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Abstract
Genomics includes development of techniques for diagnosis, prognosis and therapy of

over 6000 known genetic disorders. It is a major driver in the transformation of medicine

from the reactive form to the personalized, predictive, preventive and participatory (P4)

form. The availability of genome is an essential prerequisite to genomics and is obtained

from the sequencing and analysis pipelines of the whole genome sequencing (WGS).

The advent of second generation sequencing (SGS), significantly, reduced the sequencing

costs leading to voluminous research in genomics. SGS technologies, however, generate

massive volumes of data in the form of reads, which are fragmentations of the real

genome. The performance requirements associated with mapping reads to the reference

genome (RG), in order to reassemble the original genome, now, stands disproportionate

to the available computational capabilities. Conventionally, the hardware resources used

are made of homogeneous many-core architecture employing complex general-purpose

CPU cores. Although these cores provide high-performance, a data-centric approach

is required to identify alternate hardware systems more suitable for affordable and

sustainable genome analysis.

Most state-of-the-art genomic tools are performance oriented and do not address

the crucial aspect of energy consumption. Although algorithmic innovations have

reduced runtime on conventional hardware, the energy consumption has scaled poorly.

The associated monetary and environmental costs have made it a major bottleneck to

translational genomics. This thesis is concerned with the development and validation

of read mappers for embedded genomics paradigm, aiming to provide a portable and

energy-efficient hardware solution to the reassembly pipeline. It applies the algorithm-

hardware co-design approach to bridge the saturation point arrived in algorithmic

innovations with emerging low-power/energy heterogeneous embedded platforms.

Essential to embedded paradigm is the ability to use heterogeneous hardware

resources. Graphical processing units (GPU) are, often, available in most modern devices



alongside CPU but, conventionally, state-of-the-art read mappers are not tuned to use

both together. The first part of the thesis develops a Cross-platfOrm Read mApper

using opencL (CORAL) that can distribute workload on all available devices for high

performance. OpenCL framework mitigates the need for designing separate kernels for

CPU and GPU. It implements a verification-aware filtration algorithm for rapid pruning

and identification of candidate locations for mapping reads to the RG.

Mapping reads on embedded platforms decreases performance due to architectural

differences such as limited on-chip/off-chip memory, smaller bandwidths and simpler

cores. To mitigate performance degradation, in second part of the thesis, we propose a

REad maPper for heterogeneoUs sysTEms (REPUTE) which uses an efficient dynamic

programming (DP) based filtration methodology. Using algorithm-hardware co-design

and kernel level optimizations to reduce its memory footprint, REPUTE demonstrated

significant energy savings on HiKey970 embedded platform with acceptable perfor-

mance.

The third part of the thesis concentrates on mapping the whole genome on an

embedded platform. We propose a Pyopencl based tooL for gEnomic workloaDs

tarGeting Embedded platfoRms (PLEDGER) which includes two novel contributions.

The first one proposes a novel preprocessing strategy to generate low-memory footprint

(LMF) data structure to fit all human chromosomes at the cost of performance. Second

contribution is LMF DP-based filtration method to work in conjunction with the

proposed data structures. To mitigate performance degradation, the kernel employs

several optimisations including extensive usage of bit-vector operations. Extensive

experiments using real human reads were carried out with state-of-the-art read mappers

on 5 different platforms for CORAL, REPUTE and PLEDGER. The results show that

embedded genomics provides significant energy savings with similar performance

compared to conventional CPU-based platforms.
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Chapter 1

Introduction

1.1 Motivation

With over 6000 single-gene genetic conditions and many other diseases involving genetic

variants, medicine has become the foremost application of genomics. Genomics is central

to the undergoing transformation of medicine from reactive to proactive forms. The

envisaged proactive forms of medicine will be predictive, preventive, personalized,

and participatory (P4) [3, 4]. P4 medicine involves the examination of an individual´s

complete genetic makeup to predict health prospects. It requires tracking of vast number

of samples for data analysis to find diagnostics and therapeutics for early reversal

of the disease trajectory [5]. The aim of P4 medicine is early detection, prevention

and developing new strategies for looking at diseases, making vaccines and providing

affordable healthcare using personalized medicine [6, 7]. The intentions of P4 medicine,

also, corroborates with the endeavor of translational genomics, which aims to adopt

the discoveries made in genetic research to clinical practice and include whole genome

sequencing (WGS) pipelines as a part of routine tests performed in the hospitals [8, 9].

To spur innovations for P4 medicine and enable translation of genetic understanding

to healthcare, huge repositories of genetic data is needed from a wide variety of

patients, in massive numbers. It will incur huge infrastructural costs to setup dedicated

genome sequencing data centers along with development, maintenance and use of
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Figure 1.1: Decreasing cost of sequencing per human genome. The data was obtained from [10]
and the sequencing costs are plotted in logarithmic scale.

massive computing facilities to process, analyze, store, transmit and integrate data [6].

Translation of genetic data will require development of advanced computational tools

to reassemble the original genome of the individuals and run analysis cycles to extract

information.

Obtaining genome is an essential prerequisite to genomics, which is performed using

the sequencing machines. The decreasing cost of sequencing, since, the Human Genome

project has played a significant role in enabling translational genomics, as shown in

Fig. 1.1. With the advent of high-throughput sequencing (HTS) and the continued

advancements in sequencing technologies, the cost of sequencing a human genome is

reported to be $689 as of August 2020 [10]. This, however, does not account for ’non-

production’ activities, most notably, the genome assembly and analysis pipelines of the

WGS. Even though HTS has enabled sequencing large numbers of individuals, it has

made genomics one of the largest contributors to Big Data [11–13]. Recent trends indicate

that genomics is on the path to become largest data producer in the coming decade with

an estimated 100 million to 2 billion human genomes to be sequenced by 2025 [14].

The computational hours required to process the existing data already surpasses our
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Figure 1.2: The plot shows recorded and estimated growth in the number of sequenced genomes
and sequencing capacity compared to Moore’s Law which indicates the improvements in
computational capacity [13].

available computational capabilities [13, 15]. Fig. 1.2 shows the recorded and estimated

growth in the number of genomes sequenced and sequencing capacity in comparison

to the Moore’s law, which indicates the improvements in computational capacity. To

understand the computational requirements for accurate reassembly of human genome

after the sequencing process, let’s consider the NHGRI estimate [10] which suggests that

mapping the human genome with over 3000 megabases (Mb; a million bases) will need a

30-fold coverage while using Illumina sequencing machines. It implies that to obtain the

individual’s genome, 90,000 Mb ≡ 900 million single-end reads of length n = 100 needs

to be mapped to the reference genome with an assumed error-rate of 5% i.e. edit distance

δ = 5. From our experiments using the Hobbes3 read mapper [16], we have found

that it will require over 85 hrs on a workstation with Intel i7-8750H 6-core CPU. This

excludes the downstream analysis that involves diverse range of approaches including

the approximate string-matching algorithms [13]. We can see that the pace of innovation

in genomic data creation is much higher than that of genomic informatics; this widening

gap can be addressed with novel hardware solutions to computing genomic data.
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Genomics has become a major contributor to Big Data with archives of raw se-

quencing data doubling every 18 months [17]. Studies based on large sequencing data

are, largely, conducted centrally in genomic data centers or using cloud computing

services provided by privately owned data centers. The new industrial giants, the

tech firms such as Google, Alphabet, Amazon, Twitter and Facebook are establishing

more and bigger data centers around the world to process Big Data. The rate of

growth in electricity consumption of data centers is, already, higher than the growth

in worldwide electricity consumption [18]. The compute units in the servers and the

cooling systems together consume about 43% of total electricity consumption [19, 20].

