
Magnetohydrodynamics in Hot Jupiters

Alexander William Hindle

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

Newcastle University

Newcastle upon Tyne

United Kingdom

May, 2021



To Mary Buchan Haigh (1921–2020) and Hazel Berry Hindle (1930-2020).



Acknowledgements

I would like to thank my supervisors Tami Rogers and Paul Bushby for their guidance,

support, and kindness over the course of my PhD. Moreover, I would like to thank them for

the opportunities they have given me and for introducing me to this fascinating research

topic.

I thank Andrew Gilbert for sharing and allowing the use of his notes on diffusion in

shallow-water MHD and thank Andrew Cumming for interesting discussions and insights

early on in my PhD. During my PhD I have benefited from discussions and advice from

various members of the Applied Mathematics section of Newcastle University’s School of

Mathematics, Statistics and Physics. I would like to thank my undergraduate supervisor

Andrew Baggaley for encouraging me to pursue a PhD, and all past and current members

of the Astrophysical and Geophysical Fluid Dynamics research group that have shown me

interest and have given me useful suggestions throughout. For this, particular thanks go

to Anvar Shukurov, Andrew Soward, Toby Wood, Celine Guervilly, Andrew Fletcher and

Graeme Sarson. I would like to thank Philipp Edelmann, Rathish Ratnasingam, Natalia

Gómez-Pérez, Amit Seta, and James Hollins for countless discussions, both technical and

informal.

I would also like to thank Andrew Gilbert and Toby Wood for their time in examining

this thesis and for their expertise and critique, which have improved it.

Many other people in the department have made my years as a PhD student more en-

joyable. Aside from those already mentioned, I would like to thank Jack Walton and Laura

Wadkin (who have not only endured my company as a PhD student but also throughout

our undergraduate degrees), all those who regularly attended “group” lunches, and all my

past and current office members for their humour and company.

Finally, but most importantly, I would like to thank my family and my partner Roisin

for their constant care and support.



Abstract

Hot Jupiters are Jupiter-like exoplanets found in close-in orbits. This subjects them

to high levels of stellar irradiance and is believed to tidally-lock them to their host stars,

causing extreme day-night temperature differentials which in-turn drive atmospheric dy-

namics. A ubiquitous feature of hydrodynamic models of hot Jupiter atmospheres is

equatorial superrotation, which advects their hotspots (equatorial temperature maxima)

eastwards (prograde). Observational studies generally find eastward hotspot/brightspot

offsets. However, recent observations of westward hotspot/brightspot offsets suggest that

this is not ubiquitous. Prior to these observations, three-dimensional magnetohydrody-

namic simulations predicted that westward hotspots could result from magnetohydrody-

namic effects in the hottest hot Jupiters, yet the mechanism driving such reversals is not

well understood.

We study the underlying physics of magnetically-driven hotspot reversals using a

shallow-water magnetohydrodynamic model. This captures the leading order physics

of hot Jupiter atmospheres, but with reduced mathematical complexity. The model’s

hydrodynamic counterpart is well-established and has successfully been used to explain

equatorial superrotation in hydrodynamic models of hot Jupiter atmospheres in terms of

planetary scale equatorial wave interactions. However, until now, shallow-water magne-

tohydrodynamic models have not been applied to hot Jupiters. Firstly, we find that the

model can indeed capture the physics of magnetically-driven hotspot reversals. We use

non-linear numerical simulations to understand the dominant force balances that drive

the reversals and use a linear analysis of the system’s planetary scale equatorial waves to

understand the reversal mechanism in terms of wave interactions. We then use the devel-

oped theory to place physically motivated observational constraints on the magnetic field

strengths of hot Jupiters exhibiting westward hotspot/brightspot offsets, finding that on

the hottest of these the observations can be explained by moderate planetary magnetic field



strengths. Finally, we identify candidates that are likely to exhibit magnetically-driven

hotspot reversals to help guide future observational missions.



Contents

1 An Introduction to Hot Jupiters 1

1.1 Observational methods for exoplanet detection and meteorology . . . . . . . 4

1.1.1 Radial velocity method . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Transit photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Other detection and characterisation methods . . . . . . . . . . . . . 12

1.1.4 Concluding remarks on observational methods . . . . . . . . . . . . 17

1.2 Characteristics of hot Jupiters . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Typical planetary parameters . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Synchronous rotation and large day-night temperature differentials . 20

1.2.3 Planetary structure and stratification . . . . . . . . . . . . . . . . . 20

1.2.4 Over-inflated radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.5 Predominantly eastward hotspot offsets on cooler hot Jupiters . . . 23

1.3 Hydrodynamic atmospheric circulation on hot Jupiters . . . . . . . . . . . . 25

1.3.1 Hydrodynamic models . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.2 Fundamental principles of hydrodynamical theory . . . . . . . . . . 34

1.3.3 Equatorial superrotation on synchronously rotating exoplanets . . . 50

1.4 Magnetism in hot Jupiter atmospheres . . . . . . . . . . . . . . . . . . . . 57

1.4.1 Magnetic field generation in hot Jupiters . . . . . . . . . . . . . . . . 57

1.4.2 Is radius over-inflation caused by Ohmic heating? . . . . . . . . . . . 61

1.4.3 Magnetism can drive hotspots westwards . . . . . . . . . . . . . . . 64

1.4.4 Our aims and approach . . . . . . . . . . . . . . . . . . . . . . . . . 66

i



Contents

1.4.5 Statement on publications . . . . . . . . . . . . . . . . . . . . . . . . 68

2 A Cartesian SWMHD Model for Hot Jupiter Atmospheres 69

2.1 Single layer shallow-water models . . . . . . . . . . . . . . . . . . . . . . . . 70

2.1.1 Derivation of the hydrodynamic single-layer shallow-water model . . 70

2.1.2 Derivation of the single-layer SWMHD model . . . . . . . . . . . . . 74

2.2 The reduced gravity shallow-water model . . . . . . . . . . . . . . . . . . . 79

2.2.1 Derivation of the basic hydrodynamic reduced gravity model . . . . 79

2.2.2 Derivation of the basic reduced gravity SWMHD model . . . . . . . 83

2.2.3 Rotation in the Cartesian geometry . . . . . . . . . . . . . . . . . . 89

2.2.4 Magnetic field geometry . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2.5 Diffusion treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.2.6 Forcing and drag treatments . . . . . . . . . . . . . . . . . . . . . . 98

2.2.7 Dimensional equations . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.2.8 Horizontal boundary conditions and integral conservation laws . . . 112

2.2.9 Non-dimensional governing equations . . . . . . . . . . . . . . . . . . 114

2.2.10 Parameter choices for hot Jupiter atmospheres . . . . . . . . . . . . 117

3 Linear Waves of the SWMHD Model 121

3.1 Linearised SWMHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.2 Plane wave solutions for a uniform background field . . . . . . . . . . . . . 124

3.2.1 Waves in a non-rotating system . . . . . . . . . . . . . . . . . . . . . 126

3.2.2 f-plane solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.2.3 Alfvén-Rossby wave coupling (general beta-plane) . . . . . . . . . . 127

3.3 Equatorial shallow-water waves . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.3.1 Hydrodynamic equatorial shallow-water waves . . . . . . . . . . . . 132

3.3.2 Equatorial SWMHD waves in a uniform azimuthal field . . . . . . . 139

3.3.3 Equatorial SWMHD waves in a linear azimuthal field . . . . . . . . 144

3.3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 154

ii



Contents

4 Numerical Simulations of the SWMHD Model 157

4.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.2 Near-linear azimuthal magnetic field profile . . . . . . . . . . . . . . . . . . 160

4.2.1 Magnetic flux function . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.2.2 Free parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.2.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.3 Linear-Gaussian azimuthal magnetic field . . . . . . . . . . . . . . . . . . . 175

4.3.1 Magnetic flux function . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3.2 Free parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.3.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.4 Forcing dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5 Hotspot Reversals in Relation to Linear Wave Dynamics 186

5.1 Linearised steady state solutions . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2 Free wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.2.1 Equatorial magnetohydrodynamic wave equations . . . . . . . . . . 190

5.2.2 Equatorial wave solving method . . . . . . . . . . . . . . . . . . . . 192

5.2.3 Free wave eigensolutions . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.3 Comparisons with non-linear simulations . . . . . . . . . . . . . . . . . . . . 200

6 The Magnetic Reversal Mechanism 202

6.1 Hotspot reversal criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2 Comparisons between SWMHD and 3D MHD . . . . . . . . . . . . . . . . . 205

6.2.1 Linking hotspot and wind reversals . . . . . . . . . . . . . . . . . . . 205

6.2.2 Wave dynamics and turbulence . . . . . . . . . . . . . . . . . . . . . 206

6.2.3 Magnetic field evolution and structure . . . . . . . . . . . . . . . . . 207

6.2.4 Quantitive comparisons with 3D MHD . . . . . . . . . . . . . . . . . 208

iii



Contents

7 Observational Consequences 210

7.1 Recap: Reversal condition from shallow-water MHD . . . . . . . . . . . . . 211

7.2 Method for Placing Magnetic Reversal Criteria on hot Jupiters . . . . . . . 212

7.3 Magnetic field constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.3.1 Estimates of Rm and Bφ,crit . . . . . . . . . . . . . . . . . . . . . . . 217

7.3.2 Dipolar magnetic field strengths . . . . . . . . . . . . . . . . . . . . 218

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8 Conclusions and Further Work 226

8.1 Summary of approaches and findings . . . . . . . . . . . . . . . . . . . . . . 226

8.2 Open questions, limitations, and future work . . . . . . . . . . . . . . . . . 233

8.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A Magnetic dissipation derivation 238

B Potential vorticity evolution 244

C Integral conservation laws 247

D Linear solving methods 251

D.1 Linearised steady state solutions . . . . . . . . . . . . . . . . . . . . . . . . 251

D.2 Singular test solutions in the linear equatorial wave solving method . . . . . 252

E Candidate hot Jupiters for magnetically-driven wind variations: relaxed

criteria 254

iv



List of Figures

1.1 A parameter space diagram of exoplanet detections using data from the

exoplanet.eu archive, accessed May 30, 2021. Detection methods for known

planets are compared to the planets’ orbital semimajor axes and mass.

For reference, we also plot the parameter space locations of the Solar Sys-

tem planets and shade regions containing hot Jupiters (a < 0.1 AU and

0.1MJ < M < 10MJ) and Brown dwarfs (M > 30MJ), where the theoret-

ical deuterium burning mass threshold is used as the definition of the star-

planet boundary. We comment that the data of the exoplanet.eu archive is

cut off beyond 60MJ. The numbers of discoveries for each method can be

found in Table 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Radial velocity measurements and a photometric (infrared) phase curve.

Lefthand panel (taken from Mayor & Queloz, 1995): The radial velocity of

the star 51 Pagasi as a function of orbital phase, at four different epochs,

where star-Earth motions have been removed and a fitting line has been

overlaid to represent orbital motion. Righthand panel (taken from Knutson

et al., 2007): an infrared (8µm) phase curve of one orbital cycle of the HD

209458 system, measured using the Spitzer Space Telescope. The phase

curve is plotted on two scales: (a) 0.97-1.01 (top) and (b) 0.999-1.004 (bot-

tom). The larger of these (top) clearly shows the primary and secondary

eclipses; while the smaller of these (bottom) shows variations in the relative

infrared flux between the eclipses. . . . . . . . . . . . . . . . . . . . . . . . . 5

v

www.exoplanet.eu
www.exoplanet.eu


List of Figures

1.3 A schematic showing the possible measurements that can be taken when

one observes a full orbital phase of a transiting exoplanet, taken from Seager

& Deming (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Lefthand panel: A comparison of light flux signals of different objects, from

10 pc, showing why Jupiters are amenable for study. Adapted from Seager

& Deming (2010). The blackbody flux (i.e., the surface irradiance per unit

frequency in units of 10−26 W m−2 Hz−1, on a logarithmic scale) of some So-

lar System bodies as “seen” from 10 pc are compared to that of a typical hot

Jupiter (with an equilibrium temperature of 1600 K and an albedo of 0.05).

Righthand panel: a separated infrared (24µm) phase curve of the planet

υ Andromedae b, taken from Harrington et al. (2006). The phase curve is

constructed using data from two orbital cycles, which are distinguished by

solid (first) and empty (second) points, with associated error bars. The au-

thors have included two fitting lines based on an analytic planetary emission

model. The solid line denotes the phase curve with the hottest latitudinal

point (the hotspot) located at the position of maximum stellar irradiance

(the substellar point); the dashed line is the best-fit phase curve and has

an eastward phase shift of 11◦ (i.e., with the hotspot positioned 11◦ east of

the substellar point). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vi



List of Figures

1.5 A temperature map of the hot Jupiter HD 189733b constructed using vari-

ations in the infrared phase curve presented in the righthand panel of Fig-

ure 1.2, taken from Knutson et al. (2007). The temperature map is calcu-

lated by assuming synchronous tidally-locked rotation, which is expected

(see Section 1.2.2 for discussion). The planet is divided into longitudi-

nal slices and the light flux from the phase curve at a given orbital phase

is attributed to the longitudinal slice closest to the observer at that point

(subject to a fitting treatment). In the upper half of this figure, the temper-

ature is visualised as a colour map, with the brightest colours representing

the hottest regions; in the lower half, the relative brightness of each lon-

gitudinal slice are displayed. Here the longitudinal axis is centred about

the substellar point (i.e., the point at the noon on the dayside). In the

temperature map, sinusoidal dependence on latitude is assumed. . . . . . . 11

1.6 Direct imaging and pulsar timing. Lefthand panel (taken from Chauvin

et al., 2004): An image of the brown dwarf 2MASSWJ1207334–393254

(blue) and its giant planet companion 2MASSWJ1207334–393254 b (red).

The colourings of the image denote different imaging wavelength bands (see

original text for more details). Righthand panel (taken from Wolszczan &

Frail, 1992): Variations in the orbital period of the pulsar PSR1257+12 (in

nanoseconds), with the predicted variations of a two-planet model indicated

by a solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



List of Figures

1.7 Properties of hot Jupiters in the exoplanet.eu catalogue with a < 0.1 AU,

and 0.1MJ < M < 10MJ. Using this dataset, we plot current estimates

of the planetary mass (top left), orbital semimajor axis (top right), or-

bital period (middle left), planetary radius (middle right), and eccentricity

(bottom) against the orbit-averaged effective temperature of hot Jupiters

. The hot Jupiters CoRoT-2b (Teq ≈ 1523 K), Kepler-76b (Teq ≈ 2145 K),

HAT-P-7b (Teq ≈ 2192 K), WASP-12b (Teq ≈ 2578 K), and WASP-33b

(Teq2681 K), which are discussed specifically in this work, are marked with

black opaque markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Radius over-inflation in hot Jupiters, taken from Laughlin et al. (2011). The

radii (left) and radius anomalies (right) of hot Jupiters with 0.1MJ < M <

10MJ are plotted against their orbit-averaged effective temperature, Teq,

with error bars. The planets are shaded with respect to their metallically

and some are labelled. The radius anomaly is calculated by comparing the

radii with those of structural models and its best-fit power-law dependence.

Laughlin et al. (2011) found the radius anomaly is proportional to T 1.4±0.6
eq ,

which is indicated by the red and interior black fitting lines in the righthand

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 A schematic of geostrophic balance in a system (in cardinal Cartesian coor-

dinates) with constant density and a piecewise constant Coriolis parameter,

f . High and low pressure structures are indicated by labeled circles and the

streamlines associated with the geostrophic balance are indicated with ar-

rows. For f > 0, as in the northern hemisphere of planets, flows rotate

clockwise along the isobars of high pressure structures and anticlockwise

along the isobars of low pressure structures; whereas for f < 0, as in the

southern hemisphere of planets, flows rotate anticlockwise along the isobars

of high pressure structures and clockwise along the isobars of low pressure

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii

www.exoplanet.eu


List of Figures

1.10 Atmospheric length scale ratios are plotted for hot Jupiters in the exo-

planet.eu catalogue with a < 0.1 AU, and 0.1MJ < M < 10MJ. Hp/R ≡

RT/gR is plotted in the upper panel; LD/R ∼ cg/2Ω is plotted in the lower

left panel; Lβ/R ≡ LD/Lβ ∼ (cg/2ΩR)1/2 is plotted in the lower right

panel. All these ratios are plotted against the orbit-averaged effective tem-

perature of hot Jupiters. Note that in the righthand panel Lβ (the Rhines

scale) is evaluated with U = cg, so is equivalent to Leq ( the equatorial

Rossby deformation radius). As in Figure 1.7, the hot Jupiters CoRoT-2b

(Teq ≈ 1523 K), Kepler-76b (Teq ≈ 2145 K), HAT-P-7b (Teq ≈ 2192 K),

WASP-12b (Teq ≈ 2578 K), and WASP-33b (Teq2681 K) are identified with

opaque black markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.11 Rossby wave propagation schematic, taken from Vallis (2006). The schematic

lies in the x-y plane, with positive y denoting north and positive x (i.e.,

right) denoting east and t denoting time. The schematic depicts two fluid

parcels along the line, η, which conserves potential vorticity, q2D ≡ f + ζ,

where f is the (northward increasing) Coriolis parameter and ζ ≡ ∂v/∂x−

∂u/∂y is the vertical component of the relative vorticity. The two fluid

parcels start at rest (i.e., ζ = 0) and one is perturbed northward and the

other is perturbed southward. Since q2D is materially conserved, the north-

ward parcel has ζ < 0 so rotates clockwise; whereas the southward parcel

has ζ > 0 so rotates anticlockwise. Consequently, since both parcels are

oriented with westward velocities towards the centre, the parcels propagate

westwards for t > 0. If this schematic is translated into a wave-like pertur-

bation at t = 0 (solid black line), the wave’s phase propagates westwards

t > 0 (see dashed black line). . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix

www.exoplanet.eu
www.exoplanet.eu


List of Figures

1.12 Jupiter viewed by the Juno space probe, taken from the Juno nasa.gov

mission page. Circular vortices, with a diameter . LD, are found within

the atmosphere’s banded structures. These banded structures correspond

to zonal jets that have latitudinal widths ∼ Lβ, where on Jupiter Lβ > LD.

Jupiter’s famous Great Red Spot, which can be identified in the north east

of the photograph, has a length scale between these characteristic scales

and exhibits zonal elongation (for further discussion, see main text and

Showman, 2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.13 The structural form of the n = 1 equatorial Rossby wave (left panel) and

the equatorial Kelvin wave (right panel), with the azimuthal wavenumber

k = 1/R, are plotted in cardinal Cartesian coordinates, with x denoting the

eastward coordinate and y denoting the northward coordinate. The north-

ward coordinate is given in units of Leq, the equatorial Rossby deformation

radius, which determines the latitudinal length scales of the waves. The

structures of the waves are visualised with pressure contours (i.e., contours

of h in the shallow-water model), with yellow/blue contours denoting pres-

sure highs/lows respectively, and horizontal velocity vectors are overplotted.

The n = 1 equatorial Rossby wave behaves geostrophically at mid-to-high

latitudes and travels westward; while the equatorial Kelvin wave travels

eastward with no meridional component, and velocity maxima at its pres-

sure maxima. The plots are made using the solutions of Matsuno (1966)

for Leq/R = 0.67, which is the approximate value of this ratio on the hot

Jupiter HAT-P-7b. The azimuthal phase of the plotted free waves is arbi-

trary and time-dependent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x

https://www.nasa.gov/mission_pages/juno/


List of Figures

1.14 The time-independent response (bottom panel) of a linearised shallow-water

system in the beta-plane approximation when it is subjected to a station-

ary forcing profile on h (top panel) that varies on system sized spatial

scales, taken from Matsuno (1966). Highs/lows in geopotential energy, gh,

which are also pressure highs/lows in shallow-water models, are marked

by solid/dashed contours and velocity vectors are overplotted. These solu-

tions are dominated by standing wave superposition of the n = 1 equatorial

Rossby wave and the equatorial Kelvin wave. . . . . . . . . . . . . . . . . . 54

xi



List of Figures

1.15 Eddy momentum pumping due to equatorial waves, taken from Showman

& Polvani (2011). The upper left panels show, (a), an applied forcing

profile on h and, (b), a corresponding linearised time-independent solu-

tion, {h0(x),u0(x)}, of the resulting forced shallow-water equations, in the

equatorial beta-plane approximation, with a marked hotspot (black cross).

This forcing profile and linearised solution are similar to those displayed

in Figure 1.14. The bottom panel, (c), shows zonally-averaged eastward

accelerations resulting from the non-linear interactions that these linear so-

lutions cause. In this plot, total mean zonal accelerations, which are found

to be eastward, are plotted in red. Alongside this, the plot also shows

the relative importance of the contributing mean zonal accelerations. The

equatorward transport of eastward eddy momentum (black) provides the

dominant contribution and the other components are mean zonal acceler-

ations due to vertical eddy momentum transport (blue), Rayleigh drag in

the model (cyan), and mean meridional circulation (green). The upper

right panel contains a schematic of how the linear solutions induce this

equatorward transport of eastward eddy momentum (though Showman &

Polvani (2011) changed the azimuthal wavenumber in the schematic for

illustrative purposes). The fundamental feature is the eastward pointing

chevron-shaped flow patterns/pressure contours, which cause eddies to tilt

so that they carry eastward angular momentum from the westward high

latitude regions into equatorial region. . . . . . . . . . . . . . . . . . . . . 56

xii



List of Figures

1.16 The evolution of magnetic field profiles in three-dimensional MHD simula-

tions, taken from Rogers & Komacek (2014). The magnetic field in simu-

lated hot Jupiter atmospheres, as viewed from the nightside, with colours

representing the toroidal field magnitude (red/magenta positive; blue/green

negative; and yellow moderate, relative to extremes, positive/negative).

Times are different for each model with the purpose of providing a qualita-

tive picture of magnetic field evolution. The quoted magnetic field strength

is that of the radial field at the pole, at the base of the simulated atmosphere.

In cool 3D MHD simulations atmospheres are weakly ionised, meaning that

winds do not couple to the planet’s deep-seated magnetic field significantly

(top row). In hot 3D MHD simulations, when ionised winds couple with

the planet’s deep-seated magnetic field, they induce atmospheric toroidal

fields that are dominated by a planetary scale equatorially-antisymmetric

component (middle row). When this atmospheric toroidal field overcomes a

critical threshold in its magnitude, it causes complex MHD behaviours in-

cluding wind/hotspot reversals to develop (bottom row). These behaviours

arise from the how the toroidal field couples with the ionised winds, which

we model in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii



List of Figures

1.17 Induced current due to zonal wind flow in the presence of an axially-aligned

deep-seated planetary dipolar magnetic field, taken from Batygin & Steven-

son (2010). This side view cross-section shows the thin radiative atmosphere

and a convective deep interior, separated by the radiative-convective bound-

ary (dotted line). The plot shows the field lines of the planet’s deep-seated

dipolar magnetic field extending out of the convective interior. The quiver

arrows denote the direction and magnitude of the induced current for a

model containing purely zonal winds in the thin atmosphere and no flows

in the convective interior. The large translucent arrows are illustrations of

the general loop in the flow of current in the model. The inset window shows

a zoomed-in cross section of currents at the equator, which become radially

directed and penetrate into the deep interior, causing Ohmic heating. . . . 63

1.18 Bdip for which τmag ∼ τwave (as in Rogers, 2017) for the exoplanet.eu

dataset. In this comparison cg = (RTeq) is taken (see Chapter 2 or Chap-

ter 7 for explaination), ρ is calculated using the ideal gas law, and η is

calculated using the method used by Rauscher & Menou (2013) and Rogers

& Komacek (2014) (see Chapter 7 for details) for a depth of P = 10 mbar.

For Tday and Tnight we use dayside and nightside root mean squared values,

assuming a sinusoidal longitudinal temperature distribution (i.e., Tday =

Teq + ∆T/
√

2 and Tnight = Teq − ∆T/
√

2). The reference line marks 6 G,

the prediction of HAT-P-7b’s critical reversal dipole field strength in Rogers
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2.2 A schematic of a single-layer SWMHD model, which has constant density
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is bordered by the closed curve, C, which lies in the (x, y) plane and has
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2.6 A schematic of illustrating the geometry used in the derivation of shallow-

water magnetic diffusion term, Dη, as adapted from the derivation of An-

drew Gilbert (personal correspondence). This derivation uses an asymp-

totic expansion to calculate the leading order contributions to the three-
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interfaces, n̂3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xv



List of Figures

2.7 The forced reduced-gravity SWMHD model schematic. An active layer sits

upon an infinity-deep quiescent fluid layer, where both layers have constant

densities (ρ and ρl). No magnetic flux is permitted across the active layer’s

upper and lower boundaries, which are material surfaces that evolve in time.

Newtonian forcing is used to generate horizontal pressure gradients in the

active layer: the active layer thickness (h) is relaxed towards an imposed

radiative equilibrium thickness profile (heq) over a radiative timescale (τrad).

The resulting horizontal pressure gradients drive horizontal motion. . . . . 99

2.8 The shallow-water gravity wave speed, cg ∼ (RTeq)1/2 (lefthand panel),

and the equatorial beta-plane parameter, β ≡ 2Ω/R (righthand panel), are

plotted (against Teq) for known hot Jupiters. HAT-P-7b (Teq ≈ 2192 K) is

marked with a black opaque star, the cool hot Jupiter HD 189733b (whose

parameters are briefly applied in Chapter 3) is marked with a black opaque
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3.2 The parabolic cylinder functions of the first kind, ψn, as described in
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3.5 Azimuthal dispersion relations for the equatorial SWMHD wave solutions,

with the constant azimuthal background magnetic fields VA = 0.1cg (left-

hand panel) and VA = cg (righthand panel), up to n = 3 over the azimuthal

wavenumber range, −5/R < k < 5/R, for the parameters of HAT-P-7b

discussed in Chapter 2 (see Table 3.1). The azimuthal wavenumbers are

scaled by the planetary scale azimuthal wavenumber (1/R) and the oscil-

lation frequencies are scaled by the frequency of a shallow-water gravity
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purple lines correspond to the n = 0 (one eastward, one westward) mixed
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equatorial magneto-inertial gravity waves, and the red lines correspond to
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3.9 As in Figure 3.8, but with γ = 0.3cg/R. The waves MIG waves are largely

unchanged by the magnetic field, but the n = 1 equatorial magneto-Rossby

wave becomes less tightly bound to the equator. Note that, for the HAT-

P-7b parameter choices, the poles lie at y/Leq ≈ ±2.3, so here the pressure
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3.10 As in Figures 3.8 and 3.9, but with γ = 0.58cg/R, which is the magnetic
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unbounded. Beyond this point the n = 1 equatorial magneto-Rossby waves
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3.11 Taken from Hindle et al. (2019). Top panel: Contours of geopotential

are plotted for quasi-steady non-linear solutions, with a forcing ampli-

tude of ∆heq/H = 0.001 (weakly-forced regime), and the radiative/drag

timescales τrad = τdrag = 1 Earth days. This has slightly different forc-

ing and initial magnetic field profiles to the solutions of Chapter 4, with

heq = H + cos(x/R) cos(y/R) on the dayside and heq = H on the night-

side (like Langton & Laughlin, 2007; Perez-Becker & Showman, 2013) and

B0 = VA (y/L) exp
(
1/2− y2/2L2

)
x̂, with L = Leq/2. Wind velocity vec-

tors are overplotted as black arrows, lines of constant horizontal magnetic

flux (A) are overplotted as white lines (with solid/dashed lines representing

positive/negative magnetic field values), and hotspots (maxima of h on the

equatorial line) are marked by white crosses. The system origin lies at the

substellar point and velocity vectors are independently normalised for each

subplot. Bottom panels: Contours of geopotential perturbations, with over-

laid velocity perturbations vectors, for two different wave types at k = 1/R.

The n = 1 equatorial magneto-Rossby wave is plotted (lower left panel) for

VA =
√
gH/4, where VA = γR in the discussion of the main body. Note

that “fast” here is used to distinguish it from the slow equatorial magneto-

Rossby wave discussed in Zaqarashvili (2018), which is unbounded at these

parameter choices. The magneto-Kelvin mode is plotted (lower right panel)

for VA =
√
gH/4 at t = τtrans ≡ V 2

Aτadv/gH. Plots are made for the pa-

rameters based on the hot Jupiter HD 189733b. . . . . . . . . . . . . . . . 152
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4.1 The effect of azimuthal magnetic fields on energy redistribution. Con-

tours of the relative layer thickness deviations (rescaled geopotential en-

ergy deviations) are plotted on colour axes that are shared along rows, with

(individually-normalised) velocity vectors, hotspots (cyan crosses), and lines

of constant A (solid/dashed for Bx positive/negative) over-plotted. In each

column, reading from left to right, we present hydrodynamic steady state so-

lutions (VA = 0), supercritical MHD solutions moments before reversal, and

supercritical MHD solutions in the reversed quasi-steady phase. We present

solutions in the following parameter regimes: (a) τrad = τdrag = τwave, with

VA = 0 or VA = 1.6cg in the top row; (b) τrad = τdrag = 5τwave, with VA = 0

or VA = 0.7cg in the second row; (c) τrad = τdrag = 25τwave, with VA = 0 or

VA = 0.2cg in the third row; (d) τrad = τwave, τdrag = 25τwave, with VA = 0

or VA = 1.4cg in the fourth row; (e) τrad = 25τwave, τdrag = τwave, with

VA = 0 or VA = 0.5cg in the bottom row. . . . . . . . . . . . . . . . . . . . . 163

4.2 Meridional force balances. In each column, reading from left to right, we

plot meridional accelerations corresponding to hydrodynamic steady state

solutions, transient phase supercritical MHD solutions, and quasi-steady su-

percritical MHD solutions. In rows one to four, we respectively plot merid-

ional accelerations due to horizontal pressure gradients, the Coriolis effect,

the Lorentz force, and Rayleigh drag; the summed meridional accelerations

are plotted in row five. The solutions are presented for ∆heq/H = 0.2,

τrad = τdrag = 5τwave, with VA = 0 (HD) or VA = 0.7cg (MHD) (i.e.,

parameter regime (b) in Figure 4.1). . . . . . . . . . . . . . . . . . . . . . . 170
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4.3 The zonal force balances corresponding to the meridional force balances of

Figure 4.2 (see Figure 4.2 caption). As in Figure 4.2, we present solutions

for the parameter choices ∆heq/H = 0.2, τrad = τdrag = 5τwave, with VA = 0

(HD) or VA = 0.7cg (MHD) (i.e., parameter regime (b) in Figure 4.1). To

aid discussion in the text, hotspot locations have been marked with cyan

crosses in hydrodynamic solution panels that correspond to zonal accelera-

tion components with a non-zero equatorial contribution. . . . . . . . . . . 172

4.4 The Lorentz force drives westward accelerations in hotspot (cyan crosses)

regions. The azimuthal component of the magnetic field is plotted in the

top row, with contours of constant A overlaid (white solid/dashed contours

for Bx positive/negative). The corresponding zonal Lorentz force compo-

nent is plotted in the bottom row. As in the two righthand columns of

Figures 4.2 and 4.3, we present the transient (lefthand column) and quasi-

steady (righthand column) phases of the supercritical MHD solution with

∆heq/H = 0.2, τrad = τdrag = 5τwave, and VA = 0.7cg (i.e., parameter

regime (b) in Figure 4.1), though we restrict this plot to the equatorial

region, −π/8 < y/R < π/8. The zonal Lorentz force acceleration is the

directional derivative of Bx along horizontal magnetic field lines (approxi-

mately lines of constant A). . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.5 Similar to Figure 4.1, but for a linear-Gaussian azimuthal magnetic field

profile. We present solutions in the following parameter regimes: (a) τrad =

τdrag = τwave, with VA = 0 or VA = 1.7cg in the top row; (b) τrad =

τdrag = 5τwave, with VA = 0 or VA = 0.7cg in the second row; (c) τrad =

τdrag = 25τwave, with VA = 0 or VA = 0.2cg in the third row; (d) τrad =

τwave, τdrag = 25τwave, with VA = 0 or VA = 1.3cg in the fourth row; (e)

τrad = 25τwave, τdrag = τwave, with VA = 0 or VA = 0.7cg in the bottom

row. Note that the hydrodynamic versions of these solutions are the same

as those plotted in the lefthand column of Figure 4.1. . . . . . . . . . . . . 177
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4.6 Meridional force balances. In each column, reading from left to right, we

plot meridional accelerations corresponding to the initial, transient, and

quasi-steady phase supercritical MHD solutions for τrad = τdrag = τwave

and VA = 1.7cg (i.e., parameter regime (b) in Figure 4.5). In rows one to

four, we respectively plot meridional accelerations due to horizontal pressure

gradients, the Coriolis effect, the Lorentz force, and Rayleigh drag; the

summed meridional accelerations are plotted in row five. . . . . . . . . . . . 179

4.7 The zonal force balances corresponding to the meridional force balances of

Figure 4.6 (see Figure 4.6 caption). As in Figure 4.6, we present solutions for

the parameter choices τrad = τdrag = τwave and VA = 1.7cg (i.e., parameter

regime (b) in Figure 4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.8 As in Figure 4.4, for τrad = τdrag = τwave and VA = 1.7cg. The bend-

ing of magnetic field lines in equatorial regions (caused by drag-adjusted

geostrophic circulations) causes the Lorentz force to drive westward accel-

erations in hotspot (cyan crosses) regions. Recall that the zonal Lorentz

force accelerations (bottom row) are approximately equivalent to the direc-

tional derivative of Bx along the lines of constant A (top row). . . . . . . . 181

4.9 Quantitive dependencies of critical magnetic field amplitudes on the forcing

magnitude parameter, ∆heq/H, for different choices of τrad and τdrag. Crit-

ical magnetic field amplitudes are illustrated with marker points. These are

located mid-way between the upper/lower bounds of the identified critical

amplitude range, for a particular parameter set, with error bars indicating

these upper/lower bounds. Lines indicating scaling law predictions (dashed)

and zero-amplitude limits based on the linear theory (dotted; see Chapter 5)

are overlaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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5.1 Linear solutions (for ∆heq/H = 0.01 and k = 1/R). Contours of the rel-

ative layer thickness deviations (rescaled geopotential energy deviations)

are plotted on (individually-normalised) colour axes, with (individually-

normalised) velocity vectors (u = u0 + u1), hotspots (cyan crosses) and,

where relevant, lines of constant A = A0 + A1 (solid/dashed for Bx pos-

itive/negative) over-plotted. Hydrodynamic solutions (top row) are com-

pared to marginally critical MHD solutions (bottom row; compare VA val-

ues to Figure 4.9). Solutions are plotted for (a) τrad = τdrag = τwave

(left); (b) τrad = τdrag = 5τwave (middle); and (c) τrad = τdrag = 25τwave

(right). Solutions are calculated for −5Leq < y < 5Leq, but are cut off

for −Rπ/2 < y < Rπ/2 (recall, Leq/R ≈ 0.67). The strong magnetic field

aligns flows preventing geopotential recirculation between latitudes, but in

the linearised model the (non-linear) equatorial Lorentz force is zero. Con-

sequently, in the linearised model hotspot offsets of marginally critical MHD

solutions tend to zero, but do not reverse like full SWMHD simulations. . . 188

5.2 The regular equatorial n = 1 (rows one to three) and n = −1 (row four) free

wave eigenfunctions (geopotential contours with overlaid velocity vectors)

are plotted for VA = 0, VA = 0.15cg, and VA = 0.2cg, taking k = 1/R.

We label rows according to their wave types (see Table 5.1). Solutions are

calculated for −5Leq < y < 5Leq, but are cut off for −Rπ/2 < y < Rπ/2

(Leq/R ≈ 0.67). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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5.3 The velocity profiles of the first few singular free wave eigenfunctions are

plotted for VA = 0.2cg/R and k = 1/R. Magnetic systems have two sets

of singular solutions: one westward travelling and one eastward travelling,

which have Alfvénic properties (see main text). v̂ (blue) and û (red) are re-

spectively purely real and purely imaginary for the normalisation we apply.

We mark asymptotes at y = ±ys with dotted black lines. The solutions

are labelled with the latitudinal mode number, n, based on the latitudi-

nal dependence of v̂. The corresponding profiles for VA = 0.15cg/R are

qualitatively identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
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6.1 A schematic of the magnetic reversal mechanism, with grey temperature

contours and white magnetic field lines (solid for Bx > 0; dashed for Bx <

0). (a) In hydrodynamic steady state solutions, drag-adjusted geostrophic

circulations dominate at mid-to-high latitudes; whereas zonal pressure-

driven jets dominate at the equator. Hotspots are shifted eastward as these

circulations transport thermal energy from the western equatorial dayside

to the eastern equatorial dayside, via higher latitudes. (b) In ultra-hot

Jupiters, partially-ionised winds flow through the planet’s deep-seated mag-

netic field, inducing a dominant equatorially-antisymmetric atmospheric

toroidal magnetic field. When field lines are parallel to the equator, mag-

netic tension is zero, so flows behave hydrodynamically. (c) As the field and

flow couple, the geostrophic circulations bend the magnetic field lines pole-

ward on the western dayside and equatorward on the eastern dayside, gen-

erating a Lorentz force, (B ·∇)B. The meridional Lorentz force component

acts to resist the geostrophic circulations; whereas, since |Bx| is smallest in

equatorial regions, the zonal Lorentz force component, (B · ∇)Bx, is west-

ward in hotspot regions, where field lines bend equatorward (and vice versa

where field lines bend poleward). (d) Beyond a magnetic threshold, the sys-

tem’s nature changes. The meridional Lorentz force obstructs the circulat-

ing geostrophic winds, causing zonal wind alignment. This confines thermal

structures and blocks the hydrodynamic transport mechanism. The zonal

Lorentz force accelerates winds westward in the hottest dayside regions,

causing a net westward dayside temperature flux. This drives the hottest

thermal structures westward, until zonal pressure gradients can balance the

zonal Lorentz force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
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7.1 Important dynamical scales and ratios of hot Jupiters are plotted alongside

critical Alfvén speed estimates, using the exoplanet.eu dataset. We plot

Leq/R (top left), τwave (top right), and VA,crit/cg (bottom panel) as functions

of Teq, where VA,crit/cg is calculated for ∆T/Teq = {0, 0.1, 0.2, 0.3}. . . . . 214

7.2 Rm (left) and Bφ,crit (right) are plotted as functions of Teq, for the ex-

oplanet.eu dataset. The estimates are calculated at P = 10 mbar with

T = Teq + ∆T , where ∆T/Teq = 0.1, 0.2, 0.3 (blue, orange, red), using

τdrag = τwave. For each hot Jupiter, the three ∆T/Teq choices are con-

nected by a translucent line. For reference, the dashed lines Teq = 1500 K

and Rm = 1 (lefthand panel only) are also overplotted. . . . . . . . . . . . 216

7.3 Critical dipole magnetic field strengths, Bdip,crit, at P = 10 mbar. We plot

Bdip,crit using τdrag = τwave and T = Teq +∆T , with ∆T/Teq = 0.1, 0.2, 0.3

(blue, orange, red). For a given hot Jupiter, these are connected by translu-

cent lines. We include error bars and labels for the planets discussed in this

letter (see Table 7.1) along with reference lines at 14 G (dashed; Jupiter’s

polar surface magnetic field strength) and 28 G (dotted; twice this). . . . . 218
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3.1 Parameters for the shallow-water model of HAT-P-7b. cg is the gravity wave

speed, Ω is the planetary rotation frequency, R is the planetary radius, and

H is the active layer thickness. These parameter choices are discussed in

Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.1 Fixed simulation parameters for the shallow-water model of HAT-P-7b

(same as Table 2.2 in Chapter 2). cg is the gravity wave speed, Ω is the plan-

etary rotation frequency, H is the active layer thickness, η is the magnetic

diffusivity, and ν is the kinematic viscosity. . . . . . . . . . . . . . . . . . . 162
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Chapter 1

An Introduction to Hot Jupiters

The first extrasolar planet found orbiting a Sun-like star was discovered in 1995 (Mayor

& Queloz, 1995). This was 51 Pagasi b: a planet with approximately half the mass of

Jupiter and a remarkably close-in nearly circular orbit, with an orbital radius of 0.05 AU1.

This close-in gas giant astonished observers as its close proximity to its host challenged

theories of planetary formation based on the Solar System paradigm (e.g., Dawson &

Johnson, 2018). Nevertheless, throughout the late-1990s and 2000s more and more near-

Jupiter-mass planets with close-in orbits were discovered and, by the end of the 2000s,

the vast majority of known exoplanets were of this type. This lead to the construction

of the hot Jupiter exoplanet class. The exact definition of the hot Jupiter classification

criteria varies between sources, but in this work the term hot Jupiters will generally

refer to extrasolar planets with masses comparable to Jupiter and with orbital semimajor

axes of a . 0.1 AU (e.g., Showman et al., 2010; Laughlin et al., 2011), where we use

the mass range 0.1MJ < M < 10MJ, with M and MJ denoting the planetary mass and

Jupiter’s mass respectively. This definition circumvents star/planet classification problems

for the most massive planets by excluding planets with masses close to the limiting mass

of thermonuclear fusion2, and has a lower mass bound between the masses of Saturn and

1For comparison, Mercury’s orbit has the semimajor axis a = 0.39 AU (Carroll & Ostlie, 2006).
2Brown dwarfs, the least massive class of star, become hot enough to burn deuterium when M & 13MJ

(Carroll & Ostlie, 2006).
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Chapter 1. An Introduction to Hot Jupiters

the smaller gas giants of the Solar System3. The name “hot Jupiter” derives from the fact

that these gas giants share physical characteristics (i.e., mass and size) with Jupiter but,

due to their close-in orbits, have much larger atmospheric temperatures. Typically, their

orbit-averaged equilibrium temperature, Teq, ranges between Teq ∼ 500-3000 K, while for

Jupiter Teq = 124.4 K (Guillot, 2005).

While their origins remain enigmatic (for full review see Dawson & Johnson, 2018),

compared to the number of detections of other exoplanet types, hot Jupiters are propor-

tionally over-represented (see Figure 1.1). This finding stems from their properties being

well-fitted to the natural biases of the most successful exoplanet detection techniques.

Significantly, this finding has lead to a surge in observational interest and progress in

characterising hot Jupiters, providing an outpouring of data. These observational ad-

vancements have made the testable study of hot Jupiter atmospheres possible, which has

subsequently driven the development of explanatory dynamical theory. As a result of

these advancements, from a fluid dynamics perspective, the atmospheres of hot Jupiters

have been found to be both unique and are interesting in their own right. The field of ex-

planatory atmospheric dynamics has now reached an exciting and auspicious phase, where

theory and observations are simultaneously advancing the progress of one-another.

In this chapter, we aim to give an overview of the important observational and the-

oretical progress in understanding hot Jupiter atmospheres. We begin with a brief non-

exhaustive overview of exoplanet detection and meteorological methods in Section 1.1.

The benefits of this discussion are fourfold: first, it will illustrate the observational biases

that make hot Jupiters so amenable for study; second, it will highlight which atmospheric

features are measurable; third, it will enable us to discuss cited observational results freely

throughout this work; forth, it is useful for framing the contributions of our work within

the wider context of explanatory research. Once these observational foundations have been

established, we shall discuss relevant observational findings to hot Jupiter atmospheres in

Section 1.2. Following this, we provide a summary of some of the key aspects of dynamical

3For comparison, Saturn, Uranus, and Neptune have the respective masses 0.2994MJ, 0.0457MJ, and
0.0539MJ (Carroll & Ostlie, 2006).
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Figure 1.1: A parameter space diagram of exoplanet detections using data from the exoplanet.eu
archive, accessed May 30, 2021. Detection methods for known planets are compared to the planets’
orbital semimajor axes and mass. For reference, we also plot the parameter space locations of the
Solar System planets and shade regions containing hot Jupiters (a < 0.1 AU and 0.1MJ < M <
10MJ) and Brown dwarfs (M > 30MJ), where the theoretical deuterium burning mass threshold is
used as the definition of the star-planet boundary. We comment that the data of the exoplanet.eu
archive is cut off beyond 60MJ. The numbers of discoveries for each method can be found in
Table 1.1.

theory of hot Jupiters in Sections 1.3 and 1.4. In Section 1.3 we shall discuss hydrodynamic

theory including models, fundamental principles, and explanations of observed features;

whereas in Section 1.4 we shall discuss previous applications of magnetohydrodynamic

theory to hot Jupiters, highlighting some of the open questions and active research ar-

eas. These include whether magnetism can explain observed radius over-inflation on hot

Jupiters, whether hot Jupiter atmospheres can support dynamo action, and understanding

how magnetism can drive atmospheric wind variations in the photosphere of hot Jupiters.

The last of these areas of study will be the main concern of this work and will feature

throughout.
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Table 1.1: Number of detected exoplanets for each of the methods discussed in the text, as well as
astrometry (i.e., through the precise measurements of the positions of nearby astrophysical objects).
We tabulate data for the two star-planet mass boundary cut-offs 60MJ (used by www.exoplanet.eu
and based on the object’s mass-density-radius distribution) and 13MJ (deuterium burning). This
data is taken from www.exoplanet.eu, accessed May 30, 2021.

Detected exoplanets — May 2010

Mass cut-off Radial vel. Transit Imaging Timing Microlensing Astrometry

60MJ 940 3422 147 68 149 14

13MJ 60 961 46 37 129 3

1.1 Observational methods for exoplanet detection and me-

teorology

1.1.1 Radial velocity method

In astronomy, the radial velocity of a star is the rate of change of the distance between the

star and the observer on Earth. This can be measured using Doppler spectroscopy (i.e.,

comparing shifts in the known spectral lines of the star). If the star has an accompanying

planet, the star-planet orbit will perturb the radial velocity from its usual star-Earth pat-

tern in a periodic fashion. Using careful monitoring of distant stars, such signal deviations

can be used to identify an orbiting exoplanet. Furthermore, if this method is successful

in discovering a planet, the profiles and magnitudes of the radial velocity deviations can

be used to place constraints on the orbital properties of the star-planet orbit (i.e., the

orbital period, the star/planet mass ratio, the orbital semimajor axis, and the orbital ec-

centricity). The main limitation of the radial velocity method is that it only measures the

star’s movement along the line-of-sight. Therefore, if the orbital plane is not aligned with

the line-of-sight, the true orbital motion of the star will be greater than the value mea-

sured from Doppler spectroscopy. To overcome this issue and obtain accurate planetary

constraints, radial velocity measurements are usually combined with other measurements.

Moreover, in order to apply Doppler spectroscopy accurately, the radial velocity method is

most effective when applied to stars with stable emission spectra. The accuracy of radial

velocity also depends on the sensitivity of the spectrograph used for measurements. The

4
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currently available4–6 (see Fig. 2 and its legend for details). We cal-
culate a brightness temperature of 1,205.16 9.3 K for the dayside of
the planet from the observed depth of the secondary eclipse. We
estimate that the planet has a minimum hemisphere-averaged
brightness temperature of 9736 33K occurring 6.76 0.4 h after
the transit, and a maximum hemisphere-averaged brightness tem-
perature of 1,2126 11K occurring 2.36 0.8 h before the onset of the
secondary eclipse.

We find the centre of the transit occurs at tI5 2454037.6119566
0.000067 HJD (6 s error), while the centre of the secondary eclipse
occurs at time tII5 2454038.722946 0.00027 HJD (24 s error),
where the errors have been estimated from a 105 step Markov chain.
These are the most precise timing measurements of a transit and
secondary eclipse to date. The transit occurs at the predicted time6,
but the secondary eclipse occurs 1506 24 s later than its predicted
time of half an orbital period after the transit. Because we observe
both eclipses and the period is well-constrained, we are able to predict
the time of secondary eclipse with no significant uncertainty. Part of
the delay of the secondary eclipse is due to the light travel time across
the system11 of 30 s. The remaining delay is possibly due to (1) non-
uniformity in the planet emission12,13; (2) third bodies in the system;
or (3) an eccentric orbit.

To estimate the magnitude of the first effect, we fit the observed
phase variation with a simple model of the planet consisting of 12
longitudinal slices of constant brightness. The resulting model light

curve is shown in Fig. 1b, and the best-fit longitudinal flux values are
shown in Fig. 3b (see figure legend for more details). Figure 3b is
effectively a coarse 8-mmmap of the planet with a resolution of 30u in
longitude and no resolution in latitude. Figure 3a shows this bright-
ness distribution projected onto the surface of the planet with an
additional sinusoidal dependence on latitude included. Because we
observe the planet over only half an orbital period, the error bars are
largest for longitudes near 90u west of the substellar point. Although
this brightness distribution is a good fit for the later part of the phase
curve (Fig. 1), a deviation is apparent near the transit; this fit could be
improved by using a finer longitude resolution. We find that the
brightest slice on the planet is 30u east of the substellar point. The
faintest slice of the planet also (surprisingly) appears in the eastern
hemisphere, 30uwest of the antistellar point. The brightest slice of the
planet is roughly twice as bright as the faintest slice, corresponding to
a temperature difference of ,350K. This non-uniform brightness
distribution changes the shape of the ingress and egress12,13.
Treating the planet as a uniformly bright disk in our fit creates an
artificial delay of at most 20 s in the time of secondary eclipse. Thus,
the planet’s non-uniform emission cannot account for the 120-s
delay of the secondary eclipse.

This offset is unlikely to be the result of perturbations to the pla-
net’s mean motion from a third body in the system; such perturba-
tions would shift the time of the transit as well, and we see no
evidence for such a shift. This leaves the third option as the most
likely explanation. If the time delay is attributed to eccentricity e, then
ecos 5 0.00106 0.0002, where is the longitude of pericentre,
indicating that the eccentricity is extremely small, but non-zero.
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Figure 2 | Time series of the transit and secondary eclipse. Data are binned
every 100 points (40 s), with the out-of-transit fluxes normalized to unity.
The transit and the secondary eclipse are shown in a and b, respectively, with
best-fit eclipse curves overplotted, including timing offset; residuals for the
transit (c) and the secondary eclipse (d) are plotted below. The out of transit
data for the eclipses are normalized using a constant; we find the transit
occurs 1 s earlier and the secondary eclipse occurs 8 s earlier if we use a linear
fit instead, an insignificant difference.We fit both eclipses, fixing themass of
the star4 and allowing the transit times to vary freely29. From the primary
eclipse, we find the radius of the planet is 1.1376 0.006 RJupiter, the orbital
inclination is 85.616 0.04u, and the radius of the star is 0.7576 0.003 RSun;
the planet/star radius ratio is 0.15456 0.0002. The formal uncertainty in the
mass of the star introduces an additional error of61.8% in our estimates for
the two radii. The depth of the secondary eclipse is 0.33816 0.0055% in
relative flux. Using a model30 we predict a stellar brightness temperature of
4,512K in the 8-mm Spitzer bandpass, where brightness temperature is
defined by equating the Planck function with the mean surface brightness.
We note that our best-fit value for the depth of the transit (as characterized
by ratio of the plantary to stellar radii) is slightly smaller than previous
published values6; this difference is most probably due to the effect of spots
on the star. Large spots would increase the apparent depth of the transit at
visible wavelengths, while having a minimal impact at 8mm.

 

0.98

0.99

1.00

1.000

1.001

1.002

1.003

0.999

R
el

at
iv

e 
flu

x

1.01

0.97

R
el

at
iv

e 
flu

x

a

b

0.60.50.40.30.20.10.0–0.1
Orbital phase
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of images from our final time series. We also exclude the first 1.8 h of data
from our analysis, as our correction was designed to correct the data only
beyond the start of the transit. We estimate the background flux by fitting a
gaussian function to a histogram of the fluxes from a subset of pixels located
in the corners of the image. This background contributes 1.3% of the total
flux in our aperture, and we subtract a constant value from our time series.
The scatter in the final time series is 20% higher than predicted from photon
noise alone; we use the standard deviation of the points after the end of the
secondary eclipse as our error for each point. The stellar flux as measured at
the centre of the secondary eclipse is normalized to unity (dashed line in
b), and the data are binned every 500 points (200 s). Panels a and b show the
same data, but in b the y axis is expanded to show the scale of the variation.
The solid line in b is the phase curve for the best-fit model (Fig. 3).
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Figure 1.2: Radial velocity measurements and a photometric (infrared) phase curve. Lefthand
panel (taken from Mayor & Queloz, 1995): The radial velocity of the star 51 Pagasi as a function
of orbital phase, at four different epochs, where star-Earth motions have been removed and a fitting
line has been overlaid to represent orbital motion. Righthand panel (taken from Knutson et al.,
2007): an infrared (8µm) phase curve of one orbital cycle of the HD 209458 system, measured
using the Spitzer Space Telescope. The phase curve is plotted on two scales: (a) 0.97-1.01 (top)
and (b) 0.999-1.004 (bottom). The larger of these (top) clearly shows the primary and secondary
eclipses; while the smaller of these (bottom) shows variations in the relative infrared flux between
the eclipses.

most sensitive instruments for this tend to be on large ground-based telescopes,4 how-

ever, sensitive spectrographs are also standard equipment on spaced-based telescopes (see

Table 1.2).

The radial velocity method was the front-running exoplanet detection technique through-

out the late 1990s and, to date, has identified 940 exoplanets, though a large number of

these are beyond the deuterium burning mass threshold (see Table 1.1). The first of these

discoveries was the aforementioned 51 Pagasi b. In the lefthand panel of Figure 1.2 we

present the radial velocity of the star 51 Pagasi at four different epochs, taken from Mayor

& Queloz (1995), where star-Earth motions have been removed. In this plot the orbital

motion of the star 51 Pagasi, resulting from the planet 51 Pagasi b, can be identified from

4Examples of these include the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic
Observations (ESPRESSO) on the Very Large Telescope (VTL) in Chile, the High Accuracy Radial Velocity
Planet Searcher (HARPS) on the European Southern Observatory’s (ESO) La Silla 3.6 m telescope in Chile,
the EXtreme PREcision Spectrograph (EXPRES) on the Lowell Observatory’s 4.3 m Lowell Discovery
Telescope in the USA, and the CORALIE spectrograph on the 1.2 m Swiss-Euler telescope at La Silla
Observatory, Switzerland.
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Table 1.2: Spaced-based telescopes for transit photometry on exoplanets. All information was
collated using official mission webpages. For wavelengths of the electromagnetic spectrum refer to
Table 1.3.

Telescope Launch date Retired Wavelengths

Hubble Space Telescope April 1990 — Ultraviolet, visible, and
infrared (115-2500 nm)

Spitzer Space Telescope August 2003 January 2020 Infrared (3-180µm)

CoRoT1 December 2006 June 2014 Ultraviolet, visible, and
infrared (250-1000 nm)

Kepler March 2009 October 2018 Visible, infrared
(430-890 nm)

TESS2 April 2018 — Visible, infrared
(600-1000 nm)

JWST3 Planned March 2021 — Visible, infrared
(0.6-28.5µm)

PLATO4 Planned 2026 — Visible, infrared
(500-1000 nm)

1 Convection, Rotation et Transits planétaires (in French).
2 Transiting Exoplanet Survey Satellite.
3 James Webb Space Telescope.
4 PLAnetary Transits and Oscillations of stars.

the fitting lines. Clearly, the radial velocity method has a greatest signal when the star-

planet gravitational interactions are greatest. Hence, due to Newton’s law of universal

gravitation, the radial velocity method is naturally adapted to seeking planets with large

masses and/or close-in orbits. This can be seen by comparing the masses and semimajor

axes of radial velocity exoplanet detections in Figure 1.1.

1.1.2 Transit photometry

A transiting planet is one that passes in front of its host star, as seen from Earth. The

closer a planet is to its host star, the higher the probability that it passes in front of the

Earth-bound observer’s view of its host. Therefore, as the radial velocity method contin-

ued to detect close-in giant exoplanets throughout the late 1990s, astronomers anticipated

the detection of a first transiting exoplanet. This expectation was realised at the end

of 1999 when two groups simultaneously detected planetary transits around the star HD

209458 (Charbonneau et al., 2000; Henry et al., 2000). This discovery lead to the first

implementation of transit photometry: characterising parameters and features of a tran-
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AA48CH16-Seager ARI 27 July 2010 15:21

Primary eclipse 
Measure size of planet 
See star’s radiation transmitted
through the planet atmosphere  

Secondary eclipse 
See planet thermal radiation
disappear and reappear  

Learn about atmospheric circulation
from thermal phase curves   

Figure 5
Schematic of a transiting exoplanet and potential follow-up measurements. Note that primary eclipse is also
called a transit.

from direct imaging. The first event is the existence and discovery of a large population of planets
orbiting very close to their host stars. These so-called hot Jupiters, hot Neptunes, and hot super
Earths have up to about four-day orbits and semimajor axes less than 0.05 AU (see Figure 1). The
hot Jupiters are heated by their parent stars to temperatures of 1,000 to 2,000 K, making their
IR brightness on the order of 1/1,000 that of their parent stars (Figure 4). Although it is by no
means an easy task to observe a 1:1,000 planet-star flux contrast, such an observation is possible,
and it is unequivocally more favorable than the 10−10 visible-wavelength planet-star contrast for
an Earth twin orbiting a Sun-like star.

The second favorable occurrence is that of transiting exoplanets—planets that pass in front of
their star as seen from Earth. The closer the planet is to the parent star, the higher its probability to
transit. Hence, the existence of short-period planets has enabled the discovery of many transiting
exoplanets. It is the special transit configuration that allows us to observe the planet atmosphere
without imaging the planet.

Transiting planets are observed in the combined light of the planet and star (Figure 5). As
the planet passes in front of the star, the starlight drops by the amount of the planet-to-star area
ratio. If the size of the star is known, the planet size can be determined. During transit, some of
the starlight passes through the the planetary atmosphere (depicted by the annulus in Figure 5),
picking up some of the spectral features in the planet atmosphere. A planetary transmission spec-
trum can be obtained by dividing the spectrum of the star and planet during transit by the spectrum
of the star alone (the latter taken before or after transit).

Planets on circular orbits that pass in front of the star also disappear behind the star. Just
before the planet goes behind the star, the planet and star can be observed together. When the
planet disappears behind the star, the total flux from the planet-star system drops because the
planet no longer contributes. The drop is related to both the relative sizes of the planet and star
and their relative brightnesses (at a given wavelength). The flux spectrum of the planet can be
derived by subtracting the flux spectrum of the star alone (during secondary eclipse) from the
flux spectrum of both the star and planet (just before and after secondary eclipse). The planet’s
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Figure 1.3: A schematic showing the possible measurements that can be taken when one observes
a full orbital phase of a transiting exoplanet, taken from Seager & Deming (2010).

siting exoplanet through taking measurements of the irradiance (or the light intensity) of

the combined star-planet system.

Observing a full orbital phase of a transiting exoplanet allows one to take a variety

of useful measurements, as illustrated in the schematic diagram of Figure 1.3 (taken from

Seager & Deming, 2010). We discuss this diagram alongside an example infrared phase

curve (i.e., a time series of the relative light flux at 8µm) of the star-planet system HD

189733 over one orbital cycle, which is taken from Knutson et al. (2007) and plotted in

the righthand panel of Figure 1.2. This shows the relative flux of infrared light on two

scales (a) 0.97-1.01 (top) and (b) 0.999-1.004 (bottom).

The first feature of the infrared phase curve in the righthand panel of Figure 1.2 is a

large drop in relative flux, which can be seen in the upper zoomed-out phase curve at an or-

bital phase of zero. This is the primary eclipse or transit, where the planet passes between

the star and the observer (compare to the schematic in Figure 1.3). During the transit the

measured relative light flux drops by the amount of the planet-star area ratio so, if one

knows the host star’s radius, one can calculate the planetary radius.5 Further, since the

5For example, the relative flux drop due to the primary eclipse of HD 189733 b in the infrared phase
curve presented in Figure 1.2 is ∼ 0.02, Hence, one estimates the planet-star radius ratio in the HD
189733 system is R/R∗ ∼

√
0.02 ≈ 0.14. Using data from exoplanet.eu to check this crude calculation, the

actual planet-star radius ratio of the HD 189733 system is R/R∗ = 1.138RJ/0.805R� = 0.145, where the

7
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Table 1.3: The electromagnetic spectrum as defined in (Carroll & Ostlie, 2006)1.

Type of radiation Wavelength

Gamma ray λ < 1 nm
X-ray 1 nm < λ < 10 nm

Ultraviolet 10 nm < λ < 400 nm
Visible 400 nm < λ < 700 nm

Infrared 700 nm < λ < 1 mm
Microwave 1 mm < λ < 10 cm
Radiowave λ > 10 cm

1 The boundaries of the wavelength regions are somewhat arbitrary and vary between sources.

magnitude of the primary eclipse’s flux drop scales with the planet-star area ratio, exo-

planet detections using transit photometry have selection biases favouring (close-in) giant

planets. An additional benefit of observing a transit is that, during this primary eclipse,

light from the host star grazes the exoplanet’s atmosphere (see blue annulus in Figure 1.3).

This means that during transit the chemical composition of the exoplanet’s atmosphere

can be investigated by taking an absorption spectrum, while filtering the spectral signals

of the host star (which can be obtained at other orbital phases).

The second major feature of the infrared phase curve in the righthand panel of Fig-

ure 1.2 is a smaller drop in relative flux, which can be seen at an orbital phase of 0.5.

This is the secondary eclipse, where the planet passes behind the star (from the observer’s

viewpoint). The reduction in the light flux is caused by the removal of the planet’s signal.

Therefore, the light flux of the planet is the drop in the system’s total light flux during the

secondary eclipse compared to just before/after the secondary eclipse. The most accurate

measurements of these secondary eclipse flux differences can be taken when the light flux

from the planet is comparable to the star (i.e., when the signal-noise ratio is large). In the

lefthand panel of Figure 1.4 the blackbody flux of some Solar System bodies, as “seen”

from 10 pc, are compared to the blackbody flux of a Sun-like star and a typical hot Jupiter,

again, as “seen” from 10 pc. The light flux of each object is plotted across a spectrum

of wavelengths between 0.1µm (ultraviolet) and 40µm (infrared) and, for reference, we

Jupiter-Sun radius ratio of RJ/R� = 0.1028 has been applied.
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AA48CH16-Seager ARI 27 July 2010 15:21
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Figure 4
Black body flux (in units of 10−26 W m−2 Hz−1) of some Solar System bodies as “seen” from 10 pc. The Sun
is represented by a 5750-K black body. The planets Jupiter, Venus, Earth, and Mars are shown. A putative
hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak is due to
sunlight scattered from the planet atmosphere and is computed using the planet’s geometric albedo. The
long-wavelength peak is from the planet’s thermal emission and is estimated by a black body of the planet’s
effective temperature. The hot Jupiter albedo was assumed to be 0.05 and the equilibrium temperature to be
1,600 K. Temperature and albedo data are taken from Cox (2000).

of substellar objects is currently possible with large ground-based telescopes and adaptive optics
to cancel the atmosphere’s blurring effects. Out of a dozen planet candidates, the most definitive
planet detections are Fomalhaut b because of its mass (≤3 MJ) (Kalas et al. 2008) and the three
planets orbiting HR 8799 (Marois et al. 2008). Not only do the HR 8799 planets have mass
estimates below the brown dwarf limit, but the hierarchy of three objects orbiting a central star is
simply not seen for multiple star systems.

Solar-system-like small exoplanets are not observable via direct imaging with current technol-
ogy, even though an Earth at 10 pc is brighter than the faintest galaxies observed by the HST. The
major impediment to direct imaging of exoEarths is instead the adjacent host star; the Sun is 10
million to 10 billion times brighter than Earth (for mid-IR and visible wavelengths, respectively).
No existing or planned telescope is capable of achieving this contrast ratio at 1-AU separations.
The current state of the art HR 8799 observations detected a planet at a contrast of 1/100,000
at a separation of about 0.5 arcsec. Fortunately, much research and technology development is
ongoing to enable space-based direct imaging of Solar System–aged Earths and Jupiters in the
future. See Figure 4 for estimates of planetary fluxes, and Seager (2010, chapter 3) for approximate
formulae for order-of-magnitude estimates for direct imaging.

2.1.2. Transiting exoplanet atmosphere observations. For the present time, two fortuitous,
related events have enabled observations of exoplanet atmospheres using a technique very different

638 Seager · Deming
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star. Thus, if we can measure the flux of a
system at a signal-to-noise ratio (S/N) > 1000,
temperature differences between the day and
night faces of the planet will appear as an orbital
modulation of the total system flux. With a star
as bright as u Andromedae, our 3-s exposures
each have S/N ~ 500, so that our SNR ex-
pectation is∼

ffiffiffiffiffiffiffi
160

p
! 500 ≈ 6300 at each epoch.

The MIPS instrument acquires data by placing
the stellar image in a sequence of 14 positions on
the detector. The detector's response varies with
position at about the 1% level. This variation is
stable and reproducible, so we calculated correction
factors as follows: At each epoch, we computed the
mean measured system flux at each position and
took the ratiowith themean in the first position.We
then averaged this ratio over all epochs for each
position. This results in corrections < 2% between
positions, with uncertainties ~ 6 × 10−4. Bringing
the photometry to a common normalization al-
lowed us to average over all the frames in each
epoch to achieve S/N ≈ 4350 at each epoch.

As with most infrared instruments, MIPS's
sensitivity varies in time. We corrected for such
drifts by dividing the system flux value by the
measured background in each frame. The back-
ground at 24 mm is thermal emission from the
zodiacal dust. This dust pervades the inner solar
system, absorbing light from the sun and reradi-
ating it at infrared wavelengths. At 24 mm, its
emission is strong enough for use as a flux
standard, a technique used successfully in mea-
suring the eclipse of HD 209458b (1). However,
the present work requires one additional correc-
tion. The zodiacal background is the integrated
emission by dust along the line of sight between
the telescope and the object. The observed value
thus undergoes an annual modulation as that line
of sight varies with the telescope's orbit about the
sun. The best available model (10) predicts a
linear drift over the brief interval of our obser-
vations. However, we cannot use the Spitzer mod-
el directly, because it is calculated for a line of
sight from Earth to the object in question. The
difference in position between the Earth-trailing
telescope and Earth itself is large enough that the
slope of the variation may be slightly different.
Thus, we fit for the linear drift directly, simulta-
neously with any model lightcurve fits.

The phase curve for the u Andromedae
system shows a variation (Fig. 1) in absolute
photometry, even before any corrections for
instrumental or zodiacal drifts are made. After
the calibration with respect to the zodiacal
background was applied, this variation is
revealed to be in phase with the known orbit of
the innermost planet of the system, our principal
result.

A simple model can be fit to the phase curve
(Fig. 2), assuming local, instantaneous thermal
reradiation of the absorbed stellar flux. In the
simplest model, the phase of the variation is not

a free parameter but is rather set by the mea-
sured radial velocity curve (11), although phase
offsets are possible for models in which the
energy is absorbed deep within the atmosphere
and redistributed about the surface (12, 13). There
is weak (2.5s) evidence for a small phase offset in
this data (Fig. 2), but the large offsets predicted
from some models are excluded at high signifi-
cance. Fitting the peak-to-trough amplitude to the
observations yields a best-fit value for the planet-
star flux ratio of 2.9 × 10−3 ± 0.7 × 10−3. This is
very similar to the result at this wavelength for HD
209458b (1). However, the latter is a measure of
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and Stellar Astrophysics Laboratory, Goddard Space Flight
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Fig. 1. The light curve of
the u Andromedae sys-
tem. (A) The phase varia-
tion in the u Andromedae
system flux before any
corrections are applied
for instrument or zodiacal
drifts. Variations in the
system flux are significant
even at this point. (B) By
comparing to the zodiacal
background and fitting for
the linear drift in the
background due to the
telescope's motion, we ob-
tained the phase curve
shown. In each case, phase
is shown modulo unity,
with zero phase occurring
when the planet is closest
to Earth. The amplitude
units are expressed in
terms of the system flux
at the first epoch. Error bars indicate the residual statistical error at each epoch.

