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Chapter 1

Introduction

Notation

Below is a summary of the notation used to describe the statistical framework used in

this chapter. This notation is retained throughout all future chapters.

Notation Meaning

i Site indicator, i = 1, . . . , N

j Covariate indicator, j = 1, . . . , P

P Number of covariates in the SPF

xi,j The value of covariate j at site i

yi,BEF/yi,AFT Observed collision counts in the before/after period at site i

λi Underlying collision rate at site i

ρi RTM effect at site i

κi Trend effect at site i

τi Treatment effect at site i

µi Fitted estimate from the SPF for site i

βj SPF regression coefficient for covariate j

ξi Estimated multiplicative change in collision counts due to trend at site i

γ Overdispersion parameter of the Negative Binomial error structure of the SPF

m/M The iteration count/total number of iterations in an MCMC algorithm

1.1 Motivation

Ensuring and maintaining road safety is an important task facing government bodies

the world over. It is estimated that approximately 1.35 million people die every year
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1.1. Motivation

(one every 24 seconds), making road traffic injuries the 8th largest cause of death glob-

ally [World Health Organisation, 2018]. The dangers of road collisions are particularly no-

ticeable when considering young people, which a 2018 World Health Organisation (WHO)

report claimed was responsible for more deaths of children aged 5-14 and young adults

aged 15-29 than any other single cause. Road Safety by Sweden take this claim further,

claiming that without intervention, road traffic injuries will rise to be the 5th largest

cause of death globally by 2030, in line with increased road vehicle ownership. In order

to counteract this, in 1994 the organisation created the “Vision Zero Initiative” which

has now become part of Swedish law, with the ultimate target being no deaths or serious

injuries as a result of road accidents whatsoever [Traffic Safety By Sweden, ]. In addi-

tion, the United Nations has declared the decade spanning 2011-2020 to be a “Decade

of Action on Road Safety” [United Nations, ], with the goal being to halve the annual

number of global road accident deaths by the end of 2020, where it is hoped around 5

million lives may be saved as a result of this endeavour [FIA Foundation, ]. It is partic-

ularly striking that while high-income countries are home to 40% of the world’s vehicles,

they have only 7% of the world’s traffic related deaths. This is in contrast to low-income

countries which house just 1% of the world’s vehicles yet have 13% of the world’s traffic

related deaths [World Health Organisation, 2018]. This not only demonstrates the role

of well funded infrastructure in maintaining road safety, it also highlights the importance

of improving road safety in poorer areas. To that extent therefore it is important that

for techniques to have the greatest potential to improve road safety globally, they should

not depend on nor assume the large amounts of data/expertise which are only available

in higher income countries.

Clearly there are many arms to this strategy implemented in a variety of ways, however

a key contributor to the overall aims of this project are the safety practitioners working

for road safety organisations, who are tasked with, among other things, deploying and

ensuring the effectiveness of road safety countermeasures. These countermeasures, or sim-

ply “treatments” are usually deployed at set locations, and come in a variety of forms

from schemes designed to alter road users behaviour, such as speed cameras; traffic calm-

ing measures; or behaviour awareness campaigns, to measures designed to improve the

condition of the road segment itself; such as improving drainage in cases of bad weather;

removing any obstructions to driver visibility (e.g. from overgrown plants); to adding

traffic signals at busy intersections. The methods discussed henceforth do not discrimi-

nate between such treatments and can be applied to all such schemes equally (however

in Chapter 2 we shall assume the same scheme has been implemented at multiple sites

across a network), and so we shall focus more on the statistical analysis involved in the

analysis of the road safety treatments, rather than the treatments themselves (however

2



1.1. Motivation

the area of treatment selection shall be looked at briefly in Sections 6.5 and A.1.4).

Whilst the amount of public money budgeted for the management of road safety

appears substantial, for example £175 million was included in the 2017 U.K. Autumn

Statement for the sole purpose of improving safety on the most dangerous roads in Eng-

land [Department for Transport, 2016], the costs of most road safety schemes is also sig-

nificant, for example it is estimated permanent average speed cameras cost £100,000 per

mile [RAC Foundation, 2016].

This represents a substantial investment of public funding, and as such it is important

to ensure these funds are invested in an appropriate way. As will be discussed in this

thesis, the majority of decisions made in relation to funding allocation through things like

countermeasure selection and allocation are primarily data and analysis driven. As such

it is of paramount importance to ensure that techniques used to analyse road safety data

are as effective and efficient as possible.

Naturally, the optimal allocation of countermeasure treatments would be that which

causes the greatest reduction in danger, where here the level of danger shall be assumed to

be represented by the collision/casualty rate directly due to road collisions at a location,

for a given amount of investment. In this regard the collision/casualty rate should not

be viewed in isolation as a determinant of candidacy for treatment allocation. Clearly

locations which would be expected to have a greater number of collisions by their very

nature (e.g. locations where there is a high amount of traffic flow) cannot necessarily be

judged to be a better candidate for treatment than a location which would be expected

to have a low number of collisions (e.g. because it has a particularly low amount of traffic

flow). Therefore from a diagnostic perspective these rates must be viewed contextually,

relative to rates observed at other similar locations, or (if data are available) historic

rates at the same location. Inherent in this attempt to classify locations as dangerous is a

variety of different criteria by which danger can be ascribed e.g. a relatively high collision

rate, a rate which is not abnormally high but appears to be increasing etc. Further

discussion of this is given in Section 5.8.

The challenge of determining the optimal allocation, henceforth described as the issue

of hotspot identification and prediction, requires extensive analysis of road safety data, so

as to best inform the subsequent decision-making. It is not sufficient however to simply

determine where a treatment should be applied, we must also ensure that the treatment,

once applied, is successfully improving road safety, and reducing collision/casualty num-

bers as intended. Again, this challenge of determining the effect of a given road safety

treatment, henceforth referred to as the problem of scheme evaluation, must also make

use of road safety data, so as to clear numerical evidence as to how effective a scheme has

been, and therefore determine whether it should be maintained/implemented at further
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1.2. Regression To the Mean

locations. Unfortunately, this usage of road safety data can be problematic and lead to

biased conclusions if the data are not handled correctly, an effect felt most keenly where

the datasets are relatively small. The main source of such bias is known most commonly

as the regression to the mean effect.

1.2 Regression To the Mean

Understandably, road safety practitioners wish to have an empirical basis on which to base

decisions regarding the implementation and retention of road safety treatments. Hence

they rely largely on road safety data in order to make their decisions (while the role of

intuition of an experienced practitioner familiar with the network cannot be understated,

such experience is not always available). Unfortunately this can lead to problems (exac-

erbated when data are scarce) due to the potential confounding effects of regression to

the mean (RTM) and temporal trends which may be present in the data.

The RTM effect was first documented by Sir Francis Galton in his paper “Regression

towards mediocrity in hereditary stature”, [Galton, 1886], in which he documented the

effect whereby particularly tall parents would have children who were themselves tall, but

not quite as tall as their parents, and hence their height “regressed to the mean” pop-

ulation height. This effect was mirrored in particularly shorter parents whose children’s

height would also regress to the population mean height and hence be slightly taller than

their parents.

The first significant investigation into the RTM effect from a road safety perspective

was by Ezra Hauer, see for example [Hauer, 1980], [Hauer, 1986], and can be defined

in this context as the selection bias induced when a treatment is applied non-randomly,

based on the responses of the individuals that are treated.

In the context of road safety, this can be observed when a site is monitored over a

number of years, and the number of collisions observed in a year recorded. Due to the

extensive number of possible reasons for a collision to occur, this value will fluctuate

stochastically from year to year, despite there being no significant systemic change in the

underlying collision rate determined by the inherent danger of the site itself. The reasons

for this apparent random fluctuation are numerous, with key factors being the element

of human error involved in many collisions, the blame for which cannot be ascribed to

the location at which the error occurred, as well as the inconsistency with which minor

collisions are recorded and reported, thereby inducing an issue of data quality into the

equation. In modern times the ways in which collisions are reported has been standardised

in a bid to reduce data inconsistencies (particularly with regard to collision severity,

see Section 6.4), the human aspect of collision reporting (particularly with respect to
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Figure 1.1: An illustrative example showing how reduction after treatment is applied (in

2008) could be (at least partially) explained by the reduction caused by an extreme value

returning towards a baseline - the RTM effect

insurance premiums) means it is highly unlikely any dataset containing minor collisions

will be perfect.

From a statistical perspective this variation can be thought of as making repeated

observations from a Poisson distribution (since collision numbers are count data) with

a fixed rate parameter λ over some fixed time interval, where successive observations

will fluctuate (on average by
√
λ) despite there being no change in λ. Because of this

fluctuation we occasionally see extreme high and low values, which, because there has

been no change in the underlying rate, will almost always be followed by a less extreme

value, i.e. a value closer to the true mean rate. It is this process of returning from an

abnormal extreme value, i.e. regressing to the mean, that gives the RTM effect its name,

and while the concept itself is simple severe problems can arise if it is not accounted for

appropriately.

Figure 1.1 provides an illustrative toy example of this, in Figure 1.1 we observe a

series of 10 yearly counts, from the years 2000-2009 at a site which has an underlying

rate of 10 collisions per year. In the penultimate year, 2008, we observe an extreme count

of 16 collisions, which assuming the data comes from a Poisson distribution with rate

λ = 10, the probability of observing 16 or more collisions is 0.027 ≈ 1 in 37 chance.

Considering it is not uncommon for practitioners to be monitoring networks made up of

several hundreds of sites, the chance of extreme counts occurring on a network in any

5



1.2. Regression To the Mean

given year is certainly non-negligible. From the black line in Figure 1.1, we propose the

scenario whereby the practitioner does not take action at the site in 2008, and we observe

the RTM effect in the following observation in 2009, with the collision count returning to

the mean value of 10. Problems arise when the abnormal observation is not acknowledged

as such, and treatment is applied (or not applied, in the case of the abnormal observation

being much lower than the mean rate) based on this extreme observation. Such a scenario

is illustrated by the red dotted line in Figure 1.1, whereby after treatment, the accident

count in 2009 reduces from 16 to 8, indicating an apparent treatment effect of –8 (8

fewer collisions due to treatment). However we know that the bulk of this reduction

was due to the effect of the extreme value returning to a baseline level, the RTM effect,

which accounts for –6 of the reduction, with only –2 being the true treatment effect.

This is clearly a problem, since it indicates resources have been wasted on a site where

treatment was not truly required (shown by the reduction without treatment from the

black line in Figure 1.1), potentially meaning a site which was truly dangerous will now

remain untreated in place of this site. Furthermore this would likely lead the practitioner

to have a falsely inflated sense of the effectiveness of the treatment, thereby leading

to it being implemented in the future, when in fact it may not be as effective as first

believed, owing to this effect of RTM correction. While in the case of Figure 1.1, it may

appear obvious that the 2008 count is an outlier, simply by examining the previous 8

points, it is not always possible to have this much data available. In practice this is often

combined with public/political pressure on authorities to respond quickly to events, and so

pragmatic approaches of waiting to collect more data before deciding on treatment are not

always possible. While theoretically, randomised controlled trials of countermeasures are

possible (and some small trials have taken place), it is often considered politically difficult

(particularly given the often heated public reaction to increased presence of speed cameras

for instance) to deploy countermeasures without thorough justification. Any controlled

trial outcomes would also of course be subject to queries regarding the transferability of

the results, between countries or sometimes even between areas within a country where

the road safety system can be substanitally different. The collision counts may not provide

enough information for the practitioner to be confident in their (non-)identification of an

extreme value, particularly when data are limited, it is entirely possible the practitioner

may be making judgements based on a single year’s data, and so must appeal to additional

sources of information in their analysis. It is important to note here that while in the

example above the RTM effect leads to an reduction in collision count, the opposite

case can also be true where a value is unusually low, and hence the RTM effect will

cause an increase in collision count in the next time period. While this is not normally

an issue in the context of scheme evaluation given that normally only locations with
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particularly high collision counts are treated, this is an issue for the problem of hotspot

prediction, and this is discussed further in Chapter 5. The RTM effect is perhaps most

commonly associated with the world of medicine, whereby many analogous examples to

the road safety example described above can occur, for example if a patient presents

with extreme symptoms, is prescribed a treatment and the symptoms reduce, how can

we be certain how much the symptoms may have reduced without treatment? While

this effect, often conflated with the placebo effect, can effectively be accounted for with

a randomised control trial, this is not always possible in the case of extreme treatments

(e.g. invasive surgeries which more frial patients may not be able to survive). For this

reason statistical techniques are required to distinguish a treatment effect by accounting

for confounding factors, and given the similarity between the problems of treatment effect

calculation in medicine and road safety, it is unsurprising to see common approaches used

in both settings, one key example of which is propensity scores as discussed in Chapter 4.

Further examples detailing the RTM effect, and the potential pitfalls it causes, can be

found in [Garćıa-Gallego et al., 2011].

Clearly effects such RTM can be much more easily identified when many years of

data are available at each site, as the identification of unusual observations, and general

patterns in time, becomes relatively simple. However, since as already stated, such data

are not usually available to all practitioners, for this thesis we shall assume a “worst case

scenario”, i.e. where only “before and after” data are available for scheme evaluation stud-

ies, and we have no expert prior information regarding our sites. The only area for which

expert prior knowledge has been used, is in the formulation of some model parameters in

the hotspot prediction model detailed in Chapter 5, however we believe these parameters

to be applicable to all hotspot prediction datasets, and so the assumption of no dataset

specific expert prior knowledge remains valid. Should additional information be available,

this can easily be incorporated into the methods discussed throughout, however they are

not a requirement, with this decision being made so as to make the methods proposed here

useful for as many situations as possible. As such, for the purposes of model comparison,

we shall focus chiefly on those which operate within a similar setup, that is models which

have similar data requirements. This is again to keep in line with the principal aim of

this research, to provide strong statistical methodologies for road safety analysis, which

are as versatile, and thus as widely applicable, as possible.

1.3 Safety Performance Functions

As discussed in Section 1.2, in order to address the issue of identifying unusual collision

counts in data, practitioners can instead appeal to additional sources of information, in
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the form of characteristic information regarding the sites on their network. The character-

istic information can take any form (see [Wang et al., 2009], [Park and Abdel-Aty, 2016],

and [Hanson et al., 2013] for studies using a large variety of characteristics). Common

examples include:

• Average annual daily traffic (AADT)

• Speed Limit

• Average observed daily speed

• Percentage of drivers exceeding the speed limit

• Segment length (if sites are not designed to be of equal size)

• Road classification

• Road type

• Site location (e.g. Urban/Rural, Link/Intersection etc)

• Lane width

We can then use this characteristic information in order to determine what a “typical”

collision count at a site displaying a given set of characteristics would be, by way of a

regression model typically referred to as a safety performance function (SPF), or some-

times an accident prediction model (APM). There is extensive research in the literature

detailing a variety of ways to construct SPFs in different scenarios, the simplest and most

straightforward of which, is a standard log-linear GLM with P covariates, i.e.

µi = exp (β0 + β1xi,1 + . . .+ βPxi,P ) (1.1)

where βj is the fitted regression coefficient for characteristic, or covariate, j, β0 is the

fitted constant term, xi,j is the value of covariate j at site i, and µi is the fitted collision

count obtained by our model for a site displaying the set of covariates X i. We note here

that µi can be considered an estimate of λi provided by other sites via the SPF. When

considering models over multiple time points we would expect the SPF estimate to vary

also, be it due to a temporal trend effect built directly into the model (see Sections 4.5

and 5.4) or through varying covariate levels between time points. The covariates we shall

analyse in this thesis are static, and so for notational convenience we do not include

a time indicator on each covariate value, although it should be assumed in cases where

variables vary in time, a time indicator should be added xi,j,t to denote the covariate value

in time t. The implicit assumption in this form of modelling is that our errors will be

8



1.3. Safety Performance Functions

independent conditional on this linear predictor, and so the inclusion of some trend effect is

important when considering the potential temporal correlation present in such data. It is

the fitted value, µ which provides valuable extra information in discerning the approximate

underlying collision rate at a site, and thereby whether any recent observations are likely

to be abnormal or not. However clearly since this is simply an estimate provided by a

regression model, we expect there to be a degree of error involved, in addition we should

not entirely discount data actually observed at our site simply because we think it may

(at least partly) be abnormal. Methods for combining the two sources of information are

discussed extensively in Chapter 2.

In order to maximise the versatility of the research carried out here, we shall, for the

most part, retain a log-linear SPF (Equation (1.1)), so as to avoid placing any unnecessary

data restrictions and allow the methods to be applied to as wide a variety of datasets

as possible. However, as mentioned previously, there are a large variety of other SPFs

available in the literature, many of which have been tailor-made to the area in which the

study is taking place. Some bear a very close resemblance to the log-linear SPF described

above, e.g. [Greibe, 2003] appear to place greater significance on the AADT covariate

(seen as being the most important covariate in estimating road safety), and use an SPF

of the form,

µi = Qβ
i exp (β0 + β1xi,1 + . . .+ βPxi,P )

where Q is the AADT value, and β denotes an elasticity parameter, essentially incorpo-

rated to avoid the assumption of a linear relationship between collision rate and AADT.

This model occasionally appears in epidemiology studies, where β is set to equal 1, leav-

ing Q as an offset parameter, with the response variable providing the expected morbid-

ity.mortality rate for a given disease. While this seems sensible, this can be shown to

be exactly equivalent to the standard log-linear SPF given in Equation (1.1) by taking

AADT on the log scale, i.e.

µi = Qβ
i exp (β0 + β1xi,1 + . . .+ βPxi,P )

= exp
(

log
(
Qβ
i

))
exp (β0 + β1xi,1 + . . .+ βPxi,P )

= exp (βlog (Qi)) exp (β0 + β1xi,1 + . . .+ βPxi,P )

= exp (β0 + β1xi,1 + . . .+ βPxi,P + βlog (Qi))

which, subject to relabelling, is the same form as Equation (1.1). While AADT is often

regarded as a highly important predictor variable, chiefly because it largely controls the

risk exposure (clearly a location with a high AADT has more chance of a collision occur-

ring than a location which has next to no vehicles passing it), it is often costly to measure

AADT at all locations on a network. As such it is relatively rare for road safety practi-

tioners (particularly in less affluent areas) to have access to AADT data for inclusion in

9



1.3. Safety Performance Functions

their SPF. Traffic models are available which provide an estimated AADT which could

be included, however there we introduce additional error into the model based on the

accuracy of these simulations. In light of this it is common for other categorical variables

(e.g. road class, urban/rural location etc) to act as proxies for AADT in an SPF, as these

variables are often highly correlated with AADT anyway.

The SPFs described above are examples of fixed effects models, whereby the model

coefficients are assumed constant across all sites being analysed. We can relax this as-

sumption in a variety of ways. One approach would be to add a randomly distributed

site specific term to the SPF to account for heterogeneity between sites, due to factors

not included in the SPF i.e.,

µi = exp (β0 + β1xi,1 + · · ·+ βPxi,P + σi) , (1.2)

where σi is our site specific effect, independent of the regression coefficients β. This model

is sometimes referred to as a random parameters or random effects model [Chin and Quddus, 2003]

[Hou et al., 2018] [Agbelie, 2016] or a random intercept model since the site-specific term

is constant with respect to the other parameters and so simply affects the intercept of the

link function, i.e.

µi = exp
(
β′i,0 + β1xi,1 + · · ·+ βPxi,P

)
,

where β′0,i = β0 +σi. Technically the model described in Equation (1.2) is a mixed effects

model, since all regression parameters aside from the intercept, β−0 = (β1, . . . , βP ) are

constant across all individuals, and hence are fixed effects. We can extend the generali-

sation of our model further by allowing not only the intercept to be site-specific, but the

other model parameters also, giving rise to a fully random effects model,

µi = exp (β0,i + βi,1xi,1 + · · ·+ βi,Pxi,P ) (1.3)

There are a variety of mechanisms by which we can arrive at a random effects model.

A common idea is to subset the collision dataset from which the SPF is obtained into

separate components, usually with respect to binary categorical variables, (or occasionally

small geographical areas), sometimes known as small area estimation [Ghosh et al., 1994].

After subsetting, SPFs are fitted independently to each subgroup of the dataset, using

any remaining explanatory variables not used to form the subgroups of data. Hence each

site i has SPF form given by Equation (1.3) where each element of the coefficient vector

βi = (β0,i, . . . , βP,i) is shared among all sites i in the same subgroup. Potential issues with

this approach arise in the case where there are uneven splits in covariate distribution,

leading to a subgroup(s) which does not contain enough data to properly fit a model.

Further practical issues can include knowing which covariates to use to subset the data,

and which to retain to be coefficients in the SPF. One particular advantage of considering
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a random effects model for µi is the potential for this to account for overdispersion in

counts, an issue discussed later in Section 1.4, and is particularly prevalent when modelling

casualty (as opposed to collision) counts, as discussed in Chapter 2.

Alternatively, should the dataset span a large area, the subsetting may take place

geographically, as in distinct SPFs are fitted to sites grouped by their geographic region,

as opposed to solely by categorical covariates, however the same procedure and warnings

apply (see [Li et al., 2017]). Clearly subsetting in this manner can lead to modelling issues,

since if there are a relatively small number of sites with a given combination of covariates

(common in cases where there is a significantly uneven split in covariate makeup, or

where the data has been subsetted too many times), there may not be sufficient data to

reliably fit one or more of the SPFs. Because of this it is not straightforward to advocate

general advice on data subsetting, a problem which is discussed further in Chapter 4.

An alternative approach to deriving a random effects model based on geography, which

does not require subsetting and hence avoids the issues outlined above, is geographically

weighted regression.

The implicit assumption made when fitting models such as fixed effects models like

Equation (1.1), or mixed/random effects models based on subsetting, is that the covariate

effects are constant among all sites, or at least sites within the same subgroup. It is not

difficult to conceive of scenarios where this assumption could prove false, for instance it

would be realistic to suppose the safety level of a coastal town would be different to that

of a large capital city, and so a single Urban indicator variable, such as the one included

in the Halle dataset in Chapter 5, would not be constant throughout the network.

To overcome this, we can loosen the restriction of a single, global covariate effect

vector β across the network/subgroup, instead allowing each covariate effect to depend

on spatial position, and so in effect replace equation (1.1) with,

µi(t) = exp
(
β0 (ui, vi) + β1 (ui, vi)x1,i + . . .+ βnpxnp + βtt

)
. (1.4)

where ui and vi are the respective longitudes and latitudes of site i, a model structure

known as geographically weighted regression [Liu et al., 2017] [Li et al., 2013]

[Gomes et al., 2017]. Clearly since we are attempting to implement a weighted regression

analysis, we require a weight function to determine the weighting given to each observation

when calculating the vector of regression coefficients, β(u,v). A variety of inverse distance

weight functions can be used, with the most common being the Gaussian,

wi,j = exp

(
−
d2
ij

b

)
,

where wi,j is the weight given to data at site j in fitting with SPF at site i, dij is the

distance between sites i and j, and b is the bandwidth parameter which needs to be esti-

mated. In R the spgwr package calculates the bandwidth for a given dataset numerically
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by selecting the bandwidth value which minimised the cross validation score. The decision

of how to define the distance dij can depend on the type of geographic effects expected

in the dataset, where if the sites are in a location where general geographical/climatic

features are likely to affect the data, the geographic distance between the two points may

be most suitable. Conversely if the geographic conditions remain largely constant across

the dataset, more local/infrastructure based changes may be better detected by defining

dij to be the shortest link distance between sites i and j.

A key issue regarding the implementation of SPFs concerns the sites on which they are

built. It is standard statistical practice when fitting regression models to try and avoid

extrapolation, i.e. to attempt to ensure that the dataset on which a model is built is

sufficiently “similar” to the data points on which it is then applied and inferences drawn.

This issue is prevalent in road safety analyses, particularly scheme evaluation analyses

(Chapter 2), although many authors/practitioners to not pay heed to it, either failing to

verify the suitability of the sites from which they build their SPFs, referred to as “com-

parison” sites in the context of scheme evaluation, or use so called “off the shelf” SPFs (a

common example being the CMF Clearinghouse used alongside the Highway Safety Man-

ual (HSM) by practitioners in the USA [U.S. Department of Transportation, ]), which

provide no guarantee of relevance to the sites being analysed. Despite their prevelance

among practitioners, problems with using approaches such as the HSM have already been

discussed in the literature, see for example [Shirazi et al., 2016], [Park and Sahaji, 2013]

and [Farid et al., 2016]. The exact nature of the danger posed by neglecting this require-

ment of site suitability when fitting SPFs is discussed further, and numerically demon-

strated, in Chapter 3.

1.4 Modelling Overdispersion

Throughout this thesis we shall be attempting to model and predict road collision counts

at various points along a road network. These will clearly be count data, with a widely

used model for count data being the Poisson distribution, that is

Y ∼ Po (λ) , λ > 0.

A key feature of a Poisson random variable, is that it has mean equal to its variance,

E (Y ) = Var (Y ) = λ,

which imposes a strong restriction on the dispersion of data we can use the Poisson

distribution to model. In many cases, with road traffic collisions being among them, this

12



1.4. Modelling Overdispersion

assumption of equality between mean and variance is often not met, but rather we observe

a situation where the variance is proportional to the mean,

Var (Y ) = θλ, θ > 0,

with the most common case in road safety, being the case where θ > 1, leading to

overdispersion,

θ = 1 + γ, γ > 0,

where γ clearly controls the severity of the excess variance, and so is typically referred to

as the overdispersion parameter. There are cases where the data would be underdispersed,

θ < 1, typically in situations where there are excess zeroes in the data, however this may

be accounted for using a zero-inflated Poisson model, which accounts for excess zeroes

conditional on the linear predictor (in this case µi). The case where θ = 1 returns the

standard Poisson model.

One approach toward acknowledging overdispersion is through the Bayesian paradigm

whereby instead of treating λ as a fixed value, we allow it to vary according to a specified

prior distribution. We retain the same distribution for collision count Y , however in this

case this distribution is conditional on λ,

Y |λ ∼ Po(λ), λ > 0.

A convenient choice of prior distribution for λ is the Gamma distribution, since this is

the conjugate prior for Poisson distributed data, thereby allowing an analytic posterior

distribution for λ to be obtained. Hence we have

λ ∼ Ga(α, β),

which has density g(λ) given by

g(λ) =
βα

Γ(α)
λα−1e−βλ, α, β > 0.

Hence we can obtain the unconditional distribution of Y , f(Y ),

f (y) =

∫
Λ

f (y|λ) g (λ) dλ, i = 1, · · · , n,

=

∫ ∞
0

λy

y!
e−λ

βα

Γ(α)
λα−1e−βλdλ,

=
βα

Γ(α)y!

∫ ∞
0

λy+α−1e−(β+1)λdλ

By considering that if X ∼ Ga (y + α, β + 1) then X has density given by,

f(X) =
(β + 1)(y+α)

Γ (y + α)
xy+α−1e−(β+1)x, x > 0,
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1.5. Bayesian Inference

and since f(X) is a PDF we have
∫∞

0
f(X)dx = 1 and so,∫ ∞

0

λy+α−1e−(β+1)λdλ =

∫ ∞
0

(β + 1)(y+α)

Γ (y + α)

Γ (y + α)

(β + 1)(y+α)
xy+α−1e−(β+1)xdx,

=
Γ (y + α)

(β + 1)(y+α)

∫ ∞
0

(β + 1)(y+α)

Γ (y + α)
xy+α−1e−(β+1)xdx

=
Γ (y + α)

(β + 1)(y+α)
× 1

=
Γ (y + α)

(β + 1)(y+α)
.

Hence we have

f (yi) =
βα

Γ(α)y!

Γ (y + α)

(β + 1)(y+α)

=
Γ (y + α)

Γ(α)Γ (y + 1)

(
β

β + 1

)α(
1

β + 1

)y
=

(
y + α− 1

y

)(
β

β + 1

)α(
1

β + 1

)y
which we recognise as the probability mass function (PMF), f (y) = Pr (Y = y), of a

Negative Binomial random variable and hence

Y ∼ NB

(
r = α, p =

1

β + 1

)
.

We have free choice of hyperparameters α and β. Choosing α = γ and β = γ
µi

gives rise

to the Empirical Bayes methodology for safety scheme evaluation, discussed in Section 2.2.

1.5 Bayesian Inference

The majority of the statistical inference carried out in this thesis will be done within

a Bayesian framework. Within the Bayesian paradigm, all modelling parameters and

variables are considered equally to be examples of random variables, our beliefs and

knowledge about which are described individually through probability distributions, and

collectively through joint probability distributions. The choice to operate within the

Bayesian framework provides many advantages, chiefly an enhanced natural framework

for incorporating uncertainty in models and parameters, along with the potential for

inclusion of expert prior information, a component which is crucial in small data problems,

like those this thesis shall mainly focus on.

The main result of Bayesian statistics is Bayes Theorem which states that the posterior

distribution of Θ, denoted π (θ|x), a vector of random variables, can be obtained by
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multiplying the prior distribution of Θ, π(θ), with the likelihood obtained by observing

data x, L (x|θ), and dividing by a normalising value constant with respect to Θ, f(x). In

formula form this is,

π (θ|x) =
L (x|θ) π (θ)

f (x)
.

Oftentimes the normalising constant is omitted from Bayes Theorem and it is sufficient

to say that the posterior distribution is proportional to the prior distribution multiplied

by the likelihood,

π (θ|x) ∝ L (x|θ) π (θ) . (1.5)

1.5.1 Markov Chain Monte Carlo

When carrying out a Bayesian analysis, often the primary goal is to obtain a posterior

distribution for the parameter(s) of interest, however unless the model in question is

relatively simple, and/or certain restrictive modelling choices are made, obtaining an

analytic form for the posterior distribution is not possible. Fortunately techniques have

been developed for such cases whereby samples from the posterior distribution may be

obtained numerically. Currently by far the most common mechanism for doing this is by

implementing a Markov chain monte carlo (MCMC) algorithm, of which there are several

kinds. For certain Bayesian modelling structures, such a conjugate models where the

prior and posterior distributions are both from the same distribution family, the posterior

distribution can be obtained analytically, such as the Poisson-Gamma model structure

discussed in Section 2.2. Conjugate and semi-conjugate models can be sampled using a

Gibbs Sampler [Casella and George, 1992], whereby successive posterior elements of θ are

sampled from their respective fully conditional distributions (FCDs) – the analystic form

of the posterior distribution π(θ|x) up to a constant of proportionality, obtained using

Bayes Theorem (Equation (1.5)). Hence the general algorithm for a Gibbs Sampler with

M iterations can be described as,

1. Initialise the chain at its initial value θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
n

)
. Set counter m = 1.

2. Draw a sample for each element of θ from its FCD,

θ
(m)
1 ∼ π

((
θ

(m−1)
2 , . . . , θ(m−1)

n

)
|x
)

θ
(m)
2 ∼ π

((
θ

(m)
1 , . . . , θ(m−1)

n

)
|x
)

...

θ(m)
n ∼ π

((
θ

(m)
1 , θ

(m)
2 , . . . , θ

(m)
n−1

)
|x
)

3. If m = M stop, else set m = m+ 1 and go to step 2.
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The resulting samples of θ form a Markov chain which has stationary distribution equal

to the posterior distribution Π(θ|x). The initial value of θ, θ(0), can be chosen arbitrarily

(commonly the mean of the prior distribution π(θ) is chosen as the initial value) and so

we do not expect this to be a sample from the posterior distribution. Hence the initial

part of the chain which has not reached convergence to its stationary distribution (the

posterior distribution) is often referred to as “burn-in” and is discarded from the final

samples. Because of this it should not matter where the chain is initialised as it should

always converge to the same stationary distribution. Checks of convergence can either

be done numerically, or simply by initialising the chain at different points and ensuring

the chains reach the same distribution by inspecting the traceplots of each element of the

parameter vector θ.

We provide an example of a Gibbs sampler for a conjugate Normal-Normal model with

unknown variance, which in addition to being a standard example of a Gibbs sampler,

we shall also make use of this for an analysis in Chapter 6. In this context it is often

convinient to parameterise a Normal distribution in terms of its precision ν which is simply

the reciprocal of its variance, ν = 1
σ2 . Hence our conjugate model structure is,

yi|µ, ν ∼ N

(
µ,

1

ν

)
, i = 1, . . . , n

µ|ν ∼ N

(
m0,

1

p0

)
,

ν|µ ∼ Ga (g0, h0) .

From this we derive the following FCDs for µ and ν,

µ|ν ∼ N

(
m0p0 + nȳν

p0 + nν
,

1

p0 + nν

)
ν|µ ∼ Ga

(
g0 +

n

2
,
1

2

∑
(yi − µ)2 + h0

)
We demonstrate this using example data,

yi ∼ N
(
20, 32

)
, i = 1, . . . , n,

for n = 100 data points and model this using a conjugate Normal-Normal structure,

Yi ∼ N

(
µ,

1

ν

)
, i = 1, . . . , n

µ ∼ N

(
m0,

1

p0

)
(1.6)

ν ∼ Ga (g0, h0)
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(a) Traceplots for the posterior samples for µ
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(b) Traceplots for the posterior samples for ν

Figure 1.2: Output for a Gibbs sampler for a Normal-Normal model using initialisation

points µ(0) = 18, 21, 22 and ν(0) = 1, 0.5, 0.1 as the black, red and green lines respectively.

and specify vague prior information with the hyperparameter choices m0 = 0, p0 = 1
100

,

g0 = h0 = 1
100

We use varying initialisation points
(
µ(0), ν(0)

)
= (10, 1) and

(
µ(0), ν(0)

)
=

(30, 0.01). Output from these Gibbs samplers is given in Figure 1.2.

Procedures such as Gibbs samplers are only possible to implement when specific com-

binations of prior and data distributions are used to give analytic FCDs, when this is not

the case other methods must be used. One of the most common approaches in this case

is to implement a Metropolis-Hastings (MH) algorithm ( [Hastings, 1970]), which again

produces a Markov Chain which has stationary distribution equal to the posterior distri-

bution π(θ|x). The main difference between MH and Gibbs samplers is that whereas in

the case of Gibbs we sample directly from the FCD, for MH we must propose posterior

values for θ which we then accept with a given probability determined by the observed

data likelihood and the prior distribution for θ. Hence a typical MH algorithm would be:

1. Initialise the chain at its initial value θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
n

)
. Set counter m = 1.

2. For each element θj:

• Sample a proposal value for θj, θ
∗
j from the proposal distribution of θj,

θ∗j ∼ q (·|·)
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• Set θ
(m)
j = θ∗j with probability α,

α = min

(
1,
π (θj)L (x|θ) q

(
θ(m−1)|θ∗

)
π (θ∗)L (x|θ∗) q (θ∗|θ(m−1))

)
else set θ

(m)
j = θ

(m−1)
j

3. If m = M stop, else set m = m+ 1 and go to step 2.

Because of the additional accept/reject component, MH is objectively a less efficient

sampler than the Gibbs sampler and so in situations where a Gibbs sampler can be

used it is always preferable to use this over MH. There are many choices of proposal

distribution q(·|·) which can be used in an MH algorithm, the most common being a

Normal distribution centred on the current value of θj known as a Metropolis random

walk,

θ∗j ∼ N
(
θ∗j , εj

)
.