This has led to research and adoption of energy-efficiency measures in cooling and

power provisions systems and development of novel hardware and software solutions

to make computing more energy-efficient [19, 21]. With the growing demand from

genomics, both the economic and environmental considerations of establishing new

computing infrastructures can no longer be ignored. The regional and remote locations,

often, suffer from unreliable internet connectivity, limited facilities and funding, to

establish data centers or high-performance servers to address computing and storage

demands [22]. The processing cores used in servers and workstation are complex

and optimized for floating-point operations while genomic computations are integer-

based operations. Energy efficiency of data centers are only as good as that of the

processors they are made of — and there is scope for improvement with the use of

modern heterogeneous systems and low-power embedded platforms. With the aim of

data-centric hardware implementation, the performance and energy tradeoffs of using

simpler embedded cores for genomic computations needs to be determined. This can

lead to using affordable high-performance embedded clusters for large-scale genomic

computations with minimal programming effort.

There are various categories of hardware computing devices such as central pro-

cessing unit (CPU), graphical processing unit (GPU), field-programmable gate arrays

(FPGA) and digital signal processors (DSP). These devices can be found in off-the-

shelf platforms, provided by a range of electronics manufacturers such as Intel, AMD,

Nvidia, ARM and Xilinx. They can be found either solo or in different combinations

such as CPU + GPU, CPU + GPU + FPGA or CPU + FPGA. Most modern computing
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systems including embedded platforms and many supercomputers, are heterogeneous

and have a combination of CPU + GPU available on the same platform [23]. On the

other hand, state-of-the-art bioinformatics tools including the read mappers [2, 16, 24–

29], have focused on algorithmic innovations and software optimizations targeting,

mainly, the CPU. There are many communications available that have focused on

acceleration of genomic algorithms on either GPU or FPGA, as summarized in [30]. It

is, however, arduous and challenging to rewrite and tailor these implementations, for

changes in parameter and portability, as these platforms have different architectures

and, often, require vendor specific software and languages to program and use them.

A cross-platform standalone tool capable of mapping reads using different devices,

simultaneously, for effective performance gains in a heterogeneous system is not

available in the literature.

Embedded platforms, such as the single board computers (SBCs), have been designed

keeping power and energy consumption as critical design parameter. They are, typically,

powered using batteries and have a compact size. A plethora of SBCs are available

off-the-shelf owing to the tremendous growth in Internet-of-Things (IoT) devices [31].

Using SBCs offer significant advantages such as low cost and maintenance requirements.

They are a prominent candidate for locating computing and storage resources at end-

user premises, therefore, aiding to the rising data privacy concerns following the

developments in the field of genomics. In this thesis, we focus on the genome reassembly

pipeline of the WGS, which is a prerequisite and a primary step in obtaining the genomic

data. Reassembly is performed by mapping reads to the reference genome, which

involves approximate string-matching algorithms and data structures that are commonly

found in all computational pipelines of genomics. Genome is composed of four bases,

viz. adenine, cytosine, thymine and guanine, represented as characters (A C G T) and

requires integer-based operations for processing. For that purpose, simpler cores found

on the embedded platforms may be better suited than complex general purpose CPU

cores. This thesis opens a new research dimension of embedded genomics by attempting

to prove the two hypotheses mentioned in Section 1.2. The solutions and results obtained

can be extrapolated to other computational pipelines to mitigate the rising energy-

consumption and performance concerns of this emerging Big Data contributor.
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1.2 Hypotheses

The following hypotheses are the problem statements that this thesis attempts to

address. The main objective is to reduce the energy consumption in mapping the entire

human genome without compromising on performance. This will establish that the

computational pipelines of WGS can be implemented on a low-power and memory

restricted embedded platform to reduce energy consumption.

1. Using the OpenCL framework, a cross-platform read mapper targeting heteroge-

neous platforms can run parallel kernel executions on multiple devices, simultane-

ously, to enhance performance.

2. Using Algorithm-Hardware Co-design to map reads on an embedded platforms

will reduce energy consumption.

1.3 Contributions

The main contributions of this thesis are as follows:

• CORAL - Cross-platfOrm Read mApper using opencL

Using OpenCL programming framework, a cross-platform implementable read

mapper is proposed. CORAL is capable of parallel kernel executions on multiple

OpenCL conformant devices such as the CPUs and GPUs, making it first of its

kind read mapper for heterogeneous platforms. Today, majority of platforms

manufactured by different vendors comply with OpenCL standards [32]. This

mitigates the need for restructuring or rewriting the tools to target any particular

device and able to achieve high performance using all the available hardware

resources, simultaneously.

CORAL automatically determines the number of workitems (or threads) in a

workgroup for a particular device based on user given workload allocation,

distributes the workload to various devices, executes them in a task-parallel fashion

and combines the output. We write the host code in Python and kernel in C

using OpenCL primitives. We use PyOpenCL rather than conventional C-based
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OpenCL, as an scripting language requires low programming effort. Python enables

fast modifications and prototyping. This work attempts to prove hypothesis (1).

CORAL is available online at: https://github.com/nclaes/coral

• REPUTE - REad maPper for heterogeneoUs sysTEms

A novel dynamic programming (DP) based read mapping algorithm is presented

for executions in memory-restricted embedded platform. Similar to CORAL, it uses

PyOpenCL framework and is capable of parallel kernel executions on multiple

devices, simultaneously. What distinguishes it from CORAL is its improved

accuracy and performance due to novel DP based approach.

REPUTE presents a first prototype implementation of read mapping on an em-

bedded platform. It maps reads to chromosome (chr) 21 of the human genome.

Central to this implementation is the Algorithm-HW co-design approach to design

the REPUTE kernel targeting a memory restricted platform. It proposes a low-

memory footprint kernel for simpler cores of SBCs and kernel-level optimizations

for high performance. REPUTE demonstrates significant energy savings compared

to general purpose workstations with comparable performance and same accuracy.

