
A Methodology for the Quantitative

Evaluation of Attacks and Mitigations

in IoT Systems

Luca Arnaboldi

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

Secure and Resilient Systems Group December 2020

I dedicate this thesis to my sibling, for their friendship, wit and incredible strength.

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements. This

dissertation contains fewer than 80,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 100 figures.

Luca Arnaboldi

December 2020

Acknowledgements

I thank my fellow labmates and colleagues for the stimulating discussions, with an extra

special mention to Ricardo and his “pearls” of wisdom that have helped me get a deeper

understanding of academia, Roberto for our many talks and conversations, our work together

has been some of the most gratifying work I have done, and Milad for his friendship and

support in the last months of this thesis.

I am especially grateful to Dr. Morisset for his continuous support and guidance through-

out my study. I also thank my industrial partner ARM, for their contribution to my PhD, and

Dr. Griesmayer for his supervision.

I would like to thank my family: my parents and siblings, for supporting and encouraging

me throughout my years of study. Last but not least, I thank my partner Désirée, who

encouraged and inspired me to pursue an academic career, and who was always by my side

throughout all the hardships it involved.

Abstract

As we move towards a more distributed and unsupervised internet, namely through the

Internet of Things (IoT), the avenues of attack multiply. To compound these issues, whilst

attacks are developing, the current security of devices is much lower than for traditional

systems.

In this thesis I propose a new methodology for white box behaviour intrusion detection

in constrained systems. I leverage the characteristics of these types of systems, namely their:

heterogeneity, distributed nature, and constrained capabilities; to devise a pipeline, that given

a specification of a IoT scenario can generate an actionable intrusion detection system to

protect it.

I identify key IoT scenarios for which more traditional black box approaches would

not suffice, and devise means to bypass these limitations. The contributions include; 1) A

survey of intrusion detection for IoT; 2) A modelling technique to observe interactions in IoT

deployments; 3) A modelling approach that focuses on the observation of specific attacks

on possible configurations of IoT devices; Combining these components: a specification

of the system as per contribution 1 and a attack specification as per contribution 2, we can

deploy a bespoke behaviour based IDS for the specified system. This one of a kind approach

allows for the quick and efficient generation of attack detection from the onset, positioning

this approach as particularly suitable to dynamic and constrained IoT environments.

Table of contents

List of figures xvii

List of tables xxi

1 Introduction 3

1.1 Problem Formulation . 4

1.2 Research Question . 7

1.2.1 Aim . 7

1.3 Research Challenges . 7

1.4 Proposed Solution . 8

1.4.1 Thesis Structure . 10

1.4.2 Publications . 11

2 Background 15

2.1 Chapter Introduction . 15

2.2 Intrusion Detection Systems for IoT . 15

2.2.1 Behaviour Based Detection . 16

2.3 IoT System Security . 18

2.3.1 Evaluatable IoT Systems for Intrusion Detection 19

2.4 Probabilistic System Modelling . 19

2.4.1 Markov Chains . 20

2.4.2 PRISM Model Checker . 24

2.4.3 Advantages of Modelling Approaches 26

xii Table of contents

3 Intrusion Detection Systems in the IoT 29

3.1 Chapter Summary . 29

3.2 Chapter Introduction . 30

3.3 Related Work . 33

3.4 An overview of Intrusion Detection for the IoT 35

3.5 Types of Intrusion Detection Systems in IoT Context 37

3.5.1 Network Intrusion Detection for IoT 38

3.5.2 Host Intrusion Detection for IoT 40

3.5.3 Collaborative Intrusion Detection for IoT 42

3.6 Techniques for use in Intrusion Detection Systems 43

3.6.1 Rule Based/Misuse Detection/Policy Based 44

3.6.2 Signature Based . 44

3.6.3 Anomaly/Statistical . 45

3.6.4 Stateful . 47

3.6.5 Clustering . 48

3.6.6 Computational Intelligence . 49

3.7 Evaluation of Intrusion Detection Systems for IoT 51

3.7.1 Methods to Evaluate Intrusion Detection Systems for IoT 52

3.8 Tools for Intrusion Detection in IoT Systems 55

3.8.1 Analysis and Summary of Proposed Tools 55

3.8.2 Collecting Tools . 63

3.9 Survey Thoughts and Discussion . 65

3.10 A Methodology for the Unified Evaluation of IoT IDSs 65

3.10.1 Building a IoT Testbed . 66

3.10.2 Proposed Testbed Structure . 68

3.11 Chapter Conclusion . 72

4 A Modelling Technique For The Evaluation of IoT System Interactions 75

4.1 Chapter Summary . 75

4.2 Chapter Introduction . 76

Table of contents xiii

4.3 Related Work . 78

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 81

4.4.1 Model for IoT Devices . 82

4.4.2 Experiments . 85

4.4.3 Experiment Setup . 87

4.4.4 Results . 88

4.4.5 Evaluation . 89

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids . . . 91

4.5.1 Threat Model . 93

4.5.2 Problem formalisation . 94

4.5.3 Energy Supply Demand Trade-off Model 97

4.5.4 Power–Energy considerations . 98

4.5.5 Cyber security model applied to CPS 100

4.5.6 Results . 103

4.6 Limitations . 106

4.7 Chapter Conclusion . 107

5 From Model Behaviours to Intrusion Detection 109

5.1 Chapter Summary . 109

5.2 Chapter Introduction . 110

5.3 Related Work . 112

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network . . . 114

5.4.1 IoT System Model . 115

5.4.2 Experiment Methodology . 122

5.4.3 Experiment Setup . 126

5.4.4 Results . 127

5.5 Automata Based Extension . 129

5.5.1 From System Data to Model Behaviour 130

5.6 Summary of Approach . 132

5.7 Discussion & Future Work . 132

xiv Table of contents

5.8 Limitations . 134

5.9 Chapter Conclusion . 135

6 Conclusion & Final Considerations 137

6.1 Discussion . 140

6.2 Future Work . 142

6.3 Limitations . 143

6.4 Concluding Remarks . 144

References 147

Appendix A Summary of Intrusion Detection Tools 161

Appendix B Survey IDS Request Template Letter 165

Appendix C Survey IDS Request Example Letter 167

Appendix D Simple DoS Model on Smart Grid Power Generators 169

Appendix E Anomaly Based Harm Detection 171

E.1 Appendix Summary . 171

E.2 Introduction . 172

E.3 Related Work . 174

E.4 Problem Formulation . 175

E.4.1 Attack Specification . 177

E.5 Optimisation Theory for Attack Detection 179

E.6 Model Based System Optimization . 181

E.6.1 Trace Generation . 183

E.7 Harm Detection System . 184

E.7.1 From System Data to Model Behaviour 185

E.8 Experiment Setup . 186

E.8.1 Evaluation Criteria . 187

Table of contents xv

Appendix F From Secure Protocols to Secure Systems 191

F.1 Chapter Summary . 191

F.2 Chapter Introduction . 192

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification . . . 194

F.3.1 Architecture . 196

F.3.2 Related Work . 204

F.3.3 Future Work & Limitations . 204

F.4 Chapter Conclusion . 205

List of figures

1.1 Categorisation and limitations of IDS strategies for IoT, adapted from [64] . 4

2.1 Example DTMC - Computed with Values. State includes the dice state (if 0

not arrived yet). 22

2.2 Example DTMC - Graphical Representation 22

2.3 PRISM Model for six sided dice with fair coin, single module with guarded

state transitions, labelled with probabilities. 25

3.1 Full representation of the techniques used by different articles. Grey ref-

erences denote hybrid approaches and the article is present in each of the

hybrid techniques. 56

3.2 Diagram showcasing the testbed setup. Layer one comprises the hypervisor,

network structure and performance data. Layer two is comprised of the

devices present in the network. Finally Layer three manages connectivity,

routing and data flow . 69

4.1 The graphs represents a system being targeted by a DoS attack, the one on

the left displays the probability of a DoS attack being successful over time

(20s to 200s). The graph on the right represents the throughput of the system

over time (20s to 200s). Diagram from Arnaboldi & Morisset [16] 88

xviii List of figures

4.2 The controller and the attacker role in our problem formalisation fine grained

to the transitions of a PG (a) and coarse grained to the whole system with

multiple PGs (b). We remark that the attack is not directly done to the power

generator transition from generating to off, but the attack indirectly causes it

through spike over-demand. Diagram from Arnaboldi et al. [14] 96

4.3 Usage data for the UK, scaled down to about 1%, in MW, across 24 hours on

Friday 27 September 2019. Diagram from Arnaboldi et al. [14] 99

4.4 Model and PRISM modules, representing Nuclear, Hydro and Gas power;

the demand, along with and variations from the expected value; and our

designed attacker controlling a percentage of the systems devices. Diagram

from Arnaboldi et al. [14] . 101

4.5 Probabilities for demand raising above tolerated values, in a day to day

scenario with our PG setup. Diagram from Arnaboldi et al. [14] 105

4.6 Likelihood of blackouts caused by spike botnets and different control strate-

gies. Diagram from Arnaboldi et al. [14] 105

5.1 Running model along-side real system (or without necessitating any im-

plementation) to generate further datasets and train an IDS. Diagram from

Arnaboldi & Morisset [17]. 112

5.2 Computational view of systems transitions 117

5.3 Graphical representation of communication between example scenario de-

vices, and monitors calculating their resources 121

5.4 Visualisation of experiment setup . 125

5.5 Accuracy of trained classifiers in experiment 1 using model traces (MD) and

real world data capture (RWD) . 129

5.6 IDS comparison with the model traces to detect deviating harmful behaviour 131

D.1 Powergrid reaction to botnet spikes in our case study scenarios 170

E.1 E-healthcare facility used for IDS Case Study, including attacks and IDS setup187

E.2 Diagramatic representation of case study scenario 188

List of figures xix

F.1 MetaCP supports a data-centric approach where the specification is stored as

structured information. The green arrows point to the currently supported

target tools. Original diagram from Arnaboldi & Metere [15] 196

F.2 The Diffie-Hellman key exchange protocol as exported by MetaCP with the

LaTeX exporting plugin, directly from the design. Original diagram from

Arnaboldi & Metere [15] . 197

F.3 High level description of the PSV data structure to specify protocols. Original

diagram from Arnaboldi & Metere [15] 198

F.4 The graphical design of MetaCP (left) is saved as the PSV format (right).

Original diagram from Arnaboldi & Metere [15] 200

F.5 Rules applied by the LISA plugin in MetaCP for variables, arguments and

function applications. From the top to the bottom of the rule, they show

how the PSV elements are interpreted to the grammar of the PRISM Model

Checker. 203

F.6 Rules applied by the LISA plugin in MetaCP for messages in the protocol

along with depending rules. 203

List of tables

3.1 Techniques Used to construct Intrusion Detection Systems in IoT 57

3.2 Attacks Detected by IoT IDSs . 59

3.3 Locations for Deployment of IDSs . 60

3.4 Evaluation Performed on IoT IDSs . 61

3.5 Summary of simulators used to evaluate IDSs 62

4.1 Every Scenarios For each setup of Protected Devices (PD) and Unprotected

Devices (UD), each setup has a single rude device E targeting the other

gentlemen devices . 90

2 Parameters for the model in PRISM and total of instances for every PG. . . 102

3 Parameters of individual modules used in the model (time scales in minutes

(m) or seconds (s). 103

5.1 Example system model and its outputs . 121

A.1 Summary of Network Intrusion Detection Systems Proposed for IoT 162

A.2 Summary of Host Intrusion Detection Systems for IoT 163

A.3 Summary of Collaborative Intrusion Detection Systems for IoT 164

D.1 How the PG’s interact with the attacker in Scenario A-(1/2). The States are:

A - Available, S - Serving, and D - Disconnected. Sup, is the supply of a

single PG out of four and Att is whether the Spike Botnet is on or not. The

Demand is fixed at 120 units. The values represent the rate at which a state

transitions from a state to another (if 0 the transition doesn’t exist). 169

xxii List of tables

E.1 Network table case study scenario . 188

Glossary

Terms Definitions

Internet of

Things (IoT)

The term IoT is defined by International Telecommunication Union (ITU)

as “a global infrastructure for the information society, enabling advanced

services by interconnecting (physical and virtual) things based on existing

and evolving inter operable information and communication technologies”.

This definition covers just about every modern internet deployment, we

differentiate to cover a subset of these systems in line with most current

literature [72, 71, 182], focusing on constrained IoT deployments. In these

systems there is an assumption of heterogeneity, constrained capabilities

of devices and deficits in connectivity

Intrusion

Detection

Systems

(IDS)

Monitors network and/or system traffic for suspicious activity. Once

potential threats are identified, intrusion detection software sends an alert.

An IDS comes in one of two forms; host-based intrusion detection system

(HIDS) or a network-based intrusion detection system (NIDS). When these

approaches are combined, they are collectively referred to as collaborative

IDS (CIDS). The remainder of this thesis focusses on NIDS, hitherto

referred to as IDS.

Misuse IDS Are based on a set of predefined rules, dicating events that should not

occur in a system.

Behaviour

IDS

Examines the behaviour of the specific system and based on this either

detect anomalies or uses signatures of specific bad and good behaviour.

2 List of tables

Hybrid IDS Combines specific techniques, often a mix of misuse and behaviour, to

increase the overall detection. Benefits from the advantages of both types

of detection.

Black-Box

IDS

This approach assumes that a classifier trained on large datasets of network

data can then be deployed on a system and can classify oncoming traffic

as either good or malicious.

White-Box

IDS

Enhances black-box techniques with domain knowledge. This requires

careful analysis and understanding of the system.

Actionable

ML

In the context of machine learning and more specifically intrusion detec-

tion, actionability refers to the ability to act upon a prediction. This may

directly relate to understanding the reason behind the prediction, in turn

facilitating informed decisions on how to act on it.

Behaviour

Traces

Corresponds to the series of network messages transmitted by a device.

However, in a model these correspond to a finite sequence of actions

outputted by the system.

Glossary: This glossary comprises essential definitions used throughout the thesis. Similar
definitions may be reintroduced to contextualise the discussion.

Chapter 1

Introduction

Existing literature cites various challenges with IoT security, naming the dynamism, hetero-

geneity and constraints of these devices as key factors on why it is insecure [145, 182]. It is

generally accepted that due to the large amounts of possible combinations of IoT architectures

it is difficult for a single solution to be devised [108]. The constraint of low computational

power and memory as well as the potential cost required, complicates the implementation

of a full stack security solution on the device itself [89, 83, 108]. It is therefore desirable

to investigate approaches which could offload the security effort away from the devices, in

the form of IDS techniques. However, implementing an IDS within the IoT faces multiple

challenges [61]. If each technique is broken down to each possible method of detection, no

single approach is sufficient and each have their downsides as discussed in Sec. 1.1. The

remainder of this chapter is structured as follows: Sec. 1.1, discusses issues with IDSs in the

IoT, including limitations of previous approaches. Sec. 1.2, introduces the research question

and objectives of the thesis, Sec. 1.3, highlights key methodological challenges to addressing

our aim, Sec. 1.4, explains the methodology used to address challenges, discusses how the

thesis addressed the research question/objectives as well as a discussion of contributions,

implications and resultant publications.

4 Introduction

1.1 Problem Formulation

Intrusion Detection is a well studied area, with early work starting in the early 90s [80,

183, 159]. The field is perennially evolving, and as the scope of the internet changes,

and attacks get more varied, the detection mechanisms evolve alongside them. Standard

approaches used to train IDSs include using a database of known attacks (misuse detection)

and testing systems to create a “benchmark” behaviour (behaviour based detection) to find

attack patterns [120]. However, despite dozens of proposed approaches and publications in

the area, leading figures in the field have extensively discussed downfalls in current detection

techniques [161, 63, 64, 61], especially (but not only) in the context of the IoT. To fully

understand the extent of the problem, we breakdown the hierarchy of IDS techniques in

Fig. 1.1 and provide an overview of their effectiveness.

Intrusion Detection Hierarchy

Approach

Method

Technique

Explanation

Anomaly

White Box Black Box

Behaviour
Based

Misuse
Based

High initial overhead
Configuration reliant.
One size does not fit all.

.
Non actionable
No insights on results
Data dependent

.

Not scalable
No unknown attacks.
Highly accurate

.

Easy to circumvent.
Non comprehensive.
Insufficent for IoT.

.

Signature

Fig. 1.1 Categorisation and limitations of IDS strategies for IoT, adapted from [64]

Misuse detection is largely regarded as difficult to implement as it can be time consuming

to enforce, requires large databases of data, has high overhead (especially for IoT devices)

and may still be easily circumvented by attack obfuscations [120, 64]. Due to the nature of

their design, having to specify the attacks before hand, they are unable to detect unknown/new

1.1 Problem Formulation 5

attacks. That said, the majority of modern commercial IDS systems are misuse based. They

have the advantage that they are highly actionable, meaning that if an attack is detected, the

nature of the attack is readily identified and mitigations are easier to devise. They can also

scale to a variety of systems as they are attack-dependent, rather than setup-dependent.

In the case of behaviour based IDS, it can be challenging to establish a benchmark

behaviour in dynamic IoT systems as devices may constantly shift, new devices might join

and behaviours can change [72]. This complicates the implementation of black box anomaly

detection. To compound these issues, whilst some black box systems may well be highly

accurate at detecting attacks, they are highly non-actionable. In other words, given a black

box approach, such as a deep neural network, if an anomaly is found, it is difficult to reason

about; as one cannot know what to do about it, or whether the anomaly is even relevant.

Sommer and Paxson [161], provide an extensive discussion on this topic. Conversely, with

specific domain knowledge of the system it is possible for behaviour detection to be very

powerful, as it can distinguish attacks without reference of an attack database. With a

good representation of the system (white box), that explains what is going on between

its components, it is much easier to understand how things go wrong, improving on the

actionability of behaviour based detection.

In the IoT certain scenarios make it unfeasible to adopt a traditional behaviour based

black box IDS approach. These specific IoT deployments are dynamic, constrained, and

safety critical. This specific mix of circumstances makes it crucial for security measures to

be in place, but prevent standard data collection techniques (such as penetration testing), to

train and deploy the IDS.

Example Scenario 1 : Earthquake Safety Sensors

Scenario adapted from IETF Draft on Disadvantaged networks [60]. Assume that IoT

devices are deployed to monitor a large geographical area following a significant earthquake

with threat to human life. These IoT devices may be small constrained sensors collecting

information from their environment to aid search and rescue efforts. Each of these IoT

devices will collect data to find survivors, alert first-responders of potential building collapses

6 Introduction

and monitor the environment for safety conditions and further shocks. In this scenario there

is a central server which will receive and process the data, as well as act as an IDS. The

central server will be mostly static, or slow moving; it could be deployed in a nearby building,

or transported in vehicles if there is no central location. Furthermore, first-responders would

most commonly rely on smartphones or tablets, to interact with the devices. Due to the

mobility of the first responders and the large areas over which the sensors are deployed, there

would only be intermittent connectivity to both the central server and the sensors. In such a

scenario it is essential that key information is delivered, as the denial of one device could

mean that first-responders are not alerted to a building collapse or are unable to locate a

survivor.

Example Scenario 2 : COVID-19 Temporary Field Hospitals

Due to the global coronavirus disease (COVID-19) pandemic, on 3 April 2020, the gov-

ernment of the United Kingdom announced the construction of the first NHS Nightingale

hospital 1. These temporary facilities were designed as state-of-the-art e-hospitals with

internet connectivity and means to quickly expand if needed. The temporary field hospital

could house 5000 beds, each integrated with sensors and Internet connectivity. They are to be

quickly deployed with the intent to be immediately used for emergency treatment, limiting

time for cyber security evaluation to almost zero. This one of a kind IoT scenario, where the

effects of an attack could be human lives creates a unique security problem.

There is no current silver bullet solution to the complex problem that is intrusion detection

in the IoT. Chapter 3 presents a novel and extensive survey of techniques used in the extant

literature, and demonstrates that most techniques are inadequate or currently not capable of

detecting certain attacks as well as being unsuitable for certain IoT setups. Although there is

a lot of promise in the usage of techniques that may take advantage of the domain knowledge

of the IoT deployment, the issue of system constrains in the context of IoT still remains,

making the ability to use this white box knowledge an open challenge [64].

1“Coronavirus: Nightingale Hospital opens at London’s ExCel centre”. BBC News. 3 April 2020

1.2 Research Question 7

1.2 Research Question

Intrusion Detection is a challenging field with many open questions, and in the context of

the IoT there are several restrictions that narrow down options even further. Specifically,

there is an increasing need to develop means to use knowledge based detection in a non static

manner, as the most promising and applicable technique; albeit, with the downside that they

are difficult to adapt to the constrains of the IoT and there are still limitations in what attacks

may be captured. I therefore investigate: “Can we devise a new model-based enhancement to

knowledge based intrusion detection techniques to expand on the current deployment options

and improve our attack detection capabilities in constrained IoT systems?”

1.2.1 Aim

The overall aim is to provide a new, well-tested methodology for the deployment of knowl-

edge based IDSs for constrained IoT systems - through the use of white box formally defined

system models.

1.3 Research Challenges

Devising a methodology for implementing a model based behaviour for IoT networks is not

without challenges:

• Challenge 1. There is no existing gold-standard criteria in which to evaluate and

compare IDS solutions.

• Challenge 2. Modelling constrained and dynamic IoT scenarios to evaluate their

security is non trivial and to the best of our knowledge, an accepted methodology does

not currently exist.

• Challenge 3. A model is an abstraction of the system, and often does not directly

correspond to captured system behaviour.

8 Introduction

It has been widely argued that current techniques will not succeed for IoT systems, and

so the literature proposes solutions that cater to the scenarios specific to the IoT. However,

following our extensive review presented in Chap. 3, it is evident that the evaluation of

solutions in a uniform manner, remains an open challenge [Challenge 1].

Due to rapid advances in sensor technologies, it is now possible to deploy them in

many types of new scenarios. One such deployment involves the positioning of devices

in constrained IoT systems, which is often the case for emergency and/or safety critical

situations. These new characteristics make it difficult to conduct accurate quantitative

assessments and to model realistic scenarios [Challenge 2].

Making use of modelling approaches to enhance the understanding of attacks on a

system prior to physical system implementation poses a unique challenge. There is currently

no accepted methodology of how to model these types of systems to capture the desired

behaviours and apply them in this manner. Further adjustments are required to relate to real

system dynamics and to reason about an attack, extrapolating from a model to a real system

[Challenge 3].

1.4 Proposed Solution

In scenarios such as these where system specifics might be known, but network datasets are

unavailable, methods that incorporate this knowledge need to be devised. To reason about

these systems it is beneficial to abstract them into the core characteristics relevant to each

specific scenario and to formalise the problem using models. Models offer the opportunity to

assess various configurations and to evaluate systems for security with ease. An advantage

is that the simplistic nature of IoT devices which characterizes them as particularly hard to

secure, also plays to their favour when abstracting their behaviour in formal models. Since

the behaviours to capture are simpler, more accurate characterisations can be modelled to

observe the security of the systems. This can account for system behaviour in the IDS

detection, mitigating the limitations that static knowledge-based approaches may face.

1.4 Proposed Solution 9

A formal model is relatively easier to scale and adapt compared to a real system - a

formal model can observe events and model attacks, and it can simulate different scenarios.

We create two new modelling techniques to describe an IoT system; one that can capture

attacks on the system, and one to capture the interactions between devices. We specifically

focus on protocols used in the system to describe the interactions. Both models leverage an

extra layer of battery drain as a key factor in their analysis. Based on these intuitions, we

seek out to develop new attack detection techniques based on formal models of IoT systems.

Our proposed model presents the following foreseeable advantages. Using our approach,

we examine attacker behaviour through the use of a Markov chain, placing less emphasis on

individual packets. Our stochastic Markovian chains may resemble very complex attacker

signatures, mimicking multi-step attacks and decreasing the likelihood that these can be

circumvented. By using modelling instead of system data for intrusion detection, we can

have many more training sets, at a much faster rate.. Importantly, we are also able to capture

system behaviour that is not typically available in standard datasets, such as battery usage.

This offers the benefit of not only the detection of typical behaviour, but also the extension to

the detection of good behaviour. Maximizing on this good behaviour, the anomaly detection

can be used to identify harmful behaviour in a way that conventional approaches cannot.

We unite our modelling approaches to generate a Lightweight IoT System Specification

under Attack (LISSA). A LISSA is composed of two elements; , 1) Specification of the

system using our “gentlemen devices” and “rude devices” approach [16], ; and 2) a attack

specification through use of stochastic processes, as per our attack specification model

Lightweight IoT System under attack (LISA) [17, 18]. By combining these components,

LISSA is able to deploy a bespoke IDS for the specified system. By extrapolating the

network traffic to a set of traces of behaviour, they can be compared to the model traces to

find anomalies or known signatures of attacks. In summary, the thesis presents the following

novel contributions:

• Contribution 1. In response to Challenge. 1, we propose a systematic assessment of

proposed IDS solutions for the IoT and provide an evaluation of current limitations

and current state of the art, presented in Chap 3.

10 Introduction

• Contribution 2. In answer to Challenge. 2, We propose a modelling approach that

focuses on the observation of specific attacks on possible configurations of IoT devices.

This enables a user to have accurate representations of the system prior to deployment,

to observe system behaviours and run security evaluation.

• Contribution 3. In answer to Challenge. 2 and 3, we propose an IDS that can be

trained and deployed prior to setting up the system. This is achieved by making use of

the model behaviours (as per Contribution 2) as the basis of the detection, instead of

necessitating collection of the real system data.

1.4.1 Thesis Structure

Chapter 2 provides relevant background literature, as well as the conceptual reasons under-

pinning and informing this thesis. In each chapter, the scope is summarised in respect to the

aim. Each chapter contains its own related work pertinent to the specific topic, has its own

evaluation for each section and a final chapter conclusion is also provided. In Chapter 6 an

evaluation and discussion of the approach is presented, as well as potential future extensions.

• Chapter 2: Background and Related Work. This chapter highlights the concepts and

work that provide the foundations for this research.

• Chapter 3: A Review of Intrusion Detection Systems in the IoT - A survey & Quali-

tative Analysis. A structured survey of the current state of intrusion detection in the

IoT. Over 50 IDSs are reviewed, representing the largest survey on this topic at the

time of writing, to the best of our knowledge. Beyond the survey, we also provide an

assessment methodology and qualitatively analyse the pros and cons of all approaches.

We then provide an analysis of the current state of attack detection in the IoT. This

chapter addresses Contribution 1.

• Chapter 4: A formal modelling technique for the evaluation of IoT System Inter-

actions. In this chapter, we present the novel gentleman/rude device approach to

modelling interactions between IoT devices and their behaviour under attack as per

1.4 Proposed Solution 11

Contribution 2. This technique is the foundation for our detection and targets address-

ing means to model adaptable and flexible IoT scenarios.

• Chapter 5: A formal modelling technique for the quantitative assessment of attacks

on IoT Systems. This chapter presents LISA, our novel modelling approach for the

observation and assessment of attacks on IoT systems. The sections describe how a

LISA can be modelled and demonstrates how analysis can be performed to quantify the

impact of attacks and evaluate their effectiveness. The attack behaviour in the model is

then used for the signature components of the final IDS. This comprises Contribution

2 and 3.

• Chapter 6: Conclusion & Reflections. This final contribution discusses our modelling

approaches to form the intrusion detection system. The thesis concludes with reflec-

tions about the research question and evaluates whether the aim was addressed. We

then discuss future expansions for this work.

1.4.2 Publications

Some chapters in this thesis are formed from my publications. Unless indicated, all papers are

solely the original contribution of my own work, under the supervisory and editorial support

of my supervisor, Charles Morisset. In the case where work part of a collaboration with

colleagues, this is explicitly stated in the chapter, and a discussion of my own contributions

is presented. Some of the work done in these papers is extended and adapted for the specific

scenario of intrusion detection. These are my sole contributions, and is not contained within

publications at the time of writing. Publications are subsumed within the following contribu-

tions: Contribution 1 is composed of a survey presented in Chap. 3. Arnaboldi & Morisset

(2017) and Arnaboldi et al. (2019) address Contribution 2, Arnaboldi & Morisset (2018-1)

and Arnaboldi & Morisset (2018-2) comprise Contribution 3, Arnaboldi & Tschofenig (2019)

and Arnaboldi & Metere (2019) inform the motivations behind our work, but not used in

any of the thesis chapters. A full list of publications and (work in progress) potential future

applications of this thesis are presented below:

12 Introduction

Publications used for thesis

• Arnaboldi, L., Czekster, R. M., Morisset, C., & Metere, R. (2020). Modelling Load-

Changing Attacks in Cyber-Physical Systems. Electronic Notes in Theoretical Com-

puter Science, 353, 39-60.

• Luca Arnaboldi and Charles Morisset, “Generating Synthetic Data for Real World

Detection of DoS attacks in the IoT”, Federation of International Conferences on

Software Technologies: Applications and Foundations Springer, Cham, Toulouse,

France, 2018,.

• Luca Arnaboldi and Charles Morisset, “LISA Predicting the Impact of DoS Attacks

on Real-World Low Power IoT Systems”, Foundations of Computer Security (FCS),

Oxford, UK, 2018

• Luca Arnaboldi and Charles Morisset, “Quantative Analysis of Denial Of Service

Attacks and Client Puzzles in IoT Systems”, Security and Trust Management Workshop

(STM), Oslo, Norway, 2017

Further publications in preparation, as an outcome of this research or outside its scope

• Luca Arnaboldi and Charles Morisset, “A White Box Anomaly Detection System For

Disadvantaged Networks”, Work in Progress - Venue To Be Decided.

• Luca Arnaboldi and Charles Morisset, “A Review of Intrusion Detection Systems and

Their Evaluation in the IoT: A survey & Qualitative Analysis”, Work in Progress -

Venue To Be Decided.

• Roberto Metere and Luca Arnaboldi, “MetaCP: Cryptographic Protocol Design Tool

for Formal Verification”, Work in Progress - Venue To Be Decided.

• Artur Sokolovsky and Luca Arnaboldi, “Machine Learning Classification of Price

Extrema Based on Market Microstructure Features: A Case Study of S&P500 E-mini

Futures”, In Submission - Journal of Algorithmic Finance.

1.4 Proposed Solution 13

• Luca Arnaboldi and Roberto Metere, “Towards a Data Centric Approach for the Design

and Verification of Cryptographic Protocols”, Proceedings of ACM Computer and

Communications Security (CCS) - Poster Session, London, UK, 2019

• Luca Arnaboldi and Hannes Tschofenig, “A Formal Model for Delegated Authoriza-

tion of IoT Devices Using ACE-OAuth”, Fourth Annual OAuth Workshop, Stuttgart,

Germany, 2019

Chapter 2

Background

2.1 Chapter Introduction

This chapter presents pertinent background knowledge in relation to each contribution of the

thesis. We begin by discussing the different approaches for IDS usage in IoT, discussing

current research in knowledge based detection and justifying the need for further extensions

in this area. Sec. 2.2 follows on describing current pitfalls in IoT security and explain the

motivations of using an IDS as a defence mechanism for such systems in Sec. 2.3, I then

introduce the notion of probabilistic modelling as a means to understand IoT systems and act

upon malicious behaviours in Sec. 2.4.

2.2 Intrusion Detection Systems for IoT

Implementing an IDS within an IoT network faces several challenges. In dynamic IoT sys-

tems, devices may constantly shift, new devices might join and behaviours might change [72].

Simultaneously, protocols can vary from one network to another, which may necessitate

data collection to be bespoke to an individual system [73]. Finally, some system changes

can require data (or part of the data) to be collected from scratch (e.g. interactive smart

homes where devices can change frequently). An in depth review of Intrusion Detection in

16 Background

the IoT and its limitation is presented in a Survey in Chapter 3. For brevity. here I focus the

discussion on behaviour based detection, to justify and contextualise our research aim.

2.2.1 Behaviour Based Detection

Behaviour based techniques seek to establish a baseline of good behaviour of the system,

or bad behaviour in case of signature. False positives are common with behaviour based

detection, and can often incur higher operational costs than false negatives [64], e.g. a

false positive may require a dedicated analysis of several hours of work to identify threats,

protect assets and perform incident response procedures, whilst a false negative may just be

a scanning software or non consequential access attempt. Often as an outcome of the latter,

actionability is a also a big topic of interest in IDS research. Spotting unusual behaviour

is one thing, however if there is no other information it becomes very difficult to plan a

response, making informative IDSs a requirement. The way we train these system takes two

general approaches, Black Box and White Box. The first assuming no domain knowledge

and the latter based on known details of the system to aid the behaviour analysis.

Black Box Detection

A black box approach assumes that a classifier trained on large datasets of network data

can then be deployed on a system and classify oncoming traffic as either good or malicious.

To an outsider to the field, one would assume that an IDS would be the perfect fit for a

machine learning approach [161]. However, with further insight into this we can see why

it so difficult to apply in practice. In the real world, classifying network data is not an easy

task. As networks vary vastly, the training data from even quite a similar system might be

of poor quality for another, and in reality this similarity is almost never the case. There

currently is not many available datasets, with several academic papers still choosing 20+ year

old datasets as the case studies for evaluation 1. Finally due to the critical nature of these

1KDD Cup 1999, was a dataset developed for IDS competitions and evaluation by DARPA, and
is still widely used for evaluation, usually to benchmark against previous approaches. Available:
http://kdd.ics.uci.edu/databases/kddcup99/

2.2 Intrusion Detection Systems for IoT 17

systems, there is a very high cost associated with errors, which is exacerbated by the fact the

using this approach it is difficult to understand the cause of the error.

White Box Detection

As the consequence of the limitations identified in previous discussion, research has shifted

towards the enhancement of these same techniques with domain knowledge [161]. This

approach, defined as White Box detection requires careful analysis and understanding of

the system. This may take several different approaches, and there is no unique way to do

so [63]. In practice a scope of the system needs to be designed, as different systems will

have different types of requirements. A threat analysis might be conducted, this need not

encompass clear attack rules such as misuse approaches, but rather an understanding of

what threats one wishes to defend against e.g. DoS. It is also suggested to perform risk

assessments, to reduce false positives will significantly improve performance [161]. Given

a white box approach, and a well thought out system assessment, it becomes much more

feasible to act upon a threat, and whilst no detection system is perfect, it is preferable to have

one where in anomaly can be acted upon, even if it were to reduce accuracy slightly.

Whilst this approach has many benefits, it is still not simple to achieve. There currently

is no one methodology to gain this white box knowledge of a system, and even less guidance

on how to apply it to an IDS in practice [64]. Sommer and Paxson [161], provide some

recommendations and discuss ways to achieve this, however very little work has implemented

it or extended upon their guidelines. The problem consequently shifts from the study of

attack detection to the successful description of a system (which may also be shifting). This

area is an open research problem and we attempt to propose new methodologies to specify

the way systems behave so that we can improve on the current way white box detection is

done - through formal modelling and verification.

18 Background

2.3 IoT System Security

Literature classify these kinds of systems differently, whilst some work focuses on the

deployment structures and communication characteristics [71], other works focuses on the

characteristics of the devices themselves [182]. An IoT device might spend long periods of

time offline and not connected to the internet, is often powered by battery, and its computing

power is greatly restricted [72]. These new challenges are something current technologies

and various protocols have not been built to to deal with [182], which may cause for there to

be security flaws in the current implementations.

As discussed in the survey by Sicari et al. [71], traditional security countermeasures often

cannot be directly applied to IoT technologies due to the different standards and communi-

cation stacks involved. Consequently, researchers need to develop new security solutions

bespoke to these systems. This issue spans across almost all areas of security, not just com-

munications, as the problem is deeply rooted into how these systems are designed [182, 71].

In our work we show that a solution which might be perfectly functional for a traditional

infrastructure, may actually cause harm in certain IoT deployments [16]. This establishes

that ways to evaluate these systems as a useful tool to have.

As infrastructures shift towards more distributed systems, the requirements change, whilst

initial computing design was constrained by costs of transistors [33, 57], constrains have

now shifted towards, power and computing speed [182, 33]. The scope and purpose of these

systems likewise has evolved, in the IoT there no longer needs to be a single multi purpose

workstation performing complex analysis, instead several basic devices are meant to work in

unison towards a common objective. By design, and to reduce complexity, these devices are

often very simple, performing basic sensing operations and communicating them onward.

Whilst this design allows them to perform their purpose, it often comes at the cost of being

unable to do other desirable key tasks, most importantly security [145]. Often built for large

systems and relying on hard to compute operations, such as cryptographic functions, many

current security techniques are not well suited for these new systems.

2.4 Probabilistic System Modelling 19

2.3.1 Evaluatable IoT Systems for Intrusion Detection

Understanding the impact of attacks is core to answering our research question. Through

system understanding we can better understand why attacks are raised. As we cannot expect

solutions and attacks to apply in the same way to these kinds of systems [16], we need to

find new ways to observe this. Whilst non comprehensive, we focus our research on the

security implications of the following characteristics: 1) Devices have limited battery life,

and need to limit actions to conserve energy; 2) IoT systems often span across large areas,

both geographically and across scopes, extenuating the difficulty to monitor traffic and deploy

defence mechanisms; 3) Computational restrains limiting the ability to perform security

tasks; and 4) Usage of short range communication technologies making routing of messages

and deployment of nodes a complex problem; In order to effectively evaluate the impact of

these properties we make use of formal models.

2.4 Probabilistic System Modelling

Formal modelling can be used to abstract a system or subsystem to test its integrity or to

evaluate disruptive behaviours. When looking at the IoT due to the sheer number of devices

modelling a system with any degree of accuracy is difficult [48], we consequently investigate

different and new approaches to make informed security decisions balancing the right level of

abstraction. Our goal was to design an approach that was flexible enough to capture various

different scenarios, but also non restrictive so that it allowed the specification of evaluation

properties of interest.

Several modelling techniques exist including: Queueing Networks (QN) [164], Stochas-

tic Petri Nets (SPN) [126], Performance Evaluation Process Algebra (PEPA) [81], Super-

posed Generalized Stochastic Petri Nets (SGSPN) [59], Stochastic Automata Networks

(SAN) [143], and Markov Chains [133], to name a few. We finally converged to the usage of

Markov chains for the following reasons:

20 Background

1. Markov chains are usually considered due to simplicity in terms of modelling primitives

- only states and transitions decorated with rates (CTMC) or probabilities (DTMC),

fitting our desired properties fully.

2. This decisions was partially supported by the existence of mature and well researched

tooling, namely the PRISM Model Checker [101]. PRISM allows to models a wide

range of situations allowing for formalisations using probabilistic automata, MDP, on

top of CTMC and DTMC.

3. PRISM provides a modular approach and modellers may scale modules as needed

using a technique known as reactive modules [7]. This allows the designer to take the

necessary precautions to tackle state space explosion problems common in Markovian

approaches.

4. In addition the tool allows for a rich property specification language able to capture a

wide variety of scenarios [100].

A discussion of the used formalism as well as PRISM is continued on the next section,

more detailed explanations of these models can be found in Baier et al. [26].

2.4.1 Markov Chains

A markov chain in its core is a state transition system, augmented with probabilities, possess-

ing the so called Markov property. This property defines that: if the current state is known,

then the future states of the systems are independent of its past states. i.e. the current state of

the models contains all the necessary information required to influence the future state of the

system. When referring to Markov chains, with discrete time and countable states we refer

to Discrete Times Markov Chains (DTMC). In this context, discrete time views values of

variables as occurring at distinct and separate points in time.

Formally a DTMC D is a tuple (S,sinit ,P,L):

- S is the set of states

2.4 Probabilistic System Modelling 21

- sinit ∈ S is the initial state of the system

- P : S×S→ [0,1] is the transition probability matrix

where ∑s′∈S P(s,s′) = 1 for all s ∈ S

- L : S→ 2α is a function labelling states with atomic propositions taken from a

predefined alphabet α

A state in the system represents the combination of variable values, often delimited

figuratively by a circle with a label. Consequently, S delimits every possible combination of

possible values the variables in the system may take, with Sinit denoting their initial values.

The transition probability matrix denotes the probability for any given state to transition

to another available state, where for each state, the sum of probabilities for each possible

transition will sum to one, delimited graphically as arrows between states. And finally the

labelling function L, is used to observe specific scenarios within the model, it assigns a label

to a set of states which fit a specific boolean condition. This may be very useful to e.g. find

failure states in the system.

Running Example (DTMC) - Knuth and Yao Six Sided Dice with Coin

Knuth & Yao [94] propose the mathematical problem of modelling the probability distribution

of repeatedly flipping a fair (six-sided) die using a fair coin. To solve this problem, we can

make use of a concept called rejection sampling, and basic binary mathematics. The coin

is flipped three times, each time resulting in either heads (0) or tails (1), concatenating

the three bits you get a range of numbers from 0 to 7. Eliminating state 0 (000) and 7

(111) by re-rolling leads to the required options for our playing dice. For the remaining six

combinations, we assign 1-6 individually and terminate. Following the notation presented

previously our DTMC is formalised in Fig. 2.1 and visualised in Fig. 2.2.

Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC), extends the DTMC over the state space S with a

function r : S→ R>0, assigning to each state s the rate of a negative exponential distribution,

22 Background

initial state︷ ︸︸ ︷(
0,0,0 0

)

states︷ ︸︸ ︷

s0 : (0,0,0) 0
s1 : (0,0,1) 0
s2 : (0,1,0) 0
s3 : (0,1,1) 0
s4 : (1,0,0) 0
s5 : (1,0,1) 0
s6 : (1,1,0) 0
s7 : (1,1,1) 1
s8 : (1,1,1) 2
s9 : (1,1,1) 3
s10 : (1,1,1) 4
s11 : (1,1,1) 5
s12 : (1,1,1) 6



transition matrix︷ ︸︸ ︷

s s′ P(s,s′)
s0 s1 0.5
s0 s2 0.5
s1 s3 0.5
s1 s4 0.5
s2 s5 0.5
s2 s6 0.5
s3 s1 0.5
s3 s7 0.5
s4 s8 0.5
s4 s9 0.5
s5 s10 0.5
s5 s11 0.5
s6 s2 0.5
s6 s12 0.5
s7 s7 1
...

...
...

s12 s12 1



Labelling︷ ︸︸ ︷
L(s7) =
L(s8) =
L(s9) =

L(s10) =
L(s11) =
L(s12) =

Fig. 2.1 Example DTMC - Computed with Values. State includes the dice state (if 0 not
arrived yet).

0.5

0.5 0.5

0.5 0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

s0

s1

s3

s4

s2

s5

s6

Fig. 2.2 Example DTMC - Graphical Representation

2.4 Probabilistic System Modelling 23

governing the residence time spent in s. So, the likelihood to reside within s for a maximum

time unit d is 1− e−r(s)·d , so the average stay within any state s is 1/r(s). To link the current

definitions with the previous notation, we no longer have P, which instead becomes R by

doing R(s,s′) = P(s,s′) · r(s), to dictate the transition rate from s to s′. To interpret how this

works in practice, upon entering the state s, the time of stay is dictated by the exponential

distribution over the rate r(s), and upon exiting s, the probability to transition to state s′ is

dictated by P(s,s′). The main difference between these two formalisms, is that within a

CTMC, time stayed at a state needs to be factored in. This leads to situations in which there

exist multiple s′ with R(S,s′)> 0. This is called a race condition, at which whichever action

is triggered first dictates the next state. Given a time interval [0, t], the probability to move

onto state s′ and determine which is the likely winner of the race is:

R(s,s′)
r(s)

·
(

1− e−r(s)·t
)

This particular paradigm becomes particularly powerful in situations when timings are

critical to the operations of the system.

Markov Decision Process

The final extension to a MC which we will discuss is a Markov Decision Process (MDP),

which extends the MC with non-determinism. The main difference is that whilst a DTMC

will transition to a new state s′ according to a probability distribution Ds = P(s,s′), a state

in an MDP may have several different distributions. Upon reaching a state s in an MDP, a

distribution ω ∈ D(s) is selected and the next state is selected with probability ω(s′). One

limitation however is that it is not possible to have an unknown distribution, the system must

be defined for all of the actions, with a random choice of distributions.

In this formalism paths can be chosen independent of probabilities to select the most

optimum scenario. Based on these strategies, we can resolve the non-determinism in a MDP

in various different ways resulting in several different DTMCs. A strategy takes multiple

finite paths starting from the initial states, and assigns rewards to actions, based on a property

24 Background

you are trying to optimize for, e.g. time. After computing every possible path it will choose

the one with the highest reward and compute the probability distribution for the path, to form

the DTMC. This is achieved using the Bellman equation [29].