In the case of a Metropolis random walk – as with any symmetric proposal distribution

– we have q
(
θ(m−1)|θ∗

)
= q

(
θ∗|θ(m−1)

)
and so the components relating to the proposal

distribution cancel out in the formula for the acceptance probability α, meaning they do

not need to be calculated. The parameter εj controls the magnitude of difference between

the proposed values of θ and the current state of the chain, and hence can determine the

efficiency with which the Markov chain produced by the MH algorithm converges to, and

explores and samples from, its stationary distribution which is the posterior distribution

for θ. Values of εj which are too small will lead to proposal values of θj being very

close to the current value, meaning that if the initial value θ
(0)
j is far from the stationary

distribution, the chain will converge slowly and a large amount will be lost as burn-in,

similarly it will lead to a chain with a high level of autocorrelation (correlation between

successive values of the chain) in the chain indicating the posterior distribution is not

being explored effectively. Equally, selecting values of εj that are too large will lead to

proposed values far from the current accepted value of the chain, thereby increasing the

likelihood that unsuitable values of θj will be proposed and hence the acceptance rate

(the number of proposal values that were accepted divided by the number of iterations

of the chain) will be low, again meaning we would not be effectively sampling from the

posterior distribution. Selecting a good value of ε = (ε1, . . . , εn), known as “tuning” the

chain is important, and is often done manually via inspecting traceplots of the elements

of θ and by studying the acceptance rates of the chain, with rates in the range of 20% -

30% considered optimal.

We demonstrate this using the Normal-Normal model described in Equation 1.6 using

a random walk Metropolis algorithm with varying choices of innovation parameter ε.

Traceplots for the parameter µ are given in Figure 1.3.
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Figure 1.3: Traceplots for the Normal mean parameter µ from a Metropolis-Hastings

algorithm with innovation parameter ε = 0.01, 0.5, 2 respectively.

From Figure 1.3 we observe that for ε = 0.01, the chain is too “hot”, it updates very

frequently, with an acceptance rate of 0.80, but the updates are very small, meaning the

chain takes a long time to reach its stationary distribution, with successive samples being

highly correlated, and hence the chain explores the posterior distribution inefficiently. For

ε = 2 the chain is too “cold”, the update changes are relatively very large but there is a

much higher rate of rejection, with an acceptance rate 0.06 meaning we reject 94% of all

proposals, vastly reducing the effectiveness of the scheme. Finally for ε = 0.05 we observe

the chain converges quickly, but maintains a reasonable acceptance rate of 0.24, meaning

we are less wasteful in terms of number of rejections, while maintaining a reasonable size

of update, thereby reducing the autocorrelation of the chain and allowing us to explore

the posterior distribution more effectively. This demonstrates the “Goldilocks principle”

of parameter tuning, whereby we wish to select an innovation parameter which is not too

small nor too large.

For complicated models MH sampling can be inefficient and computationally expen-

sive, although there are adjustments which can be made to improve efficiency, for instance

if posterior draws between different parameters are highly correlated, carrying out a joint

update, whereby proposal values for the parameters in question are sampled simultane-

ously from a joint proposal distribution with a similar degree of correlation may improve

the algorithm’s performance. Recently newer algorithms such as Hamiltonian Monte

Carlo (HMC) ( [Neal, 2011]) have been developed with the aim of providing more ef-

ficient methods of sampling from posterior distributions. In some contexts, the model
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likelihood can be extremely computationally costly to calculate, or in some cases com-

pletely intractable, which has lead to a rise in likelihood-free inferential techniques such

as Approximate Bayesian Computation (ABC) ( [Diggle and Gratton, 1984]) being devel-

oped. Whilst these techniques are not necessary for the models developed in this thesis,

we do take advantage of assumptions inherent in models we develop, mainly that we con-

sider collision counts between sites to be conditionally independent of each other given

the model parameters, to allow us to carry out MCMC updates and likelihood calcula-

tions in parallel, thereby reducing the computational runtime of the MCMC algorithms

implemented.

1.5.2 Quantifying Uncertainty

A defining characteristic of a Bayesian approach to statistics is the interpretation of mod-

elling parameters. Whereas in the non-Bayesian frequentist setting parameters are treated

as having fixed, single values, with uncertainty on these estimates expressed via standard

errors, within the Bayesian setting parameters are treated as having full distributions.

One of the main areas this difference manifests itself is within the area of quantifying

uncertainty on parameter estimates, via confidence intervals within the non-Bayesian

setting, and credible intervals within the Bayesian framework. The purpose of an α%

confidence/credible is to provide values u and l such that

Pr(l < θ < u) = α. (1.7)

Under the frequentist paradigm, this is impossible, since as a parameter θ would take a

fixed value and so the probability it has value between u and l is either 1 or 0 depending

on whether l < θ < u is true or not. In the Bayesian setting since parameters have

distributions, meeting the definition in Equation (1.7) is possible, simply by selecting

values u and l between which α% of the probability density of θ lies. This therefore

provides an infinite number of possible α% credible intervals (for 0 < α < 100) and so

Bayesians often choose to work with the narrowest possible interval, which for a unimodal

distribution will be the range of values containing the highest probability density, known

as the highest density interval (HDI). Examples of credible intervals for a standard Normal

distribution are given in Figure 1.4.

An additional commonly used statistical mechanism for quantifying uncertainty is the

prediction interval, whereas a confidence interval provides a range of values which contain

the mean of a particular parameter which probability α, a prediction interval provides a

range of values between which a future observation will fall with probability α. Within

the context of Bayesian inference we can obtain a full predictive distribution by obtaining

the conditional probability distribution of y given parameter θ over the full parameter
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Figure 1.4: 3 plots showing possible 95% credible intervals for a standard Normal dis-

tribution. The central plot shows the HDI which coincides with the frequentist Wald

confidence interval for a Normal distribution.

space for θ, denoted Θ. If θ is a continuous parameter we can obtain a distribution for a

new value x′ via,

f (x′|x) =

∫
Θ

f (x′|θ,x) g(θ)dθ (1.8)

where f (x′|x) is the predictive distribution, f (x′|θ,x) is the believed distribution of future

values of x and g (θ) represents our beliefs regarding θ. If we have not observed any data x

then our beliefs about θ will simply be the prior distribution for θ, g(θ) = π(θ), and hence

f (x′) will be a prior predictive distribution. Conversely, if we have observed data then

our beliefs about θ will be represented by its posterior distribution, i.e. g(θ) = π(θ|x)

and hence f (x′|x) will be a posterior predictive distribution, which is the predictive

distribution we shall use in this thesis. If θ is a discrete parameter then the integral in

Equation (1.8) is replaced by a summation

f (x′|x) =
∑

Θ

f (x′|θ,x) g(θ)dθ.

From this distribution we can therefore obtain α% predictive intervals in the same way

as for credible intervals, by obtaining limits u and l such that

Pr(l < x′ < u) = 0.95,

i.e. find limits between which 95% of the predictive distribution density lies. Again there

are infinitely many possibilities for this (for 0 < α < 100) and so often we choose the HDI
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1.6. Road Safety Datasets

as the predictive interval. We note here the importance of using a full predictive interval

rather than using a credible interval for the posterior distribution of θ, as this allows

us to account for uncertainty in future observations of x. Similarly we should resist the

temptation to generate a predictive distribution by taking θ as its posterior mean since

this would fail to acknowledge uncertainty in our posterior beliefs regarding θ.

1.6 Road Safety Datasets

Throughout this thesis we shall make use of several real world datasets to demonstrate

the techniques being discussed, and the results that can be obtained.

1.6.1 Northumbria Dataset

In the case of scheme evaluation techniques discussed in Chapter 2 we shall make use of

data provided as part of a study into the effectiveness of mobile safety cameras, provided

by the Northumbria Safety Camera Partnership (NSCP), now the Northumbria Safer

Roads Initiative (NSRI) ( [NSR, ]). This data comprises of 67 non-treated comparison

sites, from which we can obtain the SPF, and 56 sites which were treated by having a mo-

bile safety camera stationed at the site. This data was collected over the years 2001-2003

(the before period) and 2004-2006 (the after period), and is slightly unusual in that it

comprises casualty counts (i.e. the number of people requiring some form of medical treat-

ment as a result of a collision) as opposed to collision counts which shall be the case for the

other datasets, however casualty counts and collision counts are largely interchangeable

with respect to the statistical modelling and so this will not be an issue. Covariate data

were collected at each comparison and treated site for the purpose of training and fitting

an SPF, comprising of continuous covariates which were averaged over their respective

3 year period, categorical covariates which remained constant throughout the data, and

casualty counts which were aggregated. Hence the resulting dataset comprised of a single

casualty count along with single observations for each covariate in the before period at

each of the comparison and treated sites, along with a single casualty count in the after

period at each of the treated sites. The covariates collected were:

• Speed Limit (5 levels: 30, 40, 50, 60, 70mph)

• Mean vehicle speed (mph)

• 85th percentile speed (mph)

• Percentage of drivers exceeding the speed limit

22
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Figure 1.5: Plot of mean speed vs 85th percentile speed from the Northumbria dataset,

showing a high degree of correlation

• Percentage of drivers 15mph over the speed limit

• Average daily traffic flow (in thousands)

• Categorical variable corresponding to the road classification at the site (4 levels: A,

B, C and U)

• Indicator variable corresponding to whether the site was on a single or dual car-

riageway

Clearly from these covariates there is a strong likelihood of multicollinearity, par-

ticularly with respect to mean vehicle speed with 85th percentile speed. The Pearson

correlation coefficient for this pair of covariates is r = 0.97 for the comparison data, with

a plot given in Figure 1.5.

From this we see a high degree of multicollinearity between the covariates, and so

remove the 85th percentile variable (this decision is largely arbitrary, however we chose

to retain the mean over the quantile data since it is informed by all available speed

data). It is commonly known that including highly correlated covariates can lead to

hugely inflated standard errors in the regression coefficients for those covariates, thereby

potentially vastly over inflating the posterior uncertainty in our analyses. This could

further cause imprecise and potentially inaccurate regression coefficient estimates to be

drawn, which in themselves are often useful for practitioners to discern the effect different

covariates appear to have on collision counts on the network as a whole. For model
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1.6. Road Safety Datasets

x1 x2 x3 x4A x4B x4C x4U y

Comparison Mean/Prop. 32.95 35.73 9.13 0.37 0.16 0.30 0.16 4.28

St. Dev. 6.89 29.63 6.48 – – – – 4.77

Treated Mean/Prop. 36.63 38.45 6.92 0.50 0.23 0.18 0.09 7.79

St.Dev 9.90 21.67 6.48 – – – – 5.38

Table 1.1: Table showing the mean and standard deviation of the continuous covari-

ates, and proportion for the categorical covariates, from the Northumbria before-and-after

dataset for the comparison and treated pools of sites

simplification purposes, as in Chapter 5, we elect to use frequentist variable selection

procedures to identify a suitable subset of available potential SPF covariates by removing

those deemed to be non-significant in modelling collision rates. Here we carry out a

backwards stepwise regression to remove non-significant explanatory covariates we found

that speed limit, percentage of drivers 15mph over the speed limit and whether the site

was on a dual carriageway were non-significant Pr(Z > |z|) > 0.05 and so were not

retained in the analysis. Hence we retain the following final covariates:

• Mean speed (x1)

• Percentage exceeding the speed limit (x2)

• Average daily flow (x3)

• Road class (x4A, x4B, x4C , x4U)

Summary statistics for this dataset (along with casualty counts y) are provided in

Table 1.1

1.6.2 Halle Dataset

The dataset used to train the initial hotspot prediction model described in Chapter 5 was

provided by industrial partners at PTV Group [PTV Group, b] and consists of collision

counts and covariates data, collected at 734 nodes over 9 years (2004-2012) in the city

of Halle, Saxony-Anhalt in Germany. This dataset is available through an “Open Data

Commons Open Database Licence”, available at “http://dx.doi.org/10.17634/154300-33”

(contact Newcastle Research Data Service at rdm ncl.ac.uk for access). The covariates

used to train the SPF were all categorical and constant across the four years with the

exception of average daily traffic flow, which was taken from model estimates provided

by PTV Group’s VISUM Safety software [PTV Group, a]. The covariates included are:
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1.6. Road Safety Datasets

(a) The distribution of sites around the city of

Halle

(b) The busiest intersection in terms of traffic

volume in Germany - Riebeckplatz, Halle

• Indicator variable corresponding to if the node was in an urban location (x1)

• Indicator variable corresponding to if the node was at an intersection (x2)

• Indicator variable corresponding to if traffic signals were present at the node (x3)

• Categorical variable corresponding to the speed limit at the node (6 levels: 30, 45,

50, 60, 70, 80km/h) (x4A, x4B, x4C , x4D, x4E, x4F )

• Indicator variable corresponding to if the node was on a major road (x5)

• Indicator variable corresponding to if the node was at a major intersection (x6)

• Indicator variable corresponding to if the node was at a four-legged intersection (x7)

• Natural log of daily traffic flow from the major leg of the intersection (x8)

• Natural log of daily traffic flow from the minor leg of the intersection (x9)

• The year corresponding to each observation (t)

All variables were found to be statistically significant Pr(Z > |z|) < 0.05 and so were

retained in the analysis. Summary statistics for this dataset are provided in Table 1.2

1.6.3 Halle Zonal Dataset

A second dataset from the city of Halle is used in Chapter 6 when modelling collision

severities and causation factors. This dataset is taken over the same time period as the

dataset described in 1.6.2, the 9 years from 2004-2012, but rather than be collision counts

recorded at individual sites, this dataset consists of counts over 59 distinct regions of

Halle. These collision counts are then disaggregated by month s = 1, . . . , 12 and severity
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1.7. Thesis Structure

x1 x2 x3 x5 x6 x7 x8 x9

Mean/Prop. 0.91 0.86 0.27 0.63 0.20 0.24 6.70 3.87

St. Dev. – – – – – – 3.11 3.53

x4A x4B x4C x4D x4E x4F

Prop. 0.37 0.12 0.22 0.18 0.04 0.07

y04 y05 y06 y07 y08 y09 y10 y11 y12

Mean 3.65 3.73 3.57 3.71 3.55 3.64 3.29 3.11 2.97

St Dev. 4.63 4.95 5.07 4.98 4.51 4.80 4.40 4.40 4.57

Table 1.2: Tables showing the the mean and standard deviation of the continuous covari-

ates, and proportion for the categorical covariates, as well as collision counts for all years

for the Halle hotspot dataset

k = 1, 2, 3 (corresponding to collisions which: caused a fatality or serious injury, caused

a slight injury, or caused no injury). The dataset includes the latitude and longitude of

each regions centroid so as to enable a spatial analysis.

1.6.4 Florida Dataset

The dataset used to introduce the idea of seasonal and spatial effects in collision modelling

in Chapter 6 was provided by the Florida Department of Transport [FDOT, 2019] and

contains collision rates (collisions per vehicle kilometre travelled) at 52 traffic analysis

zones (TAZs) across the state of Florida, U.S.A., over 46 years (1960-2015), although a

significant amount of this data are missing, making any kind of longitudinal study impos-

sible. The collision rates are disaggregated by month, allowing a seasonality component

into the model, and the dataset contains the longitude and latitude of the centroid of each

zone, enabling spatial effects to be investigated.

1.7 Thesis Structure

The main bulk of this thesis is devoted to examining two main tasks carried out by road

safety practitioners: road safety scheme evaluation, and collision hotspot prediction. The

aim of this is to investigate and develop methodologies which are as versatile and widely

applicable as possible, to that end we shall focus on methods which:

• Require as little data as possible to achieve sensible results, making no assumptions

or restrictions on the amount of data avilable to a practitioner
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1.7. Thesis Structure

• Avoid specific data requirements with respect to data frequency nor covariate col-

lection, meaning the methods here can be applied to as wide a variety of datasets

as possible

• Are as autonomous as possible, thereby not making any assumptions regarding the

availability of expert prior knowledge and hence making the models as data driven

as possible.

Chapter 2 discusses and compares commonly used methods for scheme evaluation and

their relative advantages and disadvantages, before carrying out a sensitivity analysis on

the estimates of treatment effect. Chapter 3 describes issues arising from the approaches

discussed in Chapter 2, providing a quantified example using simulated data, before Chap-

ter 4 presents novel approaches to overcome them. Chapter 5 discusses the issue of hotspot

prediction, before providing a novel approach to carrying this out, with applications to

real data, and a comparison of other approaches toward hotspot identification. Chapter 6

gives extensions to the model described in Chapter 5, to allow for extra factors including

seasonal and spatial trends, as well as the ability to account for collision severity. Finally

Chapter 7 provides conclusions to the work carried out thus far, and discusses future av-

enues for the research in this project. All statistical analysis in this research was carried

out using the software R [R Core Team, 2019], with models described in Chapters 2 and 5

using the rjags package [Plummer, 2003] to implement the MCMC algorithm.

The main research contributions of this thesis are: an investigation into the usage

of the posterior predictive distribution in scheme evaluation studies (Chapter 2); a nu-

merical demonstration of the effects of non-exchangeable comparison pools in before-and-

after studies (Chapter 3); a new method developing bespoke SPFs using propensity score

weighted regression (PSWR) to overcome issues of reference site selection, which then

incorporates a data-driven parametric approach for trend estimation (Chapter 4); a new,

robust method for hotspot prediction, which downweights observations further into the

past deemed to be less informative, whilst accounting for network wide effects through an

SPF with time component, but allowing site specific deviations from these (Chapter 5);

an extended hotspot model which also allows for the inclusion of seasonal effects, as well

as the incorporation of seasonal and spatial effects to allow information sharing between

observations, with the additional potential to interpolate site specific effects spatially, as

well as account for changes in collision severity and/or factors relating to collisions e.g.

speed related collisions, collisions in a particular weather type etc (Chapter 6).
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Chapter 2

Scheme Evaluation Studies

Notation

Below is a summary of the notation used to describe the statistical framework used in

this chapter. This notation is retained throughout all future chapters.

Notation Meaning

i Site indicator, i = 1, . . . , T (for treated sites) i = 1, . . . , C (for comparison sites)

T/C Number of sites in treated/comparison pools

j Covariate indicator, j = 1, . . . , P

P Number of covariates in the SPF

xi,j The value of covariate j at site i

yi,BEF/yi,AFT Observed collision counts in the before/after period at site i

y′i,AFT Unobserved collision count at site i in the after period in absence of treatment

λi,BEF Underlying collision rate at site i in the before period

λi,AFT Underlying collision rate at site i in the after period

λi Underlying collision rate at site i

ρi,BEF Deviation from underlying rate due to chance at site i in the before period

ρi,AFT Deviation from underlying rate due to chance at site i in the after period

ρi RTM effect at site i

κi Trend effect at site i

τi Treatment effect at site i

µi Fitted estimate from the SPF for site i

βj SPF regression coefficient for covariate j

γ Overdispersion parameter of the Negative Binomial error structure of the SPF

m/M Iteration count/total number of iterations in an MCMC algorithm
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2.1. Motivation

2.1 Motivation

As discussed in Chapter 1, road safety is a topic which is garnering global attention as

an area on which action must be taken. This is reflected in financial commitments by

governments who ringfence significant amounts of funding for projects and schemes to

improve road safety in their country, thereby contributing to the UN target discussed

in Section 1.1. It is clearly important therefore to ensure that these schemes, where

implemented, are efficient and successful in their task of improving road safety by reducing

road traffic collisions. The procedure for investigating and analysing this effectiveness is

carried out via scheme evaluation studies, the aim of which is to discern and quantify the

effect that implementing treatment had on the collision rate, in areas where the treatment

had been implemented.

2.1.1 Regression To the Mean

Clearly treatment effect elicitation would be a trivial exercise if we were to know the

number of collisions which would have taken place at each treated site had treatment not

been applied, since the treatment effect would simply be the difference between this and

the collision counts at the site after treatment,

τi = y′i,AFT − yi,AFT (2.1)

where yi,AFT is the collision count at site i after treatment, and y′i,AFT is the unobserved

collision count in the same period at site i. In reality of course we cannot know y′i,AFT and

so must estimate it in order to elicit a treatment effect. We can do this by performing infer-

ence to elicit a vaue for the underlying treatment effect at site i, λi. The most commonly

used method for scheme evaluation is a so-called before and after study, whereby the same

locations are analysed before and after treatment has been applied, removing between sub-

ject variability from the analysis, and hence simplifying the analysis while improving its

precision (analogous to a crossover trial in medical studies [Jones and Kenward, 2003]).

Perhaps the most obvious method for determining the effect of a treatment at a given site,

would be to simply take the difference in collision counts between before and after the

treatment was applied. For instance at a site i, if we set λi to be the underlying collision

rate and τi to be the effect of treatment, we obtain our estimate of the treatment effect

τ̂i, via

τ̂i = yi,BEF − yiAFT (2.2)
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2.1. Motivation

where yi,BEF and yi,AFT are observations (or perhaps means of several observations) taken

before and after the treatment was implemented, respectively. And hence we have,

E[τ̂i] = E[yi,BEF − yi,AFT]

= E[yi,BEF]− E[yi,AFT]

= λi − (λi − τi)
= τi

and so provided our assumptions regarding the expected values of the collision numbers

in the before and after periods, yi,BEF and yi,AFT, are accurate, we have an unbiased

estimator of the treatment effect, τi.

We can then combine these estimates of treatment effect across all n treated sites to

give an overall estimate of the treatment effect, τ ,

τ̂ =
n∑
i=1

τ̂i.

While this approach intuitively makes sense initially, it is considered a rather naive method

for evaluating treatment effects since it fails to account for the possibility of RTM and

trend in these calculations. RTM is of particular concern in the context of scheme evalu-

ation studies since often the methods by which sites are selected for treatment provide a

textbook example of where RTM can cause problems, namely that treatments are imple-

mented where it is deemed they are most needed, rather than randomly, a clear example

of selection bias. Because of this bias, we are therefore highly prone to treatments being

applied to sites where the the collision count in the before period, yi,BEF was an unnatu-

rally extreme occurence, which would return to a more usual value without intervention

by the RTM effect. In essence we have,

yi,BEF = λi + ρi,BEF

yi,AFT = λi + ρi,AFT + τi

where λi is the true collision rate (our proxy for the level of safety), and ρi,BEF and ρi,AFT

are the random deviations from this rate due to chance. Hence Equation (2.2) becomes

τ̂i = yi,AFT − yi,BEF

= (λi + ρi,AFT + τi)− (λi + ρi,BEF)

= (ρi,AFT − ρi,BEF) + τi,

= ρi + τi. (2.3)
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2.1. Motivation

where ρi = ρi,AFT − ρi,BEF is the RTM effect at site i. If treatments were allocated

randomly we would have

E (ρi,BEF) = E (ρi,AFT) = 0

meaning E (ρi) = 0 and hence τ̂i would be an unbiased estimator of τi,

E (τ̂i) = 0 + τi,

= τi.

However often due to a mixture of social and political pressures (potentially also combined

with a lack of awareness of effects such as RTM) sites are selected for treatment non-

randomly, with sites with large collision counts in the before period almost always the

ones chosen for treatment. Because of this non-random selection we therefore induce a

bias whereby

E (ρi,BEF) > 0

and since sites are selected before the after period, and so the observations in the after

period are not subject to selection bias, and ρi,BEF and ρi,AFT are considered independent,

we retain E (ρi,AFT) = 0 and hence

E (ρi) < 0 (2.4)

and hence τ̂i as defined in Equation (2.2) is no longer an unbiased estimator of τi. As

discussed in the illustrative example in Section 1.2 these extreme deviations from the

underlying rate (i.e. large values of ρi) are not uncommon, and so it is important to

account for these effects in any before-and-after analysis. Clearly if we were able to

estimate ρi accurately, we could adjust our estimates for this and regain an unbiased

estimator for the treatment effect, i.e. if τ̂i = yi,BEF − yi,AFT − ρ̂i

E (τ̂i) = E (yi,BEF − yi,AFT − ρ̂i) ,
= ρi + τi − ρi,
= τi

and so the challenge of before-and-after studies becomes in essence to identify the amount

of observed change from before to after is due to RTM, and remove this in order to obtain

the true treatment effect. We note here that whilst we would expect a reduction in

collision counts due to the RTM effect (Equation (2.4)) it is still possible to have an

increase in collision counts due to RTM, meaning we would underestimate the treatment

effect should RTM not be accounted for. Since E (ρi,AFT) = 0 we estimate the RTM effect

31



2.1. Motivation

via

E (ρi) = E (ρi,BEF − ρi,AFT) ,

= E (ρi,BEF) ,

= yi,BEF − E (λi) ,

i.e. the RTM effect is only present where selection bias has been present. As discussed

briefly in Section 1.2, RTM is by no means restricted to road safety, and is in fact hugely

prevalent in studies of Biology (where it was first discovered/documented) and medicine.

Whereas often medical studies will overcome the issue of selection bias by testing treat-

ments through randomised clinical trials, where identical groups of patients are given and

not given a treatment in order to determine its effects, this is generally not true for road

safety studies. As discussed in Section 1.2, road safety practitioners operate within re-

stricted budgets, meaning it is often not feasible to potentially waste funds implementing

treatments in areas where they are clearly not needed, likewise they are often under con-

siderable political and ethical pressure to respond to a dangerous area on the road network

should it become apparent. Due to this we do not have the identical treated/non-treated

groups available in the world of medicine, and so must respond in other ways to address

the issue of RTM.

2.1.2 Temporal Trend

A clear weakness of the model described in Equation (2.3), is that it assumes the only

changes in collision total between before and after treatment, are due to the treatment

effect τi and RTM effect, ρi, with the underlying collision rate λi remaining constant.

There are a variety of factors which may cause the underlying collision rate to change

over time, with road safety awareness campaigns, improved vehicle safety features etc

potentially decreasing the collision rate, or possibly pavement deterioration, increasing

traffic volumes etc potentially causing increases. It is important to account for this in

our model, since Equation (2.3) currently ascribes any change not due to RTM, to be

due to the effect of treatment, meaning any significant change which is actually due to

trend, will lead to a bias in the estimate of treatment effect. To account for the potential

for change due to trend, we therefore no longer assume a constant collision rate λi, and

instead specify a separate collision rate corresponding to the time period after treatment,

λi,AFT. We define the trend effect, denoted κi, to be the expected difference in collision

counts between the before and after periods in absence of RTM and treatment effects,

κi = E (yi,BEF|ρi,BEF)− E (yi,AFT|ρi,AFT, τi)

= λi − λi,AFT,

32



2.2. Empirical Bayes and Full Bayes

Figure 2.1: A toy example demonstrating the modelling structure for scheme evaluation

studies. The change in collision counts (black) from before to after treatment is disag-

gregated into the RTM effect (blue line), trend effect (green line) and treatment effect

(brown line), with the true underlying collision rate (red line) showing how these effects

can be estimated.

hence,

λi,AFT = λi + κi

Hence the the expression in Equation (2.3) now becomes

τ̂i = yi,AFT − yi,BEF,

= (λi + κi + ρi,AFT + τi)− (λi + ρi,BEF)

= ρi + κi + τi

and so in order to obtain an unbiased estimate of the treatment effect τi we must estimate

both the RTM and trend effects. Given the restricted amount of data available in before-

and-after studies it is not possible to distinguish between trend effects and treatment

effects using treated site-specific data, and so we use data from comparison sites to obtain

estimates of the trend effect. Here we shall assume a constant trend across all sites on

the network κ1 = κ2 = · · · = κn = κ although improvements to this approach will be

discussed in Section 4.5.

This structure can be seen visually in Figure 2.1 where a toy example has been con-

structed, demonstrating the change in collisions from before to after treatment decon-

structed into RTM, trend and treatment effects.

2.2 Empirical Bayes and Full Bayes

In a before and after analysis we attempt to discern the true treatment effect of a road

safety countermeasure, by removing any RTM and trend effects from the observed change
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in collision counts from before to after the treatment was implemented. Due to the fact we

are often restrained to very limited data, potentially just a single observation before and

after the treatment has been applied, we must appeal to other sources of data, in this case

covariate information in the form of an SPF, to enable us to estimate the confounding

effects. The most common way to do this is within a Bayesian framework, the most

popular of which is the so-called Empirical Bayes (EB) method [Hauer, 1980] which is

implemented as follows:

1. We assume our collision counts yi follow a Poisson distribution conditional on rate

parameter λi which takes a conjugate Gamma prior distribution (meaning uncon-

ditionally the collision counts will have a Negative Binomial distribution as shown

in Section 1.4). Hence for a site i (i = 1, . . . , T ) we have:

yi|λi ∼ Po (λi) ,

λi|µi ∼ Ga

(
γ,
γ

µi

)
, (2.5)

where γ is the reciprocal of the overdispersion parameter of the unconditional Neg-

ative Binomial distribution of the collision counts yi. This choice of Gamma prior

for λi is selected for conjugacy, in order to ensure an analytic posterior distribution,

meaning a closed form expression for the posterior mean can be obtained. The

specific parameterisation is chosen to allow the prior mean to be µi,

E (λi|µi) =
γ
γ
µi

,

= µi,

the number of collisions estimated by applying our fitted SPF, and the prior variance

to be proportional to the relative overdisperion of the model estimate,

V ar (λi|µi) =
γ(
γ
µi

)2 ,

=
µ2
i

γ

meaning our prior uncertainty is accurately represented by including the dispersion

in the model fit, i.e. if there is a large degree of dispersion in the model, γ will be

small and hence our prior uncertainty for λi will be large, and vice-versa.

2. We assign our SPF to be a Negative Binomial GLM, which we fit using maximum

likelihood estimation from a set of exchangeable comparison sites with P covariates.

From this we obtain our SPF coefficient vector β and an estimate of the inverse of the

34



2.2. Empirical Bayes and Full Bayes

Negative Binomial overdispersion parameter γ. We then apply the fitted coefficients

to our treated sites to obtain an estimate of µi, the prior mean of λi:

µi = exp(β0 + β1xi,1 + ...+ βPxi,P ).

3. Combining the Gamma prior distribution with the Poisson likelihood gives a con-

jugate Gamma posterior for λi:

λi|Yi = yi ∼ Ga

(
γ + yi,

γ

µi
+ 1

)
.

4. We take the mean of this posterior to be our point estimate of the untreated collision

rate in the before period,

λ̂i,BEF = E(λi|yi,BEF,x) (2.6)

=
γ

γ + µi
µi +

µi
γ + µi

yi,BEF (2.7)

= wiµi + (1− wi)yi,BEF. (2.8)

And so we can observe that our estimate for the untreated collision rate at site i, is

simply a weighted average of the observed collision count yi, and the fitted collision

rate from the SPF µi. We note also how this weighting wi depends on the dispersion

in the SPF, whereby if there is a high degree of dispersion, and hence γ is small,

the posterior mean will give more weight to the observed collision count yi and less

to the SPF estimate, and vice-versa.

5. We can account for the effect of temporal trend by multiplying E(λi|yi,BEF) (which

informally can be thought of as our collision count in the before period once the

effect of RTM has been removed), by a factor, κi. Here κi represents the percentage

change in collisions expected due to trend (e.g. if it is believed there would be a 10%

reduction in collisions due to trend we would take κi = 0.9), and should be chosen

from a practitioner’s expert prior beliefs and/or suitable reference data to inform

trends. Often it will be difficult for experts to elicit site specific trend effects and so

a network wide trend effect κ1 = κ2 = · · · = κn = κ will be assumed, improvements

to this approach are outlined in Section 4.5. Should there not be suitable prior

information, or if there is no reason to believe there will be a significant trend, we

should set κ = 1. The result is therefore an estimator for the underlying collision

rate in the period after treatment,

λ̂i,AFT = κiE(λi|yi,BEF,x)
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An equivalent additive method for incorporating trend can be obtained where κi

would be the expected change in collision counts due to trend at site i,

λ̂i,AFT = E(λi|yi,BEF,x) + κi.

However, as discussed previously practitioners often prefer to specify trends on a

network wide scale rather than a site-specific one, and hence the multiplicative

framework is more appealing since this avoids any issues of specifying negative rates

where the expected reduction due to trend is greater than the observed count in the

before period.

6. We can therefore obtain estimates of ρi, κi and τi (the RTM, trend and treatment

effects),

ρ̂i = λ̂i,BEF − yi,BEF

= E(λi|yi,BEF,x)− yi,BEF, (2.9)

κ̂i = λ̂i,AFT − λ̂i,BEF

= κE(λi|yi,BEF,x)− E(λi|yi,BEF,x),

τ̂i = yi,AFT − λ̂i,AFT

= yi,AFT − κE(λi|yi,BEF,x).

The EB method has many desirable qualities, its conjugate structure allows for a

closed form, formulaic estimator of the treatment effect, meaning minimal computing

power is required, and point estimates (those of most use to practitioners) can be readily

obtained. However there are also many restrictions which make EB suboptimal, namely

the overoptimistic estimates of the uncertainty of our treatment effect (caused by its failure

to retain uncertainty of the SPF estimate µ), and its modelling rigidity, where only the

Poisson-Gamma structure can be used, even though alternative prior distributions may

be superior [Fawcett and Thorpe, 2013].

We can overcome these restrictions by rejecting the Empirical Bayes framework in

favour of a Full Bayes (FB) methodology [Yanmaz-Tuzel and Ozbay, 2010], [Kitali and Sando, 2017a],

[Lan et al., 2009]. Here, as opposed to the formulaic method by which EB determines an

estimate of the treatment effect thanks to an assumed conjugate structure, we instead

compute everything via MCMC, thereby removing the constraint of conjugacy. Should
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we wish to retain a Poisson-Gamma structure our model structure may resemble:

yi|λi ∼ Po(λi), (2.10)

λi|µi ∼ Ga

(
γ,
γ

µi

)
,

µi = exp (β0 + β1xi,1 + . . .+ βPxP,i)),

βj ∼ N(µβ, σ
2
βj

), j = 0, . . . , P,

log (γ) ∼ N
(
µγ, σ

2
γ

)
.

where prior knowledge can be imparted into the model by choices of µβ, µγ, σβj
, σγ. Prior

ignorance could be imparted by choosing for example, µβ1 = µβ2 = · · · = µβP = µγ = 0

and σβ1 = σβ2 = · · · = σβP = σγ = 100. We note here the

This model can be fitted in a Bayesian setting using a Metropolis-Hastings algorithm

as described in Section 1.5, with the MCMC algorithm then being

1. Initialise the parameter vector β at its initial state, β(0) =
(
β

(0)
0 , β

(0)
1 , . . . , β

(0)
P

)
.

Hence each element i of λ is initialised at λ
(0)
i = exp

(
β

(0)
0 + β

(0)
1 xi,1 + . . .+ β(0)xi,P

)
.

Initialise counter at m = 1.