This work attempts to prove hypothesis (1) and (2). REPUTE is available online at:

https://github.com/nclaes/REPUTE

• PLEDGER - Pyopencl based tooL for gEnomic workloaDs tarGeting Embedded

platfoRms

As human genome is over 3000 Mb long, the size of data structures required for

mapping reads to larger chromosomes such as chr 1 and 2 exceed the memory

capacity available on embedded platforms. This prohibits mapping of the whole

genome in memory-restricted environments. PLEDGER aims to optimize the read

mapping algorithm for memory-restricted hardware platform to enable transla-

tional genomics. It proposes a novel preprocessing algorithm which generates

memory-aware data structures. Using Algorithm-HW co-design, the PLEDGER

kernel proposes a DP based read mapping approach to use the memory-aware

data structures making it capable of mapping the entire genome on a single SBC

with >3.6 GB RAM. It provides the flexibility of mapping reads to one, many

8



or all chromosomes of the human genome viz. chr 1-22, X and Y. Similar to

CORAL and REPUTE, it uses PyOpenCL framework and is capable of parallel

kernel executions on multiple devices, simultaneously. To improve performance,

we tailor the algorithm for the target memory-restricted platform using bit-vector

operations and localized variable optimizations to minimize the memory footprint

of the kernel.

PLEDGER is a standalone tool which can complete the entire reassembly pro-

cess starting from preprocessing to mapping and verification on an embedded

platform for the entire human genome. It showcases significant energy sav-

ings and comparable performance with respect to general purpose workstations.

This work attempts to prove hypothesis (2). PLEDGER is available online at:

https://github.com/chitlangia/pledger

1.4 Thesis layout

This thesis is organised as follows:

Chapter 1 - Introduction. This chapter briefly discusses the importance of genomics,

its continuous growth and advent to a major Big Data contributor. It presents the

existing and future trends of usage of genomics and its role in on-going transformation

of medicine from reactive to P4 form. It presents the bottleneck to translational genomics

from the computational front with associated performance and energy requirements.

This motivates us to present hardware based solution backed with Algorithm-HW co-

design approach to mitigate cost, performance and energy requirements. In the end, it

summarises the contributions.

Chapter 2 - Background. An overview of the whole genome sequencing is presented.

The sequencing and reassembly pipelines of WGS are discussed in detail outlining the

existing algorithms with their merits and demerits. Then, the read mapping approach

and its three stages: Preprocessing, Filtration and Verifications are discussed in detail

along with the approximate string-matching algorithms and associated data structures.

Following, this we present a detailed report on the existing state-of-the-art read mappers

with their methodologies and data structure. In the end, we present the data structures
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and associated methods used in the contributions of the thesis.

Chapter 3 - Verification-aware Read Mapper for Heterogeneous Systems. In this

chapter, a cross-platform OpenCL based read mapper, CORAL, for heterogenenous

system is presented. The proposed preprocessing, filtration and verification stages of

CORAL are discussed in detail with visualizations. CORAL is validated against state-of-

the-art read mappers using performance and accuracy metrics, when executed on CPU

and GPU using real human reads are presented.

Chapter 4 - Dynamic Programming based Filtration. This chapter proposes a novel

dynamic programming based filtration methodology which significantly enhances the

performance and accuracy of the read mapper. The filtration scheme is realised in a read

mapper, called REPUTE, which implements all the three stages of reassembly in a LMF

kernel using Algorithm-HW Co-design along with series of kernel-level optimizations.

A prototype implementation of read mapping on an embedded platform is presented.

The results indicate considerable improvements in performance compared to state-of-

the-art mappers and significant energy savings on embedded platforms compared to

general purpose workstations.

Chapter 5 - Embedded Whole Genome Read Mapping. This chapter presents

a tool for whole genome read mapping on a memory-restricted embedded platform

called PLEDGER. PLEDGER proposes a memory-aware data structures suitable for low-

memory environments and uses Algorithm-HW Co-design to develop a performance

optimised LMF kernel. It showcases considerable performance gains compared to state-

of-the-art read mappers with similar accuracy. It demonstrates that embedded genomics

has the potential to mitigate the growing energy demand due to growth in genomic data.

Chapter 6 - Conclusions. The contributions of the study discussed in this thesis are

summarised, and future research areas for the embedded genomic pipelines for high-

performance, affordable and energy efficient genomic computation is suggested.
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Chapter 2

Background

This chapter presents an overview the Whole Genome Sequencing (WGS) process and

discusses the background and state-of-the-art tools available for genome re-assembly.

Section 2.1 begins with the description of genome and its molecular structure, followed

with an overview of the WGS pipelines. Then, the working principles of second gen-

eration of sequencing technology, the next-generation sequencing or high-throughput

sequencing, is described. The section ends with an introduction to the recent third

generation sequencing technology.

In Section 2.2, the fundamental genome re-assembly approaches are introduced viz.

de novo and the read-alignment approach. The complexities in the structure of genome

which affect the re-assembly process are discussed along with the types and usage of

reads available from different sequencing technologies.

In Section 2.3, an overview of the de novo assembly approach is presented. De

novo assembly relies on graph-based data methods such as overlap-layout-consensus, de

Bruijn and string graphs. Notable assemblers using each of the graph based approaches

are are presented. FInally, the shortcomings of de novo approach is discussed.

In Section 2.4, an overview of the read alignment approach is presented. A detailed

discussion on the algorithms and data structures ensues, which includes the different

stages involved in the read mapping process. A review of the state-of-the-art read

mappers is presented along with their algorithmic approaches. Finally, Section 2.6
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summarises the chosen approaches used in the contributions of this thesis.

Cell

Nucleus

Chromosome

Double Helix DNA 
molecules

Nucleotides

Adenine - A
Cytosine - C
Thymine - T
Guanine - G

Figure 2.1: Microscopic visualisation of genome with chromosomes expanded to level of
nucleotide bases which constitute the entire genome. Original image source: OpenClipart-
Vectors, via pixabay.com
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5' ---- ATAGTCTAGCTAGATGCATA ---- 3'

3' ---- TATCAGATCGATCTACGTAT ---- 5'

Forward strand

Reverse strand

Figure 2.2: A visualisation of the DNA’s double helix structure in the form of forward and reverse
strand. Forward strand is complement of the reverse strand where the base A is complement to T

A ←→ T and base C is complement to G C ←→ G. A genome strand is read from 5’ to 3’ direction,
which means left to right for forward and right to left for reverse strand.

2.1 Whole Genome Sequencing

2.1.1 Genome

Genome is the complete genetic material required to build and maintain an organism

including all the chromosomes and genes. Fig 2.1 presents a visualisation of genome and

its composition. Genome is found in the nucleus of a cell as a collection of chromosomes.