V (x) = max
a∈Γ(x)

{F(x,a)+V (T (a,x)) ·β}

As can be seen this a recursive function acting on state x until the final state is reached.

It aims to find the optimal value V , which is the best possible value of the objective as a

function of the state x. We denote the available actions a in the current state x by a ∈ Γ(x).

To denote the current reward associated to an action we use notation F(x,a). And finally we

recursively call the equation on the next transition state denoted by T (a,x), to which discount

factor β is applied in the case of diminishing reward. This will recursively progress through

the transitions to compute the values of the paths in the system.

2.4.2 PRISM Model Checker

PRISM is a probabilistic model checker [101], a tool for formal modelling and analysis

of systems that exhibit random or probabilistic behaviour. It has been used to analyse

systems from many different application domains, including communication and multimedia

protocols, randomised distributed algorithms, security protocols, biological systems and

many others, available at 2. It is also an open source, multi platform tool which has been

in active development for over 20 years, making it well tested and proven as a solid option.

PRISM models are written using a simple state based highlevel language, from which the

tool automatically constructs either a DTMC, CTMC or MDP. The prism language makes use

of a concept of reactive modules, this techniques devises small MCs for each modules and

links them together by formulas and compositions. The basic components of the language

are, 1) Modules, which are the modular components, composed in parallel, which capture

the logic of the model; 2) Variables, composed of finite integer ranges either local or global;

2http://www.prismmodelchecker.org/

2.4 Probabilistic System Modelling 25

and 3) Guarded Commands, which dictate the behaviour of each module i.e. the changes in

state which can occur, labelled by probabilities. These take the form of:

action︷ ︸︸ ︷
[update]

guard︷ ︸︸ ︷
x = 0→

probability︷︸︸︷
Px :

update︷ ︸︸ ︷
(x′ = 1) & (s′ = s+1)

and︷︸︸︷
+

probability︷︸︸︷
Py :

update︷ ︸︸ ︷
(y′ = 0)

Synchronisation is achieved across modules by interlinking specific actions triggering

the updates in both conditions and double guarding the transition.

Running Example (PRISM Language) - Knuth and Yao Six Sided Dice with Coin

In the PRISM language the described DTMC is specified as shown in Fig. 2.3. As can be

observed the prism language matches closely with the described formalisation. A variable s

represents the possible values of the states (binary 000 to 111) with a terminating state when

s = 7, and the variable d represents the state of the die. If one wishes they can easily follow

the guarded equations to construct the full state space in Fig. 2.1.

dtmc
module die

// local state
s : [0..7] init 0;
// value of the die
d : [0..6] init 0;

[] s=0 -> 0.5 : (s’=1) + 0.5 : (s’=2);
[] s=1 -> 0.5 : (s’=3) + 0.5 : (s’=4);
[] s=2 -> 0.5 : (s’=5) + 0.5 : (s’=6);
[] s=3 -> 0.5 : (s’=1) + 0.5 : (s’=7) & (d’=1);
[] s=4 -> 0.5 : (s’=7) & (d’=2) + 0.5 : (s’=7) & (d’=3);
[] s=5 -> 0.5 : (s’=7) & (d’=4) + 0.5 : (s’=7) & (d’=5);
[] s=6 -> 0.5 : (s’=2) + 0.5 : (s’=7) & (d’=6);
[] s=7 -> (s’=7);

endmodule

Fig. 2.3 PRISM Model for six sided dice with fair coin, single module with guarded state
transitions, labelled with probabilities.

26 Background

2.4.3 Advantages of Modelling Approaches

Probabilistic model checking has been successfully applied to a variety of security scenar-

ios [134, 22, 27]. It allows for the observation of attack impacts, worse case scenarios, as

well as performance analysis of several different mitigations. Complex scenarios can be

observed and used to make informed decisions about a system. Previous work has been able

to observe attack and defence scenarios to find optimal resolutions in stochastic systems [22].

This extends previous work on attack defence trees and formally verifies the trees using

game theory. This approach exemplifies the usefulness of such tools to reason about complex

scenarios. Our analyses to evaluate IoT systems security and impact of attacks follows a

quite different approach [16, 17], however we see that a similar methodology can scale to a

variety of different scenarios.

PRISM in particular has been shown to be effective for reasoning about network and

protocol attacks (which might be covered by a NIDS). Basagiannis et al. [27], work on a way

of modelling DoS attacks for the quantification of DoS security threats. Their approach looks

at protocol specific costs for participants associated to a DoS attack and potential mitigations.

Whilst not centred in the context of the IoT they show a very interesting evaluation. The

properties the authors observed varied from our approach of looking at distributed IoT

systems as they focused on the single protocol participants, they didn’t observe the snowball

effect across the system that we introduced in our work [16]. Another work uses PRISM

to model side channel attacks on protocols [134]. Side channels are attacks that convey

information about the behaviour of a hardware or software system implementation beyond

what was intended by its design - most commonly via their use of resources such as time

or power [134]. The work models battery power of systems showing potential worse case

behaviours and information leaks under these attacks. This approach allows to reason about

resource usage in protocol verification, something that we identified as a key feature of

importance in evaluating an IoT system.

Various papers have used probabilistic modelling and PRISM to observe scenarios

analogous to our own. The initial contribution of this thesis focuses on the modelling of

interactions of devices and the second on the modelling of attacks on these systems. These

2.4 Probabilistic System Modelling 27

techniques are the foundation for our attack detection technique. Based on the work done in

this area we gain confidence in the usage of these same techniques for fulfilling our aim.

Chapter 3

Intrusion Detection Systems in the IoT

3.1 Chapter Summary

The procedure of implementing an IDS for Internet of Things (IoT) networks is not without

challenges due to the variability of these systems and specifically the difficulty in accessing

data. The specifics of these very constrained devices render the design of an IDS capable of

dealing with the varied attacks a very challenging problem and a very active research subject.

In the current state of literature, a number of approaches have been proposed to improve

the efficiency of intrusion detection, catering to some of these limitations, such as resource

constraints and mobility. In this chapter, we review works on IDS specifically for these kinds

of devices from 2008 to 2018, collecting a total of 51 different IDS papers. We summarise the

current themes of the field, summarise the techniques employed to train and deploy the IDSs

and provide a qualitative evaluations of these approaches. We do not only present a review

of what the best practice currently is, we propose means to evaluate and test the different

IDSs in a unified methodology. While these works provide valuable insights for sub-parts of

these constraints, we discuss the limitations of these solutions as a whole, in particular what

kinds of attacks these approaches struggle to detect and the setup limitations that are unique

to this kind of system. We find that although several paper claim novelty of their approach

little inter paper comparisons have been made, there is a dire need for sharing of datasets and

almost no shared code repositories. Raising the need for a thorough comparative evaluation.

30 Intrusion Detection Systems in the IoT

3.2 Chapter Introduction

An IDS is in essence a monitor placed on a device and/or network that analyses incoming

messages, to detect attacks and/or unwanted traffic, and when paired with an intrusion

prevention system can be used to stop attacks before they affect the system. They are trained

using system behaviour data or from existing attack databases, and use these patterns to make

the detection. They are widely deployed in a variety of systems and can often be considered

as a first line of defence against intruders. Deployment strategies differ; however, they can

broadly be classified into Host Based (HIDS) and Network Based (NIDS). A HIDS monitors

activities on the device itself such as system calls or shell commands to discover unauthorised

behaviours or accesses. They are normally very fine grained traces of behaviour on a single

device. A NIDS on the other hand looks at the network data to determine the likelihood

of intrusion. This approach is more flexible when looking at large systems of devices and

will have a smaller overhead on the devices themselves; however, it has less granularity. To

optimise detection it is sometime desirable to mix the approaches and have both implemented

on a system. This technique is often referred to as collaborative intrusion detection (CID).

Whilst this approach theoretically provides a wider coverage it also needs a very structured

architecture [176].

Standard approaches used to train IDSs include using a database of known attacks (misuse

detection) and testing systems to create a “benchmark" behaviour and flag any anomaly

as a potential attack (behaviour based detection) [120]. However it has become more and

more common to mix up the approaches to make up for their respective detriments, namely

the inability for misuse detection to detect unknown attacks and the high false positive

rate of anomaly detection. This is generally referred to as an Hybrid IDS, which can be

either a combination of these two techniques or a combination of sub categories such as rule

based together with anomaly. In combination with the different kinds of deployment options

described it is possible to create various different IDS frameworks to suit different scenarios.

One such scenario that this paper focuses on is the Internet of Things (IoT). This might

describe anything from a smart television to a building or factory to potentially a whole city

of interconnected devices monitoring various aspects; traffic levels, temperature, number

3.2 Chapter Introduction 31

of people. These systems aim to improve various aspects of our lives [85]; however, with

these improvements, several issues arise in terms of security and privacy, as made evident by

various surveys [83, 89, 182].

A lot of challenges that are cited in the literature arise as an outcome of the restraints

of these devices. The devices themselves are often very simple and are built to perform a

specific task, with little room for variation Consequently, they are unable to be adapted to be

implemented with security solutions and rely externally for protection. In such scenarios it is

beneficial to implement an IDS as it can perform the much needed security without needing

to change the device setup. It is of particular concern to ensure that an IoT system is secure

as this emergent paradigm relies heavily on data collection and, as recent attacks show, this

may lead to serious privacy concerns [141]. Whilst data is a key attack objective, the devices

themselves make for desirable targets as their limited capabilities make it easy to take down

whole networks e.g. through battery drainage or through gain of illicit access to the devices

themselves, in turn allowing to employ them as a botnets. In these very heterogeneous

and dynamic systems it becomes very difficult to find a single IDS solution and several

approaches will be discussed.

There are various different approaches proposed to secure IoT systems by means of

IDSs, and several other surveys have discussed them extensively [39, 188, 61]; however,

whilst a summation of work is done, no work has been done towards evaluating the different

approaches. We conducted a systematic review selecting papers from the year of 2008 to

2018. The papers were selected if they fit the criteria we identified in Sec. 3.4. The criteria

was selected as the core metrics that made designing an IDS for the IoT different than that for

a more traditional system. Our results have found that although several papers are proposing

new approaches to deal with the new attacks pertinent to the IoT, very few cross evaluate

with previously proposed approaches. This lack of cross evaluation is quite worrying as there

are several approaches all solving the same problem, without clear guidance on why one

cannot use the existing techniques. In this survey we attempt to understand why this is the

case an systematically evaluate the pros and cons of the different approaches.

32 Intrusion Detection Systems in the IoT

A unified evaluation criteria allows for informed decision making, and gives users a

clearer sense of what the abilities of an IDS are. IDS Solutions for the IoT take many forms

and are often bespoke to a specific scenario, so it is very difficult for a potential implementer

to make a decision of whether it would be suitable for their needs. Furthermore, due to

the highly dynamic nature of IoT environments the adaptability of these systems becomes

an important effectiveness metric and the results need to fit their scenario. To compare

the effectiveness of an IDS several metrics can be used e.g. F Score, false positive rate,

mean error etc; however, results can be scenario dependent or be reliant on setup specifics.

It is desirable, on the other hand, to evaluate each IDS under the same circumstances of

deployment and against the same attack range to get an accurate comparison.

Whilst the current evaluations might be effective for some scenarios no single paper in

the literature produces an extensive comparison or is evaluated in different IoT scenarios. In

this chapter we propose a flexible assessment testbed that can mimic the characteristics of an

IoT deployment under a range of attacks and with different system setups. This effort will

aim to produce transparent reproducible results that can compare the different ways to deploy

intrusion detection systems in IoT scenarios. Out of the fifty one surveyed works only three

provided source code artefacts in their papers. Although we attempted to contact all authors

of the works to compare the various approaches, we were only able to obtain one further

artefact. This discovery is a very worrying trend, as new techniques keep getting proposed it

becomes unclear as to the strengths and weaknesses of each approach. Without open access

to previous work it becomes impossible to build on top of previous efforts making it harder

to innovate the field and leading to repetition of efforts and lack of advancement.

The contributions of this chapter are the following; The contributions of this chapter are

the following;

1. A comprehensive survey of the current state of the art in IoT intrusion detection

consisting of 51 papers;

2. A break down of different approaches and designs currently proposed;

3. A summary of the current literature assessing pros and cons of the different approaches.

3.3 Related Work 33

4. Proposal of a testing environment for deployment of security solutions on virtualised

IoT systems.

The remainder of the paper is broken down as follows::

• Section 3.3 provides a list of related works surveying IDSs in the IoT;

• Section 3.4 provides a discussion on adjustments and specific requirements to deploy

and IDS in the context of IoT;

• Section 3.5 provides a breakdown of deployment architectures for IoT systems;

• Section 3.6 provides a breakdown of techniques and algorithms used to train and

deploy IDSs as well as their limitations and advantages;

• Section 3.7 discusses current evaluation criteria and methods, the way IDS are currently

evaluated and a discussion on their effectiveness.

• Section 3.8 summarises our literature review of 51 proposed IDS tools for IoT, cate-

gorises them and breaks down each approach;

• Section 3.10 describes our design methodology for the IoT Testbed proposed for

evaluation;

• Section 3.9 concludes and discusses current trends, challenges and the current gaps in

the literature;

3.3 Related Work

Despite the maturity of the field of IDS research, the current IDS solutions are inadequate for

wide usage in IoT deployments. To address this difficulty researchers have proposed new

means to do intrusion detection that can adapt to the IoT constraints and circumvent them.

In this survey we investigate the current state of intrusion detection, present the difficulties

in adapting different IDS training/detection techniques to the IoT and comprehensively

summarise what the state of the art in IDS in the IoT is.

34 Intrusion Detection Systems in the IoT

The discussion of how to protect IoT systems by means of IDSs is a very hot topic

for research and several other works have reviewed the literature of IDSs in IoT or similar

paradigms [39, 188, 61]. Whilst a summation of the work in the area exists, little to no work

has attempted to answer the questions of how to quantify an IDSs effectiveness in the scope

of an IoT System.

Prior to the IoT, another form of constrained network environment was wireless sensor

networks (WSN). A WSN would be considered as a sub category of a IoT system, with very

specific configurations and several of the same key security concepts and limitations. Butun et

al. [39], provide one of the early works in surveying IDSs for Wireless Sensor Networks. The

authors also progress to discuss MANETS or Mobile Ad hoc networks, another constrained

network configuration that is more dynamic than WSNs. The survey talks about some of

the most common approaches used in the detection of attacks on these systems. Unlike a

lot of IoT configurations, WSNs are often homogeneous, this allows for a lot of statistical

approaches to be used which are often not able to capture attacks in the IoT. The authors

provide an example of this using forwarding percentage of packets by a node, and discuss the

effectiveness of these approaches. The authors discuss a lot of the techniques used to detect

attacks in WSNs putting specific focus on the advantages of using each of the approaches.

Unlike the IoT these systems don’t have downsides of multi protocols, and interconnect multi

network systems and therefore there is much less focus on how the IDS is deployed and how

the different detection agents may interact. The evaluation of the approaches revolves around

their applicability to scenarios and no formal comparison of the approaches is provided. This

nonetheless is an extensive and very good analysis around the techniques that can be used in

MANETS and WSN and how they work.

Departing from WSNs, Zarpelão et al. [188], propose one of the first efforts classifying

IDS research for the IoT. Their aim is to identify leading trends, open issues, and future

research possibilities. Their proposed classification is structured around the: detection

method, IDS placement strategy and security threat. The authors discuss the IDS from

the point of view of how the IDS is deployed, how the detection is done and also what

attacks are detected. The survey takes a form of a literature summary where for each paper a

3.4 An overview of Intrusion Detection for the IoT 35

summary of these three concepts is provided. The authors also discuss the issue of how these

approaches are validated. The authors find that many different approaches are used, and no

single strategy is used. This is mentioned as a core issues as it makes the comparison of the

different approaches difficult, not to mention some approaches didn’t provide any validation

at all.

The most recent survey for IDSs in the IoT, to the best of our knowledge, is the work of

Elrawy et al. [61]. In their work the authors extensively discuss the structure and architecture

of the IoT, potential threats, and different applications. A summary is provided of techniques

used in different papers, with a summary of their advantages and disadvantages. The structure

provided is informative and does a good job of introducing the different concepts prior to

discussing the IDSs. The authors then provide a short summary of each paper and summarise

the techniques they use and deployment strategy in a table. the survey also discusses the

authors evaluation results, the intuition of this is very good however, as mentioned by the

authors, due to the different ways of evaluation is is impossible to draw comparisons from

these results.

Across these surveys there are many shared themes. As different advances are done

in network architectures several new approaches are developed to defend them showing

the need for new analysis and surveys. They recurring trend is also that there is a lack of

evaluation of these approaches, so none of the surveys are able to compare the effectiveness

of the different IDS. Each of these reviews have chosen around 20 different IDS papers, and

our more extensive review has collected over 50, and yet we have no easy way to compare

the different approaches. This makes it difficult to establish open problems, choose the best

approach for a scenario and to assess the validity of the proposed literature. This raises the

need for ways to compare different IDSs something which we address in Section 3.4.

3.4 An overview of Intrusion Detection for the IoT

As the IoT takes over several key aspects of our lives, including homes, factories and even

healthcare, so it becomes very important to keep them secure. However, these systems vary

36 Intrusion Detection Systems in the IoT

greatly and function differently from traditional internet systems, so new solutions need to

be devised to ensure their safety. From a security perspective it is important to understand

the implications of the IoT on how solutions are designed. We know for certain that some

specifics of IoT make it impossible to implement certain solutions, e.g. resource constrains

such as limited battery life, low bandwidth, small processing capabilities, and memory

constraints make computationally intensive security protocols impossible to implement.

However it is less certain how these impact the ability for an IDS to be implemented

successfully. We identify four main concerns to consider:

1. New kinds of attacks which are often not pertinent to standard systems. Consequently

arising the need for the IDS detection to be expanded. Taking these observations in

mind current solutions need to be adjusted to be able to detect these new avenues of

intrusion. In traditional networks, the system administrator deploys IDS agents in

nodes with higher computing capacity. Whilst in the context of IoT networks which

are usually composed of nodes with resource constraints, this may not be an option.

We summarise a list of new vulnerability vectors in the IoT that would impact the

ability for an IDS to detect intrusions as:

i. Node compromise attacks, devices in IoT systems are often vulnerable to physical

takeover, allowing for malicious behaviour from previously benign members of

the network;

ii. Communication errors, due to deployment in disadvantaged environments, IoT is

very prone to network errors which can be a source of irregular traffic;

iii. Battery drainage attacks, the constrained resources may lead to selfish device

behaviours, due to device self preservation constant polling may lead to battery

drainage so devices will stay offline for large periods of time, leading to difficulty

in behavioural patterning and harder network diagnostics;

iv. Routing attacks, the IoT is often deployed as an open network through WiFi or

similar technologies, this opens up the network to external connections as well as

new attacks to do with routing, such as sinkhole attacks;

3.5 Types of Intrusion Detection Systems in IoT Context 37

v. Compromised communication, as a consequence of low bandwidth it is difficult

for devices to reach far away destinations,so the network configuration becomes

very important, therefore, if a node is identified as a key connector between two

of the devices and is consequently compromised, communication in the network

is broken;

2. Placement of the IDS itself represents a unique challenge. In traditional networks end

systems are directly connected to specific nodes (e.g., wireless access points, switches,

and routers) that are responsible for forwarding the packets to the destination [188]. In

the IoT on the other hand the network may have

3. Multi hop routing and even be partially or fully disconnected, so the ability to survey

the full traffic may be infeasible.

4. New communication protocols, most modern IDSs are built to work with traditional web

protocols (HTTP, TCP, REST architecture etc.), due to the constraints of these devices

the IoT often operates on completely new protocols (6LowPAN, CoAP, ZigBee etc.),

making traditional IDSs simple unable to comprehend the protocols. To compound

this even further there is an issue of multi protocol systems that are very common and

require even more adaptation.

These core issues, are the main principles in consideration when creating an IDS for IoT

systems.

3.5 Types of Intrusion Detection Systems in IoT Context

The IoT does not reside in a bubble, it is very much integrated with the various internet

infrastructures such as cloud, fog and edge computing; therefore, these need to be considered

as key components of an IDS design strategy. When talking about IoT it becomes difficult

to generalise in the same way traditional IDS classifications have done; one cannot, for

example, easily say that the IDS is placed centrally or distributed, as where it’s placed as

38 Intrusion Detection Systems in the IoT

well as how it is placed, is a core factor of importance. All these options have different

security and performance implications. If a solution claims to cover the whole of the IoT

such as the solution proposed by Raza et al. [148] then the solutions needs to have a strategy

for working in each of these scenarios, it is not simply enough to show how it solves just

one of the restrictions (e.g. new protocols). The location of an IDS also largely depends on

what type of IDS it is. IDS types are commonly split into Host based (HIDS) and Network

Based (NIDS); however, a further categorisations can be made when applied to the context

of IoT Systems namely, Collaborative IDSs (CIDS) which involve the collaborations both

a Network based and Host Based IDS; each of which could potentially be deployed across

various networks/sub-networks. Each of these approaches have different uses and scenarios.

3.5.1 Network Intrusion Detection for IoT

A NIDS is an IDS that monitors network traffic to detect remote attacks i.e. attacks carried

out over a network connection. These kinds of attacks work at the higher level of the stack

often targeting vulnerabilities in protocols; however, their effect can have high impact on the

device themselves. One of the most common network attack is a DoS attack, a DoS attack

aims to target the availability of a device or network and due to the constraints of IoT devices

they can be particularly effective. Traditional safety measures that can be deployed to protect

against these kinds of attacks i.e. security protocols, often cannot be ran on these devices due

to their constraints [186].

One of the core differences between most IoT systems and standard infrastructure is the

protocols at play. In the IoT there has been a shift from more traditional protocol to new

technologies to cater to the constraints of devices. Examples of this is the movement from IP

to UDP, IPv4 to IPv6 and even more specialised protocols such as RPL which is specific for

constrained networks. With the complete change in the underlying infrastructure the current

NIDS techniques may simply just not function on these kinds of systems. To tackle these

challenges various new techniques are developed specific to these new protocols.

Within the IoT we also have a raise in popularity of what are often referred to as

unsupervised systems, these systems are deployed using the concept of machine to machine

3.5 Types of Intrusion Detection Systems in IoT Context 39

(M2M) interactions only, and therefore will operate largely unsupervised by humans. As

an outcome of these scenarios a compromised node will often go unnoticed, allowing for

an attacker to lunch attacks from within the network. These kinds of attacks cannot be

blocked by an external facing firewall and therefore the deployment of an internal IDS is

essential [186, 112, 92]. Not only is the issue with internal attacks and lack of authentication

of devices, there are also new attacks raising in popularity due to the infrastructure of these

systems. One of the components of unsupervised systems is dynamic routing, this means

that routes are constructed based on shifts in the system, signal strengths and resource

optimisations. As an outcome of this it becomes beneficial for an attacker to disrupt this

process and route packets in either a less than optimal way or a way that benefits his interests

e.g. through a compromised node. These routing attacks have raised hugely in popularity

in WSN and IoT systems some of the most famous being, Wormhole attacks 1 and Sybil

attacks 2, both of which rely heavily on the system being unsupervised and self adaptive.

These kinds of attacks have spawned various research papers specifically catered to detecting

them, as we discuss in Sec. 3.6.

Changes to the infrastructure do not only have negative effects on intrusion detection.

The restrictive nature of these systems may come as an advantage from an attack detection

perspective. Due to the limited behaviours of the components of these systems new techniques

that would not be suitable in standard networks are being developed and explored. Work has

developed using automatons [68, 125] for behaviour modelling as the limited behaviours

allows to pospone the state explosion issue that traditionally prevented it. Automata based

approaches allow for system analysis as well as behaviour modelling making for more

actionable IDSs. The set of simple behaviours has also allowed for game theory based

approaches [155], to find the optimal behaviour of a simple system. And the raise of

popularity of clustering approaches [56, 86, 112], which rely on grouping similar behaving

devices in a cluster to improve detection of misbehaving nodes.

Deployment strategies also play a big role in how intrusion detection is done, this does not

only have to consider maximum coverage but resource constraints as well. The vast majority

1https://www.sciencedirect.com/topics/computer-science/wormhole-attack
2https://www.sciencedirect.com/topics/computer-science/sybil-attack

40 Intrusion Detection Systems in the IoT

of IDS systems for the IoT implement distributed IDSs. This involves sharing of information

between sub-networks, which adds complexity if there are contrasting information and around

trust in reporting. This also is reflected in the amount of data that needs to be processed by

an IDS, in some cases with large systems it simple becomes infeasible. A relatively new

area of research has been focusing on reducing this overhead using dimensionality reduction

techniques and smart data processing [112], to more effectively deal with alerts. As each

component in the system needs to report data in a distributed manner, authors have considered

trust based scheme to ensure the quality of reported data is maintained [186, 43, 92]. All

these changes in infrastructure, protocols and the types of system at play are key factors that

need to be considered when designing a NIDS for IoT systems.

3.5.2 Host Intrusion Detection for IoT

A host based IDS refers to an IDS that monitors the activities on the device (i.e., the host)

where it is deployed, to detect local attacks i.e. attacks executed by users of the targeted

system or attacks directly impacting the device operations. These types of IDS may monitor

operations at a lower level than the network based IDS and they have access to much more

details of the impact on the system itself. Whilst a network based IDS might only see packets

travelling through the system, the HIDS also have access to system logs and can monitor

metrics of the device behaviour. One of the recurring difficulties around converting IDS

to work on IoT systems is around the low computational power of the devices. This is

particularly relevant in the scope of HIDS, as these limitations greatly restrict how many

operations can be done on the device itself, and the data overhead it can handle.

Devices in IoT systems often dedicate what little computing power they have to provid-

ing features or services. Design constraints, such as the need to increase performance or

battery life, may restrict the ability of system designers to implement security effectively.

Furthermore traditional approaches such as rule-based based schemes are unsuitable for

these kinds of systems due to the large data overhead. Therefore, anomaly based detection

methods, which attempt to identify deviations in measured statistics against a normal model

of operation of a system, can be beneficial to use in resource constrained systems.

3.5 Types of Intrusion Detection Systems in IoT Context 41

One of the most common advances in the field of HIDs is the way data is handled

at the device level. Most approaches optimise data handling to reduce state space and

cleverly optimise data processing. Data processing optimisation, can be achieved by feature

engineering, this process is achieved by carefully selecting relevant features of data and

reducing its dimensionality to decrease the number of operations needed to be conducted

by the device. If done carefully, this approach is still able to preserve the patterns of

behaviour within the dataset making it still useful for anomaly detection, whilst greatly

reducing overhead. One way feature engineering is applied in the IoT is through bit pattern

matching [165], this allows to store a small chunk of the dataset in a lookup table, greatly

reducing the number of comparison operations.

Further work takes advantage of the devices limited behaviour for effective anomaly

detection. Small resource constrained devices execute fewer and potentially less complex

operations than general purpose computing platforms. This results in less complex patterns of

communication and behaviours, making it easier to detect when such patterns have changed.

A raise in popularity in these cases is the use of immunity based techniques. The immune

system has been successfully applied to the information processing domain. In particular,

it performs complex computations in parallel and decentralised patterns. Furthermore, an

immune system can learn new information and recall learned information. Due to the de-

crease in complexity authors have been able to train these systems a lot more efficiently [111].

Another further development has been the increase in use of pseudo or full modelling tech-

niques. Using Hidden Markov Models, IDSs are capable of learning the system behaviour an

find anomalies. To render this technique less resource intensive weak-HMMs are developed.

Using domain knowledge of system behaviour the formation of the HMM can be guided to

make less memory intensive effective anomaly detection schemes [162].

Host based systems in the IoT have some further challenges that need to be addressed.

A DoS attack against an IoT network has the potential to be significantly more detrimental

than one against a standard network. This increased vulnerability is due in part to the low

computational power and battery power characteristic of IoT devices. This has lead to a

raise in popularity of battery drain denial of service attacks [16, 17], these attacks target a

42 Intrusion Detection Systems in the IoT

device to perform power drain intensive operation to drain the battery. If they are successful

it requires human intervention to change the battery something that is to be avoided in large

unsupervised systems. Authors ave proposed battery monitoring techniques at the host level

to detect these kinds of attacks [107]. This is an additional feature of interest that traditional

IDS techniques do not consider. However, as devices often do not have the ability to self

monitor their battery drain [17], it becomes critical for an IDS to monitor these behaviours.

3.5.3 Collaborative Intrusion Detection for IoT

A collaborative IDS makes use of different IDSs together in a single system. It may include

both a network intrusion detection system as well as Host based ones. Or as is often the case

in IoT systems, the system spans across various subsystems composed of various devices

and using different technologies, to safeguard these systems different kinds of IDSs need to

be in place and they need to cooperate to prevent multi-protocol attacks and cross system

intrusions. A collaborative IDS may span various different sub-networks, communication

protocols and even geo-locations, it may be all network based or contain several different

types all linked together. This distributed nature makes the design of an IDS particularly

complex.

One of the main drivers behind the need of collaborative IDSs is the multi-protocol nature

of these systems. This scenario may render several current techniques less effective and

be unsuitable to a single IDS scenario. This is especially pertinent in the case of pattern

matching IDSs as the same attack across different protocols may take a different form, and

therefore bypass these techniques. To cater to these difficulties literature has proposed data

aggregation methods that allow for, non protocol restricted pattern matching and behaviour

analysis [187, 49]. These types of approaches make use of local aggregator nodes collecting

specific data to a sub-cluster or sub-component of a system, which then communicates to a

central component (in a specific format) and centrally does the pattern matching [49].

A defining feature of IoT that is being considered across all configurations of IDS is

their constrained nature. Their restricted capabilities lead to the development of simpler

detection engines. This is often fine as their behaviour is also restricted, however, a simpler

3.6 Techniques for use in Intrusion Detection Systems 43

engine is not capable of detecting attacks across multi protocols and multi systems, which

in cooperation may exhibit vastly different behaviours. These raises the need for several

different systems to be deployed. In these circumstances, the core difficulties are around

how the data is communicated across the network. If an anomaly detection finds an anomaly

in a sub-part of the system it is difficult to understand how it will spread across the other

components or if it would spread [191]. To do so authors propose specific risk assessments

across the different layers, with efficient head nodes able to assess the impact of attacks at

the different levels [191].

One of the biggest issues around collaborative IDSs is around the authenticity of commu-

nication. When you have several different monitors and reporting mechanisms spread across

a large network it is essential that the data is authentic. Wrongful reporting, or illegitimate

information may raise false alarms and cause meaningful damages to the system. This is

exacerbated in the IoT as these devices may struggle to implemt full cryptographic solutions

that resolve these problems in standard systems. To mitigate these circumstances authors

have proposed ways to new ways to define behaviour of devices to validate if they are indeed

communicating in a benign way [34, 157]. These approaches are particularly effective in the

context of insider attacks. As these are recognised components within the network they may

cause a lot of damage. Authors therefore propose metrics based on expected behaviours [157],

this creates a level of trust between the devices that may be altered as to replace traditional

means of authentication.

3.6 Techniques for use in Intrusion Detection Systems

Within the various different approaches to construct the IDSs, there are techniques and

algorithms used for training the IDS and constructing rules. These techniques vary from

carefully curated databases to complex machine learning algorithms and may be used to

construct any of the different types of IDS.

44 Intrusion Detection Systems in the IoT

3.6.1 Rule Based/Misuse Detection/Policy Based

Misuse detection also referred to as Rule based and Policy based approaches generally rely

on rules of the known intrusions taken from known attack databases. They are considered

efficient and are used in most real time systems as they need less processing power than

behaviour based detectors, and thus can handle large volumes of traffic without slowing down

the normal activities. Their major criticism is the deficiency in detecting zero-day attacks i.e.

the attacks which are previously unknown.

In the context of IoT, these approaches become particularly pertinent to very simple

systems where known issues arise. Particularly in the case of WSNs, there are several

known attacks, specifically routing attacks, that may not be stopped by careful programming,

as these kind of systems are vulnerable to these attacks by their very construction. It is

therefore desirable to deploy an IDS with preset rules for such attacks. The downside of

these approaches is that patterns may be easily bypassed by careful packet obfuscation or

slight changes to known behaviour. One approach that has been popularised to counter this is

the usage of automated rule learning techniques [187]. The automated learning of rule has

the advantage that it is more adaptable and thus better able to deal with new attacks. However

this is a backward facing approach as the rules are based on the current behaviour and only

after the attack having taken place can a rule be automatically generated.

Advantages: Accurate in finding known attacks, easy to deploy, widely used. [58, 181]

Disadvantages: Cannot yet find unknown attacks, tends to be protocol specific, isn’t

customisable to your setup, may have high memory overload [24].

3.6.2 Signature Based

An often stronger type of detection, although still pattern based, is signature-based IDS.

Signature based detection refers to the detection of attacks by looking for specific patterns,

such as byte sequences in network traffic, or known malicious instruction sequences used

by malware. Although signature-based IDS can easily detect known attacks, it is difficult to

detect new attacks, for which no pattern is available. An area that has shown a lot of promise

3.6 Techniques for use in Intrusion Detection Systems 45

in the context of signature generation is through automatons and model based signatures. The

restricted behaviours of these devices allow the creation of modelling techniques to formalise

the attack signatures [125, 68]. These approaches make use of the automata to specifically

model the communication of a protocol or behaviour of a device, with each transition being

a message exchange/action performed. The incoming data or behaviour of the device is then

encoded and compared to the modelled approach and if deviating marked as anomalous. This

approach is not only a new way to describe behaviours, modelling has several key advantages,

being able to reason, and calculate system wide properties could give security professionals

key insights about their system that would not be possible with traditional approaches. This

approach is relatively new, but could be extended to not only manually create signatures, but

our previous work has proposed modelling based techniques for the automated generation of

stochastic attackers [17, 18]. Although in early stages, this approach may be able to bypass a

lot of the current downsides of signature based approaches to encompass unknown attacker

behaviours.

Advantages: Accurate in finding known attacks, bespoke to the system unlike specifica-

tion based. [58, 181]

Disadvantages: Hard to train attacker behaviour, may have high memory overload [24].

3.6.3 Anomaly/Statistical

Anomaly/statistical-based intrusion detection systems were primarily introduced to detect

unknown attacks, in part due to the rapid development of malware. The basic approach

is to create a model of trustworthy activity, and then compare new behaviour against this

model. Although this approach enables the detection of previously unknown attacks, it may

suffer from false positives, which are previously unknown legitimate activity is classified as

malicious.

There are two strategies to anomaly based detection 1) Black Box, referring to training

without domain knowledge of the system, often done using neural networks; and 2) White

Box, in this case the semantics used by the detection system are an abstraction of the

underlying system. In the contexts of a lot of modern machine learning problems, black box

46 Intrusion Detection Systems in the IoT

approaches are very popular. They allow a relatively simple push to go approach, that might

find patterns in data or be quite accurate at classifying data, however they provide very little

insight into why they make decisions. The problem is that black box detection system face the

challenge of transferring their results into actionable reports [161]. Actionability however is

a very difficult metric to measure and is not often considered in academic approaches [64]. In

our review only a single paper considered actionability as a metric, Buennemeyer et al. [38],

in which the authors evaluated their IDS using a user study. The second approach is white box

detection, this approach requires much more curating than the black box system. It requires

the building of behaviour profiles either automatically or manually so that a malicious attack

may be linked to the constructed profiles. Whilst this is often impractical in highly complex

systems, the IoT allows for some easier behaviour modelling, greatly facilitating the usage of

these methods.

Building system behaviour is an essential part of any effective anomaly detection tech-

nique. Statistical approaches, which are a subcategory of anomaly detection, are particularly

effective in homogeneous systems such as WSN. A statistical anomaly approach, is a white

box approach that relies on knowledge of the devices behaviours. Parameters are selected

and specified for each device [107], or averaged across the network behaviour [45]. However,

approaches using these techniques are prone to large amounts of false positives, in the work

of Cho et al. [45] the authors propose that an anomaly occurs when the packet size is above

average, this kind of anomaly detection will obviously lead to issues, if for example the

sensing environment changes. To mitigate the lack of adaptability authors propose dynamic

anomaly detection techniques which can dynamically change the expected normal behaviour.

Authors using this approach [30, 116], use a central gateway to monitor system operation and

update the expected behaviours of the various IDS components. Specifically, Luo and Nagara-

jan [116], make use of autoencoders as their primary detection mechanism, the output of the

detection is then sent to a central node, which, given the results recomputes the autoencoder

and sends the new version to the local detectors. Whilst this approach tackled the downside

of adaptability it is unable to provide insights like a white box detection would. These

3.6 Techniques for use in Intrusion Detection Systems 47

difficulties are further complicated in heterogeneous systems, where white box behaviour is

much harder to map.

Not only is it very difficult to have an anomaly detection approach that is both adaptable

but also actionable. Further difficulties arise when trying to actually collect the behaviour.

Two main behaviours need to be considered, one is at the device level, and one at the system

level. At the device level (often done by HIDS), anomalies are categorised by changes in

expected behaviour, which may be classified as insider attacks, device take over, or the device

being targeted by an attack. At the network level the general behaviour is evaluated against

the expected operation of the system. However, some of the characteristics of IoT systems

are that, behaviours might change, devices may go offline, and devices might wake up after

long periods of time, therefore, getting a baseline behaviour is difficult. To construct baseline

behaviours large amounts of data is needed and due to the lack of public data, researchers

are forced to assemble their own datasets. However, in general this is not an easy task, as

most lack access to appropriately sized networks or if done in production environment it may

only collect a window of behaviour; as extensive testing is time consuming and disruptive

to normal operations. In the context of the IoT data collection also needs to be aggregated.

If working across networks and systems, results of analysis need to be transferred across

components.

Advantage: can detect unknown attacks, dynamic (if new data is collected) [140, 97]

Disadvantage: suffers from false positives, lack of datasets or realistic testing environ-

ments, hard to adapt, hard to act upon alerts [170, 115, 64].

3.6.4 Stateful

Stateful protocol analysis is the process of comparing predetermined profiles of generally

accepted definitions of benign protocol activity for each protocol state against observed

events to identify deviations. Unlike anomaly based detection, which uses host or network

specific profiles, stateful protocol analysis relies on specifications of universal profiles that

dictate how particular protocols should and should not be used. The “stateful” in stateful

protocol analysis means that the IDS is capable of understanding and tracking the state of

48 Intrusion Detection Systems in the IoT

network, transport, and application protocols that have a notion of state. A stateful detection

methodology is very similar to signature based approaches, it differs in term of what is being

detected. Signature based approaches are looking for signature of attacks, conversely stateful

detection is using the protocol exchange signature as the means of detecting good behaviour.

As most common stateful detection approaches are based on traditional protocols, bespoke

stateful approaches are developed for IoT systems. Further issues however arise in the context

of constrained IoT networks as the unreliability of the communication and usage of UDP

rather than TCP, may lead to a lot of false positives. This approach suffers from a lot of the

downsides of rule based detection as it is highly non adaptable. It is likewise very actionable

as the relatively simple state based description of the system allows to easily see where the

pattern has deviated from expectation. However, in practice, working from a specification of

expected behaviour that doesn’t consider implementation specifics has some downsides. In

the field of protocol analysis we see that specs often do not cover implementation specific

behaviours or allow for multiple correct behaviours [19], further complicating the detection.

Furthermore, protocol specifications may be prone to attacks, and correct behaviour within

the protocol may lead to data leakages or attacks that would not be detected by this approach.

In large IoT multi-protocol IoT systems, protocol specific detection may be too restricted and

need for various different detection components, making a general behaviour based approach

much more effective.

Advantage: Identifies unexpected sequence of commands [153, 181]

Disadvantage: very memory intensive, cannot detect attacks if they are within protocol be-

haviour, if protocol implemented different to specification it may cause false positives [181].

3.6.5 Clustering

Cluster analysis is defined as the technique of grouping data objects based on the information

found in it that describes the objects and their relationships. The primary goal of clustering

is to separate objects such that there is higher similarity within objects of a group and higher

difference between the groups. By clustering a device within the systems together with other

devices you can make general assessments about it e.g. if the device is clustered with known

3.6 Techniques for use in Intrusion Detection Systems 49

malicious devices it can be assumed to be malicious. Clustering is a highly popular technique

in constrained systems as their restrictive behaviours makes the cluster creation much easier,

as there are few multi purpose devices fitting to multiple clusters. This technique however is

mostly used in WSNs and homogeneous systems [56], as clustering heterogeneous systems

may be much more complex.

Clustering techniques may extend beyond the clustering of devices. Clustering techniques

are used for message classification and also for efficient data processing. As there is a huge

amount of data collected in IoT systems, and the devices are less able to handle it, cluster-

ing techniques have been proposed to more efficiently process it [112]. These clustering

approaches are used to categorise data into normal behaviours and at risk behaviours as well

as to perform dimensionality reduction. This allows to greatly reduce overhead of the IDSs

and allow for faster computation. This approach is emerging to deal with the issue of big

data, and their approaches make it so that relatively low information loss is achieved whilst

greatly reducing the dimensionality. These techniques re very helpful hand in hand with other

anomaly detection techniques as they help improve their efficiency significantly [112, 74, 43].

Advantages: Works well on static data, can find some very specific attacks [180, 110]

Disadvantages: Not efficient on dynamic systems, works if data with strong correlations

hence struggles with heterogeneous systems [178, 46]

3.6.6 Computational Intelligence

A system is computationally intelligent when it: deals with only numerical (low-level) data,

has pattern recognition components, does not use knowledge in the artificial intelligence

sense; and additionally when it (begins to) exhibit (i) computational adaptivity, (ii) computa-

tional fault tolerance, (iii) speed approaching human-like turnaround, and (iv) error rates that

approximate human performance [193, 50]. Although there is not yet full agreement on what

computational intelligence exactly is [50], there is a widely accepted view on which areas

belong to CI: artificial neural networks, evolutionary computation, artificial immune systems,

swarm intelligence, and soft computing. These approaches are capable of autonomously

acquiring and integrating knowledge, and can be used in either supervised or unsupervised

50 Intrusion Detection Systems in the IoT

learning mode. Computational intelligence differs from Artificial intelligence a field widely

used in multiple other techniques listed above.

Artificial immune systems are a relatively recent advance in computational intelligence,

their self adaptation and robustness makes them a very interesting approach for intrusion

detection in the IoT. Artificial Immune Systems are adaptive systems proposed by Leandro

Nunes et al. [42]. They are inspired by theoretical immunology and observed immune

functions, principles and models, which are applied to problem solving, as such they take

specific components of the immune systems as inputs. The main difficulty in the usage of this

approach is the matching from network data to the input of the immunity algorithms. Their

ability to self adapt makes them particularly pertinent to systems where configurations might

change and attack circumstances might be persistent, however will not be immediately useful

for detection. This approach may be particularly useful in the detection of physical intruders

or changes of behaviours from a device. Arrington et al. [21], make use of these techniques

to detect human intruders within a smart home, based on sensor data from the room. The

rise of popularity of this technique is in part due to the easier mapping of behaviours to the

behaviours of a cell in constrained systems, as Liu et al. [111], propose attack signature

matching to “antigents” and normal behaviours to “self elements” which is in part possible

due to restricted nature of IoT.

Another popular form of computational intelligence is, swarm intelligence. Swarm

intelligence is defined as a collective system capable of accomplishing difficult tasks in

dynamic and varied environments, without any external guidance or control, and with no

central coordination. The definition is self explanatory as to why it would be beneficial,

however very few approaches have explored its used in the context of intrusion detection.

The specific application of these techniques comes in the form of behaviour discovery. As

these systems are often unsupervised, routing patters are often pre-fixed, or dynamically

discovered. One technique that can be used to find optimum routing paths is Ant Colony

Based Optimization (ACO). ACO uses the concept of Stigmergy, which is the indirect

communication via interaction with the environment. Each packet (or ant) leaves a pheromone

trail along the path if a successful result is reached. Paths with the most pheromone are

3.7 Evaluation of Intrusion Detection Systems for IoT 51

considered the optimal paths. This is of course adaptive as if paths are reconfigured new

trails will be discovered as the new optimal. This technique is used to find routing attacks

by Arolkar et al. [20]. Routing attacks are characterised by malicious routing of packets to

either drop them or decrease throughput, so if a large number of packets is being routed on

unoptimal paths these attacks are easily detected.

