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Abstract

Microservices have emerged as a new approach for developing and deploying cloud

applications that require higher levels of agility, scale, and reliability. A microservice-

based cloud application architecture advocates decomposition of monolithic applica-

tion components into independent software components called “microservices”. As the

independent microservices can be developed, deployed, and updated independently of

each other, it leads to complex run-time performance monitoring and management

challenges. The deployment environment for microservices in multi-cloud environ-

ments is very complex as there are numerous components running in heterogeneous

environments (VM/container) and communicating frequently with each other using

REST-based/REST-less APIs. In some cases, multiple components can also be exe-

cuted inside a VM/container making any failure or anomaly detection very compli-

cated. It is necessary to monitor the performance variation of all the service compo-

nents to detect any reason for failure.

Microservice and container architecture allows to design loose-coupled services and run

them in a lightweight runtime environment for more efficient scaling. Thus, container-

based microservice deployment is now the standard model for hosting cloud applica-

tions across industries. Despite the strongest scalability characteristic of this model

which opens the doors for further optimizations in both application structure and

performance, such characteristic adds an additional level of complexity to monitoring

application performance. Performance monitoring system can lead to severe applica-

tion outages if it is not able to successfully and quickly detecting failures and localizing

their causes. Machine learning-based techniques have been applied to detect anoma-

lies in microservice-based cloud-based applications. The existing research works used

different tracking algorithms to search the root cause if anomaly observed behaviour.

However, linking the observed failures of an application with their root causes by the

use of these techniques is still an open research problem.

Osmotic computing is a new IoT application programming paradigm that’s driven
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by the significant increase in resource capacity/capability at the network edge, along

with support for data transfer protocols that enable such resources to interact more

seamlessly with cloud-based services. Much of the difficulty in Quality of Service (QoS)

and performance monitoring of IoT applications in an osmotic computing environment

is due to the massive scale and heterogeneity (IoT + edge + cloud) of computing

environments.

To handle monitoring and anomaly detection of microservices in cloud and edge dat-

acenters, this thesis presents multilateral research towards monitoring and anomaly

detection on microservice-based applications performance in cloud-edge infrastructure.

The key contributions of this thesis are as following:

• It introduces a novel system, Multi-microservices Multi-virtualization Multi-

cloud monitoring (M3 ) that provides a holistic approach to monitor the perfor-

mance of microservice-based application stacks deployed across multiple cloud

data centers.

• A framework for Monitoring, Anomaly Detection and Localization System (MADLS )

which utilizes a simplified approach that depends on commonly available metrics

offering a simplified deployment environment for the developer.

• Developing a unified monitoring model for cloud-edge that provides an IoT ap-

plication administrator with detailed QoS information related to microservices

deployed across cloud and edge datacenters.
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2.4.4 Näıve Bayes (NB) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Deployment Environment . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Cyber-Physical Systems (CPS) . . . . . . . . . . . . . . . . . . 27

2.6 Commercial and open source monitoring tools and anomaly detection . 28

2.6.1 Monitoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . 34

- ix -



3 A framework for monitoring microservice-oriented applications in heteroge-
neous virtualization environments across multiple clouds 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Motivation Example One . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Motivation Example Two . . . . . . . . . . . . . . . . . . . . . 42

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Monitoring Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Monitoring Manager . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 M3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 M2CPA Implementation . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 M3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1.1 Latency Time Results . . . . . . . . . . . . . . . . . . 59

3.5.1.2 CPU Results . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1.3 Memory Results . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 M2CPA Experimental . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2.1 CPU Results . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.2.2 Memory Results . . . . . . . . . . . . . . . . . . . . . 68

3.5.2.3 Network Results . . . . . . . . . . . . . . . . . . . . . 69

3.5.2.4 Results Summary . . . . . . . . . . . . . . . . . . . . . 70

3.5.3 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 72

4 MADLS: Monitoring and Anomaly Detection and Localization System of
Container-based Microservice 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Monitoring and Anomaly Detection and Localization System (MADLS ) 82

4.3.1 Monitoring and Collecting Engine Component . . . . . . . . . . 82

4.3.2 Diagnosing Component . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 MADLS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Monitoring Engine Module . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Target Application . . . . . . . . . . . . . . . . . . . . . . . . . 87

- x -



4.4.3 Training ML Models for Diagnosing . . . . . . . . . . . . . . . . 89

4.4.3.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . 89

4.4.3.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . 92

4.4.3.3 Root Cause Localization . . . . . . . . . . . . . . . . . 92

4.4.4 Fault Injecting Module . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Evaluation and Results Analysis . . . . . . . . . . . . . . . . . . . . . . 94

4.5.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . 94

4.5.2 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2.1 Detection Performance . . . . . . . . . . . . . . . . . . 97

4.5.2.2 Localization Performance . . . . . . . . . . . . . . . . 97

4.5.2.3 Prediction Time of Localization Task . . . . . . . . . . 102

4.5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Osmotic Monitoring of Microservices between the Edge and Cloud 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Monitoring Microservices in Osmotic Computing (Edge to Cloud) . . . 113

5.3.1 Monitoring Model . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1.1 Monitoring Agents . . . . . . . . . . . . . . . . . . . . 114

5.3.1.2 Manager Agent . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Osmotic Monitoring: System Implementation . . . . . . . . . . 116

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Monitored Application . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.3 Latency Time Results . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.4 CPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.5 Memory Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.6 Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 136

- xi -



6 Conclusion 137

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Fault Injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.2 Monitoring Containerized Big Data Systems . . . . . . . . . . . 140

6.2.3 Diagnosis Framework for Container-based Microservices with
Performance Monitoring using Deep Learning . . . . . . . . . . 141

6.2.4 Microservice Migration Method to Balance the Workload of the
Microservices by using Osmotic Services Composition . . . . . . 141

References 143

- xii -



List of Figures

1.1 Monitoring microservice-based application distributed across cloud
and edge datacentres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 (1) Type-1 hypervisor-based virtualization and (2) Type-2
hypervisor-based virtualization. . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Resource limitations provided by Cgroups. . . . . . . . . . . . . . . . . 14

2.3 Docker architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Monolithic and microservice architecture. . . . . . . . . . . . . . . . . . 21

3.1 Example scenario for microservices distributed across multiple cloud
datacentres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Cyber-physical system and an example of stream data management
for highway monitoring system. . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Overview of M3 system. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 M3 data acquisition model. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Simulation web application pattern. . . . . . . . . . . . . . . . . . . . . 54

3.6 Simulation highway traffic pattern. . . . . . . . . . . . . . . . . . . . . 55

3.7 Toll notification query on Esper language. . . . . . . . . . . . . . . . . 56

3.8 CPU usage (percentage) for microservices on: (A) VMs in Amazon
and Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 CPU usage (percentage) for microservices on: (B) Containers in
Amazon and Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 CPU usage (percentage) for microservices on: (C) VM in Amazon and
two containers in Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Memory usage (MB) for microservices on: (A) VMs in Amazon and
Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Memory usage (MB) for microservices on: (B) Containers in Amazon
and Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Memory usage (MB) for microservices on: (C) VM in Amazon and
two containers in Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.14 CPU usage (percentage) for services on VMs in Amazon, VM in Azure
and container in Azure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.15 Memory usage (MB) for services on VMs in Amazon (A), VM and
container in Azure (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

- xiii -



3.16 Network traffic (KB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.17 CPU usage (percentage) for manager. . . . . . . . . . . . . . . . . . . . 71

3.18 Memory usage (MB) for manager. . . . . . . . . . . . . . . . . . . . . . 71

4.1 Multi-resolution technique . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Monitoring and Anomaly Detection and Localization System (MADLS). 81

4.3 MADLS Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Experiment Requests: Books-Shop microservices communication flow
and JMeter’s requests sequence. . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Snapshot of the dataset (D1). . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Snapshot of the dataset (D2). . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Confusion-matrix for anomaly detection using: (A) KNN algorithm. . . 96

4.8 Confusion-matrix for anomaly detection using: (B) DT algorithm. . . . 96

4.9 Confusion-matrix for anomaly detection using: (C) LR algorithm. . . . 96

4.10 Confusion-matrix for anomaly detection using: (D) NB algorithm. . . . 97

4.11 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.12 Confusion-matrix for anomaly localization using: (A) KNN. . . . . . . 98

4.13 Confusion-matrix for anomaly localization using: (B) DT algorithm. . . 99

4.14 Confusion-matrix for anomaly localization using: (C) LR algorithm. . . 99

4.15 Confusion-matrix for anomaly localization using: (D) NB algorithm. . . 99

4.16 Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.17 Localization per class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.18 Localization time of test set. . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Osmotic movement of microservices across cloud and edge. . . . . . . . 109

5.2 Parking management application. . . . . . . . . . . . . . . . . . . . . . 110

5.3 Agents to manager communication model. . . . . . . . . . . . . . . . . 115

5.4 % CPU usage for user microservice on one container (C1) . . . . . . . . 126

5.5 % CPU usage for user microservice on two containers (C2) . . . . . . . 127

5.6 % CPU usage for parking microservice on one container (E1) . . . . . . 128

5.7 % CPU usage for parking microservice on two containers (E2) . . . . . 128

5.8 % CPU usage for selection microservice on cloud (S1) . . . . . . . . . . 129

5.9 % CPU usage for selection microservice on edge (S2) . . . . . . . . . . 129

5.10 Memory usage (MB) for user microservice on one container (C1) . . . . 131

5.11 Memory usage (MB) for user microservice on two container (C2) . . . . 131

- xiv -



5.12 Memory usage (MB) for parking microservice on one container (E1) . . 132

5.13 Memory usage (MB) for parking microservice on two container (E2) . . 132

5.14 % Memory usage for selection microservice (S1 and S2) . . . . . . . . . 133

5.15 Network traffic (KB) for user microservice (C1 and C2) . . . . . . . . . 134

5.16 Network traffic (KB) for parking microservice (E1 and E2) . . . . . . . 134

5.17 Network traffic (KB) for selection microservice (S1 and S2) . . . . . . . 135

- xv -



- xvi -



List of Tables

2.1 Comparison of some supervised machine learning algorithms . . . . . . 24

2.2 Comparison of literature review with the major challenges addressed
in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 List of the configuration parameters and values. . . . . . . . . . . . . . 52

3.2 Input Tuple schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Output Tuple schemas: Continuous queries . . . . . . . . . . . . . . . . 56

3.4 Microservices scenarios deployed at containers and VMs . . . . . . . . . 58

3.5 Request results For all scenarios . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Applications scenarios deployed at containers and VMs . . . . . . . . . 66

4.1 List of the configuration parameters and values. . . . . . . . . . . . . . 85

4.2 Anomaly detection by detection component (binary classification) . . . 89

4.3 Summary of 5 fault classes to be classified by localization component
(Multiclassification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 A summary of symbols used in this chapter . . . . . . . . . . . . . . . . 95

5.1 List of the configuration parameters and values. . . . . . . . . . . . . . 116

5.2 Monitoring metrics provided by smart manager . . . . . . . . . . . . . 118

5.3 Microservice scenarios deployed at Docker . . . . . . . . . . . . . . . . 124

5.4 Request results for analyzed scenarios . . . . . . . . . . . . . . . . . . . 125

- xvii -



- xviii -



1
Introduction

Contents
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

- 1 -



Chapter 1: Introduction

Introduction

Microservice deployment is now the standard model for hosting cloud applications

across industries from streaming media to Big Data [1]. Microservice approach means

that an application is split into services. Each microservice is isolated from other ser-

vices, but it can communicate with them. One key benefit of microservice deployment

is that an application can be released faster and managed efficiently [2]. The deploy-

ment of microservices is achieved by utilizing virtualization techniques like Virtual

Machines (VMs) and containers. Container virtualization technique is much popu-

lar nowadays because it consumes less resource and then makes the application more

scalable [3].

Cloud DataCentre (CDC): All private, commercial and public providers providing soft-

ware platform, storage platform, etc. in different form of services such as data analysis

services, user interface services based on web server and DB server. Normally such

cloud providers are located in different geographical locations and they are considered

to have unlimited storage and processing power. These services can be accessed from

most of the places of the world. This way they provide on demand service for providing

such on demand service the physical datacentre resources are normally virtualized and

provide service to the user as per use manner. For doing this virtualization two most

commonly used methods by the cloud datacentres are containers (e.g. Docker, LXC

etc.) and hypervisors (e.g. Xen, KVM, Virtual Box etc.). These techniques create

multiple virtual machines (VMs or containers) within the physical machine and each

of these virtual machines are kept isolated from each other. This way different jobs

are allocated to different virtual machine [4–6] for providing different services that ev-

ery cloud service provider different virtual machine configurations with different cost.

This way massive data storage and processing activities can also be performed on

this datacentre. The cost and selection of virtual machines depends on different QoS

parameters e.g. processing power, performance, availability etc.

On the other hand, ”an edge datacenter can be defined as a collection of smart IoT sen-

sors, IoT gateways (raspberry pi 3, UDOO board, esp8266, and so on), and software-

defined networking devices solutions (for example, Cisco IOx, HP OpenFlow, and
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Middlebox Technologies) at the network edge that can offer computing and storage

capabilities on a much smaller scale than cloud datacenters” [7].

The Quality of Service (QoS) parameters, e.g., microservice components usability,

microservice load, and microservice throughput are vital to consider. They can change

inappropriately based on a few components, e.g., several end-users interfacing with

microservice, physical resource, VM/container failure, VM/container overload, etc. In

this case, QoS monitoring refer to a continuous view of the status of such parameters,

which gives the whole monitoring microservice the needed responsiveness. To meet the

QoS focus of cloud-hosted microservices, it is essential to track the system software and

hardware resource [8]. Furthermore, these microservices enable various characteristics

of the cloud provider. Monitoring in clouds is necessary to keep those services highly

accessible and performance, and it is critical for both resource and customer suppliers

[9–11]. Monitoring is mainly a primary method for i) management of infrastructure

and hardware resources and ii) ongoing knowledge for these resources and cloud-based

consumer-hosted microservices. The need for monitoring became more critical with

the introduction and widespread adoption of cloud-edge environments. This modern

computing model, which requires services to be bought upon demand and paid for

their actual use, allows costs to be minimized by effective power utilization and resource

planning, as Aceto et al. [12] highlighted. To do so, prices and real resource utilization

need to be monitored so that automation can come into action.

1.1 Research Motivation

Monitoring performance is a key research activity in cloud computing, which has seen a

significant rise in importance due to the popularity of microservices. Their popularity

is primarily based on their lightweight, economical usage of shared resources allowing

for greater fiscal reward from service hosting activities while reflecting green agendas.

However, this puts significant importance on securing such services as resource misuse,

often manifesting as anomalous behaviour in the network activity, can have impacts

on distinct hosting provisions of unrelated services

Monitoring is a track of the system and see how the system is been performed. The
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Users
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Banking/ Finance Airline reservation Healthcare E-commerce Governance

Microservices (Platform)
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Agent

Edge

Monitor 
Agent

Monitor 
Agent

Figure 1.1: Monitoring microservice-based application distributed across cloud and
edge datacentres.

monitor is responsible for the monitoring of system data gathered by various process

[13]. In the context of service-based systems, Benbernou et al. [14] define the moni-

toring process as a process for gathering and reporting information on an application

execution and evolution. The method of tracking can be used for various purposes.

Examples include machine optimization of run-time, identification of essential by de-

tecting changes in run-time, and collecting of system evolution information. It is

a highly tricky challenge to track microservice-based systems as services operate in

separate processes distributed across multiple hosts [15]. It includes a system of mon-

itoring that gathers, distributes and processes data automatically in a system with a

high number of components.

Monitoring [16] plays a central role in identifying ”when” a certain microservice should

be migrated. For migration to be effective, it is necessary to properly monitor the

performance of the microservices. The monitoring of microservices in cloud and edge

environment is a recent topic and therefore few works have been carried out in this

regard. To explore this topic in the construction of a solution that meets the require-

ments of monitoring microservices that deployed in the cloud or edge environment as

showing in Figure 1.1.
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For the same reasons as any distributed system, applications built using the microser-

vice architecture will have to be monitored: that is, all systems inevitably fail. The

most apparent explanation why monitoring is important and the reason for that is

failure, but it is not the only one. System performance is not binary; systems are not

either ”up or down.” In a degraded state that impacts performance, complex systems,

including monoliths, can run. Sometimes these deteriorated states herald impend-

ing failures. Until complete failures occur, tracking the actions of systems may alert

operators to deteriorated states. Within a Service Level Agreement (SLA), facilities

offered internally or to external customers are also provided. Without monitoring, it

is difficult to know whether for example, the SLA is being respected or broken.

The failure is that a system cannot execute its requisite functions in compliance with

defined performance criteria. Faults (or anomalies) identify an exceptional circum-

stance that may lead to defects that happen during the system operation. It is an

expression of a system error [17]. The optimization of the microservice environment

and its constant changes will impact service response times and contribute to the false

of anomalies detection. The metrics will be affected by started and stopped services,

as well as the continuing deployment of updated services. Besides, where the load and

response times differ, it is challenging to establish thresholds. The problems related

to scalability and technical diversity are simplified by containers/ VMs, processes, and

frameworks. The dynamic environment and the runtime context are other fact. The

components are changing or be transferred due to the container management systems

and the continuous delivery model.

Scalability of a container-based microservice application allows for more application

organization and optimization. But, this strongest characteristic brought new com-

plexities to application performance monitoring. Indeed, inefficient performance mon-

itoring may lead to severe application outages [18] as it is not able to successfully and

quickly detect the failures and then localizing their causes. Application failures are

observed by the user and are considered as indicators for the problems in application

behaviour (also referred to as anomalies). These anomalies can be caused by different

faults in the application resources and called root causes. Therefore, anomaly detec-

tion and root causes localization is aimed at linking the observed failures with the

- 5 -



Chapter 1: Introduction

underlying faults. For instance, Central Processing Unit (CPU) consumption fault

may cause a response time delay failure in the application.

Currently, there are multiple monitoring frameworks and anomalies detection have

many challenges [19–29], a few of the main challenges considered in this thesis are

given below:

• The deployment environment for microservice-oriented applications in multi-

cloud environments is very complex as there are numerous components running

in heterogeneous environments (VM/container) and communicating frequently

with each other using REST-based/REST-less APIs. In some cases, multiple

components can also be executed inside a container/VM making any failure or

anomaly detection very complicated. It is necessary to monitor the performance

variation of all the service components to detect any reason for failure.

• Considering the virtualization environment, deployment of microservice-oriented

applications in containers is very different from that in VM. Containers are de-

fined in terms of namespace and cgroups that share the same host machine

whereas each VM is isolated with its own operating system. Also, the resource

limitation in containers can be hard or soft as compared to VM which is always

strict (hard). A soft limit allows containers to extend beyond their allocated

resource limit creating higher chances of interference [30, 31]. Monitoring the

performance of microservice-oriented applications in such cross VM/container

scenarios is very important to ensure that services are executing in a desirable

way.

• Modern applications can be distributed across multiple cloud environments

including bare metal, public or private cloud depending on several features such

as microservice-oriented application component requirements, deployment loca-

tions, security concerns, cost, etc. Different cloud providers have their own way

of handling deployment and management of microservice-oriented application

components. Due to the heterogeneity of cloud providers, it is complex to have

holistic management of application components.
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• Application migration in cloud-edge: Underpin such emerging approaches is

the dynamic management of microservices across cloud and edge datacenters.

For instance, defining when and how microservices can be migrated from edge

resources to cloud-based resources (and vice versa), and characteristics which

influence such migration, remains a challenge [32].

• Infrequent Anomalies: anomalies are not a common event within cloud envi-

ronments [33]. This is problematic for those approaches based on supervised

machine learning, as there are limited examples of anomalous training data from

which to learn. Consequently, the main problem can be either missing anomalies

that are not present in the training dataset or identifying normal behaviour as

anomalies.

• Numerous Metrics: datasets used for supervised learning can consist of many

metrics, promoting the use of a variety of different approaches based on metric

availability. Such metrics may not be available generally across service providers.

This produces datasets for machine learning that tend to be bespoke for given

service providers, and sometimes elements of their infrastructures depending on

web application domain support, rather than for general usage bringing chal-

lenges for localized detection [34].

• The optimization of the microservice environment and its constant changes

will impact service response times and contribute to the false of anomalies de-

tection. The metrics will be affected by started and stopped services, as well

as the continuing deployment of updated services. Besides, where the load and

response times differ, it is challenging to establish thresholds. The dynamic en-

vironment and the runtime context are other fact. The components are changing

or be transferred due to the container management systems and the continuous

delivery model.

This PhD research aims to find a monitoring and anomaly detection solution while

considering the aforementioned challenges. In particular, this PhD thesis is guided by

the following research questions:
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• How to monitor the performance of multiple microservice-oriented applications

deployed on heterogeneous virtualization platforms distributed across different

cloud data centers?

• How to ubiquitously monitoring QoS of microservices mapped to an osmotic

computing (cloud+edge) environment?

• How to aggregate QoS measures of microservice-oriented applications running

in multiple cloud/ (cloud + edge) environments to give a holistic view of (e.g.,

Book-shop, highway traffic, smart parking) performance?

• How to detect, identify and locate the anomalies that causes a performance

reduction in container-based microservice architecture on cloud environments?

1.2 Research Contributions

There are multiple monitoring tools available to monitor the applications running

in the cloud. However, most of the frameworks are either cloud provider specific

e.g. [Microsoft Azure Fabric Controller], or virtualization architecture specific e.g.

[CAdvisor]. These monitoring tools are not able to satisfy the performance monitoring

requirements of complex microservices deployed across multiple cloud data centers. In

addition, existing QoS monitoring tools and techniques suffer from serious technical

limitations when subjected to osmotic computing (cloud + edge). Furthermore, there

are several microservices deployed in multiple containers. A root-cause localization of

a detected anomaly can be performed by analysing resource metrics of microservice’s

containers. Analysis of all observed metric and underlying resourses’ metrics from all

microservices consists of a large volume of metrics. We use multi-resolution method to

analyse the metrics in sequential stages to best formulate a learning environment for

machine learning algorithms. The multi-resolution method is achieved by narrowing

the metrics’ scope and increasing the resolution using classification machine learning

algorithms. Lightweight algorithms are used for computational purposes to analyses

several representative metrics to detect the observed anomalies. Once the anomalies
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are detected, a comprehensive drill-down analysis of additional metrics to localize the

root cause using complex algorithms. The main contributions of this thesis are as

given below:

• Introducing a novel framework: Multi-virtualization, Multi-cloud Monitoring

in microservice-oriented applications (M3 ) that provides a holistic approach to

monitor the performance of microservice-oriented applications composed into

multiple applications deployed/running in a multi-cloud and heterogeneous en-

vironment (e.g. using different virtualization technologies).

• Developing a Monitoring and Anomaly Detection and Localization System (MADLS )

which utilizes a simplified approach that depends on commonly available metrics

offering a simplified deployment environment for the developer.

• Developing a unified monitoring model for osmotic computing that provides an

IoT application administrator with detailed QoS information related to microser-

vices deployed across cloud and edge.

1.3 Thesis Structure

The structure of the thesis will be presented in Figure 1.2 and the arrow here represents

the flow of chapters. Chapter 2 provides background of monitoring, virtualization, mi-

croservices, deployment environment, and discusses related work on commercial and

open source monitoring tools and anomalies detection. Chapter 3 presents a frame-

work for monitoring microservice-oriented applications in heterogeneous virtualization

environments across multiple cloud. Chapter 4 provides MADLS: monitoring and

anomaly detection and localization system of container-based microservice. Chapter

5 presents an osmotic monitoring of microservices between the edge and cloud. Fi-

nally, Chapter 6 concluded the thesis by summarizing the work done of the thesis and

provides directions for future work.
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Figure 1.2: Thesis organization.
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Summary

This chapter presents some background information concerning the overall topic, in-

cluding a brief description on monitoring, virtualization techniques, microservices, the

underlying cloud and edge computing environment, and industry and academic moni-

toring tools. A major focus of this thesis is to address the challenges of microservice

monitoring and anomaly detection in cloud-edge infrastructure. Monitoring regulates

the performance of cloud-based microservices in software and hardware resources. It

includes information on the monitoring resource’s status/health, such as the CPU and

memory use for the microservice deployed on the cloud platform. The microservice

provisioning mechanism handles the configuration and implementation of microser-

vices in cloud systems successfully. Given the vast number of various cloud resources,

the provision of microservices in cloud computing environments is very complicated,

including QoS parameters and VM configuration (e.g., CPU, memory, and I/O net-

work). The term resources have historically meant denoting a physical object, such as

a device, network, or storage.

