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Abstract 

There are significant differences between experiment and theoretical cal- 

culations of the electronic structure of GaSb/GaAs self-assembled quan- 

tum dots. Using a multi-band effective mass approximation it is shown 

that the influence of size and geometry of quantum dots has little or no 

effect in determining the hydrostatic strain. Furthermore, the valence- 

band ground state energies of the quantum dots studied are surprisingly 

consistent. This apparent paradox attributed to the influence of biaxial 

strain in shaping the heavy-hole and light-hole potentials. Consequently, 

it is shown that a simple, hydrostatically derived potential is insufficient 

to accurately describe the electronic structure of such quantum dots. In 

addition, using the latest experimental results measuring the conduction- 

band offset, it has been shown that much better experimental contact may 

be achieved for the magnitude of the transition energies derived com- 

pared to theoretically derived transition energies. The transition energies 

of Si/Ge self-assembled quantum dots has also been calculated. In par- 

ticular, a range of quantum dot structures have been proposed that are 

predicted to have an optical response in the 3-5 micron range. 
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Chapter 1 

Introduction and Background 

The advancement of techniques of crystal growth such as Molecular Beam 

Epitaxy (MBE) and metal-organic chemical vapour deposition (MOCVD) has 

led to the ability to fabricate semiconductor-based materials with alter- 

nate layers with atomic precision. This remarkable level of control over 

the growth of these so-called semiconductor "hetero structures" has led 

some researchers to design novel semiconductor structures that aid in 

the study of fundamental physics and can also be incorporated into elec- 

tronic or optical devices. The analytical solution of Schr6dinger's equa- 

tion is demonstrated to every first year physics undergraduate using the 

one-dimensional "particle-in-a-box" problem. So, with the advent of the 

processes and degree of control described above, it became possible to 

actually realise such structures. This, of course, attracted a great deal 

of academic interest. However, the possible applications of this technol- 

ogy were quickly exploited: with the ability to choose the composition, 
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layer thicknesses, doping and strain in such structures came the ability to 

taylor the electronic and optical properties of a heterostructure and sub- 

sequently the properties of the device upon which the structure is based. 

This chapter contains an introduction to the physics of semiconductor 

heterostructures as well as a review of those properties of semiconductor 

structures upon which technological devices depend. 

1.1 Semiconductor Heterostructures 

The conduction electrons in a perfect (i. e. defect-free ) sample of a bulk 

semiconductor such as GaAs are virtually uninhibited by the presence of 

the periodic potential due to the regular lattice of atoms and are conse- 

quently essentially free to propagate throughout the crystal. These elec- 

trons are distributed over a continuous energy "band" with the quantum 

aspect of their character hidden away. However, if two or more layers of 

different semiconductor materials are fabricated on top of one another 

we create a "heterostructure". This aligning of two materials together has 

the affect of introducing a real-space discontinuity into the conduction 

band. This occurs because the absolute values of the conduction band 

energies in each material are, in general, different (see Figure (1.1)). This 

difference is termed the "conduction band offset" (there is also a similar 

effect in the valence band). If the conduction band offset is great enough, 

then the electrons become confined to the material with the lowest band 

energy, and hence the number of degrees of freedom that they exhibit is 

11 



Interface 

EC 

AEC 

GaAs Confined Electron Subbands 
Eg 

E 
AlGaAs 
9 

Confined Hole Subbands 
---------- 6E, 

IEV ................. v 

GaAs AlGaAs GaAs 

Figure 1.1: The band structure of a quantum weR created by the sandwiching 

of a layer of Al,, Gal-. As between two tMcker layers of GaAs. 

reduced. One of the most widely studied semiconductor hetero structures 

is the GaAs /Al. Gaj As (where the aluminum mole fraction, x, can be be- 

tween 0 and 1) quantum well structure. This structure was first proposed 

by Esaki and Tsu in 1970 and constructed by Chang et aL in 1973. This 

heterostructure is constructed by the growth of a layer of AlxGaj_xAs on a 

GaAs substrate followed by a thin (- 10-9m) layer of GaAs, then capped 

with another layer of AlxGaj_xAs. These structures can then provide a 

range of tailor-made electronic and optical properties by the choice of 

the material composition and the thickness of the epita)dal layer. 

As mentioned above, the ability to select the electronic and optical 

characteristics of quantum well structures is a result of the reduced de- 
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grees of motion of the charge carriers within them. Since the number of 

electronic degrees of freedom are reduced by the discontinuous potential 

introduced by the alignment of two materials, that generally have differ- 

ent band gaps, the conduction and valence band offsets at the interface 

must first be determined. As the band gap of any semiconductor is an 

intrinsic property of the material (and we assume that it is unchanged 

by the interface) we must gain knowledge of the local chemistry on an 

atomic scale. This is generally achieved by experimental measurement or 

by ab initio calculations. For carriers in such a hetero structure, namely 

the electrons in the conduction band and holes in the valence band, the 

discontinuity represents a step in potential energy. The alternating layers 

of materials with different band gaps form a potential well and barrier 

to the electrons and holes (see Figure (1.1)). If the width of the potential 

well formed by the material with the smaller band gap is less than a de 

Broglie wavelength of the electrons or holes in the material ( for example 

less than ;::: 15 nm for electrons in GaAs), the motion can be considered 

as quantised in the direction parallel to the growth axis. However, in the 

plane of the quantum well, their motion is still free. Under these circum- 

stances, the electrons and holes are distributed over discrete subbands 

rather that over an energy continuum as in a bulk semiconductor mate- 

rial. The relative spacing of these subbands depends upon the depth and 

width of the potential well that is controlled by the choice of aluminum 

mole fraction and epitaxial layer thickness of GaAs respectively. Thus by 

changing these two experimental parameters we can fabricate wells that 
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can emit and absorb light at specific frequencies. 

Further control over the band structure can be achieved by fabricat- 

ing many such quantum wells on top of one another. If these quantum 

wells are separated by thick layers (> 100A) of barrier material such that 

the wavefunctions of the confined electrons and holes do not overlap we 

create a multiple quantum well (MQW) structure. These structures will 

of course have the same properties as a single quantum well structure. 

However, Esaki and Tsu, (1970) proposed a modification to the MQW het- 

erostructure, in which the barrier layers are grown sufficiently thin to 

allow significant wavefunctions tunneling between adjacent wells. These 

structures have subsequently been named superlattices and may be en- 

dowed with a periodicity that is entirely determined by the repeat length 

of the multilayer configuration. Owing to wavefunction tunneling, the 

discrete electron levels broaden into mini-bands. However, unlike their 

bulk counterparts, the band structure of these man-made materials may 

also be tailored by the fabricator due to the wide range of material com- 

binations (including alloyed materials) and layer thicknesses that may be 

used. Furthermore, it is not required that the lattice constant of the ma- 

terials used in the heterostructure have the same lattice constant (as do 

GaAs and AlAs) and so if materials with different lattice constants are 

used then strain fields may arise in the structure. Strain effects lead to 

shifts and degeneracy breaking in the band structure and, provided that 

they are not so large as to cause dislocations in the lattice, can function 

as an extra design parameter in the tuning of the mini-band structure. 
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(a) (b) 
Figure 1.2: Schematic diagrams depicting the band structure interfaces: (a) 

Type-I (straddling lineup) and (b) Type-11 (staggered lineup). 

The electronic properties of semiconductors are dependent upon the 

availability of holes in the valence band and electrons in the conduction 

band to facilitate the flow of charge under an applied potential. Simi- 

larly, optical properties arise from the electromagnetic energy absorbed 

or emitted as free carriers undergo interband ( between valence and con- 

duction band ) or intersubband ( between mini-bands ) transitions. In 

consequence of this and the above design parameters, the fabricator can 

construct hetero structures tailored for some potential device with techno- 

logical applications This has led to the science of band engineering (see 

Capasso and Cho, 1994). 

For a given set of the aforementioned design parameters, the band 

line-ups that may result at a heterojunction (i. e. the interface between 
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two different materials in a hetero structure) will belong to one of the 

alignment categories depicted in Figure (1.2). Figure (1.2) (a) shows a 

"Type I" interface, i. e. the electron and holes are confined to the same 

material. If the band offset is staggered as in Figure (1.2) (b) the line 

up is said to be "Type H". In a case such as this, the confined valence 

and conduction states will tend to reside in different layers. In a MQW 

structure constructed from such wells, there will be little overlap between 

valence and conduction wavefunctions, due to poor tunneling through the 

thick barriers. Superlattices, on the other hand, may still manifest signifi- 

cant overlap due to charge leakage through the thin barriers, even though 

the valence and conduction mini-bands are largely located in different re- 

gions of the structure. The overlap of the wavefunction in such structures 

is key to determining their optical response and leads to another design 

parameter for creating a suitable novel material. 

Doping quantum well structures with donor or acceptor impurities 

provides further scope for tailoring their electronic and optical proper- 

ties. Doping supplies mobile charge carriers to the lowest conduction and 

valence subbands and thus allows absorption and emission to take place 

as a result of intersubband transitions ( i. e. transitions between conduc- 

tion or valence subbands) in addition to the interband transitions (i. e., va- 

lence subband to conduction subband) that are generally responsible for 

the generation of optical spectra in these materials. Doped GaAs/AlGaAs 

quantum well systems are efficient absorbers of infra-red radiation in the 

8-12 pm. wavelength range because of the narrow energy separation of 
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quantum well states and the large electron transition probabilities for in- 

tersubband transitions. This makes doped GaAs/AlGaAs quantum well 

systems suitable as infra-red detectors in remote sensing application be- 

cause the Earth's atmosphere is transparent to electromagnetic radiation 

with radiation of this wavelength. 

By taking the concept of quantum confinement to its logical conclu- 

sion one arrives at the concept of a so-called quantum dot structure. A 

quantum dot is a heterostructure with zero dimensions, i. e. the electrons 

and holes are confined in all three dimensions to a point, denied even the 

limited freedom conceded to electrons in a bulk semiconductor. Owing 

to this complete quantisation of the motion of the charge confined within 

them, quantum dots exhibit an atomic-like spectrum of energies and a 

density of states that resembles a series of delta-functions. Up until the 

early 1990s the most popular method of fabricating quantum dots in- 

volved the patterning of quantum wells using advanced lithography and 

etching techniques similar to those used in the fabrication of state-of- 

the-art integrated circuits (Reed, 1993). This process involves an electron 

beam scanning a semiconductor surface that has been coated with a thin 

polymer called a resist. A series of process steps replaces the resist with 

a thin layer of metal in areas where the beam was scanned at high inten- 

sity. A shower of reactive gas then etches away the unprotected quantum 

well material, leaving pillars as small as 103A across. Surface effects repel 

charge from the outside of the pillar, confining it to a 102A region of the 

GaAs well layer in the process. 
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Figure 1.3: InAs/GaAs self-assembled quantum dot, reproduced from Cusack 

(1996). 

However, recent studies (Mosion et al, 1994; Marzin et al, 1994; Medeiros- 

Ribeiro et al, 1995; Gruundmann et al, 1995a) have shown that it also pos- 

sible to attain three dimensional confinement of charge with the Stranski- 

Krastanow (Stranski-Krastanow, 1939) growth process. This growth mode 

begins with an initial MBE layer deposition of InAs on a GaAs substrate. 

After a certain critical thickness is reached islands of InAs with a pyra- 

midal geometry form spontaneously and a thin wetting layer is left un- 

der the islands see Figure (1.3). Fabrication concludes with the capping 

of the quantum dot island with a layer of the substrate material. By 
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this method, defect-free quantum dots with sizes (; ý-, 120A) can be con- 

structed with no need for processing by lithography and etching. It has 

been demonstrated that the island sizes and area densities can be con- 

trolled by varying growth parameters such as the thickness of the initial 

two-dimensional layer deposition, and the growth rate. 

1.2 Modeling Semiconductor Heterostructures 

Having reviewed the basic properties of semiconductor hetero structures 

and some of their important properties and applications, we shall now 

present an overview about how such systems should be modeled. Now 

although there is considerable fundamental physics to be learned from 

modeling semiconductor hetero structures, the primary motivation is largely 

technologically based. The optoelectronics industry is reliant upon the 

development of devices with useful, fine-tuned wavelengths for specific 

applications, and this in turn requires the accurate modeling of such the 

underlying hetero structure. Such models require the descriptions of the 

constituent materials, strain and the resulting atomistic potentials, and 

should enable the evaluation of the subsequent optical and electronic 

properties. 

There are a variety of physical theories and methods that have been 

applied to heterostructures, these include: the tight-binding approxima- 

tion (Schulman and Chang, 1985), the k. p effective mass approximation 

(Bastard, 1990; Wang et al, 1996), ab initio pseudopotentials (Jones, 1988) 
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and the empirical pseudopotential method (Gell et al, 1986). Of these, 

the k. p and empirical pseudopotential methods are generally accepted to 

be the standard methods for calculating the stationary state solution of 

idealized heterostructures (Cusack et al, 1996; Wang et al 1996; Wood 

et al, 1996). First principles calculations based upon density functional 

theory (Dreizler and Gross, 1990), and specifically using the local density 

approximation and ab initio pseudopotentials (Bachelet et al, 1982), have 

been carried out for antimonide-based superlattices by Shaw et al, (1995). 