Advantages: Good for known attacks, can identify wide range of attacks given enough

data, protocol agnostic (given enough data) [184].

Disadvantages: This approach relies heavily on pattern matches, whilst attack behaviour

often only takes place once and varies significantly in between attacks [151] due to numeric

analysis requires lot’s of data pre-processing and therefore needs human supervision or

doesn’t scale well to different datasets.

3.7 Evaluation of Intrusion Detection Systems for IoT

The review we have conducted has found that almost all work in the area of intrusion detection

focuses strongly on accuracy as means of evaluation. What we also found is that, despite

almost all papers claiming there is a need for new techniques and new approaches, they all

present results with very high accuracy of prediction. These two statements are contradictory,

if the only metric of evaluation is that the IDSs are great at detecting attacks, then there would

be no need for further IDS being developed. We acknowledge that some of the proposed

solutions aim to tackle very specific areas for which there were no previous existing IDS,

however for the majority of the works this is not the case. The real issue we have found is

that to be a successful and more importantly a useful IDS, further characteristics are required

than prediction accuracy.

In the remainder of this section we will present the current ways IDS are evaluated,

we will discuss why we believe accuracy is not the sole metric of value and propose new

evaluation criteria supported by literature and our own investigation. We then propose a

technique to evaluate IDSs for the IoT by these criteria and our case study evaluating the

surveyed approaches following this methodology.

52 Intrusion Detection Systems in the IoT

3.7.1 Methods to Evaluate Intrusion Detection Systems for IoT

With the increasing variety and complexity of IDSs, the ability to evaluate them becomes

a key concern. In order to ascertain which IDS is most suitable for a specific task a clear

evaluation needs to take place, for instance one might wish to see which IDS is most suitable

to detect attacks on their system, they might wish to test different configurations of an IDS to

inspect performance. Whatever the need may be it is key that means are in place to evaluate

multiple IDSs, as to allow for informed decisions. There has been a lot of work in this area as

discussed in the survey by Milenkoski et al. [122], the main differentiating factors in testing

an IDS is whether one were to use a benign workflow, a malicious workflow, or a hybrid

workflow and any of these can either be live tested or tested using trace based approaches.

A benign workflow, is a purely normal system behaviour, these may involve CPU intensive

workloads, I/O focused workloads, network intensive workloads and system wide workloads

to test the hardware as well as the operating systems. Several tools are available for the

testing of traditional IDS each with focus on different aspects of workload (e.g. httpbench 3

for network testing using HTTP). However these tools may not be suitable for IoT systems as

they are either using the wrong network protocols, be operating system dependant or simply

not relevant since for example sensors might not do any I/O operations.

A malicious workflow, is used to test the attack detection accuracy of IDSs. These

workflows take the forms of attack scripts targeting the system, they may be manually

constructed or already existing tools may be used. The manual process is very time consuming

as it needs to collect various different attack scripts from many different available databases.

Once the attack scripts are found, they may need to be adapted to fit the scenario, this may

require expert code analysis and security knowledge, this is particularly compounded for

scripts aimed at systems to test host based IDSs as tricky configurations may be needed1 [120].

The process of manual collection is also limited, not all attack scripts are available online

and even though there are some excellent resources (e.g. expoitDB 4 and mitre 5), manually

curating a list of of scripts is time consuming, complex and often bespoke to only one scenario.

3http://freecode.com/projects/httpbench
4https://www.exploit-db.com/
5http://cve.mitre.org/

3.7 Evaluation of Intrusion Detection Systems for IoT 53

To alleviate this issue ready made tools are available, these tools, referred to as penetration

testing tools, are able to scan for vulnerabilities and launch various pre-set attacks on systems

with much less need for expert configuration. Popular pre-prepared attack environments such

as Kali Linux OS 6 and metasploit pen-testing tool 7 (available on Kali Linux) are able to

act as jack of all trades, able to target a variety of system but not specialising in any specific

type or vulnerability. Whilst this second approach is much less time intensive it is also less

specialised. Both these approaches suffer from the downside that an attacker may use multi

step approaches and scout the system prior to attack, this complex behaviour as well as

unknown attackers could not be covered by these techniques. Finally, a hybrid workflow,

combines these two techniques to test both the system under benign and malicious behaviour.

There are two ways to examine the different kinds of workflow, the first way, trace

based, will use existing datasets or synthetically generated data to test the IDS in a non

live environment; the second approach, execution based, will test the IDS in a system

using live attackers and/or data. The generation of traces may take the form of an existing

dataset, several standard datasets exist from a variety of sources, the most famous being the

KDD datasets from DARPA 8. Despite these datasets being around since 1990/2000/2001

respectively, they are still widely used, they allow to test network based and host based IDSs

making them attractive for a variety of research. Perhaps the most desirable aspect is that one

can easily compare their results to those of other authors. The downside is that they are quite

outdated and would not truly be representative of modern systems [161]. Alternatively one

may wish to generate bespoke traces. One common approach is to use a testbed. A testbed

has many advantages to get more pertinent traces, however construction of a realistic testbed

may be expensive and challenging. If a testbed is too simplistic it may not capture activities

of a real-life environment [161]. Finally, one may use a real world production environments

to generate traces. This is by far the most attractive option, however, it is often unfeasible.

This approach may also only capture snapshots of system behaviour, as it does not have the

full flexibility to run different scenarios like a testbed could.

6https://kali.org
7https://metasploit.com
8http://kdd.ics.uci.edu/databases/

54 Intrusion Detection Systems in the IoT

The second way is execution based evaluation which can be run in a testbed or production

environment. Its main attractiveness over a trace approach is that it is able to capture several

more metrics than a trace evaluation. Metrics can be run for performance, overhead, ability

to scale to different devices and many more, making it the more complex but more precise

option. After a workload is determined evaluation should be performed based on metrics.

Metrics are widely characterised as security metrics and performance metrics. Perfor-

mance metrics refer to how the IDS is able to cope with the inflow of messages and how

the IDS impacts the ability for the system to operate effectively. These may be evaluated

on the basis of throughput, delays, computational cost etc. However, these are difficult to

benchmark and may be implementation and system dependent [122]. In our review of 50+

IDSs for the IoT, none ran performance based evaluation on execution based environments

(although some did so using simulations).

The second and much more common evaluation metric is security, these metrics are

all about evaluating the IDS attack detection capabilities. The core evaluations that can

be performed are 1) False-negative rate, the percentage of attacks that are missed; 2) True

positive, the percentage of correctly labelled attacks; 3) False positive, the percentage of non

attacks which are labelled as attacks; To get a complete evaluation of accuracy these are all

combined. Some more complex analysis may attempt to calculate costs of mislabelling (i.e.

false negative/positive), based on the impact of the attacks. As the reader may note, these

metrics are exclusively evaluation of attack detection and do not consider several other more

human aspects of security that should be considered just as valuable [63].

Suggested Comprehensive Evaluation

An IDS is a complex system whose intent is to provide information to the security professional

about potential intrusions to their system. Naturally it is essential for this system to be

accurate, however, several things are also needed to make the IDS useful. Papers usually

indicate a detection rate of 90% and above, using various evaluation methods, what would be

more realistic in practice is if these same IDS could get a fraction of those results in realistic

environments. For usability purposed False Positives are possibly the most disrupting factor

3.8 Tools for Intrusion Detection in IoT Systems 55

as they may cause the security professional to break legitimate workflows, lose time and

money chasing non existing attacks and cause more disruption than a false negative could.

In their talk at ESORICS2017, Etalle et al. [63], propose three further metrics specific to

the evaluation of IoT IDS: 1) Actionability, not unique to IoT, actionability refers to how

descriptive the alert is, this metric takes one step forward in attack detection as, whilst

it is useful to detect an attack, if the alert is without context it is impossible to fix it; 2)

Adaptability, very specific to IoT systems, devices change continuously and for certain types

of IDS the cost of adapting (such as anomaly based detection) may be very high; and 3)

Scalability, a lot of traditional IDS are designed for single servers or small networks, however

IoT systems could include thousands of devices and this needs to be a key consideration.

A combination of these metrics together with the evaluation of accuracy would make for a

much stronger analysis and lead to better IDS solutions.

3.8 Tools for Intrusion Detection in IoT Systems

As an outcome of the differences and challenges inherent with designing IDSs for the IoT,

several authors have proposed new tools and mechanisms to defend it. In the following section

we produce an executive review of all new works tackling attack detection in constrained IoT

environments since 2008. We break down the work into network based tools, host based tools

and collaborative tools in the following section. An initial analysis and review is presented

in Sec. 3.8.1, further categorisation is available in Appendix. A, a further summary of each

paper is omitted for brevity but is in the works. A full representation of each paper and their

techniques is presented in Fig. 3.1.

3.8.1 Analysis and Summary of Proposed Tools

So far this article has: 1) presented an overview of deployment strategies for IDSs in the IoT,

2) discussed that a constrained network may take many forms and locations of deployment,

3) presented techniques for the training of an IDS and detection of attacks, and 4) presented

an overview attacks that are specifically pertinent to these scenarios. We use these four

56 Intrusion Detection Systems in the IoT

ID
S

D

etection
for IoT

M
isuse

B
ehaviour

R
uleB

ased

S
pecification

A
nom

aly

S
ignature

Im
m

unity

A
nt C

olony

G
enetic A

lgo

D
anda and H

ota (2016)

I
D

eng et al.(2018)

Finite S
tate M

achine
Le et al. (2011)

Liu et al.(2018)

S
telte and R

odosek (2013)

S
edjelm

aci and S
enouci (2013)

S
edjelm

aci and S
enouci (2013)

H
aataja. (2008)

Yadav and S
rinivasan. (2010)

O
connor and R

eeves (2008)

Thanigaivelan et al. (2016)
Luo and N

agarajan (2018)

W
allgren et al.(2013)

C
ervantes et al. (2015)

G
arcia-Font et al. (2017)

G
arcia-Font et al. (2017)

K
han and H

errm
ann (2017)

I
Jiang et al. (2012)

{
A

utom
ata

K
now

n B
ehaviours

U
nknow

n B
ehaviours

{{ {
A

m
aral et al. (2014)

K
asinathan et al. (2013-A

)
K

asinathan et al. (2013-B
)

A
m

ouri et al. (2018)

Le et al. (2016)

B
ostani and S

heikhan (2017)

C
oppolino et al. (2017)

I
A

bishek et al. (2018)
Pongle and C

havan (2015)

Esquivel-Vargas et al.(2017)

B
ostani and S

heikhan (2017)
Yu and Tsai (2008)

B
uennem

eyer et al. (2008)
M

oyers
etal.(2010)

I

{{
C

om
putational Intelligence

C
lustering

Trust B
ased

M
L

M
isra et al. (2011)

Fu et al. (2017)

{I

{
I

S
edjelm

aci et al. (2016)

I
S

ong et al. (2010)

S
tatistical

H
M

M

G
am

e Theory

{
I

B
it W

ise

Pattern M
atching

Packet Features
C

ho et al. (2009)

H
adziosm

anovic et al. (2014)

S
ystem

 know
ledge

R
aza et al.(2013)

M
atsanaga et al. (2014)

H
an et al. (2013)

O
h et al. (2014)

S
um

m
erville et al. (2015)

K
im

 (2015)

Lee et al. (2014)

I
{

M
idi et al. (2017)

S
hreenivas (2017)

Yu and Tsai (2008)

B
uennem

eyer et al. (2008)
M

oyers et al. (2010)

III

A
rringtion et al. (2016)

Liu et al. (2011)

H
assanzadeh and S

toleru (2011)

A
rolkar et al. (2011)

Zhang et ak. (2011)

G
upta et al. (2013)
I III

B
R

O
 ID

S

M
ultiple A

pproaches

Expected B
ehaviour

II

Fig.3.1
Fullrepresentation

ofthe
techniques

used
by

differentarticles.G
rey

references
denote

hybrid
approaches

and
the

article
is

presentin
each

ofthe
hybrid

techniques.

3.8 Tools for Intrusion Detection in IoT Systems 57

core points of interest as the basis of our summary of the literature. For our review we

have surveyed 51 articles from the year 2008 to 2018, specifically looking for articles that

propose intrusion detection mechanisms for IoT deployments. Each collected article is

broken down into how the IDS being presented achieved these four core aspects and the

results are presented by means of heatmaps in Tables 3.1- 3.4. Heatmaps can be interpreted

as follows: the tables are split into four columns, the first columns contains list of criteria

evaluated, the subsequent three columns contain all the papers using that criteria divided by

Network IDSs (col 2) Host IDSs (col 3) and Collaborative IDSs (col 4).

Breakdown of Techniques used

The surveyed papers used twelve unique detection techniques, across the different deployment

types as show in in Table 3.1.

NIDS HIDS CIDS

Rule based 3[55, 75, 70] 0 2[91, 90]
Signature 1[154] 0 1 [8]
Anomaly 7A 2 [165, 107] 5B
Statistical 3 [45, 148, 117] 3 [93, 162, 136] 2 [38, 128]
Stateful 1 [68] 0 0

Clustering 3 [56, 112, 86] 0 0
CI 1 [21] 1 [111] 4C

Specification 2 [105, 62] 0 2 [187, 104]
Trust 3 [43, 92, 186] 0 0

Automata 2 [125, 68] 0 0
Game theory 1 [155] 0 0

Misuse 1 [135] 0 1 [49]

Citations
A - [163, 76, 171, 116, 179, 70, 77]
B - [157, 144, 5, 9, 187]
C - [74, 79, 20, 191]

key 1 2 3 4 5 6 7
Table 3.1 Techniques Used to construct Intrusion Detection Systems in IoT

The technique employed the most was by far anomaly based detection. This is aligned

with our presented hypothesis regarding it being difficult to determine rules or other strict

specifications for IoT deployments. This statistic is slightly skewed by the fact that unlike

some other techniques, anomaly based detection might encompass a wide variety of ap-

58 Intrusion Detection Systems in the IoT

proaches. Another interesting thing to note, is that whilst anomaly is by far the most popular

technique no work using this technique has been implemented on live environments, results

mostly focusing on simulations and detection accuracy as the core metric. We hypothesise

that this might be an outcome of the machine learning community being the main driving

factor behind these IDSs, a field in which accuracy is often used as the main metric of interest.

Similarly to anomaly detection statistical techniques have also shown to be quite popular.

These technique whilst similar to anomaly detection, relies more domain specific knowledge

and is therefore more suited to simpler systems, it is widely used in WSN systems. Perhaps

unexpectedly, Computational Intelligence (CI), a relatively new, and non traditional method

has come in close third. We note that this result is biased by our review being focused on

somewhat recent literature with the earliest work from 2008, which unintentionally coincides

with the first use of Immunity Based techniques (a CI technique) for intrusion detection [113].

This technique is highly adaptable a strength which favours IoT deployments. Its relative

novelty also incites investigation in its feasibility in this area leading to more works being

published. Since the technique has been used in many tools since, as recently as 2018, its safe

to say its been a good match. Specification, Rule Based and to a lesser extent signature based

techniques have come as clear favourites behind the discussed top three. This is aligned with

IDSs in more traditional systems and comes at no shock. They are however more popular in

simple IoT deployments, as they tend to perform poorly in dynamic environments. Making

them less suitable for general IoT usage. One further trend that is the lack of popularity of

misuse detection. Whilst misuse detection suffers from several downsides (see Sec. 3.6), it is

vastly popular in commercial IDSs for traditional systems (in part due to its actionability), so

it being the second least popular technique in academic literature is perhaps unexpected.

The very nature of how these systems are constructed, such as clustered networks, WSNs,

and massively distributed systems, leads to the development of more novel techniques.

Techniques such as clustering, automatons, trust based and to some extent game theory

are naturally more suited to these kinds of infrastructures and have consequently attracted

attention from literature. Due to the limited behaviours of IoT sensors clustering based

technique have become more prominent especially in network based systems, with three

3.8 Tools for Intrusion Detection in IoT Systems 59

papers. Another new technique that is made possible largely in part to the fact that these

systems operate unsupervised and interact machine to machine only is trust based detection.

Similarly taking advantage of these restricted behaviours two articles have proposed the use

of Automaton based techniques, drawing from the many advantages of modelling but greatly

reducing the complexity of the systems modelled (and therefore reducing state based issues).

Breakdown of Attacks Detected

In Table 3.2, we see that papers are catered to detect 14 unique attacks.

NIDS HIDS CIDS

Scanning 1 [135] 0 1 [79]
Web Exploits 0 0 1 [79]

Routing Attacks 11A 0 6B
Rank 0 0 0

Information Theft 1 [135] 0 3 [191, 20, 74]
MITM 3 [68, 62, 135] 1 [93] 3 [74, 191, 20]
Replay 2 [68, 62] 1 [93] 2 [191, 74]

Spoofing 3 [68, 62] 1 [93] 2 [191, 74]
Message Drop 2 [68, 62] 0 3 [191, 74, 5]

DoS (resources) 3 [155, 77, 75] 1 [107] 7C
DDoS 2 [125, 45] 1 [136] 0
Worm 0 1 [165] 0

Injection 0 1 [165] 0
Anomalous Behaviour 3 [171, 116, 21] 0 1 [157]
Cracking cred/passwd 1 [186] 0 0

KillerBee 1 [163] 0 0

Citations
A - [56, 154, 179, 187, 148, 117, 43, 70, 92, 86, 105]
B - [104, 34, 20, 49, 187, 144]
C - [91, 90, 121, 37, 128, 191, 74]

key 1 2 3 4 5 6 7 8 9 10 11
Table 3.2 Attacks Detected by IoT IDSs

We also observe that 20% of the literature focuses solely on the detection of routing

attacks. These attacks (including: blackhole, selective forwarding attacks, sinkhole attacks,

Sybil attacks, wormhole attacks etc.) have risen in popularity due to their effectiveness

against WSN networks and are a huge threat to the IoT. As interconnectedness becomes more

the norm, these attacks disrupt the ability for a system to achieve its goal greatly damaging

the ability for it to function. Another prominent threat across any internet infrastructure

60 Intrusion Detection Systems in the IoT

is DoS and DDoS attacks, this is even more so exacerbated as devices suffer from lack of

resources and security measures to mitigate them. Similarly, the combination of protocol

related attacks such as MITM, Replay, Spoofing, Message Drop and Information Theft

is a hot topic for many papers. This is in contrast with the techniques in use as there is

relatively little focus on techniques specific to these threats, such as stateful detection. The

general focus on research in the behaviour of these systems seems to instead have left secure

protocol techniques behind, making attacks on these a huge issue. Another rising trend is

the detection of attacks bespoke to the specific system, such as IDSs specific for KillerBee a

Zigbee vulnerability suite, and rank attacks which are specific to hierarchical RPL networks.

Breakdown of Deployment Scenarios Covered

In Table 3.3, we see IDSs are designed for 15 unique deployment scenarios. As the definition

NIDS HIDS CIDS

WSN 6A 1[162] 5B
IPv6 1[148] 0 1[8]

6LowPan 2[45, 43] 1[107] 2[91, 90]
IoT 5C 3[136, 165, 111] 6D
RPL 4E 0 3[104, 157, 144]

SmartGrid 0 0 1[191]
Relay Comm 0 1[93] 0
Smart Home 1[21] 0 0

ZigBee 1[163] 0 0
ICS 1[76] 0 0

Bluetooth 2[75, 135] 0 0
Smart City 1[70] 0 0
Clustered 1[86] 0 0
BACNet 1[62] 0 0

Healthcare 1[92] 0 0

Citations

A - [30, 56, 154, 186, 116, 77]
B - [34, 74, 20, 49, 187]
C - [111, 155, 125, 55, 68]
D - [9, 79, 121, 5, 38, 128]
E- [105, 171, 179, 117]

key 1 2 3 4 5 6
Table 3.3 Locations for Deployment of IDSs

of IoT is quite general it is very difficult to design an IDS solution that can bw suitable to its

3.8 Tools for Intrusion Detection in IoT Systems 61

full scope. However the majority of IDSs make this claim with 14 different papers designing

general IoT IDS solutions. Closely following these numbers are WSNs with 13 solutions,

WSNs are much less abstract than general IoT systems, however they share a lot of constrains

around computation power and connectivity. It is however much easier to reason about these

systems as they are homogeneous allowing for much easier behaviour analysis.

A raising area of focus is RPL, a protocol designed for constrained devices which has

risen in popularity. This raise in popularity is in part due to the large number of new attacks

on these systems, making IDS research for these very appealing and necessary. Similarly

relatively new technologies IPv6 and s6LowPan (a IPv6 subset for constrained devices) are

focused by 7 papers. What is exciting is the sheer range of different systems covered by these

tools. IDSs have been proposed for a variety of technologies including emerging paradigms

such as Smart Cities, Smart Grid and even Healthcare. This shows trends to design security

for systems that may not even be a reality yet, and most definitely are not mainstream. As

the IoT will move to encompass large swathes of our lives its positive to see some security

solutions are already being thought out for these specific circumstances.

Methods for Evaluation of IDS

In Table 3.4, we show the breakdown of evaluations used.

NIDS HIDS CIDS

None 8A 0[] 5B
Mathematical 3[113, 76, 77] 3[136, 113, 93] 0[]

Simulation 13C 2[107, 162] 7D
Trace 4[56, 76, 116, 62] 1[136] 2[49, 191]

Execution 3[135, 125, 62] 1[165] 6E
Usability 0 0 1[38]

Citations

A - [30, 55, 105, 75, 171, 179, 68, 86]
B - [74, 8, 20, 187, 128]
D - [9, 79, 104, 157, 34, 5, 144, 191]
C - [21, 45, 56, 163, 154, 155, 186, 148, 117, 43, 69]
[92, 77, 179]
E - [91, 90, 79, 34, 38, 121]

key 2 4 6 8 10 12 13
Table 3.4 Evaluation Performed on IoT IDSs

62 Intrusion Detection Systems in the IoT

Out of the 51 surveyed tools, 12 authors didn’t evaluate their IDS in any way. This was

perhaps unexpected as when a paper is presenting a novel approach to detect attacks a lack

of evaluation makes it hard to assess its effectiveness. Although several different deployment

areas are explored several authors made attempts to deploy live IDSs for evaluation, which

is particularly powerful. Whilst this technique can give the most insight in evaluation, it

makes it very difficult to compare as it is unlikely other researchers will have a access to the

same setup. A more reusable approach is the use of trace evaluation which relies on datasets

from real systems. A dataset can be shared and is therefore useful to compare different

IDSs performances. It is worth noting that the IDSs may not always be comparable as some

are very specific to some subsystems and protocols and therefore effective comparisons are

unlikely. The most common way by far to evaluate was the use of simulation tools, this comes

as no surprise as the maturity of these tools has significantly escalated with several options

available, either more general or system specific e.g. WSN [123]. Simulation tools have the

advantage of accessibility over real systems, and allow for comparative quick deployment.

A total of 24 tools were evaluated using simulators, a further breakdown of which tools

are used by the different papers in Table 3.5.

NIDS HIDS CIDS

Contiki/Cooja 4A 0[] 4B
Matlab 2[56, 92, 191] 1[162] 5C

R 1[69] 0[] 0[]
Avrora 1[163] 0[] 0[]
Tossim 2[154, 155] 0[] 0[]

OpenSim 1[21] 0[] 0[]
Omnet++ 1[186] 0[] 0[]

NS2 1[77] 0[] 0[]
Qualnet 0[] 1[107] 0[]

Not Specified 1[45] 0[] 0[]

Citations
A - [179, 148, 117, 43]
B -[9, 104, 157, 144]
C -[9, 79, 34, 5]

key 1 2 3 4 5
Table 3.5 Summary of simulators used to evaluate IDSs

3.8 Tools for Intrusion Detection in IoT Systems 63

The most common simulator used was Contiki/Cooja, a popular IoT simulation tool

that focuses on communication and allows for design of various different setups. Perhaps

unsurprisingly this is closely followed by Matlab, a general purpose programming language

very popular in various engineering fields for simulation. Various other tools are used, with

specific focus on Network Simulators, this is due to the IDSs being assessed being NIDS.

Interestingly it seems that other types of IDSs have many less tools available. Contiki is

used across the different approaches as it is a multi purpose simulator for IoT, more analysis

would have to be done to see if the same evaluation could be performed on other tools or

if Cooja is the only option. Likewise the fact most of these tools are network layer tools

(although not all), means that several characteristics of the devices and the impact of the IDS

and attacks cannot be evaluated.

3.8.2 Collecting Tools

To evaluate the efficacy of our testbed but more interestingly to gather a comprehensive

evaluation of the capabilities of IDSs for IoT we firstly needed to gather implementations for

the tools. To do so we firstly classified the tools into four categories, i) tools which had code

available online, ii) tools which didn’t have code online, however discussed implementations

and therefore should have code, iii) tools which had implemented in simulations or theoreti-

cally analysed, as perhaps they has since prepared an implementation, and, iv) tools which

had no evaluation nor discussed implementation details.

Secondly we needed to get a updated list of contact details for all the authors, as some of

the papers were quite old and due to the nature of academic positions moving around a lot,

many of the emails on the papers were outdated. To get up to date emails we first looked up

to see if the author had moved to a new institution and had new contact details, this allowed

us to find several new emails. In the case of the authors leaving academia as was often the

case for PhD and masters students, we looked for Linkedin profiles for emails, even though

this was not always possible. Whilst it was often the case for professors or senior members

of staff to have remained in the same place, our intuition was that it was worth contacting the

full author list as it is often the case that the implementation is performed by the less senior

64 Intrusion Detection Systems in the IoT

members of staff and therefore it is more likely to get access from them. For some authors

we were unable to identify their new email or whether the current email was still valid. In

total 136, email addressed were collected, to the best of our knowledge with the most up to

date details.

The third step was contacting the authors for their tools. We constructed an email

template, customisable for each tool paper, as can be seen in Appendix B and Appendix C.

The email has seven components, 1) a custom greeting to the specific authors addressing

them by their title, 2) a short introduction about who I am as well as all my contact details, 3)

an introduction to the work I am working on, 3) reasons for contacting them with specific

reference to their paper, 4) a personalised comment on their work, manually generated, 5)

request for the tool code, 6) a query asking how authors would like to be cited in case of

publications and if any licenses applied to their tools and 7) a closing statement thanking

them and letting them know that if they may have any question they may feel free to contact

me.

Emails were sent out, in two stages, the first stage was sent out to any author in category

ii of classification, except for tools that were not suitable to test in our testbed, an example of

this was tools that looked at physical intruders in a home. A second stage was sent out to

authors in category iii and iv of classification whose proposed solutions may reasonably be

implemented (and may have been since), this included approaches who implemented their

evaluation through a network simulator. A total of 84 authors were contacted via email in the

two stages.

The resulting collection totalled to, three tools in category iii, whose code was available

on GitHub, of which all three were based on CONTIKI simulator, and non suitable to our

testing environment. One tool pertaining to category ii, which responded to my emails

and provided a code implementation (not publicly available). A single tool in category i

whose implementation was available online. And no responses in other categories. The net

collection resulted in 4/51 papers with code shared publicly, 1/84 authors who responded to

a request for implementation, and 46/51 papers with no code accounted for. The net total

of tools runnable on our proposed execution environment would be 1/51, 3/51 could be run

3.9 Survey Thoughts and Discussion 65

in a network simulator and the single email response was of a simulation run in Java which

constituted a sub-part of their discussed evaluation. We do not claim that our inability to

find these tools means they were unavailable but merely that following our protocol, these

were the ones available to us. We therefore relegate the initial goal of evaluating the available

tools under the same environment to a future work.

3.9 Survey Thoughts and Discussion

In this work we have extensively analysed and summarised the current state of the art in

intrusion detection in the IoT. We have reviewed and summarised 51 proposed tools and

technologies and characterised them. Our analysis has shown several new insights into how

research in this field is developing, and potential gaps for future works. We have identified a

major gap for the reproducibility of the tools evaluation and also discussed shortcomings

in the current evaluation process, namely 1) single focus on detection accuracy; 2) lack of

unified evaluation methodology; and 3) disregard for evaluation regarding usability of these

tools. Our findings indicate that perhaps the very large numbers of papers in this area is in

part due to the inability to build upon the software and the lack of research into tools that can

be monitored and supervisable. We see a need for a shift to focus away from development of

new techniques to a focus on making these tools that could scale and be usable across IoT

deployments. The analysis shows that this is in part due to how the tools have been evaluated.

We see a thorough comparative evaluation by these tools through this evaluation a beneficial

and necessary task, we propose a methodology to do so in Sec. 3.10, although we reserve the

task of doing so for future work as there currently is not enough access to the proposed tools.

3.10 A Methodology for the Unified Evaluation of IoT IDSs

The review we have conducted has shown there is a dire need for better evaluation of these

systems. Whilst several of these approaches make use of simulation, which one would

presume provides more ease in comparing results, there is still a lack of disclosure of both

66 Intrusion Detection Systems in the IoT

datasets and the tools themselves. We observe that this issue is not unique to the area of IoT,

as even on traditional IDS papers, there is a lack of available datasets.

The metrics of evaluation are something that we choose as a core feature of our approach.

Whilst accuracy is very important for any prediction system, perhaps not as much as one

would think. The ability for an IDS to perform, run, and be analysed is just as if not more

important. Consequently, simulation might not be enough to realistically evaluate the system.

There are of course limitations in terms of constraints of access to realistic test beds for

implementation of the system. Our proposal therefore meets a middle ground able to evaluate

systems consistently, with relative ease of implementation and accessibility. However to fully

assess the IDS techniques as per the criteria highlighted in Etalle, 2019 [64] and discussed in

Sec. 3.7.1 we require means to assess the systems under the same environment. To do so we

propose the usage of a virtualised testbed, which we discuss in Sec 3.10.1.

In this section we investigate what core characteristics of IoT systems are essential to

the effective design of a security testbed and propose a solution to easily test the security of

various IoT paradigms. We present a design methodology for an IoT Security testbed and

present means to test different IDS setups under a unified environment.

3.10.1 Building a IoT Testbed

IoT systems often operate without supervision and are formed of various types of devices, so

it is particularly important to be able to test and evaluate the systems prior to deployment

to ensure smooth functioning. One of the challenges in ensuring the security of the IoT is

that we do not yet have a well-established means to test these systems. As they are often

heterogeneous and very specific, no single use case will be easily able to cover the full

spectrum of scenarios. The many options for different configurations and few means to

evaluate the best suiting solutions call for a need to easily test the available scenarios.

One of the core driving factors of the IoT, is the sheer number of computation devices.

Devices in IoT systems no longer take the form of multi computation workstations like

in traditional systems as these have been replaced by constrained functionality multiple

device systems that are interconnected and distributed. This has lead to a steep increase in

3.10 A Methodology for the Unified Evaluation of IoT IDSs 67

components of the system, but also to a wide variety of configuration options. Due to these

limitations it becomes much more difficult to setup a hardware based testbed and alternative

solutions should be investigated.

The IoT contains many complex architectural components, types of operating systems

or lack thereof, network protocols, integration to cloud providers, applications etc. Whilst

tools exist to test certain sub-components, the security of the subsystem or part of the

architecture does not imply the security of the IoT system as a whole. Existing techniques

for testing systems are able to capture certain complexities of these systems, for example

tools such at NETSIM [147] and more recently IoTSim [189], are excellent ways to see

how communication data passes through a system and in the case of IoTSim even look at

application layer interactions. These may be used to test different network configurations,

however, they do not capture how the device itself reacts to the communication, they do not

capture latency and computing power of the devices and more importantly they cannot be

used to test an implementation of a security solution. Another note is that most of these

evaluations are based on a trace evaluation [122], this means that the evaluation is non

live and done on datasets of existing traces or network data, thus making many forms of

evaluation (such as system overhead) infeasible, or purely an approximation.

Some of the reason that work in the area of IDS has mostly focused on proposing

algorithms to detect patterns in network simulators (discussed in Sec. 3.6), is that they

focused on accuracy as the metric of evaluation. However this single analysis is not able

to capture several key metrics of IDS performance (see Sec. 3.7). In our review we found

that in fact, accuracy is not the only useful metric to evaluate an IDS and that evaluations

done only on that basis are often biased to the underlying system [64], some other metrics,

such as actionability, on the other hand, are system independent and of much more use to a

real world application. Despite these excellent and mature simulation tools, we are still not

able to capture core characteristics that would help in truly assessing the effectiveness of the

security solutions.

What is desirable to successfully evaluate these systems is a testbed that is able to be

dynamic and adaptable and that can be quickly deployed, similarly to network simulators,

68 Intrusion Detection Systems in the IoT

but that is also able to capture unique device reactions like in a hardware implementations.

As a middle ground, we propose the solution of a virtualised software testbed of IoT devices.

Virtualisation has several key advantages: 1) It is quick to deploy; 2) highly flexible in terms

of: data collection, configurations (as they are fully customisable) and the types of sensors

(as clones of various devices can be quickly deployed) and 3) monitorability, using virtual

components we have easy access to several performance metrics and data about the devices

that would be much harder to collect in real world systems and provides huge benefits in

terms of IDS explainability and creating richer datasets.

3.10.2 Proposed Testbed Structure

The aim of our system is to quickly and systematically deploy custom made IoT device

images, in specified network configurations, in conjunction with attacker machines (with

attacks of choice), and to evaluate an IDS within this environment. To this end we propose

the use of a hypervisor. A hypervisor is a tool (running on bare metal or in software) that

creates and runs virtual machines. A hypervisor acts as the central deployment point from

which virtual machines can be created and configured. Through use of a hypervisor several

network configurations can be specified to mimic various deployment scenarios. For use in

security scenarios it also has the advantage that the sub-networks can be isolated and self

sufficient, to run experiments in a safe environment. Whilst some works have looked at the

use of virtual testbeds [156, 103], with some even looking into its uses for IoT [156], very

little work has been done in the context of virtual testbeds for IoT security experimentation,

especially for general purpose scenarios. A diagrammatic representation of the proposed

methodology is presented in Fig. 3.2. The testbed consists of three levels: 1) the hypervisor

that monitors and deploys the systems, 2) the virtual network where the devices are deployed,

and 3) the connectivity layer where we can manage routing and data handling for the systems.

3.10 A Methodology for the Unified Evaluation of IoT IDSs 69

Deployment
&

Monitoring

IoT Devices

Connectivity

ESXI 6.5 Hypervisor

Deploy Network Collect Data

CPU Traffic Performance
Level 1

Level 2

Level 3
Generated

Data
Routers

Iot Devices

Attacker Components

Attacks

Fig. 3.2 Diagram showcasing the testbed setup. Layer one comprises the hypervisor, network
structure and performance data. Layer two is comprised of the devices present in the network.
Finally Layer three manages connectivity, routing and data flow

Level 1 - Deployment and Monitoring

One of the many advantages of working in a virtualised setup is the granularity and ease with

which it is possible to collect data. Our specific setup runs on top of VMWare ESXI 6.0 9.

ESXI allows for 4 different layers of data collection for all devices in the network, the first two

layers are used for system information and are relevant to our analysis whilst layer 3 and 4 are

mainly used for debugging. The first two layers are for: long term usage (Level 1) and short

term usage (Level 2) they respectively cover: Layer 1 - performance evaluation including -

CPU usage (usage in mhz, cpu entitlement and total megahertz used), Disk (capacity, total

latency, provisioned, shared, usage on average and total used), Memory (consumed, overhead,

swap in rate, swap out rate, swap usage, total mb, average usage), Network Usage, System

heartbeat, Virtual Machine Operations; Layer 2 - all included in Level 1 and additionally

includes: CPU idle time and reserved capacity, Disk information about reading and writing,

all memory information excluding rollup values, and all information on virtual machine

9Available at: “ESXi: Bare Metal Hypervisor.” VMware, 12 Apr. 2020, www.vmware.com/uk/products/esxi-
and-esx.html.

70 Intrusion Detection Systems in the IoT

metrics within the network. For specific insight on device and network wide performance

impact of an IDS, Level 1 is often sufficient and can be run continuously in our setup.

Further metrics of accuracy are performed uniformly across different datasets and testbed

configurations to analyse consistency as well as prediction power. These extra information

not normally available in traditional network datasets allow for much more precise evaluation

of the system. We can assess decision making of IDS components to increase explain-ability

and provide a richer feature space for training.

Level 2 - IoT and Attacker Devices

To allow for quick and easy deployment we create a set number of device archetypes. The

archetypes represent several different IoT devices, running different functionalities. Each

of the archetypes has different unique characteristics, namely: computing power, protocols

for communication, and functionality. Likewise there are attacker archetypes to mimic

various intruders, these attackers are Kali Linux based machines running different exploits

pertinent to IoT systems, and/or DoS attacks (with the intent to overwhelm the benign

devices). We also construct IDS archetypes, this was a much more complex setup as the

different architectures of the IDSs required different setups and a single machine type was

not possible. Depending on the architecture of an IDS several different setup components

had to be initiated. The final component is the environment, this is used to mimic the varied

scenarios and environments of the IoT we create a software defined environment able to

capture specifics of IoT deployments. Through use of the environment we are also able to

test routing attacks.

For this purpose we provide a preset of “IoT” devices one can choose from. To create

these devices we make use of TinyCore, a bare-bones 8MB Linux distribution, many more

options are available this is just, in our opinion, the most lightweight and flexible option.

Our constructed machines are customised to have different applications and communication

stacks, and are built to mimic low computational power sensors. This has the advantage

that hundreds of machines can be hosted simultaneously, the machines can be quickly built

and deployed and they are not bloated by needless extra applications that may interfere with

3.10 A Methodology for the Unified Evaluation of IoT IDSs 71

the other functionalities. A limitation of this infrastructure is that we are not able to setup

firmware based devices which are common in the IoT. To deploy the IoT system, the selected

IoT archetypes are cloned automatically and put online, they each are assigned static IPs and

the routing paths are configured to mimic the chosen network configuration. The static IP

allows for allows for routing configuration, identification of the device, and less volatility.

This is all setup in a safe virtual network isolated through virtual switches to avoid security

threats.

Level 3 - Connectivity and Environment

The third components is the generation of the environment. Our testbed allows for flex-

ible configuration resembling the same characteristics we use in previous modelling ap-

proaches [17, 18]. Firstly, a network configuration is specified, this may take the form

of a traditional interconnected system, or resemble disconnected networks such a mesh,

which can often be found in WSNs. To create these configurations routing paths are set

up, to mimic the inability to reach components and specific communication paths. Central

routing machines are used for this purpose, acting as part of the environment. Subsequent to

selection of network structure is device selection. One of the core differences in the IoT, is

that the devices can be deployed in a myriad of different environments, to simulate this we

propose an environment to mimic several of these characteristics. We focus on Disconnected

Intermittent and Lossy (DIL) environments as this is a unique circumstance of interest from

a security perspective. The environments are controlled by the routing devices which have

control of all the communications. The messages are then lost, re-routed and communication

channels are closed to mimic these circumstances. The badness of the environment can be

customised for flexible and adaptive security testing. Another components that is handled by

the environment is data readings. Dummy data is fed to the sensors so that correct functioning

can take place, e.g. taking temperature readings, through JSON databases once again held

in the environment devices. The fourth component is the attacker devices, for the attackers

we provide Kali Linux Archetypes with a variety of exploits. These can be configured to

automatically start their specific attacks upon deployment. The attack patters may be random,

72 Intrusion Detection Systems in the IoT

selecting random components or targeted if configured by the user. We note that in this

environment we assume perfect attacker knowledge of the devices, knowing which protocols

are in use and access to all the devices (ignoring routing restrictions that the devices face).

This is because we cannot assume the attacker is itself an IoT component but rather may

resemble a powerful hacker, or group of.

Finally a NIDS component can be deployed, the desired NIDS machine is pre-configured

to listen to traffic across the network. The routing machines will route messages through

it so that it may guard the whole network automatically. The network traffic in the VLAN

is switched to promiscuous. There are some limitations with this approach, we are unable

to test CIDS, as the tiny IoT devices cannot yet act as IDS agents and the same goes for

HIDS. Although future extensions envision the deployment of multiple IDS machines with

collaborative components and proximity based monitoring for testing of CIDS.

Our proposed design is but one of the available virtualisation options. An alternative using

docker could allow for a similar setup to be run from ones own personal computer. Although

the docker approach may be even more lightweight it has less granularity of monitoring

than a hypervisors. Although with some supporting infrastructure a lot of the deployment

of devices can be automated through scrips at all levels, the initial setup of the virtualised

approach has a lot more overhead than the usage of simulations tools and consequently it

may be difficult to compare to other works and to make the work fully reproducible. We

envision that for future work we can create a framework to allow for the easy deployment of

this setup that can be used by other practitioners to easily setup a system in a reproducible

manner, although this is currently out of scope.

3.11 Chapter Conclusion

Depending on the architecture of an IDS several different setup components had to be

initiated. We make the following observation about IDSs in the IoT:

1. Despite many IDSs proposing multi purpose IoT solutions (14/51), these proposed

tools were often not evaluated and didn’t back up this claim of coverage.

3.11 Chapter Conclusion 73

2. Some of the most effective IDSs with the most complete evaluation were those designed

for very specific deployment scenarios and attack threats. Leading us to believe that

perhaps it is enough the extend current approaches to cover these rather than redefining

the field.

3. Although each of these papers had high degrees of accuracy they were not convincing

enough to stop authors from designing new systems. We discuss that the main factor

behind this is that accuracy is by no means the only metric of interest and a new

evaluation methodology needs to be in place.

4. Out of the 51 surveyed tools almost no tools shared their code, implementation details

or datasets. This makes it impossible to compare the tools or build upon existing

literature.

What we see is a field rich with repetition which seems to have reached very little in terms of

consensus of what new advances are required in IDSs for IoT systems. What we hoped to

achieve was the systematic evaluation and comparison of all the proposed literature to find

out what the state of the art and current gaps were. But the reliance on different evaluation

methods and hesitation for authors to share their code has made this impossible to do via our

own testing and evaluation. For this survey we had to instead resort to a secondary analysis

and structured review. We foresee that this trend of new tools being proposed will probably

continue until these limitations are rectified.

Chapter 4

A Modelling Technique For The

Evaluation of IoT System Interactions

4.1 Chapter Summary

This chapter discusses the proposed formal modelling technique for the evaluation of IoT

system interactions. Our gentleman/rude device approach [16] models device communi-

cations as concurrent CTMCs. The focus is on the interactions between IoT devices and

their behaviour under attack. Allowing the observation of device behaviours and addressing

the means to model flexible and varied IoT scenarios (Chal. 2). This allows the security

professional to assess the security of a setup and quantify potential threats. We showcase the

flexibility of our approach in two scenarios. Firstly a hypothetical constrained IoT deploy-

ment involving battery powered devices, equipped with DoS prevention capabilities in the

form of client puzzles [16]. This showcases that our model is able to assess the optimum

setup for the system. Secondly in a much larger IoT setup, a model is presented of the

interactions between components in a smart grid, including power generation, controller

strategies and consumer energy demand [14].

76 A Modelling Technique For The Evaluation of IoT System Interactions

4.2 Chapter Introduction

The IoT is composed by myriads of heterogeneous devices, and consequently, knowing how

a system will interact prior to implementation it is non trivial. The aim of this thesis was

to use formal models as a basis to quantify and observe these behaviours. The presented

work validates the hypothesis that in the IoT the complexity exists within how the devices

interact. This is supported by the fact that the individual devices behaviours are mostly sim-

plistic, certainly much more so than traditional workstations existing in classic environments.

Consequently, the focus was to model how the devices communicated between each other,

through network protocols, and the consequent effect of this communication on the devices

themselves. The variety of protocols, means that the flexibility to model several different

interactions is required. The focus of an attack is either to disrupt a system or devices through

a series of device interactions which can be observed in this manner; or to steal/compromise

data and in that case it had to be captured through protocol interactions rather than the device

interactions. Although out of scope, to still be able to capture the second kinds of attacks a

second approach with means to formalise protocols and to formally verify their correctness

is discussed in Appendix F.

To devise a modelling approach for an IoT system, the approach needed to encompass

several unique traits that are of interest to a security assessment. Based on our review of the

literature (part of which is discussed in Chap. 3) we identified the following characteristics

as crucial to a security assessment tool:

1. flexibility/adaptability, several scenarios are possible with these kinds of system, so

the ability to adapt is crucial;

2. impact on the devices, as devices are often constrained e.g. battery powered, it must be

possible to assess the impact on the device itself;

3. mitigation strategies, as a security professional or system administrator, when deciding

how to setup a system it is essential to evaluate the effectiveness of different defence

mechanisms;

4.2 Chapter Introduction 77

4. attacks, this is the most important decision making factor in effective system deploy-

ment as identifying bottlenecks and weak points is incredibly useful;

5. adverse scenarios, whilst not unique to the IoT something that has become incredibly

common in these systems is that the way the devices communicate and how they are

design make for several complications e.g. routing issues, reaching devices across a

large distance, battery drainage and offline devices; all make for further consideration

in system design.

