇(t) = F(t, η(t)) with initial

condition η(t0) = η0.

– DE(S) a set of differential equations value in S (the continuous state space).

– solutionOf(D, η, eq), with η ∈ DR → S and eq ∈ DE(S), predicate indicating that η is a

solution of eq (on domain D).

49

• Solvable(D, eq), predicate indicating that there exists a solution to equation eq on domain

D.

The methodology for developing hybrid models in Event-B is based on a generic hybrid system

model which is visualised in the diagram presented in Figure 5.2. This model is then refined to

describe more specific systems. In the following paragraphs, we provides the features of this

model, whose detailed description is given in [59].

Ctrl Plant

sense

actuate

environmentcommand

Figure 5.2: The generic hybrid system representation

Variables and State Spaces. A hybrid system is modelled through two variables: its discrete state

xs (usually corresponding to some mode in a mode automaton) and its continuous state xp, which

is a function of time and valued in some state space S (usually a real vector space). As we will

need it in later proofs or properties, we also model time with a single read-only variable, t, which

is simulated by the Progress event (see Listing 5.2).

Listing 5.2: A generic hybrid Event-B model: machine model structure

VARIABLES t, xp, xs
INVARIANTS

inv1 : t ∈ R+

inv2 : xs ∈ STATES
inv3 : xp ∈ R+ → S

EVENTS
...

Progress
THEN

act1 : t :| t < t′

50

The behaviour of hybrid systems is then modelled through four types of events. Transition

events model internal decisions of the controller. This typically corresponds to discrete changes

happening in the program or decisions made by the user (see Listing 5.3).

Listing 5.3: A generic hybrid Event-B model: Transition event

Transition
ANY s
WHERE

grd1 : s ∈ P1(STATES)
THEN

act1 : xs :∈ s
END

Sensing events represent changes in the controller induced by changes in the plant, typically

detected through sensors. This event is similar to Transition except its guards generally involve

xp (see Listing 5.4).

Listing 5.4: A generic hybrid Event-B model: Sense event

Sense
ANY s, p
WHERE

grd1 : s ∈ P1(STATES)
grd2 : p ∈ P(STATES×R× S)
grd3 : (xs 7→ t 7→ xp(t)) ∈ p

THEN
act1 : xs :∈ s

END

Behave events capture spurious changes in the plant, or perturbations in other words. This

particular event modifies the continuous state (xp) which is a function of time. To ensure

coherence, we need to state that the past of the system remains the same; that is, the function

does not change on [0, tR[. The future of the system ([t,+∞R[) is then set to be a solution of the

given equation (see Listing 5.5).

51

Listing 5.5: A generic hybrid Event-B model: Behave event

Behave
ANY e
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)

THEN
act1 : xp :| x′p ∈ R+ → S∧ [0, t[C x′p = [0, t[C xp ∧ solutionOf([t,+∞[, [t,+∞[C x′p, e)

END

Actuation events model the action of the controller on the plant, achieved because of actuators

(see Listing 5.6). This event is shaped on Behave from which it differs by the presence of

additional guards to relate it to the controller’s state.

Listing 5.6: A generic hybrid Event-B model: Actuate event

Actuate
ANY e, s
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)
grd3 : s ⊆ STATES
grd4 : xs ∈ s

THEN
act1 : xp :| x′p ∈ R+ → S∧ [0, t[C x′p = [0, t[C xp ∧ solutionOf([t,+∞[, [t,+∞[C x′p, e)

END

According to the modelling patterns, the generic model we described in the previous

paragraphs is an entry point of a method for developing hybrid systems. Indeed, hybrid models

should instantiate this generic model through the refinement steps.

52

5.2 Hybrid Railway Signalling Model in Event-B

In this section, we describe an abstract hybrid railway signalling Event-B model, which can be

refined to capture a specific signalling configuration. First of all, this section revisits a generalised

communication-based railway signalling model, including major railway signalling sub-systems

and their communication relations. The section then describes continuous model aspects of the

rolling stock which will be used to form a generic Event-B theory describing continuous behaviour

of railway rolling stock.

5.2.1 Informal Communication-Based Railway Signalling Model

As previously discussed, we base our railway signalling model on the radio-based communication

and in-cab signalling systems, which generally contain three sets of objects: trains, interlocking

boxes and communication centres. On the infrastructure side, our railway model is made of

railway tracks, which contain points (P1 in Figure 5.3) allowing trains to switch tracks and block

markers (M1..3 in Figure 5.3) for marking a spatial beginning and ending of railway sections

(blocks).

EoA

P1
T2

T3 T1

Communication Centre

Interlocking

M2 M1

M31, 2 5

4, 6, 7

3

Figure 5.3: An example of the abstract railway signalling model with three trains

The objective of the abstract railway signalling model is ensuring a safe spatial separation of

trains and preventing train derailment by guaranteeing only locked point crossing. Our abstract

signalling model is based on a moving-block signalling principle with points protected with

fixed-blocks in order to prevent a train derailment. In the following paragraphs, we specify

the functionality of each object and communication relations with other objects (communication

diagram of the signalling model is given in Figure 5.4).

53

release	point

Communication
Centre InterlockingTrain

extension	request

lock	point

lock	acknowledgement

update	point	map

position	report

movement	authority	extension

Figure 5.4: Sequence diagram of the signalling model

Rolling Stock In our signalling model, trains are modelled by their physical (continuous) state as

well as the mode (discrete) of their on-board computer. The physical state of a train evolves

according to some differential equations, with equation parameters controlled by the discrete

mode of the on-board computer. The signalling model also assumes that a train is able to self-

localise and communicate with other objects. In our abstract signalling model a train can send

three types of messages:

1. A position report message is sent periodically to the communication centre to update its

position.

2. An extension request message is sent to the communication centre when a train approaches

the end of its movement authority (allowed travelling distance).

3. The train sends a release message to the interlocking informing that it has left the junction

area (crossed points).

54

Communication Centres In communication-based signalling systems, a communication centre

is a pivotal object which manages a part of a railway network by interacting with rolling stock

and interlocking boxes. A communication centre uses information received from trains and

interlocking boxes to issue allowed travelling distances to individual trains. A centre contains

and continuously updates an internal railway network map with junction locations (also their

status: free or locked) and rolling stock positions. The model assumes that a communication

centre knows the destination of each train, so points can be locked in the correct direction. The

communication centre can send the following messages:

4. When a communication centre receives an extension request message from a train with

an extension path requiring locking railway points, it sends a lock point message to the

interlocking (if that point status is free) to set a point to the right direction and lock it.

5. Once a point has been locked (or else it was not necessary), a communication centre

sends a movement authority extension message to the train containing a permitted travelling

distance which is computed by considering other trains and point positions.

Interlocking Boxes An interlocking is a safety-critical object responsible for authorising rolling

stock and movement of infrastructure (e.g. points). In our signalling model, the function of an

interlocking box is guaranteeing safety by preventing trains crossing the same junction at the same

time (e.g. P1 in Figure 5.3). An interlocking can send the following messages to a communication

centre:

6. An interlocking sends a lock acknowledgement message when it receives a lock point

message to inform a communication centre that a point has been adjusted and locked.

7. An interlocking sends an update free map message to a communication centre when it

receives a releasepoint message from a train indicating that a train left the locked junction

and it can now be set to free.

55

5.2.2 Continuous Railway Signalling System Features

In this section, we describe the mathematical model of rolling stock continuous dynamics which

will be used as a basis for modelling hybrid train dynamics in Event-B. The section begins

by deriving a realistic acceleration differential equation from fundamental laws of physics and

models of rolling bodies. In the following paragraph, we describe a hybrid train speed controller

model which will be used in the generic railway signalling Event-B model.

Fnet = m · a ` a = Fnet
m ` a = feng.−Rtot.

m

Rtot.(t) = a + b · v(t) + c · v(t)2

v̇(t) = f(t)−(a+b·v(t)+c·v(t)2)
m

ṗ(t) = v(t)

(5.1)

A driver or an automated train operation system can only control the train’s engine power

(tractive force) which in fine yields an acceleration. From Newton’s second law we know that

acceleration is proportional to a net force (tractive engines force) applied to the mass of that

object. The train must also overcome a resistance force, which acts in the opposite direction to the

engine’s traction force and thus a total engine’s tractive force can be expressed as the difference

between two forces. The total rolling stock resistance is comprised of the mechanical and air

resistances and is commonly expressed as a second-order polynomial (Davis Resistance equation

Rtot.(t) in Equation 5.1), where a, b, and c are fixed parameters and v(t) is the speed of a train at

time t [118].

The train speed controller we consider is continuously issued with the end of movement

authority (EoA), which is updated periodically by the communication centre. We assume that

the speed controller is able to sense its distance to the EoA and, in particular, determine if -

with the given current speed and acceleration - it can stop before EoA. The stopping distance

calculus is generally done using a complex algorithm in the on-board computer, whereas in our

train model, we abstract the algorithm by a stopping distance function (StopDist) which takes the

current acceleration and speed as parameters and returns a distance.

56

ṗ(t) = v

v̇(t) = a

ṗ(t) = v

v̇(t) = −a

EoA(t) StopDist + offset ≥ EoA(t)

StopDist + offset < EoA(t)

Figure 5.5: An abstract train speed controller hybrid automata model with two modes

The train speed controller has two modes: free mode and restricted mode. If the stopping

distance (plus a safety offset) of the train is shorter than the EoA, then the train is said to be in

a free mode and it can choose arbitrary values for feng.. Once, the stopping distance (+offset) of

the train becomes shorter than the EoA, the train enters a restricted mode in which it is required

to provide values for feng. such that it can stop before the EoA. The train speed controller hybrid

automata model is visualised in Figure 5.5. In the following sections, we present a formal Event-B

implementation of the informally presented hybrid signalling model.

Listing 5.7: An excerpt of the signalling Event-B model: train model theory

THEORY Trains
OPERATORS

DavisResistance < expression > (a : R, b : R, c : R)

DavisFunction < expression > (a : R, b : R, c : R)

DavisEquation < expression > (a : R, b : R, c : R, f : R)

ARGUMENTS
a, b, c, f

WELL−DEFINEDNESS CONDITION
0 ≤ a, b, c

DIRECT DEFINITION
ode(DavisFunction(a, b, c, f), (v0 7→ p0), t0)

THEOREMS
DavisResistanceContinuity
∀a, b, c, n · a ∈ R ∧ b ∈ R ∧ c ∈ R ∧ a ≥ 0 ∧ b ≥ 0∧ c ≥ 0∧ n ∈N

⇒ DavisResistance(a, b, c) ∈ Cn(n, R, R)
...

END

57

5.2.3 Hybrid Railway Signalling System Model: Theory and Context

As the behaviour of the train is generally common between several models, it was decided

to create a reusable Trains theory (Listing 5.7). This theory defines the Davis equation

DavisEquation(a, b, c, f, t0, tv0, tp0) with initial conditions tv(t0) = tv0, tp(t0) = tp0. In the

theory file, we also define other related theorems on the mathematical properties of this equation

that will be useful for completing proofs.

In addition to a train dynamics theory model, we introduced a context model (see excerpt in

Listing 5.8) which defines several constants of the system as well as constraints upon them. First

of all, the Train context model axiomatically defines frictions parameters of the Davis equation,

a, b, and c, as positive real number constants. Similarly, the context model also introduces the

engine’s traction power as real number constants: minimum power (fmin), maximum power

(fmax), and minimum deceleration power (fdec min - a minimum strength with which the train

can decelerate). Furthermore, we define a train’s stopping distance function StopDist as a partial

function of the current speed (R) and acceleration (R), with associated function constraining

axioms. Finally, Train context defines train controller modes free move and restricted move, by

refining the STATES set in ControlledSystemCtx with an enumerated set.

Listing 5.8: An excerpt of the signalling Event-B model: system context

CONTEXT Train
EXTENDS ControlledSystemCtx
CONSTANTS

free move, restricted move
StopDist
a, b, c
fmin, fmax, fdec min

AXIOMS
axm1 a, b, c ∈ R+

axm2 fmin, fmax, fdec min ∈ R

axm3 StopDist ∈ (R×R+) 7→R+

axm4 StopDist(0 7→ 0) = 0
axm5 partition(STATES, {free move}, {restricted move})

...
END

58

5.2.4 Hybrid Railway Signalling System Model: Machine Events

In the first refinement of the generic hybrid model, we introduce several new events which

instantiate generic events presented in Section 5.1. Because of the similarity of events, we only

provide a single event for each of the generic event type. As specified in the previous subsection, in

this refinement we model the speed controller where the end movement authority is continuously

updated without specifying how at this level of abstraction.

Listing 5.9: Event restricting train’s movement (transition type)

Transition restricted move
REFINES Transition
WHERE

grd1 : xs = restricted move
WITH

s : s = restricted move
THEN

act1 : f :| tp(t) + StopDist(f ′ 7→ tv(t)) ≤ EoA
END

The Transition restricted move (refer to Listing 5.9) event models the change in the speed

controller by adjusting the train’s traction effort when the train is in the restricted move mode.

The event is simply guarded by a single predicate which enables the event if and only if the status

variable xs is set to restricted move. To control the train’s speed we created a variable f which

denotes the traction force and is modified by the action such that the stopping distance would not

overshoot the end of the movement authority. One must then prove an open proof obligation that

such a traction force value can be found.

Another internal controller event which changes controller’s mode based on the input from the

plant is sense event - Sense to restricted (refer to Listing 5.10). One out of the two sense events

will change the train state variable xs if the end of movement authority has not been extended and

the train must decelerate in order to remain within issued movement authority.

59

Listing 5.10: Event that captures train controller switching to a restricted move mode

Sense to restricted
REFINES Sense
WHERE

grd1 : tp(t) + StopDist(ta(t) 7→ tv(t))) ≥ EoA
WITH

s : s = restricted move
p : p = STATES×R× {v∗ 7→ p∗ | p∗ + StopDist(fdec min 7→ v∗) ≥ EoA}

THEN
act1 : xs := restricted move

END

As previously described, the other set of events define the evolution of the plant. The event

provided in Listing 5.11 models the plant of the controller influenced by an environment. The first

event modifies plant variables based on some solvable differential equation which describes the

environment.

Listing 5.11: Event modelling environment induced changes to the train plant model

Behave
REFINES Behave
ANY e
WHERE

grd1 : e ∈ DE(S)
grd2 : Solvable([t,+∞] , e)

WITH
x′p : x′p = bind(tv′, tp′)

THEN
act1 : tv, tp :| tv′ ∈ R+ → S∧ tp′ ∈ R+ → S∧ [0, t[C tv′ = [0, t[C tv∧
∧ [0, t[C tp′ = [0, t[C tp ∧ solutionOf([t,+∞[, [t,+∞[C bind(tv′, tp′), e)

END

Similarly, the Actuate move (Listing 5.12) event updates plant variables tp, tv. However, in

this instance, variables are updated based on the Davis equation with traction force variable f

value as one of the parameters.

60

Listing 5.12: Event updating train’s plant (actuate type)

Actuate move
REFINES Actuate
WHERE

grd1 : >
WITH

x′p : x′p = bind(tv′, tp′)
e : e = DavisEquation(a, b, c, f, t, tv(t), tp(t))
s : s = STATES

THEN
act1 : tv, tp :| tv′ ∈ R+ → S∧ tp′ ∈ R+ → S∧ [0, t[C tv′ = [0, t[C tv ∧ [0, t[C tp′ = [0, t[C tp∧

solutionOf([t,+∞[, [t,+∞[C bind(tv′, tp′), DavisEquation(a, b, c, f, t, tv(t), tp(t)))
END

5.2.5 Hybrid Railway Signalling System Model: Communication Aspects

To introduce communication aspects of the signalling system, the train speed controller model

was further refined by introducing new events (based on patterns) to capture message exchanges

between different objects. But, firstly, we created a new context (Listing 5.13) where new finite

carrier sets representing trains, communication centres, interlockings, and points were introduced.

Listing 5.13: Communication signalling model context

CONTEXT CommunicationCtx
SETS

TRN, CCS, IXL, PNT, PSTATUS
CONSTANTS

FREE, RESERVED
AXIOMS

axm1..4 : finite(TRN, CCS, IXL, PNT)
axm5 : partition(PSTATUS, {FREE}, {RESERVED})

In the following paragraphs, we provide a communication model excerpt which captures a train

requesting movement authority extension and a radio-block responding. Following the pattern for

each type of message, an individual context will be introduced which defines the new message

type and contains constant functions, as in the context excerpt message ma extension (Listing

5.14). The constant message functions are used to select an appropriate message which includes

61

a source, destination, and value of the message. As the message ma extension message is sent via

radio-block centre to the train exts and extd function ranges are with respect to radio-block centre

(source) and train (destination).

Listing 5.14: Movement authority extension message context

CONTEXT message ma extension
SETS

EXT
CONSTANTS

exts, extd, extv
AXIOMS

axm1 : exts ∈ EXT� CCS
axm2 : extd ∈ EXT�TRN
axm3 : extv ∈ EXT 7→R+

axm4 : ∀s, d, v · s ∈ CCS∧ d ∈ TRN∧ v ∈ R+ ⇒ ∃m · exts(m) = s∧ extd(m) = d∧ extv(m) = v

In the dynamic model (machine) part, we introduce a communication channel for the new

messages which includes one for the extension message ext. The model excerpt below also

contains another channel req for the movement authority extension messages and a variable

reqt. The latter variable is simply used to track sent messages locally as messages are added

and removed from the channel. Having communication channels introduced, events can be

refined to incorporate message sending. We also, introduced new continuous variables, replacing

{f, tp, ta, tv}, to capture multiple trains in the system ntp, nta, ntv.