Fig. 2. Comparison of the
phase curve and the no-
redistribution model. The
solid points show our final
phase curve, after applying
calibrations, in time order
from left to right. The open
points are repetitions of
these, displaced horizontally
by one orbit, to better illus-
trate the phase coverage
over two cycles. The solid
line is an analytic model for
the planetary emission in
which energy absorbed from
the star is reradiated locally
on the day side with no heat
transfer across the surface of
the planet, the so-called no-
redistribution model [and in
excellent agreement with the
more detailed version in
(17)]. The assumed inclina-
tion in this case is 80° from
pole-on, and the relative planet/star amplitude is 2.9 × 10−3 . If we allow for a phase shift relative to the radial
velocity curve, we obtain a slightly better fit, as shown by the dotted curve. The best fit is obtained with a phase
lag of 11°, but zero lag is excluded only at the 2.5 s level. Error bars indicate the residual statistical error at each
epoch.
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Figure 1.4: Lefthand panel: A comparison of light flux signals of different objects, from 10 pc, show-
ing why Jupiters are amenable for study. Adapted from Seager & Deming (2010). The blackbody
flux (i.e., the surface irradiance per unit frequency in units of 10−26 W m−2 Hz−1, on a logarithmic
scale) of some Solar System bodies as “seen” from 10 pc are compared to that of a typical hot
Jupiter (with an equilibrium temperature of 1600 K and an albedo of 0.05). Righthand panel: a
separated infrared (24µm) phase curve of the planet υ Andromedae b, taken from Harrington et al.
(2006). The phase curve is constructed using data from two orbital cycles, which are distinguished
by solid (first) and empty (second) points, with associated error bars. The authors have included
two fitting lines based on an analytic planetary emission model. The solid line denotes the phase
curve with the hottest latitudinal point (the hotspot) located at the position of maximum stellar
irradiance (the substellar point); the dashed line is the best-fit phase curve and has an eastward
phase shift of 11◦ (i.e., with the hotspot positioned 11◦ east of the substellar point).
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Chapter 1. An Introduction to Hot Jupiters

tabulate the wavelengths of the electromagnetic spectrum in Table 1.3. From Figure 1.4,

one can see that a typical hot Jupiter has significant planet-star light flux ratio at near and

mid infrared wavelengths and has a lesser (but still observable) planet-star light flux ratio

in the visible spectrum. However, the light flux from exoplanets akin to the bodies in our

Solar System would be orders of magnitude smaller. This makes their secondary eclipse

photometric signals challenging to distinguish from noise. Measuring a hot Jupiter’s sec-

ondary eclipse light flux drop at different wavelengths is useful for obtaining information

about different atmospheric features. Infrared light flux measurements indicate the exo-

planet’s dayside temperature; whereas measurements in visible wavelengths can be used

to determine the planetary albedo and estimate temperature by treating the planet as a

blackbody (e.g., Cowan et al., 2007).

Once the exoplanet’s photometric signal has been separated from its host’s signal,

the system’s phase curve measurements between the two eclipses can be used to elicit

further information about the planet’s atmosphere. If variations in the planet’s phase

curve contribution are distinguishable from noise (as seen in the lower phase curve in

the righthand panel of Figure 1.2), it provides an observer information about how the

temperature/brightness of the planet varies between its day and night sides. One can

separate these variations and use planetary emission models to construct a planetary

phase curve. An example of a planetary infrared phase curve of the planet υ Andromedae

b, taken from Harrington et al. (2006), is plotted in the righthand panel of Figure 1.4

to illustrate this. Similarly, the separated planetary phase curve information can also be

used to construct temperature/brightness maps of the exoplanet. In Figure 1.5, which is

taken from Knutson et al. (2007), we present a temperature map of the hot Jupiter HD

189733b. This was constructed using the infrared phase curve of the HD 189733 system,

which is presented in the righthand panel of Figure 1.2, and fitting treatment based on the

expected relative light flux contribution of each longitudinal slice at a given orbital phase

(for further discussion see Knutson et al., 2007). Planetary phase curves and temperature

maps like these provide useful testable comparisons for theories of atmospheric dynamics.

In particular, they can be used to estimate a hot Jupiter’s day-night temperature contrasts

10



Chapter 1. An Introduction to Hot Jupiters

This is surprising, as the timescale for orbital circularization is sig-
nificantly shorter than the ages of these systems14,15. This eccentricity
is too small to have been detected by radial velocity measurements4,6.
The observed delay is moderately inconsistent with the timing of the
16-mm eclipse3, which occurs 296 65 s later than predicted6.

Atmosphere models allow us some insight into the factors that
control the day–night temperature contrast. The response of a planet
to stellar irradiation depends on a comparison between the radiative
timescale (over which starlight absorption and infrared emission
alter the temperature) and the advection timescale (over which air
parcels travel between day and night sides)16–18. If the radiative time is
much shorter than the advection time, the hot dayside reradiates the
absorbed stellar flux and the nightside remains cold. If the radiative
time greatly exceeds the advection time, however, then efficient ther-
mal homogenization occurs. Radiative transfer models of highly irra-
diated giant planets17–21 predict that the bulk of absorption of stellar
flux and emission of thermal flux occurs at pressures from tens of
millibars to several bars, where the predicted radiative timescales18

range from 104 s to 105 s. Advection times are less well constrained,
but estimates of wind speeds16,22–26 (hundreds to thousands of m s21)
suggest advection times of,105 s. Thus, current models suggest that
the radiative timescale is comparable to the advective timescale, and
temperature differences could reach 1,000 K. In contrast, the small
flux variation that we observe implies that the timescale for altering

the temperature by radiation modestly exceeds the timescale for
homogenizing the temperature between the day and night sides.

It is possible that the observed planetary flux emerges from deeper
in the atmosphere than expected, where the radiative timescales are
longer. In the 8-mm band, models suggest that H2O dominates
the opacity, with additional contributions from CH4 and collision-
induced absorption of H2. Silicate cloud opacity is not expected at
these temperatures27. If the radiative time constants are as small as
expected18, then supersonic wind speeds exceeding,10 km s21 (,4
times the sound speed) would be necessary to transport energy to the
nightside. The times of minimum and maximum flux also provide
information on the planet’s meteorology. Our observation that the
minimumandmaximumdo not occur at phases of 0 and 0.5, respect-
ively, indicates advection of the temperature pattern by atmospheric
winds16,22–26,28. The existence of a flux minimum and maximum on a
single hemisphere suggests a complex pattern not yet captured in
current circulation models.

In contrast to the 8-mmphase variation for HD 189733b presented
here, the 24-mm variation reported7 for the non-transiting planet u
Andromedae b was quite large. The reasons for the differing results
are not immediately clear, although the sparse data sampling and
unknown radius for uAnd bmean that the uncertainty in the inferred
day–night contrast is much larger. A higher opacity at 24 mm and a
lower surface gravity for u And b could lead to a photospheric pres-
sure two times smaller, but this difference is probably insufficient to
explain the discrepancy. The dayside of u And b receives 50% more
flux from its star, but it is unclear how this would affect the day–night
temperature contrast. Secondary eclipse depths for several planets
have been in good agreement with the predictions from simple
one-dimensional models17,19–21 that assume a uniform day–night
temperature, consistent with our conclusions for HD 189733b.
Taken together, these results argue for atmospheres that are very dark
at visible wavelengths, probably absorbing 90% or more of the incid-
ent stellar flux, and at the same time able to transport much of this
energy to the nightside.

Received 8 February; accepted 23 March 2007.
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Figure 3 | Brightness estimates for 12 longitudinal strips on the surface of
the planet. Data are shown as a colourmap (a) and in graphical form (b); see
below for details. We assume that the planet is tidally locked, and we
approximate it as being edge-on with no limb-darkening, so that the
brightness of the ith slice is Fi(sinwi,22 sinwi,1) where2p/2# wi,1, wi,2#p/2
are the edges of the visible portion of each slice, and Fi is the flux from a slice
when it is closest to us. We bin the light curve into 32 bins with 4,000 data
points each, excising the data during the eclipses. We define our goodness-
of-fit parameter as x2zl

P
12
i~1 Fi{Fi{1ð Þ2, where x2 is the goodness of fit

for the light curve, and the second term is a linear regularizing term that
enforces small variations in adjacent slices for large l and allows a unique
solution for Fi for a given value of l.We optimize this function using a 1,000-
step Markov Chain Monte Carlo method to determine the planetary flux
profile and corresponding uncertainties. We chose a value for l that
produced a reasonable compromise between the quality of the fit and the
smoothness of the final brightness map. We varied both the size of the bins
and the number of longitudinal slices, and our resulting slice fluxes are
robust. The brightness values in b are given as the ratio of the flux from an
individual slice viewed face-on to the total flux of the star, with61s errors.
Panel a shows aMollweide projection of this brightness distribution, with an
additional sinusoidal dependence on latitude included (note that the data
provide no latitude information). This plot uses a linear scale, with the
brightest points in white and the darkest points in black.
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Figure 1.5: A temperature map of the hot Jupiter HD 189733b constructed using variations in
the infrared phase curve presented in the righthand panel of Figure 1.2, taken from Knutson et al.
(2007). The temperature map is calculated by assuming synchronous tidally-locked rotation, which
is expected (see Section 1.2.2 for discussion). The planet is divided into longitudinal slices and
the light flux from the phase curve at a given orbital phase is attributed to the longitudinal slice
closest to the observer at that point (subject to a fitting treatment). In the upper half of this
figure, the temperature is visualised as a colour map, with the brightest colours representing the
hottest regions; in the lower half, the relative brightness of each longitudinal slice are displayed.
Here the longitudinal axis is centred about the substellar point (i.e., the point at the noon on the
dayside). In the temperature map, sinusoidal dependence on latitude is assumed.
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Chapter 1. An Introduction to Hot Jupiters

and the location of its maximal temperature (i.e., its hotspot).

Transit photometry measurements can be taken by ground-based telescopes and ground-

based transit photometry surveys have had a great deal of success in identifying exoplan-

ets6. However, the Earth’s atmosphere poses a significant challenge for photometric mea-

surements with small signal-noise ratios (e.g., determining temperature/brightness maps).

Cloud cover and turbulence in Earth’s atmosphere hinder optical measurements; whereas

water vapour in Earth’s atmosphere absorbs much of the infrared signal. These problems

can be circumvented by using space-based telescopes. In Table 1.2 we detail past, present,

and future space-based telescopes with optical detectors in the visible and infrared wave-

lengths. These have amassed a huge amount of data since their launches and archival

data from Spitzer, CoRoT, and Kepler are still producing interesting results years after

their retirement. To date, transit photometry (from both ground-based and space-based

telescopes) has yielded 3422 detections (see Table 1.1), making it the most successful de-

tection method by far. This means that the pool of known exoplanets tend have features

optimal for transit detections (i.e., large radii, close-in orbits, and short orbital periods).

1.1.3 Other detection and characterisation methods

By the end of the 2000s, radial velocity monitoring and transit photometry had become

the leading exoplanet detection methods (see Figure 1.1). However, other planet-hunting

methods have yielded discoveries and can be used to infer explanatory characteristics.

Here we briefly discuss a few of them.

Direct imaging

The most intuitive way to observe an exoplanet is to take a direct image of it. This can be

achieved by using a coronagraph, which is filter that blocks starlight. However, compared

to their hosts, exoplanets are faint sources of light (for comparisons at 10 pc, see lefthand

panel of Figure 1.4). This generally limits direct imaging to bright (massive and/or young)

6For example, the international Wide Angle Search for Planets (WASP) collaborative survey that uses
transit photometry to perform an ultra-wide angle search with ground-base telescopes in Palma, Spain
and Sutherland, South Africa. At the time of writing it has identified just under 200 planets.
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L30 G. Chauvin et al.: A giant planet candidate near a young brown dwarf

2MASSWJ1207334−393254

778 mas
55 AU at 70 pc 

E

N

Fig. 1. Composite image of brown dwarf 2M1207 and its GPCC in H
(blue), Ks (green) and L′ (red). The companion appears clearly distin-
guishable in comparison to the color of the brown dwarf 2M1207.

Table 1. Night Log of the observations. S27 and L27 correspond re-
spectively to a platescale of 27.03 and 27.12 mas. DIT and NDIT cor-
respond respectively to an individual integration time and the number
of integrations. Sr and FWHM correspond to the strehl ratio and the
full width at half maximum intensity.

Filt. Obj. DIT NDIT Seeing Airm. Sr FWHM
(s) (′′) (%) (mas)

Imaging
J S27 30 8 0.59 1.07 6 122
H S27 30 16 0.46 1.10 15 91
Ks S27 30 16 0.52 1.08 23 89
L′ L27 0.175 1300 0.43 1.14 30 107

Spectroscopy
SH S54 300 6 0.45 1.15

close vicinity a faint and red object at 778 mas and a position
angle of 125.8◦ in H, K and L′. The faint object was not de-
tected down to 3σ of 18.5 in J-band. In Figs. 1 and 2, we dis-
play an H, Ks and L′ composite image and the detection limits
obtained in each band during our observations. After cosmetic
reductions using eclipse (Devillar 1997), we used the myopic
deconvolution algorithm MISTRAL (Conan et al. 2000) to ob-
tain H, K and L′ photometry and astrometry of the GPCC. The
results are reported in Table 2. The transformations between the
filters Ks and K were found to be smaller than the measuring
errors.

On 19 June 2004, 2M1207 and its GPCC were simultane-
ously observed using the NACO spectroscopic mode. The low
resolution (Rλ = 700) grism was used with the 86 mas slit, the
S54 camera (54 mas/pixel) and the SH filter (1.37−1.84 µm).
The spectra of 2M1207 and its GPCC were extracted and cali-
brated in wavelength with IRAF/DOSLIT. To calibrate the rel-
ative throughput of the atmosphere and the instrument, we di-
vided the extracted spectra by the spectra of a standard star
(HIP 062522, B9III) and then multiplied by a blackbody to re-
store the shape of the continuum.

Fig. 2. Detection limits at 3σ achieved during our observations in
J-band (dotted black line), H-band (dashed blue line), Ks-band
(dashed-dotted green line) and L′-band (solid red line). The contrasts
between 2M1207 and its GPCC are reported for H (filled triangle),
Ks (filled box) and L′ (filled circle) (the GPCC was not detected in
J band).

3. Discussion

3.1. Membership in the TW Hydrae association

Gizis (2002) undertook a 2MASS-based search for isolated low
mass brown dwarfs in the area covered by stellar members
of TWA and found two late M-type objects which he identi-
fied as brown dwarfs. The one of interest in the present paper,
2M1207, showed impressively strong Hα emission in addition
to signs of low surface gravity, which both are characteristic
of very young objects. Gizis (2002) noted also that the proper
motion of 2M1207 is consistent with membership in the TWA.

Subsequently, Mohanty et al. (2003) obtained echelle spec-
tra of 2M1207. The radial velocity is also consistent with
TWA membership. They detected a narrow Na I (8200 Å) ab-
sorption line indicating low surface gravity. Finally, the spec-
trum displays various He I and H I emission lines (Mohanty
et al. 2003; Gizis 2002) and the Hα line is asymmetric and
broad. Taken together, these characteristics led Mohanty et al.
(2003) to suggest the occurrence of ongoing accretion onto
(a young) brown dwarf. Although L′-band observations of
Jayawardhana et al. (2003) did not reveal significant IR excess
at 3.8 µm, recent mid-IR observations of Sterzik et al. (2004,
accepted) found excess emission at 8.7 µm and 10.4 µm and
confirm disk accretion as the likely cause of the strong activ-
ity. New Chandra observations of Gizis & Bharat (2004) cor-
roborates this disk-accretion scenario as they suggest that less
than 20% of the Hα emission can be due to chromospheric ac-
tivity. All in all, multiple lines of evidence point toward mem-
bership of 2M1207 in the TWA.

3.2. Age and distance of the system

The age of the TWA can be established by comparison with
the somewhat older β Pictoris moving group’s space motions
(UVW; Zuckerman et al. 2001) and HR diagrams. Ortega et al.
(2002) and Song et al. (2003) have traced members back to
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Figure 1.6: Direct imaging and pulsar timing. Lefthand panel (taken from Chauvin et al., 2004):
An image of the brown dwarf 2MASSWJ1207334–393254 (blue) and its giant planet companion
2MASSWJ1207334–393254 b (red). The colourings of the image denote different imaging wave-
length bands (see original text for more details). Righthand panel (taken from Wolszczan & Frail,
1992): Variations in the orbital period of the pulsar PSR1257+12 (in nanoseconds), with the
predicted variations of a two-planet model indicated by a solid line.

planets that are located far away enough from their host star that their signal is not lost

in the stellar glare (see Figure 1.1). Imaging at infrared and optical wavelengths can yield

information about the planet’s atmospheric temperature and albedo (hence blackbody

temperature), respectively. From such temperature measurements, planetary evolutionary

models can be applied to estimate the planet’s mass, albeit with a large relative uncertainty

(Chauvin et al., 2004). In the lefthand panel of Figure 1.6, we present an image of

2MASSWJ1207334–393254 b, which is taken from Chauvin et al. (2004). This was the

first confirmed explanatory detection made by direct imaging. Since then, progress has

been made with imaging techniques and successes have included observations from both

ground-based and space-based telescopes (for further details see Traub & Oppenheimer,

2010). To date, 147 exoplanets have been detected using direct imaging, making it an

increasingly viable characterisation method, though we comment that many of these are

either the most massive exoplanets or have masses beyond the theoretic deuterium burning

threshold (see Figure 1.1).
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Timing methods

If the behaviour of an astrophysical object is well-known and consistent, deviations from

their usual temporal cycles or signals can indicate a nearby companion object. For exo-

planet detection, timing methods come in a few different guises.

Pulsar timing is a method that uses the regularity of a pulsar’s rotation to search

for orbiting exoplanets. A pulsar is a highly-magnetised, rapidly rotating neutron star

that emits beams of electromagnetic radiation from its magnetic poles. As the pulsar

rotates, its beam of radiation sweeps across the cosmos, only becoming visible to an Earth-

bound observer when it is pointed at Earth (much like an observer on a boat viewing a

sweeping lighthouse beam). Due to their very dense nature, pulsars have regular rotation

periods and pulses arrive to Earth at regular intervals. The presence of an exoplanet

can cause periodic variations of a pulsar’s rotation period, which can be identified in

their pulse signals. Pulsar timing was the method responsible for the first ever exoplanet

discoveries: a planetary system around the pulsar PSR1257+12 (Wolszczan & Frail, 1992).

In the righthand panel of Figure 1.6, we present the variations in the orbital period of

PSR1257+12, taken from Wolszczan & Frail (1992). This plot has a solid line, which

denotes the predicted period variations of a two-planet model, overlaid on the period

measurements.

Similar timing methods can be applied to regularly pulsating or varying stars. The

first exoplanet detection using variable star timing was made by Silvotti et al. (2007), who

discovered the planet V 391 Pegasi b. This discovery was made by timing pulses from the

post main-sequence star V 391 Pegasi (which are caused by core helium burning).

If a star has a known transiting exoplanet, transit timing variations (often abbreviated

to TTV) can be used to search for additional bodies within its planetary system. The

method of transit timing variations measures deviations in the transiting planet’s orbital

periodicity, from which orbital mechanics can be used to detect and constrain other planets

within the system (Miralda-Escude, 2002). This method is highly sensitive for detecting

additional non-transiting planets, even down to Earth-like masses (Agol et al., 2005).

14
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Further, the method of transit timing variations is useful for making detections in far-

off systems, where radial velocity methods cannot detect them due to a low signal-noise

ratio. The first exoplanet detected using transit timing variations was Kepler-19c (Ballard

et al., 2011). Kepler-19c is a planet with a mass similar to Neptune, which was found by

studying the transit timing variations of Kepler-19b — a smaller transiting exoplanet,

with approximately half the mass of Neptune.

The method of eclipsing binary timings is analogous to the method of transit timing

variations but it considers systems with eclipsing binary stars, rather than those with a

host star and a transiting planet. Exoplanets are sought by using orbital mechanics to

explain the timing deviations of a system’s binary eclipses (i.e., when one star passes in

front of the other, as viewed from Earth). The first exoplanet prediction made using this

method was for the planet PSR B1620-26 (AB) b, which was believed to be detected in

1993 (Thorsett et al., 1993).7 However, due to large uncertainties in its orbital parameters,

it was not confirmed until 2003 (see the exoplanet.eu archive entry for more details).

As a whole, timing methods cover a range of settings so they have been successful in

discovering exoplanets with a variety of planetary parameters (see Figure 1.1). However,

they generally require measurements over a long time period in order to establish the

long-term variations in measured periodicities. To date, timing methods account for 68

exoplanet detections (see Table 1.1).

Gravitational microlensing

One of the consequences of Einstein’s theory of general relativity is that light can be bent

and focused by the gravitational field of a star. Therefore, if two stars almost exactly line

up, the light of the distant background star can be magnified by the gravitational field

of the closer lensing star. This phenomenon is known as gravitational microlensing. The

degree of gravitational microlensing can be used to infer information about the lensing

star’s gravitational field. Moreover, if a third object (i.e., an exoplanet) is gravitationally

7B1620-26 is a binary star system containing the pulsar B1620-26 A, the white dwarf B1620-26 B, and
the exoplanet PSR B1620-26 (AB) b.
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interacting with the lensing star, deviations to this lensing effect can cause variations in

the light flux coming from the background star. Such variations can be used to determine

the existence and orbital properties of the lensing star’s companion (i.e., mass and orbital

distance).

The main strength of gravitational microlensing is that it does not have a bias for

massive exoplanets with close-in orbits. In fact, exoplanets have been found with separa-

tions ranging between 0.2 AU and 40 AU and gravitational microlensing struggles to detect

planets with very close-in (. 0.2 AU) or far-off (& 100 AU) orbits. Further, any sufficiently

massive object can act as a gravitational lens, with masses of exoplanets discovered from

gravitational microlensing ranging from ∼ 1.4M⊕ upwards, where M⊕ is Earth’s mass.

This is remarkable in that it offers the possibility of finding Earth-like planets within the

habitable zones of their host stars (see Figure 1.1). So far, all microlensing detections of

exoplanets have been found at distances of several kiloparsec away from the Solar System,

along the line-of-sight to the Galactic center (since there is a large line-of-sight stellar den-

sity at these distances). Hence, gravitational microlensing can provide an indication of the

true population of planets with intermediately distant orbits lying towards the Galactic

center (for review see Tsapras, 2018).

One of the main drawbacks of gravitational microlensing is that, since planetary mi-

crolensing events are one-offs with short observational time-windows, obtaining highly ac-

curate orbital constraints is considerably challenging (Bond et al., 2004). This is countered

by coordinating different telescopes around the world to take independent microlensing

measurements of the same events to build an ensemble picture. Another challenge is that,

since this method requires the near alignment of two stars, the probability of detecting

planetary microlensing deviations is low, ∼ 10−8 per star (Tsapras, 2018). However, wide-

view surveys8 monitor approximately a billion stars regularly, meaning that there enough

monitored stars to tip the balance of probability. Consequently, to date, gravitational

microlensing has lead to the discovery of 149 exoplanets (see Table 1.1). The first of these

8Examples of such surveys are the Optical Gravitational Lensing Experiment (OGLE), and the MAssive
Compact Halo Objects (MACHO) project.
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was OGLE-2003-BLG-235L b: a (Bond et al., 2004). This is a 2.6±0.8MJ planet orbiting

about a 0.63± 0.08M� host star.

1.1.4 Concluding remarks on observational methods

In this section, we have given a brief overview of exoplanet detection and meteorological

methods. Of these, transit photometry and the radial velocity method have proved the

most prosperous (see Figure 1.1 and Table 1.1). When used in partnership, these methods

can provide constraints on numerous planetary parameters. The radial velocity method

can provide constraints on an exoplanet’s mass, the orbital period, orbital semimajor axis,

and orbital eccentricity; whereas transit photometry can provide constraints and measure-

ments of an exoplanet’s orbital period, radius (hence density when combined with mass),

chemical composition, dayside temperature, planetary albedo, and longitudinal tempera-

ture/brightness dependences. When combined these measurements can yield significant

information about an exoplanet’s atmosphere, however, transit photometry and the radial

velocity method have similar selection biases favouring exoplanets with short orbital pe-

riods, close-in orbits, large masses, large radii, and large optical/infrared light outputs —

that is, hot Jupiters.

We also gave an overview of other detection and characterisation methods including

direct imaging, timing methods, and gravitational microlensing. Of these, direct imaging

alone can be used to constrain and measure atmospheric properties (i.e., temperature and

albedo); while the others constrain orbital properties (i.e., mass, orbital period, orbital

semimajor axis, and orbital eccentricity). These methods each come with their own se-

lection biases so indicate characteristics of the true planetary population. In the future,

these methods are likely to prove important in answering questions regarding habitability

and the uniqueness of the Solar System. However, these methods do not currently out-

put the sheer volume of detections and measurements of the radial velocity method and

transit photometry, which have enabled astrophysicists to uncover interesting features,

behaviours, and questions concerning hot Jupiters.

17



Chapter 1. An Introduction to Hot Jupiters

1.2 Characteristics of hot Jupiters

1.2.1 Typical planetary parameters

To get an idea of the typical planetary parameters of hot Jupiters (a < 0.1 AU and

0.1MJ < M < 10MJ), we plot a selection of their properties in Figure 1.7. We plot

current estimates of planetary parameters against the equilibrium temperature, Teq. It is

useful to use Teq as the independent variable as it gives an indication of both the planet’s

proximity to its host star and the size/luminosity of its host star. For this we calculate

the orbit-averaged effective temperature from the exoplanet.eu dataset9 assuming zero

albedos, so Teq = (R∗/2a)1/2 T∗/(1 − e2)1/8, where R∗ and T∗ are respectively the stellar

radius and the stellar effective temperature (e.g., Laughlin et al., 2011). In this instance,

calculating Teq like this proves more useful than using measured temperatures as it does

not require our dataset to be reduced to planets with accurate secondary eclipse infrared

photometric measurements.

First, as discussed at the start of this chapter, Figure 1.7 highlights that Teq ∼ 500-

3000 K. This means that the hottest hot Jupiters are hot enough to have partially-ionised

atmospheres and that magnetism is expected to play an important role in their atmospheric

dynamics (e.g., Perna et al., 2010; Perna et al., 2010; Menou, 2012a; Rogers & Showman,

2014; Rogers & Komacek, 2014; Rogers, 2017; Rogers & McElwaine, 2017). We will discuss

current understanding of the role of magnetism in hot Jupiters in Section 1.4. Figure 1.7

also illustrates that the majority of observed hot Jupiters have planetary masses between

M ∼ 0.1-4MJ, short orbital periods (torbit < 10 Earth days) that are generally shortest for

hottest/closest-in hot Jupiters, planetary radii between R ∼ 0.2-2RJ, where RJ denotes

the (nominal equatorial) Jupiter radius, and small orbital eccentricities, particularly for

the hottest/closest-in hot Jupiters.

9Accessed May 30, 2021. HJs with empty data entries for R, M , torbit, a, e, R∗, or T∗ are removed,
with the sole exception of extremely hot and close-in planet Kepler-76 b (for which we use e = 0), which
we wish to keep in our dataset for future reference.
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Figure 1.7: Properties of hot Jupiters in the exoplanet.eu catalogue with a < 0.1 AU, and 0.1MJ <
M < 10MJ. Using this dataset, we plot current estimates of the planetary mass (top left),
orbital semimajor axis (top right), orbital period (middle left), planetary radius (middle right),
and eccentricity (bottom) against the orbit-averaged effective temperature of hot Jupiters . The
hot Jupiters CoRoT-2b (Teq ≈ 1523 K), Kepler-76b (Teq ≈ 2145 K), HAT-P-7b (Teq ≈ 2192 K),
WASP-12b (Teq ≈ 2578 K), and WASP-33b (Teq2681 K), which are discussed specifically in this
work, are marked with black opaque markers.
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1.2.2 Synchronous rotation and large day-night temperature differen-

tials

A feature of fundamental importance to their atmospheric dynamics is that, due to their

close proximities, hot Jupiters are expected to be tidally-locked to their host stars, with the

time required for tidally-locking expected to be∼ 103-104 times shorter than their expected

age (Guillot et al., 1996). Moreover, for hot Jupiters with small orbital eccentricity, orbital

theory predicts synchronous rotation (Colombo & Shapiro, 1966; Guillot et al., 1996;

Showman et al., 2015). That is, hot Jupiters are expected to have perpetual day and

night sides. This, combined with the high levels of stellar irradiance that hot Jupiters are

subjected to, causes extreme day-night temperature differentials.

As discussed in Section 1.1, these day-night temperature differentials can be estimated

using transit photometry. In the hottest hot Jupiters, the day-night temperature differ-

ences are expected to be ∼ 1000 K (Harrington et al., 2006; Komacek et al., 2017) and

could be as large as 2500 K (Helling et al., 2019a). These temperature differentials between

the (perpetual) daysides and nightsides of hot Jupiters drive interesting and dramatic at-

mospheric dynamics, which we will discuss in the hydrodynamic limit in Section 1.3.

1.2.3 Planetary structure and stratification

Structural models of hot Jupiters are based on our current understanding of the giant

planets of the Solar System. In these examples, the vast amounts of energy from planetary

formation are thought to cause long-term planetary cooling through either convective or

radiative energy transport. In the deep interiors of giant planets, high opacities are thought

to cause steep radial temperature gradients that drive convection; whereas towards the

exterior, at sufficiently low pressures, gas becomes optically thin and so radial temperature

gradients can be stably maintained by radiative cooling (e.g., Stevenson, 1991; Chabrier

& Baraffe, 2000; Burrows et al., 2001).

One of the early questions concerning hot Jupiters is how the intense stellar insolation

they receive due to their close-in orbits affects this planetary cooling. Various authors have
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concluded that this external heating source does not halt the planetary cooling but it does

affect the depth of the radiative-convective boundary. For Jupiter, Saturn, Uranus, and

Neptune, the radiative-convective boundary lies at pressures somewhat less than ∼ 0.01-

1 bar. However, at these pressures on hot Jupiters, the absorbed stellar irradiance heats

the uppermost layers and reduces the radial temperature gradients in the upper interior.

This causes the radiative zone to become approximately radially isothermal and pushes

the radiative-convective boundary downward to pressures as large as ∼ 100-1000 bar, de-

pending on age and the magnitude of insolation (e.g., Guillot et al., 1996; Saumon et al.,

1996; Burrows et al., 2000; Chabrier et al., 2004; Guillot, 2005; Fortney et al., 2010). Since

for hot Jupiters this radiative-convective boundary is expected to extend far deeper than

the infrared photosphere (i.e., where gas becomes optically thin to escaping infrared ra-

diation), large observable horizontal photospheric temperature gradients can develop in

the absence of convective mixing (Showman et al., 2010). Moreover, Guillot & Showman

(2002) showed that structural evolution is sensitive to atmospheric temperatures and hor-

izontal temperatures inhomogeneities of this kind. Hence, to use planetary evolution for

quantitive structural predictions, one needs to understand atmospheric dynamics.

Another question regarding planetary structure on hot Jupiters is whether or not a

solid/liquid rock core is present. This is not known as constraints from observations still

allow for a considerable range in core sizes and compositions (Bodenheimer et al., 2003).

1.2.4 Over-inflated radii

With the advent of the first transit photometry measurements of HD 209458b (Charbon-

neau et al., 2000; Henry et al., 2000), planetary structure and evolution models became

testable against observations. It soon emerged that, when compared to such models with

realistic atmospheric temperatures, the radii of HD 209458b and a large number of the

general hot Jupiter population are much larger than expected (Bodenheimer et al., 2001,

2003; Showman & Guillot, 2002; Baraffe, I. et al., 2003; Laughlin et al., 2005, 2011). This

problem has been dubbed the radius anomaly or the radius over-inflation problem. Ra-

dius over-inflation is illustrated in Figure 1.8, which is taken from Laughlin et al. (2011)
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The Astrophysical Journal Letters, 729:L7 (5pp), 2011 March 1 Laughlin, Crismani, & Adams

Figure 1. Radii and estimated effective temperatures for 90 transiting extrasolar
planets with well-determined masses and radii. Circle size is in proportion to
planetary mass, and the color of the inner circle indicates metallicity.

2. A COMPARISON BETWEEN STRUCTURAL MODELS
AND THE OBSERVATIONS

Naively, one might expect that the radius of a mature gas-giant
planet is primarily determined by its mass and by the amount of
radiative energy that it receives from its star. This conjecture
can be tested by evaluating model radii, Rmi

, of “baseline”
evolutionary models for H–He composition planets spanning
a range of masses and insolation, and comparing with those
of known corresponding transiting planets, Roi

. If the model
has explanatory power for the aggregate of N known planets,
then it should produce a statistically significant decrease in the
quantity,

χ2
m = 1

(N − Nf )

N∑

i=1

(Rmi
− Roi

)2

σ 2
i

, (2)

in comparison to χ2
null, obtained by replacing Rmi

with Rav =
1.2 RJup, the average observed radius for transiting planets
having 0.1 MJup < Mpl < 10.0 MJup. In the above equation,
Nf = 2 is the number of free parameters (Mpl, Teff) in the
explanatory model.

Our baseline models were published by Bodenheimer et al.
(2003), hereafter BLL. As described in BLL, radius estimates,
Rmi

, were computed with a Henyey-type planetary structure
calculation, and the reader is referred to that paper for details
regarding the input physics and assumptions. The model radii
were tabulated at 4.5 Gyr for a grid of assumed Mpl and Teff.
We ignore the small dependence of radius on age for mature
planets and use bilinear interpolation to obtain an estimate for
Rmi

at given Mpl and Teff. Our estimates are drawn from BLL’s
model sequence of core-free solar-composition planets with no
anomalous energy sources.

For the 90 transiting planets, we find χ2
m = 23.5 and

χ2
null = 32.6. Not surprisingly, this result indicates that the

baseline structural models can explain some, but by no means
all, of the observed variation in planetary radii. As an alternative
to bilinear interpolation between table values, it can be useful
to have a simple fitting relation, Rpl(Mpl, Teff). Defining m =
log10(Mpl/MJup) and t = Teff/1000, we find that the two-
dimensional polynomial fitting function,

Figure 2. Radius anomaly, R, vs. planetary effective temperature, Teff (see
Equation (1)), for 90 transiting extrasolar planets. The red line charts the best
error-weighted power-law fit to the data (R ∝ T α , with α = 1.4). The 10,000
light gray lines show analogous best-fit power laws to bootstrapped data sets in
which the contributing planets are redrawn with replacement from the original
data. The 5th, 15th, 85th, and 95th percentile bootstrap fits are indicated with
black lines. We have adopted the 15th and 85th percentile fits as an estimate of
the 1σ confidence limits on α, where we find δα ≈ 0.6. For each planet plotted,
the size of the associated variable circle is proportional to planetary mass. The
gray-scale color of the inner circle indicates host star metallicity.
(A color version of this figure is available in the online journal.)

Rpl/RJup = 1.08417 + 0.0940857 m − 0.242831 m2

+ 0.0947349 m3 + 0.0387851 t + 0.00243981 mt

− 0.0244656 m2t + 0.0130659 m3t + 0.0240409 t2

− 0.0419296 mt2 + 0.00693348 m2t2

+ 0.00302157 m3t2, (3)

provides an acceptable approximation to the BLL baseline
structural models throughout the region where 0.1 MJup <

Mpl < 10.0 MJup and 100 < Teff < 2500.4
For each planet, we define a radius anomaly, Ri = Rmi

−Roi
,

and look for correlations between R and other measured
quantities (such as Teff, T⋆, M⋆, etc.). Many authors (e.g., Enoch
et al. 2011) have noticed that planetary radii tend to swell
dramatically with increasing insolation. Figure 2 illustrates the
significant correlation between R and planetary Teff. Using a
bootstrap replacement method (Press et al. 1992), we find a
best-fit power-law dependence,

R ∝ T 1.4 ± 0.6
eff . (4)

Among the various mechanism that have been invoked to
explain the radius anomalies, we expect that both Ohmic heating
(Batygin & Stevenson 2010) and kinetic heating (Guillot &
Showman 2002) should show a positive correlation between
R and Teff. We can ask, furthermore, whether the measured
exponent, α = 1.4 ± 0.6, is consistent with either of these
proposed mechanisms.

In the treatment of Batygin & Stevenson (2010), energy
deposition in the planet is approximated by integrating over
the resistivity in each mass element:

Ė =
∫ ∫ ∫

J2

σr (r )
dV, (5)

4 Applying this polynomial relation in place of bilinear interpolation yields
χ2

m′ = 18.30 for the aggregate of 90 transiting planets.

2

Figure 1.8: Radius over-inflation in hot Jupiters, taken from Laughlin et al. (2011). The radii (left)
and radius anomalies (right) of hot Jupiters with 0.1MJ < M < 10MJ are plotted against their
orbit-averaged effective temperature, Teq, with error bars. The planets are shaded with respect
to their metallically and some are labelled. The radius anomaly is calculated by comparing the
radii with those of structural models and its best-fit power-law dependence. Laughlin et al. (2011)
found the radius anomaly is proportional to T 1.4±0.6

eq , which is indicated by the red and interior
black fitting lines in the righthand panel.

and shows the radii (lefthand panel) and the radius anomalies (righthand panel) of hot

Jupiters compared to Teq, where the radius anomaly is defined as the difference between

the observed and predicted radii.

The most likely explanation of this phenomena is that there is an additional, unac-

counted for, heat source in the planetary interior that slows gravitational contraction and

therefore decreases the planet’s density. Proposed heat sources include tidal heating from

the circularisation of orbits (Bodenheimer et al., 2001, 2003), the downward transport

then deposition of kinetic energy by atmospheric circulation (Showman & Guillot, 2002),

the burial of heat by turbulence (Youdin & Mitchell, 2010), and heating via Ohmic dissi-

pation of magnetic fields (Batygin & Stevenson, 2010; Perna et al., 2010; Laughlin et al.,

2011). Understanding radius over-inflation in hot Jupiters is one of many open ques-

tions in exoplanetary physics and various works are currently attempting to gauge the

relative importance of these different heating mechanisms (Thorngren & Fortney, 2018).

Aside from tidal heating, which cannot fully explain the anomalous radii (Guillot, 2005;

Thorngren & Fortney, 2018), all of these candidate inflation mechanisms require a strong

understanding of hot Jupiters’ dominant atmospheric processes, underlining the necessity

in developing such theory.
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1.2.5 Predominantly eastward hotspot offsets on cooler hot Jupiters

As discussed in Section 1.1, transit photometry has allowed observers to construct plane-

tary phase curves (like the kind presented in Figure 1.4, righthand panel) and longitudinal

temperature maps (like the kind presented in Figure 1.5). Using these methods it has

generally been found that hotspots are located eastward of the substellar point (e.g., Har-

rington et al., 2006; Cowan et al., 2007; Knutson et al., 2007, 2009; Charbonneau et al.,

2008; Swain et al., 2009; Crossfield et al., 2010; Wong et al., 2016), where (following con-

vention) eastward denotes the prograde direction, the term hotspot denotes the hottest

longitudinal position, and the substellar point is the location of maximal insolation (noon

on the dayside).

Indeed, eastward hotspots were found ubiquitously until recently when westward hotspots

or brightspots were measured on a handful of exceptional hot Jupiters. Continuous op-

tical measurements from Kepler found east-west brightspot oscillations on the ultra-hot

Jupiters10 HAT-P-7b (Armstrong et al., 2016) and Kepler-76b (Jackson et al., 2019);

optical phase curve measurements from TESS found westward brightspot offsets on the

ultra-hot Jupiter WASP-33b (von Essen et al., 2020)11; while thermal phase curve mea-

surements from Spitzer found westward hotspots on the ultra-hot Jupiter WASP-12b (Bell

et al., 2019) and the cooler hot Jupiter CoRoT-2b (Dang et al., 2018).

These westward hotspots/brightspots measurements are highly significant as they turn

out to be at odds with general understanding of hydrodynamic theory of synchronously

rotating hot Jupiters, which always predicts eastward hotspots (Showman & Polvani, 2011)

and shall be discussed in more detail in Section 1.3. Three main explanations for these

observations have been proposed: reflections from cloud asymmetries confounding optical

measurements (Demory et al., 2013; Lee et al., 2016; Parmentier et al., 2016; Roman &

Rauscher, 2017), asynchronous rotation (Rauscher & Kempton, 2014), and magnetism

(Rogers & Komacek, 2014; Rogers, 2017; Hindle et al., 2019).

10Ultra-hot Jupiters are an emerging sub-class of hot Jupiters, with atmospheric temperatures that can
greatly exceed 2000 K.

11Although von Essen et al. (2020) acknowledge that systematic effects in the data, due to host star
variability, cannot be ruled out as a potential cause of their westward brightspot measurements.
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The first of these explanations, cloud asymmetries, only offers explanations for west-

ward brightspot measurements taken at optical wavelengths. It is believed to explain

westward brightspot measurements (from Kepler) that were found on another (warm)

hot Jupiter, Kepler-7b. This is the case because the westward brightspot measurements

of Kepler-7b were found alongside eastward hotspot measurements, which were taken at

infrared wavelengths by Spitzer (Demory et al., 2013). This could potentially explain

the westward brightspot observations on HAT-P-7b, Kepler-76b, and WASP-33b (but not

WASP-12b or CoRoT-2b). However, ultra-hot Jupiters like these are expected to be too

hot for condensates to form so are thought to have cloud-free daysides (Helling et al.,

2019a). In particular, Helling et al. (2019b) recently ruled out cloud asymmetries as the

explanation for westward brightspots on HAT-P-7b.

Asynchronous rotation can explain the findings from a fluid dynamics perspective

(Rauscher & Kempton, 2014). However, this would suggests shortcomings in current

understand of tidal evolution theory. As discussed in Section 1.2.2, tidal evolution theory

predicts that hot Jupiters should be tidally-locked. Moreover, other spin-orbit resonances

are only expected on planets with non-circular orbits (Colombo & Shapiro, 1966; Guillot

et al., 1996; Showman et al., 2015).12 Such non-synchronous tidal locking does not appear

to be consistent with the planets with observed westward hotspots/brightspots, which,

where measured, have near-zero orbital eccentricities (see black opaque marked planets on

Figure 1.7, bottom left panel). The exception to this could be Kepler-76b, for which the

orbital eccentricity is not currently constrained. However, planets as close-in as Kepler-76b

(a = 0.028) are expected to have undergone active circulation throughout their lifetime

(Bodenheimer et al., 2001, 2003).

Using three-dimensional magnetohydrodynamic (MHD) simulations, Rogers & Ko-

macek (2014) predicted that in the hottest hot Jupiters, where the atmosphere is partially-

ionised, magnetism can cause variable winds that drive east-west hotspot oscillations.

When the observation of east-west brightspot oscillations on HAT-P-7b emerged, Rogers

12A classic example of non-synchronous tidal locking is Mercury, which has a 3-to-2 relationship between
rotation and orbital periods and a somewhat eccentric orbit with e = 0.205 (Colombo & Shapiro, 1966;
Carroll & Ostlie, 2006).
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(2017) applied the MHD simulations to the expected parameter regime of HAT-P-7b and

placed a lower-bound on HAT-P-7b’s planetary magnetic field. This work approach high-

lights that, if the magnetic mechanism that drives atmospheric wind variations can be

understood and the conditions leading to its onset identified, it can be used to provide in-

direct constraints on the typical magnetic field strengths of hot Jupiters. This is powerful

as typical magnetic field strengths on hot Jupiters are not well understood and currently

rely on our knowledge of the Solar System. Understanding the wind reversal mechanism

will predominantly be the topic of this thesis. To introduce the problem more completely,

we delve into the current understanding of atmospheric hydrodynamics and MHD in Sec-

tions 1.3 and 1.4 respectively.

1.3 Hydrodynamic atmospheric circulation on hot Jupiters

The study of atmospheric circulation (i.e., near-planetary-scale fluid dynamics) on Earth

is well-established and has a rich history founded in the need to understand Earth’s atmo-

spheric and oceanic phenomena (e.g., equatorial trade winds, the Gulf stream, the polar

jet stream, and El Niño) for practical purposes (e.g., nautical navigation, aviation, and

forecasting). By the end of twentieth century, space missions (e.g., the Venera missions,

the Mariner missions, the Voyager missions, Galileo, and Cassini-Huygens) had collected

enough data to allow the study of atmospheric dynamics to be applied to our nearest Solar

System neighbours.

Understanding the diverse dynamics of the other planets in our Solar System has so far

proved difficult, though not without successes (e.g., see Dowling, 1995; Guillot, 2005; Show-

man et al., 2010; Read & Lebonnois, 2018). Such difficulties arise because atmospheric

fluid dynamics is highly non-linear and involves complex interactions between turbulence,

convective and/or radiative heat transfer, waves, vortices, and jet streams. Disentangling

the roles that each of these phenomena is often difficult so one could be forgiven for asking

whether attempting to model and characterise planetary circulation on hot Jupiters is a

reasonable goal when the atmosphere of Jupiter is still not fully understood. However, as
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discussed in the first two sections of this chapter, hot Jupiters differ from Jupiter in some

significant ways. First and foremost, hot Jupiters are believed to rotate synchronously

with their orbits. The resulting permanent day and night sides creates an interesting and

somewhat unique problem. From a fluid dynamics perspective, the time-independent forc-

ing of hot Jupiter atmospheres makes for a “clean” system, which generally outputs less

temporally complex behaviours than asynchronously rotating planets. This makes Jupiters

an excellent testbed for the extension and development of existing theory into different

parameter regimes outside of our local experience. Secondly, the theoretical push towards

understanding hot Jupiters has largely been driven by a desire to understand incoming

observational data. While the observational data that has so far been accrued for hot

Jupiters is relatively unrefined, there is an abundance of it and it has highlighted shared

characteristics between hot Jupiters (see Section 1.2). From this, an ensemble approach

to identifying important atmospheric characteristics is possible. Such an approach offers

a different lens for viewing and testing atmospheric circulation theory, which previously,

due to a lack of comparable examples, has generally been probed with an individualistic

approach. Explicitly, rather than looking to explain highly specific characteristics of an

individual planet, which can often lead to a highly tuned understanding of planetary dy-

namics, one attempts to update theory by seeking an understanding of the fundamental

mechanisms behind shared characteristics of a collection of similar planetary bodies. Since

the same physical laws determine the behaviour of all atmospheres, the study of extrasolar

planets and Solar System are not mutually exclusive and progress with one can inform the

other. In this section we shall discuss the hydrodynamic models and underlying theory

that have proved important in understanding hot Jupiter atmospheres, before discussing

some results relevant to our study. The hydrodynamic models we discuss are standard and

can be found in various texts (e.g., Batchelor, 1967; Vallis, 2006; Showman et al., 2010).

1.3.1 Hydrodynamic models

Three-dimensional atmospheric models are often called global circulation models (GCMs)

and are invaluable tools for understanding the large-scale atmospheric dynamics occurring
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in hot Jupiters. GCMs can include a wide array of physics including (but not limited to)

rotation, thermal stratification, turbulence, magnetism, and/or cloud formation. However,

aside from each piece of physics increasing a model’s computational complexity, highly so-

phisticated GCMs can often be difficult to interpret without simplification or well directed

diagnostics. Hence, while GCMs are excellent for building a qualitative picture, it can be

difficult to glean mathematical results and/or physical understanding from them. More-

over, when observational comparisons are limited, idealised models can often be sufficient

in describing the available information. Such reduced models have the added benefit that,

if they can reproduce similar fundamental dynamics to GCMs, they can be more specific

about the physical processes that drive them. The caveat to this, of course, is that the

model has to be well-understood and based on valid approximations. Looking holisti-

cally, GCMs and reduced models tend to complement each other’s shortfalls, so the most

prosperous approach when developing theory is often to use both in harmony. This is a

so-called hierarchical approach.

In a hierarchical approach one uses a sophisticated GCM to identify the main charac-

teristics of a prevalent dynamical process, which ideally has an observable signal. Then,

if the predominant conditions in which the process emerges are known, one can make

informed approximations that reduce the phenomenon to its rudiments. Once the system

has been reduced, it is often more amenable to mathematical manipulation. Hence, if the

phenomenon in question can be isolated and reproduced, its physics can be probed. With

this concept in mind we should consider four different models that cover the spectrum of

dynamical complexity that has proved useful for the study of hot Jupiters.

Compressible three-dimensional hydrodynamic equations

Consider a non-magnetic three-dimensional fluid with the velocity field, u3(x3, t), the

density, ρ(x3, t), the temperature, T (x3, t), and the pressure, p(x3, t), where x3,u3 ∈ R3.

The momentum of the fluid can change due to the action of surface and body forces (per

unit volume). The surface forces can be written as the sum of pressure and viscous forces:

σ3 = −pI3 + µτ 3, where I3 is the 3 × 3 identity matrix, µ is the constant viscosity, and
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τ 3 = ∇3u3 + (∇3u3)
T − (2/3)I3(∇3 · u3) is the viscous stress tensor. The body force is

gravity (and the Lorentz force in magnetic systems), which can be written as the gradient

of a potential. Moreover, if the fluid is viewed in a rotating reference frame (where u3

donates the velocity relative to the frame), the fluid experiences further accelerations

due to the Coriolis force and the centrifugal force that respectively result from angular

momentum conservation and inertia. The Coriolis force per unit mass is −2(Ω × u3),

where Ω is the angular velocity of the reference frame, and the centrifugal force can be

written as the gradient of a potential. Hence, applying Newton’s second law, the motion

of a fluid subject to these forces and accelerations can be written as

ρ
D3u3

D3t
≡ ρ∂u3

∂t
+ ρ(u3 · ∇3)u3 = −2ρ(Ω× u3)−∇3p− ρ∇3Φ+ µ∇3 · τ 3, (1.1a)

where D3/D3t ≡ ∂/∂t + (u3 · ∇3) is the three-dimensional Lagrangian derivative and

Φ = Φg + Φc is the geopotential, which contains components due to both gravitational

acceleration (Φg) and the centrifugal force (Φc). Generally, for planetary flows |Φc/Φg| � 1,

so the centrifugal force is often neglected and one sets Φ = Φg = gz, where the constant

g is either the gravitational acceleration or the effective gravitational acceleration that

contains a centrifugal contribution, and z is the system’s vertical coordinate.13 Alongside

Equation (1.1a), the fluid’s density evolves subject to mass (per unit volume) conservation

∂ρ

∂t
+∇3 · (ρu3) = 0 ⇐⇒ D3ρ

D3t
+ ρ∇3 · u3 = 0. (1.1b)

This fluid system is closed with an equation of state, which describes the evolution of

pressure in system. Understanding how the equation of state varies throughout the interior

of hot Jupiters is a topic unto itself (e.g., for discussion, see Fortney et al., 2010). However,

the ideal gas law,

p = RρT, (1.1c)

13In non-relativistic systems Newton’s law of universal gravitation gives g = −∇3Φg = −gẑ = −GM/r2ẑ,
where r is the radial coordinate. If |r−R| = H is the vertical scale of an atmospheric model, the binomial
theorem gives g = GM/R2(1 +O(H/R)) for H/R� 1. Generally, for hot Jupiter atmospheres H/R� 1
(see Figure 1.10) so, to leading order, we are free to neglect vertical variations in g.

28



Chapter 1. An Introduction to Hot Jupiters

is often adequate to first order in the upper atmosphere (Fortney et al., 2010; Showman

et al., 2010), where R is the atmospheric gas constant (i.e., the universal gas constant

divided by the mean molecular weight of the atmosphere) and T is the temperature. In a

simple ideal gas, the ideal gas law gives p(ρ, T ), the heat capacity at constant volume, cV ,

is constant, the internal energy per unit volume is ρcV T , and internal energy (per unit

volume) transport is described by

∂(ρcV T )

∂t
+∇3 · (ρcV Tu3) = −p(∇3 · u3) +∇3 · (K∇3T ) +

µ

2
τ23 +Q, (1.1d)

where the second term on the righthand side describes heat transport phenomena using the

so-called diffusive approximation for a thermal conductivity, K, (µ/2)τ23 = (µ/2)τ 3 : τ 3 =

(µ/2)
∑

i

∑
j(τ3)i,j(τ3)i,j describes viscous heating, and Q is the rate of thermodynamic

heating (per unit volume) from external sources, which in terms of hot Jupiters corresponds

to radiative heat/cooling from stellar insolation. Equation (1.1b) is often used to rewrite

the lefthand side of Equation (1.1d) as the density multiplied by the material derivative

of the specific internal energy (i.e., ∂(ρcV T )/∂t+∇3 · (ρcV Tu3) = ρD3(cV T )/D3t).

Equations (1.1a) to (1.1d) fully describe the hydrodynamic system with six equations

for six unknowns (i.e., u3, ρ, p, T ). Different types of external heating can be incorporated

into the system via Q and chemistry can be included via complex treatments of the equa-

tion of state. Since viscous terms are generally expected to be small for large scale flows

with typical µ values, the viscous terms in Equations (1.1a) to (1.1d) are often simplified,

modified, or neglected for convenience. Strictly speaking, one should be careful when do-

ing this as modified diffusion treatments can violate desirable conservational properties or

cause numerical instabilities in simulations. An example of a hot Jupiter GCM that solves

the compressible three-dimensional hydrodynamic equations is the equatorial-to-mid lati-

tude model of Dobbs-Dixon & Lin (2008).
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Primitive equations

We have already alluded to the fact that some physical processes described by Equa-

tions (1.1a) to (1.1d) play a more important role in describing the dynamical processes

that drive large scale flows than others. Hence, with judicious assumptions, one can for-

mulate dynamically similar models but with less complexity.

Many global circulation models (GCMs) take advantage of such simplifications. The

so-called primitive equations are a useful illustration of this and have played an important

role in the development of atmospheric circulation theory on hot Jupiters (e.g., Showman &

Guillot, 2002; Cooper & Showman, 2005, 2006). Their name derives from the fact that they

represent a beginning for studies in atmospheric fluid dynamics and they come in various

forms. These are underpinned by three fundamental assumptions. Firstly, the hydrostatic

approximation assumes that in the vertical momentum equation vertical accelerations are

small and the geopotential term is exactly balanced by the pressure gradient term. This

is so-called hydrostatic balance:

∂p

∂z
= −ρ∂Φ

∂z
= −ρg, (1.2)

Secondly, in spherical coordinates the shallow-fluid approximation uses the radial coor-

dinate decomposition r = R + z, for |z/R| � 1, where the constant R is the planetary

radius and z is the system’s radial or local normal coordinate, which is antiparallel to

gravitational acceleration. In this approximation, the coordinate r is replaced by R, ex-

cept wherever it used as the differentiating argument, in which case r is replaced by z.

Thirdly, the traditional approximation involves neglecting all Coriolis terms in the hori-

zontal momentum equation involving the vertical velocity (i.e., one takes Ω = Ω sin θẑ,

where θ denotes latitude) and, in spherical coordinates, the metric terms uw/r and vw/r

are also neglected. The shallow-fluid approximation and the traditional approximation

both arise from an asymptotic expansion assuming a small vertical/horizontal length scale

ratio. Hence, if one of the shallow-fluid approximation and the traditional approximation

is taken, so should the other (e.g., Vallis, 2006). These two assumptions are formally valid
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in the limit of strongly stable stratification, when N2/Ω2 � 1 (e.g., Salby, 1996; Showman

et al., 2010), where N is the Brunt-Väisälä frequency and

N2 = g

(
1

γ

d lnP

dz
− d ln ρ

dz

)
, (1.3)

for the adiabatic index, γ = cp/cv (γ = 5/3 and R = cp − cV for a monoatomic ideal

gas), with the constant pressure specific heat capacity, cp. The Brunt-Väisälä frequency is

the oscillation frequency of a fluid parcel if it is perturbed vertically in a stably stratified

fluid. If N is large and real, the thermal stratification is strongly stable and radiative

heating/cooling is the predominant mechanism of internal energy transfer; whereas, if N

is imaginary, the thermal stratification is unstable and convection emerges.

We choose to present a version of the primitive equations that represent an incom-

pressible system (i.e., a system in which density is materially conserved and sound waves

are removed) in isobaric coordinates (as in Salby, 1996; Showman et al., 2010). To trans-

form the system into isobaric coordinates (i.e., coordinates with vertical levels of constant

pressure), one writes the vertical coordinate, z = z(x, p, t), as a variable that depends on

the system’s independent variables, which are now the horizontal displacement, x ∈ R2,

pressure, and time. The system is described by horizontal velocity field, u(x, p, t) ∈ R2,

the vertical velocity in pressure coordinates, $(x, p, t), the fluid density, ρ(x, p, t), and the

thermodynamic properties of the system are expressed in terms of the potential tempera-

ture, Θ(x, p, t) = T (pref/p)
κ, where pref is a reference pressure and κ = R/cp. The isobaric

primitive equations are (e.g., Salby, 1996; Showman et al., 2010)

Dpu

Dpt
= ∇pΦ− f ẑ× u−D, (1.4a)

∂Φ

∂p
= −1

ρ
, (1.4b)

∂$

∂p
= −∇p · u, (1.4c)

DpΘ

Dpt
=

Θ

cpT
q̇net, (1.4d)
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where ∇p ≡ ((∂/∂x)p, (∂/∂y)p) is the horizontal gradient evaluated along an isobaric

(constant pressure) surface, with x denoting the eastward coordinate and y denoting the

northward coordinate, Dp/Dpt ≡ ∂/∂t+ (u · ∇p) +$∂/∂p is the Lagrangian derivative in

isobaric coordinates with $(x, p, t) ≡ Dpp/Dpt. In this set of equations the Coriolis pa-

rameter, f = 2Ω sin θ, depends on latitude, θ, and describes the locally vertical component

of the planetary vorticity vector (more discussion below and in Chapter 2). Additionally,

D denotes a parameterisation of large scale horizontal drags and q̇net is the net diabatic

heating rate, which includes radiative heating/cooling and thermal conductivity. The

primitive equations have five unknown dependent variables (i.e., u, $, ρ,Θ) so the applied

assumptions reduced the system’s degrees of freedom by one. The potential temperature

quantifies the thermal energy available to be converted into mechanical work and is related

to entropy, s, via ds = cp d lnΘ (e.g., Salby, 1996; Showman et al., 2010). Equation (1.4d)

highlights that when there is no diabatic heating Θ is materially conserved along isobaric

surfaces so there is no thermal energy exchange between different pressure levels.

Shallow-water model

To study shallow phenomena, where vertical motion is of lower order interest, the fluid

equations can be reduced a set of shallow-water equations. This often proves useful as

it reduces the system’s complexity to an extent where features such as waves, vortices,

and jets can be isolated and analytic mathematical approaches become possible. Here

we present the simplest shallow-water model: the single-layer homogenous (i.e., constant

density) model, though both multi-layer models (e.g., Vallis, 2006) and inhomogeneous

models (e.g., Dellar, 2003) can also be used to include different physics while remaining

mathematically simple. Since we shall use shallow models throughout this work, we pro-

vide a full derivation in Chapter 2. However, for now, we note that when the hydrostatic

and traditional approximations are applied to a thin constant density layer that is bounded

below by an impermeable wall and above by free surface, horizontal motions become ap-

proximately vertically independent and their magnitudes become large compared to those

of vertical motions, which become approximately linearly dependent on depth. In this
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limit, the inviscid equations of motion can be integrated over the vertical coordinate to

yield an explicit expression for horizontal pressure gradients, ρ−1∇p = g∇h, where h(x, t)

is the thickness of the layer. Moreover, the incompressibility condition can also be inte-

grated over the vertical coordinate and, as a result, the governing fluid equations become

Du

Dt
+ f ẑ× u = −g∇h, (1.5a)

∂h

∂t
+∇ · (hu) = 0 ⇐⇒ Dh

Dt
+ h∇ · u = 0, (1.5b)

where ∇ ≡ (∂/∂x, ∂/∂y) denotes the horizontal gradient operator (for a constant vertical

coordinate, z), with x denoting the eastward coordinate and y denoting the northward

coordinate, and D/Dt ≡ ∂/∂t + u · ∇ denotes the horizontal Lagrangian derivative. The

single-layer homogenous shallow-water model has three unknowns that fully describe its

motion (i.e., u, h), so is greatly reduced from the three-dimensional thermodynamic fluid

equations. However, due to its lack of vertical dependence, thermodynamics cannot be

included in it explicitly. This is usually remedied with a source term in Equation (1.5b)

(e.g., Shell & Held, 2004; Langton & Laughlin, 2007; Showman & Polvani, 2010, 2011;

Perez-Becker & Showman, 2013). Doing so has technical requirements, such as the need

for a second layer for mass conservation, which we shall discuss more comprehensively in

Chapter 2.

Two-dimensional incompressible Navier-Stokes

The system can be reduced further still. The simplest useful model for atmospheric cir-

culation is the two-dimensional incompressible Navier-Stokes equations. If one takes the

fluid density to be constant and entirely excludes vertical motions and gravitational effects

from the system, Equations (1.1a) and (1.1b) yield

Du

Dt
+ f ẑ× u = −1

ρ
∇p, (1.6a)

∇ · u = 0. (1.6b)
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Since the horizontal velocity is solenoidal, it can be fully described in terms of a stream-

function that is defined by u = −∇×ψẑ = (−∂ψ/∂y, ∂ψ/∂x). Using this, and taking the

curl of Equation (1.6a), gives the two-dimensional vorticity equation:

D(ζ + f)

Dt
= 0 with ζ = ∇2ψ, (1.7)

where ζ ≡ (∇×u) · ẑ is the vertical component of the fluid vorticity (i.e., local circulation)

and, as before, f is the Coriolis parameter. Equation (1.7) highlights that the Coriolis

parameter is the vertical component of the planetary vorticity. This model only has

one degree of freedom (i.e., ψ). This makes it limited in scope but easy to manipulate

mathematically. Its description in terms of a streamfunction is also illustrative. Note that

the normal to a line of constant streamfunction is ∇ψ, and that the flow through this

normal is u ·∇ψ = −(∂ψ/∂y)(∂ψ/∂x) + (∂ψ/∂x)(∂ψ/∂y) = 0. Hence, in this model flows

travel down lines of constant streamfunction. These are known as streamlines.

While the two-dimensional incompressible model is comparatively simple, it is often

useful for modelling large scale atmospheric processes. Further, its simplicity makes it

fairly intuitive. In the remainder of this section we shall discuss some fundamental prin-

ciples of hydrodynamic theory in hot Jupiter atmospheres. We shall attempt to present

important theory and flow features in terms of the simplest models that can discribe them

and, where possible, we shall highlight the shared characteristics between the different

models we have discussed.

1.3.2 Fundamental principles of hydrodynamical theory

In principle, assuming sub-grid scale processes can be parameterised within the large-scale

framework, the models discussed in Section 1.3.1 provide a mathematical description of

the large scale atmospheric flows on hot Jupiters. In this subsection we discuss some of

the dominant balances, processes, and flow features to outline a conceptual understanding

of the atmospheric dynamics.
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Energy cycle

In the stably stratified regions of hot Jupiter atmospheres (i.e., N > 0), the thermody-

namic system simultaneously attempts to drive itself towards radiative equilibrium and

mechanical equilibrium. The competition between the mechanisms driving the system

towards these equilibria is the fundamental cause of all atmospheric dynamics.

In planetary atmospheres heating and cooling drive the system towards radiative equi-

librium. However, heating and cooling are generally inhomogeneous processes and result

in temperature gradients. Radiative heating from a planet’s host is generally strongest

towards the equator and weakest at the poles. Moreover, in the case of hot Jupiters,

we have already seen that their perpetual dayside nightside configuration also leads to

large longitudinal temperature differentials. Such temperature differentials cause horizon-

tal pressure gradients, which drive winds by converting excess internal energy from the

temperature gradients (i.e., accessible/excess thermal energy) into kinetic energy. The

winds caused by these pressure gradients drive the system towards mechanical equilib-

rium. However, such motions recirculate internal energy so perturb the system further

from radiative equilibrium. Heating/cooling processes attempt to correct this, complet-

ing a cycle of energy exchange/redistribution. The overall result is some kind of balance

between the two equilibrium states.

The interplay between these two processes is often complex and subtle. However,

for hot Jupiters, various studies have shown that the time-independent day-night heat-

ing caused by stellar insolation dominates thermodynamic processes to first order (e.g.,

Showman & Guillot, 2002; Shell & Held, 2004; Cooper & Showman, 2005, 2006; Lang-

ton & Laughlin, 2007; Dobbs-Dixon & Lin, 2008; Menou & Rauscher, 2009; Rauscher &

Menou, 2010; Dobbs-Dixon et al., 2010; Perna et al., 2010; Heng et al., 2011; Perez-Becker

& Showman, 2013). This reduces the problem considerably and allows us to draw much

of our focus towards atmospheric driving mechanisms with approximately fixed pressure

gradients.
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Shallow-water gravity-wave speed

In the rotation free limit (f = 0), Equations (1.5a) and (1.5b) can be linearised about the

background state {u0, h0} = {0, H}, where H is a constant reference layer thickness, to

yield

∂2h1
∂t2

= gH∇2h1 = c2g∇2h1, (1.8)

where cg ≡
√
gH is the shallow-water gravity-wave speed and h1 denotes the layer-thickness

perturbation to H, with |h1/H| � 1. This is the wave equation in the two dimensions

of the horizontal plane and describes the motion of shallow-water gravity waves. Since in

the absence of rotation the horizontal directions are dimensionally invariant, one is free

to reduce the problem to one horizontal direction (i.e., x here) and apply a symmetry

argument in the other (i.e., y here). The one-dimensional version of Equation (1.8) is

∂2h1/∂t
2 = c2g∂

2h1/∂x
2, which satisfies d’Alembert’s solution (e.g., Vallis, 2006):

h1(x, t) =
1

2
(h1,i(x− cgt) + h1,i(x+ cgt)), (1.9)

for the initial conditions h1(x, 0) = h1,i(x) and ∂h1/∂t|t=0 = 0. Equation (1.9) describes

two wave packets, which have the same profile but half the magnitude of the initial layer

thickness perturbation, moving in opposite directions along the x axis with the velocity

cg. The dispersion relation of shallow-water gravity waves can be examined by applying

the planar wave ansatz, h1 = ĥei(kx−ωt), to the one-dimensional wave equation, where k

denotes the wavenumber in the x direction and ω denotes the oscillation frequency. This

yields the one-dimensional shallow-water gravity wave dispersion relation:

ω = ±cgk, (1.10)

for arbitrary ĥ. Shallow-water gravity waves are non-dispersive (i.e., the phase speed,

cp ≡ ω/k, and the group velocity, cg ≡ ∂ω/∂k, are equal, and are both independent of the

wavenumber) and describes two waves moving in opposite directions along the x axis with

the velocity cg. Together Equations (1.9) and (1.10) highlight that, since non-dispersive
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waves propagate at a speed that is independent of scale, they maintain their shape as they

travel (e.g., Pedlosky, 2013).

Shallow-water gravity waves are driven to restore pressure gradients that arise due to

layer thickness variations in the shallow-water system (in the absence of rotation and drag).

Similarly, if one excludes rotation and drag from the incompressible three-dimension fluid

equations, pressure gradients caused by thermal stratification deviations are restored by

internal gravity waves, which (for one horizontal dimension) have the dispersion relation

ω = ±Nk/(k2 + m2)1/2, where m is the vertical wavenumber (e.g., Vallis, 2006). Hence,

shallow-water gravity waves provide a shallow-water analogue of internal gravity waves14.

Moreover, from Equation (1.9) and using this analogy, one sees that when in the absence

of rotation and drag the shallow-water gravity wave speed is a fundamental velocity scale

for pressure driven atmospheric flows. This characteristic scale is particularly relevant in

the longitudinal direction along the equator, where the Coriolis parameter vanishes and

winds travel freely without experiencing Coriolis deflection.

Geostrophic balance

Pressure gradients drive atmospheric winds but the Coriolis force acts perpendicularly

and proportionally to the flow velocity. If a flow’s typical horizontal velocity is U and

its typical horizontal length scale is L, the magnitude ratio between advection and the

Coriolis force is

Ro ∼ |u · ∇u|
|f ẑ× u| ∼

U
fL , (1.11)

where Ro is a dimensionless number called the Rossby number. If Ro � 1, rotation

only plays a small lower-order role in atmospheric dynamics. However, if Ro � 1, flows

are significantly deflected by the Coriolis force as they advect. In this limit, and when

horizontal drags are neglected, the horizontal components of Equation (1.1a) reduce to

14In the shallow-water limit, |k/m| � 1, so (k2 + m2)−1/2 ≈ m−1 ∼ H. Moreover, if the layer is
isothermal and hydrostatic, p = p0e−z/Hp and ρ = ρ0e−z/Hp for some scale height Hp (see the atmospheric
scale height discussion below), so N = [g(1 − γ−1)/Hp]

1/2 ∼ (g/Hp)
1/2. Hence, a shallow layer with

H ∼ Hp has ω = Nk(k2 +m2)−1/2 ∼ cgk.

37



Chapter 1. An Introduction to Hot Jupiters

geostrophic balance:

fv =
1

ρ

∂p

∂x
fu = −1

ρ

∂p

∂y
, (1.12)

where cardinal Cartesian coordinates (i.e., x east, y north, and z vertical) have been

used. This describes an exact balance between horizontal pressure gradients and the

Coriolis force. Geostrophic balance is fundamental to planetary dynamics of rapidly or

moderately rotating planets, for which planetary-scale flows have Ro � 1. Geostrophic

balance emerges in all four of the models of Section 1.3.1 (in the Ro � 1 limit). In the

primitive equations it appears as

fv =

(
∂Φ

∂x

)
p

fu = −
(
∂Φ

∂y

)
p

, (1.13)

which is identical to Equation (1.12), as can be seen by noting that 0 = ∇Φ ≡ ∇pΦ +

(∂Φ/∂p)∇p = ∇pΦ− ρ−1∇p, so ρ−1∇p = ∇pΦ. Similarly, in the shallow-water model the

horizontal pressure gradient is known explicitly and geostrophic balance appears as

fv = g
∂h

∂x
fu = −g∂h

∂y
. (1.14)

The two-dimensional incompressible Navier-Stokes model has the same geostrophic form

as Equation (1.12) but writing it in terms of the streamfunction yields

f∇ψ =
1

ρ
∇p, (1.15)

which highlights that, for an approximately constant Coriolis parameter, geostrophic bal-

ance is described by horizontal winds that move approximately along or parallel to isobars.