To evaluate the effectiveness of these considerations, a scenario was devised that would

include each of these. This approach observed the impact of DoS attacks on a system of

interconnected devices, to asses what the optimum mitigation strategy could be [16]. Devices

were designed as resource constrained, battery powered, and with disconnected routing. DoS

attacks were selected as an attack scenario as they are one of the most common form of

attacks as well as highly impactful to system operations. As form of mitigation a form of DoS

delay mechanism called client crypto puzzles was selected [88]. As source of IoT constrain

we focus on battery power, a finite resource which would be consumed by normal operations

and which would also constitute the objective of denial for the attacker. Every possible

deployment scenario was then analysed in terms of mitigation strategy and we quantified

the effectiveness of the attack to choose an optimum deployment. This highly abstract but

powerful scenario represents a situation likely to take place in a constrained IoT network

and was able to showcase the effectiveness of the modelling approach, this first case study is

presented in part within Sec. 4.4. The aim of this research is to quantify the potential impact

of a DoS attack on a multi protocol network within the IoT and to gauge how a potential

mitigation method affects performance. The key contributions include; a model of two types

of IoT device networks, one with DoS mitigation in place and one without; and Verification

and simulation of these networks to investigate trade-off between security and throughput

under a DoS attack.

The second scenario involved the application of the same reasoning and similar modelling

methodology to quantify the impact of a kind of DoS attack on the smart grid. To do so

we approached colleagues who were working on security of smart grids and discussed

78 A Modelling Technique For The Evaluation of IoT System Interactions

the modelling scenario. This led to the development of a second case study, Arnaboldi et

al. [14]. The model includes heterogeneous devices, in the form of power plants, which

have constrained resources, the intent of the attacker was to break or temporarily deny these

devices so that power demand might not be met. Using a variation of the same modelling

principles a security assessment to devise optimum mitigation strategies against these attacks

was ran. This included the ability to model a realistic daily energy usage of the smart grid

of the UK. The initial case study idea was by R. Czekster, our contributions was the design

of the models and the security assessment, the work is in part presented in Sec. 4.5. The

proposed scenario of the smart grid allowed us to experiment with real-world data to see if the

modelled system behaved as expected and captured real interactions. The aim of this work is

to evaluate different power plant configurations in terms of operational characteristics such

as cooling down and maintenance time as well as type (e.g. nuclear power or solar panels),

aiding managers to make better decisions when designing power systems, and potentially

mitigating the impact of these attacks by choosing better load controller configurations. Our

model shows the trade-offs of mixing different power plant types to withstand Coordinated

Load Changing attacks, reducing the hazardous effects they have on the infrastructure.

As certain aspects of related work and introduction overlapped the publications are

adjusted to allow the chapter to flow, the full texts can be found at Arnaboldi & Morisset [16]

and Arnaboldi et al. [14].

4.3 Related Work

Since their advent, systems security properties have been modelled and verified using a variety

of tools including probabilistic model checking. Analysis of DoS mitigation techniques has

been widely covered. Tritilanunt et al. [174] used coloured petri net to verify the effectiveness

of HiP client puzzles for DoS mitigation. The authors mainly used simulation under different

scenarios of possible DoS attacks and proposed techniques to predict DoS attacks in advance.

Similarly, Basagiannis et al. [27] also looked at HIP, making use of verification techniques.

They used probabilistic model checker PRISM, introducing a probabilistic attacker model

4.3 Related Work 79

to analyse the effectiveness of HIP and created different attack paths to break the DoS

mitigation technique. This work focuses on a single complete exchange between an initiator

and respondent, creating a Dolev-Yao-like attacker.

Several papers address modelling IoT, adopting various different approaches. Aziz et

al [25] and Santosh et al. [177] have worked on modeling a specific IoT protocol on the

transport layer, looking at MQTT and CoAP respectively. Fruth [67] on the other hand,

examines various properties of a Wireless Network protocol including connectivity and

energy power through PRISM, and evaluates it on a Wireless Sensor Network System. The

author evaluates the battery drainage of certain randomised protocols. Throughput vs security

is a common research question in network analysis. Abdelhakim et al. [3] present work on

this particular topic in the context of wireless sensor networks. Their paper introduces a

concept of security routing, optimised with throughput to present optimum routing.

Continuous Time Markov Chains (CTMC) models have been successfully used to sim-

ulate attacks on a variety of systems. Baumann et al. [28], make use of CTMCs to model

Flooding DoS on a theoretical network. Through their models they were able to show the

impact of the attacks on the systems throughput and evaluate its effects. They could also

perform security checking for different DoS rates and scenarios. Our proposed modelling

methodology uses a similar approach to modelling systems of devices and observes the

impacts of the attacks, but rather than focusing on general flooding of messages looks at the

specific problem of load balancing and power management. Previous work in this area by

Norman et al. [132] used PRISM to observe run-time strategies in order to achieve a trade-off

between the performance and power consumption of a system. Our approach extends this to

look at the influence of an attacker on these balancing strategies

DoS attacks have long been one of the most common and dangerous threats in many

computer networks. Their detection is therefore the first step required to perform an effective

response [41]. These attacks become even more dangerous as the IoT spreads across a vast

amount of spectra and parts of life. The literature on security concerns highlights similar

scenarios of DoS attacks against IoT systems and CPS [109, 150, 40]. Attackers have started

to focus on specific vulnerabilities of IoT systems to optimise their attacks. Liang et al. [109],

80 A Modelling Technique For The Evaluation of IoT System Interactions

showed a simple Distributed DoS attack on an IoT scenario, however, they have demonstrated

that the result of an attack, if propagated to a CPS, could be massively impactful. In their

work, Roman et al. [150] mention key features of how the way these type of systems are

setup can cause security concerns. The unique characteristics present in smart infrastructures

may render it vulnerable to new avenues of attack such as battery drain and new types of

DoS. These new challenges raise concerns for security professionals such as what security

vulnerabilities their specific system could be subject to, and what impact it might have.

Load changing attacks were mentioned in Dabrowski et al. [52]. In their work the

authors have discussed a simulation concerning the impact that load changing has on power

management. Their attack is based on the fact that when operating a power grid, providers

have to continuously maintain a balance between supply (i.e., production in power plants)

and demand (i.e., power consumption) to maintain the power grid’s nominal frequency of

50/60 Hz. Their Matlab simulations show that this balance can easily be broken through a

botnet attack. Through their power analysis, they also estimate the number of devices needed

to disrupt a country’s power grid. This work is one of the first to show that a potential attack

can be staged against a power plant without the need for manipulating the controls itself, but

just by external device activity. Our proposed approach takes inspiration from this external

influences, but scales it to the representation of any power grid. Also, rather than using

simulation, our model uses model checking features present in Markovian solvers (PRISM

tool) to evaluate the impact these attackers have on the modelled system.

Another work which studied coordinated attacks by botnets and disruptions to the power

grid was done by Soltan et al. [160]. Their work introduces the concept of Manipulation

on Demand via IoT (MADIoT), through simulations they show how external influences of

high power devices can cause disruptions and power outages. They have demonstrated the

interdependence between supply of power and the demand, and how this can be exploited to

cause disruptions. These types of attack are the core focus of our work, however, Soltan and

his colleagues focused on simulations of attacks. In contrast, it is our wish to quantify what

these attacks mean from the perspective of a potential supplier. Through model checking

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 81

we could investigate how the attacks affect the power system, and we can adapt it to better

adjust, prepare, or respond to these attacks.

Specific to the context of coordinated cyber-attacks on smart grids, Moya & Wang [127]

have developed correlation indices suitable for identification of these disruptions. Sun et

al. [166] have proposed a Coordinated Cyber Attack Detection System (CCADS), strongly

inspired in IDS concepts as well as its benefits to cyber security efforts to mitigate the effects

of such disturbances in smart grids.

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Sys-

tems

A DoS attack targets the availability of a device or network [114], with the intent of disrupting

system usability. The most common method is referred to as Flooding DoS [124], and may

be used as an attempt to deplete the devices’ resources including memory, bandwidth and/or

battery. A DoS attack against an IoT network has the potential to be significantly more

detrimental than one against a standard network. This increased vulnerability is due in part

to the low computational power and battery power characteristic of IoT devices [167].

The extant literature has delineated several potential approaches that may be effective in

the mitigation of a DoS attack [169]. This case study focuses on one such method, known as

“Client Crypto Puzzles”[23], one of the most common mitigation techniques. We evaluate

the probability of the system (or subsystem) being denied within a specific time frame in an

IoT network. Using our proposed model we are able to assess properties such as: i) At what

point is the mitigation technique doing more harm than good? ii) How does denial of a single

device impact functionality of the entire system? iii) Does it create a snowball effect?

Client puzzles take many forms, but the general purpose is to force the sender to perform

a computationally intensive task prior to authentication, consequently reducing their ability

to spam messages [23]. Client puzzles have been adapted in IoT systems [84] and have

been shown to successfully decrease effectiveness of a DoS attack. It is however of high

computational intensiveness. In the specific context of IoT, an additional consideration is that

82 A Modelling Technique For The Evaluation of IoT System Interactions

a client puzzle (especially one of high complexity) can place strain on the battery, causing

high delays in throughput whilst a client is occupied with solving the client puzzles. If the

puzzle drains battery at a rate equivalent (or more) than a flooding attack, the increased

security may actually harm the system. In this case study we model the trade-off between

security and throughput in addition to the impact the increase in computation has on a device’s

battery life span. It is also the particular case where in the scope of the IoT one device being

denied will not harm the system as one device may be performing an inconsequential or

very small task. We model this through the connectivity of devices. We can observe the

potential snowball effect of a system as the denial of one particular device will increase the

probability that other devices are also going down. Through the model we can observe the

scenario where DoS mitigation, throughput and decrease in battery are at optimal balance to

obtain the best possible result in all three cases. From this, we may model the ideal setup

given specific number of devices, connectivity of the devices and DoS strain. In particular

we demonstrate that in some cases mitigation techniques can actually increase the likelihood

of a DoS, due to drainage of battery.

4.4.1 Model for IoT Devices

To model objective is to observe the impact of an attacker aimed at draining the battery of a

set of IoT devices. A flooding DoS attack is modelled to drain the devices effectively (based

on measurements taken from the lab). As form of mitigation a form of DoS delay mechanism

called client crypto puzzles is selected [88]. As source of IoT constrain we focus on battery

power, a finite resource which is be consumed by normal operations and which would also

constitute the objective of denial for the attacker, in order to define attacker objectives. The

model abstracts an IoT network under DoS strain, and it is implemented as a system of

devices. A device is a sensor connected to the internet with its own power supply. A key

aspect of the IoT is that different devices might have different battery lives and different

security features (in this case study, we focus on whether a device is implementing a DoS

mitigation technique). Hence, we consider the following device properties: a battery life,

a message queue and connectivity (what other devices it can connect to). Battery life is a

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 83

measure that is drained whenever a computationally intensive operation takes place such as

sending a message and computing a client puzzle. A device can only hold a limited number

of messages, and after the queue reaches capacity it cannot receive more until it has replied

with acknowledgements. If a recipient device queue is full the initiator waits until it either

frees up or timeouts and then re-sends. To model connectivity each device has a set of other

devices it can communicate with and receive messages from. To implement the concept of

processing time we implemented arbitrary delays when processing client puzzles.

We introduce the concept of “gentlemen devices” and “rude devices”. A gentleman device

will utilise “politeness”, i.e. they will send a message and wait for an acknowledgement

(or timeout if acknowledgement takes too long) from the recipient and conclude his current

discussion with the device before initiating another message exchange with the same device.

It can however simultaneously hold exchanges with other devices. Rude devices on the

other hand may continue sending messages to devices within their connectivity before the

full communication is over, replicating a flooding attack. The effects of these rude devices

flooding spreads as even gentleman devices connected to the flooded device will not be able

to commence an exchange if its message queue is full.

The attacker or rude device can have different rates of attack, mimicking different

strengths of a DoS attack. We assume it sits outside the network and is not part of the

connectivity so it can target any node, but gentleman devices cannot perform an exchange

with it. To further simulate the attack strength, at each attack a proportional amount of battery

is drained depending on the attack’s intensity (rate). We use stochastic probabilities to target

random parts of the system as we assume an attacker has no knowledge of the system setup.

Due to the connectivity element an attack on one part of the system may exert a higher impact

than an attack on another part e.g. If devices B and C only communicate with A, the denial

of A stalls the whole system whilst the denial of B still allows the system to function.

Formally, a rude device R is a tuple R = (S,sinit ,A,R,L), where S = {idle,active} is a

set of states, sinit = idle is the initial state, A = {msg,ack} is a set of actions, R is a matrix

containing the rates at which any of the actions are performed, e.g.,
(

0 1
1 0

)
shows there is a

rate of 0 to go from idle to idle, a rate of 1 to go from idle to active, a rate of 1 to go from

84 A Modelling Technique For The Evaluation of IoT System Interactions

active to idle and a rate of 0 to go from active to active, finally L is an atomic proposition

defined as guard→action where the guard must be true in order for the action to take place

and take the attacker into the next state.

The behavior of a rude device is defined as follows: if the device is in state idle, there is a

probability to move to the state active; if the device is in state active, the attacker chooses a

random node in the network and starts flooding it. If that particular part of the network has

mitigation technique in place at each message it has to solve the crypto hash before sending

again. The attack continues until the device’s battery has been drained. The attacker then

goes back to idle. The guard is used to make sure the attacker behaves within the scope of the

model. The first atomic proposition assures that the attacker does not target multiple parts

of the network simultaneously and then switches to active and the second guard follows the

steps to fill the message queue and drain the battery.

The other nodes in the network or gentleman devices may either have DoS mitiga-

tion techniques or not. A gentleman device G is formally defined as G = (S,sinit ,A,R,L),

where S = {idle,sending,receiving} is a set states, sinit = idle is the initial state, A =

{msg,ack,challenge} is a set of actions, R is a matrix containing the rates at which any

of the actions are performed, e.g.,
(0 1 1

1 0 0
1 0 0

)
shows there is a rate of 0 to go from idle to idle,

a rate of 1 to go from idle to sending as well as a rate of 1 to go to receiving, a rate of 1

to go from receiving to idle and a rate of 1 to go from sending to idle, and L is an atomic

proposition defined as guard→action, there are guards to enable the correct behavior of

message exchange (e.g. idle, A to B, B to (ACK) A, idle).

The behavior of a gentleman device without mitigation technique is as follows: when idle,

G is active and has a chance to begin a communication between any of his connected devices.

From idle it can transition to any of two other states sending and receiving. If sending, G

sends a message to a connected device and the battery is drained, it then initiates a timer,

if the acknowledgement is not received before the timer runs out the device goes back to

idle however the reset drains the battery, if it is received it finishes the exchange and also

resets to idle. If receiving, the message is added to the queue and the initiator is noted as to

direct the ACKs to the right initiator (multiple messages may be received at the same time).

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 85

The acknowledgement is then sent and the device is reset to idle and the queue is decreased.

To implement a device with mitigation techniques, we add the following properties to a

gentleman device; if in state receiving before it can send the acknowledgement to a initiator

with client puzzles there is a time delay to portray the time it would take to solve a puzzle.

The time delay increases when the size of K increases, as it mimics how a harder puzzle is

more difficult to resolve. We refer the reader to [23] for some examples of client puzzles.

Client puzzles have been investigated as DoS mitigation tools in various different network

environments [66]. In this modelling approach we wanted to identify its merits and deficits in

the specific case of resource constrained IoT. A more difficult puzzle, whilst more effective

in delaying an attacker has higher computation impact on the device, similarly to computing

hard cryptographic functions [54]. By measuring both the throughput of the system and the

well being of the system by battery we can assess both the benefit of the puzzle towards

delaying the attacker but also the negative impact that challenging every communication with

a puzzle has on the overall wellness of the system By observing each different setup options

in the experiments in Sec.4.4.5 we can establish what an ideal configuration might look like.

4.4.2 Experiments

To test our model we ran a variety of experiments with different systems and security setups.

One of the key aspects of our experiment was how the impact of the DoS attacks scaled

with different attack rates, different setups and how it effected the throughput and security to

investigate the viability of these mitigation techniques in the context of the IoT. The ideal

scenario is when the probability of being denied within time T is low and the throughput

after T seconds is high. Observing these circumstances in finite systems where there is a

set number of devices, we looked at all possible setups the system could take in terms of

how many devices are protected and by what level of client puzzles, and then tested them

under different DoS strains. Using the result we can tell which setup is the best suited to a

particular rate of DoS and which setup will maximise throughput and security. We theorised

that given the circumstances of the IoT and the relatively high processing times at certain

levels of puzzle difficulty it would be the case that the lowering in chance of denial would

86 A Modelling Technique For The Evaluation of IoT System Interactions

not be as significant as the corresponding lowering in throughput caused by the processing

delays, this is analysed in the case study provided in Section 6.1.

We made use of statistical model checking when examining the larger models through

PRISM’s simulation engine. This approach is particularly useful on very large models when

normal model checking is infeasible. Essentially, this is achieved by sampling: generating a

large number of random paths through the model, evaluating the result of the given properties

on each run, and using this information to generate an approximately correct result within

a specific Confidence Interval (CI). Let X denote the true result of the query P =?[...] and

Y the approximation generated. The confidence interval is [Y −w,Y +w], i.e. w gives the

half-width of the interval. The confidence level, which is usually stated as a percentage, is

100(1−Con f idence)%. This means that the actual value X should fall into the confidence

interval [Y −w,Y +w]100(1−Con f idence)% of the time [131]. We tested for the following

properties.

Throughput: the number of messages processed over a given time interval (cumulative

messages sent/current time). By definition if a message takes longer to send the throughput

will decrease, hence adding computationally intensive tasks that delay the transmittance of

messages is going to decrease the systems throughput. However if they delay the likelihood

of devices being taken down by an attacker the theory is that in the long run it will actually

increase the throughput under DoS attacks. To calculate the throughput of the IoT system

we make use of PCTL formula R{Msg_sent} =?[C⇐ T] or what is the cumulative total

messages sent by the system in time T and then divide the answer by the value T. The value

Msg_sent is a reward structure that assigns one reward every time a successful message

exchange is completed.

Likelihood of System being denied: we defined the denial of a device, when either

its battery has been completely drained or its connected devices have been drained and it

therefore cannot transfer from the idle state. The whole system is down when all devices

have been denied. This is once again monitored through PCTL over a restricted time, running

different variables one can optimise the number of protected devices as well a what strength

of protection to optimise the implementation least likely to be denied.

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 87

Snowball effect due to denial: of further interest is the ability to recognise the critical

sectors of a system. We defined a critical sector by examining the impact it’s denial has on

the rest of the system. Highly critical sectors are also the parts of the system which require

more securing. We achieve this by measuring the snowball effect or rather after the denial

of device A what is the new probability of the rest of the system being down. Theoretically

highly critical devices will increase the probability substantially whilst non critical devices

will make a small difference.

To observe the best case scenario of a particular setup, we define a setup as a particular

spread and strength of mitigation techniques on a given configuration of devices. We observe

the balance between security and throughput, the higher the ratio the better the setup for that

particular DoS strength. To observe and test the initial hypothesis in Section 6.1 we create a

case study on a specific scenario and evaluate the results for each possible implementation

given specific assumptions.

4.4.3 Experiment Setup

We have used the model described above in PRISM Model Checker as well as PCTL to

perform both quantitative verification and simulations, various properties where checked

and the model was tested under different scenarios. For verification the full state space is

explored whilst for simulation we use the following setup. Number of Samples: 100,000,

CI: 0.001 and Maximum Path Length: 1,000,000. For the purpose of the model we were

interested in evaluating two key properties: throughput and probability of denial.

We can also examine which part of the subnetwork has been denied first and specifically

the time required for the denial to take place. The setup for each experiment was: Client

Puzzle Difficulties (K size): 5 to 20, Time of system (Time Units): 20 to 200 units,

Devices in Network (All protected): 5 and Rude Devices: 1. This differentiated from the

case study where all the variables were tested in all possible setups (with some specifications

explained in section 4.4.5) to find the optimal setup.

Results from the initial setup highlight the key factors of our model i) the way client

puzzles drain battery ii) the effectiveness of mitigation techniques to avoid denial of service

88 A Modelling Technique For The Evaluation of IoT System Interactions

50 100 150 200

0

0.5

1

Time (Seconds)

Pr
ob

ab
ili

ty
of

B
ei

ng
D

en
ie

d
K=5

K=10
K=15
K=20

50 100 150 200
0

0.5

1

1.5

Time (Seconds)

Sy
st

em
T

hr
ou

gh
pu

t

K=5
K=10
K=15
K=20

Fig. 4.1 The graphs represents a system being targeted by a DoS attack, the one on the left
displays the probability of a DoS attack being successful over time (20s to 200s). The graph
on the right represents the throughput of the system over time (20s to 200s). Diagram from
Arnaboldi & Morisset [16]

and iii) demonstrating that in finite time it can sometimes be useful to have a less intensive

client puzzle as they can disrupt more than help.

4.4.4 Results

We demonstrated the potential strain that client puzzles place on a system and as can be seen

in Fig. 1 at lower times (i.e. before any part of the systems are under DoS or haven’t gone

down yet), the higher client puzzles create such a strain that they increase the likelihood of

going down rather than diminish it.

It can be observed that the harder the puzzle, the lower the throughput, whilst the security

is increased. Furthermore, due to the extra drainage in power of the more difficult puzzle, a

smaller value of K performs better in earlier times (At time 80s we observe that K=20 has

a higher denial probability than K=15 this is due to the extra processing strain and battery

drainage of the harder puzzle). As can be observed towards time 200s the throughput comes

to a stall as different parts of the system are denied. It is to be noted that as the lower puzzle

difficulties are declining in throughput, K=20 is on the rise, as the increase in security allows

for some nodes to still output messages.

4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems 89

4.4.5 Evaluation

We apply our model to a specific scenario to demonstrate its application. We assume a

potential system engineer views their IoT network as under constant DoS attack. They wishes

to know what would be the best way to optimise the balance between throughput of their

system and the likelihood of being denied when implementing security mitigation for these

DoS attacks. We wished to observe the system for a time period long enough to see impact of

the attacks and mitigations in play. We empirically observed that given our setup the initial

100 time steps of the CTMC were sufficient to observe the decrease of performance of the

system and most configurations were successfully denied in that given period. The device

setup is the following; A is connected to B, B is connected to A, C is connected to A, B

and C, and D is connected to C. We also assume a rude device E, which is connected to all

devices.

We ran every single scenario of setups (A protected, AB protected, B protected...) and

for each scenario tried every single possible value of K. We set the value of Battery to be 50,

a maximum message queue of 5, Time at 100 time units, a single rude Device (E) with rate

of attack the same as the rate of any gentleman device (ABCD) and the values of K from 5 to

15 tested on every protected device, the results can be observed in Table 4.1. If we use our

formula of throughput/probability of denial, with the highest value being the most optimal

result. We see that the scenario AD provided the best ratio at every different value of K, with

scenarios including C being connected (the one with the most connectivity) not performing

as well.

The results support our initial hypothesis that mitigation techniques actually increase the

likelihood of denial through battery drainage alone. This is evidenced by the scenarios which

had C protected that proved to be the most inefficient (throughput dropped significantly). The

rude devices have an equal chance of attacking as the gentleman devices. As a consequence,

since every single connection to a protected device will drain the battery and since there is

equal chance a rude device will start an attack, the strain on the battery caused by normal

message sending (and computing of puzzles) is more detrimental. However if we take ACD

which theoretically protects the network on all levels and D which is not very connected and

90 A Modelling Technique For The Evaluation of IoT System Interactions

Table 4.1 Every Scenarios For each setup of Protected Devices (PD) and Unprotected Devices
(UD), each setup has a single rude device E targeting the other gentlemen devices

K = 5 K = 10 K = 15
PD UD Prob. Throughput Prob. Throughput Prob. Throughput

A BCD 0.655 0.733353 0.712 0.713375 0.729 0.726894
AB CD 0.624 0.654857 0.645 0.636341 0.829 0.646891

ABC D 0.887 0.684555 0.963 0.580316 0.996 0.513519
ACD B 0.956 0.547798 0.986 0.346246 0.997 0.241135
ADB C 0.946 0.423408 0.951 0.309469 0.972 0.267136
AC BD 0.964 0.772681 0.979 0.662404 0.988 0.582111
AD CB 0.461 0.739893 0.415 0.690475 0.381 0.687251
B ACD 0.496 0.741337 0.487 0.723239 0.465 0.717923

BC AD 0.817 0.713618 0.899 0.617848 0.959 0.547188
BCD A 0.938 0.520275 0.968 0.3279814 0.985 0.228197
BD AC 0.927 0.454418 0.927 0.362362 0.954 0.313664
C ABD 0.901 0.843735 0.91 0.72117 0.959 0.663217

CD AB 0.897 0.555124 0.919 0.38078 0.939 0.279741
D ABC 0.859 0.610293 0.878 0.536433 0.862 0.535952

test both these two under a longer period of time (200s) we can see the results are altered, as

the attackers will continue until a device is denied. On the other hand, if it takes longer to take

down a device, the overall system lasts longer and therefore the throughput is higher with

the protected devices. We also show that identifying single critical devices and protecting

them rather than the whole system can be a valuable technique. These results exemplify the

potential application and benefit of these techniques.

Our attacker model assumed a rather naive attacker that did not have a priori knowledge

of the system. This was captured in the sense that it randomly selected a device to target.

This leads to potential situations in which if it targeted the weak device (C) it would be more

impactful than selecting a border device (B). In practice this may or may not be a realistic

assumption. Even if an attacker initially may have no specific insight of the network he may

be able to gain further information through reconnaissance and network scanning. Which

could be quite likely, although he would not gain insights about battery drains through these

techniques. If we wanted to adapt to match a more specific attacker this could be achieved by

giving higher probabilities to target certain devices, or even introducing non determinism

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 91

(as described in Chap. 5) to determine the optimum attacker strategy as an outcome of the

current mitigation setup.

As can be expected one simple solution to increase both the throughput and the security

is to increase device battery or upgrade processing power. An alternative solution may

be to replace the critical devices with more potent ones. However assuming the device

specifications are constant and the only customisation is the strength of the puzzles and which

devices to protect, through our tool we are able to identify what produces the best results.

The topic of battery adds a further layer to the common question of security vs output and

creates several additional layers of complexity. What we have gathered from our analysis and

results is in line with our initial hypothesis. Furthermore, this model enables the discovery

of critical sections in an IoT system which might not be as easy to find compared to our

simplified case study.

4.5 Case Study 2 - Load-Changing Attacks and Mitiga-

tions in Smart Grids

Cyber security is a major concern when evaluating critical resource infrastructures. Malicious

attacks and unintended damages significantly increase each year, and it is therefore important

to know what effects they will have. Due to strict supply-demand requirements in power

grids, to maintain equilibrium is of paramount importance. In practice, the entities that

regulate and those that actually maintain equilibrium depend on the politics of the country,

and we do not refer to them specifically, rather we refer to a Cyber-Physical System (CPS)

component called Load Controller. Whenever it is required to increase or decrease energy

levels, it may trigger costly responses, e.g. turning on new energy sources or disconnecting

areas from the grid. Historically, power generation and demand have been very separated;

however, this scenario is changing as a consequence of security risks and possible attacks,

so the current mitigation strategies may not be applicable any more. The current role of

a load controller is balancing energy supply accordingly to demand while maintaining the

92 A Modelling Technique For The Evaluation of IoT System Interactions

frequency of the current at around 50 MHz in Europe (or 60 MHz for other countries such as

USA, Brazil and Japan).

Organised attacks aimed at power infrastructures are called Coordinated Load-Changing

Attacks (CLCA), where synchronous connections or disconnections of high-wattage units

such as water heaters or air conditioning units are used to cause disruptions in energy

provision. CLCA are here considered as black boxes, i.e. they do not require extensive

knowledge as to the particularities of grid operations in order to be employed. If sudden

spikes or drops such as synchronised turning on or off of several devices takes place, they

cause the equipment to short and break, causing damages and reducing the availability

of power supply. The load controller can easily cope with common occurrences in terms

of imbalances, adjusting energy flows accordingly; however, sudden usage spikes may

unadvisedly cause the grid to collapse. Malicious users could profit from those situations as

they could infect a considerable number of high-wattage devices to coordinate actions that

impairs energy distribution [52, 53].

In the context of this case study, we are interested in two types of systems: on the one

hand, we consider CPS [106, 146], i.e. systems with limited resources (low power, energy,

processing or other capacity related issue) employed in a variety of equipment ranging from

sensors to smart grid components. On the other hand, we are taking into consideration

large scale infrastructures such as the Smart Grid, Active Buildings, different types of power

plant (that can be solar or nuclear, for example) and other power reliant schemes. We are

specifically focusing on modelling their interaction, i.e. how power supply mechanisms react

due to CPS usage, as well as the influence one has on the another. Through this model we

can observe the daily usage of energy in the smart grid, and calculate its ability to cope with

duress. Our modelled attacker (or adversary) attempts to exploit the CPS mechanisms to

decrease availability and cause damages; our model captures the probability of success and

the tolerance of a theoretical smart grid made of various different types of power plants,

against type of attack.

In this application context, it is worth defining a CPS and its roles. It consists of

components with two parts, i.e. a computing part integrated with a physical counterpart, both

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 93

connecting and communicating with other CPS to achieve common objectives. For example,

a CPS could be an embedded system attached to a heartbeat sensor component to collect

meaningful health data from patients inside a care unit, or could be smart meters exchanging

data on power system energy transmission and distribution. These infrastructures usually

encompass a sizeable number of entities in hyper-connected environments, deployed to help

users improve productivity, bottleneck assessments and much more. The presence of general

purpose CPS in residential, commercial and industrial settings is ubiquitous as many vendors

offer solutions that vary from smart home sensing devices to closed circuit televisions.

The simplistic nature of CPS implementations makes them prone to software contamina-

tion: for instance, installing malware in high-wattage devices, e.g. air conditioning units or

water heaters. Due to this, they are natural recipients for coordinated attacks aimed to disrupt

grid infrastructures as a synchronised event may cause over demand or influence voltage and

frequency to inadmissible levels. This is particularly unsettling for many reasons as it may

impact overall energy costs for customers or, in extreme cases, lead to preventable casualties

in healthcare settings.

4.5.1 Threat Model

We are working on the assumption that our designed adversary has gained illicit access to a

large number of IoT devices and formed a botnet. Using this botnet, our envisioned attacker

targets a smart grid infrastructure through excess energy usages and causes a spike which

damages the load controller. When a power plant experiences very high load, it will employ

one out of three mitigation controls, primary, secondary or tertiary [52, 160].

1. Primary Control distributes the load to other power-plants in the vicinity.

2. Secondary Control makes an assessment to return to normal operation if criteria is met.

3. Tertiary Control frees up resources from previous Primary and Secondary controls.

The most damaging target is Primary Control, as switching on and turning off further plants

is expensive and time intensive. The objective of the attack is to continuously trigger the

94 A Modelling Technique For The Evaluation of IoT System Interactions

Primary control and consequently cause the most damage, including potential damage to

turbines and machinery caused by the strain.

Further to this consideration, power suppliers are constantly balancing the frequency of

the supply. Sudden spikes may affect the frequency significantly enough to activate security

mechanisms of power plants for which they detach themselves from the grid. This may lead

to blackouts and disruptions. A smart intruder who has gained access to a botnet can choose

when to turn them all on synchronously. If she controls enough devices, she may induce a

spike and make suppliers detach. In order to inflict the highest damage, the attacker needs

to make sure that she will cause a spike; however depending on current usage, this may or

may not happen. If the attacker controls a fraction of the devices and turns them all on, but

these devices are already operational due to expected daily usage, the spike may not trigger.

Perhaps counter-intuitively, depending on the daily usage, it might be a lot more damaging to

trigger the spike at a lower usage time such as mid afternoon to cause the most disruption.

The effectiveness of a spike will also depend on the type of supplier providing the energy.

Whilst if a nuclear supplier is spiked it might take a very long time to recover, gas power

plant have a much higher adjustment rate and are therefore more resilient to these attacks. In

our model we loosely reflect the response behaviours of hydro, gas and nuclear power. These

are only loosely based on realistic power plants and only wish to showcase the flexibility of

the modelling approach, a similar approach could be used adapting real values in the model.

We model the demand borrowing real values1 in the UK, which we scale down to limit the

number of power suppliers in the model. The attacker is modelled at every hour of the day

(with the mean power usage at that time), and we calculate the success and impact rate of the

attacks.

4.5.2 Problem formalisation

We demonstrate our main idea through the definition of a small order CTMC that will guide

our process when we extend it to the set of power plants, load controller and botnets. We

1The demand across the UK of the 27 September 2019.

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 95

are working here with a very reduced state space, explaining our initial state, some possible

transitions and what we actually mean by an attack.

In a simplistic view of our model, we have a single power generator (PG) that can be in

three states SPG: (i) available (a), ready to supply but not yet generating energy to the grid,

(ii) generating (g), currently providing energy to the grid, or (iii) restart (r), detached from

the grid, not generating, nor supplying, and in the need of a restart. The states in SD model

the demand D loading the grid at the average expected level m (for medium) plus or minus

small deltas, modelled by two additional states l (for low) and h (for high). The attacker

B is a botnet controlling a large amount of infected devices. Its states in SB are modelled

as simply 0, when the infected controlled devices are all off, or 1 when those devices are

switched on. In summary we have the following states

SPG = {a,g,d}

SD = {l,m,h}

SB = {0,1}

Following the notation introduced in Chap. 2, the CTMC relating to this simplistic model

is defined as a tuple (S,S0,R,L) where S = SPG×SD×SB, and s0 = (a,m,0). The rate matrix

R is a square matrix of dimension |S| whose entries are zeros apart from those corresponding

to the transitions we modelled. So for example, given two states si and s j, then the transition

rate ri j is the mean per time unit that we expect the transition from si to s j to happen. The

labels in L associate valid proposition to states: we associate them to desirable properties. In

particular, we label all states where the current demand in the system is above the current

supply as “overDemand”, for example (d,m,1), where if the PG is detached it cannot match

the demand m. As the reader may notice, the controller of the power generator does not

appear among the states. This is not because there is a single PG, but by modelling choice

that needs to refer to a more complex system with multiple PGs to be illustrated.

The basis for our model is presented in Fig.4.2. It is our intention to model a botnet (B)

influencing the setting of power generators to let them go off, or detached. In the normal

96 A Modelling Technique For The Evaluation of IoT System Interactions

off

generating

availableavailable

Controller1
Spike
Botnet

co
nt

ro
ls

indirect attack

through over-dem
and

Po
w

er
 G

en
er

at
or

(a) Attack-defence game between
controller and attacker.

PG1

PG2

PGn

PG3

...
or

Controller1

Controller2

Demand

average

low

high

Spike
Botnet

(b) Different controller strategies for the same power grid.

Fig. 4.2 The controller and the attacker role in our problem formalisation fine grained to the
transitions of a PG (a) and coarse grained to the whole system with multiple PGs (b). We
remark that the attack is not directly done to the power generator transition from generating
to off, but the attack indirectly causes it through spike over-demand. Diagram from Arnaboldi
et al. [14]

operative state of the system, PG is available, then generating, or disconnected. The demand

operates at the medium value m, for some time going to low demand or high demand. A

controller dictates the response of the grid in case there is an excess of demand. It is a

deterministic transition attempting to create an equilibrium in the grid. In a system without

an attacker, two different controllers may behave in the same exact manner, however under

an attack the control strategy determines how effectively the load is re-balanced. We define

the optimum controller strategy as that one which minimises the time where a system is in

a state of over supply or over demand. What dictates the effectiveness of the controller is

the responsiveness of the PGs, i.e the controller decides that a PG needs to be turned on

to meet the demand, if the PG is a very slow one, this will lead to large amounts of time

offline. By modelling different controller strategies, one can easily envision that an optimal

controller can be selected against a specific attack and under a specific load. The less trivial

research question is whether an optimal strategy can be found to optimise the power supply

for a specific grid or CPS. We investigate this problem by modelling the power supply in

Sec. 4.5.3, and look at the way three different controller strategies impact the effectiveness

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 97

of a spike Botnet attack. We could potentially have a set of PG to work with (Nuclear, Gas,

Electricity, Wind, and so on) where the Spike Botnet engages in an attack-defence game to

roughly estimate the state of the controller to direct decisions on when to switch devices on

or off.

4.5.3 Energy Supply Demand Trade-off Model

Our work focuses on modelling the balance of energy supply and demand. To do so we

have created three entities: i) suppliers, power generators mimicking different types of

plants typically attached to the grid, ii) consumers, modelled as average values of energy

demand per hour, they also are subject to positive and negative variations across time, and

iii) spike botnets, a large quantity of compromised IoT devices, they might be thought as

high wattage devices such as water heaters or air conditioners that can be synchronously

turned on or off, they produce sudden spikes or drops of energy that unbalance the grid and

trigger the automatic security disconnection mechanism of the PGs from the grid. One way

to mitigate disturbances is to employ load shedding or tie-line tripping, techniques employed

to disregard incoming requests in order to maintain integrity and avoid breakages [53].

The way the demand supply trade-off is modelled is as following: the consumers will

have a certain energy requirement and the suppliers will need to be turned on to meet the

demand. However if the Botnet is successful in taking down a PG, there will be a temporary

situation of under supply. To meet the demand, more PGs need to supply energy. Their

responsiveness is subject to several limitations. First, a PG requires some time to be fully

functional, especially if it gets suddenly detached from the grid; some are quite fast, while

others are expected to be much slower, like nuclear power plants. Second, the amount of PGs

is finite; if the botnet takes down enough PGs whilst they are unable to reattach themselves

to the grid, there will be no way for the suppliers to meet the demand. Third, independently

of how many PGs are taken down, at peak demand, the power grid might have very few spare

resources, so if one PG is taken down at 18:00 during dinner time the impact might be a

blackout for the whole grid. A toy example showing how the formalism is used on a small

case study is attached in Appendix-C.

98 A Modelling Technique For The Evaluation of IoT System Interactions

4.5.4 Power–Energy considerations

In energy terminology, Unit Commitment (UC) [137] tries to find the least-cost dispatch

of available generation resources to meet electrical loads. In the past, different strategies

were conceived to deal with UC related issues such as simulated annealing [158], dynamic

programming optimisation [138], particle swarm [173], genetic algorithms [175, 130] or

combination of those and other techniques. UC is a relevant problem in energy as the

demand/supply requirements are usually uncertain.

We are interested in working here with UC in an abstract way, representing supply and

demand for CPS or smart grids. There are several generating resources available for use by

energy managers such as nuclear, thermal (using fossil fuels such as coal, natural gas or oil),

or other biomass. When deciding which power plant to turn on, several decision variables

come into play such as generation level (in Megawatts, MW) and number of generating units

that must be turned on. A power plant employs different technologies to generate energy,

for instance, nuclear based have to be turned on and then cooled down, tasks that usually

take considerable time. Other sources such as solar panels on the other hand have different

maintenance peculiarities than those of, for example, wind turbines. Lastly, when broken,

each system would involve different resources and equipment, which translates to greater

time not producing energy which impacts the grid in its entirety.

Another source of concern is directed towards hourly fluctuations (used interchangeably

here as either surges or peaks) that may be present in a day. These differences in demand-

supply, if greater or lower than specific thresholds (defined by energy operators) may cause

severe damage to the grid and or its turbines (if used), even sometimes causing permanent

damages which impact projected energy yield. Our model captures the so called sudden

surges to the energy grid, where infected high-wattage appliances synchronise their operations

to trigger disruptions. Fig. 4.3 shows the daily energy usage for the United Kingdom scaled

down to roughly its 1% (e.g. Glasgow’s population) with noticeable peaks in demand

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 99

according to specific times of a given day2. We remark that we scaled down the data to allow

for smaller state space in the model.

on 27 September 2019
scaled down to roughly 1% to simplify the model

Fig. 4.3 Usage data for the UK, scaled down to about 1%, in MW, across 24 hours on Friday
27 September 2019. Diagram from Arnaboldi et al. [14]

Fig. 4.3 highlights an expected usage trend, with more power demand at times such as

breakfast and dinner and a sharp decrease when (the most) people are asleep. These are

known trends and therefore power supplies are build to cater to them. It is noticeable that

the load is distributed in a way that if there is a reasonably expected raise in consumption at

any point along the line the load controller will be able to handle it. This tolerance value

is what the attacker has to outmatch in order to cause the disruption, perhaps unexpectedly,

this means unexpected above normal usage is much more damaging than just mass usage.

Through our model we highlight this by showing that the most impactful attack times (varying

with the different power plants), may not be the ones of most usage.

In our setting we are dealing with a load-balancing system that tries to maintain the

equilibrium to keep the frequency to 50 MHz; this is done balancing the demand (produced

by users turning on their devices whichever they are) and the supply (the set of power

generators required to meet the demand). We are combining this balance with a control

strategy, where we mimic the manager’s decisions as to which power generator should be

2Original data is available online from the balancing mechanism reporting service in the UK at
:https://www.bmreports.com/.

100 A Modelling Technique For The Evaluation of IoT System Interactions

prompted at specific times to cope with demand. These decisions address the fact that under

surges or spikes it could be possible to increase the security level if the right measure is

taken at the right time, working as a protection against those sorts of disruptions. There

are many ways to find reasonable forms of mixing which power to be switched on or off

at any moment, and a common strategy is to use greedy algorithms for selection. At the

core of these algorithms it resides the fact that a prompt reaction should be deployed as

soon as possible, so the next available power plant should be turned on adding power to the

infrastructure so it can handle the demand accordingly.

4.5.5 Cyber security model applied to CPS

In previous sections we discussed the problem from a general perspective. For our experiment

we focused on a scenario involving somehow realistic implementations of power generators

and we adopt the real demand on a specific day in the UK. For the model discussed here, we

are interested in using CTMCs due to the required dynamics for our cyber-security problem.

Our modules are illustrated in Fig. 4.4: they consist of power generators PG (nuclear N,

hydro H, and gas G), the demand D, modelling the supported threshold to try to withstand

disruption case demand ≈ supply, a controller C, greedily selecting which power generator

to use prioritising next according to design decisions, and finally the set of IoT devices I

(the Spike Botnet in the figure), symbolising infected high-wattage components under the

control of adversaries. These choices were made to highlight a variety of setups mimicking a

modern smart grid.

We are considering that each PG has its distinctive design possibilities, usually dealing

with high loads of energy in different ways. For our specific case study we are interested

in how the different prioritisation of PGs could potentially affect the availability to cope

with attacks. In Fig. 4.4, we adopt a tailored notation to represent our modelling choices,

for instance, initial states are marked with a small dot whereas rates are shown as textual

descriptions decorating some transitions (e.g. slow, fast and so on).

All PGs start in available state when ready to supply, in the generating state when

supplying to the grid, or in off state when offline. We have added a module Controller to

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 101

Co
nt

ro
lle

r

priority

nuclear

hydro

gas

off

generating

availableavailable

Power Generator
capacity: 20 MW (hydro-like)

fast re
start

Demand

average

low

high

on

off

Spike
Botnet

off

generating

availableavailable

Power Generator
capacity: 40 MW (nuclear-like)

slo
w

very slow restart

off

generating

availableavailable

Power Generator
capacity: 10 MW (gas-like)

fas
t

slow restart

Fig. 4.4 Model and PRISM modules, representing Nuclear, Hydro and Gas power; the
demand, along with and variations from the expected value; and our designed attacker
controlling a percentage of the systems devices. Diagram from Arnaboldi et al. [14]

cope with the supported variation, parameterised to withstand increments or decrements of

±1%W . Finally, the infected devices (botnets) are either on or off, modelling either an attack

in place or inactive, respectively. In our model, the Botnets are composed by unique devices

that are only controlled by the Botnet and do not represent daily usage. The state delays

(they will be converted to rates due to our CTMC representation) for the model are shown in

Table 3.

We changed the PGs characteristics through fixed parameters that map their behaviour.