However, such calculations require state-of-the-art computing facilities 

and become infeasible for heterostructures containing large numbers of 

atoms such are those in a quantum dot. In consequence, most models use 

the k. p and empirical pseudopotential methods that both use parameters 

fitted to experimental data obtained for the bulk constituents. Wang et al, 

(1999) have carried out a detailed comparison of these two methods and 

their application to InAs/GaSb superlattices. There exist similar compar- 

isons for quantum dot structures (for example Wang et al, (2000)). These 

examples show that the empirical pseudopotential method provides the 

more detailed atomistic description of the heterostructure and a more 

complete basis set. 

1.3 Overview of Thesis 

This thesis investigates the influence of strain and geometry on the bound 

ground states of self-assembled quantum dots. 
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In Chapter 2, an overview of a selection of key areas in solid state 

physics, that is, band structure, crystal symmetry and properties. The 

content of this chapter functions as a preamble to the main subject mat- 

ter of the thesis and introduces concepts upon which the main theory is 

based. 

In Chapter 3, an outline is given of the empirical pseudopotential 

method and the effective mass approximation, used to construct energy 

bands, wavefunctions, and effective masses in semiconductor heterostruc- 

tures. The effects of strain on the band structure of bulk semiconductors 

is reviewed and the necessary correction to the effective Hamiltonian pre- 

sented. 

Chapter 4 contains the method of application of the effective mass 

approximation to semiconductor hetero structures. The calculation of 

atomic positions, strain, confining potential, effective masses and the 

ground state energies of the conduction and valence bands is outlined. 

In Chapter 5, we examine a series of Si/Ge self-assembled quantum 

dots. Quantum dots are shown to provide another avenue by which it 

may be possible to create a material with a band-gap in the 3-5 Micron 

range. Such a material, if validated by experiment, would prove extremely 

useful for IR applications. 

In Chapter 6, we examine GaSb/GaAs self-assembled quantum dots. 

These materials are of particular interest because they exhibit a Type-H 

band-gap line-up. Consequently, they offer fresh opportunities for pro- 

duction of optical and electronic devices. We note that experimental re- 
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sults are counter to those produced by theory and attempt to provide 

better contact between the experiment and theory. 

In Chapter 7, we revise our calculation of the valence-force-field and 

electronic structure calculation to provide a means of modeling even larger 

heterostructures. We revisit the GaSb/GaAs self-assembled quantum dots 

modeled in the previous chapter and show that the variation of biwdal 

strain can also reconcile experimental and theoretical results. 

FinaUy Chapter 8 summarises the work presented here and provides 

avenues of further study. 
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Chapter 2 

Essential Solid State Physics 

This chapter aims to summarise the underlying elements of solid state 

physics that are required to fully understand the forthcoming subject 

matter. A more thorough and first principled description of the follow- 

ing summary may be found in such excellent introductory texts as Kittel, 

(1996) or Ashcroft and Mermin, (1976). 

2.1 The Bravais Lattice and the Zinc-Blende Struc- 

ture 

In order to develop a model to describe the electronic structure of a crys- 

tal we must be able to model its physical structure mathematically. A 

Lattice is the term given to a spatially periodic array of points. If a group 

of atoms that have consistent composition, arrangement. and orientation 

(a basis ) is attached to all of the points in a lattice, the latter which is a 
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purely mathematical construct, will allow a crystal to be described. The 

lattice is therefore an inftnite array of discrete points with an arrange- 

ment and orientation that appears equivalent regardless of the point from 

which it is viewed. The set of lattice geometries that can provide a de- 

scription of any perfect crystal, provided the correct basis is attached at 

each site, are commonly referred to as Bravais lattices. The points in the 

Bravais lattice written in terms of primitive translation vectors ai are: 

r' = r+nlal+n2a2+n3a3 

= r+R (2.1) 

Here, the ni represent arbitrary integers and the ai do not all he on the 

same plane. The equivalence of points r and r' in an infinite lattice make 

it clear that a single grouping of atoms, repeated throughout that entire 

crystal, will fill the lattice. This grouping is call a unit ceIL 

An example of a Bravais lattice is the face-centred cubic (FCC) lattice. 

This is one of the simplest and most common Bravais lattices known in 

nature. A single unit cell is shown in Figure (2.1). The primitive translation 

vectors of the FCC Bravais lattice are: 

a, =A U+k) 
2 

a2 = (k + i) 2 
a3 

A (i + j) (2.2) 
2 
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Figure 2.1: The Unit Cell of a Face Centred Cubic (FCC) Lattice. 

- -ýr 

where i, j and k represent orthonormal vectors along the Cartesian 

axes x, y and z respectively and A is defined as the lattice constant. The 

crystal lattice translation vector R of equation (2.1) define the Bravais lat- 

tice if the primitive vectors are defined correctly. 

2.2 The Reciprocal Lattice 

Consider a plane wave of some physical quantity propagating through a 

crystal. Consider also that the crystal is a Bravais lattice defined by (2.1). 

in general, the plane wave will not have the periodicity of the lattice. That 
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is the equality (2.3) is not generally true. 

eik. r =e 
ik. (r+R) (2.3) 

However, there eNist a set of wavevectors for which (2.3) holds true and 

consequently exhibit the periodicity of the lattice. These wavevectors are 

known as reciprocal lattice vectors (RLV)s and by (2.3): 

G. R = 2Trn (2.4) 

where n is an integer and G is an RLV. 

The entire set of G can be constructed in terms of primitive vectors bi 

in reciprocal space (sometimes called momentum space): 

m1b, + MA + MA (2.5) 

and mi are arbitrary integers. 

Using equations (2.1), (2.4) and (2.5), the primitive vectors bi can be 

generated from the primitive translation vectors aj: 

b, = 2Tr 
a2 x a3 

- 
a, - (a2 x a3) 

b2 = 2Tr 
a3 x a, 

- a, - (a2 x a3) 

b3 = 2Tr a, x a2 
- (2.6) 

a, - (a2 x a3) 

and must satisfy the condition: 

bi. aj = 2T7-6ij (2.7) 
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where Jjj is the Kronecker delta, defined as: 

45ij 
1 if ij 

(2.8) 
0 if ij 

One final note, if the bi are evaluated for an FCC structure, it is found that 

they describe a body centred cubic (BCQ Bravais lattice: the reciprocal 

lattice of the Bravais lattice is itself a Bravais lattice. 

2.3 Bloch Functions 

F. Bloch proved the important theorem that the solutions of the Schr6dinger 

equation for a periodic potential must be of a special form: 

(Pk(r) -` Uk(r) exp(ik - r) (2.9) 

where Uk(r) has the period of the crystal lattice such that 

Uk(r) " Uk(r + R) (2.10) 

Equations (2.9) and (2.10) express the Bloch theorem: The eigenfunctions 

of the wave equation for a periodic potential are the product of the plane 

wave exp(ik - r) and a function Uk(r) exhibiting the periodicity of the 

crystal lattice. 

A one-electron wavefunction of the form (2.9) is called a Bloch func- 

tion and can always be decomposed into a sum of traveling waves. Bloch 

functions can be readily assembled into localised wave packets to repre- 

sent electrons and holes that propagate through the potential field of the 
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ion cores. Bloch functions are therefore the ideal basis set for models 

such as the empirical pseudopotential method and the k-p model. 

2.4 Energy Bands and the BrMouin Zone 

We shall describe in detail later that the energy states that electrons and 

holes may assume in a periodic potential are the discrete solutions of 

an eigenvalues equation called the Schr6dinger equation. However, the 

theory that we have already described has consequences that may be de- 

scribed independently of the anticipated solutions. 

Recaffing that equation (2.4) shows that 

iG. R 
= 1, (2.11) 

it follows that two k vectors that differ by a RLV G label the same repre- 

sentation. Therefore, when we classify the eigenvalues of our problem, it 

is only necessary to consider those k vectors that differ in magnitude by 

amounts less than the magnitude of an RLV. If we then define a volume 

in reciprocal space that is the smallest region enclosed by bisecting the 

RLVs from the origin (in reciprocal space, labelled IF ) with perpendicular 

planes; it is clear that all of the k points inside this volume will differ in 

magnitude by values within the required range. This volume is termed the 

first BH11ouin zone. Figure (2.2) depicts the first Brillouin zone for an FCC 

crystal and as can be seen, this zone is a truncated octahedron. There 

are various points labelled on this figure which are points of high sym- 

metry such as the (0,0,1) and (1,1,1) points, known as the X and L points, 
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[001] 

[1001 

Figure 2.2: The First Brillouin Zone of an FCC Crystal. 

respectively. There are, for example, six equivalent X points. 

Further Brillouin zones (BBZ) can be constructed in a similar fashion by 

bisecting the next nearest RLVs with perpendicular planes. However, due 

to the equivalence of k points separated by RLVs G, an arbitrary wavevec- 

tor k, in an BZ, may be alternatively expressed k+G by using the correct 

choice of G and where k now lies in the first BZ. This description accom- 

modates a compact way of looking at the electron energy, E, versus the 

magnitude of the wavevector IkI. Such a plot is known as a reduced zone 

dispersion curve. For each k point within the first BZ, then, there are an 

infinite number of electron eigensolutions that are indexed by n in the 

subsequent discussion. The eigensolutions, generally labelled by energies 

29 



16 

14 

12 

10 

1) 

r6 

r. 

F7 

>1 

2 

0 

-2 

-4 
LArX 

Figure 2.3: The band structure of GaAs 

Enk and wavefunctions (Pnk comprise the band stmaure of the crystal. 

The wave vector k of an electron is a manifestation of its wave-like 

properties, as was shown by de Broglie (Ashcroft and Mermin, 1976). It 

then follows that the valence electrons undergo Bragg reflection (Cohen, 

1972) at the Brillouin zone boundaries leading to discontinuities in the 

electron energy spectrum at these values of k. This then leads to the con- 

cept of forbidden bands in the electron energy spectrum. That is, there 

are bands of energies that an electron may not assume. The energy values 

above and below these forbidden bands are termed the conduction band 

and valence band respectively, and the range of forbidden energy values 

is termed the band-gap. It is the form of this band structure in a material 
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that determines it's electrical and optical properties and consequently its 

classification as either an insulator, semiconductor or metal. Though it 

should be noted that a semiconductor is merely an insulator with a small 

band-gap. The band structure calculated using the empirical pseudopo- 

tential for bulk GaAs is shown in Figure (2.3). Using the reduced zone 

representation, this band structure exhibits the energy bands at different 

k points along certain directions in the first BZ. 

The Hamiltonian is the name given to the energy operator in the eigen- 

value equation that determines the electronic band structure, the Schr6dinger 

equation. Applying symmetry operations, there exist a set of wavevectors 

that map onto one another. As a consequence, only one fraction of the 

first BZ needs to be considered when looking at the band structure. This is 

manifested in the various degenerate energy bands that exist in a crystal 

based upon the FCC Bravais lattice. One such degeneracy can be seen on 

the band structure plot illustrated in Figure (2.3) where two of the bands, 

in this case the top two valence bands (the so-called heavy hole and light 

hole bands) axe degenerate at r. The breaking of these degeneracies can 

be achieved by, for example, introducing strain into the crystal and there- 

fore breaking the crystal symmetry. 

2.5 Charge Carriers in Semiconductors 

In order to gain an understanding of the optical and electronic properties 

of semiconductors we must gain insight into the energy distribution of 
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charge carriers. In an idealised semiconductor, in which all the electrons 

populate their lowest energy states, the valence band is completely full 

and there are no electrons occupying the conduction band. However, in 

theory, this situation may only arise when the temperature is at absolute 

zero. At realistic temperatures, the valence electrons can gain enough 

energy from the thermal motion of atoms to be excited up to the conduc- 

tion band. When this occurs, there is a hole left in the valence band. This 

hole can act as a mobile positive charge carrier. This is because valence 

electrons from previously unionised atoms may flow between them, thus 

giving the overall impression of positive charges flowing throughout the 

valence band. These holes, then, may be considered as charge carriers in 

the valence band in the same way that electrons are considered charge 

carriers in the conduction band. 

These electrons and holes then, are termed charge carriers and are 

the mediators of the electric current, under an applied potential, in these 

materials. A Rudimentary analysis of the dynamics of carriers in solids 

(Ashcroft and Mermin, 1976; Fraser, 1979) leads to the result that under 

the influence of an external force, such as an electric field, carriers ex- 

hibit an apparent mass that differs from that of the free electron mass. 

This mass has become known as the effective mass, m* of the carrier and 

embodies the way in which interaction with the lattice potential modifies 

the carrier motion. Quantitatively, we may express the effective mass by 

(2.12) and (2.13) 

h2 )-1 ME (2.12) 
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Vk `ai+aj+ak (2.13) 
a k,, aky ak, 

The effective mass of the electron at the bottom of the conduction band is 

usually smaller, often considerably smaller, than that of the free-electron. 