2.1 Virtualization

In the process of virtualization, anything such as virtual apps, servers, storage and

networks may be viewed on a digital or virtual basis. Software-based virtualization

simulates hardware and generates a virtual framework. Virtualization is seen as the

core component of cloud and edge computing, enabling many tenants to work in an iso-

lated environment with their heterogeneous applications [4]. It offers several benefits,

including heterogeneous workload of the working capacity, simple allocation, decreased

risk of failure and improved availability.

The details of two main types of virtualization will be explained below:

2.1.1 Hypervisor-based Virtualization

A virtual machine (VM) is an emulation of an operating system in hypervisor-based

virtualization. Virtual machines are built on the architecture of computers and have
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physical device capabilities. Specialized hardware, software or a mixture can be used

for their implementation. Each virtual machine (VM) has its OS, independent of the

host on which the hypervisor is operating. The default method of virtualization is

known to be virtual machines. They deliver all the benefits of virtualization at the

cost of high overheads relative to the performance of bare-metals. Typical examples

of high-speed virtualization are Xen [35], VMWare [36], KVM [37], etc.

Virtualization based on hypervisors may be either complete if the guest OS does not

know the virtualization or para, if the guest OS is modified it will make unique hyper-

calls to the hosting system. No matter what kind, hypervisor-based virtualization can

be divided into two large architecture groups, namely Type 1 and Type 2 hypervisor.

There are fundamental distinctions between Type 1 hypervisors and Type 2 hypervi-

sors because Type 1 hypervisors directly interact with host machines’ hardware and

manage their virtual hardware resources. In contrast, Type 2 hypervisors operate on

the top of the host OS and allow the OS to handle virtual hardware resources. The

architectural difference between Type 1 and Type 2 hypervisors is shown in Figure 2.1.

Hardware

Hypervisor

VM 1

Applications

Libs/Binaries

VM 2

Applications

Libs/Binaries

Guest OS Guest OS

Hardware

Hypervisor

VM 1

Applications

Libs/Binaries

VM 2

Applications

Libs/Binaries

Guest OS Guest OS

Host OS

(1) (2)

Figure 2.1: (1) Type-1 hypervisor-based virtualization and (2) Type-2 hypervisor-
based virtualization.
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2.1.2 Container-based Virtualization

In comparison, container virtualization is simple to use and the possibility of build-

ing microservice environments in contrast to hypervisor-based virtualization. The

overhead is not standard when an operating system does not have to be installed. Ap-

plications and their dependencies are encapsulated in containers using the same host

system and kernel.

Resource isolation is accomplished with features such as kernel namespaces and control

groups using Linux kernels. The namespace limits a container’s visibility such that it

can only control its allocated resources. PID, MNT, NET, IPC are some of the typical

container namespace features for process ids, file system mounting points, network

functionality and cross-process communications in inter container environments [38]

respectively. The clone () method call is used with each new container to build an

abstract system in the OS kernel with an existing namespace. Linux cgroups represents

additional kernel functions that control the allocation of resources by limiting the

system resource utilization for each process group concerning CPU, memory, network

and disk I/O. The priority for the use of the resource by the process category is often

specified by cgroups. The resource constraints offered by cgroups appear in Figure 2.2.

Container-4

Host

Cgroups Cgroups Cgroups Cgroups

Container-3Container-2Container-1

Memory (RAM)CPU Cores

Figure 2.2: Resource limitations provided by Cgroups.
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Linux Containers (LXC) [39] are a case in point. This idea is generalized with inter-

faces by Docker [19] and the ability to construct compact images for instantiation of

containers. Images can be generated using a Dockerfile description. For images that

contain the application and its dependency, the file works as a blueprint. Docker also

offers a platform, comprising of the Docker Engine and the Docker Hub in addition

to Docker files. The containers are designed and manufactured by the Docker Engine.

The Docker-hub is a cloud infrastructure that enables Docker images to be shared.

The container environment architecture, as seen in Figure 2.3. Containers can be used

as individual units due to container architecture. Thus, by designing numerous mi-

croservices and using container technology, a microservices-oriented framework can be

realized.

Hardware

Host OS

Container Engine

Container 1

Applications

Libs/Binaries

Container 2

Applications

Libs/Binaries

Figure 2.3: Docker architecture.

2.1.3 Why container?

The reasons for choosing containers are given below:

1. Lightweight. Containers are regarded as a lightweight alternative for virtualization

based on hypervisors, allowing multiple isolated cases of work for customers. Unlike

VMs, a container engine parses the equipment, which is essential for running the soft-

ware inside it, rather than pressing different functionality on the same virtual machine,

which simplifies the rapid development of events and the testing of microservices.
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2. DevOps support. Recently, DevOps strategies are becoming more common because

they promote the continuous supply of software applications and make it easier to

work together between various applications development [40]. Although DevOps is not

based on containers, the usage of containers gives many advantages to allow DevOps

to function. Since the container environment exists regardless of the underlying OS, a

stable development, test and output environment is simple to have. DevOps includes

constant updates, simple to deploy using containers in an application or application

module.

3. Microservice compatibility. Late trends transition towards decoupling application

systems into smaller modules (microservices). Each application module can then be

designed independently to support heterogeneous development. As containers have a

lightweight environment that can isolate microservices to a least of dependence, it is

reasonable for rapid development and microservices to be deployment [41, 42]. The

convergence of data and microservices is achievable by having well-specified structures

that are registered, tested and maintained within the architecture. The goal of the

microservice was to make it easier for teams to be decoupled and pushed autonomously.

2.2 Monitoring

2.2.1 What is monitoring?

The topic being monitored, limiting the scope to the engineering sector, is typically a

structure composed of components. Monitoring can thus be redefined as the “action

of observing and monitoring a system’s behaviour and components over time” [43].

Several other concepts of monitoring can be found amongst researchers as well as

experts in the area of microservice-based applications.

• Fatema et al. [44] define monitoring as a“process that fully and precisely identifies

the root cause of an event by capturing the correct information at the right time

and at the lowest cost in order to determine the state of a system and to surface

the status in a timely and meaningful manner”.
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It is not useful to monitroing a system without understanding what it is, what the

right action is. What these meanings add is then essential, namely to check coherence

with pre-defined goals (or specifications). Furthermore, as pointed out in this the-

sis, monitoring refers to the random actions of a microservice-based application. As

Bertolino [45] highlighted, this last feature separates monitoring from research, where

instead the system is put in a simulated environment to synthetic a particular non-

spontaneous activity. However, as this section aims at seeking an aggregate, universal

definition, optional specifications will not be taken into account, the description sug-

gested by Fatema et al. reports advisable properties for a monitoring framework. It is

only possible to use a tracking system to verify whether a condition is complied with

without providing the root cause. Adjustment, timeliness and cost efficiency are also

essential, but not compulsory. Therefore, this thesis reference definition of monitoring

will be:

Definition: Monitoring is the action of observing the application’s components and

the outputs of a system in each layer in cloud-edge infrastructure.

2.2.2 Why monitoring?

Monitoring in clouds is necessary to keep those services highly accessible and perfor-

mance, and it is critical for both resource and customer suppliers [9–11]. Monitoring is

mainly a primary method for i) management of infrastructure and hardware resources

and ii) ongoing knowledge for these resources and cloud-based consumer-hosted mi-

croservices. In general, the efficiency and seamless processes of all system’s resources

are monitored for cloud tasks, such as resource management, SLA management, per-

formance management, billing, and security administration [46, 47]. Consequently, the

elastic existence of cloud computing is very much to be monitored [48]. Monitoring

can be of two types of cloud computing: high and low. The status of virtual plat-

form is related to high-level monitoring [49]. In the sense of low-level monitoring, the

state of the underlying physical infrastructure is being collected [50]. A self-adjustable

and usually multi-threaded platform is a cloud monitoring framework capable of sup-

porting tracking functionalities. It detects cloud anomalies in-depth for pre-identified

instances/resources. The monitors try to restore this instance/resource automatically
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if the matching monitor has an auto-healing action [51] when the irregular behavior is

observed. A supporting team will be alerted if an auto-repair failure or a lack of an

auto-healing action happens. Notifications can theoretically be sent in multiple ways,

including email or SMS.

Monitoring allows for continued testing as design-time tests are extended following

implementation. It is a technique needed to check if problems occur during services

following the use of the system. Only then will the requirements on tracks that have

not been reviewed in advance be confirmed. Once a problem trace is found, a new test

may be generated, and the detected issue is replicated, and subsequent regressions are

prevented [52].

The need for monitoring became more critical with the introduction and widespread

adoption of cloud computing. This modern computing model, which requires services

to be bought upon demand and paid for their actual use, allows costs to be minimized

by effective power utilization and resource planning, as Aceto et al. [12] highlighted. To

do so, prices and real resource utilization need to be monitored so that automation can

come into action. Besides, to verify if Service Level Agreements (SLAs) are satisfied,

the efficiency provided by third-party providers needs to be monitored.

2.2.3 Requirements for a Monitoring Platform

• Portability [44, 53] Users can deploy apps on different platforms. The same

service may be built to work on entirely different hosting solutions in the case

of multi-cloud applications. Therefore, monitoring systems should be capable of

operating in heterogeneous environments.

• Interoperability [44, 53] Monitoring can work through heterogeneous datacenters

if you want to give users the ability to run their application on various clouds or

hybrid solutions.

• Elasticity [12, 44] In the case of complex environments such as the cloud where

resources are unpredictable and the architecture subject to abrupt changes, mon-

itoring tools can work continuously, without interruptions and manual reconfig-

uration.
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• Scalability [12, 44, 53] The monitoring system should ensure that it works inde-

pendently of the workload.

• Multi-tenancy [44] Cloud services have multifunctional systems in which many

users typically use the same physical infrastructure. The cloud provider, as well

as its customers, should be granted visibility on a right tracking platform and

the necessary isolation should be maintained. Cloud services should be able

to collect information about their system and possibly the summary of shared

resources for each tenant to assure SLAs.

• Comprehensiveness [44, 53] A monitoring system should be able to monitor

different physical and virtual infrastructure, multiple levels and platforms, and

numerous cloud services.

• Extensibility [12, 44, 53] A monitoring framework may be expanded if external

systems or cloud services, for example, by plug-ins, can add functionality or

support.

• Accuracy [44] An exact tracking method can have accurate metrics, ensuring

they are as close to the actual value as possible.

• Resilience [44] A resilient monitoring system may continue operating or recover

those components automatically from a complete or partial failure.

• Reliability [44] A reliant monitoring system is able to provide its service for a

given period of time under stated conditions.

2.2.4 End-to-end Link Quality Monitoring

Cloud-based applications, such as early warning systems, are time-critical and need

sufficient assistance to reach assured, network-based QoS. This is difficult because if

the network system’s conditions change frequently, the performance is challenging to

sustain. The concept of running certain application services on the edge of a network
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and others on clustered datacenters has raised important questions about the com-

munications’ network efficiency across an edge-computing framework between these

services. It is a challenging for research because it concerns the live transfer of re-

sources between edge nodes and datacenters and multiple nodes in edge computing

frameworks at the same layer. The network performance must be assessed by end-to-

end connection content monitoring for all communications across the edge-computing

platform. Regardless of the hardware used in the networks, the edge model involves

four kinds of network links between the application components:

• Communications between a cloud datacenter and an edge node: a founda-

tion for applying innovative concepts for developed, implemented, deployed and

operated between the cloud datacentre and the edge nodes within an edge com-

puting environment are new enabling technologies such as SDN and NFV. In

recent years, SDN and NFV have opened up new possibilities for virtualizing

network work on demand depending on the consistency of the link from start

to finish at all times. A complex implementation, migration, and scale-up of

network functions, including routing, packet forwarding, and firewall services,

can be effectively applied via NFV to network components (routers, bridges,

switches). In addition to NFV, the SDN contains an array of APIs and control

protocols such as SNMP and OpenFlow to program, managed, and automate

network.

• Communications between edge nodes: edge nodes locally control a pool of vir-

tualized services at multiple geography locations. It allows the service vendor to

enhance the entire applicationperformance by collaborative supply and content

distribution between peered edge nodes. Data transmission between these nodes

can be done via a centralized approach such as SDN or through standard routing

protocols through a full distributed system, e.g., OSPF [54].

• Cloud-based communications: the volume of data shared between components

in various tiers deployed on cloud datacenters has rapidly increasing with a phe-

nomenal rise in cloud-based applications. Such implementations have become
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challengingly tricky to ensure that these types of applications is favorable due

to variance in running time in network conditions inherent in connections across

internally replicated and distributed application components across/within of

numerous cloud datacenters.

• Communications between IoT object/user and edge nodes: self-adaptive appli-

cation providers must adapt their networks dynamically and effectively to the IoT

device and the customer’s network circumstances to provide high performance.

2.3 Microservices

Monolithic Approach Microservice Approach 

UI

Business 
Logic

Data Access  
Layer

UI

Microservice Microservice Microservice

Figure 2.4: Monolithic and microservice architecture.

In the sense of service-oriented architecture, microservices primarily strive to disassem-

ble monolithic systems into small services that connect. In contrast with monolithic

structures, Figure 2.4 illustrates the paradigm of microservices. It indicates that little

resources that provide their own data storage are microservices. On the opposite, the

monolithic Figure simplifies the inclusion of all functional components in one compo-

nent, including data storage. In effect, the microservice model contributes to inde-

pendent, self-connected modules. REST is a popular means of interacting with other

micro services through today’s microservices. With the Hypertext Transfer (HTTP),
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the underlying data sharing can be completed. Thanks to the flexibility of the mi-

croservice, it is usually separate and easy to scale. Microservice may be implemented

individually in the sense of continuous deployment. Summary: • Definite graining •

Context-bounds • Self-developed • Autonomous • Decentralized [55] describes micro

services with following characteristically characteristics.

2.4 Technologies for Diagnosing Anomalies using ML Al-

gorithms

Various detection techniques have been used, they include statistical analysis, adaptive

method, machine learning. A comparison between the three main methods is discussed

in [56]. In this work, we are interested in detecting anomalies using machine learning.

Machine learning is widely applied in many anomaly detection research because it

is a simple, effective, and accurate method for detecting and classifying anomalies.

There are three methods for machine learning techniques; supervised, semi-supervised,

and unsupervised. Choosing one of them depends on the data label existence. The

supervised technique is used if labeled data of normal and anomalous are available. A

semi-supervised are required when labeled instances for the normal class is available.

In contrast, unsupervised techniques do not require any labeled data. Each technique

has advantages and disadvantages, see [57].

In this thesis, we applied supervised machine learning methods which are widely used

in litterateurs and provide high performance in terms of accuracy and precision [28]

[58]. The disadvantage of the supervised method is labeling the anomaly classes due

to the fact that anomalies are rare events. This can be tackled by injecting artificial

anomalies in a normal data set to obtain a labeled training data of normal and anomaly

data. Many algorithms exist for supervised machine learning.

In supervised machine learning, there are different algorithms that can be applied.

Sauvanaud et al. [28] conducted anomaly classification with K-Nearest Neighbors

(KNN), Random Forest (RF), Neural Network (NN), Näıve Bayes (NB). The results

of this research work indicated that RF and KNN achieved higher accuracy compared

to NN and NB. Nonetheless, NB performed much faster with a calculation time of
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milliseconds compared to NN and KNN. In the same content, du et al. [58] conducted

a comparative study for anomaly classification with Random Forest (RF), Support

Vector Machine (SVM), K-Nearest Neighbors (KNN) and Näıve Bayes (NB). This

study reported that RF and KNN achieved higher accuracy, wile NB performed worse

followed by SVM, which provide the worst performance. From both studies, the results

showed that machine learning classifiers with computational complexity (SVM and

NN) are worse compared to traditional supervised methods.

Since anomaly detection is not only an alarm that reaches a threshold, the algorithm

used to build the anomaly detection model should provide simple, accurate, low cost,

and interpretive methods for anomaly detection. Therefore, the selection of an optimal

algorithm is often required. To achieve such goal, we need to compare different su-

pervised machine learning algorithms based on a set of proprieties. Table 2.1 presents

a comparison of supervised machine learning algorithms that used for anomaly de-

tection in a microservice-based application. For the purpose of this study, we will

consider those algorithms that support the following proprieties: model interpretabil-

ity, low amount of parameter tuning needed, and low time complexity. Therefore, in

this thesis, we will compare four algorithms that have different learning strategies: K-

Nearest Neighbors (KNN): instance-based Algorithm, Decision-Tree (DT): rule-based

Algorithm, Logistic Regression (LR): Regression Algorithm, and Näıve Bayes (NB):

Bayesian algorithm. The next section provides a brief description of each of the se-

lected algorithm.

2.4.1 K-Nearest Neighbors (KNN)

K-Nearest Neighbors is an algorithm that is called a lazy learner because it does not

built a model. Instead, each time the KNN algorithm classify new data, it uses all the

training set to calculate the distance between the new data point and its Neighbors

using some proximity metric like Euclidean distance, Hamming distance, Manhattan

distance and Minkowski distance. The class of all k neighbors are determined and

the class that most of neighbors belong to is assigned as a class for the new data.

Euclidean distance is commonly used as proximity metric. KNN is a very simple

algorithm, however, it needs more time to classify the data as it scans all the training
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Table 2.1: Comparison of some supervised machine learning algorithms

Algorithm ANN SVM RF KNN DT LR NB

Parametricity:
Making an as-
sumption that
the dataset
belongs to a
parametric fam-
ily of probability
distributions

No No No No No Yes Yes

Time complex-
ity: The time an
algorithm takes
during training
and testing.

High High High High Low Low Low

Sample com-
plexity: The
amount of
training data
an algorithm
requires and
number of
features

Large Large
or
Small

Large
or
Small

Large
or
Small

Large
or
Small

Small Small

Interpretability:
Understanding
the decision-
making process
of an algorithm

Difficult Difficult Difficult Easy Easy Easy Easy

Tuning the
Model: The
amount of pa-
rameters need
to be tuned to
avoid over or
under fitting

Large Large Large Small Small Nothing Nothing
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set [59].

2.4.2 Decision-Tree (DT)

Decision tree is a classification and prediction algorithm. The DT of dataset is con-

structed and learned by rule-based method. The tree has nodes that represents one

of the attributes which are selected in every level of the tree using attribute selec-

tion measures (like Information Gain, Gain Ratio, and Gini Index). Each node has a

decision rule to split the data into at least two branches. The leaves, that represent

different classes, are the bottom nodes. Main advantage of decision tree is that it is

easily interpreted and visualized. In addition, the DT has no assumptions about data

distribution. However, DT algorithm build unbalanced tree due to majority classes in

the dataset. Hence, training dataset for DT should be balanced [60].

2.4.3 Logistic Regression (LR)

Logistic regression is a classification method that using statistical methods. LR calcu-

lates the probability that set of attributes (X) belongs to a class and uses the logistic

function as stated in the equation:

P (X) =
eˆ(b0 + b1 ∗X)

(1 + eˆ(b0 + b1 ∗X))
(2.1)

The coefficients b of the logistic function are estimated from the training data, and

this is done using maximum-likelihood estimation. LR is one of the most simple and

easy to implement. Moreover, it does make assumptions about data distribution. LR

model only needs to stores the coefficients b in the memory [61].

2.4.4 Näıve Bayes (NB)

A Näıve Bayes algorithm is one of supervised learning algorithms. This algorithm con-

structs a model based on Bayes’ theorem. Bayes’ theorem (4.1) is stated in equation:

P (B|A) =
P (B) ∗ P (A|B)

P (A)
(2.2)
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This equation is the probability of attributes (B) belong to class A. For all classes, this

probability is calculated and the class with the highest probability will be assigned to

the independent attributes (B). This probability is based on the assumption that the

attributes (B) are independent from one another. Näıve Bayes is a simple, fast, and

very low computation cost algorithm [61].

We trained four supervised ML algorithms by using the labelled database. These algo-

rithms were applied to the two tasks: detection (binary classification) and localization

(multi classification).

2.5 Deployment Environment

2.5.1 Cloud Computing

Cloud computing is a crucial technology which provides scalable and versatile IT infras-

tructure and resources as different internet services. According to the NIST concept of

cloud computing, this paradigm is described by Mell et al. [62] as a ”model for allowing

omnipresent, easy, on-demand network access to a common pool of configurable com-

puting resources (e.g. networks, servers, storage, software, and services) that can be

easily supplied and released with minimal management effort or interference amongst

service providers.” In comparison, the underlying cloud-based applications and soft-

ware processing infrastructure are entirely abstracted from the service users. As a

consequence, the cloud-based resource provider is responsible for the performance,

stability and scalability of the storage environment and the IT services provided. Soft-

ware as a Service (SaaS), Platform as a Service (PaaS) and IaaS (Infrastructure as

a Service), the offered services can be divided into separate services. SaaS provides

the on-demand use of Internet software. In comparison, PaaS provides a deployment

ecosystem, including the current cloud infrastructure’s applications development envi-

ronments and platform layer resources. IaaS is the gateway to the cloud distribution

model. This service offers essential services, such as computing power and memory

[63]. Besides, virtual computers with operating systems can be built as the frameworks

for microservice-based environments.

- 26 -



Chapter 2: Literature review

2.5.2 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) is an interdisciplinary approach for combining commu-

nication devices, computation, and actuation for performing time-constrained actions

in a predictive and adaptive manner [64, 65]. This is done using a feedback loop within

the physical system, which enables the embedded and network systems to monitor and

control the physical processes. In this way the design of a previous model can be modi-

fied using feedback from the physical system. This also makes the system more robust,

reliable and free from any past errors. According to the National Institute of Infor-

mation and Communication Technology (NIST) [66], cyber-physical cloud computing

is “a system environment that can rapidly build, modify and provision cyber-physical

systems composed of a set of cloud computing based sensors, processing, control, and

data services”.

CPS consists of three main elements: cyber, physical, and network components. Each

of these components consists of a few other components. For example, the cyber com-

ponent consists of two components: cloud and IoT devices where the IoT devices work

as a bridge between physical and cyber components. The network component is used

for interlinking the cyber and physical components and transferring and controlling

data. In order to develop a robust architecture for a CPS solution, data needs to

be collected from various physical sources (for example traffic, education, and health-

care systems [67]) using IoT devices (e.g. sensor, mobile, and a camera). Every day

larger applications with more devices are being connected with CPS, which means

that a larger variety of physical conditions need to be considered, and this requires

larger volumes of data to be extracted using IoT devices, and filtered and processed

using cloud data centres (cloud). Therefore the main components of a CPS can be

summarised as follows:

1. Physical Component: This component does not have any computation or com-

munication capability; it only includes biochemical processes, mechanical pro-

cesses, or humans. Physical components collect and provide data, which is re-

quired to be processed in real time for controlling various activities. Such data

is usually highly concurrent and dynamic.
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2. Cyber Component: is used for collecting, processing, reporting and controlling

all the physical components within CPS. As it is challenging to manage the

concurrent and dynamic data from the physical component of CPS, the cyber

component is divided into two sub-systems. These are cloud data centers, and

IoT devices [67].

3. Network Component: is responsible for communication between the physical and

cyber components or among the cyber components. The raw data is captured

from components such as IoT devices and passed to the cloud. Also, cloud devices

send control and feedback to the IoT devices using network components. Main

factors that affect network communications are bandwidth, topology, latency,

and congestion [68, 69].

2.6 Commercial and open source monitoring tools and

anomaly detection

2.6.1 Monitoring Tools

Several works already published have explored topics related to service monitoring, as

well as models and metrics for QoS assurance. Whether in the cloud, VMs or even

in containers using microservices, or even in monitoring services at the edge, varied

solutions and results have been presented.

Docker [19] provides an inbuilt monitoring tool, Docker stats, to examine the resource

usage metrics of running containers. The various metrics provided by Docker stats are

CPU and memory usage, and actual free memory for each container. However, it does

not inspect the performance of individual application running inside a container. Our

proposed framework, M3, improves on this significantly by monitoring the performance

of each application running inside a container. Along with this, M3 also gathers the

monitoring information from containers running in heterogeneous cloud environments

(e.g. Amazon, Azure, Openstack, etc.). By aggregating the data collected from mul-

tiple containers running across multi-cloud environments, one can perform different

types of performance comparisons to assess the performance in containers.
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CAdvisor [20] is an open source monitoring framework that displays monitoring per-

formance and resource usage in real time. It provides CPU usage, memory usage,

network and throughput information of the running containers. One can access the

monitoring information only for two minutes duration, as there is no associated storage

mechanism that can retain the data for a longer interval. In contrast M3 monitors

the performance of individual applications that run inside the container/VM and also

stores monitoring data in a database shared by both container and VM.

Datadog [21] is a monitoring service that gathers metrics such as CPU utilization,

memory, and I/O for all containers. It is an agent-based system that sends data only

to the Datadog cloud, making the monitoring job completely dependent on Datadog’s

cloud. On the other hand M3 has the ability to store data in any cloud service provider.