2. For each element βj in β,

• Sample a proposal value β∗j ∼ q(·|·)

• Hence for each comparison site i = 1, . . . , C obtain a proposal for µi,

µ∗i = exp
(
β

(m)
0 + β

(m)
1 xi,1 + . . .+ β

(m)
j−1xi,j−1 + β∗jxi,j + β

(m−1)
j+1 + . . .+ β

(m−1)
P

)
,

sample a proposal for λi

λ∗i ∼ Ga

(
γ(m−1),

γ(m−1)

µ∗i

)
calculate the site’s likelihood contribution Li,

Li (yi|λ∗i ) =
λ∗yii

yi!
e−λ

∗
i

and hence the overall proposed likelihood

L (y|λ∗) =
C∏
i=1

Li (yi|λ∗i )

• Calculate the acceptance probability υ = min

(
1,

π(β∗
j )L(y|λ∗)q

(
β
(m−1)
j |·

)
π
(
β
(m−1)
j

)
L(y|λ(m−1))q(β∗|·)

)
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3. Set β
(m)
j = β∗j with probability υ else set β

(m)
j = β

(m−1)
j

4. Sample a proposal value for γ, γ∗ ∼ q(·|·)

5. For each comparison site i = 1, . . . , C, obtain a fitted value for µ
(m)
i

µ
(m)
i = exp

(
β

(m)
0 + β

(m)
1 xi,1 + . . .+ β

(m)
P xi,P

)
and sample a proposal value for λi,

λ∗i ∼ Ga

(
γ∗,

γ∗

µ
(m)
i

)
and hence the site’s likelihood contribution Li,

Li (yi|λ∗i ) =
λ∗yii

yi!
e−λ

∗
i

and hence the overall proposed likelihood

L (y|λ∗) =
C∏
i=1

Li (yi|λ∗i )

6. Calculate the acceptance probability υ = min

(
1,

π(γ∗)LC(y|λ∗)q(γ(m−1)|·)
π(γ(m−1))L(y|λ(m−1))q(γ∗|·)

)
7. Set γ(m) = γ∗ with probability υ else set γ(m) = γ(m−1)

8. For each treated site i = C + 1, . . . C + n

• Obtain the fitted value for µ
(m)
i ,

µ
(m)
i = exp

(
β

(m)
0 + β

(m)
1 xi,1 + . . .+ β

(m)
P xi,P

)
• Generate a proposal value for λi,

λ∗i ∼ Ga

(
γ(m),

γ(m)

µ
(m)
i

)

• Calculate the site’s likelihood contribution Li,

Li (yi|λ∗i ) =
λ∗yii

yi!
e−λ

∗
i

• Hence obtain the overall proposed likelihood

L (y|λ∗) =
n∏

i=C+1

Li (yi|λ∗i )
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• Calculate the acceptance probability υ = min

(
1,

π(λ∗)L(y|λ∗)q(λ(m−1)|·)
π(λ(m−1))L(y|λ(m−1))q(λ∗|·)

)
• Set λ

(m)
i = λ∗ with probability υ else set λ

(m)
i = λ

(m−1)
i

9. If m = M stop, else set m = m+ 1 and go to step 2.

After discarding burn-in and thinning if necessary to remove significant autocorrelation

in the chain, the resulting vector λi forms the posterior distribution for λi, π (λi|yi,BEF,x).

We can therefore obtain a distribution of estimated treatment effects by taking the differ-

ence between the observed collision count after treatment and the posterior distribution

for λi,

f (τi) = yi,AFT − π (λi|yi,BEF,x) , (2.11)

with the point estimate of treatment effect often taken to be the mean of this distribution,

τ̂i = E (τi)

= yi,AFT − E (λi|yi,BEF,x) .

It is the propogation of uncertainty in the comparison site SPF obtained in step 2 of

the above algorithm, which is retained by using iterative samples of µi when sampling

the posterior distribution of λi in step 8 as opposed to fixed values of the SPF as in the

EB approach. We note that in the above algorithm, due to data at sites being treated as

conditionally independent of data at other sites given model parameters, operations such

as calculating site-specific likelihood contributions and carrying out updates of λi at the

treated sites can be done in parallel. Often these calculations are relatively quick however,

and so parallelisation should only be implemented if the number of sites is very large, so

as to ensure improved computational efficiency in the face of overhead costs incurred from

setting up parallel clusters etc.

Immediately it becomes clear that we now have much greater modelling flexibility

than with the EB case, as the Gamma prior distribution can trivially be replaced by any

other suitable prior distribution, common replacements being the Lognormal and Weibull

distributions. There are additional options for the prior distribution for our regression

coefficient β beyond the independent Normal distributions assigned here, one obvious al-

ternative being to investigate correlation between regression covariates by fitting a single

Multivariate Normal distribution, or even a Data Augmentation Prior to β. Further to

this, whereas in the EB case we simply fit a negative binomial GLM as our SPF to gain an

estimate of µ using maximum likelihood estimation, now we fit our SPF in a fully Bayesian

sense, i.e. with distributions for the regression coefficients, and retain this uncertainty in

our distribution of λi. Because of this we therefore have a much more accurate representa-

tion of our uncertainty regarding the treatment effect τi. Previous reluctance to embrace
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Figure 2.2: Plots showing the prior distributions (black) for β0, β4 and β6 with posterior

densities (red) overlaid.

an FB methodology in industry can be explained by the now enhanced level of computing

and statistical ability required to implement these methods, which may not be accessible

to some or even most road safety practitioners. Fortunately modern advances in comput-

ing coupled with software applications to tackle the statistical aspects of the technique

have greatly reduced the significance of these drawbacks, and we are seeing FB become

more and more commonplace ( [El-Basyouny and Sayed, 2012], [Heydari et al., 2014]).

We demonstrate the differences in uncertainty estimation between the EB and FB

approaches now using the Northumbria before-and-after dataset introduced in Section 1.6.

Here we have 67 comparison sites from which to build the SPF, and 56 treated sites from

which we wish to discern a treatment effect. We carry out a standard EB analysis against

a Poisson-Gamma FB analysis with model described in (2.10) with vague priors on the

regression coefficients,

βj ∼ N
(
0, 102

)
, j = 1, . . . , P

as in [Fawcett and Thorpe, 2013]. For simplicity (with respect to parameter tuning) we

carry out the FB analysis in rjags, the model was run for 100,000 iterations and thinned

by 10 to remove autocorrelation. Figure 2.2 shows prior and posterior densities for β0,

β4 and β6 highlighting the vague priors used, and the informativeness of the data demon-

strated by a much more focussed posterior density. Posterior summaries for the SPF

parameters are given in Table 2.1, with the uncertainties attached to these parameter

estimates illustrating the difference in posterior uncertainties between the EB and FB
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β0 β1 β2 β3 β4 β5 β6 γ

Mean 1.89 -0.04 -0.01 0.46 0.69 0.87 1.09 2.18

St. Dev. 0.54 0.02 0.01 0.22 0.44 0.45 0.40 0.72

Table 2.1: Table showing posterior summaries for the SPF parameters

Site 4 Site 20 Site 33 Site 56

Before 3 1 28 7

After 0 2 16 1

Method λ4|y4 τ4|λ4 λ20|y20 τ20|λ20 λ33|y33 τ33|λ33 λ56|y56 τ56|λ56

EB 2.92 -2.92 1.79 0.21 19.85 -3.85 5.70 -4.70

(0.368) (0.368) (0.370) (0.370)

FB 3.08 -3.08 1.70 0.30 19.73 -3.73 5.49 -4.49

(1.415) (1.000) (4.418) (1.920)

Table 2.2: Table showing posterior means for λ and treatment effect τ = yAFT − λ along

with posterior standard deviation (in brackets) for sites in the Northumbria dataset

approaches.

We then compare posterior summaries for λi from within the EB and FB approaches.

Within the EB framework we adopt a conjugate Gamma prior and so can obtain an

analytic Gamma posterior distribution,

λi|yi ∼ Ga

(
γ + nȳ,

γ

µi
+ n

)
and hence we can obtain an analytic posterior standard deviation,

Var (λi|yi) =
γ + nȳ(
γ
µi

+ n
)2 ,

SD (λi|yi) =
√

Var (λi|yi),

=

√
γ + nȳ
γ
µi

+ n

and so we can form comparisons between these and the posterior standard deviations

obtained from the FB analysis. Results of this for selected sites from the Northumbria

dataset are given in Table 2.2.

From Table 2.2 we can see that while the posterior means are similar between the EB

and FB approaches, the posterior standard deviations are significantly higher for the FB

41



2.2. Empirical Bayes and Full Bayes

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

1
2

3
4

Site

D
iff

er
en

ce

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2.3: A plot of differences in posterior standard deviations of λi using the FB and

EB approaches for sites in the Northumbria dataset.

approach, demonstrating the effect of propogating the uncertainty from the SPF through

the analysis to be reflected in posterior uncertainty regarding λ and hence τ . Failure

to do this leads to misleadingly overoptimistic estimates of posterior uncertainty, which

can cause misleading conclusions to be drawn regarding the significance of the findings of

the case study, which can directly affect future policy decisions with regards to scheme

effectiveness. We demonstrate this for the entire Northumbria dataset in Figure 2.3 where

we plot the difference in posterior standard deviations for λi at each site i between the

FB and EB approaches.

Structurally the posterior standard deviations obtained from an FB approach must

be higher than the corresponding posterior standard deviations from an EB approach.

Figure 2.3 shows the difference in posterior standard deviation between the FB and EB

approaches for the before-and-after analysis of the Northumbria dataset for each site,

with a mean difference in standard deviation of 1.561. Despite FB methods being ac-

cepted in the literature for a while, with [Schlüter et al., 1997] providing support for a

hierarchical model to replace EB in the 1990s, EB remains in common usage currently,

with [Wang et al., 2017], [Høye, 2015], [Park and Abdel-Aty, 2015] providing examples of

studies carried out in the last several years still relying on an EB methodology for in-
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Prior Gamma Lognormal Weibull Beta-prime Inv-Gamma∑
E (λi|y) 318 339 317 333 339

(290,368) (248,400) (296,371) (290,378) (298,381)

Table 2.3: Expected numbers of total casualties (with 95% credible intervals) across the

56 sites of the Northumbria dataset when using different prior distributions for λi

ference. In light of this therefore, demonstrations of the improvements provided by FB

relative to EB remain extremely pertinent to current discussion.

2.3 Prior Comparison

As discussed in Section 2.2 one of the main advantages of using an FB modelling frame-

work over EB is the ability to choose non-conjugate prior distributions for λi in the

Bayesian model. We now demonstrate this by fitting FB models with various prior dis-

tributions to the Northumbria dataset, in order to observe the sensitivity in estimates

of λi to the choice of prior, and to carry out model comparison to determine the best

fitting prior distribution to the Northumbria dataset as in [Hewett et al., 2019]. The

rationale behind this is since our prior information is fully specified in the prior mean and

variance, we still have freedom to specify exactly which distribution (with the specified

mean and variance) our prior beliefs should follow. Comparing the fit of several candidate

prior distributions allows us to ascertain which resulting posterior distribution provides

the best fit to our data, while still including our specified prior knowledge. The prior

distributions for λi we consider are the Gamma distribution, the Lognormal distribution,

the Weibull distribution, the Beta-prime distribution and the Inverse-Gamma distribution

( [Forbes et al., 2011]). We recall that in the EB case we had the prior mean and variance

for λi to be,

E (λi) = µi Var (λi) =
µ2
i

γ

where µi is the fitted collision rate estmate from the SPF, and γ is the associated overdis-

persion parameter. For comparative purposes we retain these prior means and variances

for our alternative prior distributions. Fitting these various prior distributions gives re-

sults shown in Table 2.3.

From Table 2.3 we observe a clear sensitivity to the choice of prior distribution when

carrying out a scheme evaluation analysis on the Northumbria dataset. The observed

total number of casualties across the 56 sites in the after period was 298, meaning that

when using a Gamma prior distribution for λi we have a mean treatment effect of -20,
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whereas if we were to use a Lognormal or an Inverse-Gamma prior, the mean estimate of

treatment effect would more than double to -41.

When we have several possible competing models to describe a dataset, as in this

section where we have various possible prior distributions for λi, it is natural to wish

to ascertain which model fits the data best in order to carry out model selection. A

popular choice of goodness of fit test to determine which model describes the data best

is the deviance information criterion (DIC) [Spiegelhalter et al., 2002]. For a given set

of observations yi (i = 1, . . . , n) with model parameters θ we define the model deviance

D(θ) to be,

D(θ) = −2 log (f(y|θ))

hence for a Poisson model such as that in Section 2.2 we have the deviance to be,

D (λ) = −2×

[
nȳlog(λ)− nλ−

n∑
i=1

log (yi!)

]
In Bayesian models where we sample from the posterior distribution(s) of our parameter(s)

many times, we can calculate the deviance at each iteration m, and thereby obtain a

distribution of posterior deviances,

D(θ(m)) = −2 log
(
f(y|θ(m))

)
with the mean of the distribution, denoted D(θ), commonly taken as the measure of

goodness of fit. We wish for our fitted model to have a high likelihood/log-likelihood, and

so models which produce lower posterior mean deviances should be favoured. The issue

with this when considering models with varying parameters, particularly nested models

where the parameter vector of one model being compared is a subset of the parameter

vector of another model being compared, is that more complex models will always fit the

data better, and so have smaller posterior mean deviance. Since the aim in model selection

is normally to find the most parsimonious model, the model which provides the greatest

fit with the fewest parameters, we should include a component in our test criterion which

penalises over-parameterised models. In order to do this we calculate an additional term,

the effective number of parameters in the model, denoted pD, defined as,

pD = D(θ)−D(θ).

which increases as the number of parameters increases, thereby penalising overfitted mod-

els. We then define the deviance information criterion (DIC) to be

DIC = D(θ) + pD

with lower values of DIC indicating a more parsimonious model.
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Model Gamma Lognormal Weibull Beta-prime Inv-Gamma

DIC 663.3 787.2 645.6 754.4 773.5

Table 2.4: Table showing the DIC values from using different prior distributions in an FB

analysis of the Northumbria data

Calculating the DIC for the models fitted in Section 2.3 gives the results shown in

Table 2.4 where we observe the Lognormal, Beta-prime and Inverse-Gamma prior dis-

tributions perform relatively poorly when modelling the Northumbria data, whilst the

Weibull performed the best judging by its DIC score. This provides further weight to

the argument for recommending an FB approach over an EB approach since here the

flexibility of the FB approach allowed us to use a prior which modelled the data better

than the Gamma prior enforced by the EB methodology.

There is an argument against using goodness-of-fit tests to summarise model quality

in this way however. Since, as is the entire motivation for employing a Bayesian modelling

structure as opposed to a naive before-and-after method, we suspect the possibility that

elements of the observed data y will be anomalous, a model which fits to y well, may not

necessarily best represent the collision rates at the treated sites. Of course in this, like

many other modelling regards, we are heavily restricted by the small sample size at each

location.

2.4 SPF-Free Approaches

While the EB and FB approaches mentioned in Section 2.2 are the most widely used

methods in the literature for carrying out scheme evaluation studies, they are by no means

the only methods used. There are several reasons why practitioners may be reluctant, or

unable, to implement these approaches, including,

• Statistical complexity. Bayesian frameworks are complex, high-level statistical tech-

niques, meaning many practitioners who do not have a background in statistics may

be unable to make use of them. While the closed form, formulaic solution provided

by the EB method makes it far more accessible, some practitioners are still reluc-

tant to base decisions upon techniques which they are not fully familiar with the

reasoning behind (which remains a problem since EB still makes use of a Bayesian

hierarchical model). FB provides yet further difficulties to this, with its reliance on

MCMC methods not only requiring more technical skill in developing an MCMC

algorithm, but also computational cost and time in developing and running the

algorithm for each analysis.
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• Data requirements. Implementing EB and FB methods require the user to provide

datasets which, while not particularly extensive, can prove troublesome for networks

where not much data has been, or feasibly can be, collected. In particular the

collection of usually highly important covariates such as average speed and AADT

normally require specialist equipment to be set up in order to monitor these values,

which may not be possible, and where it is still places a significant financial and

time-consuming constraint on the practitioner. As discussed in Chapter 1, there is

the possibility of deploying a traffic model to attempt to estimate these important

parameters, however subscribing to a service to provide this modelling can also be

expensive and so not feasible for some smaller local authorities, with unsophisticated

modelling attempts likely to be fraught with error and so lead to erroneous results.

Further to this the previously mentioned requirement of ensuring similarity between

the sites used to build the SPF and the treated sites being monitored, mean EB and

FB can quickly become unusable to any real degree in areas where data is scarce.

• Lack of intuitiveness regarding modelling assumptions. While the concept of com-

paring an observed collision count at a site, and comparing it with other similar

sites to see how usual/expected it is makes sense on an intuitive level, the need to

do so via a complex Bayesian framework has less natural intuitiveness. Hence prac-

titioners may be reluctant to employ techniques which use formulae and algorithms,

when it is difficult to discern exactly why such formulae should be used.

Due to these reasons (among others) there are a significant proportion of practitioners not

making use of the EB and FB techniques, despite these methods being heavily championed

in the literature. We therefore explore the relative merits of several of the more popular

alternative methods in order to compare their effectiveness relative to the literature “gold

standard” approaches of EB and FB.

2.4.1 Four Time Period Method

A perfect counterweight to the potentially technically strenuous Bayesian methods is the

four time period method (FTP) developed by Dave Finney and Richard Allsopp. This

approach provides a highly simple method for scheme evaluation studies by determining

RTM and treatment effects. This approach solely requires collision counts at the treated

site in question, although it does make use of several years of these. The approach works

by splitting the observations at the treated site into four sections,

1. Before period (BP): These are the observations taken before the site was considered

a potential candidate for treatment, and so will not have been used in any decision
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making process regarding the decision to treat. There should be no treatment in

place during this time period.

2. Site selection period (SSP): These are the observations taken when the site was

considered a potential candidate for treatment, and so it should contain exactly

each observation used in the decision making process.

3. After site selection but before installation of the camera (ASBiC) (this technique was

developed for the analysis of speed camera effectiveness but can be equally applied

to other road safety treatments): Since treatments often cannot be implemented

immediately upon the decision to treat, there may be some observations taken at a

treated site before it becomes treated, but will have no influence over the decision

to apply treatment.

4. After period (AP): The observations taken after the treatment has been installed

at the site.

The FTP approach suggests that the only time period during which any RTM effect can

be present, is during the SSP, when the observations leading to the decision to treat are

made. Therefore by discounting the SSP observations entirely and combining the BP and

ASBiC into a single before period, and comparing with the AP we can determine the true

treatment effect, i.e.

RTMj =
1

nBP + nASBiC
(yBP + yASBiC)− 1

nSSP
ySSP

Tj =
1

nBP + nASBiC
(yBP + yASBiC)− 1

nAP
yAP

where nBP , nASBiC , nSSP , nAP , and yBP , yASBiC , ySSP , yAP , are the respective numbers

of observations and collision counts for each of the respective time periods.

The appeals of the FTP approach are immediately obvious,

• Intuitive methodology. The logic underpinning the approach is straightforward and

accessible to all practitioners. There is no reliance on high complexity statistics re-

quiring an element of trust from anyone not fully versed in the subtleties of Bayesian

statistics.

• Calculation speed. There is no requirement to run computationally intensive al-

gorithms in order to obtain output. These formulae are more straightforward than

those involved in EB calculations and can be done immediately with very little effort

involved.
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• Minimal data requirements. There is no need for (potentially difficult and expensive)

covariate data collection with this approach, the only data required are collision

counts. Furthermore there is no requirement for data collection at any site other

than those being analysed, making the approach both efficient, and removing the

need to ensure the similarity of a comparison pool of sites.

It is advantages such as these that have meant that whilst the FTP technique isn’t widely

reported in literature it has proved increasingly popular among practitioners who want

quick, simple methodologies and are perhaps sceptical of any advantages provided by

arduous statistical approaches. Unfortunately this method is not without its (quite con-

siderable) drawbacks:

• Overestimation of RTM. The assumption that any reduction in the SSP is solely

due to RTM is a very simplistic assumption and may not be correct, even if there

is some RTM effect present in the change from SSP to AP, it does not mean that

the entire change should be discounted and accredited to RTM. Such an assumption

can therefore to be seen to be unfairly harsh on the effect of treatment.

• Restriction on blip location. While, as discussed, the assumption that all change in

the SSP is due to RTM can be seen as being overly harsh, it is perhaps too lenient

on other time periods where it is assumed that there is no RTM effect (i.e. no

blips) present at all. This can be problematic, particularly if the BP or AP values

are heavily influenced by blips since we base our treatment effect estimates almost

entirely on these (with the ASBiC period usually very short, if any observations

exist for it at all).

• No immediate method for prediction. Whilst the fact the technique is completely

non-parametric boosts the simplicity and speed of the calculation, it does restrict

the inference and thereby the information that can be gleamed from it. One such

aspect the estimation and extrapolation of the true underlying of level of safety at

the site (in the EB/FB case this would be given by the λ parameter) which can

then be extrapolated to predict future collision counts at the site.

• No accounting for trend. As discussed in Section 2.2, it is not only the RTM

effect which should be accounted for when determining the treatment effect, there

is also the potential for temporal trend to affect the change from before to after a

treatment is implemented, an effect which is particularly prevalent when considering

data observed over many consecutive observations. Failing to account for this can

lead to biases in the estimates of treatment effect, even if the strong assumptions

regarding any RTM effects are correct.
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• Places rigid boundaries on which time period an observation must fall. The underly-

ing mechanism for the FTP method is based around the idea of splitting a sequence

of observations at a site into four distinct time periods, based on the actions by the

local authority at that time. However given that decisions are rarely made so rigidly

over such a small time-frame (both in terms of the time taken to decide where to

allocate treatment, and the window of data used to base that decision on), and so it

can be difficult to implement this method by apportioning each observation to one

of the four time periods, in an accurate and meaningful way.

• No method for estimating uncertainty. Again a drawback of the simplistic, non-

parametric and quick nature of the analysis, there is no method for obtaining any

measure of uncertainty regarding the estimate of treatment effect obtained from

this method, with merely a point estimate of the estimated treatment effect being

produced. Clearly this is over optimistic as it is tantamount to an analysis claiming

100% certainty in an estimate, which clearly cannot be the true.

2.4.2 Time Series Models

Time series models are occasionally used within the context of road safety analysis, where

detailed analyses of changing trends are required ([Park et al., 2017a], [Quddus, 2008b]).

In contrast to the models discussed in this thesis, time series models require no external

data outside of the individual (in this case, site) being analysed, and hence do not require

any form of SPF to be built. This is particularly useful when comparison data is difficult

to obtain, of poor quality, or not suitably similar to the treated dataset (see Chapter 3),

however the contrast to this is by definition, time series models require a significant

amount of longitudinal data at each location in order to for these models to be fitted.

Obtaining good quality longitudinal data for a sufficient Time series models are usually

employed when we have a series of repeated observations in time, which we believe to be

dependent. These observations can be either discrete or continuous, occur at regular or

irregular intervals, and can be observations in any number of dimensions. Clearly in the

case of collision counts, it is reasonable to assume the collision rate in year t is dependent

on the rates in years t−1, t−2 etc, and so a univariate time series model may be suitable

to model road safety data.

A common issue when considering time series models is that of stationarity. A tem-

poral sequence of repeated observations y1, y2, . . . , yn can be considered a single joint

observation from f(Y ) where f(·) is a multivariate distribution. In order to implement

time series models we usually consider these observations to be non-independent, and

so the covariance matrix, Σ, of f(·) will be non-diagonal. For a strictly stationary time
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series, we require the joint distribution of observations yi, . . . , yj to be the same as that of

yi+c, . . . , yj+c for all i, j and c, that is that we require the joint density f(Y ) to be constant

with respect to time. Oftentimes this condition is considered too restrictive, and a more

relaxed condition, known as weak stationarity, is sufficient for most time series models.

For weak stationarity, rather than the full joint distribution needing to be constant with

respect to time, we simply require the mean vector µ = (µ1, µ2, . . . , µn) and covariance

matrix Σ to be constant with respect to time. In many applications, f(·) is chosen to

be a Gaussian distribution, which since it is uniquely defined my its mean vector and

covariance matrix, has the property the conditions for weak and strict stationarity are

the same [Chatfield, 2016].

There are two main options for countermeasure effect estimation using time series

modelling: we can either train a time series model on data before treatment, in order to

estimate the collision count if no treatment had been applied, ˆyAFT, and hence estimate

the treatment effect as

τ̂ = yAFT − ˆyAFT;

or alternatively incorporate the existence of treatment as an extraneous variable which we

include in our time series model (through for example ARMAX modelling), allowing the

treatment effect to be explicitly included in the model parametrically. A relative drawback

of this second approach is that it requires a good amount of data to be collected after

treatment in order to accurately estimate the treatment effect, which may not be available

and perhaps more pertinently, increases the wait time before treatments can be evaluated.

Conversely the first approach may be implemented immediately following the after period,

as with standard before-and-after approaches, however the estimate of treatment effect

may be less accurate and confounded by heterogenous effects. An issue with all time

series models however is they require a good amount of data in order for a model to be

fitted at all, which we cannot assume and as stated in Chapter 1, the aim of this thesis

is to develop methodologies which require as little data as possible, in the case of scheme

evaluation just observations taken in a before period and after period, and so time series

models are not suitable toward this aim.

2.5 Predictive Distributions

As discussed throughout this chapter, the goal of scheme evaluation studies is to estimate

the treatment effect τ . Standard EB and FB methods do this by performing inference

on the collision rate λ using data collected in the before period, with the distribution of

treatment effect often taken to be the observed collision count in the after period minus
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the posterior distribution of λ, as described in Equation (2.11),

f(τ) = yAFT − π (λ|yBEF,x) ,

with the estimate of treatment effect often taken at the mean of this distribution,

τ̂ = yAFT − E (λ|yBEF,x) .

If however we consider the effect of treatment to be the difference between the observed

collision count in the after period and the counterfactual count had treatment not been

applied, the usage of posterior distribution to elicit this treatment effect can appear

inadequate. If we consider the predictive distribution discussed in Section 1.5.2, we note

that these distributions account for uncertainty in future observations which using the

posterior distribution does not. Some discussion has taken place in the literature regarding

the utility of predictive distributions in the context of SPFs [Wood, 2005], however these

exist within a non-Bayesian paradigm, and so do not allow for the full characterisation of

posterior beliefs, and hence predictive beliefs, in the form of a density as in the Bayesian

paradigm. Hence in order to properly account for uncertainty in future observations, and

hence uncertainty in any estimates of treatment effect, we propose using the posterior

predictive distribution, which here takes the form,

f (y′|yBEF,x,x) =

∫
Λ

f (y′|λ) π (λ|yBEF ,x) .

Here we note that, as defined in Section 1.5.2, f (y′|λ) corresponds to the proposed distri-

bution of future observations y′. In a stationary system, this is often taken to be the same

as the current data distribution f(y). However as discussed in Section 2.2, there is the

possibility of temporal trend effects being present, and so these will affect the distribution

of future observations. Hence in the case of EB/FB for instance, rather than assuming

future observations retain the distribution of current observations, i.e.

f (y′|λ) ∼ Pois (λ)

we instead adjust the mean to account for any trend effects,

f (y′|λ, κ) ∼ Pois (λ+ κ)

(or equivalently the rate could be κλ depending on whether trend is being accounted

for additively or multiplicatively. We note here the inclusion of trend in the posterior

predictive distribution prevents the need for its inclusion when determining the posterior

distribution of λ, an altogether more coherent approach. The trend parameter κ can be

provided either through expert prior information in which case it may be a fixed constant,

or via data driven methods such as those included in Chapter 4.
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Here we demonstrate the effect of using the posterior predictive distribution to estimate

and quantify uncertainty on the treatment effect τ using the before-and-after dataset from

Northumbria described in Section 1.6.
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Chapter 3

The Effect of Comparison Pool

Exchangeability on RTM Effect Bias

Notation

Below is a summary of the notation used to describe the statistical framework used in this

chapter. All notation used in other chapters carries the same meaning as in this chapter.

Notation Meaning

i Site indicator, i = 1, . . . , T

j Covariate indicator, j = 1, . . . , P

c Comparison pool indicator c = 1, . . . , C

n Comparison pool size

N Number of replications used in the simulation study

yi Collision count at site i

ρi RTM effect for treated site i

δi,c Error in estimate of RTM effect at site i using comparison pool c

xj,T/xj,c Covariate j for the treated pool/comparison pool c

γi Overdispersion parameter of the Negative Binomial distribution for site i
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3.1 Introduction

In this chapter we shall examine further the claims made in Chapter 2, regarding the

need for exchangeability between treated groups and comparison groups, when carrying

out an EB/FB based before and after study. It is claimed that failing to ensure suitably

exchangeable comparison sites will lead to biased estimates of the RTM effect, ρ̂i and

hence of the treatment effect, τ̂i. It is clear how the comparison sites have an explicit

effect on ρ̂i, given the direct relationship between ρ̂i and the posterior mean of the colli-

sion rate E (λi|yB,i) (via Equation (2.9)) with the comparison pool based SPF providing

µi, the prior mean for λi (given in Equations (1.1) and (2.5) respectively). From this

it makes intuitive sense that having poor comparison data could lead to an inaccurate

estimate of µi which in turn would lead to an inaccurate E (λi|yB,i) and hence an inac-

curate ρ̂i, and this wisdom has been accepted by some authors ([De Pauw et al., 2014],

[Hauer, 1991] [Persaud and Lyon, 2007]) but never numerically verified. It is the purpose

of this chapter to numerically demonstrate a decrease in accuracy, henceforth referred to

as an increase in bias, of ρ̂i, as the comparison pool used becomes increasingly dis-similar

to the treated pool being analysed, via a simulation study. The contribution provided here

being a demonstration of the potential severity of the problem caused by non-exchangeable

reference data and hence further motivate the need for methods to account for these biases

(which we then attempt to do in Chapter 4).

The details of the simulation study design are given in Section 3.2, the results as it

pertains to RTM bias are given in Section 3.3, and examples of statistical tests for the

exchangeability of treated and comparison pools are demonstrated using the simulated

data in Section 3.4.

3.2 Simulation Study Outline

We wish to numerically demonstrate an increase in bias in estimates of the RTM effect

ρi, as the comparison pool of sites from which the SPF is obtained becomes less similar to

the treated pool. Clearly in order to enumerate the bias of an estimator, we must know

the true value of the parameter it is estimating, in this case the true RTM effect ρi for

which we require the true underlying collision rate λi. Clearly it is impossible to know

this in reality, and limited datasets make even reliable estimates impossible, and so we

must simulate a road safety dataset, where the parameters driving the data can be known

exactly. We can then carry out a before and after study on the simulated data, using a

variety of possible comparison pools, and obtain a ρ̂i which can then be compared with

the true ρi in order to obtain an estimate of the bias. We also wish to investigate the

effect of varying the prior distribution for λi in an FB analysis on the RTM bias, and
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3.2. Simulation Study Outline

so shall repeat our simulation study with different commonly used priors for λi, namely

the Gamma, Lognormal and Weibull distributions in order to make the findings of the

simulation study as thorough and expansive as possible.

The general methodology of the simulation study is:

1. We simulate covariates x1, . . . , xP at T sites using specified covariate generating dis-

tributions f1(·), . . . , fP (·), where the covariate generating distributions have means

which are monotonic functions of an input c, which we use to create dissimilarity

between treated and comparison pools. We use the case c = 0 to generate covariates

for the “treated” pool of sites.

2. Using a fixed SPF structure we convert these covariates into values of µi, the prior

mean at each treated site i,

µi = g (xi)

and hence generate a collision rate λi at each treated site from a prior distribution

with mean µi

λi ∼ h (mean = µi)

and finally a collision count for the “before” period (although for the purposes of

RTM estimation we do not need to consider the after period)

yi ∼ Pois (λi)

3. Hence we calculate the true RTM effect at each treated site,

ρi = λi − yi.

4. We then simulate covariate data x1, . . . , xP to form C comparison pools of n sites.

The comparison pool index c, c = 1, . . . , C determines the mean of the covariate

generating functions f1(·), . . . , fP (·) used to simulate the covariate values.

5. We use the same SPF structure as for the treated sites to generate the prior mean

µi at each comparison site in each comparison pool,

µi = g (xi)

and hence generate a collision rate λi

λi ∼ h (mean = µi)

and finally a collision count,

yi ∼ Pois (λi)
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6. For each of comparison pool c we carry out an FB analysis to obtain the posterior

mean at each treated site i, E (λi|yi,xc), and hence obtain an estimate of the RTM

effect at each treated site,

ρ̂i,c = E (λi|yi,xc)− yi.

7. We then obtain the absolute error in estimate of RTM effect for each treated site,

δi,c = |ρ̂i,c−ρi| and hence the overall RTM error for comparison pool c, δc =
∑T

i=1 δi,c.

8. Repeat steps 4 to 7 N times in order to obtain a distribution of δc for each compar-

ison pool c, of which we take the mean as the point estimate of RTM error for pool

c.

For our study we choose to simulate data for T = 50 treated sites, with C = 100

comparison pools used each comprising n = 50 sites, and repeat the study N = 1000

times. We simulate two covariates, average observed speed (x1) and an urban/rural

indicator variable (x2). The covariate generating distributions are:

x1 ∼ N

(
30 +

40

C
c, 1

)
x2 ∼ Bern

(
0.7− 0.4

C
c

)
indicating in our study, the treated pool comprises of low speed, urban locations, with the

comparison pools having gradually higher average speed and a great proportion of rural

locations. We choose to retain the log-linear SPF structure

µi = exp (β0 + β1xi,1 + . . .+ βPxi,P )

with coefficients β0 = 3, β1 = −0.05 and β2 = 0.8. Finally we choose to employ a standard

EB Gamma prior for the collision rate λi,

λi ∼ Ga

(
γ,
γ

µi

)
,

and choose dispersion parameter γ = 1.

3.3 Simulation Study Results

Simulating data in this way generates data such as that shown in Table 3.1 which shows

that as c increases, the mean average speed (x1) in the group increases and the proportion

of urban sites decreases (x2) along with collision count (y), showing clearly that as c

increases, the data becomes increasingly dis-similar to the treated pool.
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x1 x2 y

Treated 30.02 0.7 37.72

c = 1 30.40 0.7 32.91

c = 10 34.00 0.66 26.82

c = 100 67.00 0.30 4.51

Table 3.1: Table showing covariate and collision count means for the treated pool as well

as comparison pools c = 1, 10and100
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Figure 3.1: A plot showing mean total RTM error against comparison group c. The plot

on the left shows all C = 100 comparison pools, the plot on the right focuses on the first

50.

Carrying out the simulation study as described above gives results shown in Figure 3.1

where there is a clear increase in overall RTM error δ is c increases. This demonstrates

clearly that as the comparison group becomes less and less similar to the treated pool, we

greatly increase the risk of obtaining inaccurate results in terms of estimates of the RTM

effect which directly influences estimates of the treatment effect.

To validate our simulation study we repeat the study with different covariates and

SPF coefficients. For our repeated study we take SPF equation,

µi = exp (−0.8 + 0.06x1 − 0.7x2) ,
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Figure 3.2: Plots of RTM error against comparison pool for c = 1, . . . , 100 (Fig. 3.2a) and

for the first 50 comparison pools (Fig 3.2b).

and take covariate generating distributions for the treated pool to be

x1 ∼ N(70, 1)

x2 ∼ Bern(0.25)

and for covariate pool c,

x1 ∼ N(70− 40

C
c, 1)

x2 ∼ Bern(0.25 +
0.5

C
c).

As with the first study we simulate a pool of T = 50 treated sites, along with C = 100

comparison pools, each containing 50 sites, for N = 1000 simulations. Plots of mean total

RTM error against comparison pool c are given in Figure 3.2 where we can see again a

clear increase in RTM error with decreasing comparison pool similarity, demonstrating

the need for exchangeable comparison pools in order to make valid inferences regarding

RTM, and thus treatment, effects.

3.4 Post-hoc Testing for Exchangeability

There are metrics by which we can test to see how exchangeable a given comparison

pool is with our treated pool, and therefore whether it would be appropriate to use in a
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before and after analysis. One such method is the permutation test, where we investigate

the exchangeability of each of our covariates in turn. We do this for covariate j by

obtaining the absolute mean difference between the comparison (xj,C) and treated (xj,T )

observations for this covariate,

dj = |x̄j,C − x̄j,T | j = 1, . . . , np.

If our groups are exchangeable with respect to this covariate then the differences between

the groups should not vary significantly if we were to randomly permute sites between

the two groups. We can carry out a hypothesis test of this by repeatedly permuting the

allocation of the groups (to groups say, A and B of the same size as the comparison and

treated pools) and taking the absolute mean difference,

d′j = |x̄j,A − x̄j,B|.

We can then test the null hypothesis that the pools are exchangeable by observing the

proportion of times d′j is greater than dj, which we take to be the p-value of our hypothesis

test, i.e.