Since the band curvature at the valence band maximum is of opposite sign 

to that of the conduction band, electrons occupying such states in the 

former band have a negative effective mass. Since, however, we generally 

consider holes near the top of the valence band, the hole effective mass, 

like it's charge, is positive because a hole's energy is greater at lower elec- 

tron energies. 
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Chapter 3 

Calculation of the Electronic Band 

Structure of Semiconductor 

Heterostructures 

In order to predict the electronic and optical properties of semiconductor 

hetero structures it is necessary to know the electronic bandstructure and 

the corresponding wavefunction. This chapter contains details on how 

this information may be obtained using two key techniques and also the 

applicability of these methods to different semiconductor heterostruc- 

tures. 
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3.1 Local Empirical Pseudopotential 

Theory 

Empirical Pseudopotential Theory (EPT) has proved to be a very successful 

method for calculating a wide variety of properties relating to semicon- 

ductor hetero structures. Indeed, the success of this simple theory is most 

probably because it is atomistic, i. e. it includes the effects of periodicity 

or lack thereof, and also that it correctly reproduces the effect of the cova- 

lent bonds of HIN semiconductors on the electronic structure of crystals. 

Presented here is an overview of the formulation of EPT for bulk materi- 

als and a description of how the method may be extended to predict the 

electronic structure of self-assembled quantum dots. 

3.1.1 Formulation of the Local Empirical Pseudopotential 

Method 

The formulation of an effective method for calculating the bandstructure 

of a bulk crystal firstly has to overcome the problem of modeling the 

quickly varying part of the wavefunction in the proximity of the atomic 

nuclei. This problem is solved by recognising that the core electrons do 

not participate in the optical and electronic processes important for semi- 

conductor devices. Therefore we will begin by expandingthe wavefunc- 

tion with two separate terms, one representing the valence states in terms 

of plane waves I k+G) and another representing the core states with an ex- 
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pansion of the eigenstates of atomic core electrons I c). However, first of 

all we must write down a time independent Schr6dinger equation (TISE) 

that represents the operation of a Hamiltonian on the overall electron 

wavefunction. 
h2 

V2 + V(r) (Pnk -` Enk(Pnk 
2m 

1 

where, from the above discussion, the wavefunction is: 

(Pn, k(r) = Ean, k(G)lk+G) +Zbclc) (3.2) 
Gc 

and. 0 is the crystal volume. Thus substituting (3.2) into (3.1) we obtain 

h2 
an, k(G) _V2 +V(r) lk+G)+Z(Ec-En)bclC)=EnEan, k(G)lk+G) E 

2m 
GCG 

(3.3) 

Here, Ec is the energy of the core state c. From the requirement that the 

core states be orthonormal to all the Bloch functions, we obtain: 

Wl nk) =- Z a,,, k (G) (c'I k+ G) +Z (c'I bc I c) =0 (3.4) 
GC 

Since all core states are already orthogonal to themselves, (3.4) reduces 

to: 

2: an, k (G) Wl k+ G) (3.5) 
G 

Therefore, substituting (3.5) into (3.3) yields a pseudo-TISE: 

[ h2 
-V2 + W(r) (hn, k(r) --'ý En, k4)n, k(r) (3.6) 
2M 

I 

with a pseudopotential: 

WV+ (Ec - E,, ) b, I c) (c'l (3.7) 
c 
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and a pseudo-wavefunction: 

On, k(r) =Za,,, k(G) Ik + G) (3.8) 
G 

3.1.2 Representation of Bulk Materials 

It can be seen from (3.7) that the pseudopotential consists of two parts, an 

attractive Comloub term and a repulsive term arising from the interaction 

of the valence electrons with the core. Clearly there will be some cancella- 

tion between these two terms and that consequently the pseudopotential 

will be weaker than any individual component. Also the pseudopotential 

is an energy-dependent non-local function that requires a self-consistent 

approach to solve exactly. However, we shall approximate it with an 

energy-independent, local function, WL (r), as first used by Cohen and 

Bergstesser, (1966). This allows us to represent the crystal potential with 

a sum of spherically symmetric local pseudopotentials centred on atomic 

sites: 

WL(r) a)j(r -R- Tj) (3.9) 
j, Tj R 

Where the basis site, Tj is the position of the jth atom type at the lattice 

point R that constitutes the crystal and wj (r -R- Tj) is the spherically 

symmetric local pseudopotential centred on that site. 

All we now require therefore, is to solve the one electron Schr6dinger 

equation using the pseudopotential and pseudo-wavefunctions. Thus 

substituting (3.8) into (3.6) yields: 

h2 
V2 + W(r) an, k(G) Ik + G) = En 

2m kZan, k(G)lk+G) (3.10) 
GG 
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Operating on (3.10) with (k + G'I and converting to atomic units we arrive 

at: 

1 
lk+G' 12 ank (G') +Z (k + G'I W (r) Ik+ G) = Enkank (G') 

2 GGI 

In order to evaluate (3.11) we must calculate the integral term involving 

the pseudopotential. Exphcitly: 

17 i(k+G'). rWL (k+G). rd3 (k + G'IWL(r) Ik + G) jj 
in 

e- We' r (3.12) 

Substituting (3.9) for WL(r) 

(k + G'I WL (r) Ik + G) =1e 
i(G-G'). r Z Zwj(r-R-Tj)d 3r (3.13) 

K2 
fa 

j, Tj R 

Changing the variable of integration from r to r' +R+ Tj and relabelling 

rl as r (since both r' and r are integrated over infinity) we obtain :- 

(k + G'l WL (r) Ik + G) lz e 
i(G-G'). (r+R+Tj) 

wi(r)dlr (3.14) 
j, Tj R 

f" 

which may be factorised: - 

(k + G'I WL (r) Ik + G) le i(G-G'). R Ye i(G-G'). Tj e 
i(G-G'). r wi(r)dlr 

fn 
R j'Tj 

(3.15) 

If we consider a crystal volume of N unit cells, the total crystal volume 

can therefore be written as 0= N920 where 00 is the volume of a single 

bulk unit cell. Also, by definition Y-R ei(G-G'). R = N, the total number of 

bulk unit cells. Thus (3.15) becomes: 

(k + G'IWL(r) Ik + G) =11e 
i(G-G'). Tj ei(G-G'). rWj (r)d3 r (3.16) 

no j, Tj 

fo 
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We then make the final substitution: 

(k + G'IWL(r) Ik + G) =11 ei(G-G'). Ti wj (G - G') (3.17) 
2. JITJ 

where, 

wj(G - G') 2f 
ei(G-G'). rwj(r)d3 r (3.18) 

By this method, wj (G - G) becomes the empirical parameter and has the 

additional benefit of including the normalisation for the potential. Thus, 

in order to fit a bulk bandstructure, wj (G - G') is varied until several ex- 

perimentally measured band-gaps are correctly reproduced. Usually six 

Fourier components and a basis set of about sixty five plane waves are 

enough to reproduce the bulk bandstructure without spin-orbit coupling 

(Vinsome, 1971). This method of calculation requires that the matrix cre- 

ated by (3.11) is diagonalised fully. The implication of this is that the 

computational effort scales as the cube of the number of plane waves in 

the basis set. 

3.1.3 Representation of Supercells by the Empirical 

Pseudopotential Method 

In the past, electronic structure calculations of semiconductor heterostruc- 

tures have been performed using a basis set consisting of bulk wavefunc- 

tions. 

(PNK ý ZAN 4)nk ý 
ZAN Ean, k(G)lk+ G) (3.19) nk nk 

nk nk G 
Where Onk is defined by (3.8) and k the momentum of the bulk wavefunc- 

tion is a function of K the supercell (or superlattice) momentum. The 
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number of k-points included in the expansion set is governed by the 

number of superlattice reciprocal lattice vectors in the first bulk Brillouin 

zone. The bulk wavefunctions q5nk represent the so-called host material, 

though this does not necessarily have the same meaning here as it does in 

experimental terms, that is the assignment of host or dopant is arbitrary. 

The second material (dopant) is included in the calculation by using a per- 

turbation potential. This perturbation potential represents the difference 

between the host and dopant bulk potentials. Thus the perturbation is a 

small potential where the host material has been replaced by the dopant 

material and zero where the host remains. The perturbation potential is 

defined: - 

Vv(r)=Z ZVi(r-R-Ti)-ZV 
-R-otj) (3.20) j(r 

RI iTJ jov 

I 

where i(j) indexes the dopant (host) material type, Ti(O(j) are the posi- 

tions of the atoms in material i(j) and Vi(j) are the potentials of material 

i (j). Thus with the bulk Hamiltonian HO defined by (3.6), V. (r) by (3.20) 

and the perturbed wavefunction by (3.19), the TISE for the heterostructure 

is: - 

N [HO+Vv(r)]ZAnkOnk 
nk 

[Ho+Vv(r)]ZANnklnk) 

nk 
[Ho + V,, (r) ] 2: AN2: an, k(G)lk+G) nk 

nk G 

ENK 2: AN Onk nk 
nk 

ENK 2: AN Ink) nk 
nk 

ENK 2: ANZ an nk k(G) Ik + G) 
nk G 

(3.21) 
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We can then use a similar line of reasoning as was used in Section 3.1.2 

(i. e. multiply by (n'k'l) and arrive at 

NN (Enlkl -ENK)Anlkl +ZAnk(n'k'IV;, Ink) =0 (3.22) 
nk 

where 

(n'k'l V,, (r) I nk) an', k'(G') an, k (G) (k' + G'I V,, (r) Ik+ G) (3.23) 
GG' 

and 

(k'+G'IV,, (r)lk+G) = 2: e'g-"vi(g) - Ze'g-"Jvj(9) (3.24) 
iTi jov 

and ftnally 

1 
V, (j) (g) f 

ei8. rV, (j) (r) (3.25) 
no il 

The reciprocal lattice vector of the supercell, g is a consequence 

of k- k' +G- G' =g by definition. 

This method has been very successful in calculating the electronic 

structure of superlattices with a single growth direction because of the 

relatively small size of the supercell. However, the calculation of (3.24) 

becomes unfeasible because of its non-linear dependence on N, the num- 

ber of units in the supercell. 

3.2 k-p Theory for Self-assembled Quantum Dots 

The most important regions of the band structure are those most popu- 

lated by the charge carriers of the crystal. For optical devices this region 
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is the bottom of the conduction band and the top of the valence band. 

In addition, a quantum dot has a unit cell so large that the first Brillouin 

zone is very small and consequently can be well represented by an expan- 

sion of bulk wavefunctions at the IF symmetry point (i. e. the centre of the 

Brillouin zone). Given these two ideas it is realised that the k-p method 

(Kane, 1966) will provide an ideal theory for calculating electronic and 

optical properties of self-assembled quantum dots. 

3.2.1 The Kane Model 

For a direct bandgap semiconductor we can obtain solutions in the im- 

mediate vicinity of the Brillouin zone centre if the solution to the one 

electron Schr6dinger equation is known at the zone centre. To do this we 

regard the scalar product k-p (where k is a wavevector measured from IF 

and p=- ih V) as a perturbation. 

We therefore write the TISE (3.1) in terms of the periodic part of the 

Bloch function. 

HUk(r) = 
[Ho 

+ V-10 +hkp+ 
h2k2 

Uk(r) = EkUk(r) (3.26) 
MO 2mo 

] 

where HO is the zone centre Hamiltonian and VsO is the spin-orbit poten- 

tial. We then decide to divide the band edges states into two classes, A 

and B. The states of interest (close to the band edges e. g. F6, r8,177 in GaAs) 

are put into class A and every other band into class B. We then realise that 

our most simple unperturbed basis functions are the 8 band edge Bloch 

functions i. e. IS 1), IX 0, IY 0, IZ 0, IS 1), IX 1), IY 1) and IZ 1). However, 
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ui I Jz) (Pi, iz 
ul 1) 1121 

2 ils 0 

U3 1) 12212 - 
giz o+11 (x + iy) 1) 76 

U, 12,1) 
22 

11 (x + iy) 772 

U7 
1I 

ýq 22 
1( + 71 IZ 0 73 X+ 'Y) 1 

U2 119- 1) 
22 

ils 1) 

U4 22 
(X iy) + ýlz 1) 76' 

V3 

U6 129-2) 
22 

(x - iy) 1) 72 

U8 11 $ --f) 22 7 
11 

1 
73 (X 'Y) 

-t) 
+73, Z 1) 

Table 3.1: The Set of Linear Combinations of Unperturbed Basis Functions used 

in the k-p Formulation 

h2k2 
of the terms in the Hamiltonian of (3.26) only HO and TWO are diagonal. 

and that it would be convenient if Vs' was also diagonal. Therefore Kane 

chose a basis set made of linear combinations of the above functions. This 

basis was chosen such that the total angular momentum j=L+S and it's 

projection Jz along the z-axis are diagonal in the new basis. We therefore 

arrive at the basis functions in Table 3.1. 