In geostrophic balance, flow patterns are oriented with winds circulating clockwise about

pressure highs in the northern hemisphere (where f > 0) and pressure lows in the south-

ern hemisphere (where f < 0); conversely, geostrophic winds circulate anticlockwise about

pressure lows in the northern hemisphere and pressure highs in the southern hemisphere.

This behaviour is illustrated schematically in Figure 1.9.
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Figure 1.9: A schematic of geostrophic balance in a system (in cardinal Cartesian coordinates)
with constant density and a piecewise constant Coriolis parameter, f . High and low pressure
structures are indicated by labeled circles and the streamlines associated with the geostrophic
balance are indicated with arrows. For f > 0, as in the northern hemisphere of planets, flows
rotate clockwise along the isobars of high pressure structures and anticlockwise along the isobars
of low pressure structures; whereas for f < 0, as in the southern hemisphere of planets, flows rotate
anticlockwise along the isobars of high pressure structures and clockwise along the isobars of low
pressure structures.

Looking locally, geostrophic balance is important at mid-to-high latitudes on Earth,

where the Coriolis parameter is large enough to cause low Rossby number flows. In partic-

ular, Europe is located at fairly high latitudes, and interactions between the atmosphere

and Europe’s coastline mean that geostrophic vortices tend to sit over the UK or Conti-

nental Europe as they pass the UK. This explains much of the UK’s weather. Clockwise

high pressure circulations in the UK bring air from the south/west. If a high pressure cir-

culation sits over the UK, it brings temperate weather from the Atlantic; whereas, if it sits

over the Europe, in the summer it can cause “heatwaves” by drawing hot air northwards

from North Africa and/or Continental Europe. Conversely, low pressure circulations in

the UK bring air from the northeast, so tend to bring colder weather from the northern re-

gions of the Atlantic, the poles, or Scandinavia depending in the position of the circulation

pattern.

Rossby deformation radius

By considering Ro, one can see that geostrophic balance plays an important role in hori-

zontal dynamics at a sufficiently large horizontal length scale. If one takes U = cg, Ro = 1
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Figure 1.10: Atmospheric length scale ratios are plotted for hot Jupiters in the exoplanet.eu
catalogue with a < 0.1 AU, and 0.1MJ < M < 10MJ. Hp/R ≡ RT/gR is plotted in the upper
panel; LD/R ∼ cg/2Ω is plotted in the lower left panel; Lβ/R ≡ LD/Lβ ∼ (cg/2ΩR)1/2 is
plotted in the lower right panel. All these ratios are plotted against the orbit-averaged effective
temperature of hot Jupiters. Note that in the righthand panel Lβ (the Rhines scale) is evaluated
with U = cg, so is equivalent to Leq ( the equatorial Rossby deformation radius). As in Figure 1.7,
the hot Jupiters CoRoT-2b (Teq ≈ 1523 K), Kepler-76b (Teq ≈ 2145 K), HAT-P-7b (Teq ≈ 2192 K),
WASP-12b (Teq ≈ 2578 K), and WASP-33b (Teq2681 K) are identified with opaque black markers.

for

L = LD ≡
cg
f
, (1.16)

where LD ≡ cg/f is the so-called Rossby deformation radius. It is the horizontal length

scale over which stratification and rotation balance. More generally, the Rossby deforma-

tion radius has the definition LD = HN/f in three-dimensional systems, where H is the

vertical scale of the flow (e.g., Vallis, 2006). The incompressible two-dimensional model has

no stratification, so in this limit LD →∞. This makes the incompressible two-dimensional

model limited in scope when stratification and rotation are simultaneously important, as

is often the case in planetary atmospheres. Typically, for hot Jupiters LD ∼ R, as shown

in Figure 1.10, in which length scale ratios of hot Jupiter atmospheres are plotted.
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Atmospheric scale height

If vertical forces are in hydrostatic balance, the vertical pressure gradient is related to the

gravitational body force via Equation (1.2). If the atmosphere behaves like an ideal gas,

Equations (1.1c) and (1.2) can be combined to yield:

∂p

∂z
= −g p

RT ≡ −
p

Hp
, (1.17)

hence, if Hp ≡ RT/g is locally constant over a region of the atmosphere (i.e., the region

is isothermal), then

p = p0 exp(−z/Hp), ρ = ρ0 exp(−z/Hp). (1.18)

In this context, the vertical length scale Hp is known as the pressure scale height, the den-

sity scale height, or the atmospheric scale height. The name pressure scale height arises

from the fact it denotes the height over which pressure changes by a factor e and simi-

larly for the density scale height, which is the same here. The atmospheric scale height is

important as it sets the typical vertical length scale over which incompressibility remains

valid in the hydrostatic approximation. Beyond this scale height, density variations are no

longer negligible and the incompressible approximation should be dropped. GCMs have

typically found large-scale flows to vary vertically over a length comparable to Hp and

that compressible and incompressible models of hot Jupiteres generally produce the same

atmospheric behaviours (e.g., Showman & Guillot, 2002; Cooper & Showman, 2005, 2006;

Dobbs-Dixon & Lin, 2008; Showman et al., 2010). In the upper panel of Figure 1.10, we

present values of Hp in units of planetary radii for known hot Jupiters, showing that typ-

ically Hp/R . 0.03. Since, LD ∼ R (see lower left panel), this indicates that atmospheric

flows on hot Jupiters typically have a large aspect ratio (i.e., a large horizontal-vertical

length scale ratio).
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Consequences of a large aspect ratio

The first consequence of a large atmospheric aspect ratio is that it implies that typical

vertical velocity scales, W, are small compared to typical horizontal velocity scales, U ,

which can be shown with a simple scale analysis of the incompressibility condition. If

H ∼ Hp, ∇3 · u3 ≡ ∇ · u + ∂w/∂z ≈ 0, where w is the vertical velocity. Hence, a scale

analysis yields

W ∼ H

L
U � U . (1.19)

Secondly, a large aspect ratio implies the validity of the hydrostatic approximation (e.g.,

Vallis, 2006). Applying the traditional approximation to the horizontal components of the

inviscid version of Equation (1.1a) yields

D3u

D3t︸︷︷︸
U2/L

+ f ẑ× u︸ ︷︷ ︸
fU

= − 1

ρ
∇p︸ ︷︷ ︸
P/L

, (1.20)

where underbrackets denote the typical magnitude associated with each term and P is

the typical magnitude of p/ρ. From this, P/L ∼ max{U2/L, fU}. Similarly, the vertical

component of the inviscid version of Equation (1.1a) is

D3w

D3t︸ ︷︷ ︸
(H/L)(U2/L)

= −1

ρ

∂p

∂z︸ ︷︷ ︸
(L/H)max{U2/L,fU}

−g. (1.21)

Hence, vertical advections are at least O(L2/H2) smaller than vertical pressure gradients.

For hot Jupiters, H2/L2 . 10−3 (see above discussion), so hydrostatic balance is expected

to be a good first-order approximation of planetary flows.

The Taylor-Proudman theorem

The Taylor-Proudman theorem implies that, for approximately constant f ẑ, velocities are

approximately vertically-independent. To show this, one takes the curl of Equation (1.1a)
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in the traditional approximation, to yield the following vorticity equation:

D3ω

D3t
= (ω + f ẑ) · ∇3u3 − (ω + f ẑ)(∇3 · u3) +

1

ρ2
∇3ρ×∇3p+∇3 × (ν∇3 · τ 3), (1.22)

where ν = µ/ρ is the kinematic viscosity and f has been taken as a constant. If geostrophic

balance dominates motion (i.e., Ro � 1 and Re � 1)15, this reduces to

f ẑ(∇3 · u3)− f ẑ · ∇3u3 ∼
1

ρ2
∇3ρ×∇3p. (1.23)

Hence, if the baroclinic term, ρ−2∇3ρ × ∇3p, vanishes (i.e., density only varies along

isobars)16 and the atmosphere is incompressible, Equation (1.23) reduces further to

∂u3

∂z
∼ 0. (1.24)

This is known as the Taylor-Proudman theorem and implies that, under these conditions,

velocities are approximately vertically-independent (e.g., Vallis, 2006). Moreover, if the

baroclinic term in Equation (1.23) vanishes but incompressibility is not assumed, the

vertical component on the lefthand side of Equation (1.23) yields ∇ · u ∼ 0; while the

horizontal components of Equation (1.23) yield ∂u/∂z ∼ 0, as before. This variation of

the Taylor-Proudman theorem implies that horizontal velocities are approximately hori-

zontally divergence-free and vertically-independent (e.g., Showman et al., 2010). In atmo-

spheres, the Taylor-Proudman theorem implies that flows align themselves into vertically-

independent columns known as Taylor columns. Consequently, in the context of of rapidly

rotating planets, it is often useful to consider horizontal and vertical motions indepen-

dently.

15Here Re ≡ UL/ν is the Reynolds number, which describes the relative importance of inertial and
viscous accelerations.

16For an ideal gas atmosphere (ρ = p/RT ), the baroclinic term vanishes if the atmosphere is isothermal
as, for ρ(p), ∇3ρ×∇3p = dρ/dp(∇3p×∇3p) = 0.
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Potential vorticity

Potential vorticity is a fundamentally important property of hydrodynamic atmospheric

flows. In the isobaric primitive equations it is defined as

qPE =

[
(ζ + f)

ρ

]
· ∇pΘ, (1.25)

which is the dot product (i.e., the projectional intersection) of the vertical component of the

planetary vorticity (per unit density) and the normal of the potential temperature (which

is the variable that determines deviations in temperature stratification), with respect to

an isobaric fluid surface.

In the single-layer homogeneous shallow-water model, where there is no explicit tem-

perature treatment and stratification of the constant density layer is exactly described by

hydrostatic equilibrium, this simplifies to

qSW =
(ζ + f)

h
. (1.26)

Furthermore, in the two-dimensional incompressible model, which has no vertical depen-

dence, the potential vorticity is defined by

q2D = ζ + f, (1.27)

which is simply the locally normal planetary vorticity.

From Equation (1.7), it is clear that q2D is materially conserved property. In fact,

all of these potential vorticity formulations are materially conserved in their respective

models. This encodes a hidden statement regarding angular momentum conservation in

hydrodynamic systems and has important dynamical consequences, such as the emergence

of Rossby waves.
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Rossby waves

In geostrophic or quasi-geostrophic systems, the conservation of potential vorticity and

the latitudinal variation of the Coriolis parameter combine to drive the propagation of

so-called Rossby waves. Their significance to planetary circulation is so important that

they are often simply called planetary waves.

First, we explain them physically, using the schematic in Figure 1.11, which is taken

from Vallis (2006). The schematic illustrates the behaviour of two fluid parcels that are

initially at rest and sit on a line of zero potential vorticity, η. These parcels are then

instantaneously perturbed latitudinally: one northward and the other southward. Since

the Coriolis parameter increases at it moves northward, just after the perturbation the

northward parcel has ζ < 0 (clockwise) and the southward parcel has ζ > 0 (anticlockwise).

Hence, both have westward velocities towards the points they originated from and shift

westward as time progresses. Likewise, if the line η is perturbed in a wave-like fashion,

the same potential vorticity mechanism will cause its phase to propagate westward. This

westward propagating wave is the Rossby wave.

The simplest way to describe Rossby waves mathematically is with a latitudinally de-

pendent Coriolis parameter in the two-dimensional incompressible model. The simplest

form for this latitudinal dependence in f is the so-called equatorial beta-plane approxima-

tion, with f = βy, where β = 2Ω/R is a constant that denotes the local variations in the

Coriolis parameter at the equator17. With this choice, Equation (1.7) can be linearised

about a background rest state to yield

∂ζ1
∂t

+ βv1 = 0 ⇐⇒ ∂∇2ψ1

∂t
+ β

∂ψ1

∂x
= 0. (1.28)

Hence, if the streamfunction perturbation satisfies the planar wave ansatz, ψ1 = ψ̂ei(kx+ly−ωt),

where k and l respectively denote the wavenumbers of the x and y coordinates, Equa-

17The equatorial beta-plane approximation is discussed more fully in Section 2.2.3.
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232 Chapter 5. Simplified Equations for Ocean and Atmosphere

Fig. 5.4 The mechanism of a two-dimensional (x–y) Rossby wave. An initial distur-
bance displaces a material line at constant latitude (the straight horizontal line) to the
solid line marked η(t = 0). Conservation of potential vorticity, βy + ζ, leads to the
production of relative vorticity, as shown for two parcels. The associated velocity field
(arrows on the circles) then advects the fluid parcels, and the material line evolves
into the dashed line. The phase of the wave has propagated westwards.

vorticity. The relative vorticity gives rise to a velocity field which, in turn, advects the parcels
in material line in the manner shown, and the wave propagates westwards.

In more complicated situations, such as flow in two layers, considered below, or in
a continuously stratified fluid, the mechanism is essentially the same. A displaced fluid
parcel carries with it its potential vorticity and, in the presence of a potential vorticity
gradient in the basic state, a potential vorticity anomaly is produced. The potential vorticity
anomaly produces a velocity field (an example of potential vorticity inversion) which further
displaces the fluid parcels, leading to the formation of a Rossby wave. The vital ingredient is
a basic state potential vorticity gradient, such as that provided by the change of the Coriolis
parameter with latitude.

5.7.2 Rossby waves in two layers

Now consider the dynamics of the two-layer model, linearized about a state of rest. The two,
coupled, linear equations describing the motion in each layer are

∂
∂t

[
∇2ψ′

1 + F1(ψ′
2 − ψ′

1)
]
+ β∂ψ

′
1

∂x
= 0, (5.188a)

∂
∂t

[
∇2ψ′

2 + F2(ψ′
1 − ψ′

2)
]
+ β∂ψ

′
2

∂x
= 0, (5.188b)

where F1 = f 2
0 /g′H1 and F2 = f 2

0 /g′H2. By inspection (5.188) may be transformed into two
uncoupled equations: the first is obtained by multiplying (5.188a) by F2 and (5.188b) by F1

and adding, and the second is the difference of (5.188a) and (5.188b). Then, defining

ψ = F1ψ′
2 + F2ψ′

1

F1 + F2
, τ = 1

2
(ψ′

1 − ψ′
2), (5.189a,b)

(think ‘τ for temperature’), (5.188) become

∂
∂t
∇2ψ+ β∂ψ

∂x
= 0, (5.190a)

Figure 1.11: Rossby wave propagation schematic, taken from Vallis (2006). The schematic lies in
the x-y plane, with positive y denoting north and positive x (i.e., right) denoting east and t denoting
time. The schematic depicts two fluid parcels along the line, η, which conserves potential vorticity,
q2D ≡ f+ζ, where f is the (northward increasing) Coriolis parameter and ζ ≡ ∂v/∂x−∂u/∂y is the
vertical component of the relative vorticity. The two fluid parcels start at rest (i.e., ζ = 0) and one
is perturbed northward and the other is perturbed southward. Since q2D is materially conserved,
the northward parcel has ζ < 0 so rotates clockwise; whereas the southward parcel has ζ > 0
so rotates anticlockwise. Consequently, since both parcels are oriented with westward velocities
towards the centre, the parcels propagate westwards for t > 0. If this schematic is translated into
a wave-like perturbation at t = 0 (solid black line), the wave’s phase propagates westwards t > 0
(see dashed black line).

tion (1.28) gives the dispersion relation:

ω = − kβ

k2 + l2
, (1.29)

for arbitrary ψ̂. The east-west phase velocity of this, cp ≡ ω/k = −β/(k2+l2) is westward,

recovering the same result as the physical potential vorticity argument discussed above,

which this is just a mathematical representation of.

We highlight here that Rossby waves propagate differently to gravity waves. the pres-

sure perturbation that drives the Rossby wave satisfies geostrophic balance so the vorticity

perturbation corresponding to it causes westward velocities along regions of minimal |f |,

which drives westward phase propagation. In contrast, gravity waves travel in either di-

rection in order to equalise pressure perturbations directly. Moreover, while gravity waves

are non-dispersive (i.e., the group and phase velocities are equivalent and they travel as

solitons), Rossby waves are dispersive (i.e., their phase and group velocities differ and are

scale dependent) so they can transfer/exchange energy and angular momentum as they
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propagate (e.g., Pedlosky, 2013). Rossby waves prove to be fundamental to atmospheric

dynamics in hot Jupiters and will be discussed much in other parts of this work.

The inverse energy cascade of quasi-two-dimensional turbulence

Turbulence is both chaotic and highly ordered. The advection of a fluid parcel is highly

non-linear and chaotic, so the flow is highly sensitive to initial conditions and small pertur-

bations. This makes it impossible to exactly model flow trajectories in isolation. However,

since the flow is highly ordered, average properties of the flow do adhere to behaviours

that can be modelled, repeated, and understood with theory.

In three-dimensional turbulence, large scale eddies break up into smaller scale eddies,

which break up into smaller eddies still, until they are small enough to that viscous

dissipation can effectively convert their kinetic energy into heat at some small dissipation

scale that is determined by the microphysical properties of the flow. This leads to a process

that is known as the forward cascade or the Richardson cascade (Richardson, 1926), which

transfers energy through an inertial range of scales and the statistics of small scales are

universally and uniquely determined by the kinematic viscosity, ν ≡ µ/ρ, and the rate of

energy dissipation (Kolmogorov, 1941a,b). This is known as the universality hypothesis.

However, the Taylor-Proudman theorem shows that planetary flows are quasi-two-

dimensional. This has important planetary consequences as the arguments that imply that

three-dimensional turbulence has a forward cascade become modified in two-dimensional

geometry. The important physical property to explain this is enstrophy, which in three-

dimensions is Z3 ≡ (∇3 × u3) · (∇3 × u3) and in two-dimensions is simply Z3 = ζ2. In

three-dimensions, enstrophy may be amplified by vortex stretching, (∇3 × u3) · ∇3u3.

However, two-dimensional systems contain no vortex stretching and enstrophy, Z ≡ ζ2,

and is materially conserved in the inviscid limit (e.g., Tabeling, 2002; Boffetta & Ecke,

2012). For non-zero viscosity, this ultimately results in a dual cascade in which energy

has an inverse cascade from small scales to large scales and enstrophy has a forward

cascade from large scales to small scales (Fjørtoft, 1953; Kraichnan, 1971). Charney (1971)

showed that in quasi-geostrophic three-dimensional turbulence enstrophy is conserved and
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that it consequently behaves similarly to two-dimensional turbulence, with its inverse

energy cascade possessing the same wavenumber dependence as two-dimensional isotropic

turbulence.

Rhines scale

In isotropic two-dimensional turbulence, the inverse energy cascade can cause the emer-

gence of system-scale vortices (Kraichnan, 1971; Laurie et al., 2014). On the moderate-to-

large scales of planetary atmospheres, where f is approximately constant, circular vortices

can emerge as a result of the inverse energy cascade. This is believed to explain the for-

mation of the large-scale vortices that are found inside the banded jets on Jupiter and

Saturn such as Jupiter’s Great Red Spot (Showman, 2007), which can be identified in the

north east of the photograph of Jupiter in Figure 1.12. However, Rhines (1975) showed

that, for rapidly rotating planets like Jupiter and Saturn, latitudinal variations in f cause

anisotropy over planetary sized scales. As a consequence, turbulent flows on such planets

become elongated in the azimuthal direction, causing zonal (east-west) planetary jets with

the characteristic latitudinal width (Rhines, 1975; Vallis & Maltrud, 1993):

Lβ ∼
(U
β

)1/2

. (1.30)

This is known as the Rhines scale. The Rhines scale represents a transition scale be-

tween quasi-two-dimensional isotropic geostrophic turbulence and dynamics associated

with large-scale Rossby waves. Specifically, the inverse energy cascade of quasi-two-

dimensional isotropic geostrophic turbulence causes the upscale cascading of kinetic energy,

from relatively small energy injection scales up to moderate scales and so on until vortices

approach the Rhines scale in diameter. At this point the latitudinal variations of f become

dynamically significant. We have already discussed how (in potential vorticity conserving

systems) such variations lead the propagation of Rossby waves, but we now discuss how

Rossby waves caused this zonal banding to occur. For this, we refer to a simple scaling

argument made by Rhines (1975). This notes that the Rossby wave dispersion relation of
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Figure 1.12: Jupiter viewed by the Juno space probe, taken from the Juno nasa.gov mission page.
Circular vortices, with a diameter . LD, are found within the atmosphere’s banded structures.
These banded structures correspond to zonal jets that have latitudinal widths ∼ Lβ , where on
Jupiter Lβ > LD. Jupiter’s famous Great Red Spot, which can be identified in the north east of
the photograph, has a length scale between these characteristic scales and exhibits zonal elongation
(for further discussion, see main text and Showman, 2007).

Equation (1.29) can be rewritten as

ω = −β cosϑ

K
, (1.31)

where K = (k2 + l2)1/2 is a total wavenumber magnitude and ϑ is the angle between

Rossby wave propagation and the positive x coordinate (east). The argument assumes

that the magnitude of ω is similar to the turbulent frequency, ωturb ∼ UK, and yields the

anisotropic Rhines wavenumber:

K2
β ∼

β

U | cosϑ|. (1.32)

For ϑ = 0, π, Lβ ∼ 1/Kβ ∼ (U/β)1/2; whereas for ϑ = ±π/2, Lβ → ∞. From the

definitions above k = K cosϑ and l = K sinϑ. Therefore, ϑ = 0, π correspond to

Lx/Ly = l/k = 0 (i.e., latitudinal flows); whereas, ϑ = ±π correspond to Ly/Lx = k/l = 0

(i.e., zonal flows). Hence, potential vorticity conservation and latitudinal variation in the

Coriolis parameter place the bound Ly . Lβ, where Ly is the latitudinal length scale, but

do not place a bound on the longitudinal length scale. This simple argument explains the

famous banding structures in the atmospheres of Jupiter and Saturn (Showman, 2007),

and is relevant to all planets (discussion in Showman et al., 2010).
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The above arguments were made using the two-dimensional incompressible model.

This model does not include any dependence on stratification so has no shallow-water

gravity waves and has an infinite Rossby deformation radius. However, for models with

gravity waves and a finite Rossby deformation radius, it has been found that the relative

sizes of Lβ and LD determine the nature of planetary-scale flows. If Lβ/LD � 1, the

above arguments are more or less unchanged and banded zonal jets with a latitudinal

width Lβ emerge; whereas, if Lβ/LD � 1, Coriolis deflection causes flows to exhibit

geostrophic behaviour on smaller scales than Lβ, so circular vortices with a diameter LD

emerge (Okuno & Masuda, 2003; Smith, 2004; Showman, 2007). Figure 1.10 shows that

hot Jupiters typically have, LD ∼ R, Lβ ∼ R and, for the hottest hot Jupiters LD/Lβ . 1,

so, from a length scale analysis alone, one would expect to find that hot Jupiters have

planetary-scale geostrophic vortices that interact with zonal jets over a similar scale.

1.3.3 Equatorial superrotation on synchronously rotating exoplanets

As discussed in Section 1.2, hot Jupiters are believed to be tidally locked and observational

measurements (e.g., Harrington et al., 2006; Cowan et al., 2007; Knutson et al., 2007, 2009;

Charbonneau et al., 2008; Swain et al., 2009; Crossfield et al., 2010; Wong et al., 2016)

generally find them to have equatorial temperature maxima (hotspots) located eastward

of their substellar points. This suggests that eastward equatorial flows are recirculating

thermal energy eastwards via advection.

The emergence of prograde equatorial circulation like this is often referred to as equato-

rial superrotation. Generally, hydrodynamic GCMs of synchronously rotating hot Jupiters

are consistent with these observational findings and produce two archetypal flow patterns:

planetary scale quasi-geostrophic structures at mid-to-high latitudes and a superrotating

jet at low-to-equatorial latitudes (e.g., Showman & Guillot, 2002; Shell & Held, 2004;

Cooper & Showman, 2005, 2006; Langton & Laughlin, 2007; Dobbs-Dixon & Lin, 2008;

Menou & Rauscher, 2009; Rauscher & Menou, 2010; Dobbs-Dixon et al., 2010; Perna et al.,

2010; Heng et al., 2011; Perez-Becker & Showman, 2013), with the fundamental mecha-

nism responsible for driving the equatorial superrotating jet first explained by Showman
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& Polvani (2011).

The fact that equatorial superrotation emerges in hot Jupiters is, in itself, an in-

teresting finding and suggests the presence of a subtle dynamical mechanism that can

redistribute energy and angular momentum. This is a consequence of a theorem from

Hide (due to Hide, 1969a), which was presented in the hot Jupiter context by Showman

& Polvani (2011). It states that equatorial superrotation cannot result from atmospheric

circulations that are longitudinally symmetric or that conserve specific angular momen-

tum about the planetary rotation axis, and can only be a result of an angular momentum

pumping mechanism that is driven by waves or eddies. The theorem arises from the

fact that, since equatorial flows are located furthest from the planet’s axis of rotation, a

superrotating equatorial jet corresponds to an angular momentum maxima so may only

be maintained by an up-gradient transport mechanism, which transfers eastward angular

momentum from higher latitudes into the equatorial region. This suggests that there are

some interesting wave/eddy interactions in equatorial regions of synchronously rotating

hot Jupiters. The actual mechanism that is responsible for this angular momentum pump-

ing is of high interest to this study and we shall discuss it in more detail in subsequent

chapters (particularly in Chapters 3 to 5). However, in this subsection, we shall give an

illustrative overview of the general findings of Showman & Polvani (2011).

Planetary scale equatorial shallow-water waves

The dynamical mechanism that Showman & Polvani (2011) showed drives equatorial su-

perrotation relies on a dynamical properties of linear planetary-scale equatorial shallow-

water waves. In this context shallow-water denotes that a shallow-water treatment of

stratification is included and equatorial denotes that the waves are contained within spe-

cific latitudinal regions, in which the Coriolis force transitions from being of negligible

dynamical importance (i.e., along the equator) to of leading order importance (i.e., at

mid-to-high latitudes). These waves were first studied by Matsuno (1966) and shall be

discussed more extensively in Chapter 3. However, Showman & Polvani (2011) showed

that in the parameter regime that contains hot Jupiters, the n = 1 equatorial Rossby wave
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Figure 1.13: The structural form of the n = 1 equatorial Rossby wave (left panel) and the equatorial
Kelvin wave (right panel), with the azimuthal wavenumber k = 1/R, are plotted in cardinal
Cartesian coordinates, with x denoting the eastward coordinate and y denoting the northward
coordinate. The northward coordinate is given in units of Leq, the equatorial Rossby deformation
radius, which determines the latitudinal length scales of the waves. The structures of the waves are
visualised with pressure contours (i.e., contours of h in the shallow-water model), with yellow/blue
contours denoting pressure highs/lows respectively, and horizontal velocity vectors are overplotted.
The n = 1 equatorial Rossby wave behaves geostrophically at mid-to-high latitudes and travels
westward; while the equatorial Kelvin wave travels eastward with no meridional component, and
velocity maxima at its pressure maxima. The plots are made using the solutions of Matsuno (1966)
for Leq/R = 0.67, which is the approximate value of this ratio on the hot Jupiter HAT-P-7b. The
azimuthal phase of the plotted free waves is arbitrary and time-dependent.

and the equatorial Kelvin wave are the most significant equatorial waves.

The n = 1 equatorial Rossby wave is an analogous to the standard Rossby wave

discussed earlier in this section but propagates only in the zonal direction. The n = 1

label denotes that its meridional (latitudinal) velocity is zero at one point (i.e., the equa-

tor). For equatorial shallow-water waves all odd n labels denote equatorially-symmetric

pressure structures and zonal velocities (h, u), and equatorially-antisymmetric meridional

velocities (v); whereas these symmetries flip for even n (i.e., v antisymmetric; h and u

symmetric). The n = 1 equatorial Rossby wave behaves in a geostrophic manner so is

described by westward propagating vortices that circulate about pressure highs and lows

(see Figure 1.13, lefthand panel). Its latitudinal profile is determined by the length scale,

Leq ≡ (cg/β)1/2, which is known as the equatorial Rossby deformation radius and is the

equatorial analogue of LD. Note that, for U ∼ cg, Leq is simply the Rhines scale, which

describes the latitudinal width of planetary zonal jets. This similarity is not a coincidence

as the equatorial waves provide a latitudinal reference guide for the turbulent dynamics
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(see discussion on the Rhines scale). The similarity between these two scales means that

linear or weakly non-linear equatorial shallow-water wave treatments of planetary scale

flows generally have good first order agreement with fully nonlinear GCMs (e.g., Showman

& Guillot, 2002; Shell & Held, 2004; Cooper & Showman, 2005, 2006; Langton & Laugh-

lin, 2007; Dobbs-Dixon & Lin, 2008; Menou & Rauscher, 2009; Rauscher & Menou, 2010;

Dobbs-Dixon et al., 2010; Perna et al., 2010; Showman & Polvani, 2011; Heng et al., 2011;

Perez-Becker & Showman, 2013). This is because quasi-two-dimensional turbulence will

always pump energy and momentum up to these scales. Moreover, hot Jupiters typically

have the property that Leq ∼ R so radiative heating from their host star typically varies

on Leq, meaning that energy is directly injected at this wave scale without needing an

energy cascade, explaining why this description has been so powerful in explaining the

dynamics of hot Jupiters.

The equatorial Kelvin wave propagates along the equator where the Coriolis parameter

vanishes. It is akin to the shallow-water gravity wave in that it has the azimuthal phase

velocity cg and is non-dispersive in the zonal direction. However, while the shallow-water

gravity wave comes in two oppositely travelling varieties, there is only one equatorial Kelvin

wave, which propagates eastward. The equatorial Kelvin wave also has a length scale

determined by Leq, but has the additional interesting characteristics that its meridional

velocity is suppressed by rotation and its velocity maxima are located at its pressure

maxima (see Figure 1.13, righthand panel).

Matsuno (1966) showed that, when a linearised, time-independent, equatorial beta-

plane shallow-water system is exposed to a forcing source on h with the latitudinal scale

Leq, the resulting stationary response, {h(x),u(x)}, dominated by the standing wave su-

perposition of the n = 1 equatorial Rossby wave and the equatorial Kelvin wave (see

Figure 1.14, which is taken from Matsuno (1966)). The n = 1 equatorial Rossby wave’s

response causes mid-to-high latitude flows to behave in a geostrophic manner, with the

pressure highs and lows shifted westward; whereas the equatorial Kelvin wave’s response

causes flows along the equator to be is zonally dominated, with eastward shifted pres-

sure highs and lows. Showman & Polvani (2011) showed that, since gh is equivalent of
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February 1966 Taroh Matsuno 39

Fig. 9. Stationary circulation pattern (lower) caused by the mass source and sink (upper).

turning of flows from the higher latitude. 
Namely the circulations in the high latitude 
regions bring converging or diverging motions 
towards or from the equator at the end of 
each cell, because the sense of rotation is 
opposite in each hemisphere for the same 
pressure pattern. If we note, for instance, 
the western edge of the low pressure cell in 
Fig. 9 the flow is converging towards the 
equator, and this flow turns to the east. 

 On the other hand, horizontal velocity con-
vergence brings surface elevation and makes 
a ridge along the equator. In this way 
geostrophic balance between the pressure and 
the flow fields is attained in the vicinity of 
the equator, too. 

 In other words, when the fluid is supplied 
at some place and extracted at the other place 
the compensating current prefers to flow 
through the equator. 

 If we speak in terms of "adjustment prob-

lem ", the above process may be summerized 
as follows : In the higher latitudes the flow 
field is set up so as to balance geostrophical-
ly with the pressure field which was gene-
rated by mass sources and sinks. On the 
contrary, in the equatorial region, pressure 
distribution tends to follow wind field, ignore-
ing the impressed mass sources. It is note-
worthy that, in this example, the surface 
elevation pattern near the equator is not 
the reflection of the external forces, though 
the external forces have the maximum 
magnitude at the equator. It seems to be 
very important that, in the equatorial area, 
pressure or temperature fields could be op-
posite in sense to the external heatings. 

9. Formal development of the theory for 
   general stratified fluid 

 So far our discussions were confined to the 
so-called divergent barotropic model as des-

Figure 1.14: The time-independent response (bottom panel) of a linearised shallow-water system in
the beta-plane approximation when it is subjected to a stationary forcing profile on h (top panel)
that varies on system sized spatial scales, taken from Matsuno (1966). Highs/lows in geopotential
energy, gh, which are also pressure highs/lows in shallow-water models, are marked by solid/dashed
contours and velocity vectors are overplotted. These solutions are dominated by standing wave
superposition of the n = 1 equatorial Rossby wave and the equatorial Kelvin wave.
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p/ρ ≡ RT in the shallow-water momentum equation (Equation (1.5a)) and Leq ∼ R on

hot Jupiters, these kinds of forcing responses arise in the context of time-independent

planetary-scale thermal forcing on hot Jupiters and are closely tied to the emergence

equatorial superrotation.

Equatorial superrotation due to eddy momentum pumping

Showman & Polvani (2011) showed that linear steady state recirculation patterns, related

to the stationary forcing responses of these planetary-scale equatorial waves, induce equa-

torial superrotation through an angular momentum pumping mechanism involving eddy

interactions. The key subfigures for outlining the angular momentum pumping mecha-

nism of Showman & Polvani (2011) are combined in Figure 1.15. The two top left panels

of Figure 1.15 show steady solutions of a linearised, equatorial beta-plane, shallow-water

model, (b), when exposed to a time-independent layer thickness forcing profile, (a), which

is designed to mimic heating on a synchronously rotating hot Jupiter. These solutions

are presented alongside the resulting zonally-averaged zonal accelerations that such lin-

earised solutions generate (see Figure 1.15, bottom panel; see caption for details) and the

mechanism schematic that Showman & Polvani (2011) provided (see Figure 1.15, top right

panel).

Equatorial superrotation is driven by the zonally-averaged-zonal-wind/eddy interac-

tions that planetary-scale quasi-geostrophic redistribution patterns cause. These redis-

tribution patterns, which behave quasi-geostrophically at mid-to-high latitudes, can be

associated with the planetary-scale equatorial shallow-water waves (as discussed above).

They cause planetary-scale eddies to tilt so that winds predominantly circulate westward-

poleward and eastward-equatorward about regions of high geopotential, gh. This tilting

can be identified by the eastward-pointing chevron-shaped geopotential/flow patterns in

the linear solution in Figure 1.15 (top left panel, (b)). Due to the geostrophic characteris-

tics of the mid-to-high latitude flows, the regions of large geopotential gradients (i.e., the

flanks of the geopotential high) are the regions in which flows have the largest momen-

tum. Therefore, as these tilted eddies redistribute geopotential energy from the western
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If one seeks separable solutions, then, as described by Gill
(1980) and Wu et al. (2001), the meridional structure of the
solutions to this equation with finite τdrag are the parabolic
cylinder functions ψn(y), which are simply Gaussians times
Hermite polynomials11:

ψn(y) = exp
(

− y2

2P2

)
Hn

( y

P
)

, (20)

where P ≡ (τrad/τdrag)1/4 is the fourth root of a Prandtl number.
Our goal is to specify the thermal forcing, S(x, y), and solve

for the unknowns u, v, and η. In general, any desired pattern of
thermal forcing can be represented as

S(x, y) =
∞∑

n=0

Sn(x)ψn(y). (21)

For tidally locked exoplanets, we expect this pattern to consist
of a day–night variation in heating/cooling whose amplitude
peaks at low latitudes and diminishes near the poles. We take
the forcing to be symmetric about the equator (appropriate for
a planet with zero obliquity) and, to keep the mathematics
tractable, retain solely the term S0, corresponding to the pattern
of heating and cooling that is a Gaussian, centered about the
equator, with a latitudinal half-width of the equatorial Rossby
radius of deformation modified by frictional and radiative
effects. While the full solution would require consideration of
Sn for all n ! 0, the first term, S0, will be the dominant term
for cases where the deformation radius is similar to a planetary
radius, as is the case on typical hot Jupiters. Consideration of
this term alone will therefore suffice to illustrate the qualitative
features relevant for inducing an equatorially superrotating jet
on tidally locked exoplanets.

Appendix B describes the solution method of
Equations (16)–(18) and presents the solution for the specific
case where the forcing consists solely of the S0 term varying
sinusoidally in longitude, i.e., S(x, y) = Ŝ0e

ikxψ0(y), where Ŝ0
is a constant. Figure 2 shows an example for parameter values
typical of a hot Jupiter or hot super Earth (zonal wavelengths
associated with the day–night heating contrast of a planetary
circumference and radiative time constants of order 105 s). For
this example, the drag time constant is taken equal to the radia-
tive time constant. Figure 2(a) shows the radiative-equilibrium
height field and Figure 2(b) presents the steady-state height and
velocity fields.

The solutions exhibit several important features. Although
the radiative-equilibrium height field is symmetric in longitude
about the substellar point (Figure 2(a)), the actual height field
deviates significantly from radiative equilibrium and exhibits
considerable dynamical structure (Figure 2(b)). Two fundamen-
tal types of behavior are present. First, at mid-to-high latitudes
(|y| ∼ 1–3 in the figure), the flow exhibits vortical behavior.
The dayside contains an anticyclone in each hemisphere, man-
ifesting as a pressure high (i.e., local maximum of the height)
around which winds flow clockwise in the northern hemisphere
and counterclockwise in the southern hemisphere; the nightside
contains a cyclone in each hemisphere, manifesting as a pressure
low around which winds flow counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Second,
at low latitudes (|y| " 1), the flows are nearly east–west; they

11 The first few Hermite polynomials are H0(ξ ) = 1, H1(ξ ) = 2ξ ,
H2(ξ ) = 4ξ2 − 2, and H3(ξ ) = 8ξ3 − 12ξ .

(a)

(b)

(c)

Figure 2. Example linear, analytic solution for parameters relevant to hot, tidally
locked exoplanets. (a) Spatial structure of radiative-equilibrium height field, heq
(orange scale and contours). (b) Height field (orange scale) and horizontal wind
velocities (arrows) for the linear, analytic solution forced by relaxation to the
heq profile shown in panel (a) and with nondimensional zonal wavenumber
k = 0.5 and nondimensional radiative and drag times τrad = τdrag = 5.
For a hot Jupiter or hot super Earth, these correspond to dimensional zonal
wavelengths of a planetary circumference and dimensional radiative and drag
time constants of ∼105 s (see Appendix A). In (a) and (b), the horizontal and
vertical axes are dimensionless eastward and northward distance, respectively;
one unit of distance corresponds to a dimensional distance of one Rossby
deformation radius, (

√
gH/β)1/2. The × marks the longitude along the equator

where h reaches a maximum and the eddy zonal wind changes sign. (c) Zonal
(east–west) accelerations of the zonal-mean flow implied by the linear solution.
The black and dark blue curves give the accelerations due to horizontal and
vertical eddy transport (terms II and III, respectively, in Equation (22)). The
light-green and cyan curves show friction (term IV) and the effect of the mean-
meridional circulation (term I), respectively. The red curve shows the sum of all
terms. The numerical values adopt a forcing amplitude ∆heq/H = 1. For this
value, the nondimensional peak winds approach 0.5, corresponding to speeds
of ∼1 km s−1 on a hot Jupiter.
(A color version of this figure is available in the online journal.)

diverge from a point east of the substellar longitude (marked
with a cross in Figure 2(b)) and converge toward a point east of
the antistellar longitude.

As discussed by Gill (1980), these features can be interpreted
in terms of forced, damped, and steady equatorial wave modes.
The mid-to-high latitude feature described above is dynamically
analogous to that of an n = 1 equatorially trapped Rossby
wave, which exhibits cyclones and anticyclones—alternating
in longitude—that peak off the equator (see Matsuno 1966,
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wave-source region and a westward acceleration must occur in
the region of wave breaking or dissipation. This can lead to the
formation of zonal (east–west) jet streams.5

Rossby waves correspond to latitudinal oscillations in sur-
faces of constant potential vorticity6; thus, any process that trig-
gers such oscillations at large scales will tend to excite Rossby
waves. In Earth’s atmosphere, one of the predominant sources
is baroclinic instability, which occurs in the midlatitude tropo-
sphere where latitudinal temperature gradients are large. Spa-
tially varying tropospheric heating and cooling (e.g., due to
land–sea contrasts) or flow over topography also perturb the
potential vorticity contours and can therefore trigger Rossby
waves. In the atmospheres of tidally locked, hot exoplanets, on
the other hand, the day–night heating pattern constitutes the
overriding dynamical forcing. For such planets, we expect this
heating/cooling pattern to trigger Rossby waves at low latitudes
(Figure 1).

The above theory is for free waves. Consider now the ex-
tension to an atmosphere forced by vorticity sources/sinks and
damped by frictional drag. The zonal-mean zonal momentum
equation of the barotropic system reads

∂u

∂t
= −∂(u′v′)

∂y
− u

τdrag
, (6)

where overbars denote zonal means and primes denote devia-
tions therefrom. The equation states that accelerations of the
zonal-mean zonal flow result from convergences of the lati-
tudinal eddy momentum flux and from drag, which we have
parameterized as a term that relaxes the zonal-mean zonal wind
toward zero over a drag time constant τdrag. The relationship
between the eddy acceleration in Equation (6) and the vorticity
sources/sinks can be made in two steps. First, we note that the
definition of vorticity implies that v′ζ ′ = −∂(u′v′)/∂y. Second,
we multiply the linearized version of Equation (2) by ζ ′ and
zonally average. This leads to an equation for the budget of the

5 The dynamical picture outlined above is not limited to small-amplitude
disturbances, as can be shown with a simple argument described, for example,
in Held (2000) and Vallis (2006). Imagine an initially undisturbed latitude,
where the absolute-vorticity contour initially aligns with the latitude circle, and
suppose a disturbance—of any amplitude—propagates into that latitude from
elsewhere. The disturbance will perturb the absolute vorticity contours, causing
northward transport of air in some regions and southward transport in others.
Because absolute vorticity generally increases northward, the northward
advection carries with it air of low absolute vorticity, whereas the southward
advection carries with it air of high absolute vorticity. Thus, this process will
generally cause a southward flux of absolute vorticity, thereby decreasing the
areal integral of the absolute vorticity over the polar cap bounded by the
latitude circle in question. By Stokes’ theorem, this implies that the
zonal-mean zonal wind decelerates (i.e., accelerates westward) because of this
vorticity flux. In the absence of dissipative processes, this deceleration would
reverse if the disturbance exited the region. However, when mixing occurs
(e.g., if the wave breaks), or if the disturbance is damped before air parcels can
return to their original latitudes, then the areal integral of the vorticity inside
the latitude circle has been irreversibly decreased, and the westward impulse
cannot be undone. Thus, we again recover the result that westward
acceleration occurs in the region of wave dissipation; if momentum is
conserved, eastward acceleration would then occur in the wave-source region.
6 Potential vorticity is a quantity related to vorticity that is conserved in
adiabatic, frictionless, stratified flow. For the barotropic system it is simply the
absolute vorticity ζ + f , for the shallow-water system it is absolute vorticity
over layer thickness (ζ + f )/h, and for a 3D stratified atmosphere it is given
by ρ−1(∇ × v + 2!) · ∇θ , where ρ is the density, Ω is the planetary rotation
vector, and θ is the potential temperature. For discussion of the conservation of
potential vorticity and its uses in dynamics, see Pedlosky (1987) or Vallis
(2006).

Figure 1. Illustration of the dynamical mechanism for generating equatorial
superrotation on tidally locked short-period exoplanets, including hot Jupiters
and super Earths. The intense day–night heating gradient generates standing,
planetary-scale Rossby and Kelvin waves. These waves develop a structure
with velocities tilting northwest-to-southeast in the northern hemisphere and
southwest-to-northeast in the southern hemisphere (yellow and red ovals).
In turn, these patterns transport eddy momentum from high latitudes to the
equator (dashed arrows). Equatorial superrotation therefore emerges (thick,
right-pointing arrow).
(A color version of this figure is available in the online journal.)

so-called pseudomomentum (Vallis 2006, p. 493):

∂A
∂t

+ v′ζ ′ = ζ ′F ′

2(β − ∂2u
∂y2 )

. (7)

For the two-dimensional nondivergent model, A = (β −
∂2u/∂y2)−1ζ ′2/2 is the pseudomomentum, which is a measure
of wave activity. By combining Equations (6) and (7) and
supposing that the wave amplitudes and zonal-mean zonal wind
are statistically steady, i.e., ∂A/∂t ≈ 0 and ∂u/∂t ≈ 0, we
obtain

u

τdrag
= ζ ′F ′

2(β − ∂2u
∂y2 )

. (8)

This equation relates the vorticity sources/sinks and drag to
the zonal-mean zonal wind, u. When eddy sources/sinks of
relative vorticity on average exhibit the same sign as the vorticity
itself (i.e., ζ ′F ′ > 0), the eddy acceleration is eastward, and in
steady state results in an eastward zonal-mean zonal wind. When
sources/sink of relative vorticity tend to exhibit the opposite sign
as the vorticity (ζ ′F ′ < 0), the eddy acceleration is westward,
and in steady state results in westward zonal-mean zonal wind.7
In analogy with the free solutions, this behavior is typically
interpreted in terms of the generation, latitudinal propagation,
and dissipation of Rossby waves.

This mechanism is thought to be responsible for the eddy-
driven jet streams (and the associated eastward surface winds)
in Earth’s midlatitudes: baroclinic instability generates Rossby
waves that radiate away from the midlatitudes, causing eastward
eddy acceleration there and leading to eastward surface flow

7 These arguments assume that β − ∂2u/∂y2 > 0, which is generally the case.
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If one seeks separable solutions, then, as described by Gill
(1980) and Wu et al. (2001), the meridional structure of the
solutions to this equation with finite τdrag are the parabolic
cylinder functions ψn(y), which are simply Gaussians times
Hermite polynomials11:

ψn(y) = exp
(

− y2

2P2

)
Hn

( y

P
)

, (20)

where P ≡ (τrad/τdrag)1/4 is the fourth root of a Prandtl number.
Our goal is to specify the thermal forcing, S(x, y), and solve

for the unknowns u, v, and η. In general, any desired pattern of
thermal forcing can be represented as

S(x, y) =
∞∑

n=0

Sn(x)ψn(y). (21)

For tidally locked exoplanets, we expect this pattern to consist
of a day–night variation in heating/cooling whose amplitude
peaks at low latitudes and diminishes near the poles. We take
the forcing to be symmetric about the equator (appropriate for
a planet with zero obliquity) and, to keep the mathematics
tractable, retain solely the term S0, corresponding to the pattern
of heating and cooling that is a Gaussian, centered about the
equator, with a latitudinal half-width of the equatorial Rossby
radius of deformation modified by frictional and radiative
effects. While the full solution would require consideration of
Sn for all n ! 0, the first term, S0, will be the dominant term
for cases where the deformation radius is similar to a planetary
radius, as is the case on typical hot Jupiters. Consideration of
this term alone will therefore suffice to illustrate the qualitative
features relevant for inducing an equatorially superrotating jet
on tidally locked exoplanets.

Appendix B describes the solution method of
Equations (16)–(18) and presents the solution for the specific
case where the forcing consists solely of the S0 term varying
sinusoidally in longitude, i.e., S(x, y) = Ŝ0e

ikxψ0(y), where Ŝ0
is a constant. Figure 2 shows an example for parameter values
typical of a hot Jupiter or hot super Earth (zonal wavelengths
associated with the day–night heating contrast of a planetary
circumference and radiative time constants of order 105 s). For
this example, the drag time constant is taken equal to the radia-
tive time constant. Figure 2(a) shows the radiative-equilibrium
height field and Figure 2(b) presents the steady-state height and
velocity fields.

The solutions exhibit several important features. Although
the radiative-equilibrium height field is symmetric in longitude
about the substellar point (Figure 2(a)), the actual height field
deviates significantly from radiative equilibrium and exhibits
considerable dynamical structure (Figure 2(b)). Two fundamen-
tal types of behavior are present. First, at mid-to-high latitudes
(|y| ∼ 1–3 in the figure), the flow exhibits vortical behavior.
The dayside contains an anticyclone in each hemisphere, man-
ifesting as a pressure high (i.e., local maximum of the height)
around which winds flow clockwise in the northern hemisphere
and counterclockwise in the southern hemisphere; the nightside
contains a cyclone in each hemisphere, manifesting as a pressure
low around which winds flow counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Second,
at low latitudes (|y| " 1), the flows are nearly east–west; they

11 The first few Hermite polynomials are H0(ξ ) = 1, H1(ξ ) = 2ξ ,
H2(ξ ) = 4ξ2 − 2, and H3(ξ ) = 8ξ3 − 12ξ .

(a)

(b)

(c)

Figure 2. Example linear, analytic solution for parameters relevant to hot, tidally
locked exoplanets. (a) Spatial structure of radiative-equilibrium height field, heq
(orange scale and contours). (b) Height field (orange scale) and horizontal wind
velocities (arrows) for the linear, analytic solution forced by relaxation to the
heq profile shown in panel (a) and with nondimensional zonal wavenumber
k = 0.5 and nondimensional radiative and drag times τrad = τdrag = 5.
For a hot Jupiter or hot super Earth, these correspond to dimensional zonal
wavelengths of a planetary circumference and dimensional radiative and drag
time constants of ∼105 s (see Appendix A). In (a) and (b), the horizontal and
vertical axes are dimensionless eastward and northward distance, respectively;
one unit of distance corresponds to a dimensional distance of one Rossby
deformation radius, (

√
gH/β)1/2. The × marks the longitude along the equator

where h reaches a maximum and the eddy zonal wind changes sign. (c) Zonal
(east–west) accelerations of the zonal-mean flow implied by the linear solution.
The black and dark blue curves give the accelerations due to horizontal and
vertical eddy transport (terms II and III, respectively, in Equation (22)). The
light-green and cyan curves show friction (term IV) and the effect of the mean-
meridional circulation (term I), respectively. The red curve shows the sum of all
terms. The numerical values adopt a forcing amplitude ∆heq/H = 1. For this
value, the nondimensional peak winds approach 0.5, corresponding to speeds
of ∼1 km s−1 on a hot Jupiter.
(A color version of this figure is available in the online journal.)

diverge from a point east of the substellar longitude (marked
with a cross in Figure 2(b)) and converge toward a point east of
the antistellar longitude.

As discussed by Gill (1980), these features can be interpreted
in terms of forced, damped, and steady equatorial wave modes.
The mid-to-high latitude feature described above is dynamically
analogous to that of an n = 1 equatorially trapped Rossby
wave, which exhibits cyclones and anticyclones—alternating
in longitude—that peak off the equator (see Matsuno 1966,

6

Figure 1.15: Eddy momentum pumping due to equatorial waves, taken from Showman & Polvani
(2011). The upper left panels show, (a), an applied forcing profile on h and, (b), a corresponding
linearised time-independent solution, {h0(x),u0(x)}, of the resulting forced shallow-water equa-
tions, in the equatorial beta-plane approximation, with a marked hotspot (black cross). This
forcing profile and linearised solution are similar to those displayed in Figure 1.14. The bottom
panel, (c), shows zonally-averaged eastward accelerations resulting from the non-linear interactions
that these linear solutions cause. In this plot, total mean zonal accelerations, which are found to
be eastward, are plotted in red. Alongside this, the plot also shows the relative importance of the
contributing mean zonal accelerations. The equatorward transport of eastward eddy momentum
(black) provides the dominant contribution and the other components are mean zonal accelera-
tions due to vertical eddy momentum transport (blue), Rayleigh drag in the model (cyan), and
mean meridional circulation (green). The upper right panel contains a schematic of how the lin-
ear solutions induce this equatorward transport of eastward eddy momentum (though Showman
& Polvani (2011) changed the azimuthal wavenumber in the schematic for illustrative purposes).
The fundamental feature is the eastward pointing chevron-shaped flow patterns/pressure contours,
which cause eddies to tilt so that they carry eastward angular momentum from the westward high
latitude regions into equatorial region.
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dayside up towards the poles and then back to the eastern dayside, they also transport

eastward angular momentum in a net equatorward fashion. This equatorward transport of

eastward angular momentum by eddies is closely related to the negative of the horizontal

Reynolds stress (i.e., −u′v′, where the overbar denotes a zonal average and the primes

denote deviations thereof). It is positive at equatorial latitudes, where flows are either

poleward-westward or equatorward-eastward, but negative at mid-to-high latitudes, where

Coriolis deflection turns poleward flows back towards the equator. This can been seen from

Figure 1.15 by comparing the black line (the average eastward accelerations due to merid-

ional eddy circulations) in the bottom panel of Figure 1.15 to the directions of u′v′ on

the flanks of the geopotential highs in the linear solution. This net eastward-equatorward

eddy momentum pumping in equatorial regions provides a means of transporting angular

momentum up-gradient.

Ultimately, this up-gradient angular momentum transport allows equatorial superro-

tation to be maintained. The mechanism of Showman & Polvani (2011) predicts that

the latitudinal width of the equatorial superrotating jet is comparable to the equatorial

Rossby deformation radius and highlights that, in hydrodynamic models, planetary-scale

redistribution patterns can be approximately described by wave dynamics. The mecha-

nism is based on weakly non-linear interactions and Showman & Polvani (2011) assessed

its robustness by comparing predictions of the linear analytic shallow-water model to non-

linear shallow-water simulations, and sophisticated three-dimensional GCMs. They found

hierarchical consistency between the models in describing the interactions. This is due to

the linear nature of the dominant geostrophic balances that cause them.

1.4 Magnetism in hot Jupiter atmospheres

1.4.1 Magnetic field generation in hot Jupiters

One of the reasons that hot Jupiters are so interesting from a fluid dynamics perspective

is that, as a collection of bodies, their atmospheric temperatures bridge over the region

of parameter space between which magnetism transitions from being of subdominant to
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leading order dynamical importance (e.g., Perna et al., 2010; Menou, 2012a; Rogers &

Komacek, 2014). The extension of planetary dynamo theory into the hot Jupiter regime

is not well understood. That said, from current dynamo theory one would expect hot

Jupiters to have planetary dynamos that are sustained within the convective deep interior

and generate deep-seated poloidal magnetic fields. The hottest hot Jupiters also have

weakly-ionised atmospheres. If their atmospheres are sufficiently ionised, the zonally-

dominated atmospheric flows become sufficiently connected to the planet’s deep-seated

poloidal magnetic field to induce atmospheric toroidal fields (e.g., Menou, 2012a; Rogers

& Komacek, 2014). Assuming this picture, and the planet’s deep-seated magnetic field

to be dipole dominated, the induction of the azimuthal component of the magnetic field,

Bφ ≡ Bφφ̂, is approximated by (e.g., Menou, 2012a)

∂Bφ

∂t
≈ ∇(3) × [Vφ ×Bdip]−∇(3) × (η∇(3) ×Bφ)

≈ −(Vφ · ∇(3))Bdip + (Bdip · ∇(3))Vφ −∇(3) × (η∇(3) ×Bφ),

(1.33)

where Bdip is the planetary dipolar field, Vφ ≡ Vφφ̂ is the zonal component of the at-

mospheric flow, η is the magnetic diffusivity. Moreover, if the planetary dipole is axially-

aligned, Equation (1.33) reduces to

∂Bφ

∂t
≈ (Bdip · ∇(3))Vφ −∇(3) × (η∇(3) ×Bφ). (1.34)

The ratio of toroidal field induction and diffusion is estimated via the magnetic Reynolds

number:

Rm ∼
|∇(3) × [Vφ ×Bdip]|
|∇(3) × (η∇(3) ×Bφ)| . (1.35)

Using the assumption that the electric currents generating the dipolar planetary field are

located far below the upper atmosphere, Menou (2012a) showed that the magnitudes of

Bφ and Bdip can be approximately related by the scaling law

|Bφ| ∼ Rm|Bdip|, (1.36)
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with

Rm =
UφHp

η
, (1.37)

where Uφ is the typical scale of the zonal wind speed, and Hp is the pressure scale

height. Hence, if toroidal field induction dominates toroidal field diffusion in the at-

mosphere (Rm & 1), the large scale zonal winds on hot Jupiters are expected to induce

strong toroidal fields that dominate the atmospheric magnetic field geometry. Further,

from Equation (1.34), it can be seen that one should expect these toroidal fields to be

antisymmetric about the equator, with a maximum/minimum at mid-latitudes in the

northern/southern hemisphere and toroidal field magnitude decreasing towards each pole,

depending on the latitudinal profiles of Vφ and Bdip.

This is exactly the type of dominant magnetic field profile found by Rogers & Komacek

(2014), as visualised in Figure 1.16, which is taken from their paper. This shows the mag-

netic field profiles generated in simulations of a three-dimensional hot Jupiter model, which

calculates a radially and time dependent η based on their model’s radial reference tem-

perature. For cooler planets (top row), toroidal field dissipation dominates toroidal field

induction and magnetic field profiles largely resemble the imposed dipolar field. For hot-

ter planets, toroidal field induction is significant and equatorially-antisymmetric toroidal

fields dominate the magnetic field geometry (middle row). If hotter planets have large

enough magnetic field strength, the magnetic field couples with the flow, resulting in

magnetically-driven wind variations, which we shall discuss in great depth within this

work.

Aside from being hot enough to support magnetism, the perpetual day/night sides on

hot Jupiters has the potential to drive complex and fascinating magnetohydrodynamics.

This is because the extreme day-night temperature differentials cause longitudinal varia-

tions in the degree of atmospheric ionisation, which in-turn causes longitudinal variations

in the magnetic diffusivity. These inhomogeneities are expected to be substantial with

Rm � 1 on the nightsides and Rm ∼ 100-1000 on daysides of the hottest hot Jupiters

(Rogers & Komacek, 2014). Hence, the daysides of the hottest hot Jupiters are expected
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The Astrophysical Journal, 794:132 (12pp), 2014 October 20 Rogers & Komacek

Figure 3. Magnetic field evolution. The viewpoint is looking onto the nightside of the planet. Top row shows field lines for M2b2, with color representing the toroidal
field magnitude, with red/magenta positive (with maximum of 5 G), blue negative (with minimum of −5 G), and yellow representing values between ±1 G. Middle
and bottom rows show field lines for M7f1b1 and M7f1b2, respectively. Again, color represents toroidal field strength, with red/magenta positive with maximum of
260 G, blue negative with minimum −260 G, and yellow representing field strengths in the range ±20 G. Times are different for each model and are meant only to
give a qualitative picture of magnetic field evolution.

Figure 4. Time evolution of horizontally averaged toroidal field as a function of
depth for models M7b1 (solid lines) and M7b2 (dotted lines). Induced toroidal
field peaks around 0.1–0.2 bars, where vertical shear is large. The field strength
increases with time starting at 330 Prot and increasing in increments of ∼115 Prot
to 1500 Prot.

Figure 5. Day–night temperature differential as a function of pressure. The
solid line is the hydrodynamic version, dotted lines are 10 G MHD models,
and dashed lines are 30 G MHD models. Red lines represent cool models, M2,
M2b1, and M2b2, and black lines represent hot models, M7, M7b1, and M7b2.

6

Figure 1.16: The evolution of magnetic field profiles in three-dimensional MHD simulations, taken
from Rogers & Komacek (2014). The magnetic field in simulated hot Jupiter atmospheres, as
viewed from the nightside, with colours representing the toroidal field magnitude (red/magenta
positive; blue/green negative; and yellow moderate, relative to extremes, positive/negative). Times
are different for each model with the purpose of providing a qualitative picture of magnetic field
evolution. The quoted magnetic field strength is that of the radial field at the pole, at the base of
the simulated atmosphere. In cool 3D MHD simulations atmospheres are weakly ionised, meaning
that winds do not couple to the planet’s deep-seated magnetic field significantly (top row). In
hot 3D MHD simulations, when ionised winds couple with the planet’s deep-seated magnetic field,
they induce atmospheric toroidal fields that are dominated by a planetary scale equatorially-
antisymmetric component (middle row). When this atmospheric toroidal field overcomes a critical
threshold in its magnitude, it causes complex MHD behaviours including wind/hotspot reversals
to develop (bottom row). These behaviours arise from the how the toroidal field couples with the
ionised winds, which we model in this work.
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to be dominated by dynamics related to toroidal field induction; whereas on the nightsides

magnetic fields are expected be predominantly diffusive in behaviour. This atmospheric

property, which may be unique to hot Jupiters, is likely to have interesting global conse-

quences. For instance, using three-dimensional global simulations with a horizontally (as

well as radially) varying magnetic diffusivity, Rogers & McElwaine (2017) found that the

hottest hot Jupiters may be able to sustain variable-η-driven dynamo action (like the kind

proposed by Pétrélis et al., 2016) in their thin stably stratified atmospheres.

1.4.2 Is radius over-inflation caused by Ohmic heating?

As discussed in Section 1.2.4, hot Jupiters generally have radii larger than expected based

on the predictions of planetary evolution/structure theory, suggesting that an internal

heating mechanism is actively slowing gravitational contraction. One such heating source

that has been proposed as an explanation to this over-inflation problem is Ohmic heat-

ing. That is, heating via conversion of magnetic energy into internal energy, through the

generation of electric currents.

This explanation was first proposed by Batygin & Stevenson (2010), who used a kine-

matic approach (i.e., one without consistent magnetic induction) to present a possible

heating mechanism. Their model is illustrated in Figure 1.17, which is their cross-sectional

diagram of the current induced on a planet with purely zonal flows in the thin atmosphere

and a deep-seated planetary dipole magnetic field that is aligned with the rotation axis.

Batygin & Stevenson (2010) highlighted that ionised purely zonal winds passing through

an axially-aligned dipole will induce a toroidal field and current that flows perpendicu-

lar to the magnetic field lines of both the toroidal and dipolar fields. More precisely,

at high latitudes the induced currents flow meridionally from the poles to the equator;

while in equatorial regions the induced currents penetrate into the planet’s convective in-

terior, causing Ohmic heating. In their kinematic approach, Batygin & Stevenson (2010)

imposed a motionless deep interior and took the atmospheric winds to be purely zonal, set-

ting u3 = Vφφ̂, where Vφ was prescribed based on findings of hydrodynamic simulations.

Then, neglecting magnetic induction (i.e., ∂B3/∂t = −∇3 × E3 = 0), they calculated
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the expected Ohmic heating, |J3|2/σ, using Ohm’s law, J3 = σ(E3 + Vφ × Bdip), and

Ampére’s law, J3 = ∇3 × Bdip, where J3 is the current density, σ a prescribed radially

dependent conductivity, and the electric field is defined in terms of an electrostatic poten-

tial, E3 ≡ −∇3Ψe. Using this method and comparing to past planetary evolution theory,

Batygin & Stevenson (2010) calculated that there would be enough Ohmic heating in the

planetary interior to explain the inflated radii of the hot Jupiter HD 209458b and, if it

has enhanced metallicity, the hot Jupiter Tres-4b.

After this initial attempt to quantify the amount of Ohmic heating in the interi-

ors of hot Jupiters, various authors applied similar kinematic theory to planetary struc-

ture/evolution models more widely across the sample of known hot Jupiters (Laughlin

et al., 2011; Huang & Cumming, 2012; Wu & Lithwick, 2013). These included an Ohmic

heating term in their evolution equations, which was calculated with a method similar to

Batygin & Stevenson (2010). Perna et al. (2010) calculated the Ohmic heating that would

be generated in the presence of an imposed magnetic field within their three-dimensional

hydrodynamic GCM, using a prescription for drag due to the Lorentz force that they de-

rived in (Perna et al., 2010). The findings of such kinematic studies tended to have between

one and two orders of magnitude disagreement so could not comprehensively determine

whether or not Ohmic heating could inject enough internal energy into the interiors of

hot Jupiters to explain their sizes. Attempting to elucidate this problem, Rogers & Show-

man (2014) measured the volume integrated Ohmic heating present in a self-consistent

three-dimensional MHD model with radially-dependent magnetic diffusivity, finding it to

be between one and two orders of magnitude too small to explain radius inflation on HD

209458b. However, in spite of this finding, Rogers & McElwaine (2017) highlight that a

temperature dependent magnetic diffusivity could possibly could result in enhanced Ohmic

heating by providing the conditions necessary for a thermo-resistive instability (proposed

by Menou, 2012b) to emerge. Research in this area is onging.
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L240 BATYGIN & STEVENSON Vol. 714

Figure 3. Side view cross section of induced current due to zonal wind flow.
The interior vector field, plotted with small arrows, is a quantitative result of
the model. The large semi-transparent arrows are illustrations. The yellow shell
in the inset represents the region to which we confine the zonal flow (10–0.03
bars). The orange region denotes the region of interior heating.
(A color version of this figure is available in the online journal.)

it penetrates the interior of the planet and completes the loop
(Figure 3).

The general induction equation can be written as

∂B⃗

∂t
= −∇⃗ × λ(∇⃗ × B⃗) + ∇⃗ × (v⃗ × B⃗), (4)

where B⃗ is the magnetic field and λ ≡ 1/µ0σ is the magnetic
diffusivity (Moffatt 1978). We express the magnetic field as
a dipole background component and an induced component:
B⃗ = B⃗dip + B⃗ind with ∇ × B⃗dip = 0. This assumes no dynamo
generation in the region. The induced magnetic field will tend
to point in the same direction as the velocity field, so we can
make the approximation v⃗ × B⃗ ≈ v⃗ × B⃗dip. We assume that the
prescribed velocity field and the background magnetic field are
not strongly modified by the induced field, i.e., Rm ≡ vL/λ ! 1,
an assumption satisfied in our models with T " 1700 K. Finally,
we seek a steady-state solution, so we require ∂B⃗/∂t = 0. With
these assumptions, the induction equation simplifies to

∇⃗ × λ(∇⃗ × B⃗ind) = ∇⃗ × (v⃗ × B⃗dip). (5)

We can “uncurl” this equation and use Ampere’s law ∇⃗ × B⃗ =
µ0J⃗ to recover Ohm’s law:

J⃗ind = σ (v⃗ × B⃗dip − ∇⃗Φ). (6)

By continuity, ∇ · J⃗ must vanish. As a result,

∇⃗ · σ ∇⃗Φ = ∇⃗ · σ (v⃗ × B⃗dip). (7)

If the conductivity takes on an exponential form, there exists
an analytical solution for Φ and in our models, we confine
the atmospheric flow to the region where conductivity is
exponential. In the interior region, the electric potential is also
governed by the above equation, with the right-hand side set to

zero. However, since the interior conductivity does not take on a
simple analytical form, the above equation there must be solved
numerically.

We take a nominal value for the “strength” of the field at the
surface of the planets to be ∥B∥R = 10−3 T, approximately the
value expected from scaling the field via the Elsasser number
Λ ≡ σB2/2ρΩ ∼ 1, where Ω is the planetary rotation rate
(assumed tidally locked). The magnetic field scaling argument
based on energy flux also suggests a similar value (Christensen
et al. 2009). For comparison, Jupiter’s surface field is ∥B∥Rjup =
4.2×10−4 T (Stevenson 2003). We approximate the zonal wind
as v ∝ vm sin(θ )φ̂ where vm is the maximum speed attained by
the wind and set vm = 1 km s−1 (see the Appendix for more
details).

Once we have the solution for the current, we can compute
the total Ohmic dissipation rate below some radius r:

P =
∫ ∫ ∫

J⃗ 2

σ (r)
dV . (8)

In order to satisfy continuity, the magnitude of the current
density must be constant along its path in the interior. As a
result, it is apparent from the above equation that most of the
dissipation takes place in the upper layers of the planet, where
conductivity is not too great, and the solution is insensitive to the
details of the conductivity profile in the deep interior, as long as it
remains high. The Ohmic heat that is generated in the convective
envelope of the planet replaces gravitational contraction and is
lost by radiative cooling at the radiative/convective boundary.
Consequently, to ensure a null secular cooling rate, we need the
Ohmic dissipation rate to at least compensate for the radiative
heat flux at the radiative/convective boundary (Clayton 1968).

4. MODEL RESULTS

It has been shown that extrasolar gas giants require between
10−6 and 10−2 of the irradiation they receive to be deposited
into the adiabatic interior to maintain their radii (Bodenheimer
et al. 2001; Burrows et al. 2007a; Ibgui et al. 2010), although
the exact number depends on the metallicity of the atmosphere
and the mass of the heavy element core in the interior of
the planet.1 Under the assumption of solar metallicity and
no core, HD209458b requires 3.9 × 1018 W, Tres-4b requires
8.06 × 1020 W, and HD189733b requires no heating at all
(Burrows et al. 2007a; Ibgui et al. 2010). Within the context of
our model, HD209458b and HD189733b are easily explained.
To adequately explain Tres-4b however, we require an enhanced
(10×solar) metallicity in the atmosphere to reduce the required
heating down to 5.37 × 1019 W.

Table 1 presents a series of models with various temperatures,
helium contents, and metallicities of the planets under consider-
ation. Upon inspection, it is apparent that the global heating rate
scales exponentially with temperature, and as a square root of
the metallicity. Both of these scalings can be easily understood
by noting that scaling the conductivity profile by a multiplica-
tive factor causes a corresponding change in dissipation while
Equations (1) and (2) relate temperature and metallicity (i.e., f)
to the conductivity.