Listing 5.15: Movement authority channel variables for messages

MACHINE SignallingModel
SEES CommunicationCtx
VARIABLES

ext, req, reqt ...
INVARIANTS

inv1 : ext ⊆ EXT
inv2 : req ⊆ REQ
inv3 : reqt ∈ TRN→P(REQ)
...

END

62

The Trains sense to restricted event (Listing 5.16) models the controller state change once the

train enters the area where it must decelerate to stay within the movement authority. In order for

the train to continue the travel, it must request the movement authority extension by sending a

message to the radio-block centre. We model that by refining the event, first adding additional

event parameters denoting a train tr, radio-block centre rb, and a request message rq. Then we

include new guards grd2..6 which define variable types and state that rq must be a new message

with a destination to specific radio-block centre rb and source of the train of interest rq. In the

message we also include the current position of the train which, in this refinement, can be accessed

from position function ntp(tr) (due to multiple trains). New actions of the events act2..3 add the

new message to the request message channel req and saves a sent message receipt locally. This

event was extended based on the initiating message sending event pattern.

Listing 5.16: Refined event for requesting EoA extension

Trains sense to restricted
REFINES Sense to restricted
ANY

tr, cc, rq
WHERE

grd1 : tr ∈ TRN
grd2 : ntp(tr)(t) + StopDist(nta(tr)(t) 7→ ntv(tr)(t))) ≥ nEoA(tr)
grd3 : cc ∈ CCS
grd4 : rq ∈ (REQ \ req)
grd5 : reqd(rq) = cc
grd6 : reqs(rq) = tr
grd7 : reqv(rq) = ntp(tr)(t)

THEN
act1 : nx s(tr) := restricted move
act2 : req := req ∪ {rq}
act3 : reqt(tr) := reqt(tr) ∪ {rq}

END

To model movement authority extension message sending we apply reply message modelling

pattern which essentially adds a new message to the channel and removes the replied message. In

order to avoid having a single super-event, it was decided to split message sending into two events

which respectively model movement authority extension over a line and junction. In Listing 5.17

we provide an event for movement extension over a line. Firstly, the guards (grd1..6) check if an

63

adequate request rq message has been received and a new extension message ex will be sent to

the source train grd5. The value of the reply message contains a distance value which is shorter

than the distance to the next train and point (grd8..9), but greater than the current end of the

movement authority (grd7). The event actions simply create a new extension message and remove

the responded message. A similar event was created to capture the second branch when a point

must be locked by communicating with an interlocking.

Listing 5.17: Event for modelling radio-block centre reply to the extension request message (line part)

Radio block centre extension 1
ANY

rb, rq, ex
WHERE

grd1 : rb ∈ RBC
grd2 : rq ∈ req
grd3 : ex ∈ (EXT \ ext)
grd4 : reqd(rq) = rb
grd5 : extd(ex) = reqs(rq)
grd6 : exts(ex) = reqd(rq)
grd7 : extv(ex) > nEoA(reqs(rq))
grd8 : extv(ex) < ppos(pmap(ntp(tr)))
grd9 : ∀tr · tr ∈ TRN∧ tr 6= reqs(rq)⇒ extv(ex) < ntp(tr)(t)

THEN
act1 : ext := ext ∪ {ex}
act2 : req := req \ {rq}

END

The final event in the message exchange cycle for requesting movement authority extension

is the refined event Trains transition eoa (Listing 5.18). Originally this event was introduced in

modelling train speed controller to abstractly represent the internally updated movement authority.

To introduce a communication aspect to this event we extend it with additional guards to check

if an extension message ex has been received to the specific train tr (grd3..5). The new end of

the movement authority value (new EoA) is constrained by the value of extension message (grd6).

The action of the event simply update trains end of authority variable EoA(tr) and deletes the

extension message ex.

64

Listing 5.18: Refined transition event with updated EoA

Trains transition eoa
REFINES Transition eoa
ANY

tr, ex
WHERE

grd1 : tr ∈ TRN
grd2 : ex ∈ ext
grd3 : extd(ex) = tr

THEN
act1 : nEoA(tr) := extv(ex)
act2 : ext := ext \ {ex}

END

5.2.6 Proving Generic Hybrid Signalling Model: Proof Statistics

The generic model is proved once and for all and, in this work, we refined the abstract hybrid

controller model. The hybrid railway signalling model is itself a reusable artefact, which could

be further refined to capture a specific signalling configuration (e.g. by defining a specific railway

schema) or modelling railway protocols (e.g. signalling handover).

As discussed by Alur in [22], the verification of hybrid systems remains a challenge. The

verification approaches based on the reachability analysis aim to provide a fully automatic

verification approach, but these approaches are limited to linear systems due to the real-valued

variables. In this and other related works, authors have tried to address the verification scalability

problem by developing alternative proof-based verification approaches. Still, as our verification

results (Table 5.1) and also similar works [59, 61, 119] suggest, the proof automation of hybrid

Event-B models is still low and must be improved for more practical applications. In spite

of improved verification tools, a refinement plan for hybrid models should be reconsidered.

Perhaps a top-down approach (particularly for this model), where continuous system’s aspects

are introduced in later refinement steps, is more suitable.

An important feature of this hybrid system development approach is the requirement of

explicitly stating the system’s dynamic properties. In our opinion, this problem is often

overlooked and could lead to miscommunication between, for instance, control engineers and

software engineers. With our proposed approach, a formal hybrid artefact is created, which

65

Model |POs| Auto. Inter.

hybrid model (4m. + 1c.) 61 23 38

communication model (1m. + 8c.) 49 18 31

Total 110 41 69

Table 5.1: Proof statistics of the communication-based signalling Event-B model

can be used between different types of engineers. On the other hand, the approach currently

requires some understanding of formal methods (e.g. mathematical syntax) and could benefit with

connection to more widely used visual tools like Simulink or other similar tools via Functional

Mock-Up Interface [36].

5.3 Chapter Summary

In this chapter, we introduced a generic hybrid railway signalling Event-B model, which was

conceptually based on the in-cab railway signalling systems with a moving-block operation and

implemented using the generic hybrid modelling patterns developed by Dupont et al. [59]. The

chapter then described the method for extending the generic signalling model using previously

introduced communication modelling patterns in order to capture heterogeneous signalling

systems. In order to demonstrate safety of the generic signalling model, we formally proved

collision freedom and plant constraint invariants by using available automated theorem provers

and solvers of the Rodin platform. The generic hybrid signalling model is the key element of

the proposed formal development methodology and the basis for the functional pivot Event-B

model of the hybrid railway systems presented in Figure 3.1. The model is extensible and can be

further refined to model a specific heterogeneous (or homogeneous) signalling configuration with

communication modelling patterns.

In the following chapter (case study 2), we will demonstrate how a generic railway signalling

model can be used to implement a specific heterogeneous signalling configuration. The case study

captures a scenario, where multiple following trains are transitioning from one signalling area to

another and safe train separation must be maintained during the transition.

66

Chapter 6

Methodology Evaluation

In this chapter, we present two railway signalling systems formally developed by using the

proposed multifaceted methodology. The main objective of this chapter is to evaluate the

new methodology and its applicability to formally developing cyber-physical railway signalling

systems concerning the methodology requirements discussed in Section 2.1.4. It is important

to note that even though the general formal development process in both studies follows the

development process described in our methodology, due to the nature of a signalling system some

divergence was required in the first case study. This formal development divergence in the first

case study is further explained in the following paragraph.

In the first case study, we present a novel distributed resource allocation protocol developed

to facilitate a decentralised railway signalling concept. The main objective of this case study is to

evaluate the proposed formal development methodology when a signalling system is in the early

(prototyping) development stage with incomplete requirements and specifications. Furthermore,

this case study will also enable us to evaluate particular elements of the methodology, specifically,

Event-B communication modelling patterns. On the other hand, the decentralised railway

signalling case study did not model rolling stock and focused on applying the methodology

to develop a new type of signalling (protocol level) system. Therefore, a generic hybrid

communication-based signalling system model was not used in this study, as otherwise required

by the proposed methodology. The proposed methodology was applied to developing a

decentralised railway signalling concept in the following way:

67

1. According to the proposed methodology, initial specifications and requirements of the

decentralised railway signalling concept are specified. (Section 6.1.1)

2. According to the proposed methodology, the initial functional pivot Event-B model of the

decentralised railway signalling system is developed.

(a) The initial functional pivot Event-B model was animated and attempted to be formally

proved but problems with the initial protocol have been discovered (Section 6.1.2).

(b) The initial decentralised railway signalling concept is refined with a new resource

locking mechanism (specifications) and additional requirements (Section 6.1.3).

(c) The refined decentralised railway signalling concept is specified in a semi-formal

notation for a better signalling system concept translation to a formal Event-B model.

3. According to the proposed methodology, the refined (2c) functional pivot Event-B model of

the decentralised railway signalling system is developed and formally proved.

4. According to the proposed methodology, the final decentralised railway signalling system

was stochastically analysed using the PRISM model checker.

In the second case study, we model a train signalling transition (refer to Section 2.1.1) in a

heterogeneous signalling system with interfacing moving and fixed block signalling systems. The

overall objective of the second study is to evaluate the proposed methodology and its applicability

to formally developing and verifying the safety of heterogeneous signalling systems. In this case

study, we are particularly interested in evaluating our proposed process of extending the generic

communication-based signalling system model with specific heterogeneous signalling system

configurations. Unlike in the first case, the requirements and signalling specifications in this case

study are fully known. The proposed methodology was applied to developing a heterogeneous

railway signalling system in the following way:

1. According to the proposed methodology, specifications and requirements of the heteroge-

neous signalling system are detailed (Section 6.2.1).

(a) System Specifications: heterogeneous system model with assumptions and system-

level transition protocols are described informally (transition protocol semi-formally).

68

(b) System Requirements: A heterogeneous system’s safety requirements are expressed in

a format suggested by the methodology.

2. According to the proposed methodology, the functional pivot Event-B model of the

heterogeneous railway signalling system is developed (Section 6.2.2).

(a) A context model HetModelContex, which extends context model CommunicationCtx

of the generic communication-based signalling model, is introduced. The context

model defines static elements of the heterogeneous signalling system described in the

previous development step.

(b) As according to the communication modelling patterns, each communication message

described in the system specification step is introduced into the functional pivot Event-

B model via a context model.

(c) The communication-based signalling Event-B model is extended with an additional

machine model, which models all communications described in the system specifica-

tion step.

(d) The safety requirements are expressed in the new machine model as invariants and

formally proved.

In the last section of this chapter, we summarise both case studies, discuss the applicability

and the limitations of the proposed methodology to formally developing heterogeneous railway

signalling systems with respect to the evaluation criteria.

6.1 Case Study 1: Distributed Resource Allocation Protocol

In recent years, there have been proposals to utilise distributed system concepts (e.g. [120, 121])

for railway signalling as an approach to addressing network capacity and maintenance cost

problems. These emerging distributed railway signalling concepts have proposed to use a

radio-based communication technology to decentralise today’s signalling systems. Nonetheless,

because of the complex concurrent behaviour, distributed systems are notoriously difficult to

validate that could curtail the development and deployment of novel distributed signalling

solutions. In this case study, we present work that uses the proposed multifaceted methodology

to formally develop and verify a distributed railway signalling protocol which could deliver

69

decentralised signalling benefits while meeting high safety requirements. The developed

distributed signalling protocol is based on serialisability and inspired from the one defined from

transaction processing [122–124] in centralised and distributed database systems. The main

objective of the protocol is guaranteeing mutual exclusion of railway sections (safety) while

ensuring liveness of a system.

The model of our distributed railway signalling system relaxed some assumptions on message

ordering, or in other words, allowed message delays in the model (contrary to other related

work [121,125]). However, relaxed assumptions on the communication environment complicated

the verification of safety and liveness properties of the distributed railway section allocation

protocol. Nonetheless, the final protocol model was proved to guarantee the safety of agents while

ensuring the probabilistic liveness of the system. In the following sections, we first describe a

system model, assumptions and key safety and liveness requirements. Then, we demonstrate how

safety and liveness properties can be violated (due to message delays) without a more complicated

resource allocation protocol, which is then described in a semi-formal notation in Section 6.1.3.

After describing resource allocation protocol semi-formally, we describe the developed functional

pivot Event-B model of the protocol and its verification. In the final sections of this case study,

we describe the verification of protocol probabilistic termination.

6.1.1 High-Level Distributed System Model and Requirements

We abstract the railway model and instead of trains, routes, and switches our system model

consists of agents and resources (resource controllers). The system model permits message

exchanges only between agents and resources, and messages can be delayed. Each resource

controller has an associated queue-like memory, where the order of agent allocation can be

stored. A resource also has a promise (ppt) and read pointers (rpt), which respectively indicate the

currently available slot in the queue and the reserved slot (with an associated agent) that currently

uses the resource. An agent has an objective, which is a collection of resources an agent will

attempt to reserve (all at the same time) before using and eventually releasing them. In Table 6.1,

high-level distributed system specifications are elicited in the format, which is suggested by the

proposed methodology.

70

SYS1 | The distributed railway system is made of agents and resources (respectively representing trains and

railway subsections).

SYS2 | Agents can only communicate with resources and not other agents.

SYS3 | An agent has an objective, which is a set of resources an agent has to reserve before proceeding with

the next objective.

SYS4 | Agents and resources have a memory in which sent and received messages are stored.

SYS5 | A resource has a queue-like memory which contains the order in which agents will be allocated that

resource.

SYS6 | A resource has a promised pointer (ppt) variable, which indicates a currently available resource

allocation slot number.

SYS7 | A resource has a read pointer (rpt) variable, which specifies an agent which is currently using that

resource.

ENV1 |Message delays are permitted in the distributed signalling system model.

Table 6.1: High-level distributed signalling system specifications

The main objective of the protocol is to enable safe and deadlock-free distributed atomic

allocation of collection of resources. When using the term safe resource allocation, we mean that

no two different agents have been allocated the same resource at the same time. The protocol must

also guarantee that each agent eventually gets all requested resources - partial request satisfaction

is not permitted. The main high-level safety and liveness requirements of the distributed system

are expressed in Table 6.2. The following section attempts to justify the need for an adequate

distributed protocol by discussing problematic resource allocation scenarios.

SAF1 | A resource will not be allocated to multiple agents at the same time.

SAF2 | An agent will not use a resource until all requested resources are allocated.

LIV1 | An agent must be eventually allocated a set of resources it has requested.

Table 6.2: High-level system safety and liveness requirements

71

6.1.2 Problematic Distributed Resource Allocation Scenarios

Let us consider Scenarios 1-2 (visualised in Figure 6.1) to see how requirement LIV1 could not be

guaranteed (while ensuring SAF2) without an adequate distributed resource allocation protocol.

Scenario 1 In this scenario, agents a0 and a1 are attempting to reserve the same set of resources

{r0, r1}. Agents start by firstly sending request messages to both resources. Once a resource

receives a request message, it replies with the current value of the promised pointer (ppt(rk)) and

then increments the ppt(rk). For instance, in this scenario, resource r0 firstly received a request

message from agent a0 and thus replied with the value ppt(r0) = 0, which was then followed by

a message to a1 with an incremented ppt(r0) value of 1. In Figure, we denote a*
n as the ppt(rk)

value sent to an. Request messages at resource r1 have been received and replied in the opposite

order.

In this preliminary protocol, after an agent receives promised pointer values from all requested

resources, it sends messages to requested resources to lock them at the promised queue-slot.

In this scenario, agent a0 was promised queue-slots {(r0, 0), (r1, 1)} while a1 queue-slots

{(r0, 1), (r1, 0)}. If agents would lock these exact queue-slots, resource r0 would allow agent

a0 to use it first, while resource r1 would concurrently allow agent a1. The distributed system

would deadlock and fail to satisfy LIV2 requirement as both agents would wait for the second use

message to ensure SAF2.

Figure 6.1: Problematic scenarios: Scenario 1 (left) and Scenario 2 (right)

72

In order to prevent the cross-blocking type of deadlocks, an agent should repeatedly re-request

the same set of resources (and not lock them) until all received promised queue slot values are the

same. We define a process of an agent attempting to receive the same promised queue slots as an

agent forming a distributed lane (dl).

A distributed lane of an agent an is dl(an) = {(rk, s), (rk+1, s), . . . , (rk+m, s)}, where rk

is a resource requested by agent an and s is the queue slot value promised by all requested

resources. Important to note, that this solution relies on the assumption, that there is a non-zero

probability of distinct messages arriving at the same destination in different orders, even if they

are simultaneously sent by different sources.

The modified situation is depicted in Scenario 1, where, after agents {a0, a1} initially receiving

{(r0, 0), (r1, 1)} and {(r0, 1), (r1, 0)} slots, mutually re-request resources again. This time they

receive {(r0, 2), (r1, 2)} and {(r0, 3), (r1, 3)} slots, and are able to form distributed lanes dl0(a0)

and dl1(a1).

Scenario 2 However, simply re-requesting the same resources might result in a different problem.

In Scenario 2, agent a1 has requested and has been allocated a single resource r1 which in turn

modified ppt(r1) to 1 while ppt(r0) remained 0. If another agent a0 attempts to reserve resources

{r0, r1}, it will never receive the same promised pointer values from both resources, and hence,

will not be able to lock them.

6.1.3 Semi-Formal Protocol Description

In order to address the issues described in the previous section, we developed a two-stage protocol,

where the stage1 of the distributed protocol specifies how an agent forms a distributed lane and

Stage2 of the protocol addresses deadlock scenarios, which can occur after agents form distributed

lanes. In the following paragraphs we semi-formally describe both stages of the protocol, which

then will be formally modelled in Event-B specification language .