Now we will return to our classification of the two classes of eigenval- 

ues and by using the perturbation method of L6wdin, (1951) the states in 
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B are treated as a perturbation on those in A. Formally: 
AB 

Uk (r) aj,, kUj', O (r) + ay,, kUy', O (r) (3.27) 
it yl 

where f are the states in class A and y' are the states in class B. L6wdins 

method requires that we solve on the TISE 
A 
Z (UjAj, 

- E6jj, ) aj', k "0 (3.28) 
if 

instead of 
A, B 

(Hjj, - E, 5jj, ) aj', k ý-- 0 (3.29) 

To first order we can write the Hamiltonian UjAj, in terms of the true Hamil- 

tonian Hjj, 
B 

Uý H- + 2: HjyHyj, 

Y*j, j, 
Eo - Ey 

h2k2 hk 
Hjjr = (uj, olHluj,, o) Ej(O) + bjj, + "' "" p'ý-, (j, f C- A) 

2mo MO 

I 

0(=Xly, z 
Hjy = (uj, o Ih k-pluy, o)= 

ý"Pq 
(jE=-A, YitA) (3.30) 

MO JY MO 0(=X, Y, z 
We therefore arrive at 

TTA, = 
[Ej(o) 

+ 
h2k2], 

5 
h k,, 

"h2k,, 
kp pj"y p0., 

jj, +I PjJ' + 
mo 

Y. E jy Yj 
2mo Of=X, Y, z MO Y*j. j, ot, p Eo - Ey 

(3.31) 

We shall now relabel U A, as D--, and simplify (3.3 1) to the form ii ji 

Djj, = Ej, (0) (5jj, + 
hk O'pq., + ZWýk,, kp (3.32) 

0(=X, Y, z MO ji 

where we define Do'# as ji, 
2 ý, p 

P., 
iy yi, Do'o 

h 
i5jj, 45clo + 

PH aj + Pý pa (3.33) jj' 2mo 

Iy 

mo (Eo - Ey) 
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Therefore in order to solve the TISE given by (3.28) we require the ma- 

trix elements as defined by (3.32) and (3.33) where the effects of V(r) are 

incorporated into the momentum matrix elements pjj,. However, at this 

point the calculation of the eigenstates of interest is actually more com- 

plex and time consuming than simply calculating all the eigenstates i. e. 

solve (3.29) directly. So, in order to proceed we must try to simplify the 

treatment of (3.33). 

We will now explicitly define those eigenstates that are of interest. In 

this case the top four valence bands i. e. the heavy and light hole bands 

which are both spin degenerate. We therefore place these valence states 

into class A and all other bands (including the conduction band and va- 

lence band) into class B. Now, to simplify (3.33) we define 

h2 
A + 

2Bxx h Pxypyx 
- o- 2mo ý 
M2 

0 Ay 
Eo - Ey 

h2 
B -+ 

h2 Byy Pxypyx 
-F o 2mo ; w2 - 0. Eo - Ey 

h2 B 
co = -2 

Y 
xYYx Pxypyx + Pxypyx (3.34) ;ý 

. 0 y 
Eo - Ey 

and also define the Luttinger parameters Yl 9 Y2 9 Y3 (Luttinger and Kohn, 

1955; Luttinger, 1956) in terms of (3.34) 

Yi =- 
2mo 

(Ao + 2B0) 
3h2 

Y2 =- -rio- (AO - Bo) 
3h2 

Y3 =- 
ýo- CO (3.35) 
3h2 

This now gives us an empirical parameter to simplify the calculation of 

the matrix elements as the Luttinger parameters can be related to the ex- 
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perimentally measured effective masses of a bulk crystal by the relations 

(Gershoni et al, 1993) 

MO 
[0011 M = yj - 2y2 
hh 

MO 
[0011 

M 
= yj + 2y2 

lh 
MO 

[1111 M 
= yj - 2Y3 

hh 
MO 

[1111 = yj + 2y3 (3.36) 
Mlh 

So by combining (3.32) (3.34) and (3.35) and in the basis defined by Ta- 

ble 3.1 we arrive at the Luttinger-Kohn Hamiltonian (Luttinger and Kohn, 
-IX 

1955)denotedbyH 

_P-Q s -R 
-TK -P+Q 0 
H 

-P+Q 

0 3) 13 
, 22 

-R 
3 1 1 

1 22 

-S 
3 

_1) 
1 

, 22 

-P-Q _3) 
3 1 

- 
, 22 

where the elements of the matrix are defined by 

p= 
h2 

yj (k 2+k2+ k') 
2mo xyz 

Q= 
112 

y2 (k 2+ kY2 
- 2k 2) 

2mo xz 
h2 

2 2) R= -V-3[-Y2(kx-ky +2iy3kxkyl 2mo 
h2 - s= 

2mo 
2V3Y3(kx - iky)k, (3.37) 

The eigenvalues and eigenvector of the Luttinger-Kohn Hamfltonian then, 

gives us the approximate solution to (3.1). Where the eigenvalue is given 
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by E,,, k =E the wavefunction has been defined as 

(Pn, k (r) =e 
ik. r Un, k(r) (3.38) 
4 

Un, k(r) = 
Y, aj, kUj, O(r) (3.39) 
j=l 

3.2.2 Strain Effects on Band Structures 

The introduction of homogeneous strain in a bulk semiconductor changes 

the lattice parameter and in some cases, the symmetry of the material. 

These in turn produce significant changes in the electronic band struc- 

ture. Homogeneous strained configuration can quite generally be divided 

into two configurations: the isotropic or hydrostatic component, that 

gives rise to a volume change without disturbing the crystal symmetry, 

and the anisotropic component that in general reduces the symmetry 

present in the strain-free lattice. A homogeneous strain induces change 

in energy gaps and, when the symmetry of the crystal is reduced, removes 

degeneracies. 

In this section then, the effects of a uniform deformation on the con- 

duction and valence band edges of IHN semiconductors at r are reviewed. 

The additional terms to be added to the one electron Schr6dinger equa- 

tion (3.1) to account for strain in bulk semiconductors are discussed using 

the language of the k-p scheme. 

As shown in Figure (3.1), the unit vectors a, b, (and c) in the unde- 

formed crystal are related to a', b' (and c' in the uniformly deformed crys- 

tal by (3.40). 
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y 

ia 

undeformed crystal 

x 
a 

deformed crystal 

Figure 3.1: Axes of a crystal under uniform deformation. 

ex,, ) a+c., y b+ cxz c 

b' = cyc a+ (1 - cyy)b + cy, c 

cl = czx a+ czy b+ (1 - czz)c (3.40) 

We assume a homogeneous strain and a symmetric strain tensor i. e. 

cxy = cyx. For a cubic crystal under these conditions there are six inde- 

pendent, non-zero, components of the strain tensor. These are. - 

Cxx, cyy, CZZ I exy --,: cyx, cyz = czy, Czx -= Cxz (3.41) 

To label a position A (or atom A) in the undeformed crystal, we have 

r= xa+yb +zc (3.42) 
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The same atom in the deformed crystal can be labelled either as 

r' = xal + yb' + zc' (3.43) 

using the new basis vectors a, b', c' or as 

r' = x1a + y'b + z'c (3.44) 

in the original basis of the deformed crystal. In the linear strain regime, 

the change of volume becomes: - 

V+6v 
;:: ý a- b' x c' =1+ (c,,,, + cyy + czz) (3.45) 

v 

The quantity cxx + cyy + ezz is the trace of the strain matrix =c, or Tr(i% 

that is approximately the fractional change of the volume 6VIV of the 

crystal under uniform deformation: 

6v 
v ; --- exx + cyy + czz (3.46) 

The effect of a strain on the conduction band of a IH-V semiconductor is to 

produce a hydrostatic energy shift proportional to the fractional volume 

change given by: 

Hc = ac c (Cxx + Cyy + Czz) (3.47) 

where a, is the intraband (absolute) hydrostatic deformation potential of 

the conduction band. In the valence band, the orbital-strain Hamiltonian 

H, v) can be written 

Hcv) = -a(cxx+cyy+czz)-3b L 2_ Rx 10 
+C. V. 

3 
6d 

-, f3- 
[[LxLylcxy+c. v. l 

(3.48) 
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Material 
I 

a, a bI d 

GaSb -6.85 -7.64 -2.0 -4.8 

GaAs -7.17 -8.33 -1.7 -4.5 
Si 1.98 -0.48 -2.1 -4.8 

Ge -8.24 -9.48 -2.9 -5.3 

Table 3.2: Deformation Potentials for GaSb, GaAs, Si and Ge, all values are in 

eV. 

where L is the angular momentum operator, c. p. denotes cyclic permuta- 

tions with respect to the indices x, y and z and the quantities in the curly 

brackets indicate the symmetrised product: JLxLyj = l(LxLy + LyLx). 2 

The parameter a is the hydrostatic deformation potential. It represents 

the intraband (absolute) shift of the orbital valence bands due to the hy- 

drostatic component of the strain. The quantities b and d are uniaxial 

deformation potentials appropriate to strains of tetragonal and rhombo- 

hedral symmetries, respectively. Values for the deformation potentials 

a,, a, b and d are given in Table 3.2 for GaSb, GaAs, Si and Ge taken 

from the summary of experimental and theoretical results by Van der 

Walle, (1989). We will neglect the stress-dependent, spin-orbit contribu- 

tion to the valence band strain Hamiltonian since it is small compared to 

the orbital-strain contribution (Pollack, 1973). In the eight-band lj, Mj) 

representation the total effective Hamiltonian for a bulk semiconductor, 

H= Ho + V-10 + HfE + Hv can be written at the centre of the BriHouin zone 
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as (Pollack, 1990) 

Eo +A 0 0 0 0 0 0 0 is t) 

0 EO+A 0 0 0 0 0 0 ISO 

0 0 B E F 0 G H 212 
22 

) 

0 0 E* C 0 F 291 
22 

) 

0 0 F* 0 C E 2A ) 
2 2 

0 0 0 F* E* B -H* G 2A 12 ) 
2 

0 0 G* I* J* -H -A+D 0 il 1 122 ) 

0 0 H* P -I* G* 0 -A+D i- 1 
21 

1) 
2 

a, (exx + cyy + czz) 

a (cxx + cyy + czz) - (b / 2) (2 czz - cxx - cyy) 

a (cxx + cyy + czz) + (b / 2) (2 czý, - cxx - cyy) 

-a (cxx + cyy + czz) 

d(cxz - cyz) 

(-ýf3-12)b(cxx - cyy) - idcxy 

icyA 

(-, f3--l2)b(c,,, - cyy) + (i/NF2)dcý, y 

- (b / V-2-) (2 c,. -. - c.,,, - cyy) 

(NF3-/2)d(c,,, - icyz). (3.49) 

Diagonalisation of (3.49) yields the positions of the band edges in a bulk 

semiconductor subject to an arbitrary uniform deformation. 

Consider the form of the effective Hamiltonian for the case of a strictly 
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hydrostatic strain. Under these conditions the strain matrix is diagonal, 

the only nonzero elements being c... = cyy = c,,. From (3.49) it is 

apparent that the total Hamiltonian is also diagonal for this strain con- 

figuration. If the stress is compressive, the negative fractional volume 

change and the negative conduction band deformation potential common 

to most semiconductors combine to shift the lowest conduction band at 

IF up in energy relative to it's unstrained position. A compressive strain 

also causes a positive shift to the heavy hole, light hole and split off bands 

relative to their unstrained positions. No splittings of these states occurs 

since the cubic symmetry is retained. 

A unia)dal stress applied parallel to the [001] aNis results in a diagonal 

strain matrix with the nonzero components czz, and cxx = cyy. In this 

case additional so-called biaxial terms enter into the effective Hamiltonian 

through the terms B, C, and L The biaxial strain, which can be thought 

of as a hydrostatic strain plus a uniaxial strain, is proportional to 2czz - 

exx - cyy. The uniaxial stress splits the heavy hole and light hole states at 

r due to the reduction of symmetry, and introduces a coupling between 

the heavy hole and split off states. 

3.2.3 Describing Heterostructures 

The k-p theory in conjunction with the effective mass approximation 

(EMA) has been used to describe the electronic energy levels of semicon- 

ductor heterostructures (Bastard and Brum, 1986). The effective mass 

approximation for the heavy hole and light hole bands is stated as fol- 
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lows (Luttinger, 1955). If the dispersion relation of the set of degenerate 

bands satisfying ((3.1)) is given by 

4 
L Hjjýaf, k M 

[Ej, 
o6jj, + Do'okakp (3.50) ii, 

I 

aj', k ý-- Ekaj, k 

then the solution tp(r) for the semiconductors in the presence of a per- 

turbation U(r), such as an impurity potential or a quantum well potential 

[Ho + VsO + U(r)] (p(r) = Eq)(r) 

is given by 

where Fj (r) satisfies 

4 

(p Fj (r) uj, o (r) (3.52) 
j=l 

[Ej, 
o 45jj, + D; ote (a) (-i a 

j ax" axo +U (r) i5jj, Fj, (r) = EFj (r) 

(3.53) 

The envelope function can be expanded in a set of normalised plane wave 

states 
Fj(r) = ZAj(g)(rlg) 

9 
(3.54) 

in which g is a reciprocal vector of the lattice of unit cells containing a sin- 

gle heterostructure or impurity potential. Substituting (3.54) into (3.53) 

and multiplying on the left by (g'I gives a square matrix of order 4x ng, 

where ng is the number of plane waves appearing in the expansion (3.54). 