We assume that the power generators’ capacity does not depend on the hour of the day, even

if it may not be the case, i.e. in night hours we obviously expect solar generator to have

reduced supply capacity. This can anyways be modelled, as we run experiments by per hour,

and this time can be reduced to be more fine grained. The Table 2 shows the parameters

we used, where the number of module instances mimic the specific scenario of matching

the power supply for a location populated roughly as much as Glasgow is. We do not

realistically refer to Glasgow’s power plan scenarios, only to the expected demand of roughly

its population. The supply will always cater to the daily demand, however the IoT devices

102 A Modelling Technique For The Evaluation of IoT System Interactions

may still cause spikes to offset the load management and break PGs. It is reasonable to

consider that attackers may select regions where the difference between supply and demand

are close. In low consumption regions (in Fig. 4.3 they correspond to early morning) or high

(start of the day at 8:00 and then at 20:00), the power plants are taking decisions as whether

to increase or reduce the power supply to meet the demand. Our modelling approach focus

on closely inspecting those time spans, aiming to evaluate which power plant configuration

would be best suited to be adopted in case the infrastructure was to be targeted for attacks.

Table 2 Parameters for the model in PRISM and total of instances for every PG.

PRISM Module Observation # of instances
Nuclear (N)

Generates
40MW each 4

Hydro (H) 20MW each 5
Gas (G) 10MW each 6
Controller (C) ±1% tolerated deviation from normal –
IoT Devices (I) up to 30% expected wattage –

Total: 320MW

We are considering the following scenarios for our analysis:

1. NO-ATTACK: normal grid operation. It is expected to be in over supply state most of

the time;

2. ATTACK: in this scenario we are modelling the coordinated effort to disrupt the grid.

The attackers could profit from the peak hour knowledge to direct their efforts. We are

varying Controller to prioritise which PG would be triggered first to investigate the

possible mitigation strategies as follows:

(a) ATTACK-N: Controller prioritises first on Nuclear, then Hydro, then Gas.

(b) ATTACK-H: Priority on Hydro, then Nuclear, finally Gas.

(c) ATTACK-G: For this one, first turn on Gas, then Nuclear, finally Hydro.

For our four experiments we have instantiated a total of 17 modules, addressing in terms

of PG a total of 320 MW. This power corresponds to a grid that could be deployed in a

region to serve the power needs of the whole of Glasgow (population ≈ 598,830 people).

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 103

The reachable state space of our NO-ATTACK model is around ≈ 300.000 whereas in the

ATTACK-* models, it sums to 57 million (with the modified Controller policy and attack

botnets). We computed the model properties related to the probabilities of the system being

over supply, in equilibrium and over demand. In terms of rates, we are considering the values

of Table 3.

Table 3 Parameters of individual modules used in the model (time scales in minutes (m) or
seconds (s).

Module State TimeFrom To

Nuclear
Available Serving 30s
Serving Available 40m
Serving Offline <1s

Gas
Available Serving <1s
Serving Available 30s
Serving Offline <1s

Hydro

Available Serving <1s
Serving Available <1s
Serving Offline <1s
Offline Available 20m

Demand

Normal Negative 5m
Negative Normal 1m
Normal Positive 5m
Positive Normal 1m

IoT Devices Off On 1m
Spike Botnet On Off 1m

4.5.6 Results

Among the several interesting analysis that could potentially be performed using our model,

we direct the focus to the probability for the over demand when a spike is successful. In

such a case, we consider an attack successful if the spike makes a PG go offline, after having

caused an excess in demand. The controller prioritises the order of activation of PGs (we

assume all are under its control). If all preferred controllers are on, an alternative type will

be activated.

104 A Modelling Technique For The Evaluation of IoT System Interactions

Our results show key times in which the demand may exceed the current supply, attackers

may use those ranges as clear opportunities for disruptions. We have four main scenarios

(NO-ATTACK, ATTACK-N, ATTACK-H and ATTACK-G) as described in the previous

section, each one comprising one hour of a day, totalling 4×24 = 96 PRISM models3. The

attack scenarios resulted in a state space of an average of 57,264,556 million states, so the

experiments were run in parallel on a multi-core server with 16 processing units. The model

parameters were tuned to represent the daily energy usage of an area populated roughly as

much as 1% of the UK (like a big city such as Glasgow in Scotland), with mean usage and

expected variations at each hour of the day. In our first experiment, we produced the baseline

usage to find the likelihoods of exceeding the demand (compare with results in Fig. 4.5), this

allowed us to evaluate the expected behaviour of the system without a spike botnet.

The next three experiments each modelled a different power prioritisation to meet the

demand, this allowed us to investigate which power generator type performs best under

the threat of a spike botnet, interestingly there are quite a few differences as highlighted

by Fig. 4.6. Fig. 4.5 shows our demand probabilities for a day. It is noticeable the close

relation of the demand with the daily power consumption of Fig. 4.3. The difference is that,

with this graph, stakeholders may also inspect the probability that the demand will exceed

and then anticipate load-changing opportunities of attacks. The lowest probabilities are

during early morning (before 6:00) and after 10pm. During the day, there is a considerable

probability (around 40%) of finding the system under high load whereas the chances increase

to approximately 60% by 5:00 to 19:30, slowing down from then until 23:00.

Fig. 4.6 shows the results from our attack models. As expected, peak hours are more

susceptible for spike attacks; however, it is possible to infer the probability of the system

where it is in over demand, information that may be used to have auxiliary power generators

readily available to avoid energy interruption in the event of attacks. The different controllers

actually performed significantly differently with respect to security. Prioritising Hydro led to

the scenario where an attack is the least likely to succeed across the day. Nuclear, on the other

hand, performs rather poorly, this is due to it’s slow transitions from serving to available and

3We have used PRISM version 4.5.

4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids 105

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

Probabilities of Exceeding Tolerated Demand

Fig. 4.5 Probabilities for demand raising above tolerated values, in a day to day scenario with
our PG setup. Diagram from Arnaboldi et al. [14]

due to it’s inability to recover after a spike attack (within 1 hour). Finally, prioritising gas

shows more areas of attacks than hydro. It also reaches a slightly lower height at peak time

of 18:00 (peak time of success for all attack scenarios), rendering it better over hydro power

for that particular time period.

Likelihood of successful a�ack

Fig. 4.6 Likelihood of blackouts caused by spike botnets and different control strategies.
Diagram from Arnaboldi et al. [14]

We stress that the numbers we used to model the PGs are partially reflecting the reality, as

we borrowed them from what specifications we could find, but they may not be as realistic as

wanted by experts in real specific domains. Building on our example, one could always re-run

106 A Modelling Technique For The Evaluation of IoT System Interactions

the experiments with different characteristics and settings, to better reflect their scenarios

of interest. It would then be possible to compute the probability of being under high or low

demand given these new parameters and devise reasonable countermeasures to avoid peak

attacks. These peaks are not necessarily cause by malicious attackers, but may happen due to

other benign causes. In Brazil in 2007, for example, hackers were promptly blamed as the

cause of a major blackout, but further investigation concluded that some faulty equipment

triggered a cascading failure from a poorly maintained systems4.

4.6 Limitations

Both case studies were able to showcase different aspects of the approach. Through the

presented evaluation we were able to demonstrate each of the characteristics we had identified

as important for modelling IoT systems. However, we encountered certain limitations. Firstly,

scalability is quite an issue, as the complexity of systems expands with the number of compo-

nents and their connectivity this same approach will struggle to characterise large IoT setups.

This is a known issue with these types of approaches[48]. Although our novel lightweight

modelling of network connections allows to observe various scenarios, as is exemplified by

the case studies, this is ultimately something all model based investigations will be limited

by. Secondly, we made the assumption that the wellness of the IoT system is measured as a

quantification of expected battery life under attack. This may omit factors around protection

of key resources and doesn’t take in consideration system specific knowledge. Furthermore

the way we modelled battery drainage was based on tests performed on a single device

type and in a controlled lab environment. Although our model was able to replicate the

results from the lab based environment [16], we know battery drainage is impacted by several

external sources which may not be visible in a lab and consequently results may vary when

deploying such a system in a non controlled environment. Expanding on this, whilst for both

these approaches we have attempted to match the evaluation to real data, one in a lab setting

and one from data from the UK powergrid. We cannot and do not claim to guarantee that

4Official document: http://www.aneel.gov.br/cedoc/adsp2009278_1.pdf

http://www.aneel.gov.br/cedoc/adsp2009278_1.pdf

4.7 Chapter Conclusion 107

the security evaluation is completely representative of the real world. This is particularly

true of the second case study, although we discussed this strategy with power-grid experts

which approved of our approach, evaluating this on a real environment is an impossibility.

These assumptions are made in order to allow models to scale, and whilst there is a trade-off

between accuracy and scalability we have provided evaluation to show that this compromise

still allows for interesting evaluations. Finally although we have set the foundation for a

modelling methodology able to abstract device, attacker and mitigations in IoT systems to

evaluate their impact we do not claim to be able to cover all circumstances and certainly

extensions will need to be put in place for research in new attack techniques.

4.7 Chapter Conclusion

This chapter presents a formalism to model interconnected IoT devices and evaluates it with

two different IoT scenarios. The use of CTMC allows to model complex device interactions

with an element of time which is crucial in any security assessment. Their stochastic nature

also allows to observe complex device behaviours and to models various different scenarios.

This very high level device abstraction has the key strength that quite large systems can be

abstracted without running into state based explosions as quickly. Furthermore, alongside

the ability to observe interactions on the system, we also showcase the power of formal

verification to assess the system. Allowing a system designer to run security assessments

without need to implement the system (albeit necessitating knowledge of his expected

deployment).

Modelling the behaviour of devices was the first step to the ability to deploy model-based

IDSs. System specifications using formal models have the unique benefit that it is highly

flexible and therefore more adaptable than implementing a hardware system. This chapter

showcases how this modelling formalism is able to capture vastly different scenarios and

even includes the ability to model various other security components. Allowing to run a more

thorough attack analysis to observe many different attacker behaviours. This is particularly

useful as an IDS often does not sit in isolation within a system and is often paired with other

108 A Modelling Technique For The Evaluation of IoT System Interactions

components. One drawback of this technique is that device interactions need to be manually

modelled. Conscious of this drawback in Appendix F, a technique to easily specify device

interactions through use of a graphical interface is presented however in the future we wish

to investigate more robust approaches making use of model learning [1].

Chapter 5

From Model Behaviours to Intrusion

Detection

5.1 Chapter Summary

In this chapter the formal modelling technique for the impact evaluation of attacks on IoT

systems is presented. This is partially published in two works [17, 18]. Our Lightweight

IoT System under Attack (LISA) [18] specifications are used to model the behaviour of an

attacker on an IoT system. This approach is then applied for use in attack detection [17]

as per our research aim. A technique is also presented to match network data to model

traces in order to apply this detection. We showcase the flexibility of our approach in a

theoretical constrained IoT deployment involving battery powered devices. These behaviour

traces are then used as the basis of detection for a static attack trace from a real-world

hardware IoT testbed. A case study evaluates the effectiveness of detection for a battery

DoS attack on a constrained IoT system. A further extension is also discussed for usage

alongside existing machine learning systems. The chapter also provides insights on potential

extensions, limitations and future works for this approach.

110 From Model Behaviours to Intrusion Detection

5.2 Chapter Introduction

This chapter presents our methodology for the deployment of model based intrusion detection

in constrained IoT. As highlighted by our summary of the literature in Chap. 3 there are

several works making use of behaviour based detection in IoT systems. However, the

literature highlights there are gaps in this type of detection in the IoT and that by itself it may

struggle to detect these attacks, or be unable to understand why the classification was made

(Chap. 3 Sec. 3.6).

A key new difficulty in deploying an IDS in constrained IoT systems is that having access

to or gathering bespoke data for the system may not be feasible [64]. In constrained IoT

deployments there may not be the luxury to evaluate the system in traditional means e.g. by

doing penetration testing [87, 10]. These critical circumstances might therefor require for

alternate means to perform security assessments and provide security to the system. As such

this chapter presents a technique based on the formalisation of the interactions, allowing to

bypass the data collection/pen testing step to perform a security evaluation and secure the

IoT deployment.

Due to the complexity of attackers, it is not simple to create specifications of attacker

behaviour, as a simple variation may be enough to circumvent them [44]. So the quick

generation of large and impactful attack traces allows for predicting potential attack variations.

This can be generated prior to a system being deployed without need for bespoke data

collection, something essential to certain IoT scenarios we have identified. This requires for

the system administrator to have knowledge of the system it is protecting, such as battery

consumption of the devices actions, and consequently will require a complicated setup phase.

We evaluate this approach on a IoT scenario and investigate its effectiveness in finding these

attacks that harm the core aspects of IoT systems (Chap. 5.4). A larger case study of this

same approach is currently in development, with specific focus on nightingale hospitals, the

work so far is presented in Appendix E.

In order to successfully train an IDS for a bespoke system, a security professional needs

to collect large quantities of data. To gather this data two main options exist: 1) make use of

known attack datasets to train the IDS, or 2) make use of an exploit database or other pen

5.2 Chapter Introduction 111

testing suites and replicate attacks on your own system. However, they come with several

drawbacks [120], and may not be feasible for the particular scenario we have identified

(Chap 1.1). We eliminate the usage of the first approach, as getting similar datasets for these

particular scenarios is unlikely and in practice the uniqueness of these deployments requires

bespoke data. This second approach is more precise [120, 32] as it allows to search for

bespoke attacks to the IoT network and construct a dataset which is unique and effective for

the specific system. Whilst this approach produces the best suiting dataset it is not applicable

for the following reasons: 1) One must find and implement the attacks, which is a difficult

process that might take a very long time [120], which is unavailable in critical scenarios.

2) One may need to cause major disruptions to one’s own network by running the attacks

which might obstruct work and productivity. 3) We do not have reference of attacks on these

systems as behaviours will be unknown and perhaps sporadic. We therefore require a further

approach.

We extend the work presented in Chap. 4 by providing transition rules to mimic network

communication and using non determinism to mimic complex attacker strategies. We

formulate the problems as the following: P1: is it possible to train a IDS for a specific IoT

system making use of a model rather than system data from a physical implementation? The

model would be able to simulate a real-world security assessment (e.g. penetration testing)

but would have the advantage that it could run parallel to the real system without causing

downtime (Fig.1), or even be used prior to having the system implemented. P2: by making

use of non-determinism and probabilities could the modelling approach recreate rich attacker

behaviours to train a predictor that is harder to circumvent?

The remainder of the chapter is broken down as follows, Sec. 5.3, discusses similar work

in the area of modelling system interactions and attacks, Sec. 5.4 presents our modelling

methodology, case study and experiment results used to evaluate our signature based approach

and provide solutions to P1 and P2. Sec. 5.5 discusses as a further extension for anomaly

detection using automatons, Sec. 5.7, provides insights and limitations about our methodology

as well as discussion regarding future extensions, and Sec. 5.9 concludes the chapter.

112 From Model Behaviours to Intrusion Detection

Implement
Systen

Implement
Attacks

Attack
System

Model
 System

Model
Attacks

Simulate
Traces

Dataset

Dataset

Dataset

IDS

Fig. 5.1 Running model along-side real system (or without necessitating any implementation)
to generate further datasets and train an IDS. Diagram from Arnaboldi & Morisset [17].

5.3 Related Work

Several papers address modelling IoT, adopting various different approaches. Fruth [67]

examines various properties of a wireless network protocol namely connectivity and energy

power through PRISM, including quantifying the battery drainage of certain randomised

protocols. In previous work [16] (Chap. 4) we model basic flooding DoS attacks through

PRISM and look at the effectiveness of different attack strains against a mitigation technique,

in defending systems of interconnected IoT devices.

Our proposed method combines these approaches to recreate an accurate representation

of system behaviour and represent a wide range of DoS attacks. PRISM has been widely used

as a excellent method to evaluate and verify models of IoT systems and protocols, combining

these two models by adapting both the system models and the attack models we successfully

model the behaviour and general properties of a bespoke IoT system. We then use the inbuilt

verification capabilities to ensure correctness relative to mimicking system behaviour by

establishing benchmarks and tests.

DoS attacks have long been one of the most common and dangerous threats in any internet

system. These attacks become even more dangerous as the IoT spreads across a vast amount

5.3 Related Work 113

of spectra and parts of life including safety critical and potentially life endangering ones such

as IoT Healthcare and Intelligent Transportation Systems (scenarios in Chap. 1.1).

The extant literature highlights several new DoS attacks against IoT system taking

advantage of unique qualities and IoT infrastructures [109, 150, 37]. One such attack, battery

drain attack focuses on exhausting the devices battery power as replacing it might be costly,

difficult and lead to extensive periods of downtime. These kinds of attack are very subtle as

the behaviour of the attacker might not necessarily mimic more common attacks such as pure

flooding, they attempt to find battery intensive operations (not necessarily malicious) and

repeat them until the device is out of power. This is only one specific example of the literature

cited above, however, what all of the above have in common is that they are specialised

in their intent of disrupting IoT devices and many of the current detection systems do not

account for them [150].

The growing use of internet services in the past few years have facilitated an increase in

DoS attacks. Despite the best preventative measures, DoS attacks have been successfully

carried out against various companies and organisations enforcing the need for better pre-

vention/detection mechanisms. This is partially due to the vast new avenues of attack (often

unique to IoT) that rule based schemes such as SNORT [149] struggle to detect. Further

work attempts a more scalable approach that models behaviour of a network (stationary or

non-stationary) and labels abnormal packets as a potential anomaly [31]. Limitations of this

approach are a large number of false positives as well as lack of information regarding the

attack (e.g. the specific vulnerability the attack relies on) as opposed to a rule based based

IDS which can indicate what rule is broken. The approach suggested in this chapter allows to

bypass these limitations. By modelling behaviour of a system, one can detect anomalies by

modelling various attacks, it can also provide accurate data of the system behaviour whilst

being targeted, allowing for less false positives. To predict “unknown" attacks, the modelling

approach uses a stochastic attacker that attempts different behaviours allowed by the system

policy. Using this data it can create a wide range of attack signatures and simulate an attacker

probing the system. Similarly to a rule based technique we can maintain actionability as we

are able to return to the model to observe why anomalies are observed.

114 From Model Behaviours to Intrusion Detection

We are not the first to seek means to formalise network traffic in a formal manner, as Xu

et al. [185], used a similar approach using finite state machines. They do not use it in the

context of security however they showcase how it may help in gaining useful insight into

network behaviour. Like the previous work we use a very similar feature extraction approach

to construct network traces, with some slight variations to fit our desired construct.

5.4 A Model Based Approach for Deployment of a IDS in

an IoT Network

In brief, our model is a Markov Decision Process (MDP), representing the IoT network, the

attackers, and some processes monitoring the security metrics under consideration. A trace

of the model (corresponding to a sequence of actions of the MDP) should match a trace of

the actual system, and vice versa, such that it becomes possible to train a IDS for the actual

system on the traces of the model. The main strengths of our approach is the ability to easily

represent various configurations for the IoT network as well as multiple types of attackers.

MDPs have some key advantages: they have substantial tool support such as PRISM Model

Checker [99], they rely on probabilities and non-determinism to recreate systems and they

provide the ability to find the optimum paths through the system using the reward function.

Through the reward function we create traces of behaviour that mimic attacks on systems by

assigning rewards to successful (damaging) behaviour. Our results highlight that through

this methodology we were able to consistently produce datasets that resulted in accurate

IDSs (detecting attacks on real world systems) and that could be trained in a fraction of the

time. The core contributions of this work are 1) A model of an IoT system that enables the

generation of synthetic data sets of network behaviour 2) Modelling of attack behaviour

against a system to train a real world IDS 3) A quantitative analysis and validation of this

model against a real world implementation of the same system to validate our methodology.

The work is split into the following sections; In section 5.4.1 we introduce our IoT system

model and attacks model that generates the network behaviour; In section 5.4.2 we highlight

our assessment methodology; In section 5.4.3 we discuss the setup for the experiment;

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 115

Section 5.4.4 provides an analysis of our results and section 5.6 concludes and discusses

future work.

5.4.1 IoT System Model

We model the system as a synchronisation of three core components: a set of devices, a

set of monitors (each assigned to a device) and an attacker. We also measure the impact

of the actions on the system, specifically their effect on the devices battery and ability to

operate successfully. This is something not available at the network level and it allows to

make much more informed decisions. Common process algebras such as CSP by Hoare [82],

the semantics of the traces are a set of action of the processes. These kinds of traces allow for

a human reader to understand the way the system operates. However an IDS can draw very

little information from these traces and they fail to capture the concept of messages through

the network. Specifically we need to be able to capture the intercommunication between

devices at each transition within the trace (as per a log in a real system). We customise the

trace semantics of standard process calculus, to produce datasets. The formalism captures

the effect of a device sending an action and the other device receiving it.

Our approach is general and could in theory be applied to several other modelling

paradigms e.g. petri nets.

The system as a whole is a tuple Φ = (D,M,T) where D = {D1, ..,Dn} is a set of devices,

M = {M1, ...,Mn} is a set of monitors calculating properties of their corresponding device

and T = {ti, ..., tn} is a set of times to calculate the changes over time of the system as a

consequence of actions being triggered. We also introduce means to model an attacker

as a malicious device. Given a global set of actions γ , a device D is a pair (A,P), where

A⊆ γ× [0,1] is the set of active actions, where (a, p) ∈ A means the process chooses action

a with probability p, and such that ∑{p | (a, p) ∈ A} = 1; and P ⊆ γ is the set of passive

actions.

We model the set of actions of the device as the communication capabilities of the real

world device. This allows to capture the full set of abilities of its behaviour and increases the

accuracy of the benchmark. This also eases the addition of further devices as they are simply

116 From Model Behaviours to Intrusion Detection

modelled with the full send and receive action spectrum without the need to alter the rest of

the system. The behaviour of a device is in the form of a guarded communication, which in

our model means that the communication is reliant on a set of conditions being true in order

to be triggered (Rule 1,2 and 3). An action a in the device can only be triggered to begin a

communication if it doesn’t violate the capabilities of the system, such as remaining battery

and time per message, which is enforced by a monitor.

A monitor is the part of the system that enables its correct functioning as well as mon-

itoring dangerous behaviour. It calculates the shifts in battery of the various actions and

synchronises with the devices to ensure correctness. A monitor M controls value λ , where

λ is the remaining battery of the device. Given a global set of battery drains Ω the λ is

measured as a quantity that is linearly drained by a ωa where ωa ∈Ω is a constant battery

drain of an action, the monitor will update its λ value to λ ′ after each corresponding device

action. The drain of each action is a fixed value calculated from the real world device, as

such each action is associated to a single device only.

Rule 1. Given two devices D1 = (A1,P1) and D2 = (A2,P2), a communication initiated by

device D1 on an active action a ∈ A1, triggering corresponding receive action ā ∈ P2 in D2,

with an associated probability p takes the form:

(a, p) ∈ A1 ā ∈ P2 p > 0

(A1,P1)||(A2,P2)
(a,p)−−−→ (A1,P1)||(A2,P2)

Rule 2. Given monitors M1 and M2 holding battery values λ1 and λ2, devices D1 and D2 are

controlled by their respective monitors. The monitors calculate the drain in battery caused by

action a and ā from constant drain values ωa and ωā in the form:

D1||D2
(a,p)−−−→ D1||D2 λ1 > ωa λ2 > ωā

λ1 ▷ D1||λ2 ▷ D2
(a,p)−−−→ (λ1−ωa)▷ D1||(λ2−ωā)▷ D2

These measurements can further aid the IDS in making informed decisions regarding the

impact of the various actions in the system and were used to quantify the effectiveness of the

attacker. Through this synthetic data the IDS will get a wide range of attacker behaviour that

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 117

will lead to system failure, including potentially unknown attacker behaviour. Doing a similar

approach without the model would require attacking one’s own system and implementing

an attack to collect data as per a penetration test (these approaches were compared in the

experiments in section 5.4.2).

We differentiate each transition as a network packet running through the system, checked

by the monitor of the device. Therefore they must be unique and fit all the possible behaviours

of the device. As each action belongs to a single device it enables the corresponding devices

to be uniquely identified.

Rule 3. Given two devices controlled by their monitors in the form: M1 ▷ D1 as CD1 and

M2 ▷ D2 as CD2, and taking the total set of devices X , then the transition between CD1,

CD2, taking system time t and being performed with probability p takes the form:

CD1||CD2
(a,p)−−−→CD′1||CD′2

(t,CD1||CD2||X)
(a,p,t)−−−→ (t +(ta + tā),CD′1||CD′2||X)

In the computational view we compose a trace of the system inductively as a set of

transitions in between states, where prefix is the prior transitions and the diagram describes a

single transition in the form:

prefix︷︸︸︷
{}

state︷︸︸︷
•

transition︷ ︸︸ ︷
[a, p, t ′]

state’︷︸︸︷
•

↓ ⇕ ↓
M1 D1 T1
...

...
...

Mn Dn Tn

∃ Di ∋ bi > ωa
∧ ∃ D j ∋ b j > ωā
∧ (a,p) ∈ Di ∧ ā ∈ D j

M′1 T ′1
...

...
M′n T ′n

∀ k i f k∈{Di,D j}
λ ′k−= (ωa+ωā)

∧ t ′ += (ta + tā)
i f k ̸∈{Di,D j} M′k=Mk

Fig. 5.2 Computational view of systems transitions

A trace of a model under attack should be a subset of the full (finite) model trace. The

traces are however limited by the drain of battery either by standard behaviour or by attacker

behaviour, as devices out of battery stop performing actions. This means that going from a

set of traces one can reconstruct a data file of what has taken place in the system. The output

118 From Model Behaviours to Intrusion Detection

of the model is a set of transitions following the semantics described. More formally a valid

trace σi within a system Φ is a finite list of tuples (a, p) active/passive actions, decorated with

a discrete time t, which follows Rule 1,2 and 3 until termination as per Fig. 5.2. Given the

maximisation of a certain properties the system selects the most optimum action to fulfil the

desired condition. For our case study this involved looking for the paths that would deplete

the least battery in the system.

By generating the outputs of the system as the behaviour spectrum, the model can describe

everything that can take place in the system. By updating the probabilities we can cater to

the specifics of the underlying system behaviour and make use of this to find unusual or

potentially malicious behaviour. The rules can expand to include a wide array of behaviours

and specifics to regulate devices actions and when they can be activated. These can include

complex policies on whether actions can be activated at a specific time or whether some

actions have higher priority allowing for very specific behaviour to be modelled.

Attacker Behaviour

An attacker synchronises with a subset of actions of the device. When an attacker synchro-

nises on the device the monitor will synchronise on that action and calculate the respective

drainage. The monitor keeps track of all these measurements for its respective device. Imple-

menting the model in a tool like PRISM allows us to make use of Probabilistic Computation

Tree Logic (PCTL) [26] to calculate various conditions of pertinence to the system, to

compute the optimal attack path, and to simulate traces of the model.

An attacker’s intent is to behave in a manner that shortens the traces of the system by

draining the value of battery in the monitor in the most efficient way possible. To model

the attacker we made use of non-deterministic behaviour in order to allow for anything to

take place at any point. The advantage of non-determinism is that it allows for a system to

arrive to an outcome using various routes. This can be manipulated to find optimal routes

through the system and simulate varied behaviour. Unlike devices that are restricted by time

and batteries of the devices they model, we allow for the attacker to have different levels

of power to simulate various attacker strengths. An attacker, like the devices, has a set of

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 119

unique actions γA, however unlike other devices does not have a set of passive actions as

it sits outside the connectivity of devices and cannot receive messages. An Attacker may

synchronise with any device in the system, and the set of actions aγi ∈ γA each correspond to

different types of attacks in the real system. To expand further on the actions of the attacker,

these should be very flexible and we make allowance for any action that can take place in the

system (only restricted by the setup and protocols).

Each action label will correspond to an attack message from the real attacker and can be

converted for the log file. For our specific example, each action in the attacker corresponds to

the attacker in our experiment sending different packets/targeting different parts of the system

as per the attacker experiment in section 5.4.2. Beyond actions it is important for us to be

able to monitor the behaviour of attackers looking at how many actions an attacking device

can perform at a time T (whether by assuming a real attacker device or by simulating different

powers of attack). This is highlighted by measurements of the system we implemented that

were then modelled in the monitor of each device. The other information to keep track of is:

the choices the attacker makes to take down the devices, as these are important behavioural

patterns for the IDS to use and can give us insight on potential vulnerabilities as well as

unknown attacker behaviours.

Unlike with the devices (whose intention is to cover the full spectrum of possible be-

haviours with the attacker), we are particularly interested in targeted behaviour. The attack

actions therefore encompasses behaviours which are particularly damaging to the system

(e.g. causes large drain of battery to the devices). As opposed to probabilistic behaviour we

use non-determinism to find paths of behaviour that are particularly rewarding in terms of

time taken to take down the system and in terms on lowering system usability (e.g. message

throughput). To model non-determinism we remove the probabilities from the attacker action.

This differs from probabilistic behaviour because the non-deterministic choice between

process A and Dx is resolved at the moment the first action takes place. Conversely in the

case of a probabilistic choice is done before the actions takes place [11], so if there is a

conflict in the system where both probabilistic actions and non-deterministic actions exist the

probabilistic action is resolved first. By not associating a probability to an action we allow

120 From Model Behaviours to Intrusion Detection

for the strategy of the attacker device to vary depending on what we are looking for in the

system. Given a policy regulating the behaviour (corresponding to the available attack types)

we allow for any action to take place at any point. This can be combined with a set of rules

to find the trace of behaviour that allows to follow all the rules and yet still drain the battery

as quickly as possible within these restrictions. Instead of a probability each action has an

associated reward, and one can use this to find the path of most reward (or the best strategy

to take down the system).

The non-determinism in combination with the reward structure time is used to find the

optimum attacker strategy, or the most rewarding trace through the system. In PCTL it is

written as R{“time”}min =?[F power = 0] or the minimum time for the variable power

(referring to battery levels) to reach 0. The value “time" is a variable calculated by the time

for a single message to be sent by the attacker and cumulated for each message sent before

the power reaches zero calculated in microseconds and the power drain is calculated by the

formulas in section 5.4.2. These reward structures allow for simulated attack strategies that

an hypothetical attacker might make to take down the modelled IoT system. Not all attacks

rely on speed and intensity to take down the system, as highlighted by the running example

in 5.1 where the longer trace (Trace 2) is faster, so we model different rewards and observe

different attacker behaviours. We generate traces of less detectable attack by associating

an predictability score to an action and therefore keeping the behaviour varied and realistic

whilst still optimising time. This can scale to several scenarios. We use these “optimised"

traces to create a large dataset that mimics different kinds of attackers.

Example Showcasing Model Approach

We show an example composed of: devices Dx,Dy and Dz, corresponding monitors Mx,My

and Mz, and global time t. The small example is displayed graphically in Fig. 5.3.

Each device has different actions that are synchronised with some other devices. The

monitors have battery values for the devices and each device action has a set ωi ∈ Ω of

action drains impacting the monitor battery λ . Transitions follow the described rules to

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 121

Mx

Dx

Dy

Dz

readzx

readzx

readxy

writexy

readxz

readxy writexy

writeyz

readyz

readyz

readzy

readzy

readxz writeyz

ω =1

ω =3

ω =1
ω =1

My

Mz

ω =3

ω =2

ω =1 ω =2

ω =1

ω =1

ω =2

ω =1

ω =1

ω =1

2

5

8
 λy

 λz λz

 λx

Fig. 5.3 Graphical representation of communication between example scenario devices, and
monitors calculating their resources

construct the traces. Note that they do not represent the full possible set of traces but rather

two simulations of the system until devices are drained, full details presented in Tab. 5.1.

Table 5.1 Example system model and its outputs

Devices : Dx = (Ax,Px) where
Ax = {(readxy,0.3),(writexy,0.5),(readxz,0.2)} and Px = {readzx}
Dy = (Ay,Py) where
Ay = {(writeyz,0.8),(readyz,0.2)} and Py = {readxy,writexy,readzy}
Dz = (Az,Pz) where
Az = {(readzx,0.1),(readzy,0.9)} and Pz = {readxz,writeyz,readyz}

Monitors Mx ∋ λx = 5 and Drainsx ∋ ΩAx = (1,3,1), ΩPx = (1)
& Drains: My ∋ λy = 8 and Drainsy ∋ ΩAy = (2,4), ΩPy = (1,2,1)

Mz ∋ λz = 2 and Drainsz ∋ ΩAz = (1,1), ΩPz = (1,2,1)
Trace 1: [writeyz, .8,30] [writexy, .5,50] [readxy, .3,65]
Trace 2: [readxz, .2,8] [readxz, .2,16] [readxy, .3,31] [readxy, .3,46] [readxy, .3,61]

This very simple example may match a critical scenario involving three sensors. One

might wish to use the sensors to know information about an earthquake that has just happened.

However the sensors have limited batteries and therefore their usage is limited. Going

through a simple trace (Trace 1) we observe there is an initial writeyz action, it has associated

122 From Model Behaviours to Intrusion Detection

probability pyz = 0.8 and takes an accumulated 30s. Following the rules, we see that in

order for this action to take place (Rule 1) there needs to be a corresponding read action

(ā = writeyz) and the probability of this action taking place must be greater than zero. As

an outcome of this action we also have a consequent battery drain (Rule 2) on each of

the two device monitors My and Mz, based on the associated drain of the actions (ΩAy and

ΩPz), assuming sufficient battery is remaining, this results in new values (λy− 2 = 6 and

λz−2 = 0). A trace may continue in this manner until the rules can no longer be applied.

Model Insights

In practice, even with the very simple case study presented we can see several variations.

Given even a single simple optimisation criteria the corresponding traces will differ dras-

tically. Showcasing this with an example, say we are an attacker attempting to drain the

system as fast as possible, meaning no further actions can be performed. Given the ini-

tial setup as per Tab. 5.1, a possible optimum trace given this objective corresponds to

σ* = ([writexy, .5, t], [writexy, .5, t], [writeyz, .8, t]). Using Rule 2, we can calculate that after

this trace both the battery value for Dx (λx ∈ Mx) and the battery value for Dz (λz ∈ Mz)

are such that no other action can be performed. However given the change of one bat-

tery value by a single number from λz = 2 to λz = 3 a further step would be required

σ*′ = ([writexy, .5, t], [writexy, .5, t], [writeyz, .8, t], [readyz, .2, t]). Furthermore, this is a prob-

abilistic system so the ordering of the transitions might vary. The number of optimal attacker

behaviours is calculated as (r+n−1)!
r!(n−1) where n is the number of active/passive action pairs

in the system and r is the average trace length prior to the system no longer being able to

function (i.e. rules do no apply anymore due to battery drainage). So even for this incredibly

simple system composed of a couple of actions and limited battery power the resulting

number of scenarios amounts to 210 possible optimum attacker traces.

5.4.2 Experiment Methodology

To evaluate the effectiveness of the models we tested and compared the modelled system

in 5.4.1 with the more standard approach described previously. We use the collected network

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 123

data as the ground truth and compare it to the model traces approach to see the enhancement

of performance in various different scenarios. Both the approaches output was used to train

an IDS. The IDSs were then used to predict attack behaviour. The experiment evaluations

was on the following basis: 1) Accuracy on unknown attack detection; 2) Ability to mimic

devices behaviour and smart attackers. The setup of the experiment was the following:

Experiment - Device Setup : We set up a small IoT network in the lab and then

modelled it to compare the results and to test out the effectiveness of our model in creating

synthetic dataset. For the sake of testing we kept the setup simple to display the tool as the

thing that needs to scale and not the system, as using this approach changing device setups

is much easier than data gathering on a new system. Once the simple model is created it is

trivial to add more (similar) devices, whilst implementing a new system in the real world can

be very time consuming. We implemented a sensor network consisting of two devices. Each

device had the following actions; they took sensor readings and then could send it to the other

device at any time; they could also request the sensor data from the other device at any point.

The devices used simple HTTP protocol for communication, and the behaviour was stored

in Apache log format. To accurately represent the devices and to create smart attackers,

several measures needed to be obtained. Both devices were equipped with a Mh3500 battery.

We made a basic assumption that the devices are on constantly. We argue this is a correct

assumption as due to our attack the device is constantly in log mode and therefore never in

sleep mode. Beyond this assumption we calculated time to send a message/log a message,

baseline battery usage, percentage increase in battery usage under different DoS strains

(taken this value and dividing it by messages processed for second) and battery drain per

message.

Experiment - Attacker: To validate the model we implemented a common DoS attack

both in the real world and in the model. Our attack of choice was HULK, a DoS attacking

tool which relies on several obfuscation techniques. This allowed to not be spotted whilst

still outputting enough strain to take down systems effectively 1. The attack specifies it has

the following properties: 1) obfuscation of source client - this is achieved by using a list of

1HULK, Web Server DoS Tool -Barry Shteiman, Confessions Of A Dangerous Mind,
url:http://www.sectorix.com/2012/05/17/hulk-web-server-dos-tool/

124 From Model Behaviours to Intrusion Detection

known user agents, and for every request that is constructed, the user agent is a random value

out of the known list, 2) reference forgery - the referrer that points at the request is obfuscated

and points into either the host itself or some major pre-listed websites, 3) stickiness - using

some standard Http command to try and ask the server to maintain open connections by

using Keep-Alive with variable time window and 4) unique transformation of URL - to

eliminate caching and other optimization tools, they crafted custom parameter names and

values and they are randomized and attached to each request. The tool was able to take

down a web server within minutes from just a single host. Seeing as IoT devices will have

less capabilities than any web server we hypothesized that this would be a good attack to

use as its properties make for a good dataset that is not straightforward to detect. These

properties and obfuscations led to different combinations of message structure that we used

in the non-deterministic attacker.

To measure the time it takes per message we measure how many messages can be sent

within a time period. This helps evaluate the accuracy in respect to the real world of our test

attacker. In order to measure voltage usage across the different IoT devices, we attached an

extra component in between the battery supply and the device to take the readings required.

To measure battery drainage we utilized IoT battery lifespan estimator tool by Farnell [65].

This was used in combination with a variance we introduced on top of the calculator, to

represent attack intensity and change to current. Through this we were able to estimate the

different drains of the devices as an outcome of the actions they performed. We created

datasets utilising three approaches and compared each dataset in two different experiments.

The first dataset (RWD) was constructed from data from the real system. We implemented

the system of devices and the real-world attack and monitored the behaviour of the system.

The data was logged across a period of twelve hours and used to train the first IDS. The

second approach was a naive approach, we constructed a synthetic dataset (ND) without

attacking the system but rather attempting random behaviour. This gave a comparison of

the model with a different synthetic dataset this will help evaluate the effectiveness of the

IDS predictions as they effectively should be random guesses. And finally, we followed our

proposed approach (MD) following section 5.4.1.

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 125

Hardware IoT
Testbed

experiment 1 experiment 2

2k Malicious
18k Benign

10k Malicious
90k Benign

training data training data

neural net decision tree neural net decision tree

neural net decision treeneural net decision tree

training attacker

MDP

PCTL*

System Model

Optimization Criteria

System Specification

20k transitions

training data

100k transitions

training data

evaluation
 attacker

malicious trace

benign trace

model trace

accuracy evaluationevaluation trace

20k Malicious
80k Benign

evaluation data

Fig. 5.4 Visualisation of experiment setup

Experiment 1: As our dataset relies on stochastic events and actions, we created three

datasets from the approach and evaluated each one to benchmark its effectiveness, a mean

score was taken. Whilst our model is able to recreate very large datasets quickly we choose

to keep the dataset size uniform across the initial experiment to get a fair comparison against

the other two datasets. The comparison was based on accuracy of prediction against unknown

attacks given IDSs trained with each of the datasets. The unknown dataset consisted of

real world data of the systems behaviour whilst being targeted by attacks that we had not

modelled nor contained in the RWD. To measure accuracy we made use of the F score. The

F score is a measure of a predictors accuracy, it is a measure of its precision over recall (a

measure which takes in consideration both false positives and false negatives).

Experiment 2: The second experiment we ran was to test the effectiveness of the

model in creating large quantities of behaviour and the ability to readjust in case of network

reconfiguration. We used deep learning classifiers catered to large datasets and created a

much more efficient IDS purely through synthetic data. One of the core strengths of our

approach is that once the model is setup the datasets are very easy to generate and we wanted

to test whether this, in combination with our smart attackers, will lead to the ability to train

better performing IDS.

126 From Model Behaviours to Intrusion Detection

5.4.3 Experiment Setup

To perform experiments described in section 5.4.2 we implement a Python framework that

runs through the various steps required to test the IDSs: data generation, data processing,

normalisation and setting up of the IDS’s classifiers. This automatic framework prepares the

datasets and trains the IDSs so that we may perform Experiment 1 and 2. It is implemented

using the scikit-learn machine learning libraries.

Achieving a rich descriptive dataset was paramount in training an effective IDS. Through

the outputted model traces we were able to generate a dataset of different transitions through

the modelled system. These traces were descriptive enough for a machine learning algorithms

to construct rules about negative behaviour through supervised learning. The traces of the

model correspond to the real system behaviour and each transition was labelled as either

normal or abnormal behaviour, therefore they can be used to make informed decisions about

the system. For instance, if the model traces of the attacker continuously target a device, the

IDS can interpret this as a weak point and set a rule to limit this behaviour, as this could

correspond to the behaviour of a real world attacker.

To allow for data to be interpreted by machine learning algorithms it needs to go through a

process of normalisations. This is often due to categorical non-numeric features or continuous

features. The data provided by most if not all internet protocols is categorical (e.g. agent

names and method calls). As such, in order to evaluate it we first needed to go through an

initial phase of pre-processing. The intent of pre-processing is to render the data machine

readable whilst preserving patterns. The process we adapted was the process of binarisation.

Binarisation allocates a numeric value to each unique feature for example if dealing with

HTTP codes GET would become 0001, POST 0010, DELETE 0100 and PUT 1000. This

allows for the features to maintain their patterns and their predictive power and be used

normally. This initial step was applied to both the real world dataset and the naive synthetic

dataset. This step was however not required for the model dataset as it already produced

numeric features rather than categorical ones for efficiency.

The classifiers we implemented represented the IDSs. We choose to use two separate

classifiers to get a better evaluation of the results. Each dataset was used to train two IDSs

5.4 A Model Based Approach for Deployment of a IDS in an IoT Network 127

and then all the IDSs were tested against a new dataset of attack to establish their predictive

power and the strength of the datasets.

The first classifier we implemented was Multi Layer Perceptron (MLP) Neural Network.

An MLP consists of at least three layers of nodes. Except for the input nodes, each node is a

neuron that uses a non-linear activation function [190]. MLP utilises a supervised learning

technique called back propagation for training. Its multiple layers and non-linear activation

distinguish MLP from a linear perceptron. A linear perceptron is a function that can decide

whether an input, represented by a vector of numbers, belongs to some specific class or not.

Combining several together in an MLP and adjusting the functions and weights you build a

statistically accurate classifier. The result is a non-linear perceptron that is able to classify

non-linear classes.

The second classifier used was a Decision Tree Classifier. A decision tree is a decision

support tool that uses a tree-like graph or model of decisions and their possible consequences,

including chance event outcomes, resource costs, and utility. It is one way to display an

algorithm that only contains conditional control statements [152]. Decision tree learning uses

a decision tree (as a predictive model) to go from observations about an item (represented in

the branches) to conclusions about the item’s target value (represented in the leaves). The

rules in the branches are automatically constructed from the training data which is labelled.

Using these rules it will be able to take in the test data and run it until it reaches an end node

corresponding to a class (either DoS attack or normal behaviour).

5.4.4 Results

Following the evaluation criteria in section 5.4.2 and recreating the model described in

section 5.4.1, we generated and tested three model datasets against our benchmarks of the

naive dataset and the real world dataset. Beyond the accuracy of the results, we make an

argument for feasibility and re usability of our approach. The results were acquired by

initially training two classifiers for each dataset, these were trained with 20,000 samples of

which 10% were attacks. The classifiers were then evaluated on an unknown and unlabelled

real world dataset of 100,000 samples of which 20% were attacks (of two different unknown

128 From Model Behaviours to Intrusion Detection

types). The classifiers then attempted to label the new dataset to predict which ones were

attacks.

Experiment 1 - Results The neural network trained on the real world dataset proved to

be very accurate with a 85.5% prediction accuracy. On the other hand the model dataset

trained predictor whilst still high, suffered from some degree of variance (79.7±6.3%). What

was of most interest however was the predictions outputted by the naive dataset of 0.9%.