Stage1 An agent, which intends to reserve a set of resources starts by sending request messages

to resources. The messages are sent to those resources which are part of agent’s current objective.

In the provided pseudocode excerpt, we first denote relations sent requests and objective which

are mappings from agents to resources (ln. 1 Algorithm 1). The messages request are sent by

an agent an to a resource rk (rk ∈ objective[an]) until sent requests[an] = objective[an] (ln. 4-7 in

Algorithm 1). When a resource rk receives a request message from an agent an it responds with

73

a reply message which contains the current promised pointer value ppt(rk) and then increments

the promised pointer (ln. 6-8 in Algorithm 2). After sending all request messages an agent waits

until all reply messages are received from requested resources (ln. 8 in Algorithm 1).

ALGORITHM 1 Agent stage1 communication algorithm

1: variables sent requests, received replies, sent srequests, sent write typeof AGT↔ RES init∅
2: variables objective typeof AGT↔ REL init objective :∈ AGT←↔ RES
3: variables replies typeof AGT↔N init∅
4: while sent requests[an] 6= objective[an] do . requesting resources which belong to the objective
5: request(an)→ rk
6: sent requests := sent requests ∪ {(an, rk)}
7: end
8: wait until received replies[an] = objective[an]
9: while |replies[an]| 6= 1 do . enter while loop if all received indices are not the same

10: sent srequests[an] := ∅
11: received replies[an] := ∅
12: replies[an] := ∅
13: while sent srequests[an] 6= objective[an] do
14: m := max(replies[an]) + 1
15: srequest(an, m)→ rk . send a special request message with a desired slot index m
16: sent srequests := sent srequests ∪ {(an, rk)}
17: end
18: wait until received replies[an] = objective[an]
19: end
20: while sent write[an] 6= objective[an] do
21: m := max(replies[an])
22: write(an, m)→ rk
23: sent write := sent write ∪ {(an, rk)}
24: end

If all received promised pointer values are the same (a distributed lane can be formed) an

agent will complete stage1 by sending write messages which contain the negotiated index to all

requested resources (ln. 20-24 Algorithm 1). But if one of the received promised pointer values is

different an agent will start a renegotiation cycle (ln 9-19 Algorithm 1). An agent will now send

srequest messages which contain a desired slot index to resources. A desired index is computed

by taking the maximum of all received promised pointer values and adding a constant (one is

sufficient) - ln. 14 in Algorithm 1. A resource will reply to srequest message with the higher

value of the current ppt(rk) or received srequest message value and will update the promised

pointer (ln. 9-11 in Algorithm 2). After sending all srequest messages, an agent will wait for

reply messages and will restart the loop if received slot indices are not the same.

74

ALGORITHM 2 Resource communication algorithm

1: variables ppt typeof AGT → N init RES → {0}
2: variables rpt typeof AGT 7→ N init ∅
3: variables rlock typeof RES 7→ AGT init ∅
4: variables mem typeof RES → (N 7→AGT) init RES↔{∅}
5: switch received message do
6: case request(an) . a resource replies to a request message with a slot index ppt(rk)
7: reply(ppt(rk), rk)→ an
8: ppt(rk) := ppt(rk) + 1
9: case srequest(an, n) . a resource replies to a special request message with a slot index ppt(rk) or n

10: reply(max(ppt(rk), n), rk)→ an
11: ppt(rk) := max(ppt(rk), n) + 1
12: case write(an, m) . a resource replies to a write message with a pready message if
13: if rlock(rk) = ∅∧ m = rpt(rk) . a resource is not locked and read pointer is at slot m
14: mem(rk, m) := an
15: pready(rk)→ an
16: case lock(an)
17: if rlock(rk) = ∅ . a resource replies with a ready message if a resource is not locked
18: rlock(rk) := an . a resource is locked and ready message is sent
19: response(rk, READY)→ an
20: if rlock(rk) 6= ∅
21: response(rk, DENY)→ an . resource replies with a deny message if a resource is

locked
22: case release(an, m) . a resource will unlock itself and remove an agent from memory slot m
23: mem(rk, m) := ∅
24: rlock(rk) := ∅
25: if mem(rk) 6= ∅ . if memory is not empty a resource will
26: rpt(rk) := min(dom(mem(rk))) . update a read pointer to the next reserved slot
27: anext := mem(rk)(rpt(rk)) . and send pready message to that agent
28: pready(rk)→ anext
29:

It is important to note that described deadlock scenarios and the protocol have a stochastic

nature and one needs to guarantee that a desirable state is reachable. In Table 6.3 we elicit

additional safety and liveness requirements for the stage1 of the protocol, which will need to

be proved in the formal model.

SAF3 | An agent will not send write (form a distributed lane) messages until all received promised pointer

values are identical.

SAF4 |Agents with overlapping objectives will negotiate distributed lanes with different indices.

LIV2 | An agent will eventually negotiate a distributed lane.

Table 6.3: Low-level protocol stage1 safety and liveness requirements

75

ALGORITHM 3 Agent stage2 communication algorithm

1: variables received response, received pready, sent lock, sent release, consumed, released typeof
AGT↔ RES init∅

2: variables response typeof RES↔ (AGT↔{DENY, READY}) init∅
3: while received response[an] 6= objective[an] do . asda
4: wait until received pready[an] = objective[an] . wait until all pre-ready messages are received
5: while sent lock[an] 6= objective[an] do . attempt to lock all requested resources
6: lock(an)→ rk
7: sent lock := sent lock ∪ {(an, rk)}
8: end
9: wait until received response[an] = objective[an] . wait until all ready messages are received

10: if DENY ∈ ran(response)[an] do
11: while sent release[an] 6= response−1[(an, DENY)] do . resources which sent DENY message
12: release(an)→ rk
13: sent release := sent release ∪ {(an, rk)}
14: end
15: received response[an] := ∅
16: received pready[an] := ∅
17: sent lock[an] := ∅
18: sent release[an] := ∅
19: end
20: end
21: while consumed[an] 6= objective[an] do . all locked resources (stage2 completed) are consumed
22: consumed := consumed ∪ {(an, rk)}
23: end
24: while released[an] 6= objective[an] do . all consumed resources are eventually released
25: release(an)→ rk
26: released := released∪ {rk, an}
27: end

Stage2 Once an agent completes sending all write messages it will wait for all pready messages

from resources (ln. 4 in Algorithm 3). A pready message is sent by a resource firstly if it has

received a write message and no other agent is using that resource at that moment - resource is not

locked (ln. 12 - 15 in Algorithm 2). Secondly, a pready message will only be sent to an agent if

a distributed lane is the new minimum. In our protocol resources read pointer always take a new

minimum value in the queue, once an agent sends a release message and allocation is removed

from the queue.

When an agent receives all pready messages it will send lock messages to requested resources

(ln. 3 - 5 Algorithm 3). If a resource is unlocked upon receiving lock message it will reply with

ready message and lock itself, meaning, that it will stop sending pready messages (even to agent

with smaller distributed lanes) until a release message is received from that agent (ln. 12 - 15

76

Algorithm 2). However, if, a resource is locked upon receiving a lock message, it replies with

deny message (ln. 16 - 21 in Algorithm 2). If for every lock message an agent received a ready

message, it can proceed to use resources and eventually release them. If, one of the messages is a

deny message an agent will send release messages to resources (ln. 11 - 14 in Algorithm 3) which

sent ready messages to unlock them and will wait for pready messages again to repeat the process.

6.1.4 Protocol Model Refinement Strategy

The model development approach we utilise is a top-down approach which starts with the abstract

model that formally specifies the objective of the protocol. In fact, distributed aspects of the

system are ignored at this model level and the abstract model considers a centralised configuration.

The abstract resource allocation protocol model was captured by two machines (m0 and m1). The

former model essentially summarises the high-level objective of the protocol which is agents

safely capturing and releasing collection of resources (objectives). This abstract model contains

individual events for capturing and releasing objectives. The next refinement step introduces

resources into the model and decomposes two previously introduced events according to the loop

pattern defined in Section 4.1.3.

The following group of refinement steps introduces more details about the model by primarily

modelling communication aspects. For protocol modelling, we propose to use the backward

unfolding style where the next refinement step introduces the preceding protocol step. The

abstract models were firstly refined with stage2 segment of the protocol. In the refinement,

m2, we introduced lock, response and release messages and associated events into the model.

In this step we also demonstrated that the protocol’s stage2 ensures safe distributed resource

reservation by proving an invariant. The invariant states that no two agents will both be at the

resource consuming stage if both requested intersecting collections of resources. The following

refinement, m3, is the bridge between protocol stages stage1 and stage2 and introduces two new

messages write and pready into the model. In the final refinement step (m4) we model stage1 of the

distributed protocol which is responsible for creating distributed lanes. The remaining messages

request, reply, srequest and associated events are introduced together with the distributed lane

data structure. In this refinement, we prove that distributed lanes are correctly formed.

77

Abstract Model Context The abstract model context introduces agents, resources and objectives

into the model as finite carrier sets. The context also contains the enumerated set for the agent’s

status.

Message Context All messages in the protocol were defined in individual context models

according to the communication pattern presented in [126].

Abstract Model The initial machine (abstract model) summarises the purpose of the protocol.

The high-level objective of the protocol is to facilitate the reservation of collection of resources

(objectives) by agents. The abstract model captures an agent reserving and eventually releasing

an objective.

Refinement 1 (Abstract ext.) In this refinement, we introduce resources into the model and now

an agent tries to fulfil the objective by locking individual resources (and releasing). To model the

iterative process of locking/releasing resources we use a loop modelling pattern.

Refinement 2 Due to the backward unfolding style the model is then refined with stage2 part

of the protocol. In the refinement lock, response and release messages are introduced. With this

refinement step, we also demonstrate that the protocol’s stage2 ensures safe, distributed resource

reservation by proving an invariant. The invariant states that no two agents will both be at the

resource consuming stage if both requested intersecting collections of resources.

Refinement 3 This refinement can be considered as a bridge between the protocol’s stages stage1

and stage2. Here, two new messages - write and pready - are introduced into the model.

Refinement 4 The final refinement step captures the stage1 of the distributed protocol which

is responsible for creating distributed lanes. The remaining messages request, reply, srequest

and associated events are introduced together with the distributed lane data structure. In this

refinement, we prove that distributed lanes are correctly formed (req. SAF3-4).

6.1.5 Event-B: Abstract Context

The formal protocol modelling was started by defining static model information such as carrier

sets, constants and axioms. First of all we create a context for the abstract model which contains

three finite size carrier sets representing agents (AGT), resources (RES) and objectives (OBJ) as

shown in Listing 6.1. The latter carrier set is used as an extractor operator for groups of resources

in a constant function (objr).

78

Listing 6.1: A context of the abstract resource allocation model
context abstract
SETS

AGT, RES, OBJ
CONSTANTS

objr
AXIOMS

axm1 finite(AGT)
axm2 finite(RES)
axm3 ∅ ⊂ RES
axm4 objr ∈ OBJ→P 1(RES)
axm5 ∃o · o ∈ dom(objr)⇒ card(objr(o)) ≥ 1

We also introduce an enumerated set (AST) to denote agent status or in other words agents

program counter values in a separate context model context agent state (Listing 6.2). For

the abstract model only (CONSUME) and (RELEASE) elements are needed whereas remaining

elements will be introduced in the following subsections.

Listing 6.2: A context model defining program counter values of an agent
context agent state
SETS

AST
CONSTANTS

REQUEST, WRITE, RENEGOTIATE, CONFIRMR, CONSUME, RELEASE, CONFIRMW,
LOCK, CONFIRMC, UNLOCK, CONFIRMP

AXIOMS
axm1 partition(AST, {REQUEST}, {CONFIRMW}, {WRITE}, {RENEGOTIATE},

{CONFIRMR}, {CONFIRMP}, {LOCK}, {UNLOCK}, {CONFIRMC}, {CONSUME}, {RELEASE})

6.1.6 Event-B: Machine m0

In modelling the distributed resource allocation protocol we follow a standard Event-B modelling

approach where the abstract model summarises the protocol with a centralised view of the system.

As previously discussed, the objective of the distributed protocol is to enable safe resource

locking. This can be abstracted as agents consuming and releasing objectives. In the abstract

model we want to prevent agents consuming identical objectives.

To begin with, we introduce two variables for storing consumed objectives (cons) and agents

status (pct0) as shown in Listing 6.3. The agent consume event updates cons variable with a new

pair (act1 in Listing 6.4) if an objective has not been consumed (guard g1) and an agent is not

consuming any other objectives (guard g2). In addition the event updates agents program counter

- variable which helps to track the steps of the agent and discharge proof obligations (guard a2).

79

Listing 6.3: The invariants of the abstract distributed resource allocation model
VARIABLES

cons, pct0
INVARIANTS

inv1 cons ∈ AGT 7→OBJ
inv2 pct0 ∈ AGT→AST
inv3 cons−1 ∈ OBJ 7→AGT

Listing 6.4: The event modelling an agent capturing an objective
agent consume =̂
ANY

ag, ob
WHERE

grd1 ob ∈ OBJ \ ran(cons)
grd2 ag ∈ AGT \ dom(cons)
grd3 pct0(ag) = CONSUME

THEN
act1 cons(ag) := ob
act2 pct0(ag) := RELEASE

END

The second event (Listing 6.5) models the release of an objective by removing a pair which

belonged to the cons variable and updating the program counter. The correctness of the abstract

model can be verified by proving invariant (inv3 in Listing 6.3) which asks to prove that an

objective is only consumed by a single agent.

Listing 6.5: The event modelling an agent releasing an objective
agent release =̂
ANY

ag, ob
WHERE

grd1 ag ∈ dom(cons)
grd2 ob ∈ cons(ag)
grd3 pct0(ag) = RELEASE

THEN
act1 cons := cons \ {ag 7→ ob}
act2 pct0(ag) := CONSUME

END

80

6.1.7 Event-B: Machine m1

The refinement step m1 expands on the previous refinement by introducing resources into the

model. Instead of simply consuming an objective, an agent captures resources until an objective

is fulfilled. Captured resources are stored in newly created variable capt whereas objective an

agent will try to complete in the function objt (shown in Listing 6.6).

Listing 6.6: Variables and invariants of the refinement step m1
VARIABLES

capt, objt, pct1
INVARIANTS

inv 1 capt ∈ AGT→P(RES)
inv 2 objt ∈ AGT→OBJ
inv saf ∀a1, a2 · a1 ∈ dom(capt) ∧ a2 ∈ dom(capt) ∧ a1 6= a2 =⇒ capt(a1) ∩ capt(a2) = ∅

In contrary to capturing a single objective, an agent might need to consume multiple resources

in order to fulfill its objective. For the iterative process, we previously introduced a two event

pattern which we instantiate in this refinement step for capturing and releasing events. The loop

body event agent consume b (Listing 6.7) takes any agent with previously initialised objective

and assign a new resource rs to the variable capt (action act1 in Listing 6.7). The agent must be

at CONSUME state (guard grd4) and the resources must be within agent’s objective (guard grd2)

and not yet be captured by any agent (guard grd3).

Listing 6.7: The event modelling an agent consuming a free resource: loop body event
agent consume b =̂
ANY

ag, rs
WHERE

grd1 ag ∈ dom(capt)
grd2 rs ∈ objr(objt(ag))
grd3 rs 6∈ union(ran(capt))
grd4 pct1(ag) = CONSUME

THEN
act1 capt(ag) := capt(ag) ∪ {rs}

END

81

The loop completion event agent consume c (Listing 6.8) would be triggered as soon as the

objective has been fulfilled (guard grd1 in Listing 6.8) and program counter would be updated

to new state - RELEASE (action act1 in Listing 6.8). Similarly, in this refinement we transform

agent release event according based on the event pattern presented. To show correctness of the

extended model, we prove an invariant (inv saf in Listing 6.6) which states that no two agents can

have the same resource captured (still this system model is not deadlock free).

Listing 6.8: The event modelling an agent consuming a free resource: loop completion event
agent consume c =̂
ANY

ag
WHERE

grd1 capt(ag) = objr(objt(ag))
grd2 pct1(ag) = CONSUME

THEN
act2 pct0(ab) := RELEASE

END

6.1.8 Event-B: Machine m2

In this refinement step, we start considering communication between agents and resources.

Because of backward unfolding style we introduce stage2 part of the protocol first. At this stage

of the protocol three types of messages can be sent: lock and release by an agent and response

message by a resource. In this refinement, we apply previously introduced communication

modelling patterns.

Listing 6.9: Variables and invariants of the refinement step m2
VARIABLES

rdpt, lck, lcke, rsp, rel, pct2
INVARIANTS

inv1 rdpt ∈ RES 7→AGT
inv2 lck ⊆ LCK
inv3 lcke ∈ AGT→P(RES)
inv4 rsp ⊆ RSP
inv5 rel ⊆ REL
inv6 pct2 ∈ AGT→AST

82

First of all, machine m2 is extended with three context models - separately defining each

message type according to the generic message context pattern (response message context model

shown in Listing 6.10). Then, by following machine communication modelling pattern we create

variables lck, rsp and rel which represent communication channels of each message. In addition

an agent’s variable lcke is created to store already sent lck messages (shown in Listing 6.9).