The attraction of this approach is that there is no need to explicitly match 

wave functions across a boundary between the host and well materials; 

the method is thus easily applicable to an arbitrary confining potential. 
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A necessary condition is that the states in neighbouring hetero structures 

do not significantly overlap. 

A number of simplifying assumptions are made during the construc- 

tion of the Hamiltonian matrix. First, the periodic parts of the Bloch func- 

tions of the heavy and light hole states at IF do not differ very much from 

the host to the dopant layers. Second, we assume that the {yi) adopt val- 

ues appropriate to bulk host material and that these values do not change 

with position in the unit cell. If the Jyj} were to depend on position then 

the placement of the partial derivatives in (3.53) with respect to the matrix 

elements Djj, would require careful consideration in order to preserve the 

Hermiticity of the effective Hamiltonian and the conservation of current 

across the interface. The scheme by which the abrupt change of the {yj I 

across a heterostructure interface can by taken into account when using 

a plane wave basis has been discussed in detail by Baraff and Gershoni, 

(1991). 
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Chapter 4 

Applying the k-p Method to 

Quantum Dot Heterostructures 

When the concept of a one-dimensional confinement of charge in a semi- 

conductor quantum well is abstracted to three dimension we obtain a 

quantum dot. While there is still a dispersion in the conduction and va- 

lence bands in quantum wells, quantum dots exhibit an atomic-like spec- 

trum and a density of states that resembles a series of delta-functions. 

This changed dimensionality provides greater control over the optical and 

electronic properties of quantum dots than can be achieved by engineer- 

ing the band structure of quantum wells. 

Now although the empirical pseudopotential and k-p methods have 

been used to great effect to model superlattices and multiple quantum 

well structures (see for example Shaw, 1998), they have great difficulty 

in modeling large hetero structures. A unit cell size of > 1000 atoms be- 
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comes computationally expensive. However, a typically measured quan- 

tum dot requires - 200,000 atoms. Therefore we require a different ap- 

proach to the traditional matrix creation and diagonalision procedure. 

in this chapter we outline the details of applying the k-p scheme de- 

scribed earlier for a quantum dot heterostructure. 

4.1 Atomic Positions 

The positions of the atoms in a quantum dot island and the surrounding 

host layer are determined using a molecular mechanical model. In this 

approach the atoms are considered as point particles and the bonds as 

springs. The mathematics of spring deformation can be used to describe 

the ability of the bonds to stretch and bend. The object of molecular me- 

chanics is to predict the energy associated with a given atomic structure 

then attempt to find another structure with a lower energy. When this 

process is repeated many times and an energy minima is reached, we can 

assume we have obtained a good approximation to the true equilibrium 

structure. The total energy in this model is the sum of the total energy 

associated with the stretching of bonds and the total energy associated 

with the bending of bonds. These total energies have no meaning as ab- 

solute quantities, only differences between two or more structures have 

meaning. The total energy expression together with the data (parameters) 

required to describe the behaviour of different kinds of atoms and dis- 

tortions constitutes a force field. Many different kinds of force field have 
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been developed over the years. Some include additional energy terms 

that describe longer ranged interactions. Some force fields account for 

coupling between bending and stretching in adjacent bonds, bond twist- 

ing terms, and non-bonded interactions (e. g. Van de Waals) in order to 

improve the accuracy of the model. 

The choice of force field depends, of course, on the type of bond- 

ing present in the material under consideration. In the IIIN semiconduc- 

tors considered here, which displays covalent bonding with only limited 

charge transfer, the valence force field (VFF) is most suitable. We begin 

by writing the total potential energy as the sum over the atoms in the dot 

and host materials, 
db 

Etot Vid + Viý, (4.1) 

where Vd and Vb represent the potential of an atom of the dot and host 

material respectively. The potential assigned to the ith atom of the dot 

material may be written as 

Vd 
n1 

d(rd)2 
n-1 n 

)2 +fd 
n-1 n 

fd (Arj) 2 
rr 

(Oijk 
4 J=l 

r+2 
fo 0 

j=l k=j+l j=l k=j+l 

ArijArik 

n-I n 
+ dfd Z ro ro 

Z (Aij + Arik)AOjik 

j=l k=j+l 

n-2 n-1 n 

+ (r6 d)2fd 
00 (AOjikAOkil+AOkilAOlij+AOlijAOjik), (4.2) 

j=l k=j+l I=k+l 

where Arij = rij - riop AOjik = Ojik - Ojoik and riOj and Ojoik are the equillb- 

rium values of the length of the bond between atoms i and j and the angle 

subtended by atoms j and k at atom i. n is the coordination number. The 

summations have all been symmetrised and the factors of (1 / 2) and (1 /4) 
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I 
fr (ev/Al) fo (eV/Al) I frr (ev/Al) I fro (eV/Al) foo (ev/Al) 

GaSb 6.61S3 0.2126 0.0974 0.1915 -0.1600 

GaAs 7.9689 0.3071 0.43SO 0.1813 -0.0028 
Si 7.95S6 0.3023 0.2965 O. lSl6 -0.0230 

Ge 6.8923 0.2489 0.1629 0.1287 0.012S 

Table 4.1: Valence Force Field Parameters for GaSb, GaAs, Si and Ge. 

inserted to avoid double counting. The force constants, fd, characterise 

the strength of the different interactions that make up the valence force 

field for the dot material. The parameter fd is the bond stretching force 

constant, 0 the bond bending force constant, fd rr accounts for the cou- 

pling between bonds sharing a common atom, fdo describes the strength 

of the coupling between an angle and a bond along one leg of 0, and f0do 

describes the correlation between angles having a common leg and apex. 

A similar set of force constants e3dsts for the host material. 

In the past the VFF method has been used to determine a range of elas- 

tic and vibrational properties of covalently bonded solids. Musgrave and 

Pople, (1962) and McMurry et A, (1967) carried out VFF calculations of 

the phonon spectrum of diamond. Martin, (1970) investigated the elastic 

properties of ZnS using a VFF model which accounted for charge transfer 

through the inclusion of a Coulomb term. Here we are interested in using 

the VFF model to determine the positions of atoms in the dot and host 

materials and then extracting information concerning the distribution of 

strain in and around the islands. 
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The transfer of charge between the two atomic species in HI-V mate- 

rials should be taken into account through an additional term in (4.2) 

representing the extra interatomic force resulting from the placement of 

a point charge on each of the atoms. The resulting electrostatic interac- 

tion is the cause of the TO-LO splitting observed at q=0 in the phonon 

spectra of these materials. This additional Coulomb term was neglected 

and instead the five force constants adjusted such that the phonon spec- 

trum in the neighbourhood of q=0 was well reproduced and agreed with 

the values predicted from the elastic constants of the material. Although 

the TO-LO splitting is not recovered during the fitting procedure, the low 

frequency part of the spectrum was accurately obtained. By this method, 

the effects of the Coulomb term on the acoustic branches of the spec- 

trum in the neighbourhood of q=0 were included in the force constants. 

This was important as it is primarily the longer-wavelength variation in 

strain that is most important for the electronic structure determination 

described later on. The force constants used in the structure calculation 

are listed in Table 4.1. 

The calculation of the atomic positions in the dot and host proceeded 

by placing every atom in a unit cell containing a single island and a wet- 

ting layer section surrounded by the host material, at the atomic positions 

that would be occupied by host atoms in a similar sized unit cell of pure 

host. The total energy of this conformation was calculated, together with 

the net force on each atom. Each atom was moved a distance in the di- 

rection of the net force and then the total energy was recalculated. This 

59 



procedure was repeated until the total energy reached a minimum. 

4.2 Strain Distribution 

To recover the strain tensor from the relaxed atomic positions, the new 

positions are compared to the normal bulk positions of the host material. 

This tensor is assigned to the structure on the basis of the conventional 

eight atom unit cell. In this way a three-dimensional pattern of the strain 

can be recovered. Figure (4.1) shows a typical conventional cubic unit 

cell shown before and after the relaxation process with the deformed and 

undeformed unit basis vectors labelled. There are several remarks to be 

made on this method. Firstly, the reason for using an eight atom unit 

cell is a result of the underlying theory of the strain tensor, i. e. that it 

assumes a continuum, therefore it cannot be reliably applied to calculat- 

bb 

ao 5.65 

Figure 4.1: A conventional cubic unit cell inside the quantum dot structure 

before and after deformation. 
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ing the strain of individual atoms. Secondly, as a consequence of the first 

comment, the theory breaks down at the interface between the materials 

in the hetero structure. This means that the strain cannot be accurately 

calculated at the interface or within the wetting layer (if present ). Thirdly, 

we must solve three simultaneous equations with three unknowns as out- 

lined in equation (3.40) for every eight atom unit cell. Despite these re- 

strictions a good description of the strain away from the interface and 

wetting layer is attainable in a relatively quick manner. 

4.3 Confining Potentials 

In the absence of strain effects, the confining potential for a charge car- 

rier is a square well formed by the difference in the absolute energy of the 

conduction or valence band edges in the materials under scrutiny. To cal- 

culate the energy levels and electron (or hole) wavefunctions, we use the 

multi-band effective mass theory outlined earlier. For simplicity, we as- 

sume that the conduction and valence bands are decoupled. The general 

solutions for the electron states are given by: 

qj'c (r) = u' (r) (r) (4.3) 

where ul is the bulk conduction band-edge Bloch function and is 

an envelope function satisfying the simple single-band Schr6dinger equa- 

tion. 
h2 

V2 + V(r) O(r) = Eq)(r) (4.4) 
2m* 

I 
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in which m* is the isotropic effective mass of the lowest conduction band 

state and V(R) is the three-dimensional confining potential. We express 

O(r) as a sum over plane waves, each with the periodicity of a unit cell 

containing a single quantum dot. 

A(g)e tg. r (4.5) 

and obtain a matrix equation for the conduction band problem: 
h2 Ig/12 -E A(g') + JA(g) V(r)e'(9-9'). rd3r =0 (4.6) ý-M-* 

19 fil 

In (4.5) and (4.6), g is a reciprocal lattice vector of the periodic array of 

quantum dot unit cells, and Q is the volume of one such cell. The num- 

ber of plane waves required to achieve convergence of the series (4.5) 

depends of the characteristic dimensions of the dot and on the interdot 

separation. The attraction of this approach is that there is no need to 

explicitly match the wavefunctions across a boundary between the host 

and dot materials; the method is thus easily applicable to an arbitrary 

confining potential. However, the boundary conditions are that the states 

in neighbouring quantum dots do not overlap significantly. 

The valence band states are determined using the four-band Luttinger- 

Kohn Hamiltonian that has the form given by 3.37. The Kohn-Luttinger 

parameters of Equation (3.3 5) are calculated using the method outlined in 

the foHowing section. In the case of a quantum dot, we have the equation: 

[H +V (r) I qbv (r) = E4)v (r) (4.7) 

where the conftning potential V(r) is added to the diagonal elements of the 

4x4 matrix. Since, for the problem of 3-D confinement, kx, ky, k-, are no 
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longer good quantum numbers we must make the following replacements 

in Equation (3.3 7): 

k, => -i 
ai 

ky => -i 
aqk, 

=> -i 
a 

(4.8) ax ay az, 

Equation (4.6) is solved using an expansion in plane waves with the Mth 

valence band wavefunction being given by 
4 

(liv (r) =Z (4.9) m, ujv (r) (hjvm (r) 
j=l 

where ujv are the j= 3/2 angular momentum states. 

If we diagonalise (4.6) using an analytical method, we will obtain NG 

eigenvalues and wavefunctions (where NG is the number of plane waves in 

the expansion) and the computational time will scale cr- NG3. However, we 

require only the first few confined eigenvalues. Fortunately there exists 

a useful algorithm package called ARPACK (Arnoldi-Ritz PACKage). This 

provides the means to iterate to the lowest magnitude eigenvalue using 

the Lanczos method. This method involves evaluating the Hamiltonian 

upon a trial wavefunction in each iteration and does not require that the 

entire set of wavefunctions to be stored in memory at once. Diagonalisa- 

tion of (4.6) by this method scales oc NG2 and therefore provides a large 

saving in processor time as well as memory usage. 

4.4 Effective Masses 

When modeling the electronic structure of quantum dots the main pertur- 

bation to the system is the effect of strain. This effect manifests itself in 
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two ways: on the potential well, (described above) in which the electron 

and holes are confined, and on the effective masses of the charge carriers 

within that potential. In the dot material, compressive stress alters the 

curvature of the bulk Bands causing the effective masses to differ from 

those of the unstrained material. This is an important effect to include 

in the model. However, we have only taken into account the effect of the 

hydrostatic strain on the charge carriers and neglected the effects of the 

symmetry breaking biaxial strain because of the difficulty of implemen- 

tation. These hydrostatically strained effective masses are obtained by 

performing empirical pseudopotential band structure calculations for the 

conduction => valence band momentum matrix elements (P, ) of the host 

material under the appropriate hydrostatic strain. 
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Chapter 5 

Si/Ge Quantum Dots for Infrared 

Applications 

In this chapter we applied the theory and methodology outlined earlier to 

model Si/Ge quantum dots. We introduce Si/Ge self-assembled quan- 

tum dots that have infrared applications operating in the 3-5 micron 

range. Conventional Si/Ge quantum well structures are transparent to 

such wavelengths in the absence of heavy doping. We show that the high 

degree of strain lowers the band gap and also that the electrons and holes 

are both localised in the interfacial region. This will consequently enhance 

the optical transition probabilities. 
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5.1 Introduction and Background 

There have been numerous attempts to design heterostructures of Si and 

Ge with the intention to make, for example, infrared detectors. The task 

is then to optimize the key figures of merit (quantum efficiency, dark cur- 

rent, bandwidth) at the favored operational wavelengths i. e. 3-5 and 10 

micrometers. Since the band gap of any quantum well Si/Ge system is too 

large the only option is to make use of an extrinsic (e. g. p-type) structure 

in which incoming photons create excitations between valence minibands. 