CloudWatch [22] is a commercial cloud monitoring tool that tracks CPU, memory

usage, and network but cannot monitor application-level QoS metrics. In addition,

it is not platform independent (i.e., it works only for Amazon platform and not for

Azure). Similarly, Microsoft Azure Fabric Controller is limited to work only on the

Azure platform [70]. M3, on the other hand, has the ability to monitor applications

in heterogeneous cloud environments.

In [23] the authors present CLAMS, an application monitoring framework for multi-

cloud platforms. Moreover, their monitoring framework considers different QoS param-

eters for web-applications running inside a VM. The model retrieves the QoS perfor-

mance for different cloud layers. However, the model does not monitor the performance

of containers. In addition, the model is constrained to only web applications. This is

different to our framework, which monitors cyber-physical applications that run inside

containers and VMs.

In [71], the authors present CLAMBS, a framework for monitoring and benchmarking

applications in a multi-cloud environment. In addition, a model for multi-layer moni-

toring in the cloud is presented. In this way, QoS parameters relevant for each cloud

service layer are listed. Finally, an experimental evaluation is performed in the IaaS

level. The work presented here follows a similar approach for defining and experiment-

ing with QoS parameters, although it is different from the use of the cloud and the

edge, besides focusing more on the application level.
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The microservice monitoring in the edge environment is reported in the paper pre-

sented at [72]. In [72] a state-of-the-art review of self-adaptive applications using edge

microservices and services in the cloud are performed. The results observed shows that

the main parameters of QoS for virtual machines in the cloud are the usage of: CPU,

memory and network.

The monitoring of services deployed in containers is present in the works [24] and [73].

In the work published in [24] the authors present a framework called PyMon that

uses the Docker management API to obtain statistics of resources used by containers.

Unlike [24], the present study uses libraries to monitor processes inside the containers,

thus allowing the effective monitoring of a container that performs a multi-service or

multi-process environment. The work presented in [73] brings an assessment of the use

of Docker containers versus the use of virtual machines. To verify the QoS parameters

to be compared for evaluation, the authors monitored the CPU usage by the installed

Docker process, not verifying the parameters of the containers that are being executed

or even of the processes internal to the containers.

In [74], the authors present an architecture that collects, analyses and presents the

physiological data. Also, it captures data from numerous sensors for further trans-

formation and analysis. This paper is mainly concerned with monitoring particular

parameters for performing scheduling in only the cloud environment. In contrast,

our framework monitors the performance of an application in a holistic cyber-physical

system.

Ganglia is a hierarchical modular device control system with higher performance clus-

ters and grids [75]. It enables users to view both runtime and historical information

on all running VMs monitored on their web-interface [76]. Ganglia’s simple architec-

ture contributes to a high degree of scalability, robustness, interoperability and low

per-node overheads, and fast handling and portability [75]. It is also integrated and

extended into cloud-based apps for both private and public cloud monitoring [76]. The

insufficient monitoring of containers, restricted choice of data storage options and the

low efficiency of the ’gmetad’ nodes are some of the drawbacks [77].

Prometheus is the monitoring framework offering a set of metrics that gather PULL

metrics, composite, visualization and alerting resources, with the effect shown on the
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graphs from its web interface [78]. It also offers a modular query language data model

for multi-dimensional time series that allows for customization for the monitoring pro-

cess. While both machine-centered and dynamic service-oriented architectures like

microservices function well, there is a lack of precision, since it is not likely to be ade-

quately systematic or precise. Besides, scrape metrics include a mediatory monitoring

tool is required. In addition, the container migration monitoring is not even flexible

to manage vast quantities of tracked containers [79].

A Monitis monitoring framework for a vast array of IT resources, including websites,

servers, applications, networks and cloud virtual instances and platforms and mail

servers [78] is the only non-open source monitoring tool mentioned. It includes end-

user experience, uptime, loading of web pages and purchases for websites. A Monitis

monitor agent should be used by networks to gather data on a system of networked

splitters, instead of to install a Monitis agent on each device [23]. The framework

supports custom features through its API, allows checks for short intervals and alerting

[78]. Although Monitis support monitoring applications, it is not clear if container

monitoring is possible. However, it offers a wide range of qualities including stability,

scalability, ease of use and fast remote access setup.

A Nagios has two versions: an open-source version and a commercial version. It

is the most popular open-source management platform for IT infrastructures, which

offers multiple monitoring supports, including network services, routers, hard-working

networks (or switches), and virtual tools and cloud platforms [78]. It also has an

alert system and a web-based notification system that allow network administrators

to monitor all devices and hosts with a network system’s SNMP protocol [76] activities

and status. It can also connect to databases such as MySQL from third parties. The

downside is that it takes a complex manual setup for Nagios to be deployed [76]. Its

architecture includes the use of a central server, making it un-scalable, unsolid and

unsuitable for use in dynamic environments [79]. Container or device control is not

feasible, while the grid infrastructure and VM monitoring are possible [44].

A Zabbix is an enterprise-class management platform used mostly for monitoring net-

work parameters and resources [44] for the network, servers, applications, virtual ma-

chines and cloud services. It provides many features such as real-time VM, container
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and application monitoring, effortless scaling, high interoperability, auto discovery,

predictive consistency and efficiency analytics, an alert mechanism, a SQL database

and a web interface [44]. Installing and configuring is also convenient. However, its

weaknesses include its lack of robustness and inefficient self-discovery, because the time

limitation can be a significant issue. It must also be used with other tools to track

servers and availability to achieve the required monitoring [44].

A The Docker Universal Control Plane (DUCP) is a tool for handling, loading, cus-

tomizing and monitoring distributed software using Docker containers [76]. This con-

tainer management solution supports all Docker developer software, such as Docker

Compose, in which projects through clusters are multi-container applications. Any of

DUCP’s main features as a native market solution are high scalability and Web-based

GUI.

A lightweight, production-grade application monitoring service equipped for modern

development teams is Scout monitoring tool [80]. A Scout is another web-based graph-

ical monitoring platform with the ability to store measured metrics at most 30 days. It

consists of a sensible engine able to alert based on the metrics and their corresponding

preset thresholds. Like Scout, containers with the same characteristics are managed

with several commercial solutions.

Docker container efficiency was measured in line using system resource utilization, ac-

cording to [73]. Authors found from their database that container-based virtualization

is comparable with memory, CPU and disks use OS that operate in bare-metal. The

performance of Docker is similar to the understanding of the native environment con-

cerning these three metrics. However, the host OS has slightly less network capacity

than the Docker container depending on network consumption. For this task, however,

only one container was allocated to simplify experiments. Besides, a further supple-

ment to this work may be tested for container performance against other virtualization

technologies.

The authors [81] showed an architecture for a dashboard management framework to

monitor the use of the source for servers and VMs in real-time. It was observed

that the virtual server could not operate normally if CPU, memory, and storage are

overloaded. However, the paper did not clarify how the test could be applied, which
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is why the suggested solution cannot be utilized, as the authors contend, to improve

the efficiency of VMs. It is worth noting that only a particular form of virtualization

(Xen hypervisors) can be used in the proposed monitoring architecture.

The authors [82] proposed a model for predicting the response time of cloud appli-

cations, based on Linux OS counters, for example, LoadAVG. One of the essential

explanations for calculating low-level application metrics (e.g. Processor load) is that

measuring application-level metrics (e.g. response time) could create overheads both

in networks and the re-sources of computation. Besides, monitoring high-level metrics

can impact users ’ privacy. The findings reveal that LoadAVG’s load values com-

plement the response-time behavior, which contributes to a clear positive association

between the two behaviors. Their work only takes LoadAVG into account, and thus

this model can be further developed by exploring other equivalents such as iostat and

netstat.

According to the authors [83], a simple approach for container monitoring uses its

docker API for resource aggregation and database storage. The protocol calculates

the standard deviation of a metric for resource monitoring. And when the standard

deviation reaches any cap will the tracked data be stored in the database. This ap-

proach has utility but does not have an alert feature in data storage.

A Elascale [84] is a self-scaling and tracking methodology for Docker [19] microservices-

based cloud software systems. The tracking is carried out through an ELKB stack

that enables performance measurements, e.g. CPU, memory, and networking, to be

obtained on a given container through Elasticsearch, Logstash, Kibana, and Beats [85].

Elascale only supports Docker technology; it also provides little detail on execution

failures.

A Sysdig [86] is a container solution that enables collect resource usage, network

statistics, and applications to track within containers, such as microservices. Con-

tainers system are recorded using a kernel module, while application monitoring is

conducted by instrumentation. Instrumentation consists of written, formatted text

strings to /dev/null.converts strings into events to provide the instrumented item with

completion time.
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A Netflix Hystrix [87] is a Java library that seeks to avoid cascade failures with latency

and fault tolerance. It facilitates the almost-real-time tracking of resources through the

use of source code. However, any call to external systems and resources dependency

has to be packaged in a HystrixCommand object, which offers measurements of results

and latency.

A Sensu [88] is a cloud monitoring and IT infrastructure. It is an open-source man-

agement platform that tracks (i) servers bare metal, VMware and AWS servers, (ii)

containers such as Docker, RKT and LXC, (iii) database and web server services for

instance, and (iv) mobile applications, micro-networks, (v) network devices such as

routers, switches, SANs, and (vi) remote resources such as third-party APIs. Some

of Sensu’s main features are: (i) alerts are generated; (ii) dynamic server registration

and de-registration; (iii) plugin monitoring tools like Nagios, Icinga and Zabbix. For

exchange of messages, Sensu relies on RabbitMQ and for storage on Redis. If they fail

or cause delay, this dependence may become a liability under some circumstances.

2.6.2 Anomaly Detection

There have been a variety of methods applied for detecting anomalous behaviour and

analyzing the root causes in microservice-based cloud application.

arla Sauvanaud et al. [28] introduce an anomaly detection system (ADS) that con-

siders performance data for microservices to detect anomalies. ADS can identify the

anomalous microservice and the type of anomaly within the observed microservice.

This chapter only applies the system on virtual machine-based microservices rather

than the containerised approach popular today, which we consider key tackling in our

approach. Qingfeng Du t al. [58] also propose an Anomaly Detection System (ADS)

but do so for container-based microservices. The proposed ADS has a monitoring

module that collects performance data from containers as well as a data processing

module based on machine learning. This system can identify the type of anomaly

within the anomalous microservice.

Both these works analyse metrics of resource utilization in the infrastructure layer.

Still, they do not consider the link of observed failures with underling faults in during
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anomaly detection as we do. We consider using the multi-resolution technique to anal-

ysis metrics in sequence as beneficial, especially for improving the detection accuracy

of machine learning algorithms.

Li Wu et al. [27] propose MicroRCA system that correlates failure observation of

an application performance corresponding its root cause faults in resource utilization

in real-time. The attributed graph is used to analyze the root causes by modelling

anomaly propagation among microservices of the application. Juan Qiu et al. [89] also

use knowledge graph technology and a causal search algorithm to diagnose the root

cause of application performance. Yuan Meng et al. [29] present a framework called

MicroCause. Their approach localizes the root cause of low-performance indicators in

a microservice. MicroCause useS path condition time series (PCTS) algorithm and

temporal cause-oriented random walk(TCORW) method. Jörg Thalheim et al. [26]

deploys a platform, called Sieve, to monitor microservice performance metrics and

analyze the root causes of observed bad performance. Sieve has two core tasks to

apply root-cause analysis: first Sieve filters out metrics that present normal behaviour

and keep other metrics. Second, Sieve uses a predictive-causality model to find met-

rics dependencies of microservices. Wei Cao et al. [90] apply Conditional Random

Field(CRF) method for microservice anomaly detection. The method creates the mi-

croservice fault matrix by collecting microservice metrics as an observation sequence.

Therefore, anomalies of a microservice can be obtained from the microservice fault

matrix.

These approaches search the cause root of anomaly observed behaviour using differ-

ent tracking algorithms (e.g. tree or matrix); however, our approach is to study the

feasibility of machine learning algorithms to root cause localization.

As discussed above in section 2.6.1 and 2.6.2, existing monitoring solutions do not

have the ability to monitor the performance of microservices running inside multi-

virtualization heterogeneous cloud environments (container/VM). These monitoring

tools are not able to satisfy the performance monitoring requirements of complex mi-

croservices deployed across multiple cloud data centers. Also, another challenge that

underpins such emerging approaches is the dynamic management of microservices

across cloud and edge datacenters. For instance, defining when and how microser-

- 35 -



Chapter 2: Literature review

vices can be migrated from edge resources to cloud-based resources (and vice versa),

and characteristics which influence such migration, remains a challenge. Furthermore,

scalability of a container-based microservice application allows for more application

organization and optimization. But, this strongest characteristic brought new com-

plexities to application performance monitoring. Indeed, inefficient performance mon-

itoring may lead to severe application outages as it is not able to successfully and

quickly detect the failures and then localizing their causes.

Based on the aforementioned challenges, this thesis addresses the research gap:

• In chapter 3, our proposed work (M3 ) differs from the aforementioned solutions

as it can be used to holistically monitor the performance of microservices /

cyber-physical applications running inside containers or VMs distributed across

multiple cloud environments.

• In chapter 4, we propose a Monitoring, anomaly Detection and Localization

System (MDLS ) that follows component-based architecture to provide an effi-

cient approach for detecting and localizing anomalies. This approach can be

easily deployed by developers to interpret the causes of performance failures in

a container-based microservice application. We add a monitor engine to collect

metrices from both microservice and container levels, and utilize multi-resolution

technique to improve the accuracy of detecting and localizing the root cause of

anomalies significantly.

• In chapter 5, our proposed work differs from the current approaches by present-

ing an advanced monitoring solution that can be used to monitor microservices

deployed in osmotic computing environment i.e. the cloud and/or deployed at

the edge.

A summary of literature review with the current challenges is summarized in Table 2.2.
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Table 2.2: Comparison of literature review with the major challenges addressed in this
thesis

VM C MC EI AD Challenges

Docker × X X X ×
• Some of the frameworks are specific

for the VM environment only.
• Some of the frameworks are specific

for the container environment only.
• Some of the frameworks are either

cloud provider specified. In another
word, they are not platform
independent.

• Some of the frameworks are not
monitor the performance of
individual applications that run
inside the container/VM and also
stores monitoring data in a
database shared by both container
and VM.

• Some of the frameworks are not
able to store data in any cloud
service provider.

• Some of the frameworks have lack
capability to monitor microservices
at the edge.

• Some of the frameworks focus on
single layer monitoring, i.e.,
microservices in the cloud or
microservices at the edge.

• Some of the frameworks are not
able to monitor cyber-physical
applications that run inside
containers and VMs.

• Some of the frameworks do not
consider the link of observed
failures with underling faults in
during anomaly detection.

• Some of the frameworks do not
study the feasibility of machine
learning algorithms to root cause
localization.

cAdvisor × X X X ×
Datadog X X X X ×
CloudWatch X X × X ×
Azure
Fabric
Controller

X X × X ×

CLAMS X × X × ×
CLAMBS X × X × ×
PyMon × X X X ×
Ganglia X × X × ×
Prometheus X X X X ×
Monitis X × X X ×
Nagios X × X X ×
Zabbix X X X X ×
DUCP × X X X ×
Scout × X X X ×
Elascale × X X X ×
Sysdig × X X X ×
Sensu X X X X ×
[72] X × X X ×
[74] X X X × ×
[81] X × X X ×
[83] × X X X ×
[26] X × X × X

[27] × X X × X

[28] × X X × X

[89] × X X × X

Abbreviations: ×, No; X, Yes; VM, Virtual Machine; C, Container; MC, Multiple
Cloud; EI, Edge Infrastructure; AD, Anomaly Detection;
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Summary

This chapter presents a generic monitoring framework, Multi-microservices Multi-

virtualization Multi-cloud (M3) that monitors the performance of microservices de-

ployed across heterogeneous virtualization platforms in a multi-cloud environment.

We validated the efficacy and efficiency of M3 using a book-shop application execut-

ing across AWS and Azure. In addition, we significantly extended M3 by implemented

of highway traffic monitoring services using a cyber-physical system. So, we propose

M2CPA - a novel framework for multi-virtualization, and multi-cloud monitoring in

cloud-based cyber-physical systems. M2CPA monitors the performance of applica-

tion components running inside multiple virtualization platforms deployed on multiple

clouds. M2CPA is validated through extensive experimental analysis using a real

testbed comprising multiple public clouds and multi-virtualization technologies.

3.1 Introduction

The recent emergence of microservice architecture [91] has made significant changes to

the development, deployment, and on-going maintenance of web applications. Com-

pared to the traditional monolithic application architecture, where the whole appli-

cation is built as a single unified system, the microservice approach decomposes the

application into several independently executable software components or units that

coherently interoperate to deliver specific application functionality. To enable run-time

communication between microservices, approaches such as lightweight REST-based

APIs [92–94] have been widely adopted. Microservice-based application architecture

has also turbocharged the DevOps [40, 95, 96] design philosophy by minimizing code-

base dependencies between software units.

Although decomposing a monolithic application into lightweight microservices eases

DevOps processes related to code updates, maintenance, and continuous integration,

it does not solve issues related to ongoing performance management and monitoring.

To contextualize this, consider the application deployment scenario related to a book-

shop application and highway traffic monitoring services as described in section 3.1.1

and 3.1.2.
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Figure 3.1: Example scenario for microservices distributed across multiple cloud dat-
acentres.

There are two cases of my motivation based on infrastructure that will be explained

in detail:

3.1.1 Motivation Example One

Figure 3.1 illustrates a conceptual implementation of a Book-Shop application based on

the microservice architecture. The book-shop application is a multi-layer stack which

includes, (i) User Interface, (ii) Book Search/Purchase, and (iii) Data Storage. User

Interface (UI) is deployed as a web microservice responsible for receiving user requests

and returning content to be rendered by the SmartPhone App or browser. Book and

purchase layers are deployed as multiple app microservices that implement business

logic for searching the inventory and/or processing purchase requests (e.g. credit

card transaction management, users’ address book management, coordination with

distribution and the shipping company). On the other hand, data storage is deployed

in multiple database microservices for managing the input and output datasets.

To improve the security of users’ data as well as to enforce data privacy regulations

such as EU General Data Protection Regulation (GDPR) [97], the owner of the book-

shop application may decide to distribute the microservices across multiple private
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Figure 3.2: Cyber-physical system and an example of stream data management for
highway monitoring system.

and/or public cloud environments. For example, the microservices related to credit

card transactions and user’s address book management, are more likely to be deployed

on a secure private cloud data center. On the other hand, microservices related to

the current inventory of books are more likely to be deployed on a public cloud data

center. Accordingly the database microservices required for provisioning data to the

above microservices (address book, inventory, etc.) will also need to be distributed

across public and private cloud data centers. Though such wide scale distribution

of microservices leads to improved security and privacy, it complicates the ongoing

performance management and monitoring as discussed in next section 3.3.

3.1.2 Motivation Example Two

Figure 3.2 describes a conceptual implementation of highway traffic monitoring services

using a cyber-physical system. The sensed data of highway traffic (for example the

position of the cars) is sent as a stream of events that is physically separated and

used for problems such as traffic monitoring and management. This requires the

processing of huge volumes of data with high efficiency using the capabilities of multi-

cloud environments. [65, 98–102]. To effectively explore data processing in a multi-
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cloud environment, three services for highway traffic are considered. These are: (i) Toll

Collection Notification, (ii) Accident Alerts, and (iii) Car Count (a detailed discussion

is given in section 4). The system will manage its resources in terms of sensor data and

other saved data available in the cloud and provide the requested information to the

driver. For example, the highway traffic system will send an alert to drivers on their

navigation systems to inform them to take appropriate routes (push mode). Also the

driver can request information about traffic routes, and then make informed decisions

based on that information (pull mode).

The performance of a cyber-physical application in cloud systems may vary consid-

erably due to factors such as application type, interference effect (caused by other

applications running in the same or different containers), resource failure and conges-

tion [103–105]. Quality of Service (QoS) denotes the levels of service offered by the

cloud provider in terms of service features depending on the user’s/application’s re-

quirements [106]. QoS is generally defined in terms of application specific features such

as availability, pricing, capacity, throughput, latency, and reliability or user dependent

features such as certification, reputation, and user experience rating. QoS is essential

for both the user who expects the cloud provider to deliver the published services, and

the provider who needs to find a balance between the offered service and functional

cost. Agreement between the user and the provider on the quality of service offered

leads to a Service Level Agreement (SLA). SLA creates transparency between user

and cloud provider by defining a common ground, which is agreed by both user and

cloud provider [107]. Appropriate penalties are normally associated with the SLA,

which are applied in case of SLA violations. Therefore, it is imperative to monitor

the QoS provided by the cloud provider to check whether the SLA is satisfied or not

[108, 109]. Monitoring is required for different purposes such as resource provisioning

[110], scheduling [74, 111, 112], security [113–115], and re-encryption [116, 117]. To

detect any performance anomaly or to ensure that SLA requirements are achieved,

continuous monitoring is essential [118, 119].

In virtualized environments, an application may be distributed over multiple contain-

ers/VMs, each running some services communicating over REST-based APIs [120, 121].

Monitoring is required at both individual container/VM level or at application level to
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guarantee that the QoS requirements of the application are satisfied. There are some

lightweight endpoints available that can easily be plugged in to perform the monitoring

operations for a single environment application. However, for complex containerized

applications, it is challenging to have a single monitoring end-point, because each

container may be hosted on different environments that do not support a common

monitoring endpoint [122].

Currently, there are multiple monitoring frameworks e.g. Docker stat [19], CAdvisor

[20], DataDog [21], Amazon cloud watch [22], CLAMS [23], available to monitor the

applications running in the cloud. However, most of the frameworks are either cloud

provider specific e.g. [Microsoft Azure Fabric Controller], or virtualization architecture

specific e.g. [CAdvisor]. These monitoring tools are not able to satisfy the complex

dependent requirements of microservices/CPS that can provide holistic monitoring

across multi-cloud scenarios supporting different types of virtualization. Monitoring

the performance of services in such a complex environment is very challenging for the

following reasons:

• The deployment environment for microservices/cyber-physical applications in

multi-cloud environments is very complex as there are numerous components

running in heterogeneous environments (VM/container) and communicating fre-

quently with each other using REST-based/REST-less APIs. Moreover, the

performance of such microservice-based applications/cyber-physical applications

deployed in a multi-cloud environment can vary considerably due to the het-

erogeneity such as microservice types (e.g. CPU intensive vs. I/O intensive

vs. memory intensive) and resource interference caused by other competing mi-

croservices [41, 103, 104, 123–125]. In some case, multiple components can also

be executed inside a container/VM making any failure or anomaly detection

very complicated. It is necessary to monitor the performance variation of all the

service components to detect any reason of failure.

• As different virtualization environments implement different ways to allocate re-

source limits to microservices, it complicates the performance monitoring prob-

lem. Unlike a hypervisor-based Virtual Machine (VM) which has its own guest
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operating systems, resource allocation for containerized microservices are defined

in terms of namespace and cgroups that share the host operating system with

other containers. Further, the resource limitation in containers can be hard or

soft as compared to VM which is always strict (hard). A soft limit allows con-

tainers to extend beyond their allocated resource limit creating higher chances

of interference [30, 31]. Monitoring the performance of microservices/cyber-

physical applications in such cross VM-container scenarios is very important to

ensure that services are executing in a desirable way.

• Modern applications can be distributed across multiple cloud environments in-

cluding bare metal, public or private cloud depending on several features such as

microservices/cyber-physical application component requirements, deployment

locations, security concerns, cost, etc. Different cloud providers have their own

way of handling deployment and management of microservices/cyber-physical

application components. Due to the heterogeneity of cloud providers, it is com-

plex to have holistic management of application components.

Based on the aforementioned challenges, this chapter addresses the following research

questions:

• How to monitor the performance of distributed software components of microservice-

based applications/cyber-physical applications running on heterogeneous virtu-

alization platforms within the same or different cloud service providers?

• How to aggregate QoS measures of microservice-based applications/cyber-physical

applications running in multiple cloud environments to give a holistic view of

(e.g., bookshop application or highway traffic) performance?

To answer these questions, this chapter makes following new contributions:

• It introduces a novel system: Multi-virtualization, Multi-cloud Monitoring in

multi-microservices/cyber-physical applications that provides a holistic approach

to monitor the performance of microservices/CPS applications composed into
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multiple applications deployed/running in a multi-cloud and heterogeneous en-

vironment (e.g. using different virtualization technologies).

• It validates the proposed monitoring system, via a proof of concept implemen-

tation that monitors microservices/cyber-physical application performance run-

ning across different cloud service providers using different virtualization means.

Experimental analysis verifies the efficacy of our proposed monitoring system.

The rest of this chapter is organised as follows: Section 3.2 presents a related work. Sec-

tion 3.3 presents system design. Section 3.4 presents system implementation. Section

3.5 presents an experimental evaluation. Finally, section 3.6 presents the conclusion.