Listing 6.10: The context model of the resource response type message
resource response message
SETS

RSP, CNF
CONSTANTS

rsps, rspd, rspv, READY, DENY
AXIOMS

axm1 rsps ∈ RSP� RES
axm2 rspd ∈ RSP�AGT
axm3 rspv ∈ RSP� CNF
axm4 partition(CNF, {READY}, {DENY})
axm5 finite(RSP)
axm6 ∀s, d, v · s ∈ RES∧ d ∈ AGT∧ v ∈ CNF ⇒ ∃m · rsps(m) = s∧ rspd(m) = d∧ rspv(m) = v

In the stage2 an agent tries to lock resources associated with negotiated distributed lane

by sending lock messages. To model that, we apply loop modelling patterns and create two

new events: agent lock b and agent lock c (Listings 6.11 and 6.12). Since, preceding protocol

messages are modelled in the next refinements, we model lock message as a initiating message at

this stage but later convert it to a reply event type. The first event is the body of a message sending

loop which sends a new lock message (action act1 in Listing 6.11) if a message lc has not been

sent before (guard grd1) and destination (resource) is within agent’s objective (guard grd3). The

program counter of the agent must be in LOCK protocol phase (guard grd4). An agent also saves

a local copy of the sent message with the event action act2.

The second event in the loop pattern is a loop completion event agent lock c which detects the

end of the loop and updates the program counter (Listings 6.12). For the lock message sending

event - an agent must detect when all messages have been sent or in other words the objective has

been fulfilled (guard grd1). This event simply updates the program counter to CONFIRMC state

with the action (action act1). According to the protocol, after sending all lock messages an agent

will wait for replies before it proceeds to consuming resources.

83

Listing 6.11: The event modelling an agent locking resources: loop body event
agent lock b =̂
ANY

lc
WHERE

grd1 lc ∈ LCK \ lck
grd2 lckd(lc) 6∈ lcke(lcks(lc))
grd3 lckd(lc) ∈ objr(objt(lcks(lc)))
grd4 pct2(lcks(lc)) = LOCK

THEN
act1 lck := lck ∪ {lc}
act2 lcke(lcks(lc)) := lcke(lcks(lc)) ∪ lckd(lc)

END

Listing 6.12: The event modelling an agent locking resources: loop completion event
agent lock c =̂
ANY

ag
WHERE

grd1 ag ∈ dom(lcke)
grd2 lcke(ag) = objr(objt(ag))
grd3 pct2(ag) = LOCK

THEN
act1 pct2(ab) := CONFIRMC

END

In order to model a resource’s response to the lock message first we created a read pointer

variable rdpt to work as a resource lock for an agent. The resource lock is released once a resource

receives a release message from an agent who locked the resource (see Listing 6.9). A resource

sending a response message is a reply type message therefore we used a reply event modelling

pattern (Listings 6.13 and 6.14). A resource sends response message when lock message has been

received - guard grd1 in both events. The following two guards (grd4 and grd5) define the source

and destination of the new message which are respectively destination and source of received lock

message.

Lastly, the response message also carries a value and guards grd6 define the value in both

events. The message carries READY value if the resource is not locked by other agent (grd3 in

Listing 6.13) otherwise a DENY message is sent (grd3 in Listing 6.14). In addition to sending

a message, the resource response ready event also removes answered message and if READY

message was sent resource locks itself for that agent with action act3.

84

Once an agent sends all lock messages it must receive all response messages before it can

progress. In the model, we created a new event agent decide (Listing 6.15) which checks the

values of received response messages and selects the new program counter value. In principle this

event is a loop completion event but in the model we decided to model decision events separately

to reduce events complexity. The main difference from the basic loop completion event is that

depending on conditions different program counter values can selected. In agent decide event if

all messages contained READY value (guard grd2) then the event will update program counter

to CONSUME. But if a DENY message (guard grd3) was received program counter is changed

to UNLOCK state. In the latter scenario an agent must then send release messages to resources,

which sent READY messages and locked their resources, so protocol can progress

Listing 6.13: The event modelling a resource sending a response message: READY type
resource response ready =̂
ANY

lc, rs, rp
WHERE

grd1 lc ∈ lck
grd2 rs ∈ RSP \ rsp
grd3 rsps(rs) 6∈ dom(rdpt)
grd4 rsps(rs) = lckd(lc)
grd5 rspd(rs) = lcks(lc)
grd6 rspn(rs) = READY

THEN
act1 rps := rsp ∪ {rs}
act2 lck := lck \ {lc}
act3 rdpt := rdptC− {rsps(re) 7→ rspd(re)}

END

For selecting correct message from the channel we use messages constant functions and a

channel variable - [rsp ∩ rspd−1[{ag}] selects all rsp messages which were sent to agent ag.

Inserting the result to the rsps constant function we get sources (resources) of these messages.

This message extraction guard pattern is used widely when relevant messages need to be selected.

Events of the unlocking phase are modelled using reply communication pattern and hence not

covered in this subsection. Once relevant resources are unlocked agent tries to lock them again in

this refinement step.

85

Listing 6.14: The event modelling a resource sending a response message: DENY type
resource response deny =̂
ANY

lc, rs, rp
WHERE

grd1 lc ∈ lck
grd2 rs ∈ RSP \ rsp
grd3 rsps(rs) ∈ dom(rdpt)
grd4 rsps(rs) = lckd(lc)
grd5 rspd(rs) = lcks(lc)
grd6 rspn(rs) = DENY

THEN
act1 rps := rsp ∪ {rs}
act2 lck := lck \ {lc}

END

Listing 6.15: The event modelling agents decision between restarting stage2 or consuming resources
agent decide =̂
ANY

ag, pc
WHERE

grd1 rsps[rsp ∩ rspd−1[{ag}]] = lcke(ag)
grd2 rspn[rsp ∩ rspd−1[{ag}]] = {READY} ⇒ pc = CONSUME
grd3 DENY ∈ rspn[rsp ∩ rspd−1[{ag}]]⇒ pc = UNLOCK
grd4 pct2(ag) = CONFIRMC)

THEN
act1 pct2(ag) := pc

END

Listing 6.16: The safety invariant for prohibiting mutual resource locking by different agents
INVARIANTS

SAF1 ∀a1, a2 · pct2(a1) = CONSUME∧ pct2(a2) = CONSUME∧ a1 6= a2
⇒ objr(objt(a1)) ∩ objr(objt(a2)) = ∅

In this refinement step, which specifies stage2 of the distributed protocol, we were required

to prove the invariant expressed in Listing 6.16. The safety invariant relates to the mutual

exclusion safety protocol property SAF1 specified in Figure 6.2. The safety invariant was proved

interactively.

86

6.1.9 Event-B: Machine m3

In this refinement step we continue to unfold protocol backwards and introduce two new messages

write and pready. In fact this refinement step can be thought as an intermediate step gluing

protocol stages stage1 and stage2. Events for capturing write message sending were developed

using the initiating message pattern. Since they were structurally identical to the previous

refinement events agent lock b and agent lock c events we do not discuss them here. The more

interesting challenge of this refinement step was correctly capturing the pready message. A

variable of type mem ∈ RES→P(AGT) was created to abstract queue like resource memories (see

Listing 6.17) which are introduced in the next refinement step.

Listing 6.17: The event modelling an agent capturing an objective
VARIABLES

wrt, prd, mem, wrte, pct3
INVARIANTS

inv 1 wrt ⊆WRT
inv 2 prd ⊆ PRD
inv 3 mem ∈ RES→P(AGT)

A resource sends pready message to inform an agent of its availability for consumption and

that it can be locked now. There are two different cases when this message should be sent

and instead of constructing a single event to cover all scenarios it was decided to create more

trivial events for each of the cases (Listing 6.18 and 6.19). In the model we created a reply type

resource write preready event which creates a new message and removes the answered message

from the wrt channel if a resource is not locked. A pready message will be sent if a write message

has been received (guard grd1 in Listing 6.18) and resource is not locked by an agent (grd3).

The second event resource release pready was necessary to cover a scenario where pready

message was sent to an agent in response to its write message but in the end the agent was

not able to lock all resources. This would mean that write messages have been removed and

resource write preready guards would never be satisfied for that agent. Yet an agent would be

still waiting to receive pready messages eventually. Therefore we introduced initiating message

resource release pready event which sends a new pready message to any agent which is interested

in that resource if a resource is not locked.

87

Listing 6.18: The event modelling a resource replying to write message with a pready message
resource pready write =̂
ANY

wr
pr

WHERE
grd1 wr ∈ wrt
grd2 pr ∈ PRD prd
grd3 wrtd(wr) 6∈ dom(rdpt)
grd4 wrts(wr) ∈ mem(wrtd(wr))
grd5 prdd(pr) = wrts(wr)
grd5 prds(pr) = wrtd(wr)

THEN
act1 prd := prd ∪ {pr}
act2 wrt := wrt \ {wr}

END

Listing 6.19: The event modelling a resource sending a pready message to an agent in a memory
resource pready release =̂
ANY

wr
pr

WHERE
grd1 pr ∈ PRD \ prd
grd2 prds(pr) 6∈ dom(rdpt)
grd3 prdd(pr) ∈ mem(prds(pr))

THEN
act1 prd := prd ∪ {pr}

END

6.1.10 Event-B: Machine m4

The final refinement step m4 introduces the remaining part of the protocol - stage1. This stage

starts with an agent requesting a set of resources and finishes with agent forming a distributed

lane by sending a write messages to the same resources. In between, an agent might need to send

a special request message srequest if a distributed lane was not negotiated in the first attempt.

To allow distributed lane forming - a resource memory introduced in the previous refinement

now must be refined to queue-like data structure with corresponding variables (e.g. read pointer,

promised pointer).

88

Listing 6.20: Variables and invariants of the machine model m4
VARIABLES

req, rqst, rqs, rqts, rep...
INVARIANTS

inv 1 req ⊆ REQ
inv 2 rqst ∈ AGT→P(RES)
inv 3 rqs ⊆ REQ
inv 4 rqts ∈ AGT→P(RES)
inv 5 rep ⊆ REP
inv 6 ppt ∈ RES→N

inv 7 rpt ∈ RES 7→N

inv 8 lan ∈ RES→ (N 7→AGT)
inv 9 pct4 ∈ AGT→AST

To begin with we start with introducing communication channel variables for request, reply

and srequest messages. In addition two local variables rqst and rqts were created to store messages

on the agent side (shown in Listing 6.20). Following the loop and initiating message modelling

patterns we introduced two events agent request b and agent request c for requesting resources

(Listings 6.21 and 6.22).

Listing 6.21: The event modelling an agent requesting a resource: loop body event
agent request b =̂
ANY

rq
WHERE

grd1 rq ∈ REQ \ req
grd2 reqd(rq) 6∈ rqst(reqs(rq))
grd3 reqd(rq) ∈ objr(objt(reqs(rq)))
grd4 pct4(reqs(rq)) = REQUEST

THEN
act1 wrt := wrt ∪ {wr}
act2 wrte(wrts(wr)) := wrte(wrts(wr)) ∪ {wrtd(wr)}
act3 mem(wrtd(wr)) := mem(wrtd(wr)) ∪ wrts(wr)

END

After all request messages have been sent event agent request c changes agents program

counter to CONFIRMW state (act1 in Listing 6.22) which informs an agent to wait until all reply

messages have been received.

89

Listing 6.22: The event modelling an agent requesting a resource: loop completion event
agent request c =̂
ANY

ag
WHERE

grd1 ag ∈ dom(rqst)
grd2 rqst(ag) = objr(objt(ag))
grd3 pct4(ag) = REQUEST

THEN
act1 pct4(ag) := CONFIRMW

END

On the resource side, a reply type event resource reply general (Listing 6.23) was created

which simply sends a new reply message (action act1) containing the current promised pointer

value (guard grd5), removes request message (act2) and increments the promised pointer (act3).

Once an agent has sent all request and respectively received all reply messages a decision must be

made whether to form a distributed lane or renegotiate new indexes.

Listing 6.23: The event modelling a resource replying to a request message
resource reply general =̂
ANY

rp
rq

WHERE
grd1 rq ∈ req
grd2 rp ∈ REP \ rep
grd3 repd(rp) = reqs(rq)
grd4 reps(rp) = reqd(rq)
grd5 repn(rp) = ppt(reqs(rq))

THEN
act1 rep := rep ∪ {rp}
act2 req := req \ {rq}
act3 ppt(reps(rp)) := ppt(reps(rp)) + 1

END

The distributed lane will be formed if all reply messages contained the same promised pointer

value otherwise an agent must renegotiate a distributed lane. In the model, we created a new

decision agent decide write renegotiate event which changes the program counter according to

the named conditions (Listing 6.24). To check whether all reply messages contained the same

index it is sufficient to check the set size (cardinality) of the repn[rep ∩ repd−1[ag]] values set.

The guard grd1 must have both local variables because this event can be enabled after general

request or srequest message sending.

90

Listing 6.24: The event modelling agent’s decision on whether to restart stage1 or start stage2
agent confirm write renegotiate =̂
ANY

ag
pc

WHERE
grd1 ag ∈ repd[rep]
grd2 card(rqst(ag) ∪ rqts(ag)) = card(rep ∩ repd−1[{ag}])
grd3 reps[rep ∩ repd−1[{ag}]] = objr(objt(ag))
grd4 pct4(ag) = CONFIRMW
grd5 card(repn[rep ∩ repd−1[{ag}]]) > 1⇒ pc = RENEGOTIATE
grd6 card(repn[rep ∩ repd−1[ag]]) = 1⇒ pc = WRITE

THEN
act1 pct4(ag) := pc

END

If an agent was not able to negotiate a distributed lane it must send a new, special message -

srequest. This time instead of requesting an arbitrary index a new srequest message contains a

desired index which is computed by adding a non-zero constant to the highest reply index. To send

srequest messages we created two reply type events: agent renegotiate b and agent renegotiate c

(Listings 6.25).

Listing 6.25: The event modelling an agent renegotiating a resource: loop body event
agent renegotiate b =̂
ANY

ag, rp, rq
WHERE

grd1 ag ∈ repd[rep]
grd2 pct4(ag) = RENEGOTIATE
grd3 rp ∈ rep ∩ repd−1[{ag}]
grd4 rq ∈ RQS \ rqs
grd5 rqss(rq) = ag
grd6 rqsd(rq) = reps(rp)
grd7 rqsn(rq) = max(repn[rep ∩ repd−1[{ag}]]) + 1
grd8 rqsd(rq) 6∈ rqts(rqss(rq))
grd9 rqsd(rq) 6∈ rqst(rqss(rq))

THEN
act1 rqs := rqs ∪ {rq}
act2 rep := rep \ {rp}
act3 rqts(rqss(rq)) := rqts(rqss(rq)) ∪ {rqsd(rq)}
act4 rqst(rqss(rq)) := rqst(rqss(rq)) \ {rqsd(rq)}

END

91

Listing 6.26: The event modelling an agent renegotiating a resource: loop completion event
agent renegotiate c =̂
ANY

ag
WHERE

grd2 rqts(ag) = objr(objt(ag))
grd3 pct4(ag) = RENEGOTIATE

THEN
act1 pct4(ag) := CONFIRMW

END

As a standard reply type event agent renegotiate b creates a new message and removes

the answered reply message from the channel. Whereas agent renegotiate c event updates

the program counter again to CONFIRMW state - this cycle repeats until a distributed lane is

negotiated.

Lastly in this refinement we introduce the distributed lane data structure and accordingly

update relevant events. Two variables ppt and rpt are created to respectively represent promise

pointer and read pointer of a resource. For each resource the promised pointer is initialised to

zero and only two reply events resource reply general and resource reply special (Listing 6.27)

modify a promised pointer variable. The first event simply increments the current ppt(r) value

after reply message has been sent whereas the latter event updates the ppt(r) by computing action

act3, where maximum function parameters are the current ppt(r) value and received srequest

message value.

Listing 6.27: The event modelling a resource replying to a srequest message
resource reply special =̂
ANY

rp
rq

WHERE
grd1 rq ∈ rqs
grd2 rp ∈ REP \ rep
grd3 repd(rp) = rqss(rq)
grd4 reps(rp) = rqsd(rq)
grd5 repn(rp) = max({ppt(reps(rp)), rqsn(rq)})

THEN
act1 rep := rep ∪ {rp}
act2 rqs := rqs \ {rq}
act3 ppt(reps(rp)) := max({ppt(reps(rp)), rqsn(rq)}) + 1

END

92

Read pointers are updated by two events which send pready messages. In constrast to the

previous variable the read pointer rpt(r) is always set to the minimum value of the request pool.

This is necessary as some agent might negotiate a distributed lane with lower index than others

but its write messages are delayed (or even lost) so the protocol would halt. Allowing agents with

higher distributed lane indexes but sooner write message arriving to consume resources introduces

fault-tolerance into the protocol. Guards of these two events were also strengthened to only send

pready messages to newly incoming agents if their index is the lowest in the request pool.

6.1.11 Proving Functional Protocol Correctness

As shown in Section 6.1.3 (Scenarios 1 - 2) high-level system requirements can only be met if an

agent invariably and correctly forms a distributed lane. The probabilistic lane forming eventuality

(LIV2) is discussed separately, while in the following paragraphs, we focus on the proof regarding

requirements SAF3-4.

SAF3 is required to ensure that agent’s resource objectives are not satisfied or satisfied in full.

The model addresses this via event guards restricting enabling states of the event that generates

an outgoing write message. To cross-check this implementation we add an invariant that directly

shows that SAF3 is maintained in the model. For illustrative purposes we focus on details of

verifying a slightly more interesting case of SAF4 which assumes that SAF3 property is proven.

Listing 6.28: The event modelling a resource replying to a request message with history variable extension
resource reply general =̂
ANY

rq, rp
WHERE

grd1 rq ∈ req
grd2 rp ∈ REQ \ rep
grd3 repd(rp) = reqs(rq)
grd4 reps(rp) = reqd(rq)
grd5 repn(rp) = ppt(reps(rp))

THEN
act1 rep := rep ∪ {rp}
act1 req := req \ {rq}
act3 ppt(res) := ppt(res) + 1
act4 hisppt(res) := hisppt(res)
act5 hiswr(res) := hiswr(res) + 1

END

93

Requirement SAF4 addresses potential cross-blocking deadlocks or resource double locking

due to distributed lane overriding. The strategy is to prove the requirement by showing that agents

that are interested in at least one common resource (related) always form distributed lanes with

differing indices. We start by assuming that agents only form distributed lanes if all received

indices are the same (proved as SAF3). Then, if a resource (or resources) shared between any

two related agents send unique promised pointer values to these agents, these indices will be

distributed lane deciders as all other indices from different resources must be the same to form a

distributed lane. Hence, to prove SAF4 it is enough to show that each resource replies to a request

or special request message with a unique promised pointer value.