Chromosomes are very long strand of millions of DNA molecules in a compactly coiled

up structure with the help of proteins called histones, that support its structure. The

DNA molecules are composed of nucleotide bases viz. Adenine, Cytosine, Thymine

and Guanine, joined together in a double helix structure. These nucleotide bases can

be represented using alphabets ∑ = {A, C, G, T}, respectively, and, hence, genome

can be stored in the form of a text with over 3.2 billion characters. Fig 2.2 visualises a

representation of the double helix structure of the DNA molecule as two strands. By

convention, for a reference chromosome, one whole strand is designated the “forward

strand” and the other the “reverse strand”. Visually, the sequence of a strand is, typically,

read in the 5’-3’ direction i.e. for the forward strand, it will be read from left-to-right, and

for the reverse strand it means right-to-left. The relation between the two strands is that

both are complement of each other, as in, the base A is complement to T (A←→ T) and base

C is complement to G (C ←→ G). Thus, provided with one of the strands, the other can

be generated, with some rare exceptions when either of the strands will have mutations

not present in the other in the case of diploid or polyploid genomes due to heterozygous

single-nucleotide polymorphism (SNP) and indels [33–36].
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Figure 2.3: A visualisation of the whole genome sequencing process depicting sequencing, re-
assembly and analysis pipelines.
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2.1.2 Overview of WGS

Ever since the advent of next generation sequencing, there have been continuous

advances and inventions of new sequencing technologies. Still the modern instruments

are capable of reading only small segments of the genomes of most organisms, ranging

from approximately 100 base pairs (bp) to several tens of kilobases [37]. By contrast,

the human genome comprises more than 3 Gb long, and even small organisms such

as bacteria have genomes spanning over millions of bases. Reconstructing an entire

organism’s genome sequence, thus, requires gluing together many small sequence

fragments. WGS is a comprehensive method to obtain and analyse the entire genome

of an organism. Broadly, it consists of three pipeline stages: sequencing, re-assembly

and downstream analysis. Recent jargon refers re-assembly and downstream analysis

together as Genome Analysis. The discussion on downstream analysis pipeline is

not within the scope of this work and is part of the future work which is presented

in Section 6.2. The sequencing stage aims to obtain and identify the structure of an

organism’s or individual’s genome and is performed in a variety sequencing machines

from different vendors including Illumina, Qiagen, PacBio, 10x Genomics and Oxford

Nanopore Technologies [37, 38]. Although, the techniques and processes employed

by each sequencing machine manufacturer differ, the underlying approach for second

generation sequencing (SGS), typically, involves template preparation, cyclic reversible

termination (CRT) and imaging [39]. High-Throughput Sequencing (HTS) refers to 2nd

generation and above in this thesis.

Template preparation involves taking the original genome from the sample of

an individual or organism and randomly breaking them into smaller fragments, as

visualised in Fig. 2.3. These single strand small fragments are then amplified by

producing millions of copies to form an immobilised cluster in a small region on the

top of a surface, as shown in Fig. 2.4. Once the template formation is complete, CRT step

is initiated where polymerase chain reactions (PCR) takes place with special terminal

primers. PCR reaction replicates the organism’s genome during cell division, where the

DNA molecule is split into single strands and an identical replica of the original double

stranded DNA molecule is generated using PCR, as shown in Fig. 2.5. PCR is a matured
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technology and, therefore, we leave it to the interested readers to look of more sources

online [40, 41]. Here, in each CRT step, the PCR aims to attach one complementary

nucleotide base, per step, in the opposite strand in all the clusters. This nucleotide base

is a fluorescent labeled terminal primer which prevents PCR from adding more than one

base and at the same time reflects a particular color depending on the nucleotide base in

∑. In the next step, imaging is performed to identify the base attached in the CRT step by

capturing the reflected lights from each cluster, as shown in Fig. 2.4. Cluster formation

is necessary so that the reflected light has sufficient intensity for accurate imaging by the

camera. The terminal part of the primer is then removed and the CRT and imaging steps

are repeated till the entire genomic fragment is sequenced.

At the end of sequencing run, the reads are trimmed to fixed length and stored with

quality scores depending on the intensity of light captured during the imaging step. The

output reports the quality for each base in a read indicating the quality of base call during

the sequencing process. A higher score indicates that the base was identified accurately.

The sequencing process is error-prone as during the CRT step some primers may not link

successfully or more than one primer gets attached. This dephasing leads to miscalls at

the end of reads due variations in intensity during the imaging step. Thus, the reads

obtained upon sequencing are, often, not identical to the original random fragmented

sections and may include substitutions, deletions and insertions [36,39]. These errors are

called sequencing errors as they are caused due to the sequencing technology.
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Figure 2.4: A demonstration of the sequencing process with visualisations of amplified template,
cyclic reversible termination using PCR and imagine to capture reads. PCR is performed using
a special terminal primer which prevents it from adding more than one fluorescent labelled
nucleotide base to the opposite strand, per cycle, and reflects a particular light depending on
the base added. By capturing the reflected light from the amplified clusters the structure of the
reads are identified.
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There are various different types of template preparation techniques offered by

different sequencing machine vendors. SGS technologies are template-based shotgun

sequencing technology. SGS involves oversampling of original genome by generating

a very large number of small-length reads by amplification of the genome during

sequencing process, hence, categorised as HTS. As SGS focuses on generating large

numbers of short reads than longer reads, it has significantly reduced the cost of

sequencing at the expense of processing massive amounts of data at the later stages.

They are characterised by highly parallelised operations, high throughput, higher yield,

simpler operation leading to lower cost per read and high accuracy but, unfortunately,

shorter reads. Recently, a third generation of sequencing technology based on single-

molecule sequencing (SMS) has emerged. SMS technology allows less bias and more

homogeneous genome coverage as it lacks PCR amplification. It is real-time sequencing

as opposed to SGS which is paused after each CRT step. The most important feature

of SMS technology is that it offers longer reads which can help close gaps in current

reference assemblies and resolve ambiguous regions in the genome. SMS technologies,

however, lack in yield, generate high error rate and have high cost per base which

currently impeded its usage in large scale sequencing project [37, 42–45]. A detailed

discussion on the latest trends in the sequencing technology is beyond the scope of this

thesis, interested readers can refer to [36, 37, 39, 42–46].

2.2 Genome Re-assembly

The purpose of genome re-assembly is to rearrange the raw reads in a manner indicative

of the original genome they come from. This can be performed using either of the

following approaches: read alignment or the de novo assembly. The genome of a novel

species, with no prior knowledge of the source DNA sequence, is assembled de novo.

If an organism’s genome is already assembled once before and the reference genome is

available then read alignment approach results in faster re-assembly. The decision of

using either of the approaches is based on the intended biological application, types of

reads, cost, effort and time considerations. The details of the re-assembly approaches

will be discussed in the following sections, this section outlines challenges to genome
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re-assembly.

Genomes tend to have complex structures which, often, require tremendous time

and research to understand. This becomes more challenging with genomes of complex

organisms such as mammals, where the genomes are very long and complex. Most

genomes contain a certain proportion of repetitive DNA elements, called repeats,

throughout its length [45,47], particularly in mammalian genome where repeats account

for 25%–50% of its entire genome . Repeats constitute about 50% of the human genome

and more than 80% of the maize genome. They are categorised as long interspersed

nuclear elements (LINEs), short interspersed nuclear elements (SINEs), long terminal

repeats (LTRs) and simple tandem repeats (STRs) [48]. Earlier repeats were referred to as

“junk,” however, recent studies have shown that they are involved in intrinsic biological

processes, including genome expansion, speciation, evolutionary adaptation, generation

of genetic variation, and epigenetic regulation [49–51].