3.2 Related Work

There are already industry monitoring tools whether in containers [Docker, CAdvisor,

Datadog] or in cloud [CloudWatch, Microsoft Azure Fabric]; and academic monitoring

tools whether in VMs [23, 74] or even in containers [24, 73].

Docker[19] provides an inbuilt monitoring tool, Docker stats, to examine the resource

usage metrics of running containers. The various metrics provided by Docker stats are

CPU and memory usage, and actual free memory for each container. However, it does

not inspect the performance of individual applications running inside a container. Our

proposed system, improves on this significantly by monitoring the performance of each

application running inside a container. Along with this, our system also gathers the

monitoring information from containers running in heterogeneous cloud environments

(e.g. Amazon, Azure, Openstack, etc.). By aggregating the data collected from mul-

tiple containers running across multi-cloud environments, one can perform different

types of performance comparisons to assess the performance in containers.

CAdvisor [20] is an open source monitoring framework that displays monitoring per-

formance and resource usage in real time. It provides CPU usage, memory usage,

network and throughput information of the running containers. One can access the

monitoring information only for two minutes duration, as there is no associated stor-

age mechanism that can retain the data for a longer interval. In contrast our system
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monitors the performance of individual applications that run inside the container/VM

and also stores monitoring data in a database shared by both container and VM.

Datadog [21] is a monitoring service that gathers metrics such as CPU utilization,

memory, and I/O for all containers. It is an agent-based system that sends data only

to the Datadog cloud, making the monitoring job completely dependent on Datadog’s

cloud. On the other hand our system has the ability to store data in any cloud service

provider.

CloudWatch [22] is a commercial cloud monitoring tool that tracks CPU, memory

usage, and network but cannot monitor application-level QoS metrics. In addition,

it is not platform independent (i.e., it works only for Amazon platform and not for

Azure). Similarly, Microsoft Azure Fabric [70] Controller is limited to work only on the

Azure platform. Our system, on the other hand, has the ability to monitor applications

in heterogeneous cloud environments.

In [23] the authors present CLAMS, an application monitoring framework for multi-

cloud platforms. Moreover, their monitoring framework considers different QoS param-

eters for web-applications running inside a VM. The model retrieves the QoS perfor-

mance for different cloud layers. However, the model does not monitor the performance

of containers. In addition, the model is constrained to only web applications. This

is different to our system, which monitors cyber-physical applications that run inside

containers and VMs.

In [24] the authors present a framework called PyMon that collects resources like CPU

utilization, memory utilization, and network by using Docker container management

API. In contrast to [24], our study uses standalone libraries to monitor applications

inside the virtualization environment (e.g. containers) and hence can work in heteroge-

neous environments (e.g. from VM to container). The work published in [73] presents

a study between the uses of Virtual Machines and Docker containers comparing the

QoS parameters evaluation. They only use Docker containers for their experiments.

The authors use the Docker container process to monitor the CPU utilization but they

do not validate any application specific parameters of the containers that are being

executed.
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In [74], the authors present an architecture that collects, analyses and presents the

physiological data. Also, it captures data from numerous sensors for further trans-

formation and analysis. This paper is mainly concerned with monitoring particular

parameters for performing scheduling in only the cloud environment. In contrast, our

system monitors the performance of an application in a holistic cyber-physical system.

As discussed above, existing monitoring solutions do not have the ability to monitor the

performance of microservices running inside multi-virtualization heterogeneous cloud

environments (container/VM). Our proposed work (M3 ) differs from the aforemen-

tioned solutions as it can be used to monitor the performance of microservices running

inside containers or VMs distributed across multiple cloud environments.

3.3 System Design

This framework consists of two main components namely a monitoring manager and

a monitoring agent. Monitoring agents (represented as Ã) are placed inside contain-

ers/VMs that track the performance of underlying applications. A monitoring agent

collects the system-level statistics for each service and sends the information to the

manager. The manager deployed in a VM/container placed in any cloud, collects the

information from different monitoring agents and stores this data in a database for

further performance analysis and prediction. The configuration of multi-virtualization

(containers/VMs) can be either homogeneous or heterogeneous each of which is pro-

visioned on different cloud providers. Each container/VM may execute one or more

services of the same or different types. Figure 3.3 presents a high-level view of the

system.

A detailed discussion on the design of the monitoring agent and monitoring manager

is given below.

3.3.1 Monitoring Agent

The monitoring Agent is a software component that collects the information from ap-

plications running inside (containers/VMs). It has the ability to work in different cloud
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Figure 3.3: Overview of M3 system.

platforms. Agents will wait for requests coming from the manager to push monitor-

ing information to the manager. Our system uses HTTP request for communicating

system information between agents and managers. The agents are implemented using

the SIGAR (https://github.com/hyperic/sigar/) and RESTLet (https://restlet.com/)

libraries that enable them to run on any cloud providers. SIGAR is a multiplatform

library (Unix, Windows, Solaris, FreeBSD, Mac OS, etc.) written in Java that pro-

vides an API for accessing operating system information while the RESTLet is a Java

library that makes it easy to develop HTTP REST APIs.

The system uses SIGAR to obtain the defined system parameters, namely CPU usage,

Memory usage, Free Memory, Network usage, etc. RESTLet is used in the development

of the services of the monitoring agents that would be accessed by the manager to

obtain monitoring data.

The Monitoring Agent is packaged into a jar file and configured to run during the multi-

virtualization (container/VM) during boot process. All monitoring agents extend a

common agent, called SmartAgent, which consists of two components (SystemAgent

and ProcessAgent) as shown in Figure 3.3 (a). SmartAgent represents a service con-

sisting of three operations: First, agent registration information must be sent to the
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manger using HTTP PUT request. Second, the agent will send data periodically to

the manager using HTTP POST request. Finally, agent configuration will be sent to

the manager by using HTTP GET request that can update agent configuration pa-

rameters. SystemAgent monitors the system as a whole, for example, a container or a

virtual machine while ProcessAgent monitors the specific process running on that sys-

tem. The agent utilizes functionalities provided by SIGAR to retrieve the application

metrics and other custom built APIs. SIGAR helps in getting the information param-

eters for the specific application. Using these functionalities, the agent monitors the

specified features for each application ID. The agent will start to retrieve the informa-

tion parameters for this application such as CPU utilization, memory utilization, and

so on. The manager utilizes a pull technique that retrieves the information parameters

from all the distributed agents and stores them in an SQL database.

3.3.2 Monitoring Manager

The monitoring manager is a software component that receives monitoring information

from agents deployed inside (containers/VMs) scattered in the heterogeneous cloud

environment, and provides an API for accessing data saved by other services or other

applications. Communication between manager and agents is based on pull-based or

push-based mechanisms. The manager makes use of the RESTLet library in building

the clients accessing the services of the agents. For each registered monitoring agent,

the manager starts a thread that coordinates a RESTLet client for access to agent

data. Each time the data of a monitor agent is received the manager stores the results

in a MySQL database for further access by the graphical management tool.

The sending of information by the monitoring agent to the monitoring manager occurs

as a sequence of steps as shown in Figure 3.3 (b): First, agent sends a registration

request to the manager, and the manager receives the request and registers the Agent,

an access key and an endpoint are sent with the data returning to the agent. Second,

the manager executor (uses Push mechanism) is enabled to receive the data sent by

the agent using their IP address. Lastly, the agent periodically queries the manager

for its configuration (Change Configuration). Dynamic configuration enables real-time

agent management.
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The complete monitoring application is represented in the form of a data acquisition

model as given in Figure 3.4. It consists of three steps. Initially, the system adminis-

trator starts the monitoring agent (Step 1). Subsequently, the administrator registers

the agent (An HTTP PUT request registers the agent’s IP) to the manager (Step

2). The agent continuously monitors the system (applications, containers, or VMs).

Finally, all the monitoring agents send the monitored information periodically to the

manager using the HTTP POST request. (Step 3). The manager stores the received

data in a shared database and also processes any query (if received) related to the

performance of the applications.

3.4 System Implementation

Our proposed monitoring system is implemented in Java and works for both contain-

ers and VMs running on any host operating system (Linux, Windows or Mac OS).

The agents are implemented using the SIGAR (https://github.com/hyperic/sigar/)

and RESTLet (https://restlet.com/) libraries which enables them to run on any cloud

providers. SIGAR is a multiplatform library (Unix, Windows, Solaris, FreeBSD, Mac

OS, etc.) written in Java that provides an API for accessing operating system infor-
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Table 3.1: List of the configuration parameters and values.

Parameter Value
Cloud service provider AWS, Azure
Cloud service provider location USA West, UK South
VM in AWS t2.micro type
VM in Azure StandardA1v2
Operating system Ubuntu:16.04
Docker platform Version 17.06.1
Docker-compose Version 1.18.0
Tomcat Version 7
Nginx Version 1.13.7
MySQL Version 5.7
Java Version 8
Apache JMeter Version 5.4.1
Esper Version 8
SIGAR Version 1.6

mation while RESTLet is a Java library that makes it easy to develop HTTP REST

APIs. The system uses SIGAR to obtain various system parameters, namely CPU

usage, Memory usage, Free Memory, Network usage, etc. RESTLet is used to develop

the services for the monitoring agents that allows the manager to access the agents’

monitoring data.

There are some strict networking requirements for both manager and agent. The

manager must be deployed on a machine with a global IP address, so that the agent

can access the manager from any network. Every 30 seconds, the agent queries (GET)

the manager to download its configuration file ensuring the dynamic configuration.

Communication between the manager and the agent occurs exclusively via HTTP in

order to avoid any security or firewall blockages. The manager can dynamically change

the agent’s data forwarding rate to manage the overload of requests on the network.

List of all the configuration parameters and their values is shown in Table 3.1. We

have chosen the latest version available of the selected values at that particular period

of time, like MySQL, Tomcat, etc. More details will be discussed in section 3.4.1 and

section 3.4.2

- 52 -



Chapter 3: A framework for monitoring microservice-oriented applications in
heterogeneous virtualization environments across multiple clouds

3.4.1 M3 Implementation

We considered a Book-Shop application as discussed in section 3.2.1 that is imple-

mented using three types of microservices, namely Tomcat, MySQL and Nginx. These

microservices are executed inside either VMs or containers distributed across multiple

clouds. The Book-Shop application is distributed into three tiers with User Interface

service as the first layer (Web tier), Book and Purchase services in the second layer

(Application tier), and finally Storage service (data storage) in the third layer. In User

Interface, we considered two microservices (Tomcat, Nginx). In Book and Purchase

services, we have either one or two microservices (Tomcat and MySQL). In the Storage

service, we have one microservice (MySQL). A User Interface service receives a request

from JMeter to communicate with the Book or Purchase services by using HTTP, and

the application tier will communicate with the database by using the JDEC library

(SOCKET network). User Interface receives an HTTP request when selecting a book

and forwards this to the Book service. The Book service receives a request, sends a

query to MySQL, and returns 500 entities to the User Interface. The Purchase service

receives a request from JMeter to save a purchase in MySQL and updates the book

entity.

We used Apache JMeter (https://jmeter.apache.org/) to generate HTTP requests to

test the capability of M3 ’s system. The test consists of 100 users each having different

requests. We generate 900 requests to simulate the users’ behaviour. Each request

for book select gets 500 entities. We made three tests to capture metrics with the

monitoring agent reading data at 1 second, 5 seconds and 10 seconds. The operations

and requests made during the experimental evaluation are presented in Figure 5.3. All

requests are initiated by Apache JMeter, which simulates the user (req. 1), or simulates

another application (req. 4). The choice of the various types of requests is based on

the premise of covering the main types of load operations in a data persistence service,

namely: data query, insertion and update requests, as well as requests intermediated

by a proxy. All requests made by the JMeter are of the “GET” type. The first request

flow focuses on query operations and is initiated by request 1 which is directed to

the User Interface service. The User Interface receives request 1 through the Nginx

web server, which acts as a proxy and forwards it to Tomcat (req. 2). The User
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Figure 3.5: Simulation web application pattern.

Interface Tomcat receives the request and creates a new “GET” request to the Book

service (req. 3). Request 3 is received by the Tomcat of the Book service that makes

a query to MySQL (req. 6). The second request flow is responsible for the insert and

update operations. Request 4 is initiated by JMeter and is directed to the Purchase

service. Purchase service Tomcat receives the “PUT” request (req. 4) for insertion

of a Purchase. This request is decomposed into two others: request 5 and request 7.

Request 5 updates the quantity of books in the inventory using the Book service as an

intermediary. Request 7 inserts a Purchase into MySQL.

3.4.2 M2CPA Implementation

To validate the M2CPA system, we built a highway monitoring system for automated

toll collection, accident alerting, and car counting using a stream data management

system. The choice to use these three applications is justified by the need to evaluate

the effectiveness of M2CPA in a variety of scenarios running on a distributed and

multi-cloud environment and with different virtualisation techniques.

The Highway Monitoring application was built on the basis of work published in [126]

which presented the Linear Road Benchmark for evaluating Stream Data Manage-

ment Systems. Through a simulator called MIcroscopic Traffic SIMulation Laboratory
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Figure 3.6: Simulation highway traffic pattern.

(MITSIMLab) it is possible to construct traffic descriptor files of vehicles that travel

on a high-road ((http://www.cs.brandeis.edu/ linearroad/mitsiminstall.html)). The

generated data is used as tuples to be sent to the flow processing system. In [126]

the authors define some queries that use the data generated in the context of a mo-

torway monitoring application. Following the authors’ proposal, we run MITSIMLab

and generate a file corresponding to 3 hours of vehicular traffic. We programmed three

historical data queries: one for toll billing notification; another to detect accidents; and

finally to count the number of cars in each track and segment of the highway in real

time. Queries were implemented using Esper ((http://www.espertech.com/esper/)).

Esper is a language and an execution machine for processing events and focusses on

dealing with high-frequency time-based event data as presented in Figure 3.6.

Queries were built to cover constraints and conditions imposed by the Linear Road

Benchmark. Therefore the tuple was used to simulate the position of a car at a certain

instant of time. This data was encapsulated in an event composed of the attributes

present, and represented the flow of information coming from the positions of the

vehicles reported through sensors as shown in Table 3.2.

The data sent is: TIME, VID, SPD, XWAY, LANE, DIR, SEG. TIME represents the
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Table 3.2: Input Tuple schemas

Input tuple Schema
Car Position Data (Time, VID, Spd, XWay, Lane, Dir, Seg)

Figure 3.7: Toll notification query on Esper language.

instant of time in which the information was obtained. VID represents the vehicle

identifier. SPD, speed of the vehicle. XWAY on which freeway the car travels. LANE

the road strip on which the car is. DIR, the direction, east or west. Finally, SEG

represents the segment of the highway from which the position was issued.

The Esper language is based on the data-query pattern defined by SQL-92. For ex-

ample, to define the toll collection notification (see Figure 3.7 ), it used a grouping

function that counted the number of segments (SEG) reported by the same vehicle in

a 30 second time window. In the case of a same vehicle (IE VID) reporting a position

of different segments within 30 seconds a toll collection event was triggered.

Following similar concepts, the Car Count query only counts the different VIDs, group-

ing these results by XWAY, LANE, and SEG. As well, the accident alert query counts

the number of vehicles that have zero speed, grouping them by XWAY, LANE and

SEG. When the number of vehicles with zero speed in the same tricycle: XWAY,

LANE and SEG is greater than two, an accident alert event is generated as presented

in Table 3.3.

Table 3.3: Output Tuple schemas: Continuous queries

Query Response Schema
Toll-Notification (VID, Seg)
Accident-Alert (Xway, Lane, Seg)
Car-Count (VID, XWay, Lane, Seg)
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3.5 Experimental Evaluation

3.5.1 M3 Experimental

Based on the defined set up as discussed in Section 3.3.1, we conducted an experi-

mental evaluation for our proposed monitoring system M3. The test application is

deployed across Amazon EC2 and Microsoft Azure in both container and VM environ-

ments. To demonstrate the effectiveness of the M3 system, we perform an extensive

set of experiments by varying the workload configurations to measure different system

parameters, e.g. CPU, memory, latency.

Both Amazon EC2 and Microsoft Azure machines are running Linux Operating System

Ubuntu:16.041 on which a Docker platform2 (version 17.06.1 − ee − 1), was installed

to execute the microservices. The VM configuration of Azure is StandardA1v2, with 1

vCPU and 2 GB of memory. We considered four such VMs. The Amazon’s VMs were

of t2.micro type, with 1 VCPU and 1 GB of memory for each machine. Here also we

considered two VMs for our experiment.

To emulate the behavior of the Book-Shop application as discussed in the previous

section, VMs and containers were installed with different software. For the web server,

we chose Tomcat3 (Version 7) and Nginx4 (Version 1.13.7) while for Database, we

considered MySQL5 (Version 5.7). All container images used were obtained from the

Docker Hub6 portal.

The machine configurations on which experiments were conducted are as follows: first

machine used Java (Version 8) on the virtual machine guest OS, second machine had

Docker platform installed and used Docker-Compose file (version 1.18.0) for which we

used one image for Tomcat7 and for MySQL8, third machine used the same configura-

tion as second machine with different services and the final machine had the Docker

1https://www.ubuntu.com/
2https://www.docker.com/
3http://tomcat.apache.org/
4https://nginx.org/en/
5https://www.mysql.com/
6https://hub.docker.com/
7https://hub.docker.com/-/tomcat/
8https://hub.docker.com/-/mysql/
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Table 3.4: Microservices scenarios deployed at containers and VMs

Environment Scenario Containers VMs
Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Virtualization
only (S1)

1 - Book/Purchase
(Tomcat + MySQL)
[M]
1 - User-Interface
(Nginx + Tomcat) [A]

Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Containers
only (S2)

1 - Book (Tomcat
+ MySQL) [M]
1 - Purchase (Tomcat
+ MySQL) [M]
1 - User-Interface
(Nginx + Tomcat) [A]

Microsoft Azure
Fabric [M]
+
Amazon Web
Services (AWS)
[A]

Multi-cloud
Cross
Containers /
VM (S3)

1 - Book/Purchase
(Tomcat) [M]
1 - MySQL [M]

1 - User-Interface
(Tomcat + Nginx) [A]

platform installed and used Docker-Compose file which consisted of two images: first

image for Tomcat and the second image for MySQL. In Amazon, we used two machines,

one of them used Java virtual machine, the other installed the Docker platform and

the applications using Docker-Compose file which consisted of one image for Tomcat

and another for Nginx.

We evaluated the proposed system under the following three scenarios as is shown in

Table 3.4:

• Scenario 01 – Deploying two microservices (Tomcat and MySQL) for Book and

Purchase services in one VM deployed in Microsoft Azure (represented as M). In

addition, one VM running two microservices (Nginx and Tomcat) for the User

Interface service, which is deployed in Amazon Web Services (represented as A).

The aim of the scenario was to understand the performance of the application

running on multiple clouds with the same virtualization techniques.

• Scenario 02 – We deployed two microservices (Tomcat and MySQL) for the

Book service running in the first container; and two microservices (Tomcat and
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MySQL) for the purchase service running in another container; all containers

are deployed in Azure (M). In addition to this, we deployed two microservices

(Tomcat and Nginx) for the User Interface service in one container which de-

ployed in Amazon Web Services (A). The aim of the scenario was to understand

the performance of the application running on multiple clouds with the same

virtualization techniques.

• Scenario 03 – We deployed one microservice (Tomcat) for Book and Purchase

services running in the first container and one microservice (MySQL) running

Database in another container; all containers are deployed in Azure (M). In

addition, one VM running two microservices (Nginx and Tomcat) for the User-

Interface service is deployed in Amazon Web Services (represented as (A). The

aim of the scenario was to understand the performance of the application running

on multiple clouds with multiple virtualization techniques.

We conducted experiments where the manager would push system and process level

statistics regarding services running on two public clouds. For results analysis, the

metrics obtained for manager were related to all JMeter tests. As mentioned previ-

ously, the JMeter tests generate 900 requests to simulate the workload in order to

validate the agents’ ability to capture performance metrics for all three scenarios.

3.5.1.1 Latency Time Results

M3 measured the average latency time in milliseconds for the workload requests in each

scenario (shown in Table 3.5), as well as the agents sending the monitoring information

to the manager every 1, 5, 10 seconds respectively. The values captured for latency

clearly show the computational difference of multi-virtualization (containers/VMs)

case in multi-cloud environments. As we can see, the User Interface service in (S2) has

the least average latency (maximal 2.296 for 10 sec) as compared to (S1) and (S3). The

reason behind this is that (S2) used container architecture while (S1) and (S3) used VM

architecture. Also, for the Book and Purchase service, (S2) gets better performance

when compared to (S1) and (S3). Overall, S2 provides the best performance for all
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Table 3.5: Request results For all scenarios

Service Name Scenario
Lat. Average

(1 Sec)
Lat. Average

(5 Sec)
Lat. Average
(10 Sec)

User Interface-
Amazon

S1 7.984 8.186 8.185

Purchase-Azure S1 12.65 12.699 12.04
Books-Azure S1 10.063 10.082 9.381
User Interface-
Amazon

S2 1.56 1.567 2.296

Purchase-Azure S2 16.005 16.107 15.783
Books-Azure S2 0.152 0.141 0.169
User Interface-
Amazon

S3 10.167 10.407 16.868

Purchase-Azure S3 8.607 7.574 5.088
Books-Azure S3 16.131 17.097 8.787

scenarios. It shows that the use of container architecture per service in multiple cloud

exploits the hardware of the virtual machine more efficiently.

3.5.1.2 CPU Results
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Figure 3.8: CPU usage (percentage) for microservices on: (A) VMs in Amazon and
Azure.

The CPU values for all scenarios are shown in Figure 3.8, 3.9, and 3.10. When
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Figure 3.9: CPU usage (percentage) for microservices on: (B) Containers in Amazon
and Azure.

Amazon Azure

N T M(C2) T(C1)
0

2

4

6

C
P

U
 U

sa
ge

 (
%

)

1sec 5sec 10sec

Figure 3.10: CPU usage (percentage) for microservices on: (C) VM in Amazon and
two containers in Azure.

analysing S1, for the entire interval of workload test, all microservices were run in

VMs, and submitted in Azure and Amazon. The monitoring agents send monitoring

information to the manager every 1, 5 and 10 seconds respectively. As shown in Fig-

ure 3.8(A), Tomcat microservice of User Interface for 10 sec in Amazon is not affected

like that observed during 1 and 5 seconds. The reason behind this is that it has a
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larger duration as compared to the case when manager sends every 1 or 5 seconds. It

shows that the monitoring agents get correct data about CPU for different microser-

vices that reveals the effectiveness of M3. The highest average CPU usage is noticed

in Amazon for Nginx microservice of User Interface in 1 second with 2.10% and for

Tomcat of User Interface in 1 second is 1.80%. In contrast, the highest average CPU

usage for all microservices running in Azure is that for MySQL in 5 seconds (7.10%)

which is not much different for Tomcat for 1 second duration (7.05%).

For evaluating S2 in Azure containers, the highest average usage of CPU is for Tomcat

microservice for the Book service that was running in container (C1) 10 seconds is

6.80%, and not that much different for Tomcat that was running in container (C2) of

the Purchase service in 10 seconds which is 6.60%. For MySQL microservice of the

Book service running in container (C1) in 10 seconds, the CPU usage is 4.90% and for

MySQL that was running in container (C2) for Purchase service in 5 seconds, the CPU

usage is 4.10%. However, the average usage of CPU for all microservices running in

the Amazon container which consists of Nginx and Tomcat microservices is practically

the same in all 1, 5 and 10 second durations with 7.00% as shown in Figure 3.9(B).

For the evaluation of S3, the highest average usage of CPU in Amazon for Nginx

microservice of User Interface in 10 seconds is 1.90% and similarly for Tomcat in 10

seconds is 1.90%. However, the highest average usage of CPU for Tomcat microservice

for that running in container (C1) in 10 seconds is 5.80% and in 1 second is 5.10%.

MySQL microservice running in container (C2) in 10 seconds duration has 5.45% CPU

usage and in 5 seconds is 4.50% as shown in Figure 3.10(C).

3.5.1.3 Memory Results

The results obtained for the memory consumption shows the statistics regarding met-

rics values for the agents monitoring both the public clouds in Figures 3.11, 3.12, and

3.13.