Listing 6.29: Additional variables and invariants added for providing safety property SAF4
VARIABLES

hisppt, hiswr
INVARIANTS

hisppt ∈ RES→ (N 7→N)
hiswr ∈ RES→N

invsaf4 ∀r, n1, n2 · r ∈ RES∧ n1, n2 ∈ dom(hisppt(r)) ∧ n1 < n2 ⇒ hisppt(r)(n1) < hisppt(r)(n2)
inv hisppt ∀res · (hiswr(res) = 0∧ hisppt(res) = ∅) ∨

(dom(hisppt(res)) = 0 .. hiswr(res)− 1 ∧ hisppt(res)(hiswr(res)− 1) = ppt(res)− 1)

To prove this property we first extend our model with a variable hisppt and an entry variable

hiswr or time-stamp as shown in Listing 6.29. The former variable stores each resource’s

chronological promised pointer updates and latter works as a write pointer for history variable.

After introducing history variables, we updated two events resource reply {general, special}

which update promised pointer variables (after sending reply messages) by adding two new actions

act4 and act5 as shown in Listing 6.28 (identical extension for resource reply special event).

Action act4 updates a history variable for a resource res with the current write stamp and

promised pointer (ppt(res)) value sent. The next action act5 simply updates the resource’s write

stamp. We can then add the main invariant to prove (invsaf4) which states that if we take any two

entries n1, n2 of the history variable for the same resource where one is larger, then that larger

entry should have larger promised pointer value.

To prove that resource reply {general, special} preserve invsaf4, the following properties play

the key role: (1) the domain of hisppt (i.e., ‘indices’ of hisppt) is {0, . . . , hiswr − 1}, (2)

hisppt(hiswr − 1) < hisppt(hiswr). Property (2) holds because hisppt(hiswr) is the maximum of

94

promised pointer (ppt) and special request slot number and promised pointer is incremented

as resource reply {general, special} occurs. We also specified these properties as an invariant

(inv hisppt) and proved they are preserved by the events which helped to prove invsaf4 .

Proof statistics. In Table 5.1 we provide an overall proof statistics of the Event-B protocol

model which may be used as a metric for models complexity. The majority of the generated

proof obligations were automatically discharged with available solvers and even a large fraction

of interactive proofs required minimum number of steps. We believe that a high proof automation

was due to modelling patterns [126] use and the SMT-based verification support [110, 111].

Model No. of POs Aut. Discharged Int. Discharged
context c0 0 0 0

context mes. 9 9 0
machine m0 12 12 0
machine m1 23 21 2
machine m2 59 43 16
machine m3 43 32 11
machine m4 103 57 46

Total 249 174 75

Table 6.4: Event-B protocol model proof statistics

6.1.12 Proving Protocol Probabilistic Termination with PRISM

As the distributed signalling protocol had a stochastic nature it was important to formally

demonstrate that a satisfying state could be reached. Probabilistic and liveness properties are

hard to formalise and deductively prove in the Event-B method. Alternatively, a model checking

based approach could be used to find if a satisfying state can be reached. However, the ProB model

checker is often not able to automatically find a bounded model of a system, when expressions of

the Event-B model are too complex for the ProB constraint solver. Furthermore, the ProB model

checker is not a probabilistic model checker, so, probabilistic behaviours cannot be captured or

reasoned about.

Therefore, it was decided to prove the termination of the protocol outside of the Event-B

model by redeveloping and proving part of the protocol (stage1) in the PRISM probabilistic model

checker. The first advantage of using the PRISM model checker is that it allows developers

assigning probabilities to events, which can be used to model message delays. The second

95

advantage of PRISM is that it supports quantitative properties. For example, one can express

a question in PRISM like ”What is the probability of event X occurring?”. In this work, we used

a quantitative reasoning to demonstrate that the probability of an agent negotiating a distributed

lane (LIV2) approaches one as a number of completed renegotiation cycles increases.

However, the drawback of using PRISM model checker if a bounded problem abstraction

cannot be found, the verification is limited to bounded models. As we could not find an abstraction

for a protocols stage1, we created a skeleton model, which then could be instantiated to model

specific scenarios of stage1 with n agents, m resources and other initial conditions. Additionally,

we developed a model generator, which can automatically instantiate the skeleton model to

capture a random scenario and run probabilistic verification conditions.

To model the distributed lane negotiation protocol we use the Discrete Time Markov Chains

framework from the PRISM model checker. The generic model can be partitioned into three main

parts: global variable declaration, resource modules and agent modules.

Global Variables There are two types of global variables anm and aonnm and both types are

associated with agents. The first variable anm is used to model stage1 messages exchanges

between an agent n and resource m. For example, if one wants to model a scenario where an

agent a0 wants to reserve resources r0, r1 two global variables a00 and a01 (initially set to 0)

are needed. The second variable aonnm is a status variable and similarly to the previous one, a

separate variable is created for every agent-resource relation in the scenario. The status variable

can take one of two possible values ([0..1] init 1) and are used to update probabilities as well as

control models flow. The following paragraphs explain how these variables are modified.

Resource Modules For each resource an individual resource module is created which contain a

local promised pointer variables and single command. Two parameters which can be varied for the

pptm: initial value (or the promised pointer offset) and the upper bound of the promised pointer.

The module also only requires a single command which is expressed below. The additional guards

are mainly added to protect from variable overflows and terminate model once all distributed lanes

are negotiated.

The main guard uses agent status variables aonnm to activate module only if there is at least one

agent which is interested in reserving that resource but has not received a promised pointer value.

Then for each interested agent, there is an associated probabilistic state transition. A probability

of specific state transition is inversely proportional to the number of remaining agents which have

96

not yet received a promised pointer value from that resource. The specific state transition will

update variables aam, pttm and will deactivate status variable aonam by setting it to zero. All

interested agents have structurally identical expression in the command with modified variable

identifiers (after +).

ALGORITHM 4 Resource module skeleton model
1: module rm
2: pptm : [0 .. T] init Tn;
3: [] additional guards & (aonam + aonbm + aoncm + · · · > 0)→
4: aonam ∗ (aonam + aonbm + aoncm...)−1 : (a′am = max(aam, pptm)) &
5: (ppt′m = max(aam, pptm) + 1) & (aon′am = 0) + · · · ;
6: endmodule

Agent Modules Similarly each agent also has an associated agent module with a local variable

distn for storing distributed lane index. The module contains two events for two scenarios: a

distributed lane has been negotiated (distributed lane variable is updated) and distributed lane has

not been negotiated. The first command is firstly enabled if all agents status variables have been

set to zero i.e. all promised pointer values have been received. The second guard ensures that all

promised pointer received values are the same and other remaining guards protect from variable

value overflow. The action of the first command, will update distn variable and the module is

never enabled again.

ALGORITHM 5 Agent module skeleton model

1: module an
2: distn : [-1 .. 100] init -1;
3: [] (aonna + aonnb + · · · = 0) & (ana = anb = · · ·) & other guards→
4: dist′n = ana;
5: [] (aonna + aonnb + · · · = 0) & (∃ x, y · anx 6= any) & other guards→
6: a′na = max(ana, anb, · · ·) + 1 & a′nb = max(ana, anb, · · ·) + 1 & · · ·
7: & aon′na = 1 & aon′nb = 1 & · · · ;
8: endmodule

The second command models the second scenario where distributed lane was not negotiated

a special request messages would be sent in the protocol. In this command we replace a guard

which now enables command if there is a pair of anm variables which are not equal. The actions

of the command will update variables anm with a value of desired distributed lane as well as status

variables aonnm to allow getting new in resource modules.

97

6.1.13 Proving Protocol Probabilistic Termination with PRISM: Results

In this subsection, we discuss stochastic model checking results which proves that LIV2

requirement is preserved. In particular, we focus on showing that LIV2 requirement is ensured

in Scenario 2 (Section 2.2).

In order to demonstrate that LIV2 requirement holds in Scenario 2 (Section 2.2) we used stage1

protocol’s skeleton PRISM model to replicate Scenario 2. In this experiment we were interested

in observing the effects a promised pointer offset has on the probability of an agent forming a

distributed lane while the upper limit of the promised pointer is increased (n in Scenario 2). Early

experiments showed that verification would not scale well (several hours for a single data-point)

if we would increase the number of resources and agents above two resources and three agents

(each agent trying to reserve both resources) so we kept these parameters constant.

Figure 6.2: Scenario 2 with varied resource promised pointer offset and queue depth.

For each scenario, we would run a quantitative property: P = ? [F dist0 > -1] which asks

what is the probability of an agent negotiating a distributed lane until the upper promised pointer

limit is reached. The three curves (red, green and violet) in Figure 3 show the effect a promised

pointer offset has on negotiation probability as queue depth is increased. Results suggest that

increasing the offset reduces the probability of negotiating a distributed lane as queue depth is

increased, but the probability still approaches one as the number of rounds is increased.

98

To further see the effects of the offset, we considered a different experiment where the same

quantitative property would be run when the number of possible renegotiations value is kept

constant and offset is increased (light blue plot). Results indicate that offset has only effect until

a specific threshold and after that the probability of agent negotiating a distributed lane is not

affected by the offset. These results suggest that the situation in Scenario 2 does not violate LIV2

requirement as distributed lanes can be negotiated.

6.2 Case Study 2: Heterogeneous Railway Signalling System

Integrating modern railway signalling systems within outdated national railway networks is

currently one of the major challenges in the railway domain. A gradual railway network

modernisation process means that heterogeneous railway signalling networks will be inevitable

due to practical constraints to upgrade the whole network at once.

In some situations, mainline services must be integrated with urban networks which mostly

operate with different signalling solutions. For example, Crossrail is a major ongoing railway

project where mainline services will be integrated with a high -performance urban railway system.

This particular network will operate with three different signalling systems. On the western and

eastern branches of the network fixed block signalling systems will operate whereas the central

area will be operated with a moving block principle. Novel signalling interfaces will be developed

to ensure a smooth and safe rolling stock signalling transition.

T2 T1

CCH CCA

LTA LT
M0 M1

InterlockingBInterlockingA

Figure 6.3: An example of the heterogeneous railway signalling model with two transitioning trains

In this case study, we model the signalling transition of a train in a heterogeneous signalling

system with interfacing fixed and moving block signalling systems. The model we consider in

this case study is based on the simplified Crossrail western network section signalling interface

between ETCS Level 2 and CBTC [28] (discussed in Section 2.1.2). However, in this model,

we only consider a one-way transition scenario, where all trains in the model are initially in

99

the moving-block signalling system and transition to the fixed-block part of the network. The

model is visualised in Figure 6.3 with two trains transitioning from a moving-block to a fixed-

block signalling system. In the following sections, we further describe the heterogeneous model,

a handover communication protocol and the main safety requirements of the system. Then, we

describe the formal Event-B of the system, which refined the generic communication-based hybrid

signalling model we introduced in Chapter 5.

6.2.1 Heterogeneous Signalling Model Description and Requirements

The heterogeneous signalling model we consider in this case study builds upon the previously

described communication-based hybrid signalling model in Section 5.2. This extension will be

reflected in a formal Event-B model by refining a generic hybrid signalling model according to

the proposed multifaceted formal development methodology. In the following paragraphs, we

introduce the key extensions of the generic signalling model, including additional field elements,

system-level transition protocol and system requirements.

System Model In order to model a heterogeneous signalling system and rolling stock signalling

transition, we require extending the generic hybrid signalling model described in Section 5.2. The

first modification we make is refining a position reference balises with a type parameter. The two

new balise types for a system-level transition protocol are Level Transition Announcement (LTA)

and Level Transition(LT) which once passed over by a train will respectively inform a communication-

centre to start a handover procedure and that a train has crossed a signalling boundary. The

handover procedure is defined by a system-level transition protocol, which extends the protocol

of the generic communication-based signalling system (see Figure 5.4) with functionality to issue

trains with a movement authority that crosses into the next signalling area and handover train

management to the accepting communication centre. In Table 6.5, we elicit specifications and

assumptions of the heterogeneous signalling model we consider in this case study.

System-Level Transition Protocol A system-level transition protocol describes message ex-

changes between adjacent signalling systems and their communicating agents. The objective

of the protocol is to safely and efficiently transition rolling stock from one signalling system

to another. In communication-based signalling systems, this generally involves transferring

management of a transitioning train from handing-over communication centre CCH to accepting

communication centre CCA.

100

SPE1 | All trains in the system model have identical physical and cyber behaviour (as described in Section
5.2).

SPE2 | A single train on-board computer can operate it in both signalling areas.

SPE3 | There exists a communication interface between the adjacent communication centres.

SPE4 | All trains are initially located and safely separated in the moving-block signalling area.

SPE5 | The model only allows system-level transition from a moving-block signalling area to a fixed-block.

Table 6.5: Specifications of the heterogeneous signalling model

1. A position report (with LTA) message is sent to the handing-over communication centre

once a transitioning train passes over a level-transition announcement (LTA) balise. This

message informs a communication centre that a train is approaching the end of the signalling

area and for a movement authority extension has to be requested from an adjacent signalling

area.

2. A route request message is sent from CCH to CCA requesting extending movement authority

into CCA signalling area. This models assumes CCA operates with a fixed-block signalling,

and thus, a route (block) is requested.

3. A movement authority message is sent to CCH by CCA with an extended movement authority

(if route is available) into an accepting signalling area. If route is not available a message

does not contain an extension distance and train must not be allowed to transition. The

movement authority is forwarded to the transition train.

4. A position report (with LT) message is sent to CCH once a train passes over a level transition

balise indicating that it has transitioned to the adjacent signalling area. The message is then

forwarded to CCA indicating that the management of the train can be taken over by CCA

5. Once CCA is informed that a train has passed over a level transition balise with message (4)

a take over acknowledgement message is sent to CCH to finalise train management transfer.

6. A connect message is sent by CCH to a transitioning train informing that it is now registered

with CCA.

7. A register message is sent by a train to CCA indicating that it will now act on a movement

authority received from CCA.

101

8. A take over completed to CCH orders communication centre to remove transitioned train

from its map.

The transitioning of the train is completed when an updated movement authority is received

from CCA indicating to a train that it can disconnect from CCH and act on the new movement

authority.

Figure 6.4: Sequence diagram of the heterogeneous signalling model

Safety Requirements In this case study, we are interested in modelling a heterogeneous signalling

system, and more importantly, formally ensuring that the system’s safety requirements are

preserved by mathematically proving the Event-B model. In safety requirement Table 6.6 we

describe safety requirements we intend to prove in the heterogeneous signalling system formal

model.

102

The safety requirements SAF1,2 generally apply to any communication-based signalling

system and have been proved in a generic hybrid communication-based signalling model. In

this case study, we are focusing on a safe movement authority extension to the adjacent signalling

system and a safe train handover between the accepting and handing-over communication centres.

These requirements are expressed in the Requirement table below as safety requirements SAF3,4.

SAF1 | A communication-centre will issue a movement authority that ensures a safe separation of trains.

SAF2 | At all times the train must remain within the issued movement authority.

SAF3 | A train will only be allowed to transition to the adjacent signalling system if the accepting
communication centre has provided a movement authority extension.

SAF4 | A handing over communication centre can only remove a train from its map, if it is confirmed that
an accepting communication centre has completed a take-over procedure.

Table 6.6: Safety requirements of the heterogeneous signalling system model

6.2.2 Formal Event-B Model of a Heterogeneous Railway Signalling System

In this section, we overview the formal Event-B model of the heterogeneous signalling system

specified in the previous section. The model refines the generic communication-based model with

an additional machine model and several context models, which capture a system-level transition

protocol.

Context Model. In the heterogeneous signalling model, we extend the context model of the

generic hybrid signalling model by including additional field elements and defining communi-

cation centre types (show in Listing 6.30). Firstly, we introduce a communication centre type

function csst, which maps all communication centres to a type, represented as an enumerated

set of two elements ACC, HNO representing accepting and handing-over types. Furthermore,

we define a level-transition announcement balise as a new object (LTA), which has an associated

position function ltap, which maps balises to a one-dimensional position.

Machine Model. The heterogeneous signalling model refines generic hybrid machine models

by introducing new events, which model message exchanges described in a sequence diagram

depicted in Figure 6.7 (Listing 6.31). According to the proposed communication modelling

patterns, for every new message we introduce a channel variable in the machine model and

associated message context model.

103

Listing 6.30: Communication signalling model context

CONTEXT HetModelContex
EXTENDS

CommunicationCtx
SETS

CTYPE, STATUS, RTYPE, LTA, RTS
CONSTANTS

FREE, RESERVED, NRM, INT, CTYPE, csst, ltap, rtyp
AXIOMS

axm1 : finite(LTA)
axm2 : finite(RTS)
axm3 : partition(STATUS, {FREE}, {RESERVED})
axm4 : partition(CTYPE, {ACC}, {HNO})
axm5 : partition(RTYPE, {NRM}, {INT})
axm6 : csst ∈ CCS→ CTYPE
axm7 : ltap ∈ LTA→R+

axm8 : rtyp ∈ RTS→ RTYPE
axm9 : ∀r1, r2 · r1 ∈ RTS∧ r2 ∈ RTS∧ r1 6= r2⇒ rtyp(r1) = INT∧ rtyp(r2) = INT
axm10 : INT ∈ ran(rtyp)
...