The importance of repeats require that these regions are not collapsed or ignored

during re-assembly. They, however, make genome re-assembly extremely difficult,

often, causing misarrangements or gaps. Repeats yield fragments with highly similar

sequences that originate from different places in the genome during sequencing causing

nonuniform read depth and resulting in copy loss or gain in the assembly [45, 52, 53].

The extent to which assemblers are confused by repeats depend on the types, length

and accuracy of the reads obtained from the sequencing process. Fig. 2.6 presents

a comparative visualisation of how three different types of reads viz. single-ended

short, pair-ended and long reads offer certain advantages while re-assembling genome,

especially, the repeating sections. The repetitive regions shorter than a sequencing read

can be automatically resolved. Complications arise when repeats are longer than read

lengths, then, to identify the repeat from where a read has originated, read should

overlap adjacent non-repeating section. Paired-end reads are two reads sequenced

from opposite ends of the same fragment which may be several kilo bases long. Pair-

ended reads can provide some respite as they cover a larger portion with increased

chances of one end of the read overlapping the non-repeating section as shown in

Fig. 2.6(b). Longer reads are preferred to resolve large repeating regions, however, they

are accompanied with higher error rates. Higher error rates lead to multiple mapping
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Repeat copy 1 Repeat copy 2Non-repeating section

a) Short reads
b) Paired end-reads

c) Long reads

Reference Genome

Figure 2.6: A comparative visualization of the types of reads that are often generated from the
sequencing processes. Typically, there are three types are reads: (a) short, (b) paired-end reads
and (c) long. Repetitive sections are prevalent in genomes, with approximately 50% makeup of
human and over 80% makeup of the maize genome being repeats. Repeats posit a major challenge
in genome re-assembly and the type of reads being mapped can affect the mapping accuracy.

locations and decreases the chance of convergence to a unique solution [53]. Repeats

and the associated complexity it brings in the assembly process had been a matter of

contention and vigorous debate over the feasibility of assembling the entire human

genome from shotgun sequence data [54, 55]. Even after two decades of the arrival of

first human reference genome, the remaining gaps and complexities are continuously

being resolved with advancements in the sequencing technology. Quite often more than

one type of reads are used to assemble and refine the genome.

Ideally, longer accurate reads are desired for high quality assembly, however, this

gap is, yet, to be filled by any single sequencing technology. Before the advent of SMS

technology pair-ended reads were used to resolve the gaps, present due to repeats, upon

assembling small reads. Recently, the human genome was assembled using long reads

obtained from nanopore sequencing technology [56], which is one of the technology

under the SMS category. However, due to high error rate of nanopore technology,

single-ended small but accurate reads from Illumina were used to resolve the gaps and

improve basecalling [44]. Illumina is currently the leader in the SGS industry and most

library preparation protocols are compatible with the Illumina system. In addition, it

offers the highest throughput of all platforms and the lowest per-base cost [45]. In this

thesis, genome re-assembly has been performed using short single-ended accurate reads

of length 100-150. The methodology proposed in this thesis is translational and can be
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extended to pair-ended and longer reads.

Figure 2.7: An overview of the workflow of de novo assembly approach. There are three main
stages: (i) contig assembly, (ii) scaffolding and (iii) gap filling. Contigs are contiguous genomic
segments, free of any gaps, obtained using overlapping segments in reads. Scaffolding are
ordered and oriented contigs arranged using paired-end reads as anchors. Gap-filling involves
resolving unidentified bases using consensus based on independent reads. These gaps may be
important SNPs and variations. [52]
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2.3 De novo Assembly

De novo assembly approach is similar to solving a giant jigsaw puzzle with a massive

number of pieces. However, the pieces, here, are reads with errors, making it even

more challenging as exact matching algorithms are not applicable. As shown in Fig. 2.7,

there are, mainly, three stages in the de novo assembly approach: (i) contig assembly, (ii)

scaffolding and (iii) gap filling [1, 45, 52, 57, 58]. Contigs are continuous (or contiguous)

genomic segments, free of any gaps, obtained using a set of overlapping read segments

that together represent a consensus region of genome. Contigs are formed using graph-

based assembly algorithms based on three basic graph frameworks viz. overlap-layout-

consensus (OLC) graph [59], de Bruijn graph [60] and string graph [61]. These graph

frameworks will be discussed later in subsections 2.3.1, 2.3.2 and 2.3.3. Scaffolding are

sets of ordered and oriented contigs with the approximate distances between contigs

estimated by traversing paired-end sequences that anchor to different contigs. The

sequences that are linked are typically contiguous sequences corresponding to read

overlaps, as shown in Fig. 2.7. Gap-filling involves resolving unidentified bases using

consensus based on independent reads. These gaps may be important SNPs and

variations. To enhance the quality of the assembly, the scaffolding and gap-filling steps

are, often, performed iteratively to close the gaps by re-processing latent information in

the raw reads, until no scaffolded contigs remain or no additional gaps can be resolved

[62, 63]. .

2.3.1 Overlap-Layout-Concensus (OLC)

OLC is the simplest and the earliest used graph-based model, which presents each read

as a node and connects the nodes if they overlap, as shown in Fig. 2.8(a). Alternative

formulations have a pair of vertices for each read with one representing the start, other

its end and the edge representing the read’s sequence. Construction of OLC, typically,

involves three main stages. First, overlaps between all reads are detected. Second, the

graph is constructed, then contigs are formed by iteratively merging overlapping reads

until a read at a repeat boundary is detected leading to a repeat that is unresolved and

collapsed into a single copy, as shown with the split colour bar in Fig. 2.8(a). Finally,

23



a consensus sequence is inferred. To account for sequencing errors, imprecise read

overlaps are allowed [45, 52, 57].

The most computationally intensive stage in OLC is to find overlaps among reads. A

naive approach would use dynamic programming based alignment between all possible

combinations of reads. However, this would requireO(N2) time, where N is the number

of sequenced bases, and, hence, are used for very small genomes. Faster approaches

include building data structures such as indexes constructed using k-mers. K-mers are

non-overlapping or overlapping sections of the read or genome of length k, as shown

in Fig. 2.9. While q-grams of length q are consecutive overlapping k-mers with relatively

small values of q. A read with the length of l can be divided into (l− k+ 1) overlapping k-

mers. The index build by extracting k-mers can be used to identify reads having common

k-mers and then using dynamic programming the overlapping can be verified. This

technique drastically reduces the search space.

With the computational bottleneck of expensive dynamic programming steps, OLC

could not succeed with massive amounts of short-reads from HTS. Even with indexing

the number of spurious matches overwhelmed the computation. The size of the resulting

graph proved problematic and the number of edges grew quadratically with the depth

of coverage and number of repeats making the resulting graph impractical to solve [57].