Ii =

1, if dj ≥ d′j

0, otherwise,

p =
N∑
i=1

Ii
N
.

Whilst permutation tests provide a valuable insight into the exchangeability of specific

covariates, it may be preferable to simply have a single, overall summary of the ex-

changeability of the two groups. We can do this by instead calculating the Mahalanobis

distance [Mahalanobis, 1936], which provides a single overall summary of exchangeability.

It is calculated for treated site j as,

Dj =

√(
XT
j −M

C
)T

Σ−1
(
XT
j −M

C
)

where XT
j is the jth row of the covariate matrix for the treated group, M

C
is the vector

of covariate means for the comparison group, and Σ is the covariance matrix of the

comparison group, i.e.

Σi,j = cov(xC
i , x

C
j ).

We can evaluate the exchangeability of a given comparison site by considering its mean

Mahalanobis distance over all T = 50 treated sites in our treated group, i.e.

D =
1

50

T∑
j=1

√(
XT
j −M

C
)T

Σ−1
(
XT
j −M

C
)
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Figure 3.3: Permutation tests for x1, x2 and the Mahalanobis distance against comparison

pool c

Computing these p-values exactly would require taking all
(
N=100

100

)
≈ 1× 1029 possible

combinations into the two possible groups A and B which is clearly computationally

infeasible to compute exactly, and so we approximate these p-values by taking N large,

in this case N = 10000. Here we compute the p-values for x1, x2 and the Mahalanobis

distance, denoted p1, p2, pM respectively, for each comparison pool c = 1, . . . , C used in

the simulation study in Section 3.2, with results given in Figure 3.3.

Figure 3.3 shows a clear decrease in p-value as c increases, and hence as the comparison

pools become less exchangeable with the treated pool, which the simulation study in Sec-

tion 3.2 shows corresponds directly to an increase in RTM effect estimate error. Hence we

can observe that low p-values for the permutation tests correspond to increased potential

for error in RTM estimation. We further validate the post-hoc tests by carrying them out

for data generated in the second simulation study with changed parameters, with output

given in Figure 3.4, where again we see a clear decrease in p-value with increase in c, and

hnce decrease in pool exchangeability.

We can apply the permutation tests to the Northumbria dataset analysed in Chapter 2.

We recall for this dataset we have covariates:

• Average speed (x1)
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Figure 3.4: Permutation tests for x1, x2 and the Mahalanobis distance against comparison

pool c

x1 x2 x3 x4A x4B x4C Mahal.

p-value 0.02 0.57 0.03 0.15 0.25 0.09 0.24

Table 3.2: Table showing p-values for permutation tests from the Northumbria before-

and-after dataset

• Percentage exceeding the speed limit (x2)

• Average daily flow (in thousands) (x3)

• Road class (3 levels: x4A, x4B, x4C)

Computing the exact p-values would require
(

123
67

)
≈ 4.68× 1035 simulations, and so again

we obtain approximate p- values using N = 100000 simulations. Hence we obtain the

following p-values with output given in Table 3.2. From Table 3.2 we see that we have

significant (p < 0.05) results for x1 (average speed) and x3 (flow), indicating the com-

parison sites are not exchangeable with the treated sites with respect to these variables.

While the p-value corresponding to the Mahalanobis distance remains non-significant and

so the comparison site as a whole should not be discarded, it may be prudent to consider

removing x1 and x3 from the analysis and/or attempting to use other more exchangeable

covariates in their place.
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Chapter 4

Accounting for Comparison Site

Non-Exchangeability and Temporal

Trend

4.1 Notation

Notation Meaning

i Treated site indicator, i = 1, . . . , n

c Comparison pool indicator c = 1, . . . , C

j Covariate indicator, j = 1, . . . , P

yi Collision count in the before period for treated site i

ρi RTM effect for treated site i

x̄j,T/x̄j,c The mean value of covariate j for the treated pool/comparison pool c

4.2 Introduction

As discussed in Chapter 3 there is a clear and demonstrable risk of bias in estimates

of RTM and thus, treatment effect when non-exchangeable pools of comparison sites

are used in an analysis, regardless of the analytic framework adopted. It is clearly im-

portant therefore to ensure, when selecting sites to form a comparison pool, that these

sites are sufficiently exchangeable with the treated sites we wish to analyse. In Sec-

tion 3.4 we discuss various measures for retrospectively determining the exchangeability

of a given comparison pool, although this is suboptimal for several reasons. Firstly, it

is extremely inefficient to construct comparison pools prior to determining their suitabil-

ity, and thus leave open the possibility of having to repeat the process. This is further

hindered by the retrospective approach not providing much useful information regard-

62
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ing how best to select future sites so as to improve comparison pool exchangeability.

Clearly therefore an improvement on this approach would be a method which identi-

fies, from a large group of candidate comparison sites, the most appropriate sites from

which an exchangeable comparison pool can be formed. While this can be done to a

certain degree without any form of computational algorithm, selecting sites of a roughly

similar makeup of variables from the same geographic location as the treated sites for

instance, it would be preferable to have a method which provides an objective result

to determine which sites are most suitable. One method which is gaining popularity

(see [Li and Graham, 2016], [Wood and Donnell, 2016], [Wood et al., 2015]) is the usage

of the propensity score matching approach.

4.3 Propensity Score Matching

The Propensity Score Matching (PSM) method was originally implemented in the field

of medicine, for a similar purpose - the elicitation of a treatment effect via the removal of

confounding effects - to that of a scheme evaluation study in road safety. The method’s

primary purpose is to determine similarity between treated and non-treated individuals

by using covariates describing the individuals to determine the probability that each

would be selected for treatment. This makes the approach a good fit for comparison

site elicitation since these covariates will have already been measured in order to develop

the SPF. Once the probability of each individual, both those who are treated and non-

treated, being selected for treatment - known as the individual’s propensity score - has

been determined, these scores are then compared with each other, with the similarity of

the scores corresponding to the similarity of the corresponding individuals. This algorithm

can be described more formally as having two key stages.

• Propensity Score Estimation. Here our response variable, Yi, i = 1, . . . , n, is a binary

response variable indicating whether individual i, was selected for treatment, i.e.

Yi =

1, Individual i was selected for treatment,

0, otherwise.

We estimate pi = Pr(Yi = 1) by carrying out a logistic regression on Yi with set

of covariates X. This vector of covariates must be chosen carefully however, so as

to satisfy the two key assumptions underlying the PSM approach: the conditional

independence assumption, also known as the unconfoundedness condition; and the

common support condition, also known as the overlap condition.

1. The conditional independence assumption (CIA) states the value of Yi must

dependent only on the covariates included in X and after conditioning on X,
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4.3. Propensity Score Matching

the value of Yi is purely random, i.e.

Yi|X ∼ Bern(p)

where p is the proportion of sites to be treated.

2. The common support condition (CSC) states that all individuals i should have

positive probability of being selected for treatment, i.e.

0 < pi < 1,∀i.

This is to ensure a good mixing of propensity scores between the individuals,

and hence adequate matching at the next stage.

There are a variety of link functions we could use to carry out this logistic regression,

with the logit,

pi =
exp

(
β0 + β1 + . . .+ βnp

)
1 + exp

(
β0 + β1 + . . .+ βnp

) ,
and probit,

pi = Φ
(
β0 + β1 + . . .+ βnp

)
being the most commonly used. Results are typically very similar between the two,

and so it is tantamount to an arbitrary choice as to which link function to use, in

this case we opt for a logit link function. We then carry out the logistic regression to

obtain the maximum likelihood estimate of pi, denoted p̂i, which is the propensity

score for individual i.

• Matching algorithm selection. Clearly there are a multitude of algorithms which

could be employed to “match” a propensity score with its closest neighbours, how-

ever the majority of these have clear and immediate drawbacks.

1. Nearest neighbour matching (NNM) obtains the vector of absolute differences

between a given propensity score and the others,

di = (di1, . . . , din) ,

dij = |p̂i − p̂j|,

and rearranges it into a vector d′i =
(
d′i,1, . . . , d

′
i,n

)
, such that d′i,1 ≤ d′i,2 ≤

. . . ≤ d′i,n. Hence d′i is the vector of “nearest neighbours” for individual i.

From this we then select the first nC individuals (not including d′i1 which will

correspond to individual i itself) to form the comparison pool for individual i.

The advantages to this approach are clear, only the most similar individuals
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4.3. Propensity Score Matching

are selected and so we can be certain we have taken the best subset possible

of the treated pool. However there are equally apparent disadvantages to this

approach, firstly the seemingly arbitrary choice of nC although this is clearly

bounded above by n, the total number of individuals from which to choose,

and the lower bound could depend on P , the number of covariates being in-

cluded in the model. Secondly there is the lack of information regarding the

values of d for the first nC individuals, meaning there is no way to observe how

similar the chosen comparison pool is to the treated individual. If we consider

the scenario where d′i1, . . . , d
′
inC−4

were small, but there is a large difference to

d′inC−3
, d′inC−3

, . . ., it would clearly make much more sense to only include the

first nC−4 individuals, and exclude the remaining 4 which are significantly less

similar to the treated individual, which may lessen the accuracy of the analysis.

Likewise if the first nC+3 individuals all had low, similar values of d before a

large jump for the nC+4th individual, it would make sense to extend the com-

parison pool size to incorporate these extra individuals, as otherwise we would

be needlessly discarding useful information. Attempting to solve this manually

by inspecting di for each treated individual will be incredibly cumbersome if

n is large, almost defeating the point of using a matching algorithm in the

first place, and can lead to issues of deciding at what point d is sufficiently

large that an individual should no longer be considered sufficiently “similar”,

meaning the result is no longer the objective, algorithmic solution we desire.

2. Radial matching (RM) overcomes the issues of NNM, by matching based on the

actual values of d′ rather than merely the position of the values in the vector.

Here a radius r is fixed, and the selected subgroup for treated individual i is

the subset of di corresponding to all elements less than r. This provides the

advantage that we can be certain that all individuals within each subgroup

have at least a certain degree of similarity to the treated individual. However

the obvious drawback to this is we cannot guarantee the number of individuals

included in each subgroup, which can then cause issues regarding model fit

later. As mentioned previously, the minimum number of individuals in each

subgroup depends largely on the number of covariates included in the model,

and should be substantially greater than this, that is n >> np to ensure (a

good) model fit. We can adapt the RM approach by specifying a minimum

threshold number of individuals per subgroup, and setting r to be the minimum

value which reaches this threshold for all i. However this raises several issues,

firstly it returns to the main issue with the NNM approach, in that it requires

the specification of a minimum subgroup size, and hence devalues one of the
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4.4. Propensity Score Weighted Regression

main appeals of adopting RM in the first place. Furthermore this devalues the

concept of selecting the radial value r, which conceptually should be a value

of similarity we wish to ensure, as opposed to largely being decided in order to

accommodate the data.

As discussed previously, there are significant drawbacks to the implementation of step

2 of the PSM algorithm, namely the component which matches the propensity scores to

a suitably similar subgroup. A further issue which underpinning the entire concept of

finding a subset of potential comparison individuals, is the binary outcome of whether

an individual is included or not. This has the rather unwelcome consequence, that all

individuals which meet the criteria for selection, are deemed to provide an equal amount

of information to the analysis, and those individuals which do not are deemed to provide

no information at all. These rigid structure clearly will not give the most efficient use of

a candidate pool of individuals, since even within the accepted group some individuals

will be more similar, and thus appropriate, for a given treated individual, and likewise

those which are not selected do not (necessarily) provide no information at all. This idea

of discarding individuals which do not meet the selection criteria is also not optimal as

this is simply a waste of data, which becomes especially problematic if the initial set of

individuals we are selecting from is small to begin with. Clearly the most efficient use

of the available data would be to include all candidate individuals in the analysis, but

weight their contributions by their similarity to the treated individual in question. It is

this usage of the kernel matching (KM) approach which gives rise to a solution to the issue

of comparison site selection in road safety analyses: propensity score weighted regression.

4.4 Propensity Score Weighted Regression

As discussed in Section 1.3, comparison sites are used in road safety analyses, particularly

in scheme evaluation analyses, to overcome the danger of effects of RTM and trend causing

biased results when little data are available. Commonly this is done via the formation of

an SPF which uses collision and covariate data from a pool of comparison sites to train a

model which provides an estimate of the collision count at a site, for a given set of input

covariates. In Chapter 3, we showed how this approach can lead to biased estimates

when the comparison group of sites were not sufficiently similar, or exchangeable, to

the treated pool of sites. Section 4.3 described how the concept of propensity scores

can be used to quantify the similarity between a treated site and candidate comparison

sites, however there are significant drawbacks with the most commonly applied matching

algorithms, making an entirely PSM-based approach undesirable. One drawback of the

PSM mechanism, that of treating all selected individuals uniformly, can also be applied to
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4.4. Propensity Score Weighted Regression

the standard approach for applying SPFs. We recall from equation 1.1 that normally SPFs

are fitted using a standard, non-weighted Negative Binomial generalised linear model,

however as discussed in this chapter and Chapter 3, not all data points (comparison sites)

are equally informative in the regression model, as some sites will be more similar to the

treated site, and so provide more information. Clearly therefore our regression should

reflect this, and so a weighted regression should be used to form the SPF, with the data

points weighted by their similarity to the treated site in question.

4.4.1 Weighted Regression

We are familiar with the concept of ordinary least squares regression, whereby the general

model structure is of the form,

yi = ηi + ε,

ηi = β0 + β1x1,i + . . .+ βPxP,i,

εi ∼ f(·, σ2)

where y is the response variable, ηi is the linear predictor, and ε is the error term with

distribution f depending on the form of linear model being fitted. The key feature of

this is that the error terms are drawn from the same distribution, and thus ordinary least

squares invokes the assumption of homoscedasticity, i.e. constant variance σ2 on the error

terms. This in effect means that the process of minimising the residual sum of squares

in order to obtain the maximum likelihood estimates for the regression coefficients βj

gives equal weighting to all data points, i.e. all error terms εi have the same priority in

terms of being minimised. However this assumption of equal importance among the data

points may not always be appropriate, as we may wish to give some data points greater

influence over our fitted model than others. In this case we should relax the homoscedastic

assumption on the error terms, and instead fit a heteroscedastic structure to them,

yi = ηi + εi,

ηi = β0 + β1x1,i + . . .+ βPxP,i, (4.1)

εi ∼ f

(
·, σ

2

wi

)
.

Equation (4.1) now provides a weighted least squares structure, whereby the error terms

are no longer identically distributed, and the variance of each error, εi depends on its

weighting, wi. This therefore induces a hierarchy of importance into the data points,

since data points which have error terms with large variances will influence the resulting

estimates of the coefficient parameters βj, less than those with a smaller variance. Hence
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we can state that the influence of data point i is proportional to its weight wi, and so

for data points we wish to prioritise we should allocate them a large value of wi and vice

versa for those we wish to assign a low importance to. We note here that it is common to

standardise the weights such that the weight vector w = (w1, w2, . . . , wn) sums to 1, and

so 0 < wi < 1,∀i, and hence data points of high influence will have values of w close to

1, and low priority data points will have w values closer to 0. Weighted regression can be

carried out easily in R via the weights argument in either the lm or glm commands (or

in this case the glm.nb command).

4.4.2 Similarity Weighted SPFs

As discussed in Section 4.4, not all data points contributing to the SPF have equal impor-

tance, with some being more exchangeable to the treated site, and thus providing more

useful information than others. We wish to carry out a weighted regression in place of an

ordinary least squares regression when forming the SPF in order to reflect this, however in

order to do so we must first construct a vector of weights, wi which reflects the similarity

between each comparison site and the treated site i (and hence the importance we wish

to assign to each comparison site). Fortunately we already have a mechanism to provide

this, as shown in Section 4.3, the vector di, the difference between the propensity scores

of the candidate comparison sites and treated site i, provides a numerical summary of

the suitability of each candidate comparison site to be used in the SPF for treated site

i. Since the importance of a candidate comparison site j in the regression is inversely

proportional to the value of dij (the larger the value of dij, the less similar candidate

comparison site j is to treated site i, and hence the less importance we wish to place on it

in the regression), and the size of the value of wij is proportional to the weighting given

to site j in the regression, we wish for the value of dij to be inversely proportional to the

value of wij (i.e. the larger the value of dij, the smaller the value of wij and vice-versa).

There are a variety of kernels by which the propensity score differences can be converted

to weights, generally the results do not vary strongly between them [Yu et al., 2014a] and

so the choice is largely arbitrary. Here we elect to make use of a Gaussian weight function,

wij = exp

(
−dij
b2

)
,

where dij is the difference in propensity scores between treated site i and comparison site

j, wij is the corresponding weight, and b is a bandwidth parameter to be chosen. We

note here that the Gaussian kernel successfully maps values of d to the range [0, 1], with

larger values of dij resulting in smaller values of wij and vice-versa, as desired. This is

essentially the same as a kernel matching algorithm, sometimes used in a standard PSM

approach in step 2 of the algorithm given in Section 4.3, except here we have embedded
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the weighting within the regression used to form the SPF for each treated site. The result

of this is a much more efficient use of the available data, as it avoids the need to throw

information away, whilst respecting the fact the utility of each comparison site depends

on its similarity to the treated site in question. As for the PSM approaches discussed

in Section 4.3, this then gives rise to site-specific SPFs, where the vector of weights wi

is clearly specific to each treated site, and hence the resulting SPF regression equation

shall also be site specific. This provides an additional advantage to a PSWR approach

rather than the standard SPF approach discussed in Section 1.3, since it is clearly illogical,

particularly where the number of treated sites is large and/or diverse, to expect the same

SPF equation to govern all treated sites equally well. We can therefore view PSWR as

being a more general case of SPF fitting, with the standard global SPF structure being

recovered when the weights are all equal for all treated sites, i.e. when all treated sites

and comparison sites have identical propensity scores with each other, which is clearly

unrealistic and so further reason to support a PSWR approach.

4.4.3 PSWR Demonstration

We demonstrate the PSWR approach using the simulated data from Chapter 3. We recall

the mechanism for the simulation study whereby we simulate data to form an analysis

pool of sites, and then simulate a series of comparison pools from which we can form an

SPF to better inform our analyses. The simulation study in Chapter 3 demonstrated that

as the comparison sites became increasingly less exchangeable with the treated pool, the

error in RTM effect estimation induced in the analysis significantly grew. We therefore

concluded that we should avoid the inclusion of non-exchangeable sites in our comparison

pool to train the SPF, so as to best reduce errors in RTM effect estimation. Within the

PSWR framework we avoid discarding data altogether, preferring to weight data points

by their utility, here exchangability to the treated pools. Hence in order for our algorithm

to be effective, we desire for it to identify suitably exchangeable candidate sites within a

pool and give them increased weighting in the analysis, while giving less weight to non-

exchangeable sites within a pool. Our methodology to verify PSWR as effective therefore

becomes:

1. Simulate covariate and collision data to form our analysis pool.

2. Simulate a diverse pool of candidate comparison sites with varying degrees of ex-

changability with the analysis pool

3. Run the PSWR algorithm on the treated pool and the entire pool of candidate

comparison sites
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4. Check the weightings given to each candidate site relative to their exchangeability

(and thus likelihood of contributing an error to the analysis) with the analysis sites

We retain the covariate generating distributions for our analysis sites as used in the

simulation study in Chapter 3 and so we simulate two covariates: average speed (x1) and

a binary indicator variable corresponding to whether the site was in an urban location

(x2). We use the following SPF to generate estimates of µi from the covariates,

µi = exp (3− 0.05xi,1 + 0.8xi,2) i = 1, . . . , n (4.2)

and use the following covariate generating functions to produce covariates for the analysis

sites,

x1 ∼ N
(
30, 12

)
,

x2 ∼ Bern(0.7).

We shall retain a classical Empirical Bayes structure to generate collision rates,

λi ∼ Ga

(
γ,
γ

µi

)
where we take overdispersion parameter γ = 1, and hence we generate collision counts for

the before period

yi ∼ Pois (λi) .

As in the simulation study we make the mean of the covariate generating functions for

the comparison data to be a function of the group number c = 1, . . . , C so as to ensure

increasing dissimilarity between analysis and comparison groups as c gets bigger. In this

case in order to generate a heterogenous pool of candidate comparison sites with varying

exchangeability to the treated pool, we sample a small number of sites from each pool c to

form a single comparison pool, where clearly we would wish to give more weight to sites

sampled from groups where c is small compared with large. Here we simulate from C = 20

pools, sampling 10 sites from each to generate a pool of 200 candidate comparison sites

along with n = 100 sites to form the analysis pool. The covariate generating distributions

for comparison group c are

x1(c) ∼ N

(
30 +

40

C
c, 1

)
,

x2(c) ∼ Bern

(
0.7− 0.4

C
c

)
,

for which we use the same SPF in Equation (4.2) to convert the covariates into elements

of µ which we then use the same EB structure with overdispersion parameter γ = 1 to

generate collision rates λi and thus collision counts yi for each comparison site.
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With this data we are now in a position to carry out a PSWR analysis, we combine

the covariate data for the analysis and comparison datasets and assign a binary indicator

to each data point to correspond to whether the datapoint belongs to an analysis site or

not (Ti = 1 if an analysis site, 0 otherwise). We then carry out a logistic regression on Ti

using the simulated covariates x1 and x2 as explanatory variables in order to obtain p̂i,

the fitted probability of site i being treated, which in this context is the site’s propensity

score. Hence for each treated site we compute the vector of differences in propensity score

between treated site i, and each candidate comparison site j = 1, . . . , C

di = (di1, . . . , diC) , = (|p̂i − p̂1|, . . . , |p̂i − p̂C |) .

From each bespoke difference vector di, we obtain a bespoke vector of weights, di,

subject to an inverse distance weight function,

wij = f (dij)

where f(·) is a monotonically decreasing function. In this case we choose a simple inverse

distance metric,

wij =
1

|dij|
.

This choice of metric is made for simplicity, removing the need for any parameter speci-

fication, thereby retaining the method’s lack of need for expert involvement to be imple-

mented. Computing the mean propensity score difference for each candidate comparison

site, d̄j = 1
n

∑n
i=1 dij, and hence the mean weighting w̄j = 1

n

∑n
i=1wij and plotting against

the comparison pool from which the site was taken gives plots shown in Figure 4.1. From

Figure 4.1 we see a clear increase in propensity score difference, and hence decrease in

SPF weighting with increasing comparison pool c, demonstrating that PSWR gives more

weight to more exchangeable comparison sites and downweights non-exchangeable com-

parison sites, thereby making the SPF more closely resemble a form which would give

lower error in RTM effect estimate. We highlight here that PSWR was able to identify

the desirable datapoints from a heterogenous dataset completely autonomously without

any need for external input, thereby making it a highly useful tool for practitioners,

particularly those without statistical training.

4.4.4 Bayesian Propensity Score Weighted Regression

From Section 4.4.3 we can be satisfied that PSWR provides a useful method for incorpo-

rating comparison sites into a before-and-after scheme evaluation analysis. However the

approach to PSWR outlined thus far in Section 4.4 is not without its drawbacks, mostly

akin to those with the EB method discussed in Section 2.2. As with the EB method, the
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Figure 4.1: A plot of mean propensity score difference and mean SPF weighting against

comparison pool c for each candidate comparison site

PSWR procedure we have outlined is based in a non-Bayesian, frequentist paradigm, and

as such experiences the familiar drawbacks of non-Bayesian methods when compared to

Bayesian approaches. The chief limitations of the above PSWR procedure are:

• Lack of uncertainty acknowledgement on the weightings. Because the logis-

tic regression used to obtain the propensity scores is carried out in a non-Bayesian

paradigm, the obtained maximum likelihood estimates for the regression coefficients

are treated as “exact”, with no uncertainty on them propogating through the analy-

sis. The result of this is then a lack of measure of uncertainty regarding the weights

• No scope for incorporating prior knowledge. While, as with all other methods

discussed in this thesis, we make no assumption of the availability of expert prior

knowledge, where it is available it should be incorporated into an analysis so as

to avoid wasting information. This is of particular use in a PSWR analysis where

there is potential for the inclusion of prior information both at the logistic regression

stage and in the SPF stage. It seems sensible that experienced practitioners will

have insights as to the impact of a covariate on the likelihood of a location being

selected for treatment, and additionally the anticipated effect a collision will have

on collision counts in the SPF.
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The Bayesian PSWR (B-PSWR) algorithm can be broken down into 3 main parts:

• Obtain a sample of the coefficient vector ζ = (ζ0, . . . , ζL) from the logistic regression

of treatment indicator on covariates.

• Using the obtained coefficient vector, calculate the fitted probability of treatment,

i.e. the propensity score, for each site, pi and hence the vector of differences di =

(di1, . . . , diC) where dij = |pi − pj| for treated sites i and comparison sites j.

• From the difference vector di, obtain a vector of weights, wi = (wi1, . . . , wiC) using

weight function f , wij = f (dij) and hence obtain a sample of the SPF coefficient

vector βi = (β0,i, . . . , βP,i) by caryying out a weighted Negative Binomial GLM

regression using comparison sites 1, . . . , C with corresponding weights wi1, . . . , wiC .

The algorithm for carrying out B-PSWR is therefore:

1. Initialise ζ = (ζ0, . . . , ζL) at its initial value ζ(0) = ζ
(0)
0 , . . . , ζ

(0)
L and βi at β

(0)
i =(

β
(0)
0,i , . . . , β

(0)
P,i

)
for i = 1, . . . , n. Initialise counter m = 1.

2. For each element 1, . . . , L of ζ, sample a proposal value ζ∗l using a Metropolis random

walk centred at the current value ζ
(m−1)
l ,

ζ∗l |ζ
(m−1)
l ∼ N

(
ζ

(m−1)
l , eζ

)
l = 1, . . . , L

and set ζ
(m)
l = ζ∗l with probability α

α = min

1,
π (ζ∗l )L (x|ζ∗l )

π
(
ζ

(m−1)
l

)
L
(
x|ζ(m−1)

)
 ,

else set ζ
(m)
l = ζ

(m−1)
l .

3. Using the sample ζ(m) obtain fitted values of the propensity scores p(m) for the

treated sites 1, . . . , n and comparison sites 1, . . . , C.

4. For treated site i = 1, . . . , n obtain the vector of differences in propensity score

between it and each comparison site j,
(
d

(m)
i1 , . . . , d

(m)
iC

)
, where d

(m)
ij = |p(m)

i − p(m)
j |.

5. Calculate the weight vector for treated site i, w
(m)
i =

(
w

(m)
i1 , . . . , w

(m)
iC

)
, where

w
(m)
ij = f

(
d

(m)
ij

)
and f(·) is a non-zero monotonically decreasing function.
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6. For each treated site i = 1, . . . , n, and for each element of k = 1, . . . , P , sample

a proposal value β∗k using a Metropolis random walk centred at the current value

β
(m−1)
k ,

β∗k,i|β
(m−1)
k,i ∼ N

(
β

(m−1)
k,i , eβ

)
k = 1, . . . , P.

and set βmk,i = β∗k,i with probability α

α = min

1,
π
(
β∗k,i
)
L
(
xi|β∗i ,w

(m)
i

)
π
(
β

(m−1)
i

)
L
(
xi|β(m−1)

i ,w(m)
)


else set β
(m)
k,i = β

(m−1)
k,i .

7. Set m = m+ 1. Go to step 2.

While adopting a B-PSWR approach provides a mechanism for accounting for uncer-

tainty in the SPF weightings as well as incorporating expert prior information, it does

lead to a significant computational increase, with the resulting model containing nP +P ′

parameters (where P ′ is the number of covariates in the logistic regression model used to

obtain the PSWR weights) and so may not be applicable to larger datasets.

4.5 Accounting for Trend

As discussed in Section 2.1.1, the change between counts before and after treatment at a

site can be represented as a combination of the RTM, trend and treatment effects,

yi,BEF = λi,BEF − ρi, (4.3)

yi,AFT = λi,AFT + τi, (4.4)

yi,AFT − yi,BEF = ρi + αi + τi, (4.5)

where yi,BEF and yi,AFT are the collision counts before and after treatment, and λi, ρi,

αi and τi are the underlying collision rate, the RTM effect, trend effect and treatment

effect respectively. We have discussed extensively methods for estimating the RTM ef-

fect ρi, through the use of comparison sites via safety performance functions. How-

ever the estimation of the trend effect αi has been largely neglected, and there ap-

pears to be no clear method for estimating this when we are restricted to just before

and after data (although extensive research has been done for the case when there are

many years of data via time series methods, see for example [Carnis and Blais, 2013],

[Park et al., 2017b], [Sacchi et al., 2014]). In Chapter 2 we discussed a method used

by [Fawcett and Thorpe, 2013] which is dependent on expert prior knowledge (or reli-

able prior data) to inform the trend component of the analysis. Whilst such an approach
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may be suitable should such knowledge/information be available and accurate, this is

a strong assumption to make, and can be cumbersome for an expert to provide beliefs

regarding their beliefs regarding trend at each site, and potentially too strong of an as-

sumption to assume a uniform trend across all treated sites. A clear improvement would

be to obtain a data driven, objective estimate for the trend effect at each individual site,

without having to rely on large amounts of data.

A simple approach to this, which we advocate here, is repeating the data collection

process for all sites for the after period, and combining these to form a single SPF, with

additional indicator variable denoting which period the data was collected in,

αi =

0, Observation i was taken in the before period

1, Observation i was taken in the after period.

Hence we obtain,

µi = exp (β0, β1x1 + . . .+ βPxP + τiαi) i = 1, . . . , 2n

Here we assume the same time distance between before and after periods, thereby αi

need only be a binary indicator variable to denote the effect of being in the after period.

This assumption could easily be relaxed with αi becoming the effect of unit time passing,

and so would have SPF coefficient equal to the number of time periods between the

before and after observations. This approach provides a solely data-oriented approach

to trend estimation, although should the SPF be fitted within the Bayesian paradigm,

there is also the possibility to include expert beliefs regarding αi in its prior distribution.

Furthermore this approach removes the implicit assumption otherwise present in EB/FB

approaches, that the covariate values at treated sites remain the same between before and

after periods. This is clearly a restrictive assumption and leave the model susceptible to

many flaws, for instance the possibility of an extreme covariate value (e.g. if a special

event had happened near a site meaning there was an unusually large traffic flow there)

meaning there is the possibility of an RTM effect in covariate values which is otherwise

left unaccounted for. By combining the before and after data into a single dataset to fit

the SPF, we are making the implicit assumption that the covariate effects are constant

between before and after periods. While we believe this to be a reasonable assumption

when there is not much temporal distance between before and after periods, and hence

not much time for covariate effects to change, if there is a significant gap between periods

this assumption may be less valid. In this case we advocate forming dual SPFs for the

before and after periods respectively, to allow for possible changes in covariate effects,

µi,BEF = exp (β0,BEF + β1,BEFxi,1,BEF, . . . , βi,P,BEF)

µi,AFT = exp (β0,AFT + β1,AFTxi,1,AFT, . . . , βi,P,AFT + τiαi)
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4.5. Accounting for Trend

While this approach does require more data than say, an FB analysis with expert provided

trend multiplication factor, we feel these data requirements are minimal, as it only assumes

a single additional datapoint at each site, and the covariates required are the same as

those for the standard SPF and so should be easily available. Furthermore by doubling the

number of datapoints used to fit the model, at the cost of just a single extra parameter, we

increase the stability of the model with regards to providing coefficient estimates. Hence

we believe this approach provides a good, accessible means for estimating trend without

the assumption of expert prior information. This approach coupled with a standard global

SPF still provides an improvement, however as for the covariates effects, fitting a global

SPF fails to account for heterogeneity among treated and comparison sites, assuming the

effects are the same among treated sites, and all comparison sites are equally informative

as to the value of these effects. Hence we again make the case that making use of PSWR,

in conjunction with the dual SPF approach, allows for a site-specific trend estimate, with

priority given to the most exchangeable comparison sites when eliciting this estimate.
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Chapter 5

Hotspot Prediction

Notation

Below is a summary of the notation used to describe the statistical framework used in

this chapter. Much of the notation carries over to Chapter 6 and has the same meaning

as here.

Notation Meaning

i Site indicator, i = 1, . . . , n

j Covariate indicator, j = 1, . . . , np

t Time period indicator, t = ny − 1, . . . , 0

n Number of sites to be analysed

np Number of covariates in the SPF

ny Number of observations at each site in the dataset

xj,i The value of covariate j at site i

yi,t Observed collision count in time period t at site i

λi Underlying collision rate at site i

σi Site effect at site i

αi Site specific trend effect at site i

αNi
Zero-inflation component of αi

αZi
The Normal distribution component of αi

τi Variance inflation parameter for site i

µi Fitted estimate from the SPF for site i

βj(,i) SPF regression coefficient for covariate j (at site i)

Ψ Vector of all parameters in the hotspot model
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5.1 Introduction

As discussed in Chapter 1, one of the primary duties of road safety practitioners is

analysing the road network, so as to discern locations to apply road safety treatments.

Given limited budgets (and as discussed in Section 2.2, the potential for treatments to

sometimes cause an increase in the number of casualties) treatments cannot be applied

everywhere, and so some degree of selection must take place. Logically it would make

sense for locations to be prioritised for treatment based on the potential for improvement

at the location, that is the number of collisions we would expect the treatment to remove,

we shall refer to any such locations as “hotspots”. However as outlined in Section 2.1.1,

we must be wary of any blip and trend effects present in the data, and must account for

these so as to avoid any RTM and trend effects misleading our conclusions. Using the

notation described in Chapter 2 we can consider the number of preventable collisions as

a comparison between λ, the underlying collision rate at a location, and µ, the collision

rate we would expect at a typical location of this nature, and hence obtain the potential

for safety improvement (PSI) [Jiang et al., 2014],

PSIi = λi − µi, i = 1, . . . , n.

Larger values of PSI indicate a site has a higher collision rate than would be expected from

the network, and so would suggest it be a better candidate for treatment. Clearly the

accuracy of estimate of PSI is heavily dependent on having an accurate and well-fitting

SPF (in order to have an accurate µ), and since we cannot guarantee this for datasets

with limited covariate information, it may be sensible in such cases to simply rank by λ

outright.

We further note the importance of proactive hotspot prediction, as opposed to ret-

rospective hotspot identification. It is common practice for hotspot locations to be des-

ignated and treated reactively [U.S. Department of Transportation, 2018], that is solely

using past data, usually when some form of threshold criteria (usually in relation to colli-

sion/casualty totals) is exceeded. This is clearly not ideal, since it requires a given number

of negative events to occur before any treatment is applied at a dangerous location. A

better approach would be to implement a proactive approach whereby treatment is allo-

cated based on future levels of risk at locations, without the need to wait for a threshold

level of collisions etc to be exceeded.

5.2 Halle Dataset

We shall demonstrate our hotspot prediction model using a real dataset taken from the

city of Halle, Saxony-Aanholt, Germany. The full dataset comprises information at 734
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“nodes”, where a node is a location at which the road setup changes (often this will be

at an intersection but it could also be at other situations, e.g. where two roads merge

rather than intersect), since nodes are specific locations, as opposed to routes or links,

we can consider them the same as the sites discussed in chapter 2. The data is taken

on a monthly basis, although for the purposes of this chapter we shall aggregate data

to annual observations, taken over 9 years, from 2004-2012. Comprising this data are

collision counts which are broken down by severity - although again in this chapter we

shall aggregate counts across severities, as well as covariate information from which we

can build an SPF. The included covariates are:

• Volume: The average number of vehicles at the node in a day over the year (taken

on the log scale)

• MinorVolume: The average number of vehicles along the major arm of the node

(taken on the log scale, equal to Volume if the node is not an intersection)

• MinorVolume: The average number of vehicles along the minor arm of the node

(taken on the log scale, 0 if the node is not an intersection)

• Urban: 1 if the node is in an urban location (0 otherwise)

• Intersection: 1 if the node is at an intersection (0 otherwise)

• Signalised: 1 if the node is at a signalised intersection (0 otherwise)

• SpeedLimit: The speed limit at the node (30, 45, 50, 60, 70 or 80km/h)

• MajorRoad: 1 if the node is at a major road (0 otherwise)

• MajorIntersection: 1 if the node is at an intersection involving a major road (0

otherwise)

• FourLegs: 1 if the node is at an intersection with four arms (0 otherwise)

A summary of the collision and covariate data is given in Table 5.1.