This combined with the relatively inconsistent results of the synthetic dataset (±6.3%) make

a case for over fitting. Over fitting is the scenario in which a model is trained so specifically

to the training data that it is no longer classifying DoS attacks and normal behaviour of the

system but rather focusing solely on the training data and learning on patters unique to the

dataset not the system. This is quite common in Neural Networks as they perform best with

very large quantities of data [190], which for this part of the experiment we did not have.

The results of the decision tree, contrasting to neural networks do not suffer from the

same inadequacy of over fitting and do not necessarily need large amounts of data. This was

mirrored by the results, as the model datasets all performed to very similar standards and the

added randomness traces which might have disrupted the neural network made for a more

ample rule set resulting in near perfect predicting power in the model dataset (98.8±0.6).

The real world data which did not look at the possibility of random behaviour only achieved

77% accuracy and the random dataset had a predictive power of near 50% as expected.

Experiment 2 - Results We observed that our approach of using non-determinism to

recreate attack traces was particularly effective for the rule based classifier however led to dis-

ruption during the back-propagation process of the neural network, as non-standardized data

can create uneven results. This time using the much larger dataset of 100,000 transitions,the

results were a lot more accurate (97.1%) than previously, confirming our hypothesis.

As highlighted by this example our model has one key advantage over the traditional

approach. Data generation is fast and efficient. If we wanted to improve the training of the

IDS used on the real world dataset to a similar level of accuracy, it would take several days

of data collection and consumption of resources (electricity, system downtime etc). We argue

that whilst the initial effort of creating a model might be time consuming and perhaps not as

5.5 Automata Based Extension 129

Fig. 5.5 Accuracy of trained classifiers in experiment 1 using model traces (MD) and real
world data capture (RWD)

intuitive for a potential system administrator, the phase of dataset generation makes up for

this effort both for speed and predicting power of the IDS.

5.5 Automata Based Extension

In the initial case study we investigated the feasibility of using formal model traces as the

basis for IDS training. However, the process may also be extended to became the full basis

of an anomaly detection system, matching the model traces directly to the traces extrapolated

from network traffic. This works by generating an automaton that matches the optimum

behaviour.

In order to recreate the system behaviours that match the optimisation scenarios described

through the PCTL we use formal verification. In formal verification, finite state model

checking needs to find an automaton equivalent to a given PCTL formula, i.e., such that the

PCTL formula and the automaton recognise the same ω-language. In the case of PRISM

Model Checker, the PCTL is specifically matched by a Büchi Automaton [36]. In this context

130 From Model Behaviours to Intrusion Detection

this automaton represents the full set of actions resulting from the discovery of the optimal

system property of the MDP. Each valid path in the Büchi automaton can be traced back to

the labelled transitions of the system model enabling for easy understanding about behaviours

and consequences of action sequences. Whilst the states of the Büchi automaton do not

correspond to the states of the MDP, a easy matching allows to see the current state in a

system walk and to see consequent outcomes of particular behavioural choices in a system.

This relation provides insight into how systems behave giving the user understanding about

consequences of actions and outcomes of design decisions; allowing to use this for system

customisation and evaluation.

5.5.1 From System Data to Model Behaviour

Whilst model traces take the form of a series of labelled transitions, network traces are much

more complex. This requires transformation into more focused behaviour before they can

be used for detection. We propose a model based network traffic characterisation method in

order to compare the two. Each state in the model has specific characteristics related to where

the packet is coming from, type of message, time message was sent and time it takes to reach

destination. These are all characteristics that can be extracted from network traffic of an IoT

system. Furthermore we wish to deduce the state transition system of the corresponding the

Lightweight IoT System under Attack (LISA) model, which can then be compared to the

expected “good” or “bad” behaviours depending on requirements.

The first step becomes identifying the state of the network (∆). This is done on a per

network package basis for each package within a window N, leading to state space ∆ =

{δ1,δ2, . . . ,δN}. This window is flexible, based on the type of threats, speed of computation,

and length of traces one has for their system. Using the ∆, message flows Ψ are identified

within the current window. A message flow ψ , is composed of a series of s,a, ta,n transitions,

each part of which is gathered from the network package. Using UDP/COAP as an example,

UDP contains Source and Destination, which correspond to s and n respectively, the UDP

message type represents the a and ta is gathered as part of the environment data. A final

transformation occurs for the sake of the time windowed gathering approach, the time for

5.5 Automata Based Extension 131

action a as ta becomes a cumulative increment from the initial time gathered at state δ1

which each new time being added on to the next state to mimic the behaviour of the model.

Using the characteristics of all the flows within the network capture a transition system

is constructed. On account of noise or dropped packets a certain threshold variation α is

allowed from the similarities of traces, which can be customised for strictness. Finally

for efficiency only the first y packages are compared before a full comparison is made to

quickly sort through the current scenarios. A diagrammatic representation of the approach is

presented in Fig. 5.6.

MDP

PCTL*

System Model

Optimization Criteria

Buchi Automaton (𝔹)

System Specification
System Behaviour

S,a,ta,n Traces (𝕋)

Network Capture

System States

δ1

δ2

...

δN

Current Behaviour

IoT System Deployment

!(A⊧𝕋∈𝔹)

Anomaly Detection

Fig. 5.6 IDS comparison with the model traces to detect deviating harmful behaviour

This much simpler approach suffers from the downside that in its naive form it does

not account for probabilistic variations and potential packet drops. A further investigation

into the feasibility, potential extensions and performance of this approach is discussed in

Appendix E.

132 From Model Behaviours to Intrusion Detection

5.6 Summary of Approach

Our case study and proposed methodology has shown very promising results. We have

shown that generating synthetic datasets of DoS attacks in IoT networks through this tool is

effective and can be used as a basis for behaviour analysis. We believe that the ability for

this approach to adapt easily to multiple devices and protocols in combination with its strong

predictive power makes a good argument for its usage across various IoT networks. Our

argument for scalability of this approach is two fold, firstly it scales well in terms of costs

as you can make assessment prior to implementing the system and secondly, we can bypass

several of the downsides of verification (in terms of state space) as we focus on simulation.

Perhaps the most useful feature of our proposed approach is that it allows for the construction

of datasets to be very efficient even if a device is added or the system is reconfigured. As

this is a prominent concern in dynamic IoT systems this advantage is quite significant. Our

approach is based on certain transition rules built on top of MDPs, however the very same or

similar rules could in practice be applied to other formalisms.

In this chapter we included a case study of a single attack which worked very well.

Our future work envisions the ability to model further attacks from a database to create an

extensive set of attacks to create a much more predictive dataset. We envision that the ability

to relatively easily plug and play any IoT system in combination with implemented corpus of

attacks, could turn into a tool that generates synthetic datasets of attacks to train bespoke

IDSs for any specified IoT system.

5.7 Discussion & Future Work

The conjunction between the world of formal models and network behaviour is not a obvious

union and only some work has successfully explored its possible usage [68, 185, 125].

Automatons have been used as means for IDS before [68], however the authors have manually

specified the actions of an automaton in the form of a specification based IDS. The advantage

of a more general formalisation using MDPs is that several different specifications can

automatically be observed in the form of PCTL queries. Through a PCTL formula the same

5.7 Discussion & Future Work 133

MDP can characterise several different systems leaving room for a rich system description

and adapting to different requirements or deployment restrictions. We further expand this

investigation beyond the specification of behaviour to use these approaches in unison to

machine learning algorithms by using not just the models, but the traces themselves as part

of the training process. Whilst this approach takes a further transformation of incoming

traffic to be understandable by the classifiers this is not an altogether extra difficulty as data

restructure is something almost always performed in ML contexts [192].

We are the only work, to the best of our knowledge, embedding specifics of the devices

themselves such as battery power into the verification, in this manner, to obtain better se-

curity analysis and context aware system traces for IDSs, something which can be very

useful in constrained environments. Another interesting contribution is that through these

methodology we may also find unintentional resource exhaustion attacks caused by po-

tential misconfigurations. It also opens up for several performance based evaluations and

optimizations.

Whilst modelling is beneficial to gain system understanding as well as embedding knowl-

edge into the prediction, writing formal models manually is hard, so learning approaches

are desired. Attempts to use approaches such as these have been attempted such as the

work of Misra et al. [125]. In this work the initial representation is adapted and improved

based on new data coming into the system. This has the potential benefit that a imperfect

representation may be used, perhaps allowing quicker formalisation, and then fine tuned

over time. However it suffers from the same limitations of the previously mentioned work

and the reduction in manual labour is limited. What is in fact ideal is a learning approach

that requires no previous knowledge of the system. These kinds of approaches (without

system specification) often focusing on reinforcement learning are a very new field and

advancements are being made to allow for this. Some work has even incorporated these

approaches in the area of anomaly detection in the context of video recordings [4]. However

even with recent advances there are certain characteristics not present in network traffic

data and that therefore cannot be automatically learned. Future work in grey box anomaly

detection, could combine the automated learning approaches of reinforcement learning with

134 From Model Behaviours to Intrusion Detection

the capabilities of LISA to represent device characteristics to gain the best possible insight

into the system, whilst improving usability. We do not yet have any insight into the feasibility

of this approach and relegate it to very exciting albeit out of scope future work.

5.8 Limitations

In this chapter we included a case study of a single attack which worked very well. The

attacker objective whilst non deterministic, is still based on a preset of behaviours. This

specific attacker only allows us to capture a attacker whose aim is to disrupt system behaviour.

We are consequently not able to observe attackers whose intent is to instead obtain information

from the system or take over a device. Our future work envisions the ability to model further

attacks from a database to create an extensive set of attacks to create a much more predictive

dataset. We envision that the ability to relatively easily plug and play any IoT system

in combination with implemented corpus of attacks, could turn into a tool that generates

synthetic datasets of attacks to train bespoke IDSs for any specified IoT system.

One further limitation of this approach is the fact that we are dealing with discrete

time values, so certain attacks such as a traditional flooding DoS may be lost within a

certain window, and further tuning may therefore be needed. However, knowledge of these

limitations allows us to work around them by introducing mitigations such as rate limiting.

The types of attacks that may be covered by our approach are limited to detection of unknown

suspicious behaviours by a node in the system, any protocol based attack such as man in the

middle, routing based attacks, and resource exhaustion attacks.

Whilst modelling has certain advantages, there are some explicit scalability issues, as

discussed in previous chapters. With this lightweight behaviour specifications we were able

to model systems with very constrained behaviours of up to twenty devices [14], and we

suspect this could scale further in loosely connected environments such as RPL. However,

this is in part due to the attack type we have constructed in our experiments. If we were to

expand to more complex attackers, as is our objective, we might find that even this level of

scalability is lost.

5.9 Chapter Conclusion 135

5.9 Chapter Conclusion

In this chapter we showcase the power of our formalism to characterise IoT behaviour in

the context of a white box specification. Through models we are able to embed domain

knowledge into a rich description of the system that can capture a variety of behaviours. We

advance this further in Sec. 5.5, and describe how models can be embedded in the detection

engine to relate an anomaly directly to a known behaviour. This approach is not without

downsides, as the modelling process might be non intuitive and require a potentially quite

high initial overhead. Nonetheless, results from our experiments show that this approach is

highly effective in detecting various attacks and capturing unique scenarios. A further feature

of value is that the modelling approach can be used alongside existing techniques in order to

add actionability to the predictions of other algorithms.

Chapter 6

Conclusion & Final Considerations

Reiterating our original aim:

The overall aim is to provide a new, well tested, methodology for the deployment of

knowledge based IDSs for constrained IoT systems - through the use of white box formally

defined system models.

In the process of achieving our aim we have contributed significantly to the existing body

of research resulting in several publications, each included in this thesis [16, 18, 17, 14]. The

methodology specifies devices as modular concurrent MDPs describing the IoT system. We

present new trace semantics and rules to specify communications between these devices,

allowing to capture routing behaviour. We devise means to capture elements of battery drain,

by means of monitors - a contribution allowing to enrich the performance analysis. These

further semantics allow to observe attacks pertinent to IoT deployments such as routing

attacks and DoS attacks.

Having identified scenarios for which it would be beneficial to be able to deploy an IDS

prior to system implementation, we devise an experiment protocol to evaluate the feasibility

of our method. The protocol evaluated the effectiveness in training an IDS purely with model

data against the training of an IDS using network data gathered from the system. To do so we

implemented a hardware testbed and gathered real data of benign behaviour and malicious

behaviour by means of a attack test on the system. We demonstrated empirical support of

138 Conclusion & Final Considerations

the validity of this approach by achieving a high level of accuracy of prediction on a further

unknown attack dataset from the same system (up to 97.7%).

We were able to address all challenges and provided evidence of having resolved them. In

Chap. 3, we extensively surveyed the literature to assess the current state of the art, identify

gaps, and propose means to uniformly evaluate the IDSs. In Chap. 4 we devised new means

to capture device interactions through an Markov chain based approaches, showing how they

could be used to evaluate the system. In Chap. 5 we present the new enriched trace semantics

used for behaviour analysis, present our experiment methodology, and evaluate our approach.

The following discussion evaluates the degree to which we achieved our aim and addressed

the identified challenges.

Challenge 1 - Evaluation of IDS Solutions

The first difficulty identified as an obstacle to achieving our aim was the lack of unified

evaluation. This was addressed by our survey presented in Chap. 3. This contribution

categorised the current state of the art in IoT Intrusion Detection. We conducted the most

extensive review of IDS tools for IoT systems to date, to the best of our knowledge, and

categorised them by technique used, deployment scenarios, attacks detected and evaluation

methodology. Our findings showed that out of the 51 collected tools, i) only 4 provided

evidence of their evaluation either as a dataset or simulation code, ii) 12 didn’t evaluate

their IDS in any way, iii) of the 10 that evaluated by means of an execution or bespoke

system trace none were compared with one another or shared their code, iv) of the 24 using

simulation tools only 4 papers compared results with each other. These results confirmed

that establishing which IDS is superior and running a cross evaluations is indeed almost

impossible.

Our results showed: 1) there is a lack of available public datasets that are pertinent to

IoT scenarios and could realistically be used to train and test and IDS, 2) despite the many

added difficulties of securing an IoT deployment it doesn’t necessarily mean completely new

tools are needed but rather additional measures might need to be added to existing tools, and

139

3) one of the most common trends in IoT IDSs are the vast number of bespoke and unique

scenarios, so by this very nature, the lack of comparison may be justified.

To resolve this we propose (Chap. 3.10.1) a methodology for the evaluation of these

systems. Given an approach based on virtualisation several setups may be quickly deployed

allowing to test the proposed tools in varied environments.

Challenge 2 - Modelling for Bespoke and Unknown Deployments

The second challenge was that there was no existing methodology to model interactions

between IoT devices, to run network based security assessments. To be able to evaluate a

system prior to deployment and assess attacks that are relevant to the system we devised

means to embed our knowledge via models. The system is specified as a Markov chain,

capturing device interactions and impact of attacks on the devices. We leveraged the relative

simplicity of device behaviours, allowing for more accurate abstraction, to evaluate systems

of interconnected devices (Chap 4). We showcased the ability to test out an attack on the

system, evaluate a potential mitigation, and perform analysis on its efficacy. This resulted in

the ability to assess optimum deployment scenarios. An outcome of our evaluation presented

in Chap. 4, showed that a technique for DoS mitigation used in server environments (crypto

puzzles [169]) may cause negative impact on the IoT system [16]. Showcasing the value

of the models we have used in this thesis. We also were able to capture more complex

assessments of system setups to identify the best method of mitigating an attack using smart

grid as a case study. The results show that by using these models we can successfully replicate

real world device behaviours and adapt to the many scenarios existing in the IoT.

Challenge 3 - Model Data For Intrusion Detection

The final challenge was that there was no current trace semantics able to capture the flow of

messages between devices for use in a behaviour based IDS. Due to the constrains of the IoT

systems we are considering our focus was to model the impact on the devices (Chap. 4) [16].

By focusing on core behaviours to do with routing and device resources we were able to

maintain simplicity in our models, whilst still being able to capture meaningful attacks.

140 Conclusion & Final Considerations

Through our case studies we were able to empirically evaluate that these characteristics were

meaningful and useful in practice (Chap. 5) [17], showcasing the ability for our models to

match to realistic deployment environments.

We investigated the feasibility of using these models as replacement to real world data

in scenarios were data is unavailable or unfeasible to collect. We tested this technique

in an experiment setup and found that we were able to deploy an IDS from the get go

without having to rely on system data, enabling it to be used in these specific circumstances

(Chap. 5.4.4).

6.1 Discussion

As we discuss in Chap 3, when evaluating an IDS there are several aspects that need to be

considered beyond accuracy. We discuss our model based IDS methodology in terms of

evaluation criteria proposed in Etalle S. [64]. As we discuss in the survey in Chap. 3

Adaptability

Adaptability corresponds to the ability for a system to be able to adjust to meet new conditions.

For an IDS this might mean a network reconfiguration, new devices being added in, or new

attacks being discovered. This is something our approach does very well, showcased in the

exploration of multiple scenarios (Chap. 4.1) assessment of different controllers (Chap. 4

Tab. 2 and Tab. 3) and ability to regenerate traces swiftly (Chap. 5.4.4). We show that we can

easily evaluate a variety of systems with a lower burden as adapting a model takes a lot less

time than re-collecting bespoke network data on a real system.

Scalability

In part due to COVID19 related constraints we were unable to run analysis on scenarios

involving large numbers of devices. We speculate however that the compositionality of our

approach allows to reduce the complexity by having several independent systems working

in unison. This reduces the difficulty in monitoring of each individual system and relegates

6.1 Discussion 141

detection of specific threats to different subsystem. Although the relative simplicity of IoT

devices may somewhat mitigate the onset, it is a well known fact that there are scalability

issues with modelling large systems [26]. A known technique to mitigate this explosion is

by using statistical model checking. We successfully investigate the usage of this approach

in Chap. 4 showing that the analysis is still successful. In practice this could lead to the

feasibility of scaling this to several deployments.

Actionability

One of the benefits that our approach provides is excellent actionability. A set of attacker

steps from the model traces provides insight into what is going wrong and can be acted upon.

We have shown in Chap. 4 that several assessments can be run on the models to gain insight

on the system and discover optimal deployment scenarios. This can further mitigate the

effectiveness of an attack before even applying the detection. Given quite a large initial effort

of formalising the system, relating predictions to known states gives direct understanding.

By means of these assessments, a threat model can be constructed so that an IDS may be

catered to security that matters and is applicable to the system as shown in the detection of

unknown attacks in Chap. 5.4.4.

Accuracy

In Chapter 5, we show promising results on a subset of attacks, paying attention specifically

to relevant attacks from the literature (Chap. 3). In some of our experiments we are even able

to show an increase in detection accuracy compared to more traditional network traffic based

approaches (Chap. 5.4.4) [17].

In summary, we have presented an approach that is actionable and highly adaptable, with

promising results in terms of accuracy. Although we speculate the possibility of scaling for

realistic IoT deployment, this is one of the known downsides of this approach. Whilst the

case study presented in Chap. 5 shows high accuracy, we are aware that a limitation of our

testing protocols was the usage of a single system as a benchmark, so further analysis may

be needed to confirm these results. Very few techniques can perform perfectly in all these

142 Conclusion & Final Considerations

criteria. Examples of this is usage of neural networks and deep learning, whilst accurate

they are highly non actionable. In the scenarios we identified for the focus of our research,

adaptability and actionability were key factors and we were able to fulfil the aim by focusing

on these. Whilst we have only evaluated this approach on small constrained IoT setups, it

would theoretically be possible to apply this same approach to any given system, granted

one had access to a model of the system and specific threats. In practice it is unlikely to be

able to capture behaviours of complex systems in this same way, and this approach is most

advantageous in constrained and simplistic IoT deployments where scalability is less of an

issue.

6.2 Future Work

Intrusion detection in the IoT is a very active field, and it is continuously evolving (Chap. 3).

However there is no doubt that a shift is required towards more understandable AI if we are

to make the advancements required to secure future IoT deployments. With the increases in

devices and variety of configurations [182], this becomes even more important. Whilst we

have done significant work to discover what the current state of the art is in our review of

51 IDSs, and have discovered several interesting trends, we have identified some interesting

areas for research: 1) a survey targeting researchers who wish to develop new techniques

for specific scenarios and wish to know what areas need further exploration; 2) means for a

system administrator to make decisions regarding what IDS option is best for his specific

deployment; and 3) a unified evaluation of all the IDSs tools on a single testbed to get a

conclusive benchmark of performances. Although out of scope for this thesis, these would

help create better understanding of the field.

Even if perhaps simpler than implementing a system, formally defining all the behaviours

of the systems in a model is no easy task. We have explored means to ease the specification

process by means of a graphical interface, that can jump-start the specification significantly.

This however is only the beginning. Techniques for automatically learning a system be-

haviour from data, such as reinforcement learning or model learning [6], are very useful

6.3 Limitations 143

means to automatically gain knowledge about a “black box” system. Whilst perhaps not

as customisable as a from scratch knowledge embedding, this “grey box” approach has the

advantage that it may be fully automatic and scale better.

Protocols are deeply embedded into how devices interact. One of the many defining

features of the IoT is the advancement of protocols for new scenarios [83]. Our interactions

models in Chap. 4 was based on realistic protocol flows and the attacks in Chap. 5 on realistic

threats, informed by other lateral works [19, 15]. Several IDS papers in the IoT have focused

on protocol attacks as their area of detection [68, 62]. Fu et al. [68], propose an automata

based IDS that focuses specifically on protocol attacks. When data is incoming to the IDS

it is abstracted as an event in the automaton and deviations are seen as malicious. This

specification based IDS makes sure that protocols are followed to the letter. Whilst on the

other hand, Esquivel et al. [62], make use of BACnet specification diagrams as means to

find deviating attack behaviours. However what we have observed from our formal protocol

analysis is that even perfectly valid protocol implementations might contain attacks, and

require further verification of the protocols. Due to this observation we found that using the

protocol verification aspect to know which attacks are relevant may be a powerful approach

in the context of IDSs.

6.3 Limitations

In this thesis we have conducted a thorough investigation on the feasibility of modelling

for the use of attack impact evaluation in IoT systems. Although our results are promising

for a subset of attacks and systems we have observed that modelling can only scale so far.

In order to capture any form of impact on the devices we have had to abstract impact of

battery drain as an outcome of messages. Whilst this was done using lab based experiments

that fingerprinted the drain of a device and follows our real world analysis, this assumption

will probably not hold if that same device were deployed in different environments, as we

do not account for external factors in the models. Beyond this whilst battery is a realistic

factor to consider in the IoT we do not consider more complex and dynamic constrains, e.g.

144 Conclusion & Final Considerations

devices coming in and out of availability due to software updates and maintenance. The

added complexity of capturing these scenarios would not be scalable for any sort of large

system. Whilst there are other constrains that may be feasibly handled such as message

queues, observing multiple such constraints together would add immense complexity.

Although we have observed a varied set of scenarios showcasing adaptability of this

approach, a case study in a real setting such as smart factory, would be greatly beneficial to

gain further insight. We make assumptions about types of devices and connectivity issues

that are inline with literature, however as we did not have avalable meaningful datasets

or system configuration, of different intrusions and mitigations we cannot guarantee our

implementations are accurate. Particularly in Chap. 4, we may have exaggerated the way

client puzzles are implemented in the real world, as more realistic environments may have

conducted a preliminary assessment akin to our own before selecting security measures.

Having this information would help increase the robustness of our results.

6.4 Concluding Remarks

In a world where machine learning is omnipresent there is very little room for non explainable

predictions and black box models. So we instead work towards an enhancement to knowledge

based representation able to capture semi unknown behaviours and analyse complex be-

haviours non-deterministically. The field of explainable AI and white box machine learning

is an emerging and incredibly exciting field. We have just begun to scratch the surface in this,

and there will be no doubt countless advances in the coming years. What we explore in this

thesis is a deviation from standard research in behaviour detection, choosing instead to focus

on the way we can explain predictions and embed our knowledge. We investigate scenarios in

which there may be no other option but to use white box knowledge to construct explanations

of the systems and enhance the IDSs predictions. To do so we devise a methodology that

allows quick deployment of these types of systems. Our results show that by means of

formalising simple interactions we are able to observe complex behaviours and learn a lot

about how attacks effect systems. Our findings provide valuable insights into advantages,

6.4 Concluding Remarks 145

and some disadvantages of using such approaches. This exploration hopefully serves as a

stepping stone for future research in this area allowing for several new advances in the field

of “white box” detection for constrained IoT deployments. We hope our practical usage

of formal modelling techniques helps connect these three traditionally very separate fields(

formal verification, network security and machine learning) - as working in unison could lead

to several interesting advances, as we believe we have demonstrated in our presented work.

References

[1] Aarts, F., Fiterau-Brostean, P., Kuppens, H., and Vaandrager, F. (2015). Learning register
automata with fresh value generation. In International Colloquium on Theoretical Aspects
of Computing, pages 165–183. Springer.

[2] Abadi, M., Blanchet, B., and Fournet, C. (2017). The applied pi calculus: Mobile values,
new names, and secure communication. Journal of the ACM (JACM), 65(1):1–41.

[3] Abdelhakim, M., Ren, J., and Li, T. (2014). Throughput analysis and routing security
discussions of mobile access coordinated wireless sensor networks. In Global Communi-
cations Conference (GLOBECOM), 2014 IEEE, pages 4616–4621. IEEE.

[4] Aberkane, S. and Elarbi, M. (2019). Deep reinforcement learning for real-world anomaly
detection in surveillance videos. In 2019 6th International Conference on Image and
Signal Processing and their Applications (ISPA), pages 1–5.

[5] Abhishek, N. V., Lim, T. J., Sikdar, B., and Tandon, A. (2018). An intrusion detection
system for detecting compromised gateways in clustered iot networks. In 2018 IEEE
International Workshop Technical Committee on Communications Quality and Reliability
(CQR), pages 1–6. IEEE.

[6] Ali, S., Sun, H., and Zhao, Y. (2018). Model learning: A survey on foundation, tools and
applications. arXiv preprint arXiv:1901.01910.

[7] Alur, R. and Henzinger, T. A. (1999). Reactive modules. Formal methods in system
design, 15(1):7–48.

[8] Amaral, J. P., Oliveira, L. M., Rodrigues, J. J., Han, G., and Shu, L. (2014). Policy and
network-based intrusion detection system for ipv6-enabled wireless sensor networks. In
2014 IEEE International Conference on Communications (ICC), pages 1796–1801. IEEE.

[9] Amouri, A., Alaparthy, V. T., and Morgera, S. D. (2018). Cross layer-based intrusion
detection based on network behavior for iot. In 2018 IEEE 19th Wireless and Microwave
Technology Conference (WAMICON), pages 1–4. IEEE.

[10] Anand, P., Singh, Y., Selwal, A., Alazab, M., Tanwar, S., and Kumar, N. (2020). Iot
vulnerability assessment for sustainable computing: Threats, current solutions, and open
challenges. IEEE Access, 8:168825–168853.

[11] Andova, S. (1999). Process algebra with probabilistic choice. In International AMAST
Workshop on Aspects of Real-Time Systems and Concurrent and Distributed Software,
pages 111–129. Springer.

148 References

[12] Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Carbone,
R., Chevalier, Y., Compagna, L., Cuéllar, J., et al. (2012). The avantssar platform
for the automated validation of trust and security of service-oriented architectures. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 267–282. Springer.

[13] Armando, A., Basin, D., et al. (2005). The AVISPA tool for the Automated Validation
of Internet Security Protocols and Applications. In International conference on Computer
Aided Verification, pages 281–285. Springer.

[14] Arnaboldi, L., Czekster, R. M., Morisset, C., and Metere, R. (2020). Modelling load-
changing attacks in cyber-physical systems. Electronic Notes in Theoretical Computer
Science, 353:39–60.

[15] Arnaboldi, L. and Metere, R. (2019). Poster: Towards a data centric approach for
the design and verification of cryptographic protocols. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 2585–2587.

[16] Arnaboldi, L. and Morisset, C. (2017). Quantitative analysis of dos attacks and client
puzzles in iot systems. In International Workshop on Security and Trust Management,
pages 224–233. Springer.

[17] Arnaboldi, L. and Morisset, C. (2018a). Generating synthetic data for real world
detection of dos attacks in the iot. In Federation of International Conferences on Software
Technologies: Applications and Foundations, pages 130–145. Springer.

[18] Arnaboldi, L. and Morisset, C. (2018b). Lisa: Predicting the impact of dos attacks on
real-world low power iot systems. Foundations of Computer Security Workshop.

[19] Arnaboldi, L. and Tschofenig, H. (2019). A Formal Model for Delegated Authorization
of IoT Devices Using ACE-OAuth. In OAuth Security Workshop.

[20] Arolkar, H. A., Sheth, S. P., and Tamhane, V. P. (2011). Ant colony based approach for
intrusion detection on cluster heads in wsn. In ICCCS, pages 523–526.

[21] Arrington, B., Barnett, L., Rufus, R., and Esterline, A. (2016). Behavioral modeling
intrusion detection system (bmids) using internet of things (iot) behavior-based anomaly
detection via immunity-inspired algorithms. In 2016 25th International Conference on
Computer Communication and Networks (ICCCN), pages 1–6. IEEE.

[22] Aslanyan, Z., Nielson, F., and Parker, D. (2016). Quantitative verification and syn-
thesis of attack-defence scenarios. In Proc. 29th IEEE Computer Security Foundations
Symposium (CSF’16), pages 105–119. IEEE.

[23] Aura, T., Nikander, P., and Leiwo, J. (2000). Dos-resistant authentication with client
puzzles. In International workshop on security protocols, pages 170–177. Springer.

[24] Axelsson, S. (2000). The base-rate fallacy and the difficulty of intrusion detection.
ACM Transactions on Information and System Security (TISSEC), 3(3):186–205.

[25] Aziz, B. (2016). A formal model and analysis of an iot protocol. Ad Hoc Networks,
36:49–57.

References 149

[26] Baier, C., Katoen, J.-P., and Larsen, K. G. (2008). Principles of model checking. MIT
press.

[27] Basagiannis, S., Katsaros, P., Pombortsis, A., and Alexiou, N. (2009). Probabilistic
model checking for the quantification of dos security threats. Computers and Security,
28(6):450 – 465.

[28] Baumann, H. and Sandmann, W. (2012). Markovian modeling and security measure
analysis for networks under flooding dos attacks. In 2012 20th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pages 298–302. IEEE.

[29] Bellman, R. (1957). A markovian decision process. Journal of mathematics and
mechanics, pages 679–684.

[30] Besson, L. and Leleu, P. (2009). A distributed intrusion detection system for ad-hoc
wireless sensor networks: the awissenet distributed intrusion detection system. In 2009
16th International Conference on Systems, Signals and Image Processing, pages 1–3.
IEEE.

[31] Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. (2014). Network anomaly
detection: methods, systems and tools. IEEE communications surveys & tutorials.

[32] Böhme, R. and Félegyházi, M. (2010). Optimal information security investment with
penetration testing. In International Conference on Decision and Game Theory for
Security, pages 21–37. Springer.

[33] Bohr, M. (2007). A 30 year retrospective on dennard’s mosfet scaling paper. IEEE
Solid-State Circuits Society Newsletter, 12(1):11–13.

[34] Bostani, H. and Sheikhan, M. (2017). Hybrid of anomaly-based and specification-based
ids for internet of things using unsupervised opf based on mapreduce approach. Computer
Communications, 98:52–71.

[35] Bray, R., Cid, D., and Hay, A. (2008). OSSEC host-based intrusion detection guide.
Syngress.

[36] Büchi, J. R. (1990). On a decision method in restricted second order arithmetic. In The
Collected Works of J. Richard Büchi, pages 425–435. Springer.

[37] Buennemeyer, T. K., Gora, M., Marchany, R. C., and Tront, J. G. (2007). Battery ex-
haustion attack detection with small handheld mobile computers. In Portable Information
Devices.

[38] Buennemeyer, T. K., Nelson, T. M., Clagett, L. M., Dunning, J. P., Marchany, R. C., and
Tront, J. G. (2008). Mobile device profiling and intrusion detection using smart batteries.
In Proceedings of the 41st Annual Hawaii International Conference on System Sciences
(HICSS 2008), pages 296–296. IEEE.

[39] Butun, I., Morgera, S. D., and Sankar, R. (2014). A survey of intrusion detection systems
in wireless sensor networks. IEEE communications surveys & tutorials, 16(1):266–282.

150 References

[40] Cardenas, D. J. S. and Hahn, A. (2019). Iot threats to the smart grid: A framework for
analyzing emerging risks. In Proceedings of the Northwest Cybersecurity Symposium,
pages 1–8.

[41] Carl, G., Kesidis, G., Brooks, R. R., and Rai, S. (2006). Denial-of-service attack-
detection techniques. IEEE Internet computing, 10(1):82–89.

[42] Castro, L. N., De Castro, L. N., and Timmis, J. (2002). Artificial immune systems: a
new computational intelligence approach. Springer Science & Business Media.

[43] Cervantes, C., Poplade, D., Nogueira, M., and Santos, A. (2015). Detection of sinkhole
attacks for supporting secure routing on 6lowpan for internet of things. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages 606–611. IEEE.

[44] Cheng, T.-H., Lin, Y.-D., Lai, Y.-C., and Lin, P.-C. (2011). Evasion techniques:
Sneaking through your intrusion detection/prevention systems. IEEE Communications
Surveys & Tutorials, 14(4):1011–1020.

[45] Cho, E. J., Kim, J. H., and Hong, C. S. (2009). Attack model and detection scheme for
botnet on 6lowpan. In Asia-Pacific Network Operations and Management Symposium,
pages 515–518. Springer.

[46] Chormunge, S. and Jena, S. (2015). Efficiency and effectiveness of clustering algorithms
for high dimensional data. International Journal of Computer Applications, 125(11).

[47] Clark, J., DeRose, S., et al. (1999). Xml path language (xpath) version 1.0.

[48] Clarke, E. M., Klieber, W., Nováček, M., and Zuliani, P. (2011). Model checking and
the state explosion problem. In LASER Summer School on Software Engineering, pages
1–30. Springer.

[49] Coppolino, L., DAntonio, S., Garofalo, A., and Romano, L. (2013). Applying data
mining techniques to intrusion detection in wireless sensor networks. In 2013 Eighth
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pages
247–254. IEEE.

[50] Craenen, B. and Eiben, A. (2002). Computational intelligence. encyclopedia of life
support sciences. EOLSS, EOLSS Co. Ltd.

[51] Cremers, C. and Horvat, M. (2016). Improving the iso/iec 11770 standard for key
management techniques. International Journal of Information Security, 15(6):659–673.

[52] Dabrowski, A., Ullrich, J., and Weippl, E. R. (2017). Grid shock: Coordinated load-
changing attacks on power grids: The non-smart power grid is vulnerable to cyber attacks
as well. In Proceedings of the 33rd Annual Computer Security Applications Conference,
pages 303–314.

[53] Dabrowski, A., Ullrich, J., and Weippl, E. R. (2018). Botnets causing blackouts:
how coordinated load attacks can destabilize the power grid. e & i Elektrotechnik und
Informationstechnik, 135(3):250–255.

References 151

[54] Damghani, H., Hosseinian, H., and Damghani, L. (2019). Cryptography review in
iot. In 2019 4th Conference on Technology In Electrical and Computer Engineering
(ETECH2019).

[55] Danda, J. M. R. and Hota, C. (2016). Attack identification framework for iot devices.
In Information Systems Design and Intelligent Applications, pages 505–513. Springer.

[56] Deng, L., Li, D., Yao, X., Cox, D., and Wang, H. (2018). Mobile network intrusion
detection for iot system based on transfer learning algorithm. Cluster Computing, pages
1–16.

[57] Dennard, R. H., Gaensslen, F. H., Yu, H., Rideout, V. L., Bassous, E., and LeBlanc,
A. R. (1974). Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256–268.

[58] Di Pietro, R. and Mancini, L. V. (2008). Intrusion detection systems, volume 38.
Springer Science & Business Media.

[59] Donatelli, S. (1994). Superposed generalized stochastic petri nets: definition and
efficient solution. In International Conference on Application and Theory of Petri Nets,
pages 258–277. Springer.

[60] Echeverria, S., Seitz, L., Klinedinst, D., and Lewis, G. (2019). ACE Clients in Disad-
vantaged Networks. Internet-Draft draft-secheverria-ace-client-disadvantaged-00, Internet
Engineering Task Force. Work in Progress.

[61] Elrawy, M. F., Awad, A. I., and Hamed, H. F. (2018). Intrusion detection systems for
iot-based smart environments: a survey. Journal of Cloud Computing, 7(1):21.

[62] Esquivel-Vargas, H., Caselli, M., and Peter, A. (2017). Automatic deployment of
specification-based intrusion detection in the bacnet protocol. In Proceedings of the 2017
Workshop on Cyber-Physical Systems Security and PrivaCy, pages 25–36.

[63] Etalle, S. (2017). From intrusion detection to software design. In European Symposium
on Research in Computer Security, pages 1–10. Springer.

[64] Etalle, S. (2019). Network monitoring of industrial control systems: The lessons of
securitymatters. In Proceedings of the ACM Workshop on Cyber-Physical Systems Security
& Privacy, pages 1–1.

[65] Farnell (2017). Farnell element14, calculating battery life in iot applications (2017).

[66] Feng, W., Kaiser, E., and Luu, A. (2005). Design and implementation of network
puzzles. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., volume 4, pages 2372–2382 vol. 4.

[67] Fruth, M. (2011). Formal methods for the analysis of wireless network protocols.
Oxford University.

[68] Fu, Y., Yan, Z., Cao, J., Koné, O., and Cao, X. (2017). An automata based intrusion
detection method for internet of things. Mobile Information Systems, 2017.

152 References

[69] Garcia-Font, V., Garrigues, C., and Rifà-Pous, H. (2017). Attack classification schema
for smart city wsns. Sensors, 17(4):771.

[70] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., and Vázquez, E. (2009).
Anomaly-based network intrusion detection: Techniques, systems and challenges. com-
puters & security, 28(1-2):18–28.

[71] Grieco, S. S. A. R. L. and Coen-Porisini, A. (2015). Security, privacy and trust in
internet of things: The road ahead. Computer Networks.

[72] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of things
(iot): A vision, architectural elements, and future directions. Future generation computer
systems.

[73] Guillen, E., Sánchez, J., and Paez, R. (2015). Inefficiency of ids static anomaly detectors
in real-world networks. Future Internet, 7(2):94–109.

[74] Gupta, A., Pandey, O. J., Shukla, M., Dadhich, A., Mathur, S., and Ingle, A. (2013).
Computational intelligence based intrusion detection systems for wireless communica-
tion and pervasive computing networks. In 2013 IEEE International Conference on
Computational Intelligence and Computing Research, pages 1–7. IEEE.

[75] Haataja, K. M. (2008). New efficient intrusion detection and prevention system for
bluetooth networks. In Proceedings of the 1st international conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications, page 16. ICST (Institute for
Computer Sciences, Social-Informatics and

[76] Hadžiosmanović, D., Sommer, R., Zambon, E., and Hartel, P. H. (2014). Through the
eye of the plc: semantic security monitoring for industrial processes. In Proceedings of
the 30th Annual Computer Security Applications Conference, pages 126–135. ACM.

[77] Han, G., Jiang, J., Shen, W., Shu, L., and Rodrigues, J. (2013). Idsep: a novel intrusion
detection scheme based on energy prediction in cluster-based wireless sensor networks.
IET Information Security, 7(2):97–105.

[78] Hao, Feng and Metere, Roberto and Shahandashti, Siamak F and Dong, Changyu
(2018). Analyzing and patching speke in iso/iec. IEEE Transactions on Information
Forensics and Security, 13(11):2844–2855.

[79] Hassanzadeh, A. and Stoleru, R. (2011). Towards optimal monitoring in cooperative ids
for resource constrained wireless networks. In Computer Communications and Networks
(ICCCN), 2011 Proceedings of 20th International Conference on, pages 1–8. IEEE.

[80] Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., and Wolber,
D. (1990). A network security monitor. In Proceedings. 1990 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 296–304. IEEE.

[81] Hillston, J. (2005). A compositional approach to performance modelling, volume 12.
Cambridge University Press.

[82] Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the
ACM, 21(8):666–677.

References 153

[83] Hui Suo Jiafu Wan, C. Z. J. L. (2014). Security in the internet of things: A review.
International Journal of Computer Applications.

[84] Hummen, R., Wirtz, H., Ziegeldorf, J. H., Hiller, J., and Wehrle, K. (2013). Tailoring
end-to-end ip security protocols to the internet of things. In 2013 21st IEEE International
Conference on Network Protocols (ICNP), pages 1–10.

[85] Iera, A. L. A. and Morabito, G. (2010). The internet of things: A survey. Computer
Networks.

[86] Jiang, T., Wang, G., and Yu, H. (2012). A dynamic intrusion detection scheme for
cluster-based wireless sensor networks. In World Automation Congress 2012, pages
259–261. IEEE.

[87] Johanna, V., Liquan, C., Yao, Z., and Yuewei, M. (2011). Challenges in qualitative
accelerated testing of wsn hardware. Engineering, 2011.

[88] Juels, A. and Brainard, J. G. (1999). Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In NDSS, volume 99, pages 151–165.

[89] Kai Zhao, L. G. (2013). A survey on the internet of things security. Computational
Intelligence and Security (CIS).

[90] Kasinathan, P., Costamagna, G., Khaleel, H., Pastrone, C., and Spirito, M. A. (2013a).
An ids framework for internet of things empowered by 6lowpan. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages
1337–1340. ACM.

[91] Kasinathan, P., Pastrone, C., Spirito, M. A., and Vinkovits, M. (2013b). Denial-of-
service detection in 6lowpan based internet of things. In 2013 IEEE 9th international
conference on wireless and mobile computing, networking and communications (WiMob),
pages 600–607. IEEE.

[92] Khan, Z. A. and Herrmann, P. (2017). A trust based distributed intrusion detection mech-
anism for internet of things. In 2017 IEEE 31st International Conference on Advanced
Information Networking and Applications (AINA), pages 1169–1176. IEEE.

[93] Kim, S. W. (2015). Physical integrity check in cooperative relay communications. IEEE
Transactions on Wireless Communications, 14(11):6401–6413.

[94] Knuth, D. and Yao, A. (1976). Algorithms and Complexity: New Directions and Recent
Results, chapter The complexity of nonuniform random number generation. Academic
Press.

[95] Kobeissi, Nadim and Bhargavan, Karthikeyan and Blanchet, Bruno (2017). Automated
verification for secure messaging protocols and their implementations: A symbolic and
computational approach. In IEEE EuroS&P.

[96] Krimmling, J. and Peter, S. (2014). Integration and evaluation of intrusion detection
for coap in smart city applications. In 2014 IEEE Conference on Communications and
Network Security, pages 73–78. IEEE.

154 References

[97] Kruegel, C. and Vigna, G. (2003). Anomaly detection of web-based attacks. In
Proceedings of the 10th ACM conference on Computer and communications security,
pages 251–261. ACM.

[98] Kwiatkowska, M., Norman, G., and Parker, D. (2000). Verifying randomized distributed
algorithms with prism. In Workshop on advances in verification (WAVE’00).

[99] Kwiatkowska, M., Norman, G., and Parker, D. (2002). Prism: Probabilistic symbolic
model checker. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation.

[100] Kwiatkowska, M., Norman, G., and Parker, D. (2004). Probabilistic symbolic model
checking with prism: A hybrid approach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142.

[101] Kwiatkowska, M., Norman, G., and Parker, D. (2011a). Prism 4.0: Verification of
probabilistic real-time systems. In International conference on computer aided verification,
pages 585–591. Springer.

[102] Kwiatkowska, M., Norman, G., and Parker, D. (2011b). PRISM 4.0: Verification
of probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer, S., editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), volume 6806 of
LNCS, pages 585–591. Springer.

[103] Lantz, B. and O’Connor, B. (2015). A mininet-based virtual testbed for distributed
sdn development. ACM SIGCOMM Computer Communication Review, 45(4):365–366.

[104] Le, A., Loo, J., Chai, K., and Aiash, M. (2016). A specification-based ids for detecting
attacks on rpl-based network topology. Information, 7(2):25.

[105] Le, A., Loo, J., Luo, Y., and Lasebae, A. (2011). Specification-based ids for securing
rpl from topology attacks. In 2011 IFIP Wireless Days (WD), pages 1–3. IEEE.