It is also noteworthy that the models with a simulated core
produce approximately the same amount of heating as the

1 If the dissipation is concentrated higher up in the atmosphere, 10–100×
more heating is required (Guillot & Showman 2002).

Figure 1.17: Induced current due to zonal wind flow in the presence of an axially-aligned deep-
seated planetary dipolar magnetic field, taken from Batygin & Stevenson (2010). This side view
cross-section shows the thin radiative atmosphere and a convective deep interior, separated by the
radiative-convective boundary (dotted line). The plot shows the field lines of the planet’s deep-
seated dipolar magnetic field extending out of the convective interior. The quiver arrows denote
the direction and magnitude of the induced current for a model containing purely zonal winds
in the thin atmosphere and no flows in the convective interior. The large translucent arrows are
illustrations of the general loop in the flow of current in the model. The inset window shows a
zoomed-in cross section of currents at the equator, which become radially directed and penetrate
into the deep interior, causing Ohmic heating.
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1.4.3 Magnetism can drive hotspots westwards

As discussed in Section 1.2.5, Rogers & Komacek (2014) used three-dimensional MHD sim-

ulations to predict that magnetic fields could cause wind variations that drive east-west

hotspot oscillations in the hottest hot Jupiters; a prediction that was followed by mea-

surements of westward hotspots/brightspots on the ultra-hot Jupiters HAT-P-7b (Arm-

strong et al., 2016), Kepler-76b (Jackson et al., 2019), WASP-12b (Bell et al., 2019), and

WASP-33b (von Essen et al., 2020), as well as the cooler CoRoT-2b (Dang et al., 2018).

Temporarily ignoring magnetism, these observations have been elsewhere explained by

cloud asymmetries confounding optical measurements (Demory et al., 2013; Lee et al.,

2016; Parmentier et al., 2016; Roman & Rauscher, 2017) and retrograde flows in planets

with asynchronous rotation (Rauscher & Kempton, 2014). The hotspot observations of

WASP-12b and CoRoT-2b were measured using thermal phase curves so reflections from

cloud asymmetries cannot confound these measurements. Moreover, ultra-hot Jupiters are

expected to be too hot for condensates to form and are believed to have cloud-free daysides

(Helling et al., 2019a), suggesting that optical observations on ultra-hot Jupiters are free

from such interferences and that a dynamical explanation is more likely. Furthermore, all

of these hot Jupiters have near-circular orbits so are expected to be tidally locked with

synchronous rotation (Colombo & Shapiro, 1966; Guillot et al., 1996; Showman et al.,

2015). In light of these factors, it seems likely that magnetism plays an important role in

explaining at least some of these observations.

After Armstrong et al. (2016) found east-west brightspot oscillations on HAT-P-7b,

Rogers (2017) showed that, if these oscillations result from magnetism, such observations

can inform on HAT-P-7b’s magnetic field strengths, which are otherwise unmeasurable.

Moreover, Rogers (2017) used three-dimensional simulations to identify that a relationship

between the timescales associated with shallow-water wave propagation and a magnetic

drag timescale over which the Lorentz force from the dipolar magnetic field can signif-

icantly reduce flows. However, while three-dimensional MHD simulations have demon-

strated that westward flows can develop in the presence of strong magnetic fields (Rogers
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& Komacek, 2014) and this timescale relationship appears to match the findings of the

simulations Rogers (2017), the actual mechanism for wind reversals is hitherto unknown.

Naively, one would expect that the restorative Lorentz force generated by zonal flows in

the presence of a dipolar magnetic field could slow and halt but not actually reverse flows.

This suggests that the atmospheric toroidal field plays an important dynamical role in the

wind reversal phenomenon.

Identifying the physical mechanism that drives wind/hotspot reversal may also help

refine and/or explain constraints on the magnetic fields of ultra-hot Jupiters that exhibit

westward hotspot offsets. In their three-dimensional MHD simulations, Rogers & Komacek

(2014) identified that reversals occurred when

τmag . τwave, (1.38)

where τwave ≡ Leq/cg is the characteristic timescale of equatorial shallow-water waves in

the system (e.g., Matsuno, 1966; Showman & Polvani, 2011; Perez-Becker & Showman,

2013) and τmag ≡ η/V 2
A,dip ≡ ηµ0ρ/|Bdip|2 is the timescale over which the Lorentz force

associated with the deep-seated dipolar magnetic field will bring zonal flows to rest, in the

absence of other forces, with VA,dip denoting the Alfvén speed of the assumed deep-seated

dipolar magnetic field (which has magnitude |Bdip|). The timescale τmag is elsewhere

know as the Joule timescale and has previously been used in the hot Jupiter context as

the timescale of simplified linear Rayleigh drag prescriptions of the Lorentz force (e.g.,

Perna et al., 2010; Showman & Polvani, 2011; Rauscher & Menou, 2013; Perez-Becker

& Showman, 2013). While Rogers & Komacek (2014) and Rogers (2017) found that

Equation (1.38) qualitatively agrees with their simulations, this criterion is difficult to

interpret. Not least because the reversals are expected to be caused by the atmospheric

toroidal field, yet this criterion applies to the deep-seated dipolar field. The explanation of

this disconnect is plausibly linked to the aforementioned Menou (2012a) scaling law that

connects the magnitudes of the two field components via |Bφ| ∼ Rm|Bdip|, but requires

a greater level of understanding. Another gap in understanding comes from the fact that
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Figure 1.18: Bdip for which τmag ∼ τwave (as in Rogers, 2017) for the exoplanet.eu dataset. In this
comparison cg = (RTeq) is taken (see Chapter 2 or Chapter 7 for explaination), ρ is calculated
using the ideal gas law, and η is calculated using the method used by Rauscher & Menou (2013)
and Rogers & Komacek (2014) (see Chapter 7 for details) for a depth of P = 10 mbar. For Tday and
Tnight we use dayside and nightside root mean squared values, assuming a sinusoidal longitudinal
temperature distribution (i.e., Tday = Teq + ∆T/

√
2 and Tnight = Teq − ∆T/

√
2). The reference

line marks 6 G, the prediction of HAT-P-7b’s critical reversal dipole field strength in Rogers &
Komacek (2014) and Rogers (2017).

the η choice that Rogers (2017) found was appropriate for agreement between this scaling

and HAT-P-7b simulations corresponds to the nightside temperatures (see Figure 1.18).

This is in contrast to the naive expectation that, since hotspot variations are a dayside

phenomenon, the magnetohydrodynamics responsible for hotspot variations should be tied

to dayside quantities. These questions point to the need for detailed study of the reversal

phenomenon.

1.4.4 Our aims and approach

The aim of this study is to clarify the role the atmospheric toroidal field has on the

equatorial dynamics of the hottest hot Jupiters, with a particular focus on understanding

the magnetically-driven wind/hotspot reversal process. Many of the main characteristics
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of this process, and the MHD of hot Jupiter atmospheres in general, have already been

identified by the sophisticated three-dimensional MHD simulations of Rogers & Komacek

(2014) and Rogers (2017). However, in order to complete a hierarchical understanding

of the role of magnetism in hot Jupiter atmospheres, investigations with reduced-physics

process models are also needed. To date, no such simplified atmospheric model, with

consistent MHD treatments, have been applied to hot Jupiter atmospheres. This, com-

bined with the recent development of exoplanetary meteorological techniques that make

such reversals observable, make this study novel, timely, and necessary for theoretical

development.

Our reduced-physics approach will consist of applying a two-layer shallow-water MHD

(SWMHD) model that is adapted from the single layer SWMHD model of Gilman (2000).

The model we construct has a pseudo-thermal forcing treatment like the hydrodynamic

shallow-water models that have proved most successful for modelling the atmospheres of

cooler hot Jupiters (e.g., Shell & Held, 2004; Langton & Laughlin, 2007; Showman &

Polvani, 2010, 2011; Perez-Becker & Showman, 2013). Since the wind/hotspot reversal

phenomenon is expected to be driven by the dynamics local to the equatorial region, we

use an equatorial-beta plane approximation, which allows the equatorial dynamics to be

described in Cartesian geometry. This two-layer Cartesian SWMHD model is expected to

be the simplest possible model that contains the necessary physics to capture the reversal

process, as it is thought to depend on the interactions between rotation, magnetism, and

thermally-driven shallow-water waves.

In Chapter 2, we outline this SWMHD model and the fundamental assumptions, fea-

tures, and conservational properties that underpin it. In this chapter we also discuss

relevant parameters (both dimensional and non-dimensional) to highlight the regions of

magnetohydrodynamic parameter space that relevant hot Jupiter atmospheres occupy. In

Chapter 3, we apply linear theory of SWMHD to the parameter space of a typical ultra-hot

Jupiter (HAT-P-7b) to provide an indication of the expected atmospheric wave dynamics

that is likely to be important. In Chapter 4, we use non-linear simulations of the SWMHD

model to study if and how the hotspot/wind reversal phenomenon can be described in the
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shallow-layer limit. Following this, in Chapter 5 we use the findings of these simulations

to develop the linear theory of the reversals. In Chapter 7 we discuss the consequences

that our study’s results have on past and future observations of westward hotspots on hot

Jupiters, before summarising our conclusions and directions of future work and potential

progress in Chapter 8.

1.4.5 Statement on publications

At the time of writing, the work in this thesis has been the topic of three papers: one

published (Hindle et al., 2019) and two recently submitted (to the Astrophysical Journal

and Astrophysical Journal Letters). Hindle et al. (2019) is predominantly a proof of

concept paper. It presents the numerical SWMHD model outlined in Chapter 2, a brief

numerical comparison between shallow-water hydrodynamic and SWMHD solutions, and

a conjecture about wave modifications based on qualitative similarities between numerical

solutions and equatorial wave modifications in the weakly-magnetic limit (as discussed in

Chapter 3). In the work submitted to the Astrophysical Journal (ApJ; resubmitted May

2021), we present detailed non-linear numerical and linear semi-analytic analyses of the

SWMHD model, identifying the physical mechanism that drives hotspot reversals, how

it relates to wave dynamics, magnetic hotspot reversal thresholds, and how the findings

relate to three-dimensional MHD models (contents in Chapters 4 to 6). The contents

of the letter submitted to Astrophysical Journal Letters (to be resubmitted in the near

future) is predominantly contained within Chapter 7, which discusses the consequences of

our findings on observations of westward hotspots.
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Chapter 2

A Cartesian SWMHD Model for

Hot Jupiter Atmospheres

In this chapter we construct a reduced gravity shallow-water magnetohydrodynamic (SWMHD)

model from first principles, with the purpose of modelling the dominant large scale at-

mospheric dynamics present in hot Jupiter atmospheres. The model is based on the

single-layer SWMHD model of Gilman (2000), but in the so-called reduced gravity ge-

ometry (e.g., Vallis, 2006). The reduced gravity SWMHD model is the MHD analogue

of its hydrodynamic namesake, which is a stacked two-layer shallow-water model with a

dynamic layer sitting above an inactive abyssal layer.

The purpose of this SWMHD model is not to exactly capture the detailed dynamics

of hot Jupiter atmospheres. This could be done to far higher degrees of accuracy by us-

ing simulations of the full three-dimensional MHD equations (as in Rogers & Komacek,

2014; Rogers, 2017; Rogers & McElwaine, 2017). Rather, we are interested in developing

scientific understanding of the fundamental dynamical processes present in hot Jupiter

atmospheres (specifically, hotspot reversals). In Chapter 1 we introduced shallow-water

(hydrodynamic) models, highlighting that they are amongst the simplest useful models for

studying atmospheric flows. Their simplicity is useful for intuition as various processes can

be isolated and/or related to the system’s conservational properties. However, they can
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also capture the leading order atmospheric physics: gravity, rotation, simple stratification,

and (for thermally-ionised atmospheres) magnetism, so are sophisticated enough to be use-

ful. In the past, hydrodynamic versions of the model we develop have proved important

for developing theoretical understanding of hot Jupiter atmospheres and are consistent

with observations up to the point where magnetic fields become significant (e.g., Lang-

ton & Laughlin, 2007; Showman & Polvani, 2010; Showman et al., 2013; Perez-Becker &

Showman, 2013).

For completeness and future comparison, we outline the derivations of single-layer

shallow-water models in Section 2.1. The hydrodynamic version of this (Section 2.1.1)

is well-studied and often features in atmospheric fluid dynamics textbooks (e.g., Vallis,

2006); whereas Gilman (2000) presented the single-layer SWMHD model (Section 2.1.2)

comparatively recently. In Section 2.2 we develop the reduced gravity SWMHD model

from first principles. First, in Section 2.2.1, we outline the derivation of the hydrodynamic

reduced gravity shallow-water equations. Then, in Section 2.2.2, we show how it can be

extended to include MHD. In the remainder of Section 2.2 we highlight how rotation,

diffusion, and pseudo-thermal forcing treatments relevant to the hot Jupiter system can

be included. Once the full system of governing equations has been established, we provide a

discussion on conservation laws, appropriate boundary treatments, and parameter choices.

2.1 Single layer shallow-water models

2.1.1 Derivation of the hydrodynamic single-layer shallow-water model

Standard homogeneous single-layer shallow-water models are described by a thin fluid

layer of constant density, ρ. Generally, the layer is bounded above by a free surface at

z = St(x, y, t) and below by a rigid surface at z = Sb(x, y). However, for convenience,

we consider the case with no bottom topography, where Sb = 0 and the layer thickness

is given by h(x, y, t) = St(x, y, t). The fluid above the shallow-layer is assumed to have
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negligible density1 and so has negligible inertia (see Figure 2.1).

We seek a reduced set of governing shallow-water equations from the three-dimensional

fluid equations that describe the evolution of this system. We illustrate this using Cartesian

coordinates, taking the active layer to have the horizontal coordinates −Lx ≤ x ≤ Lx and

−Ly ≤ y ≤ Ly, and the vertical coordinate 0 ≤ z ≤ h(x, y, t). The axes are orientated

so that they rotate with a vertically-aligned angular velocity, which is taken to be time

independent and antiparallel to the constant gravitational acceleration, −gẑ. Recall from

Chapter 1 that taking the angular velocity vector to be Ω = Ω sin θẑ, where Ω is the

planetary rotation rate and θ denotes latitude, is known as the traditional approximation

and is valid in the limit of strongly stable stratification, N2/Ω2 � 1, which we show to

be valid for our parameter choices in Section 2.2.10. In the hydrodynamic limit, inviscid

constant density flows satisfy

∂u3

∂t
+ (u3 · ∇3)u3 + f × u3 = −1

ρ
∇3p− gẑ, (2.1)

∇3 · u3 = 0, (2.2)

where u3 ≡ (u, v, w) is the three-dimensional velocity, ∇3 ≡ (∂x, ∂y, ∂z) is the three-

dimensional gradient operator, and f ≡ f ẑ ≡ 2Ω sin θẑ. The time independent Coriolis

parameter, f , is allowed to vary in the horizontal direction only (see Section 2.2.3 for

discussion on form). Equation (2.1), the three-dimensional momentum equation, evolves

the system in a manner that conserves (specific) momentum; whereas Equation (2.2),

the three-dimensional incompressibility condition, ensures the conservation of mass in the

constant density layer.

Single layer shallow-water momentum equation

In the so-called shallow-water limit (H/L � 1)2, the typical horizontal length scale, L,

is much larger than the vertical length scale of the layer, H. Therefore, if the ratios

1If the density of the fluid layer above cannot be considered negligible, multi-layered models should be
considered.

2Recall from Chapter 1 that typically H/L ∼ 10−2 in hot Jupiter atmospheres (see Figure 1.10).
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Hh(x, y, t)

L

ρ, u(x, y, t)

ρ ≈ 0
z

Sb = 0

St(x, y, t)

Figure 2.1: A schematic of a hydrodynamic single-layer shallow-water model, which has a constant
density active layer and is bounded by a free material surface from above and a rigid surface (with
no bottom topography) below.

of the vertical and horizontal velocity field magnitudes are assumed to scale with their

spatial scales (i.e., |w|/|u| ∼ H/L and |w|/|v| ∼ H/L), then, to leading order, vertical

advections and can be neglected for all time and the hydrostatic approximation is valid (see

Chapter 1). Consequently, the vertical component of the three-dimensional momentum

equation simplifies and the pressure, p, can be described by hydrostatic balance:

∂p

∂z
= −ρg, (2.3)

for all time. This balance allows vertical dependence to be integrated out of the governing

equations. Integrating Equation (2.3) with respect z yields

p(x, y, z, t) = −ρgz + P0(x, y, t). (2.4)

Since the weight of the fluid above the upper interface is negligible, p = 0 at z = St = h.

Therefore, P0 = ρgh, giving

p(x, y, z) = ρg(h− z). (2.5)

Using this explicit form for the pressure and the horizontal components of Equation (2.1),

one can write the shallow-water momentum equation in a rotating reference frame as

Du

Dt
+ f ẑ× u = −g∇h, (2.6)

where u ≡ (u, v) is the horizontal velocity, ∇ ≡ (∂x, ∂y) is the horizontal gradient opera-

tor, and D/Dt ≡ ∂/∂t + u · ∇ is the horizontal Lagrangian time derivative operator (or
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material derivative). Note that Du/Dt does not include horizontal advections due to ver-

tical dependences in the horizontal velocity (i.e., Du/Dt contains no w∂u/∂z component).

This is because the non-advective terms are independent of z, so an initially vertically-

independent flow will remain vertically-independent for all time. Consequently, all spatial

differential operators will henceforth be two-dimensional unless stated otherwise with a

subscript (e.g., ∇3, u3, B3).

Shallow-water continuity equation

The time evolution of h can be recovered from the three-dimensional incompressibility

condition, which can be written as

∂w

∂z
= −∇ · u. (2.7)

Since the righthand side of Equation (2.7) is independent of z, it can be integrated from

the bottom of the fluid layer to the free surface, yielding

[w]z=Stz=Sb
= −h∇ · u. (2.8)

The horizontal flow is independent of z so a test particle on the free surface will remain

there so DSt/Dt = w|z=St (i.e., the free surface is a material surface). In this model we

choose the bottom surface to be rigid so w|z=Sb = DSb/Dt = 0. Therefore,

[w]z=Stz=Sb
=

D(St − Sb)
Dt

=
DSt
Dt
≡ Dh

Dt
. (2.9)

Together Equations (2.8) and (2.9) give the shallow-water continuity equation:

Dh

Dt
+ h∇ · u = 0 ⇐⇒ ∂h

∂t
+∇ · (hu) = 0. (2.10)

The shallow-water momentum and continuity equations govern the time evolution of u

and h. These are both vertically independent and w does not influence their evolution.
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Hh(x, y, t)

L

ρ, µ0, u(x, y, t), B(x, y, t)

ρ ≈ 0
z

Sb = 0

St(x, y, t) no B flux

no B flux

Figure 2.2: A schematic of a single-layer SWMHD model, which has constant density and magnetic
permeability in the active layer. The active layer is bounded by a free surface from above and by
a rigid surface (with no bottom topography) below.

However, w is generally non-zero and evolves in order to satisfy three-dimensional incom-

pressibility (i.e., mass conservation of the fluid column). It can be found by integrating

Equation (2.7) with respect to the vertical coordinate. In this system, which has a rigid

bottom surface at z = 0 with no topography, w(x, y, z, t) = −(∇ · u)z. Hence, in the

shallow-water limit the initial assumption, |w|/|u| ∼ H/L � 1, is justified and horizon-

tal velocities are vertically independent (if they are initially, see above). In this context,

taking these self-consistent assumptions in unison, alongside the free surface boundary

conditions, is often known as the shallow-water approximation.

2.1.2 Derivation of the single-layer SWMHD model

Gilman (2000) showed that a similar single-layer SWMHD model can be derived in the

shallow-water limit. Here we outline the derivation for reference in Section 2.2.2.

If the same setup that we used in Section 2.1.1 is taken for an electrically-conducting,

rotating, constant density fluid (see Figure 2.2), with constant magnetic permeability, µ0,

in the active layer and no diffusion (i.e., the flow is inviscid and perfectly conducting), the

three-dimensional governing fluid equations become

∂u3

∂t
+ (u3 · ∇3)u3 + f × u3 = −1

ρ
∇3p− gẑ +

1

ρ
J3 ×B3, (2.11)

∇3 · u3 = 0, (2.12)

∂B3

∂t
= ∇3 × (u3 ×B3) ≡ (B3 · ∇3)u3 − (u3 · ∇3)B3, (2.13)

∇3 ·B3 = 0. (2.14)
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where B3 ≡ (bx, by, bz) is the three-dimensional magnetic field and J3 ≡ (∇3 ×B3)/µ0 is

the current density. Equation (2.13), the induction equation, is derived from the Maxwell

equations in the non-relativistic limit and governs the evolution of the magnetic field.

Equation (2.14) is Gauss’ law of magnetism, which excludes magnetic monopoles by main-

taining a divergence-free three-dimensional magnetic field. By taking the divergence of

the induction equation, one can easily show that

∂(∇3 ·B3)

∂t
= 0, (2.15)

so if Equation (2.14) holds initially, it holds for all time.

Shallow-water induction equation

From the righthand form of Equation (2.13) one can see that, if horizontal velocity fields are

vertically independent (as in the hydrodynamic shallow-water setting) and horizontal mag-

netic fields are initially vertically independent, the horizontal magnetic fields remain ver-

tically independent for all time. Therefore, the horizontal components of Equation (2.13)

give the shallow-water induction equation:

∂B

∂t
= (B · ∇)u− (u · ∇)B, (2.16)

where B ≡ (Bx, By) = (bx/
√
µ0ρ, by/

√
µ0ρ) is the vertically-independent horizontal mag-

netic field, which, since µ0 and ρ are both constant, we write in units of velocity for

convenience. Writing the horizontal magnetic field in velocity units, highlights the equiva-

lence between magnetic fields and Alfvén velocities in SWMHD systems (up to a constant

factor). We also comment that in the planetary setting B can be interpreted as the

vertically-averaged (rescaled) horizontal magnetic field.

Shallow-water continuity equation

In SWMHD, while the three dimensional forms of the incompressibility condition and

Gauss’ law of magnetism remain satisfied, the horizontal divergences of u and B are
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generally non-zero and arise due to horizontal interface variations. In Section 2.1.1 we

showed that in the hydrodynamic shallow-water model the three-dimensional incompress-

ibility condition reduces to the shallow-water continuity equation (Equation (2.10)), which

represents mass conservation in the fluid column. This remains unchanged in the single-

layer SWMHD model as the assumptions used to derive it (i.e., u is vertically independent

and the interfaces are material surfaces) remain valid.

Shallow-water divergence-free condition

To recover the shallow-water version of Gauss’ law, we note that it can be rewritten as

∂Bz
∂z

= −∇ ·B, (2.17)

where Bz = bz/
√
µ0ρ is the vertical magnetic field in velocity units (so is the vertical

Alfvén velocity). Since the righthand side is independent of z, this can be integrated

vertically (from the lower rigid surface at z = Sb = 0 to the upper free surface at z = St =

h), giving

[Bz]
z=St
z=Sb

= −h∇ ·B, (2.18)

Alongside the hydrodynamic requirement that St and Sb are material surfaces, SWMHD

allows no magnetic flux across the interfaces at z = St(x, y, t) = h(x, y, t) and z = Sb = 0

(i.e., surface magnetic fields are fixed and parallel to the surfaces). Therefore, on the upper

surface, B3 · n̂3 = B3 · (ẑ − ∇St) = 0, where n̂3 ≡ (ẑ − ∇St) is the unit normal vector

on the upper surface, so Bz|z=St = B · ∇St = B · ∇h. Similarly, at the lower surface,

Bz|z=St = B · ∇Sb = 0. Hence,

[Bz]
z=St
z=Sb

= B · ∇St −B · ∇Sb = B · ∇h. (2.19)

This can be combined with Equation (2.18) to give the SWMHD divergence-free condition:

∇ · (hB) = 0, (2.20)
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which is the shallow-water version of Gauss’ law of magnetism and ensures that the hor-

izontal magnetic flux through a vertically-independent fluid column is conserved. Before

proceeding to derive the momentum equation for SWMHD we comment that

∇× (u× hB) = −∇ · [huB− hBu]

= −[B∇ · (hu) + h(u · ∇)B] + [u∇ · (hB) + h(B · ∇)u]

= h(B · ∇)u− h(u · ∇)B−B∇ · (hu) +���
���:0

u∇ · (hB)

= h(B · ∇)u− h(u · ∇)B−B∇ · (hu),

(2.21)

where Equation (2.20) has been used in the last step and the divergence of the tensor

product of two vectors is written in tensor notation as [∇ · (ab)]i = ∂(ajbi)/∂xj for

i, j = 1, 2. From this, Equations (2.10) and (2.16) can be combined to yield (Mak, 2013)

∂(hB)

∂t
= h

∂B

∂t
+ B

∂h

∂t

= h(B · ∇)u− h(u · ∇)B−B∇ · (hu)

= ∇× (u× hB),

(2.22)

which highlights that

∂

∂t
(∇ · (hB)) = 0, (2.23)

so, if the divergence-free condition is initially satisfied, it is remains satisfied for all time.

Single layer SWMHD momentum equation

Finally, we seek the single-layer SWMHD version of the momentum equation. For this we

note that the Lorentz force, J3 ×B3, can be re-expressed using

J3 ×B3 =
1

µ0
(B3 · ∇3)B3 −

1

2µ0
∇3(B3 ·B3), (2.24)
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which can be used to rewrite Equation (2.11) as

∂u3

∂t
+ (u3 · ∇3)u3 + f × u3 = −1

ρ
∇3PT + gẑ +

1

µ0ρ
(B3 · ∇3)B3, (2.25)

where PT = p+(B3 ·B3)/2µ0 is the total pressure (the sum of gas and magnetic pressure).

The MHD version of the shallow-water approximation is that both the ratios of the

vertical and horizontal velocity field magnitudes and the ratios of the vertical and hor-

izontal magnetic field magnitudes are assumed to scale with their spatial scales3 (i.e.,

|w|/|u| ∼ H/L, |w|/|v| ∼ H/L, |Bz|/|Bx| ∼ H/L, and |Bz|/|By| ∼ H/L). Hence, in the

shallow-water limit (H/L � 1), the leading order balance in the vertical component of

Equation (2.25) is magneto-hydrostatic balance:

∂PT
∂z

= −ρg. (2.26)

This can be integrated with respect z to give

PT = −ρgz + P0, (2.27)

where P0 is fixed by the requirement that the total pressure must be continuous. If we

take the total pressure at the interface z = St = h to be the arbitrary constant PT,atm,

then

PT = ρg(h− z) + PT, atm. (2.28)

We comment that, as PT now includes the magnetic pressure, the arbitrary constant PT, atm

is not necessarily zero, though its actual value does not affect the system’s evolution.

Equation (2.28) can be used in the horizontal components of Equation (2.25) to form the

momentum equation of single-layer SWMHD:

Du

Dt
+ f × u = −g∇h+ (B · ∇)B. (2.29)

3No assumption is made about the magnitudes of the velocity fields relative to the magnetic fields or
the gas pressure relative to the magnetic pressure.

78



Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres

The single-layer SWMHD momentum, continuity, and induction equations (i.e., Equa-

tions (2.10), (2.16) and (2.29)) govern the time evolution of u, h, and B, while maintaining

the shallow-water divergence-free condition∇·(hB) = 0 for all time. All these variables are

vertically independent, with neither w nor Bz influencing their evolution. In this system,

which has a rigid bottom surface at z = 0 with no topography or magnetic fluxes, these

can hypothetically be evaluated as w(x, y, z, t) = −(∇ · u)z and Bz(x, y, z, t) = −(∇ ·B)z

(by integrating Equations (2.7) and (2.17)).

2.2 The reduced gravity shallow-water model

Given their simplicity, the single-layer shallow water models of Section 2.1 can prove re-

markably powerful in understanding the dynamics of atmospheres, particularly for the

study of unforced wave dynamics (see Chapter 3). However — alongside the already

included gravity, rotation, and magnetism — simple stratification is necessary for the in-

clusion of treatments that mimic the extreme thermal forcing present in the atmospheres

of hot Jupiters (see Section 2.2.6). The two-layer model we use is the so-called reduced

gravity model, which has proved a useful aid for understanding the atmospheric dynamics

of hot Jupiters in the hydrodynamic setting (e.g., Langton & Laughlin, 2007; Showman

& Polvani, 2010; Showman et al., 2013; Perez-Becker & Showman, 2013). First, for com-

pletion and comparison, we outline the derivation of the reduced gravity shallow-water

equations as found elsewhere (e.g., Vallis, 2006). Then, we proceed to extend the model

by including relevant treatments of magnetism, rotation, pseudo-thermal forcing, and dif-

fusion. Finally, we discuss conservation laws, appropriate horizontal boundary treatments,

and parameter choices.

2.2.1 Derivation of the basic hydrodynamic reduced gravity model

The reduced gravity model (see Figure 2.3 for schematic) describes the motion of an

active fluid layer, of thickness h(x, y, t) and constant density ρ, which sits between two

inactive fluid layers: the active fluid layer is bounded above by an inactive layer with
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Hh(x, y, t)

ρ0 ≈ 0

ρ, u

ρl > ρ, ul = 0

z

Sb(x, y, t)

St(x, y, t)

.

.

.

L

Figure 2.3: A schematic of a reduced gravity hydrodynamic shallow-water model, which has a
constant density active layer and is bounded by above by a free surface and below by an infinitely-
deep quiescent fluid layer.

negligible density4 and below by an infinitely deep inactive lower layer with constant

density, ρl, with ρl > ρ for stable density stratification. The upper and lower interfaces,

which are respectively found at z = St(x, y, t) and z = Sb(x, y, t), are material surfaces

that are allowed to evolve freely with respect to the system’s governing equations and

interface conditions. The active layer thickness is defined as their difference, h(x, y, t) =

St(x, y, t)− Sb(x, y, t) and has the rest-state thickness, H.

Reduced gravity shallow-water momentum equation

As in the single-layer models of Section 2.1, in the shallow-water limit (H/L � 1) the

shallow-water approximation can be employed to reduce the vertical component of the

three-dimensional momentum equation to the hydrostatic equation:

∂p

∂z
= −ρg, (2.30)

where p is the pressure, which is continuous across the model’s interfaces. Since the weight

of the fluid above the upper surface is negligible, p = 0 at z = St(x, y, t). Integrating the

4This is the same as the upper boundary in the single-layer model. The layer above the upper boundary
has negligible density so pressure gradients cannot form and the layer is inactive.
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hydrostatic equation down from the upper surface, with this condition, yields

p(x, y, z, t) = gρ(St − z). (2.31)

Therefore, in the active layer, the horizontal pressure gradient is given by ∇p/ρ = g∇St
and the shallow water momentum equation becomes

Du

Dt
+ f × u = −g∇St, (2.32)

where u is the horizontal velocity in the active layer. In the lower layer, the pressure is

given by the weight of the fluid above it, so integrating the hydrostatic equation down

from the upper surface yields

p(x, y, z, t) = gρ(St − Sb) + gρl(Sb − z). (2.33)

Since the lower layer is taken to be motionless, the horizontal pressure gradient in this

layer is zero (see Equation (2.1)). Hence

gρ∇(St − Sb) + gρl∇Sb = 0. (2.34)

This can be re-expressed as

gρ∇St = −g′ρ∇Sb, (2.35)

where g′ ≡ g(ρl − ρ)/ρ is the reduced gravity as defined in Vallis (2006). Using Equa-

tion (2.35), the shallow-water momentum equation becomes

Du

Dt
+ f × u = g′∇Sb. (2.36)

Furthermore, one can rewrite the shallow-water momentum equation in terms of the active

layer thickness, h = St − Sb, by noting that Equation (2.34) also gives ∇Sb = −(ρ/ρl)∇h.
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Hence,

Du

Dt
+ f × u = −g∗∇h, (2.37)

where g∗ ≡ g′ρ/ρl = g(ρl − ρ)/ρl is the reduced gravity as defined in Perez-Becker &

Showman (2013). Writing the shallow-water momentum equation in this way provides a

straightforward coupling to the mass conservation equation.

Before continuing with the derivation, we note that dividing Equation (2.35) by ρg

gives the relation

∇St = −ρl − ρ
ρ
∇Sb, (2.38)

which, for ρl > ρ, implies that the upper and lower boundaries of the active layer bow

in opposite directions. Further, it is generally assumed that the layers have comparable

densities, in which case |∇St| � |∇Sb| (i.e., displacements in the upper surface are smaller

than those of the lower layer). These two properties ensure that, in the lower layer, the

total mass of a fluid column above a given depth is constant (see Figure 2.3).

Shallow-water continuity equation

As in the single-layer model of Section 2.1.1, this can be derived from integrating the

three-dimensional incompressibility condition with respect to z, which gives

[w]z=Stz=Sb
= −h∇ · u. (2.39)

As in Section 2.1.1, St is a free material surface so DSt/Dt = w|z=St . However, in the

reduced gravity model Sb is also a free material surface so DSb/Dt = w|z=Sb is generally

non-zero, giving

[w]z=Stz=Sb
=

DSt
Dt
− DSb

Dt
=

D(St − Sb)
Dt

≡ Dh

Dt
, (2.40)

which can be combined with Equation (2.39) to yield the shallow-water continuity equa-

tion:

∂h

∂t
+∇ · (hu) = 0, (2.41)
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though in the reduced gravity model h = St − Sb (rather than h = St).

The system’s evolution is fully described by Equations (2.37) and (2.41). As in the

single-layer model, w is generally non-zero in the active layer and evolves in order to satisfy

three-dimensional incompressibility, ∂w/∂z = −∇ · u. However, in the reduced gravity

geometry w is not specified explicitly (and, generally, nor is the z-origin). To get a gauge

of its magnitude, we are free to fix z = 0 as the average position of St at a given point in

time. With this choice, three-dimensional incompressibility gives w = w|z=St − (∇ · u)z.

As before, w|z=St = DSt/Dt and w|z=Sb = DSb/Dt, so

w|z=Sb =
DSb
Dt

=
DSt
Dt
− (∇ · u)z. (2.42)

We showed above that |∇St| � |∇Sb| for layers of comparable density, so vertical velocities

at z = Sb are expected to be dominated by the last term in the far righthand side of

Equation (2.42), giving |w|/|u| ∼ H/L� 1, as required.

2.2.2 Derivation of the basic reduced gravity SWMHD model

The reduced gravity model can be extended to SWMHD by considering the magnetohy-

drodynamics of a perfectly-conducting, inviscid, active fluid layer, with constant density

and magnetic permeability, that sits upon a denser infinitely-deep inactive fluid layer

and is bounded above by a free surface of negligible density. We permit no magnetic

flux across the material surfaces at z = St(x, y, t) and z = Sb(x, y, t), and enforce con-

tinuous total pressure to derive the system’s governing equations. As in the hydrody-

namic version of this system, the active layer thickness is defined as their difference,

h(x, y, t) = St(x, y, t)− Sb(x, y, t), and has the rest-state thickness, H (see Figure 2.4).

Reduced gravity SWMHD momentum equation

Like the hydrodynamic model, the inactive lower layer in the MHD model has no flow

(ul = 0). Hence, the lower layer is purely magneto-hydrostatic for all time. In the

shallow-water limit (H/L � 1), the SWMHD approximation (see Section 2.1.2) applies
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Hh(x, y, t)

ρ0 ≈ 0

ρ, u, B

ρl > ρ, ul = 0

z

Sb(x, y, t)

St(x, y, t)

.

.

.

L

no B flux

no B flux

Figure 2.4: A schematic of a reduced gravity layer SWMHD model, which has a constant density
active layer and is bounded above by a free surface and below by an infinitely-deep quiescent fluid
layer.

to the active layer, yielding a leading order magneto-hydrostatic balance:

∂PT
∂z

= −ρg, (2.43)

where PT is the total pressure as defined in Section 2.1.2. Integrating down from z = St

and taking the total pressure to be continuous, with PT = PT, atm at z = St, for the

arbitrary constant PT, atm, gives

PT = ρg(St − z) + PT, atm, (2.44)

in the active layer. Therefore, in the active layer, horizontal gradients in the total pressure

can be expressed as

1

ρ
∇PT = g∇St. (2.45)

As discussed above, the inactive lower layer also satisfies the magneto-hydrostatic equation.

Integrating down from z = St and enforcing continuous total pressure yields

PT = ρg(St − Sb) + ρlg(Sb − z) + PT, atm, (2.46)
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in the inactive lower layer. Noting that, since the lower layer is inactive it has no horizontal

pressure gradients, gives

ρg∇(St − Sb) + ρlg∇Sb = 0, (2.47)

which can be rearranged identically to the hydrodynamic surface gradient relation in

Section 2.1.2 to produce ∇St = (ρl − ρ)/ρl∇h. Hence, Equation (2.45) can be used in the

horizontal components of Equation (2.25) to give the reduced gravity SWMHD momentum

equation:

Du

Dt
+ f × u = −g∗∇h+ (B · ∇)B, (2.48)

where g∗ ≡ g(ρl − ρ)/ρl is the same reduced gravity defined in Section 2.1.2.

Continuity equation

Since u is vertically independent and the layer interfaces are material surfaces, the deriva-

tion of the shallow-water continuity equation used in Section 2.2.1 can be repeated to

give

∂h

∂t
+∇ · (hu) = 0. (2.49)

Induction equation

As in Section 2.1.2, vertically independent horizontal velocity fields and initially vertically

independent horizontal magnetic fields result in horizontal magnetic fields that remain

vertically independent for all time. Therefore, in the active layer of the reduced gravity

SWMHD model, the shallow-water induction equation is mathematically identical to the

single-layer shallow-water induction equation:

∂B

∂t
= (B · ∇)u− (u · ∇)B. (2.50)
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Divergence-free condition

As in the single-layer SWMHD model, integrating Gauss’ law with from z = Sb to z = St

yields

[Bz]
z=St
z=Sb

= −h∇ ·B. (2.51)

Prohibiting magnetic flux across the (now free) interfaces gives

[Bz]
z=St
z=Sb

= B · ∇St −B · ∇Sb = B · ∇(St − Sb) ≡ B · ∇h. (2.52)

Together Equations (2.51) and (2.52) give the SWMHD divergence-free condition:

∇ · (hB) = 0. (2.53)

As shown in Section 2.1.1, Equations (2.50) and (2.53) can be combined to yield the

following two useful forms for horizontal columnar magnetic flux evolution:

∂(hB)

∂t
= −∇ · [huB− hBu]

= ∇× (u× hB).

(2.54)

The conservative form of Equation (2.54) highlights that the total horizontal magnetic

flux, hB, is conserved within the active layer; while, writing Equation (2.54) as the curl

of the vertically-aligned vector u× hB, highlights that

∂

∂t
(∇ · (hB)) = 0. (2.55)

This states that if the divergence-free condition is initially satisfied, it remains satisfied

for all time.

Magnetic flux function

As a requirement of SWMHD is that the horizontal columnar magnetic flux, hB, is

solenoidal, it is useful to define it as the curl of a vector potential (e.g., Dellar, 2002,
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for a single-layer model):

hB ≡ ∇×Aẑ, (2.56)

where A is the magnetic flux function and ∇ × · ẑ ≡ (∂y,−∂x) represents the curl of a

scalar field about the vertical coordinate. We comment that the magnetic flux function

definition differs from the two-dimensional magnetic vector potential through the inclusion

of h in Equation (2.56).5 This arises as the magnetic flux function describes the vertically-

integrated horizontal magnetic field over the whole fluid column (hB), rather than simply

the horizontal magnetic field at a specific vertical level (B). Using this definition, one

finds (u× hB) = −(u · ∇)Aẑ. Therefore, “uncurling” Equation (2.54) yields

DA

Dt
≡ ∂A

∂t
+ (u · ∇)A = 0. (2.57)

That is, A is a materially conserved quantity. This property of SWMHD is also inherent

to the single-layer system of Section 2.1.1 (Dellar, 2002). The material conservation of

A useful for intuition as it highlights that lines of constant A (hB field lines) are simply

advected through the system.

Columnar horizontal momentum

Another consequence of the divergence-free condition is that it can be used to write the

momentum equation in terms of specific columnar horizontal momentum, hu. For this

Equations (2.48), (2.49) and (2.53) can be combined to yield

∂(hu)

∂t
+∇ ·

[
huu− hBB + 1

2g
∗h2I

]
= fhu× ẑ. (2.58)

where I is the 2×2 identity matrix and the divergence of the tensor product of two vectors

is written in tensor notation as [∇ · (ab)]i = ∂(ajbi)/∂xj for i, j = 1, 2. Equation (2.58)

highlights that, in the absence of rotation (f = 0), hu is conserved within the active layer.

5In the two-dimensional limit, where h is taken to be a constant, the definitions become equivalent.
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Summary

In summary, in the inviscid, perfectly-conducting, unforced reduced gravity SWMHD

model, the time evolution of the active layer variables: u(x, y, t), the active layer horizon-

tal velocity; h(x, y, t), the active layer thickness; and B(x, y, t), the active layer horizontal

magnetic field (in velocity units) is governed by the following set of equations:

Du

Dt
+ f ẑ× u = −g∗∇h+ (B · ∇)B, (2.59a)

∂h

∂t
+∇ · (hu) = 0, (2.59b)

DB

Dt
≡ ∂B

∂t
+ (u · ∇)B = (B · ∇)u, (2.59c)

which maintains the shallow-water divergence-free condition, ∇ · (hB) = 0, for all time.

The conserved quantities of the system are h, hB, and, in the absence of rotation, hu. It

can therefore be useful to replace Equations (2.59a) and (2.59c) with

∂(hu)

∂t
+∇ ·

[
huu− hBB + 1

2g
∗h2I

]
= fhu× ẑ, (2.60a)

∂(hB)

∂t
+∇ · [huB− hBu] = 0, (2.60b)

where I is the 2×2 identity matrix and the divergence of the tensor product of two vectors

is written in tensor notation as [∇ · (ab)]i = ∂(ajbi)/∂xj for i, j = 1, 2. Moreover, the

horizontal magnetic field evolution of the shallow-water system can also be fully described

by the magnetic flux function, A, which is materially conserved (DA/Dt = 0) and is

defined by

hB ≡ ∇×Aẑ. (2.61)

The parameters in this system are the reduced gravity, g∗ ≡ g(ρl− ρ)/ρl, and the Coriolis

parameter, f = 2Ω sin θ. The variables h, u, and B are vertically independent and

their evolution does not explicitly depend on either the vertical velocity, w, or the vertical

magnetic field, Bz, which are assumed O(H/L) smaller than their horizontal counterparts.

Explicit forms of w and Bz are not generally known/calculated in the reduced gravity
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model, but one can follow a similar argument to the one we presented in Section 2.2.1 to

show that |w|/|u| ∼ H/L� 1 and |Bz|/|B| ∼ H/L� 1, as required.

2.2.3 Rotation in the Cartesian geometry

So far we have considered shallow-water models in a simple Cartesian framework. While

this is useful for discussing the shallow-water equations, we cannot ignore spherical effects

when modelling large scale planetary flows. The spherical effects of rotation are included

using the so-called equatorial beta-plane approximation of Rossby (1939), who showed that

the most significant dynamical effect of a planet’s sphericity derives from the locally normal

component of the planetary angular velocity vector (i.e., Ω·ẑ) and its variation with respect

to latitude, θ. This means that the dynamical effects of sphericity can be approximated

within the Cartesian framework by choosing the system’s geometry so that the Coriolis

force in the (rotating) Cartesian coordinate system, f ẑ×u, replicates latitudinal variations

in 2(Ω · ẑ)ẑ× u, the Coriolis force caused by the angular velocity vector’s locally normal

component. In the equatorial beta-plane approximation, one uses the Taylor expansion of

f = 2Ω · ẑ = 2Ω sin θ about the equator (θ0 = 0), using θ = y/R for |θ| = |y/R| � 1, to

give

f = 2Ω sin(θ)

=

(
2Ω

R

)
y +O

(
(y/R)3

)
= βy +O

(
(y/R)3

)
,

(2.62)

where Ω is the planetary rotation rate and R is the planetary radius. The approximation

is named after the constant parameter, β, which is the local latitudinal variation of the

Coriolis parameter at the equator (β ≡ df/dy|y=0 = 2Ω/R). Apart from this choice of

Coriolis parameter, the system’s governing equations remain identical to those derived

using the Cartesian coordinate system, but now y/R approximately corresponds to the

latitudinal coordinate, with y = 0 corresponding to the equator. Using this geometry,

x/R approximately corresponds to the azimuthal coordinate, which we are free to centre
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as convenient.

Clearly the beta-plane approximation is not valid for the whole latitudinal extent of a

spherical system (i.e.,−π/2 ≤ θ ≤ π/2). In the polar regions geometric curvature effects

become significant and solutions in the beta-plane approximation should be treated with

caution. However, in the hydrodynamic version of the model we develop in this chapter,

beta-plane shallow-water models have proved useful in capturing the fundamental flow

patterns found in more sophisticated three-dimensional GCMs of hot Jupiters (Showman

& Polvani, 2011).

2.2.4 Magnetic field geometry

In our reduced gravity SWMHD model, the horizontal magnetic field has one degree of

freedom, so we can only model dynamics relating to the atmospheric toroidal field or the

deep-seated poloidal field.6 Upon encountering this apparently significant limitation, we

should assess the restrictions it places on our approach and the influence it has on us

achieving our model aims. Our aim is the develop understanding of the role the atmo-

spheric magnetic field has on the equatorial dynamics of the hottest hot Jupiters, where

we particularly focus on attempting to glean physical understanding of hotspot reversals

using a simplified reduced-physics model. In the hottest hot Jupiters, three-dimensional

MHD simulations have already identified that an equatorially-antisymmetric toroidal field

geometry is expected to dominate magnetic field geometries in the hottest hot Jupiters

(Rogers & Komacek, 2014, see Figure 1.16, middle row, and discussion of Section 1.4).

Moreover, Rogers & Komacek (2014) and Rogers (2017) identified that in the limit where

the toroidal field remains weak and decoupled to flows (i.e., Rm � 1), simulations behave

similarly to their hydrodynamic counterparts. In such cases, Rayleigh drag treatments

of the kind discussed in Section 2.2.6 have provided a reasonable leading order means of

estimating the influence of the deep-seated magnetic field in hydrodynamic simulations

(e.g., Perna et al., 2010; Rauscher & Menou, 2013). Therefore, like these hydrodynamic

6We make the additional remark that the requirement that ∂B/∂z = 0 places significant difficulties on
modelling poloidal fields.
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studies, we shall use a Rayleigh drag treatment of the deep-seated magnetic field (see

Section 2.2.6), but we will include the additional complexity of modelling the dominant

atmospheric toroidal field explicitly. Provided hotspot reversals are driven by dynamics

caused by the atmospheric toroidal field, this should not restrict our ability to determine

the driving mechanics. However, we note that the main limitation with this approach is

that it does not include toroidal field induction arising from the deep-seated poloidal field.

Consequently, we must carefully choose initial magnetic field profiles based on the field

geometries of three-dimensional MHD simulations. Further, since the relative orientation

of zonal winds and the deep-seated poloidal field determine the sign of toroidal field induc-

tion, if zonal winds reverse we must take care when interpreting the physical significance

of SWMHD solutions in post-reversal phases.

Based on three-dimensional MHD simulations, we use purely azimuthal initial mag-

netic field profiles, which are generally equatorially-antisymmetric. That is, the initial

background magnetic field profiles take the form:

B0 = B0(y)x̂. (2.63)

This can be written in terms of a latitudinally dependent initial magnetic flux function,

A0(y) =
∫
hB0(y)dy, which is specified up to a constant of integration that can be chosen

as convenient without loss of generality. Moreover, ∇ · Aẑ = 0 is guaranteed irrespective

of this choice.

2.2.5 Diffusion treatments

For simulations of the SWMHD model, diffusion treatments are primarily included for

numerical stability. However, shallow-water models have horizontal variables that are

vertically independent over the active layer’s vertical length scale, H, which, in the hot

Jupiter setting, can be hundreds of kilometres deep (see Section 2.2.10). Therefore, since

viscous and magnetic diffusion arise from microphysical fluid properties, this naturally

leads to the question: what do viscous and magnetic diffusion mean in this context? The
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answer is drawn from our modelling motivations. We are interested in diagnosing specific

physical causes of large scale planetary phenomena. Therefore, to do so, our diffusion

treatments should capture the leading order large scale effects of diffusion, while not

introducing any unphysical violations of the system’s conservational properties.

Viscous diffusion

Here we seek a viscous dissipation treatment that replicates the macrophysical effects

that viscosity has on large scale flow phenomena such as turbulence, waves, jets and

vortices. We take the treatment discussed in Gilbert et al. (2014), but first, for context,

we shall consider viscosity in three-dimensional fluid equations. In the unforced version

of the three-dimensional MHD system, with viscous effects included, motion in a constant

density active layer can be described by the following momentum equation:

∂u3

∂t
+ (u3 · ∇3)u3 + f × u3 = −1

ρ
∇3PT + gẑ +

1

µ0ρ
(B3 · ∇3)B3 + ν∇3 · τ 3,

= −1

ρ
∇3PT + gẑ +

1

µ0ρ
(B3 · ∇3)B3 + ν∇2

3u3,

(2.64)

where τ 3 = ∇3u3 + (∇3u3)
T (or [∇3 · τ 3]i = ∂(∂ui/∂xj + ∂uj/∂xi)/∂xj for i, j = 1, 2, 3 in

tensor notation) is the three-dimensional viscous stress tensor of the incompressible flow

(i.e., with ∇3 · u3 = 0) and the kinematic viscosity, ν, is taken as constant.

Viscous diffusion can be implemented into shallow-water systems in a variety of ways.

Naively, one could use Equation (2.64) to repeat the derivation of Section 2.2.2, without

further consideration of effects at the surfaces z = Sb and z = St, and arrive on a shallow-

water momentum equation with a Laplacian viscous term, ν∇2u, in the righthand side.

However, Gilbert et al. (2014) showed that a Laplacian treatment of this kind can produce

energy sources arising from unphysical surfaces stresses7. Hyperviscosity (i.e., viscosity

implementations with higher order derivatives) is also regularly implemented in numerical

7Gilbert et al. (2014) noted that incompressibility gives ∂w/∂z = −∇ · u, which leads to a three-
dimensional viscous stress tensor, τ 3, for which tangential interface stresses are generally non-zero on the
material surfaces (i.e., [τ ]1,3, [τ ]2,3, [τ ]3,1, [τ ]3,2 are non-zero on material surfaces). In a three-dimensional
model there would be a transition between a bulk solution, with properties similar to the shallow-water
model, and a boundary layer, which ensures that there are no surface stresses. Planetary flows have large
Reynolds numbers so this boundary layer, which we neglect, would be expected to be thin.
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z

h

z = Sb

z = St

C

V

S n̂

Figure 2.5: A schematic of illustrating the geometry used in the derivation of shallow-water viscous
diffusion term presented by Gilbert et al. (2014). In this derivation, the horizontal component of
the stress force is integrated over the sides of volume, V contained by the vertical fluid column
with height, h, and base, S. The horizontal surface, S, forming the base of this column is bordered
by the closed curve, C, which lies in the (x, y) plane and has the horizontal outward-pointing unit
normal vector n̂.

shallow-water models to allow numerical solvers to capture a larger range of inertial length

scales for a given grid resolution (e.g., Showman & Polvani, 2010, 2011; Perez-Becker

& Showman, 2013). However, one should be careful to ensure that a given treatment

satisfies relevant conservational properties. For instance, high order Laplacian treatments

on the momentum equation do not generally conserve either or both of energy and angular

momentum (Ochoa et al., 2011; Gilbert et al., 2014).

Gilbert et al. (2014) outlined a derivation for a viscous diffusion expression, Dν , to be

added the righthand side of the shallow-water momentum equation. Gilbert et al. (2014)

presented this derivation for a single-layer model but, with only superficial changes, the

derivation can be applied to our reduced gravity model. For completion, we replicate the

derivation for the reduced gravity geometry here. One calculates the horizontal stress force

through any point of a closed curve, C, which lies in the (x, y) plane, has the horizontal

outward-pointing unit normal vector, n̂, and bounds a horizontal surface S. Additionally,

V is defined as the volume contained within the fluid column that has S as its base (see

Figure 2.5). Briefly, since the shallow-water model is concerned with capturing bulk effects,

one neglects surface viscous stresses at the interfaces and equates the total columnar

horizontal viscous diffusion with the total horizontal stress force per unit mass passing

through the sides of fluid column containing V (see Figure 2.5, with the integration through
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the darkly shaded side-walls of the column):

∫
S

∫ St

Sb

Dν dz dS = ν

∮
C

∫ St

Sb

n̂ · τ 3 dz ds

= ν

∮
C

∫ St

Sb

n̂ · τ dz ds

= ν

∮
C
hn̂ · τ ds

= ν

∫
S
∇ · [hτ ] dS

=

∫
S
∇ ·
[
νh
(
∇u + (∇u)T

)]
dS,

(2.65)

using the two-dimensional version of Gauss’ divergence theorem and the vertical indepen-

dence of τ = ∇u + (∇u)T , the two-dimensional viscous stress tensor, which is the upper

2× 2 block of τ 3. Since S is arbitrary and Dν is vertically independent by construction,

this yields (Gilbert et al., 2014):

Dν = νh−1∇ ·
[
h
(
∇u + (∇u)T

)]
, (2.66)

where we have taken ν to be constant. Gilbert et al. (2014) recommend the more general

expression, Dν = νh−1∇·
[
h
(
∇u + (∇u)T

)
+ ςh(∇ · u)

]
, with either ς = 0, which we take,

or ς = −2, which is derived by including a viscous contribution to the system’s magneto-

hydrostatic balance (Gilbert et al., 2014). Further, they show that neither version of this

formulation has energy sources and that both treatments behave in a physically-realistic

manner when administered to solid body rotation.

Magnetic diffusion

In the non-relativistic limit, the diffusive three-dimensional induction equation for electrically-

conducting fluid of constant density is

∂B3

∂t
= ∇3 × (u3 ×B3)−∇3 × (η∇3 ×B3),

= (B3 · ∇3)u3 − (u3 · ∇3)B3 + Dη,3,

(2.67)
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where Dη,3 = −∇3 × (η∇3 × B3) is the three-dimensional magnetic diffusion term and

η = 1/µ0σ is the magnetic diffusivity, with σ denoting the conductivity. This can be

derived directly from the Maxwell equations (alongside Ohm’s law for a moving medium)

but in SWMHD the correct diffusion treatment is less clear. We seek a horizontal mag-

netic diffusion term, Dη, in the righthand side of the shallow-water induction equation

(Equation (2.59c)) so that

DB

Dt
= (B · ∇)u + Dη. (2.68)

A naive approach might be to state that since the horizontal magnetic field is indepen-

dent of z, Dη,naive = −∇× (η∇×B). However, we note that this approach is inconsistent

with SWMHD as combining the resulting shallow-water induction and continuity equa-

tions yields {
∂(hB)

∂t

}
naive

= ∇× (u× hB)− h∇× (η∇×B), (2.69)

which is not generally divergence-free. Hence, the shallow-water version of Gauss’ law,

∇ · (hB) = 0 ∀ t, is violated.

The problem with this naive approach is that Dη,3,H , the leading order approximation

of the horizontal component of Dη,3 in the shallow-water limit, is not generally indepen-

dent of z. Instead, Andrew Gilbert (personal correspondence) identified that Dη can be

obtained by integrating the leading order horizontal components of Equation (2.67) verti-

cally over the extent of the fluid column. If ∂u/∂z = 0 and ∂B/∂z = 0 for all time, this

gives

h

(
DB

Dt
− (B · ∇)u

)
=

∫ St

Sb

Dη,3,Hdz, (2.70)

where the integral on the righthand side can evaluated using the following boundary

conditions:

n̂3 ·B3 = 0 and n̂3 × (∇3 ×B3) = 0, (2.71)

on the z = St(x, y, t) and z = Sb(x, y, t) interfaces, where n̂3 = n̂t ≡ ẑ − ∇St and

n̂3 = n̂b ≡ ẑ −∇Sb are the upward-pointing unit normal vectors on the upper and lower

surfaces respectively. The first of these boundary conditions (n̂3 ·B3 = 0) is the usual no
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z

h(x, y, t)

z = Sb(x, y, t)

z = St(x, y, t)

Dη,3 = −∇3 × (η∇3 ×B3)

Dη = h−1
∫ St
Sb

Dη,3,Hdz

= −h−1∇× (ηh∇×B)

B3 ⊥ n̂3, J3 ‖ n̂3

B3 ⊥ n̂3, J3 ‖ n̂3

n̂3

n̂3

Active layer

Negligible density (static) perfectly-conducting layer

Static perfectly-conducting lower layer

Figure 2.6: A schematic of illustrating the geometry used in the derivation of shallow-water mag-
netic diffusion term, Dη, as adapted from the derivation of Andrew Gilbert (personal correspon-
dence). This derivation uses an asymptotic expansion to calculate the leading order contributions
to the three-dimensional magnetic diffusion term, Dη,3, in the shallow-water limit. The derivation
finds that Dη is given by the thickness-weighted average of Dη,3,H , the leading order approx-
imation of the horizontal component of Dη,3, when the magnetic field and current density are
respectively held as perpendicular and parallel/antiparallel to the upward-pointing unit normal of
the interfaces, n̂3.

magnetic flux condition of SWMHD; whereas the second (n̂3 × (∇3 × B3) = 0) requires

that the current density at interfaces is parallel/antiparallel to n̂3. Combining Ampère’s

law and Ohm’s law for a moving medium gives

η[n̂3 × (∇3 ×B3)] = ηµ0[n̂3 × J3],

= ηµ0σ[n̂3 ×E3 + n̂3 × (u3 ×B3)]

= [n̂3 ×E3 − (n̂3 · u3)B3],

(2.72)

where J3 denotes the three-dimensional current density, E3 denotes the three-dimensional

electric field, and n̂3 ·B3 = 0 has been applied alongside the vector identity a× (b× c) =

b(a · c) − c(a · b). If the regions outside the active layer are considered static perfect

conductors, η = 0 and u3 = E3 = 0, so both sides of Equation (2.72) are equally zero.

Therefore, imposing n̂3 × (∇3 × B3) = 0 ensures that both sides of Equation (2.72) are

continuous (and zero) at interfaces of the active region, where η steps in value.

By careful consideration of the asymptotic expansion of Equation (2.67), and applica-
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tion of the boundary conditions in Equation (2.71), one can show that

∫ St

Sb

Dη,3,Hdz = −∇× (ηh∇×B), (2.73)

yielding

Dη = −h−1∇× (ηh∇×B), (2.74)

which is a thickness-weighted version of its three-dimensional counterpart and is vertically-

independent, so the ∂u/∂z = ∂B/∂z = 0 assumption used to obtain Equation (2.70)

remains satisfied. Since our reduced gravity model assumptions vary slightly (in interface

conditions) from those of single-layer SWMHD (as considered by Andrew Gilbert, personal

correspondence), in Appendix A we have made the necessary adaptations to present the

derivation of Equation (2.74) for the reduced gravity model. We have summarised the key

aspects of the derivation in Figure 2.6.

Using this treatment of magnetic diffusion, the horizontal magnetic field evolution is

described by the following three consistent formulations:

DB

Dt
= (B · ∇)u− h−1∇× (ηh∇×B), (2.75)

∂(hB)

∂t
= ∇× [u× hB− ηh∇×B], (2.76)

DA

Dt
= η(∇2A− h−1∇h · ∇A), (2.77)

where Equation (2.77) is obtained by “uncurling” Equation (2.76) with hB ≡ ∇×Aẑ and

∇×B ≡ ∇× (h−1∇×Aẑ) = −∇ · (h−1∇Aẑ), which uses ∇ ·Aẑ = 0. Further, taking the

horizontal divergence of Equation (2.76) highlights that this treatment is consistent with

the shallow-water divergence free condition (∇ · (hB) = 0 ∀ t).

97



Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres

2.2.6 Forcing and drag treatments

Forcing treatment

Homogeneous shallow-water models (i.e., those with constant density layers) are vertically

independent so cannot contain consistent thermodynamic treatments (Dellar, 2003). Cur-

rent understanding of the hottest hot Jupiters points towards a fairly unique scenario, in

which the dominant thermodynamic feature of their atmospheres is strong tidally-locked

thermal forcing (see Chapter 1). In hydrodynamic models of hot Jupiters, thermal forcing

of this kind is found to drive atmospheric dynamics that can be well described by sim-

ple shallow-water models (Showman & Polvani, 2011). Mathematically, the simplest way

to parameterise this forcing in a shallow-water model is to include a Newtonian cooling

treatment, Q, in the righthand side of the shallow-water continuity equation (e.g., Shell &

Held, 2004; Langton & Laughlin, 2007; Showman & Polvani, 2010, 2011; Showman et al.,

2012; Perez-Becker & Showman, 2013):

∂h

∂t
+∇ · (hu) =

heq − h
τrad

≡ Q. (2.78)

Physically, the Newtonian cooling relaxes the system towards a prescribed radiative equi-

librium thickness profile, heq(x, y), over a radiative timescale, τrad, by transferring mass

vertically from the quiescent lower layer to the active layer of the reduced gravity model

(see Figure 2.7). The transfer of mass caused by Q generates horizontal pressure gradi-

ents, which drive recirculation via the generation of planetary scale shallow-water gravity

waves. Analogously, in three dimensional models, pressure gradients caused by heating

drive recirculation via internal gravity waves. Using this analogy, mass sources and sinks

represent heating and cooling respectively. This connection has been used extensively in

hydrodynamic models of hot Jupiters, with the active layer geopotential, g∗h, used as a

proxy for specific thermal energy (Langton & Laughlin, 2007; Showman & Polvani, 2010;

Showman et al., 2013; Perez-Becker & Showman, 2013). Using this physical link, we equate

the model’s active layer reference geopotential, g∗H ≡ c2g, to the reference thermal energy,

98



Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres
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ρl > ρ, ul = 0

z

x

no B
flux

no B
flux

.

.

.

Figure 2.7: The forced reduced-gravity SWMHD model schematic. An active layer sits upon
an infinity-deep quiescent fluid layer, where both layers have constant densities (ρ and ρl). No
magnetic flux is permitted across the active layer’s upper and lower boundaries, which are material
surfaces that evolve in time. Newtonian forcing is used to generate horizontal pressure gradients in
the active layer: the active layer thickness (h) is relaxed towards an imposed radiative equilibrium
thickness profile (heq) over a radiative timescale (τrad). The resulting horizontal pressure gradients
drive horizontal motion.

RTeq, of the modelled planet’s atmosphere, where cg, R and Teq respectively denote the

shallow-water gravity wave speed, the specific gas constant and the equilibrium reference

temperature. Since this analogy adjusts the physical interpretation of the quantity g∗H,

we hereafter drop the star superscript notation on g∗.

This mass exchange treatment proves useful for including thermal forcing in our re-

duced gravity SWMHD model. However, we must be careful that the mass exchange

is physically meaningful and does not violate physical conservation laws or the model

assumptions we discussed in Section 2.2.2.

We ensure that the mass exchanges conserve specific horizontal momentum, hu, by

using a vertical mass transport term, R, which is added to the righthand side of Equa-

tion (2.59a). In “cooling” regions (Q < 0) mass sinks from the active layer to the quiescent

layer and without causing any net accelerations to either the active layer or the quiescent

layer8. However, in “heating” regions (Q > 0) the upward transport of motionless fluid

causes deceleration of horizontal active layer velocities. This deceleration due to heating

8The momentum that is removed from the active layer is transferred to the quiescent layer. However,
since the quiescent layer is infinitely-deep, the momentum of the transferred mass plus the quiescent layer
is conserved with no change to the quiescent layer’s velocity.
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is calculated by requiring that mass exchanges between layers conserve specific horizontal

momentum9, yielding

R =


0 for Q ≤ 0

−uQ
h for Q > 0,

(2.79)

which has also been used in the hydrodynamic version of this model (e.g., Shell & Held,

2004; Showman & Polvani, 2010, 2011; Showman et al., 2012; Perez-Becker & Showman,

2013).

Furthermore, we do not allow the vertical mass transfer to violate the divergence-free

condition of SWMHD:

∇ · (hB) = 0. (2.80)

This derives from Gauss’ law of magnetism and the condition that no magnetic fluxes

can cross the interfaces. Therefore, for consistency, we impose the requirement that mass

exchanges do not directly effect the evolution of the horizontal magnetic flux contained

within a fluid column in the active layer, hB, which is solenoidal and determined by

∂(hB)

∂t
= ∇× (u× hB)−∇× (ηh∇×B), (2.81a)

which can also be written in the conservative form

∂(hB)

∂t
+∇ ·

[
huB− hBu− ηh

(
∇B− (∇B)T

)]
= 0, (2.81b)

where in tensor notation [∇ · (ab)]i = ∂(ajbi)/∂xj for i, j = 1, 2. Since the evolution of

hB is unchanged with the inclusion of forcing, so is the evolution of A and, as before,

DA

Dt
= η(∇2A− h−1∇h · ∇A), (2.82)

can be obtained by “uncurling” Equation (2.81). However, using the chain rule to note

9That is, R is chosen so that ∂(hu)/∂t is unaffected by the inclusion of vertical mass exchanges when
Q > 0.
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that ∂B/∂t = h−1(∂(hB)/∂t−B∂h/∂t), Equations (2.78), (2.80) and (2.81) now yield

∂B

∂t
= −(u · ∇)B + (B · ∇)u− BQ

h
+ Dη, (2.83)

where Dη is the diffusion treatment given in Equation (2.74). This includes the forcing

dependent term, −BQ/h, which ensures that the horizontal columnar magnetic flux, hB,

is unaffected by mass exchanges and remains divergence-free. This term is purely a result

of the system’s geometry as we allow for instantaneous and vertically-independent vertical

mass transport from the quiescent layer but do not allow magnetic flux to cross the active-

quiescent interface. Having one without the other may be considered somewhat unphysical,

but it is the the sacrifice we make to include pseudo-thermal forcing within the simplified

shallow-water geometry. One can view this as a “dilation” of the pointwise (or vertically-

averaged) horizontal magnetic field, B, because it acts to reduce its magnitude in regions

of increasing volume (Q > 0) and increases B in regions of decreasing volume (Q < 0).

The consequence of this pointwise magnetic dilation is that in regions of extreme forcing

accelerations due the Lorentz force can be reduced, a phenomenon that one should be

wary of when analysing highly forced solutions. In the numerical solutions of Chapter 4,

we find that this dilation phenomenon has little qualitative influence solutions, which are

dominated by the same physical processes in both the weakly-forced and strongly-forced

cases. Moreover, for their useful conservational properties, we will tend to work with hB

and A, rather than B, hereafter.

Rayleigh drag treatment

We parameterise atmospheric drag with a linear Rayleigh drag treatment, −u/τdrag, which

is added to the righthand side of the momentum equation (Equation (2.59a)) and acts to

reduce the magnitude of planetary flows. Here τdrag is the timescale of the dominant

horizontal drag process in the thin active layer. Previous hydrodynamic studies use this

Rayleigh drag to parameterise Lorentz forces (e.g., Perna et al., 2010; Rauscher & Menou,

2013) or basal drag at the bottom of the radiative zone (e.g., Held & Suarez, 1994; Liu
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& Showman, 2013; Komacek & Showman, 2016). In our study, we include Lorentz forces

explicitly. However, due to the geometry of the SWMHD model, we only explicitly include

the Lorentz forces caused by the atmospheric toroidal magnetic field (see Section 2.2.4 for

a discussion of the magnetic field geometry in the atmosphere). We hence use the Rayleigh

drag treatment to parameterise the Lorentz forces caused by planet’s deep-seated poloidal

magnetic field, which are not included explicitly. This is consistent with the treatment

proposed by Perna et al. (2010), who set

τdrag = τmag ≡
η

V 2
A,dip

, (2.84)

where VA,dip is the Alfvén speed of the assumed deep-seated dipolar magnetic field and

τmag, the Joule timescale, is the timescale over which the Lorentz force from the deep-

seated dipolar magnetic field will bring zonal flows to rest in the absence of other forces.

Though (on geometric grounds) one could argue that in this setting the Rayleigh drag

should have no meridional component, for comparison with past hydrodynamic results,

we follow the commonly applied treatment of using Rayleigh drag in both horizontal

directions (e.g., Perna et al., 2010; Showman & Polvani, 2011; Rauscher & Menou, 2013;

Perez-Becker & Showman, 2013).10 We also comment that Rogers & Komacek (2014)

found that magnetically driven wind variations emerge in the upper radiative atmosphere

(where basal drags are negligible), so we do not consider basal drag in this work.