We observe the majority of the nodes in the Halle dataset were located at urban

intersections, which is to be expected given the location of the dataset, however we still

have a reasonable mixture for each categorical variable. From table 5.1a we observe an

apparent negative trend in total collision counts, most notably for the final 3 years of the

dataset.
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Year Total Mean Variance

2004 2678 3.649 21.437

2005 2738 3.730 24.484

2006 2621 3.571 25.689

2007 2726 3.714 24.846

2008 2609 3.554 20.378

2009 2671 3.639 23.047

2010 2414 3.289 19.324

2011 2281 3.108 19.381

2012 2181 2.971 20.901

Total 22919 3.469 22.207

(a) Summary of collision counts from 2004 to 2012 across all 734 nodes in the Halle dataset

Covariate Mean St. Dev.

Volume 6.898 3.187

MajorVolume 6.648 3.241

MinorVolume 3.783 3.648

(b) Summaries for continuous covariates in the Halle dataset

Covariate Prop. Speed Limit Prop.

Urban 0.911 30 0.369

Intersection 0.857 45 0.119

Signalised 0.270 50 0.215

MajorRoad 0.063 60 0.178

MajorInt 0.196 70 0.045

FourLegs 0.244 80 0.072

(c) Relative frequencies of categorical variables in the Halle dataset

Table 5.1: Summaries of the Halle dataset
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5.3 Adapting Scheme Evaluation Methods

We retain the framework used to address RTM and trend described in section 2.2 by

retaining a Bayesian structure to model our accident rate λ, only this time rather than

be restricted to just two years of data, we allow for there to be any number of years of

data from which we can form an analysis. Our model structure is given,

Yi,0|λi(0) ∼ Pois (λi(0)) i = 1, ..., n, t = 0 (5.1)

Yi,t|λi(t) ∼ NegBin

(
p =

1

ci(t)
, r =

λi(t)

ci(t)− 1

)
i = 1, ..., n, t < 0 (5.2)

Here we see that in the current year (fixed to be time t = 0), we retain a Poisson dis-

tribution for our number of collisions, however as we move further into the past, t < 0,

we switch to a Negative Binomial distribution which, whilst still having mean λ, has an

increased variance λc, where c is a monotonically increasing function as t grows increas-

ingly negative. We include this since clearly observations further into the past will be

less informative to our current accident rate, and thus any predictions we form, than

observations taken more recently. To model this we downweigh observations according to

how far in the past they were made, by increasing the value of c, and thus increasing the

variance of our Negative Binomial distribution [Fawcett et al., 2017].

ci(t) = exp(−tτi), i = 1, . . . , n t < 0, (5.3)

τi ∼ Ga(2, 20), i = 1, . . . , n. (5.4)

Our choice of prior for τi was elicited from road safety experts at PTV Group through

standard elicitation methods [Garthwaite et al., 2005] and chosen to be the distribution

which they best felt described the rate at which past observations should be down-weighed

in our model. In this elicitation procedure, we identified along with an expert, reasonable

quantiles that our prior for τ should follow, based on the multiplicative effect caused

by moving several years into the past. Restrictions were specified in order to avoid the

variance increasing too rapidly, thereby effectively removing data points from informing

our analysis, and ultimately it was decided a Ga(2, 20) distribution best met the required

criteria.

The purpose of this model is to form predictions regarding the number of collisions

at a given site in future years, and we can form these predictions by appealing to the

Bayesian posterior predictive distribution:

f(yi,1 = y|yi) =

∫
Λ

f(yi,1 = y|λi(1))π(θj|yj)dλj.

We approximate this predictive distribution by estimating values of the underlying acci-

dent rate for the future time period, λi,pred by extending our global and site specific trends
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(and assuming covariate levels are the same as in the final observation). We retain the

same level of uncertainty regarding the condition in future years at our site, as we did for

the past, and hence we increase the variance of observations in the next year by a factor

of ci(1) and hence obtain,

yi,1|λi(1) ∼ NegBin

(
p =

1

ci(1)
, r =

λi(1)

ci(1)− 1

)
, (5.5)

and so obtain the predictive probability from this distribution.

5.4 Rate Parameter Structure

We model the accident rate λ as being comprised of three parts: the effect due to covariates

- given by µ, the site effect - given by σ, and the site specific trend effect - given by α.

λi(t) = exp(µi(t) + σi + αit), i = 1, ..., n, −∞ < t <∞. (5.6)

The covariate effect µ is obtained via the standard SPF structure as outlined in section 1.3,

however now since we have multiple years of data, we model trend by including time t as a

covariate, in order to account for global trends across the network. Here we assume linear

trends in data, partly for simplicity – as assuming complicated trend structures would

significantly increase the longitudinal data requirements of the model, and partly since

the primary purpose of this model is short term prediction, we wish to avoid overfitting

trend effects. Clearly these linear trends could be replaced by a more complicated trend

function g(t), should there be particular reason to suspect non-linear trends are present.

Furthermore since all potential hotspot sites are currently untreated, we no longer have

“reference” and “treated” pools of sites, as was the case in chapter 2 and so the SPF is

formed from a single pool containing every available site,

µi(t) = exp(β0 + β1x1 + . . .+ βnpxnp + βtt),

where np is the number of covariates in the SPF. We do not assume any prior knowledge

for the general form of our model, and so assign independent, vague prior distributions

to our regression coefficients,

βj ∼ N(0, 100) j = 1, . . . , np. (5.7)

However because we fit a single model to the entire network, we cannot guarantee it will

be representative of every individual site within the network, a problem which becomes

more pronounced the larger the dataset. In order to account for any systemic (ie. fixed in

time) differences between µ obtained from the SPF, and the observed values at the site
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y, we include a site effect parameter, σ, which accounts for this discrepancy, as well as

for any unobserved covariate effects. Since it entirely possible for this systemic deviation

to be positive or negative, in the general form of the model we propose a vague Normal

prior for σ,

σi ∼ N(0, 100), i, . . . , n. (5.8)

Whilst σ accounts for any systemic deviations from the SPF, we still retain the very real

possibility that not all sites will display the same trend as that estimated by βt in the

SPF formula. To account for this we propose an additional site-specific trend parameter,

α, to account for site-specific deviations from this global trend. However we must guard

against the possibility of trends forming in y due to chance, rather than a true trend

being present, a problem which becomes more pertinent when there are few years of

data available at each site. In order to decrease the likelihood of false trend detection,

we impose a zero-inflated structure for α, thereby providing more weight to the case

where there is no site-specific deviation from the global trend, while still allowing it to

be possible, should significant evidence of it be present. Again in the general form of the

model we assume prior ignorance regarding the likelihood and direction of site specific

trends, and so we impose a vague zero-inflated Normal prior for α,

αi = αNi
αZi

, (5.9)

αNi
∼ N(0, 100), i = 1, . . . , n (5.10)

αZi
∼ Bern(0.5). (5.11)

We note that the Bernoulli probability could be adjusted depending on any expert prior

information (i.e. the expected heterogeneity or lack thereof among trends across the

network), thereby increasing or decreasing the level of zero-inflation. Here we choose 0.5

as a sensible default, so as to reduce the probability of false trends being detected whilst

still allowing for a good sample size to be drawn for the local trend should it be present.

Given the Normal distributions assigned to the site effect parameter, σ, and site-specific

trend effect, α, the rate parameters, λ, is effectively lognormally distributed, conditional

on the covariate effect parameter, µ, obtained from the SPF, i.e.

log (λi(t) | µi(t)) ∼ N(µi(t) + σi + αit, 100 + 75t2).

This means that in the final year of data, corresponding to t = 0, the model becomes analo-

gous to a Poisson-Lognormal model, commonly used in literature ([Kitali and Sando, 2017b],

Zhan et al. 2015, Wang & Kockleman 2013).
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5.5 The 1 and 2 year case

We would expect, as with any statistical model, for the accuracy of our estimates, partic-

ularly those pertaining to trend, to increase with more years of data available. However

we must also contend with the possibility that very few years of data will be available,

with just 1 or 2 years of available data possible. Clearly in such cases the methods for

estimating site-specific trend outlined in equation (5.9) are no longer valid, however we

may retain the estimate of global trend since this uses information from across the net-

work and so will have multiple data points per year. Hence in the case where there are

only 2 years of data available, we remove the α term from our expression for λ given in

equation (5.6), to give,

λi(t) = exp (µi(t) + σi)

and hence in this case we fit the global observed trend to each site.

In the more extreme case where only 1 year of data is available, most of our model

features become invalid. Clearly we can no longer fit any form of trend, but additionally

our site effect term σ becomes redundant, since this will simply become the difference

between the SPF estimate, µ, and the observed collision count y, so as to make the

collision rate, λ, equal to y, i.e.

σi = log (yi)− µi,
λi = exp (µi + σi) ,

= exp (µi + log (yi)− µi) ,
= exp (log (yi))

= yi.

Due to the lack of suitability of the additional parameters we impose in our hotspot

prediction model, in the case of only 1 year of available data we revert to the Fully

Bayesian method discussed in section 2.2 to estimate the underlying rate parameter λ.

5.6 Model Application

5.6.1 MCMC Algorithm

We employ a Markov Chain Monte Carlo (MCMC) algorithm in order to fit the main

hotspot prediction model. Given the non-conjugate structure of our model, we make use

of a Metropolis-Hastings algorithm in order to carry out updates of the parameter vector,

Ψ. Given various components of our model (e.g. λ, µ, c) are deterministic conditional
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on other parameters, the parameter vector we must carry out inference on is,

Ψ =
(
β0, . . . , βnp , βt, σ1, . . . , σn, α1, . . . , αn, τ1, . . . , τn

)
where here np = 16 and n = 734. The MCMC algorithm is implemented as follows:

1. Initialise the chain at Ψ(0) =
(
β0

0 , . . . , β
0
np
, β0

t , σ
0
1, . . . , σ

0
n, α

0
1, . . . , α

0
n, τ

0
1 , . . . , τ

0
n

)
,

where each parameter’s initial value is the mean of the corresponding prior dis-

tribution. Set iteration counter i = 1.

2. For each element Ψj generate a proposed update value, Ψ∗j . If Ψj /∈ (τ1, . . . , τn) the

proposal is generated via a Normal random walk, i.e.

Ψ∗j ∼ N
(
Ψm−1
j , εj

)
.

Alternatively if Ψj ∈ (τ1, . . . , τn), the proposal is generated from a Gamma proposal

distribution,

Ψ∗j ∼ Ga


(

Ψ
(m−1)
j

)2

εj
,
Ψ

(m−1)
j

εj

 .

The parametrisation of the Gamma proposal distribution was chosen such that it

has mean Ψ
(m−1)
j and variance εj as with the Normal distribution for the other

parameters.

3. Set Ψ
(m)
j = Ψ∗j with probability pij,

pij = min

(
1,

f(Ψ
(∗)
j )

f(Ψ
(m−1)
j

π(Ψ
(∗)
j )

π(Ψ
(m−1)
j )

)

where f(Ψ
(∗)
j ) is the model likelihood evaluated using the proposed value, and

f(Ψ
(m−1)
j ) is the current model likelihood. Set Ψ

(m)
j = Ψ

(m−1)
j otherwise.

4. Set m = m + 1. Go to step 2.

Because the model parameters (not including the regression coefficients β0, . . . , βnp , βt)

for a site are independent of those for all other sites, the updates for these parameters can

be carried out in parallel in order to improve computational efficiency. A burn-in period

of 1,000 iterations was carried out to ensure the chain reached convergence, followed by a

full run 50,000 iterations, which were thinned by a factor of 5 to reduce autocorrelation,

giving a resulting posterior sample size of 10,000.
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Variable Estimate Std. Error p-value

Intercept -2.305 0.645 < 0.001

Urban 0.319 0.073 < 0.001

Intersection 1.129 0.046 < 0.001

Signalised 0.493 0.033 < 0.001

Sp. Lim. 30 1.638 0.639 0.010

Sp. Lim. 45 2.050 0.641 0.001

Sp. Lim. 50 1.680 0.641 0.008

Sp. Lim. 60 1.815 0.641 0.005

Sp. Lim. 70 1.404 0.644 0.029

Sp. Lim. 80 1.313 0.646 0.042

MajorIntersection 0.277 0.039 < 0.001

FourLegs 0.435 0.031 < 0.001

MajorVolume -0.031 0.074 0.680

MinorVolume 0.043 0.007 < 0.001

Year -0.029 0.005 < 0.001

Table 5.2: Output from the SPF fitted to the Halle dataset

5.6.2 Exploratory Data Analysis

We apply the hotspot prediction model to the Halle dataset outlined in section 5.2. We

first build the SPF in order to obtain estimates of µ, for which we use the covariate data

from all 734 nodes (not including Volume so as to avoid issues of multicollinearity), and

fit a Negative Binomial generalised linear model using the glm.nb function within the

MASS package in R. The output from this regression is given in table 5.2.

From table 5.2 we can see almost all (with the exception of MajorVolume) of the

covariates are highly statistically significant in estimating the number of collisions at a

given node. The lack of significance of MajorVolume could be due to its relatively high

correlation with MinorVolume (r = 0.59), a possible by-product of how the traffic flows

were simulated, and the node locations decided within the traffic model. We further

observe that, as expected given the results shown in table 5.1a, there is a negative trend

in collision counts, although the strength of this trend is diluted by the relative stagnation

of counts in the first 6 years of data. As discussed in section 5.4, we do not expect all

nodes to behave exactly as the SPF suggests, with regards to covariate and/or trend

effects, and hence include the site and local trend parameters, σ and α, to account for

any divergence from this estimate.
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Figure 5.1: Plots of collision counts at 4 nodes from the Halle dataset from 2004-2012.

5.6.3 Model Results

We can now apply the full model to each of the 734 nodes across the Halle network in

order to predict future collision counts and thus determine where on the network should

be considered future hotspots and thus candidates for treatment. We choose to highlight

four nodes in particular so as to best demonstrate the features of the model, which are

given in figure 5.1.

From figure 5.1 we observe at nodes 163 and 677, for the year 2008 there is a clear

blip which is distinct from the underlying collision rate at each node. It is clearly highly

important that each is identified as a blip, as failing to do so in the case of node 163

would potentially lead it to being falsely identified as a dangerous location, and the

opposite for node 677. In both cases this would lead to resources being misallocated with

potentially dangerous nodes remaining untreated, and treatments being falsely allocated

to locations where they will have little to no benefit, as seen in Chapter 2. Furthermore in

figure 5.1, we observe clear trends in collision counts at nodes 308 and 706, with node 308

demonstrating a clear increasing trend, and node 706 demonstrating a clear decreasing

trend. It is important to acknowledge these trends since the purpose of our model is to

estimate the level of safety at locations in the future, we should estimate and extrapolate

any trends present at each location. For instance at a location such as node 308, even if its
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current collision count does not deem it sufficiently dangerous as to warrant treatment, the

fact the collision numbers are growing suggests it is likely to become sufficiently dangerous

in the future, and so intervention should be made before this occurs. Conversely for sites

demonstrating a negative trend such as node 706, even if its current collision counts

suggest it should be a candidate for treatment, the fact the collision totals are reducing

by themselves, without treatment, may suggest it is more prudent to withhold treatment,

at least in the short term, to see if the collision rate returns to an acceptable level without

need for intervention. Output from fitting the hotspot model to these nodes is given in

figure 5.2

From figure 5.2 we observe that at nodes 308 and 677, the blip values in 2008 have no

effect on the estimated collision rate, shown by the estimated collision rate fitting well to

the rest of the points but leaving the blip value as an outlier. This is important since it

demonstrates any RTM effect will be removed from the model by disregarding any blips

which may be present. When comparing the red and blue lines in the plots for nodes 163

and 677, we observe the lines to be virtually parallel, meaning the model does not detect

any site specific deviation from the global trend at these nodes (i.e. α will be 0). However

for nodes 308 and 706, we observe the red and blue lines have very different gradients,

showing the model has detected sufficient site specific deviation from the global trend

to fit a significantly different trend at these nodes (in the case of node 308 we will have

α > 0, and for node 706 α < 0). The fact there is no site specific deviation in trend for

nodes 163 and 677, where the appears to be little evidence to warrant it from the data,

but significantly different trends are fitted to nodes 308 and 706 is encouraging, as it

suggests the zero-inflated distribution on α is having the desired effect, restricting where

deviations from the global trend are included, but allowing for them where there is clear

evidence of site-specific deviations from the global trend.

In figure 5.2 we observe the underlying collision rate λ is extrapolated to become

the mean of the predictive distribution, as described in equation 5.5, alongside its 95%

prediction interval. We can investigate this in more detail by viewing the full posterior

predictive distributions, given in figure 5.3.

From figure 5.3 we observe the predictive probability of observing any number of

collisions in the coming year at each of the 4 nodes we are analysing. While we report the

posterior predictive mean in the plots in figure 5.2, since we wish practitioners to make

decisions based on the underlying level of safety at a site as opposed to individual counts,

if a practitioner was solely interested in the number of collisions in the coming year,

the posterior mode may be analysed instead. We can also infer the level of confidence

in the prediction, for instance the distribution for node 308 is much wider than for the

other three nodes, implying we have much less certainty regarding future collision counts
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Figure 5.2: Plots displaying output from the hotspot prediction model at 4 nodes from the

Halle dataset. Collision counts are given as black dots, the red line and red dotted lines

correspond to the estimated value of λ and the 95% credible interval for λ respectively.

The blue line corresponds to the fitted values from the SPF for each node, and the green

dot with line corresponds to the mean of the predictive distribution, with 95% prediction

interval.
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Figure 5.3: Histograms displaying the posterior predictive distributions for the number

of collisions in 2013, for 4 nodes in the Halle dataset.
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there, conversely node 706 has a rather narrow distribution, implying a much greater

level of certainty regarding future counts there. These uncertainties must of course be

considered relative to the size of the predictive estimate, with node 308 having a much

larger predictive mean, and so it may be expected that is has a large posterior predictive

variance relative to nodes with a smaller predictive mean.

5.7 Model Validation

Clearly it is important for any model, particularly for which the primary purpose is

prediction, to be validated as fitting real data well. There are numerous statistical metrics

with which we can ascertain the goodness of fit of a model in comparison to others, (see

Section 5.7.1), however these do not necessarily provide us with information regarding the

goodness of fit of a model in isolation. In order to be confident in the predictive capability

of our model we should attempt to verify that our model marries well to observed reality

in isolation, rather than simply it performing better than some alternatives. A simple, and

widely used ([Deublein et al., 2015], [Anastasopoulos, 2016], [Hou et al., 2018]) approach

toward this is to remove a section of a dataset to form a “training” dataset, from which we

shall predict the remaining “non-training” data. A natural method for this with regards

to hotspot prediction, would be to fit the model to the initial n − 1 years of data, and

predict the nth collision count. In the case of the Halle dataset, we fit our model to data

from 2004-2011, and predict 2012, giving the results shown in figure 5.4.

In Figure 5.4 we observe a strong positive correlation of 0.858 between the collision

counts observed in 2012 for the Halle dataset, and the means of the corresponding posterior

predictive distributions for each node. This indicates a good matching between prediction

and observation and gives evidence that we can be satisfied our model has fit well to the

data, however this alone is not sufficient, since if our model consistently predicted 10

collisions more than were observed would yield a correlation coefficient of 1, but clearly

these predictions would be unsatisfactory. Hence we cannot simply solely rely on the

correlation coefficient as a measure of model validation, and so we also calculate the

mean absolute error (MAE) calculated as,

MAE =
1

734

734∑
i=1

|(yi,OBS − yi,PRE)|.

The choice to use the MAE, as opposed to commonly used alternatives e.g. mean squared

error (MSE), is based upon the direct layman interpretation of the MAE output as the

“average prediction error produced by the model”, something objects such as the MSE

cannot provide. However we should be wary of the MAE’s inability to standardise resid-

uals, thereby meaning our validation metric could be overwhelmingly influenced by a

91



5.7. Model Validation

Figure 5.4: A plot comparing predicted and observed collision counts for the 734 nodes

in the Halle dataset for the year 2012.

large number of small nodes with low collision counts heavily down weighting the overall

MAE. Again as we can see from figure 5.4, the model validation procedure for the Halle

dataset gave an MAE value of 1.626, meaning the prediction was typically between 1

and 2 collisions from the observed count at each node. Again this value indicates that

the model predictions are generally close to the observed counts, further validating its

predictive capability. It is however clear from figure 5.4 that this average is clearly not

representative of the model’s predictive accuracy at all nodes, where the predictive error

is clearly proportional to, and thus increases with, the predicted/observed counts. This

is not necessarily a cause for concern however, since as demonstrated in Chapter 2, when

a large number of individual collision counts are observed, it is expected that many will

be blips which are not representative of the underlying collision rate at their site. An

example of this would be node 65, highlighted on figure 5.4 which has a predicted value

of less than 10, but an observed count of 30. While normally this would be a cause for

concern, suggesting a poor model fit at this node, closer inspection of the historic counts

at node 65, given in figure 5.5 show that there has only been a single annual count across

the entire dataset greater than 10, and indeed there appears to be a general negative

trend displayed up to and included 2011, the final year of the training data. While we

cannot yet know for certain, it would appear this observed value for 2012 is highly likely
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Figure 5.5: Collision counts at node 65 from the Halle dataset, showing a clear outlier in

the year 2012

to be a blip, and reduce by itself without need for intervention, and so should not be an

indicator of poor model performance. Should future counts remain in this high territory,

then clearly treatment should be considered, however this would also be reflected by the

model when the new data is included.

We can be satisfied from the above analysis that our model fits the Halle dataset

well when we have a training dataset comprising 9 years of data. However clearly not

all practitioners will have as much as 8 years of data available, and so it is important

to investigate the robustness of the model to fewer years of data in the training dataset.

We can investigate this for the Halle dataset using the same strategy as above, by using

the data corresponding to years up to 2011, and attempting to predict the corresponding

counts for 2012. In order to ensure our model is able to predict adequately, with reduced

data available, we shall reduce the size of our training dataset by removing the earliest

years. We investigate the predictive validity of the model using a training dataset com-

prising of 8 years of data as above (i.e. the years 2004-2011), 7 years (2005-2011), 6 years

(2006-2011) and 5 years (2007-2011). We then compare the predicted value from these

models with their observed counterparts, with the resulting plots given in figure 5.6.

From figure 5.6 we can see there is very little fluctuation in the accuracy of the model

predictions, with all 4 plots appearing very similar, showing that the model predictions

are highly robust to reduced number of years. Hence we can be satisfied our model fits
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Figure 5.6: A plot comparing predicted and observed collision counts for the 734 nodes in

the Halle dataset for the year 2012 using datasets of length 8, 7, 6 and 5 years respectively

up to the year 2011.
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the data well and generally forms accurate predictions, even with a reduced amount of

available data. However there are many other approaches toward hotspot identification,

and we should investigate the effectiveness of our model against others which attempt the

same analysis.

5.7.1 Methods of Model Comparison

As discussed in Section 5.7 there are many metrics by which we can evaluate model

performance. Whereas in Section 5.7 where we were primarily concerned in evaluating

the quality of model fit to a specific dataset, here we simply wish to compare differ-

ent model fits in order to determine the best performing model. There are a variety of

methods from which we can choose, across a spectrum of statistical complexity. Perhaps

the most commonly used statistical tests for this purpose are the information criteria,

typically the Aikake Information Criterion [Akaike, 1998], Bayesian Information Crite-

rion [Schwarz et al., 1978] or Deviance Information Criterion [Spiegelhalter et al., 2002]

are applied, with the model minimising the resulting value being deemed to be the best fit

to the data. However in the case of models for hotspot identification, specific statistical

tests have been developed for the purpose of method comparison, namely: the site con-

sistency test, the method consistency test, the total rank differences test, and the total

score test [Montella, 2010]. A common feature of these approaches is that they assume

hotspots are identified as top α% of all sites, when sites are ordered by (modelled) colli-

sion rate. This is a relatively restrictive assumption, as it does not take into account the

various other ways hotspots may be defined (for instance, as discussed in Section 5.6.3

hotspots can be simply categorised as any site exceeding certain criteria, in this case a

given collision rate). In practice, rather than set out to treat a given percentage of poten-

tial hotspots, it is more likely a practitioner will have a budget for a particular number

of treatments, and so will select this many hotspots (which can be trivially converted

into a percentage). These methods also require each method of analysis to be applied in

two distinct time periods and compare the hotspots identified by each method in both

time periods. This presents practicality issues since, as has been referred to throughout

this thesis, we cannot guarantee or assume an abundance of data available for analysis

and failing to ensure a good amount of data for both time periods being analysed makes

it much more difficult to achieve a good model fit (increasingly so for more complicated

models with more parameters) and leave such analyses susceptible to factors such as the

RTM effect outlined in Chapter 1. The four methods in question are outlined as follows:

• Site Consistency Test (SCT): The test statistic for the SCT for method m is
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defined as:

SCTm =
1

n

n∑
i=1

yhi,t+1,

where yhi,t+1 is the collision count at hotspot i in time period t+1, where the hotspot

has been identified at time t, and n is the number of hotspots identified. This test

is designed to analyse the ability of a method to consistently identify dangerous

sites across multiple time periods, hence a method which identifies sites as hotspots

which go on to have high collision counts in the future will be favoured by the SCT

statistic. Larger values of SCT are preferred, with SCT being defined on the range

0 ≤ SCT <∞.

• Method Consistency Test (MCT): The test statistic for the MCT for method

m is defined as:

MCTm = {h1, h2, . . . , hn}m,t ∩ {h1, h2, . . . , hn}m,t+1,

where (h1, h2, . . . , hn)i,t is defined as the set of hotspots h identified by method m in

time period t. The rationale behind this test is that if a site is truly a hotspot then

it should remain a hotspot throughout time periods i and hence a method should

consistently identify it as such. Methods which consistently identify the same, or

similar groups of sites as hotspots should be preferred and so are favoured by the

MCT statistic. Larger values of MCT are preferred, with MCT being defined on

the range 0 ≤ MCT ≤ n.

• Total Rank Differences Test (TRDT): The test statistic for the TRDT for

method m is defined by:

TRDTm =
n∑
i=1

|Rm,i,t −Rm,i,t+1|

where Rm,i,t is the ranked position of hotspot i at time period t in terms of collision

count according to method m. So for example if hotspot i had the greatest collision

count in time period t but only the third highest in time period t+ 1 it would have

|Rm,i,t − Rm,i,t+1| = |1 − 3| = 2. This test is designed to investigate consistency in

relative hotspot severity, rather than simply whether or not sites were classed as

hotspots, since clearly methods which give the most consistent picture of the most

dangerous hotspots on a network will be preferred as to ensure optimal allocation

of treatment resource. Unlike the SCT and MCT, smaller values of TRDT are

preferred, with TRDT being defined on the range 0 ≤ TRDT ≤ 1
2
n2.
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• Total Score Test (TST): The TST is a combination of the three above tests, with

test statistic defined as:

TSTm =

(
SCTm

maxm(SCT)

)
+

(
MCTm

maxm(MCT)

)
+

(
1− TRDTm −minm(TRDT )

maxm(TRDT)

)
.

This test combines the three test discussed above into a single overall metric, which

provides equal weighting to each test (although this can easily be modified into a

weighted sum if preferred). As discussed above, large values of SCT and MCT with

small values of TRDT are preferred, and so large values of TST indicate a method

performs consistently overall, with TST being defined on the range 0 ≤ TST ≤ 3

(some authors multiply by a factor e.g. 1
3

or 100
3

to rescale TST however this is

purely a matter of personal preference and does not affect the analysis conclusion).

A comparison study was carried out in [Guo et al., 2019], comparing the hierarchical

Bayesian hotspot model described here in Chapter 5 with an EB approach to hotspot

identification and a non-parametric approach referred to as the crash rate method which

simply uses observed collision rates at locations as a means to rank hotspots without

appealing to any external sources of information. Comparisons between the 3 methods

were carried out using the four tests (SCT, MCT, TRDT and TST) on a subset of the

Halle dataset. Model consistency was assessed by splitting the years of observations into

4 consecutive sets of 2 years (04-05, 06-06, 08-09, 10-11), enabling 3 comparisons to be

made per test. These tests were repeated for classifying the top 2.5%, 5% and 7.5% of

sites as hotspots, meaning 36 individual consistency tests were carried out in total. Of

those 36 tests, the Bayesian hierarchical model performed best for 35 out of the 36 tests,

providing strong evidence that it provides an improved method for informing hotspot

identification over EB and naive ranking approaches.

5.8 Hotspot Identification

The model developed in this chapter allows a road safety practitioner to make detailed

inferences regarding the collision rate at various points on the network. The model how-

ever deliberately stops short of specifically labelling particular locations as being collision

hotspots, largely due to the highly subjective nature of how a hotspot is defined, which

can vary significantly between countries, local authorities and practitioners. Some practi-

tioners may only consider a location to be a hotspot based on the number of collisions of a

particular severity, or due to a particular set of causes, which the extended hotspot model

is able to identify (see Chapter 6). Even within the output from the model described in

this chapter however, there are competing metrics by which a practitioner may wish to de-

fine a hotspot, with each parameter in the model potentially indicative of a site requiring
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treatment. Perhaps the most obvious initial statistic to consider would be the predicted

number of collisions in the coming year E (yi1), where clearly locations expected to have

high numbers of collisions will be of greater concern to practitioners than those expected

to have fewer collisions. This does not tell the whole story however, since a location which

is predicted to have a high number of collisions, but has a noticeably declining trend in

collision rate αi < 0, may soon no longer be considered among the more dangerous loca-

tions on the network without need for intervention, conversely a location which currently

is not predicted to have a particularly high collision count, but has an increasing trend

in collisions αi > 0, may require proactive preventative measures to prevent the level of

danger worsening. Finally there is the site effect, σi to consider, which describes a site’s

collision rate relative to that expected from the network via the SPF. Even if a location is

predicted to have a high number of collisions, if is still displaying typical behaviour for a

site on the network with its set of covariates (i.e. if the collision rate is close to the value

predicted by the SPF, and so σ ≈ 0) then road safety treatments may not be effective

at reducing collisions here, but rather infrastructural changes may be needed to reduce

the covariate effects β across the network. Hence special priority may be given to sites

with the largest values of σ, i.e. those with the greatest potential for safety improvement,

as their collision rate is most abnormal for the network and so may be more likely to be

improved by a safety countermeasure.
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Chapter 6

Extensions to the Hotspot

Prediction Model

Notation

Below is a summary of the notation used in this chapter. Much of the notation carries

over from Chapter 5 and has the same meaning here.

Notation Meaning

i Site indicator, i = 1, . . . , n

j Covariate indicator, j = 1, . . . , P

t Time period indicator, t = ny − 1, . . . , 0

xi,j The value of covariate j at site i

yi,t Observed collision count in time period t at site i

λi Underlying collision rate at site i

σi Site effect effect at site i

αi Site specific trend effect at site i

αNi
Zero-inflation component of αi

αZi
The Normal distribution component of αi

τi Variance inflation parameter for site i

µi Fitted estimate from the SPF for site i

βi,j SPF regression coefficient for covariate j (at site i)

φs Seasonal effect of season s, s = 1, . . . , S

πi,t,k The probability of a given collision at site i in time period t being of severity k

k Severity indicator k = 1, . . . , K

θk,i The latent threshold at site i to determine if a collision reaches severity k + 1

f Collision factor/type indicator f = 1, . . . , F
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6.1. Accounting for Seasonality and Spatial Trend

6.1 Accounting for Seasonality and Spatial Trend

The hotspot prediction model described thus far in sections 5.3 and 5.4 is designed to

analyse data on an annual (or larger) scale, and hence does not anticipate any seasonal

patterns to form in the data. While this would be acceptable for practitioners making

their decisions on an annual basis (as road safety practitioners do), it is not satisfactory

for those who wish to make decisions on a finer scale. This is since the current model

only fits a linear trend to the data and so does not account for cyclical patterns, which

we would expect to be present in data taken on a seasonal level. This would likely be due

to recurring effects on a road network for instance, significant seasonal weather patterns

affecting the difficulty of driving, or possibly significant trends in the number of non-local

drivers on the network due to tourism/events taking place (e.g. festivals), which in turn

could lead to patterns in the number of road users driving while impaired etc. Clearly

in order to account for this we require an additional component to be included in our

estimate of the underlying collision rate, λ, in order to capture this seasonal variation.

An additional limitation of our current model, is that each element of the site effect

parameter vector σ is evaluated independently of the others, i.e. there is no sharing

of information pertaining to the site effect between sites. This is sub-optimal when we

consider the possibility that factors contributing to sites being more or less dangerous than

we expect are likely to be similar to those around them (changing socio-demographic areas,

vulnerability to adverse weather conditions, popular areas for tourists who are new to the

system etc), i.e. there is reason to suspect the site effects may be spatially correlated.

Allowing for this spatial dependence between site effects should not only improve the fit of

the model by allowing information to be shared between sites, but also could potentially

provide more information to practitioners by developing a picture of relative risk on a

more mesoscopic level, as opposed to the micro, site-specific, scale previously adopted.

As discussed at various points it is the aim of this thesis to develop methodologies

which are as versatile as possible, and as such retain their utility to even more limited

datasets. By incorporating seasonal and spatial structure into the model, and hence

sharing of information between datapoints, we further enhance the model’s ability to

evaluate seasonal and spatial effects, even when data is limited.

6.1.1 The Florida Panhandle

A good example of the kind of location which would greatly benefit from, if not require,

a spatial and seasonal component being included is the state of Florida, U.S.A., which

in addition to covering a large geographic area, also undergoes wildly changing weather

patterns between seasons. We can carry out an initial pre-analysis purely to investigate
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Figure 6.1: Histograms of raw and logged collision rates for the Florida dataset.

the potential presence of seasonal and spatial correlations within the data, i.e. we take the

model for the current year given in equation 6.1, but only consider seasonal and spatial

effects (removing any dependence on covariates and trend). In this case the response

variable is not collisions at locations, but rather collision rates on segments (collisions

per km). Hence the Poisson/Negative Binomial distribution used for the count data in

Section 5.3 would no longer be appropriate here, and so must be replaced by a continuous

analogue. Plotting the collision rates in Figure 6.1a, reveals the typical slight positively

skewed density associated with crash data, which is clearly bounded below by 0 since

they are rates. Plotting the logged rates shown in Figure 6.1b shows a more symmetric

distribution, approximately Gaussian in shape.

For convenience we shall therefore model the logged collision rates, allowing us to use

a conjugate Normal-Normal structure,

yi,s ∼ N
(
λi,s, τ

−1
i,s

)
, (6.1)

λi,s = σi + φs, (6.2)

σi ∼ N
(
mσ, t

−1
σ

)
, (6.3)

φs ∼ N
(
mφ, t

−1
φ

)
(6.4)

τi,s ∼ Ga(gτ , hτ ), (6.5)

hence the prior distribution for the mean of the collision rates can be given

λi,s ∼ N
(
mσ +mφ, (tσ + tφ)−1) .
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Figure 6.2: A plot of posterior means for φs against month s

In this modelling representation, yi,s is the log of the observed collision rate, λi,s and τi,s

are the mean and variance for the distribution of collision rates at site i in month s, and

σi and φs are the spatial and seasonal effects at site i and season s respectively. Given the

conjugate model structure we can employ a Gibbs sampler to sample from the posterior

distributions π (σi|σ−i,φ,y), π
(
φs|σ,φ−s,y

)
for i = 1, . . . , n and s = 1, . . . , S.