[106] Lee, E. A. (2008). Cyber physical systems: Design challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363–369. IEEE.

[107] Lee, T.-H., Wen, C.-H., Chang, L.-H., Chiang, H.-S., and Hsieh, M.-C. (2014). A
lightweight intrusion detection scheme based on energy consumption analysis in 6lowpan.
In Advanced Technologies, Embedded and Multimedia for Human-centric Computing,
pages 1205–1213. Springer.

[108] Leloglu, E. (2016). A review of security concerns in internet of things. Journal of
Computer and Communications, 5(1):121–136.

[109] Liang, L., Zheng, K., Sheng, Q., and Huang, X. (2016). A denial of service attack
method for an iot system. In Information Technology in Medicine and Education (ITME),
2016 8th International Conference on, pages 360–364. IEEE.

[110] Lin, W.-C., Ke, S.-W., and Tsai, C.-F. (2015). Cann: An intrusion detection system
based on combining cluster centers and nearest neighbors. Knowledge-based systems,
78:13–21.

References 155

[111] Liu, C., Yang, J., Chen, R., Zhang, Y., and Zeng, J. (2011). Research on immunity-
based intrusion detection technology for the internet of things. In 2011 Seventh Interna-
tional Conference on Natural Computation, volume 1, pages 212–216. IEEE.

[112] Liu, L., Xu, B., Zhang, X., and Wu, X. (2018). An intrusion detection method for
internet of things based on suppressed fuzzy clustering. EURASIP Journal on Wireless
Communications and Networking, 2018(1):113.

[113] Liu, Y. and Yu, F. (2008). Immunity-based intrusion detection for wireless sensor
networks. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence), pages 439–444. IEEE.

[114] Long, N. and Thomas, R. (2001). Trends in denial of service attack technology. CERT
Coordination Center.

[115] Lundin, E. and Jonsson, E. (2000). Anomaly-based intrusion detection: privacy
concerns and other problems. Computer networks, 34(4):623–640.

[116] Luo, T. and Nagarajan, S. G. (2018). Distributed anomaly detection using autoencoder
neural networks in wsn for iot. In 2018 IEEE International Conference on Communications
(ICC), pages 1–6. IEEE.

[117] Matsunaga, T., Toyoda, K., and Sasase, I. (2014). Low false alarm rate rpl network
monitoring system by considering timing inconstancy between the rank measurements.
In 2014 11th International Symposium on Wireless Communications Systems (ISWCS),
pages 427–431. IEEE.

[118] Meier, S. (2013). Advancing automated security protocol verification. PhD thesis,
ETH Zurich.

[119] Meier, S., Schmidt, B., Cremers, C., and Basin, D. (2013). The tamarin prover for the
symbolic analysis of security protocols. In International Conference on Computer Aided
Verification, pages 696–701. Springer.

[120] Mell, P., Hu, V., Lippmann, R., Haines, J., and Zissman, M. (2003). An overview of
issues in testing intrusion detection systems.

[121] Midi, D., Rullo, A., Mudgerikar, A., and Bertino, E. (2017). Kalis—a system for
knowledge-driven adaptable intrusion detection for the internet of things. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pages 656–
666. IEEE.

[122] Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., and Payne, B. D. (2015). Eval-
uating computer intrusion detection systems: A survey of common practices. ACM
Computing Surveys (CSUR), 48(1):12.

[123] Minakov, I., Passerone, R., Rizzardi, A., and Sicari, S. (2016). A comparative study
of recent wireless sensor network simulators. ACM Transactions on Sensor Networks
(TOSN), 12(3):1–39.

156 References

[124] Mirkovic, J., Dietrich, S., Dittrich, D., and Reiher, P. (2004). Internet Denial of
Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and
Security). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[125] Misra, S., Krishna, P. V., Agarwal, H., Saxena, A., and Obaidat, M. S. (2011). A
learning automata based solution for preventing distributed denial of service in internet
of things. In 2011 International Conference on Internet of Things and 4th International
Conference on Cyber, Physical and Social Computing, pages 114–122. IEEE.

[126] Molloy, M. K. (1982). Performance analysis using stochastic petri nets. IEEE
Transactions on computers, 9:913–917.

[127] Moya, C. and Wang, J. (2018). Developing correlation indices to identify coordinated
cyber-attacks on power grids. IET Cyber-Physical Systems: Theory & Applications,
3(4):178–186.

[128] Moyers, B. R., Dunning, J. P., Marchany, R. C., and Tront, J. G. (2010). The multi-
vector portable intrusion detection system (mvp-ids): a hybrid approach to intrusion
detection for portable information devices. In 2010 IEEE International Conference on
Wireless Information Technology and Systems, pages 1–4. IEEE.

[129] Najafabadi, M. M., Khoshgoftaar, T. M., Napolitano, A., and Wheelus, C. (2016).
Rudy attack: Detection at the network level and its important features. In The twenty-ninth
international flairs conference.

[130] Nemati, M., Braun, M., and Tenbohlen, S. (2018). Optimization of unit commitment
and economic dispatch in microgrids based on genetic algorithm and mixed integer linear
programming. Applied energy, 210:944–963.

[131] Nimal, V. (2010). Statistical approaches for probabilistic model checking. PhD thesis,
University of Oxford.

[132] Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., and Gupta, R. (2005). Us-
ing probabilistic model checking for dynamic power management. Formal aspects of
computing, 17(2):160–176.

[133] Norris, J. R. and Norris, J. R. (1998). Markov chains, volume 2. Cambridge university
press.

[134] Novakovic, C. and Parker, D. (2019). Automated formal analysis of side-channel
attacks on probabilistic systems. In Proc. 24th European Symposium on Research in
Computer Security (ESORICS’19), volume 11735 of LNCS, pages 319–337. Springer.

[135] OConnor, T. and Reeves, D. (2008). Bluetooth network-based misuse detection. In
2008 Annual Computer Security Applications Conference (ACSAC), pages 377–391. IEEE.

[136] Oh, D., Kim, D., and Ro, W. (2014). A malicious pattern detection engine for
embedded security systems in the internet of things. Sensors, 14(12):24188–24211.

[137] Padhy, N. P. (2004). Unit commitment-a bibliographical survey. IEEE Transactions
on power systems, 19(2):1196–1205.

References 157

[138] Papavasiliou, A., Mou, Y., Cambier, L., and Scieur, D. (2017). Application of
stochastic dual dynamic programming to the real-time dispatch of storage under renewable
supply uncertainty. IEEE Transactions on Sustainable Energy, 9(2):547–558.

[139] Park, J., Iwai, K., Tanaka, H., and Kurokawa, T. (2014). Analysis of slow read dos
attack and countermeasures. In Proceeding of the International Conference on Cyber-
Crime Investigation and Cyber Security, pages 37–49.

[140] Patcha, A. and Park, J.-M. (2007). An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks, 51(12):3448–3470.

[141] Patel, J. S. K. D. R. (2014). A survey on internet of things: Security and privacy issues.
International Journal of Computer Applications.

[142] Paxson, V. (1999). Bro: a system for detecting network intruders in real-time. Com-
puter networks, 31(23-24):2435–2463.

[143] Plateau, B. and Atif, K. (1991). Stochastic automata network of modeling parallel
systems. IEEE transactions on software engineering, 10:1093–1108.

[144] Pongle, P. and Chavan, G. (2015). Real time intrusion and wormhole attack detection
in internet of things. International Journal of Computer Applications, 121(9).

[145] Qi Jing Athanasios V. Vasilakos, J. W. J. L. D. Q. (2014). Security of the internet of
things: perspectives and challenges. Wireless Networks.

[146] Rajkumar, R., Lee, I., Sha, L., and Stankovic, J. (2010). Cyber-physical systems: the
next computing revolution. In Design Automation Conference, pages 731–736. IEEE.

[147] Rathi, A. K. and Santiago, A. J. (1990). The new netsim simulation program. Traffic
engineering & control, 31(5).

[148] Raza, S., Wallgren, L., and Voigt, T. (2013). Svelte: Real-time intrusion detection in
the internet of things. Ad hoc networks, 11(8):2661–2674.

[149] Roesch, M. et al. (1999). Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238.

[150] Roman, R., Zhou, J., and Lopez, J. (2013). On the features and challenges of security
and privacy in distributed internet of things. Computer Networks.

[151] Sabhnani, M. and Serpen, G. (2004). Why machine learning algorithms fail in misuse
detection on kdd intrusion detection data set. Intelligent data analysis, 8(4):403–415.

[152] Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree classifier method-
ology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674.

[153] Scarfone, K. and Mell, P. (2007). Guide to intrusion detection and prevention systems
(idps). NIST special publication, 800(2007):94.

[154] Sedjelmaci, H. and Senouci, S. M. (2013). Efficient and lightweight intrusion de-
tection based on nodes’ behaviors in wireless sensor networks. In Global Information
Infrastructure Symposium-GIIS 2013, pages 1–6. IEEE.

158 References

[155] Sedjelmaci, H., Senouci, S. M., and Al-Bahri, M. (2016). A lightweight anomaly
detection technique for low-resource iot devices: A game-theoretic methodology. In 2016
IEEE International Conference on Communications (ICC), pages 1–6. IEEE.

[156] Sendorek, J., Szydlo, T., and Brzoza-Woch, R. (2018). Software-defined virtual
testbed for iot systems. Wireless Communications and Mobile Computing, 2018.

[157] Shreenivas, D., Raza, S., and Voigt, T. (2017). Intrusion detection in the rpl-connected
6lowpan networks. In Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security, pages 31–38. ACM.

[158] Simopoulos, D. N., Kavatza, S. D., and Vournas, C. D. (2006). Unit commitment
by an enhanced simulated annealing algorithm. IEEE Transactions on Power Systems,
21(1):68–76.

[159] Snapp, S. R., Brentano, J., Dias, G. V., Goan, T. L., Heberlein, L. T., Ho, C.-l., Levitt,
K. N., Mukherjee, B., Smaha, S. E., Grance, T., et al. (1991). Dids (distributed intrusion
detection system)-motivation, architecture, and an early prototype. In In Proceedings of
the 14th National Computer Security Conference. Citeseer.

[160] Soltan, S., Mittal, P., and Poor, H. V. (2018). Blackiot: Iot botnet of high wattage
devices can disrupt the power grid. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 15–32.

[161] Sommer, R. and Paxson, V. (2010). Outside the closed world: On using machine
learning for network intrusion detection. In 2010 IEEE symposium on security and privacy,
pages 305–316. IEEE.

[162] Song, X., Chen, G., and Li, X. (2010). A weak hidden markov model based intrusion
detection method for wireless sensor networks. In 2010 International Conference on
Intelligent Computing and Integrated Systems, pages 887–889. IEEE.

[163] Stelte, B. and Rodosek, G. D. (2013). Thwarting attacks on zigbee-removal of the
killerbee stinger. In Proceedings of the 9th International Conference on Network and
Service Management (CNSM 2013), pages 219–226. IEEE.

[164] Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: the
mathematical basis of performance modeling. Princeton university press.

[165] Summerville, D. H., Zach, K. M., and Chen, Y. (2015). Ultra-lightweight deep
packet anomaly detection for internet of things devices. In 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE.

[166] Sun, C.-C., Hong, J., and Liu, C.-C. (2016). A coordinated cyber attack detection
system (ccads) for multiple substations. In 2016 Power Systems Computation Conference
(PSCC), pages 1–7. IEEE.

[167] Suo, H., Wan, J., Zou, C., and Liu, J. (2012). Security in the internet of things: a
review. In Computer Science and Electronics Engineering (ICCSEE), 2012 international
conference on, volume 3, pages 648–651. IEEE.

References 159

[168] Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.-Y., Kohlweiss, M., et al. (2016). Dependent types
and multi-monadic effects in f. In ACM SIGPLAN Notices, volume 51, pages 256–270.
ACM.

[169] Talpade, R., Madhani, S., Mouchtaris, P., and Wong, L. (2003). Mitigating denial of
service attacks. US Patent App. 10/353,527.

[170] Tan, K. M., Killourhy, K. S., and Maxion, R. A. (2002). Undermining an anomaly-
based intrusion detection system using common exploits. In International Workshop on
Recent Advances in Intrusion Detection, pages 54–73. Springer.

[171] Thanigaivelan, N. K., Nigussie, E., Kanth, R. K., Virtanen, S., and Isoaho, J. (2016).
Distributed internal anomaly detection system for internet-of-things. In 2016 13th IEEE
Annual Consumer Communications & Networking Conference (CCNC), pages 319–320.
IEEE.

[172] Thompson, H. S., Mendelsohn, N., Beech, D., and Maloney, M. (2009). W3c xml
schema definition language (xsd) 1.1 part 1: Structures. The World Wide Web Consortium
(W3C), W3C Working Draft Dec, 3.

[173] Ting, T., Rao, M., and Loo, C. (2006). A novel approach for unit commitment problem
via an effective hybrid particle swarm optimization. IEEE Transactions on power systems,
21(1):411–418.

[174] Tritilanunt, S., Boyd, C., Foo, E., and Nieto, J. (2006). Examining the dos resistance
of hip. In On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,
pages 616–625. Springer.

[175] Trivedi, A., Srinivasan, D., Biswas, S., and Reindl, T. (2016). A genetic algorithm–
differential evolution based hybrid framework: case study on unit commitment scheduling
problem. Information Sciences, 354:275–300.

[176] Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., and Fischer, M. (2015). Taxon-
omy and survey of collaborative intrusion detection. ACM Computing Surveys (CSUR),
47(4):1–33.

[177] Vattakunnel, A. J., Kumar, N. S., and Kumar, G. S. (2016). Modelling and verifica-
tion of coap over routing layer using spin model checker. Procedia Computer Science,
100(93):299–308.

[178] Vora, P., Oza, B., et al. (2013). A survey on k-mean clustering and particle swarm
optimization. International Journal of Science and Modern Engineering, 1(3):1–14.

[179] Wallgren, L., Raza, S., and Voigt, T. (2013). Routing attacks and countermeasures in
the rpl-based internet of things. International Journal of Distributed Sensor Networks,
9(8):794326.

[180] Wang, Q. and Megalooikonomou, V. (2005). A clustering algorithm for intrusion de-
tection. In Data Mining, Intrusion Detection, Information Assurance, and Data Networks
Security 2005, volume 5812, pages 31–39. International Society for Optics and Photonics.

160 References

[181] Weaver, R., Weaver, D., and Farwood, D. (2013). Guide to network defense and
countermeasures. Cengage Learning.

[182] Wendt, T. X. J. B. and Potkonjak, M. (2015). Security of iot systems: Design
challenges and opportunities. Informational System Frontiers.

[183] Winkler, J. (1990). A unix prototype for intrusion and anomaly detection in secure
networks. In Proceedings of the 13th National Computer Security Conference, pages
115–124.

[184] Wu, S. X. and Banzhaf, W. (2010). The use of computational intelligence in intrusion
detection systems: A review. Applied soft computing, 10(1):1–35.

[185] Xu, B., Chen, M., Xing, C., and Zhang, G. (2009). A network traffic identification
method based on finite state machine. In 2009 5th International Conference on Wireless
Communications, Networking and Mobile Computing, pages 1–4. IEEE.

[186] Yadav, K. and Srinivasan, A. (2010). itrust: an integrated trust framework for wireless
sensor networks. In Proceedings of the 2010 ACM Symposium on Applied Computing,
pages 1466–1471. ACM.

[187] Yu, Z. and Tsai, J. J. (2008). A framework of machine learning based intrusion
detection for wireless sensor networks. In 2008 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (sutc 2008), pages 272–279. IEEE.

[188] Zarpelao, B. B., Miani, R. S., Kawakani, C. T., and de Alvarenga, S. C. (2017). A
survey of intrusion detection in internet of things. Journal of Network and Computer
Applications, 84:25–37.

[189] Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Georgakopoulos, D., and
Ranjan, R. (2017). Iotsim: A simulator for analysing iot applications. Journal of Systems
Architecture, 72:93–107.

[190] Zhang, G. P. (2000). Neural networks for classification: a survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(4):451–462.

[191] Zhang, Y., Wang, L., Sun, W., Green, R. C., and Alam, M. (2011). Artificial immune
system based intrusion detection in a distributed hierarchical network architecture of smart
grid. In 2011 IEEE Power and Energy Society General Meeting, pages 1–8. IEEE.

[192] Zheng, A. and Casari, A. (2018). Feature engineering for machine learning: principles
and techniques for data scientists. " O’Reilly Media, Inc.".

[193] Zurada, J., Marks, R., and Robinson, J. (1995). Review of computational intelligence:
imitating life.

Appendix A

Summary of Intrusion Detection Tools

In Chap. 3 a overview of trends in IoT IDSs in the form of heatmaps. Further details about

specific tools for different types of IDSs are provided in this Appendix. Three tables are

provided for the different types of IDSs, Network IDS, Host IDS, and COllaborative IDS.

Each table is broken down into Paper, Placement, Algorithm, Environment, Evaluation

and Detection.

162 Summary of Intrusion Detection Tools

Table A.1 Summary of Network Intrusion Detection Systems Proposed for IoT

Article Placement Algorithm Environment Evaluation Detection

Arrington et al. [21] central immunity smart-home ◦ internal2

Besson et al. [30] distributed - WSN X -
Cho et al. [45] central statistical 6LowPAN ◦ DDoS
Danda et al. [55] central rule-based testbed X -
Deng et al [56] - clustering WSN ◦,δ Sybil
Le et al. [105] distributed specification RPL X topology
Liu et al [112] - clustering IoT Σ -
Stelte et al. [163] distributed anomaly ZigBee ◦ KillerBee
Hadžiosmanović et al. [76] - anomaly ICS Σ,δ -
Sedjelmaci at al. [154] central hybrid WSN ◦ routing3

Sedjelmaci et al. [155] central game-theory IoT ◦ DoS
Haataja et al. [75] central rule-based Bluetooth X β 4

Yadav et al. [186] distributed trust-based WSN ◦ β 5

OConnor et al. [135] central rule-based Bluetooth ✓ β 6

Thanigaivelan et al. [171] distributed anomaly RPL X internal2

Luo et al. [116] distributed anomaly WSN δ internal2

Wallgren et al. [179] distributed rule-based RPL ◦ routing3

Matsanaga et al. [117] distributed statistical RPL ◦ routing3

Cervantes et al. [43] distributed trust 6LowPAN ◦ sinkhole
Misra et al. [125] centralised automaton IoT ✓ DDoS
Garcia-Font et al. [69] central hybrid smart-city ◦ routing
Fu et al. [68] central automata http X protocol1

Khan et al. [92] distributed trust-based healthcare ◦ routing3

Han et al. [77] central anomaly WSN Σ,◦ energy-DoS
Jiang et al. [86] central clustering clustered X routing3

Esquivel-Vargas et al. [62] central specification BACnet δ ,✓ protocol1

Evaluation

X - no evaluation performed
Σ - mathematical evaluation performed
◦ - simulation performed
δ - trace evaluation performed
✓ - execution evaluation performed

Detection

β - custom attack list
1MITM, replay, spoofing, message dropping etc.
2unusual behaviour by an agent within the system
3routing attacks, e.g. Sinkhole, Wormhole, Blackhole
4resource drain DoS, pin cracking, and spoofing
5collision attack, Hello Flood, Selective forwarding attack
6reconnaissance, DoS, and information theft attacks

163

Table A.2 Summary of Host Intrusion Detection Systems for IoT

Article Algorithm Environment Evaluation Detection

Oh et al. [136] pattern-matching IoT Σ,δ DDoS, virus signatures
Summerville et al. [165] bit-wise anomaly IoT ✓ worm, code injection
Liu et al. [111] immunity IoT Σ -
Kim [93] likeliood ratio relay coms Σ message integrity
Lee et al. [107] anomaly 6LowPAN ◦ battery DoS
Song et al. [162] W-HMM WSN ◦ -

Evaluation

X - no evaluation performed
Σ - mathematical evaluation performed
◦ - simulation performed
δ - trace evaluation performed
✓ - execution evaluation performed

164 Summary of Intrusion Detection Tools

Table A.3 Summary of Collaborative Intrusion Detection Systems for IoT

Article Placement Algorithm Environment Evaluation Detection

Gupta et al. [74] distributed CI (multi) wireless X protocol1

Amaral et al. [8] distributed rule-based IPv6 X -
Kasinathan et al. [91] hybrid rule-based 6LoWPAN ✓ DoS
Kasinathan et al. [90] hybrid rule-based 6LowPAN ✓ DoS
Amouri et al. [9] cross-layer anomaly IoT ◦ -
Hassanzadeh et al. [79] distributed genetic-algo. IoT ◦,✓ β 1

Le et al. [104] hybrid specification RPL ◦ topology2

Midi et al. [121] centralised adaptable IoT ✓ DoS
Shreenivas et al. [157] hybrid statistical RPL ◦ insider
Bostani et al. [34] distributed hybrid WSN ◦,✓ routing
Arolkar et al. [20] distributed ant-colony WSN X β 3

Coppolino et al. [49] hybrid hybrid WSN δ β 4

Abhishek et al. [5] distributed anomaly IoT ◦ β 5

Pongle et al. [144] distributed anomaly RPL ◦ wormhole
Zhang et al. [191] distributed immunity smart-grid δ ,◦ β 6

Yu et al. [187] mixed hybrid WSN X routing
Buennemeyer et al. [38] distributed hybrid IoT ✓,α battery-DoS
Moyers et al. [128] distributed hybrid IoT X -
Raza et al. [148] distributed statistical IPv6 ◦ routing3

Evaluation

X - no evaluation performed
Σ - mathematical evaluation performed
◦ - simulation performed
δ - trace evaluation performed
✓ - execution evaluation performed
α - usability evaluated

Detection

β - custom attack list
1Flooding, Port Scanning, Web Exploits
2Sinkhole, Rank, Local repair, DIS, Neighbour
3Sinkhole, Misdirection, passive information gathering
4Sinkhole, sleep exhaustion
5Compromised Gateways
6MITM, replay, spoofing, message dropping, DoS, data leakage

Appendix B

Survey IDS Request Template Letter

Dear <INSERT AUTHOR LIST>,

I am a PhD Student working on IoT Security at Newcastle University (My Info) and I am

currently working on developing an IoT security testbed. My work hopes to test out various

security solutions in a range of test IoT environments in the form of embedded virtual ma-

chines hosted in various network configurations. I am contacting you in regards to your work

<PAPER TITLE HERE>. <INSERT UNIQUE COMMENT ON PAPER>. I was hoping

you could provide me with an implementation of your work to use as I was unable to find a

publicly available repository?

Please let me know how you would prefer I cite your work in the case of publication and

what license restrictions might be applicable.

If you have any questions about my work or how your implementation will be used please

don’t hesitate to ask.

Yours sincerely,

Luca Arnaboldi

arnaboldiluca.eu

Appendix C

Survey IDS Request Example Letter

Dear REDACTED,

I am a PhD Student working on IoT Security at Newcastle University (My Info) and I am

currently working on developing an IoT security testbed. My work hopes to test out various

security solutions in a range of test IoT environments in the form of embedded virtual ma-

chines hosted in various network configurations. I am contacting you in regards to your work

REDACTED. Your presented detection methodology is very powerful showing some excellent

accuracy with low false positives, I would be interested in seeing how well it would scale

in larger systems and different configurations. I was hoping you could provide me with an

implementation of your work to use as I was unable to find a publicly available repository?

Please let me know how you would prefer I cite your work in the case of publication and

what license restrictions might be applicable.

If you have any questions about my work or how your implementation will be used please

don’t hesitate to ask.

Yours sincerely,

Luca Arnaboldi

arnaboldiluca.eu

Appendix D

Simple DoS Model on Smart Grid Power

Generators

We show the energy supply trade off balance in a toy example with two scenarios, Scenario

A and Scenario B in Fig. D.1, whose behaviour is as expected. In this case study we show

the impact of two different factors, responsiveness to the demand and magnitude of the

demand, each placed in a low demand scenario and a high demand scenario. Both scenarios

are initially capable of meeting the demand, as there are plenty of available PGs; however,

they react differently to the load caused by botnets’ attack.

Table D.1 How the PG’s interact with the attacker in Scenario A-(1/2). The States are: A -
Available, S - Serving, and D - Disconnected. Sup, is the supply of a single PG out of four
and Att is whether the Spike Botnet is on or not. The Demand is fixed at 120 units. The
values represent the rate at which a state transitions from a state to another (if 0 the transition
doesn’t exist).

Slow Transitions
Sup Att Fast Transitions

Sup Att
A S D A S D

A – 0.50 0 0 Off A – 1200 0 0 Off
S 0.50 – 0 50 Off S 1200 – 0 50 Off
D 0.25 0 – 0 Off D 600 0 – 0 Off
A – 0.50 1200 0 On A – 1200 120000 0 On
S 0.50 – 1200 50 On S 1200 – 120000 50 On
D 0.25 0 – 0 On D 600 0 – 0 On

170 Simple DoS Model on Smart Grid Power Generators

In Scenario A, we model two systems A-1 and A-2 under a high load. A-1 has very

responsive PGs (such as gas plants), and A-2 has less responsive PGs. We showcase that in

the system with faster response rate the time in which the system is in over demand is much

lower. On the other hand, due to slow startup times, in the second system the time in over

demand will be much higher.

In Scenario B, we model two more systems, B-1 and B-2, each of the systems shows the

same number of PGs, but while the demand of B-1 is high, the demand of B-2 is low. We

show that when the system is in a high demand period, an attacker is much more likely to

disrupt the powergrid than if under a low demand period. The scenario matches the values

for Scenario A-1, but the demand is altered between B-1 and B-2 from 50 to 100. This case

highlights the different situations that can take place if a Spike botnet were to target the

power grid, in our in depth experiments mimicking the power usage of real world scenario

we take this a step further and examine it on various different types of PG such as gas and

solar plants.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scenario A-1 (Slow PG) Scenario A-2 (Fast PG) Scenario B-1 (Low Load) Scenario B-2 (High load)

Case Study - Likelihood of Being in Overdemand

Fig. D.1 Powergrid reaction to botnet spikes in our case study scenarios

Appendix E

Anomaly Based Harm Detection

E.1 Appendix Summary

Security becomes ever more critical in the Internet of Things (IoT), as restrained resources,

heterogeneity and sheer scale of these systems make them very difficult to defend. As the

devices themselves often have no means to adopt many of the more standard mitigation

techniques common in the web, the defence of these systems is often offloaded to a Intrusion

Detection System (IDS). However, the deployment of intrusion detection onto these systems

is not without complications as the unique nature of these systems presents new and unique

challenges. The IoT landscape has evolved many new attack vectors and he current defence

mechanisms struggle to prevent them all, to this end we propose a methodology that can

work stand alone or alongside current systems to improve the attack detection rate. Our

approach leverages the fact that over 60% of surveyed attacks on IoT systems aim to target

certain constraints such as limited resource or dynamic routing. Based on this information we

propose making use of convex optimisation theory to improve IDS detection that is able to

detect any such attack. Our claim for white-box knowledge comes from the fact that through

this methodology we are easily able to understand causes for anomaly, act on the alert and

learn to adapt from new scenarios.

172 Anomaly Based Harm Detection

E.2 Introduction

One key thing to note is that IoT devices function very differently than the average Internet

connected device such as a laptop. A key thing we consider in this paper is that some IoT

devices are powered by battery and therefore could go offline at any moment. These new

challenges are something current technologies and various protocols have not been built to

be able to deal with [182]. These issues cause for there to be security flaws in the current

implementations that can be easily exploited. A device can sometimes be hampered by

the task of actually securing itself (due to resource constraints of performing techniques

such as strong encryption), as has been investigated in work looking at existing solutions

implemented in the IoT [17, 145]. Offloading computation away from the devices themselves

can therefore be a very desirable property.

One IoT environment we focus on is IoT in a disadvantaged network [60]. In these

kinds of networks there are even greater constraints in terms of communication bandwidth.

Nodes in disadvantaged networks operate in what are called DIL environments (disconnected,

intermittent, limited), which means that there is limited and unreliable connectivity between

nodes with potentially periods of full disconnection. One approach that can ensure security

without affecting the device resources is an network based Intrusion Detection System (IDS).

An IDS is a monitor placed on the network that analyses incoming messages to detect attacks

and/or unwanted traffic, and when paired with an intrusion prevention system can stop attacks

before they affect the devices.

Standard approaches used to train IDSs include using a database of known attacks (misuse

detection) and testing systems to create a “benchmark" behaviour and flag any anomaly

as a potential attack (anomaly detection) [120]. An anomaly based IDS will monitor the

normal behaviour within an IoT system and flag up any suspicious behaviour. The two

phases of a majority of anomaly detection systems consist of the training phase (where a

profile of normal behaviours is built) and testing phase (where current traffic is compared

with the profile created in the training phase). Anomaly detection has the key advantage over

a misuse detection in that it doesn’t require the knowledge of specific attacks and therefore

can also cater to unknown attacks as they will cause the system to behave in a different

E.2 Introduction 173

manner. However the circumstances of this critical scenario makes it difficult to detect the

difference between network attacks which are attempting to take down key nodes in the

networks and benign network readings. When the bandwidth becomes a constrained resource

in itself optimisation of it’s usage is critical. Whilst this scenario is more common in the

IoT, it exists in traditional networks as well. It is usually simple to find anomalies when

there is very low network usage, however, at peak usage you will encounter many more false

negatives/positive. In a emergency situation these could have severe adverse effects.

In this paper we investigate whether we can detect attacks on disadvantaged networks with

an anomaly-based IDSs using the expected optimal behaviour of the system, rather than the

normal bench-marked behaviour of the system, as it is normally done. To answer this question

we use concepts from the well studied field of system optimisation and integrate these

approaches into intrusion detection techniques. There are several overlaps in optimisation

theory and IoT security, as defending an IoT system becomes a combined matter of ensuring

good functioning as well as attack detection. To illustrate our approach we implement a

system model that mimics the behaviour of a real-world IoT system and we generate optimal

behaviour traces in a model of the system, following the optimisation criteria. By collecting

data of the real system we can observe and minimise the security risk as an outcome of

the systems constraints. This optimised behaviour is then used to train a detection system

that can spot attacks that cause long-term harm but aren’t detected by current techniques.

This technique has the key advantage that it is able to make use of information not normally

known at the network layer. The attack is at the network layer but impacts the device at the

hardware layer, however the IDS only has knowledge of the network messages. So the extra

information gathered and used in the model can make up for this detriment.

This approach can be used alongside existing IDSs to improve their classification power

and tailor to the specific threats affecting IoT systems. Our contributions are threefold; 1) We

present a new method for attack detection that is suited to detection of harmful behaviours

in IoT systems we refer to as HDS; 2) We provide a novel methodology to model system

behaviour that can be used alongside real system data to improve prediction; And 3) we

provide a case study and quantitative evaluation of our approach on real-world IoT network

174 Anomaly Based Harm Detection

demonstrating how our approach can be used to effectively detect several common attacks

on IoT systems. To illustrate our approach we make use of case study looking at temporary

COVID19 field hospitals.

Paper breakdown: the paper is split into the following sections; In section E.3 we

discuss the related work; In section E.4 the problem overview is discussed; In section E.4.1

we introduce the optimisation criteria forming the basis of the harm detection; In section E.6

the model is presented alongside the optimisation formula for trace generation; In section E.7

we explain how the system data is interpreted by the IDS to compare to the model behaviour;

In section E.8 we highlight our evaluation criteria assessment methodology and experiment

setup.

E.3 Related Work

Intrusion Detection is a well studied area, with early work starting in the early 90s [80, 183,

159], the field is perennially evolving as the scope of the internet changes, and attacks get

more varied, the detection mechanisms evolve alongside them. The state of the art when it

comes to servers and a wide range of ICT infrastructures is well established, with open source

and easy to use tools available for a wide range of scenarios [149, 142, 35]. However, despite

the best preventative measures, we see news of successful attacks targeting organisations

and individuals alike on a continuous basis. Along with the increment in attacks comes a

shift in infrastructure, what we commonly call the IoT, is a term used to describe a range of

distributed, heterogeneous internet systems communicating in new fashions often without

user intervention. With the raise in popularity of the IoT a growing interest from the research

community investigates how to successfully secure it, borrowing from existing techniques

and coming up with new solutions to the problems arising from this new paradigm.

Lots of of literature investigates the problem of implementing IDSs in the IoT [171,

56, 9, 5], several approaches and techniques are discussed. However, the IoT is a diverse

term describing a wide range of systems and the extant literature highlights that no single

solutions is able to cover the full scope. This is partially due to the vast new avenues of

E.4 Problem Formulation 175

attack (often unique to IoT) that signature based schemes such as SNORT [149] struggle

to detect. The general consensus in the literature is that there is no silver bullet when it

comes to finding attacks and several works attempt hybrid approaches combining signature

and anomaly based techniques to optimise detection rates [148, 96, 34]The need for these

complicated techniques arises as an outcome of these very open systems, they can detect

well known attacks such as sinkholes using signatures, whilst simultaneously being able to

deal with how distributed the architecture is and covering the new angles of attack such as

node compromise attacks through anomaly detection. A full description of relevant attacks is

presented in Sec. E.4.

Based on our previous literature review on the topic of intrusion detection in IoT systems

presented in Chapter 3, over 60% of proposed IDSs focus on attacks that are due to sub

optimal behaviour. By these characterisation we refer to i. routing attacks, which are attacks

targeting the way communication is exchanged in the system (representing 30% of the

literature); ii. protocol attacks, which are attacks on protocol exchanges such as man in

the middle (representing 15% of the literature) and; iii. device exhaustion or dos attacks,

which target the availability of an IoT network (representing 20% of the surveyed literature).

What is common across all these attacks is that the objective of the attack is to decrease

efficiency of the network and/or completely deny it, by making devices within it behave in

unexpected fashion. As there is currently no literature proposed to target this full subset of

attacks we investigate a potential detection mechanism that would find this attacks through

harm analysis and optimisation. Optimisation aims to find the scenarios in which a system

behaves in the manner in which specific values are maximised, naturally lending itself to

counteract these types of attacks.

E.4 Problem Formulation

As highlighted by our summary of the literature there are several works making use of

anomaly detection in IoT systems, anomaly based intrusion detection has several key advan-

tages over signature based, they are able to detect unknown attacks, can deal with encrypted

176 Anomaly Based Harm Detection

data and do not need to continuously update their signature database. However, the literature

highlights there are significant gaps in the theory behind anomaly detection in the IoT and

that by itself it may struggle to detect these attacks, or be unable to understand why the

classification was made.

To this end we propose a new approach to detect harm occurring to IoT systems. This

will draw from several advantages of anomaly based IDSs but will differ in what it is actually

detecting. We would like to argue that several of the attacks currently affecting the IoT are

actually ones that harm the normal functioning of the devices themselves(as a consequence

of their constraints) and those around the how the IoT systems as a whole operate (e.g. open

environments and with heterogeneous protocols). Since the devices themselves will operate

with lossy communication, limited computation, and no security measures on the devices

it becomes the job of an external tool to do ensure that the operation of the system is still

working successfully and securely.

We hypothesised that by applying techniques from Optimisation theory we can suc-

cessfully classify actions as harmful and non-harmful, rather than the more traditional

attack/non-attack. More specifically what we propose is to identify a key set of characteris-

tics that are common across constrained IoT Systems and that may represent new avenues of

attacks, attempt to classify behaviour that might lead to the negative increase in this qualities,

minimise it (minimisation properties), then aggregating them with a set of known desirable

properties of good system functioning, identifying which behaviours will improve these

properties (maximisation properties). Through these characteristics we build an AB-IDS that

can classify harmful and non harmful behaviour for any IoT system, real-time.

This requires for the system administrator to have knowledge of the system it is protect-

ing, such as battery consumption of the devices actions, and consequently will require a

complicated setup phase. However, once these measurements are in place the relative strain

on the system due to the IDS will be minimal. This approach is very flexible and can be used

as a stand alone IDS or alongside existing techniques to improve the accuracy of detection.

We evaluate this approach on a IoT scenario and investigate its effectiveness in finding these

attacks that harm the core aspects of IoT systems.

E.4 Problem Formulation 177

E.4.1 Attack Specification

The IoT and its many use cases suffer from new kinds of attacks which are often not pertinent

to standard systems. Consequently arising the need for the IDS detection to be expanded.

We propose a list of new vulnerability vectors in the IoT that would impact the ability for an

IDS to detect intrusions as the following:

i. Node compromise attacks, devices in IoT systems are often vulnerable to physical

takeover, allowing for malicious behaviour from previously benign members of the

network;

ii. Communication errors, due to deployment in disadvantaged environments, IoT is very

prone to network errors which can be a source of irregular traffic;

iii. Battery drainage attacks, the constrained resources may lead to selfish device be-

haviours, due to device self preservation constant polling may lead to battery drainage

so devices will stay offline for large periods of time, leading to difficulty in behavioural

patterning and harder network diagnostics;

iv. Routing attacks, the IoT is often deployed as an open network through WiFi or similar

technologies, this opens up the network to external connections as well as new attacks

to do with routing, such as sinkhole attacks;

v. Compromised communication, as a consequence of low bandwidth it is difficult for

devices to reach far away destinations,so the network configuration becomes very

important, therefore, if a node is identified as a key connector between two of the

devices and is consequently compromised, communication in the network is broken;

A malicious intruder may, for whatever reason, wish to disrupt the availability of parts or

the full sensor array. In order to do so he wishes to drain the battery of some sensors. Our

scenario makes use of cryptographic authentication to allow for the data to only be collected

by trusted users. One of the more energy consuming aspects of any message exchange

is cryptography [182], by attempting authentication to various sensors in the system he

178 Anomaly Based Harm Detection

can systematically drain the battery of the whole system. Whilst this behaviour might be

suspicious under very low system load, it would be much harder to detect in an emergency

scenario such as this with several first responders on the field. Since the attack behaviour

cannot be easily spotted, we instead can keep track of the well being of the system, whilst

the attacks are hard to spot the harm is measurable and can be used to trace back the attacks.

We propose a technique to generate traces of optimum behaviour that will minimise harmful

actions within a system, in combination with maximisation of positive aspects that increase

the system well being.

Whilst generating optimum traces is very difficult in the real world, it becomes much

more feasible when used in models. The model abstracts to only include the characteristics

that are of interest and the problem space is therefore greatly reduced. Through a model

we can simulate large quantities of behaviour to observe the outcomes of different routing

strategies and different behaviours. Using Markov Decision Processes (MDPs) we can find

the behaviours that will maximise the system efficiency according to our optimisation strategy.

MDPs have some key advantages: they have substantial tool support such as PRISM Model

Checker [102], they rely on probabilities and non-determinism to recreate systems and they

provide the ability to find the optimum paths through the system using the reward function.

Through the reward function we generate traces that mimic potential system behaviour.

Taking advantage of the relatively simplistic set of behaviours that an IoT device can perform,

we can implement a variety of systems focusing solely on their network traffic. When the

IDS system is deployed in the real world it compares the network traffic with the possible

optimum behaviour traces generated from the model and then labels any deviating sequence

as harmful. This approach allows to detect a variety of potentially dangerous attacks and

can be extended for different scenarios. The model relies on several information being

collected for a specific device and must therefore require for several measurements to be

taken regarding the devices and their functioning. We first describe the set of optimisation

criteria in sec. E.5 and then discuss the model implementation in sec. E.6.

E.5 Optimisation Theory for Attack Detection 179

E.5 Optimisation Theory for Attack Detection

The harm detection strategy takes the form of a function F, which takes as input the set of

IoT devices N = {n1, ...,nz}, and for a given run of the system calculates the output of each

optimisation variable ωi ∈Ω, minus the set of minimisation criteria λ ∈ Λ for each device

n ∈ N and sums it up, with the optimal strategy being the one with the highest value. As

the system is probabilistic and continuous the optimal path may vary for a given scenario

and there might be multiple optimum traces. We also introduce a level of uncertainty, as

IoT systems are often distributed it can sometimes be the case that an IDS, may have to

function under incomplete knowledge and therefore account for the known information

denoted by KI(n). Whilst incomplete knowledge may reduces the accuracy of the detection,

one advantage of the approach is that it is able to look at more than just a single packet and

its effect on a device, as it will still effect the remainder of the system.

F(N) =
Ω

∑
x=1

(
∑

N
n=1 · ωx−∑

N
n=1 · λx

)
∈ KI(n) (E.1)

Different weightings ψi ∈Ψ are assigned to each ωi and λi depending on system choices

and prioritisation, using this value we can get different paths that are critical to a specific

system or to the choices of the system administrator.

Battery Power

We focus on a restricted set of IoT Devices, namely battery powered sensors. A device in

this scenario will have a restricted battery life and certain operation will cause high strain on

its duration. As such standard system behaviour should aim to minimise these operations. A

device will spend large periods of time in sleep mode and targeted attacks may aim to disallow

this behaviour and consequently drain large amounts of battery. One of the key difficulties in

this field is that the devices themselves will have no way to self regulate their own battery

usage, this is is due to the device being very simplistic scope and costs. Furthermore, whilst

a host based IDS would sometimes observe battery drain, it is not possible to do for a NIDS

180 Anomaly Based Harm Detection

without additional knowledge. By taking readings of battery drain following the methodology

proposed by Farnell [65] we calculate a drain per message as:

ωbp =

(
Capacity(mAh)Voltage ·Consumption(mAh) ·0.7

)
·ψbp (E.2)

Bandwidth

The bandwidth is the amount of data that can be transmitted in a fixed time, or rather it

is characterised as the maximum rate of possible data transferred across a network. This

metric is specifically important in IoT systems as it sets them apart from Wireless Sensor

Networks (WSN), whilst a WSN is often a closed system the IoT is fully open and wireless

and therefore needs to cater to a much higher rate of traffic. It is important that the bandwidth

is not flooded by “bad" data and is instead used to improve system operation. To measure

bandwidth in a system we use the standard equation:

ωbw =

(
Return Window

Time to Return Round− trip

)
·ψbw (E.3)

Coverage

A lot of IoT systems are built on lossy and often unreliable communication channels, often

using UDP over more traditional TCP. This causes the coverage of the system to be a common

issue, with packets dropping or not reaching destination. This feature makes it hard to make

short term decisions as to whether the system is being attacked or whether there is a problem

with the connections. By accounting for lossy channels in our model we can observe what

a probabilistic outcome of lossy communication looks like and then differentiate it from

attacker behaviour. The formula for coverage in networks is:

ωcov =

(
Completed Message Exchanges

Conversations Initialised

)
·ψcov (E.4)

E.6 Model Based System Optimization 181

Throughput

IoT Devices can be easily tampered with, or taken offline. Throughput is defined as the

number of messages processed over a given time interval (cumulative messages sent/current

time). By definition if a message takes longer to send the throughput will decrease, hence an

attacker targeting computationally intensive tasks that delay the transmittance of messages

is going to cause a decrease in the systems throughput. This is one of the key metrics of a

systems efficiency and is calculated by:

ωt =

(
Messages in System

Time

)
·ψt (E.5)

E.6 Model Based System Optimization

A model has a key advantage over a real system in that it can be used to extrapolate key data

of interest and quickly observe how the components react. The intent of the modelled system

is in essence to produce traces of behaviour that correspond to the behaviour of real devices

at the network level. This means that by comparing the model output to the captured data

from the system, a direct comparison can be made. The traces can be used by the HDS as

markers of optimal system behaviour, by matching what is going on in the system to the

traces any deviating behaviour can be found. As discussed in previous work [17], there are

several process algebras that aim to capture actions taking place in the system. However, the

purpose of these semantics is very different, whilst common methods are used to identify

potential bottlenecks or deadlocks to reason about a system, we wish to recreate network

behaviour to find desirable traces. Taking this into accounts we extend the semantics to

capture routing behaviour, message exchanges, timings and the impact of these exchanges on

the devices themselves. We expand on our previous model to focus on how messages travel

through the system and how to capture the optimum variables, and deviate from the concept

of attack behaviour.