By using M3, we can gather fine-grained data from complex multi-tiered applications

and can understand the performance of microservices. For instance, in S1 running

in Azure VMs as shown in Figure 3.11(A), the highest average memory usage for

microservices (Tomcat and MySQL) of Book and Purchase services are practically the
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Figure 3.11: Memory usage (MB) for microservices on: (A) VMs in Amazon and
Azure.

same in 5 seconds (1025 MB), while in 10 seconds Tomcat uses 1010 MB and MySQL

uses 1022 MB from the total memory of the VM which is 1912 MB. Compared to

Amazon which is running a VM, the biggest amount of memory used by microservices

(Tomcat and Nginx) of User Interface in 10 seconds are the same at a value of 215

MB, while in 5 seconds Nginx used 205 MB and Tomcat used 206 MB from the

total allocated memory of the VM which is 992 MB. As shown in Figure 3.11(A), the

memory consumption on Azure is larger than Amazon. The larger memory use on

Azure could be explained by the difference of virtual hardware configuration between

the two clouds. Also, the User Interface service only forwards the requests to the Book

service which does more processing because it processes MySQL queries and translates

the results to JSON Object which is sent to the underlying services.

For S2 as shown in Figure 3.12(B), running containers in Azure, the highest amount

of memory used by MySQL microservice for the Purchase service in container (C2)

in 10 seconds is 476 MB and for Tomcat for Purchase service in container (C2) in 10

seconds is 469 MB. Usage for MySQL microservice of Purchase service in container

(C1) in 10 seconds is 469 MB and Tomcat for the Purchase service in container (C1)

in 10 seconds is the same for Tomcat microservice in (C2) which is 469 MB from the

total allocated memory of the container (1920 MB). In contrast to this the highest

- 63 -



Chapter 3: A framework for monitoring microservice-oriented applications in
heterogeneous virtualization environments across multiple clouds

Amazon Azure

N T M(C1) M(C2) T(C1) T(C2)
0

100

200

300

400

M
em

or
y 

U
sa

ge
 (

M
B

)
1sec 5sec 10sec

Figure 3.12: Memory usage (MB) for microservices on: (B) Containers in Amazon and
Azure.
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Figure 3.13: Memory usage (MB) for microservices on: (C) VM in Amazon and two
containers in Azure.

amount of memory used for all microservices (Nginx and Tomcat) of User Interface

running containers in Amazon is the same for both microservices in 10 seconds at 425

MB, which is not much different for 5 seconds (Nginx and Tomcat) where both have

the same memory usage which is 393 MB, and in 1 second Tomcat used 382 MB while

Nginx used 372 MB from the memory total of the container which is 992 MB.
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In S3 as shown in Figure 3.13(C), running in Azure containers, the highest memory

usage by the Tomcat microservice for the Book service in container (C1) and MySQL

microservice of the Purchase service in container (C2) in 10 seconds is the same (471

MB) while Tomcat in container (C1) in 5 seconds is 280 MB, and MySQL in container

(C2) in 5 seconds is 279 MB from the total memory of the container which is 1912

MB. Compared to Amazon running in VM, the average amount of memory used by

microservices (Tomcat and Nginx) of User Interface in 10 seconds is the same with the

value of 289 MB, Tomcat in 5 seconds is 277 MB, and Nginx in 5 seconds is 230 MB

from the total memory size of the VM which is 992 MB.

The collected results show the effectiveness of using the M3 model in Docker and VM

deploying microservices. Our contribution is to validate monitoring multi-virtualization

in multi-cloud services as well as the possibility of monitoring individual processes in

multi-process containers and VMs running microservices.

3.5.2 M2CPA Experimental

We conducted an experimental evaluation of the M2CPA monitoring system to eval-

uate its effectiveness and efficiency in monitoring cyber-physical applications running

in multi-virtualizations deployed in multi-cloud environments. An application based

on a highway data streaming system is deployed in a multi-cloud (Amazon and Azure)

environment having both container and VM running it. We test our application by

performing an extensive set of experiments using a 3 hour data workload.

We considered both Amazon EC2 and Microsoft Azure clouds where we ran virtual

machines using Ubuntu Operating System9 16.04 on which the Docker 10 platform,

version 17, was installed to execute the application container. The VMs on Azure have

the standard A1 configuration, with 1 VCPU and 2 gigabytes (GB) of memory for each

machine, which consist of four VMs. The Amazons VMs were t2.micro instance, with

1 VCPU and 1 GB of memory for each machine, which consist of two VMs.

The machine configurations on which experiments were conducted are as follows: first

machine used Java (Version 8) virtual machine (used for S1). The second machine

9https://www.ubuntu.com/
10https://www.docker.com/
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Table 3.6: Applications scenarios deployed at containers and VMs

Environment Scenario Containers VMs
Amazon Web
Services (AWS)
[A]

One-cloud Vir-
tualization only
(S1)

1- Linear Road
[A] 1- Toll Noti-
fication [A]

Microsoft Azure
Fabric [M] +
Amazon Web
Services (AWS)
[A]

Multi-cloud Vir-
tualization only
(S2)

1- Linear Road
[A] 1- Car-Count
[M]

Microsoft Azure
Fabric [M] +
Amazon Web
Services (AWS)
[A]

Multi-cloud
Cross Container
/ VM (S3)

1- Accident Alert
[M]

1- Linear Road
[A]

used Java (Version 8) virtual machine (used for S2). The third machine installed the

Docker platform (version 1.18.0) and using Docker container that uses one image for

Java to run (S3). The final machine used Java virtual machine and used this machine

in Linear Road data producer to be consumed by S1, S2 and S3.

The application consisted of a cyber-physical system for monitoring highways. The

sensed data (the position of the cars) is sent in a stream of events to be processed

by three consumers: Toll Notification, Accident Alert and Car Count. The workload

was composed of a file with 3 hours of heavy traffic. Three different scenarios covering

different forms of virtualization in a multi-cloud environment (Amazon Web Services

A and Microsoft Azure Fabric M) were proposed in order to obtain maximum reach for

the various programming models of the cyber-physical system as shown in Table: 3.6:

• Scenario 1 (S1) – A toll Notification Consumer and Linear Road Data producer

running on the same cloud service. In our case, this was represented by the

deployment of Toll Notification on the same cloud service as the Linear Road

Data producer. Both were deployed on Amazon Web Services(A). The aim of

the scenario was to understand the performance of applications running on the

same cloud service.
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Figure 3.14: CPU usage (percentage) for services on VMs in Amazon, VM in Azure
and container in Azure.

• Scenario 2 (S2) – In this scenario we launch two virtual machines, one in each

cloud. In Microsoft Azure Fabric (M), we run a car count consumer application.

In Amazon Web Services (A), we run a Linear Road Data producer. The aim of

the scenario was to understand the performance of the application running on

multiple clouds.

• Scenario 3 (S3) – The last scenario serves as an evaluation of the type of virtual-

ization (the data consumer is deployed in a Docker container). Within Microsoft

Azure Fabric (M), we run Accident Alert in a container. In Amazon Web Ser-

vices (A), we run a Linear Road Data producer. The aim of the scenario was to

understand the performance of the application running on multiple clouds with

multiple virtualization techniques.

We emphasize that the data load generated by the Linear Road Data producer was

simultaneously sent to all three consumer applications within scenarios S1, S2 and S3.

3.5.2.1 CPU Results

The CPU values for all scenarios is shown in Figure 3.14. The monitoring agents send

monitoring information to the manager every 5 seconds. As shown in Figure 3.14 the

- 67 -



Chapter 3: A framework for monitoring microservice-oriented applications in
heterogeneous virtualization environments across multiple clouds

average usage of CPU (%) for the Toll Notification service was 0.36%. For the Accident

Alert service, in the Azure container, the average usage of CPU was 3.48%. However,

the average usage of CPU for the Car Count service running in VM was 4.00%. The

Linear Road producer that was run in VM, and submitted in Amazon; had a bigger

CPU usage of 7.00% because of continuous reading of 3 days worth of data from file

and parsing this data using Esper Event to be sent to all consumers.

3.5.2.2 Memory Results
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Figure 3.15: Memory usage (MB) for services on VMs in Amazon (A), VM and con-
tainer in Azure (B).

Figure 3.15 shows memory usage results for agents monitoring services running on

both public clouds. The average memory usage for the Toll Notification service that
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Figure 3.16: Network traffic (KB).

is running in Amazon VM was 618 MB from a memory total of 992 MB as shown in

Figure 3.15(A). On the other hand, the memory consummation on Azure is larger than

on Amazon. The larger memory use on Azure cloud can be explained by the difference

of virtual hardware configuration between the two clouds. When running a container

in Azure, the average memory usage for the Accident Alert service was 1405 MB as

shown in Figure 3.15(B). This is from a memory total within the container of 1920

MB. Further, the average memory usage for the Car Count service running within a

VM in Azure was 1312 MB (as shown in Figure 3.15(B)). This is from a memory total

for the VM of 1936 MB. The Linear-Road Data producer was run in VM, and has

an average of memory usage of 559 MB as shown in Figure 3.15(A). This is from a

memory total for the VM of 992 MB.

3.5.2.3 Network Results

Figure 3.16 shows Network usage results obtained from agents monitoring the network

traffic of the services. In the Toll Notification service, Car Count service, and the Linear

Road data service (workload of a file with 3 hours of heavy traffic), the download and

upload rates of a VM or container are presented. For the the Accident Alert service

the download and upload rate of the container are shown. The results show that the

traffic caused by using a 3 hours data workload, was detected and verified by the
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monitoring system. The network traffic of the Toll Notification service running in an

Amazon cloud VM, was 495 KB for download and 161 KB for upload. The network

traffic of the Accident Alert service running in an Azure cloud container, was 464 KB

for download and 149 KB for upload. The network traffic for the Car Count service

running on an Azure cloud VM, was 548 KB for download and 823 KB for upload.

The Linear Road producer service had a network traffic of 399 KB for download, and

1563 KB for upload. This high upload is expected because it is sending the same data

3 times to all other services running on multiple clouds.

3.5.2.4 Results Summary

In the previous sections we clearly see the effectiveness of our M2CPA framework

in accurately monitoring the individual components of a cyber-physical application

distributed across multiple clouds using muliple virtualisation means including VMs

and containers. The M2CPA framework was able to calculate and report accurate

performance metrics of CPU usage, memory usage, and Network usage for 3 scenar-

ios of a traffic monitoring application. Our work improves significantly on current

monitoring tools in that it provides a unique combination of features that include

a) monitoring the performance of cyber-physical application sub components running

inside individual containers and individual VMs, b) gathers monitoring information

from applications/sub-applications running inside heterogeneous cloud environments

(e.g, Amazon, Azure, Open Stack, etc) and aggregates the results via an agent based

system, c) stores monitoring data in a database shared by both containers and VMs,

d) monitored data can be stored and accessed on any cloud provider.

3.5.3 Cost Analysis

We performed the experiment to calculate the CPU, memory and other resource con-

sumption of monitoring agents and the manager when the number of microservices

increases by a power of 2 (e.g. 1, 2, 4, 8, 16, 32). Also, we tried to capture the

behaviour of agents (e.g. how many agents are there).

In order to measure the overhead caused by the manager, an experiment is conducted

in which the manager process is monitored for CPU and memory usage while an
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increasing number of concurrent agents were registered. The amount ranged from 2 to

64 concurrent agents. The results obtained from the performance manager of increasing

number of agents are plotted on the CPU and Memory as shown in Figures 3.17
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Figure 3.17: CPU usage (percentage) for manager.
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Figure 3.18: Memory usage (MB) for manager.

increase in CPU usage 3.17 and memory usage 3.18. CPU utilization increases by

20% between 2 to 64 concurrent agents, with a more significant increase from 16 to 32
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agents. The use of memory has a more linear behaviour presenting a 27 MB increase

from 2 to 64 concurrent agents.

As shown in Figures 3.17 and 3.18 manager utilized overhead values in CPU and

memory. The reason of that, an increasing number of concurrent agents were registered

by manager and it will affect of resource consumption since the manager will collect

metrics from each agent that the manager registered it. The values that shown in

Figures 3.17 and 3.18 are acceptable, once the number of agents increase; the resource

utilization of manager will be increased.

3.6 Conclusion and Future Work

With the anticipated advent of new computing and networking technologies, we can

expect to see billions of more devices being connected to the Internet as part of mi-

croservice/ cyber-physical systems for critical applications such as smart healthcare,

and smart cities. Developing reliable monitoring frameworks that can accurately as-

sess the performance of such critical applications is extremely important. But with

the number of components, and complexity of such applications expected to increase,

monitoring their performance accurately and efficiently becomes more challenging.

In this chapter, we propose and deploy M3 – a novel system for efficient and effec-

tive monitoring of applications based on multi-virtualization (containers/VMs) multi-

microservices deployed in multi-cloud environments. The proposed solution provides

users the ability to monitor the performance of microservices that run inside contain-

ers and VMs, and report their metrics performance in real-time. The solution uses

an agent-based architecture in order to scale from a centralized to a decentralized

architecture to suit the demands of monitoring such complex services-based applica-

tions. We developed a proof-of-concept implementation of the proposed solution using

a Book-Shop application with Docker containers and VMs deployed in Amazon and

Azure cloud environments. The proposed system was evaluated under diverse scenar-

ios with evaluation outcomes validating the effectiveness of M3 in the monitoring of

microservices in multi-virtualization multi-cloud environments. In addition, we signifi-

cantly extended M3 by propose, develop and validate M2CPA – a novel framework for
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efficient monitoring of cyber-physical applications based on multi-virtualization (con-

tainers/VMs) and multi-cloud environments. The proposed solution provides users

the ability to monitor the performance of cyber-physical applications that run inside

containers and VMs and report their metrics performance in real-time. We developed

a proof-of-concept implementation of the proposed solution using Docker containers

and VMs deployed on Amazon and Azure clouds. The proposed system was evaluated

using experimental analysis that considered diverse scenarios with evaluation outcomes

validating the effectiveness of M2CPA in monitoring the performance of cyber-physical

applications in a multi-virtualized and multi-cloud environment.

In the future, we will collect a large set of data using M3 from production-ready sys-

tems to develop efficient deployment and orchestration strategies for microservices.

Also, we will expand the framework to monitor physical devices and application con-

tainer migration to develop efficient deployment and orchestration strategies for cyber-

physical applications.
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Summary

This chapter presents a Monitoring and Anomaly Detection and Localization System

(MADLS) which utilises a simplified approach that depends on commonly available

metrics offering a simplified deployment environment for the developer. Our data

collection system uses a monitor engine that monitors response time and throughput

in the application layer as well as CPU and memory in the physical layer. We evaluate

our approach through a bookstore web application case study. We finally validate

MADLS to show that MADLS can accurately detect anomalies in response time then

specify the type and location of fault that exists in microservices.

4.1 Introduction

Microservice deployment is now the standard business model for hosting cloud-based

web applications across online industries from streamed media to Big Data [1]. This

promotes the risk that wide-scale system disruption may impact many services if

anomalous activity detection is not achieved sufficiently early. This problem is com-

pounded as the beneficial aspect of cloud delivery is the ability to scale, in real-time,

to satisfy increasing client demand.

Microservice architecture brings many advantages to web applications, most impor-

tantly is scalability. However, scaling adds a level of complexity for performance

monitoring. Performance monitoring may lead to severe system outages [18] if they

are incapable of successfully determining anomalies from actual scaling requests. For

example, on November 18th, 2014, the Microsoft Azure Storage service in multiple re-

gions interrupted. As a result, dependent services experienced a connectivity loss with

the Azure Storage service, which caused an interruption in these dependent services

[70].

Monitoring performance is a key research activity in cloud computing, which has seen a

significant rise in importance due to the popularity of microservices. Their popularity

is primarily based on their light-weight, economical usage of shared resources allowing

for greater fiscal reward from service hosting activities while reflecting green agendas
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[127] [128]. However, this puts significant importance on securing such services as

resource misuse, often manifesting as anomalous behaviour in the network activity,

can have impacts on distinct hosting provisions of unrelated services.

Scalability of a container-based microservice application allows for more application

organisation and optimisation. But, this strongest characteristic brought new com-

plexities to application performance monitoring. Indeed, inefficient performance mon-

itoring may lead to severe application outages [18] as it is not able to successfully and

quickly detect the failures and then localising their causes. Application failures are

observed by the user and are considered as indicators for the problems in application

behaviour (also referred to as anomalies). These anomalies can be caused by different

faults in the application resources and called root causes. Therefore, anomaly detec-

tion and root causes localization is aimed at linking the observed failures with the

underlying faults. For instance, Central Processing Unit (CPU) consumption fault

may cause a response time delay failure in the application.

Research conducted to study approaches to improve a monitoring system for microservice-

based web applications [129–131] is ongoing but has yet to provide a generalised so-

lution that can be widely adopted. As anomalous behaviour is only detectable in its

deviation and sometimes complex correlation, expected to scale activities, supervised

machine learning techniques are a popular choice for anomaly detection. However, by

using this technique, detecting performance anomalies and localizing the anomalous

microservice are challenging. Since the supervised machine learning technique needs a

large amount of data for training purposes, it will detect only those types of anomalies

defined by the dataset. This brings a significant challenge in tackling this research

area: a) numerous microservices, b) infrequent anomalies and c) numerous metrics as

explained below:

Numerous Microservices, microservice-based web applications consist of a large num-

bers of microservices deployed in across a number of hosts. Monitoring every individual

microservice is challenging and time-consuming due to the intricate, above OS, depen-

dencies in resource sharing [132]. This makes machine learning the only realistic way of

achieving autonomy [133]. However, as this has no human-in-loop checks inappropriate

actions by this service itself can be destructive to services.
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Figure 4.1: Multi-resolution technique

Infrequent Anomalies, anomalies are not a common event within cloud environments

[33]. This is problematic for those approaches based on supervised machine learning

as there exists limited examples of anomalous training data on which to learn. This

poses the main problem of either missing anomalies that are not in the dataset or,

if the system is highly tuned, identifying anomalies that do not exist. This causes

significant performance disruption to the overall infrastructure as resources are directed

to containment activities that do not exist and will disrupt correctly working services.

Numerous Metrics, datasets used for supervised learning can consist of many metrics,

promoting the use of a variety of different approaches based on metric availability.

Such metrics may not be available generally across service providers. For example,

Uber application has 500 million metrics [26]. This may cause a considerable decrease

in accuracy of supervised machine learning algorithms bringing challenges for root

causes localization [34].

To address the challenges mentioned above, we provide a system for multi-resolution

[118] method to track the root cause of observed failure via collecting metrics about

the overall performance of a container-based microservices application. Consider, for

example, a book-shop application that consists of several microservices deployed in
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multiple containers. A root-cause localization of a detected anomaly (e.g. observed

high response time) can be performed by analysing resource metrics of microservice’s

containers such as CPU, memory, disk, and network. Analysis of all observed metric

and underlying resourses metrics from all microservices consists of a large volume of

metrics. We use multi-resolution method (see Figure 4.1) to analyse the metrics in

sequential stages to best formulate a learning environment for machine learning algo-

rithms. The multi-resolution method is achieved by narrowing the metrics’ scope and

increasing the resolution using classification machine learning algorithms. Lightweight

algorithms are used for computational purposes to analyses several representative met-

rics to detect the observed anomalies (e.g. High response time in book microservice).

Once the anomalies are detected, a comprehensive drill-down analysis of additional

metrics to localize the root cause using complex algorithms (e.g. High CPU utilisation

in book microservice container).

Our contribution: This chapter proposes a Monitoring and Anomaly Detection and

Localization System (MADLS ) which offers an efficient approach for detecting and

localizing anomalies. This approach can be easily deployed by developers to interpreter

the causes of performance failures in a container-based microservice application. We

use a monitor engine to collect two sources of metrics: observed metrics (e.g. response

time and throughput) from microservice level and resources metrics (e.g. resource

utilization) from container level. We use the multi-resolution technique to detect

anomalous microservices and localize the root causes. The multi-resolution technique

can analyze an application performance in sequential stages using machine learning

techniques to narrow the metrics to be analyzed in each stage. As a result, the accuracy

of detecting and localizing the root cause of anomalies can be improved significantly.

We evaluate our system by conducting several experiments using a bookstore web

application case study. We evaluate our system by conducting several experiments

using a bookstore web application case study. We finally validate MADLS to show

that it can accurately detect anomalies in response time then specify the type and

location of fault that exists in a microservices with a high accuracy of performance at

90%.

The rest of this chapter is organized as follows: Section 4.2 presents justifies our con-
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tribution through a comparison to related work. Section 4.3 presents our Monitoring

and Anomaly Detection and Localization System (MADLS ). Section 4.4 presents a

description of how we implemented MADLS. Section 4.5 describes our evaluation and

results analysis. Finally, section 4.6 presents the conclusion and future work.

4.2 Related Work

There have been a variety of methods applied for detecting anomalous behaviour and

analyzing the root causes in microservice-based cloud application.

Carla Sauvanaud et al. [28] introduce an anomaly detection system (ADS) that con-

siders performance data for microservices to detect anomalies. ADS can identify the

anomalous microservice and the type of anomaly within the observed microservice.

This chapter only applies the system on Virtual Machine-based microservices rather

than the containerised approach popular today, which we consider key tackling in our

approach. Qingfeng Du t al. [58] also propose an Anomaly Detection System (ADS)

but do so for container-based microservices. The proposed ADS has a monitoring

module that collects performance data from containers as well as a data processing

module based on machine learning. This system can identify the type of anomaly

within the anomalous microservice.

Both these works analyse metrics of resource utilization in the infrastructure layer.

Still, they do not consider the link of observed failures with underling faults in during

anomaly detection as we do. We consider using the multi-resolution technique to anal-

ysis metrics in sequence as beneficial, especially for improving the detection accuracy

of machine learning algorithms.

Li Wu et al. [27] propose MicroRCA system that correlates failure observation of

an application performance corresponding its root cause faults in resource utilization

in real-time. The attributed graph is used to analyze the root causes by modelling

anomaly propagation among microservices of the application. Juan Qiu et al. [89] also

use knowledge graph technology and a causal search algorithm to diagnose the root

cause of application performance. Yuan Meng et al. [29] present a framework called

MicroCause. Their approach localizes the root cause of low-performance indicators in
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Figure 4.2: Monitoring and Anomaly Detection and Localization System (MADLS).

a microservice. MicroCause useS path condition time series (PCTS) algorithm and

temporal cause-oriented random walk(TCORW) method. Jörg Thalheim et al. [26]

deploys a platform, called Sieve, to monitor microservice performance metrics and

analyze the root causes of observed bad performance. Sieve has two core tasks to

apply root-cause analysis: first Sieve filters out metrics that present normal behaviour

and keep other metrics. Second, Sieve uses a predictive-causality model to find met-

rics dependencies of microservices. Wei Cao et al. [90] apply Conditional Random

Field(CRF) method for microservice anomaly detection. The method creates the mi-

croservice fault matrix by collecting microservice metrics as an observation sequence.

Therefore, anomalies of a microservice can be obtained from the microservice fault

matrix.

These approaches search the cause root of anomaly observed behaviour using differ-

ent tracking algorithms (e.g. tree or matrix); however, our approach is to study the

feasibility of machine learning algorithms to root cause localization.
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4.3 Monitoring and Anomaly Detection and Localization

System (MADLS)

The underlying intuition behind the MDLS is two-fold. First, monitoring a container-

based microservice application and collecting metrics from microservice level and con-

tainer level. Second, diagnosing performance issues using the multi-resolution tech-

nique [118]. The metrics from the two levels continuously collected. Once anomalies

are detected in microservice level, MADLS performs root causes localization of the

anomalies based on analyzing container level metrics. The Figure 4.2 demonstrates

the proposed system and it will elaborately discuss the system components in appre-

ciable details:

4.3.1 Monitoring and Collecting Engine Component

1. Monitoring agents: The capture of the data defined by the metrics is performed

through monitoring agents, condensed in the conceptual representation of SmartAgent

(SA) in Figure 4.2. There are two types of agents: an agent for monitoring the metrics

related to containers and another for monitoring those related to microservices.

• Microservice monitoring: A microservice failure is an observable event when the

microservice does not work properly. Microservices are also monitored to obtain

information on the microservice API, response time, and processing rate, as well

as the metrical measurements obtained by tracking containers where operating

systems are located.

• Container monitoring: An anomalous microservice could be caused by its un-

derlying container faults that are hidden from the user. Container monitoring

agent monitors hidden metrics of containers related to containers’ resource uti-

lization, e.g. CPU utilization, memory utilization, disk use and network use.

Hidden faults can be the root cause of an observed failure.

2. Collecting and storing module: All data captured by the monitoring agents are sent

to the messaging service (represented by RabbitMQ in Figure 4.2), which transfers: 1)
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to consumer managers (Manager in Figure 4.2) for storage in the data service (MySQL

on Figure 4.2)) to interested parties (apps, dashboards, etc.) in monitoring.

• Message service: The message service can be implemented by any message-

broker, currently in our system RabbitMQ was used. RabbitMQ is an open-source

message-broker software (sometimes called message-oriented middleware) that

originally implemented the Advanced Message Queuing Protocol (AMQP) and

has since been extended with a plug-in architecture to support Streaming Text

Oriented Messaging Protocol (STOMP), Message Queuing Telemetry Transport

(MQTT), and other protocols 1.