We apply the model to the Florida dataset in which we have n = 52 zones of data with

monthly collision rates, meaning we have S = 12 seasons. We initialise each parameter at

its prior mean and run the MCMC algorithm for M = 1000000 iterations after discarding

the first 1000 iterations for burn-in and thinning by 100 to remove autocorrelation. Poste-

rior means for φ against month are given in Figure 6.2 and posterior means for σ against

longitude and latitude of traffic analysis zone (TAZ) centroid are given in Figure 6.3.

We plot the posterior means for σ against longitude and latitude of the TAZ centroid,

given in Figure 6.3. From Figure 6.2 we see a clear fluctuation in posterior mean for φs

between months, with lower collision rates associated with months earlier in the year, and

higher collision rates associated with the late summer months, possibly coinciding with the

tropical storm season frequently affecting the south eastern coast of the USA. In Figure 6.3

we do not observe much of an effect of changing latitude on posterior mean for σi, however

there appears to be a clear increase in collision rate with increasing longitude (moving

from west to east, from central Florida towards the coast), again possibly due to climatic

effects since coastal regions are normally those most affected by extreme weather effects.

While we analyse the Florida dataset here to demonstrate the potential for seasonal and

spatial effects in collision data, the dataset is very limited beyond this and so we shall
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(b) Posterior means of σ against latitude

Figure 6.3: Plots of posterior means of σ against longitude and latitude for the Florida

dataset.

return to the Halle dataset to demonstrate expansions to the hotspot prediction model.

6.2 Updating the Hotspot Model

We wish to extend the model developed in Chapter 5 to account for subtleties in the

data which are ignored by only modelling raw annual collision counts with no structure

applied to the spatial effects of the data. In order to do this we shall consider counts

which occur on a finer scale than annually, thereby presenting the possibility of seasonal

effects affecting collision counts; spatial structure which may be present in the data by

fitting structures to the site effect terms in our model; the ability to inform our prior

beliefs with respect to the SPF coefficient vector β using external sources of exchangeable

data so as to better inform our analysis.

6.2.1 Data Augmented Priors

When formulating our prior beliefs with respect to the regression coefficients β in Chap-

ter 5, we stated that unless expert prior knowledge was available, we would adopt the

position of prior ignorance, and so would fit independent, diffuse prior distribution to

each element βj of β,

βj ∼ N
(
0, 102

)
j = 1, . . . , P.
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An improvement on this approach in absence of expert prior knowledge is to appeal to sup-

plementary, external data which we can use to inform our beliefs with regards to covariate

effects. This practice, known as forming data augmented priors (DAPs) [Ntzoufras, 2011],

involves obtaining estimates of covariate effects (and covariances) using external data, and

using that information to inform prior beliefs regarding the covariate effects of the data

we wish to analyse. If we denote the fitted effect of covariate j to be β′j then a DAP for

βj would be

βj ∼ N

(
β̂′j, k × s.e.

(
β̂′j

)2
)
, (6.6)

where β̂′j denotes the estimated value of β′j, for example a maximum likelihood estimated

obtained using glm.nb, s.e.
(
β̂′j

)
denotes the standard error of this estimate, and k is

a constant by which we multiply to account for uncertainty between the supplementary

dataset, and the dataset on which the analysis will take place. It is possible to generalise

this further if it is suspected there may be strong correlation between parameters, by

adopting a multivariate prior distribution for the entire covariate effect vector (minus the

intercept which by definition cannot be correlated with any parameter), here denoted

β−0 = (β1, . . . , βP ). Hence a multivariate DAP would be,

β0 ∼ N
(
β̂0, k × s.e.

(
β̂0

))
β−0 ∼ NP−1

(
β̂−0, Σ̂β

)
where Σ̂β is the fitted variance-covariance matrix of the estimated β̂′j coefficients, where

the i, jth element would be given Σ̂β(i,j) = Cov
(
β̂′i, β̂

′
j

)
.

We formulate DAPs for the Halle data by randomly selecting 50 sites of our data to run

a hotspot analysis on, retaining the 684 remaining sites as supplementary training data for

the DAP. As demonstrated in Chapter 3 it is important when using supplementary data to

inform an analysis, that the supplementary data is sufficiently exchangeable with the data

on which the main analysis shall be run. In this case we carry out the permutation tests

described in Section 3.4 on the covariates used to form the SPF, as well as the Mahalanobis

distance on the combined covariate vector, for the supplementary and analysis datasets.

In this case the true p-value requires calculating
(

734
50

)
≈ 1.15 × 1078 combinations, and

so again we obtain an approximate p-value, p̂, via a Monte Carlo permutation test (as in

Chapter 3) with N = 100000 simulations, with results given in Table 6.1. From Table 6.1

we see that for all covariates and the Mahalanobis distance we have p > 0.05 suggesting we

do not have evidence to reject exchangeability for any covariate and so can be satisfied the

supplementary pool chosen will provide suitable exeternal information to inform our prior

befliefs for β for the analysis pool. We note that although the pools are exchangeable they

are not identical, and so retain the multiplicative factor k in our prior standard errors for
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6.2. Updating the Hotspot Model

x1 x2 x3 x4A x4B x4C x4D x4E x5 x6 x7 x8 Mahal

p̂ 0.61 0.84 0.74 0.50 0.71 0.34 0.50 0.25 0.89 0.61 0.13 0.62 0.55

Table 6.1: Table giving approximate permutation test p-values for each covariate in the

Halle dataset and the Mahalanobis distance for the supplementary and analysis datasets

Covariate Estimate Std. Error p-value

β′0 49.09 6.13 1.1× 10−15

β′1 0.38 0.05 6.4× 10−15

β′2 1.19 0.04 < 2× 10−16

β′3 0.46 0.02 < 2× 10−16

β′4A 0.35 0.03 < 2× 10−16

β′4B -0.06 0.03 0.05

β′4C 0.11 0.03 3.91× 10−4

β′4D -0.26 0.05 3× 10−7

β′4E -0.31 0.06 7.6× 10−8

β′5 0.31 0.02 < 2× 10−16

β′6 0.42 0.02 < 2× 10−16

β′7 0.03 4.6× 10−3 2.1× 10−12

β′8 0.05 3.1× 10−3 < 2× 10−16

β′9 -0.03 3.1× 10−3 < 2× 10−16

Table 6.2: Table showing output from glm.nb in R showing maximum likelihood esti-

mates, with associated standard errors and p-values from tests of significance, for the

covariates in the supplementary Halle dataset.

the elements of β. Given a lack of significant correlation between elements of β̂′j we choose

to employ independent DAPs for β in the main analysis. Output from fitting a Negative

Binomial GLM to the supplementary data using glm.nb in R, is given in Table 6.2.

From Table 6.2 we observe that each variable has p-value of less than 0.05 suggesting

statistical significance (with the exception of x4B corresponding to the indicator for a

50km/h site). We additionally observe very small fitted standard errors, which is to be

expected given the large amount of data used to train the model. To avoid overly specific

priors we therefore use a multiplicative factor k = 3 when forming the prior standard

deviations for βj.
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6.2. Updating the Hotspot Model

6.2.2 Modelling Seasonal Effects

As discussed in sections 6.1 and 6.1.1, we have reason to wish to incorporate a seasonal

effect into the hotspot prediction model. This seasonal effect can be taken on a variety of

scales, e.g. monthly/bi-monthly/quarterly, at the practitioner’s discretion, with the model

structure remaining broadly the same, simply containing a set of indicator parameters

corresponding to each season within the year. Since we treated the seasonal effects as

constant throughout the data this is analogous to fitting a seasonal random intercept

term to our model. We define φ to be the vector of seasonal effects, meaning if we define

S to be the number of seasonal periods in our data, we have

φ = (φ1, . . . , φS)T .

We note these seasonal effects are not site specific, and instead reflect the global effect of

each season across the network. This is done so as to allow information to be shared across

the different sites and thus improve the precision of the estimates of φ, which becomes

all the more important in datasets where the number of years is low. The seasonal effects

can either be modelled independently, or with a dependence structure built in between

differing seasons. A standard approach towards fitting independent season effects would

be,

φs
iid∼ N(0, 10), s = 1, . . . , S,

where each φs corresponds with the effect of being in season s on collision rate. Here

we shall assume prior ignorance, hence the vague Normal distributions assigned to each

element of φ, however clearly any expert practitioner could adjust these according to their

own prior beliefs. The decision to assign independent seasonal effects has varying merit,

depending largely on the value of S. In the case where S = 2 or 3, the decision to keep

seasonal effects independent seems sensible, since it would be expected for conditions to

vary quite dramatically between consecutive periods of 6 or 4 months (respectively), and

so it is unlikely including this information would better inform our beliefs regarding the

current season. In the case for S > 3 however, we would expect to see in most cases,

a correlation emerge between the level of safety in consecutive seasonal periods, and

so including information regarding the surrounding seasons should provide more useful

information regarding the effect in the current season. One such method to inform the

effect of one seasonal effect using surrounding, consecutive seasonal effects, is conditional

autoregressive modelling.

6.2.3 Conditional Autoregressive Models

Conditional autoregressive (CAR) models [Gelfand and Vounatsou, 2003] are conditional

distributions which inform the prior beliefs regarding an element of a parameter vector,
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6.2. Updating the Hotspot Model

using neighbouring consecutive elements of the same vector. These can take various

forms but are generally a useful modelling specification when it is believed there will be

significant correlation among consecutive parameters in a parameter vector, in this case

we believe this to be likely in the case of the parameter vectors corresponding to the

seasonal effects, φ.

CAR models can be thought of as a special, discretised, case of the kernel density

models we shall investigate in Section 6.2.4, as they do not account for varying distances

between points, and so the weighting provided to each other parameter in the parameter

vector follows a discrete structure. This discretised structure lends itself well to the

modelling of seasonal variation, since we fix our seasons to be a constant distance apart,

and so we shall use a CAR model to inform our beliefs regarding elements of our seasonal

effect parameter, φ. Since the data we wish to analyse is given on a monthly scale, we

shall use a lag 1 autoregressive CAR model with weight 0.5, so in effect we have,

φs ∼


N
(

1
2

(φs−1 + φs+1) , 102
)
, 2 ≤ s ≤ 11

N
(

1
2

(φ2 + φ12) , 102
)
, s = 1

N
(

1
2

(φ1 + φ11) , 102
)
, 12.

The choice of model for a seasonal parameter vector, φ clearly depends upon the choice

of S, since for instance if we were to take S = 2, with seasons covering the summer

and winter months, it would not make sense to try and inform the summer parameter

using information from the two surrounding winter seasons, and so a CAR model may

not be appropriate. Likewise should our data be on a finer scale, e.g. weekly, it may be

preferable to use a higher lag autoregressive structure, i.e. include more than simply the

most immediate surrounding observations.

In addition to the seasonal effect vector φ we can utilise a CAR structure to inform

our beliefs regarding the parameter vector for spatial effects σ. This seems intuitive since

there is a strong possibility the heterogeneity accounted for by the σ parameter could be

due to unobserved effects which vary geographically, e.g. exposure to climate, changing

socio-economic levels, sites being in a poorly maintained local area etc. Such an effect

becomes more pronounced when we analyse areas on a more mesoscopic level, i.e. grouping

locations into areas (for instance the TAZs commonly used in the United States) rather

than on a site level. Analysing data on a zonal level makes it far easier to meaningfully

employ the key concept of CAR modelling, that our beliefs regarding a location should be

influenced by neighbouring locations. Clearly it would be difficult to meaningfully specify

what constitutes a neighbouring location should we carry out an analysis at a site specific

level, however at a zonal level it comes much more straightforward, with any 2 zones

which share a border being classed as “neighbours”. From this we can therefore express
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a general CAR model for spatial effects [Xie et al., 2014], [Papadimitriou et al., 2013],

[Quddus, 2008a],

σ ∼ N

(
Σi 6=jωijσj
Σi 6=jωij

, 102

)
where ωij represents the proximity indicator, for zones i and j,

ωij =

1, if zones i and j are neighbours

0, otherwise.

This approach is a simple extension of that utilised for φ previously, where now our

prior mean is the mean of the site effects of all neighbouring zones, as opposed to in the

seasonality case where the number of neighbours was fixed to be 2.

The advantages of using a CAR approach when modelling spatial effects are that it

allows for information sharing between geographically similar sites, which as described

above, we have reason to believe could be correlated. The form of the prior distribution

is simple and intuitive, and allows for flexibility in the number of neighbouring zones,

meaning it can be applied to virtually any zonal structure. The binary weighting structure

involved can be considered overly rigid though, with any zones other than the immediate

neighbours deemed to provide zero information regarding the spatial effect at our zone

of interest. Furthermore, the equal weighting involved, assumes all neighbouring zones

provide the same amount of information, which may be considered unrealistic, particularly

considering zones can often vary significantly in size.

While dealing with zonal data makes improvements upon this CAR approach difficult,

should we consider site data we can overcome these disadvantages quite easily, by replacing

our CAR prior, with one formed by a kernel density smoother.

6.2.4 Kernel Density Smoothers

Kernel density smoothers (KDEs) are in many ways a generalisation of the CAR models

discussed in Section 6.2.3, since in the KDE framework, each site is provided with its own

(normally) non-zero weighting. Hence we have, for a vector x,

xi ∼ N

(∑
j 6=i

wijxj, ε
2
x

)

where wj is the weight associated with element j, obtained by a given pre-defined weight

function, and ε2x is the prior uncertainty associated with the vector x.

It makes little sense to apply a KDE approach to estimate seasonal effects since these

are discretised intervals already and so are better suited to a CAR approach. However

in the case of spatial effects, with the concept being that we believe sites situated closely
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together geographically are likely to be correlated, it would make sense to employ a KDE

approach with the vector of weights, w a function of the distance from the site in question,

φi ∼ N

(∑
j 6=i

wijφj, ε
2
φ

)
,

wij = f (dij) ,

where dij is the distance between sites i and j. Here we shall employ the Gaussian weight

function to form our kernel density estimator, and hence obtain,

φi ∼ N

(∑
j 6=i

wijφj, ε
2
φ

)
,

wij = exp

(
d2
ij

b

)
,

where b is the bandwidth distance. As documented in literature, see for example [Yu et al., 2014b],

the choice of weight function is less important relative to the value of the bandwidth.

Adopting a Bayesian approach towards this, including the bandwidth as a variable in the

MCMC analysis, allows the data to determine the most appropriate value of the band-

width. Furthermore, adopting a Bayesian approach allows for proper inclusion of uncer-

tainty regarding the bandwidth, which would be lost in some non-Bayesian approaches

which use, for example cross-validation techniques, to find a single value of the bandwidth

which is treated as fixed. Again this would lead to over optimistic estimates of uncer-

tainty with regards to the spatial weights, which propogates through as to over optimistic

estimates of uncertainty regarding the spatial effects σ and hence of the collision rate λ.
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6.2. Updating the Hotspot Model

6.2.5 Application of the Extended Model

Combining the elements discussed thus far in Section 6.2 we hence obtain our extended

hotspot model,

Yi,s,t|λi,s(t) ∼

Pois (λi,s(t)) , t = 0

NegBin (Mean = λi,s(t),Variance = λi,s(t)ci(t)) , t < 0,

λi,s(t) = exp (µi(t) + σi + φs + αit) , i = 1, . . . , n

µi(t) = β0 + β1xi,1 + . . .+ βPxi,P + βtt,

σi ∼ N

(∑
j 6=i

wijσj, ε
2
σ

)

φs ∼


N
(

1
2

(φs−1 + φs+1) , 102
)
, 2 ≤ s ≤ S − 1

N
(

1
2

(φ2 + φS) , 102
)
, s = 1

N
(

1
2

(φ1 + φS−1) , 102
)
, S.

We adopt data augmented priors for the regression coefficients β,

βj ∼ N

(
β̂′j, k × s.e.

(
β̂′j

)2
)

where we take k = 3 to account for uncertainty between the supplementary and analysis

datasets, as described in Section 6.2.1. We impose a Gaussian weight structure to form

our KDE in the expression for the site effect σi,

wij = exp

(
−
d2
ij

b

)
where dij is the geographic distance between sites. We choose dij to be the Euclidean

distance between sites (as opposed to link distance) since the effects we expect to capture

are geographic/climatic, and so should be captured by geographic distance measures.

Of course other distance measures are possible, depending on the type of spatial effect

anticipated in the data. Here b is the bandwidth parameter for which we assume prior

ignorance, and so assign a vague Normal prior distribution to the log of the bandwidth

(so as to overcome the non-negativity contraint)

log(b) ∼ N(0, 102).

We assume prior ignorance for each of the seasonal and site effects and so assign each

parameter a diffuse Normal prior distribution,

φs ∼ N
(
0, 102

)
, 1, . . . , 12

σi ∼ N
(
0, 102

)
, 1, . . . , 50.
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6.2.6 MCMC Algorithm

We employ a Markov Chain Monte Carlo (MCMC) algorithm in order to fit the extended

hotspot prediction model, which is largely similar to the algorithm used to fit the model in

Chapter 5. Given the non-conjugate structure of our model, we make use of a Metropolis-

Hastings algorithm in order to carry out updates of the parameter vector, Ψ. Given

various components of our model (e.g. λ, µ, c) are deterministic conditional on other

parameters, the parameter vector we must carry out inference on is,

Ψ = (β0, . . . , βP , βt, σ1, . . . , σn, φ1, . . . , φS, α1, . . . , αn, τ1, . . . , τn, b)

where here P = 16, S = 12 and n = 50. The MCMC algorithm is implemented as follows:

1. Initialise the chain at Ψ(0) = (β0
0 , . . . , β

0
P , β

0
t , σ

0
1, . . . , σ

0
n, α

0
1, . . . , α

0
n, τ

0
1 , . . . , τ

0
n), where

each parameter’s initial value is the mean of the corresponding prior distribution.

Set iteration counter m = 1.

2. For each element Ψj generate a proposed update value, Ψ∗j . If Ψj ∈ (β0, . . . , βt, b)

the proposal is generated via a Normal random walk, i.e.

Ψ∗j ∼ N
(
Ψm−1
j , εj

)
.

If Ψj ∈ (φ1, . . . , φS) the proposal distribution remains Normal, however the mean

is obtained via the CAR structure discussed in Section 6.2.3. Similarly if Ψj ∈
(σ1, . . . , σn) the proposal distribution is Normal with mean given by the result of

the KDE described in Section 6.2.4. If Ψj ∈ (α1, . . . , αn) the proposal distribution

is a zero-inflated Normal distribution as in Chapter 5. Finally if Ψj ∈ (τ1, . . . , τn),

the proposal is generated from a Gamma proposal distribution,

Ψ∗j ∼ Ga


(

Ψ
(m−1)
j

)2

εj
,
Ψ

(m−1)
j

εj

 .

The parametrisation of the Gamma proposal distribution was chosen such that it

has mean Ψ
(m−1)
j and variance εj as with the Normal distribution for the other

parameters.

3. Set Ψ
(m)
j = Ψ∗j with probability pij,

pij = min

1,
f(Ψ∗j)

f
(

Ψ
(m−1)
j

) π(Ψ
(∗)
j )

π(Ψ
(m−1)
j )


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(a) Posterior means and 95% CIs for β

−30 −20 −10 0 10 20 30

0.
0

0.
5

1.
0

1.
5

β3

D
en

si
ty

(b) DAP (black) and posterior densities for β3

Figure 6.4: Posterior output for the covariate effect parameter vector β

where f(Ψ
(∗)
j ) is the model likelihood evaluated using the proposed value, and

f
(

Ψ
(m−1)
j

)
is the current model likelihood. Set Ψ

(m)
j = Ψ

(m−1)
j otherwise. In the

case Ψj = b, since the bandwidth b has no explicit representation in the likelihood,

for each proposal b(∗), we generate pseudo-proposal values σ∗, where each element

σ∗i is a deterministic weighted sum of the current vector σ(m) with weights calculated

using the proposed bandwidth, i.e.

σi =
∑
j 6=i

w∗ijσj,

w∗ij = f (b∗) .

We note here that in this context σ∗ are just pseudo-proposals, and so are discarded

(that is to say σ(m) does not change) regardless of whether b∗ is accepted as a sample

from π (b|y) or not.

4. Set m = m + 1. Go to step 2.

We initialise each parameter at its prior mean, tune the innovation parameters to

reach an acceptance rate of approximately 20-30% before running the model for 10000

iterations and discarding the first 1000 as burn-in.

For the covariate effects β we obtain posterior means and 95% credible intervals given

in Figure 6.4a.
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Figure 6.5: The prior (black) and posterior (red) densities for the logarithm of the band-

width parameter b

From Figure 6.4 we observe a relatively high level of posterior precision with regards to

the parameter estimates with very small 95% credible intervals for many of the elements

of β, which may be in part due to the data augmented prior distributions we impose which

were designed to inform our analysis and thus reduce posterior uncertainty. We observe

many of the densities remain close to zero suggesting the covariates do not have a large

effect on the collision rate at a site, although we note β2 is significantly greater than 0,

suggesting sites at intersections have a higher collision rate than sites not at intersections.

We allow the data to select the most appropriate values of spatial smoothing band-

width parameter b by including it as a parameter in the model. In Figure 6.5 we see prior

and posterior densities for log(b), chosen so as to overcome non-negativity constraints,

and observe a huge increase in certainty around the true value of the parameter. We

obtain a posterior mean for log(b) of 0.018 with a 95% credible interval of (-0.221, 0.274),

meaning the posterior mean and 95% credible interval for the bandwidth b are 1.03 and

(0.801, 1.32) respectively.

We observe a posterior mean for the global trend parameter to be -0.1, however we

also incorporate the potential for site specific deviations from the global trend via the

αi parameter, although we add a zero-inflation component to this parameter to reduce

the risk of erroneous site level trends being detected by the model. This zero-inflation
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Figure 6.6: Posterior means and 95% credible intervals for αi

is highly evident in Figure 6.6, where we observe posterior means for αi at all sites to

be very close to zero, suggesting there was no site specific trend present anywhere in our

data, and we can reasonably conclude the trend effect is constant across the sites we have

analysed.

6.3 Interpolating Spatial Effects

A commonly used advantage to deploying spatial models when analysing data is the ability

to interpolate between datapoints to form an estimate of the spatial effect at locations

for which data have not been collected. While the concept of interpolatiing spatial effects

becomes less advantageous, and arguably less meaningful, for small scale road safety

datasets (e.g. small towns and cities), for larger scale macroanalyses (e.g. counties/states

and countries) the ability to generate a general picture of local effects across a large region

(where fitting the model from Section 6.1 becomes computationally impractical) becomes

much more useful. In cases where this is of interest we propose fitting independent spatial

effects without any form of local smoother,

σi ∼ N
(
0, 102

)
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allowing us to fit spatial models to these raw spatial effects. At each iteration j of the

MCMC algorithm we obtain a sample of the spatial effects σ(j) =
(
σj1, . . . , σ

j
n

)
. Using

this sample we can carry out kriging [Cressie, 1992], a process by which we can estimate

the spatial effect across a given grid of points beyond just those where which we have

observed data. Repeating this procedure at each iteration of the MCMC algorithm allows

a distribution of interpolated spatial effects to be constructed, and hence a mean and

standard error for the spatial effect at each point on the grid can be obtained.

Beyond knowing simply which regions appear to have an elevated collision compared

to what would be expected across the network, given by the parameter σ, practitioners

may also be interested in investigated trend deviations, given by α. Hence the spatial

modelling approach outlined above can be replicated for successive samples of α, i.e.

α(j) =
(
αj1, . . . , α

j
n

)
, with a spatial model being applied to α(j) allowing us to interpolate

local effects across a large region.

We apply the hotspot model as defined in Section 6.2 to the 50 Halle sites on which we

fitted the full model, except here we assume independence between seasonal and spatial

effects (initially), giving rise to the model

Yi,s,t|λi,s(t) ∼

Pois (λi,s(t)) , t = 0

NegBin (Mean = λi,s(t),Variance = λi,s(t)ci(t)) , t < 0,

λi,s(t) = exp (µi(t) + σi + φs + αit) i = 1, . . . , 50

µi(t) = exp (β0 + β1xi,1 + · · ·+ βPxi,P ) ,

βj ∼ N
(
0, 102

)
j = 1 . . . , P

σi ∼ N
(
0, 102

)
φs ∼ N

(
0, 102

)
, s = 1, . . . , 12.

We run this model using rjags and obtain 1000 samples of the posterior distribution

for σ. On each sample σ(m) =
(
σ

(m)
1 , . . . , σ

(m)
59

)
we carry out kriging to obtain 1000

interpolated estimates of the site effect σ at points for which we do not have data. The

locations of the 50 locations for which we do have data are given in Figure 6.7.

In order to carry out kriging we make use of the sp and gstat packages in R [Bivand et al., 2013].

Examples of the heat maps that can be created as a result of carrying out kriging on sam-

ples of σ are given in Figure 6.8.

In addition, if for example we wished to obtain information regarding the site effect at

a new point at which we don’t have data, say at co-ordinates (11.85, 51.4) we can obtain

estimates of the site effect at this point for each sample of σ(m) and combine these to

form a sampling distribution for the estimated site effect at this point. It is important to

note here that the sampling distribution alone will not give us adequate representation of
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Figure 6.7: The geographic co-ordinates of the 50 Halle sites onto the site effects σ of

which a spatial model can be fitted
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Figure 6.8: Heat maps obtained as a result of kriging with an Exponential model using

site effect samples σ(25) and σ(93)
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Figure 6.9: Sampling distributions of σ and Var(σ) for the point at co-ordinates (11.85,

51.4)

the uncertainty surrounding the estimate since this will decrease with increasing numbers

of estimates M . Hence to properly represent the uncertainty of our estimate, we also

obtain a sampling distribution of the variance of the interpolated estimate to account for

uncertainty in the spatial model, particularly where we are attempting to obtain estimates

at a point far from our observed data. Examples of this using a null model to estimate σ

at the point (11.85, 51.4) are given in Figure 6.9.

6.4 Accounting for Collision Severity

The hotspot prediction model described in Chapter 5, and thus far in this chapter has

sought to analyse and predict collision counts at locations in order to determine which

locations are sufficiently dangerous to warrant treatment. A flaw in this approach is that

it is assumed all collisions are equal, regardless of their severity, with respect to the level

of danger at a location and thus its need for treatment. This is clearly flawed, since if for

a given time period a location had 9 collisions all causing fatalities, this would clearly be

more dangerous than a location which has 10 collisions in which no one was hurt. Hence

we must extend the mantra outlined in Chapter 1 whereby we claimed the number of

collisions to be a proxy for the level of safety at a location, to include the severity, and

thus threat to health/life of these collisions. There are many ways by which collision
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6.4. Accounting for Collision Severity

severity can be disaggregated, in the interests of ensuring significant numbers of each

(frequency decreases rapidly as severity increases), here we choose to model 3 severities

(although the methodology works the same for any number of severity classes):

1. KSI (Killed or Seriously Injured): A collision directly leading to one (or more)

deaths or severe injuries

2. Slight: A collision directly leading to one (or more) non-severe injuries

3. PDO (Property Damage Only): A collision in which no significant injuries were

sustained

Every collision must fall into one of these categories (collisions leading to injuries of

varying severity are categorised by the most severe), and so the total number of collisions

can be disaggregated into the number of collisions of each severity,

yi,t = yi,t,K + yi,t,S + yi,t,P, (6.7)

where yi,t,K, yi,t,S and yi,t,P denote the number of KSI, slight and PDO collisions respec-

tively. From this we can therefore model the vector of severity totals, yi,t = (yi,t,K, yi,t,S, yi,t,P)

as an observation from a Multinomial distribution,

yi,t ∼Mult (n = yi,t, p = (πi,K(t), πi,S(t), πi,P(t))) (6.8)

where πi,K(t), πi,S(t), πi,P(t) are the probabilities a given collision at site i in time pe-

riod t will have severity KSI, slight or PDO respectively. Since the vector πi(t) =

(πi,K(t), πi,S(t), πi,P(t)) is made up of probabilities, it seems logical to carry out a multi-

nomial logistic regression to model each element of πi(t), however to do so would be to

ignore the clear ordinal structure to the danger, that is that a KSI collision is clearly

worse than a slight injury collision is worse than a PDO collision. Hence we must include

this ordered structure to the data in our analysis, and so carry out an ordinal logistic

regression on the probability vector πi(t). If we define z to be the severity indicator for

a given collision, such that,

z =


1, the collision has severity PDO,

2, the collision has severity “slight”,

3, the collision has severity KSI.

We can model this using a continuous, latent variable z∗, the value of which determines

the value of z,

z =


1, θ0 < z∗ < θ1,

2, θ1 < z∗ < θ2,

3, θ2 < z∗ < θ3,
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6.4. Accounting for Collision Severity

where θ1 and θ2 can be thought of as severity thresholds, which will be determined from

the data, and θ0 and θ3 are set to be −∞ and ∞ respectively. Hence we obtain

Pr(z = k|x) = Pr (θk−1 < z∗ < θk|x) , k = 1, . . . , 3 (6.9)

It is common here ([Haleem and Abdel-Aty, 2010], [Abdel-Aty, 2003], [Al-Bdairi and Hernandez, 2017])

to assume a standard linear regression form for z∗,

z∗ = βx+ ε,

where x is a set of covariates believed to affect the prevalence of each class of severity,

and β is the corresponding coefficient vector. We extend this here to incorporate features

incorporated into the rate parameter λ discussed in Section 5.4, namely global and local

trends, a site effect and seasonal effect, hence we obtain

z∗i,s(t) = β0 + βxi + βtt+ σi + φs + αit. (6.10)

As opposed to the case in Section 5.4, here we do not impose any modelling structure to

the seasonal effects φ nor the spatial effects σ, since extreme values in these vectors will

be of interest, and hence we have independent priors for each effect

σi ∼ N(0, 10)

φs ∼ N(0, 10)

with the local trend parameter α retaining the same zero-inflated Normal structure,

αi = αNαZ

αN ∼ N(0, 10)

αZ ∼ Bern(0.5).

Incorporating these additional parameters provides the potential for much more informa-

tive inference compared with just including covariate effects. This model now has the

ability to:

• Detect seasonal variability in severity proportion. The assumption of constant sever-

ity proportions across seasons will be far too restrictive in cases where there is high

climatic variability, e.g. in Florida during the hurricane season, not only do we

expect a higher rate of collisions, but also that these collisions will be more severe

relative to outside of the tropical storm season.

• Detect site specific deviations from the expected severity proportions as determined

by the covariates. This not only improves the accuracy of the model, it also allows
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6.4. Accounting for Collision Severity

for easy inference as to which locations appear to have more or less severe collisions

than would be expected from a standard covariate model (analogous to the site

effect discussed in Section 5.4). This would provide important information as it

pertains to the allocation of treatment, since even if a location is not predicted to

have a particularly high collision count, if these collisions are still predicted to have

a high degree of severity this may still be indicative of the site requiring treatment.

• Detect and extrapolate severity trends at a global and local level. As discussed in

Chapter 5 detecting trends in collision totals allows for proactive decision making

with respect to hotspot identification, while avoiding unnecessary treatment at lo-

cations which appear to be improving without intervention. This same logic applies

in the area of severity proportion identification, where it is important any apparent

trends in severity are extrapolated to the future, in order to allow for proactive

hotspot identification. Hence we incorporate a global trend component reflecting

severity changes across the network, while allowing for the same site specific devia-

tions (with the case favoured for no deviation) at a site level.

We can therefore use Equation 6.9 to derive

Pr (z = k|x) = Pr (θk−1 < z∗ < θk|x)

= Pr (z∗ < θk|x)− Pr (z∗ < θk−1|x)

= Pr (z∗ + ε < θk)− Pr (z∗ + ε < θk−1)

= Pr (ε < θk − z∗)− Pr (ε < θk−1 − z∗)
= Φ (θk − z∗)− Φ (θk−1 − z∗) , (6.11)

where Φ (·) is the standard Normal CDF.

From this we can therefore obtain,

Pr(z = 1|x) = Φ(θ1 − z∗),
P r(z = 2|x) = Φ(θ2 − z∗)− Φ(θ1 − z∗), (6.12)

Pr(z = 3|x) = 1− Φ(θ2 − z∗),

and a visual representation of this structure is given in Figure 6.10. It is clear from

Equation 6.11 that in order for Pr(z = k|x) to be a well defined probability (i.e. non-

negative) we must ensure the sequence of θk,i is increasing, i.e. −∞ < θ1,i < θ2,i <∞. It

is this restriction that forms the key modelling difference between ordinal regression and

standard regression. Since we have no such restrictions on the elements of the regression

coefficient vector βi = (β0,i, β1,i, . . . , βP,i) we choose to assign independent vague prior

Normal distributions to each,

βj,i ∼ N
(
0, 102

)
, j = 1, . . . , P.
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6.4. Accounting for Collision Severity

Figure 6.10: A visual representation of the ordinal regression modelling structure, showing

how increased values of the latent variable z∗ cause the value of z to change from 1 (z∗ < θ1

- the green region) to 2 (θ1 < z∗ < θ2 - yellow) to 3 (z∗ > θ2 - red)

.

We note here that the covariates x used to model z∗ need not necessarily be the same as

used in the SPF when estimating µ, and should only consist of covariates believed to affect

the likelihood of a given collision being of a more/less severe nature. We then interpret

the values of the coefficient vector β to be that more positive the value of βj,i, the more

increased levels of covariate j are associated with greater proportions of severe collisions,

and vice-versa. The final parameters we estimate are the threshold parameters θ1,i and

θ2,i, which as described earlier are constrained by their ordering, in that we must have

θ1,i < θ2,i. In order to model this we allow θ1,i to be unconstrained (technically its only

restriction being −∞ < θ1,i and then model the conditional distribution θ2,i|θ1,i. Hence

for θ1 we again fit a vague Normal prior distribution,

θ1,i ∼ N
(
0, 102

)
.

In the non-ordinal case we would assign the same vague Normal prior to θ2,i, however

we are restricted by the ordering θ1,i < θ2,i, and so we assign θ2,i to have a vague trun-

cated Normal distribution, bounded below at θ1,i and unbounded above. Hence θ2,i has

conditional PDF given by,

f (θ2,i|θ1,i) =

φ (0, 102) I(θ1,i,∞) θ2,i > θ1,i

0, θ2,i < θ1,i.
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6.4. Accounting for Collision Severity

where φ(·) is the Normal PDF function, and I(θ1,i,∞) is the Normal truncation function

bounded below at θ1,i, here given by

I(θ1,i,∞) = 10

(
1− Φ

(
θ1,i

10

))−1

,

where Φ(·) is the standard Normal CDF function.