The disadvantages of such a strategy compared to bulk (e. g. HgCdTe) or 

n-type (e. g. GaAs/GaAlAs) systems are well known Manareh, (1993). The 

complex dispersion and momentum mixing in valence minibands as wen 

as interface roughness and unavoidable dopants create a variety of ef- 

fective scattering and recombination channels. This greatly reduces the 

quantum efficiency and overall control of the system. It is therefore de- 

sirable to seek radically new solutions. Ideally, one desires an intrinsic 

system with minimum dispersion in the valence band, and a suitable elec- 

tronic continuum to ensure effective current collection (e. g. weak elec- 

tron phonon interaction). It is born in mind that most of these conditions 

might be met by a Ge self-assembled quantum dot (SAQD). Assuming such 

SAQDs can be fabricated (for reference see Apetz, 1995 or LeGoues, 199 S) 

there are two fundamental questions to be addressed. First, is it possible 

that in spite of the strong strain field and the finite SAQD size the band 

gap will be small enough to permit applications at least in the 3-5 mi- 
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crometer band, and second, if so how can the optical transition in what 

is essentially an indirect gap system be strong enough to warrant optical 

applications? As for the second question, we will show that the lowest 

conduction band state corresponds to the bulk Si indirect band-gap ie 

that the electrons are confined in silicon. Therefore it is reasonable to ex- 

pect that conventional selection rules will be broken due to the scattering 

event (momentum mixing) that the electrons undergo when a Si electron 

encounters the Ge potential well. This process has previously been inves- 

tigated with Si/Ge quantum wells with considerable success (for example 

jaros, 1990 or Turton, 1996) However, a microscopic calculation to ver- 

ify this process for a SAQD is very difficult due to the large size of the 

structure. Therefore it is the purpose of this study to show that the first 

necessary question can be satisfied. This then creates room for fresh 

experimentation as previous experiments and theoretical investigations 

regarding Si/Ge SAQDs have concentrated on the transition related to the 

direct Ge and indirect Si band-gap energies Uiang, 1998; Kwok, 1999; Ma- 

teeva, 1999; Takagahara, 1992; Ren, 1997; Ren, 1996; ]Eberl, 2000; Mith, 

1998). 

S. 2 Determinmig the Correct Quantum Dot Size to 

Model 

Recently, successful studies have been made of SAQD structures consist- 

ing of HIN materials (e. g. GaSb, GaAs, hiAs). We have carried out exten- 
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sive computer modeling of the electronic structure and optical response 

in such systems (Cusack, 1996). This enabled us to develop a pragmatic 

macroscopic model that makes it possible to evaluate the form of the 

potential resulting from the complex strain distribution in such a large 

system. In this study we shall employ our scheme to assess the electronic 

structure of Ge SAQDs of similar size with a view to establishing how 

the band gap of the Si/Ge SAQD system depends on the strain distribu- 

tion. The band offset in the valence band is large (ýý-840 meV) and so are 

the hole masses so that the details of the mass mismatch at the inter- 

faces are irrelevant. However, it transpires (Cusack, 1996; Gruundmann, 

1995b) that the strain distribution in and outside the SAQD volume makes 

a substantial contribution to the depth of the confining potential. This in 

turn greatly affects the depth and distribution (order) of confined levels 

on which the functioning of our detector would depend. Our model was 

designed to provide an accurate estimate of this effect. This means that 

we have a reliable form of the potential inside the SAQD with which to 

evaluate the position of confined states. 

It is important then, to model a structure that may be conceivably cre- 

ated experimentally and displays some interesting, unexpected property. 

We have chosen a SAQD consisting of a square-based pyramid of Ge with 

a base length of 108 A and a height of 54 A resting on a5A thick layer of 

Ge and is entirely surrounded by Si. 
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S. 3 The Strain Distribution and Electronic Struc- 

ture 

The strain tensor components plotted along the principal a3ds of symme- 

try (Z-a)ds) of the Si/Ge SAQD are shown in Figure (5.1). The strain tensor 

components in the Si/Ge SAQD generally have the same form as those 

in the InAs/GaAs systems (Cusack, 1996) but are smaller in magnitude 

due to the smaller lattice mismatch (4% in Si/Ge compared with 7% in 

InAs/GaAs). In common with the InAs/GaAs structures, hydrostatic and 

biaxial strain conditions prevail throughout the Si/Ge SAQD. 
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Figure S. 1: The strain tensor components plotted along the Z-Axis through the 

apex of the pyramid. 

69 



We find that throughout the Si the two A valleys along k-. are lower 

in energy than the four A valleys found in the k., -y plane. In the Ge, 

whether the minima in the k,, -y plane or the minima along ký are lower 

in energy depends strongly on the position. However, since the lowest 

bulk conduction band energies are found in the Si immediately above and 

below the Ge pyramid we expect the lowest SAQD conduction state to 

reside in the Si barrier. 

In Figure (5.2) we show the position dependence of the k-. direction A 

minima and the heavy hole and light hole bands in Si and Ge along the 

Z-aNis of the pyramidal Si/Ge SAQD. We have calculated the valence state 
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Figure 5.2: The position dependence of the ký direction A minima and the 

heavy and light hole bands along the Z-aNis of the quantum dot. 
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Yl 
I 

Y2 
I 

Y3 
I 

M* 

-7.765 
1 
-2.367 

1 
-3.267 

1 
0.191 

Table 5.1: HydrostaticaRy strained Ge Luttinger parameters and conduction 

band effective mass used in the calculation. 

energies in the Ge pyramid using a four-band effective mass calculation 

outlined previously. The split-off band is far away in energy from the 

heavy hole and light hole bands in the Ge SAQD and so plays no part in 

our calculation. Also, because of the large valence band offset between 

Si and Ge no account need be taken of the discontinuity in the effective 

masses across the interface. Therefore, the valence band effective masses 

of Ge were used. The hydrostatically strained Luttinger parameters are 

shown in Table 5.1. The effect of strain on these masses was estimated by 

performing semi-empirical pseudopotential calculations for the effective 

masses under the hydrostatic strain conditions eýdsting near to the center 

of the Ge pyramid. From the calculation, the uppermost valence state (V1) 

is 723 meV above the band edge of unstrained Si. The energy level is 

indicated in Figure (5.2) together with the envelope of the charge density. 

Because of the strongly inhomogeneous heavy hole potential, the ground 

hole state is confined towards the base of the Ge pyramid. 

We performed a single valley effective mass calculation for the elec- 

tron energies in the Si/Ge SAQD system. The effective masses in the k, -y 
direction (mt) and the k_. direction (ml) in unstrained Si are also given 

in Table 5.1. Our simple conduction band calculation gives a lowest con- 
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duction state (0) energy 125 meV below the conduction band edge of 

unstrained Si. In Figure (5.2) the envelope of the charge density of the C1 

state can be seen to be localized in the Si barrier immediately above the 

apex of the Ge SAQD. The strain-induced proximity of the electron and 

hole charge enhances the probability of a ground state transition in this 

structure Shaw, (1999). 

From our calculations, we predict our SAQD to have a band gap of 

0.334 eV (3.7 pm). We also performed calculations for larger SiGe SAQDs 

possessing the same height to width ratios. The lowest conduction level 

and the highest valence level for these SAQDs are given in Figure (5.3) 

, relative to the unstrained band edge of Si. The largest SAQD studied 
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Figure 5.3: The variation of emission energy with SAQD size. 
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has a base length of 152 A and a band gap of 0.261 eV (4.7pm) and so 

is also suited to infrared detector applications. Furthermore, since any 

extrinsic feature which must be added in order to study quantitatively 

the magnitude and lineshape of the optical response can only make this 

transition energy smaller we shall conclude that the Si/Ge SAQD system 

is suitable for detector applications. 

5.4 Conclusion 

In summary, we propose that Si/Ge SAQDs can be used as the basis of an 

infrared detector operating in the 3-5 pm range of wavelengths, a regime 

inaccessible to intrinsic Si/Ge quantum well systems. Our calculations 

show that the inhomogeneous strain in these structures lowers the band 

gap and confines electron and hole carriers in spatial proximity. Hence, 

the SAQDs exhibit favorable optical characteristics that warrant further 

investigation. 
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Chapter 6 

Electronic Structure of GaSb/GaAs 

Quantum Dots 

In this chapter we examine the electronic structure of quantum dots that 

are fabricated from the IH-V compounds GaSb and GaAs, using the method 

and theory outlined in earlier chapters. These materials are of particular 

interest when used in a heterostructure because they exhibit a Type II 

band-gap line-up. As a consequence, they offerfresh opportunities for 

production of optical and electronic devices. A further motivation for re- 

searching quantum dots of this type is an apparent discrepancy between 

experiment and theory regarding the value of the conduction band offset. 
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6.1 Introduction and Background 

Quantum dots with wide range of sizes have been reported. Atomic Force 

Microscopy (AFM) measurements (Glaser, 1996) have revealed these dots 

to have a vertical extent of 100-200 A and width of 400-600 A. The exact 

shape of these dots is not well established. Interestingly, the photolu- 

minescence spectra for this range of dot sizes is remarkably constant 

at around 1.1 eV. This contradicts the prediction of basic quantum well 

models as well as our own calculations casting doubt on whether quantum 

confinement is the origin of the photoluminescence spectra. Such findings 

have prompted researchers to investigate alternative mechanisms for re- 

combination such as interface related models (Hatami, 1998). Our aim in 

this chapter, then, is to use our model to attempt to make contact with 

recent experimental results and to shed light upon the possible origin of 

this discrepancy. 

When a self-assembled quantum dot forms, it generally forms a pyra- 

midal shape. However, in order to create a useful technological device the 

structures are then "capped" with a further layer of the host substrate, in 

this case GaAs. As the shape of capped quantum dots is not currently well 

known, we have chosen to model a dome shaped dot with a lateral width 

of 200 A and a height of So A. This is a reasonable compromise as even 

a pyramidal dot will doubtless become more rounded due to the capping 

process and strain. In addition, recent transmission electron microscopy 

(TIM) measurements (Prieto, 1998) have shown InSb/InP dots of compara- 
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ble size to have a dome-like structure. The reason for choosing the above 

dome dimensions is that the method outlined in a previous chapter, has 

been developed to model heterostructures with unit cells of the order of 

a million atoms. In order for the strain fields to reach approximately zero 

at the edges of the unit cell, this structure requires a unit cell of the order 

of 6 million atoms. This size unit cell is the largest possible case that can 

be modeled using the computing resources available at the time of the 

calculation. That is, approximately 60OMb of physical memory and two 

weeks of processor time on a SUN System Ultra SPARC 20OMHz processor. 

Since the memory and processing time requirements for relaxation scales 

roughly linearly with the number of atoms, to model the actual size of 

the dots sizes reported in experiment would require approximately eight 

times more memory and more than eight times the processor time. There- 

fore, in order to produce calculations over a range of dome sizes we have 

found that simply scaling the size of this dome in the electronic structure 

calculation yields results consistent with producing dome sizes from first 

principles. Note that the lateral extent is such that the x/y dimensions 

are a second order effect when compared to the much smaller height di- 

mension in a quantum confinement model. Hence dome (our theoretical 

work) or dot (any other referred work) sizes quoted now refer simply to 

the height of the dome or dot. In addition the dome rests upon 2 ML of 

wetting layer and is entirely surrounded by GaAs. Also, in order to pro- 

duce calculations over a range of domes sizes we have simply scaled the 

size of this dome in the electronic structure calculation. 
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6.2 Electronic Structure 

The shape and dimensions of the domes modeled are such that the strain 

has almost constant hydrostatic and biaxial components inside the dome. 

This is consistent with results obtained from GaAs/InAs pyramidal dots 

with a similarly small height/width ratio (Cusack, 1997). The strained po- 

tential profile is then constructed using the deformation potentials calcu- 

lated by Van de Walle, (1989) coupled with the strain data obtained from 

the above method. Figure (6.1) shows that in the z-direction this profile 

closely resembles a quantum well with modification near the interface due 
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Figure 6.1: The strained conduction band, heavy and light hole potentials of 

the GaSb/GaAs Quantum Dome. These potentials have been calculated using 

the Van der WaHe data. 
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Yi Y2 Y3 M 

-17.326 -3.578 -3.389 0.0 

Table 6.1: Hydrostatica. Hy strained GaSb Luttinger parameters and conduction 

band effective mass used in the calculation. 

to strain. As the hydrostatic and biaxial strain present in the dome causes 

the effective masses to be changed we must obtain new effective masses 

consistent with this new strain distribution. We have obtained a first ap- 

proximation of these strained masses using our pseudopotential method. 