• Manager consumers: Consuming managers are small processes that act as con-

sumers of the monitored data, performing a parse of the data for the storage

service. These agents currently transcribe data in data queries to the MySQL

database system. Other managers can easily be built in storage in other data

services.

• Database service: The data service allows storage for later consultation of the

monitored data. In the current system, it is represented by the MySQL database

system. Any storage service such as (Google Cloud Database, AWS RDS) or

RRD or a time series storage system like InfluxDB could be used with their

respective consumer managers.

4.3.2 Diagnosing Component

The diagnosing component in the system is responsible for anomaly detection and

root cause localization. The complexity of microservices diagnosing depends on the

amount of monitoring metric from different microservices. Therefore, multi-resolution

is used to improve the performance of microservices diagnosing. To perform the multi-

resolution approach, diagnosing component is segregated into the following modules

(see Figure 4.2): pre-processing module, detection module, localization module. These

1https://www.rabbitmq.com/
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modules are executed in a sequential manner. The description of these modules as

follows:

1. The pre-processing data module: The pre-processing module processes the col-

lected data from the monitoring engine stored by the database service. Pre-processing

methods include filtering the data, labelling the data and standardization. Details

of pre-processing methods and their purposes will be provided in the implementation

section.

2. Detection module: This component detects anomalies in response time and through-

put metrics collected from the microservice level. A metric threshold was set to de-

termine if the microservice behaviour is abnormal or normal. Therefore the response

time, as well as the throughput, can be classified into two groups: abnormal and nor-

mal. The abnormal response time that indicates microservice failure varies from 501

milliseconds to one second. Abnormal response time impedes the performance of the

throughput. When the response time is shorter than or equal to 500 milliseconds, this

is considered to be a normal state. The detection component uses a binary machine

learning classification algorithm to categorise response time behaviour of microservices

to either normal or abnormal. Thus, anomalous microservices can be detected.

3. Localization module: After anomaly detection, the localization component locates

the root causes of an anomalous microservice by analyzing the underlying metrics

collected from container level. These metrics include CPU utilization and memory

utilization. The fault in these resource utilization considers a root cause of an anoma-

lous microservice. If the resource utilisation rate reaches 50%, the fault exists. A

multi-classification machine learning algorithm is deployed to find faults in resource

utilisation of microservice’s container.

4. The output of anomaly-detection-module: As stated above, the anomaly requires

a multiclass algorithm that determines the different classes of resource anomalies of

each microservice. Some examples include an anomaly in the CPU of the microservice

x or an anomaly in the memory of of the microservice y.
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Table 4.1: List of the configuration parameters and values.

Parameter Value
Cloud service provider AWS
Cloud service provider location USA West
VM in AWS t2.micro, t2.medium, t2.xlarge types
Operating system Ubuntu:16.04
Docker platform Version 17.06.1
Docker-compose Version 1.18.0
Javassist Version 3.26-GA
Java Version 8
Apache JMeter Version 5.4.1
RabbitMQ Version 5.6.0
SIGAR Version 1.6
Python Version 3.9.6

4.4 MADLS Implementation

List of all the configuration parameters and their values is shown in Table 4.1. We

have chosen the latest version available of the selected values at that particular period

of time, like MySQL, Java, etc. The deployment of the MADLS modules on the

containers is illustrated in Figure 4.3. The modules are described in the following:

4.4.1 Monitoring Engine Module

A monitoring agent is deployed on each of the container. We used MADLS monitoring

agent, for collecting and storing performance metrics. MADLS collects resource us-

ages and performance monitoring data of all the containers and stores in the database

as a time series. The implementation of the system was carried out in Java (version

8), consisting of four main parts (see Figure 4.3), namely: construction of monitoring

agents external to the code, development of internal agents to the code, and coding

of managerial consumers for data storage. The external agents to the code, Outside

Agents (OAg), were built using the SIGAR2 libraries to obtain data about the system

and the executing processes or used by the microservices. For example, a microser-

vice that uses Tomcat as a web server and MySQL as a database, would need at

2https://github.com/hyperic/sigar
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Figure 4.3: MADLS Implementation.

least three external agents: 1) for the system (Disk, Network, System-CPU, etc.), 2)

for Tomcat (Tomcat-CPU, Tomcat-Memory, etc.) and 3) for MySQL (MySQL-CPU,

MySQL-Memory). The encoding of external agents was based on a solution previously

published in [132], changing the form of communication from REST to Publish / Sub-

scribe. For this purpose, AMQP producers compatible with RabbitMQ were built,

through the library com.rabbitmq.amqp-client (version 5.6.0), which carried out the

publication of the data obtained by monitoring on message topics previously created

in RabbitMQ. RabbitMQ was the AMQP server chosen for the use of the system, ex-

ercising the role of message-broker between producer agents and consumer managers.

Just to clarify, when we started an agent to monitor the CPU usage of a process, his

AMQP client opened a connection to the RabbitMQ server and started sending data

to the “Process” queue. The data finally sent would be collected from the consumer

managers or by the consultation consumers.

The agents inside the code, Inside Agents (IAg) used the same way of communication

as the OAg, that is, AMQP clients send data to pre-registered topics in RabbitMQ.

The difference between the IAg and the OAg in terms of implementation is the use

of a library to manipulate the application’s Bytecode, the org.javassist.javassist (ver-
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sion 3.26-GA). The manipulation of Bytecode was used in order to facilitate the use

of the system by other developers, in addition to allowing a minimal change to the

original code of the microservice. Basically, the system development team produced

a library based on Java annotations to build the metrics defined in the microservice

codes. In other words, currently, two metrics related to the microservice code are

defined, namely: Response Time and Throughput. For the developer to monitor the

Response Time, just insert the Java annotation @Response Time in your code and

include the IAg library within your project’s classpath. Once the code is noted, the

IAg must be started with the JVM to run the microservice, using the –javaagent op-

tion. In this way, it allows the JVM in the pre-execution process of the main thread of

the microservice, to include the initialization execution of the IAg which searches the

methods signed with the annotations@Response Time or @Throughput to include the

specific monitoring code. For example, for the annotation @Response Time a variable

is included at the beginning of the method to obtain the time in nanoseconds of the

system, and at the end this variable is used in the calculation of the response time of

the microservice method.

Managerial consumers also used the com.rabbitmq.amqp-client (version 5.6.0) library

to subscribe to topics and receive messages sent by agents. The metrics received by

them were persisted in a MySQL database. The MySQL database system represents

the long-term storage service of the temporal-series data obtained by the continuous

monitoring of microservices.

4.4.2 Target Application

An evaluative experiment of the MADLS system was conducted in order to assess the

effectiveness in monitoring and alerts of the implemented metrics. In addition, the

values obtained in the execution of the analysis constituted a set of 48 hours of data

that serve as input for the data processing and fault injection modules. The target

application of our evaluation was a composition of three microservices: User Interface

(UI), Book Service (BS) and Purchase Service (PS). They integrate an application to

control purchases and inventory of an electronic book store. The UI represents the

microservice that processes Javascript and HTML content for building the web pages
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UI: User Interface 
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Figure 4.4: Experiment Requests: Books-Shop microservices communication flow and
JMeter’s requests sequence.

of the electronic book store. To simplify application coding, the UI service does not

have any database for storing user or shopping cart attributes, which are simulated

in memory only for the purposes of the experiment. In turn, the BS represents the

service that processes and stores information about books and their respective stocks.

Thus, it has a MySQL database for exclusive storage for the contextual entity of the

books domain. Similar to BS, the PS stores the purchase data and also has its MySQL

database with the only table, Purchases.

We used Apache JMeter (https://jmeter.apache.org/) to generate HTTP requests to

test the capability of MADLS ’s system. The operations and requests made during the

experimental evaluation are presented in Figure 4.4, namely: 1) For R2 request, the

UI when receiving a book listing request (R2) redirects this request to the BS. The BS

upon receiving the book listing requests (R2.1) returns a list of books in JSON format

that is converted to HTML format in the UI which finally returns to JMeter; 2) For R1,

JMeter sends a detailed information request on 10 random books (R1), BS processes

this request with its MySQL bank and returns a list in JSON with the requested

data; 3) For R3, JMeter sends a request to include a book purchase for the PS. The

PS consults the BS (R3.1) to check if the book has available stock and finally saves

- 88 -



Chapter 4: MADLS: Monitoring and Anomaly Detection and Localization System of
Container-based Microservice

the purchase in its MySQL bank. The three simulated requests are sent continuously

starting with 10 users initially and gradually increasing up to 150 simultaneous users

in an interval 48 hours.

BookShop microservices were implemented in Java (version 9), making use of the

Restlet3 library to build its APIs. The microservices were implemented using the

technology of Docker containers (version 18.09) with the aid of Docker Compose tool

(version 1.24.1). We have deploy all Book Shop Application microservices and the

framework infrastructure for our experiment in Amazon Virtual Machines cloud EC2

services that running Ubuntu version 18.04). All microservices were encapsulated in

Jars files that were used in the construction of Docker Images based on OpenJDK

94. To mitigate the possibility of influencing hardware differences, virtualization in

the performance results obtained, all containers had limited resources using directives

cgroup5, namely: deploy: resources: limits: cpus: ’0.50’, memory: 256 MB.

4.4.3 Training ML Models for Diagnosing

4.4.3.1 Data Pre-processing

The MADLS monitoring engine collects two datasets. The first dataset (DS1) contains

both response time (rt) and throughput (tp) for the microservice. In the second dataset

(DS2), the resource usage metrics including central processing unit (CPU) and memory

(Mem) for the microservice process are collected. To prepare the data, our data pre-

processing procedure applies labelling, downsampling and standarization. Figure 4.5

and 4.6 show a snapshot of the dataset (D1 and D2).

Table 4.2: Anomaly detection by detection component (binary classification)

Class label Class Description

0 Normal Normal response time and throughput

1 Anomaly High response time and low throughput

Labelling: for supervised machine learning, the dataset should be labelled first before

training. For that reason, the fault injection component allows two fault forms to be

3https://restlet.talend.com/ (org.restlet.jse)
4https://hub.docker.com/ /openjdk
5docker.com/compose/compose-file/
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Figure 4.5: Snapshot of the dataset (D1).

Figure 4.6: Snapshot of the dataset (D2).
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injected into three different microservices. Therefore, DS1 has two class labels: normal

and anomaly. Table 4.2 shows the description of these labels. Whereas DS2 has five

classes include memory fault in book-service, CPU and memory fault in book-service,

memory fault in purchase-service, CPU and memory fault in purchase-service, and

CPU fault in the user interface. As microservice UI is non-storage microservices we

did not consider any anomaly in its memory. Besides, Because Book microservice and

Purchase microservice are CPU and memory intensive services, high CPU utilization

could cause high memory usage. Therefore, we consider CPU fault associated with

memory fault. However, high memory utilization does not necessarily consume the

CPU. Table 4.3 provides a detailed summary of these five classes.

Table 4.3: Summary of 5 fault classes to be classified by localization component (Mul-
ticlassification)

Class label Class Description

1 Memory in book service There is high memory consumption in
book microservice

2 CPU and Memory in
book service

There are high CPU and high memory
consumption in book microservice

3 Memory in purchase ser-
vice

There is high memory consumption in
purchase microservice

4 CPU and Memory in
purchase service

There are high CPU and high memory
consumption in purchase microservice

5 CPU in UI service There is high CPU consumption in User
Interface microservice

Downsampling: The datasets are highly unbalanced because the number of anomalies

is very low, resulting in data skewness. THis means the number of anomalies are much

less than the number of normal states, where that renders the task of classification

extremely difficult and brings many challenges in supervised machine learning. There-

fore, Downsampling approach is used to remove samples from the majority class. As

a result, we have DS1 that consists of 600 samples, where 300 samples are normal

response time, and the other 300 samples are anomalies (High response time). In DS2,

we have 300 samples of root causes, where each of the five classes listed in Table 4.3

has 60 samples.

Standardization: The set of values differs significantly for the four features (response
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time, throughput, CPU, memory). So, by implementing the StandardScalar stan-

dardization process, we normalize all of the features. Standardization is a scaling

strategy that the values have standard deviation equals to one and mean equals to

zero. Standardization is essentially required by algorithms that use the Euclidean

distance method to calculate the distance between two points.

4.4.3.2 Anomaly Detection

The anomaly detection is responsible for detecting an anomaly in observed metric (i.e.

response time and throughput). It classifies DS1 which is a temporal-series data of

response time and throughput obtained by the continuous monitoring of microservices

into two classes (Table 4.2): normal and anomaly. This is achieved by binary machine

learning classification models.

Binary classification models are trained with four algorithms (i.e. KNN, DT, LR and

NB) to detect the high response time and normal response time. The dataset DS1 of

600 samples was split into both training set and test set. Two thirds of the samples

represent the training set which contained 400 samples (200 normal and 200 anomaly

samples). The last third is the test set, consisting of 200 samples with 100 samples of

anomalies and 100 samples are normal.

4.4.3.3 Root Cause Localization

Four algorithms (i.e. KNN, DT, LR and NB) are used to train the multi-classifying

machine learning models to identify the anomalous microservice and, thus, to assess

the root cause of the anomaly. For example, memory fault in microservice X. For this

purpose, the dataset DS2 of 300 samples of anomaly data is divided into training and

test sets. The training set contains 2/3 of the samples, 200 (40 samples of each class).

The last third of the remaining samples are 100 samples (20 samples for each class).

The four machine learning algorithms were trained using the Scikit-learn6, which is

a free software machine learning library for the Python programming language. All

algorithm with the default configuration of the Scikit-learn library.

6http://scikit-learn.org
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4.4.4 Fault Injecting Module

Fault injection is a method created by researchers and engineers to evaluate the de-

pendability of the hardware or software of computer systems. The fault injection at

the software is less expensive in comparison to hardware as it requires changes at the

software-state level. For this reason, it is easy to test the software system’s higher

level mechanisms. Figure 4.3 shows the fault injection environments that consists of

two different modules; CPU and memory faults.

• Central processing unit fault: The CPU fault aids errors in the erratic behavior

of the container. For example, if the container does not respond adequately or

hangs up if heavy loads are run, the performance will be low. It is considered a

CPU hog, which can result from increased user demands.

• The memory-fault: In a container, memory use decreases in a short period. Once

the memory is thoroughly exhausted, a memory leak can occur. It is called a

memory loss. It is called an incident, leading to a response time.

As illustrated in Alg. 1, we implemented these faults into the data collection system

one by one to see the behavior of the system in the presence of the faults and to train

our model using machine learning techniques in various system conditions. The real

anomalies of the system, high CPU and high memory consumption, are simulated after

the faults injections. Table 4.4 gives a summary of symbols used in the chapter.

Algorithm 1 demonstrates the proposed fault injection method. The type of fault F

(CPU or Memory), the container in which the error will be injected (C), the duration

of the fault (T ), and the pause time of the error (P) are defined by the user. Workload

(W) is the core component of the algorithm defined before. An iterative process is

executed continuously to build a Pascal triangle until the defined time is reached for

CPU fault injection. For memory error injection, the algorithm allocates 1 MB byte

arrays until memory utilization reaches 90% and occupies the memory with this rate

until the time reaches (T ). Algorithm, first, generates a workload based on the fault

type (see Algorithm 1, Line 5). Injection method is run to assign the fault type (see
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Algorithm 1: Fault injection execution controller

Input: C - container id,
Cl - list of containers,
F - fault type,
Fl - list of fault types,
T - injection duration,
P - pause time,
W - workload,
inj - created fault.

1 // Start the fault injection process
2 for each C in Cl do
3 for each F in Fl do
4 // Generate W
5 GenerateWorkload(W)
6 //Run Injection method
7 inj ← Assing (F , T )
8 //Inject into the C
9 C ← Inject (inj)

10 //pause the fault injection process
11 sleep (P)

12 end

13 end

Algorithm 1, Line 7). Afterwards the generated workload is injected in to the selected

container (see Algorithm 1, Line 9). Finally, the injection is suspended within the

given time interval P .

4.5 Evaluation and Results Analysis

This section describes and evaluate the classification performance of all algorithms

using the test set. The findings of the detection and the description of the localization

performance have been summed up using the confusion matrices. Other metrics have

been examined in order to perform classification performance comparison. Here we

will first define the performance metrics and then discuss and analyze the results.

4.5.1 Performance Measures

Various evaluation measures can be used to test classification results. The most com-

mon and suitable approach to measure classification accuracy is confusion-matrix. This
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Table 4.4: A summary of symbols used in this chapter

Symbols Description
C Container id
Cl List of containers
F Fault type
Fl List of fault types
T Injection duration
P Pause time
W Workload
inj Created fault

approach describes how each element in test dataset has been classified [134]. The ele-

ment may be graded as either True-Positive (TP), False-Positive (FP), True-Negative

(TN), and False-Negative (FN). The TP is an anomaly element that it is predicted

correctly as an anomaly. A TN is a normal element that it is predicted correctly as

a normal. Whereas, the FP is a normal element that it is predicted incorrectly as an

anomaly. The FN is an anomaly element that it is predicted incorrectly as a normal

[135]. These four constitute the confusion matrix. The n x n matrix displays n re-

flecting various class. The row explicitly states the real point, while the column of

the matrix shows the predicted class. The accuracy of the classification is seen by the

proportion of the number of elements that correctly predicted to the total number of

elements in a data collection (N) [134]. There are a few widely employed measures

extracted from the confusion matrix [134]: Recall (Sensitivity (S)) means the The

proportion of element that correctly predicted. Precision (P) means the proportion

of correctly predicted element. F-1 score (1) is represented as the harmonic-mean of

precision and recall and gives a better measure than accuracy. It can be determined

using:

F1 = 2 ∗ (
Precision ∗Recall
Precision+Recall

) (4.1)
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Figure 4.7: Confusion-matrix for anomaly detection using: (A) KNN algorithm.

Figure 4.8: Confusion-matrix for anomaly detection using: (B) DT algorithm.

Figure 4.9: Confusion-matrix for anomaly detection using: (C) LR algorithm.
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Figure 4.10: Confusion-matrix for anomaly detection using: (D) NB algorithm.

4.5.2 Results Analysis

4.5.2.1 Detection Performance

As a binary classification is a straightforward task, and there is a small amount of

features (response time and throughput) to examine in detection phase, the four algo-

rithms perform effectively.

The Figure 4.7, 4.8, 4.9, and 4.10 demonstrates the confusion-matrix for anomaly

detection using the four algorithms. It can be observed from the confusion matrices

that all algorithms have more TP and TN values.

The Figure 4.11 provides information about performance of detection. It gives Fig-

ures for all algorithms and clearly shows that their performance, based on accuracy,

precision, recall and F1 metrics, are high and fairly equal. According to the Figure,

the most best performance algorithms are KNN and DT, with accuracy rates reach-

ing 99%. Although LR and NB in general achieved high detection performance, their

accuracy are lower by only 1% compared to KNN and DT.

4.5.2.2 Localization Performance

A) Per algorithm performance:

We have tested the four algorithms for the fault-localization task using the test set. The

localizing confusion matrices for the four algorithms are shown in Figure 4.12, 4.13, 4.14,

and 4.15. It shows how the four classification algorithms discriminated over the two
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Figure 4.11: Detection

Figure 4.12: Confusion-matrix for anomaly localization using: (A) KNN.

- 98 -



Chapter 4: MADLS: Monitoring and Anomaly Detection and Localization System of
Container-based Microservice

Figure 4.13: Confusion-matrix for anomaly localization using: (B) DT algorithm.

Figure 4.14: Confusion-matrix for anomaly localization using: (C) LR algorithm.

Figure 4.15: Confusion-matrix for anomaly localization using: (D) NB algorithm.
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Figure 4.16: Localization.

fault types (CPU fault and memory fault) with their location in different microser-

vices. The diagonal in the matrices represent the ideal case in which the samples were

correctly classified. We can see that the confusion matrix of DT algorithm has less

non-zero off diagonal cells that represent incorrectly classified samples. A total of 90

out of 100 samples were accurately classified. Whereas there were a total of 78 out of

100, a total of 77 out of 100, a total of 73 out of 100 were accurately classified by NB,

KNN and LR respectively.

To compare the localization performance of KNN, DT, LR and NB algorithm, we

presented the accuracy, precision, recall, and F-Measure statistics for each classifier.

The Figure 4.16 shows the results of these metrics. The results showed that during

the classification of classes, the highest accuracy achieved was 90% by DT algorithm.

NB and KNN followed, with 78% and 77%, respectively. LR had the lowest accuracy

at 73%. Overall, the data illustrates that precision, recall, and F-Measure metrics of

DT algorithm were higher followed by NB and KNN. LR achieved the lowest metric

values, among the algorithms compared.

B) Per class performance:
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Classes

1: Memory in book service

2: CPU & Memory in book service

3: Memory in purchase service

4: CPU & Memory in purchase service

5: CPU in UI service

Figure 4.17: Localization per class.

The Figure 4.17 depicts the performance of all algorithms in terms of per class recall,

precision, F1 score. As aforementioned, F1 provides a better measure of classified

cases and based on that we discuss the performance corresponding to F1 score of all

algorithms for each class. What can be deduced from the Figure 4.17 is that overall

performance of all algorithms apart from KNN algorithm is highest for class 5 between

100% and 71%. While class 1, 2 and 3 were in the middle with F1-scores in the range

of 88% - 65% by all algorithms. It is worth noticing that class 3 scored the highest

performance among all classes by KNN algorithm. Class 4 have different trend accord-

ing to the algorithms applied. LR achieved the significantly lowest score for class 4 at

33%. KNN also provide lowest performance for the same class at 62%. Nevertheless,

F1 score of class 4 achieved by DT and NB were 88% and 71% respectively, which is

at the same level of performance with other classes.

Since the F1 score is highest for class 5 (CPU fault in UI micorservice) than for others

by all algorithms, we can believe that samples belongs to class 5 are easier to identify.

The reason could be that it is the only class represents a one fault (CPU fault) in

UI microservice. Microservices in our target application are affected by fault injection
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Figure 4.18: Localization time of test set.

differently. When a microservice has more resource faults to be examined, the faults

become harder to classify by machine learning models.

4.5.2.3 Prediction Time of Localization Task

The localization performance of the algorithm also examined in terms of the time the

algorithm takes to predict the classes of all test set samples. The time was computed

on 64-bits intel-core i-7 2.1GHZ processor. Figure 4.18 presents prediction time of the

localization task. It is clear from the Figure 4.18 that KNN spent the highest time in

prediction. Localization time of KNN was nearly 19.03 sec, However, other algorithms

took considerably lower than KNN. NB took 5.01 sec whereas DT spent nearly 2.15

sec, which is twice as many as the localization time spent by LR algorithm.

4.5.2.4 Discussion

Classification results were strongly influenced by the type of classification (binary or

multi class). DT algorithm outperformed other algorithms in both type. Other al-
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gorithms KNN, NB and LR achieved lower accuracy for multi classification that for

binary classification. Therefore, simple algorithm (i.e has less number of tuning param-

eters) can yield good performance. However, when the sample complexity increases

(number of anomaly classes, observed faults and microservices), DT can be better at

prediction than other algorithms.

On the other hand, LR and NB are less sensitive algorithms which have a smaller

variance so that any small change in training set will not likely to change prediction

model and its performance. In contrast, DT and KNN are more sensitive algorithms

which have a larger variance, that means any change in training set will change the

model, and then, the performance of the model. This because these algorithms do not

make any assumption about dataset distribution. That means the distribution of the

dataset is also likely to influence detection and localization performance.

We calculated the time required to execute prediction code of localization component

that test the accuracy of the algorithm using the test set. This depends on processing

Unit, programming language and operating system. KNN spent the longest time in

prediction whereas LR spent the shortest time.

In summary, we can conclude that supervised machine learning methods can success-

fully identify and locate the anomalies. However, multi classification to perform the

localization task was much harder than binary classification for detection task. Al-

though KNN produced good results, it has enormous prediction time. In this study,

we found it to be the least favourable classifier among the supervised machine learning

algorithms that were applied in this study. LR and NB spent negligible times in predi-

cation. However, this advantage is outweighed by the poor classification performance.

DT has the best performance for both detection and localization tasks. In addition,

its prediction time was very short.

4.6 Conclusion and Future Work

We propose Monitoring and Anomaly Detection and Localization System (MADLS ),

to monitor microservices-based application to detect abnormal patterns in metrics

and then locate anomalous microservices. The system consists of a monitoring engine
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and a diagnosing module. The monitoring engine is responsible for monitoring and

collecting metrics from the application, whereas the diagnosing module is responsible

for detecting and localizing anomalies. Our approach applies a multi-resolution method

to track observed failures’ root cause by linking them with underlying faults in different

layers. Multi-resolution is achieved in stages to narrow the scope of metrics and to

increase the resolution.