We can combine the posterior distributions of our model parameters to form posterior

distributions for the latent severity variable z∗ at site i, in season s in the following time

period t = 1,

π
(
z∗i,s(1)|y

)
= π (µi(1)|y) + π (σi|y) + π (φs|y) + (π (αi|y)× 1) . (6.13)

As in Equation 6.12, we define the proportion of collisions of severity k to be

πi,s,k = Pr
(
θk−1 < z∗i,s < θk

)
then we can obtain a sample m from the posterior distribution πi,s,k to be the proportion

of the posterior samples of z∗i,s,t which lie between θ
(m)
k−1 and θ

(m)
k , and combine these

over all M posterior samples to obtain the posterior distribution π (πi,s,k|y). Evaluating

this posterior distribution using samples from π
(
z∗i,s(1)|y

)
as defined in Equation (6.13)

therefore provides predictive samples of the proportion of collisions of severity k at site

i in season s in the following year. Running a standard hotspot prediction model as

defined in Chapter 5 or Section 6.2 obtains a posterior predictive distribution for the

collision count at site i in season s of the following year, π (yi,s(1)|y). Multiplying these

two distributions therefore allows us to obtain a posterior predictive distribution for the

number of collisions of severity k at site i in season s of the following year, π (yi,s,1,k|y,π).

6.4.1 Model Application

We apply this model to the zonal Halle data described in Section 1.6, where we have

i = 1, . . . , 59 zones of data over t + 1 = 9 years. We do not have covariate data for

this dataset and so our SPF will simply be the global trend parameter µ(t) = βt. Our

data is disaggregated over S = 12 monthly periods, and K = 3 severities. Hence the

full parameter vector for this model is (βt, φ1, . . . , φ12, σ1, . . . , σ59, α1, . . . , α59, θ1, θ2). For

each parameter we assume prior ignorance and so assign independent N (0, 102) prior

distributions to each, with the exception of the site specific trend parameter, for which we

retain the zero-inflated Normal structure as in Section 6.2. We initialise each parameter

in our model at its prior mean of 0 with the exception of θ2 which we initialise at 0.1 to

respect the θ2 > θ1 condition. We use random walk proposals to update each element of

the parameter vector, with the exception of θ2 for which we use a Normal distribution
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(a) Log-likelihood for the full model
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(b) Log-likelihood after burn-in removal

Figure 6.11: Log-likelihoods for the severity model against iteration before and after

burn-in removal

lower truncated at θ1. We update each parameter independently with the exception of θ1

and θ2 for which we carry out a block update so as to maintain the parameter ordering.

We tune the innovations on the random walk proposals to achieve in acceptance rate

of 20-30% for each parameter and run our model for M = 10000 iterations, with plots

of the model log-likelihood given in Figure 6.11. From Figure 6.11a we can observe a

relatively low log-likelihood value at initialisation as expected, which then increases as

the parameter vector approaches the posterior distribution, where the log-likelihood levels

off. Informally from this plot therefore we can estimate a burn-in period of 2000 iterations

to be removed, with the remaining 8000 log-likelihood scores given in Figure 6.11b, where

the log-likelihood remains in the same area, suggesting model convergence. We note the

mixing in this model is not ideal but tolerable, and more precise posterior summaries can

be obtained by extending the run of the model and taking a high degree of thinning to

reduce posterior autocorrelation.

Analysing the vector of seasonal effects φ gives results shown in Figure 6.12 where we

observe all values of φ to be significantly below 0, suggesting collisions of a lower severity

are more common in all months s. Here we observe a lower value of φ, suggesting a

lower likelihood of a severe collision in the winter months s = 12, 1, 2, 3 corresponding to

December to March, perhaps due to increased awareness of the dangers on roads and so

fewer high speed collisions etc. Including covariate effects such as average speed in the
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Figure 6.12: Plot of posterior means for φ with 95% credible intervals for the severity

model

model may change the seasonal estimates significantly. We also observe a much higher

posterior standard deviation for the winter months as well, suggesting the data was much

less consistent in these months, as opposed to the summer months where the posterior

standard deviations are relatively much smaller. Accounting for seasonal dependence

such as using a CAR stucture as in Section 6.2.3 could reduce these posterior standard

deviations by sharing information between seasons.

In terms of trend, we obtain a posterior mean for βt to be 0.653 and 95% credible

interval (0.038, 0.865), suggesting generally collisions are getting slightly more severe

across the entirety of the 59 zones being analysed. A comparison of prior and posterior

densities for βt is given in Figure 6.13 showing the substantial increase in precision over

the estimate of the global trend effect in light of the data.

We incorporate the potential for site-specific deviations from this global trend with

the (zero-inflated) site specific trend deviation parameter αi. Posterior means for α with

95% credible intervals are given in Figure 6.14.

From Figure 6.14a as we would expect we observe the majority of sites with αi ≈ 0 as

a result of the zero-inflation component designed to discourage erroneous deviations from

the global trend except when there is clear evidence. The majority of clear deviations

from the global trend appear to be negative, suggesting positive trend in the remaining
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Figure 6.13: Plot of prior (black) and posterior (red) densities for βt
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(a) Posterior means and 95% CIs for αi
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(b) Prior (black) and posterior densities for α5

Figure 6.14: Posterior output for α in the severity model
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Figure 6.15: Posterior means and 95% credible intervals for σ against site i

sites was only slight and so heavily dampened by the zero-inflation component of αi. The

site which deviates from this global trend most heavily is site 5, which has posterior mean

of -1.654 and 95% credible interval of (-2.17,-0.727), with prior and posterior density given

in Figure 6.14b, suggesting the proportion of severe collisions at this site is decreasing at

a much quicker rate compared to the rest of the network.

We plot posterior means and 95% credible intervals for the site effect σ in Figure 6.15.

From Figure 6.15 we observe a clear mixture of sites with σi > 0, indicating a higher

risk of severe collisions occuring, and those with σi < 0 indicating a lower risk of severe

collisions. We furthermore notice a significant discrepancy in posterior standard deviation,

with sites with more positive values of σi generally having a very low standard deviation,

and hence we have a much higher level of certainty in the estimate, compared with sites

with strongly negative values of σi for which the posterior standard deviation is much

higher.

For the severity threshold parameters we obtain posterior means of 1.28 and 2.21

for θ1 and θ2 with respective 95% credible intervals of (1.255, 1.321) and (2.181, 2.259),

suggesting a very high level of posterior precision for these parameters. The posterior

mean of θ1 being greater than 0 suggests the majority of collision are of lowest severity,

with a relatively high posterior mean of θ2 (relative to a standard Normal random variable)

suggests a very small number of fatal collisions in our dataset. We can visualise this by
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Figure 6.16: Visual representation of the fitted ordinal regression model for severity, with

the green region corresponding to collisions of severity 1 (PDO); yellow corresponding to

severity 2 (slight injury) and red corresponding to severity 3 (fatal or serious injury)

reproducing Figure 6.10 for our posterior means of θ1 and θ2, given in Figure 6.16.

Finally we wish to extrapolate the latent severity variable z∗ so that we can form

predictions regarding the number of collisions at each severity in future time periods as

discussed in Section 6.4. In order to do this we form a posterior distribution for z∗i,s(1) by

combining posterior distributions for model parameters,

π
(
z∗i,s(1)|y

)
= π (βt|y) + π (σi|y) + π (φs|y) + π (αi|y) .

Hence we can form a posterior distribution for the proportion of collisions of each severity

in the future time point, πi,s,k(1), by estimating

πi,s,k(1) = Pr
(
θk−1 < z∗i,s(1) < θk

)
from posterior samples. We can therefore obtain posterior samples from πi,s,k(1),

π
(m)
i,s,k(1) = Pr

(
θ

(m)
k−1 < z∗i,s(1)|y < θ

(m)
k

)
and hence combining over all posterior samples of θ gives a full posterior distribution

for π(1). In order to obtain predictive distributions for the number of collisions of each

severity at a future time point, we must obtain a posterior predictive distribution for the

overall number of collisions. Here we apply a simplified version of the hotspot prediction

model described in Section 6.2, where we assume independence between parameters, to
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the zonal Halle dataset described in Section 1.6. Hence we have,

Yi,s,t|λi,s(t) ∼

Pois (λi,s(t)) , t = 0

NegBin (Mean = λi,s(t),Variance = λi,s(t)ci(t)) , t < 0,

λi,s(t) = exp (βtt+ σi + φs + αit) i = 1, . . . , 59

σi ∼ N
(
0, 102

)
φs ∼ N

(
0, 102

)
, s = 1, . . . , 12.

From this we can therefore obtain a posterior predictive distribution for the number of

collisions in the next time point π (yi,s(1)|y), in the same way as in Chapter 5. We

can then obtain a posterior predictive number of collisions of severity k by multiplying

the posterior predictive distribution for the overall number of collisions by the posterior

estimate of the proportion of collisions of severity k in month s of time period t = 1,

π (yi,s,k(1)|y) = πi,s,k(1)π (yi,s(1)|y) .

6.5 Accounting for Causation

In Section 6.4 we upgraded the hotspot prediction model by allowing it to provide more

precise information regarding the level of safety at a location by disaggregating the overall

collision totals by severity. Whilst this provides additional information regarding where

safety treatments should be deployed, it does little to inform the practitioner as to the

causes of these collisions, and thus does not help advise as to which countermeasures

should be deployed. Fortunately, we can make use of a similar framework to that used to

account for severity in order to provide information regarding potential causation factors

behind the overall collision totals. We can make use of information commonly provided in

police reports regarding the circumstances of each collision to produce additional indicator

causation variables to categorise the nature of each collision, e.g. due to speeding, due

to drink driving, purely accidental. From this we can therefore produce total numbers

of collisions due to each causation factor at a given site in a given year, exactly in the

same way as for severity. Hence, as in the case for severity, we can perform inferences on

the proportion of the total number of collisions corresponding to each causation factor, in

order to predict the number of collisions due to each factor in a future time period. We can

do this in the same way as for severity, except in this case there is no natural ordering to

the different causation factors (e.g. there is no natural ordering to whether a collision was

due to alcohol, speeding or neither), and so rather than carry out an ordinal multinomial

logistic regression, we simply carry out a standard multinomial logistic regression.
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Formally we can state that for a site i in time period t with collision count yi,t, we

have collision totals due to F causation factors, denoted yi,t = (yi,t,1, . . . , yi,t,F ). Unlike

the case for severity we cannot assume each collision will be due to exactly one of the

causation factors being investigated, there is the possibility for instance that a driver could

be speeding and over the alcohol limit, or that a collision might not be due to any of the

factors being investigated. We note here that we could force the causation factors to be

Multinomially distributed by only recording the primary cause of the collision (thereby

removing the possibility for a single collision to record multiple causation factors), and

including “None” as an option, however this would mean discarding information regarding

secondary factors (as well as introducing the potential for subjective biases when deciding

the primary factor) and so we choose not to enforce this. Hence we cannot make an

analogous statement to Equation 6.7, and hence cannot state that yi,t is an observation

from a Multinomial distribution. Instead we make the assumption that the prevalence of

each causation factor is independent of the others, and hence each element of yi,t can be

modelled independently as an observation from a Binomial distribution,

yi,t,k ∼ Bin(yi,t, πi,k(t)), k = 1, . . . , F.

We estimate each element of the causation factor probability vector πi,t = (πi,t,1, . . . , πi,t,F )

using a logistic regression model, again we are free to choose between any logistic regression

structure, with the two most common being the logit and probit models, as with severity

here we elect to use a probit model structure,

πi(t) = Φ (β0 + β1xi,1 + . . .+ βPxi,P ) .

Unlike in the case for severity, we no longer have an ordinal structure to the data, and

so we do not need to place any ordering constraints on the parameters in the logistic

regression and so we can simply fit vague Normal prior distributions to each,

βi,j ∼ N(0, 102) j = 1, . . . , P.

6.5.1 Model Application

We apply our causation model to the zonal Halle dataset, where again we have n = 59

sites over t+ 1 = 9 years disaggregated over S = 12 monthly periods. In this case we do

not disaggregate by severity, instead we have counts disaggregated by collision type, in

this case we disaggregate by a binary indicator corresponding as to whether the collision

occurred in darkness or not. We retain the rate parameter structure as in Section 6.4 and

hence we have the following model structure,

yi,s,t,f ∼ Bin (yi,s,t, πi,s(t)) ,

πi,s(t) = βt + σi + φs + αit,
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where yi,s,t,f is the number of collisions of type f occurring at site i, in season s of year

t. πi,s(t) is the proportion of collisions of type f occurring at site i in year t and so as in

Section 6.4 we can extrapolate this into future time periods, and combine with predicted

overall numbers of collisions in order to form predictions of the number of collisions of

type f in future time periods. We assume independent diffuse Normal prior distributions

for each element of σ and φ along with βt,

σi ∼ N
(
0, 102

)
, i = 1, . . . , n

φs ∼ N
(
0, 102

)
, 1, . . . , S

βt ∼ N
(
0, 102

)
.

We retain independent zero-inflated Normal prior distributions for the elements of α,

αi = αNαZ

αN ∼ N
(
0, 102

)
αZ ∼ N

(
0, 102

)
.

We adopt a Metropolis random walk to update each parameter, with innovation parameter

tuned to give an acceptance rate between 20% - 30%. We initialise the chain at each

parameter prior mean, and run our model for M = 11000 iterations, with traceplots of

the log-likelihood given in Figure 6.17.

From Figure 6.17a we see that as with the severity model we have a strong increase in

log-likelihood during the burn-in period, before the log-likelihood converges to a steady

state once the chain has reached its posterior distribution. Removing the first 1000

observations as burn-in gives the remaining 10000 log-likelihoods shown in the traceplot

in Figure 6.17b which show good convergence.

We obtain posterior means for the seasonal effects φ with results shown in Figure 6.18.

From Figure 6.18 there does not appear to be any clear seasonal effect present in the

data, with months s = 4 and 7 (April and July) corresponding to the highest posterior

means of s, with respective posterior means of 0.334 and 0.401 and 95% credible intervals

of (0, 0.641) and (0.098, 0.649). While these credible intervals suggest the φ4 and φ7 are

greater than 0, none of the φ parameters appear to be sufficiently far from 0 to have a

considerable effect on the collision rate, suggesting that no month makes the proportion

of collisions due to darkness significantly more or less likely.

Posterior output for the site effect vector σ is given in Figure 6.19a, where in Fig-

ure 6.19a we obseve reasonably uniform site effects across most sites with σi ≈ −1,

suggesting collisions in darkness occur less frequently than those not in darkness at all

sites. The clear exception to this rule is site 46, for which prior and posterior densities are

compared in Figure 6.19b, where there is a hugely negative posterior mean of -3.62 and
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(b) Log-likelihood after burn-in removal

Figure 6.17: Log-likelihoods for the causation model against iteration before and after

burn-in removal
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Figure 6.18: Plots of the posterior means and 95% credible intervals for φs against month
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Figure 6.19: Posterior output for σ from the causation model

95% credible interval of (-5.946, -1.608), suggesting a much greatly reduced proportion

of collisions taking place at site 46 once other factors have been accounted for, although

there is relatively much lower certainty surrounding this estimate. It is not immediately

clear why site 46 has such different results relative to other sites, for both σi as shown

in Figure 6.19b, and for αi shown in Figure 6.21b. It is possible, given the imperfect

mixing of the chain that running for longer iterations and thinning by a greater degree

may shrink the posterior distributions, in particular the posterior uncertainties, for σ46

and α46, however this remains a subject for further investigation.

The posterior estimate for the global trend parameter βt is 0.011, with 95% credible

interval (0.001, 0.020), suggesting a very slight increase in the proportion of collisions due

to darkness across the 59 sites, although this is unlikely to have any real impact.

We obtain posterior estimates for the site-specific trend parameter vector α, with

posterior means and 95% credible intervals given in Figure 6.21a. From Figure 6.21a we

observe again as expected, the majority of sites have αi ≈ 0, again likely due to the zero-

inflation component we incorporate into αi. As with the case for σi we observe a clear

outlier at site 46, with the posterior mean and 95% credible interval for α46 being -0.444

and (-0.809, -0.116) suggesting a highly significant deviation from the global trend at site

46, with proportions of collisions in darkness decreasing here at a much greater rate than

any of other sites on the network. Some sites have a positive αi, for instance site 11 has
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Figure 6.20: Prior (black) and posterior (red) densities for βt for the causation dataset

a posterior mean of 0.100, with 95% credible interval given by (0, 0.208), suggesting the

proportion of collisions in darkness here are increasing at a greater rate than any other

site on the network.

As discussed in Section 6.5, a common goal for this analysis is to obtain a predictive

distribution for the number of collisions due to each causation factor in a future time

period. In order to do this we obtain the posterior distribution for πi,s(1) by summing

the posterior distributions of the model parameters,

π (πi,s(1)|y) = Φ (π (βt|y) + π (σi|y) + π (φs|y) + π (αi|y)) .

Hence we are able to obtain a posterior predictive distribution for yi,s,f (1), the number of

collisions of type f , in this case collisions in darkness, at site i in season s of the following

time period,

π (yi,s,f (1)|y) = π (πi,s(1)|y) π (yi,s(1)|y) .

Hence if we consider site 43 of the Halle zonal data, we obtain predictive output shown

in Table 6.3.

From Table 6.3 we observe a possible seasonal effect, with higher numbers of colli-

sions due to darkness expected in the late summer/autumn months of the following year,

although this appears to be largely driven by the overall collision count fluctuations as
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Figure 6.21: Posterior output for α from the causation model

s 1 2 3 4 5 6

π (π(1)|y) 0.14 0.15 0.13 0.20 0.14 0.14

(0.07,0.23) (0.08,0.23) (0.07,0.21) (0.10,0.32) (0.07, 0.22) (0.08, 0.22)

π (y(1)|y) 35.4 34.7 39.1 41.8 38.7 38.9

(23, 49) (23, 48) (26, 53) (28, 57) (26, 53) (26, 53)

π (yf (1)|y, π) 4.93 5.13 5.25 8.45 5.23 5.42

(2.15, 9.18) (2.41, 8.92) (2.49, 9.21) (3.81, 15.05) (2.46, 9.55) (2.59, 9.51)

s 7 8 9 10 11 12

π (π(1)|y) 0.22 0.18 0.17 0.18 0.15 0.16

(0.12,0.34) (0.10,0.28) (0.09,0.25) (0.08,0.30) (0.07,0.23) (0.09,0.24)

π (y(1)|y) 33.2 32.5 41.8 41.1 44.2 40.2

(21, 46) (21, 46) (28, 56) (28, 56) (30, 59) (27, 55)

π (yf (1)|y, π) 7.30 5.70 6.88 7.36 6.45 6.25

(3.50, 12.8) (2.66, 10.2) (3.37, 11.8) (3.12, 13.6) (2.96, 11.2) (3.10, 10.8)

Table 6.3: Table showing means and 95% credible intervals by month s for: the predicted

proportion of collisions due to darkness (π (π(1)|y)); the predicted number of total colli-

sions (π (y(1)|y)); and the predicted number of collisions due to darkness (π (yf (1)|y)) at

site i = 43
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opposed to the proportions of collisions due to darkness, which are predicted to remain

largely constant between months.
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Chapter 7

Conclusions

7.1 Summary

Throughout this thesis we have explored the challenges facing road safety practitioners,

and analysed and developed statistical techniques to allow them to make best use of their

data in order to address them.

In Chapter 1 we discussed the importance of maintaining and improving road safety,

and costs incurred, both human and financial, due to collisions occurring on roads, both in

the UK and around the world. We outlined the problems facing road safety practitioners

who use data in order to inform their decisions, in particular the issue of regression to

the mean, which can mislead conclusions drawn from data if not handled correctly. We

discussed the history of regression to the mean, and provided clear real-world examples

of the problems that it can cause. We then outlined the concept of safety performance

functions, and how these can be used to overcome the issues posed by RTM, by harnessing

external information from other sites in the network to help identify any unusual extreme

data points which may have occurred at a particular site. We outlined the concept of

Bayesian inference and described its utility when carrying out statistical analysis. We

discussed Bayesian inferential methods such as Markov Chain Monte Carlo, which are

necessary in order to execute the majority of statistical models, and heavily features in

the implementation of the models developed in this thesis.

In Chapter 2 we focused on the issue of road safety scheme evaluation, and the sta-

tistical methods traditionally employed to carry out a scheme evaluation analysis. We

discussed the potential role of RTM and trend in misleading a scheme evaluation anal-

ysis, and consequently why a naive before and after comparison would lead to biased

conclusions regarding the estimate of treatment effect. We then discussed the merits

of employing a Bayesian framework incorporating a safety performance function which

allowed us to account for and estimate the RTM and trend effects present in the data,
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remove these, and thereby obtain a “cleaned” estimate of the treatment effect. We com-

pared the Empirical Bayes and Full Bayes methods for carrying out a scheme evaluation

analysis on the Northumbria dataset, noting how Empirical Bayes leads to a falsely op-

timistic estimate of posterior uncertainty of the treatment effect, and so Full Bayes is a

preferable approach. We then demonstrated the usage of various prior distributions for

the collision rate which are possible when using the Full Bayes approach, and compared

the resulting models in terms of their goodness-of-fit to the data using the Deviance Infor-

mation Criterion. We then discussed the relative merits of using the posterior distribution

as a means of evaluating treatment effect, as is currently used in Empirical and Full Bayes

analyses. We compared this with using the posterior predictive distribution instead, as

this correctly accounts for uncertainty over future observations, thereby allowing us to

properly estimate the uncertainty in our treatment effects, while accounting for trend in

a more coherent way.

Chapter 3 was devoted to demonstrating and quantifying major methodological issues

which cause problems with many forms of scheme evaluation analyses used as standard in

the literature (including many of those discussed in Chapter 2). The main issue we sought

to address affected all methods which make use of comparison data to inform the analysis

- namely that of requiring exchangeable comparison pools of sites in order to minimise

bias in estimates of RTM (and thus treatment) effects. We numerically demonstrated the

risks incurred when non-exchangeable comparison pools are used, with a clear increase in

RTM (and hence treatment effect) bias arising with decreasing exchangeability between

treated and comparison pool. Methods for checking the exchangeability between a given

comparison and treated pool were discussed, and the results of these tests were shown

to correlate strongly with RTM bias in our simulated data – suggesting they are a good

indicator of comparison data suitability. The method of propensity score matching was

advocated as a proactive technique in determining site specific exchangeable comparison

pools in Chapter 4. This method was then adapted into the propensity score weighted

regression technique, which overcomes the issue of comparison pool exchangeability by

weighting the SPF contribution of each individual comparison site by its similarity (as

determined by the difference in propensity scores) to the treated site in question. This

method was then applied to the simulated dataset, where it was shown to give more weight

to sites found to be exchangeable with the treated pool (and hence induce a lower bias)

and little to no weight to sites from non-exchangeable pools. This demonstrated PSWR’s

ability to autonomously extract the most suitable data from a large, heterogenous dataset,

with no unnecessary data wastage nor requirement for external parameter selection. This

method was then used to help identify site specific estimates of temporal trend in the

data, by obtaining SPFs using covariate data collected in the before and after periods
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at each treated site, and including an “after” indicator variable in the second SPF. This

again provides an entirely data driven approach toward trend estimation, which avoids

assumptions of constant trend across the treated pool, avoids requirements of longitudinal

data at each site, and makes no assumption of expert prior information.

In Chapter 5 we discussed an alternative issue facing road safety practitioners, namely

road safety scheme allocation whereby dangerous hotspots on the network are identified as

suitable locations for treatment. A model for proactive hotspot prediction was developed

by extending the scheme evaluation methodology discussed in Chapter 2 in order to allow

multiple time periods of data in which to fit the model, with additional parameters to

account for site specific deviations from the global model included, as well as a mechanism

to provide more weight to recent observations when forming predictions. This model was

validated against real traffic datasets and was shown to predict accurately compared

with the true observed collision counts, even with a reduced number of years of data,

highlighting the model robustness and availability to datasets of all sizes.

The model was then developed further in Chapter 6 where the potential for including a

spatiotemporal structure was motivated using a dataset from Florida, USA. These effects

were included into the hotspot prediction model, with a CAR model being used to model

seasonal effects in order to allow for sharing of information between consecutive seasons,

and a kernel density smoother being used to model spatial effects, in order to allow for

sharing of information between geographically similar locations. Furthermore the response

variable was disaggregated in order to enable modelling by severity in order to allow for

a more precise reflection of the level of danger at each location using an ordinal probit

model, before a logistic model was described which allowed for proactive prediction of

collision totals by type, hence allowing the practitioner to be better informed as to where

treatment should be allocated.

In Abstract A we discuss the various practical applications for the research, and the

real world impacts it can make, and has already made. Particular focus is paid to the

RAPTOR suite of software applications, developed using the Shiny package within the

statistical software R, which are designed to make the complex statistical methods dis-

cussed in this thesis available to all practitioners, regardless of their level of statistical

knowledge.

The scheme evaluation app described in Section A.1.2 is demonstrated as a means

to employ a Fully Bayesian scheme evaluation analysis as described in Section 2.2, and

provide practitioners with estimates of the RTM, trend and treatment effects present

in their data. The data is inputted in the form of two spreadsheets, corresponding to

the comparison sites, from which the SPF is built, and the treated sites which are to

be evaluated. There are options to investigate the suitability (i.e. exchangeability) of
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the comparison and treated sites, in order to avoid the dangers of biases in the RTM

and treatment effect estimates, as described in Section 3.2. The data input files are in

the form of a spreadsheet, with rows corresponding to each individual site, and columns

containing collision counts and covariate data. There are additional options for experts

to impart any prior knowledge they may have by modifying the prior distributions of the

model parameters. This results are provided both graphically, in the form of a bar chart,

and numerically, in the form of a table, thereby making it easier for the effectiveness of

the scheme to be discerned. In addition, information regarding the SPF fitted as part

of the analysis is provided, in the form of a summary table displaying the MLEs and

accompanying p-values for each of the covariates provided, allowing the practitioner to

see what effect (if any) the covariates had on the number of collisions on the network.

The hotspot prediction app described in Section A.1.3 implements the Bayesian hier-

archical hotspot prediction model as described in Chapter 5. The data inputs are largely

the same as for the scheme evaluation app, however in this case since no comparison data

are needed there is only one dataset which is needed to be uploaded. Additionally since in

most cases there should be multiple observations at each site (one for each time period),

each row should correspond to a site in a given time period, and hence the uploaded file

should have nnyears rows and np columns. Again the user has the option of imparting

any prior knowledge they may have into the analysis, most notably with regards to their

beliefs regarding the diversity of their network as it pertains to the likelihood of there

being site-specific deviations from the global trend, and the rate at which the network

has evolved and so past observations become less informative (by adjusting the prior

distributions for bn and τ respectively). As with the scheme evaluation app there is the

functionality to alter the length of the MCMC chain to adapt to the users needs, although

the defaults are expected to be used in most cases. Finally the results tab displays the

output of the analysis, comprising of:

• A table displaying summary statistics for the posterior predictive distribution for

the number of collisions in the following time period

• Plots showing the posterior means of λ and µ alongside the collision counts through

time, along with the posterior predictive mean and 95% prediction interval for the

future number of collisions. These plots can be directly exported for use in reports

etc.

• A histogram of the posterior predictive density for the number of collisions in the

following year

• A table summarising the SPF, including maximum likelihood estimates and p-values

for each covariate
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• A ranked and colour coded list of sites by their posterior predictive likelihood of

exceeding a user specified threshold

The multinomial proportions application provides a method by which practitioners can

investigate contributory factors toward collision totals. This was designed to address the

potential gap in utility of the scheme evaluation and hotspot prediction apps which analyse

collision totals, but not why these totals occurred. It is therefore hoped the multinomial

proportions app would provide insight for practitioners as to which countermeasures would

be most successful and hotspots once they have been identified. The method for the user

to provide their data is simple, the data should be of the form of a contingency table

containing a breakdown of collisions across the sites being investigated into the different

conditions the user suspects there may be a difference between (i.e. if the user believes

there are significantly more collisions at night than in the day, the contingency table

would be broken down into different periods of day e.g. morning/afternoon/night). The

output from this app is based around the p-value obtained from the hypothesis test that

there is no significant difference between the conditions being investigated, along with an

interpretation of the results for the user.

There are a number of users representing different organisations across the globe (New

York Department of Transport, Highways England, Transport for London) whom have

requested access to the RAPTOR applications both for the purposes of hotspot prediction

and scheme evaluation. The usage of these methodologies is helped further by the addition

of the hotspot prediction methodology to PTV Group’s Visum Safety software, expanding

the application’s reach to PTV Group’s global clientbase.

7.2 Further Research

Whilst the research and models established thus far in this thesis have been demonstrated

to be effective in their own right there remain several possible avenues of research which

could improve them yet further. Here we discuss several concepts which, due to either

time constraints or lack of suitable data, have not yet been implemented, but would be

potential extensions to the research outlined thus far.

7.2.1 Safety Performance Functions

The quantity of literature devoted to the derivation of safety performance functions in

their own right, without a particular application e.g. scheme evaluation or hotspot predic-

tion, is vast (see Chapter 1). As discussed in Section 1.3, we wish to avoid models which are

dataset specific, that is - have been developed specifically for a certain dataset/location,
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and which have excessive data requirements in order to be fitted (e.g. time series models,

which require a large number of sequential observations in order to achieve a good fit).

The generic log-linear SPF described in Section 1.3 fulfils this criteria, since it can be ap-

plied when any number of consecutive observations are available (provided the number of

data points is greater than the number of parameters, i.e. nny > np). Various alternatives

were discussed in Section 1.3, where the possibilities of using GWR to form the SPF, in

order to allow for geographically varying regression coefficients, as well as the possibility

of using a DAP prior distribution for the regression coefficients, allowing a subset of the

available data to inform our beliefs regarding the marginal and covariance structure of

the regression coefficient parameter vector β as demonstrated in Section 6.2.

A key aspect of SPF development which has not been discussed in depth here, is

that of covariate selection. As mentioned in Section 1.3, the standard approach used in

the analyses in chapters 1, 2, and 5 is to fit a frequentist regression using the glm.nb

command of the MASS package, and perform a backwards elimination to remove any non-

significant covariates (as described in [Miller, 1984]). While this approach is time-tested

and ensures all covariates used in formulating the SPF have significant p-values, this

dependence on a frequentist technique may be seen as ill fitting to a Bayesian frame-

work. There are a variety of Bayesian techniques which can be employed in place of

backwards elimination, and thus make our modelling approach more self-consistent. Un-

fortunately many of these, such as a simple comparison of fit using various information

criteria e.g. AIC/BIC/DIC, become unfeasible since they require the comparison of 2np

models, which clearly becomes computationally difficult for any large np. An alternative,

proposed by [George and McCulloch, 1993], makes use of a Gibbs sampling procedure, as

outlined in Section 6.1.1 to find an appropriate subset of all available covariates, to be

selected to form the SPF. The method works by defining a latent vector of binary vari-

ables γ, and assigning a mixture distribution to each element of the regression coefficient

vector β,

βj|γj ∼ (1− γj)N
(
0, τ 2

j

)
+ γjN

(
0, c2

jτ
2
j

)
, j = 1, . . . , np

γj ∼ Bern(pj).

Fixing cj > 1 to be large, and τj > 0 to be small, essentially results in the case where

γj = 0 giving very little probability mass for βj away from 0, with the converse being true

for γj = 1. We can therefore interpret pj as the prior probability for covariate j being

included in the model, which allows for the inclusion of any expert prior knowledge which

may be available, an option not available through standard backwards elimination. Many

choices are available for the structure of π(γ), assuming independence between covariate

probabilities (which is not a requirement, although would often be reasonable) results in
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a binomial likelihood,

π(γ) =

np∏
j=1

p
γj
j (1− pj)(1−γj)

where if prior ignorance, i.e. pj = 0.5∀ j, is assumed, we simply have

π(γ) = 2−p.

7.2.2 Obtaining Traffic Sites

A potential issue with the techniques we have developed for both scheme evaluation and

hotspot prediction, is that both require data from fixed locations to which accidents can

be attributed, as seen in chapters 2 and 5 as site or nodes. This can cause a potential issue

for road safety practitioners since clearly multiple collisions are highly unlikely to occur

at the same exact location, and so collisions must be grouped, or “clustered” in order for

the concept of a site to be meaningful. There are a variety of methods to carry out this

clustering, and as such not all site clusterings will be the same, which can therefore lead

to the overall conclusions of an analysis being dependent on the clustering used. Clearly

it would be preferable to avoid inconsistency in results as a result of site clustering, which

can be achieved by adopting a clustering algorithm into the overall modelling framework,

enabling the analysis of raw road safety data without the need for pre-processing. This has

the further advantage of enabling the methods to be accessed by practitioners who do not

have access to mapping/clustering techniques, and so as of yet would be unable to make

use of the scheme evaluation and hotspot prediction models. There are existing commer-

cial software tools (e.g. Visum [PTV Group, a] and AccsMap [Buchanan Computing, ]),

as well as extensive research (e.g. [Deka and Quddus, 2014] and [Imprialou et al., 2014])

in the area of accurate collision mapping which clearly also plays a huge role in ensuring

accurate clustering, as does data quality (see Section 7.2.4).

7.2.3 Scheme Evaluation

The research into scheme evaluation studies concluded by recommending a propensity

score weighted regression approach, so as to avoid the issues caused by non-exchangeable

comparison pools, the dangers caused by which were discussed and quantified in Sec-

tion 3.3. While we are satisfied this approach gives an improvement on the standard

Fully Bayesian framework used in scheme evaluation studies with regards to accounting

for comparison pool exchangeability, there are further improvements which could be made.

Possibly the most natural next steps of research would be to consider the hotspot predic-

tion model, particularly the extensions made in Chapter 6 as a means towards extending
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the scheme evaluation equivalent. Given, as explained in Chapter 5, the hotspot predic-

tion model is an extension of the methodologies used in Chapter 2 to carry out scheme

evaluation analyses, it stands to reason that additional developments to the hotspot pre-

diction model may also be suitable for the scheme evaluation counterpart. One particular

area which we may seek to develop further, is the SPF component of the scheme eval-

uation analysis. We have discussed already in Section 7.2.1 how we may improve SPFs

by considering techniques for variable selection which of course can be applied to the

formation of the SPF used in scheme evaluation studies, however we can further consider

adapting the SPF structure itself. In Section 6.2, modifications to the SPF structure

were proposed, with the aim of removing unrealistic assumptions made in the standard

log-linear structure, thereby forming a more realistic model, and therefore a model which

provides a better fit. Since there is no reason to suspect different variables would be used

for scheme evaluation or hotspot prediction it stands to reason the same adaptation can

be employed in both analyses. Hence we could investigate the possibility of correlation

between covariates by using a DAP, as described in Section 6.2.1, with a subset of the

comparison dataset (should it be large enough) being used to inform the multivariate

Normal prior distribution on the regression coefficient vector β.

A further development to consider, should the scheme evaluation study take place

over a sufficiently large area, would be a spatial aspect to the data. While clearly, as

demonstrated in Section 5.5, it is not possible to include a site effect parameter in the

model when only a single data point is available (as we assume for the scheme evaluation

case, including multiple years leads to the model described in sections 5.3 & 5.4), it may

be possible should the data be on a zonal scale. As discussed in Chapter 6, it is common

for traffic data to be considered on a zonal scale, often referred to as traffic analysis

zones (TAZs), in cases such as the USA, where large areas must be analysed at once.

Whilst in Chapter 2 we mainly discussed schemes on a local scale, implemented by a local

authority, it is entirely possible to investigate schemes on a national level, implemented by

governments, and so it becomes highly possible for locations to be grouped into zones in

order to aid this analysis. It therefore appears logical to consider a zonal effect within the

model, either as an explicit parameter, as with σ in Chapter 5, or simply as an indicator

variable within the SPF to as to better inform µ.

7.2.4 Hotspot Prediction

We have already discussed many avenues by which the generic hotspot prediction model

described in Chapter 5 can be developed, with these given in Chapter 6. These cover

the vast majority of features found in current hotspot prediction methods, and so im-

provements to the predictive capability cannot easily be obtained without redesigning the
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entire model structure and/or losing model generalisability, which is a core focus of the

research. Despite this there are additional elements we may consider which can further

improve the model’s utility.