The derived Luttinger parameters from those calculations can be seen in 

Table 6.1. 

The problem that has arisen when performing an electronic structure 

calculation is the acute sensitivity of the transition energy to the size of 

the dot. Figure (6.2)b shows that our predicted transition energies drop 

quickly with dome height. This is because the wells in the valence and 

conduction bands are very deep and hence in a large dome the ground 

state eigenvalue is deeply confined. For example, for a dome height of 

100 A the transition energy between the ground states in the valence and 

conduction bands is around - 600 meV. This is contrary to the transi- 

tion energy experimentally obtained for similar dot sizes of around 1.1 - 

1.2 eV (Glaser, 1996). Indeed, to match this transition energy we predict 

that a dome height of around 20 A would be required. Furthermore, all 

the domes in the lattice would have to be very close to that height (say 

±5 - 10 A) in order to be consistent with the line width of experimental 
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photoluminescence curve, such is the critical dependence on the dome 

height. 

Since AFM images sample the strain field rather than the true size of 

the GaSb dot, the dimensions of the dots are likely to be overestimates. 

However, it is unlikely in the extreme that the overestimate is sufficient to 

provide an explanation for the above discrepancy. Also Ledentsov, (199S) 

reported quantum well structures over a 3-10 A range that have a similarly 

large discrepancy in transition energy. 

Ledentsov, (1995) proposed that the experimental results they obtained 

are more consistent with those expected if the conduction and valence 

band wells are shallower. This presents a possible explanation of the 

1.5 

1.4 

1.3 

1.2 

1.1 

1.0 
Ici 

0.9 

0.8 

0.7 

06 

a) van der Walle 
b) van der Walle with 530 meV shift 

Band offset Diagram 

CB 

VB 

20 30 40 50 60 70 80 90 100 

GaSb quantum dome height (A) 

Figure 6.2: The variation of emission energy with SAQD size. 
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problem. Ledentsov and ourselves have obtained the conduction and va- 

lence band offsets from the work of van de Walle. Doubt is therefore cast 

on the value of - 630 meV for the conduction band offset that is obtained 

from Van de Walle (shown in Figure (6.1)). 

To obtain the conduction band offset for a Type II material experi- 

mentally is very difficult. Direct optical measurements do not give any 

information on the conduction band offset due to the spatially indirect 

electron-hole recombination. Also electrical transport methods cannot 

yield this value as the dots are too small and any measurement would 

average out over the entire area regardless of whether there is or is not 

a dots there. However, recently the relatively new technique of Ballistic 

Emission Electron Nficroscopy (BEEM) has been applied to the problem. Ex- 

periments performed using this technique (Rubin, 1997) have placed the 

value of the conduction band offset at 80 ± 20 meV, U van de Walle de- 

rived offset of - 630 meV. This is a substantial deviation and no attempt 

to reconcile difference is provided here. However assuming deformation 

potential theory holds, we can compare the Van de Walle derived conduc- 

tion band offset with the experimental offset and apply a rigid shift to 

both the conduction and valence band potentials within the dome. The 

magnitude of this shift, within our calculation, is ultimately governed by 

the potential at the interface. Examination of Figure (6.1) shows that im- 

mediately outside the dome the conduction band offset from the strained 

potential alone is 100 meV. Therefore, in order to be consistent with ex- 

periment we have applied a rigid shift to the conduction band, heavy hole 
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and light hole potentials within the dome. This results in a conduction 

band well that is not localised within the dome, and without any confined 

states. In addition, the heavy hole and light hole potential wells are much 

smaller. Figure (6.3) shows the proposed new confining potentials. 

This then provides a possible explanation - without having to aban- 

don the simple quantum conftnement mechanism - of the inconsisten- 

cies between predicted and measured values of dot size and transition 

energy. 

Electronic structure calculations performed using these shallower wells 

are revealing. Figure (6.2)b shows that the ground state in the valence 
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Figure 6.3: The GaSb/GaAs quantum dome potentials after a rigid shift of the 

potentials has taken place to bring the conduction band offset in line with ex- 

perimental measurements. 
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band potential well is much nearer the top of the well for a large dot. This 

leaves less room for variation as the dot size decreases. Indeed, our calcu- 

lations predict that the transition energy varies over a much smaller range 

compared to the previous results (Figure (6.2)b). Also for the larger domes 

the transition energies predicted are much more consistent with experi- 

ment. Note that although the transition energy begins to rise steeply as 

the dome height approaches 20 A, this is probably exaggerated due to the 

method of scaling we have performed, i. e. that the entire dome is scaled 

by the same factor. In addition Figure (6.4) displays results obtained with 

quantum well calculations we have performed. As can be seen the tran- 
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Figure 6.4: The A plot of the variation of the transition energy against quan- 

tum. dome height using (a) a potential derived from van der Walle, (b) the same 

potential with a 530 meV shift inside the dome. 
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sition energies obtained using the shifted well depths better match the 

trend of the experimental results obtained by Ledentsov, (1995) in com- 

parison to the unshifted energies. 

6.3 Discussion 

The purpose of this study is to find a way of bridging the gap between 

theory and experiment and to offer a new model that might open the way 

for fresh experimentation. We think that this objective has been achieved: 

the hypothesis of a "new" band offset clearly is a useful one since it offers 

testable predictions about the manifold of observable transitions. How- 

ever, this is by no means the only "interpretation" of our modeling exper- 

iment. 

Let us first set the tone of this discussion by a cautionary remark about 

the accuracy of our numerical model; our calculation is still too rough to 

offer more than a plausibility argument. As we commented in the above 

paragraphs, neither the precise size nor the shape of the dot are well 

established experimentally to justify the computational effort needed to 

account for these parameters. Hence we think that the somewhat arbi- 

trary choice of the dome structure and the scaling are well in keeping with 

the level of empirical information available for this system and with our 

experience with this class of system. In any case, we do not expect the un- 

certainties introduced by these approximations to affect huge differences 

such as the shift in the band offset but we propose to treat the quanti- 
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tative aspects of our predictions with some scepticism. Furthermore, it 

is worth remarking that in the previously a number of calculations have 

been performed to test such models in a variety of low dimensional struc- 

tures (Wong, 1987) usually with a view to test the simplifications typical 

of the particle in a box type calculations. However, provided that the 

atomic arrangement remains intact to conform to the idealisations nor- 

mally assumed in most models, only the smallest of structures (of order 

one bulk lattice constant) exhibit significant deviations of energy level po- 

sitions from the particle-in-a-box picture of confinement. Corrections 

such as the familiar light and heavy hole mixing can be included without 

having to abandon the model. Given the objectives set out in this study, 

any increase in sophistication cannot be justified. 

If we accept our results as qualitatively correct, we can now discuss the 

options opened by our result, i. e. by the apparent improvement achieved 

by adopting the new - experimental - value of the band offset. Firstly, 

it is quite conceivable that there is a large error in the calculated value 

of the band offset available in the literature for this interface. The story 

of GaAs-AlAs - surely an "easy" interface to model compared to that in 

question here - suggests that ab initio calculations Uaros, 1988) may not 

always have the predictive power required for an accurate determination 

of band offsets. Since there is no other experiment to test this new value 

it simply remains as the most obvious possibility and therefore one we 

have adopted. However, it is also that the message here is that we must 

abandon the standard picture of confinement that requires constructive 
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interference made possible by the walls of an ideal "box". Instead, it 

might be profitable to postulate another model in which the transitions 

take place via quantum states localised at the interface such as those dis- 

cussed in other strained systems (Turton, 1996). However, such states are 

also likely to be affected by any deviation from ideal atomic arrangement 

(Shaw, 1996) and local clustering and interdiffusion. It is also possible 

to separate the two models (Turton, 1996; Presting, 1996) but one must 

possess information about higher transitions and their temperature and 

directional dependence; we hope that our results will encourage just such 

experiments. The difference between the two types of binding is far from 

academic; for example the volume in momentum space needed for effec- 

tive lasing and the optical response are different depending whether one 

has a continuum of states or not. 

6.4 Summary 

To summarise, the conflict between experimental observations and theo- 

retical calculations have been examined for GaSb/GaAs. We employed our 

method for electronic band structure calculations - developed to take 

full account of the strain distribution in the system - on a GaSb/GaAs 

quantum dome structure. The results indicate that the discrepancy may 

be usefully studied by adopting a model of confinement in which the con- 

duction band offset is much smaller than previously thought. We propose 

that the lower limit of the conduction band offset is 100 meV due to the 
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effect of strain near the interface. Alternatively, we must assume that the 

quantum states participating in the the observed transitions are linked to 

the interfaces and possible disorder effects in these regions. 
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Chapter 7 

Direct Modeling of GaSb/GaAs 

Quantum Dot Structures 

GaSb/GaAs quantum dots show a large variation in their physical sizes 

but a remarkablely consistent photoluminescence spectra (Glaser, 1996). 

Experimentalists then discount quantum confinement as a possible ex- 

planation for this effect because they only consider a simple constant- 

depth quantum well model to explain their results. This simple model 

is inadequate because of the variation in strain caused by the differing 

height/width aspect ratios of the dots. Previously, we have attempted 

to reconcile conflicting experimental results by using an empirical fit for 

the conduction and valence band offsets. In this chapter we revisit the 

GaSb/GaAs quantum dots reported by Glaser, (1996) and adapt our method 

to model directly the quantum dots sizes reported. We then demonstrate 

that the apparent contradiction between the large variation of quantum 
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dot sizes and their remarkablely consistent photolunlinescence spectra is 

not inconsistent with theory. 

7.1 Adaptation of the Method for Larger Unit CeR 

Sizes 

As mentioned in the previous chapter, the methods outlined previously 

in this thesis become very computationally expensive for very large het- 

erostructures. The solution to this expense is to parallelise the valence 

force field method for calculating the atomic positions and to exploit Fast 

Fourier Transforms (FFT) in the electronic structure calculation. 

7.1.1 Parallelisation of the Valence Force Field Method 

Parallelisation of the valence force field method (VFFM) involves dividing 

the unit cell into N equally sized (i. e. same number of atoms) regions 

and distributing the data across N identical processors (or nodes). Each 

node can then, in principle, perform energy and force calculations inde- 

pendently of each other node. Unfortunately, with the VFFM this is not 

completely possible because in order to calculate the total energy of all 

atoms on a given node there is a requirement for data from an adjacent 

node because the bond lengths and angles of adjacent atoms are required. 

Consequently we must consider carefully the implementation of the par- 

allel VFFM. Figure (7.1) shows the concept of parallelisation of the VFFM 
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in terms of the distribution of atoms throughout the nodes in the parallel 

machine. The surface layers of node 0 must be copied to nodes 1 and 2 

and the overlap between the two surface layers must be copied to node 

3. Of course the equivalent data copying must be performed by nodes 1, 

2 and 3 to the relavent nodes. This will provide each node with all the 

necessary information required to perform it's own calculation using the 

VFFM. 

Using the parallel VFFM, the processor time and memory requirement 

for relaxation is reduced by a factor of N. The results that are presented 

in this chapter were performed on 64 nodes of a CRAY T3E900 and took 

approximately three and a half hours to perform 1000 iterations (cf 1-2 

Figure 7.1: This figure fflustrates the necessary data copying required to per- 

form the VFFM in paraHel. 
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weeks for 400 iterations in serial). 

7.1.2 OptUM'sation of the Electronic Structure Calculation 

The calculation of the electronic structure by the k-p method outlined 

earlier scales poorly with NG, the number of plane waves in the wave- 

functions expansion. This is because as the number of unit cells X is in- 

creased, the computational expense increases in proportion to NG2 , X2 

a relationship that is introduced by Equation (4.6) through the evalua- 

tion of the conftning potential. In the previous chapter, we calculated the 

electronic structure of a unit cell with >2x 106 atoms using -9X 104 

plane waves in approximately two days. if we are to perform calculations 

upon a unit cell with 16 x 106 atoms we clearly require a faster algorithm. 

Fortunately one is readily attainable. 

Consider the following TISE: 

Ho (p (r) +V (r) (p (r) = Eq) (r) (7.1) 

where HO 
IýV2 

. If we consider the simple example of a single electron 2m 

(with an effective mass, m*) in a single conduction band we obtain: 

h2 
92 (p(r) + V(r)(p(r) = Eqj(r) (7.2) 

2m* 

If we then note that a part of the diagonalisation process is the calculation 

of H(Ptrial(r), then by performing an FFF on the trial wavefunction then 

evaluating HWtrial(g) and Ming the result, we can then simply evaluate 

V(r)W(r) and add the two results. This then makes the matrix diagonal- 

isation process scale as 2NGln(NG), that is, roughly a factor of NG faster 
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than before. This method can be extended to the EMA by substituting HO 

for HLK- Using this process an electronic structure calculation with 2x 106 

atoms may be performed within one hour. 