Given a global set of protocol messages γ , a device D is a tuple (A,T,L,P), where

A⊆ γ× [0,1] is the set of potential protocol actions valid for the IoT System; T is the set of

182 Anomaly Based Harm Detection

timings to process different actions where each action γ when performed will add a a value t

to global value clock until a full exchange is completed and the value is reset; L is the target

destination for the message in the form L ⊆ N× [0,1] where N is the set of devices in the

network and where (s,n, p) ∈ L means the device D1 = s source chooses destination n with

probability p, mimicking ad-hoc behaviour. Finally, P is used to model the likelihood of the

message being received, where (a, p) ∈ P means the process successfully performs action

a with probability p, and such that ∑{p | (a, p) ∈ A}= 1 We make the choice to include a

local time in the form of a clock as the core important factor is the time it takes for a message

to propagate through the system. A monitor keeps track of when the message has reached

the destination (or if the message doesn’t) and resets the clock. Another feature to note is

that there is a probability of the message not being sent to mimic a lossy channel which is

common in IoT infrastructures.

The second component in the system is a monitor(M), the purpose of monitor in our

model is to find optimum pathing and keep track of device behaviours. It leverages on it’s

knowledge of the devices battery, memory and current actions to find the optimum pathing

for any given behaviour. It’s job is also to update the clock and reset the actions when a

message has reached destination (as the original sender is not aware of this). A monitor M

controls values λ and ξ , where λ is the remaining battery of the device and ξ is the current

memory value. Given a global set of battery drains Ω the λ is measured as a quantity that is

linearly drained by a ωa where ωa ∈Ω is a constant battery drain of an action, the monitor

will update its λ value to λ ′ after each corresponding device action. Conversely a ξ ∈ Ξ

starts at zero and is filled whenever a device receives a message (to simulate a open thread

or data on RAM), the value ξ is linearly decreased by a value θ ∈Θ in the form (a,D) ∈ θ

where each theta is associated to a single device performing an action after it forwarded the

received action a.

Rule 4. Given a device D1 = (A1,T1,L1,P1), a communication initiated by device D1 in

synchronization with monitor M1 = (λD1,ξD1) on an action a with an associated timing t,

E.6 Model Based System Optimization 183

and destination n with a success probability p, takes the form:

(a, p) ∈ A1 n ̸= D1 ta ∈ T p > 0 n ∈ L T1 + ta n = 1 λD1−ωa ξD1−θD1

(A1,T1,L1,P1)||(λD1,ξD1)
(s,a,t ′a,n′)−−−−−→ (A1,T ′1,L

′
1,P1)||(λ ′D1

,ξ ′D1
)

Rule 5. Given a device D1 = (A1,T1,L1,P1), a communication received by device D1 from

D2 = (A2,T2,L2,P2) on an action a originally, with an associated timing t, and destination

D1 resets the clock for the communication and unlocks the destination, taking the form:

(pa,a) ∈ P1 > 0 n = D1 n ∈ L ta ∈ T2 = 0 sD2 ∈ L2 = 0

(A1,T1,L1,P1)||(A2,T2,L2,P2)
(s,a,t ′a,n′)−−−−−→ (A1,T1,L1,P1)||((A2,T ′2,L

′
2,P2))

A full protocol exchange can involve several transmission of messages by different

devices until it has reached the intended destination. Once the destination is reached the

monitor will update the clock and pathing, there is also a probabilistic possibility that a

message is dropped and doesn’t get to the destination. The routing through the system

is achieved using MDP optimum path. Theoretically the quickest path would be to send

directly to a device, or route it through to another subnet the shortest number of bounces.

However, the monitor might instead choose to route it through other devices to optimize

the systems well being instead (as the quickest path might cause devices to be drained).

The non-determinism in combination with the reward structures to monitor messages, time

and drain are used to find the optimum behaviour strategy, or the most rewarding traces

through the system. Implementing the model in a tool like PRISM allows us to make use

of Probabilistic Computation Tree Logic (PCTL) [26] to calculate various conditions of

pertinence to the system, to compute the optimal behaviour, and to simulate traces of the

model.

E.6.1 Trace Generation

In order to recreate the optimal traces that match the optimisation scenarios described through

the PCTL we use formal verification. In formal verification, finite state model checking

needs to find an automaton equivalent to a given PCTL formula, i.e., such that the PCTL

184 Anomaly Based Harm Detection

formula and the automatom recognise the same ω-language. In the case of PRISM Model

Checker, the PCTL is specifically matched by a Büchi Automaton [36]. In this context this

automaton represents the full set of actions resulting from the discovery of the optimal system

property of the MDP. Each valid path in the Büchi automaton can be traced back to the

labelled transitions of the system model enabling for easy understanding about behaviours

and consequences of action sequences. Whilst the states of the Büchi automaton do not

correspond to the states of the MDP, a easy matching allows to see the current state in a

system walk and to see consequent outcomes of particular behavioural choices in a system.

This relation provides insight into how systems behave giving the user understanding about

consequences of actions and outcomes of design decisions; allowing to use this for system

customisation and evaluation.

E.7 Harm Detection System

The HDS needs to be able to compare the behaviour in the system to the behaviour exhibited

by the model. To do this we put in place a tool that can interpret the network traces to match

the model output. This is based on having existing knowledge of the network as the various

devices need to be bound to a fixed identifier. We use WireShark as the state of the art

tool to collect network data. The HDS translator then converts the data to match the traces

of the system, it performs a pattern matching on the data and matches it to the values in

the model. The matching identifies a starting state, and follows the path of the trace step

by step each until the packet destination is reached. Of course there will be various valid

paths achieved through the simulations. Deviating behaviour is considered an attack on the

system as it will be a behaviour that will have cause harm. To improve the performance

of the comparing algorithm, the traces of the system are constructed as a state diagram, so

the algorithm can follow each option quickly. This method allows for efficient on the fly

intrusion detection. As this approach can be restrictive we also propose a potential extension,

we introduce uncertainty value in the pattern matching as this allows from some variation to

E.7 Harm Detection System 185

account for non-optimal behaviour happening naturally. This can be observed graphically in

Fig. 5.6.

E.7.1 From System Data to Model Behaviour

Whilst model traces take the form of a series of actions, network traces are much more

complex. This requires transformation into more focused behaviour before they can be used

for anomaly detection. Based on the modelling described in Sec. E.6, we propose a network

traffic characterisation method. Each state in the model has specific characteristics related

to where the packet is coming from, type of message, time message was sent and time it

takes to reach destination. These are all characteristics that can be extracted from network

traffic of an IoT system. Furthermore we wish to deduce the state transition system of the

corresponding LISA model, based on the flow of the model. This can then be compared to

see if it corresponds to a traffic flow of an HDS model.

The first step becomes identifying the state of the network ∆. This is done on a per package

basis for each package within a window N, leading to state space ∆ = {δ1,δ2, . . . ,δN}. This

window is flexible, based on the type of threats, speed of computation, and length of traces

one has for their system. Using the ∆, message flows Ψ are identified within the current

window. A message flow ψ , is composed of a series of s,a, ta,n transitions, each component

of which is gathered from the network package. Using UDP/COAP as an example, UDP

contains Source and Destination, which correspond to s and n respectively, the UDP message

type represents the a and ta is gathered as part of the environment data. We note that since

our scenario involves to find optimal network usage, we do not observe additional features

such as package length, as it would exacerbate the state space of the system needlessly. A

final transformation occurs for the sake of the time windowed gathering approach, the time

for action a as ta becomes a cumulative increment from the initial time gathered at state

δ1 which each new time being added on to the next state to mimick the behaviour of the

model. Using the characteristics of all the flows within the network capture a transition

system is constructed. On account of noise or dropped packets a certain threshold variation

α is allowed from the similarities of traces, which can be customised for strictness. Finally

186 Anomaly Based Harm Detection

for efficiency only the first y packages are compared before a full comparison is made to

quickly sort through the current scenarios.

E.8 Experiment Setup

We evaluate the approach to test it’s effectiveness on a real system. We set up a virtual

network of devices to mimic an IoT system set up in different topologies and setting up

various routing paths. We take measurements from real IoT devices to extrapolate to the

VM as we are not able to virtualise battery. Beyond this assumption we calculated time to

send a message/log a message, baseline battery usage (from the IoT device), percentage

increase in battery usage and battery drain per action. We then quantitatively evaluate the

HDS performance on a series of metrics described in E.8.1.

The system was setup using VirtualBox and mimicking IoT devices functionality, it

consisted of three sub-nets composed of different devices, mimicking a e-health station

in Fig E.1. To mimic IoT devices we made use of tinycore linux a very minimal (12

MB) modular linux system that we used to implement basic IoT functionality of message

exchanges. The traffic was routed in between sub-nets by routing nodes (also containing the

IDSs) that could alter message flow and control traffic, each of them have HDS capabilities,

and represent the fog layer of the diagram. Finally a central server mimicking a cloud

controller in implemented, to ensure correct routing and processing of information. The

Routers where implemented using Ubuntu Servers and we implemented quagga routing suite

and set it up to direct the messages through the system. To mimic sensor readings, real

e-healthcare datasets were used 1.

Case Study - System Setup: Due to the global COVID19 pandemic, on 3 April 2020,

the government of the United Kingdom announced the construction of the NHS Nightingale

hospital 2. These temporary facilities were designed as state-of-the-art e-hospitals with

internet connectivity and means to quickly expand if needed. The temporary field hospital

could house 5000 beds,each integrated with sensors and Internet connectivity. This one of

1Available at : https://physionet.org/about/database/
2“Coronavirus: Nightingale Hospital opens at London’s ExCel centre”. BBC News. 3 April 2020

E.8 Experiment Setup 187

Bed Controls

Intercom VOIP

CRT Readings

Ventilator

E-Health Station

... ...

...

...

Fog Fog Fog

Cloud

Health Assessment

Data Processing
Early Warning

Decision Making

Diagnosis Human Intervention

Health Professional

Local IDS Agents

Central IDS Agent

Sensor Attacks

Routing Attacks

Sybil attack

Wormhole Attack
Node Compromise

Man in the Middle

Replay Attacks

Identity spoofing

Sinkhole
AttacK

Battery Exhaustion Attack

Passive Information Gathering

DoS attack

Insider Attack

Health Assessment

Data Processing
Early Warning

Health Assessment

Data Processing
Early Warning

Message
Dropping

Fig. E.1 E-healthcare facility used for IDS Case Study, including attacks and IDS setup

a kind IoT scenario, where the effects of an attack could be human lives, creates a unique

security problem.

A configuration of the network used for the experiment is presented in Tab. E.1, Agent 1,

represents a local agent with direct descendants whilst Agent 2 has a hierarchical structure

from cloud to end devices with both local and central IDS agents. A diagramatic visualisation

is provided in Fig. E.2.

E.8.1 Evaluation Criteria

In the specific scenario we are investigating there is going to be a very high level of bandwidth

usage. An attack that has risen in popularity that is particularly effective in this scenarios,

is an attack known as Slow DoS [139]. Unlike traditional DoS attacks which often spam to

exhaust resources, slow dos use smarter tactics, often targeting specific functionality without

188 Anomaly Based Harm Detection

Table E.1 Network table case study scenario

Device Interface IP (enp0s3 NAT) Manages Interface IP (enp0s3 NAT)

Agent 1 enp0s8 192.168.1.254 IoT 1.1 enp0s8 192.168.1.1
enp0s9 192.168.100.1 IoT 1.2 enp0s8 192.168.1.2

enp0s10 192.168.101.1 IoT 1.3 enp0s8 192.168.1.3
IoT 1.4 enp0s8 192.168.1.4

Agent 2 enp0s8 192.168.2.254 Local IDS 2.1 enp0s8 192.168.2.1
enp0s9 192.168.100.2 IoT 2.1.1 enp0s8 192.168.2.11

enp0s10 192.168.102.1 IoT 2.1.2 enp0s8 192.168.2.12
Local IDS 2.2 enp0s8 192.168.2.2

IoT 2.2.1 enp0s8 192.168.2.21

1.1 1.41.31.2

1 2.22.1

2

2.1.22.1.1 2.2.1

IDS Agent

IoT Component

local

central

Fig. E.2 Diagramatic representation of case study scenario

E.8 Experiment Setup 189

necessarily flooding the system to achieve the same result. Consequently, it is much harder

to detect, especially under high system load. No current slow DoS tools exist specifically for

IoT, so to test the effectiveness of our HDS in finding slow DoS attacks we tested three of

the most common slow DoS attacks and used them on our experiment IoT setup:

1. Pyloris 3, a configurable tool that aims to exhaust a services resources by opening

multiple TCP connections.

2. R.U.D.Y. (R-U-DEAD-YET?) [129], an open source tool on google code, performs

a slow DoS using POST messages with unusually long content length, allowing to

consequentially fill the form slowly and in small chunks causing a long backlog of

server threads.

3. Sockstress 4, works by using RAW sockets to establish many TCP connections to

a listening service. Because the connections are established using RAW sockets,

connections are established without having to save any per-connection state on the

attacker’s machine.

For the second phase of evaluation we focus on the routing based attacks. This is slightly

harder to evaluate in a live environment as there is no tool available to easily simulate these

scenarios. However, fortunately this can be artificially in our virtual network, by simulating

the impact of these attacks and rerouting through the quagga router nodes. The HDS was

then evaluated for accuracy in detecting the three attacks using F1 score. We assess the

performance overhead of the approach as this is an important aspect to consider in IoT

systems. And finally show correlations between scalability and the results of the HDS and

discuss advantages and limitations.

3PyLoris, Motoma and PyLoris and Python, available at: https://motoma.io/pyloris
4Sockstress Tools & Source Code, Jack C. Louis available at: https://defuse.ca/sockstress.htm

Appendix F

From Secure Protocols to Secure Systems

F.1 Chapter Summary

As our daily lives become ever more connected, the need for security becomes more important.

Due to the constraints of the IoT, the protocol designer must make careful considerations

when making IoT security design decisions. To advance the IoT towards a more secure and

interconnected future, new protocols are being designed. It is therefore desirable to verify

their security, as doing so has been proven to be a non trivial task. We explore this process

by creating the first full formal verification of ACE-OAuth a new IoT authentication protocol.

Noting the difficulty in verifying such complex protocols we design a methodology able to

observe different implementation options and verify the different scenarios. Expanding on

this even further, a new protocol design tool MetaCP is devised and presented in F.3. With

a modern graphical interface, the cryptographer can design a protocol with MetaCP and

simultaneously export it into multiple target languages for formal verification. A protocol

dictates how communication is done over the internet and therefore serves as a cornerstone for

observation of device behaviour. Once we formally verify whether a protocol is vulnerable or

secure from attackers, its formal model may be used as the basis for our modelling approach

of attack behaviour in Chap. 5. Attacks are used for attacker behaviour and the formal

protocol specification is used to model device interactions.

192 From Secure Protocols to Secure Systems

F.2 Chapter Introduction

As discussed in the previous chapter, the highest complexity within the IoT is their inter-

actions. The way devices interact is dictated by protocols. Protocols are the underlying

foundations of the internet, dictating its operation. As the internet ever progresses so must

the protocols that define its functioning. With great advances in interoperability and sheer

breath of what can be achieved in new internet scenarios such as IoT and Cloud, so do the

rewards of breaking such protocols increase. A malicious attacker has a whole lot to gain,

and what better avenue of attack than protocols to attack it’s targets - break the foundations

and the whole infrastructure crumbles down. To this end it is of paramount importance to

make these foundations air tight, and this is where formal methods come in. If the attackers

are getting smarter protocols too need to make advances. As formal protocol verification

tools have become more mature they are rising in popularity especially amongst academia,

they have proven effective in finding and solving vast arrays of security breaches [118, 78].

It has come to the point however where it is not simply good enough to find the problems

after the protocols have already been designed, we must prevent the problems taking place in

the first place.

Secure protocols lead to less attacks. This in itself makes it easier to defend the IoT as

we can use these protocols to design more secure systems. However, not all deployments

are easily updated to be secure and we cannot possibly verify every single protocol imple-

mentation. We therefore still need to make use of IDSs as an extra layer of security. Most

attacks in the IoT, are due to protocols and a lot of IDSs are consequently focused around this.

An attack may not always require for the protocol to be insecure, as legitimate behaviour

may still cause adverse effects, or may cause adverse effects in a specific system only. We

therefore use this system to aid the IDS in detecting attacks in the following way: 1) If an

attack is found on the protocol currently implemented in the system, we can use the attack

signature in the IDS to detect intrusions; 2) If the current version of a protocol is found to be

secure, bu an old version of a protocol is known to be insecure, it is likely that an attacker

may attempt to use the old attacks on the system, and so a intrusion can be found; and 3)

Even if the protocols in the system are secure, they still may be implemented incorrectly, and

F.2 Chapter Introduction 193

consequently be vulnerable, so we can use the correct expected and secure behaviours as the

benchmark of what should be taking place.

The work presented in this chapter was inspired by a collaboration with my PhD in-

dustrial partner ARM ltd, Arnaboldi & Tschofenig [19]. The work presents a framework

to generalise a formalisation of protocols making it suitable to formally verify several dif-

ferent implementation options, the full paper is availableat Arnaboldi & Tschofenig [19].

ACE-OAuth is a novel IoT protocol which is currently in the process of standardisation, my

co-author H. Tschofenig is one of the designers of the protocol and asked for my expertise in

protocol verification to conduct the analysis of the protocol. After reading over 150 pages

of specification, I discovered that this kind of document would allow for several different

implementation options. Therefore, verifying the protocol would require multiple models

of the of several implementation options. This spawned the idea of making a flexible verifi-

cation framework where different implementations could be tested, as well as the concept

of minimal requirements. This idea allowed the discovery of the minimal implementation

that would fit the specification whilst maintaining the security objectives. This work was all

done manually, which was not an easy task as dealing with formal languages is tricky and

prone to error. Discussing this with a colleague who also specialised in protocol verification

we came up with the idea to aid the protocol designer through a graphical interface. The

interface would mimic the process used to currently design protocols and then automated the

translation into a formal language. In collaboration with colleague R. Metere we developed

the tool MetaCP, Arnaboldi & Metere [15], this is discussed in the second section of the

chapter. This flexible approach allowed to convert a protocol specification not only into

protocol verification languages. but into our bespoke device behaviour language as per

Chap. 4.

The focus on formal verification of protocols is directly useful in attack detection as it

allows us to predict potential vulnerabilities and prevent them. If we model device interactions

we need to consider protocols, correct device interaction are a stateful representation of

communication dictating good behaviour. The added benefit of our design approach is that

we can use the already created protocol formalisation to act as the basis for modelling device

194 From Secure Protocols to Secure Systems

interactions as per Chapter 4. However going from a protocol specification to a system

model is a non trivial process. So we leverage our data centric approach that allows for the

automated conversion from Protocol Specification and Verification (PSV) data structures

to a target language of choice. A PSV file collects information about the protocol as a data

structure in an XML language whose constraints are defined in a Document Type Definition

(DTD) file. From this base language we initially convert to formal protocol verification

languages for security analysis, however, we can then use this same approach, described in

Arnaboldi & Metere [15], to translate into gentleman/rude device semantics automatically.

We need to to have secure protocols to defend IoT systems, this method allows for the design

of secure protocols; and in the case where they are insecure this same approach can be used

to preempt and discover attacks on systems. The latter approach will be further discussed in

Chapter 5.

F.3 MetaCP: Cryptographic Protocol Design Tool for For-

mal Verification

Formal security analyses of communication protocols base their model and reasoning on

the interpretation of their specification. In this context, machine-aided verification tools

have become popular in the past three decades reducing the complexity and improving the

repeatability of the security analysis. However, the state of the art tools focus their automation

on the last part of the verification process, i.e. after the model has been developed. MetaCP

proves itself a promising first effort to automatise the process of formal verification, focusing

on the modelling part [15]. We plan to let it be freely available at metacp.eu.

The model interpreting the design of a protocol is the first mathematical artefact in

the process of formal verification, but the interpretation process itself is not mathematical.

Therefore, a copious amount of papers are written to convince the community of security

experts that the models indeed capture the relevant security aspects of the specification. Those

discussions may sometimes overlap or repeat across different papers. MetaCP enhances the

reusability of any exporting language to any protocol of interest.

metacp.eu

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification 195

The automated tools for formal verification of security protocols are based on ad-hoc

languages that allow for reasoning in some cryptographic model to prove (or disprove)

mathematical theorems capturing the security properties desired. Mechanised formal verifi-

cation is a very complex task and, unfortunately, the languages used are not developed to be

understandable or usable, without clear syntax and semantics. Hence, they are quite obscure

and very difficult to use or learn by anyone who does not happen to be directly involved with

the related projects. Even knowing the languages very well, writing the code is reduced more

or less to writing pure text files without any aiding framework. Moreover, formal models

written in two different formal languages may capture different aspects of the protocol, and

what is verified in one tool may be seen as an attack from the other tool. Conversely, with the

intuitive graphical interface of MetaCP, one can design a protocol and automatically export it

to multiple other target formats: we currently provide exporting plug-ins to Tamarin [119],

the applied pi-calculus of ProVerif [2], and LaTeX illustrations.

We show how the data-centric approach brought by MetaCP entails many benefits to

the process of formal verification of security protocols. Nevertheless, analogous concepts

apply to any domain, and can be seen as future extensions of MetaCP. In particular, MetaCP

allows for (i) reducing the amount of ambiguity typical of specification written in natural

languages1; (ii) making the design of a protocol much more intuitive through a modern

graphical interface; (iii) including a corpus of reusable exporting plug-ins; (iv) kicking off

the work of both security experts and learners by systematically and automatically exporting

from the design or specification; and last but not least, (v) quick fixing of mistakes in the

design, as they will automatically reflect to target languages when re-applying the relevant

plug-ins. It is not difficult to see how part of those benefits also apply to other disciplines, e.g.

in the didactic field. As a running example, we re-create the Diffie-Hellman key exchange

protocol in MetaCP, exporting its design to ProVerif and a LaTeX illustration in just a couple

of minutes of effort.
1This is a common concern when one models from specification [51, 119].

196 From Secure Protocols to Secure Systems

F.3.1 Architecture

The crucial innovative aspect of MetaCP is its data-centric approach, where the protocol

specification is stored in a structured way, as shown in Fig. F.1. The benefits of this approach

are manifold and enable for unprecedented little effort in going from the design to formal

verification of security protocols.

The MetaCP architecture is composed of three kinds of components: design, specifi-

cation, and export. At the design level, we provide an intuitive Graphical Design Editor

(GDE) that allows for creating, dragging and dropping elements that will be later saved into

the specification. The GDE is written in a modern web application framework, using ReactJs,

Bootstrap, NodeJs, and Redux. At the specification level, we provide a data structure written

in XML language meant to collect the information required to fully describe a security

protocol. Such structure can later be interpreted by means of a plugin. We provide two

plugins towards formal verification languages, one for Tamarin and one for ProVerif, that

automatically interpret the protocol described in their syntax. Furthermore, a third plugin

exports into LaTeX code for illustration purposes. We found it comfortable to write the above

plugins in XSLT, but they can be written in any language of choice. All these components

are completely independent and their details are explained in the following subsections.

Fig. F.1 MetaCP supports a data-centric approach where the specification is stored as struc-
tured information. The green arrows point to the currently supported target tools. Original
diagram from Arnaboldi & Metere [15]

graphical design

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification 197

Protocol Specification and Verification Data Structure

The ability for MetaCP to automatically translate into multiple verification languages resides

in its description language, denoted as Protocol Specification and Verification data structure

(PSV). A PSV file collects information about the protocol as a data structure in an XML

language whose constraints are defined in a Document Type Definition (DTD) file. PSV is

suitable to be easily extended and enjoy multiple interpretations. DTDs merely enforce the

structure without adding strong constraints to the semantics, thus not breaking the flexibility

required by our approach. Our approach is sensibly different from all previous approaches,

where researchers struggled to find a single semantics capable of embracing the semantics

of all desired target languages. The single generic semantics approach could work well

for a few languages whose semantics were not too far apart, but would either fail or find

it very difficult to capture the requirements of other languages. So, the very successful

projects AVISPA [13], AVANTSSAR [12], and ProScript [95] are all not suitable to make a

comprehensive multi-language translation tool due to the single generic semantic bottleneck.

We illustrate how MetaCP is suitable for being a multi-language translation tool, through an

example, the Diffie-Hellman key exchange (DHKE), as illustrated in Fig. F.2.

Fig. F.2 The Diffie-Hellman key exchange protocol as exported by MetaCP with the LaTeX
exporting plugin, directly from the design. Original diagram from Arnaboldi & Metere [15]

Alice Bob

x←$N
X ← gx X

y←$N
Y ← gyY

kA ← Y x kB ← Xy

The standard flow a PSV file is shown in Fig. F.3 and includes the following sections:

declarations and the protocol.

198 From Secure Protocols to Secure Systems

Fig. F.3 High level description of the PSV data structure to specify protocols. Original
diagram from Arnaboldi & Metere [15]

knowledge of Alice

m
es

sa
ge

knowledge of Bob

pre statements

send event

receive event

post statements

channel

se
n

d
er

re
ce

iv
er

declara�ons
m

o
d

el

protocol

p
ro

to
co

l

en��es

messages

finalise

proper�es

Declarations. To allow for a type system over all the structures used within a protocol

specification, e.g. variables, constants and functions, the declarations of the corresponding

membership sets are mandatory beforehand. Each subsequent declaration needs to refer to

an existing set identifier.

Protocol. A protocol is composed of entities, messages, a final elaboration step after the

messages, and finally the desired properties. The entities are the participants of the protocol

that exchange messages whose directives affect their knowledge. The final elaboration step

can include statements; for example, at the end of a key exchange protocol, the parties may

reconstruct the key at that stage. Security properties that can be currently specified are

correctness, authentication and secrecy. We do not discuss the security properties on this

paper, and we reserve to comprehensively study them in future works.

The messages are structured in four parts: the knowledge, the sender, the receiver and a

communication channel in the between. The knowledge part is per entity and lists all the

known variables and constants by the entity before either sending or receiving the message.

The knowledge is beneficial to detect or restrict the designer not to use unknown structures.

The sender part shows two sub-parts: the first can include statements required to construct

the message to send, and the second is the message as it is pushed to the channel. Similarly,

the receiver part shows two sub-parts but, in this case, they are inverted: the first is the

incoming message, while the second are statements manipulating variables in the knowledge

of the receiver, which has been just augmented with the received message. We remark that

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification 199

the received message may not be the same as originally sent by the sender. Any manipulation

to the message can be done in the channel part. This structure has the benefit of allowing

the designer to model different scenarios of interest. In particular, (i) systematically biased

channels can be implemented with a function in the channel, (ii) man in the middles may

be embedded inside the message, without creating additional messages and simplifying the

design of attacks, and (iii) faults can be implemented either as empty received messages or

probabilistic functions in the channel. The above listed scenarios are merely examples, and

other scenarios can benefit from this particular structure of the message. Using the DHKE

running example, we cherry-picked the first message sent in the protocol. We replaced the

details of its content with a brief summary. The extended content will be later explained is

shown in the right hand of Fig. F.4.

<message [...] from="Alice" to="Bob">

<knowledge entity="Alice"> [...knows g] </knowledge>

<knowledge entity="Bob"> [...] </knowledge>

<pre>[...elaborates gx]</pre>

<event type="send">[...sends gx]</event>

<channel></channel>

<event type="receive">[...receives gx]</event>

<post></post>

</message>

Graphical Design Editor

Whilst we see the XML as intuitive and in line with how you would describe a protocol in a

specification, in practice, MetaCP is equipped with a modern Graphical Design Editor (GDE)

as illustrated in the left part of Fig. F.4, to aid the user with the design of the protocol rather

than focusing on a formalisation i.e. the PSV. The GDE mimics the standard drawing process

most familiar to any protocol designer, and it lets the user specify variables, functions and

message flow. It does so through a smooth drag and drop design, making it easy to piece

together the protocol. The GDE is intended to guide a user through the coherent definition of

the PSV, automatically providing the following relationships in the data structure: first, the

knowledge is automatically augmented as the protocol is constructed, and second, the GDE

will enforce correct typing across the protocol and functions. The ability to store further

200 From Secure Protocols to Secure Systems

relations and information about the protocol is a significant aid that modern frameworks for

programming languages usually incorporate as the basics. Once a desired protocol is drawn

out it can be saved as PSV. The Fig. F.4 shows how some parts of the design reflect to the

saved PSV.

Fig. F.4 The graphical design of MetaCP (left) is saved as the PSV format (right). Original
diagram from Arnaboldi & Metere [15]

MetaCP Protocol Designer - Any Web Browser
File Edit Help

XML editor - Diffie-Hellman Key Exchange.psv

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

File Edit Help

 <message id="m-1" from="Alice" to="Bob">
 <knowledge entity="Alice">
 <variable id="g" type="constant"></variable>
 </knowledge>
 <knowledge entity="Bob">
 <variable id="g" type="constant"></variable>
 </knowledge>
 <pre>
 <assignment variable="x" type="probabilistic"></assig
 <assignment variable="gx">
 <application function="exp">
 <argument id="g" type="constant"></argument>
 <argument id="x" type="nonce"></argument>
 </application>
 </assignment>
 </pre>
 <event type="send">
 <variable id="gx"></variable>
 </event>
 <channel></channel>
 <event type="receive">
 <variable id="gx"></variable>
 </event>
 <post></post>
 </message>
 <message id="m-2" from="Bob" to="Alice">

MetaCP Load Save Export

Exporting Plugins

A plugin provides a fully automated protocol-agnostic interpreter from PSV code to the

desired semantics of the target language. We remark that our plugins are examples of

interpretation of the target semantics: additional plugins targeting the same language are

allowed.

The combination of the benefits of the GDE and the exporting plugins can sensibly

improve the experience of protocol designers, even if they are expert in a specific language.

To the best of our knowledge, the languages used in formal verification for protocols do not

enjoy advanced frameworks. Therefore, their source code is more prone than other languages

to subtle and hard-to-spot bugs2. Therefore, MetaCP enhances the quality of the work of

2Some tools work in untyped languages making even small typos hard to detect.

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification 201

experts in those languages, both speeding up their work and mitigating (when not removing)

many subtle bugs at the design level.

Plugins can be called in the GDE directly, as well as natively, e.g. as scripts in a shell,

once the PSV is available. The architecture of MetaCP is such that all the components, PSV

(with DTD), GDE and exporting plugins, are independent. So when a plugin is called in

the GDE, it automatically and transparently generates a PSV as input to the plugin. The

original paper contains a conversion from PSV to ProVerif as it was more relevant to formal

verification of protocols. The current chaspter presents the conversion to our behaviour

modelling technique as it is more relevant to the IDS work we present.

As the PSV is a structured container of the specification of the protocol, interpreting

plugins confer semantics to that specification from the point of view of their target language.

Hence, a plugin can be seen as the effort of applying the semantics of the target language

to the structure of the source PSV. To do that, the plugin translates the PSV into the target

language grammar. If they were two languages with their own semantics, some sort of

bisimulation certifying that semantics are preserved in the translation would be expected.

Differently in this case, we illustrate how the methodology of our plugin does not introduce

errors in the target code upon certain conditions. This is used to then automatically construct

a LISA model as per the previous section. A translation rule from PSV to MDPs in PRISM,

following the formalism of the Prism system description language presented in the original

work by Kwiatkowska et al. [98] with further details on concurrent composition available

online 3, is presented. Similarly for the xPath directives, we refer to Clark et al. [47].

The key to read those rule is as follows: at the conclusion (bottom or bottom-right) we

have the grammar of PRISM Model Cheker, which is inferred by the parts above its line or

at the left of the corresponding inline symbol ⊢, while the lines above are the interpretation

reading from the PSV whose notation uses xPath directives. Additionally, we use the notation

explained as follows. We refer to the (ordered) sets of elements generated by an application

of an xPath directive d within angle brackets, i.e. ⟨d⟩. If the result set is a singleton, we also

refer to the single element with the same notation. Some rules are parametric, the parameter

3http://www.prismmodelchecker.org/doc/semantics.pdf

202 From Secure Protocols to Secure Systems

passed to them is superscripted after their name, so the notation [r]p is for the rule named

“r” with parameter p. To read attributes from tags, we use square brackets notation, so we

denote the attribute type from the tag in e as e[@type]. Unlikely other common rules, they

have to be explicitly called. The notation we use to apply a rule to all elements of a set

of elements is a vertical bar with the application domain as subscript, e.g. to apply the

rule [r] to all elements in ⟨d⟩, we write [r] |∀e∈⟨d⟩. As a short notation, if the rule to apply

has the same name as the xPath directive of the set, we omit it leaving only the ∀ symbol,

e.g. [r] |∀ is short for [r] |∀e∈⟨r⟩ . Finally, we shorten the call of two rules applying to set of

diverse elements, e.g. el1 el2 with the vertical bar |, e.g. [el1|el2] will apply to elements

whose tag is either el1 or el2 in the order they appear in the application domain. As the

reader may already have noticed, the rules in Fig. F.5 and Fig. F.6 rely on some assumed

relationships between the elements in the PSV. These relationships cannot be enforced by

the DTD: for example, the rule [variable]"typed" assumes that the type will be actually found

in the declarations. The DTD can only guarantee that the variable specified appears as an

identifier in the past, but it cannot guarantee that the identifier was actually defined for the

desired element. By designing the protocol with the GDE, MetaCP is able to generate a PSV

where these relationship are always valid. To enforce such relationships in the PSV itself, we

reserve ourselves to upgrade the DTD to the more powerful XML Schema Definition [172].

As introduced before, the GDE currently confers a type system to the functions, variables

and statements to respect across the whole protocol, and manages the knowledge automat-

ically at each step of the protocol. In particular, the extra properties provided by using

the GDE are that all messages are exchanged between intended parties, and all statements

can refer only to corresponding pre-declared sets, variables and functions, according to the

knowledge of the party at that specific point of the protocol. An illustrated example for the

rule [application] can be seen in Fig. F.5.

As opposed to much more rich syntax available in formal verification tools, in PRISM

there is no such things as mathematical function applications such as encryption. Instead

F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification 203

Fig. F.5 Rules applied by the LISA plugin in MetaCP for variables, arguments and function
applications. From the top to the bottom of the rule, they show how the PSV elements are
interpreted to the grammar of the PRISM Model Checker.

[variable]m,[argument]m:
v ∈ ⟨variable|argument⟩ m =⊥|m = "typed" l ∈ ⟨comment⟩ := l ∈ Z

x← v[@id] : [0..l]x ⊢Varm ∈Mm(Varm,Cm)

[variable]m,[argument]m:
v ∈ ⟨variable|argument⟩ m =⊥|m = "typed" l ∈ ⟨comment⟩=⊥

x← v[@id] : [0..1]x ⊢Varm ∈Mm(Varm,Cm)

[application]:
a ∈ ⟨application⟩

i← a[@id] : [0..1]i ⊢Varm ∈Mm(Varm,Cm)

a Boolean variable is used to denote whether it is e.g. encrypted (1) or not (0), for any

such function. The usage of these rules is recursive and we can observe the usage of the

[application] rule several times during rules for assignment of variables in Fig. F.6.

Fig. F.6 Rules applied by the LISA plugin in MetaCP for messages in the protocol along
with depending rules.

[entity]:
e ∈ ⟨entity⟩

M← [message] e|∀ .end ⊢ P

[message]e:
m ∈ ⟨message⟩ m[@ f rom] = e

M← [pre] |∀ . [event] |∀e∈⟨event[1]⟩ ⊢M

[message]e:
m ∈ ⟨message⟩ m[@to] = e

M← [event] |∀m∈⟨event[2]⟩ . [post] |∀ ⊢M

[pre],[post]:
M ∈ ⟨pre|post⟩

M← [assignment] |∀ ⊢M

[assignment]:
a ∈ ⟨assignment⟩ a[@type] = "probabilistic"

x← a[@variable] M← [y] |application M← [application] |∀
{x,y} ⊢Vare ∈Me

[assignment]:
a ∈ ⟨assignment⟩ a[@type] = "deterministic"

x← a[@variable] M← [application] |∀
{x} ⊢Vare ∈Me

[event]:
e ∈ ⟨event⟩ e[@type] = "send" M = Msender[[e]|Mreceiver

c ∈Msender v← [variable]∀v ∈ e ∆ =⊥
c ⊢ [e]true→ ∆ : v′1 + ...+∆ : v′n

c ⊢Csender ∈Mreceiver

[event]:
e ∈ ⟨event⟩ e[@type] = "receive" M = Mreceiver[[e]|Msender

c ∈Mreceiver v← [variable]∀v ∈ e ∆ =⊥
c ⊢ [e]true→ ∆ : v′1 + ...+∆ : v′n

c ⊢Csender ∈Msender

The sender and receiver actions in our MDP take the form of two concurrent Module

actions Msender[[e]|Mreceiver following the PRISM concurrent process syntax, leading to two

simultaneous transitions in the two modules updating the respective values in the event. As

204 From Secure Protocols to Secure Systems

can be observed the PSV doesn’t support probabilistic behaviour and therefore there are no

update probabilities ∆, however this suits the structure of an MDP in prism, not requiring

probabilities to be specified.

F.3.2 Related Work

As it stands, it is very difficult for the casual user or even for the security professional, to

ascertain the truthfulness of a formal protocol analysis, and how it relates to the original

protocol. Witnessing the sensibility of researchers about this problem, namely the project

“Automated Validation of Internet Security Protocols and Applications” (AVISPA) [13] has

attempted to unify the verification, by presenting a single language of specification and

automating the translation into various back-end tooling. Even with the integration of

multiple verification options, research shows that protocols found to be secure by AVISPA

were later found flawed in different formal verification languages [78], and no new extensions

or backends were integrated.

Another attempt that the literature proposes to standardise the way in which protocols

are designed is ProScript [95], here, a new high level language for the specification of

security protocols is proposed. ProScript is able to automatically interpret from the high level

specification to applied PI calculus, verifiable in ProVerif and CryptoVerif.

Another very successful case study in the area of general purpose languages is F* [168].

F* is a general purpose programming language based on monadic semantics, which supports

semi automated proving and automatic translation into F# and OCaml. Like MetaCP, F* is

able to represent aspects from programs and implementations in a way that can be easily

extrapolated to other languages.

F.3.3 Future Work & Limitations

MetaCP is a first-of-its-kind tool aiding the protocol expert through the process of design and

formal specification. It is based on a data-centric approach where the protocol specification is

described as a data structure containing all the information that must currently be interpreted

F.4 Chapter Conclusion 205

from many pages written in natural languages. We showed its very promising potential with

the example of formal verification languages for Tamarin and ProVerif, as well as illutrative

LaTeX, and there is still a lot of space left for future expansions. Both ProVerif and Tamarin

reason in the symbolic model, we have yet to research into the translation into tools reasoning

in the computational model.

After its promising entrance, MetaCP is far from a mature solution. Our ideas of the key

areas where MetaCP can grow and be extended lie in its limitation and are as follows.

• Focusing on the high flexibility of the PSV, we constrain its structure through a DTD;

however, further investigation on a potential migration to the more powerful XML

schema definition language (XSD) [172] may show significant improvements to the

PSV’s internal coherence.

• We also note that the GDE does not support all the feature provided by the PSV, e.g. it

only allows to design two-party protocols and no security properties can be specified

yet.

• The PSV itself is expected to be extended and improved to to contain all the (useful)

information that can be found in current protocol specifications.

• Additional plugins exporting to different languages are obvious and required, in

particular to generate executable code, e.g. C++.

• We aim to apply this tool to specific fields of increasing interest, i.e. Intelligent

Transportation Systems and Vehicle to Grid. These fields involve experts in the

many disciplines, and security is of paramount importance; MetaCP can bridge the

communication gap between them.

F.4 Chapter Conclusion

Protocols are core components of any IoT deployment, and represent a key factor of con-

sideration for any system designer. Both if a bespoke protocol is designed for a system or

206 From Secure Protocols to Secure Systems

an existing protocol is chosen, they need to be verified for security, and it is consequently

important to be able to do so with ease; MetaCP helps accomplish this goal. Upon the

successful design of a protocol, the user may now automatically use the design created by

MetaCP (in PSV) to model the interactions of their system, and analyse its behaviours, aiding

the possibilities for decision making and system evaluation. Furthermore this modelling

representation can be used to specify system behaviour within an IDS. We showcase the

translation rules than can go from the PSV to the LISA models discussed in the previous

sections. Whilst this is far from a perfect interface it allows for some initial models to work

from the decrease the amount of work required.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem Formulation
	1.2 Research Question
	1.2.1 Aim

	1.3 Research Challenges
	1.4 Proposed Solution
	1.4.1 Thesis Structure
	1.4.2 Publications

	2 Background
	2.1 Chapter Introduction
	2.2 Intrusion Detection Systems for IoT
	2.2.1 Behaviour Based Detection

	2.3 IoT System Security
	2.3.1 Evaluatable IoT Systems for Intrusion Detection

	2.4 Probabilistic System Modelling
	2.4.1 Markov Chains
	2.4.2 PRISM Model Checker
	2.4.3 Advantages of Modelling Approaches

	3 Intrusion Detection Systems in the IoT
	3.1 Chapter Summary
	3.2 Chapter Introduction
	3.3 Related Work
	3.4 An overview of Intrusion Detection for the IoT
	3.5 Types of Intrusion Detection Systems in IoT Context
	3.5.1 Network Intrusion Detection for IoT
	3.5.2 Host Intrusion Detection for IoT
	3.5.3 Collaborative Intrusion Detection for IoT

	3.6 Techniques for use in Intrusion Detection Systems
	3.6.1 Rule Based/Misuse Detection/Policy Based
	3.6.2 Signature Based
	3.6.3 Anomaly/Statistical
	3.6.4 Stateful
	3.6.5 Clustering
	3.6.6 Computational Intelligence

	3.7 Evaluation of Intrusion Detection Systems for IoT
	3.7.1 Methods to Evaluate Intrusion Detection Systems for IoT

	3.8 Tools for Intrusion Detection in IoT Systems
	3.8.1 Analysis and Summary of Proposed Tools
	3.8.2 Collecting Tools

	3.9 Survey Thoughts and Discussion
	3.10 A Methodology for the Unified Evaluation of IoT IDSs
	3.10.1 Building a IoT Testbed
	3.10.2 Proposed Testbed Structure

	3.11 Chapter Conclusion

	4 A Modelling Technique For The Evaluation of IoT System Interactions
	4.1 Chapter Summary
	4.2 Chapter Introduction
	4.3 Related Work
	4.4 Case Study 1: DoS Attacks and Mitigations in IoT Systems
	4.4.1 Model for IoT Devices
	4.4.2 Experiments
	4.4.3 Experiment Setup
	4.4.4 Results
	4.4.5 Evaluation

	4.5 Case Study 2 - Load-Changing Attacks and Mitigations in Smart Grids
	4.5.1 Threat Model
	4.5.2 Problem formalisation
	4.5.3 Energy Supply Demand Trade-off Model
	4.5.4 Power–Energy considerations
	4.5.5 Cyber security model applied to CPS
	4.5.6 Results

	4.6 Limitations
	4.7 Chapter Conclusion

	5 From Model Behaviours to Intrusion Detection
	5.1 Chapter Summary
	5.2 Chapter Introduction
	5.3 Related Work
	5.4 A Model Based Approach for Deployment of a IDS in an IoT Network
	5.4.1 IoT System Model
	5.4.2 Experiment Methodology
	5.4.3 Experiment Setup
	5.4.4 Results

	5.5 Automata Based Extension
	5.5.1 From System Data to Model Behaviour

	5.6 Summary of Approach
	5.7 Discussion & Future Work
	5.8 Limitations
	5.9 Chapter Conclusion

	6 Conclusion & Final Considerations
	6.1 Discussion
	6.2 Future Work
	6.3 Limitations
	6.4 Concluding Remarks

	References
	Appendix A Summary of Intrusion Detection Tools
	Appendix B Survey IDS Request Template Letter
	Appendix C Survey IDS Request Example Letter
	Appendix D Simple DoS Model on Smart Grid Power Generators
	Appendix E Anomaly Based Harm Detection
	E.1 Appendix Summary
	E.2 Introduction
	E.3 Related Work
	E.4 Problem Formulation
	E.4.1 Attack Specification

	E.5 Optimisation Theory for Attack Detection
	E.6 Model Based System Optimization
	E.6.1 Trace Generation

	E.7 Harm Detection System
	E.7.1 From System Data to Model Behaviour

	E.8 Experiment Setup
	E.8.1 Evaluation Criteria

	Appendix F From Secure Protocols to Secure Systems
	F.1 Chapter Summary
	F.2 Chapter Introduction
	F.3 MetaCP: Cryptographic Protocol Design Tool for Formal Verification
	F.3.1 Architecture
	F.3.2 Related Work
	F.3.3 Future Work & Limitations

	F.4 Chapter Conclusion