To implement our system, we first gathered monitoring metrics from the target-

application by the monitoring engine. The target-application constituted three mi-

croservice, which included; book-service, user-interface, and purchase-service. To sim-

ulate anomalies, we injected the CPU faults and, more so, the memory faults into

the targeted microservices. Then, we implemented diagnosing by applying a multi-

resolution approach in two stages using two components. The first component is detec-

tion, where MADLS detects abnormal response time and throughput of microservices

from the application layer using binary classification Machine Learning (ML) tech-

niques. The second stage is localization, which Multi classification ML techniques to

identify the root causes of abnormal response times.

For detection and localization, we examined four supervised machine learning algo-

rithms, namely, K-Nearest Neighbors (KNN), Decision-Tree (DT), Logistic Regression

(LR), and Näıve Bayes (NB). For binary classification, we trained models with the

training dataset of two features response time and throughput. The samples were la-

beled as zero (normal) and one (anomaly). On the other hand, the multi-classification

models were trained using the training dataset with features CPU consumption and

memory consumption. This dataset consists of samples from 5 classes: Memory fault in

book service, CPU fault and Memory fault in book service, Memory fault in purchase

service, CPU fault and Memory fault in purchase service, CPU fault in UI service.

We finally validate MADLS to show that MADLS can accurately detect anomalies in

response time and then specify the type and location of a fault in a microservices. The

detection and localization were tested using the test set. The detection performance

using all algorithms was measured based on accuracy, precision, recall, and F1 metrics.

All algorithms obtained high and equal performance with more than 98% accuracy.

Conversely, The performance of all algorithms for localization task was different. The
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result showed that accuracy, precision, recall, and F-Measure metrics of the DT algo-

rithm were the highest, followed by NB and KNN. In contrast, the lowest metric values

were obtained by LR algorithms. We also examined the time of prediction the algo-

rithms take for the localization task. We found that KNN took a long time compared

with other algorithms. NB follows KNN, whereas DT and LR spent a much short

time. After evaluating classification accuracy and prediction time, DT provided the

best result for detecting and localizing anomalies in a microservices-based application.

Several future works can be considered for our work. First, As the target application

used in this work has three microservices, the system can be tested with other applica-

tions. Second, the study of microservices dependencies for further root cause analysis

using our system can be investigated. Third, we plan to expand the implantation to

detect other faults in microservices. Lastly, we also intend to study the influence of

microservice inter-dependencies on finding the root cause of failure.

- 105 -



Chapter 4: MADLS: Monitoring and Anomaly Detection and Localization System of
Container-based Microservice

- 106 -



5
Osmotic Monitoring of

Microservices between the Edge
and Cloud

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Monitoring Microservices in Osmotic Computing (Edge to Cloud) . . 113

5.3.1 Monitoring Model . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Osmotic Monitoring: System Implementation . . . . . . . . . . 116

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Monitored Application . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.3 Latency Time Results . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.4 CPU Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.5 Memory Results . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.6 Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 136

- 107 -



Chapter 5: Osmotic Monitoring of Microservices between the Edge and Cloud

Summary

This chapter presents an integrated monitoring system for monitoring IoT applications

decomposed as microservices and executed in an osmotic computing environment. A

real-world smart parking IoT application is used for an experimental evaluation and

for demonstrating the effectiveness of the proposed approach. Through rigorous exper-

imental evaluation, we validate the osmotic monitoring system ability to holistically

identify variation in CPU, memory, and network latency of microservices deployed

across cloud and edge layers.

5.1 Introduction

The advent of Internet of Things (IoT) [136–138] and Smart City applications created

a scenario where billions of users or devices get connected to applications on the In-

ternet, which results in trillions of gigabytes of data being generated and processed

in cloud datacenters [32, 72]. The increasing need for supporting interaction between

IoT and cloud computing systems has led to the creation of the Edge, Fog [139] and

Osmotic Computing [32]. Osmotic computing is a new paradigm to support the effi-

cient execution of Internet of Things (IoT) services (microservices) and applications

at the network edge [32] by providing increased resource and management capabilities

at the edge of the network. One challenge that underpins such emerging approaches

is the dynamic management of microservices across cloud and edge datacenters. For

instance, defining when and how microservices can be migrated from edge resources

to cloud-based resources (and vice versa), and characteristics which influence such

migration, remains a challenge [32].

Monitoring [16] plays a central role in identifying ”when” a certain microservice should

be migrated. For migration to be effective, it is necessary to properly monitor the

performance of the microservices. The monitoring of microservices in IoT environment

is a recent topic and therefore few works have been carried out in this regard. The

work presented in the chapter seeks to explore this topic in the construction of a

solution that meets the requirements of monitoring microservices as well as IoT and

cloud applications.
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Figure 5.1: Osmotic movement of microservices across cloud and edge.

With osmotic computing, a new IoT application programming paradigm that provides

an opportunity to execute multi-service applications between the edge and cloud, the

applications need a multiple and dynamic system to properly monitor the osmotic

services to promote to make possible dynamic workload balance between the edge

network and cloud as showing in Figure 5.1.

Within the scenario of vehicular traffic management in urban centers, the provision and

efficient occupation of parking spaces is a common problem to be solved. The intelli-

gent parking application is a multi-layer application widely deployed for such problem

[140]. The main purpose of this application is to alert the driver regarding available

parking spaces near his/her location. This work leverages the intelligent parking ap-

plication as a motivation example. Figure 5.2 depicts a conceptual implementation

of this application using a microservice architecture. The smart parking application

comprises there microservices: (i) parking management, (ii) user data management

and the (iii) selection of vacancies according to user’s preferences. The parking man-

agement deals with the monitoring of the available spaces in the urban space dedicated

to parking lot. User management stores the data of locations already used by drivers,

as well as their preferences. Finally, the selection of vacancies microservice schedules
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Figure 5.2: Parking management application.

and recommends the possible vacancies available to users.

Parking management is responsible for sensory interfacing and monitoring (with sen-

sors instrumented to indicate the presence of vehicle). Such a microservice is self-

contained and deployed at the edge (i.e. at each parking lot). User management is

deployed to the cloud, so user preference data is accessible to all city parking lots.

The vacancy selection microservice is the most important one. It continuously runs

an algorithm for selecting vacancies from the available parking lots according to user

preferences. However, this microservice may need to run on the edge or cloud depend-

ing on several factors (typical of osmotic computing). For example, during periods of

heavy vehicle traffic, and large numbers of vehicles searching for parking spaces (e.g.

during weekends), the vacancy selection microservice would run in the cloud where

greater processing power and high computing capacity would allow an easy horizontal

scalability. However, in periods of low traffic and low demand this microservice could

be running on the edge.

Existing Quality of Service (QoS) monitoring tools and techniques suffers from serious

technical limitations when subjected to Osmotic Computing. For example, there is an

urgent need to find answers to the following research questions:
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• How to ubiquitously monitoring QoS of microservices mapped to an Osmotic

Computing (Edge+Cloud) environment?

• How to aggregate QoS measures of microservices running in Osmotic Computing

environment to give a holistic view of IoT application’s (e.g., smart parking) run-

time performance?

To address the aforementioned challenges, in this chapter we make following concrete

research contributions:

• We develop a unified monitoring model for Osmotic Computing that provides

an IoT application administrator with detailed QoS information related to mi-

croservices deployed across Cloud and Edge.

• We propose Osmotic Monitoring, a monitoring system for Osmotic computing

that implements the proposed unified monitoring model.

• We conduct extensive experimental evaluation of Osmotic Monitoring system in

order to study the scalability of the proposed solution.

The rest of this chapter is organised as follows: Section 5.2 presents a related work.

Section 5.3 presents monitoring microservices in osmotic computing (edge to cloud).

Section 5.4 presents experimental evaluation. Section 5.5 presents the conclusion and

future work.

5.2 Related Work

Several works already published have explored topics related to service monitoring,

as well as models and metrics for QoS assurance. Whether in the cloud [71], using

microservices [25] or even in monitoring services at the edge [24], varied solutions and

results have been presented.

The proposed monitoring model is an extension of the CLAMBS [71]. The CLAMBS

was selected cause is a multi-cloud monitoring tool that can be used on several oper-

ations systems, including container images. The feature of multi environments sup-
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ported by CLAMBS is very important to monitor osmotic services that will be deployed

in a miscellanea of devices and virtualization technologies.

In [71], the authors present CLAMBS, a framework for monitoring and benchmarking

applications in a multi-cloud environment. In addition, a model for multi-layer moni-

toring in the cloud is presented. In this way, QoS parameters relevant for each cloud

service layer are listed. Finally, an experimental evaluation is performed in the IaaS

level. The work presented here follows a similar approach for defining and experiment-

ing with QoS parameters, although it is different from the use of the cloud and the

edge, besides focusing more on the application level. The microservice monitoring in

the edge environment is reported in the paper presented at [72]. In [72] a state-of-the-

art review of self-adaptive applications using edge microservices and services in the

cloud are performed. The results observed shows that the main parameters of QoS for

virtual machines in the cloud are the usage of: CPU, memory and network.

Finally, the monitoring of services deployed in containers is present in the works [24]

and [73]. In the work published in [24] the authors present a framework called Py-

Mon that uses the Docker management API to obtain statistics of resources used by

containers. Unlike [24], the present study uses libraries to monitor processes inside

the containers, thus allowing the effective monitoring of a container that performs a

multi-service or multi-process environment. The work presented in [73] brings an as-

sessment of the use of Docker containers versus the use of Virtual Machines. To verify

the QoS parameters to be compared for evaluation, the authors monitored the CPU

usage by the installed Docker process, not verifying the parameters of the containers

that are being executed or even of the processes internal to the containers. Moreover,

applications built using the microservices architecture obey a set of rules with the pur-

pose of making the microservice self-sufficient and easily scalable.The implementation

of microservices can be done in several ways, however, the use of containers in the

construction of microservices has attracted significant attention recently. The use of

containers is becoming so popular that it is currently possible to run containers on IoT

devices, such as IoT Gateways (e.g. RaspberryPi). Thus, the challenge of monitoring

containers as well as microservices running within these containers is highly relevant

in the context of osmotic environment.
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In summary, works such as CLAMBS model [71] enables efficient monitoring of services

in a multicloud environment but lacks capability to monitor microservices at the edge.

Current works on microservice monitoring [72] usually focus on single layer monitoring,

i.e., microservices in the cloud [73] or microservices at the edge [24]. Our proposed work

differs from the current approaches by presenting an advanced monitoring solution that

can be used to monitor microservices deployed in Osmotic Computing environment i.e.

the cloud and/or deployed at the edge.

5.3 Monitoring Microservices in Osmotic Computing (Edge

to Cloud)

The proposed monitoring model is an extension of the CLAMBS [71]. In order to

support Osmotic computing environment, several extensions to CLAMBS has been

proposed and incorporated. First, the PUSH communication model between the agent

and the manager was adopted. The choice for this type of communication seeks to

meet the restrictions of the IoT devices, as well as the security barriers imposed by IoT

device networks for external access. Second, it was necessary to define a generic model

of monitoring agents that can be extended to include support for new devices, for this

was modeled a SmarAgent that would be extended by the specific agents, namely:

ProcessAgent, SystemAgent, NetworkAgent and DeviceAgent. Third, we incorporate

the concept of Smart Agent for devices that have a permissive computational power.

Generally IoT devices have limited computing power and focus on the resolution of

the sensing or actuation for which they are intended. However, some devices (sen-

sors/actuators) have a more robust and computationally capable hardware such as

they have connectivity through WIFI. In order to allow improved monitoring of these

devices, the smart agents have two main abstractions: Gateway Agents and Sensor

Agents.

5.3.1 Monitoring Model

Monitoring systems are commonly composed of monitoring agents and management

services. Normally, monitoring agents are components that only read data from mon-
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itored services or machines. The management services store the data collected by

the agents and expose this data via API or through graphical interfaces for system

administrators.

5.3.1.1 Monitoring Agents

Usually the deployment and configuration of the monitoring agents are performed

manually, each agent being specific to the target monitoring architecture. Monitor-

ing agents (OMA) on the other hand are multi-platform monitors agents based on a

Multi-cloud monitoring model. OMA supports monitoring of microservices implanted

in osmotic environment comprising of heterogeneous cloud and / or edge resources.

All monitor agents extend a common agent, called SmartAgent as described earlier.

SmartAgent represents a service consisting of three operations: 1 - register, 2 - send-

Data, 3 - setConfiguration. The register operation must make an HTTP PUT request

that sends the agent registration information to the management system. The send-

Data operation must periodically perform an HTTP POST request to the management

system to send the metrics obtained. SetConfiguration must send an HTTP GET re-

quest to the manager system to obtain the agent configuration parameters. Figure 5.3

shows the communication model used by the Osmotic monitoring agents. The first

action performed by these is the agent registration with the Manager. After this, the

manager can receive the data sent by the agent (action 2), as well as (action 3) can

modify some agent configuration parameter.

The SystemAgent and NetworkAgent agents are the most commonly found in the mon-

itoring tools. SystemAgent monitors the system as a whole, for example, a virtual ma-

chine or a container. NetworkAgent is responsible for network monitoring. Although

network metrics can be related to a single system, which would lead to the inclusion

of these metrics in the SystemAgent, the possibility of multiple network interfaces in

one system justifies the need for the NetworkAgent. ProcessAgent is responsible for

collecting metrics related to a specific process running on a system. This type of agent

is already present in most virtual machine monitoring tools in a cloud environment.

As for the monitoring of processes executed in containers, the current tools focus on

the monitoring of the container itself. The execution of only one process per container
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is the most common scenario in the construction of applications in microservices, how-

ever, in an osmotic environment the use of several containers can make it difficult to

migrate from the cloud to the edge or vice versa in a way that is monitoring of multiple

processes in the same container. Therefore, this work has built a ProcessAgent that

can run internally to the container. Finally, DeviceAgent handles the collection of

metrics or data from IoT devices. IoT devices increasingly see improving processing

power, so some of these devices need to be monitored. The monitoring of the IoT de-

vices can serve for simple gauging of acquired data, availability, as well as, to prevent

failures of misuse of the device.

5.3.1.2 Manager Agent

Figure 5.3: Agents to manager communication model.

The Osmotic monitoring data management agent is called SmartManager. Smart-

Manager basically performs various services that receive the data from the monitor-

ing agents. The data obtained is persisted in a database or data storage services.

SmartManager must also provide an API for accessing data saved by other services

or other applications. The sending of data by the monitoring agents to the manage-

ment system occurs according to a well defined sequence of steps (Figure 5.3). Initially,

SmarAgent on startup sends a registration request to SmartManager. The SmartMan-
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Table 5.1: List of the configuration parameters and values.

Parameter Value
Cloud service provider AWS
Cloud service provider location UK South
VM t2.medium type
Operating system Ubuntu:14.03
Docker platform Version 17.06.1
Tomcat Version 7
Mongodb Version 4.3.5
MySQL Version 5.7
Java Version 8
Apache JMeter Version 5.4.1
SIGAR Version 1.6
RaspberryPI 1 Model B

ager receives the request (1-Register) and registers the SmartAgent, returning to the

SmartAgent an access key and an endpoint to send the data. From there, the Smar-

ManagerExecutor (2-Push) is enabled to receive the data sent by the SmartAgent.

SmartAgent periodically queries SmartManager for its configuration parameters (3 -

Change Configuration). Dynamic configuration enables real-time agent management.

It is expected that applications deployed in an osmotic environment will have a degree

of self-management. Mainly, in cases of self-managed microservice migration between

the cloud and the edge. In this way, the real-time management of the monitor agent is

highly relevant, since it allows the application that makes use of the monitored metrics

to change the agent at runtime.

5.3.2 Osmotic Monitoring: System Implementation

List of all the configuration parameters and their values is shown in Table 5.1. We

have chosen the latest version available of the selected values at that particular period

of time, like MySQL, Mongodb, etc. More details will be discussed in section 5.4.2.

In order to validate the monitoring model presented previously that underpinned the

development of the osmotic monitoring system, was implemented a proof-of-concept

solution for monitoring microservices in the osmotic computing environment. The

implementation was performed in the Java language, making use of the RESTLet
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framework and the Hyperic SIGAR library (https://github.com/hyperic/sigar). The

use of the Java language allows the construction of a multiplatform solution, easily

transferable in multicloud environments, being still compatible with some equipment

of edge computing. The RESTLet (https://restlet.com/) is a framework that facilitates

the construction of WEB API in Java. RESTLet provides a set of abstractions for

the development of REST architectural style APIs. Rest API is a standard between

several container monitoring tools [72] and encourages the integration of applications,

as well as composite microservices.

The metrics adopted for the monitoring of osmotic microservices followed the same

metrics for the SAAS level of microservices in clouds defined in [71, 72]. Although

there may be a discussion as to what level, whether SaaS or PaaS, the osmotic mi-

croservices are better related, the metrics defined in PaaS level [71], namely: Sys-

temUpTime, SystemServices, SystemDesc, Utilization are already easily obtained by

the current monitoring tools containers[72]. The choice of parameters of the level of

SaaS is corroborated by the premise that each microservice is directly related to an ap-

plication that is deployed on a Container platform such as Docker or Linux Container

(LXC). Thus, the metrics used for the monitoring model were: CPU usage, memory

usage, amount of free memory, the amount of bytes being downloaded, amount of bytes

being uploaded, and availability. The availability metrics were applied to two different

scopes, the system (microservice or container) and device scopes. Table 5.2 presents

the API specification of the smart manager to support monitoring data provided by

the monitoring agents.

The metrics have been grouped by Application, that is, any data sent to the Man-

ager API must indicate to which application (parameter [app] the URL) that element

(process, system, network or device) is bound. In this way, it is possible to provide

an overview of the monitoring of the elements used in the execution of a specific ap-

plication, even though this application has several microservices deployed in various

cloud and/or edge environments. All data-sending calls to the Manager API are made

up of HTTP POST requests to the specific Path, for example to send process data

the request would be in the Path [app]/process. The metrics monitored for the pro-

cesses were the percentage use of the CPU and the amount of memory used. The
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Table 5.2: Monitoring metrics provided by smart manager

Scope Metric API Path
Process % CPU [app]/process/
Process Memory Usage [app]/process/
System Memory Usage [app]/system/
System Memory Free [app]/system/
System Avaliability [app]/system/
Network Rx Bytes [app]/network/
Network Tx Bytes [app]/network/
Device Avaliability [app]/device/
Agents - [app]/agents/

first metric captures the CPU usage percentage of a process for a specific application

and the second the amount of memory used by the process in MegaBytes. Within

the monitoring model presented in section 5.3, the SystemAgent element represents

a complete system, that is, it can represent a Virtual Machine (VM), a container or

microservice within an osmotic computing environment. This work treated a system

as a microservice or a container, when the microservice is fully contained in a container

(see Selection Microservice on Figure 5.2).

However, when the microservice is distributed in more than one container (see User

Microservice on Figure 5.2), it consists of two systems, one for each container. The

data monitored for the system elements were: amount of memory used, amount of free

memory and availability. The amount of memory used registers the use of memory

in MegaBytes for all the processes that are running on that system. The amount

of free memory registers the available memory for use by the System. And, finally,

availability assesses whether the System is accessible and available. Network usage

metrics captured include the amount of bytes in KiloBytes downloaded (RX Bytes)

or uploaded (TX Bytes) by a system or a network interface in an instant of time. The

last monitored data was the availability of a device used by the application. This

metric only shows the true or false value and its implementation is very specific for

each device. For example, in our evaluation it was necessary to use a specific XloBorg

[141] sensor library to check device availability.

The agent running in the container, VM and or any system that hosts the microservice
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captures the metrics explained above and sends it to the Smart Manager for further

processing. The received data is stored in a MongoDB [142] database in the JSON

format. The data stored on MongoDB are grouped by application and identified by

the type of agent and the unique key of the agent. For example, for any metric

(Process, System, Network, etc.) stored in database the recorded data is composed by

the identifier of the document, application, agent-key, agent-type, and timestamp. The

application identifies the application. The key-agent represents the agent’s unique

key. The type-agent represents the type of agent. At last, the timestamp stores the

instant the metric was saved. Added to these attributes follows the attributes specific

to each type of agent. In other words, if the metric is referring to Proccess beyond the

aforementioned attributes, the attributes are added: the process-id and process-name

attributes identify the monitored process, while the process-CPU and memory-used

attributes represent the metrics values.

Each monitoring agent must make an initial registration for sending monitoring data.

The agent registration is done through an HTTP PUT request to the Path [app]/agents.

The configuration attributes required for the registration of an agent are: agent-type,

access-key, access-password, and application. The application is informed directly in

the URL. The agent-type, access-key and access-password are informed in the request

body. The agent-type tells the agent type so that the manager selects the correlated

endpoint. The access-key and access-password attributes are used for agent authen-

tication. Every time that the Manager processes an agent registration request, an

endpoint, an agent-key, and a read-frequency are returned to the agent. The endpoint

identifies the Manager Service that will handle POST sending requests for the agent.

The agent-key uniquely identifies the agent and ensures that the agent has been cor-

rectly registered. The read-frequency indicates the time interval the agent should wait

for each request to send data. If the Manager deems its necessary to modify any of the

returned parameters, it only sends new values when the agent sends an HTTP GET

request to the Path [app]/agents to verify that the attributes have not been changed.

The specific implementation of agents: ProcessAgent, SystemAgent and NetworkAgent

basically made use of the Hyperic SIGAR library. SIGAR is a multiplatform library

(Unix, Win, Solaris, FREEBSD, MAC OS, etc) written in Java that provides an
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functionalities for accessing operating system information. Although the use of the

SIGAR library has been presented in the work [72], the present work explores the same

library in the monitoring containers as well as virtual machines. The use of SIGAR

in the construction of the aforementioned agents is relatively simple, being composed

of the instantiation of an object of class org.Hyperic.sigar.sigar and the invocation of

methods present in this abstraction. For example, for access to CPU usage of a process

it is enough to invoke the getProcCPU method, informing the process id (pid). To

access information about the system memory it is necessary to invoke the getMem

method.

It is important to note that for the measurement of the network traffic rate, it was

necessary to deploy timed counters since SIGAR only returns the amount of RX Bytes

and TX Bytes of a network interface at a given instant of time. Another change

was the addition of all network data of all interfaces to constitute the traffic of a

system. Agent-specific settings such as which processes to monitor, which network

interfaces to monitor, which the initial endpoint of the manager, and access attributes

were informed in an initial agent configuration file. Thus, an agent developed to

capture and process metrics can be easily reusable in another system. Agents developed

for ProcessAgent, SystemAgent and NetworkAgent can be used on any system that

supports JAVA language version 7 or higher. However, the agents developed for the

DevicesAgent were totally specific to the devices used in the experimental evaluation.

5.4 Experimental Evaluation

An experimental evaluation of the monitoring system described in section 5.3 was

carried out in order to prove the efficiency and efficacy of the monitoring of micro-

services in cloud and the edge. Thus, an initial version of a microservice-based Smart

Parking application (as discussed in section 5.1.1) was developed and deployed in

an osmotic computing environment (edge and cloud). Subsequently, variable load

tests were performed in order to verify if the data monitored reflected the variations

introduced by the corresponding load tests. The tests were not intended to measure

performance, although they may have presented some data relevant to that scope.
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Although a raffle approach is highly recommended in evaluations to avoid cache influ-

ence in performance testing of systems in production, the article focuses on evaluation

to verify the effectiveness and efficiency of the tool in obtaining the monitored met-

rics. That said, further work is needed to indicate the impact of using the tool on the

quality of the metrics obtained, comparing this with other possible solutions.

5.4.1 Monitored Application

The Smart Parking application (as depicted in Figure 5.2) searches for real-time map-

ping of parking spaces available in a city. The citizen as a driver accesses the Smart

Parking to know the best places available according to his personal preferences. The

main use case follows the flow: 1 - the driver travels by a road, 2 - the smart parking

application is notified of the position of the driver, 3 - the job selection service searches

possible available positions, Smart Parking alerts the driver to the vacancies available.

With this scenario in mind, basic versions of the three micro-services specified in the

section have been implemented, namely: User Management, Selection Vacancies and

Parking Management.

User Management (UM) is the service that is deployed to the cloud. It is responsible

for storing user data as well as for providing system communication as the user. User

interaction can occur via an application deployed on your phone. Selection Vacancies

(SV) continuously receives UM job requisition notifications. The incoming requisitions

are processed through a selection algorithm that continuously consults with Parking

Management to check the status of the vacancies. Once the vacancies are defined

the SV notifies the UM. Parking Management (PM) continuously monitors vacancy

status. To do this, it is implanted on the edge and communicates with the IoT sensors

that identify the occupation or the release of a vacancy. Theoretically, the PM must

be replicated between the various parking lots as many times as necessary.