The two developments described here, then, have decreased the com- 

putational time required to model a large heterostructure from over one 

week to about four hours and consequently have made possible the fol- 

lowing calculations. 

7.2 Results and Discussion 

The choice of the self-assembled quantum dot (SAQD) structures to be 

modeled is determined by experimental results published by Glaser, (1996) 

estimating the SAQD sizes of GaSb/GaAs to be in the range 50-1 OOA high 

and 200 - 400A wide. This range can be considered typical for GaSb/GaAs 

SAQDs as many other researchers have reported similar sizes. Table 7.1 

contains a list of the SAQD sizes we have used in our calculations. Notice 

that these structures cover a wide range of aspect ratios i. e. base: height 

ratios of 1: 2,1: 4 and 1: 8. We will show that the aspect ratio plays a key 

role in the determination of the SAQD potential and hence the electronic 

structure. Aside from the size of the SAQDs, a further important point 

is the shape of the SAQDs. Generally, a four-sided pyramidal structure is 

modeled because this shape has been determined to be that of the SAQDs 

after formation (i. e. pre-capping). However, it is unlikely that this shape 

is retained after capping. In a previous chapter we proposed that a dome 
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shaped (or hemi-spherical) SAQD was a more realistic shape for the em- 

bedded SAQD. Consequently, for completeness, we have modeled both 

pyramidal and dome-shaped SAQDs. 

Figures (7.2)-(7.7) show the hydrostatic and biaxial strains of each of 

the six structures. Interestingly, the hydrostatic strain (HSS) for each of 

the six structures is almost constant throughout the SAQD regions at 

- 7.5% (i. e. about - 2% change in lattice constant). This result is par- 

ticularly interesting as it shows that the fractional change in volume is 

the same for GaSb/GaAs SAQDs regardless of shape, size or aspect ratio. 

Therefore a potential dependent only on HSS for any GaSb/GaAs SAQD 

will have the same, constant well depth to a good approximation. This 

then leads us to the view that the commonly used simple model, based on 

a constant well depth derived from hydrostatic strain only, is a fair repre- 

sentation of the actual potential within a SAQD structure. Therefore, we 

have used k. p theory to calculate the potentials for all six structures in the 

absence of biaxial strain. We find that the well depth for all six structures 

is about 600meV. Of course the lack of biaxial strain means that the HH 

and LH potential are still degenerate. Table 7.1 shows the ground state 

energies (GSE) of the six structures in the absence of biaxial strain. Obvi- 

ously, all the GSEs are less than 600meV and correspond to a transition 

energy between valence GSE to GaAs conduction band edge of about 1 eV. 

This, coincidentally is similar to the emission energies found by various 

experimental measurements (Glaser, 1996; Hatami, 1998). So, can it be 

possible that only HSS is playing a role in the determination of the poten- 
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tial ? This is unlikely as there is no reason whatsoever to discount the 

role of biaxial strain from the calculation. Also, the most likely reason for 

poor contact with experiment for GaSb/GaAs SAQDs is that the theoret- 

ically derived conduction band offset (VdW) does not agree with experi- 

ment (Glaser, 1996). We therefore expect that for GaSb/GaAs SAQDs any 

simple square well based solely on hydrostatic strain will systematically 

underestimate the confinement and therefore overestimate the transition 

energy. We can draw this conclusion by examining Figures (7.8)-(7.13) 

and noting that the well depth for the six structures is significantly more 

than 600meV. Clearly, this is a consequence of biaxial strain and its effect 

on the HH and LH potentials. For example, compare structure 3 to struc- 

ture 5 (Figures (7.10) and (7.12)). Both of these dots have dome shapes 

but different aspect ratios. Both dots have virtually the same hydrostatic 

strain. However, structure 5, the bigger dot has the least confined eigen- 

value with respect to (w. r. t. ) the GaAs valence band edge. This paradox is 

explained by examining the biaxial strain profile of the two dots. Struc- 

ture 3 has a roughly constant biaxial strain of about 20-25% within the 

dot. This compares to the biaxial strain of structure 5 that varies between 

a maximum of about 25% at the base of the dome and a minimum of 

10% at the apex, within the dot. There are several important points to 

make regarding this issue. Firstly, the physical origin of this difference 

can be explained by simply considering the differing aspect ratios. This 

difference then causes the cubic unit cells to be distorted in different di- 

rections. Secondly, the amount of cube distortion across the GaSb/GaAs 
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interface is equal in both cases. For structure 3 there is about 25% biax- 

ial strain just inside the base of the dome and about -10% just inside the 

GaAs barrier at the base, making about a 35% magnitude shift in biaxial 

strain between the barrier and well. There is also an identical shift at the 

apex of structure 3 (a 20% to -15% shift). For structure 2 there is a 20% 

- 15and a 10% - 2S% shift at the apex. So the magnitude of the shift in 

biaxial strain across the interface is the same in both dots. However, with 

structure 5, the dot with a higher aspect ratio, the biaxial strain across 

the interface is shifted into the barrier, particularly at the apex. The ef- 

fect of this differing strain distribution on the potential is that: Firstly, 

the heavy-hole potential in structure 5 is not as deep as in structure 3 

and secondly, that this is especially true towards the apex of the dot. It is 

therefore the differing biaxial strain that explains the sloped HH-potential 

within structure S. 

So, to summarise this example, because the magnitude of biaxial strain 

within the dot in structure 5 is less than that in structure 3 the potential 

is shallower. In particular the biaxial strain is much less near the apex of 

the dots. This results in the sloped potential within the dot of structure 

5. The important effect of this result is that the envelope-function in 

structure 5 is confined to the base of the dot and that the eigenvalue is 

less confined than the ground-state energy of structure 3 w. r. t the GaAs 

valence band edge. 

The same explanation can also be applied to structures 4 and 6 that are 

pyramidal in shape (see Figures (7.11) and (7.13)). Both of these structures 
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Structure Base (A) Height (A). Shape GSE (HSS only) meV 
I GSE (Full) 

1 so 400 Dome -S78 -9S6 
2 so 400 Pyr -569 -931 
3 50 200 Dome -522 -917 
4 so 200 Pyr -501 -883 
5 100 200 Dome -5S7 -848 
6 100 200 Pyr -S38 -8S7 

Table 7.1: Ground states energies using potentials with and without biax- 

ial strain effects for SAQDs of various dimensions and shapes 

have less confined eigen-values than structure 3. Again the hydrostatic 

strain is approximately constant within the dots, but the bia)dal strain 

varies from 20% strain at the base of structure 6 to -30% at the apex of 

the dot. This observation may be explained by considering the effect that 

the dot shape has on the distortion of the relaxed (strained) cubic unit 

cells. The effect of this large bia7dal strain on the potential is similar to 

that described above only more exaggerated. This results in the shallower 

wells (w. r. t. structure 3) and, in the case of structure 6. a ground-state 

envelope-function that is even more confined towards the base of the dot. 

7.3 Summary 

We have shown that the large variation in dot sizes observed by Glaser, 

(1996) is not inconsistent with the comparatively small variation of the 
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photoluminescence spectra observed in these structures. This is because 

the valence band GSE is quite constant in different GaSb/GaAs self-assembled 

quantum dot structures. The biwdal strain distribution of these struc- 

tures (and hence the shape and aspect ratio) plays an important role in 

keeping this variation in the GSE small. 

We find that in general the hydrostatic strain for most SAQDs is ap- 

proximately constant throughout the dot region. Furthermore, this hy- 

drostatic strain is almost the same for any dot fabricated from the same 

material types. This observation however does not lead to the conclu- 

sion that every SAQD will have the same potential well depth because of 

additional effects from bia)dal strain. 
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Figure 7.2: Structure 1: The hydrostatic and biaNial strain distribution through 

the centre of a GaSb/GaAs quantum dome of dimensions x=y= 400A and 
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Figure 7.3: Structure 2: The hydrostatic and biaNial strain distribution through 

the centre of a GaSb/GaAs quantum pyramid of dimensions x=y= 400A and 
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Figure 7.5: Structure 4: The hydrostatic and bia)dal strain distribution through 

the centre of a GaSb/GaAs quantum pyramid of dimensions x=y= 200A and 
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Figure 7.6: Structure 5: The hydrostatic and biwdal strain distribution through 
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Figure 7.7: Structure 6: The hydrostatic and biaNial strain distribution through 

the centre of a GaSb/GaAs quantum pyramid of dimensions x=y= 200A and 
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Figure 7.9: Structure 2: The heavy-hole potentials through the centre of a 

GaSb/GaAs quantum pyramid of dimensions x=y= 400A and z= 50A. 
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Figure 7.10: Structure 3: The heavy-hole potentials through the centre of a 

GaSb/GaAs quantum dome of dimensions xy 200A and z 50A. 
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Figure 7.11: Structure 4: The heavy-hole potentials through the centre of a 

GaSb/GaAs quantum pyramid of dimensions x=y= 200A and z= 50A. 
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Figure 7.12: Structure 5: The heavy-hole potentials through the centre of a 

GaSb/GaAs quantum dome of dimensions x=y= 200A and z 100A. 
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Figure 7.13: Structure 6: The heavy-hole potentials through the centre of a 

GaSb/GaAs quantum pyramid of dimensions x=y= 200A and z= 100A. 
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Chapter 8 

Conclusions 

The effects of hydrostatic and biaxial strain upon the bandstructure of 

self-assembled quantum dots (SAQDs) has been investigated. To under- 

take this task, established theories of the energy bands of solids have 

been taken, optimised and finally applied to describe electronic and po- 

tential optical properties in a range of semiconductor hetero structures. 

In this chapter, we summarise the principal findings of this study and 

provide suggestions on how to extend the calculation and models. 

The calculation of atomic positions of a heterostructure containing 

two lattice mismatched semiconductors was described. A method for cal- 

culating the effect of these new atomic positions upon the "macroscopic" 

confining potentials was presented. Finally, the solution of the one elec- 

tron Schr6dinger equation was used to calculate the electronic structure 

of several heterostructures that show promising optical properties and 

others reported by experimentalists. 
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In chapter 5, we examined a series of Si/Ge based SAQDs using the 

effective mass approximation (EMA). Account was taken of the strain dis- 

tribution imposed on the heterostructure because of the lattice mismatch. 

The extreme biaxial strain affects the A-valley in such a way as to create 

a localised state at the apex of the pyramid. This puts the electrons and 

holes in close proximity and enhances the probability of a optical tran- 

sition. Also, the bandgap in these structures is in the 3-Spm range of 

wavelengths. This regime is inaccessible to intrinsic Si/Ge quantum well 

systems. Hence the SAQDs exhibit favourable optical characteristics that 

warrant further investigation. 

We also applied the EMA to a number of GaSb/GaAs SAQDs reported 

by experiment, highlighting what has previously been deemed to be an 

apparent conflict between experiment and theory regarding the transition 

energies of the heterostructures. We found that suspicion is placed upon 

the accepted value of the GaSb/GaAs conduction band offset. Agreement 

with experimental transition energies was obtained by applying a rigid 

shift of the GaSb potential in accordance with experimental measurement 

of the GaSb/GaAs conduction band offset. 

By parallelising the method of calculation of the atomic positions and 

optimisation of the calculation of the electronic structure using Fast Fourier 

Transforms, we were able to apply the valence force field method (VFFM) 

and EMA to much larger structures. This approach enables the modelling 

of the large GaSb/GaAs SAQDs directly, without the need for scaling. The 

study revealed the role that biaxial strain plays in keeping the ground 

104 



state energy of the valence band very consistent across a range of SAQD 

sizes, shapes and aspect ratios. 

8.1 Future Study 

There are several extensions to calculation of the strain distribution, elec- 

tronic structure and optical transitions in SAQDs that may be possible. 

A simple model for the inclusion of excitonic effects should be relatively 

straightforward (Bastard, 1990). Also, piezoelectric effects induced by 

shear strains could be determined as this will affect the confining poten- 

tial. However, because the method presented here is unreliable at the 

interface, where the largest shear strains will likely occur, careful thought 

will have to be given to the method by which the strain tensor compo- 

nents are obtained from the relaxed atomic positions. It should also be 

possible to construct the conftning potentials for different charge carriers 

by accounting for the gradient of the strain in the effective Hamiltonian, 

as outlined by Zhang, (1994). Another useful addition would be the in- 

clusion of bulk conduction and split-off bands in the basis set used to 

construct the SAQD states. This should improve the accuracy of allowed 

transitions. Account could also be taken of the effect of the biaxial strain 

on the effective masses, as well as the variation of the effective masses at 

the interface and indeed throughout the SAQD. The theory of Burt, (1988) 

demonstrates how the second of these suggestions may be implemented. 

As for the first suggestion, careful consideration is needed of the empir- 
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ical pseudopotential method. A further possibility is that the empirical 

pseudopotential method may be applied directly to SAQD unit cells. Pre- 

liminary investigations into this option have revealed that it should be 

possible to calculate the valence and conduction band ground state ener- 

gies of a SAQD structure with a unit cell - 105 atoms within a week on an 

inexpensive PC. 
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