Listing 6.31: The machine model of the heterogeneous signalling system

MACHINE HetModelMachine
REFINES SignallingModel
VARIABLES

pos, rrs, rmem, rte, rrt · · ·
INVARIANTS

inv1 pos ⊆ POS
inv2 rrs ⊆ RRS
inv3 rmem ∈ CCS↔TRN
inv4 rte ∈ RTS→ STATUS
inv5 rrt ∈ RTS 7→TRN

For example, a train position message LTA message is shown in Listing 6.32, which intro-

duces a new message type POS which is sent to a communication centre (message destination

function posd) from a train passing over LTA balise.

104

Listing 6.32: The context model of the position report message

train position message LTA
SETS

POS
CONSTANTS

poss, posd
AXIOMS

axm1 poss ∈ POS�TRN
axm2 posd ∈ POS� CCS
axm3 ∀s, d · s ∈ TRN∧ d ∈ CCS∧ v ∈ POS ⇒ ∃m · poss(m) = s∧ posd(m) = d

In Listings 6.33 and 6.34, we provided an excerpt of the heterogeneous Event-B model. Events

demonstrate how a generic hybrid signalling model can be extended with new communication

modelling events. With event Train Sense LTA we model a train passing over a LTA balise and

starting a handover procedure. The event considers a train tr whose position at time ntp(tr)(t)

equals position of an level-transition balise ran(ltap) specified by guard grd2. The train tr will

send a message ps to a communication centre it is connected grd3. The position report with a level

transition announcement message was defined according to the communication modelling pattern

and is described in Listing 6.32.

Listing 6.33: An event modelling a train passing over a level announcement balise

Train Sense LTA
ANY

tr, cc, ps
WHERE

grd1 : tr ∈ TRN
grd2 : ntp(tr)(t) = ran(ltap)
grd3 : tr ∈ rmem[{cc}]
grd4 : ps 6∈ POS
grd5 : poss(ps) = tr
grd6 : posd(ps) = cc

THEN
act1 : pos := pos ∪ {ps}

END

105

Listing 6.34: An event modelling communication centre requesting a route locking upon receiving level
transition announcement

CC Request Route
ANY

cch, cca, ps, rr
WHERE

grd1 : cch ∈ CCH
grd2 : ps ∈ pos
grd3 : rr 6∈ rrs
grd4 : rrss(rr) = posd(cch)
grd5 : rrsd(rr) = cca

THEN
act1 : rrs := rrs ∪ {rr}
act2 : pos := pos \ {ps}

END

According to the sequence diagram, once a handing-over communication centre receives a

position report message with level transition announcement it will send route request message

to an accepting communication centre. In the model, we capture this with a CC Request Route

event, where a new message rr is sent to an accepting cca and the received position report message

ps is removed from the channel with action act2.

Proof Statistics The model contained only a single new machine model and 11 additional

context models, which defined messages of the handover protocol. The completed heterogeneous

signalling model generated 32 new proof obligations, which were mostly discharged interactively.

Model |POs| Auto. Inter.

heterogeneos model (1m. + 11c.) 32 10 22

hybrid model (4m. + 1c.) 61 23 38

communication model (1m. + 8c.) 49 18 31

Total 142 51 91

Table 6.7: Proof statistics of the Event-B heterogeneous railway signalling model

106

The main safety properties of the heterogeneous signalling system (Table 6.6) were formally

defined as three Event-B invariants. The safety requirement SAF1 was split into two invariants.

Firstly, we demonstrated that SAF1 holds by proving that the first railway block in the accepting

signalling area is reserved, before a movement authority message is sent by the accepting

communication-centre (invariant SAF3 in Listing 6.35). The second invariant was concerned

with a train safe separation in the fixed-block signalling area and was proved by expressing it

as a railway block mutual exclusion property (inv5 in Listing 6.31). We did not require a third

invariant, which related to the handing-over signalling area, as it was already proved in the generic

communication-based signalling model. Similarly, as the speed controller of the train was not

changed, (SAF2 in Listing 6.35) was preserved in the heterogeneous signalling model.

Listing 6.35: The safety invariants of the heterogeneous signalling system

MACHINE HetModelMachine
INVARIANTS

SAF2 ∀t, tr · t ∈ R+ ∧ tr ∈ TRN⇒ ntp(tr)(t) ≤ nEoA(tr)
SAF3 ∀ps, rr · ps ∈ pos lt∧ rtyp(rr) = INT⇒ rte(rr) = RESERVED
SAF4 ∀cc, tc · ccst(cc) = HNO∧ tc ∈ toc∧ tocd(tc) = cc⇒ tocv(cc) ∈ rmem(cc)

The safety invariant SAF3 (Listing 6.35) was expressed as a formal property which states that

if a position message ps (with a level-transition announcement) has been sent, a route rr, which

interfaces adjacent signalling system has to be reserved.

The final safety property (SAF4) was also proved interactively by proving Event-B invariant

SAF4 (Listing 6.35) which formally states that if a take-over completion (tc) message has been

sent to a handing-over communication centre (tc ∈ toc), a train (tocv(cc)) must still be in the

memory (map) of the handing-over communication centre (rmem(cc)).

107

6.3 Evaluation Summary and Discussion

In this chapter, we presented two case studies, which have been formally developed according

to the proposed development methodology. In the first study, we developed a novel distributed

resource allocation protocol, which can be used in decentralised railway signalling systems to

safely allocate railway sections to trains. The methodology in this case study was specifically used

to prototype a new signalling system starting with initial system specifications and requirements.

The initial functional pivot Event-B model of the protocol, which is developed in the second

methodology step, played a crucial role in enabling us to identify problematic scenarios where

a liveness property could not be ensured. In particular, the ProB animation and model checking

Rodin tool provided a pragmatic method to discovering protocol issues without requiring us to

complete formal proofs at this development stage. The problematic scenarios have been resolved

by refining a resource allocation protocol with a two-stage resource locking mechanism. And

once we had the confidence in the protocol correctness, the final distributed protocol version was

formally modelled and formally proved by discharging proof obligations. However, this case

study has also demonstrated that probabilistic system properties cannot easily be expressed in

Event-B modelling language, and therefore, one of the protocol liveness properties was verified

externally using the PRISM stochastic model checker.

The focus of the second case study was the evaluation of the proposed methodology when it is

applied to formally developing heterogeneous signalling systems. In the section about the second

study, we first described the heterogeneous signalling system we considered in the case study,

which included the specification of the signalling handover protocol and safety requirements (as

suggested by the methodology). Then, we described the functional pivot Event-B model of the

heterogeneous signalling system, which was developed by extending the generic communication-

based signalling model and utilizing communication modelling patterns. Lastly, the safety

requirements were formally expressed as Event-B invariants and interactively proved in the Rodin

platform.

In overall, we think that the two case studies presented in this chapter are sufficient to

discuss and demonstrate the applicability of the methodology to formally developing signalling

systems. First of all, the case studies were selected to capture two dominant formal system

development approaches, namely, an iterative (prototyping) development method and formal

108

development of a fully specified system. Secondly, both case studies extensively evaluated

communication modelling patterns, specifically, if the introduced patterns are complete and

could capture a majority of communication scenarios. Similarly, in the second study, we

evaluated the refinement process of the generic hybrid communication-based signalling model

with heterogeneous signalling specifications. The second case study has demonstrated that

the generic communication-based signalling model could be easily refined into a fixed-block

signalling system, thus enabling modelling different configurations of heterogeneous signalling

systems. Lastly, we emphasised that it is crucial that the methodology enables formal verification

of discrete, hybrid, and stochastic system-level properties. In order to evaluate the formal

verification aspect of the methodology, case studies were selected so it was required to formally

verify safety properties on hybrid, probabilistic and discrete system aspects.

In Section 1.3 and Section 2.1.4 we elicited key research questions and requirements for

the multifaceted methodology. In the following paragraphs, we revisit and discuss research

questions and methodology requirements we raised in this thesis based on results obtained from

the evaluation study.

Requirement1 The formal engineering methodology should support a system-level mod-

elling as the safety of heterogeneous signalling systems relies on the correctness of

subsystems and their interaction.

Requirement3 The formal engineering methodology should make it possible to specify and

verify system-level properties.

The importance of verifying cyber-physical systems at the system-level was expressed in the

seminal Baheti and Gill paper [13] in which the authors expressed great concerns about the divide

and conquer application of formal methods to the cyber-physical system development. Therefore,

two of the key methodology requirements, Requirement1 and Requirement3, are both concerned

with the modelling and verification of cyber-physical systems at the system-level.

We think that the methodology’s evaluation, in particular, a heterogeneous signalling system

modelling study has demonstrated that the Event-B modelling language and developed modelling

patterns provide a unified system-level signalling modelling framework. In the functional

pivot Event-B model, different signalling subsystems can be expressed as set-based objects in

the context models, whereas dynamic sub-system behaviour can be expressed as parametrised

109

machine model events. Crucially, a system abstraction and stepwise modelling principles of

Event-B enable specifying parts of the signalling system at the chosen level of detail, which helps

to address the trade-off between formal development productivity and the need to consider all

sub-systems. An example of this was modelling a heterogeneous signalling system, in which

communication centres have been modelled in much greater detail compared to interlocking

systems. The sub-system refinement decision was based on the safety properties we were

interested in proving, which in that case study were essentially concerned with the interactions

between rolling stock and communication-centres.

Requirement2 The methodology should provide a generic formal signalling model and

support a model extension with specific signalling solutions.

The evaluation demonstrates that the proposed systematic formal development method is

beneficial in both formal development scenarios (iterative and linear). The stepwise development

principle of the methodology was particularly useful in the iterative development scenario (case

study 1) where a number of protocol issues were discovered. Due to the stepwise modelling

principle, re-modelling efforts were significantly reduced as only a part of the complete functional

pivot Event-B model needed to be reworked. For example, issues discovered in the stage1 of the

distributed protocol only affected final refinement step M4 and so machine models M0..3 and

associated (completed) proofs were preserved.

Similarly, in the second case study, a stepwise development principle of the methodology and

generic communication-based signalling system model helped to reduce the formal development

effort of the heterogeneous signalling system. The heterogeneous signalling system was modelled

by extending existing context and machine Event-B models with signalling specifications

particular to the modelled scenario. On the other hand, the second case study has demonstrated

that the new signalling objects might need to be introduced or be parametrised, for example,

level-transition balises.

We believe that evaluation results have demonstrated (and addressed Requirement2) that: 1)

the methodology provides a mechanism to extend a generic communication-based signalling

model via Event-B refinement and 2) a generic model is sufficiently generic to be refined into

the signalling system with different operation principles.

110

Requirement4 The methodology and generic formal signalling model should make it

possible to capture and reason about continuous, discrete and stochastic aspects of a system.

The multi-aspect reasoning requirement relates to the cyber-physical nature of heterogeneous

signalling systems. This methodology requirement was addressed by developing a generic hybrid

signalling model with hybrid Event-B modelling patterns introduced by Dupont et al. [59]. In

the second case study (and also Chapter 5) we demonstrated that the methodology does support

reasoning about hybrid system aspects, specifically, that Event-B invariants can be expressed so

they refer to discrete and continuous system variables. In addition to specified invariants, one is

also required to prove well-definedness and feasibility (ODE solution existence) proof obligations

related to continuous system aspects. The evaluation has demonstrated that proving properties

about hybrid system aspects is a major challenge (Tables 5.1 and 6.7). Nonetheless, because of

the stepwise Event-B modelling principle, the generic hybrid signalling model is only required to

be proved once and only proof obligations of its refinements steps (e.g. case study 2) are required

to be discharged.

In the first case study, we were also required to prove a protocol termination property.

However, we found it difficult to encode stochastic elements into the Event-B protocol model

or specify a convergence variant (often used to prove termination). Therefore, it was decided to

model and verify part of the protocol stage1 in a PRISM probabilistic model checker. We believe

that this is an important methodology and the Event-B modelling limitation, which should be

addressed in future work.

Methodology Limitations Even though we believe that the proposed methodology is a step

forward towards a practical formal methods based engineering methodology of cyber-physical

railway signalling systems, we identified a few key methodology limitations. In the following

paragraphs, we discuss these limitations, whereas the next chapter will discuss future work, which

would address issues raised in this section.

Research Question3 Are there (or is it possible to develop) adequate and scalable verification

tools to reason about hybrid, stochastic heterogeneous cyber-physical railway signalling

systems properties?

111

Requirement4 The methodology and generic formal signalling model should make it

possible to capture and reason about continuous, discrete, and stochastic aspects of a system.

Automating formal verification has been one of the major challenges in the field of formal

methods, particularly automatically verifying hybrid models. One of the main research questions

(Research Question3) of this research was exactly concerned with the scalability and adequacy

of verification tools. Furthermore, one of the requirements (Requirement4) for the methodology

was the ability to reason about continuous, discrete and stochastic aspects of a system. Over the

years, a number of verification tools have been developed and integrated into the Rodin platform

(e.g. [110, 111]) which have reduced the number of interactive proofs.

However, the verification of a heterogeneous signalling system and generic hybrid signalling

model (see Chapter 5.2.6) have demonstrated that existing Event-B verification tools do not

achieve adequate verification automation (see Table 5.1 and Table 6.7). Similar verification results

have been reported in other studies, which attempted to verify hybrid systems in Event-B [61,119].

Although the methodology does enable reasoning about continuous system properties as imposed

by Requirement4, a poor verification automation of hybrid signalling models would hinder the

methodology’s usability, particularly for verifying larger hybrid signalling models.

Requirement2 The methodology should provide a generic formal signalling model and

support a model extension with specific signalling solutions.

The Event-B method, which is at the core of the proposed methodology, provides a refinement-

based model development method. The formal development methodology provides a generic

(hybrid) communication-based signalling model, which can then be refined in order to capture a

specific heterogeneous or homogeneous signalling system. However, the proposed methodology

does not currently provide refinement patterns or specify how a generic signalling model should be

extended. Similarly, the communication modelling patterns we introduced in this research also do

not impose a specific refinement process of the distributed system (distributed system refinement

we briefly discussed in [126]). In the recent work [127], the hybrid Event-B modelling patterns

we used to develop a generic hybrid signalling model have been extended with refinement patterns

for modelling distributed-hybrid systems.

112

Research Question1 Can heterogeneous cyber-physical railway signalling systems be

pragmatically engineered by using formal methods?

Although, some contributions of this research (e.g. communication modelling patterns) can

be used to formally model a variety of systems, the methodology we proposed is railway domain

specific. However, to a certain extent, the practicality of the method depends on the capability

to communicate useful feedback (e.g. discovered signalling issues) to (railway signalling) system

engineers in the form they can interpret. Furthermore, it is generally accepted that only a small

percentage of systems engineers have a background in formal methods. Therefore, we believe

that one of the methodology’s limitations is inadequate feedback, especially when a problem is

discovered in the model. For example, a feedback issue has been addressed in work by Iliasov et

al. [128] in which a deductive verification method is used to verify signalling systems. The results

(e.g. undischarged proof obligations) are then used to generate a verification report th highlights

problems on the considered railway layout and the excerpt of signalling software.

113

Chapter 7

Conclusions

This chapter summarises the key findings of this research. In particular, this chapter focuses

on summing up the main insights acquired from developing and evaluating our proposed

methodology. In this chapter, we also present the potential research directions for extending

the methodology for it to be more applicable in a model-based development of real-world cyber-

physical railway signalling systems.

7.1 Summing Up

In this research, we attempted to address the challenges of applying formal methods for a model-

based development of cyber-physical systems. In particular, the research described in this thesis

focused on a formal development and the safety verification of heterogeneous cyber-physical

railway signalling systems. The difficulty of a model-based cyber-physical system development

stems from the complex nature of cyber-physical systems which have a deeply intertwined

physical processes, computation and networking system aspects that have to be captured by

a system-level formal model. Furthermore, the heterogeneity of the modern communication-

based railway signalling systems and their safety-critical nature further complicate the adoption

of formal methods in developing these systems.

The overall objective of this research was to address the challenge of applying formal methods

to designing railway signalling systems by formulating a formal development methodology of

114

cyber-physical railway signalling systems. It was essential that the methodology not only reduces

the effort of applying formal methods, but also facilitates a rigorous and systematic model-based

signalling system development. The main contribution of this research is summarised in the

following:

c1) A model-driven development methodology of the heterogeneous cyber-physical railway

signalling systems

At the core of the proposed methodology, a formal specification language facilitates a rigorous

formal development of signalling systems. In this thesis, we presented our evaluation of different

classes of formal methods and formal specification languages, and discussed their suitability to

modelling cyber-physical railway signalling systems. The analysis concluded that the Event-B

method (and the Rodin tool-set) with an expressive modelling language, stepwise and proof-

based modelling approach would be the most suitable for a formal modelling and verification of

cyber-physical railway signalling systems.

Based on the requirements for the methodology and formal specification language evaluation,

the formal development methodology was introduced with the Event-B formalism being at the

core of the formal railway signalling modelling process. In order to provide a more systematic

and practical formal modelling process of heterogeneous railway signalling systems, we described

three technical methodology contributions:

c2) Event-B communication modelling patterns

c3) Event-B hybrid railway signalling modelling patterns

c4) Generic communication-based railway signalling Event-B model

The proposed formal development method and modelling patterns were rigorously evaluated

with the two case studies, which captured different system development principles (iterative and

sequential), distinct signalling concepts and safety requirements. The results have demonstrated

that this methodology with the generic communication-based railway signalling Event-B model

and patterns reduce formal modelling and verification effort by:

1) providing a once and for all proved formal generic signalling model, which is refined to

capture a specific signalling system

115

2) providing communication modelling patterns, which implement a systematic method to

modelling diverse message sending and receiving scenarios

In particular, the heterogeneous signalling system modelling study has demonstrated that

the generic communication-based signalling model can be easily extended to capture different

heterogeneous signalling configurations by instantiating communication modelling pattern events

and refining system context model. The rolling stock plant dynamics model can also be modified

by further constraining plant model parameters in the Train context model. Overall, we think that

the generic Event-B signalling model provides a reusable formal development framework, which

increases the productivity of formally developing systems.