The first human genome was constructed primarily using OLC algorithms, and notable

OLC-based assembly methods include parallel contig assembly program (PCAP) [64],

Arachne [65] and Celera [66]. In contrast to short-reads, an overlap graph for the low-

throughput and high-error rate long reads from SMS technology, generally, forms a much

less complex graph. Some notable works using OLC-based assembler for long reads can

be found in [67, 68].

2.3.2 De Bruijn Graph

For high-throughput short-read sequence data, de Bruijn graph approach is used more

often. In this approach, the reads are broken into q-grams (or overlapping k-mers) and

distinct q-grams are added as vertices to the graph while the q-grams from the adjacent

positions in a read are linked by an edge, as there is an overlap with q − 1 bases, as

depicted in Fig. 2.8(b). The assembly problem can then be formulated as finding a
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Figure 2.8: A visualisation of the working-principle of de novo assembly approaches with the help
of four unique regions (blue, violet, green and yellow) and two copies of repeated region (red).
(a) Overlap-Layout-Consensous (OLC), (b) de Bruijn graph approach, and (c) String graphs [1].
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ATAGTCTAGCTAGATGCATAGCTAGAGCTGAGGGCGATATCGA
TAGTCTAG

CTAGATGC
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Read
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Figure 2.9: A visualisation of k-mers and q-grams. k-mers are non-overlapping genomic sections
of length k while q-grams are consecutive overlapping sections of length q. q-grams are, often,
referred as overlapping k-mers.

walk through the graph that can be either a Hamiltonial or an Eulerian path [45]. In

Hamiltonian approach, the q-grams are nodes while in an Eulerian approach they are

the edges. Hamiltonian approach is similar to OLC approach where the genome is re-

assembled by traversing the Hamiltonian paths through the graph by visiting all nodes,

only, once. The Hamiltonian path problem is an NP-complete problem when the number

of nodes is not trivial with the computational complexity of O(m × 2n), where m is

the total number of nodes, and n is the number of branching nodes [45]. Notable de

novo assemblers using Hamiltonian approach are SOAPdenovo [69], Abyss [70] and

velvet [71].

The Eulerian path problem assembles the genome by finding Eulerian paths that tra-

verse all edges, each of which is visited only once without simplification in polynomial

time O(n2) [45]. Practically, the Eulerian and Hamiltonian traversal through the graphs

are obscured due to sequencing errors. As reported in [57], even if an Eulerian path
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through the graph is found, it may not reflect an accurate sequence of the genome

because of the presence of repeats, as there are a potentially exponential number of

Eulerian traversals of the graph, only one of which is correct. Generally, assemblers

attampt to contruct unambigous contigs without any gaps and then use scaffolding steps

to connect the unbranching regions of the graph, as shown in Fig. 2.8(b). Notable de novo

assemblers using Eulerian de Brujin graph approach are ALLPATHS [72], SPAdes [73],

IDBA-UD [74] and EPGA2 [75].

The Eulerian de Bruijn graph based assemblers generally perform better in the

assembly of a large genome than the Hamiltonian graph based assemblers. As it does not

require to find overlaps between read pairs, absence of expensive dynamic programming

based alignment steps significantly reduce the computational burden compared to OLC.

The graph can be constructed by two passes over the data, in which, the first one extracts

the q-grams and second, extract the adjacent overlapping q-grams to form the edges, in

case of the Eulerain path approach. Additionally, de Bruijn do not require to store the

pairwise overlaps and have a useful property of collapsing the repeats where all copies

of repeats are represented as a single copy with multiple entry and exit points. This

provides a concise representation of the structure of genome [57], as shown in Fig. 2.8(b).

Using suitable choices of data structures, various algorithms have been proposed to

efficiently re-assemble genome using de Bruijn graphs [45, 57].

2.3.3 String Graph

The string graph was introduced by Myers in 2005 [61]. He observed that the advantages

of a de Bruijn graph can be obtained from OLC graph by performing two transforms.

First, by removing the duplicate reads that may contain distinct elements of same or

its reverse-complement sequence and contained reads which may be reads that are a

substring of some other reads or their reverse complements, and second, by removing

the transitive edges from the graph. A graph is created with a vertex for the endpoint

of every read. Edges are created both for each unaligned interval of a read and for each

remaining pairwise overlap. Vertices connect edges that correspond to the reads that

overlap, as shown in Fig. 2.8(c) [57]. The string graph shares several properties of de

Bruijn graphs without the need of breaking reads into q-grams [57]. They are, often, used
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with long reads with high error rates generated from SMS technology as overlap-based

approaches are more suitable than the de Bruijn graph-based methods [45]. String graphs,

also, use advanced data structures such as FM-Index [76], which will be discussed in

Section 2.4.1. Some notable string graph based genome assemblers are [77–79].

2.3.4 Shortcomings of de novo Assembly Approach

The memory requirements of de novo assembly, in general, and de Bruijn assembly, in

particular, are prohibitive. As there is approximately one q-gram for every base in a

genome, the de Bruijn graph has billions of vertices for large genomes such as mammals

[57]. Sequencing errors compound this problem as they lead to several types of structures

making convergence to true genomic sequence difficult. Each error in read produces up

to q erroneous q-grams. Sequencing errors along with small natural variations in repeats,

typically, leads to bulges, tips and erroneous connections in the graph which further

complicates resolving the graph. The requirements of memory (or RAM) and storage,

and long computation times are the major bottleneck of de novo approach. Assembling

human genome using de novo approach can take several days to weeks using servers or

clusters with up to 512 GB RAM. The details of various tools along with their reported

computation times and resource consumption are summarised in [45].

2.4 Read-Alignment Approach

If any species for which a high-quality assembled genome sequence already exists,

such as humans and most model species, then there exists a computationally faster

and more efficient method compared to de novo assembly approach, called the read-

alignment approach. This approach aims to re-assemble a genome by comparing reads

to the reference genome of the organism to identify the correct position from which

they originated during the sequencing process. This is possible because genomes of

organisms from the same species are extremely similar, e.g., two unrelated humans

have genomes that are approximately 99.8% similar [36]. Therefore, reference genomes

can be used as a template or guide to assist in piecing reads together. The increased

reliability of the reference genome, additionally, provides a universal standard against
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.............ACGTAGCTAGAGGCTCGAGGAGCTCAAAA
GAGAGCTCGAGTCGAGCGGAGAGCGCCCCCCGA
AGAGAGGCTAGCTTTTCTGATCGATCGATCGATCG
ATCGAGTCGAGCTAGCATATGCTACGATCCGATCT
CAGCGCTAGCATCGACGATAGCGCATACGCGACT
GCTATGACGCATGCGCGAGCTAGACGTGTACGAA
TACGTAGCTAGCTACGATCGATCGATAAAAAAGCC
CCGTTTTTCTGCGCGGCGATCGCGCGGCGCGGA
GCTAGCTAGCTAGCGAGGCATAGCGATTCAGCGA
TCAGGCAGAGGCGACCCCCCCCTGTGTATGCTAG
CTA...............