2.2.7 Dimensional equations

Governing equations

In summary, when linear drag and mass exchanges between the upper active and lower qui-

escent layers are included in the inviscid, perfectly-conducting, reduced gravity SWMHD

model, the dynamical behaviour of the active layer can be described by the following set

10We find that the meridional component of the Rayleigh drag never has a leading order influence,
being 1-2 orders of magnitude smaller than the system’s dominant meridional accelerations, so does not
qualitatively influence any of our results. An example of this can be seen in Figure 4.2 (Chapter 4).
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of governing equations:

Du

Dt
+ f(ẑ× u) = −g∇h+ (B · ∇)B + R− u

τdrag
+ νh−1∇ ·

[
h
(
∇u + (∇u)T

)]
, (2.85a)

∂h

∂t
+∇ · (hu) =

heq − h
τrad

≡ Q, (2.85b)

DA

Dt
= η(∇2A− h−1∇h · ∇A). (2.85c)

hB ≡ ∇×Aẑ, (2.85d)

where u(x, y, t), is the horizontal active layer fluid velocity, h(x, y, t) is the active layer

thickness which is used as the model’s temperature proxy, B(x, y, t) is the active layer’s

pointwise (or vertically-averaged) horizontal magnetic field (in velocity units), A(x, y, t) is

the magnetic flux function of the active layer, and the equatorial beta-plane approximation

is taken using f = βy. Thermal forcing is mimicked using vertical mass exchanges between

the layers, which are included through the Newtonian cooling treatment, Q. In these mass

exchanges, no magnetic fluxes are permitted to cross the interfaces and specific momentum

is conserved through the vertical mass transport term:

R =


0 for Q ≤ 0

−uQ
h for Q > 0.

(2.86)

The Newtonian cooling treatment drives the system towards the prescribed radiative equi-

librium thickness profile, heq(x, y), over a radiative timescale, τrad. Using this analogy,

inline with the parameter choice gH ≡ c2g ∼ RTeq, corresponds to a shallow-water model

in which mass sources/sinks represent heating/cooling. Forcing the system in this way

drives horizontal pressure gradients in the system, which drive magnetohydrodynamic

flows. These flows are slowed by the linear atmospheric drag treatment, −u/τdrag.

103



Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres

Conservative form

To discuss conservation laws more freely, it can be useful to write the system in the

equivalent conservative form:

∂(hu)

∂t
+∇ ·

[
huu− hBB + 1

2gh
2I + νhτ

]
= fh(u× ẑ) +Qu + hR− hu

τdrag
, (2.87a)

∂h

∂t
+∇ · (hu) = Q, (2.87b)

∂(hB)

∂t
+∇ ·

[
huB− hBu− ηh

(
∇B− (∇B)T

)]
= 0, (2.87c)

∇ · (hB) = 0, (2.87d)

where τ = ∇u + (∇u)T , Equation (2.87c) is equivalent to Equation (2.81), I is the 2× 2

identity matrix, and in tensor notation [∇ · (ab)]i = ∂(ajbi)/∂xj for i, j = 1, 2. For this

formulation, we have noted that the magnetic diffusion treatment of Equation (2.74) can

be equivalently written as

Dη = −h−1∇× (ηh∇×B)

= −h−1∇× (ηhJ)

= h−1∇ ·
[
ηh
(
∇B− (∇B)T

)]
,

(2.88)

where J = J ẑ ≡ ∇ × B is the (vertical) current density associated with the pointwise

horizontal magnetic field (in units of frequency), with J = ∂By/∂x− ∂Bx/∂y.

The Lorentz force and magnetic tension

In SWMHD models the explicit Lorentz force contribution of the shallow-water momentum

equation (Equation (2.85a)) is B · ∇B. This represents the vertically-averaged Lorentz

force within the active layer’s fluid column (Dellar, 2003). It may also be expressed as

B·∇B = ∇(B·B/2)+J×B. In this decomposition ∇(B·B/2) originates from the vertical

magneto-hydrostatic balance of the model, while J×B is the Lorentz force generated by

the (vertically-independent) horizontal component of the magnetic field (Gilman, 2000).

Expressing the vertically-averaged Lorentz force as B ·∇B highlights its equivalence to the
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magnetic tension of the horizontal magnetic field components (i.e., it acts to straighten

bent horizontal magnetic field lines).

Potential vorticity

Dellar (2002) showed that potential vorticity of hydrodynamic shallow-water models is no

longer materially conserved in SWMHD and, further, has no materially invariant counter-

part (though A is materially conserved in non-diffusive SWMHD). Recall the shallow-water

hydrodynamic definition of potential vorticity (dropping the “SW” labelling of Chapter 1)

is

q =
ζ + f

h
, (2.89)

where, as before, ζ ≡ (∇ × u) · ẑ ≡ ∂v/∂x − ∂u/∂y is the relative vorticity of flows in

the horizontal plane. Using Equations (2.85a) and (2.85b), it can be shown that, in our

SWMHD model, the potential vorticity evolution satisfies (see Appendix B)

Dq

Dt
=

1

h
[∇× (J×B)] · ẑ− qQ

h
+

1

h
(∇×R) · ẑ− ζ

hτdrag
+ (∇×Dν) · ẑ, (2.90)

where Dν = νh−1∇ ·
[
h
(
∇u + (∇u)T

)]
, as defined in Equation (2.66) and is expected

to be small compared to other terms for planetary scale flows (Vallis, 2006; Showman

et al., 2010). Equation (5.14) shows that q is only materially conserved in the hydrody-

namic, unforced, drag-free, inviscid limit. Note that the mass sources/sinks contribution

of Equation (5.14) can be written as

− qQ
h

+
1

h
(∇×R) · ẑ =


−qQh for Q ≤ 0

−qQh − 1
h

[
∇×

(
uQ
h

)]
· ẑ for Q > 0.

(2.91)

This shows that at mass sources (i.e., heating regions with Q > 0), where fluid with

zero relative vorticity is transported upwards and h increases, forcing acts to diminish the

magnitude of potential vorticity; whereas at mass sinks (i.e., cooling regions with Q ≤ 0),

where h decreases with no change to the relative vorticity, forcing acts to enhance the
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magnitude of potential vorticity. Equation (5.14) also shows that Rayleigh drag acts to

dampen potential vorticity transport. These two facts highlight that strong forcing (i.e.,

short τrad) and/or strong drag (i.e., short τdrag) diminish the efficiency of processes that

arise due to potential vorticity conservation (i.e., the propagation of Rossby waves, see

Chapter 1 for discussion).

Equation (5.14) also shows that the curl of the Lorentz force generated by the hori-

zontal magnetic field component, [∇× (J×B)] · ẑ, generally prevents potential vorticity

conservation in the magnetic limit, regardless to whether forcing, drags, or viscous diffu-

sion are present. This suggests that in regions of large Lorentz force, processes that arise

due to potential vorticity conservation, such as Rossby wave propagation, are expected

to be magnetically altered. We discuss planetary-scale SWMHD waves in the presence of

rotation and magnetism in Chapters 3 and 5.

Pointwise induction equation

For considering energy evolution, it is useful to use the second of these forms of Dη in the

pointwise induction equation:

∂B

∂t
= (B · ∇)u− (u · ∇)B− BQ

h
− h−1∇× (ηhJ). (2.92)

The energy equation

The total specific pointwise energy in the model’s active layer is

ε = 1
2 |u|2 + 1

2 |B|2 + gh, (2.93)

This is the sum of the specific pointwise kinetic, magnetic and geopotential (or gravita-

tional potential) energy contributions. However, a more useful property is the total specific

columnar energy (Gilman, 2000):

E = 1
2h|u|2 + 1

2h|B|2 + 1
2gh

2, (2.94)
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which is obtained by integrating ε over the thickness of the active layer’s fluid column.

Recall that the SWMHD model doesn’t include consistent thermodynamic treatments

so neither of these expressions include a thermal energy contribution. However, in the

shallow-water model the active layer thickness, h, is used as a temperature proxy and the

gravitational potential energy is used to trace the thermal energy.

Before describing the evolution of specific columnar kinetic energy, 1
2h|u|2, we note

that

|τ |2 = τ : τ = (∇u + (∇u)T ) : (∇u + (∇u)T )

= ∇u : ∇u + 2∇u : (∇u)T + (∇u)T : (∇u)T

= 2∇u : ∇u + 2∇u : (∇u)T

= 2∇u : τ ,

(2.95)

where the “double” dot product is defined so that ς : σ =
∑

i

∑
j ςijσij , for i, j = 1, 2.

That is, ∇u : τ =
∑

i

∑
j(∂ui/∂xj)(∂ui/∂xj + ∂uj/∂xi)

The evolution of specific columnar kinetic energy can be determined by combining

Equations (2.85a), (2.85b) and (2.95) with the divergence-free condition as follows:

∂(12h|u|2)
∂t

= 1
2 |u|2

∂h

∂t
+ hu · ∂u

∂t

= 1
2 |u|2(−∇ · (hu) +Q)

+ hu ·
(
−(u · ∇)u− g∇h+ (B · ∇)B + R− u

τdrag
+ νh−1∇ · (hτ )

)
= −∇ · (12h|u|2u) +

��
���

��
hu · ∇(12 |u|2) + 1

2 |u|2Q

((((
((((−hu · [(u · ∇)u]− u · ∇(12gh

2) +∇ · [h(u ·B)B]−
��

���
���:

0
(u ·B)∇ · (hB)

− hB · [(B · ∇)u] + hu ·R− h|u|2
τdrag

+∇ · [νhu · τT ]− νh∇u : τ

= −∇ ·
[
1
2h|u|2u− h(u ·B)B− νhu · τ

]
− u · ∇(12gh

2)

− hB · [(B · ∇)u]− 1
2νh|τ |2 +

[
1
2 |u|2Q+ hu ·R

]
− h|u|2
τdrag

.

(2.96)
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where constant ν and symmetry in τ (i.e., τT = τ ) have been applied. From left to right,

the terms in the final line of Equation (2.96) are the convergence of columnar kinetic

energy flux, the columnar kinetic energy transport due to the Lorentz force, the columnar

kinetic energy transport due to viscosity, the columnar rate of work from the advection

of geopotential energy, the columnar rate of work from the Lorentz force, the columnar

kinetic energy loss from viscous heating, the active layer’s columnar kinetic energy loss

from the Newtonian cooling, and the columnar kinetic energy loss from Rayleigh drag.

Similarly, the evolution of specific columnar magnetic energy can be determined by

combining Equations (2.85b) and (2.92) with the divergence-free condition:

∂(12h|B|2)
∂t

= 1
2 |B|2

∂h

∂t
+ hB · ∂B

∂t

= 1
2 |B|2(−∇ · (hu) +Q)

+ hB ·
(

(B · ∇)u− (u · ∇)B− BQ

h
− h−1∇× (ηhJ)

)
= −∇ · (12h|B|2u) +

���
���

�
hu · ∇(12 |B|2) + 1

2 |B|2Q

+ hB · [(B · ∇)u]−((((((
((

hB · [(u · ∇)B]− |B|2Q

−∇ · [ηh(J×B)]− ηhJ · (∇×B)

= −∇ ·
[
1
2h|B|2u + ηh(J×B)

]
+ hB · [(B · ∇)u]− ηh|J|2 − 1

2 |B|2Q.

(2.97)

From left to right, the terms in the final line of Equation (2.97) are the convergence of

columnar magnetic energy flux, the columnar magnetic energy transport due to magnetic

diffusion, the columnar rate of work from the Lorentz force, the columnar magnetic energy

loss from Ohmic heating, and the change in columnar magnetic energy due to Newtonian

cooling.

Finally, the evolution of specific columnar geopotential energy can be determined from

108



Chapter 2. A Cartesian SWMHD Model for Hot Jupiter Atmospheres

Equation (2.85b) as follows:

∂(12gh
2)

∂t
= gh

∂h

∂t

= gh(−∇ · (hu) +Q)

= −∇ · (gh2u) + (u · ∇)(12gh
2) + ghQ.

(2.98)

From left to right, the terms in the final line of Equation (2.98) are the columnar geopo-

tential energy transport due to the convergence of mass fluxes, the advection of columnar

geopotential energy, and columnar geopotential “heating” from the Newtonian cooling.

Together, Equations (2.96) to (2.98) describe the evolution of the active layer’s total

specific columnar energy:

∂E

∂t
+∇ · F = Qν +Qη +Qf , (2.99a)

F =
(
1
2h|u|2 + gh2

)
u + S− νhu · τ , (2.99b)

S = 1
2h|B|2u− h(u ·B)B + ηh(J×B), (2.99c)

Qν = −1
2νh|τ |2, (2.99d)

Qη = −ηh|J|2, (2.99e)

Qf =
(
1
2 |u|2 − 1

2 |B|2 + gh
)
Q+ hu ·R− h|u|2

τdrag
, (2.99f)

where F describes the processes that conserve total specific columnar energy in the active

layer, S is the diffusive shallow-water version of the Poynting vector, Qν is the columnar

kinetic energy loss from viscous heating, Qη is the columnar magnetic energy loss from

Ohmic heating, andQf is the rate of work due to the forcing and Rayleigh drag treatments.

The divergence of the shallow-water Poynting vector, ∇ · S, describes the transport

of E out of a point, resulting from electromagnetism. In three-dimensional systems, the

Poynting vector is defined as S3 = E3 × B3, where E3 is the electric field. Therefore,

combining the non-relativistic version of Ampére’s law (∇3×B3 = µ0J3) with Ohm’s law
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in a moving medium (J3 = σ(E3 + u3 ×B3)) yields

S3 = E3 ×B3

= (−u3 ×B3 +
1

σ
J3)×B3

= B3 × (u3 ×B3) + ηµ0J3 ×B3

= |B3|2u3 − (u3 ·B3)B3 + ηµ0J3 ×B3,

(2.100)

where η = 1/µ0σ. The forms of Equations (2.99c) and (2.100) are similar but the shallow-

water version of the Poynting vector is vertically integrated (with vertically independent

horizontal components of u and B) so each term of S has a prefactor h. Further, since

magnetic pressure is absorbed into the total pressure in the magneto-hydrostatic approxi-

mation of SWHMD (see Section 2.2.2), the magnetic energy flux contribution of S is half

its three-dimensional counterpart (as discussed in Hunter, 2015, for non-diffusive models).

The diffusive term also differs from the three-dimensional version by a factor 1/µ0 as the

system’s vertical independence allows us to work in the mathematically convenient units

where B is in units of speed and J is in units of frequency.

From Equation (2.99), it is apparent that, in the unforced (Q = 0), drag-free (τ−1drag →

0), diffusion-free (ν = η = 0) limit of a fully-periodic system (where boundary effects

are neglected), total specific columnar energy is conserved. However, when forcing, drag,

and/or diffusion are included within the SWMHD framework, energy sources and sinks

are added. We now discuss the physical relevance of these sources/sinks.

The kinetic energy contribution that arises from Rayleigh drag (i.e., −h|u|2/τdrag) is

negative semi-definite so only removes kinetic energy from the system, acting to dampen

flows. The active layer motions are driven by the inclusion of the forcing Newtonian cooling

forcing prescription, which generates pressure gradients by exchanging mass between the

active and quiescent layers of our model. This enters the active layer’s energy equation

through the columnar geopotential “heating” contribution (i.e., ghQ). The kinetic energy

contribution from the mass exchanges (i.e., |u|2Q/2+hu·R) is negative semi-definite so the

exchanges only remove kinetic energy from the active layer, with damping of the specific
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columnar kinetic energy in equal to −|u|2Q/2 for Q > 0 and |u|2Q/2 for Q < 0. Due to the

SWMHD requirement that no magnetic flux may cross the active-quiescent interface, the

mass exchanges cause magnetic energy sinks/sources (i.e., −|B|2Q/2). This results from

changes in the fluid column’s volume, though we enforce the condition that the horizontal

columnar magnetic field (hB) remains unaffected by such exchanges (see Section 2.2.6).

In the weakly forced regime, these magnetic energy sinks/sources are suppressed.

In Equations (2.99d) and (2.99e) Qν = −νh|τ |2/2 and Qη = −ηh|J|2, where τ =

∇u+(∇u)T and J = (∂By/∂x−∂Bx/∂y)ẑ. Writing Qν and Qη in this way illustrates that

Qν and Qη are both negative semi-definite (as h, ν, and η are strictly positive). In three-

dimensional systems, the energy losses from Qν and Qη would normally be transferred

into thermal energy but, since our shallow-water model does not include thermodynamics,

the kinetic and magnetic energy removed by Qν and Qη is lost from the system.

Aside: Energy equation for Laplacian viscous diffusion

In Section 2.2.5 we noted that a naive Laplacian treatment of viscous diffusion, ν∇2u, can

produce energy sources arising from unphysical surfaces stresses (Gilbert et al., 2014). To

illustrate this we note that

hu · (ν∇2u) = ∇ · [νhu · (∇u)T ]− ν∇u : ∇(hu)

= ∇ · [νhu · (∇u)T ]− νh|∇u|2 − ν∇(12 |u|2) · ∇h,
(2.101)

where constant ν has been applied. Hence,

∂E

∂t
+∇ · F∇2 = Qν,∇2 +Qη +Qf , (2.102a)

F∇2 =
(
1
2h|u|2 + gh2

)
u + S− νhu · (∇u)T , (2.102b)

Qν,∇2 = −νh|∇u|2 − ν∇(12 |u|2) · ∇h, (2.102c)

with S, Qη, and Qf unchanged. This highlights that Qν,∇2 is only guaranteed to be

negative semi-definite if ∇h = 0 everywhere for all time (i.e., in the two-dimensional
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limit).11 However, generally, a Laplacian viscous diffusion treatment can provide spurious

energy sources if layer thickness gradients are large in the direction antiparallel to pointwise

kinetic energy gradients. This can be illustrated with a v constant and ∂u/∂y = 0 flow,

in which case pointwise kinetic energy gradients lie in the x̂ or −x̂ direction and

Qν,∇2 = −νh
(
∂u

∂x

)2

− ν ∂(12u
2)

∂x

∂h

∂x
= −νh

(
∂u

∂x

)2

− νu∂u
∂x

∂h

∂x
. (2.103)

Therefore, since only the layer thickness gradient contribution to Qν,∇2 can be positive,

Qν,∇2 > 0 if (
∂h

∂x

)(
∂(u2/2)

∂x

)
< 0 and

∣∣∣∣∂(ln |h|)
∂x

∣∣∣∣ > ∣∣∣∣∂(ln |u|)
∂x

∣∣∣∣ . (2.104)

2.2.8 Horizontal boundary conditions and integral conservation laws

We now discuss horizontal boundary conditions for our system that are relevant to plan-

etary geometries and, where possible, satisfy integral conservation laws. Recall that the

horizontal Cartesian coordinates are defined on −Lx ≤ x ≤ Lx and −Ly ≤ y ≤ Ly. Fur-

thermore, as discussed in Section 2.2.3, in the equatorial beta-plane approximation y/R

approximately corresponds to the latitudinal coordinate, with y = 0 corresponding to the

equator. Similarly, x/R approximately corresponds to the azimuthal coordinate, which we

are free to centre so that the substellar point, which in our model is the point of maximal

heq, lies at (x, y) = (0, 0).

We impose periodic boundary conditions on all variables in the x direction, choosing

Lx = Rπ. In the y direction we impose impermeable walls at y = ±Ly, which are stress-

free. As in the vertical direction, at these y boundaries no normal magnetic flux (i.e.,

n̂ ·B = 0) nor tangential currents (i.e., n̂× (∇×B) = 0) are permitted, where n̂ = ±ŷ is

the horizontal outward-pointing unit normal vector and the second condition is consistent

11Note that, on the basis of matching F and F∇2 in the two-dimensional limit, an argument could be
made for taking τ = ∇u in shallow-water models (as generally, F = ( 1

2
h|u|2 + gh2)u+S− νhu ·τT , if τ is

not necessarily symmetric). However, Gilbert et al. (2014) showed that this treatment behaves unphysically
when exposed to solid body rotation and noted that symmetry in the stress tensor is important for angular
momentum conservation.
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with the impermeable walls constituting perfect conductors (see Section 2.2.5). Therefore,

since J ≡ ∇×B ≡ J ẑ is perpendicular to ŷ, we apply

v|y=±Ly = 0,
∂u

∂y

∣∣∣∣
y=±Ly

= 0, By|y=±Ly = 0, J |y=±Ly = 0, (2.105)

for all time. As noted above, we solve the system in terms of a magnetic flux function

A. Using the definitions, hB ≡ ∇× Aẑ and J ≡ (∇×B) · ẑ, we note that the evolution

equation for A can be re-expressed as

∂A

∂t
= −(u · ∇)A+ η(∇2A− h−1∇h · ∇A),

= huBy − hvBx − ηhJ,
(2.106)

where By = −h−1∂A/∂x. Hence, since h > 0, fixing By|y=±Ly = 0 is equivalent to fixing

∂A/∂x|y=±Ly = 0 and, from Equation (2.106), fixing v|y=±Ly = By|y=±Ly = J |y=±Ly = 0

maintains ∂A/∂t|y=±Ly = 0. Consequently, when we solve the system in terms of A, we fix

A|y=±Ly = a0 for all time, where a0 is some arbitrary constant (along y = ±Ly). Finally,

we note that for consistency in the governing equations and to conserve mass in boundary

regions, we evaluate y-boundary values of h using the shallow-water continuity equation

(Equation (2.85b)).

In summary, in our system we apply periodic boundary conditions at x = ±Lx = ±Rπ

and in the y direction we apply

v|y=±Ly = 0,
∂u

∂y

∣∣∣∣
y=±Ly

= 0, A|y=±Ly = a0, (2.107)

for all time, where a0 is some arbitrary constant and y-boundary values of h are updated

using the shallow-water continuity equation (Equation (2.85b)). Since we are interested

in equatorial dynamics, Ly is chosen so that these walls lie at high enough latitudes that

the boundaries do not significantly influence equatorial regions.

In Appendix C, we derive some integral conservation laws that our system satisfies. The

boundary conditions satisfy the integral form of shallow-water divergence-free condition,
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∫∫∫
V ∇3 · B3dxdydz =

∫∫
∇ · hBdxdy = 0, so magnetic monopoles are forbidden. The

conditions also hold total horizontal magnetic flux,
∫∫
hBdxdy, constant for all time;

conserve total active layer mass,
∫∫
hdxdy, in the absence of prescribed mass exchanges;

and preclude energy entering the system by any means other than the imposed forcing.

2.2.9 Non-dimensional governing equations

Thus far we have considered our model in dimensional units but it is often useful to work

in non-dimensional units. Doing so makes sure we limit the number of parameters we

input into our system and can be useful for gauging the relative importance of particular

mathematical terms and physical processes a priori, particularly when working in the

linear case with small amplitude forcing.

As discussed in Section 2.2.7, the dimensional governing equations of the forced reduced

gravity SWMHD model are given by

Du

Dt
+ βy(ẑ× u) = −g∇h+ (B · ∇)B + R− u

τdrag
+ νh−1∇ · (hτ ) , (2.108a)

∂h

∂t
+∇ · (hu) =

heq − h
τrad

≡ Q, (2.108b)

DA

Dt
= η(∇2A− h−1∇h · ∇A). (2.108c)

hB ≡ ∇×Aẑ. (2.108d)

We rescale the system so that

x = Lx̃, u = U ũ, h = Hh̃, B = BB̃, A = HLBÃ, t = (L/U)t̃, (2.109)

where tildes denote non-dimensional quantities and the typical horizontal length scale is L,

the typical vertical length scale is H, the typical velocity scale is U , the typical magnetic

field strength (in velocity units) is B, the typical scale of the magnetic flux function is

HLB, and the typical advective timescale is L/U . Using this rescaling, multiplying Equa-

tion (2.108a) by (L/U2), Equation (2.108b) by (L/HU), Equation (2.108c) by (1/HUB),
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and Equation (2.108d) by (1/HB) yields

Dũ

Dt̃
+

1

Ro
ỹ(ẑ× ũ) = − 1

F 2 ∇̃h̃+ M 2(B̃ · ∇̃)B̃ + NcR̃

−Dr ũ +
1

Re
h̃−1∇̃ ·

(
h̃τ̃
)
,

(2.110a)

∂h̃

∂t̃
+ ∇̃ · (h̃ũ) = Nc(h̃eq − h̃) ≡ NcQ̃, (2.110b)

DA

Dt̃
=

1

Rm
(∇̃2Ã− h̃−1∇h̃ · ∇̃Ã). (2.110c)

h̃B̃ ≡ ∇̃ × Ãẑ. (2.110d)

where h̃eq = heq/H and all variables are now non-dimensional and the non-dimensional

vertical transport term is

R̃ =


0 for Q̃ ≤ 0,

− ũQ̃

h̃
for Q̃ > 0.

(2.110e)

Additionally, we have defined seven dimensionless parameters (i.e., Ro, F , M , Nc, Dr , Re,

and Rm), which we shall now discuss. The relevant Rossby number for the equatorial-beta

plane approximation (see Section 2.2.3) is given by

Ro =
U
βL2

, (2.111a)

and represents the ratio between the inertial and Coriolis forces. We comment that for

U = cg ≡
√
gH and L = Leq ≡ (cg/β)1/2, Ro = 1. Hence, these scales represent

a boundary between flows that are inertially (Ro � 1) and geostrophically (Ro � 1)

dominated. The Froude number is given by

F =
U
cg
, (2.111b)

and represents the balance between a characteristic horizontal velocity scale and the

shallow-water gravity wave speed for the reduced gravity system. In the SWMHD sys-

tem, the magnitude of F is determined by the magnitude of the prescribed forcing profile
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heq(x, y). Since planetary flows are generally pressure driven, F is generally moderate.

The inverse Alfvén-Mach number is given by

M =
B
U , (2.111c)

and represents the ratio of the characteristic horizontal Alfvén speed and the characteristic

horizontal flow velocity. This depends on the magnetic field’s magnitude, which is a free-

parameter in our study. When M ∼ 1/F the Lorentz force becomes significant to the

pressure driven flows. The cooling number is given by

Nc =
L

Uτrad
, (2.111d)

and represents the ratio between the advective and radiative timescales. If Nc & 1, layer

thickness profiles are expected to be dominated by the system’s forcing profile. The drag

number is given by

Dr =
L

Uτdrag
, (2.111e)

and represents the ratio between the advective and drag timescales. If Dr & 1, Rayleigh

drag is expected to significantly dampen pressure driven flows. The Reynolds number is

given by

Re =
UL
ν
, (2.111f)

and represents the ratio between the inertial and viscous forces. Finally, the magnetic

Reynolds number is given by

Rm =
UL
η
, (2.111g)

and represents the ratio between the horizontal advection and diffusion of the magnetic

flux function that we impose to mimic the effects of the toroidal magnetic field in the

Cartesian shallow-water geometry.
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Table 2.1: Planetary parameters for HAT-P-7b. Teq denotes the planet’s orbit-averaged effective
temperature, torbit denotes the orbital period, M denotes the planet’s mass, and R denotes the
planetary radius, which we give in both nominal Jupiter equatorial radii and metres.

Teq (K)a torbit (days)a M (MJ)a R (RJ)a R (m)

2200 2.20 1.74 1.43 1.0× 108

Data taken from www.exoplanet.eu, accessed May 30, 2021. Teq is

calculated as in Laughlin et al. (2011) and is given to 2 significant

figures.

We comment that in Chapter 7 we consider a different magnetic Reynolds number:

Rm =
UφH

η
, (2.112)

which represents the ratio between the induction and diffusion of the toroidal field in

three-dimensional geometry. This differs as in three-dimensional geometry the atmospheric

toroidal field is induced by its interactions with zonal winds (with velocity Uφ) and the

planet’s assumed deep-seated poloidal magnetic field. In a three-dimensional system there

are two degrees of freedom in the induction equation so these interactions can be modelled;

whereas in the shallow-water system there is only one degree of freedom in the induction

equation so poloidal-toroidal coupling cannot occur.

2.2.10 Parameter choices for hot Jupiter atmospheres

From Equations (2.108a) to (2.108d) it can be seen that the dimensional simulation param-

eters of the SWMHD model are cg, β, H, τrad, τdrag, ν, and η. Alongside these parameters,

we prescribe a radiative equilibrium forcing profile, heq(x, y) and a purely-azimuthal ini-

tial horizontal magnetic field, B0 ≡ B0(y)x̂, which each have a parameter that defines

their relative scale (discussed specifically in Chapter 4). In the solutions we present in

this work we shall vary τrad and τdrag (which vary Nc and Dr respectively), as well as the

forms/scales of heq and B0 (which vary F and M respectively).

Our choices for the remaining fixed simulation parameters (i.e., cg, β, H, ν, and η)

are based on the planetary parameters of HAT-P-7b, an ultra-hot Jupiter with observed

east-west brightspot variations (Armstrong et al., 2016) that can be well explained by
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Figure 2.8: The shallow-water gravity wave speed, cg ∼ (RTeq)1/2 (lefthand panel), and the
equatorial beta-plane parameter, β ≡ 2Ω/R (righthand panel), are plotted (against Teq) for known
hot Jupiters. HAT-P-7b (Teq ≈ 2192 K) is marked with a black opaque star, the cool hot Jupiter
HD 189733b (whose parameters are briefly applied in Chapter 3) is marked with a black opaque
diamond, and the hot Jupiters with observed westward hotspot/brightspots (other than HAT-P-
7b) are marked with opaque black circles. These are CoRoT-2b (Teq ≈ 1523 K), Kepler-76b (Teq ≈
2145 K), HAT-P-7b (Teq ≈ 2192 K), WASP-12b (Teq ≈ 2578 K), and WASP-33b (Teq2681 K). Due
to its large atmospheric temperatures, HAT-P-7b has a fairly large cg value. Typically, on hot
Jupiters, 1.8 km s−1 . cg . 3.2 km s−1; while 2× 10−13 m−1 s−1 . β . 2× 10−12 m−1 s−1.

three-dimensional MHD simulations (Rogers, 2017). Relevant planetary parameters of

HAT-P-7b are presented in Table 2.1 and the corresponding simulation parameters are

given in Table 2.2. As discussed above, we equate the active layer’s reference geopotential

with a radiative equilibrium thermal energy reference level. Therefore the gravity wave

speed is set using cg ≡
√
gH = RTeq, where we use the planet’s orbit-averaged effective

temperature for the equilibrium reference temperature and the specific gas constant is

calculated using the solar system abundances in Lodders (2010). We assume synchronous

orbits so Ω = 2π/torbit, with torbit denoting the planet’s orbital period. Using these

definitions, and the parameters in Table 2.1 we calculate cg ≈ 3 km s−1 and β ≡ 2Ω/R =

6.6× 10−13 m−1 s−1 for HAT-P-7b, which are typical of hot Jupiters (see Figure 2.8) and

give the equatorial Rossby deformation radius as

Leq ≡
(
cg
β

)1/2

≈ 6.7× 107 m. (2.113)

This is a fundamental length scale over which gravitational and rotational effects bal-

ance and the interaction length scale of planetary scale flows. These also provide the
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Table 2.2: Fixed simulation parameters for the shallow-water model of HAT-P-7b. cg is the gravity
wave speed, Ω is the planetary rotation frequency, H is the active layer thickness, η is the magnetic
diffusivity, and ν is is the kinematic viscosity.

cg (m s−1) β (m−1 s−1) H (m) η (m2 s−1) ν (m2 s−1)

3.0× 103 6.6× 10−13 4.3× 105 4× 108 4× 108

The data for the calculated parameters (cg, β, and H) is taken from

www.exoplanet.eu, accessed June 12, 2019. The calculated parameters

are given to 2 significant figures. The chosen values of η (realistic)

and ν (large) are chosen to be small enough to make the dynamical

timescales of our system much smaller than the diffusion timescales.

characteristic wave travel timescale:

τwave ≡
Leq

cg
≈ 2.2× 104 s ≈ 0.26 Earth days, (2.114)

which is the time a shallow-water gravity wave takes to travel over the distance Leq. We

set the reference thickness of the model’s active layer to the atmospheric pressure scale

height, that is H = Hp ≡ RTeqR2/GM = 4.3× 105 m, where M is the planetary mass

and G is Newton’s gravitational constant. We comment that H/Leq ' 6× 10−3 � 1, so

our parameter choices lie well within the range of validity of the shallow-water approx-

imation. Recall that the typical vertical/horizontal length scale ratios on hot Jupiters

are comparable, with H/R � 1 and Leq ∼ R (see Figure 1.10). Also, we comment

that the traditional approximation (i.e., taking Ω = Ωẑ), which we used to construct

of model, is valid in the limit of strongly stable stratification, N2/Ω2 � 1 (e.g., Vallis,

2006). An isothermal (magneto-)hydrostatic atmosphere has N ∼ cg/Hp (see Chapter 1),

so N2/Ω2 ∼ (cg/Hp)
2/(βR/2)2 = 4(Leq/Hp)

2(Leq/R)2 ∼ 4× 104 � 1 (for length scale

ratios, see Figure 1.10), so the traditional approximation is well-founded.

Generally, planetary flows are expected to have very large Reynolds numbers (i.e.,

planetary flows are highly turbulent), so realistic values cause numerical difficulties (e.g.,

Vallis, 2006; Showman et al., 2010). The simulations presented in this work have a viscous

diffusion of ν = 4× 108 m2 s−1 (Re ∼ 5× 102 for L ∼ Leq and U ∼ cg). In terms of “true”

physical values, this diffusion coefficient is comparatively large; yet, upon checking, we

find that viscous components of Equation (2.108a) remain negligibly small. This is to be
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expected as we are predominantly modelling bulk large-scale planetary flows, upon which

viscous dissipation generally has little direct influence. We set the magnetic diffusivity to

η = 4× 108 m2 s−1 (Rm ∼ 5× 102 for L ∼ Leq and U ∼ cg), which is within the expected

η range in HAT-P-7b’s atmosphere (Rogers, 2017). These values of η and ν are both small

enough to make the dynamical timescales of our system much smaller than the diffusion

timescales (typically τdyn/τη ∼ 0.01-0.1, where τdyn is the longest dynamical timescale

over which simulated solutions evolve.). In three-dimensional geometries, longitudinal

variations in η are likely to play an important role in the evolution of the magnetic field,

but we defer considerations of this more complicated problem to future work.
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Chapter 3

Linear Waves of the SWMHD

Model

In a hydrodynamic study, Showman & Polvani (2011) showed that the eastward equatorial

winds on hot Jupiters are linked to energy and momentum redistribution arising from the

planets’ largest scale equatorially-confined shallow-water waves. Therefore, if we wish to

understand the conditions under which magnetism can cause equatorial winds to reverse

direction, it follows that we need to consider the role that magnetism plays in determining

the characteristics of such planetary scale waves. In the past various authors have stud-

ied the linear waves present in rotating MHD systems. Early studies, which used quite

general (usually uniform) flow/field geometries, focussed on the influence that these waves

have on the geodynamo (Hide, 1966, 1969b; Acheson & Hide, 1973). However, since the

development of SWMHD (Gilman, 2000), authors have been able to utilise its reduced

geometry to study more specific flow/field geometries in thin-layered systems.

A series of investigations have studied the influence that rotating SWMHD waves have

in the solar tachocline (Schecter et al., 2001; Zaqarashvili et al., 2007, 2009; Zaqarashvili,

2018), which like the atmosphere of hot Jupiters is expected to have an equatorially-

antisymmetric toroidal dominant magnetic field geometry. Schecter et al. (2001) studied

waves in the local regions of the solar tachocline; whereas Zaqarashvili et al. (2007, 2009)
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studied their global influence for the two extreme cases (ε � 1 and/or ε � 1) of the

parameter ε = 4Ω2R2/c2g, which compares the relative importance of stratification and

rotation. These two extremes are applicable for the innermost and outermost regions

of the solar tachocline however the HAT-P-7b parameter space used in this work gives

ε ≈ 4.8. Zaqarashvili (2018) studied the equatorial SWMHD waves in the presence of

a uniform and an equatorially-antisymmetric (latitudinally-linear) azimuthal background

magnetic field using an equatorial beta-plane model. We shall apply some of these results

to the hot Jupiter parameter regime in this chapter in order to obtain some intuition of

the waves in the system. However, we must be aware that the study of Zaqarashvili (2018)

used weakly-magnetic assumptions that the hot Jupiter regime is likely to violate. Further,

London (2017) and London (2018) studied some asymptotic solutions of the beta-plane

and spherical version of the system, with an equatorially-antisymmetric azimuthal field, in

certain weak and strong field limits, but we wish to study the transition where magnetism

becomes dynamically important.

The rotating SWMHD system has also been studied for other magnetic field geometries.

Heng & Spitkovsky (2009) used the rotating SWMHD system to study Type I X-ray bursts

from neutron stars with an initially radial magnetic field geometry. Márquez-Artavia et al.

(2017) carried out a comprehensive study of rotating SWMHD waves with an azimuthal

magnetic field in spherical geometry, across a large region of parameter space. However,

as the toroidal magnetic field in their system was symmetric about the equator (with an

equatorial maximum), it is unclear how their findings relate to the hot Jupiter system,

which is expected to have an equatorially-antisymmetric dominant field geometry.

3.1 Linearised SWMHD equations

To study the linear equatorial waves of the system, we linearise the non-diffusive, unforced,

drag-free versions of the dimensional governing equations of the reduced gravity SWMHD

model of Chapter 2 (i.e., Equations (2.108a) to (2.108d)). In this limit, the governing
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equations of the reduced gravity SWMHD system reduce to

Du

Dt
+ f(ẑ× u) = −g∇h+ (B · ∇)B, (3.1a)

∂h

∂t
+∇ · (hu) = 0, (3.1b)

DA

Dt
= 0, (3.1c)

hB ≡ ∇×Aẑ, (3.1d)

which are mathematically identical to the governing equations of the single layer SWMHD

model of Gilman (2000) (i.e., Equations (2.10), (2.16), (2.23) and (2.29) in Chapter 2).

Consequently, we can use results of single layer SWMHD models to inform on the be-

haviours of freely propagating waves in the reduced gravity SWMHD system. These

freely propagating waves should prove insightful provided that their travel timescales are

shorter than the timescales of diffusion, drags, and radiative heating/cooling in the full

model (i.e., Re � 1,Rm � 1,Nc � 1,Dr � 1).

We linearise Equations (3.1a) to (3.1d) about the background state, {u0, v0, h0, A0} =

{0, 0, H,A0(y)}, where H is the (constant) background layer thickness and A0 is defined

such that dA0/dy = HB0 for some generally latitudinally-dependent azimuthal back-

ground magnetic field, B0 = B0(y)x̂, which is in velocity units. The evolution of the

perturbations to this background state is determined by the following linearised SWMHD

system:

∂u1
∂t

= fv1 − g
∂h1
∂x

+B0
∂Bx,1
∂x

+
dB0

dy
By,1, (3.2a)

∂v1
∂t

= −fu1 − g
∂h1
∂y

+B0
∂By,1
∂x

, (3.2b)

∂h1
∂t

= −H
(
∂u1
∂x

+
∂v1
∂y

)
, (3.2c)

∂A1

∂t
= −HB0v1, (3.2d)

Bx,1 =
1

H

(
∂A1

∂y
−B0h1

)
, (3.2e)

By,1 = − 1

H

∂A1

∂x
, (3.2f)
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where subscripts of unity denote perturbations from the background state, we use the

Cartesian coordinates that we introduced in Chapter 2, in which x, y, and z respectively

denote the eastward, northward, and vertical coordinates.

3.2 Plane wave solutions for a uniform background field

The simplest results can be obtained using a uniform background magnetic field,

B0 = VAx̂, (3.3)

where VA is a constant background Alfvén speed. Likewise, simplest way to study waves in

the presence of a latitudinally varying planetary vorticity is with a beta-plane treatment

of the Coriolis parameter (e.g., Vallis, 2006):

f = f0 + βy, (3.4)

where f0 ≡ f(y0) = 2Ω sin θ0 is the value of the Coriolis parameter at some reference

latitude, θ0 ≡ y0/R, and β ≡ df/dy|y=0 = (2Ω/R) cos θ0 is the Coriolis parameter’s first

order local latitudinal variation. Note that this treatment only differs from the equatorial

beta-plane approximation discussed in Chapter 2 (Section 2.2.3), in the respect that θ0 is

kept general for convenience. As before, Equation (3.4) is obtained via a Taylor expansion

about y0, where f0 and βy are respectively the O(1) and O(y/R) terms. The key difference

between this general beta-plane treatment and the equatorial beta-plane treatment that

we use elsewhere in this work is that y is centred about the reference latitude, θ0, rather

than the equator.

Using the simple treatments of Equations (3.3) and (3.4), Equations (3.2a) to (3.2f)
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can be simplified to

∂u1
∂t

= (f0 + βy)v1 − g
∂h1
∂x

+ VA
∂Bx,1
∂x

, (3.5a)

∂v1
∂t

= −(f0 + βy)u1 − g
∂h1
∂y

+ VA
∂By,1
∂x

, (3.5b)

∂h1
∂t

= −H
(
∂u1
∂x

+
∂v1
∂y

)
, (3.5c)

∂Bx,1
∂t

= VA
∂u1
∂x

, (3.5d)

∂By,1
∂t

= VA
∂v1
∂x

. (3.5e)

If |y/R| � 1, |βy| � |f0| and the coefficients of all the terms in this linear set of equations

are approximately constant. Therefore, Equations (3.5a) to (3.5e) may be approximately

solved with the plane wave ansatz:

(u1, v1, h1, Bx,1, By,1) = (û, v̂, ĥ, B̂x, B̂y)e
i(kx+ly−ωt), (3.6)

where hatted variables are amplitudes of the plane wave solutions, k is the azimuthal

wavenumber, l is the latitudinal wavenumber, and ω is the oscillation frequency. Com-

bining Equation (3.6) with Equations (3.5a) to (3.5e), and seeking solutions that are first

order in the Coriolis parameter only, yields the following dispersion relation (Zaqarashvili

et al., 2007; Heng & Spitkovsky, 2009):

ω4 − ω2(K2c2g + 2k2V 2
A + f20 )− ωβkc2g + k2V 2

A(K2c2g + k2V 2
A) = 0, (3.7)

for arbitrary wave amplitudes, where K ≡ (k2 + l2)1/2 is the magnitude of the horizontal

wavevector, k ≡ (k, l), and cg ≡ (gH)1/2 is the (rotationless) shallow-water gravity wave

speed.

125



Chapter 3. Linear Waves of the SWMHD Model

3.2.1 Waves in a non-rotating system

First, it is illustrative to consider wave-like solutions in the rotation-free limit (f0 = β = 0),

whereby Equation (3.7) reduces to give

(ω2 − (K2c2g + k2V 2
A))(ω2 − k2V 2

A) = 0. (3.8)

Hence, we have four solutions (Schecter et al., 2001):

ω2 =

c
2
mk

2 + c2gl
2, (3.9a)

V 2
Ak

2, (3.9b)

where cm ≡ (c2g + V 2
A)1/2 is the magneto-gravity wave speed in the direction of the back-

ground field (i.e., the azimuthal direction). The two solutions given by Equation (3.9a)

represent horizontally propagating magneto-gravity waves, which are waves driven by a

combination of gravitational restoration and magnetic tension; whereas the two solutions

given by Equation (3.9b) are Alfvén waves, which are driven by magnetic tension and

travel parallel to the background magnetic field. In the hydrodynamic limit (VA = 0), the

solutions given by Equation (3.9b) are lost and Equation (3.9a) reduces to the shallow-

water gravity wave dispersion relation, which we discussed for the one-dimensional case

in Chapter 1. We comment that, since the Alfvén waves in a uniform purely-azimuthal

background travel azimuthally with the non-dispersive oscillation frequency, ω = ±VAk,

they travel like solitons, maintaining their shape, energy, and angular momentum, unless

acted on by drag/diffusion.

Next we include rotation. We shall refer to rotationally modified magneto-gravity

waves as being in the “fast” or “magneto-gravity branch” and rotationally modified Alfvén

waves as being in the “slow” or “Alfvén branch” of solutions (as in Schecter et al., 2001).

3.2.2 f-plane solutions

Here we consider plane wave solutions in the absence of a latitudinal planetary vorticity

gradient, β = 0. This is often referred to as the f-plane (e.g., Vallis, 2006). These are the
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modes which dominate at the poles as f ∼ f0 and β ∼ 0. In this limit, Equation (3.7)

reduces to

ω4 − ω2(K2c2g + 2k2V 2
A + f20 ) + k2V 2

A(K2c2g + k2V 2
A) = 0, (3.10)

and has solutions satisfying

ω2 =
K2c2g

2
+ k2V 2

A +
f20
2
± 1

2

√
K2c2g(K

2c2g + 2f20 ) + f20 (f20 + 4k2V 2
A), (3.11)

which is equivalent to the solutions found by in Heng & Spitkovsky (2009) but with an

azimuthal, rather than vertical, magnetic field geometry. The two high frequency solu-

tions with a positive plus/minus sign in Equation (3.11) belong to the magneto-gravity

branch and travel in opposite directions in order to restore pressure gradients and mag-

netic tension, but with a Coriolis modification. Heng & Spitkovsky (2009) link these to

magneto-Poincaré waves (as they reduce to the hydrodynamic Poincaré wave for VA = 0);

while other authors (e.g., Márquez-Artavia et al., 2017; Zaqarashvili, 2018) refer to them

as magneto-inertial gravity waves (and inertial gravity waves). We choose the inertial

gravity/magneto-inertial gravity nomenclature and, hereafter, we use the MIG abbrevi-

ation used by Márquez-Artavia et al. (2017). The two lower frequency solutions with

a negative plus/minus sign in Equation (3.11) belong to the Alfvén branch, and drive a

restoring force that balances magnetic tension and the Coriolis force. Heng & Spitkovsky

(2009) termed these magnetostrophic waves and find them to be restricted to the poles of

their model.

3.2.3 Alfvén-Rossby wave coupling (general beta-plane)

Next we consider the full dispersion relation given in Equation (3.7), which includes the

effects of the latitudinal planetary vorticity gradient. The inclusion of the third term in

this dispersion equation means that Equation (3.7) cannot be directly solved (easily). For

the fast branch MIG waves the quartic and quadratic terms dominate the polynomial and

solutions resemble the f-plane solutions (Hide, 1966; Acheson & Hide, 1973; Zaqarashvili

et al., 2007; Heng & Spitkovsky, 2009). However, in the slow branch, this planetary vortic-
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ity gradient term generally has an important effect. Some intuition can be gained by using

a slow wave (|ω|/|2Ω| � 1) limit, and evaluating the general beta-plane approximation at

the equator (f0 = 0 and β = 2Ω/R). This yields

ω2((c2m + V 2
A)k2 + c2gl

2) + ωβkc2g − k2V 2
A(c2mk

2 + c2gl
2) = 0, (3.12)

which has solutions that satisfy

ω =
−βkc2g ∓

√
(βkc2g)

2 + 4k2V 2
A(c2mk

2 + c2gl
2)((c2m + V 2

A)k2 + c2gl
2)

2((c2m + V 2
A)k2 + c2gl

2)
, (3.13)

which, again, is equivalent to the solutions found by in Heng & Spitkovsky (2009) but with

an azimuthal, rather than vertical, magnetic field geometry. These modes now represent

rotationally modified waves in the slower Alfvén branch, with the inclusion of the effects

caused by the introduction of the latitudinal planetary vorticity gradient. Indeed, in the

limit where these solutions are dominated by the Alfvén speed, these become like Alfvén

waves in nature (see by taking VA dominatingly large). Further understanding of these

Alfvén branch solutions can be gained by considering their reduction in the hydrodynamic

limit (VA = 0):

ω =

−βk/K
2, (3.14a)

0. (3.14b)

Hence, in the hydrodynamic limit one of the two Alfvén branch solutions vanishes but the

other persists. The remaining solution given by Equation (3.14a) can be recognised as the

dispersion relation for hydrodynamic Rossby waves (see Equation (1.29) in Chapter 1).

This Alfvén-Rossby wave coupling is a well-documented feature of MHD in systems

with a latitudinally dependent planetary vorticity (Hide, 1966, 1969b; Acheson & Hide,

1973; Diamond et al., 2007; Zaqarashvili et al., 2007, 2009; Heng & Spitkovsky, 2009;

Márquez-Artavia et al., 2017; Zaqarashvili, 2018) and raises some important questions.

Firstly, when magnetic fields are introduced to the system, an extra eastward wave is

recovered compared to the hydrodynamic case. What is the nature of this extra solution?
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Table 3.1: Parameters for the shallow-water model of HAT-P-7b. cg is the gravity wave speed, Ω
is the planetary rotation frequency, R is the planetary radius, and H is the active layer thickness.
These parameter choices are discussed in Chapter 2.

cg (m s−1) β (m−1 s−1) R (m) H (m)

3.0× 103 6.6× 10−13 1× 108 4.3× 105

Secondly, the westward wave is some kind of Alfvén-Rossby hybrid. However, Alfvén waves

are non-dispersive and travel in a direction aligned with the dominant azimuthal magnetic

field geometry; whereas the Rossby waves are highly dispersive, behave geostrophically,

and transfer energy and angular momentum to the surrounding system (in a manner that is

important for hydrodynamic planetary circulation; see Chapter 1). Which characteristics

does this hybrid wave possess and how does this affect the planetary dynamics of hot

Jupiters (if at all)? The answers to these questions are subtle and will be answered

through much of our discussions in the remainder of this chapter and through the work of

Chapter 5.

First and foremost, some initial hints to these answers can be gleaned from considering

the nature of the westward solution of Equation (3.13) and the dispersion relationships

of the westward Alfvén wave and the Rossby wave. As highlighted by Hide (1966), Hide

(1969b), and Acheson & Hide (1973), comparing the oscillation frequency of Rossby (ωR)

and Alfvén (ωA) waves gives

|ωR/ωA| = β/VA(k2 + l2), (3.15)

suggesting that, for given choices of β and VA,0, Rossby wave characteristics dominate

at large scales (i.e., smallest wavenumbers); whereas the westward Alfvén characteristics

dominate at small scales (i.e., largest wavenumbers). Hence, for a given choice of VA, there

should be some scale at which this westward hybrid wave changes nature from one to the

other.

We examine this in Figure 3.1, where we plot the oscillation frequencies corresponding

to the solutions of unsimplified plane wave dispersion relation of Equation (3.7). In Fig-

ure 3.1, Equation (3.7) is solved directly for −5/R < k < 5/R, where positive/negative k
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Figure 3.1: The fast (blue) and slow (red) branch solutions of Equation (3.7), which results from
the local plane wave and general beta-plane approximations, are plotted for 5/R < k < 5/R with
the constant azimuthal background Alfvén speeds VA = 0 (hydrodynamic, solid lines), VA = cg/10
(dashed lines), VA = cg/101/2 (dot-dashed), and VA = cg (dotted lines). The general beta-plane
approximation is evaluated at θ0 = π/4 (mid-latitudes) and we set l = L−1

D = (cg/f0)−1. The
parameters of HAT-P-7b that were discussed in Chapter 2 were used (see Table 3.1).
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corresponds to an eastward/westward propagating phase, using Matlab’s in-built poly-

nomial root finding methods. For this, we use the parameters of HAT-P-7b discussed in

Chapter 2 (see Table 3.1), taking θ0 = π/4, l = L−1D = (cg/f0)
−1, and using the uniform

azimuthal background magnetic field stengths VA = 0 (solid lines), VA = cg/10 (dashed

lines), VA = cg/101/2 (dot-dashed lines), and VA = cg (dotted lines). The fast branch

waves (i.e., the inertial gravity/MIG waves) are plotted in blue; whereas the slow branch

waves are plotted in red. For hot Jupiters, the choices VA = cg/10 and VA = cg/101/2

are fairly weak/moderate; whereas the choice VA = cg is relatively extreme. That said, in

their simulations Rogers & Komacek (2014) found that the toroidal field can reach energy

equipartition, so VA = cg is not unreasonable in the hottest hot Jupiters.

The fast branch MIG waves are relatively unaffected by magnetism until VA ∼ cg, at

which point it behaves like a magneto-gravity wave and rotation plays only a minor role.

For the westward Alfvén-Rossby hybrid wave, solutions undergo a transition in nature

at azimuthal length scales depending on (non-zero) VA. At small azimuthal scales these

solutions have an azimuthal group velocity that is approximately independent of k and

the solution is Alfvénic in nature; whereas at some intermediate scale, which depends

on VA, the solution transitions in nature and the azimuthal group velocity becomes dis-

persive, like a Rossby wave. At large azimuthal length scales the eastward slow branch

wave oscillates slower than the westward slow branch wave and its nature is not obvious.

However, at small azimuthal length scales its dispersion relation converges to that of an

Alfvén wave. To understand these solutions more completely, we need to move away from

the approximate plane wave treatment of Equations (3.5a) to (3.5e), in the latitudinal

direction, and consider the system exactly.

3.3 Equatorial shallow-water waves

We now study Equations (3.2a) to (3.2f), using the equatorial beta-plane approximation1,

f = βy, and various choices of B0 = B0x̂, including the hydrodynamic case (B0 = 0),

1Hereafter, we shall always use the equatorial beta-plane approximation (as opposed to the general
beta-plane approximation), so “equatorial” may be dropped, though we shall attempt to avoid this.
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with the plane wave ansatz:

{u1, v1, h1, A1, Bx,1, By,1} = {û(y), v̂(y), ĥ(y), Â(y), B̂x(y), B̂y(y)}ei(kx−ωt), (3.16)

on time and the azimuthal direction, but not the latitudinal direction. This yields

− iωû = βyv̂ − ikgĥ+ ikB0B̂x +
dB0

dy
B̂y, (3.17a)

− iωv̂ = −βyû− gdĥ

dy
+ ikB0B̂y, (3.17b)

− iωĥ = −H
(
ikû+

dv̂

dy

)
, (3.17c)

− iωÂ = −HB0v̂, (3.17d)

where B̂x = (dÂ/dy −B0ĥ)/H and B̂y = −ikÂ/H.

3.3.1 Hydrodynamic equatorial shallow-water waves

The hydrodynamic solutions to this system are termed equatorial shallow-water waves and

were first studied by Matsuno (1966). On rotating spheres equatorial wave trapping, due

to latitudinal variations in the Coriolis parameter, can amplify the signals of linear waves

and increase their importance to system dynamics. Equatorial trapping of this kind arises

as meridionally propagating planetary scale waves experience the latitudinal variations

in f and, to adjust to these changes, their latitudinal wavenumber, l, decreases as they

travel poleward. If the planetary rotation rate is large enough (Ro . 1), l vanishes at

some critical latitude, over which waves may not propagate meridionally. Consequently,

the energy associated with these waves is reflected back into the equatorial region, caus-

ing the linear superposition of equatorial shallow-water waves (i.e., eastward or westward

propagating organised structures of velocity and geopotential), to have unusually strong

signals at the equator (e.g., Pedlosky, 2013). Matsuno (1966) studied these (hydrody-

namic) equatorially-trapped waves using the hydrodynamic versions of Equations (3.17a)
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to (3.17d):

− iωû = βyv̂ − ikgĥ, (3.18a)

− iωv̂ = −βyû− gdĥ

dy
, (3.18b)

− iωĥ = −H
(
ikû+

dv̂

dy

)
, (3.18c)

where Â, B̂x, and B̂y are identically zero everywhere. Together, Equations (3.18a) and (3.18c)

yield

û =
i

ω2 − c2gk2
(
ωβyv̂ − c2gk

dv̂

dy

)
. (3.19)

Hence, for non-trivial solutions (i.e., v̂ not identically zero everywhere), this can be sub-

stituted back into Equations (3.18b) and (3.18c) to provide

d2v̂

dy2
+

(
ω2 − c2gk2

c2g
− kβ

ω
− β2

c2g
y2

)
v̂ = 0. (3.20)

Taking ỹ = y/Leq for Leq ≡ (cg/β)1/2, has the non-dimensional form (Matsuno, 1966):

d2v̂

dỹ2
+

(
ω2 − c2gk2

cgβ
− kcg

ω
− ỹ2

)
v̂ = 0. (3.21)

This is equation is known as the parabolic cylinder equation and, for infinite-bounded

boundary conditions, v̂ → 0 as |y| → ∞, the meridional structure of its eigenfunctions can

be written in terms of the parabolic cylinder functions of the first kind2 (Abramowitz &

Stegun, 1965; Matsuno, 1966):

ψn(y) ≡ CnHn(y/Leq) exp(−y2/2L2
eq), (3.22)

with v̂ ∝ ψn, for n = 0, 1, 2, . . . . In this equation Hn are Hermite polynomials of degree

n (i.e., H0 = 1, H1 = 2ỹ, H2 = 4ỹ2− 2, H3 = 8ỹ3− 12ỹ, etc.) and the coefficient Cn is an

arbitrary constant of integration. To illustrate their form, we plot the first few parabolic

2Only parabolic cylinder functions of the first kind satisfy the infinite-bounded boundary conditions,
v̂ → 0 as |y| → ∞ (Abramowitz & Stegun, 1965).
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Figure 3.2: The parabolic cylinder functions of the first kind, ψn, as described in Equation (3.22),
for n = 0, 1, 2, 3, 4. For the arbitrary constant, Cn = (2nn!π1/2)−1/2 is chosen so that ψn are
orthonormal (Abramowitz & Stegun, 1965).

cylinder functions (of the first kind) in Figure 3.2, noting that their meridional profiles

are oscillatory close to the equator (y = 0) and decay exponentially at higher latitudes.

Using the recurrence relationship associated with the parabolic cylinder function, one can

show that these eigenfunctions satisfy Equation (3.21) if the constant coefficients of v̂ in

Equation (3.21) equal 2n + 1. This yields the equatorial shallow-water wave dispersion

relation (Matsuno, 1966):

ω2

βcg
− k2cg

β
− kcg

ω
= 2n+ 1. (3.23)

Equation (3.23) is cubic in ω, so generally (for n ≥ 1) there are three different solutions for

each n: two inertial gravity waves (one east and one west) and one Rossby wave. Matsuno

(1966) also noticed that, for n = 0, Equation (3.23) can be factorised to give

(ω + cgk)(ω2 − cgkω − cgβ) = 0, (3.24)
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yielding the n = 0 solutions:

ω =


−cgk, (3.25a)

cgk/2 + (c2gk
2/4 + cgβ)1/2, (3.25b)

cgk/2− (c2gk
2/4 + cgβ)1/2. (3.25c)

The solutions of Equations (3.25b) and (3.25c) have properties of inertial gravity waves

and Rossby waves and are often called the mixed Rossby-gravity solutions (one eastward

and one westward). However, Equation (3.19) shows that, for ω = ±cgk, velocities are

only finite for the trivial solutions with v̂ = 0 everywhere. Therefore, the n = 0 solution of

Equation (3.25a), which has v̂ = ψ0(y), is spurious and should be rejected. For the trivial

case, taking v̂ = 0 everywhere in Equations (3.18a) and (3.18c) yields

ω = ±cgk, û =
kc2g
ωH

ĥ, (3.26)

which can be used in Equation (3.18b) to give

ω = ±cgk, ĥ = h0 exp(∓y2/2L2
eq), û = ±cg

h0
H

exp(∓y2/2L2
eq). (3.27)

The eastward solution of Equation (3.27), ω = cgk, {ĥ, û} ∝ exp(−y2/2L2
eq), satisfies

the infinite-bounded boundary conditions and is known as the equatorial Kelvin wave;

whereas the westward solution, ω = −cgk, {ĥ, û} ∝ exp(y2/2L2
eq), violates the infinite-

bounded boundary conditions and is rejected. The equatorial Kelvin wave is named after

the analogous boundary Kelvin wave. This is because the latitudinal variation of the

Coriolis parameter causes the equatorial Kelvin wave to travel along the equator, just

as rotation causes boundary Kelvin waves to travel parallel to the boundaries they are

adjacent to (e.g., Pedlosky, 2013). Matsuno (1966) also founded the convention of labelling

the equatorial Kelvin wave as the n = −1 solution. This stems from the fact that ω = cgk

is a solution to Equation (3.23) for n = −1. Moreover, this is consistent with setting

ψ−1 = ψ−2 = 0 everywhere, in which case the latitudinal profile of the meridional velocity

is v̂ ∝ ψn, and û and ĥ can be expressed as linear combinations of ψn+1 and ψn−1, for any

n = −1, 0, 1, 2, . . . . Matsuno (1966) also showed that, when the system’s eigenfunctions
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Figure 3.3: Azimuthal dispersion relations for the hydrodynamic equatorial shallow-water wave
solutions up to n = 3 over the azimuthal wavenumber range, −5/R < k < 5/R, for the parameters
of HAT-P-7b discussed in Chapter 2 (see Table 3.1). The azimuthal wavenumbers are scaled to by
the planetary scale azimuthal wavenumber (1/R) and the oscillation frequencies are scaled by the
frequency of a shallow-water gravity wave with a planetary scale azimuthal wavenumber (cg/R).

are defined in this way, they form complete orthonormal set of basis functions.

In Figure 3.3, we plot the azimuthal dispersion relations of the n = −1, 0, 1, 2, 3

(hydrodynamic) equatorial shallow-water waves over the azimuthal wavenumber range,

−5/R < k < 5/R. The equatorial Kelvin wave is plotted in yellow, the n = 0 mixed

Rossby-gravity solutions are plotted in purple, the equatorial inertial gravity waves are

plotted in blue, and the equatorial Rossby waves are plotted in red. Labels of n are anno-

tated adjacent to lines where possible, with the exception of the n = 2 equatorial Rossby

wave. Alongside this, in Figure 3.4 we plot the geopotential/velocity structures of the

largest scale (hydrodynamic) equatorial equatorial shallow-water waves for the planetary

scale azimuthal wavenumber k = 1/R, using parameters based on HAT-P-7b.

As stated above, there are three solutions for each n ≥ 1: one eastward inertial gravity

wave solution, one westward inertial gravity wave solution, and one Rossby wave solution.

The equatorial inertial gravity waves are found in both eastward and westward travelling

varieties and propagate zonally at high frequencies (|ω| > cgk), with their oscillation fre-
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Figure 3.4: The structural forms (geopotential contours with overlaid velocity vectors) of the
largest scale hydrodynamic equatorial shallow-water waves, with azimuthal wavenumber k = 1/R,
are plotted and with the parameters of HAT-P-7b discussed in Chapter 2 (see Table 3.1). These
include the n = −1 (first column, first row), n = 0 (columns two and three, first row), n = 1
(second row), n = 2 (third row), and n = 3 (fourth row) solutions, which are labelled to denote
their types. In this labelling RG denotes the n = 0 mixed Rossby-gravity waves and IG denotes
the inertial gravity waves.
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quencies successively increasing for larger n solutions (see Figure 3.3). They are driven

by pressure gradients and their associated velocity profiles experience relatively small de-

flections from planetary rotation as they propagate (see Figure 3.4). The Rossby waves

oscillate at the low frequencies (|ω| < cgk), with their oscillation frequencies successively

decreasing for larger n solutions. Rossby solutions only come in westward travelling va-

rieties, with their velocity/geopotential profiles propagating westward while maintaining

geostrophic balance. As n increases, the most extreme geopotential highs/lows of the

n ≥ 1 solutions become more poleward, with Rossby high/lows generally being more

poleward than those of the inertial gravity wave for a given n. As n increases and the

waves’ predominant velocity/geopotential structures become located at higher latitudes,

their equatorial pressure gradients lessen.

The three special solutions (i.e., the n = −1 and n = 0 solutions) display fairly unique

k dependence in the dispersion diagram (see Figure 3.3). The equatorial Kelvin solution is

non-dispersive and it travels eastward along the equator (where the Coriolis force vanishes)

in order to restore pressure gradients, with its phase and group speeds always equal to

the gravity wave speed. The latitudinal variation of the Coriolis parameter causes it to be

tightly confined to the equatorial region, with the latitudinal length scale Leq. The equa-

torial Kelvin solution’s velocity/geopotential structures are most recognisable for their

purely-zonal (east-west) velocity profiles. It propagates eastward with its geopotential

structures and velocities aligned so that is has eastward velocities aligned along geopoten-

tial highs and westward velocities aligned along geopotential lows (see Figure 3.4). The

other two special solutions are the eastward and westward n = 0 solutions. The eastward

n = 0 solution has characteristics most like an inertial gravity wave and oscillates at high

frequencies, particularly at large wave numbers; whereas the westward n = 0 solution

tends to oscillate at low frequencies and behaves more similarly to the equatorial Rossby

waves (see Figure 3.4). Due to this mixed behaviour the n = 0 solutions are often termed

mixed Rossby-gravity waves (Matsuno, 1966; Pedlosky, 2013).

Figure 3.4 highlights that the solutions with n odd are are antisymmetric about the

equator in v and symmetric about the equator in {u, h}; whereas the solutions with n
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even are equatorially-symmetric in v and are equatorially-antisymmetric in {u, h}. In the

context of hot Jupiters, this symmetry is useful as, to first order, the radiative heating in

the atmospheres of tidally locked hot Jupiters is equatorially-symmetric and is expected to

cause equatorially-symmetric temperature profiles (Showman & Polvani, 2011), for which

h is a shallow-water proxy (as discussed in Chapter 2, see Table 3.1). This means that

planetary scale dynamics will only tend to rely on the n odd solutions. As shown above

(and in Figure 3.4), the typical latitudinal length scale of the equatorial shallow-water

waves is Leq, which for hot Jupiters is similar to the scale of the planetary radius (see

Figure 1.10) so large n solutions are not expected to be important to planetary dynamics.

In fact (as briefly discussed in Chapter 1) Showman & Polvani (2011) showed that, since

Leq ∼ R on hot Jupiters, the equatorial dynamics on hot Jupiters can be well described

by the n = −1 and n = 1 solutions alone. Now that we have developed this underpinning

hydrodynamical theory, we can look at how magnetism modifies the largest scale, n odd,

equatorial shallow-water waves.

3.3.2 Equatorial SWMHD waves in a uniform azimuthal field

First we will consider equatorial SWMHD waves in a uniform azimuthal field, which is

mathematically similar to the hydrodynamic system. If B0 = VAx̂, for the constant

azimuthal background Alfvén speed, VA, Equations (3.17a) to (3.17d) become

− iωû = βyv̂ − ikgĥ+ ikVAB̂x, (3.28a)

− iωv̂ = −βyû− gdĥ

dy
+ ikVAB̂y, (3.28b)

− iωĥ = −H
(
ikû+

dv̂

dy

)
, (3.28c)

− iωÂ = −HVAv̂, (3.28d)
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where B̂x = (dÂ/dy − VAĥ)/H and B̂y = −ikÂ/H. From this we eliminate û, ĥ, Â, B̂x,

and B̂y to obtain the single ordinary differential equation (ODE):

L{v̂} ≡
(
ω2 − V 2

Ak
2
) d2v̂

dy2
+

1

c2g

[
(ω2 − c2mk2)(ω2 − V 2

Ak
2)− ω2β2y2 − ωkβc2g

]
v̂ = 0, (3.29)

for v̂ not identically zero. In this ODE L denotes the differential operator and cm ≡ (gH+

V 2
A)1/2 denotes the constant (rotationless) magneto-gravity wave speed. We comment that,

for a given VA and ω, L takes the same form as the hydrodynamic ODE (Equation (3.21)),

albeit with a different scaling on y. This system has been solved before by Zaqarashvili

(2018), who used the scaling ỹ = µ1/2y with

µ =
|ω|β

cg

√
ω2 − V 2

Ak
2
, (3.30)

to write v̂ ∝ ψn with

ψn(y) ≡ CnHn(y/Lm) exp(−y2/2L2
m), (3.31)

for n = 0, 1, 2, . . . and ψ−1 = 0 everywhere, where we have defined Lm ≡ µ−1/2 as a

magnetically-adjusted equatorial Rossby deformation radius, as it is the length scale over

which stratification, rotation, and magnetic tension balance. However, the key difference

between Leq and Lm is that, while Leq ≡ (cg/β)1/2 is identical for any hydrodynamic

wave, Lm varies depending on the relative magnitude of |ω| and its deviation from the

Alfvén frequency, VAk. In a similar fashion to the hydrodynamic case, the dispersion

relation becomes (Zaqarashvili, 2018)

(ω2 − V 2
Ak

2)(ω2 − c2mk2)− kβc2gω = βcg|ω|(2n+ 1)
√
ω2 − V 2

Ak
2, (3.32)

for n = −1, 0, 1, 2, 3, . . . . Equation (3.32) is quartic in ω and its square root term means

that one must seek solutions of its square: an octic. An analytic solution is therefore not

guaranteed and numerical root finding techniques should be employed for further progress.