In this thesis, we also demonstrated that the methodology can be effectively used for an early

system prototyping (case study 1) where system specifications and requirements are incomplete,

and for a formal system development with fully defined requirements (case study 2). In the first

case study, the Rodin tools such as the ProB plug-in [112] were pragmatically used for discovering

system or modelling issues in the early modelling stages where discharging proof obligations

might be too cumbersome. The first case study has also demonstrated that communication

modelling patterns make it possible to capture different message sending/receiving scenarios in

a systematic way, and therefore, applied to modelling a variety of distributed communicating

systems.

The proposed development methodology and associated contributions of this research facilitate

an application of formal methods to developing and verifying the safety of heterogeneous (and

homogeneous) hybrid signalling systems. We believe that, the introduced modelling principles,

patterns and a generic hybrid signalling model, reduce formal modelling effort by providing a

more systematic and reusable model-based development of heterogeneous signalling systems.

Despite the limitations of the proposed methodology, which were discussed in the previous

chapter, we think that overall our methodology provides a more practical application of formal

methods to the railway signalling domain.

More generally, research results presented in this thesis show that formal methods can provide

an adequate and unified theoretical foundation to capture physical processes, computation and

networking system aspects of cyber-physical systems. However, even with the available modelling

patterns and generic domain models formal modelling and verification remain a major obstacle

in further adoption of formal methods. In particular, an automatic formal verification of formal

116

models, which combine continuous and discrete behaviour remains a challenge. The problem is

particularly relevant for a safety verification of cyber-physical transportation systems for which

safety requirements are often associated with a physical behaviour of a plant, which is controlled

by a discrete controller.

In the following section, we discuss future works that could be undertaken to further advance

this research.

7.2 Future Work

In this thesis, we identified a few potential future research directions, which could address the

limitations of the methodology (discussed in Chapter 6) and increase its applicability to formally

developing real-world heterogeneous signalling systems.

As discussed by Kim And Kumar [3] one of the fundamental research challenges in a model-

based development of cyber-physical systems is the integration of different theoretical frameworks

and modelling/verification tools. The evidence of this research can lead one to conclude that the

Event-B theoretical framework together with the Rodin Theory plug-in can provide a unified

formal modelling and verification framework. Nonetheless, a further work is still necessary,

especially a development of (and integrating into a proposed methodology) Event-B theories

that capture stochastic and heterogeneous system aspects. In particular, stochastic theory and

modelling patterns could address issues raised in the first case study where an external PRISM

stochastic modelling framework had to be used.

The proposed formal development methodology does not provide a systematic process to

refine the generic communication-based signalling model with specific signalling configurations.

Formalising refinement steps would fully utilise the benefits of the Event-B stepwise modelling

and reduce modelling and verification effort. In the paper [126], we briefly discussed initial ideas

for a systematic refinement of distributed Event-B system models. We believe that the future

work of defining refinement patterns can be built around refinement ideas in our paper [126]

and refinement patterns of distributed hybrid systems described in a work by Dupont et al. [127].

Furthermore, as we demonstrated in the second case study, the refinement of the generic signalling

model is mostly concerned with refining communication part of the system. The modelling effort

with our methodology could be significantly reduced by providing an automatic refinement of

117

communication models from a high-level protocol specification, for example, sequence diagrams,

which are a widely used method to specify protocols in the railway industry.

In the work by Savicks [113], the Event-B modelling framework was extended with a

functionality to export Event-B models as a Functional Mock-up Unit which then could be co-

simulated with other models using the Functional Mock-Up Interface standard. We believe that by

integrating the Event-B co-simulation and co-modelling plug-in within our proposed methodology

we could address an inadequate feedback issue by providing seamless model translation to

domain-specific tools, such as railway modelling and simulation tool SafeCap [129]. In order

to integrate the Event-B co-simulation plug-in within our methodology, the co-simulation plug-

in would have to be extended with a functionality to export Event-B models which include new

theories developed via the Theory plug-in. Furthermore, an extension of the SafeCap tool with a

Functional Mock-Up Interface standard support would also be required. Nonetheless, because of

the standard popularity in various industries, we believe that this methodology extension would

increase the prospects of deploying methodology in a real industrial setting.

Overall, we believe that the main barrier for a practical deployment of our proposed

development methodology is the formal verification of hybrid signalling system properties. We

believe that the challenge of automatically verifying hybrid Event-B models can be addressed by:

1) Improving the existing Rodin verification plug-ins

The verification could be improved by extending an existing Rodin verification plug-in [111]

(based on the Why3 [130] umbrella prover) with additional libraries which include Reals and

continuous system operators defined in Section 5.1.

2) Modifying the continuous system Event-B theory described in Section 5.1

The Rodin Theory plug-in not only enables users defining new operators, expressions and

datatypes but also allows to specify rewrite and inference proof rules. We believe that

by including new proof rules into the continuous system Event-B theory, the number of

interactive proofs, which relate to the continuous model variables, would be reduced.

3) Integrating automatic verification tools, which are based on the reachability analysis into the

Rodin platform.

Over the last few decades, formal verification tools, which are based on a system reachability

analysis have been developed. The advantage of these tools is their fully automatic

118

verification characteristic, which often comes at the cost of the scalability and accuracy.

However, in the last several years, verification algorithms and tools such as SpaceEX [76]

based on the reachability analysis have been significantly improved and can verify hybrid

systems with tens of variables in minutes.

Lastly, the future work should further evaluate our formal development methodology with

more complex heterogeneous systems.

119

Bibliography

[1] J. Potocki de Montalk, “Computer software in civil aircraft,” Microprocessors and

Microsystems, vol. 17, no. 1, pp. 17 – 23, 1993.

[2] T. A. Henzinger and J. Sifakis, “The discipline of embedded systems design,” Computer,

vol. 40, no. 10, pp. 32–40, 2007.

[3] K. Kim and P. R. Kumar, “Cyber–Physical Systems: A Perspective at the Centennial,”

Proceedings of the IEEE, vol. 100, pp. 1287–1308, May 2012.

[4] A. H. Cribbens, “Solid-state interlocking (SSI): an integrated electronic signalling system

for mainline railways,” IEE Proceedings B - Electric Power Applications, vol. 134, no. 3,

pp. 148–158, 1987.

[5] E. A. Lee, “Cyber physical systems: Design challenges,” in 11th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC), pp. 363–369, 2008.

[6] J. C. Knight, “Safety critical systems: challenges and directions,” in Proceedings of the

24th International Conference on Software Engineering. ICSE 2002, pp. 547–550, May

2002.

[7] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, applications, and

challenges in cyber-physical systems,” KSII Transactions on Internet and Information

Systems, vol. 8, pp. 4242–4268, December 2014.

[8] M. Broy and A. Schmidt, “Challenges in engineering cyber-physical systems,” Computer,

vol. 47, pp. 70–72, February 2014.

120

[9] H. K. Bruce, E. Lee, I. Lee, A. Mok, G. Pappas, R. Rajkumar, L. S. Raymond, S. A.

Vincentelli, K. Shin, J. Stankovic, J. Sztipanovits, W. Wolf, and W. Zhao, “Cyber-physical

systems: Executive summary,” CPS Steering Group, Arlington, 2018.

[10] T. A. Henzinger and J. Sifakis, “The embedded systems design challenge,” in FM 2006:

Formal Methods (J. Misra, T. Nipkow, and E. Sekerinski, eds.), pp. 1–15, Springer Berlin

Heidelberg, 2006.

[11] E. Lee, “The past, present and future of cyber-physical systems: A focus on models,”

Sensors (Basel, Switzerland), vol. 15, pp. 4837–4869, March 2015.

[12] J. Lygeros and M. Prandini, “Stochastic hybrid systems: A powerful framework for

complex, large scale applications,” European Journal of Control, vol. 16, no. 6, pp. 583

– 594, 2010.

[13] R. Baheti and H. Gill, “Cyber-physical systems,” The Impact of Control Technology,

pp. 161 – 166, 2011.

[14] ERTMS User Group, “UNISIG: ERTMS/ETCS: System requirements specification v.

3.4.0,” April 2002.

[15] IEEE Std 1474.1-2004, “IEEE standard for Communications-Based Train Control (CBTC)

performance and functional requirements,” 2005.

[16] Crossrail Project Website. https://www.crossrail.co.uk/.

[17] National Audit Office, “Completing Crossrail.” https://www.nao.org.uk/

report/crossrail/, May 2019.

[18] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Practice and

experience,” ACM Comput. Surv., vol. 41, no. 4, October 2009.

[19] J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York, USA: Cambridge

University Press, 1996.

[20] European Committee for Electrotechnical Standardization, “EN50128 railway applications

- software for railway control and protection systems,” 1997.

121

https://www.crossrail.co.uk/
https://www.nao.org.uk/report/crossrail/
https://www.nao.org.uk/report/crossrail/

[21] A. Fantechi, “Twenty-five years of formal methods and railways: What next?,” in Software

Engineering and Formal Methods (S. Counsell and M. Núñez, eds.), pp. 167–183, Springer

International Publishing, 2014.

[22] R. Alur, “Formal verification of hybrid systems,” in Proceedings of the Ninth ACM

International Conference on Embedded Software, EMSOFT ’11, pp. 273 – 278, ACM,

2011.

[23] B. Silva, O. Stursberg, B. Krogh, and S. Engell, “An assessment of the current status of

algorithmic approaches to the verification of hybrid systems,” in Proceedings of the 40th

IEEE Conference on Decision and Control, vol. 3, pp. 2867–2874, IEEE, 2001.

[24] G. Theeg and S. Vlasenko, Railway Signalling & Interlocking: International Compendium.

Edition EURAIL press, PMC Media House GmbH, 2017.

[25] European Commission, “Commission Decision 2001/260/EC of 21 March 2001 on

the basic parameters of the command-control and signalling sub-system of the trans-

European high-speed rail system referred to as ERTMS characteristicsin Annex II(3)to

Directive96/48/EC,” Official Journal of the European Union L.93, pp. 53 – 56, 2011.

[26] ERTMS User Group, “UNSIG: RBC-RBC Safe Communication Interface Subset-098 v.

3.0.0,” February 2012.

[27] ERTMS User Group, “UNISIG: Specific Transmission Module FFFIS Subset-035 v.

3.2.0,” December 2015.

[28] D. Milburn, “ETCS & CBTC interfaces - Crossrail signalling.” Presentation Available

Online: www.networkrailconsulting.com/news-and-publications/

publications, December 2015.

[29] D. Broman, E. A. Lee, S. Tripakis, and M. Törngren, “Viewpoints, formalisms, languages,

and tools for cyber-physical systems,” in Proceedings of the 6th International Workshop on

Multi-Paradigm Modeling, MPM 12, pp. 49–54, ACM, 2012.

[30] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of cyber–physical

systems: A survey,” IEEE Systems Journal, vol. 9, no. 2, pp. 350–365, 2015.

122

www.networkrailconsulting.com/news-and-publications/publications
www.networkrailconsulting.com/news-and-publications/publications

[31] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “Perceptions on the state of the art in

verification and validation in cyber-physical systems,” IEEE Systems Journal, vol. 11, no. 4,

pp. 2614–2627, 2017.

[32] R. Nikoukhah and S. Steer, “SCICOS A Dynamic System Builder and Simulator User’s

Guide - Version 1.0,” Research Report RT-0207, INRIA, June 1997.

[33] H. Elmqvist, S. E. Mattsson, and M. Otter, “Modelica - a language for physical system

modeling, visualization and interaction,” in Proceedings of the 1999 IEEE International

Symposium on Computer Aided Control System Design, pp. 630–639, 1999.

[34] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli, D. Broman,

and A. Sandholm, “Openmodelica - a free open-source environment for system modeling,

simulation, and teaching,” in 2006 IEEE Conference on Computer Aided Control System

Design, pp. 1588–1595, 2006.

[35] J. F. Broenink, “20-sim software for hierarchical bond-graph/block-diagram models,”

Simulation Practice and Theory, vol. 7, no. 5, pp. 481 – 492, 1999.

[36] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clau, H. Elmqvist, A. Junghanns,

J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J. v. Peetz, S. Wolf,

A. S. Gmbh, Q. Berlin, F. Scai, and S. Augustin, “The functional mockup interface for

tool independent exchange of simulation models,” in Proceedings of the 8th International

Modelica Conference, pp. 105 – 114, March 2011.

[37] P. G. Larsen, J. Fitzgerald, J. Woodcock, R. Nilsson, C. Gamble, and S. Foster, “Towards

semantically integrated models and tools for cyber-physical systems design,” in Leveraging

Applications of Formal Methods, Verification and Validation: Discussion, Dissemination,

Applications (T. Margaria and B. Steffen, eds.), pp. 171–186, Springer International

Publishing, 2016.

[38] A. Sorensen and H. Gardner, “Programming with time: Cyber-physical programming with

impromptu,” SIGPLAN Not., vol. 45, no. 10, pp. 822 – 834, 2010.

[39] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data flow

programming language lustre,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320,

1991.

123

[40] G. Berry, The Foundations of Esterel, pp. 425–454. Cambridge, MA, USA: MIT Press,

2000.

[41] N. Halbwachs, Synchronous Programming of Reactive Systems. Berlin, Heidelberg:

Springer-Verlag, 2010.

[42] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a time-triggered language for

embedded programming,” Proceedings of the IEEE, vol. 91, no. 1, pp. 84–99, 2003.

[43] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying real-time systems

by means of the synchronous data-flow language lustre,” IEEE Trans. Softw. Eng., vol. 18,

pp. 785 – 793, Sept. 1992.

[44] A. Burns and A. Wellings, Concurrent and Real-Time Programming in Ada. USA:

Cambridge University Press, 3rd ed., 2007.

[45] G. Bollella and J. Gosling, “The real-time specification for java,” Computer, vol. 33, no. 6,

pp. 47–54, 2000.

[46] B. Bouyssounouse and J. Sifakis, Programming Languages for Real-Time Systems,

pp. 338–351. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[47] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and K. Whitehouse, “Macrolab: A

vector-based macroprogramming framework for cyber-physical systems,” in Proceedings

of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys 08, pp. 225 –

238, Association for Computing Machinery, 2008.

[48] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming wireless sensor

networks using kairos,” in Distributed Computing in Sensor Systems (V. K. Prasanna, S. S.

Iyengar, P. G. Spirakis, and M. Welsh, eds.), (Berlin, Heidelberg), pp. 126–140, Springer

Berlin Heidelberg, 2005.

[49] OMG, “Unified Modeling Language Superstructure, Version 2.5.1.,” 2017.

[50] OMG, “Modeling and Analysis of Real-time and Embedded systems (MARTE), Version 1.1.,”

2019.

124

[51] M. Z. Iqbal, S. Ali, T. Yue, and L. Briand, “Applying UML/MARTE on industrial projects:

Challenges, experiences, and guidelines,” Softw. Syst. Model., vol. 14, pp. 1367 – 1385,

Oct. 2015.

[52] Y. Kesten and A. Pnueli, “Timed and hybrid statecharts and their textual representation,”

in Formal Techniques in Real-Time and Fault-Tolerant Systems (J. Vytopil, ed.), (Berlin,

Heidelberg), pp. 591–620, Springer Berlin Heidelberg, 1991.

[53] K. Bae, P. C. lveczky, T. H. Feng, E. A. Lee, and S. Tripakis, “Verifying

hierarchical Ptolemy II discrete-event models using Real-Time Maude,” Science of

Computer Programming, vol. 77, no. 12, pp. 1235 – 1271, 2012.

[54] B. I. Silva, K. Richeson, B. Krogh, and Alongkrit, “Modeling and verifying hybrid

dynamic systems using checkmate,” in 4th International Conference on Automation of

Mixed Processes, vol. 4, pp. 1 – 7, De Gruyter, 2001.

[55] J. Hoenicke and E.-R. Olderog, “CSP-OZ-DC: A combination of specification techniques

for processes, data and time,” Nordic J. of Computing, vol. 9, pp. 301 – 334, Dec. 2002.

[56] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. Cambridge

University Press, 2013.

[57] C. B. Jones, Systematic Software Development Using VDM (2nd Ed.). USA: Prentice-Hall,

Inc., 1990.

[58] D. Cansell, D. Méry, and J. Rehm, “Time constraint patterns for Event-B development,”

in B 2007: Formal Specification and Development in B (J. Julliand and O. Kouchnarenko,

eds.), pp. 140 – 154, Springer Berlin Heidelberg, 2006.

[59] G. Dupont, Y. Aı̈t-Ameur, M. Pantel, and N. K. Singh, “Proof-based approach to hybrid

systems development: Dynamic Logic and Event-B,” in Abstract State Machines, Alloy, B,

TLA, VDM, and Z (M. Butler, A. Raschke, T. S. Hoang, and K. Reichl, eds.), pp. 155 – 170,

Springer International Publishing, 2018.

[60] R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu, “Core hybrid Event-B I: single hybrid

Event-B machines,” Science of Computer Programming, vol. 105, pp. 92 – 123, 2015.