CTTTTCTGATCGAACGATCGATRead 1:

Read 2: CTGAGCGGCGATCGCGCGGT

Matches the HRG with one error

Matches the HRG with two error

Approximate string matching problem

Human Reference Genome (HRG)

Figure 2.10: A visualization of read mapping using the read-alignment approach.

which research findings can be reported, globally [80]. Fig. 2.10 visualises mapping of

reads to the human reference genome (HRG) where reads consisting of sequencing errors

and natural variations is mapped against the HRG using approximate string matching

algorithm. Read 1 in Fig. 2.10 matches with the HRG except for one base demonstrating

a substitution, while read 2 demonstrates two substitutions. The variations may range

from single point mutations to short insertions or deletions (indels) to even larger-scale

complex variations spanning thousands of nucleotides or more, although, whether the

variations can be resolved or not depends on the length of the reads as discussed in

section 2.2. Fig. 2.11 shows the three main stages in the read alignment approach:

proprocessing, filtering and verification. Reference genome is used in the first and the

last stage of the pipeline.
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Figure 2.11: Read mapping stages in the read-alignment approach using approximate string
matching algorithms

2.4.1 Preprocessing

Indexing strategies involve the storage of reference genome or read sequences or both

in an intricate way, often, in the form of auxiliary data structures [81]. Preprocessing

reference genome instead of sequenced reads is advantageous as computation of aux-

iliary data structures for reference will be required once while indexing of sequence

reads will be conducted for each sample, separately [82]. Since the advent of HTS, the

massive amounts of reads generated makes indexing them impractical, hence, mostly the

reference genomes are indexed. A naive algorithm would use dynamic programming to

align a read of length n to a HRG of length m, however, this becomes impractical for large

sequences as its time complexity (O(m× n)) is proportional to the lengths of sequences

and will grow quadratically. Thus, instead of scanning the entire HRG for each read,

approximate string matching algorithms seeks the candidate locations in HRG, where

a read is most likely to match. To facilitate such an approach, quite often, HRG is

preprocessed and stored in the form of data structures so that the candidate locations

for reads are obtained quickly. Most modern read mappers preprocess using an offline

approach which is performed once and then reused for all input reads, as the HRG does
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Entries

Figure 2.12: Visualisation of the hashing process by converting q-grams, derived from the reference
genome, to numerical indexes using hash functions. All positions of occurrence of a q-gram in the
reference genome is appended in the entries linked to the corresponding index.

not change unless updated. The preprocessing strategy used by state-of-the-art read

mappers can be broadly grouped in two categories: algorithms employing hash tables

and algorithms using suffix/prefix tries with its faster and efficient variants [81–83].

Using hash tables to preprocess HRG

In the context of read mapping, hashing is, also, known as q-gram indexing [2, 81]. The

general idea around hashing involves the extraction of overlapping k-mers or q-grams

from the reference genome, referred to as keys, which are encoded into a numerical

index to point to a memory address. The memory address holds the position of

occurrence of the k-mer in the HRG. Figure 2.12 demonstrates the hashing of overlapping

k-mers extracted from the reference, which are encoded to generate indexes pointing

to memory locations that contain the entries holding the positions of occurrences of

the k-mers. Hashing is a matured technology and to encode a character sequence (k-

mer) into a numerical, many hashing functions are available. However, there are three

important factors which determine the choice of hash functions: collision, performance

and memory requirements of index or hash table [83]. Due to massive length of the HRG

with significant repeat sections, depending on the length k there will be millions of k-mers
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that will be encountered more than once. This will lead to collisions as similar k-mers will

generate same index. Secondly, depending on the hash function being used to encode

the k-mers, the length hash tables can significantly impact the performance and memory

requirements to store the HRG.

The most commonly used hash function to generate k-mer index uses 2-bit encoding

[27, 84]. As genomes are composed of 4 nucleotide bases, they can be uniquely encoded

using 2-bits: {A:00, C:01, G:10, T:11}. Each unique k-mer can, thus, produce a

unique integer for an index, for example, TACCTAGGAT ⇔ 11000101110010100011 ⇔
810147. The number of entries in the k-mer index is 4k and grows exponentially with k.

The frequencies of k-mers, however, decrease with increasing k [85]. The size of the entire

index can thus be given as BI × (4k + m− k + 1), where BI is the size of integer in bytes

and m is the length of genome. Longer k-mers result in fewer collisions as frequencies

of k-mers decrease, however, it results in longer index lengths increasing the memory

requirements of the data structure. For each collision, more entries are added to the

index as shown in Figure 2.12. These entries are the locations of the k-mer in the HRG

and the list is often known as the inverted list [16, 84].

Using suffix/prefix tries to preprocess HRG

Suffix/prefix tries are data structures that represent the set of suffixes or prefixes of a

given string to enable fast matching. The advantage of using a trie is that multiple

identical copies of a substring in the reference collapse on a single path, hence, alignment

is only needed to be done once, whereas with a typical hash table index, an alignment

must be performed for each copy [81]. The disadvantage of using a trie is the large

amount of memory required to store them and for very large data sets this solution

results in long computation times [82]. A trie takes O(n2) space where n is the length of

the reference. It becomes impractical to build tries for even small bacterial genomes [81].

Based on tries, data structures with better performance and memory efficiency have been

proposed such as suffix trees, suffix array [86], enhanced suffix array [87], Burrows-

Wheeler Transform (BWT) [88] and FM-Index [89]. The choice of these data structures

are independent of the search algorithm used. An algorithm built for FM-Index will,

in principle, work with suffix tree/trie demonstrating the similarity between the data
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structures [81].

A suffix tree is a compressed trie of all suffixes of the given text. It was proposed to

reduce the memory requirements during construction and storage of the data structure

in comparison to tries. However, even the most efficient implementations require 12-

17 bytes per nucleotide making them impractical for usage with large genomes [81]. A

suffix array is closely related to suffix tree such that it can be constructed by performing

a depth-first traversal of a suffix tree if edges are visited in the lexicographical order

of their first character. It contain integers that represent the starting indexes of all

the suffixes of a given string, after all the suffixes have been sorted. Any suffix tree

based algorithm can be switched to use a suffix array with additional information and

solves the same problem in the same time complexity [87]. Suffix arrays along with

auxiliary arrays are used in the enhanced suffix array approach and offer improved

space requirements, simpler linear time construction algorithms and improved cache

locality [90]. The enhanced suffix array approach enables storing large genomes in the

memory by taking 6.25 bytes per nucleotide base [82]. It offers time complexities better

than the suffix array and similar to that of the suffix trees.

The FM-index is the most widely used method among the trie-based data structures

as it offers small memory footprint. It is constructed with the help of BWT algorithm,

which was originally developed for data compression. The BWT matrix with the Last-

First array [88] consist of a tree structure including all suffixes and prefixes in the string.