Data Issues

Perhaps one of the largest barriers to practitioners being able to make use of statistical

models such as the hotspot prediction model outlined in chapters 5 & 6 is the requirement

to have sufficient data available to build the model. Whilst great effort has been made

to make the data requirements for the model as non-restrictive as possible, for some

authorities it is still highly difficult to have good quality data, spanning a number of sites

across the network for a number of years. This problem is exacerbated further by the

model requirement for all data points to be available, that is we cannot allow for missing

values. This places a great deal of further pressure on authorities where data is scarce,

since often for various reasons records/measurements may be missing an observation for

a particular year. This becomes problematic for the current hotspot prediction model

since this can lead to sites, or in extreme cases entire covariates, being removed from the

analysis, exacerbating issues caused by small datasets. An obvious improvement to this

problem would be to allow our model to handle missing data, thereby removing the need

to not include sites/covariates for which there are missing values. One such solution to

this would be to incorporate data augmentation methods in order to approximate missing

data, from data which is available. The adoption of the Bayesian framework makes this

process very simple, whereby models can be assumed to describe covariate distributions,

and hence missing data values can be imputed, with the uncertainty attached to the

modelled missing value naturally handled by the Bayesian paradigm. Such analyses are

made simpler by the fact that missing road safety data can be sometime considered

missing completely at random (MCAR), i.e. missingness is completely independent of all

data, or missing at random (MAR) i.e. missingness is independent of the true value of

the missing data, since whether observations are recorded can depend on issues such as

funding availability, independent of the covariate data itself. This may not always be the

case though, since for example the decision to monitor speeds at a location may only be

taken when it is believed speeding is a problem, thereby meaning the missing speeds could

be assumed to be lower than the observed speeds, meaning the data in this case would

be missing not at random (MNAR). The classification of missing data would therefore

have to be taken on a case by case basis, with the modelling solution, and indeed whether

modelling the missing data is worthwhile, dependant on this classification.

A related issue to this which is also of crucial importance to accurate modelling is that

of data quality. The majority of collision data is obtained directly from reports from the
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attending police officer, and so there remains the possibility that information regarding

the incident could be incorrectly reported. This is particularly problematic where there

are areas of subjectivity, e.g. the primary causes of the collision, the severity of the

collision etc, but even more fundamental information can be incorrectly reported (e.g.

the location of the collision, and fixed covariate data such as the road class and speed

limit at the location). The issue of data quality is known among practitioners, and has

also been investigated in literature (for example [Imprialou and Quddus, 2017]). Clearly

all of these present a problem for accurate collision modelling, and so it is important to

account for this in order to achieve the aim of receiving collision data in raw form, and so

some form of data cleaning will need to take place in order to ensure raw data collected

is accurate.

Non-linear Trend

A key component of the hotspot prediction modelling framework, discussed in depth

in Section 5.4 is the estimation of temporal trends in collision counts (and hence the

underlying collision rate) in order to allow for accurate predictions regarding future levels

of safety at each site. To this end there are two trend components, global and site-specific,

included within the modelling framework. The variance inflation structure, described in

Section 5.3 ensures recent trends are acknowledged more heavily than any apparent trend

patterns found further into the past, again to ensure future predictions are as accurate as

possible. However practitioners may not solely be interested in future predictions, they

may also simply be interested in analysing how the collision rate has evolved over time at

sites on the network. To this end, the current assumption of a single constant trend at

each site throughout the data may not be realistic, with the possibility of events occurring

during the span of the data which cause the trend to change, meaning a composite function

may be more suitable. There is a significant quantity of research in road safety devoted

to the analysis of change points in trends, usually within the context of interrupted time

series models (see, for example [Ihueze and Onwurah, 2018]). For sufficient data such an

approach would also provide a strong mechanism for scheme evaluation (since we would

know implementation of the treatment to be the change point), however these require

large numbers of observations in order to be fitted well, a restriction we do not expect

to be feasible for a large quantity of practitioners and hence one we wish to avoid in this

research. Despite this we can still investigate the possibility of interrupted or simply non-

linear trends in road safety data, so as to achieve a better fit of our model throughout the

data, although we would not expect this to impact predictions severely (since, as discussed,

the variance inflation component provides stronger weight to more recent/current trends).
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7.2.5 Impact Work

As discussed in Appendix A the main driving force behind this research has been the

opportunity and potential for these methods to be used by practitioners. In order to

facilitate this, the RAPTOR suite of software applications has been developed to allow

practitioners to implement the methods discussed in this thesis, without any technical or

computational requirements being made (see [Matthews et al., 2018]). While the software

applications are still relatively new, and so we expect minor issues to arise and be resolved

in time, there are major features which could be added which would strongly enhance the

software capabilities.

We have purposefully maintained a Bayesian framework for the models for both scheme

evaluation and hotspot prediction, and whilst in the general models given in chapters 2

and 5 we have assumed prior ignorance when specifying prior distributions, this does

not have to be the case in practice. We would not expect every practitioner to have

meaningful prior beliefs regarding every parameter incorporated in each model, however

it is reasonable to believe some practitioners would have significant expert knowledge

regarding conditions on their networks, particularly as it pertains to components such

as temporal trends. Whilst there is the facility for experts to adjust, and hence inform,

the prior distributions for the parameters in each model, this process currently would re-

quire some statistical knowledge (the ability to select distributions and make meaningful

adjustments to the prior mean and variance) which may not be possible for all experts.

It would therefore be a significant improvement to incorporate an elicitation mechanism,

such as the MATCH [Morris et al., 2014] or SHELF [O’Hagan and Oakley, 2019] elicita-

tion toolkits, which provide intuitive mechanisms for experts to impart their prior beliefs

in a meaningful way.

Given the spatial nature of the analyses being carried out, particularly in the case of

the hotspot prediction model, it would be of benefit to road safety practitioners analysing

data to be able to view the analysis output on a map of the network rather than simply

as a list of sites. Not only would this lend itself better to visual communication of

information, it can also help diagnose causes of effects on the network, e.g. if sites for which

treatment were all situated close together, and likewise for sites where the treatment was

less effective, it may provide some clue as to why this is the case. The ability to display

output for the hotspot prediction model is available as part of Visum Safety software,

however it would be beneficial, and possible, to incorporate mapping capability into the

RAPTOR software applications also.
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7.2.6 Real Time Modelling

The majority of research discussed in this thesis has revolved around the concept of road

safety treatments being applied at a fixed decision making point in time, after road safety

data has been collected and analysed. Modern technology however allow for the possibility

for data to be analysed, and decisions made in real time, as opposed to at pre-defined inter-

vals. The advantages to this are obvious, extending the “proactive rather than reactive”

mantra which motivated the hotspot prediction model described in chapters 5 and 6 to

allow for proactive response to danger as soon as it becomes apparent. Data such as fixed

sensors at potential hotspot locations, coupled with real time weather and mobile phone

data for example, can give up to the minute estimates of covariate values included in an

SPF and any collisions which have occurred, allowing for real time analysis and decision

making to remove danger detected on the network. Research has already begun in this area

(see for example [Hossain and Muromachi, 2013],[Sun and Sun, 2015],[Wang et al., 2015])

and this would provide an important addition to our research, particularly as pertains to

the software applications for practitioner usage, discussed in Chapter A.
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Impact Work

Clearly the motivations behind this research are heavily applied in nature, and indeed

the work originated from a request to carry out a scheme evaluation analysis on 56 speed

cameras carried out by the Northumbria Safety Reseach Initiative. Due to this my research

has always hhas

A.1 Translational Research

Given the complex nature of the statistical modelling involed in this research, particu-

larly in the hotspot prediction models discussed in Chapters 5 and 6, these models are

usually only accessible to individuals with a significant amount of training in statistics.

Since most road safety practitioners are usually transport/engineering experts, and usu-

ally have little statistical background, this can lead to problems in the research methods

being implemented in practice. This is evidenced by the fact methods such as Empirical

Bayes are still being used in practice (REFERENCE) despite multiple researchers evi-

dencing it is an inferior method for carrying out a road safety analysis, as demonstrated

in chapter 2. Clearly therefore efforts need to be made to address this divergence between

methods used by practitioners, and thus shown by research to perform better. Attempt-

ing to make academic research become accessible available to practitioners is known as

translational research (REFERENCE) and has been a key component of this work, as

we have consistently attempted to engage practitioners with the methods developed in

a bid to convince them to implement these methods themselves. There are multiple ap-

proaches to carry out translational research, the approach we felt best for this particular

situation was to develop software applications to allow practitioners to access the various

road safety analysis methods. Fortunately there is an add-on package in R which provides

a GUI to an existing R script, known as Shiny. The usage of a GUI to access the model

code therefore provides the possibility of an individual executing the analyses described
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thus far, and obtaining the relevant output, without needing to access the underlying

code, nor be fully versed in the statistical methodologies underpinning the approaches.

This therefore has potential to overcome which arise when practitioners lack any prior

statistical expertise, and thus are unable to implement the methodologies, by removing

any need for them to work with the statistical models themselves, rather allow the GUI

to carry out the interaction for them.

A.1.1 Shiny Applications

Shiny applications, built using the package shiny in R are comprised of two functions:

server and ui (these functions can equally either be in a single file or separate server

and ui files). Both of these functions take two arguments: input, a list containing the

data/options provided by the user; and output, a list containing the outputs provided

by the application. The server function is responsible for carrying out the actual com-

putation, in this case fitting the road safety models to the data, based on the input

list provided by the user. These inputs can take a variety of forms, most commonly

an uploaded dataset(s) and/or options selected from the various “widgets” (methods for

inputting a value - e.g. drop down menu, slider bar, typed input). These inputs then

specify the analysis...

Once the analysis is complete, the output list is then populated with the desired

results. Outputs can again take a variety of forms, most commonly numeric outputs

either individually or as a table, along with any plots of the resulting data. The means by

which the inputs are provided and the outputs returned are controlled by the ui function,

which as the name suggests, controls the interface by which the user accesses the analysis.

It is the ui which allows the user to interact with the methodology without needing to

understand the mechanics of the underlying model, as the ui formulates the computation

to fit the input, and provides the output directly. In the context of the road safety analyses,

the user input would primarily be the road safety datasets uploaded as a datafile (.csv,

.txt etc) as well as the option for any expert prior knowledge should it be available. The

output would primarily be tabulated numerical results, in the case of scheme evaluation

- posterior estimates of the RTM, trend and treatment effects, and for hotspot prediction

- the posterior predictive distribution for the number of collisions in the following time

period. Further details on these applications can be found in Sections A.1.2 and A.1.3.

Although here we make use of the R package to easily assimilate existing model code into

shiny applications, they can equally be written in other languages such as JavaScript,

which allow for people with web development skills to build specialist Shiny apps, while

the standard R interface allows R users without web development skills/knowledge to also

use Shiny.
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A potential barrier in the usage of Shiny by practitioners would be the computational

requirement still present, in order for practitioners to access any Shiny applications built,

they would have to have R installed, along with any packages required by the analysis.

Additionally there is the added drawback that the analyses can potentially be compu-

tationally expensive in terms of computation time, and so if computing resources are

limited, the prospect of surrendering them for the sake of these in depth analyses may

become unappealing to practitioners. In order to circumvent these issues, the decision was

made to host the applications on a password protected external server, with practition-

ers being given login credentials in order to access it. This therefore immediately solves

the aforementioned issues, since all necessary software and packages are downloaded to

the server, there is no requirement for the user to download anything to access the apps

(where issues such as administrator permissions/firewalls can cause problems). From this

we can also monitor how many users have signed up for access to the RAPTOR suite of

applications. At the time of writing there are 42 industry practitioners representing 19

organisations from the U.K. and worldwide that have requested access to the RAPTOR

applications with a view to using them to analyse their road accident data (this does

not include individuals from academic institutions that have been granted access). The

RAPTOR suite has been promoted via various meetings with practitioners held around

the U.K. in addition to attending conferences such as the Transport Practitioners Meeting

(TPM) and the Annual Meeting of the Transportation Research Board (TRB) which are

frequently well attended by road safety practitioners.

A.1.2 Scheme Evaluation

The scheme evaluation application was developed to allow users to carry out a fully

Bayesian (FB) statistical analysis to determine the effectiveness of a given safety coun-

termeasure deployed on their network. As discussed in Chapter 2, the most prevalent

methods for scheme evaluation employed in practice are the Four Time Period and Em-

pirical Bayes methods. We then discussed the methodological failings of these approaches,

namely their oversimplistic and restrictive modelling assumptions, compared with meth-

ods such as FB which overcome these. However FB, by its very definition relative to

EB, requires much more computational and statistical skill to deploy, one of the primary

reasons for its lack of prevalence in practice relative to other more simplistic methods.

The scheme evaluation app was developed to overcome these issues and thus enable prac-

titioners to make use of research endorsed methods to carry out scheme evaluation. The

analysis comprises several stages, and these are represented by different tabs within the

application.
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Data Upload

The first tab of the scheme evaluation app is the data upload tabwhich provides the user

with a means to upload the data they wish to be analysed. The application requires

two datasets to be uploaded, data from the untreated comparison sites (here called the

“reference” dataset), and data from the sites which have been treated which are to be

analysed. The datafiles can be in a variety of formats, with the default being .csv files,

since Excel spreadsheets have been found to be the most common used by practitioners,

however the upload file format can be edited by altering the “Separator” and “Quote”

options in the data upload boxes. The “data preview” tables allow the user to ensure

they have selected the correct format and that the data looks as they would expect. The

datasets themselves should have a specific structure:

1. Each row in both datasets should correspond to a single site only, and each site

should appear only once in the dataset. There should be an entry in each row

identifying the site (site ID), which are used to identify the results of the analysis

for each individual site.

2. There must be a column giving the number of collisions/casualties in the before

period for both the treated and comparison datasets, and an additional column

giving the totals in the after period for the treated dataset.

3. The remaining columns should describe the covariate information used to fit the

SPF, with each column corresponding to an individual covariate, and each covariate

should appear only once. The covariates themselves can be anything deemed by

the practitioner to have a potential impact on the collision total, and these data

can be of any type (discrete/categorical/continuous etc). The covariates used must

be the same for both the comparison and treated datasets however, in order to be

able to fit the SPF to the comparison sites and then apply the fitted model to the

treated sites. The “Variable Selection” box allows the user to specify which columns

contain which the collision counts and site ID indicators, as well as matching the

covariates between comparison and treated datasets (although the application itself

will attempt to do this based on the dataset column headings).

4. There must be no missing values in terms of collision or covariate count for any of

the sites in either dataset, and so any sites for which all of the required information

is not available are removed from the analysis.

Once the datasets have been uploaded the user can (and is encouraged to) then check

the exchangeability of the comparison and treated datasets, so as to avoid any potential

biases in the estimates of RTM and treatment effect, as discussed in Chapter 3. The checks
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Figure A.1: The “Data Upload” tab of the scheme evaluation RAPTOR app.
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work by carrying out the post-hoc tests described in Section 3.4, namely permutation tests

on each of the uploaded covariates, along with a permutation test on the Mahalanobis

distance of the two datasets in their entirety. Each permutation test which generates a

significant result (a p-value of less than 0.05) generates a warning message and the user is

encouraged to investigate any problems with the comparison dataset should these amount

to a significant proportion of the covariates included (with particular emphasis on the test

relating to the Mahalanobis distance).

Priors

Whilst the main purpose of developing these applications was to remove any need for

statistical knowledge from the user, it is important, particularly given the Bayesian frame-

work from which the models are built, not to discount their potential for prior knowledge.

In order to allow for this, the Priors tab allows the user to adjust the default vague priors

attached to each regression coefficient,

βj ∼ N(0, 102), j = 1, . . . , np (A.1)

by changing the prior mean and variance in accordance with their prior beliefs. This is

due to the likelihood that practitioners, particularly those more experienced, will have

reasonably strong beliefs regarding how some covariates (particularly major covariates

such as AADT, speed limit etc) will affect collisions on their network, and so it would be

foolish not to allow this information to be included in the analysis. As has been the theme

throughout this research however, this is by no means a requirement, and the standard

vague prior distributions given in equation A.1 would be fitted should no adjustments be

made, and have been shown to give satisfactory results (see Chapter 2). Text is included,

describing the effect of adjusting each hyperparameter in order to help inform the user how

best to include their beliefs, and plots of each resulting distribution are provided at the

bottom of the page as a visual aid in order to help satisfy the user the prior distributions

are as they would expect. It is expected that whilst some practitioners will have prior

beliefs they wish to include, many may wish to simply run the standard analysis and so

would ignore this tab, and particularly for large datasets it is not expected that this will

come with any large cost.

What is significantly more significant for this tab is it provides the opportunity for

the user to provide their beliefs regarding the effect of temporal trend across the treated

sites. We allow the user to specify a range of possible values for the trend to take, by

specifying an upper and lower bound of the likely percentage change in collision totals

due to trend between the before and after periods, which translate to the upper and

lower bounds of the Uniform distribution for the trend parameter ξ as specified in Sec-
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Figure A.2: The “Priors” tab of the scheme evaluation RAPTOR app.
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Figure A.3: The “Simulation Settings” tab of the scheme evaluation RAPTOR app.

tion 2.2. While this approach to trend has been demonstrated in the literature (see for

instance [Fawcett and Thorpe, 2013]), there are limitations and so it is hoped an improved

approach, such as the one demonstrated in Chapter 4 shall be incorporated soon, remov-

ing an requirement for expert prior information in order to model trend. Furthermore

it is hoped to improve on the current method for imparting prior knowledge regarding

the regression coefficients βj, as the current method of specifying prior parameters may

still be inaccessible to practitioners without a statistical background, see section 7.2.5 for

details on future methods.

Simulation Settings

The “Simulation Settings” tab allows the user to specify how long they would like the

Markov Chain Monte Carlo chain to run, in terms of number of iterations and degree of

thinning. This has been included in order to allow the application to be flexible to the

users needs, whereby if the user simply needs some quick results, or wishes to demonstrate

the application and the potential results, the number of iterations can be lowered in order

to speed up the analysis. The default settings of 50,000 iterations and a thinning rate of 5

have been tested on multiple datasets and shown to produce good convergence and consis-

tent results, and so most users are encouraged not to change these for any serious analysis,

and can increase them should the need for results not be urgent. The analysis of each

treated site (i.e. the application of the obtained SPF) can be carried out independently,
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and so in order to improve computation time this process will run in parallel. The user

has the option to adjust the number of threads used in the computation, however since

the application runs on an external server, there is no computational requirement/cost

to the user to running the analysis at the maximum 8 threads, and so there is no likely

reason for most users to need to adjust this.

Results

Again as we would expect given the name, the “Results” tab provides the user with

the output of the scheme evaluation analysis. This is provided in a variety of forms,

firstly the “Summary” sub tab provides a breakdown of the change in collision totals

between the before and after periods across the treated sites into change due to RTM,

trend and treatment effect. This is provided firstly in the form of a table, which has rows

corresponding to each treated site included in the analysis, and columns containing:

• site ID (i)

• collision total in the period before treatment (yi,BEF)

• collision total in the period after treatment (yi,AFT)

• total observed change in collisions from before to after the treatment (yi,BEF−yi,AFT)

• estimated change due to the RTM effect (ρ̂i)

• estimated change due to the trend effect (κ̂i)

• estimated change due to the treatment effect (τ̂i)

• posterior mean of the collision rate (E (λi|yi))

• the estimated collision rate from the SPF (µi)

Clearly there is a lot of information in this table, and not all of it will be of interest

to all practitioners, and so to better convey the main results, bar plots are provided

below the table displaying the observed change from before to after treatment, as well

as the estimates of the RTM, trend and treatment effects, both for the entirety of the

treated sites, as well as on a site by site basis. The reasoning behind this is to allow

practitioners to view the effectiveness of the countermeasure as whole, as well as see

clearly where it has been most (and least) beneficial so as to best inform future decision

making regarding countermeasure deployment/retention. All tables and plots can be

downloaded and exported in a variety of formats for easy use in reports/presentations at
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the request of practitioners involved in the primary trials of the RAPTOR software. There

are additional sub tabs giving tables of summary statistics of the posterior distribution

for the underlying collision rate before treatment, λi,BEF and the estimated number of

collisions from the SPF, µi, namely the mean, median and standard deviation of the

posterior distributions, and a 95% credible interval, on a site-by-site basis. Clearly it is

important to include these additional statistics in order for the analysis to be as honest as

possible regarding the certainty of the results obtained in the scheme evaluation analysis.

The final sub tab gives the same summaries of the posterior distributions of the regression

coefficient vector β =
(
β0, . . . , βnp

)T
, which in addition to giving additional information

regarding the level of certainty in the model (in this case the certainty in the SPF), it also

provides information regarding the effect each covariate appears to have on the level of

risk across the comparison site network, and indeed if such an effect really exists (which

can be informally estimated easily by comparing the posterior standard deviation with

the posterior mean, or conversely by looking at the 95% credible interval). Again the

tables of results in all sub tabs can be directly exported in a variety of file formats for

inclusion in documents etc.

A.1.3 Hotspot Prediction

The hotspot prediction application carries out the hotspot prediction analysis described

in Chapter 5. Because this technique is largely novel and more statistically complex (as

opposed to the scheme evaluation application which makes use of the already established

and statistically straightforward FB technique), making use of a software application to

implement the method is more important than ever. The overall structure of the app

remains the same, with the stages of the analysis broken into separate tabs describing

the data upload procedure, inclusion of prior information, the settings for the MCMC

scheme, and the displaying of results.

Welcome Tab

Appropriately, the first screen displayed upon opening the hotspot prediction application

is the “Welcome” tab, which provides a description of the purpose of the app, briefly

describing the advantages of a hotspot prediction approach over hotspot identification (as

discussed in Section 5.1), alongside a disclaimer for the usage of the application, and a

link to a user guide written to allow users to navigate the app independently.
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Figure A.4: The “Welcome” tab of the hotspot prediction RAPTOR app.

Figure A.5: The “Data Upload” tab of the hotspot prediction RAPTOR app.
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Data Upload

The “Data Upload” tab largely resembles the corresponding tab from the scheme evalu-

ation app. Perhaps the first key difference is the single field for uploading data, since for

the hotspot prediction analysis there is no comparison data, and so only one dataset is

required. The mechanism for uploading data is exactly the same as for scheme evaluation

with regards to data types etc. The sole difference between the dataset used for hotspot

prediction and for scheme evaluation is that in the case of hotspot prediction, clearly

there are multiple observations on each site, and each row should correspond to a given

site in a given time period (so there are nnyears rows, as opposed to n rows in the case of

scheme evaluation). Additionally therefore there should be an additional column denoting

the time period which the observation corresponds to (meaning there should be np + 3

columns, corresponding to the np covariates used in the SPF, site ID, collision count, and

time indicator). As with scheme evaluation, there is a set of select box menus for the

user to specify which columns correspond to the collision counts, site IDs and time indi-

cators (although the application will again attempt to set these from the dataset column

headings). Furthermore there is the option to deselect covariates from the analysis should

they not be suitable (e.g. the name of the road the site is situated on), and state whether

certain numeric variables should be treated as categorical or continuous (e.g. speed limit).

Priors

The “Priors” tab again allows the user to specify any expert prior information they have

by adjusting the prior distributions for some of the parameters in the model. These

parameters are:

• The probability parameter in the Bernoulli distribution for the zero inflation com-

ponent bZ of the local trend parameter b. This parameter effectively controls the

prior probability that there is no site-specific deviation from the global trend fitted

in the SPF. It is expected therefore that if the user believes their network to be fairly

homogenous, and thus have largely similar temporal trends, this parameter will be

set closer to 1, and vice-versa should they believe their network will be diverse in

trends. The default is 0.5, representing no prior knowledge.

• The mean and variance of the Normal component bN of the local trend parameter

b. This again can be adjusted to reflect how wildly the user believes the trend is

likely to vary across the network. Since the parameter b corresponds to site-specific

deviations from the global trend, which itself can be thought of informally as the

“average” trend across the network, it is unlikely for the mean of these deviations

to be far from zero (although this could be the case should there be anomalous sites
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Figure A.6: The “Priors” tab of the hotspot prediction RAPTOR app.
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Figure A.7: The “Site Selection” tab of the hotspot prediction RAPTOR app.

which have significantly different trends which distort the global trend parameter).

The variance of bN however can be adjusted to represent how wildly the user expects

the trends to vary across the network. While one would expect a decrease in p

to correspond to an increase in the variance of bZ , since both would indicate a

heterogeneous trend across the network, this may not be the case since for example

it could be believed that trends will deviate from the global trend often, but not by

a large amount and vice-versa, and so it is worthwhile allowing both parameters to

be specified. The defaults for these again reflect no prior knowledge, and so a mean

of 0 and a variance of 10 are selected.

The defaults for these prior distributions reflect those used in standard analyses as de-

scribed in Chapter 5, meaning that even if the expert did not wish to include any prior

information, the analysis should still run well. Due to the increased likelihood of datasets

used for hotspot prediction being significantly larger than those used for scheme evalua-

tion (the number of potential hotspots should always comfortably outnumber the chosen

hotspots) we choose to fit the SPF using maximum likelihood estimation, meaning the

time taken to obtain the SPF is negligible, and allowing for individual sites to be analysed

quickly rather than the entire network. Because of this non-Bayesian SPF, there is no

need to specify prior distributions for the regression coefficient parameters βj, as was the

case for scheme evaluation.
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Site Selection

As discussed in the previous section, there is significant potential for datasets used in

hotspot prediction analyses to be very large (for instance the Halle dataset discussed in

Chapter 5 has 734 × 9 = 6606 individual data points, and is just analysing one city,

whereas it is not uncommon for datasets of entire states or even countries to require

analysis). It is important however to ensure that the model runtime remains feasible and

appealing to potential users, which could quickly not be the case should the datasets

become too large. To help avoid this issue, as discussed previously, the SPF is fitted

using maximum likelihood estimation, meaning the time taken to compute the estimates

of the regression parameters is negligible, significantly reducing computation time. This

has the added benefit of taking advantage of the fact that all model parameters at a site

are conditionally independent of the parameters at all other sites, given the regression

coefficients. Because of this, once the regression coefficients have been specified, a hotspot

prediction analysis can be run on each site separately, without the need for all sites to

be analysed at once. This therefore provides the huge advantage for quick analyses to

be run on a small number of target sites much quicker, whilst still retaining information

from across the network for use in the SPF. The ability for the user to select which sites

they wish to be analysed is included in the “Site Selection” tab, where there is a list of

2 radio buttons, one option to select to analyse all sites (accompanied by a warning as

to the potential runtime) and another to choose a subset of sites, which generates a box

from which the user can select sites to analyse by their site IDs.

Results

As with the scheme evaluation app there are a variety of sub tabs within the “Results”

tab, each offering a different aspect to the output of the analysis. The first sub tab,

named “Predicted number of accidents” gives the overall results of the hotspot prediction

analysis in both numerical and graphical form. A table of summary statistics describing

the posterior predictive distribution for the number of collisions in the next time period

for each site included in the analysis. The summary statistics displayed are the mode,

median and mean of the posterior predictive distribution, along with a credible interval.

The size of the credible interval is determined by the select input menu to the right of

the summary table which contains the option to specify a 50%, 90%, 95% or 99% credible

interval. Making use of a small pre-selected list of interval sizes (as opposed to allowing

the user to specify and width they wish) saves a significant amount of computation time,

and the interval sizes selected are likely the only ones users would consider of interest

(and are heavily the most prevalent in research/practice). Clicking on a row produces a

pair of plots, the first being the same as those shown in Figure 5.2, showing the posterior
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Figure A.8: The “Predicted number of accidents” sub tab of the “Results” tab of the

hotspot prediction RAPTOR app.
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Figure A.9: The “APM Output” sub tab of the “Results” tab of the hotspot prediction

RAPTOR app.

means for λ and µ over time at each site, along with the observed collision counts and

posterior predictive mean and mode (specified by the orange and blue dots respectively),

along with the specified predictive interval (given by the orange line). Alongside this plot

there is the full posterior predictive distribution for the number of collisions in the future

time period, obtained via the same mechanism as specified in Chapter 5. As with the

scheme evaluation app, the summary table and all plots can be downloaded and exported

in a variety of formats using the buttons below each.

The second sub tab in the results section is “APM Output” which, as for the scheme

evaluation app, gives summaries of the covariate coefficients used to formulate the SPF.

As mentioned previously, the SPF is fitted using maximum likelihood estimation, and so

rather than summary information of the posterior distributions, we instead have a table

giving the maximum likelihood estimate and corresponding p-value (and significance) for

each covariate. The significance column assigns a star rating to each covariate’s p-value

to allow for easy interpretation by practitioners:

• 0 < p ≤ 0.001 - 3 stars, extremely significant

• 0.001 < p ≤ 0.01 - 2 stars, highly significant
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Figure A.10: The “Site Warnings” sub tab of the “Results” tab of the hotspot prediction

RAPTOR app.

• 0.01 < p ≤ 0.05 - 1 star, moderately significant

• 0.05 < p ≤ 0.01 - 1/2 star (denoted by a white circle in the app), potentially

significant

• 0.01 < p ≤ 1 - 0 stars, not significant

A guide on interpreting the output from the SPF, and how to act accordingly, e.g. if a lot

of the covariates are deemed to be non-significant, is given in the app’s user guide. Again

this table can be exported and downloaded using the buttons below the table.

The final sub tab is the “Site Warnings” sub tab which interprets the output of the

hotspot prediction analysis in a way that will be highly useful for most practitioners. As

discussed in Chapters 1 and 5, usually hotspots are determined as locations which exceed

given safety threshold criteria, usually based around the number of collisions (perhaps

of a given severity). We can therefore appeal to the predictive posterior distribution

to estimate the probability of exceeding the threshold in the future time period as the

posterior predictive density beyond this value. In the site warnings tab the user can

specify the threshold number of collisions beyond which they would consider a site a

hotspot using the top slider bar in the left hand panel, and the predictive probability

of each site exceeding this threshold is given. In the case that a lot of sites have been

analysed, there is the option for the user to specify a minimum probability, below which
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they would not be interested in viewing sites (for instance a practitioner is unlikely to

care which sites have only a 3% chance of exceeding the threshold) so as to allow the user

to easily identify which sites are likely to be a problem. To further aid this process, the

list of exceedance probabilities are colour coded from red indicating a probability close to

100%, to green denoting probabilities closer to 0%.

A.1.4 Causation Factor Analysis

A potential limitation of the scheme evaluation and hotspot prediction analyses discussed

thus far, is that whilst they are effective at analysing overall collision rates at locations,

they do little to explain why the collisions occur, which is clearly an important consider-

ation for practitioners as deciding on the most important countermeasure to deploy is as

important as determining where to deploy it. One approach could be for the practitioner

to carry out a standard hotspot prediction analysis using the hotspot prediction applica-

tion, but only include collisions of a specific type. For instance if the practitioner wished

to know where to deploy a set of speed cameras, they could carry out a hotspot prediction

analysis, but only include collisions which were related to speeding, thereby obtaining the

predicted number of speeding collisions at sites across the network in the next time period.

While this approach is valid in principle, it can be cumbersome and inefficient if the prac-

titioner wishes to investigate multiple possible causation factors, which may have multiple

levels, at multiple sites. In such situations, it may be sufficient for the practitioner to

investigate where (if anywhere) there is an unusual pattern in the number of collisions

relating to possible causation factors. The investigation into proportions of collision totals

due to differing types and levels of causation factors is well documented in literature (see

for example [Das et al., 2015], [Shrestha and Shrestha, 2017], [Hao et al., 2016]), and it

is the purpose of this application to make it easy for practitioners to carry out their own

analyses. This is particularly pertinent as it relates to geographical variables such as

weather condition or time of day, as opposed to the fixed factors we have previously con-

sidered when developing SPFs. Such an analysis can be carried out using the Multinomial

Proportions app, shown in Figure A.11, which using various statistical hypothesis tests to

investigate the possibility of imbalances between collision totals due to different causation

factors between groups of sites. Data is provided in the form of an m × n contingency

table, where m is the number of groups being compared, and n is the number of levels,

or “states” of the causation factor being investigated (e.g. if the factor was ”weather

conditions”, states could be “wet”,“dry”, “snow” and “ice”). In order for any analysis to

occur we clearly therefore require m > 1 and n > 1, and an error message is displayed

should the input data fail to achieve this (most likely indicating a data formatting error).

This table can either be entered manually (using the “Manual input” radio button) us-
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Figure A.11: The Multinomial Proportions RAPTOR app, using an uploaded contingency

table and displaying output from the “Overall Analysis” sub tab.
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ing the numeric input boxes in the table, and editing the corresponding headings, or by

uploading an existing table (with the same formats as for the other applications being

supported) using the “Contingency table” radio button. The method for analysing the

data can then be selected from the “Testing method” select input menu, the choices being

to carry out a “Chi-squared test” ( [Greenwood and Nikulin, 1996]) or a “Fisher’s Exact

test” ( [Fisher, 1922]), with the choice largely being due to the size of the numbers in

the contingency table. It is well documented that the accuracy of Pearson’s chi-squared

test diminishes severely if the minimum number in a group becomes too small (with 5-10

being the recommended smallest value), and so in such a case it is recommended for users

to select the option to carry out Fisher’s exact test (a warning notice appears should a

dataset not be suitable for Pearson’s chi-squared test).

The “Analysis” section consists of two sub-tabs, the “Overall” sub tab providing the

results for the overall dataset, carrying out the hypothesis test for all m groups in the

dataset:

• H0: There is no significant difference between the proportions of each state across

all m groups.

• H1: There is (at least) a significant difference between the proportions of each state

across all m groups,

The hypotheses are given in the “Model Results” box along with the resulting p-value

and interpretation. The explicit output from R is given below in the “Raw output” box,

although this is specified as “Advanced” and should only be of use to users experienced

with R or other similar statistical software. The results are presented graphically in the

“Plot of Values” panel to the right, visually displaying the number of collisions expected

under the null hypothesis, and those observed, for each group in each of the states. This

plot is designed to help the user easily notice where any significant discrepancies are and

hence which states (if any) lead to the model results provided. The “Plot Summary”

statement provides information on whether the appropriate test was used, based on the

expected values displayed. The “Individual State” sub tab then allows the user to compare

the proportions of one state against the remaining data in order to best ascertain which

states give output which is not in accordance with the null hypothesis. This can be done

in two ways:

• All possible combinations: Compares proportions between every pair of states and

tests the null hypothesis that there is no difference in proportion between each pair

of states.

• State vs sum of states: Compares the proportion of one state against the proportions

for the other states combined (i.e. for state i the collisions for each group is summed

168



A.1. Translational Research

across all j 6= i states, and the resulting proportion compared with that of state

i, with the null hypothesis again being that there is no difference between the

proportions.

A statistical problem with these comparisons is that they involve running multiple hy-

pothesis tests on the same dataset (n(n−1)
2

comparisons for the “all possible combinations”

analysis, and n comparisons for the “state vs sum of states” analysis), which leads to in-

creased risk of a false positive (i.e. a significant result being given purely due to chance)

occurring. To counteract this, adjusted p-values are obtained, the method by which p-

values can be adjusted can be selected by the user by checking the “Show p-value correction

options” box, and checking the correction method they would like to use, the options avail-

able being the options available in the in-built p.adjust R command: Holm, Hochberg,

Hommel, Bonferroni, Bonferroni and Hochberg, Benjamini and Yekutieli, False Discovery

Rate, or none. More information on these corrections can be found in [Wright, 1992].
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Figure A.12: The Multinomial Proportions RAPTOR app, using an uploaded contingency

table and displaying output from the “Individual State” sub tab.
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