Zaqarashvili (2018) solved this system for parameters based on the solar tachocline. We
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Figure 3.5: Azimuthal dispersion relations for the equatorial SWMHD wave solutions, with the
constant azimuthal background magnetic fields VA = 0.1cg (lefthand panel) and VA = cg (righthand
panel), up to n = 3 over the azimuthal wavenumber range, −5/R < k < 5/R, for the parameters
of HAT-P-7b discussed in Chapter 2 (see Table 3.1). The azimuthal wavenumbers are scaled by
the planetary scale azimuthal wavenumber (1/R) and the oscillation frequencies are scaled by the
frequency of a shallow-water gravity wave with a planetary scale azimuthal wavenumber (cg/R).
The yellow line corresponds to the (n = −1) equatorial magneto-Kelvin solution, the purple lines
correspond to the n = 0 (one eastward, one westward) mixed equatorial magneto-Rossby-gravity
waves, the blue lines correspond to the equatorial magneto-inertial gravity waves, and the red lines
correspond to the equatorial magneto-Rossby waves. Alongside these, on the westward half of the
dispersion diagrams the Alfvén frequency (VAk; dashed line) is included for reference.

find similar results for the hot Jupiter parameters that are based on HAT-P-7b, which

we introduced in Chapter 2 (see Table 3.1). Using these parameters, we plot dispersion

relation diagrams for the background magnetic field strengths VA = 0.1cg (lefthand panel)

and VA = cg (righthand panel) in Figure 3.5. In these, the line colours and ranges are

identical to Figure 3.5, but now the shorthands are prefixed with a “M” to denote the

waves are magnetic (e.g., MK is the equatorial magneto-Kelvin wave).

Magnetic modifications

On the whole, the system behaves similarly to its hydrodynamic counterpart: there is

one n = −1 equatorial magneto-Kelvin solution, there are two n = 0 mixed equatorial

magneto-Rossby-gravity waves, and, for each n ≥ 1, there are two equatorial magneto-

inertial gravity waves and one equatorial magneto-Rossby wave. In the weakly-magnetic

limit, the system’s dispersion diagram is relatively unchanged. However, as one increases

VA, the Alfvén frequency (VAk; dashed line) sets a minimum on |ω|, which affects the
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magneto-Rossby waves the westward mixed equatorial magneto-Rossby-gravity solution.

In the strong field limit, this Alfvén cut-off cause the magneto-Rossby waves to become

approximately non-dispersive in the azimuthal direction, particularly at smaller scales.

We comment that there is no eastward Alfvén branch wave in this model. We checked

this up to VA = 16cg, at which point the background Alfvén speed is so large that the

rotational and gravitational properties of the system are meaningless and all waves are

indistinguishable from Alfvén waves in the dispersion diagram.

We note that, as in the hydrodynamic case, the equatorial magneto-Kelvin solution

can be obtained by setting n = −1 in Equation (3.32). This yields ω = cm, which one

can see by substituting it back into Equation (3.32). Like the hydrodynamic case, this

corresponds to a trivial case, where v̂ = 0 everywhere. Using this in Equation (3.28d),

yields Â = 0, which can be used in Equations (3.28a) and (3.28c) to give

ω = ±cmk, û =
kc2m
ωH

ĥ, (3.33)

which can be used in Equation (3.17b) to give one bounded eastward solution (i.e., the

n = −1 solution) and one spurious unbounded westward solution:

ω = ±cmk, ĥ = h0 exp(∓y2/2L2
m), û = ±cm

h0
H

exp(∓y2/2L2
m), (3.34)

where Lm = (cg/cm)1/2Leq, which is expected from Equation (3.30) and ω = ±cmk.

In Figures 3.6 and 3.7 we plot the velocity/geopotential structure of the planetary

scale n = −1, n = 1, and n = 3 solutions, with HAT-P-7b parameters, for VA = 0.1cg and

VA = cg respectively. For VA = 0.1cg, all of the plotted solutions are largely similar to their

hydrodynamic counterparts. For VA = cg the MIG waves experience a small amount of

equatorial confinement (especially the n = 3 solutions) but, again, remain largely similar.

However, for VA = cg, the restorative Lorentz force due to magnetic tension causes the

equatorial magneto-Rossby waves and the magneto-Kelvin wave to experience significant

equatorial trapping and become tightly confined to the lowest latitudes. The degree of this
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Figure 3.6: The structural forms (geopotential contours with overlaid velocity vectors) of the
largest scale odd n equatorial SWMHD waves, with the constant azimuthal background magnetic
fields VA = 0.1cg and the azimuthal wavenumber k = 1/R, are plotted and with the parameters of
HAT-P-7b discussed in Chapter 2 (see Table 3.1).

Figure 3.7: As in as Figure 3.7, but for VA = cg.
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trapping is determined by Lm = (cg(ω
2 − V 2

Ak
2)1/2/|ω|β)1/2, which one can see becomes

shortest for waves closest in frequency to the background Alfvén frequency. Other than this

latitudinal rescaling, the velocity/geopotential structures remain qualitatively similar. For

instance, the equatorial magneto-Rossby waves adjust to a magneto-geostrophic balance.

3.3.3 Equatorial SWMHD waves in a linear azimuthal field

While the uniform magnetic field case is illustrative, the toroidal magnetic field on hot

Jupiters is thought to be antisymmetric about the equator (see Section 1.4.1). Alongside

this, using numerical simulations of the kind we present in Chapter 4, we found that simu-

lations with uniform background magnetic fields were unable to reproduce wind reversals

for reasonable magnetic field strengths. Therefore, in this subsection, we look at some

initial results using a linear azimuthal field:

B0 = B0x̂ = γyx̂, (3.35)

for constant γ. This is the simplest equatorially-antisymmetric azimuthal field profile

and can be considered as the first order Taylor expansion of a more realistic equatorially-

antisymmetric azimuthal field profile, in which γ = dB0/dy|y=0 can be considered the

latitudinal variation of the toroidal field at the equator. With this choice of B0, Equa-

tions (3.17a) to (3.17d) become

− iωû = βyv̂ − ikgĥ+ ikγyB̂x + γB̂y, (3.36a)

− iωv̂ = −βyû− gdĥ

dy
+ ikγyB̂y, (3.36b)

− iωĥ = −H
(
ikû+

dv̂

dy

)
, (3.36c)

− iωÂ = −Hγyv̂, (3.36d)
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where B̂x = (dÂ/dy − γyĥ)/H and B̂y = −ikÂ/H. From this we eliminate û, ĥ, Â, B̂x,

and B̂y to obtain the single ODE:

L{v̂} ≡ F1
d2v̂

dy2
+ F2

dv̂

dy
+ F3v̂ = 0 (3.37a)

with the coefficient functions:

F1 =
(
ω2 − γ2k2y2

) (
ω2 − c2gk2 − γ2k2y2

)
, (3.37b)

F2 = 2γ2c2gk
4y, (3.37c)

F3 =
(ω2 − c2gk2 − γ2k2y2)

c2g
[F1 − ω2β2y2 − ωkβc2g]− 2ωβγ2k3y2. (3.37d)

When the differential operator L takes this form there are three singular points in the

positive half plane3: two regular singular points at ys = |ω|/γk and ys = (ω2−c2gk2)1/2/γk,

and one irregular singular point as ys → ∞. We shall discuss the regular singular points

more closely in Chapter 5.

To avoid these singularities, Zaqarashvili (2018) studied this system near the equator

(i.e., |v̂| → 0 as y →∞) in the weakly-magnetic limit, taking

ε1 ≡
∣∣∣∣γ2k2y2ω2

∣∣∣∣� 1, (3.38a)

and

ε2 ≡
∣∣∣∣ γ2k2y2

ω2 − c2gk2
∣∣∣∣� 1, (3.38b)

which allows one to divide through by F1 and carry out a binomial expansion on any sin-

gular terms. Doing so and keeping only the terms up to O(y2), yields an ODE that can be

re-expressed in terms of the parabolic cylinder equation. Hence, using this approximation,

Zaqarashvili (2018) found that, for |v̂| → 0 as |y| → ∞, bounded solutions approximately

take the form:

v̂n(y) = Hn(
√
µy)e−(µ+d)y

2/2, (3.39a)

3The system is symmetric about y = 0, so we can limit the problem to the positive half plane.
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Figure 3.8: The structural forms (geopotential contours with overlaid velocity vectors) of the
n = 1 equatorial SWMHD waves, with the azimuthal background magnetic field B0 = γy, for
γ = 0.1cg/R, and the azimuthal wavenumber k = 1/R, are plotted and with the parameters of
HAT-P-7b discussed in Chapter 2 (see Table 3.1). The waves are qualitatively similar to their
hydrodynamic counterparts (see Figure 3.4, second row).

where d+ µ > 0, for n = 0, 1, 2, 3, . . . , and

µ =

(
γ2k2

c2g
+
β2

c2g
+

2k3βγ2

ω(ω2 − c2gk2)
+
k3βγ2

ω3
+ d2

)1/2

, (3.39b)

d =
c2gγ

2k4

ω2(ω2 − c2gk2)
. (3.39c)

In Equations (3.39a)–(3.39c) the azimuthal wavenumber, k, and oscillation frequency, ω,

are linked by the dispersion relation:

ω2

c2g
− k2 − kβ

ω
−

c2gγ
2k4

ω2(ω2 − c2gk2)
= (2n+ 1)µ, (3.40)

for n = 0, 1, 2, 3, . . . .

Magnetic modifications of n = 1 solutions (weak-field assumptions)

We solve Equation (3.40) using numerical root finding techniques and to seek the magnetically-

modified n = 1 solutions. As in hydrodynamic theory, there are generally three bounded

n ≥ 1 solutions in the weak field limit: two MIG solutions and one magneto-Rossby

solution. We plot the geopotential/velocity structures of the the planetary scale n = 1 so-

lutions in Figures 3.8 to 3.10 for γ = 0.1cg/R, γ = 0.3cg/R, and γ = 0.58cg/R respectively.

Generally, we find that the MIG solutions are qualitatively similar to their hydrodynamic
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Figure 3.9: As in Figure 3.8, but with γ = 0.3cg/R. The waves MIG waves are largely unchanged
by the magnetic field, but the n = 1 equatorial magneto-Rossby wave becomes less tightly bound
to the equator. Note that, for the HAT-P-7b parameter choices, the poles lie at y/Leq ≈ ±2.3, so
here the pressure structures are in the highest latitudes.

Figure 3.10: As in Figures 3.8 and 3.9, but with γ = 0.58cg/R, which is the magnetic field strength
where the n = 1 equatorial magneto-Rossby wave becomes unbounded. Beyond this point the
n = 1 equatorial magneto-Rossby waves no longer satisfy the system’s infinite-bounded boundary
conditions and are removed from the system. For γ = 0.58cg/R, the weak-field assumptions on the
n = 1 equatorial magneto-Rossby solution have the validity criteria ∼ 0.85, so are not suitable.
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counterparts (see Figure 3.4, second row, and accompanying discussion) and the magnetic

field acts to slightly increase their oscillation frequencies. For the eastward MIG wave,

ω = 2.89cg/R for γ = 0.1cg/R and ω = 2.94cg/R for γ = 0.58cg/R; while, for the west-

ward MIG wave, ω = −2.60cg/R for γ = 0.1cg/R and ω = −2.67cg/R for γ = 0.58cg/R.

For all of the presented magnetic field strengths the assumptions of Equations (3.38a)

and (3.38b) remain valid with ε1 ∼ ε2 . 10−2. However, upon examining Figures 3.8

to 3.10, one can see that the n = 1 magneto-Rossby solutions do experience a significant

magnetic modification. The structure of the n = 1 equatorial magneto-Rossby solution

for γ = 0.1cg/R is similar to its hydrodynamic counterpart and it travels westward, while

satisfying a magneto-geostrophic balance at mid-to-high latitudes. However, as γ is in-

creased the nature of the n = 1 equatorial magneto-Rossby solution changes, with its

geootential contours becoming pushed poleward by the magnetic field and its velocities

aligning to the azimuthal magnetic field. For γ = 0.3cg/R, the most extreme geootential

structures of the n = 1 equatorial magneto-Rossby solution are centred about y/Leq ∼ 2.

For our parameters choices and geometry the poles are located ypoles ≈ ±πR/2 ∼ 2.3Leq,

so these structures are siting at the poles. This poleward trapping corresponds to the point

where the approximate equatorial model starts to become invalid, with ε1 ≈ ε2 ∼ 10−2

for γ = 0.1cg/R and ε1 ≈ ε2 ≈ 0.26 for γ = 0.3cg/R. If one pushes the model further to

γ = 0.58cg/R, µ + d < 0 in Equation (3.39a), so the n = 1 equatorial magneto-Rossby

solutions become unbounded from the equator, which can be seen in Figure 3.10. How-

ever, note that for γ = 0.58cg/R, ε1 ≈ ε2 ≈ 0.85, so the model’s assumptions are no longer

valid. We comment that the higher n equatorial magneto-Rossby solutions undergo similar

changes at smaller γ as their oscillation frequencies are successively smaller in magnitude.

To understand the equatorial dynamics of the n = 1 equatorial magneto-Rossby solution

when the assumptions of Equations (3.38a) and (3.38b) breakdown (i.e., at the point of

this migration), one needs to solve the system exactly — a problem which we consider in

Chapter 5.

We comment that Zaqarashvili (2018) finds a fourth solution for each n ≥ 1, which

is a slow (westward) magneto-Rossby solution. We find that, for our parameter choices,
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this solution is always unbounded in the equatorial system (i.e., µ+ d < 0) so should not

be discussed in terms of the shallow-water dynamics. This solution may be spurious (as

ε1, ε2 � 1), or could feasibly be connected to the slow magneto-Rossby solutions found by

Márquez-Artavia et al. (2017), which are trapped at the poles.

Magnetic modifications of the solution (zero meridional velocity assumption)

Similarly to the hydrodynamic system, there are two valid n = 0 solutions and com-

pleteness is obtained by replacing the missing/third n = 0 solution with an equatorial

magneto-Kelvin solution. Using n = −1 in the Equation (3.40) for k = 1/R results in

a solution with ω ∼ cg/R. However, as the assumptions of Zaqarashvili (2018) require

|ω/cgk| to be either much greater or much less than one, this solution is not valid within

the framework of the model’s assumptions. Instead Zaqarashvili (2018) suggest, assuming

v1 = 0 everywhere, as in the hydrodynamic case.

With this assumption, Equations (3.2a) to (3.2f) become

∂u1
∂t

= −g∂h1
∂x

+B0
∂Bx,1
∂x

+
dB0

dy
By,1, (3.41a)

0 = −fu1 − g
∂h1
∂y

+B0
∂By,1
∂x

, (3.41b)

∂h1
∂t

= −H∂u1
∂x

, (3.41c)

∂A1

∂t
= 0, (3.41d)

Bx,1 =
1

H

(
∂A1

∂y
−B0h1

)
, (3.41e)

By,1 = − 1

H

∂A1

∂x
. (3.41f)

Hence, seeking oscillatory solutions (ω 6= 0) of the form

{u1, h1, A1,B1} = {û(y), ĥ(y), Â(y), B̂(y)}ei(kx−ω(y)t), (3.42)

Equations (3.41d) and (3.41f) yield A1 = By,1 = 0 everywhere, reducing the set of equa-
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tions to

−iωu1 = −ikgh1 + ikB0Bx,1, (3.43a)

fu1 = −g∂h1
∂y

, (3.43b)

−iωh1 = −ikHu1, (3.43c)

Bx,1 = −B0

H
h1. (3.43d)

Note that we have kept this set of equations in terms of the perturbation variables to

allow for a latitudinally-dependent oscillation frequency, ω(y). This is because Equa-

tions (3.43a), (3.43c) and (3.43d) combine to give (ω2−c2mk2)u1 = 0, or the two oscillatory

solutions:

ω±(y) = ±cmk ≡ ±(c2g +B2
0)1/2k, (3.44)

where cm(y) is the latitudinally dependent magneto-gravity wave speed.

Since the wave-like solutions take the form {u1, h1,B1} = {û(y), ĥ(y), B̂(y)}ei(kx−ω(y)t),

this would appear to suggest that the structure of the Kelvin waves latitudinally-shear as

they travel azimuthally. To attempt to glean some understanding of this, we combine

Equations (3.43b), (3.43c) and (3.44), for f = βy and B0 = γy, to yield

∂h1
∂y

= ∓
(
βyω(y)

kc2g

)
h1, (3.45)

or equivalently

dĥ

dy
−
(
i
dω

dy
t

)
ĥ = ∓

(
βy(c2g + γ2y2)1/2

c2g

)
ĥ. (3.46)

Zaqarashvili (2018) noted that this can be solved in the weakly-magnetic limit, where

(γy/cg)
2 � 1. In this case, dω/dy ≈ 0 and Equation (3.46) reduces to the separable first

order ODE, ĥ−1dĥ/dy = ∓(y/L2
eq)(1 + γ2y2/c2g)

1/2, which can be integrated directly to

yield

ĥ± = h0,± exp

{
∓1

3

(
cg
γLeq

)2(c3m
c3g
− 1

)}
, (3.47a)
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where h0,± are the normalisation constants for each of these respective profiles. From this

Equations (3.36a) and (3.36c) give

û± =±
h0,±(c2g + γ2y2)1/2

H
exp

{
∓1

3

(
cg
γLeq

)2(c3m
c3g
− 1

)}
, (3.47b)

B̂x,± =∓ h0,±γy

H
exp

{
∓1

3

(
cg
γLeq

)2(c3m
c3g
− 1

)}
. (3.47c)

giving one bounded (eastward) equatorial wave ({ω+, ĥ+, û+, B̂x,+}). For (γy/cg)
2 � 1,

Equation (3.47b) may be written as

û± = ±cgh0,±
H

(
1 +

(
γy

cg

)2
)

exp

{
∓ y2

2L2
eq

+O

((
γ

cgLeq

)2

y4

)}
, (3.48)

which, to first order, can be approximately re-expressed in the following form (as presented

by Zaqarashvili, 2018):

û± ≈ ±
cgh0,±
H

exp

{(
γy

cg

)2

∓ y2

2L2
eq

}
, (3.49)

Equation (3.49) was also used for the û+ solution in Hindle et al. (2019). We comment

that Equation (3.49) contains a correction to Equation (48) in Zaqarashvili (2018) for the

û− solution (using the substitution vA0 = γR), which contains a typographic sign error in

front of the magnetic part of the exponent.

In Hindle et al. (2019) we used numerical SWMHD simulations to highlight that

hotspot reversals can be captured with shallow-water models and compared the findings to

these equatorial free-wave solutions. We attempted use these weakly-magnetic solutions to

estimate the degree of structural shear expected under these conditions by calculating the

form of the freely travelling magneto-Kelvin wave at τtrans ≡ R2γ2τadv/c
2
g, the timescale

for the wave to transfer a local thickness perturbation, h1, to surrounding regions for

γ = 0.25(cg/R) (i.e., (γy/cg)
2 = (y/4R)2 � 1 in equatorial regions)4. A geopotential

4This was estimated by considering approximate scalings of terms in the shallow-water continuity
equation (h1/τtrans ∼ HU/L) and the shallow-water momentum equation for a rotationless non-diffusive
SWMHD model. For hydrodynamic models and moderately magnetic SWMHD models, U/τtrans ∼ gh1/L,
hence τtrans = Leq/c

2
g (Perez-Becker & Showman, 2013). We find numerically that for strong magnetic
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the magnetic Reynolds number (Rm) is temperature dependent
and exceeds unity for hotter HJs ( 2T 1300 Keq ). Hence, in
such systems the toroidal field is expected to dominate the
dipolar field in equatorial regions.

Numerically, we implement an equatorially antisymmetric
azimuthal background magnetic field though a background flux
function, which we impose initially and allow to evolve. The
imposed background flux function takes the form

= - -( ) ( )A y e HV L e , 8m
y L

0
1 2

A
2 m

2 2

where the background Alfvén speed, VA, determines the back-
ground magnetic field strength of the system. We set the latitudinal
decay length of the magnetic field to =L L 2m eq , where ºLeq

b( )gH 1 2 is the equatorial Rossby deformation radius.
Following (PBS13), we choose parameters to match those

typical of HD189733b where possible. This HJ has a planetary
radius = ´R 8.2 10 m7 , a planetary rotation rate, W = ´3.2

- -10 s5 1, and gravity waves with a speed of = -gH 2 km s 1

(PBS13). The viscous and magnetic diffusivities are assigned the
constant values of n = -10 m s8 2 1 and h = ´ -3 10 m s7 2 1,
respectively. These are typical values in the radiative zones of HJs
but, in reality, the day–night temperature variations on HJs cause
longitudinal variations in diffusion coefficients, which can be
orders of magnitude for η. We fix the atmospheric pressure scale
height =H 400 km (PBS13) and vary the background magnetic
field strength via the free parameter VA, presenting solutions
in the weakly forced (D =h H 0.001eq ) and therefore approxi-
mately linear regime, with radiative/drag timescales corresponding
to moderately efficient energy redistribution (t t= =rad drag
1 Earth day; PBS13).

After an initial transient period, SWHD solutions reach
steady state. For SWMHD systems, the magnetic diffusion
timescale is relatively large compared to the system’s
dynamical timescale (t t ~h 0.08dyn ) and a dynamically
relevant quasi-steady state emerges, before diffusion causes
the magnetic field to decay. We present numerical SWHD and
SWMHD solutions in these steady and quasi-steady states,
respectively, and plot -( )g h H , the geopotential above the
nightside equilibrium reference state, in Figure 2 for VA=0
and =V gH 4A (top/bottom panels, respectively). Energy
(heat) redistribution is traced via the geopotential, with high
geopotential regions analogous to high temperature regions
(PBS13).
Strikingly, the quasi-steady solution for =V gH 4A (lower

panel of Figure 2) exhibits a westward hotspot offset (marked
by a white cross). This is in stark contrast to SWHD systems
(and SWMHD systems with �V gH 4A ), which always
have an eastward hotspot offset.
Solutions in this “strong field limit” have larger geopo-

tential gradients, caused by the role of magnetic tension
(geopotential gradients increase sharply as VA is raised
beyond =V gH 4A ), and the shape of the geopotential
contours undergoes a phase transition as the magnetic field is
increased: the eastward-pointing chevron-shaped contours, in
the zero or weak field regime, transition into the westward-
pointing chevron-shaped contours in the strong field limit.
Because SP11 showed the eastward-pointing chevron-shaped
flow patterns to play a major role in the formation of eastward
zonal jets, this latter point is of particular interest concerning
wind reversals.

Figure 2. Contours of -( )g h H are plotted for (quasi-)steady solutions, with a forcing amplitude of D =h H 0.001eq (linear regime), and the radiative/drag
timescales t t= = 1 Earth dayrad drag . Wind velocity vectors are overplotted as black arrows, lines of constant horizontal magnetic flux (A) are overplotted as white
lines (with solid/dashed lines representing positive/negative magnetic field values), and hotspots (maxima of h on the equatorial line) are marked by white crosses.
The system origin lies at the substellar point and velocity vectors are independently normalized for each subplot.
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higher latitudes and, provided this pumping remains the
dominant zonal acceleration process, this would drive a
westward equatorial jet.

We comment that this assumption cannot be guaranteed
without consideration of the forced linear solutions, which we
omit from this Letter, but will investigate in a future paper.

5. Discussion

We have demonstrated that magnetically modified waves
lead to westward directed winds in a SWMHD model. We
found that the SWMHD model that we presented can capture
the physics of magnetically induced wind reversals, which have
only previously been studied via full three-dimensional MHD
simulations (Rogers & Komacek 2014; Rogers 2017). We
showed that the magnetic modification of the planetary-scale
equatorial waves causes the superposition of the magneto-
Kelvin and n=1 magneto-Rossby waves to reverse in
structure in the strong field limit. Hence we used arguments
of simple linear wave dynamics to explain the magnetic wind
reversal mechanism.

Understanding the magnetic-reversal mechanism in terms of a
shallow MHD phenomenon provides information about the
magnetic fields on HJs. Repeating the numerical analysis of
Section 3 in the parameter spaces of HAT-P-7b and CoRoT-2b,
we find that the minimum toroidal field strengths sufficient to
magnetically reverse winds are 2f ( )‐ ‐B P3 1 bar kG,HAT P 7b

1 2

and 2f ( )‐B P1 1 bar kG,CoRoT 2b
1 2 , where P is the atmospheric

pressure/depth of the reversal and the ideal gas law is used to
convert from velocity units. These minima can be linked to dipolar
field strengths using the scaling laws of Menou (2012), yielding

2‐ ‐B 6 Gdip,HAT P 7b and 2‐B 3 kGdip,CoRoT 2b . We comment that
the striking difference between the two dipole field minima is a

consequence of the temperature dependence of the magnetic
Reynolds number (Perna et al. 2010; Menou 2012). The minimum
dipole strength in the atmosphere of HAT-P-7-b agrees with the
three-dimensional simulations of Rogers (2017) and lies well
below the range 50–100 G predicted for most inflated HJs (Yadav
& Thorngren 2017). The dipole field strength necessary to
magnetically reverse the winds on CoRoT-2b (3 kG) greatly
exceeds 250 G, the maximum surface dipole estimate for HJs
(Yadav & Thorngren 2017). We conclude that wind reversals on
HAT-P-7b are highly likely to be magnetically driven, whereas
other explanations such as cloud asymmetries (Demory et al. 2013;
Lee et al. 2016; Parmentier et al. 2016; Roman & Rauscher 2017)
or asynchronous rotation (Rauscher & Kempton 2014) appear
more plausible on CoRoT-2b.
There are several interesting questions that we do not address

in this Letter. First, it is unclear how a highly temperature
dependent (and hence horizontally varying) magnetic Reynolds
number will effect the toroidal-poloidal scaling relationship, and
hence the dynamics of the wind reversal process. Furthermore,
vertical magnetic fields have also been assumed to be small
compared to horizontal fields in our model. Three-dimensional
simulations are required to avoid this approximation.
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Figure 3. Geopotential perturbations contours, gh1, and vectors of velocity perturbations, u1, for two different mode types at k=1/R. The n=1 (fast) magneto-
Rossby mode is plotted (left panel) for =V gH 4A . The magneto-Kelvin mode is plotted (right panel) for =V gH 4A at t t= ºt V gHtransf A

2
adv . Plots are made

for the parameter choices discussed in Section 3.
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Figure 3.11: Taken from Hindle et al. (2019). Top panel: Contours of geopotential are plot-
ted for quasi-steady non-linear solutions, with a forcing amplitude of ∆heq/H = 0.001 (weakly-
forced regime), and the radiative/drag timescales τrad = τdrag = 1 Earth days. This has
slightly different forcing and initial magnetic field profiles to the solutions of Chapter 4, with
heq = H + cos(x/R) cos(y/R) on the dayside and heq = H on the nightside (like Langton &
Laughlin, 2007; Perez-Becker & Showman, 2013) and B0 = VA (y/L) exp

(
1/2− y2/2L2

)
x̂, with

L = Leq/2. Wind velocity vectors are overplotted as black arrows, lines of constant horizontal mag-
netic flux (A) are overplotted as white lines (with solid/dashed lines representing positive/negative
magnetic field values), and hotspots (maxima of h on the equatorial line) are marked by white
crosses. The system origin lies at the substellar point and velocity vectors are independently nor-
malised for each subplot. Bottom panels: Contours of geopotential perturbations, with overlaid
velocity perturbations vectors, for two different wave types at k = 1/R. The n = 1 equato-
rial magneto-Rossby wave is plotted (lower left panel) for VA =

√
gH/4, where VA = γR in

the discussion of the main body. Note that “fast” here is used to distinguish it from the slow
equatorial magneto-Rossby wave discussed in Zaqarashvili (2018), which is unbounded at these
parameter choices. The magneto-Kelvin mode is plotted (lower right panel) for VA =

√
gH/4 at

t = τtrans ≡ V 2
Aτadv/gH. Plots are made for the parameters based on the hot Jupiter HD 189733b.
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Chapter 3. Linear Waves of the SWMHD Model

contour plot of this is shown (lower right panel), alongside a non-linear quasi-steady5 nu-

merical solution of Equations (2.108a) to (2.108d) (upper panel) and the n = 1 magneto-

Rossby wave contour (lower left panel), in Figure 3.11, which is taken from Hindle et al.

(2019). The numerical solution in Figure 3.11, which we give the details of in its caption,

displays a reversed westward hotspot, is characterised by a westward-pointing chevron-

shaped geopotential distribution, and displays no distinguishable magneto-Rossby char-

acteristics. In this numerical solution, the planetary-scale equatorial Rossby-Kelvin wave

superposition, which Showman & Polvani (2011) found drives equatorial superrotation via

eddy momentum pumping down the flanks of a eastward-pointing chevron-shaped veloc-

ity/geopotential structure, no longer emerges. Since this geopotential distribution looks

remarkably similar to that of the latitudinally-sheared equatorial magneto-Kelvin wave,

in Hindle et al. (2019) we conjectured that, in the absence of the equatorial n = 1 Rossby

wave’s equatorial influence, the latitudinal shearing of the equatorial magneto-Kelvin wave

plays a significant role in the magnetically-driven wind/hotspot reversal process on hot

Jupiters, though we highlighted that a quantification of each wave’s degree of influence was

needed to confirm this (which requires us to move away from the weakly-magnetic assump-

tions of Zaqarashvili, 2018). However, in Chapter 5, we consider exact numerical solutions

to the linear wave problem (Equations (3.17a) to (3.17d)). We show that, in these exact

solutions, the equatorial magneto-Kelvin wave has a constant (latitudinally-independent)

oscillation frequency, which prevents this latitudinal structural shearing from occurring of

this kind occurring by allowing ω to remain constant everywhere. Instead the magneto-

Kelvin solution acquires small meridional velocity component. The consequences of this

with respect to magnetically-driven wind/hotspot reversals are discussed in Chapter 5.

fields the pressure gradient and Lorentz force approximately balance, yielding gh1/L ∼ B2/L, hence
τtrans = R2γ2τadv/c

2
g, where τadv ≡ Leq/U is the hydrodynamic advection timescale defined in Perez-

Becker & Showman (2013).
5By quasi-steady, we mean that the solution was steady until magnetic diffusion became significant

and that changes due to magnetic diffusion occurred over comparatively large timescales compared to the
dynamical timescales of the hotspot reversal.
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Chapter 3. Linear Waves of the SWMHD Model

3.3.4 Summary and discussion

In this chapter we have considered the linear waves of the SWMHD model. We began by

discussing simple plane wave solutions that are valid in local regions of the atmosphere.

We then discussed equatorial waves, which are eastward/westward travelling structures of

velocity and geopotential that arise due to the planetary scale variations of the Coriolis

parameter. These are known to be important to the large scale equatorial dynamics of

hot Jupiters in the hydrodynamic limit. Here we summarise some common themes and

questions that have arisen throughout the chapter.

Fast and slow branches

First, using the plane wave solutions we considered the behaviour of waves in a non-rotating

electrically conducting fluid, with a locally uniform (azimuthal) background magnetic field.

In this system there are two wave types: magneto-gravity waves and Alfvén waves, which

are respectively categorised in the fast and slow branches of the system’s wave-like solu-

tions, and are both found in eastward and westward varieties. If f-plane rotation (which is

valid in local polar regions) is included, the fast branch magneto-gravity solutions become

magneto-inertial gravity (MIG) waves and the slow branch Alfvén solutions become mag-

netostrophic solutions (like the kind found in polar regions by Heng & Spitkovsky, 2009).

Again, both of these wave types of are found in eastward and westward varieties.

Alfvén-Rossby wave coupling

If one considers the latitudinal dependence of planetary vorticity with a general beta-plane

approximation, the westward slow branch solutions of the plane wave dispersion relation

behave like either Alfvén waves or Rossby waves, depending on their azimuthal length

scale, with Alfvén-Rossby hybrids behaving like Alfvén waves at small length scales and

like Rossby at large length scales.
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Eastward slow branch wave

The eastward slow branch solutions also behave like Alfvén waves at small azimuthal

length scales but their behaviour is not obvious at large azimuthal length scales and they

have no hydrodynamic counterpart.

Hydrodynamic equatorial shallow-water waves

These are structures of velocity and geopotential that arise due to the planetary scale

variations of the Coriolis parameter and propagate parallel to the equator. They have

associated latitudinal mode numbers, n, which generally denote the number of latitudes

at which their meridional velocity profiles are zero. Symmetries about the equator mean

that the dynamics of hot Jupiters generally depends on the n odd solutions, particularly

n = 1 and n = −1. For each n ≥ 1, there are two equatorial inertial gravity waves and one

equatorial Rossby wave, which behaves geostrophically. The n = −1 solution is a special

case: the equatorial Kelvin solution, which travels eastwards at the shallow-water gravity

wave speed and its structure has no meridional velocity component.

Equatorial SWMHD waves

First we considered the uniform azimuthal background magnetic field case. In this case

equatorial MIG waves are generally similar to their hydrodynamic counterparts, while

strong magnetic fields can cause significant equatorial trapping of the equatorial magneto-

Rossby waves and the planetary scale equatorial magneto-Kelvin wave. The equatorial

Kelvin solution now travels eastwards at the magneto-gravity wave speed and, as before,

its structure has no meridional velocity component.

Next we considered an azimuthal background magnetic field with a linear profile

in the weak field approximation of Zaqarashvili (2018). Equatorial MIG waves remain

largely similar to their hydrodynamic counterparts but the equatorial magneto-Rossby

solutions experienced latitudinal elongation and became unbounded from the equator at

large enough background magnetic field strengths, at which point the weak field approx-
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imations became invalid. The equatorial magneto-Kelvin wave could not be obtained

from the weak field approximation and its structure was calculated directly under the

assumption of no meridional velocity component. This lead to a latitudinally dependent

propagation speed, which would suggest structural shearing as it travels. No eastward

slow branch solution was recovered in either equatorial models, suggesting that it is likely

to be a polar phenomenon,

Open questions

While giving an indication of some of the wave dynamics likely to be present in the

atmospheres of the hottest hot Jupiters, linear theory alone can not easily answer questions

concerning magnetically-driven wind/hotspot reversals. Hence, to study the phenomenon,

we need to answer the following questions:

1. Can non-linear shallow-water models capture wind/hotspot reversals?

2. How do the large scale flows change in the presence of different magnetic field pro-

files? Is an azimuthal background magnetic field with a linear profile useful for

modelling reversals?

3. Do the non-linear shallow-water flows resemble any of the behaviours of linear dy-

namics? Can a link be established between waves and simulations?

Once these answers have been established, we shall return to linear theory, dropping the

weak field assumptions of Zaqarashvili (2018). This will allow us to tie together concepts

such as equatorial trapping, polar trapping, and Alfvén-Rossby wave coupling in conditions

specific to hot Jupiter atmospheres.
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Numerical Simulations of the

SWMHD Model

In this chapter we present the results of numerical simulations of the SWMHD model we

outlined in Chapter 2. First we consider an azimuthal magnetic field geometry with a sim-

ple monotonic latitudinal dependence that is most easily applicable to linear theory, then

we consider a more realistic azimuthal field geometry that peaks in the mid-latitudes. We

cover a range of parameter space for the forcing magnitudes (∆heq/H) radiative timescales

(τrad) and drag timescales (τdrag), showing that hotspot reversals emerge in strongly mag-

netic models in all cases. We then study the mechanism that drives the hotspots westwards

by considering numerical solutions alongside relevant force balances in various solution

phases, highlighting some of its important features.
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Chapter 4. Numerical Simulations of the SWMHD Model

4.1 Numerical method

Using Cartesian horizontal spatial coordinates, the dynamical behaviour of the active layer

of the reduced gravity SWMHD model discussed in Chapter 2 is governed by the equations:

Du

Dt
+ f(ẑ× u) = −g∇h+ (B · ∇)B− u

τdrag
+ R + Dν , (4.1)

∂h

∂t
+∇ · (hu) =

heq − h
τrad

≡ Q, (4.2)

DA

Dt
= Dη, (4.3)

hB = ∇×Aẑ, (4.4)

where u(x, y, t) ≡ (u, v), is the horizontal active layer fluid velocity, h(x, y, t) is the active

layer thickness which is used as the model’s temperature proxy (see below), B(x, y, t) ≡

(Bx, By) is the horizontal active layer magnetic field (in velocity units), and A(x, y, t) is

the magnetic flux function of the active layer. Before continuing, we note that for small

active layer thickness deviations (i.e., (h−H)/H � 1) lines of constant A approximately

correspond to the field lines of the horizontal magnetic field (rather than the field lines

of the total columnar horizontal magnetic field, which is a more abstract concept). This,

combined with the fact that A is approximately materially conserved on short timescales

(as τη, the magnetic diffusion timescale, is comparitively large), enables us to get a good

intuitive sense of magnetic effects.

Geometrically, we fix a local Cartesian coordinate system about the equator, with

−Rπ ≤ x < Rπ and −Rπ/2 < y < Rπ/2. We centre the system about the planet’s

substellar point so x/R approximately corresponds to the azimuthal coordinate and y/R

approximately corresponds to the latitudinal coordinate. Rotational effects are included

using the equatorial beta-plane approximation of Rossby (1939) (see Chapter 2). Recall

that the only effects of sphericity that the equatorial beta-plane approximation captures

are the dynamical effects caused by latitudinal variations in the planetary rotation vector’s

vertical component. Moreover, the approximation uses the fact that in equatorial regions

the Coriolis parameter, f , is approximately linear to set f = βy, where the constant
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β = 2Ω/R is the local latitudinal variation of the Coriolis parameter at the equator.

The system is driven by a Newtonian cooling treatment, Q, in the continuity equation

(Equation (4.2)), which relaxes the system towards the prescribed radiative equilibrium

thickness profile, heq, over a radiative timescale, τrad. The Newtonian cooling is imple-

mented with

heq = H +∆heq cos
( x
R

)
cos
( y
R

)
, (4.5)

where H is the system’s reference active layer thickness at radiative equilibrium and ∆heq

is the difference in heq between this reference thickness and the radiative equilibrium

layer thickness at the substellar point. This profile is similar to the spherical forcing

prescriptions used in comparable hydrodynamic models (e.g., Shell & Held, 2004; Langton

& Laughlin, 2007; Showman & Polvani, 2010, 2011; Showman et al., 2012; Perez-Becker

& Showman, 2013).

In hydrodynamic shallow-water models (e.g., Shell & Held, 2004; Langton & Laughlin,

2007; Showman & Polvani, 2010, 2011; Showman et al., 2012; Perez-Becker & Showman,

2013), the forcing profile is usually set so that ∆heq/H ∼ (Tday − Teq)/Teq, where Teq

is the average reference temperature (for a given atmospheric depth) and Tday is the

maximal dayside reference temperature (at that atmospheric depth). For comparison,

applying the reference temperatures used for HAT-P-7b in Rogers (2017), this equates

to ∆heq/H ∼ 0.22, 0.19, and 0.14 at P = 10−3 bar, 10−2 bar, and 10−1 bar respectively.

We consider models with ∆heq/H = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} to cover forcing

parameter regimes within and either side of the expected planetary parameter range.

Numerical solutions are obtained by evolving Equations (4.1) to (4.4) from an initial

uniformly-flat rest state (i.e., h(x, 0) = H, u(x, 0) = 0), in the presence of a purely az-

imuthal magnetic field (A(x, 0) = A0(y)). For hydrodynamic solutions we evolve until

steady-state is achieved and for MHD solutions we run for a magnetic diffusion timescale.

The system is solved on a 256 × 511 x-y grid, using an adaptive third-order Adam-

Bashforth time-stepping scheme (Cattaneo et al., 2003), with spatial derivatives taken

pseudo-spectrally in x and using a fourth-order finite difference scheme in y. We use

159



Chapter 4. Numerical Simulations of the SWMHD Model

periodic boundary conditions on u, h, and A in the x direction. On the y bound-

aries we impose v = 0 (impermeability), ∂u/∂y = 0 (stress-free), and A fixed (no

normal magnetic flux). These conditions do not fix values of h on the y boundaries,

which are updated to ensure consistency in Equations (4.1) to (4.4) on the y boundaries.

As discussed in Chapter 2, these boundary conditions forbid magnetic monopoles (i.e.,∫∫∫
V ∇3 ·B3dxdydz =

∫∫
∇ · hBdxdy = 0), conserve total horizontal magnetic flux in the

active layer (i.e.,
∫∫
hBdxdy is constant), conserve total active layer mass (i.e.,

∫∫
hdxdy

is constant) in the absence of prescribed mass exchanges, and do not allow energy to enter

the system from any sources other than the imposed forcing.

4.2 Near-linear azimuthal magnetic field profile

4.2.1 Magnetic flux function

First, we choose to enforce the simple equatorially-antisymmetric, purely azimuthal, initial

magnetic field:

B0 = B0x̂ = VAe1/2 tanh(y/Leq)x̂, (4.6)

where VA is the constant parameter that sets the magnitude of the azimuthal magnetic

field. This profile may appear an unintuitive choice at first, but London (2017) noted that

it has the useful properties for wave dynamics, which we shall exploit in Chapter 5. It

is monotonic, behaves linearly in the equatorial region, and is bounded as y/Leq → ∞.

The approximately linear latitudinal dependence of B0 in the equatorial region means

one can choose VA in accordance with the first order Taylor expansion of non-monotonic

equatorially-antisymmetric profiles. Upon comparing to other field profiles, we generally

find that doing so reproduces similar equatorial dynamics. To illustrate this, in Sec-

tion 4.2.3 we compare some basic results to the profile B0 = VA(y/Leq) exp(1/2−y2/2L2
eq),

which is the equatorially-antisymmetric profile used in Hindle et al. (2019). This has

the same first order Taylor expansion as Equation (4.6), has the maximum B0 = VA at

y = Leq (i.e., VA is the maximal initial Alfvén speed), and can be motivated from the
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simulations of Rogers & Komacek (2014). We implement the initial magnetic field profile

of Equation (4.6) across an initially flat layer (h(x, y, 0) = H, everywhere), using the ini-

tial magnetic flux function A0(y) = HVALeqe1/2 ln(cosh(y/Leq)). However, to ensure that

J |y=±Ly ≡ (∂By/∂x − ∂Bx/∂y)|y=±Ly = 0 initially, which is needed to consistently hold

∂A/∂t|y=±Ly , we take B0 constant close to the y boundaries:

B0 =


−VAe1/2 tanh(Ly,δ/Leq) for − Ly < y < −Ly,δ,

VAe1/2 tanh(y/Leq) for |y| ≤ Ly,δ,

VAe1/2 tanh(Ly,δ/Leq) for Ly,δ < y < Ly,

(4.7)

where Ly,δ = (Ly − δ) and δ = 5∆y is the width over which B0 is constant, with ∆y

denoting grid spacings in the y direction. This corresponds to

A(x, y, 0) = A0(y, 0) =


HVALeqe1/2 ln(cosh(y/Leq)) for |y| ≤ Ly,δ,

HVAe1/2 tanh(Ly,δ/Leq)|y| for Ly,δ < |y| < Ly,

(4.8)

Note that for this choice A0 and dA0/dy are continuous and d2A0/dy
2 is piecewise con-

tinuous, though, once initiated, the system evolves so that the derivatives of A become

continuous everywhere.

4.2.2 Free parameters

As discussed in Chapter 2, we fix the simulation parameters cg, Ω, H, η, and ν based on

the hot Jupiter HAT-P-7b (see Table 4.1 for values)1. The timescales τrad and τdrag re-

spectively determine the frequency over which Newtonian cooling and magnetic drag from

the deep-seated (but not atmospheric) magnetic field are allowed to occur. Studies of hy-

drodynamic shallow-water analytics (Showman & Polvani, 2011) and simulations (Perez-

Becker & Showman, 2013) show that varying τrad controls the efficiency of (geopotential)

energy redistribution occurs; whereas varying τdrag adjusts the distance over which at-

1Though, as discussed in Chapter 2, ν is enhanced to allow for numerically-calculable moderate Reynolds
number flows.
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Table 4.1: Fixed simulation parameters for the shallow-water model of HAT-P-7b (same as Ta-
ble 2.2 in Chapter 2). cg is the gravity wave speed, Ω is the planetary rotation frequency, H is the
active layer thickness, η is the magnetic diffusivity, and ν is the kinematic viscosity.

cg (m s−1) β (m−1 s−1) H (m) η (m2 s−1) ν (m2 s−1)

3.0× 103 6.6× 10−13 4.3× 105 4× 108 4× 108

mospheric re-circulation patterns can flow before becoming significantly damped. Hence,

since τrad and τdrag adjust qualitatively similar (albeit non-identical) fundamental flow

features, it can be beneficial to reduce the modelling problem by fixing τdrag = τrad. We

do so in three cases: (a) short τrad and strong drag, τrad = τdrag = τwave; (b) mod-

erate τrad and moderate drag, τrad = τdrag = 5τwave; and (c) long τrad radiative and

weak drag, τrad = τdrag = 25τwave. However, as τrad and τdrag are not necessarily equiv-

alent in hot Jupiter atmospheres, we also consider the additional two cases: (d) short

τrad and weak drag, τrad = τwave, τdrag = 25τwave; and (e) long τrad and strong drag,

τrad = 25τwave, τdrag = τwave. Rogers & Komacek (2014) found magnetically-driven re-

versals to occur in the upper atmospheres of ultra-hot Jupiters, where τrad ∼ τwave and

τdrag ∼ τwave, the conditions are most akin to case (a), though τrad and τdrag are not

generally exactly equal.

The remaining free parameter in our system is VA, which determines the magnitude

of the system’s magnetic field. Our general approach is to increase VA, from VA = 0,

until we find a change in the nature of the SWMHD system (i.e., hotspot reversals). Here

we highlight that, for large enough VA, we always find hotspot reversals in the SWMHD

model, regardless of our choices of ∆heq/H, τrad, and τdrag.

4.2.3 Numerical solutions

First we summarise the hydrodynamic solutions, then we highlight the predominant ef-

fects of magnetism. Finally, we discuss the detailed force balances of the numerical so-

lutions. We visualise the basic form of our numerical solutions by plotting their (non-

dimensionalised) geopotential distributions in Figure 4.1. As discussed in Chapter 2, we

use geopotential energy, gh, as a shallow-water proxy of thermal energy so the geopo-
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Figure 4.1: The effect of azimuthal magnetic fields on energy redistribution. Contours of the
relative layer thickness deviations (rescaled geopotential energy deviations) are plotted on colour
axes that are shared along rows, with (individually-normalised) velocity vectors, hotspots (cyan
crosses), and lines of constant A (solid/dashed for Bx positive/negative) over-plotted. In each
column, reading from left to right, we present hydrodynamic steady state solutions (VA = 0),
supercritical MHD solutions moments before reversal, and supercritical MHD solutions in the
reversed quasi-steady phase. We present solutions in the following parameter regimes: (a) τrad =
τdrag = τwave, with VA = 0 or VA = 1.6cg in the top row; (b) τrad = τdrag = 5τwave, with VA = 0
or VA = 0.7cg in the second row; (c) τrad = τdrag = 25τwave, with VA = 0 or VA = 0.2cg in the
third row; (d) τrad = τwave, τdrag = 25τwave, with VA = 0 or VA = 1.4cg in the fourth row; (e)
τrad = 25τwave, τdrag = τwave, with VA = 0 or VA = 0.5cg in the bottom row.
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tential distributions are analogous to those of temperature perturbations. In the hy-

drodynamic version of our shallow-water model, solutions are known to converge upon

a steady state (e.g., Langton & Laughlin, 2007; Showman & Polvani, 2010; Showman

et al., 2013; Perez-Becker & Showman, 2013) and we replicate such hydrodynamic steady

state solutions in the lefthand column of Figure 4.1 for comparison with our MHD sim-

ulations, which we plot in the middle and righthand columns for two difference solution

phases. In each row of Figure 4.1 (from top to bottom) we display the solutions for

(a) short τrad and strong drag, τrad = τdrag = τwave; (b) moderate τrad and moderate

drag, τrad = τdrag = 5τwave; (c) long τrad and weak drag, τrad = τdrag = 25τwave; (d)

short τrad and weak drag τrad = τwave, τdrag = 25τwave; and (e) long τrad and strong drag

τrad = 25τwave, τdrag = τwave. In this subsection, we will restrict ourselves to heq/H = 0.2,

before discussing dependencies on forcing magnitude in Section 4.4.

Basic hydrodynamic solutions

Generally, in the hydrodynamic steady state solutions (Figure 4.1, lefthand column) there

are two dominant flow features. Drag-adjusted geostrophic circulations dominate at mid-

to-high latitudes; while zonal jets dominate at the equator. The drag-adjusted geostrophic

circulations satisfy a three-way force balance between horizontal pressure gradients, the

Coriolis force, and Rayleigh drag (see the force balances below). In the northern hemi-

sphere, this balance is characterised by flows that circulate clockwise about the geopo-

tential maximum and anticlockwise about the geopotential minimum; while the converse

is true in the southern hemisphere. The dominant acceleration components in the equa-

torial regions are horizontal pressure gradients, which are largest in the zonal direction;

the Rayleigh drag, which is simply a damping force that reduces wind speeds; and an

advection correction, which is of lower order importance if drags are not weak (again, see

the force balances below). Hotspots are, by definition, located at the equatorial pressure

maxima so the pressure driven zonally-directed equatorial jets diverge from them.

Newtonian cooling drives a solution’s geopotential distribution towards the equilib-

rium geopotential (see that gh → gheq as τrad → 0). Therefore τrad determines two
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things: how far planetary flows can redistribute geopotential energy before cooling occurs;

and the magnitude of pressure gradients in the system, which in-turn determine plane-

tary flows magnitudes (see Figure 4.1, lefthand column and axis scales). The Rayleigh

drag reduces wind speeds everywhere. At equatorial latitudes, a strong Rayleigh drag

decreases the distance that the zonal jets can redistribute geopotential energy along the

equator, increasing the relative severity of zonal geopotential gradients. At mid-to-high

latitudes the Coriolis force becomes significant and solutions satisfy the aforementioned

drag-adjusted geostrophic balance. In a “true” geostrophic balance, without suppression

from drags and forcing, pressure gradients are exactly balanced by the Coriolis force,

which acts perpendicularly to the velocity causing flows to rotate (to their right in the

northern hemisphere and to their left in the southern hemisphere). This yields large-scale

mid-to-high latitude vortices that are aligned with isobars, similar to those seen in the

short τrad, weak drag, hydrodynamic solution (Figure 4.1 (c), lefthand column). However,

the slowing of winds from the Rayleigh drag reduces the magnitude of Coriolis deflection.

Therefore in the strong drag limit large-scale vortices cannot fully develop. Similarly,

when τrad is short, heating/cooling occurs before large-scale vortices fully develop. Com-

paring the mid-to-high latitude flows of the hydrodynamic solutions, one finds a transition

between the long-τrad/weak-drag solutions, with fully-formed geostrophic vortices, to the

short-τrad/strong-drag solutions, in which the drag-adjusted geostrophic circulations are

approximately aligned with the isobars of the equilibrium geopotential (see Figure 4.1,

lefthand column). Aside from an unphysical special case discussed in Showman & Polvani

(2011) and Perez-Becker & Showman (2013), for all finite physically-relevant choices of

τrad and τdrag, the meridional mass transport into the equator, caused by the drag-adjusted

geostrophic circulations, is maximised east of the substellar point.

These solutions always exhibit eastward hotspots. This is because the equatorward

(rescaled) geopotential energy transport from the mid-to-high latitude circulations, −∂(hv)/∂y,

always has its equatorial maximum located eastward of the substellar point. At the

equator, the pressure gradient drives winds that diverge from hotspots, causing equa-

torial geopotential energy transport away from the hotspot regions (i.e., −∂(hu)/∂x < 0
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in hotspot regions). Hence, by Equation (4.2) (geopotential energy conservation), the

hotspots locate themselves at the equatorial point of maximal incoming geopotential en-

ergy flux, which is located between the equatorial maxima of −∂(hv)/∂y and Q. The

Newtonian cooling (Q) attempts to return a solution to its forcing equilibrium (i.e., with

its hotspot at the substellar point); whereas, as stated above, the equatorial maximum of

−∂(hv)/∂y is always eastward. The degree of the hotspot’s eastward offset is therefore

determined by the location of the equatorial maximum of −∂(hv)/∂y and its relative mag-

nitude compared to Q. In short, the size of the (eastward) hotspot offset is determined

by the efficiency over which the drag-adjusted geostrophic circulations can redistribute

thermal2 energy from the western equatorial dayside to the eastern equatorial dayside, by

circulating it to-and-from the higher latitudes.

Showman & Polvani (2011) showed that the flow patterns of hydrodynamic steady state

solutions of this kind have a linear wave analogy, with the solutions linked to the forc-

ing responses of specific standing, planetary-scale, equatorial shallow-water waves. These

arise because the freely-travelling planetary-scale equatorial shallow-water waves that we

discussed in Chapter 3 redistribute geopotential perturbations as they travel (now in the

presence of drags). The mid-to-high latitude circulations are associated with standing

equatorial Rossby waves, which are characterised by the (drag-adjusted) geostrophic bal-

ance. The equatorial jets are associated with the forcing response caused by the planetary

scale equatorial Kelvin wave, which is characterised by purely zonal flows. The zonal

(east-west) direction in which the waves redistribute geopotential energy is tied to their

azimuthal phase velocities. Equatorial Rossby waves have a westward azimuthal phase

velocity, so the standing planetary scale equatorial Rossby wave redistributes energy west-

ward at mid-to-high latitudes (i.e., mid-to-high latitude circulations are centred to the

west of the forcing extrema). The planetary scale equatorial Kelvin wave has an eastward

azimuthal phase velocity, so redistributes energy eastward. In the hydrodynamic system,

the drag timescales determine the efficiency of geopotential redistribution by these waves

(Showman & Polvani, 2011; Perez-Becker & Showman, 2013). When τrad � τwave and

2Recall that the geopotential potential energy is a proxy for thermal energy in this model.
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τdrag � τwave, the standing equatorial waves redistribute energy efficiently, causing flat

geopotential profiles along the equator and fully-formed geostrophic vortices with large

westward shifts at mid-to-high latitudes. Conversely, when τrad . τwave and τdrag . τwave,

energy redistribution by waves is highly damped, causing geopotential profiles to resemble

forcing profiles and suppressing the formation of mid-to-high latitude vortices.

Basic magnetohydrodynamic solutions

In the weakly-magnetic limit, shallow-water magnetohydrodynamic solutions behave much

like their hydrodynamic counterparts (i.e., solutions reach a steady state that is char-

acterised by eastward hotspots, zonal equatorial winds, and drag-adjusted geostrophic

circulations at mid-to-high latitudes). However, when the azimuthal magnetic field ex-

ceeds a critical magnitude the nature of the solution changes. Supercritical magnetic

solutions have three phases: an initial phase, in which winds and geopotentials resemble

their hydrodynamic counterparts but their circulations induce magnetic field evolution;

a transient phase, in which mid-to-high latitude winds align with the azimuthal mag-

netic field and dayside equatorial winds experience a net westward acceleration, driving

an east-to-west hotspot transition; and a reversed quasi-steady phase, in which westward

zonally-dominated dayside winds maintain westward hotspots (until, after a comparably

long period of time, the magnetic field decays via magnetic diffusion).3

We present geopotential distributions of supercritical magnetic solutions in the tran-

sient and quasi-steady phases in the two righthand columns of Figure 4.1 (middle and

right respectively). The supercritical magnetic solutions are plotted for the same drag

choices as the hydrodynamic solutions that they share a row with. However, now lines of

constant A, which approximately correspond to field lines of the horizontal magnetic field,

are also over-plotted for visualisation of the magnetic field.

After a magnetic solution’s initial phase, in which it behaves similarly to its hydro-

dynamic counterpart, in mid-to-high latitude regions there is a competition between the

3Typically, for these parameters, τdyn/τη ∼ 0.01-0.1, where τdyn is the dynamical timescale of the
hotspot transition and τη = L2

eq/η is the magnetic diffusion timescale.
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drag-adjusted geostrophic balance and the magnetic tension (i.e., B · ∇B, the restorative

force that acts to straighten bent horizontal magnetic field lines) that the circulating flows

generate. Initially, the magnetic field is purely azimuthal, with only latitudinal gradi-

ents in its profile, so magnetic tension is zero everywhere. To understand the magnetic

field’s evolution we highlight that, as the magnetic diffusion timescale is large in compar-

ison to the dynamical timescales of the system, A is approximately materially conserved.

This means that lines of constant A are advected by the mid-to-high latitude circulations,

bending them and causing a growth of magnetic tension. For subcritical magnetic field

strengths, a drag-adjusted magneto-geostrophic balance can be supported, with winds and

geopotential profiles making small adjustments to balance the magnetic contribution (be-

fore magnetic diffusion eventually returns the system to a hydrodynamic steady state).

In contrast, for supercritical magnetic field strengths, magnetic tension becomes strong

enough to obstruct the drag-adjusted geostrophic circulations and solutions enter into a

transient phase, which ultimately results in hotspot reversals. Below, we shall see that the

reversal is driven by a westward Lorentz force acceleration in the region surrounding the

hotspot, which is itself generated by this obstruction of geostrophic balance. The west-

ward Lorentz force acceleration causes the point of zonal wind divergence on the equator

to shift eastwards, so that in hotspot regions geopotential energy flux is westward (i.e.,

ghu < 0) rather than zero. This shifts the hotspot westward until the system rebalances

into a state with a westward hotspot (again, see below).

We find that this reversal mechanism (i.e., westward equatorial-dayside Lorentz force

accelerations driven by the obstruction of geostrophic balance) always leads to hotspot

reversals in the SWMHD model, regardless of our choice of ∆heq/H, τrad, and τdrag.

However, since these parameters control pressure gradient magnitudes and recirculation

efficiency, they determine the critical magnetic field strength sufficient for reversal. We

present bounds on the magnetic field strength’s critical magnitude, VA,crit, for various

parameter choices in Figure 4.9. Generally, ∆heq/H and τrad set the magnitude of a solu-

tion’s pressure gradients, and therefore the magnitude of the circulations to be overcome,

so shorter τrad and larger ∆heq/H correspond to larger VA,crit magnitudes. Initially in long
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τdrag solutions the fully formed large scale geostrophic vortices advect the lines of constant

A efficiently until they are resisted by magnetic tension; whereas, for short τdrag solutions,

the slowing of winds from drags decreases the distance over which winds initially advect

the lines of constant A. Therefore weak drag solutions generally experience a larger degree

of field line bending and hence more magnetic tension (relative to the other accelerations

in their solutions for a given VA) than strong drag solutions. Put simply, strong drag

solutions require larger VA,crit magnitude to reverse. We quantify dependences of VA,crit

on ∆heq/H, τrad, and τdrag in later discussions.

In the quasi-steady phase of supercritical SWMHD solutions, the magnitudes of τrad

and τdrag determine the efficiency of the westward energy redistribution. For large τrad and

τdrag timescales, the (westward) hotspot offsets are large as the equatorial pressure-Lorentz

balance is free to redistribute energy towards the point where the zonal winds converge,

almost entirely without restriction; Conversely, for short τrad and τdrag timescales, this

equatorial energy redistribution is less efficient and hotspot offsets are smaller. Comparing

between rows in Figure 4.1 (righthand column), suggests τdrag is the most influential

timescale in determining westward hotspot offsets in the SWMHD system.

Force balances

With the basic characteristics of solutions established, we compare the force balances of

Equation (4.1) for hydrodynamic and supercritical MHD solutions with the parameters of

regime (b) in Figure 4.1 (i.e., for ∆heq/H = 0.2, τrad = τdrag = 5τwave, with either VA = 0

or VA = 0.7cg). We highlight how the presence of a strong equatorially-antisymmetric

azimuthal magnetic field modifies the force balances of different planetary regions, and

link these modifications to the more general discussions above.

In Figures 4.2 and 4.3 we respectively plot the dominant meridional and zonal acceler-

ation components of Equation (4.1), for solutions in regime (b). In the lefthand column of

Figures 4.2 and 4.3, we present the acceleration components for the hydrodynamic steady

state solution; whereas in the middle and righthand columns of Figures 4.2 and 4.3, we

present the acceleration components of the transient and quasi-steady phases of its su-
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Figure 4.2: Meridional force balances. In each column, reading from left to right, we plot meridional
accelerations corresponding to hydrodynamic steady state solutions, transient phase supercritical
MHD solutions, and quasi-steady supercritical MHD solutions. In rows one to four, we respectively
plot meridional accelerations due to horizontal pressure gradients, the Coriolis effect, the Lorentz
force, and Rayleigh drag; the summed meridional accelerations are plotted in row five. The solu-
tions are presented for ∆heq/H = 0.2, τrad = τdrag = 5τwave, with VA = 0 (HD) or VA = 0.7cg
(MHD) (i.e., parameter regime (b) in Figure 4.1).
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percritical MHD counterpart. Along each row of Figures 4.2 (meridional components)

and 4.3 (zonal components), we plot (from top downwards) the acceleration contributions

due to horizontal pressure gradients (−g∇h), the Coriolis effect (−f ẑ × u), the Lorentz

force (B · ∇B), Rayleigh drag (−u/τdrag), and advection (−u · ∇u). Additionally, in the

bottom row of Figure 4.2 we plot the total meridional acceleration (∂v/∂t) and, likewise,

in the bottom row of Figure 4.3 we plot the total zonal acceleration (∂u/∂t). For the

presented parameter choices the acceleration contributions due vertical mass transport

(R) and viscous diffusion (Dν) are much weaker so are not included in the plots.

At mid-to-high latitudes, the force balances of hydrodynamic solutions in steady state

are well described by the three-way drag-adjusted geostrophic balance discussed above.

In particular, Figures 4.2 and 4.3 (lefthand column) highlight this for regime (b), showing

that in both horizontal directions the mid-to-high latitude accelerations due to horizontal

pressure gradients and the Coriolis force almost exactly cancel, albeit with small Rayleigh

drag adjustment and a yet smaller advection contribution. The meridional components of

these accelerations remain balanced in equatorial regions, with all of them vanishing at the

equator. However, in the zonal direction, the Coriolis force vanishes in equatorial regions

but zonally-directed pressure gradients do not, so zonal pressure gradients are balanced

by the Rayleigh drag, with an advection adjustment. Since hotspots in hydrodynamic

solutions are always located where zonal equatorial jets diverge, these three acceleration

components are equally zero at hotspots (see cyan markers in Figure 4.3). As discussed

previously, hotspots are driven eastward by the net west-to-east equatorial energy transfer

that results from the mid-to-high latitude drag-adjusted geostrophic circulations.

Recall that magnetic tension (B · ∇B) is initially zero everywhere so MHD solutions

initially resemble their hydrodynamic counterparts. However, lines of constant A (which

closely follow magnetic field lines) are advected by the mid-to-high latitude circulations

that are archetypal of hydrodynamic solutions. This causes them to bend equatorward

between the western and eastern dayside (where the initial circulations are poleward

and equatorward respectively; see Figure 4.1, row (b), middle column). Consequently,

a restorative Lorentz force that resists meridional winds is produced (see Figure 4.2, third

171



Chapter 4. Numerical Simulations of the SWMHD Model

Figure 4.3: The zonal force balances corresponding to the meridional force balances of Figure 4.2
(see Figure 4.2 caption). As in Figure 4.2, we present solutions for the parameter choices ∆heq/H =
0.2, τrad = τdrag = 5τwave, with VA = 0 (HD) or VA = 0.7cg (MHD) (i.e., parameter regime (b) in
Figure 4.1). To aid discussion in the text, hotspot locations have been marked with cyan crosses in
hydrodynamic solution panels that correspond to zonal acceleration components with a non-zero
equatorial contribution.
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Figure 4.4: The Lorentz force drives westward accelerations in hotspot (cyan crosses) regions. The
azimuthal component of the magnetic field is plotted in the top row, with contours of constant A
overlaid (white solid/dashed contours for Bx positive/negative). The corresponding zonal Lorentz
force component is plotted in the bottom row. As in the two righthand columns of Figures 4.2
and 4.3, we present the transient (lefthand column) and quasi-steady (righthand column) phases
of the supercritical MHD solution with ∆heq/H = 0.2, τrad = τdrag = 5τwave, and VA = 0.7cg
(i.e., parameter regime (b) in Figure 4.1), though we restrict this plot to the equatorial region,
−π/8 < y/R < π/8. The zonal Lorentz force acceleration is the directional derivative of Bx along
horizontal magnetic field lines (approximately lines of constant A).

row, middle column). For subcritical MHD solutions (not plotted) this Lorentz force re-

sists but does not fully obstruct the mid-to-high latitude circulations, which adjust into a

(drag-adjusted) magneto-geostrophic balance. However, in supercritical MHD solutions,

the Lorentz force resists meridional winds strongly enough to zonally-align the mid-to-

high latitude winds. Hence, supercritical MHD solutions enter into the transient phase

discussed above.

When the magnetic field geometry is azimuthally dominated, understanding Lorentz

force accelerations is less intuitive in the zonal direction than in the meridional direction

(in which they simply oppose meridional flows). The zonal Lorentz accelerations, B ·∇Bx,

are most easily understood geometrically when considered as the directional derivative of
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Bx along horizontal magnetic field lines, which are approximately equivalent to lines of

constant A.4 When the magnetic field lines bend equatorward they generally move into

regions of smaller |Bx|, hence the zonal Lorentz force component generally accelerates flows

westward (as B ·∇Bx < 0); conversely, when they bend poleward they generally move into

regions of larger Bx, hence the zonal Lorentz force component generally accelerates flows

eastward (as B · ∇Bx > 0). One can see this by comparing lines of constant A in mid-to-

high latitudes of Figure 4.1 (row (b), middle column) with the corresponding mid-to-high

latitude zonal Lorentz force accelerations in Figure 4.3 (third row, middle column). Since

magnetic field lines bend equatorward between the western and eastern dayside at mid-to-

high latitudes, the Lorentz force accelerates mid-to-high latitude dayside flows westward

(and eastward on the nightside).

Similar westward dayside Lorentz force accelerations are generated along the equator

by magnetic field lines bending into equatorial regions. To visualise this, in Figure 4.4

we plot the horizontal magnetic field geometry (top row) and the zonal component of

the Lorentz force (bottom row) in the equatorial region, −π/8 < y/R < π/8, for the

transient (left) and quasi-steady (right) phases of the supercritical MHD solution (again,

for parameter regime (b)). In the initial phase the Lorentz force primarily acts to re-

sist drag-adjusted geostrophic circulations (see above). Therefore, in the early transient

phase the magnetic field lines bend equatorward between the western and eastern dayside

(where the initial circulations are poleward and equatorward respectively). For the low-

est equatorial regions (|y/R| / π/32 in Figure 4.4) such equatorward magnetic field line

bending causes the lines to move into regions smaller |Bx|. Consequently, zonal Lorentz

force accelerations are westward in regions surrounding the hotspot (see Figure 4.4, left-

hand column). In fact, zonal Lorentz force accelerations are always westward in hotspot

regions, regardless of radiative/drag/forcing parameter choices, because in hydrodynamic

(and weak/early-phase MHD) solutions hotspots are located between the substellar point

and the (eastward) maximum of equatorward flow (where lines of constant A are bent most

4Note that the directional derivative is taken from left to right for Bx positive (northern hemisphere)
and vice versa for Bx negative (southern hemisphere). We also highlight that in this system B · ∇Bx is
symmetric about the equator.
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equatorward). The resulting westward accelerations cause an equatorial imbalance in the

zonal momentum equation (see Figure 4.3, bottom row, middle column), which drives the

point of zonal equatorial wind divergence eastwards of the hotspot and, consequently, shifts

the hotspot westward (as hotspot lie in regions of westward geopotential flux). Finally, as

these westward accelerations cause dayside equatorial winds to become more westward,

lines of constant A are swept from east to west along the equator, bending them further

and thus enhancing equatorial Lorentz force accelerations across all equatorial latitudes

(see Figure 4.4, righthand column)5.

Across radiative/drag/forcing parameter choices, when the hotspots have transitioned

westwards the system rebalances into a quasi-steady state, which is characterised by west-

ward hotspots, zonally-aligned winds, and magnetic field lines that have an equatorward

bend along the line x = 0 in equatorial regions. The predominant meridional balance

is between pressure gradients, the Coriolis force, and the Lorentz force (see Figure 4.2,

righthand column); whereas the predominant zonal balance is between pressure gradients,

the Lorentz force, and the Rayleigh drag (see Figure 4.3, righthand column). In these

balances the zonally-aligned winds cause the meridional Rayleigh drag and the zonal Cori-

olis force to be small. We comment that as the magnetic field eventually diffuses away,

the balance adjusts to the decreasing Lorentz force contribution, eventually restoring the

drag-adjusted geostrophic/magneto-geostrophic balances associated with hydrodynamic

and weakly-magnetic solutions (and hence eastward hotspots).

4.3 Linear-Gaussian azimuthal magnetic field

4.3.1 Magnetic flux function

Using the near-linear hyperbolic tangent azimuthal magnetic field profile in Section 4.2

was advantageous for analytic comparison and for identifying the fundamental features of

the magnetically-driven hotspot reversal. In reality, as discussed in Chapter 1, one would

5This is equivalent to saying that the more westwardly-oriented dayside winds cause By to become more
significant in equatorial regions, which in-turn enhances the westward Lorentz force accelerations.
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expect the toroidal field to have maximal magnitudes at mid-latitudes then decreases

towards both poles, like the dominant field profile found by Rogers & Komacek (2014).