125

[61] G. Babin, Y. Aı̈t-Ameur, S. Nakajima, and M. Pantel, “Refinement and proof

based development of systems characterized by continuous functions,” in International

Symposium on Dependable Software Engineering: Theories, Tools, and Applications,

pp. 55–70, Springer, 2015.

[62] The ADVANCE project. Online Website: www.advance-ict.eu/.

[63] M. Verhoef, P. G. Larsen, and J. Hooman, “Modeling and validating distributed embedded

real-time systems with VDM++,” in FM 2006: Formal Methods (J. Misra, T. Nipkow, and

E. Sekerinski, eds.), pp. 147–162, Springer Berlin Heidelberg, 2006.

[64] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte,

M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh, “Integrated tool chain for model-

based design of cyber-physical systems: The INTO-CPS project,” in 2nd International

Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1 – 6,

2016.

[65] L. Lamport, “Hybrid systems in TLA+,” in Hybrid Systems (R. L. Grossman, A. Nerode,

A. P. Ravn, and H. Rischel, eds.), pp. 77–102, Springer Berlin Heidelberg, 1993.

[66] C. J. Fidge, “Specification and verification of real-time behaviour using Z and RTL,” in

Formal Techniques in Real-Time and Fault-Tolerant Systems (J. Vytopil, ed.), pp. 393–409,

Springer Berlin Heidelberg, 1991.

[67] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL — a tool suite

for automatic verification of real-time systems,” in Hybrid Systems III (R. Alur, T. A.

Henzinger, and E. D. Sontag, eds.), pp. 232–243, Springer Berlin Heidelberg, 1996.

[68] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and I. Lee, “Model-

driven safety analysis of closed-loop medical systems,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 1, pp. 3–16, 2014.

[69] L. Shan, Y. Wang, N. Fu, X. Zhou, L. Zhao, L. Wan, L. Qiao, and J. Chen, “Formal

verification of lunar rover control software using uppaal,” in FM 2014: Formal Methods

(C. Jones, P. Pihlajasaari, and J. Sun, eds.), pp. 718–732, Springer International Publishing,

2014.

126

www.advance-ict.eu/

[70] S. Tripakis and C. Courcoubetis, “Extending promela and spin for real time,” in Tools and

Algorithms for the Construction and Analysis of Systems (T. Margaria and B. Steffen, eds.),

pp. 329–348, Springer Berlin Heidelberg, 1996.

[71] Y. Sun, B. McMillin, X. Liu, and D. Cape, “Verifying noninterference in a cyber-physical

system the advanced electric power grid,” in Seventh International Conference on Quality

Software (QSIC 2007), pp. 363–369, 2007.

[72] B. De Schutter, W. Heemels, J. Lunze, and C. Prieur, “Survey of modeling, analysis

and control of hybrid systems,” in Handbook of Hybrid Systems Control, Theory-Tools-

Applications (J. Lunze and F. Lamnabhi-Lagarrigue, eds.), pp. 31 – 55, Cambridge

University Press, 2009.

[73] T. A. Henzinger, The Theory of Hybrid Automata, pp. 265–292. Springer Berlin Heidelberg,

2000.

[74] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical Computer Science,

vol. 126, no. 2, pp. 183 – 235, 1994.

[75] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past hytech,” in Hybrid

Systems: Computation and Control (M. Morari and L. Thiele, eds.), pp. 258–273, Springer

Berlin Heidelberg, 2005.

[76] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,

T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid systems,” in Computer

Aided Verification (G. Gopalakrishnan and S. Qadeer, eds.), pp. 379–395, Springer Berlin

Heidelberg, 2011.

[77] A. Chutinan and B. H. Krogh, “Verification of polyhedral-invariant hybrid automata using

polygonal flow pipe approximations,” in Hybrid Systems: Computation and Control (F. W.

Vaandrager and J. H. van Schuppen, eds.), pp. 76–90, Springer Berlin Heidelberg, 1999.

[78] E. Asarin, T. Dang, and A. Girard, “Hybridization methods for the analysis of nonlinear

systems,” Acta Inf., vol. 43, pp. 451 – 476, Jan. 2007.

127

[79] S. Ratschan and Z. She, “Safety verification of hybrid systems by constraint propagation

based abstraction refinement,” in Hybrid Systems: Computation and Control (M. Morari

and L. Thiele, eds.), pp. 573–589, Springer Berlin Heidelberg, 2005.

[80] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Angiovanni-Vincentelli, “Languages and

tools for hybrid systems design,” Found. Trends Electron. Des. Autom., vol. 1, pp. 1 – 193,

Jan. 2006.

[81] S. Schupp, E. Ábrahám, X. Chen, I. Ben Makhlouf, G. Frehse, S. Sankaranarayanan,

and S. Kowalewski, “Current challenges in the verification of hybrid systems,” in Cyber

Physical Systems. Design, Modeling, and Evaluation (M. R. Mousavi and C. Berger, eds.),

pp. 8–24, Springer International Publishing, 2015.

[82] D. Harel, Dynamic Logic, pp. 497–604. Dordrecht: Springer Netherlands, 1984.

[83] A. Platzer, “Differential dynamic logic for hybrid systems,” Journal of Automated

Reasoning, vol. 41, no. 2, pp. 143–189, 2008.

[84] J. M. Davoren, “On hybrid systems and the modal µ-calculus,” in Hybrid Systems V

(P. Antsaklis, M. Lemmon, W. Kohn, A. Nerode, and S. Sastry, eds.), pp. 38–69, Springer

Berlin Heidelberg, 1999.

[85] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. er, P.-H. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” Theor. Comput.

Sci., vol. 138, pp. 3–34, Feb. 1995.

[86] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera X: An axiomatic

tactical theorem prover for hybrid systems,” in Automated Deduction - CADE-25 (A. P.

Felty and A. Middeldorp, eds.), pp. 527–538, Springer International Publishing, 2015.

[87] A. v. Lamsweerde, “Formal specification: A roadmap,” in Proceedings of the Conference

on The Future of Software Engineering, ICSE 00, pp. 147 – 159, Association for Computing

Machinery, 2000.

[88] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th Annual Symposium

on Foundations of Computer Science, SFCS 77, (USA), p. 4657, IEEE Computer Society,

1977.

128

[89] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Softw. Eng.

Methodol., vol. 11, pp. 256 – 290, Apr. 2002.

[90] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of Computer

Programming, vol. 8, no. 3, pp. 231 – 274, 1987.

[91] R.-J. Back, “Refinement calculus, part II: Parallel and reactive programs,” in Proceedings

on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, REX

workshop, pp. 67–93, Springer-Verlag New York, Inc., 1990.

[92] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin, “Rodin: An

open toolset for modelling and reasoning in Event-B,” Int. J. Softw. Tools Technol. Transf.,

vol. 12, pp. 447 – 466, Nov. 2010.

[93] M. Butler and I. Maamria, “Theories of programming and formal methods,” ch. Practical

Theory Extension in event-B, pp. 67–81, Berlin, Heidelberg: Springer-Verlag, 2013.

[94] M. Butler, J.-R. Abrial, and R. Banach, From Action Systems to Distributed Systems: The

Refinement Approach, ch. Modelling and Refining Hybrid Systems in Event-B and Rodin,

pp. 29–42. Computer and Information Science Series, Chapman and Hall/CRC, Apr. 2016.

[95] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated Designs For

Object-Oriented Systems. Santa Clara, CA, USA: Springer-Verlag TELOS, 2005.

[96] The DESTECTS project. Online Website: http://www.destecs.org/.

[97] The INTO-CPS project. Online Website: https://projects.au.dk/into-cps/.

[98] A. Platzer and J.-D. Quesel, “European Train Control System: A case study in

formal verification,” in Formal Methods and Software Engineering (K. Breitman and

A. Cavalcanti, eds.), pp. 246–265, Springer Berlin Heidelberg, 2009.

[99] S. M. Loos, D. W. Renshaw, and A. Platzer, “Formal verification of distributed aircraft

controllers,” in Hybrid Systems: Computation and Control (part of CPS Week 2013),

HSCC’13, Philadelphia, PA, USA, April 8-13, 2013 (C. Belta and F. Ivancic, eds.), pp. 125–

130, ACM, 2013.

129

http://www.destecs.org/
https://projects.au.dk/into-cps/

[100] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid, distributed, and

now formally verified,” in FM 2011: Formal Methods (M. Butler and W. Schulte, eds.),

pp. 42–56, Springer Berlin Heidelberg, 2011.

[101] A. Platzer, “Stochastic differential dynamic logic for stochastic hybrid programs,” in CADE

(N. Bjørner and V. Sofronie-Stokkermans, eds.), vol. 6803 of LNCS, pp. 446–460, Springer,

2011.

[102] A. Platzer, “A complete axiomatization of quantified differential dynamic logic for

distributed hybrid systems,” Logical Methods in Computer Science, vol. 8, no. 4, pp. 1–

44, 2012.

[103] A. Mashkoor, F. Kossak, and A. Egyed, “Evaluating the suitability of state-based formal

methods for industrial deployment,” Software: Practice and Experience, vol. 48, no. 12,

pp. 2350–2379, 2018.

[104] D. Cansell and D. Méry, “Formal and incremental construction of distributed algorithms:

On the distributed reference counting algorithm,” Theor. Comput. Sci., vol. 364, pp. 318–

337, Nov. 2006.

[105] T. S. Hoang, H. Kuruma, D. Basin, and J.-R. Abrial, “Developing topology discovery in

event-b,” Science of Computer Programming, vol. 74, no. 11, pp. 879 – 899, 2009.

[106] A. Iliasov, L. Laibinis, E. Troubitsyna, and A. Romanovsky, “Formal derivation of a

distributed program in event b,” in Formal Methods and Software Engineering (S. Qin and

Z. Qiu, eds.), pp. 420 – 436, Springer Berlin Heidelberg, 2011.

[107] G. Dupont, Y. Aı̈t-Ameur, M. Pantel, and N. K. Singh, “Hybrid systems and Event-

B: A formal approach to signalised left-turn assist,” in New Trends in Model and Data

Engineering, pp. 153–158, Springer International Publishing, 2018.

[108] M. Butler, J.-R. Abrial, and R. Banach, “Modelling and refining hybrid systems in event-

b and rodin,” in From Action System to Distributed Systems: The Refinement Approach

(L. Petre and E. Sekerinski, eds.), Taylor & Francis, April 2016.

[109] M. Butler and I. Maamria, Practical Theory Extension in Event-B, pp. 67–81. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013.

130

[110] D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin, “Integrating SMT Solvers in Rodin,” Sci.

Comput. Program., vol. 94, pp. 130–143, Oct. 2014.

[111] A. Iliasov, P. Stankaitis, D. Adjepon-Yamoah, and A. Romanovsky, “Rodin platform Why3

plug-in,” in Abstract State Machines, Alloy, B, TLA, VDM, and Z (M. Butler, K.-D. Schewe,

A. Mashkoor, and M. Biro, eds.), pp. 275–281, Springer International Publishing, 2016.

[112] M. Leuschel and M. Butler, “Prob: A model checker for b,” in FME 2003: Formal Methods

(K. Araki, S. Gnesi, and D. Mandrioli, eds.), pp. 855–874, Springer Berlin Heidelberg,

2003.

[113] V. Savicks, Integrating Formal Verification and Simulation of Hybrid Systems. PhD thesis,

University of Southampton, May 2016.

[114] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “Prism: A tool for automatic

verification of probabilistic systems,” in Tools and Algorithms for the Construction and

Analysis of Systems (H. Hermanns and J. Palsberg, eds.), pp. 441–444, Springer Berlin

Heidelberg, 2006.

[115] M. Jastram, “ProR, an open source platform for requirements engineering based on RIF,”

in Systems Eng. Infrastructure Conference, 2010.

[116] F. R. Golra, F. Dagnat, J. Souquières, I. Sayar, and S. Guerin, “Bridging the gap between

informal requirements and formal specifications using model federation,” in Software

Engineering and Formal Methods (E. B. Johnsen and I. Schaefer, eds.), pp. 54–69, Springer

International Publishing, 2018.

[117] M. Jastram, S. Hallerstede, M. Leuschel, and A. G. Russo, “An approach of requirements

tracing in formal refinement,” in Verified Software: Theories, Tools, Experiments (G. T.

Leavens, P. O’Hearn, and S. K. Rajamani, eds.), pp. 97–111, Springer Berlin Heidelberg,

2010.

[118] B. P. Rochard and F. Schmid, “A review of methods to measure and calculate train

resistances,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of

Rail and Rapid Transit, vol. 214, no. 4, pp. 185–199, 2000.

131

[119] C. Bogdiukiewicz, M. Butler, T. S. Hoang, M. Paxton, J. Snook, X. Waldron, and

T. Wilkinson, “Formal development of policing functions for intelligent systems,” in IEEE

28th International Symposium on Software Reliability Engineering (ISSRE), pp. 194 – 204,

Oct 2017.

[120] A. E. Haxthausen and J. Peleska, “Formal development and verification of a distributed

railway control system,” IEEE Transactions on Software Engineering, vol. 26, pp. 687–

701, Aug 2000.

[121] F. Whitwam and A. Kanner, “Control of automatic guided vehicles without wayside

interlocking. Patent US 20120323411 A1,” 2012.

[122] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger, “The notions of consistency and

predicate locks in a database system,” Commun. ACM, vol. 19, no. 11, pp. 624–633, 1976.

[123] P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, Jr., “Concurrency control in a system

for distributed databases (SDD-1),” ACM Trans. Database Syst., vol. 5, pp. 18–51, Mar.

1980.

[124] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 1st ed., 1992.

[125] A. Fantechi, A. E. Haxthausen, and M. B. R. Nielsen, “Model checking geographically

distributed interlocking systems using UMC,” in 25th Euromicro International Conference

on Parallel, Distributed and Network-based Processing (PDP), pp. 278 – 286, March 2017.

[126] P. Stankaitis, A. Iliasov, Y. Ait-Ameur, T. Kobayashi, F. Ishikawa, and A. Romanovsky, “A

refinement based method for developing distributed protocols,” in IEEE 19th International

Symposium on High Assurance Systems Engineering (HASE), pp. 90–97, 2019.

[127] G. Dupont, Y. Aı̈t-Ameur, M. Pantel, and N. K. Singh, “Formally verified architecture

patterns ofhybrid systems using proof and refinement with event-b,” in Rigorous State-

Based Methods (A. Raschke, D. Méry, and F. Houdek, eds.), pp. 169–185, Springer

International Publishing, 2020.

132

[128] A. Iliasov, D. Taylor, L. Laibinis, and A. Romanovsky, “Formal verification of signalling

programs with SafeCap,” in Computer Safety, Reliability, and Security, pp. 91–106,

Springer Berlin Heidelberg, 2018.

[129] A. Iliasov, I. Lopatkin, and A. Romanovsky, “The SafeCap platform for modelling railway

safety and capacity,” in Computer Safety, Reliability, and Security (F. Bitsch, J. Guiochet,

and M. Kaâniche, eds.), pp. 130–137, Springer Berlin Heidelberg, 2013.

[130] J.-C. Filliâtre and A. Paskevich, “Why3 – where programs meet provers,” in Programming

Languages and Systems (M. Felleisen and P. Gardner, eds.), pp. 125 – 128, Springer Berlin

Heidelberg, 2013.

133

	Acknowledgments
	Publications
	Research Reproducibility
	Contents
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Cyber-Physical Systems
	Cyber-Physical Transportation Systems
	Cyber-Physical Railway Signalling Systems

	Formal Methods for Railway Signalling Systems
	Research Questions
	Research Objectives
	Thesis Structure and Contributions

	Requirements and Formal Methods
	Railway Signalling and Interlocking
	Communication-Based Signalling Systems
	Heterogeneous Railway Signalling Systems
	Generic Heterogeneous Railway Signalling System Model
	Railway-Based Engineering Methodology Requirements

	Cyber-Physical System Modelling
	Hybrid System Modelling and Verification
	Formal Specification Languages
	Event-B Method
	Vienna Development Method
	Differential Dynamic Logic

	Formal Methods Evaluation

	Development Methodology
	Methodology Overview
	Development Stages
	System Specifications and Requirements
	Functional Event-B Model

	Methodology Summary

	Communication Modelling Patterns
	Communication Modelling Patterns
	System Context Pattern
	Message Modelling Patterns
	Loop Modelling Pattern for Iterative Actions
	Message Sending/Receiving Event Patterns

	Chapter Summary

	Hybrid Signalling Modelling
	Hybrid System Modelling Patterns in Event-B
	Hybrid Railway Signalling Model in Event-B
	Informal Communication-Based Railway Signalling Model
	Continuous Railway Signalling System Features
	Hybrid Railway Signalling System Model: Theory and Context
	Hybrid Railway Signalling System Model: Machine Events
	Hybrid Railway Signalling System Model: Communication Aspects
	Proving Generic Hybrid Signalling Model: Proof Statistics

	Chapter Summary

	Methodology Evaluation
	Case Study 1: Distributed Resource Allocation Protocol
	High-Level Distributed System Model and Requirements
	Problematic Distributed Resource Allocation Scenarios
	Semi-Formal Protocol Description
	Protocol Model Refinement Strategy
	Event-B: Abstract Context
	Event-B: Machine m0
	Event-B: Machine m1
	Event-B: Machine m2
	Event-B: Machine m3
	Event-B: Machine m4
	Proving Functional Protocol Correctness
	Proving Protocol Probabilistic Termination with PRISM
	Proving Protocol Probabilistic Termination with PRISM: Results

	Case Study 2: Heterogeneous Railway Signalling System
	Heterogeneous Signalling Model Description and Requirements
	Formal Event-B Model of a Heterogeneous Railway Signalling System

	Evaluation Summary and Discussion

	Conclusions
	Summing Up
	Future Work

	Bibliography