UM, SV and PM are services deployed on the microservices architecture and were

responsible for a very specific functionality as described earlier. Inter-service commu-

nication occurs through a REST API to access its functionality. For experimental

evaluation, specific API call were implemented for each service, namely: for the UM a

call to query the user data; for the PM, a call to consult the vacancies and their states;
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and, for the SV a call that returns a vacancy available to a user when it accesses a

parking lot. All services were developed in Java, running on an Apache Tomcat server

(http://tomcat.apache.org/). For the services UM and PM that require persistence

of contextual data of the entities MySQL (https://www.mysql.com/) database was

employed. The smart parking application with the three microservices were deployed

in containers. The containers were built for execution on the Docker platform [143].

As well, it tried to make the environment of execution of the SV a little more equal,

since the same microservice was executed on a virtual machine in the cloud and in

a RaspberryPi on Edge. Although the deployment of microservices through Docker

Containers is not an unpublished topic, this work explores for the first time the use of

Docker Containers for deployment of the same service that runs in the Cloud or the

Edge.

The use of Containers Docker allows the use of two possible deployment cases, namely:

a container for each microservice or several containers for each microservice. In the

first case (F1) in a same image of the container are installed all the components used

by the microservice. In the second, each component is installed in its own container,

that is, the Tomcat server will compose one container and the MySQL database will

be in another. The second case (F2) most commonly used by users of the Docker

platform since it does not require the construction of specific images, instead using

standard images already available in the Docker HUB catalog of images. Considering

the above two cases, as well as, trying to cover most possible scenarios of execution

of microservices in an osmotic environment, an explicit plan for experimentation is in

Table 5.3. In the cloud environment, the UM micro service can be instantiated by only

one container (F1), scenario C1, or for two containers (F2), scenario C2. Similarly,

the PM service can also be instantiated in scenarios E1 for F1 and E2 for F2. Finally,

the SV service that only requires the use of Tomcat used only the F1 case, although it

presents two scenarios: S1 for the cloud environment and S2 for the Edge environment.

5.4.2 Experimental Design

We used Apache JMeter (https://jmeter.apache.org/) to generate HTTP requests to

test and validate the Osmotic Monitoring system’s capability. The JMeter test cases
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are presented in Table 5.3. The tests consisted of performing 10, 100, and 500 simul-

taneous requests to the Osmotic Monitoring system at a fixed interval of 5 minutes.

Initially, the idea was to increase the load of the tests by 10 times with each new test

battery, however 1000 test requests for the services deployed in RaspberryPi caused

a stack overflow and made the service unavailable. Due to this, the last test was

performed with 500 requests and even with this number of concurrent requests, some

faulty responses were observed in the Edge environment, a fact not observed in the

tests of 10 and 100 requests.

The choice of scenarios took into account different types of implantation of osmotic

services. To be clearer, usually, osmotic services are pure processing or data processing

and storage, thus scenario C1 represents a processing and storage service in the cloud,

C2 being the same as the C1 service being deployed in two containers instead of just

one. The S1 scenario represents pure processing on the cloud and the S2 on the edge.

Finally, scenarios E1 and E2 represent the same as C1 and C2 on edge. The main

purpose of the work was not to perform a performance analysis, although the results

obtained in the comparison between scenarios C1 and C2 indicate that at edge, for

the environment used, the use of Tomcat and MySQL in the same container presented

better metrics than the use of separate containers for Tomcat and MySQL.

The containers with the microservices of the Smart Parking Application, were deployed

in an Openstack1 cloud of the Metrópole Digital Institute2, and in a RaspberryPI3 1

Model B, in the Edge. The cloud used a virtual machine that runs a Linux system

with Ubuntu4, version 14.03, on a virtual hardware with configuration of 2 vCPU, 4

GB of memory and 20 GB of disk. On the virtual machine was installed the platform

Docker in its version 1.10. The UM service in scenario C1 (as described in Table

5.3) deployment was based on the MySQL 5.7 image5 obtained via Docker HUB. This

image included a version of the Java virtual machine, version 8 and the Tomcat server

version 7. The scenario C2 made use of the same image for the container of MySQL

1https://www.openstack.org/
2https://www.imd.ufrn.br/portal/
3https://www.raspberrypi.org/
4https://www.ubuntu.com/
5https://hub.docker.com/ /mysql/
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Table 5.3: Microservice scenarios deployed at Docker

Environment Scenario Microservice Containers
Cloud C1 User Management 1 - Tomcat + MySQL
Cloud C2 User Management 1 - Tomcat, 2 - MySQL
Cloud S1 Selection Vacancies 1 - Tomcat
RaspberryPi S2 Selection Vacancies 1 - Tomcat
RaspberryPi E1 Parking Management 1 - Tomcat + Mysql
RaspberryPi E2 Parking Management 1 - Tomcat, 2 - MySQL

whereas for the container of Tomcat used the image6 for Java 8 and with Tomcat 7.

The same Tomcat image was used in scenario S1 of the SV service. For the Edge

environment scenarios (S2, E1, and E2), here simulated by the RaspberryPI 1 Model

B that runs a Raspbian system in a configuration from a CPU core to a 700 Mhz clock

with 512 MB of RAM and a 4GB SD memory. We used a specific image7 for MySQL

5.7 and another one8 to Tomcat 7. The P1 scenario that used an integrated image

made use of RPI-MYSQL image on which a Java 8 version and a Tomcat version 7

were installed.

The main objective of the experimental design was to produce a computational load

and a network traffic load for the microservices that could be measured by the Osmotic

monitoring system in order to prove the effectiveness of the monitoring model. A raffle

was not carried out in the order of testing or in the choice of scenarios to be prioritized.

The tests were repeated 10 times each to obtain the mean results of the measured

metrics.

5.4.3 Latency Time Results

The average latency time results, in milliseconds, obtained for the requests made in

each scenarios are shown in Table 5.4, as well as the number of Bytes, in KB, sent by

the requests. The values obtained for the latency time clearly reveal the computational

power difference of the Cloud and the Edge, as well as a slightly better performance

of the C2 scenario in relation to the C1. The best result of scenario C2 indicates that

the use of multi container architecture per service exploits the hardware of the virtual

6https://hub.docker.com/ /tomcat/
7https://hub.docker.com/r/hypriot/rpi-mysql/
8https://hub.docker.com/r/dordoka/rpi-tomcat/
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Table 5.4: Request results for analyzed scenarios

Number of
Requests

Scenario
Latency
Avarage (ms)

Bytes
(KB)

10 C1 29.93 0.7
100 C1 36.2 7
500 C1 29.3 35
10 C2 30.83 0.7
100 C2 29.89 7
500 C2 29.26 35
10 S1 35.5 0.7
100 S1 36.89 7
500 S1 73.17 35
10 S2 290.3 0.7
100 S2 6966.97 7
500 S2 10535.53 35
10 E1 97.32 0.7
100 E1 575.29 7
500 E1 4623.52 35
10 E2 118.6 0.7
100 E2 843.67 7
500 E2 6075.03 35

machine more efficiently. Another important note, and that the behavior presented in

the Cloud environment did not recur in the Edge environment. In fact, in the Edge the

behavior was inverse i.e., scenario E1 presented better performance than the E2. Prob-

ably, the workload required to execute more than one container on hardware with little

computational capacity influenced the performance of the microservices. Although the

actual performance observations highlighted here are not the main objective of this

work, the proposed Osmotic monitoring system presents a novel way to monitor the

performance of such microservices in osmotic computing environments. This provides

IoT system administrators who are generally challenged with managing multiple of

such microservices deployed across cloud and edge the ability to clearly understand

the performance of such microservices.

5.4.4 CPU Results

The CPU usage values for all evaluated scenarios are presented in Figures 5.4, 5.5

,5.6, 5.7, 5.8, and 5.9. For an analysis of the results obtained for different scenarios
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in the same environment, for example, for the cloud environment, Figures 5.4 and 5.5

show the percentage of CPU usage for the UM service deployed in scenarios C1 and

C2 respectively. Evaluating only the result for scenario C1, for the tests of 10 and 100

requisitions the presented variation was relatively little from 10% to 30%, whereas for

the one with 500 requisitions it reached 70% of use. For scenario C2, the results of the

variance were similar in behavior, that is, for 10 and 100 the variation was little 2% to

4% compared to the 500 that presented 15% to 25% of use. However, it is important

to point out that comparing the results obtained for C1 and C2, the multi container

microservice architecture had a lower CPU consumption, that is, it presented a better

performance. This performance observation had already been indicated by the analysis

of the latency times of the requests (see Table 5.4).
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Figure 5.4: % CPU usage for user microservice on one container (C1)

For the scenarios similar to C1 and C2 in the Edge environment, that is, scenarios E1

and E2 (see Figures 5.6 and 5.7), the observed behavior was quite different. Again, the

monitoring of the metrics was effective and reflected the increase in CPU usage with

the increase in the number of requests. Specifically for the scenario with a container

running two processes, E1, there was an expressive increase in CPU usage in relation

to the tests with 10 requests, 10% of use, while by 100 the use was 60%. The test

use with 500 requisitions ranged from 60% to 80%. For the E2 scenario that explores
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Figure 5.5: % CPU usage for user microservice on two containers (C2)

a single process running per container, a greater variation in CPU consumption was

observed in relation to the metrics obtained for scenario E1, as well as a considerable

increase of the test of 10, use of 18% for the test of 100, use of 70% to 80%. Still

referring to the E2 scenario, the results of the 100 and 500 requisitions tests showed

little increase in the variation, 70% to 80% of use for 100 and 80% to 90% of use for

500.

The variation in observed CPU usage for the S1 and S2 scenarios reveals a significant

increase in the CPU utilization rate that corresponds directly to the execution period

of our tests. For example, as depicted in Figure 5.8 the percentage of CPU usage by the

SV service deployed under scenario S1 in the Cloud, shows maximum peaks precisely

in the periods that the tests were performed. This same behavior is seen in Figure

5.9 that presents the SV results implanted in scenario S2 in the Edge environment.

Although the increase in usage behavior is not as prominent as in Figure 5.8, the

variation of CPU usage was again measured by the Osmotic monitoring system.
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Figure 5.6: % CPU usage for parking microservice on one container (E1)
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Figure 5.7: % CPU usage for parking microservice on two containers (E2)

5.4.5 Memory Results

The results obtained for the memory consumption (Figures 5.10 to 5.14) although less

explicit or as elucidating as the results of CPU consumption reveal some interesting

conclusions. For example, for the cloud environment in the UM service both the
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Figure 5.8: % CPU usage for selection microservice on cloud (S1)
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Figure 5.9: % CPU usage for selection microservice on edge (S2)

amount of memory used by the MySQL and Tomcat processes and the system was

practically the same in the two scenarios evaluated, scenarios C1 (Figure 5.10) and C2

(Figure 5.11). The only significant increase occurs in Tomcat in scenario C1 in the test

of 500 requests where the amount of memory consumed increase 50%, from 100 MB
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to 200 MB. The MySQL process practically does not suffer memory variation always

consuming 200 MB. Also, system memory variation is very low, with values ranging

from 1500 MB to 1650 MB. Tomcat’s largest change in memory consumption can be

explained by the increase in the number of requests since the requests were always of

the same type, queries to MySQL were always the same, being easily managed by the

database cache.

The graphs shown in Figures 5.12 and 5.13 present results of experimental scenarios

E1 and E2 conducted in the Edge environment. The memory consumption of MySQL

is practically the same in both scenarios, having a value of approximately 50 MB. The

consumption of Tomcat also varied little in the two scenarios, being from 40 MB to 49

MB in E1 and 30 MB to 40 MB in E2. Again, a variation in memory consumption was

observed by Tomcat while it did not occur with MySQL. System process consumption,

system, experienced a similar variation in the two scenarios from 190 MB to 200 MB

in E1 and 260 MB to 270 MB in E2. It is important to note that the same average

variation was observed for the two scenarios, that is, for E1 the variation in the three

tests (10,100,500) was 10 MB, as was the case for E2, a variation of 10 MB. Thus,

the effectiveness of the monitoring system is once again proven, since for the same

simulated tests in the two scenarios the monitored values were the same.

Another relevant observation, and the largest memory consumption in scenario E2,

that is separate containers. Probably the greatest consumption occurs because of the

need to keep the data of specific states of each container in memory. In other words,

whereas the E1 scenario uses only one container (Tomcat + MySQL), the E2 scenario

uses one container for Tomcat and another for MySQL. In E2, therefore, the memory

consumption is specified by the libraries and data container state is duplicated. The

memory consumption of the SV microservice (see Figure 5.14) presented a practically

linear variation in the two scenarios explored. Differently from the absolute values

presented in Figures 5.10, 5.11, 5.12, 5.13, and 5.14 present the results in percent of

memory usage so that we can evaluate the variations of the system’s performance in

both cloud and Edge environments. In the cloud environment, scenario S1, consump-

tion varied from 3% to 5%. On the Edge environment, scenario S2, consumption was

between 7% and 10%. The variation measured by the monitoring system again was
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very similar to the same tests of 10, 100 and 500 requisitions.
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Figure 5.10: Memory usage (MB) for user microservice on one container (C1)
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Figure 5.11: Memory usage (MB) for user microservice on two container (C2)
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Figure 5.12: Memory usage (MB) for parking microservice on one container (E1)
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Figure 5.13: Memory usage (MB) for parking microservice on two container (E2)

5.4.6 Network Results

The results obtained in the monitoring of network traffic by the microservices were

based on the network traffic of the container or the containers where the microservices

were deployed. In scenarios C1, E1, S1 and S2 only the download and upload rate of
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Figure 5.14: % Memory usage for selection microservice (S1 and S2)

a container is presented, while in scenarios C2 and E2 each container is MySQL or

Tomcat has its own traffic rate. The first important observation is precisely related to

the use of the architecture that uses more than one container for the same microservice

because it allows the isolated monitoring of each process of the microservice making

the perception of loadings more effective in these scenarios. Regarding the variation

in traffic caused by the load tests, it was verified that the variation in the requisition

numbers increased the network flow that was correctly registered by the monitoring

system. For the cloud environment, scenarios C1 and C2, the metrics obtained are

shown in Figure 5.15. The traffic for the 10 and 100 requisitions tests obtained little

variation (10 to 80 KB for download or upload) when compared to the 500 test that

you get a range of 400 KB to 500 KB. For the Edge environment, scenarios E1 and

E2, the results presented in Figure 5.16 presented a similar behavior to that described

for the Cloud, where only for the test of 500 requisitions was obtained a download and

upload with significant variance rate. It is worth mentioning the similar behavior of the

two groups of Figures 5.15 and 5.16 as to the change in the download and upload rates

caused by the 10, 100 and 500 tests, especially in relation to the MySQL Container,

where the graphs are practically the same in varying. In the osmotic environment, the

scenarios S1 and S2, the results can be seen in Figure 5.17. The observed behavior
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again reflects the variation induced by the increase in the number of requisitions of

the tests of 10, 100 and 500.
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Figure 5.15: Network traffic (KB) for user microservice (C1 and C2)
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Figure 5.16: Network traffic (KB) for parking microservice (E1 and E2)

Although the results presented above are relevant, the results obtained for the osmotic

service of our application more accurately highlight the effectiveness of our monitoring
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Figure 5.17: Network traffic (KB) for selection microservice (S1 and S2)

system. This behavior, although proven initially by the variation of CPU usage, is

even more evident with the analysis of the variation in memory consumption.

5.4.7 Discussion

The above results validates the capability of the proposed Osmotic monitoring system

in its ability to capture fine-grained performance of microservice-based IoT Application

deployed in osmotic computing environment (cloud and edge), including each individ-

ual microservice of the IoT application, each underlying infrastructure e.g. databases

and the performance of container/VM hosting the microservice. Moreover, the Os-

motic monitoring system accurately captured several variations introduced to impact

the performance of the microservices highlighting the effectiveness of our monitoring

system. For example, the system was holistically able to identify variation in CPU,

memory and network latency across cloud and edge at the application level, microser-

vice level and infrastructure level (e.g. databases, containers, VM) which as identified

in Section 5.2 is currently a significantly limitation with other cloud monitoring solu-

tions. The results obtained for memory consumption and network traffic corroborate

the observations obtained by the use of the CPU and therefore are not exhaustively

- 135 -



Chapter 5: Osmotic Monitoring of Microservices between the Edge and Cloud

explored in this work. However, some relevant observations are made. For example,

memory consumption in the cloud was almost unchanged (only by 500 req.), while at

the edge it was most successful mainly in the E2 scenario. Already the network traffic

only had a big increase in the test of 500 requisitions, although the behavior of the

cloud and the edge has been very similar.

5.5 Conclusion and Future Work

This work presents an integrated system for monitoring applications decomposed in

microservices and executed in an osmotic environment. In its core there is a model for

monitoring the QoS parameters of an application by analyzing microservices executed

in containers in a cloud environment and/or on the edge. This chapter introduces

an smart parking application that runs in an osmotic environment in the context of

smart cities. This osmotic application is used for an experimental evaluation of the

monitoring system in order to demonstrate the effectiveness of the proposed approach.

This case study shows that it is possible to apply our approach for microservices

deployed in osmotic computing environments. Through experimental evaluations we

validates the effectiveness and capability of the proposed monitoring system’s ability

to monitor the performance of microservice deployment using containers and/or VM’s

through an exhaustive list of scenarios. The osmotic monitoring system was holistically

able to identify variation in CPU, memory and network latency across cloud and edge

at the application level, microservice level and infrastructure level (e.g. databases,

containers, VM). The major limitation that can be explored in future works that the

evaluation of the tool’s impact on the execution of applications, regarding the use of

resources by the tool.

Our future work will expand the model, especially for device monitoring, and ensure

an extended evaluation through the execution of new load tests. Also, the raffle ap-

proach is recommended to create a comparative isonomy in an environment closer to

a production environment.
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Summary

In this chapter, we summarize the research work presented in this thesis. Then, we

outline the contributions and discuss open research problems in the field that could

guide future work.

6.1 Thesis Summary

Modern applications can be distributed across multiple cloud environments including

bare metal, public or private cloud depending on several features such as microservices

component requirements, deployment locations, security concerns, cost, etc. Different

cloud providers have their own way of handling deployment and management of mi-

croservices components. Due to the heterogeneity of cloud providers / cloud - edge and

heterogeneous environments (VM/container), monitoring microservices is challenging

as it requires efficient and scalable techniques that undermine the heterogeneity of

underlying infrastructure. Also, despite the strongest scalability characteristic of this

model which opens the doors for further optimizations in both application structure

and performance, such characteristic adds an additional level of complexity to mon-

itoring application performance. Performance monitoring system can lead to severe

application outages if it is not able to successfully and quickly detecting failures and

localizing their causes.

In this thesis, we explored numerous challenges for monitoring microservices in multi-

cloud environment, cloud - edge, and anomalies detection, and we proposed solutions

that ease the monitoring process and detect, identify and locate the anomalies. In

particular, this thesis contributes as:

Chapter 2 presents background information concerning the overall topic, including a

brief description on monitoring, virtualization techniques, microservices, the underly-

ing cloud and edge computing environment, and industry and academic monitoring

tools. A major focus of this thesis is to address the challenges of microservice monitor-

ing and detection in cloud-edge infrastructure. Monitoring regulates the performance

of cloud-based microservices in software and hardware resources. It includes informa-
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tion on the monitoring resource’s status/health, such as the CPU and memory use for

the microservice deployed on the cloud and edge platform.

Chapter 3 presents a generic monitoring framework, Multi-microservices Multi-virtualization

Multi-cloud (M3) that monitors the performance of microservices deployed across het-

erogeneous virtualization platforms in a multi-cloud environment. We validated the

efficacy and efficiency of M3 using a Book-Shop application executing across AWS

and Azure. In addition, we significantly extended M3 by implemented of highway

traffic monitoring services using a cyber-physical system. So, we propose M2CPA - a

novel framework for multi-virtualization, and multi-cloud monitoring in cloud-based

cyber-physical systems. M2CPA monitors the performance of application components

running inside multiple virtualization platforms deployed on multiple clouds. M2CPA

is validated through extensive experimental analysis using a real testbed comprising

multiple public clouds and multi-virtualization technologies.

Chapter 4 presents a Monitoring and Anomaly Detection and Localization System

(MADLS) which utilises a simplified approach that depends on commonly available

metrics offering a simplified deployment environment for the developer. Our data

collection system uses a monitor engine that monitors response time and throughput

in the application layer as well as CPU and memory in the physical layer. We evaluate

our approach through a bookstore web application case study. We finally validate

MADLS to show that MADLS can accurately detect anomalies in response time then

specify the type and location of fault that exists in microservices.

Chapter 5 presents an integrated monitoring system for monitoring IoT applications

decomposed as microservices and executed in an osmotic computing environment. A

real-world smart parking IoT application is used for an experimental evaluation and

for demonstrating the effectiveness of the proposed approach. Through rigorous exper-

imental evaluation, we validate the Osmotic monitoring system ability to holistically

identify variation in CPU, memory, and network latency of microservices deployed

across Cloud and Edge layers.
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6.2 Future Research Directions

We provide motivation for a number of areas of future research, which can be inspired

by the work done in this PhD thesis.

6.2.1 Fault Injector

Fault injection is a method created by researchers and engineers to evaluate the de-

pendability of the hardware or software of computer systems. The fault injection at

the software is less expensive in comparison to hardware as it requires changes at the

software-state level. What really happens after a fault is injected and how a fault

propagates in a software system are not well understood and that’s why we need mon-

itoring to evaluate the loss of performance due to an injected fault. If each containers

have circuit breaker and if isolate this container what does it do for my workload. So,

we can create circuit breaker design pattern where if component or microservices be-

come unresponsive supplier which can run out of critical resources leading to cascading

failures across multiple systems. Future work can provide circuit breaker to isolate the

problem.

6.2.2 Monitoring Containerized Big Data Systems

Modern big data process systems are becoming very complex in terms of large-scale,

high-concurrency and Multiple-talents. Thus, many failures and performance reduc-

tions only happen at run-time and are very difficult to capture. Moreover, some issues

may only be triggered when some components are executed. To analyze the root cause

of these types of issues, we have to capture the dependencies of each component in

real-time. The fault detection in big data systems, however, is very hard due to the

considerable scale, the distributed environment and the large number of concurrent

jobs. The emergent failures happen when the errors exceed the propagation bound-

aries during the interaction among hardware and software components, and can only

be identified at run-time. In order to detect the emergent failures or underlying rea-

sons for the performance reduction, we need to have a comprehensive and consistent

monitoring plan to collect the information from each individual process job, while
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storing, maintaining and analyzing very large volumes of the monitoring data. As

future work, Spark applications will be monitored in Yarn cluster using Docker tech-

nology for big data analytics to collect real-time infrastructure information for each

executor, such as the execution time, progress, status, along with computing resource

metrics, such as CPU/memory usage, bandwidth and disk availability, etc. This work

aims to track end-to-end performance monitoring of big data systems and provide es-

sential information to root cause the reasons for performance reduction in big data

systems in a short time and efficiently by taking advantage of containerization, such

as immutability, utilization, portability, performance and scalability.

6.2.3 Diagnosis Framework for Container-based Microser-
vices with Performance Monitoring using Deep Learn-
ing

In current work, we present Monitoring, Anomaly Detection and Localization System

(MADLS ). This system provides two components: Monitoring component to moni-

tor container-based microservices, and diagnosing component to detect anomalies and

localize anomalies’ root causes. For detection and localization, the system uses the

multi-resolution approach to analyse application performance metrics from the appli-

cation level and container level in stages using supervised machine learning. Future

work can extend our system by using deep learning that is a good at finding those

faulty patterns, which is not in the datasets. Because supervised learning can only

find the known force, the promise of deep learning can find the unknown force as well.

For example, you have an application is running in Amazon and Azure. If something

goes wrong in Amazon, your deep learning fix it and, then your deep learning in the

Azure can learn from it.

6.2.4 Microservice Migration Method to Balance the Work-
load of the Microservices by using Osmotic Services
Composition

Edge computing brings computation closer to the physical world by moving it away

from the Cloud. As a result, the cost of communicating bandwidth between IoT
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devices and the Cloud is reduced. Edge computing, on the other hand, imposes signif-

icant limitations in compute capability due to the devices’ limited hardware capacity.

This limitation may have a substantial impact on the performance of deployed apps,

particularly Smart City applications. This restriction may be exacerbated further by

unpredictability in human behaviour, which may quickly overload the Edge comput-

ing node. Future research, the concept of osmotic computing is to create a dynamic

load balancing platform for Smart City applications. This platform may make use of

containerization, which enables developers to quickly relocate or plan the execution of

microservices across various computing resources on demand.
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