To mimic this, we use the following equatorially-antisymmetric, azimuthal initial magnetic

field:

B(x, y, 0) = B0 = B0x̂ = VA

(
y

Leq

)
exp

(
1

2
− y2

2L2
eq

)
x̂, (4.9)

where the maximal initial Alfvén speed, VA, determines the magnetic field strength of

the system. This linear-Gaussian profile is equatorially-antisymmetric, has a maximal

magnitude VA at y = ±Leq (recall Leq/R ≈ 0.67 for our parameter choices), and decays

exponentially towards the poles with the same decay width as the zonal flows that are

expected to induce it (Showman & Polvani, 2011). For an initially uniform layer thickness,

h(x, y, 0) = H, the magnetic flux function corresponding to this chose of B0 is

A(x, y, 0) = A0(y) = −HVALeq exp

(
1

2
− y2

2L2
eq

)
. (4.10)

4.3.2 Free parameters

As in Section 4.2 we fix the simulation parameters cg, Ω, H, η, and ν based on the

hot Jupiter HAT-P-7b (see Table 4.1 for values). As above, in this subsection we will

restrict ourselves to heq/H = 0.2, before discussing dependencies on forcing magnitude in

Section 4.4. Likewise, we vary VA for the five drag choices: (a) short τrad and strong drag,

τrad = τdrag = τwave; (b) moderate τrad and moderate drag, τrad = τdrag = 5τwave; and (c)

long τrad radiative and weak drag, τrad = τdrag = 25τwave. However, as τrad and τdrag are

not necessarily equivalent in hot Jupiter atmospheres, we also consider the additional two

cases: (d) short τrad and weak drag, τrad = τwave, τdrag = 25τwave; and (e) long τrad and

strong drag, τrad = 25τwave, τdrag = τwave. As before, we increase VA, which determines

the magnitude of the system’s magnetic field, from VA = 0 until we find a change in the

nature of the SWMHD system (i.e., hotspot reversals).
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Figure 4.5: Similar to Figure 4.1, but for a linear-Gaussian azimuthal magnetic field profile. We
present solutions in the following parameter regimes: (a) τrad = τdrag = τwave, with VA = 0 or
VA = 1.7cg in the top row; (b) τrad = τdrag = 5τwave, with VA = 0 or VA = 0.7cg in the second row;
(c) τrad = τdrag = 25τwave, with VA = 0 or VA = 0.2cg in the third row; (d) τrad = τwave, τdrag =
25τwave, with VA = 0 or VA = 1.3cg in the fourth row; (e) τrad = 25τwave, τdrag = τwave, with
VA = 0 or VA = 0.7cg in the bottom row. Note that the hydrodynamic versions of these solutions
are the same as those plotted in the lefthand column of Figure 4.1.
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4.3.3 Numerical solutions

As before, we visualise the basic form of our numerical solutions by plotting their (non-

dimensionalised) geopotential distributions, with overlaid velocity vectors and lines of

constant A. In Figure 4.5 we present the following solutions: (a) τrad = τdrag = τwave,

with VA = 0 or VA = 1.7cg in the top row; (b) τrad = τdrag = 5τwave, with VA = 0 or

VA = 0.7cg in the second row; (c) τrad = τdrag = 25τwave, with VA = 0 or VA = 0.2cg in

the third row; (d) τrad = τwave, τdrag = 25τwave, with VA = 0 or VA = 1.3cg in the fourth

row; (e) τrad = 25τwave, τdrag = τwave, with VA = 0 or VA = 0.7cg in the bottom row.

We also plot meridional and zonal force balances (in Figures 4.6 and 4.7 respectively)

for short τrad and strong drag supercritical solutions, (a), which have τrad = τdrag = τwave

and VA = 1.7cg. As in Section 4.2.3, the rows of Figures 4.6 and 4.7 correspond to

each of the dominant acceleration contributions. As above, by plotting lines of constant

A over the Bx distribution (top row) and the zonal Lorentz force component (bottom

row), in Figure 4.8 we show how the bending of magnetic field lines in equatorial regions

causes westward Lorentz force accelerations in hotspot regions, for the τrad = τdrag = τwave

and VA = 1.7cg solution in the transient (lefthand column) and quasi-steady (righthand

column) phases.

We find that the overall behaviour of these numerical solutions is both qualitatively and

quantitively similar to the numerical solutions with a linear initial azimuthal magnetic field

profile. Namely, subcritical solutions behave similarly to their hydrodynamic counterparts;

whereas, for supercritical magnetic solutions, the obstruction of geostrophic circulations

by the magnetic field causes zonal wind alignment, a westward Lorentz force acceleration,

and therefore reversed hotspots. The only different qualitative flow features between the

two field profiles arise at the poles, where VA(y/Leq) exp(1/2−y2/2L2
eq) decays. However,

our model and aims are not directed towards the polar regions, so this is of lower order

importance to us. This is a useful observation as it means that in Chapter 5, where we

consider linear theory corresponding to the simulations in this chapter, the near-linear

hyperbolic tangent azimuthal magnetic field profile can reasonably describe the dynamics
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Figure 4.6: Meridional force balances. In each column, reading from left to right, we plot meridional
accelerations corresponding to the initial, transient, and quasi-steady phase supercritical MHD
solutions for τrad = τdrag = τwave and VA = 1.7cg (i.e., parameter regime (b) in Figure 4.5). In
rows one to four, we respectively plot meridional accelerations due to horizontal pressure gradients,
the Coriolis effect, the Lorentz force, and Rayleigh drag; the summed meridional accelerations are
plotted in row five.
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Figure 4.7: The zonal force balances corresponding to the meridional force balances of Figure 4.6
(see Figure 4.6 caption). As in Figure 4.6, we present solutions for the parameter choices τrad =
τdrag = τwave and VA = 1.7cg (i.e., parameter regime (b) in Figure 4.5).
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Figure 4.8: As in Figure 4.4, for τrad = τdrag = τwave and VA = 1.7cg. The bending of magnetic field
lines in equatorial regions (caused by drag-adjusted geostrophic circulations) causes the Lorentz
force to drive westward accelerations in hotspot (cyan crosses) regions. Recall that the zonal
Lorentz force accelerations (bottom row) are approximately equivalent to the directional derivative
of Bx along the lines of constant A (top row).

of more realistic field profiles, but with much simpler analytic characteristics.

Generally, as before, we find that subcritical MHD solutions (not plotted) behave sim-

ilarly to their hydrodynamic counterparts and reach a steady state that is characterised

by eastward hotspots, zonal equatorial winds, and drag-adjusted geostrophic circulations

at mid-to-high latitudes. Likewise, we also identify three solution phases in supercritical

MHD solutions. Firstly, in the initial phase magnetic tension has little effect and solutions

behave similarly to their hydrodynamic counterparts, but with mid-to-high latitude cir-

culations bending magnetic field lines so that they bend equatorward in hotspot regions.

Then in the transient phase, as the magnetic tension from this field line bending becomes

significant, a significant Lorentz force acceleration is generated that opposes meridional

flows at mid-to-high latitudes, causing them to align with the magnetic field (see middle

columns of Figures 4.5 and 4.6) and causing the zonal Coriolis force to play a subdom-
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inant dynamical role (see middle column of Figure 4.7). As found in Section 4.2.3, the

meridional flow component is diminished while the equatorward bending of magnetic field

lines in hotspot regions causes a westward Lorentz force acceleration in hotspot regions

(see middle column of Figure 4.7 and lefthand column of Figure 4.8). This causes the

equatorial point of east-west wind divergence to shift eastward (see middle column of Fig-

ure 4.5), meaning that hotspots lie in regions of westward geopotential flux. Again, as

before, the hotspots shift westward, which further enhances the westward Lorentz force

acceleration at the equator and the system eventually rebalances in a quasi-steady state.

In this quasi-steady solution phase winds are closely-aligned with magnetic field lines,

zonal pressure gradients and Lorentz force accelerations balance with a Rayleigh drag ad-

justment, and there is a four way balance between meridional pressure gradient, Coriolis

accelerations, Lorentz force accelerations, and linear drags that prevents meridional flows

developing significantly at mid-to-high latitudes. Finally, the magnetic field diffuses away

and the Lorentz force contribution slowly diminishes, returning solutions towards their

hydrodynamic and weakly-magnetic counterparts.

4.4 Forcing dependence

We find that, when one compares marginally supercritical magnetic solutions with∆heq/H =

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, the qualitative physical behaviours and balances

discussed in Sections 4.2 and 4.3 remain highly similar (in fact, remarkably so). The only

discernible changes we observe between marginally supercritical magnetic solutions, upon

increasing ∆heq/H, are an approximately linear scaling of dependent variable magnitudes

and a correction from advection, which generally only provides a lower order correction.

This is to be expected from the theory we have developed so far, as the process that needs

to be overcome in order to trigger hotspot reversals (i.e., the drag-adjusted geostrophic

balance) is a linear one. Consequently, choices of ∆heq/H do not change the mechanics of

the hotspot reversals, though they do determine quantitive features of the system (such

as magnitudes and VA,crit).
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Figure 4.9: Quantitive dependencies of critical magnetic field amplitudes on the forcing magnitude
parameter, ∆heq/H, for different choices of τrad and τdrag. Critical magnetic field amplitudes are
illustrated with marker points. These are located mid-way between the upper/lower bounds of the
identified critical amplitude range, for a particular parameter set, with error bars indicating these
upper/lower bounds. Lines indicating scaling law predictions (dashed) and zero-amplitude limits
based on the linear theory (dotted; see Chapter 5) are overlaid
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The quantitative differences between solutions with the two initial field profiles also

tends to be minor, with a second order change in VA,crit as the two profiles cause a slightly

different magnitude of Lorentz force to be generated for a given VA. To make this com-

parison, we have marked VA,crit for linear-Gaussian profiles on Figure 4.9 with starred

markers. We conclude that the choice of a B0 ∝ tanh(y/Leq) profile is a useful simpli-

fication when considering reversals. This can be advantageous due to properties of the

hyperbolic tangent function, which is both monotonic and bounded as y →∞.

We can use our developed understanding of the reversal mechanism to predict mag-

nitudes VA,crit, with simple scaling arguments based on the respective magnitudes of

geostrophic circulations and the restorative Lorentz force. Let τ−1geo = U/Leq be the fre-

quency over which geostrophic flows circulate and τ−1A = V/LA be the (Alfvén) frequency

over which the azimuthal field attempts to zonally-align these circulations, where U , V,

Leq and LA are the typical velocity and length scales associated with the two opposing

processes. Reversals occur when τ−1A & τ−1geo or equivalently when V & ULA/Leq (i.e.,

when the azimuthal field is strong enough to restrict the geostrophic flows). Perez-Becker

& Showman (2013) showed the velocities of geostrophic circulations in Coriolis dominated

regions scale like

U
cg
∼
(
∆heq
H

)(
τrad
τwave

)−1(2Ωτ2wave
τrad

+ 1

)−1
, (4.11)

highlighting that the reversal threshold is expected to have a linear dependence on∆heq/H.

In Figure 4.9 we plot the dependence of VA,crit on ∆heq/H from our simulations. For

comparison, we overplot the lines

VA,crit
cg

=

(
2πR(∆heq/H)

κLeq(τrad/τwave)

)(
2Ωτ2wave
τrad

+ 1

)−1
, (4.12)

where, since the circulations bend field lines on the planetary azimuthal scale, we take

LA = 2πR and κ is a constant of order unity based on the profile of B0(y).6

We generally find reasonable agreement between this simple scaling prediction and

6κ is an estimate of the relative strength of B0 (compared to VA) at low latitudes, y0, where westward
Lorentz force accelerations first develop. In Figure 4.9, we take κ = e1/2 tanh(y0/Leq) ≈ 0.47 (using
y0 ≈ Rπ/16 based on Figure 4.4).
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numerical simulations, particularly in the realistic regimes of τrad short and ∆heq/H ∼

0.1-0.3, but note that VA,crit approaches a minimum as ∆heq/H → 0, which we shall

consider in Chapter 5. This scaling law approximation deals less favourably in the (less

physical) long τrad cases, where τdrag dependencies become important. However, as we shall

discuss in Chapter 6sect:discussion, the other uncertainties in atmospheric characteristics

are likely to provide much larger uncertainties than those arising from this scaling law

approximation.

4.5 Summary and discussion

In this chapter, we have used numerical simulations to demonstrate that magnetically-

driven hotspot reversals are a shallow phenomenon. We also identified the mechanism

responsible for driving hotspot reversals in our SWMHD model. The reversals are caused

by the westward Lorentz force acceleration that is generated when strong equatorially-

antisymmetric azimuthal magnetic fields obstruct the geostrophic circulation patterns re-

sponsible for energy redistribution in the hydrodynamic system. The understanding we

have developed explains why such hotspot reversals always emerge in the SWMHD model,

regardless of our choices for the free forcing/drag parameters ∆heq/H, τrad, and τdrag.

Moreover, this developed understanding has allowed us to use simple scaling arguments to

predict the reversal threshold, VA,crit, in terms of planetary parameters, finding reasonable

agreement between predictions and numerical simulations in realistic forcing regimes for

our fiducial planet HAT-P-7b. However, our simulations also show that VA,crit approaches

a minimal threshold in the zero amplitude limit. In Chapter 5 we shall probe linear

theory to explain this finding. For this, we shall use our finding that, when compared,

equatorially-antisymmetric azimuthal magnetic field profiles with similar latitudinal de-

pendence at equatorial and mid-latitudes behave similarly to one another.
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Chapter 5

Hotspot Reversals in Relation to

Linear Wave Dynamics

In Chapter 4 we showed that magnetically-driven hotspot reversals are a shallow phe-

nomenon and are driven by the obstruction of mid-to-high latitude drag-adjusted geostrophic

circulations. We now use the results of the numerical simulations of Chapter 4 to guide a

semi-analytic analysis of equatorial SWMHD waves in an attempt to understand the re-

versal process further. In Chapter 3 we used the results linear theory, including the work

of Zaqarashvili (2018), to derive simple results of linear wave theory in the hot Jupiter pa-

rameter regime. In this chapter move away from the weakly-magnetic assumptions taken

when Zaqarashvili (2018) considered the equatorially-antisymmetric azimuthal background

magnetic field, which become less valid for the typical magnetic field strengths that are

sufficient to reverse hotspots, and solve the linearised SWMHD system numerically over

a finite domain.

5.1 Linearised steady state solutions

First we seek to establish the features of the reversals that linear theory can capture,

and its limitations. We do so by linearising the non-diffusive versions of Equations (4.1)

to (4.4) about the background state {u0, v0, h0, A0} = {u0(y), 0, H,A0(y)}, where H is
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the (constant) background layer thickness, A0 is defined such that dA0/dy = HB0 for the

latitudinally-dependent azimuthal background magnetic field, B0 = B0(y)x̂, and u0(y) is

to be fixed in a manner that balances the zeroth order zonal momentum equation of the hy-

drodynamic version of the system which we wish to investigate. To probe the system at the

reversal threshold, we assume steady state perturbations exist about this background state

and apply the plane wave ansatz, {u1, v1, h1, A1} = {û(y), v̂(y), ĥ(y), Â(y)}eikx, where k

denotes the azimuthal wavenumber and subscripts of unity denote perturbations from the

background state. Such perturbations satisfy

(iku0 + τ−1drag)û =

(
f − du0

dy

)
v̂ − ikgĥ+ ikB0B̂x +

dB0

dy
B̂y, (5.1)

(iku0 + τ−1drag)v̂ =− fû− gdĥ

dy
+ ikB0B̂y, (5.2)

(iku0 + τ−1rad)ĥ =−H
(
ikû+

dv̂

dy

)
+HS(y), (5.3)

iku0Â =−HB0v̂, (5.4)

where B̂x = (dÂ/dy − B0ĥ)/H, B̂y = −ikÂ/H, S(y) = (∆heq/H) τ−1rad exp(−y2/2L2
eq)

is the first order forcing contribution in the system based on the equilibrium thickness

profile, heq = H + ∆heq cos (kx) exp(−y2/2L2
eq), and based on our numerical findings

we have assumed that R does not make a first order contribution to Equations (5.1)

and (5.2). Before solving, we note that hydrodynamic solutions are never singular, but

that Equation (5.4) causes the magnetic version of the system to be singular if u0 = 0.

To compare to the simulations of Chapter 4, we solve the system for f = βy and B0 =

VAe1/2 tanh(y/Leq).

For a given u0(y), we seek solutions of Equations (5.1) to (5.4) on −Ly < y < Ly, with

impermeable boundaries at y = ±Ly, using the shooting method outlined in Appendix D.1.

We take Ly = 5Leq (see Equation (2.113)), which is large enough to ensure that the

outer boundary condition has a negligible influence on solutions. We solve the system

for u0(y) = U0 exp(−y2/2L2
eq), where U0 is chosen so that in the hydrodynamic limit

the zonally-averaged zonal-acceleration in Equation (22) of Showman & Polvani (2011)
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Figure 5.1: Linear solutions (for ∆heq/H = 0.01 and k = 1/R). Contours of the relative layer thick-
ness deviations (rescaled geopotential energy deviations) are plotted on (individually-normalised)
colour axes, with (individually-normalised) velocity vectors (u = u0 + u1), hotspots (cyan crosses)
and, where relevant, lines of constant A = A0 + A1 (solid/dashed for Bx positive/negative) over-
plotted. Hydrodynamic solutions (top row) are compared to marginally critical MHD solutions
(bottom row; compare VA values to Figure 4.9). Solutions are plotted for (a) τrad = τdrag = τwave

(left); (b) τrad = τdrag = 5τwave (middle); and (c) τrad = τdrag = 25τwave (right). Solutions are
calculated for −5Leq < y < 5Leq, but are cut off for −Rπ/2 < y < Rπ/2 (recall, Leq/R ≈ 0.67).
The strong magnetic field aligns flows preventing geopotential recirculation between latitudes, but
in the linearised model the (non-linear) equatorial Lorentz force is zero. Consequently, in the lin-
earised model hotspot offsets of marginally critical MHD solutions tend to zero, but do not reverse
like full SWMHD simulations.
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vanishes at the equator. We plot linear solutions for ∆heq/H = 0.01 in Figure 5.1, on

the reduced domain −π/2 < y/R < π/2, for three τrad and τdrag choices, comparing

hydrodynamic solutions with MHD solutions at the threshold of criticality, as found by

simulations.

Hydrodynamic solutions generally resemble those discussed in Showman & Polvani

(2011), albeit with an adjustment due to u0 (as discussed by Tsai et al., 2014, for u0

constant). They are characterised by geostrophic circulations at mid-to-high latitudes

and zonal pressure driven jets at equatorial latitudes. Such solutions closely resemble the

non-linear hydrodynamic steady state solutions we discussed in Chapter 4. The charac-

teristic flow patterns of hydrodynamic steady state solutions can also be directly linked to

the forcing responses of specific standing, planetary scale, equatorial shallow-water waves

(Matsuno, 1966; Showman & Polvani, 2011; Tsai et al., 2014). The geostrophic circula-

tions are linked to the planetary scale equatorial Rossby waves, which are geostrophic in

nature at mid-to-high latitudes; while the equatorial jets are linked the superposition of

the planetary scale equatorial Rossby waves and the equatorial Kelvin wave, which travels

eastward about the equator in response to pressure perturbations. The presented linear

hydrodynamic solutions all have eastward hotspots (located at points of zonal wind di-

vergence), as the linearised meridional convergence of geopotential flux into the equator,

−gH∂v1/∂y|y=0, is maximised eastward of the substellar point (due to the form of the

geostrophic circulations; further discussion in Chapter 4).

The marginally critical MHD solutions share some common characteristics with their

non-linear simulated counterparts. Specifically, in these solutions the aligning influence

of the meridional Lorentz force is strong enough obstruct geostrophic circulations, which

are replaced by zonally-aligned winds. However, unlike their simulated non-linear coun-

terparts, the magnetohydrodynamic solutions do not have westward hotspots. The arises

because in this simple linear model one can show that the Lorentz force components, which

drive hotspots reversals in non-linear simulations (see Chapter 4), vanish at the equator.1

1For S(y) equatorially-symmetric and B0 equatorially-antisymmetric, v̂ is antisymmetric and {û, v̂, Â}
are symmetric about the equator (see Appendix D.1). Hence, B̂x = (dÂ/dy − B0ĥ)/H is antisymmetric;
while, by Equation (5.4), Â(0) = 0, so B̂y(0) = −ikÂ(0)/H = 0. Consequently, ikB0B̂x + dB0/dyB̂y and
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Instead, marginally critical MHD solutions approach a limit of zero hotspot offset, as the

obstruction of geostrophic circulations causes −gH∂v1/∂y|y=0 → 0. This highlights that

in simple linear models, with similar linearisations of the Lorentz force and the induction

equation (i.e., without more sophisticated treatments of magnetic diffusion and non-linear

effects), one can identify the obstruction of geostrophic circulations that cause hotspot

reversals in non-linear simulations, but not westward hotspot offsets explicitly. This ob-

servation is useful in the remainder of this chapter, where we aim to link the magnetic

obstruction of geostrophic circulation patterns to wave dynamics.

5.2 Free wave solutions

5.2.1 Equatorial magnetohydrodynamic wave equations

To study the linear equatorial magnetohydrodynamic waves of the system, we linearise the

non-diffusive, unforced, drag-free versions of Equations (4.1) to (4.4) about the background

state, {u0, v0, h0, A0} = {0, 0, H,A0(y)}, where H is the constant and dA0/dy = HB0

(for B0 = B0(y)x̂ in velocity units). Applying the plane wave ansatz, {u1, v1, h1, A1} =

{û(y), v̂(y), ĥ(y), Â(y)}ei(kx−ωt), the evolution of the perturbations is determined by the

following linearised SWMHD system:

− iωû = fv̂ − ikgĥ+ ikB0B̂x +
dB0

dy
B̂y, (5.5)

− iωv̂ = −fû− gdĥ

dy
+ ikB0B̂y, (5.6)

− iωĥ = −H
(
ikû+

dv̂

dy

)
, (5.7)

− iωÂ = −HB0v̂, (5.8)

ikB0B̂y both vanish at the equator.
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where B̂x = (dÂ/dy − B0ĥ)/H and B̂y = −ikÂ/H. From this we eliminate û, ĥ, Â, B̂x,

and B̂y to obtain the single ordinary differential equation:

L{v̂} ≡ F1
d2v̂

dy2
+ F2

dv̂

dy
+ F3v̂ = 0, (5.9)

for the latitudinal solving domain, −Ly < y < Ly, with

F1 =
(
ω2 −B2

0k
2
) (
ω2 − c2mk2

)
, (5.10)

F2 = 2B0
dB0

dy
c2gk

4, (5.11)

F3 =
(ω2 − c2mk2)

c2g

[
(ω2 − c2mk2)(ω2 −B2

0k
2) − ω2f2 − ωkdf

dy
c2g

]
− 2ωfB0

dB0

dy
k3,

(5.12)

where cm(y) ≡ (c2g + B2
0)1/2 denotes the (rotationless) magneto-gravity wave speed. This

system can the contain singular points at y = ys, if ω = ±B0(ys)k (Alfvén singularity) or

ω = ±cm(ys)k (magneto-gravity singularity), which we label based on the ω-regions each

singularity is associated with.

If one attempts to write L in Sturm-Liouville form2, through use of an integrating fac-

tor, it is found that the highest order functional coefficient of the Sturm-Liouville operator,

p = (ω2 −B2
0k

2)/(ω2 − c2mk2), is not independent of the oscillation frequency. Therefore,

the desirable properties of the Sturm-Liouville eigenvalue problem (e.g., real eigenvalues

and orthogonality of eigenfunctions) are not generally guaranteed. Zaqarashvili (2018)

studied this system in the weakly-magnetic limit where singular points do not influence

the planetary scale waves.3 In this approximation L can be re-expressed in terms of the

parabolic cylinder Sturm-Liouville operator (the hydrodynamic version of L, see Matsuno,

1966). Therefore, away from singular ω-regions, where the approximations of Zaqarashvili

(2018) hold, one may expect solutions to conform to Sturm-Liouville properties (which we

2We use the Sturm-Liouville definition: (pv̂′)′ + qv̂ = λwv̂, where p(y), w(y) > 0, and p(y), p′(y), q(y),
and w(y) are continuous functions over the system’s finite solving domain, y ∈ [−Ly, Ly].

3Precisely, Zaqarashvili (2018) used B0 = γy with constant γ, applying the weak-field assumptions
ω2 � γ2k2y2 and |ω2 − c2k2| � γ2k2y2.
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find in the following analysis).

5.2.2 Equatorial wave solving method

We now examine non-trivial eigenvalue-eigenfunction pairs, {ω, v̂(y)}, that satisfy L{v̂} =

0 everywhere in the latitudinal domain, −Ly < y < Ly, subject to impermeable boundary

conditions (i.e., v̂(±Ly) = 0). We use the planetary parameters discussed in Chapter 4,

f = βy and B0 = VAe1/2 tanh(y/Leq). London (2017) found that this B0(y) choice

is useful because it is bounded as y → ∞, so there is no irregular singular point as

y → ∞ (as would be the case for B0 = γy). Moreover, since B0(y) is monotonic, there

is at most one Alfvén singularity in each hemisphere. For this B0(y) choice, solutions

with cgk ≤ |ω| ≤ (c2g + V 2
Ae)1/2k have magneto-gravity singularities; while solutions with

|ω| ≤ VAe1/2k have Alfvén singularities. We seek wave-like solutions with the planetary

scale azimuthal wavenumber, k = 1/R. We find that solving this eigenvalue problem,

without further approximation on L, is an analytically intractable problem so we use a

semi-analytic approach.

Since L is symmetric about the equator, homogeneous solutions will be either symmet-

ric (v̂ symmetric and û, ĥ, Â antisymmetric) or antisymmetric (v̂ antisymmetric and û, ĥ, Â

symmetric) about the equator.4 Although the system we solve here is unforced, we wish

to compare solutions to the numerical simulations of Chapter 4, which had equatorially-

symmetric forcing on h. Therefore, we only consider antisymmetric homogeneous solutions

and solve L{v̂} = 0 in the upper-half domain, 0 < y < Ly, with the antisymmetric lower

boundary condition v̂(0) = 0, which replaces v̂(−Ly) = 0. Eigenfunctions are defined

up to a constant factor, so a third and final normalisation boundary condition must also

be included. We set dv̂/dy|y=0 = N , where N is a normalisation constant chosen for

numerical convenience, and take Ly = 5Leq to ensure boundary influences are negligible.

We use a shooting method to seek eigensolutions. The shooting method calculates

successive “shots” (or test solutions, v̂T ) for given test frequencies, ωT , where each shot

satisfies L{v̂T } = 0, subject to two of the three boundary conditions. The third boundary

4If v̂ is equatorially-symmetric, Equations (5.5) to (5.8) yield û, ĥ, Â antisymmetric and vice versa.
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condition is then satisfied by varying ωT so that the deviation from the third boundary

condition, G[ωT ], vanishes.

If the system has no singular points, shots are carried out by the inversion of the tridi-

agonal matrix that corresponds to Equation (5.9), with finite difference discretizations,

such that the lower boundary conditions are satisfied. We find that magneto-gravity sin-

gularities are false singularities (i.e., L is singular but solutions are not; see Appendix D.2),

so, for VA > 0, solutions in the magneto-gravity singularity ω-range can also be treated as

regular everywhere. For solutions in the Alfvén singularity ω-range, we construct Frobe-

nius power series solutions in the singular region (see Appendix D.2), fix constants of

integration by shooting into, and matching with, the y = 0 boundary conditions, be-

fore finally shooting towards y = Ly to obtain G[ωT ]. Solutions are then checked via

back-substitution.

As discussed above, Sturm-Liouville theory only guarantees real eigenvalues in the

weakly-magnetic limit. Therefore, we examine convergence for complex test frequencies,

which have G = Gr + iGi = 0 for Gr, Gi ∈ R. We find that GrGi is antisymmetric about

ωi = 0, with contours Gr = 0 and Gi = 0 crossing exclusively on the real line, so ω ∈ R.

We find the position of eigensolutions on the real line using the bracketed Newton-Raphson

method discussed in Press et al. (1992).

5.2.3 Free wave eigensolutions

We label non-singular eigensolutions with a meridional mode number, n, based on the

hydrodynamic convention. Generally, when the domain is finite and large enough, mag-

netic eigenfunctions for solutions without singularities are qualitatively similar to their

hydrodynamic counterparts and n is the number of internal points where v̂(y) = 0 in

−Ly < y < Ly. However, hydrodynamic Kelvin solutions have the property v̂ = 0 ev-

erywhere so represent a special case. They are typically labelled with the meridional

mode number n = −1, with ψ−1 = 0 (Matsuno, 1966). We find that solutions with

cgk ≤ |ω| ≤ (c2g +V 2
Ae)1/2k are the magnetic versions of Kelvin solutions, so we label them

with n = −1 for consistency, although we find they have small non-zero v̂ (see below).
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Table 5.1: Oscillation frequencies, ω, for the n = 1, n = 3, and n = −1 equatorial wave solutions
with the planetary scale azimuthal wavenumber, k = 1/R, are tabulated for three choices of VA.
In the Solution type column we use the following shorthands: R/MR denotes Rossby/magneto-
Rossby solutions, WIG/WMIG denotes westward inertial gravity/magneto-inertial gravity solu-
tions, EIG/EMIG denotes eastward inertial gravity/magneto-inertial gravity solutions, WA de-
notes (singular) westward Alfvén solutions, EA denotes (singular) eastward Alfvén solutions,
K/MK denotes equatorial Kelvin/magneto-Kelvin solutions, and BK/BMK denotes boundary
Kelvin/magneto-Kelvin solutions.

VA = 0 VA = 0.15cg VA = 0.2cg
n Solution type ω/(cg/R) ω/(cg/R) ω/(cg/R)

1 WIG/WMIG -2.57 -2.61 -2.62
1 R/MR -0.293 -0.326 *
1 EIG/EMIG 2.89 2.90 2.91
1 WA† * -0.117† -0.142†

1 EA† * 0.0329† 0.0556†

3 WIG/WMIG -3.98 -3.99 -4.00
3 R/MR -0.134 * *
3 EIG/EMIG 4.11 4.12 4.13
3 WA† * -0.161† -0.201†

3 EA† * 0.0640† 0.102†

-1 K/MK 1 1.01 1.01
-1 BK/BMK -1 -1.03 -1.05

* Empty entries indicate that no solution exists for this VA value.
† Solutions with Alfvén singularities (see text).

For hydrodynamic and weakly-magnetic systems there are three solutions for each n ≥ 1:

one equatorial Rossby/magneto-Rossby solution, one westward equatorial IG/MIG solu-

tion, and one eastward equatorial IG/MIG solution. When magnetism is included another

two sets of solutions (one east; one west), with |ω| ≤ VAe1/2k, emerge. These solutions,

which have Alfvén singularities (where ω2 = B0(ys)
2k2), differ significantly from regular

equatorial wave solutions (see below). For convenience, we label these with a meridional

mode number, n, determined by the scale of latitudinal variations in v̂ (for n = 1, 3, 5,

v̂ is plotted in Figure 5.3). In Table 5.1 we present oscillation frequencies, ω, for the

n = 1, n = 3, and n = −1 free wave eigensolutions, with each row representing a specific

type of equatorial wave (see caption). We present the oscillation frequencies for VA = 0,

VA = 0.15cg/R and VA = 0.2cg/R and, in cases where eigenfunctions are finite everywhere,

we plot the corresponding free wave eigenfunctions for the equatorial n = 1 and n = −1

waves in Figure 5.2.
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Figure 5.2: The regular equatorial n = 1 (rows one to three) and n = −1 (row four) free wave
eigenfunctions (geopotential contours with overlaid velocity vectors) are plotted for VA = 0, VA =
0.15cg, and VA = 0.2cg, taking k = 1/R. We label rows according to their wave types (see
Table 5.1). Solutions are calculated for −5Leq < y < 5Leq, but are cut off for −Rπ/2 < y < Rπ/2
(Leq/R ≈ 0.67).
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Eastward and westward equatorial IG/MIG solutions are the system’s most rapidly

oscillating waves (with |ω| > cgk). The azimuthal background magnetic field slightly

increases the phase speed of the MIG modes (see Table 5.1). However, their energy

redistribution patterns remain qualitatively similar to their hydrodynamic IG counterparts

(see Figure 5.2, rows one and three).

Kelvin/magneto-Kelvin solutions are characterised by zonally-dominated winds. The

are two hydrodynamic Kelvin solutions: an eastward equatorial Kelvin solution, with

ω = cgk, v̂ = 0, {û, ĥ} ∝ exp(−y2/2Leq), and a westward boundary Kelvin solution, with

ω = −cgk, v̂ = 0, {û, ĥ} ∝ exp(y2/2Leq).5 These hydrodynamic solutions are special

cases of magneto-Kelvin eigensolutions, which have cgk ≤ |ω| ≤ (c2g + V 2
Ae)1/2k. While

hydrodynamic Kelvin solutions have v̂ = 0 everywhere, we find that magneto-Kelvin

solutions acquire a non-zero v̂ in order to maintain latitudinally-independent oscillation

frequencies. This can be understood by combining Equations (5.5), (5.7) and (5.8) to yield

(ω2 − c2mk2)û = ifωv̂ − ikc2g
dv̂

dy
. (5.13)

For hydrodynamic Kelvin solutions, the lefthand and righthand sides of Equation (5.13)

are identically zero throughout the domain; whereas magneto-Kelvin solutions have cgk ≤

|ω| ≤ (c2g + V 2
Ae)1/2k, {û, ĥ} similar to their hydrodynamic counterparts, and a non-

zero v̂ that ensures Equation (5.13) remains balanced. Like in the hydrodynamic limit,

we find two magneto-Kelvin solutions: an eastward equatorial magneto-Kelvin solution

and a westward boundary magneto-Kelvin solution. Magnetism causes both varieties

to have a small non-zero meridional velocity component (|v̂/û| � 1) and an increased

|ω|, but both are characteristically similar to their hydrodynamical counterparts. For the

equatorial magneto-Kelvin solution, this is illustrated in Figure 5.2, which shows its energy

redistribution pattern remains qualitatively similar as VA is increased.

In the hydrodynamic version of the system, equatorial Rossby solutions propagate

westward and oscillate slowly (|ω| < cgk), with their azimuthal phase speeds, |ω|/k, suc-

5The westward boundary Kelvin solution is removed when the condition is {û, v̂, ĥ} → 0 as |y| → 0 is
imposed (Matsuno, 1966).
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cessively decreasing for larger n solutions. In the hydrodynamic limit, the structures of

equatorial Rossby solutions are characterised by mid-to-high latitude geostrophic vortices

(see Figure 5.2, row two, lefthand column). For weakly-magnetic equatorial magneto-

Rossby solutions, we find that the presence of the azimuthal background magnetic field

has little effect on the form of the waves’ eigenfunctions, which are magnetogeostrophic

in nature. Weakly-magnetic solutions adjust to the contribution of magnetic tension with

small increases to their azimuthal phase speeds. However, when their oscillation frequen-

cies are exceeded by the maximal background azimuthal Alfvén frequency (i.e., when

VA ≥ e−1/2|ω|/k), equatorial magneto-Rossby solutions enter the ω-range of Alfvén singu-

larities and are removed from the system. Higher n equatorial magneto-Rossby solutions

are removed for the weakest VA values, before successively lower n solutions are removed

for larger VA values (as Alfvénic properties become dynamically important at larger and

larger scales). We attribute the removal of the planetary scale equatorial magneto-Rossby

solutions to the breaking of potential vorticity conservation in regions of large Lorentz

force

The shallow-water hydrodynamic definition of potential vorticity is, q = h−1(∂v/∂x−

∂u/∂y + f) (e.g., Vallis, 2006). In the non-diffusive, unforced, drag-free version of the

SWMHD model, the potential vorticity evolution satisfies

Dq

Dt
=

1

h
[∇× (J×B)] · ẑ, (5.14)

where J = (∂By/∂x − ∂Bx/∂y)ẑ. Equation (5.14) shows that the curl of the Lorentz

force generated by the horizontal magnetic field component generally prevents potential

vorticity conservation in the magnetic limit.6 Since the material conservation of potential

vorticity is essential to the propagation mechanism of Rossby waves (e.g., see Vallis, 2006),

in regions of large Lorentz force their generation is inhibited.

In magnetic systems, two additional sets of solutions emerge. These solutions have

|ω| ≤ VAe1/2k, so contain singularities, yet present some distinguishable properties of

6Further, Dellar (2002) showed that potential vorticity has no materially invariant counterpart in
SWMHD.
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Figure 5.3: The velocity profiles of the first few singular free wave eigenfunctions are plotted for
VA = 0.2cg/R and k = 1/R. Magnetic systems have two sets of singular solutions: one westward
travelling and one eastward travelling, which have Alfvénic properties (see main text). v̂ (blue)
and û (red) are respectively purely real and purely imaginary for the normalisation we apply.
We mark asymptotes at y = ±ys with dotted black lines. The solutions are labelled with the
latitudinal mode number, n, based on the latitudinal dependence of v̂. The corresponding profiles
for VA = 0.15cg/R are qualitatively identical.
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Alfvén waves. Specifically, they arise in both eastward and westward travelling varieties,

and |ω| increases with VA and n. To assess their nature as y → ys (for ω2 = B0(ys)
2k2), we

use the Frobenius solutions discussed in Appendix D.2. In singular regions, v̂ = O(ln |(y−

ys)/Leq|), so by Equation (5.13) û = O([(y − ys)/Leq]−1), meaning that |û/v̂| → ∞

as y → ys. This highlights that Alfvén singularities cause a wave barrier to emerge

at y = ys, over-which wave-driven meridional energy/momentum transport mechanisms

cannot cross. Since they are not finite everywhere, equatorial wave structures with Alfvén

singularities cannot determine global energy redistribution in the same way that planetary-

scale equatorial waves do in hydrodynamic hot Jupiter models. Hence, in the limit where

magnetism becomes significant, dissipative and non-linear effects become essential for

understanding equatorial dynamics. A non-singular analogue of these solutions could be

present in systems that include these extra physical processes but, since we are focused

on the breakdown of geostrophic balance, we do not investigate solutions of this kind

further.7

Thus far, we have discussed magnetic free wave solutions about a flat rest state. How-

ever, Tsai et al. (2014) and Debras et al. (2020) find the redistributing properties of waves

can be altered by the presence of a background zonal flow, though the fundamental char-

acteristics of these waves remain unchanged. Compared to the system we have so far

explored, taking u0 = U0 constant (as in Tsai et al., 2014), simply manifests itself in the

trivial phase translation ω 7→ ω∗ − U0k, where ω and ω∗ are oscillation frequencies for a

background at rest and a background with a zonal flow respectively. For this translation,

Alfvén singularities emerge where B0(ys)
2k2 = (ω∗−U0k)2 = ω2, which is the same condi-

tion as the rest case. We have also considered solutions about the latitudinally dependent

background state, u0 = u0(y), finding that Alfvénic singularities, with similar Frobenius

7In the very strong field limit, London (2017) identified “outer band” solutions akin to these Alfvenic
solutions that were trapped in polar regions in linear non-diffusive beta-plane systems, but concluded that
they do not have a finite global (linear, non-diffusive) counterpart in London (2018). Spherical (linear,
non-diffusive) SWMHD waves studies in other geometries have found additional slow magneto-Rossby
(Márquez-Artavia et al., 2017) and magnetostrophic (Heng & Spitkovsky, 2009) type waves at the poles of
shallow-water systems, which may be useful in explaining the dynamics of the polar MHD flows. Márquez-
Artavia et al. (2017) also found polar trapping of the “fast” magneto-Rossby solutions, which can plausibly
be related to the removal of equatorial magneto-Rossby solutions (i.e., magneto-Rossby waves could become
confined to regions of the atmosphere less influenced by magnetism).
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solution dependencies, emerge at points where B0(ys)
2k2 = (ω∗ − u0(ys)k)2.

5.3 Comparisons with non-linear simulations

Our findings concerning Alfvén-Rossby wave coupling in an equatorial beta-plane model,

with an equatorially-antisymmetric azimuthal background magnetic field, are consistent

with our developed theory of hotspot reversals from the simulations of Chapter 4. In

the hydrodynamic limit, planetary scale geostrophic circulations associated with equato-

rial Rossby waves are free to recirculate energy between the equatorial and mid-to-high

latitudes in a manner described by Showman & Polvani (2011). In the weakly-magnetic

limit, planetary scale circulations remain largely unchanged, with equatorial magneto-

Rossby waves only altering slightly to account for the magnetic contribution to their

magneto-geostrophic circulations. However, at a critical threshold magnetic tension be-

comes large enough to inhibit the magneto-geostrophic circulations associated with equa-

torial magneto-Rossby waves. This is the free wave manifestation of the obstruction of

geostrophic circulations, which we identified as the trigger for hotspot reversals in Chap-

ter 4. Here the analogy between global circulations and the standing wave description of

linear steady-state solutions described by Showman & Polvani (2011) breaks down and

the force balance description used in Chapter 4 is preferable. In Chapter 4, we saw that

the meridional Lorentz force responsible for obstructing geostrophic circulations always

has a corresponding westward component that, ultimately, results in hotspot reversals.

Together, the developed theory of Chapter 4 and this chapter can be used to place a

zero-amplitude limit on the reversal threshold, VA,crit. In linear theory, magnetic tension

inhibits the propagation of equatorial Rossby waves, with the oscillation frequency

ωR,n =
−βk

k2 + (2n+ 1)β/cg
, (5.15)

when ωA,max ≥ |ωR,n|, where ωA,max = B0,maxk = VAe1/2k is the maximal Alfvén fre-

quency. Our findings suggest that, when the slowest (largest n) equatorial Rossby wave

that is important for supporting the planetary scale mid-to-high latitude geostrophic bal-
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ance becomes inhibited by magnetic tension, geostrophic circulations are obstructed and

hotspots are driven westward by the resulting zonal Lorentz force.

In Figure 4.9, we have overplotted the theoretical thresholds associated with the ob-

struction of the n = 1, 3, 5 equatorial Rossby solutions, for comparison with the zero-

amplitude (∆heq/H → 0) limits of the simulated reversal thresholds, VA,crit. We generally

find acceptable agreement between the simulations and these theoretical criteria, noting

that in the most physically relatable case, where τrad is short, reversals occur at the point

where the n = 1 equatorial Rossby wave is overcome by magnetic tension. When τrad and

τdrag act over longer timescales, Figure 4.9 suggests that the obstruction of geostrophic

circulations is associated with the loss of larger n equatorial Rossby solutions. This is some-

what consistent with the standing wave description of linear steady-state hydrodynamic

solutions, as geostrophic circulations in solutions with longer τrad and τdrag timescales are

located at higher latitudes (e.g., see Figure 4.1), so require contributions to their energy

recirculation patterns from larger n equatorial Rossby waves (e.g., Matsuno, 1966; Show-

man & Polvani, 2011; Tsai et al., 2014). While a wave analysis with non-linear effects and

diffusion may be able to more precisely define these weakly-forced limits, we note that

this description provides a vast improvement on scaling predictions of typical toroidal

field strengths on hot Jupiters, which have order of magnitude (or larger) uncertainties

(discussion in Chapter 6).
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Chapter 6

The Magnetic Reversal

Mechanism

In Chapter 4, we used identified the mechanism that drives magnetic hotspot reversals

in SWMHD simulations of hot Jupiters; whereas in Chapter 5 we linked the mecha-

nism to wave dynamics. In the chapter we tie together all these ideas, discuss the

relationship between hotspot reversals and wind reversals, and make comparisons with

past three-dimensional (3D) MHD simulations of hot Jupiters. First, to recap the find-

ings of Chapter 4, we provide a schematic and summarised explanation of the hotspot

mechanism in Figure 6.1 and its caption. In short, when mid-to-high latitude planetary-

scale drag-adjusted geostrophic circulations attempt to flow through a strong equatorially-

antisymmetric toroidal field, they are resisted in the meridional direction and bend mag-

netic field lines in a manner that always induces westward Lorentz force accelerations in

the hottest dayside regions. If the toroidal field exceeds critical magnitude, this results

zonally-aligned winds and westward hotspot for all τrad, τdrag, and ∆heq/H choices.

This mechanism is also relevant for other, less idealised, magnetic field geometries.

The reversal mechanism requires two features in the azimuthal field geometry: (1) large

|Bx| at mid-to-high latitudes to block/obstruct the circulation of the energy transport-

ing geostrophic flows and (2) smaller or zero |Bx| at equatorial latitudes, so that when
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(a) HD steady state
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Figure 6.1: A schematic of the magnetic reversal mechanism, with grey temperature contours and
white magnetic field lines (solid for Bx > 0; dashed for Bx < 0). (a) In hydrodynamic steady state
solutions, drag-adjusted geostrophic circulations dominate at mid-to-high latitudes; whereas zonal
pressure-driven jets dominate at the equator. Hotspots are shifted eastward as these circulations
transport thermal energy from the western equatorial dayside to the eastern equatorial dayside,
via higher latitudes. (b) In ultra-hot Jupiters, partially-ionised winds flow through the planet’s
deep-seated magnetic field, inducing a dominant equatorially-antisymmetric atmospheric toroidal
magnetic field. When field lines are parallel to the equator, magnetic tension is zero, so flows
behave hydrodynamically. (c) As the field and flow couple, the geostrophic circulations bend the
magnetic field lines poleward on the western dayside and equatorward on the eastern dayside,
generating a Lorentz force, (B · ∇)B. The meridional Lorentz force component acts to resist the
geostrophic circulations; whereas, since |Bx| is smallest in equatorial regions, the zonal Lorentz
force component, (B · ∇)Bx, is westward in hotspot regions, where field lines bend equatorward
(and vice versa where field lines bend poleward). (d) Beyond a magnetic threshold, the system’s
nature changes. The meridional Lorentz force obstructs the circulating geostrophic winds, causing
zonal wind alignment. This confines thermal structures and blocks the hydrodynamic transport
mechanism. The zonal Lorentz force accelerates winds westward in the hottest dayside regions,
causing a net westward dayside temperature flux. This drives the hottest thermal structures
westward, until zonal pressure gradients can balance the zonal Lorentz force.
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magnetic field lines are bent into the equatorial region (by the mid-to-high latitude cir-

culations), they pass into regions of smaller |Bx|, generating a westward Lorentz force

acceleration. This suggests that, as long as the profile is characterised by these two fea-

tures, the developed theory does not depend on exact antisymmetry in the dominant

magnetic field geometry. This observation is useful when comparing to the 3D MHD

simulations of Rogers & Komacek (2014) and Rogers (2017), which are characterised by

antisymmetrically-dominant, but not exactly antisymmetric, toroidal magnetic field ge-

ometries.

6.1 Hotspot reversal criterion

In Chapters 4 and 5, we identified two physically-motivated reversal criteria on the Alfvén

speed. The azimuthal Alfvén speed is defined as VA = Bφ/
√
µ0ρ, where µ0 and ρ are

the permeability of free space and the density. Taking cg =
√
RT (see Chapter 4) and

applying the ideal gas law therefore yields Bφ ∼ (VA/cg)
√
µ0P , where T and P are the

temperature and pressure at which the reversal occurs. From this, we have the following

critical reversal criterion on the toroidal field magnitude:

Bφ,crit ≈
√
µ0P max

[
β/cg

k2 + 3β/cg
,
2πR

Leq

(
∆heq
H

)(
τrad
τwave

)−1(2Ωτ2wave
τrad

+ 1

)−1]
, (6.1)

where n = 1 (largest scale Rossby wave) and κ ≈ 1 (Bφ approaches maximal amplitudes

close to the equator, as in Rogers & Komacek, 2014) have been taken. This criterion

quantifies the toroidal field magnitude sufficient to obstruct geostrophic circulations, with

the first term in the maximum relating to when the toroidal field inhibits the propagation

of the largest scale equatorial Rossby wave (in the small ∆heq/H limit).

Further, if the electric currents that generate the planet’s assumed deep-seated dipolar

field are located far below the atmosphere, Menou (2012a) argued that the toroidal and

dipolar field magnitudes should be related by the scaling law: Bφ ∼ RmBdip, where

Rm = UφH/η is the magnetic Reynolds number and Uφ is the magnitude of zonal wind

speeds. We use the toroidal field criterion, and apply Bφ ∼ RmBdip, to quantitively
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compare the predictions of SWMHD theory to the 3D MHD simulations of Rogers &

Komacek (2014) and Rogers (2017).

6.2 Comparisons between SWMHD and 3D MHD

6.2.1 Linking hotspot and wind reversals

Thus far, we have considered hotspot reversals, rather than the reversal of zonal-mean

zonal winds, ū. Though time-correlated in 3D MHD models (Rogers, 2017), hotspot

and wind reversals are not necessarily synonymous. While thermal/wind structures and

geopotential/wind structures compare well between hydrodynamic shallow-water and 3D

models (e.g., Perez-Becker & Showman, 2013; Komacek & Showman, 2016), Debras et al.

(2020) found a consistent treatment of the vertical component of the eddy-momentum flux

(i.e., the vertical Reynolds stress) is critical to the development of equatorial superrotation

(ū > 0).1

In hydrodynamic models of hot Jupiters, equatorial superrotation emerges from the

momentum transport mechanism of Showman & Polvani (2011). Showman & Polvani

(2011) noted that the necessity for such a mechanism is a consequence of an angular mo-

mentum conservation theorem from Hide (due to Hide, 1969a), which implies that equato-

rial superrotation can only be maintained if driven by an up-gradient angular momentum

pumping mechanism. Showman & Polvani (2011) showed that this up-gradient mechanism

is provided by the same geostrophic circulations that result in eastward hotspots. There-

fore, since we have shown that magnetically-driven hotspot reversals are caused by the

obstruction these recirculation patterns, Hide’s theorem provides an anti-theorem, which

implies that the magnetically-driven hotspot reversals are accompanied by a disruption of

superrotation.

The realisation of this anti-theorem can be identified in 3D MHD simulations. These

found that mid-to-high latitude vortical structures zonally-align and, consequently, the

1Interestingly, while SWMHD does not include a consistent treatment of vertical eddy-momentum flux,
we still find that ū can reverse during the transition phase (only) of hotspot reversals in supercritical
SWMHD simulations.
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transport of eastward eddy-momentum (horizontal Reynolds stress) from mid-latitudes

into equatorial regions is reduced at atmospheric depths were reversals occur (compare

their Figures 2, 9, and 11 in Rogers & Komacek, 2014). Rogers & Komacek (2014) found

that, when the up-gradient horizontal Reynolds stress component diminishes, westward

equatorial zonal-mean zonal accelerations are driven by the remaining down-gradient mo-

mentum transport components (i.e., the vertical Reynolds stress and the Maxwell stresses).

Thus, the above the application of Hide’s theorem provides a meaningful connection be-

tween wind reversals and the magnetically-driven hotspot reversals mechanism we have

presented.

6.2.2 Wave dynamics and turbulence

While we have not modelled turbulence in this work, actual planetary flows are expected

to be highly turbulent. In hydrodynamic planetary systems, wave arguments have his-

torically proved useful for developing understanding of geostrophic turbulence and how

its conservational properties relate to eddies. Specifically, potential vorticity conservation

is fundamental for both Rossby wave propegation and geostrophic turbulence, so Rossby

wave properties can be used to understand the structures of planetary scale turbulence

(e.g., Rhines, 1975; Vallis, 2006). Rogers & Komacek (2014) found that the relationship

between zonal jets and magnetic fields in 3D MHD simulations shared intermittent fea-

tures with MHD turbulence on a beta-plane that were identified by Tobias et al. (2007).

Hydrodynamic geostrophic turbulence and MHD beta-plane turbulence have very differ-

ent characteristics. Amongst them, the wave-wave/wave-zonal flow interactions associated

with the inverse cascade of geostrophic turbulence are replaced with interactions that result

in a forward MHD cascade, with MHD interactions occurring over scales on (and below)

the planetary scale when the azimuthal Alfvén wave frequencies exceed the planetary scale

Rossby wave frequency (Diamond et al., 2007). This turbulence condition is remarkably

similar to the hotspot reversal criterion we identified in the weakly forced regime, which

was motivated by wave dynamics and the findings of non-turbulent SWMHD simulations.

We attribute this kinship to the breaking of potential vorticity conservation in MHD mod-
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els in regions of large horizontal Lorentz force, which inhibits geostrophic characteristics

such as Rossby wave propagation (as discussed in Chapter 5). We also highlight that

forcing and drags generate potential vorticity sources/sinks, so potential vorticity conser-

vation is modified when drag and forcing treatments are strong, which is why reversal

thresholds deviate from this simple criterion in the strongly forced limit.

6.2.3 Magnetic field evolution and structure

After the initial hotspot transition, long term temporal differences between SWMHD and

3D MHD models arise because SWMHD can only model the planetary dipolar field or the

atmospheric toroidal field self-consistently (see Chapter 2), meaning that it cannot take

into account toroidal field induction from reversed conducting zonal winds passing through

the planetary dipolar field. If a strong toroidal field can be maintained indefinitely, the

shallow-water theory predicts completely reversed winds, even in 3D models. However,

at the onset of the wind reversals, the induction caused by the reversed winds flowing

through the deep-seated magnetic field will result in a reduction of the atmospheric toroidal

field’s magnitude. Hence, while the quasi-steady magnetically-driven wind reversals of

SWMHD are useful for modelling the reversal process, in reality one would expect to

see oscillatory wind variations as toroidal fields successively strengthen and weaken in a

wind-up-wind-down cycle of the toroidal magnetic field. Wind variations of this kind can

be both observationally inferred from the oscillating peak brightness offsets of HAT-P-7b

(Armstrong et al., 2016) and directly measured in 3D MHD simulations of the HAT-P-

7b parameter space (Rogers, 2017). This in itself has the interesting consequence that

the reversal mechanism may provide a saturation process for the atmospheric toroidal

magnetic field.

Due to the density dependence of the Alfvén speed, Bφ,crit has a ∼ P 1/2 pressure de-

pendence (see Equation (6.1)). This explains why Rogers & Komacek (2014) and Rogers

(2017) found that wind reversals first onset in the upper atmosphere, but move deeper for

stronger field strengths. Furthermore, if the reversal mechanism is a toroidal field satura-

tion process (as discussed above), Bφ should not greatly exceed Bφ,crit. Hence, Bφ should
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Table 6.1: Estimates of reversal criteria compared to field strengths and reversal criteria from 3D
MHD simulations (see Section 6.2.4 for definitions and an accompanying discussion).

Model P/mbar Teq/K ∆T/Teq Bφ,crit/G 3D comparison

M7b1a 20∗ 1850 0.1-0.2 175-350 |Bφ| = 220 G
M7b2a 200∗ 1950 0.05-0.1 430-545 |Bφ| = 510 G
M7b2a 10† 1750 0.15-0.2 185-247 |Bφ| = 190 G

HAT-P-7bb 1∗ 2200 0.22 92 3 G < Bdip,crit,base < 10 G

* Critical wind reversal depth, P ≈ Pcrit.
† Above critical wind reversal depth, P < Pcrit.
a

Rogers & Komacek (2014); Parameters of HD209458b.
b

Rogers (2017); Parameters of HAT-P-7b.

decrease above the deepest region where reversals occur (since Bφ,crit decreases upwards),

which is a feature of the toroidal field profiles found in Rogers & Komacek (2014), though

other processes may also cause an upwards reduction in Bφ. Comparing the geometry of

the toroidal fields in the quasi-steady reversed SWMHD solutions with those in oscillating

3D MHD solutions is difficult. However, when the toroidal field is approaching criticality in

strength, we do find similarities between our toroidal field geometries and those of Rogers

& Komacek (2014). In both models the equatorially-antisymmetric toroidal fields couple

to mid-to-high latitude circulations in a manner that bends them towards the equator

from west to east, which we showed is a geometry that results in westward Lorentz force

accelerations (see Chapter 4).

6.2.4 Quantitive comparisons with 3D MHD

In Table 6.1, we compare predictions of the reversal criterion to magnetic field strengths

of in three 3D MHD simulations: M7b1 and M7b2 of Rogers & Komacek (2014), and the

HAT-P-7b model of Rogers (2017), all of which display wind reversals at some critical

pressure depth, Pcrit. In these estimates, we take Teq = T̄ , ∆T = Tday − T̄ , τrad = τwave,

and set ∆heq/H = ∆T/Teq. For comparisons to the simulations of Rogers & Komacek

(2014), we compare Bφ,crit to |Bφ|, the horizontally-averaged toroidal field component at

the end of the run; whereas, for the HAT-P-7b simulation of Rogers (2017), we estimate the

critical dipolar field strength at the atmospheric base, Bdip,crit,base. This is calculated using
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the Bφ ∼ RmBdip scaling law of Menou (2012a). We take η = 2× 106 m2 s−1 and Uφ ∼

102 m s−1 from 3D simulations, to yield Bdip,crit ≈ 4.3 G at P = 1 mbar, then noting that

the atmospheric base is located at r = 0.15R in the simulations yields Bdip,crit,base = 7. We

note that the reversal criterion compares reasonably to the magnitude of the horizontally-

averaged toroidal component field in the simulations of Rogers & Komacek (2014), with

uncertainties in Tday bracketing the true |Bφ| value. This occurs both at P = Pcrit and

above Pcrit, supporting the idea of reversals providing a toroidal field saturation process.

The prediction of Bdip,crit,base = 7 lies within the range 3 G < Bdip,crit,base < 10 G identified

by Rogers (2017). We note that, while Bφ,crit has dependencies on ∆T/Teq and τrad, η

can vary significantly between the day and night sides of ultra-hot Jupiters (by orders

of magnitude). Therefore, current understanding of the connection between toroidal and

poloidal fields on hot Jupiter is constrained by large uncertainties (in Bφ ∼ RmBdip),

which far outweigh uncertainties in the toroidal field criterion that we have developed.
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Observational Consequences

In this chapter we use results of Chapters 4 to 6 to place estimates on the minimum

magnetic field strengths required to cause atmospheric wind variations (and therefore

westward venturing hotspots) for a dataset of hot Jupiters.

Recall from Chapter 1 that, to date, westward hotspots/brightspots have been observa-

tionally inferred on five hot Jupiters: HAT-P-7b, CoRoT-2b, Kepler-76, WASP-12b, and

WASP-33b. Continuous optical Kepler measurements have identified east-west brightspot

oscillations on the ultra-hot Jupiters HAT-P-7b (Armstrong et al., 2016) and Kepler-76b

(Jackson et al., 2019); optical phase curve measurements from TESS have found west-

ward brightspot offsets on the ultra-hot Jupiter WASP-33b (von Essen et al., 2020)1;

while thermal phase curve measurements from Spitzer have found westward hotspots on

the ultra-hot Jupiter WASP-12b (Bell et al., 2019) and the cooler hot Jupiter CoRoT-2b

(Dang et al., 2018). Three explanations for these observations have been proposed: cloud

asymmetries confounding optical measurements (Demory et al., 2013; Lee et al., 2016;

Parmentier et al., 2016; Roman & Rauscher, 2017); non-synchronous rotation (Rauscher

& Kempton, 2014); and magnetism (Rogers, 2017). Ultra-hot Jupiters generally have

near-zero eccentricities and are thought to be tidally-locked, so are expected to be syn-

chronously rotating (again, see Chapter 1). They are also expected to have cloud-free

1Although von Essen et al. (2020) acknowledge that systematic effects in the data, due to host star
variability, cannot be ruled out as a potential cause of their westward brightspot measurements.
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daysides, where their atmospheres are too hot for condensates to form. Helling et al.

(2019b) recently ruled out cloud asymmetries as the explanation for westward brightspots

on HAT-P-7b. Using three-dimensional MHD simulations, Rogers (2017) showed that

the westward venturing brightspot displacements on HAT-P-7b can be well explained by

deep-seated dipolar magnetic field strengths exceeding ∼ 6 G at the atmospheric base.

HAT-P-7b, CoRoT-2b, Kepler-76, WASP-12b, and WASP-33b will be of particular

interest but we shall also discuss estimates more generally for the whole exoplanet.eu

dataset (introduced in Chapter 1). For HAT-P-7b our estimates agree with past results;

for the cooler CoRoT-2b magnetism does not predict reversals and the observations are

more plausibly explained by non-magnetic phenomena; for Kepler-76b we find that the

critical dipolar magnetic field strength, over which the observed wind variations can be

explained by magnetism, lies between 4 G and 19 G; for WASP-12b and WASP-33b west-

ward hotspots can be explained by 1 G and 2 G dipolar fields respectively. Additionally,

to guide future observational missions, we identify 61 further hot Jupiters that are likely

to exhibit magnetically-driven atmospheric wind variations.

7.1 Recap: Reversal condition from shallow-water MHD

The hottest hot Jupiters have weakly ionised atmospheres, strong zonal winds, and are

expected to have planetary dynamos that generate deep-seated dipolar magnetic fields.

If the atmosphere of a hot Jupiter is sufficiently ionised, the atmospheric flow becomes

strongly coupled to the planet’s deep-seated magnetic field, inducing a strong equatorially-

antisymmetric toroidal field that dominates the atmosphere’s magnetic field geometry

(Menou, 2012a; Rogers & Komacek, 2014).

In hydrodynamic (and weakly-magnetic) systems, mid-to-high latitude geostrophic cir-

culations cause a net west-to-east equatorial thermal energy transfer, yielding eastward

hotspots, and a net west-to-east angular momentum transport into the equator from higher

latitudes, driving superrotating equatorial jets (Showman & Polvani, 2011). We have

shown that the presence of a strong equatorially-antisymmetric toroidal field obstructs
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these energy transporting circulations, which, by causing zonal wind alignment and west-

ward Lorentz force accelerations, results in reversed flows with westward hotspots. The

threshold for such reversals can be estimated using

VA,crit
cg

≈ max

[
β/cg

k2 + 3β/cg
,
2πR

Leq

(
∆heq
H

)(
τrad
τwave

)−1(2Ωτ2wave
τrad

+ 1

)−1]
,

≈ max

[
(R/Leq)2

1 + 3(R/Leq)2
,
2πR

Leq

(
∆heq
H

)(
τrad
τwave

)−1(2Ωτ2wave
τrad

+ 1

)−1]
,

(7.1)

The first term in the maximum corresponds to the point where the toroidal field can

disrupt the geostrophic energy redistribution caused by planetary-scale equatorial Rossby

waves in the zero-forcing-amplitude limit. The second term in the maximum corresponds

to the point where the toroidal field can obstruct geostrophic circulations in the strongly

(pseudo-thermally) forced limit. The parameters in Equation (7.1) have all been dis-

cussed previously but, to recap, R is the planetary radius, cg is the shallow-water gravity

wave speed, β = 2Ω/R is the latitudinal variation of the Coriolis parameter at the equa-

tor (for the planetary rotation frequency Ω), k = 1/R is the planetary scale azimuthal

wavenumber, Leq ≡ (cg/β)1/2, the equatorial Rossby deformation radius2, α = 2πR/Leq

is a longitude-latitude lengthscale ratio, τwave ≡ Leq/cg is the system’s characteristic wave

time scale (as in Showman & Polvani, 2011), and ∆heq/H determines the magnitude of

the shallow-water system’s pseudo-thermal forcing profile, which the system is relaxed

towards over a radiative timescale, τrad, using a Newtonian cooling treatment.

7.2 Method for Placing Magnetic Reversal Criteria on hot

Jupiters

Equation (7.1) shows that the parameters R, cg, Ω, τrad, and ∆heq/H can be used to

estimate the minimum magnetic field strengths required for reversals. In this section we

apply this simple relation to a dataset of hot Jupiters taken from exoplanet.eu3. We

2The equatorial Rossby deformation radius is the fundamental latitudinal length scale of planetary-scale
flows and waves at the equator.

3Accessed May 30, 2021. Hot Jupiters without data entries for R, M , torbit, a, e, R∗, or T∗ are removed.
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use planets with 0.1MJ < M < 10MJ and a < 0.1AU, where M and MJ denote the

planetary mass and Jupiter’s mass respectively, and a is the semimajor axis. The criteria

are calculated using Teq, the equilibrium temperature, which we calculate using (Laughlin

et al., 2011)

Teq =

(
R∗
2a

)1/2 T∗

(1− e2)1/8 , (7.2)

where R∗ is the stellar radius, e is the orbital eccentricity, T∗ is the stellar effective tem-

perature, and zero albedos are assumed.

The validity of the shallow-water approximation can be assessed by comparing Leq to

the pressure scale height, H ∼ RTeqR2/GM , where G is Newton’s gravitational constant

and R is the specific gas constant. Calculating R using the solar system abundances in

Lodders (2010), for our sampled planets, mean(H/Leq) = 7.5× 10−3, so shallow-water

theory is generally expected to capture their leading order atmospheric dynamics well.

The shallow-water gravity wave speed is calculated by equating thermal and geopotential

energies, yielding cg ≡
√
gH ∼ (RTeq)1/2. Doing implies ∆h/H ∼ ∆T/Teq, where ∆h

are deviations in shallow-water layer thickness from the reference H and ∆T ≡ Tday−Teq
for the dayside temperature, Tday. Though not exactly equal, τrad ∼ τwave in the upper

atmospheres of hot Jupiters (Fortney et al., 2008; Rogers & Komacek, 2014; Rogers, 2017).

Taking τrad = τwave is also convenient for this analysis as, when τrad . τwave, ∆h ∼ ∆heq

(Perez-Becker & Showman, 2013, and see Chapter 4), so ∆heq/H ∼ ∆T/Teq.

An interesting feature of hot Jupiters is that the dynamical parameters cg, Ω and R of

a given hot Jupiter are all related to its proximity to its host star and the size/luminosity

of its host star (i.e., they are all related to Teq). The consequence of this interdependence

is that, for the hottest hot Jupiters, Leq/R and τwave approximately converge to the

constant values Leq/R ≈ 0.7 and τwave ≈ 2× 104 s as seen in Figure 7.1 (top left and top

right panels).

In Figure 7.1 (bottom panel) we use Equation (7.1) to plot the ratio VA,crit/cg for

∆T/Teq = 0, 0.1, 0.2, 0.3. Taking ∆T ≈ (Tday − Tnight)/2, ∆T/Teq = 0.1, 0.2, 0.3 cover

the expected range of relative dayside-nightside variations, with the cooler/hotter hot
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Figure 7.1: Important dynamical scales and ratios of hot Jupiters are plotted alongside critical
Alfvén speed estimates, using the exoplanet.eu dataset. We plot Leq/R (top left), τwave (top right),
and VA,crit/cg (bottom panel) as functions of Teq, where VA,crit/cg is calculated for ∆T/Teq =
{0, 0.1, 0.2, 0.3}.
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Jupiters generally on the lower/upper end of this scale (e.g., Komacek et al., 2017); whereas

∆T/Teq = 0 shows the zero-amplitude limit. VA,crit/cg varies linearly with ∆T/Teq above

∆T/Teq = 0.1, but approaches the zero-amplitude limit just below ∆T/Teq = 0.1. A

remarkable feature of the hot Jupiter dataset is that, due to the aforementioned interde-

pendences, the ratio VA,crit/cg also converges in the large Teq limit for a given ∆T/Teq.

This suggests that predictions of the ratio VA,crit/cg can be used somewhat universally

when comparing reversal conditions between hot Jupiters for specific ∆T/Teq choices.

Equation (7.1) can be combined with the Alfvén speed definition and the ideal gas law

to give

Bφ,crit =

(
µ0P

RT

)1/2

VA,crit ∼
VA,crit
cg

√
µ0P , (7.3)

where Bφ,crit is the critical reversal magnitude of Bφ, µ0 is the permeability of free space,

and T and P are the temperature and pressure at which the reversal occurs.

If the electric currents that generate the planet’s assumed deep-seated dipolar field are

located far below the atmosphere, Menou (2012a) showed that Bφ can be related to the

strength of the dipolar field, Bdip, by the scaling law

Bφ ∼ RmBdip, (7.4)

where Rm = UφH/η is the magnetic Reynolds number for a given magnetic diffusivity,

η, zonal wind speed, Uφ, and pressure scale height, H. The magnetic Reynolds number

estimates the relative importance of the atmospheric toroidal field’s induction and diffu-

sion. We note that Uφ/cg scales linearly with ∆h/H ∼ ∆T/Teq in geostrophically or drag

dominated flows (Perez-Becker & Showman, 2013). Taking a geostrophically dominated

flow yields fUφ ∼ (∆T/Teq)c2g/Leq, so Uφ/cg ∼ (∆T/Teq)LD/Leq, with LD = cg/f . We

fix the constant of proportionality in this scaling by setting Uφ ∼ 1.5 × 102 m s−1 for the

conditions corresponding to the simulations of Rogers (2017). To calculate η we follow the

method used by Rauscher & Menou (2013) and Rogers & Komacek (2014), taking

η = 230× 10−4
√
T

χe
m2 s−1, (7.5)
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Figure 7.2: Rm (left) and Bφ,crit (right) are plotted as functions of Teq, for the exoplanet.eu dataset.
The estimates are calculated at P = 10 mbar with T = Teq + ∆T , where ∆T/Teq = 0.1, 0.2, 0.3
(blue, orange, red), using τdrag = τwave. For each hot Jupiter, the three ∆T/Teq choices are
connected by a translucent line. For reference, the dashed lines Teq = 1500 K and Rm = 1
(lefthand panel only) are also overplotted.

where χe is the ionisation fraction. The ionisation fraction is calculated using a form of

the Saha equation that takes into account all elements from hydrogen to nickel. It is given

by

χe =
28∑
i=1

(ni
n

)
χe,i . (7.6)

In this sum the number density for each element, ni, and the ionisation fraction of each

element, χe,i, are calculated using

ni = n

(
ai
aH

)
=

ρ

µm

(
ai
aH

)
, (7.7)

χ2
e,i

1− χ2
e,i

=n−1i

(
2πme

h2

)3/2

(kT )3/2 exp
(
− εi
kT

)
, (7.8)

where ρ is the atmospheric density, n is the total number density, µm is the molecular

mass, ai/aH is the abundance of each element normalised to the hydrogen abundance,

me is the electron mass, h is Plank’s constant, k is the Boltzmann constant, and εi is the

ionisation potential of each element. To calculate η, we use the solar system abundances in

Lodders (2010) and take T = Teq +∆T/
√

2, which is the root mean squared temperature

if a sinusoidal longitudinal temperature profile is assumed.
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7.3 Magnetic field constraints

7.3.1 Estimates of Rm and Bφ,crit

Estimates of Rm and Bφ,crit are calculated at depths corresponding to P = 10 mbar, at

which Rogers & Komacek (2014) found magnetically-driven wind variations. In Figure 7.2

we plot Rm (lefthand panel) and Bφ,crit (righthand panel) as functions of Teq, for hot

Jupiters in the dataset (with Teq > 1000 K), taking ∆T/Teq = 0.1, 0.2, 0.3.

Induction of the atmospheric toroidal field is expected to become significant when Rm

exceeds unity. At P = 10 mbar, Rm exceeds unity for T & 1500 K, depending on ∆T/Teq.

However, due to the highly temperature dependent nature of Equation (7.8), Rm varies

significantly when one compares ∆T/Teq = 0.1, 0.3 for a given hot Jupiter.

As we see in Section 7.3.2, Bφ is only likely to exceed Bφ,crit if the hot Jupiter in

question is hot enough to maintain a significant atmospheric toroidal field (Rm � 1). We

therefore concentrate our discussion on these hotter hot Jupiters; however, we place hypo-

thetical estimates on Bφ,crit for all planets in the dataset with Teq > 1000 K (Figure 7.2,

righthand panel). Since, for a given ∆T/Teq, VA,crit/cg is virtually independent of Teq in

the hottest hot Jupiters, so is Bφ,crit, with 100 G . Bφ,crit . 450 G for 0.2 < ∆T/Teq < 0.3;

whereas larger Leq/R values can cause Bφ,crit to decrease in the cooler hot Jupiters (com-

pare with Figure 7.1). We comment that Bφ,crit is generally least severe in the uppermost

regions of the atmosphere, where the atmosphere is least dense, explaining why Rogers &

Komacek (2014) found the east-west wind variations at these depths.

Magnetically-driven wind variations can be viewed as a saturation mechanism for the

atmospheric toroidal field. If the toroidal field is sufficiently strong to reverse winds, the

induction caused by the reversed winds flowing through the deep-seated magnetic field

will result in a reduction of the atmospheric toroidal field’s magnitude. Therefore, the

reversal mechanism prevents the toroidal field strength from greatly exceeding Bφ,crit.

This suggests that Bφ should peak in the deepest regions satisfying Bφ ∼ Bφ,crit, where

Bφ,crit can be large, then decrease towards the surface where Bφ,crit is smaller. This is

consistent with Rogers & Komacek (2014), who found Bφ peaks in the mid-atmosphere
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Figure 7.3: Critical dipole magnetic field strengths, Bdip,crit, at P = 10 mbar. We plot Bdip,crit

using τdrag = τwave and T = Teq +∆T , with ∆T/Teq = 0.1, 0.2, 0.3 (blue, orange, red). For a given
hot Jupiter, these are connected by translucent lines. We include error bars and labels for the
planets discussed in this letter (see Table 7.1) along with reference lines at 14 G (dashed; Jupiter’s
polar surface magnetic field strength) and 28 G (dotted; twice this).

(and declined to 300 G . Bφ . 450 G at P = 10 mbar in their M7b simulations).

7.3.2 Dipolar magnetic field strengths

In Figure 7.3 we use Equation (7.4) to plot Teq vs Bdip,crit, the critical dipolar field (at

P = 10 mbar) sufficient to drive magnetic wind variations for ∆T/Teq = 0.1, 0.2, 0.3. Since

there is a large amount of ambiguity regarding how planetary dynamo theory translates

to the hot Jupiter parameter regime, we include a physically motivated reference line

at Bdip,crit = 14 G (the magnitude of Jupiter’s magnetic field at its polar surface) and

a second reference line at 28 G (twice this). Due to the highly temperature dependent

nature of Rm, these estimates of Bdip,crit carry a high degree of uncertainty (e.g., compare

Bdip,crit of a given hot Jupiter for the different ∆T/Teq choices). Therefore, for useful
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Table 7.1: Estimates of Bφ,crit (2 significant figures) and Bdip,crit at P = 10 mbar, using the
tabulated Tday, taken from phase curve measurements of the atmospheres of HAT-P-7b, CoRoT-
2b, Kepler-76b, WASP-12b, and WASP-33b.

Planet Tday/K Bφ,crit/G Bdip,crit/G

HAT-P-7b (2610, 2724)1 (255, 324) (3, 4)
CoRoT-2b (1695, 1709)2 (145, 177) (2500, 3100)
Kepler-76b (2300, 2850)3 (107, 466) (4, 19)
WASP-12b (2928)4 (212) (0.9)
WASP-33b (2954, 3074)5 (152, 218) (1.4, 1.8)

1Wong et al. (2016); 2Dang et al. (2018); 3Jackson et al. (2019);
4Cowan et al. (2012); 5von Essen et al. (2020).

estimates of Bdip,crit, accurate temperature estimates/measurements (at the depth being

probed) are required.

Generally, Tday is not directly calculable from standard planetary/stellar parameters

so measured values should be used where possible. For the five hot Jupiters with westward

hotspot observations, we use dayside temperatures based on phase curve measurements

to estimate Bφ,crit and Bdip,crit. We provide these numerical estimates in Table 7.1 and

add labelled error bars to Figure 7.3. The ultra-hot Jupiters are found to have low-to-

moderate Bdip,crit requirements. For HAT-P-7b we estimate 3 G < Bdip,crit < 4 G at

P = 10 mbar4, recovering the previously-known result that westward hotspots on HAT-P-

7b can be well explained by magnetism (Rogers, 2017). On the ultra-hot Jupiters WASP-

12b and WASP-33b dipole fields respectively exceeding 1 G and 2 G at P = 10 mbar would

explain westward hotspots. Likewise, at P = 10 mbar, a dipole field exceeding Bdip,crit for

4 G < Bdip,crit < 19 G is required to explain westward hotspot observations on Kepler-76b.

Given that Cauley et al. (2019) predicted that surface magnetic fields on hot Jupiters could

be range from 20 G to 120 G, these estimates support the idea that wind reversals on these

ultra-hot Jupiters have a magnetic origin. If non-magnetic explanations can be ruled out,

such estimates of Bdip,crit can be used as lower bounds for Bdip on ultra-hot Jupiters. In

contrast, unless there is an unfeasibly large dipolar field that exceeds & 3 kG, westward

hotspots on the cooler CoRoT-2b are not explained by magnetism. To check our method’s

4Since dipole field magnitude scales like r−3, these estimates bracket the Bdip,crit,base ∼ 6 G prediction
of Rogers (2017), made for field magnitudes at the atmospheric base.
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fidelity, we also compare predictions to the simulations in Rogers & Komacek (2014),

where temperature differences are known, finding good agreement (for both Bdip,crit and

Bφ,crit).

Using the range ∆T/Teq = (0.1, 0.3) to estimate Bφ,crit generally has uncertainties be-

tween one-half and two orders of magnitude. However, Figure 7.3 shows that hot Jupiters

divide into three clear categories: (i) those that are likely to have magnetically-driven

atmospheric wind variations for any choice of ∆T/Teq (Teq & 1950 K); (ii) those that are

unlikely to have sufficiently strong toroidal field magnetic fields to explain atmospheric

wind variations, for any choice of ∆T/Teq (Teq � 1600 K); and (iii) marginal cases that

depend on the magnitude of horizontal temperature differences (1600 K . Teq . 1950 K).

Using the conservative criteria Bdip,crit < 28 G, P = 10 mbar, and ∆T/Teq = 0.1,

we identify 61 further hot Jupiters that are likely to exhibit magnetically-driven wind

variations. We present these in Table 7.2, which is ordered by ascending Bdip,crit (i.e.,

from most likely to least likely to exhibit reversals), to help guide future observational

missions. We note that, of these 61 further reversal candidates, 37 reversal have weaker

reversal requirements than Kepler-76b. Hence, using these fairly conservative criteria, we

predict that magnetic wind variations could be present in ∼ 60 and argue they are highly-

likely to be present in ∼ 40 of the hottest hot Jupiters. Using the more flexible, but still

reasonable, criteria Bdip,crit < 28 G at P = 10 mbar, with ∆T/Teq = 0.2, we find a total

of 94 candidates (see Table E.1 in Appendix E for full list).

For hot Jupiters with intermediate temperatures (1600 K . Teq . 1950 K), the magni-

tude of ∆T/Teq (and our simplifying assumptions) plays a significant role in determining

whether magnetic wind variations are plausible, specific dayside temperature measure-

ments should be used for estimates. These intermediate temperatures hot Jupiters offer

excellent opportunities to fine-tune magnetohydrodynamic theory, via cross-comparisons

between observations and bespoke models.
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7.4 Discussion

We have applied the theory developed in this thesis to a dataset of HJs to estimate the

critical magnetic field strengths Bdip,crit and Bφ,crit (at P = 10 mbar), beyond which strong

toroidal fields cause westward hotspots. The new criterion differs both mathematically

and in physical interpretation from the criterion of Rogers & Komacek (2014) and Rogers

(2017), which identifies when Lorentz forces from the deep-seated dipolar field become

strong enough to significantly reduce zonal winds, but doesn’t theoretically explain wind

variations. However, the estimates made in this work match well with typical magnetic

fields in the three-dimensional simulations of Rogers & Komacek (2014) and Rogers (2017),

which exhibit wind variations, and also match values resulting from their criterion in these

regions of parameter space. This is because, while describing different magnetic effects,

both criteria predict the critical magnetic field strengths at which magnetism becomes

dynamically important in the atmospheres of HJs. Applying the new criterion to the

HJ dataset, we found that brightness the variations on Kepler-76b can be explained by

plausible planetary dipole strengths (Bdip & 4 G using Tday = 2850; Bdip & 19 G using

Tday = 2300), and that westward hotspots can be explained for Bdip & 1 G on WASP-12b

and Bdip & 2 G on WASP-33b. The estimates of Bφ,crit and Bdip,crit for HAT-P-7b is

consistent with the estimate of Rogers (2017). Unless there is an unfeasibly large dipolar

field of the order of a few kilogauss, westward hotspots on the cooler CoRoT-2b are not

explained by magnetism. While estimates of Bdip,crit are limited by the strong temperature

dependence of Rm, we used an observationally motivated set of criteria (Bdip,crit < 28 G,

∆T/Teq = 0.1, and P = 10 mbar) to tabulate 65 HJs that are likely to exhibit magnetically-

driven wind variations (see Table 7.2) and predict such effects are highly-likely in ∼ 40 of

the hottest HJs.

With exoplanet meteorology becoming increasingly developed, the results of this study

suggests that further observations of hotspot variations in ultra-hot Jupiters should be ex-

pected. A combination of archival data and future dedicated observational missions (par-

ticularly those observing multiple transits) from Kepler, Spitzer, Hubble, TESS, CHEOPS,
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and JWST can be used to identify magnetically-driven wind variations and other in-

teresting features at different atmospheric depths. This has the potential to drive new

understanding of the atmospheric dynamics of the hottest HJs and provide important ob-

servational constraints for dynamo models of HJs. Parallel to this, future theoretical work

can refine estimates of Bdip,crit. In many cases combining observational measurements with

bespoke three-dimensional MHD simulations offer the best prospect for providing accurate

constraints on the magnetic field strengths of ultra-hot Jupiters, yet the simple concepts

and results of this work can provide useful starting points for such studies. In this work,

estimates of Bdip,crit are limited by Rm, which, for generality, we calculated using solar

system abundances. The largest limiting factor in such estimates is the highly tempera-

ture dependent nature of Rm. Furthermore, the magnetic scaling law does not account for

longitudinal asymmetries in the magnetic diffusivity or the dipolar field strength within

the atmospheric region. In future work we shall investigate how these inhomogeneities

effect the atmospheric dynamics more closely, using a three-dimensional model containing

variable magnetic diffusivity, consistent poloidal-toroidal field coupling, stratification, and

thermodynamics. To date, MHD models of HJs have strictly considered dipolar magnetic

field geometries for the planetary magnetic field. Dynamo simulations would offer insight

into the nature of magnetic fields in the deep interiors of HJs, which, at present, is not

well-understood.

Table 7.2: Hot Jupiters in which Bdip,crit < 28 G at P = 10 mbar, with ∆T/Teq = 0.1. Alongside
Teq, estimates of Bdip,crit and Bdip,crit (1 significant figure) using these choices are provided. If
Hot Jupiters in this table are observed to magnetic wind variations, Bdip,crit,0.1 estimates the lower
bound of Bdip and Bφ,crit,0.1 estimates the magnitude of Bφ.

Rank Candidate Teq/K Bφ,crit,0.1/G Bdip,crit,0.1/G

1 WASP-189 b 2618 129 0.9

2† † WASP-12 b 2578 156 1

3 WASP-178 b 2366 130 1

4† † WASP-33 b 2681 149 2

5 WASP-121 b 2358 153 2

Continued on next page
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Table 7.2 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.1/G Bdip,crit,0.1/G

6 MASCARA-1 b 2545 134 3

7 WASP-78 b 2194 139 3

8 HAT-P-70 b 2551 133 3

9 HD 85628 A b 2403 128 3

10 HATS-68 b 1743 177 3

11 WASP-76 b 2182 145 3

12 WASP-82 b 2188 132 4

13 HD 202772 A b 2132 125 4

14 Kepler-91 b 2037 105 4

15 TOI-1431 b/MASCARA-5 b 2370 129 4

16 HAT-P-65 b 1953 138 5

17 WASP-100 b 2201 131 6

18 WASP-187 b 1952 116 6

19 HATS-67 b 2195 146 6

20 WASP-87 A b 2311 139 6

21 HATS-56 b 1902 122 7

22 HATS-40 b 2121 126 7

23 KELT-18 b 2082 130 7

24 HAT-P-57 b 2198 130 7

25 HATS-26 b 1925 130 7

26† † HAT-P-7 b 2192 134 7

27 WASP-48 b 2058 139 7

28 KOI-13 b 2550 139 8

29 HAT-P-49 b 2127 128 9

30 WASP-142 b 1992 139 11

31 WASP-111 b 2121 133 11

Continued on next page
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Table 7.2 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.1/G Bdip,crit,0.1/G

32 WASP-90 b 1840 124 12

33 HAT-P-66 b 1900 130 12

34 Qatar-10 b 1955 145 13

35 KELT-11 b 1711 113 13

36 HAT-P-33 b 1839 130 14

37 HATS-35 b 2033 140 14

38 HAT-P-60 b 1786 119 15

39 Qatar-7 b 2052 141 15

40 CoRoT-1 b 2007 146 15

41† † Kepler-76 b 2145 142 15

42 K2-260 b 1985 132 15

43 WASP-71 b 2064 128 15

44 WASP-88 b 1763 119 16

45 WASP-172 b 1745 114 16

46 WASP-159 b 1811 120 17

47 Kepler-435 b 1731 109 18

48 HATS-31 b 1837 128 19

49 WASP-122 b 1962 147 19

50 HAT-P-32 b 1841 142 19

51 HAT-P-23 b 2133 148 20

52 WASP-92 b 1879 137 20

53 HATS-64 b 1800 119 21

54 WASP-19 b 2060 160 21

55 KELT-4 A b 1827 133 21

56 CoRoT-21 b 2041 126 22

57 HATS-9 b 1913 135 23

Continued on next page
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Table 7.2 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.1/G Bdip,crit,0.1/G

58 HAT-P-69 b 1980 118 23

59 OGLE-TR-132 b 1981 138 24

60 HATS-24 b 2091 148 25

61 Kepler-1658 b 2185 110 25

62 TOI-954 b 1704 109 26

63 WASP-114 b 2028 142 26

64 TOI-640 b 1749 120 27

65 WASP-153 b 1712 128 27

† More accurate estimates in Table 7.1.
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Conclusions and Further Work

8.1 Summary of approaches and findings

Aims and approach

The aim of this work was to study and attempt to clarify the role of the atmospheric

toroidal field in the dynamics of hot Jupiter atmospheres. Specifically, we set out to

understand how the toroidal field causes magnetically-driven hotspot reversals, which have

previously been identified in three-dimensional MHD simulations (Rogers & Komacek,

2014; Rogers, 2017). This problem is likely to have observable astrophysical examples and

recently westward hotspots/brightspots have been identified on four of the hottest hot

Jupiters: HAT-P-7b (Armstrong et al., 2016), Kepler-76b (Jackson et al., 2019), WASP-

12b (Bell et al., 2019), and WASP-33b (von Essen et al., 2020), as well as on the cooler

CoRoT-2b (Dang et al., 2018).

We focussed on this problem by constructing and studying a reduced-physics model

based on the single-layer shallow-water MHD (SWMHD) model of Gilman (2000). For

this we used a reduced-gravity geometry to allow for a pseudo-thermal forcing treatment,

similar to the kind that has proved useful for modelling the atmospheres of hot Jupiters in

the hydrodynamic limit (e.g., Shell & Held, 2004; Langton & Laughlin, 2007; Showman &

Polvani, 2010, 2011; Perez-Becker & Showman, 2013). Since our interest is predominantly

centred around the dynamics of the equatorial region, we used a Cartesian coordinate
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system in the equatorial beta-plane approximation. In Chapter 2, we outlined this model’s

features, assumptions, treatments, and properties in detail.

Linear wave dynamics

Before considering numerical simulations, in Chapter 3 we considered some of the linear

wave dynamics expected to be present in hot Jupiter atmospheres. First, we used simple

plane wave approximations to consider the waves that propagate in local regions of hot

Jupiter atmospheres in the presence of magnetism and rotation. We initially discussed

fast and slow branch waves in the hot Jupiter parameter space. This highlighted a result

previously recovered in other magnetohydrodynamic settings (Hide, 1966, 1969b; Acheson

& Hide, 1973; Diamond et al., 2007; Zaqarashvili et al., 2007, 2009; Heng & Spitkovsky,

2009; Márquez-Artavia et al., 2017; Zaqarashvili, 2018) that, while the presence of mag-

netism does not fundamentally alter the dispersion relationships of the fast branch waves,

the westward slow branch solutions of the plane wave dispersion relation behave like either

(non-dispersive) Alfvén waves (at small length scales), which travel parallel to the mag-

netic field that they propagate in, or (dispersive) Rossby waves (at large length scales),

which travel in a geostrophic manner. Since the geostrophic propagation of planetary-scale

equatorial Rossby waves is known to be important to equatorial hydrodynamics on hot

Jupiters (Showman & Polvani, 2011), we then looked for similar magnetic modifications

to equatorial shallow-water waves in the equatorial beta-plane approximation. First we

considered magnetic modifications to equatorial SWMHD waves in presence of a uniform

azimuthal background magnetic field, in which case the fast branch equatorial MIG waves

generally behave similarly to their hydrodynamic counterparts, but strong magnetic fields

cause significant equatorial trapping of the planetary-scale equatorial magneto-Rossby and

equatorial magneto-Kelvin waves. We then considered magnetic modifications to equato-

rial SWMHD waves in presence of an azimuthal background magnetic field with a linear

latitudinal dependence, using the weak-field approximations considered for solar tachocline

parameters by Zaqarashvili (2018). Like the uniform azimuthal magnetic field case, we

found the fast branch equatorial MIG waves generally behave similarly to their hydro-
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dynamic counterparts. However, in contrast, we found that towards the point where the

weak-field approximations become less valid the equatorial magneto-Rossby solutions be-

come less equatorially bounded and then, at some critical magnetic field strength, become

unbounded from equatorial regions. The difference in the magnetic modification for these

two field geometries highlights the need to consider physically motivated magnetic field and

in the work beyond Chapter 3 we restricted ourselves to the azimuthal magnetic field that

are antisymmetric about the equator, like those found in three-dimensional simulations

with magnetically-driven wind variations (Rogers & Komacek, 2014; Rogers, 2017).

Numerical shallow-water MHD model

In Chapter 4 we used an adaptive third-order Adam-Bashforth time-stepping scheme,

which calculates derivatives spectrally in x and with fourth-order finite difference schemes

in y, to compute non-linear numerical solutions of the SWMHD equations. We calculated

solutions across a range of damping timescales, radiative timescales, and psuedo-thermal

forcing magnitudes, increasing the magnetic field strength until we found a change in the

nature of the system. We found that, in the presence of an equatorially-antisymmetric

azimuthal magnetic field, the simple SWMHD model we presented can capture the physics

of magnetically-driven hotspot reversals, which have only previously been studied via full

three-dimensional MHD simulations (Rogers & Komacek, 2014; Rogers, 2017). The im-

plication of this is that the reversal process is a shallow phenomenon that can be studied

with the accompanying mathematical simplicity of shallow-layered models. We identi-

fied that hotspots reverse when the azimuthal magnetic field is strong enough to prevent

geostrophic flows from recirculating between the equatorial regions and higher latitudes.

This prevents energy and angular momentum recirculation of the kind that Showman

& Polvani (2011) showed drives equatorial superrotation and eastward hotspots on hot

Jupiters in the hydrodynamic limit. In the supercritical MHD solutions the winds align

with the magnetic field, whose field lines have an equatorward bend in hotspot regions.

This configuration leads to westward Lorentz force accelerations in hotspot regions, as

magnetic field lines pass into regions of less |Bx|, ultimately causing the hotspots to shift
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westward.

The fact that this westward Lorentz force acceleration relies on the magnitude of the

azimuthal field to decrease/vanish in equatorial regions explains why we did not find

similar reversals when we applied a uniform azimuthal magnetic field to our SWMHD

model, though we omitted this case from this work as it is less physically interesting and

relevant.

Using our developed understanding of the physical processes that drive reversals, we

used a simple scaling law arguement, based on relative circulation/oscillation frequency

of geostrophic circulations and the Alfvén frequency, to develop a physically-motivated

reversal criterion. This criterion replicated with our numerical findings in the relevant

forcing magnitude and radiative timescales ranges. That is, for moderately-to-strongly

forced solutions with radiative timescales corresponding to the upper atmosphere.

We compared two different latitudinally-dependent azimuthal magnetic field profiles:

a hyperbolic-tangent profile that varied linearly with latitude in equatorial regions and

a profile with a more realistic linear-gaussian latitudinal dependence. We found that

both of these azimuthal magnetic field profiles exhibited similar behaviours in equatorial

regions, concluding that a hyperbolic-tangent dependence generally provides an adequate

description of the dynamics of the wind reversals (for linear wave dynamics).

Consequences of linear theory

In Chapter 5 we explored the description of planetary flows with equatorial shallow-water

waves that has been useful for explaining atmospheric dynamics on hot Jupiters in the

hydrodynamic limit (Showman & Polvani, 2011). We did so by solving two version of the

linearised SWMHD model in two cases: the non-diffusive steady-state forced linear system

and the non-diffusive unforced oscillatory free-wave solution.

In the steady-state forced linear system, strongly-magnetic solutions could mimic the

obstruction of geostrophic circulations that was found to trigger reversals in Chapter 4.

However, due to the symmetries in the simplified linear system, east-west Lorentz force

accelerations cannot form along the equator. Consequently, such solutions did not exhibit
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magnetically-reversed hotspots; instead hotspot displacements converged to zero in the

strongly magnetic limit.

When we considered oscillatory solutions, we moved away from the weak-field assump-

tions of Chapter 3. The strongly-magnetic case involved considering the behaviour of

equatorial magneto-Rossby around regular singular points and equatorial magneto-Kelvin

waves around false singularities. We found that the equatorial magneto-Kelvin waves were

qualitatively similar to their hydrodynamic counterparts, albeit with a small non-zero

meridional velocity component. In contrast, if the azimuthal phase speeds of equatorial

magneto-Rossby waves were exceeded by the background Alfvén speed, their solutions

were removed from the linear system. We also found that in the magnetic limit, two sets

of singular solutions with Alfvénic characteristics emerged, with azimuthal phase speeds

bounded above by the maximal background Alfvén speed. We linked the loss of the equa-

torial magneto-Rossby wave in regions of the atmosphere with large background Alfvén

speeds to the breakdown of material potential vorticity conservation, which is fundamen-

tal to their propagation. The removal of equatorial magneto-Rossby wave solutions is of

particular interest for the following reasons: (1) in hydrodynamic systems, the recircula-

tion patterns associated with the geostrophic propagation of equatorial Rossby waves are

fundamental in maintaining eastward hotspots and equatorial superrotation (Showman &

Polvani, 2011); (2) in Chapter 4 we identified that the obstruction of geostrophic circula-

tions triggers hotspot reversals; and (3) the steady-state forced linear system can replicated

this breakdown of geostrophy. Finally, we highlighted a quantitive agreement between the

reversal threshold in the zero-forcing-amplitude limit and the loss of the planetary-scale

equatorial Rossby solutions, providing a physically-motivated hotspot reversal condition

in this limit.

Comparisons between SWMHD theory and three-dimensional MHD simula-

tions

In Chapter 6 we identified a number of connections and consequences between our findings

and the three-dimensional MHD simulations of Rogers & Komacek (2014) and (Rogers,
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2017). First, we used the physically-motivated hotspot reversal criteria of Chapters 4 and 5

to place a single reversal criterion on the toroidal field. Second, we identified the connec-

tion between the magnetically-driven hotspot reversals and the (zonally-averaged zonal)

wind reversals found in three-dimensional MHD models. We noted that an angular mo-

mentum conservation theorem (due to Hide, 1969a; presented in the hot Jupiter context by

Showman & Polvani, 2011), implies that the hotspot reversal mechanism also causes wind

reversals. The manifestation of this theorem in the atmosphere is that when the toroidal

field obstructs mid-to-high latitude recirculating winds it inhibits horizontal momentum

transport between the equatorial and mid-latitudes, leaving the remaining down-gradient

momentum transport mechanisms to drive westward zonally-averaged zonal accelerations.

This explains why Rogers (2017) found hotspot and wind reversals were time-correlated

and explains the relative change in importance of the momentum transport components

that Rogers & Komacek (2014) identified in regions of wind reversals. Third, we noted

that our hotspot reversal criterion is consistent with a condition that determines a tran-

sition from geostrophic turbulence into MHD turbulence Diamond et al. (2007), citing

that in both situations the breakdown of potential vorticity conservation (and therefore

geostrophic characteristics) as the triggering factor. This strengthens the link Rogers &

Komacek (2014) previously made between the intermittency of wind reversals in three-

dimensional MHD simulations and MHD turbulence theory (Tobias et al., 2007). Fourth,

we discussed how the reversal of magnetic induction (due to wind reversals) can lead to

a strengthening-weakening cycle in the atmospheric toroidal field’s magnitude, which can

drive the wind variations and hotspot oscillations observed in three-dimensional MHD

models and observations. This cycle offers a possible a saturation process for the atmo-

spheric toroidal magnetic field, which we found some evidence for when making quantitive

comparisons. Finally, we identified common features between the magnetic field geome-

tries of three-dimensional simulations and the those predicted by the developed SWMHD

theory, including consistencies between predictions of reversal criticality.
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Observational consequences

In Chapter 7 we used the developed physically-motivated hotspot reversal criterion to place

estimates on minimal reversal conditions on hot Jupiters. For this we applied expected

planetary parameters to estimate Bφ,crit, the critical toroidal field strength at which winds

reverse. We found that at P = 10 mbar, hot Jupiters in the exoplanet.eu dataset generally

have 100 G . Bφ,crit . 450 G, which was consistent with typical Bφ magnitudes in the

three-dimensional simulations that exhibited wind reversals in Rogers & Komacek (2014).

We then used the relation Bφ ∼ RmBdip of Menou (2012a), which assumes a deep-seated

dipolar field is located far below the atmospheric region of interest and was found to

be consistent with the three-dimensional simulations of Rogers & Showman (2014), to

estimate an equivalent critical dipole magnetic field strength, Bdip,crit. Over the parameter

range of hot Jupiters Rm, the magnetic Reynolds number, varies by orders of magnitude

due to the temperature dependence of η, meaning that the hottest hot Jupiters are likely to

have highly dominant atmospheric toroidal fields, with magnitudes exceeding Bφ,crit, but

the cooler hot Jupiters are not. Since the hottest hot Jupiters had Bdip,crit comparable

(or less) to the strength of Jupiter (14 G), we deemed it likely that their atmospheric

toroidal field is large enough to drive hotspot reversals. Using this comparison we found

that hot Jupiters with Teq & 1950 K are expected to have magnetically-driven atmospheric

wind variations for any choice of relative day-night temperature difference; hot Jupiters

with Teq � 1600 K are unlikely to have magnetically-driven atmospheric wind variations;

and the likelihood of magnetically-driven atmospheric wind variations on the marginal

cases between these two temperature ranges generally depend on their relative day-night

temperature differences (first order), as well as their other planetary parameters (second

order). These marginal cases are particularly interesting as, with more observations of

hotspot reversals on such hot Jupiters, highly accurate models of their planetary dynamics

may be able to be combined with observations to identify typical magnetic field strengths

on hot Jupiters. We also applied the hotspot reversal criterion to the five hot Jupiters with

westward hotspot observations (to date), finding that, for HAT-P-7b, 3 G < Bdip,crit < 4 G
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at P = 10 mbar, recovering the result that westward hotspots on HAT-P-7b can be well

explained by magnetism (also found by Rogers, 2017, via three-dimensional simulations);

on the ultrahot hot Jupiters WASP-12b and WASP-33b dipole fields exceeding 1 G at

P = 10 mbar would explain westward hotspots; on Kepler-76b westward hotspots can be

explained by a dipole field exceeding Bdip,crit for 4 G < Bdip,crit < 18 G (estimate limited

by knowledge of the expected dayside temperature); and that westward hotspots on the

cooler CoRoT-2b are not explained by magnetism, unless its assumed dipole magnetic field

exceeds a few kilogauss in magnitude (which would appear unfeasible). Alongside these

estimates, we identified 61 further hot Jupiters that are likely to exhibit magnetically-

driven wind variations, which we tabulated to help guide future observational missions. If

we relax the reasonably conservative criteria that the 61 tabulated hot Jupiters satisfy (i.e.,

Bdip,crit < 28 G, P = 10 mbar, and ∆T/Teq = 0.1 to the same but with ∆T/Teq = 0.2),

we estimated that one could expect magnetically-driven wind reversals in ∼ 100 of the

hottest hot Jupiters, suggesting that more multiple transit observations of the hottest hot

Jupiters are likely to lead to further discoveries of westward hotspots.

8.2 Open questions, limitations, and future work

Cartesian approximation of spherical geometry

The advantage of using the Cartesian shallow-water geometry is first and foremost its

simplicity. This makes it an excellent process model, however some of the complexities it

excludes from its reduced physics should be considered in the future. Since our primary

concern was with equatorial dynamics, in this work we used an equatorial beta-plane ap-

proximation in Cartesian geometry, including only the dynamical effects of sphericity that

arise due to the latitudinal dependence of the planetary rotation vector’s normal compo-

nent (Rossby, 1939). While this approximation provides a valid description of rotation

at equatorial latitudes, it does not include an accurate description of curvature or the

Coriolis effect in polar regions. Another unphysical aspect of our imposed geometry is

that it contains an impermeable boundary at the model’s “poles”. This wall has the po-
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tential to reflect flows back into the lower latitudes solving domain, though upon checking

varying the latitudinal extent of our model has little qualitative effect on the solutions,

particularly in equatorial regions of interest. Moreover, in the hydrodynamic limit, we re-

produce results found in spherical models of hot Jupiters (e.g., Langton & Laughlin, 2007;

Showman & Polvani, 2010, 2011; Perez-Becker & Showman, 2013) and, when magnetism

is included, our results generally agree with the findings of spherical three-dimensional

simulations (Rogers & Komacek, 2014; Rogers, 2017). We therefore expect the equatorial

characteristics of our model will be reproduced in an equivalent spherical model. To prop-

erly model the polar flows and energy redistribution in the magnetic limit, a spherical

SWMHD model would be beneficial. However, as there are not any observational con-

straints on such polar dynamics on hot Jupiters and three-dimensional MHD simulations

find the equatorial-to-mid latitude regions to be of most dynamical importance (Rogers

& Komacek, 2014), investigating such polar flows is of less immediate dynamical interest

at present.

A spherical description of the wave dynamics (like that of Márquez-Artavia et al., 2017,

but with an equatorially-antisymmetric azimuthal magnetic field geometry) would be use-

ful to determine the exact global nature of the planetary scale waves that are removed from

the equatorial wave model in the highly magnetic limit. Polar trapping is one possibility,

with Márquez-Artavia et al. (2017) finding that an equatorially-symmetric azimuthal mag-

netic field treatment confines magneto-Rossby waves to the polar regions in the strongly

magnetic limit and Heng & Spitkovsky (2009) finding a slow branch magnetostrophic wave

solution trapped in polar regions for a vertical magnetic field geometry. However, in a lin-

ear non-diffusive spherical system with an antisymmetric azimuthal magnetic field, Lon-

don (2018) found no finite trapped solutions relating to Rossby-Alfvén coupling, so weakly

non-linear assumptions and/or diffusion may need to be employed to fully-understand the

nature of the system’s waves once geostrophic balance has been overcome.
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Three-dimensional modelling

Shallow-water models are good process models but do not account for vertical dependencies

or stratification. In particular, three-dimensional models allow for more sophisticated ther-

modynamical treatments, which the SWMHD model can only mimic. Three-dimensional

models can also further inform about connections between the atmospherical toroidal

fields and the deep-seated poloidal planetary magnetic field, which cannot be studied

with SWMHD as it only has one degree of freedom in the induction equation. Though

Rogers & Showman (2014) found consistency between the Bφ ∼ RmBdip scaling relation

of Menou (2012a), three-dimensional simulations also find longitudinal variations in the

toroidal field strength between the dayside and the nightside (Rogers & Showman, 2014;

Rogers & Komacek, 2014; Rogers, 2017). This is to be expected due to the temperature

dependence of Rm, but applying longitudinal variations in the toroidal field strength to

the SWMHD model adds additional complexity that we do not consider in our simple

process model. This could be done in the future but the results of this study can also be

further investigated in a more self-consistent manner in three-dimensional geometry.

Considering the vertical dependencies, stratification, and consistent thermodynamic

treatments also allows one to gain a better understanding on some of the other interesting

research questions concerning magnetism in hot Jupiters. In particular, investigating the

role of an inhomogeneous temperature dependent magnetic diffusivity that is calculated

explicitly from atmospheric conditions and whether it can sustain a variable-η-driven dy-

namo (Pétrélis et al., 2016) as found using a spatially, but not temperature, dependent

magnetic diffusivity by Rogers & McElwaine (2017). Such models could also produce en-

hanced Ohmic heating via the thermo-resistive instability proposed by (Menou, 2012b).

Establishing whether such an instability can form in hot Jupiter atmospheres and, if so,

how much heating the process would inject into the planetary interior/atmosphere is are

questions that such a model could answer.
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8.3 Concluding Remarks

The recent observational drive in exoplanet meteorology provides a timely backdrop around

which theories regarding the mechanism of hotspot reversals on hot Jupiters can be tested

and developed. Observational constraints on atmospheric properties continue to improve

whilst a combination of archival data and dedicated observational missions from Kepler,

Spitzer, Hubble, TESS, CHEOPS (and in the future JWST) are accelerating our un-

derstanding of the atmospheric theory of exoplanets. This initial sojourn into modelling

hotspot reversals on hot Jupiters has yielded some interesting results but linking full three-

dimensional modelling to the results of SWMHD is required and is likely to have subtle

intricacies in places. That said, the power of the shallow-water models in describing hot

Jupiters in the hydrodynamic limit gives cause for optimism. In particular, the properties

that the hottest hot Jupiters have thin atmospheres, are expected to be synchronously

rotating, and have equatorial Rossby deformation similar in magnitude to their planetary

radius make quasi-geostrophic descriptions and thin layer models useful aids in the task

of understanding their planetary dynamics. In the hydrodynamic limit planetary-scale

quasi-geostrophic circulations are particularly important features that, due to their linear

nature, have generally been probed with simple models to great success (e.g., Shell & Held,

2004; Langton & Laughlin, 2007; Showman & Polvani, 2010, 2011; Perez-Becker & Show-

man, 2013). Initial comparisons with three-dimensional MHD models indicate that simple

SWHMD models can also provide similarly powerful tools in modelling magnetism in

these planets, which until now has only been approached with complex three-dimensional

spherical models of global magnetohydrodynamic circulation.

Since the prediction of magnetically-driven wind variations in hot Jupiters (Rogers &

Komacek, 2014), westward hotspots/brightspots have been inferred on the hot Jupiters

HAT-P-7b (Armstrong et al., 2016), CoRoT-2b (Dang et al., 2018), Kepler-76b (Jackson

et al., 2019), WASP-33b (von Essen et al., 2020), and WASP-12b (Bell et al., 2019). The

predictions made in Chapter 7 of this work suggest that more observations of this kind

should be expected. If this expectation is realised, the influx of data from such observations
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would provide useful comparisons for MHD modelling and dynamo theory on exoplanets,

which are currently lacking.
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Magnetic dissipation derivation

We present the derivation for Dη for the unforced version of our reduced gravity SWMHD

model (see Equation (2.74) in Chapter 2). This was originally put forward by Andrew

Gilbert (personal correspondence) for a single layer model, but we have made the adapta-

tions (on interface boundary treatments) necessary for use in our reduced gravity model.

Full governing equations and boundary conditions

In constant density three-dimensional MHD systems, magnetic fields evolve subject to

∂B3

∂t
= ∇3 × (u3 ×B3)−∇3 × (η∇3 ×B3)

= (B3 · ∇3)u3 − (u3 · ∇3)B3 + Dη,3,

(A.1)

∇3 ·B3 = 0. (A.2)

where Dη,3 = −∇3 × (η∇3 × B3). In our reduced gravity SWMHD model, we wish to

approximate this evolution in a thin layer of electrically conducting fluid, Sb < z < St,

with constant density (ρ) and magnetic permeability (µ0), where the magnetic diffusivity,

η(x, y) = 1/µ0σ, is allowed to vary horizontally but not vertically. The system is to be

solved subject to zero normal magnetic field and tangential current boundary conditions:

n̂3 ·B3 = 0 and n̂3 × (∇3 ×B3) = 0, (A.3)
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on z = St(x, y, t) and z = Sb(x, y, t), where n̂3 = n̂t ≡ ẑ − ∇St and n̂3 = n̂b ≡ ẑ − ∇Sb
are the unit normal vectors on the upper and lower surfaces respectively.

Rescaling the system

In the shallow-water approximation, both the ratios of the vertical and horizontal velocity

field magnitudes and the ratios of the vertical and horizontal magnetic field magnitudes are

assumed to scale with their spatial scales (i.e., |w|/|u| ∼ H/L, |w|/|v| ∼ H/L, |Bz|/|Bx| ∼

H/L, and |Bz|/|By| ∼ H/L). Hence, letting ε = H/L, one can write

u3 = u + εw̃ẑ, B3 = B + εB̃zẑ, ∇3 = ∇+ ε−1ẑ
∂

∂z̃
, (A.4)

where the rescalings z = εz̃, w = εw̃, and Bz = εB̃z have been applied so z̃, w̃, and B̃z

scale identically to their horizontal counterparts in the shallow-water limit (i.e., for ε� 1).

Similarly, for z = εz̃, unit normal vectors on the free surfaces become n̂t = ẑ− ε∇S̃t and

n̂b = ẑ − ε∇S̃b, where St = εS̃t and Sb = εS̃b. With this rescaling, Equations (A.1)

and (A.2) become

∂B3

∂t
+

(
u · ∇+ w̃

∂

∂z̃

)
B3 =

(
B · ∇+ B̃z

∂

∂z̃

)
u3 + Dη,3, (A.5)

∇ ·B +
∂B̃z
∂z̃

= 0. (A.6)

To write Dη,3 in terms of this rescaling, first note that

∇3 ×B3 = ∇×B +
∂B̃z
∂z̃
���

�:0
(ẑ× ẑ) + ε

(
∇B̃z × ẑ

)
+ ε−1

(
ẑ× ∂B

∂z̃

)
= ε−1

(
ẑ× ∂B

∂z̃

)
+∇×B + ε

(
∇B̃z × ẑ

)
,

(A.7)
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so

Dη,3 = −∇3 × (η∇3 ×B3)

= −
(
∇+ ε−1ẑ

∂

∂z̃

)
×
[
ε−1

(
ẑ× η∂B

∂z̃

)
+ η∇×B + ε

(
η∇B̃z × ẑ

)]
= ε−2

[
ẑ×

(
ẑ× η∂

2B

∂z̃2

)]
+ ε−1

[
−∇×

(
ẑ× η∂B

∂z̃

)
− ẑ×

(
η∇× ∂B

∂z̃

)]
+

[
−∇× (η∇×B)− ẑ×

(
η∇∂B̃z

∂z̃
× ẑ

)]
+ ε

[
−∇× (η∇B̃z × ẑ)

]
= ε−2

[
η
∂2B

∂z̃2

]
+ ε−1

[
−∇ ·

(
η
∂B

∂z̃

)
ẑ

]
+

[
−∇× (η∇×B)− η∇

(
∂B̃z
∂z̃

)]

+ ε
[
∇ · (η∇B̃z)ẑ

]
,

(A.8)

where ∂η/∂z̃ = 0 and a× (b× c) = b(a · c)− c(a ·b) have been applied (multiple times).

We can also use Equation (A.7) to obtain

n̂t × (∇3 ×B3) = (ẑ− ε∇S̃t)×
[
ε−1

(
ẑ× η∂B

∂z̃

)
+ η∇×B + ε

(
η∇B̃z × ẑ

)]
= ε−1

[
ẑ×

(
ẑ× ∂B

∂z̃

)]
+

[
��

���
��:0

ẑ× (∇×B)−∇S̃t ×
(

ẑ× ∂B

∂z̃

)]
+ ε

[
ẑ× (∇B̃z × ẑ)−∇S̃t × (∇×B)

]
+ ε2

[
−∇S̃t × (∇B̃z × ẑ)

]
= ε−1

[
−∂B

∂z̃

]
+

[
−ẑ

(
∇S̃t ·

∂B

∂z̃

)]
+ ε

[
∇B̃z −∇S̃t × (∇×B)

]
+ ε2

[
ẑ
(
∇S̃t · ∇B̃z

)]
,

(A.9)

where, again, the vector identity a× (b×c) = b(a ·c)−c(a ·b) has been applied multiple

times. With the rescaled variables, the zero normal magnetic field boundary conditions

(i.e., n̂3 ·B3 = 0) become

ε(B̃z −B · ∇S̃t) = 0 on z̃ = S̃t(x, y, t), (A.10a)

ε(B̃z −B · ∇S̃b) = 0 on z̃ = S̃b(x, y, t), (A.10b)

which is mathematically identical to the standard Bz|z=St = B · ∇St and Bz|z=Sb =

B · ∇Sb no magnetic flux boundary conditions applied in Chapter 2. However, with the
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inclusion of magnetic diffusion, tangential current boundary conditions are also required

(i.e., n̂3 × J3 = 0). For these, using Equation (A.7) in Equation (A.3) yields

∂B

∂z̃
= ε

[
−ẑ

(
∇S̃t ·

∂B

∂z̃

)]
+ ε2

[
∇B̃z −∇S̃t × (∇×B)

]
+ ε3

[
ẑ
(
∇S̃t · ∇B̃z

)]
on z̃ = S̃t(x, y, t),

(A.10c)

∂B

∂z̃
= ε

[
−ẑ

(
∇S̃b ·

∂B

∂z̃

)]
+ ε2

[
∇B̃z −∇S̃b × (∇×B)

]
+ ε3

[
ẑ
(
∇S̃b · ∇B̃z

)]
on z̃ = S̃b(x, y, t),

(A.10d)

Asymptotic expansion

Up to this point, we have not made any approximations, but have simply rescaled the

governing equations. With these rescaled expression, we can now introduce the following

asymptotic expansions for all variables in the ε� 1 limit:

u = u0 + ε2u1 + . . . , w̃ = w̃0 + ε2w̃1 + . . . ,

B = B0 + ε2B1 + . . . , B̃z = B̃z,0 + ε2B̃z,1 + . . . ,

S̃t = S̃t,0 + ε2S̃t,1 + . . . , S̃b = S̃b,0 + ε2S̃b,1 + . . .

h̃ = h̃0 + ε2h̃1 + · · · = (S̃t,0 − S̃b,0) + ε2(S̃t,1 − S̃b,1) + . . . .

(A.11)

In hydrodynamic shallow-water systems, non-advective terms in the shallow-water mo-

mentum equation are independent of z (at O(ε0)), so an initially vertically-independent

flow will remain vertically-independent for all time (see Chapter 2). Hence,

∂u0

∂z̃
= 0. (A.12)

Moreover, as in Chapter 2, incompressibility (at O(ε0)) implies

[w̃0]
z̃=S̃t,0

z̃=S̃b,0
= −h̃0∇ · u0, (A.13)
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and free material surface surface conditions imply w̃0|z̃=S̃t,0 = DSt,0/Dt and w̃0|z̃=S̃b,0 =

DSb,0/Dt (see Section 2.2.1). Hence, as usual,

∂h̃0
∂t

+∇ · (h̃0u0) = 0. (A.14)

For the induction equation, applying the expansions in Equation (A.11) to Equation (A.5),

with Equation (A.8), gives η∂2B0/∂z̃
2 = 0 at leading order, O(ε−2). Therefore, for η 6= 0,

∂2B0/∂z̃
2 = 0. Further, Equations (A.10c) and (A.10d) give ∂B0/∂z̃ = 0 on both z̃ = S̃t,0

and z̃ = S̃b,0 at O(ε0), which yield

∂B0

∂z̃
= 0 for all z̃, (A.15)

when combined with ∂2B0/∂z̃
2 = 0 (everywhere).

This recovers the standard SWMHD requirement of vertically-independent horizontal

magnetic fields, which causes the O(ε) contributions to Equations (A.10c) and (A.10d)

and the O(ε−1) term in the expansion of Dη,3 to vanish. The latter leaves the highest

order non-zero contributions to Dη,3 at O(ε0). Before considering contributions to the

induction equation at O(ε0), we note that together ∂B0/∂z̃ = 0 and Gauss’ law (i.e.,

Equation (A.6) at O(ε0)) produce

[B̃z,0]
z̃=S̃t,0

z̃=S̃b,0
= −h̃0∇ ·B0, (A.16)

which can be combined with the no magnetic flux boundary conditions (i.e., Equations (A.10a)

and (A.10b)) to yield

∇ · (h̃0B0) = 0. (A.17)

as in Section 2.2.2. Now, at O(ε0), the horizontal components of Equations (A.5) and (A.8)

give

∂B0

∂t
+ (u0 · ∇) B0 = (B0 · ∇) u0 + η

∂2B1

∂z̃2
−∇× (η∇×B0)− η∇

(
∂B̃z,0
∂z̃

)
, (A.18)
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where ∂u0/∂z̃ = 0 and ∂B0/∂z̃ = 0 have been applied. This equation can be closed by

integrating Equation (A.18) vertically over the extent of the fluid column:

h0

(
∂B0

∂t
+(u0 · ∇)B0− (B0 · ∇)u+∇× (η∇×B0)

)
= η

[
∂B1

∂z̃
−∇B̃z,0

]z̃=S̃t,0
z̃=S̃b,0

, (A.19)

where we have noted that the terms inside the bracket on the lefthand side are vertically-

independent. Terms on the righthand side can be evaluated using the O(ε2) contributions

to Equations (A.10c) and (A.10d), which are

∂B1

∂z̃
=
[
∇B̃z,0 −∇S̃t,0 × (∇×B0)

]
on z̃ = S̃t,0(x, y, t), (A.20)

∂B1

∂z̃
=
[
∇B̃z,0 −∇S̃b,0 × (∇×B0)

]
on z̃ = S̃b,0(x, y, t), (A.21)

so η[∂B1/∂z̃ −∇B̃z,0]z̃=S̃t,0z̃=S̃b,0
= −∇h0 × (η∇×B0). Thus,

∂B0

∂t
+ (u0 · ∇) B0 − (B0 · ∇) u0 = −∇× (η∇×B0)− h−10 ∇h0 × (η∇×B0),

= −h−10 ∇× (ηh0∇×B0),

(A.22)

so, dropping the subscripts on our leading order dependent variables, we have

Dη = −h−1∇× (ηh∇×B), (A.23)

as quoted in Chapter 2. Since Dη is vertically-independent, the implicit assumption that

∂B0/∂t is vertically-independent, which was used to obtain Equation (A.18), holds.
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Potential vorticity evolution

Here we derive the evolution equation for the potential vorticity, q ≡ (ζ + f)/h, where

ζ ≡ ω · ẑ ≡ (∇×u) · ẑ ≡ ∂v/∂x− ∂u/∂y is the relative vorticity of flows in the horizontal

plane and f = βy is the Coriolis parameter in the equatorial beta-plane approximation.

In the reduced-gravity SWMHD model of Chapter 2, the shallow-water momentum and

continuity equations are respectively

∂u

∂t
+ (u · ∇)u + f(ẑ× u) = −g∇h+ (B · ∇)B + R− u

τdrag
+ Dν , (B.1a)

Dh

Dt
+ h∇ · u = Q, (B.1b)

where, as defined in the main text, u(x, y, t) ≡ (u, v), h(x, y, t) and B(x, y, t) ≡ (Bx, By)

are independent variables g and τdrag are constants, and R, Dν and Q are prescriptions

that depend on u and h.

Before we manipulate Equations (B.1a) and (B.1b) we highlight the following useful
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relations:

(u · ∇)u =
1

2
∇(u · u)− u× ω, (B.2a)

(B · ∇)B =
1

2
∇(B ·B) + J×B, (B.2b)

∇× [f(ẑ× u)] =

[
v
∂f

∂y
+ f∇ · u

]
ẑ, (B.2c)

D(hq)

Dt
= h

Dq

Dt
+ q

Dh

Dt
=

D(ζ + f)

Dt
=

Dζ

Dt
+ v

∂f

∂y
. (B.2d)

where J ≡ J ẑ ≡ (∇ × B) and J = ∂By/∂x − ∂Bx/∂y. Moreover, in two-dimensional

geometry,

∇× (u× ω) = −(u · ∇)ζẑ− ζ(∇ · u)ẑ. (B.2e)

Taking the curl of Equation (B.1a), while using Equations (B.2a) and (B.2b), yields

∂ω

∂t
+∇× (−u× ω) +∇× [f(ẑ× u)] = ∇× (J×B) +∇× F, (B.3)

where F = R − u/τdrag + Dν and ∇×∇Φ = 0 has been applied to note that ∇×∇(u ·

u/2) = 0, ∇ × ∇(gh) = 0, and ∇ × ∇(B · B/2) = 0. Taking the vertical component of

Equation (B.3) and using Equations (B.2c) and (B.2e), gives

∂ζ

∂t
+ (u · ∇)ζ + ζ(∇ · u) + v

∂f

∂y
+ f∇ · u = [∇× (J×B)] · ẑ + (∇× F) · ẑ. (B.4)

Hence, from Equations (B.1b), (B.2d) and (B.4),

h
Dq

Dt
=

Dζ

Dt
+ v

∂f

∂y
− qDh

Dt

= −ζ(∇ · u)−
�
�
�

v
∂f

∂y
− f∇ · u + [∇× (J×B)] · ẑ + (∇× F) · ẑ +

�
�
�

v
∂f

∂y

− q(−h∇ · u +Q)

=
���

���
�:0

(hq − ζ − f)(∇ · u) + [∇× (J×B)] · ẑ + (∇× F) · ẑ− qQ

= [∇× (J×B)] · ẑ− qQ+ (∇× F) · ẑ.

(B.5)
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Hence,

Dq

Dt
=

1

h
[∇× (J×B)] · ẑ− qQ

h
+

1

h
(∇×R) · ẑ− ζ

hτdrag
+ (∇×Dν) · ẑ, (B.6)

as used in the main text.
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Integral conservation laws

Total mass conservation

Using the shallow-water continuity condition (Equation (2.85b)),

d

dt

∫∫
hdxdy = −

∫∫
∇ · (hu)dxdy +

∫∫
Qdxdy

= −
∫ Ly

−Ly�
�
��[hu]Lx−Lxdy −

∫ Lx

−Lx�
�
��[hv]
Ly
−Lydx+

∫∫
Qdxdy

=

∫∫
Qdxdy,

(C.1)

where periodicity in x and impermeability in y have been applied. Hence, the rate of

change of the active layer’s total mass is equal to the total mass transported into the

active layer. In the absence of mass exchanges (Q = 0), the total mass in the active layer

is constant for all time.

Divergence-free condition

In Section 2.2.2, we showed that integrating Gauss’ law of magnetism over the active layer

with no normal magnetic flux boundary conditions at interfaces yields the shallow-water

divergence-free condition. Applying our boundary conditions to the integral form of this
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gives

∫
V
∇3 ·B3 =

∫∫
∇ · (hB)dxdy =

∫ Ly

−Ly
��
�[hBx]Lx−Lxdy +

∫ Lx

−Lx
��
�[hBy]
Ly
−Lydx = 0, (C.2)

where the first term cancels due to our periodic boundary conditions in x and the second

term cancels due to our no normal magnetic flux condition, By|y=±Ly = 0.

Total horizontal magnetic flux conservation

From Equation (2.87c),

d

dt

∫∫
hBxdxdy = −

∫∫
∇ ·
[
huBx − hBu− ηh

(
∇Bx −

∂B

∂x

)]
dxdy

= −
∫ Ly

−Ly((((
(((

((((
(((

((((
(([

huBx − hBxu− ηh
(
∂Bx
∂x
− ∂Bx

∂x

)]Lx
−Lx

dy

−
∫ Lx

−Lx

[
hvBx − hByu− ηh

(
∂Bx
∂y
− ∂By

∂x

)]Ly
−Ly

dx

= −
∫ Lx

−Lx

[
���hvBx −��

�hByu−���ηhJ
]Ly
−Ly dx

= 0,

(C.3a)

applying periodicity in x alongside v|y=±Ly = By|y=±Ly = J |y=±Ly = 0, and

d

dt

∫∫
hBydxdy = −

∫∫
∇ ·
[
huBy − hBv − ηh

(
∇By −

∂B

∂y

)]
dxdy

= −
∫ Ly

−Ly((((
((((

((((
(((

((((
([

huBy − hBxv − ηh
(
∂By
∂x
− ∂Bx

∂y

)]Lx
−Lx

dy

−
∫ Lx

−Lx

[
��
�hvBy −��

�hByv − ηh
(
�
��

�
��∂By

∂y
− ∂By

∂y

)]Ly
−Ly

dx

= 0,

(C.3b)

using periodicity in x. Hence, the total horizontal magnetic flux of the active layer is

conserved in both horizontal directions.

248



Appendix C. Integral conservation laws

Total active layer columnar momentum

Using the x and y components of Equation (2.87a),

d

dt

∫∫
hudxdy = −

∫∫ (
∇ · [huu− hBBx + νh(x̂ · τ )] +

∂

∂x
(12gh

2)

)
dxdy

+

∫∫ (
fhv +Qu+ hRx −

hu

τdrag

)
dxdy

= −
∫ Ly

−Ly((((
((((

((((
(((

(([
hu2 − hB2

x + 1
2gh

2 + 2νh
∂u

∂x

]Lx
−Lx

dy

−
∫ Lx

−Lx

[
��
�huv −����hBxBy + νh

(
�
�
�∂u

∂y
+
�
��
∂v

∂x

)]Ly
−Ly

dx

+

∫∫ (
fhv +Qu+ hRx −

hu

τdrag

)
dxdy

=

∫∫ (
fhv +Qu+ hRx −

hu

τdrag

)
dxdy,

(C.4a)

applying periodicity in x alongside v|y=±Ly = ∂u/∂y|y=±Ly = By|y=±Ly = 0, and

d

dt

∫∫
hvdxdy = −

∫∫ (
∇ · [huv − hBBy + νh(ŷ · τ )] +

∂

∂y
(12gh

2)

)
dxdy

+

∫∫ (
−fhu+Qv + hRy −

hv

τdrag

)
dxdy

= −
∫ Ly

−Ly((((
((((

(((
((((

(((([
hub− hBxBy + νh

(
∂v

∂x
+
∂u

∂y

)]Lx
−Lx

dy

−
∫ Lx

−Lx

[
��hv2 −

�
��hB2
y + 1

2gh
2 + 2νh

∂v

∂y

]Ly
−Ly

dx

+

∫∫ (
−fhu+Qv + hRy −

hv

τdrag

)
dxdy

= −
∫ Lx

−Lx

[
1
2gh

2 + 2νh
∂v

∂y

]Ly
−Ly

dx

+

∫∫ (
−fhu+Qv + hRy −

hv

τdrag

)
dxdy,

(C.4b)

applying periodicity in x alongside v|y=±Ly = By|y=±Ly = 0. Equation (C.4) shows

that in the unforced (Q = 0 and R = 0), drag-free (τ−1drag → 0), non-rotating (f =

0) limit, total specific active layer columnar momentum is conserved in the x direction

but is not generally conserved in the y direction. This asymmetry arises because our
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choice of boundary conditions break the translational invariance present in a fully periodic

system, for instance. Moreover, when rotation is included, the asymmetries introduced

by the Coriolis effect breaks the total specific columnar momentum conservation in the

active layer in both directions (regardless of our choice of boundary conditions). However,

the Coriolis effect acts to deflect of the flow and does not affect total columnar energy

conservation (see below).

Total columnar energy conservation

From Equation (2.99), applying periodicity in x alongside v|y=±Ly = ∂u/∂y|y=±Ly =

By|y=±Ly = J |y=±Ly = 0 yields

d

dt

∫∫
Edxdy = −

∫∫
∇ · Fdxdy +

∫∫
(Qν +Qη +Qf )dxdy

= −
∫ Ly

−Ly((((
((((

((((
(((

((((
(([(

1
2h|u|2 + gh2

)
u+ Sx − νhx̂ · (u · τ )

]Lx
−Lxdy

−
∫ Lx

−Lx

[
((((

((((
((

1
2h|u|2 + gh2

)
v + Sy − νhŷ · (u · τ )

]Ly
−Ly dx

+

∫∫
(Qν +Qη +Qf )dxdy

= −
∫ Lx

−Lx

[
���

��1
2h|B|2v −����

��
h(u ·B)By +���

�ηhBxJ

−νh ·
(
�
��u
∂v

∂x
+
�
�
�

v
∂v

∂y
+
�
�
�

u
∂u

∂y
+
�
�
�

v
∂v

∂y

)]Ly
−Ly

dx

+

∫∫
(Qν +Qη +Qf )dxdy

=

∫∫
(Qν +Qη +Qf )dxdy,

(C.5)

where S ≡ (Sx, Sy). Hence, energy can only enter the system through Qf (recall that Qν
and Qη were shown to be negative semi-definite in Section 2.2.7).
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Linear solving methods

D.1 Linearised steady state solutions

To solve the linearised, non-diffusive, steady state SWMHD system considered in Chapter 3

(i.e., Equations (5.1) to (5.4)), we reduce the system to a single inhomogenenous ordinary

differential equation of the form

L{v̂} ≡ F1(y)
d2v̂

dy2
+ F2(y)

dv̂

dy
+ F3(y)v̂ = Q(y), (D.1)

where F1(y), F2(y), and F3(y) are latitudinally dependent coefficient functions, L is the

system’s second order differential operator, and Q(y) is the system’s source term We have

omitted the exact dependencies of F1(y), F2(y), F3(y), Q(y) for steady forced solutions

(due to their cumbersome forms). These can be provided upon reasonable request. If

S(y) and u0(y) are symmetric about the equator and B0(y) is antisymmetric about the

equator, L and Q are respectively symmetric and antisymmetric about the equator.

Solutions of Equation (D.1) on −Ly < y < Ly are obtained by noting that, since L

and Q are respectively symmetric and antisymmetric about the equator, inhomogeneous

solutions are antisymmetric (i.e., v̂ antisymmetric and û, ĥ, Â symmetric). Consequently,

we solve Equation (D.1) in the upper-half domain, 0 < y < Ly, with v̂(Ly) = 0 (imperme-

ability) and v̂(0) = 0 (antisymmetry), before reflecting solutions. This reduced boundary
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value problem is solved by inverting the tridiagonal matrix that corresponds to Equa-

tion (D.1) with finite difference discretizations. We fix the equatorial boundary condition

v̂(0) = 0 and vary dv̂/dy|y=0 in order to satisfy v̂(Ly) = 0, converging upon dv̂/dy|y=0

with the complex equivalent of the bracketed Newton-Raphson method discussed in Press

et al. (1992).

D.2 Singular test solutions in the linear equatorial wave

solving method

For VA > 0, we examine the nature of the test solutions of Equation (5.9) in the upper-half

domain, 0 < y < Ly, about the singular points, y = ys. For |ω| ≤ B0,maxk, ys is located

where B0(ys)k = |ω| (Alfvén singularities); whereas for cgk ≤ |ω| ≤ (c2g + B2
0,max)1/2k, ys

is located where B0(ys)k = (ω2− c2gk2)1/2 (magneto-gravity singularities). The method of

Frobenius gives

v̂ = C1v̂1 + C2v̂2, v̂1 =
∞∑
n=0

anŷ
n+µ1 , v̂2 = Dv̂1 ln |ŷ|+

∞∑
n=0

bnŷ
n+µ2 ; (D.2)

where ŷ = (y − ys)/Leq, C1 and C2 are the constants of integration, v̂1 and v̂2 are the

first and second fundamental solutions, an, bn and D are constant coefficients to be set

or determined, and µ1 ∈ Z and µ2 ∈ Z are the roots of the indicial equation given by

Equation (5.9).

About magneto-gravity singular points, µ1 = 2 and µ2 = 0, so

v̂ = C1

∞∑
n=0

anŷ
n+2 + C2

( ∞∑
n=0

bnŷ
n +D ln |ŷ|

∞∑
n=0

anŷ
n+2

)
, (D.3)

where one is free to set a0 = 1, b0 = 1, b2 = 0 (in fact, or b2 can be set to any constant),

and use Equation (5.9) to determine D, an, and bn. In this case neither of the fundamental

solutions are singular at y = ys, so we are free to search for regular solutions using our

regular solving method. Upon doing so, we find regular solutions, hence magneto-gravity

singularities are in fact so-called “false” singularities with finite solutions as y → ys.
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Appendix D. Linear solving methods

About Alfvén singular points, µ1 = 0 and µ2 = 0, so

v̂ = C1

∞∑
n=0

anŷ
n + C2

( ∞∑
n=0

bnŷ
n +D ln |ŷ|

∞∑
n=0

anŷ
n

)
, (D.4)

where one is free to set a0 = 1, b1 = 1, b0 = 0 (again, or b0 can be set to any constant),

and use Equation (5.9) to determine D, an, and bn. Solutions of this kind are dominated

by the v̂ = O(ln |ŷ|) component as y → ys, so solutions with Alfvén singularities have

infinite discontinuities for D 6= 0 (which we always find).
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Appendix E

Candidate hot Jupiters for

magnetically-driven wind

variations: relaxed criteria

Table E.1: Hot Jupiters in which Bdip,crit < 28 G at P = 10 mbar, with ∆T/Teq = 0.2. Alongside
Teq, estimates of Bdip,crit and Bdip,crit (1 significant figure) using these choices are provided. If
Hot Jupiters in this table are observed to magnetic wind variations, Bdip,crit,0.2 estimates the lower
bound of Bdip and Bφ,crit,0.2 estimates the magnitude of Bφ.

Rank Candidate Teq/K Bφ,crit,0.2/G Bdip,crit,0.2/G

1 WASP-189 b 2618 258 0.6

2 WASP-178 b 2366 259 0.7

3† † WASP-12 b 2578 313 0.7

4† † WASP-33 b 2681 298 1

5 WASP-121 b 2358 307 1

6 HATS-68 b 1743 354 1

7 WASP-78 b 2194 277 2

8 WASP-76 b 2182 291 2

9 MASCARA-1 b 2545 267 2

Continued on next page
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Appendix E. Candidate hot Jupiters for magnetically-driven wind variations: relaxed
criteria

Table E.1 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.2/G Bdip,crit,0.2/G

10 WASP-82 b 2188 265 2

11 HD 85628 A b 2403 255 2

12 HAT-P-70 b 2551 266 2

13 HD 202772 A b 2132 251 2

14 Kepler-91 b 2037 209 2

15 TOI-1431 b/MASCARA-5 b 2370 258 2

16 WASP-100 b 2201 262 3

17 HAT-P-65 b 1953 276 3

18 HATS-67 b 2195 292 3

19 WASP-187 b 1952 232 3

20 WASP-87 A b 2311 278 3

21 HATS-40 b 2121 252 3

22 KELT-18 b 2082 259 4

23 HAT-P-57 b 2198 261 4

24 HATS-56 b 1902 244 4

25† † HAT-P-7 b 2192 267 4

26 WASP-48 b 2058 279 4

27 HATS-26 b 1925 260 4

28 HAT-P-49 b 2127 257 5

29 KOI-13 b 2550 278 5

30 KELT-11 b 1711 227 6

31 WASP-111 b 2121 266 6

32 WASP-142 b 1992 277 6

33 WASP-90 b 1840 248 6

34 HAT-P-66 b 1900 261 7

35 HAT-P-60 b 1786 238 7

Continued on next page
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Appendix E. Candidate hot Jupiters for magnetically-driven wind variations: relaxed
criteria

Table E.1 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.2/G Bdip,crit,0.2/G

36 HAT-P-33 b 1839 261 7

37 WASP-172 b 1745 229 7

38 Qatar-10 b 1955 289 7

39 WASP-88 b 1763 238 7

40 HATS-35 b 2033 281 7

41 Kepler-435 b 1731 217 8

42† † Kepler-76 b 2145 284 8

43 Qatar-7 b 2052 282 8

44 WASP-71 b 2064 257 8

45 WASP-159 b 1811 240 8

46 CoRoT-1 b 2007 291 8

47 K2-260 b 1985 265 8

48 HATS-31 b 1837 256 10

49 HAT-P-32 b 1841 285 10

50 HATS-64 b 1800 238 10

51 HAT-P-23 b 2133 297 10

52 WASP-122 b 1962 295 10

53 TOI-954 b 1704 217 11

54 KELT-4 A b 1827 265 11

55 WASP-19 b 2060 319 11

56 WASP-92 b 1879 273 11

57 WASP-153 b 1712 256 11

58 CoRoT-21 b 2041 253 12

59 TOI-640 b 1749 240 12

60 HATS-24 b 2091 296 13

61 Kepler-1658 b 2185 221 13

Continued on next page
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Table E.1 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.2/G Bdip,crit,0.2/G

62 HATS-9 b 1913 271 13

63 HAT-P-69 b 1980 236 13

64 WASP-118 b 1725 241 13

65 OGLE-TR-132 b 1981 276 13

66 TrES-4 b 1777 257 14

67 WASP-114 b 2028 284 14

68 HATS-11 b 1771 253 14

69 WASP-17 b 1660 264 15

70 WASP-79 b 1755 255 15

71 WASP-3 b 1996 280 16

72 TOI-849 b 1965 244 16

73 HAT-P-47 b 1604 229 16

74 HATS-27 b 1674 237 18

75 Kepler-41 b 1788 276 18

76 K2-237 b 1838 280 18

77 Kepler-7 b 1632 239 19

78 HATS-18 b 2062 314 19

79 HAT-P-50 b 1857 247 19

80 NGTS-2 b 1686 239 20

81 Kepler-412 b 1850 281 20

82 XO-7 b 1744 257 21

83 HATS-39 b 1663 240 22

84 WASP-176 b 1715 246 22

85 HD 149026 b 1751 221 22

86 WASP-1 b 1766 269 23

87 OGLE-TR-211 b 1729 239 23

Continued on next page
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Appendix E. Candidate hot Jupiters for magnetically-driven wind variations: relaxed
criteria

Table E.1 – Continued from previous page

Rank Candidate Teq/K Bφ,crit,0.2/G Bdip,crit,0.2/G

88 Kepler-8 b 1679 249 25

89 HAT-P-56 b 1881 262 25

90 WASP-4 b 1870 296 26

91 KELT-3 b 1823 257 26

92 HAT-P-8 b 1773 258 27

93 WASP-15 b 1652 246 27

94 KELT-8 b 1677 268 28

† More accurate estimates in Table 7.1.
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