Searches can be done in constant time, however, it has a drawback, as the string becomes

longer, the tree size also grows massively. To reduce memory requirements further, FM-

Index was proposed, composing of auxiliary data structures along with the suffix array

derived from the BWT matrix. The suffix array provides the locations for alignment in

the HRG and when constructed using BWT altered sequence, it offers an advantage of

reduced computation time [82]. The memory footprint of FM-Index can be as low as

0.5-2 bytes per nucleotide and offers a constant time backward search identical to that

of a trie [81]. A detailed discussion on the construction of BWT matrix and extraction of

FM-Index auxiliary tables along with the suffix array from the BWT matrix is discussed

in Section 3.3.2.
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2.4.2 Filtering

Filtering aims to quickly prune the reference genome to exclude large regions where no

match for the read can be found. It uses the preprocessed data structures and performs

approximate string search to identify the candidate locations where the reads may be

located. These candidate locations identify short regions in the reference where the

read can align within a given edit distance. Candidate locations are, generally, found

by essentially reducing an approximate string matching problem to an exact matching

problem. This is done by employing filters which divide the reads into k-mers or q-

grams and search them in the reference without errors. K-mers and q-grams are, also,

known as seeds or signatures in the literature. Regions that do not share the seeds are

filtered out. Selecting a good combination of seeds is crucial to the performance of read

mapping. A seed with low frequency of occurrence in the reference will produce fewer

candidate locations to align and will reduce the overall mapping time. The novelty

in the algorithms proposed in the read mapping literature, mainly, comes from the

unique ways of selecting seeds. Seeds generated during filtration can be classified as

overlapping and non-overlapping and can of fixed or variable-length. Depending on the

heuristics used on the seeds the filtration can be lossy or lossless.

A lossless filtration guarantees to detect all possible candidate locations, while a

lossy filtration attempts to detect a majority of them. The efficiency of lossy filtration

is measured by two parameters, usually, called selectivity and sensitivity [91]. The

sensitivity estimates the false negatives, where candidate locations of interest were

missed by the filter. Selectivity, on the other hand, estimates the false positives where

candidate locations that do not actually represent a solution are detected. Lossless

filtration, as the name indicates, is 100% sensitive, hence, only the selectivity parameter

is used, which measures the filtration efficiency [91]. Use of gapped seeds (spaced

seeds or gapped q-grams) have been found to significantly improve the sensitivity of

lossy filtration and provide order of magnitude faster filtering time. Gapped seeds

are subsets of q characters in some fixed non-contiguous shape, instead of contiguous

substrings and allow internal mismatches. The shape of the gapped seeds, however,

significantly affect the performance and the best shapes are selected hueristically, are
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Figure 2.13: Visualisation of the pigeonhole principle where a read is divided into six equal length
non-overlapping k-mers. If the read needs to be mapped with an edit distance of five then the
pigeonhole principle states that at least one of the six k-mers will be error free and match exactly
in the reference.

rare and often possess no apparent regularity [92]. Lossy filtration does not guarantee

a global optimum alignment for a read and most state-of-the-art read mappers rely on

lossless filtration for accurate mapping. For detailed discussion of lossy filtration and

literature using gapped seeds, interested readers can refer to [81, 83, 91, 92].

Lossless filters, typically, use one of the two lemmata: pigeonhole lemma/principle

[36] and q-gram lemma [93]. The pigeonhole principle states that if a read with δ errors is

divided into δ + 1 non-overlapping k-mers, then at least one k-mer will be without error.

Simply put, δ errors cannot be found in more than δ pieces of a read with (δ + 1)th piece

being error free, as shown in Fig. 2.13. The position of the error free k-mer in Fig. 2.13

was randomly chosen as the error profile of the read is not known until the mapping

process is over. A pigeonhole filter, therefore, to map a read with an edit distance of δ

divides the read into δ + 1 non-overlapping seeds and, in parallel, searches them in a

scan over the reference. The expectation is that the error free k-mer will match exactly at

a position where it may have originated during the sequencing process. Using all δ + 1

k-mers ensures full sensitivity during filtration.

In contrast, the q-gram lemma considers matching all overlapping k-mers or q-grams

of a read to the reference. This methods counts and gives a lower bound threshold

τ of the number of q-grams that match with an edit distance δ to the reference. The

threshold τ is determined by the worst case scenario, where δ errors are distributed

equidistantly across the read affecting δq̇ of the n − q + 1 q-grams, and is given by

τ(n, δ, q) = n− q(δ + 1) + 1, where n is the length of the read [36, 93]. The reference is

divided into overlapping regions of fixed length and each read and region is associated

with a counter which counts the matching q-grams and updates as q-gram slides over read

35



G
G
C
T
A
G
A
G
G
A
G
C
A
T
A
G
A
A
G
A

.....ACTAGCTAGAGGCTCGAGGAGCTCAAAAGAGAGCTCGAGTCGAGCGGAGAGCGCGCTACGAACATAACA.....

Reference genome

Read

Projection of parallelogram

P1 P2 P3 P4

Four 4-grams match in 
parallelogram P1

Figure 2.14: Visualisation of the q-gram lemma filtering approach used by RazerS3 [2]. This
method counts the number of q-grams that match the projection of the parallelogram on the
reference. If the count reaches a minimum threshold τ, then the projection is the candidate
location. The reference is divided into equal-sized overlapping parallelograms and the process is
repeated for each parallelogram.

or the reference. The q-gram counting filters differ mostly in the size and the shape of the

overlapping region and the way matches are counted [36]. Fig. 2.14 demonstrates the

filtration mechanism based on q-gram lemma used by RazerS3 [2] where the overlapping

regions are determined by the projection of the parallelograms.

The pigeonhole principle and q-gram lemma offer certain advantages over each other.

The selectivity of the q-gram lemma is higher than pigeonhole because the candidate

location chosen by the former will require τ q-grams to match while for the latter just

one k-mer is enough. For example, in Fig. 2.14, for n = 20, δ = 3and q = 4, the threshold

τ = 20− 4(3+ 1)+ 1 = 5, which implies that even with four matching 4-grams in the first

parallelogram, its projection does not qualify as a candidate location. The pigeonhole

principle is faster as only non-overlapping
⌊ n

k
⌋

k-mers need to be searched compared

to searching (n− q + 1) q-grams for q-gram lemma. However, due to lack of selectivity

pigeonhole principle produces greater number of candidate locations leading to more
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expensive verification cycles (dicussed in Section 2.4.3). Thus, selecting low-frequency

seeds becomes, all the more, important to improve performance of pigeonhole filter.

Seeds, in the form of q-grams or k-mers, selected by different filtration algorithms can

be of fixed lengths or variable length. The difference between both will be explained in

Section 2.4.4 and throughout the thesis while discussing our contributions.

2.4.3 Verification

The objective of the verification stage is to perform an alignment of the read to the

candidate locations identified in the filtration stage with the aim to identify the exact

position of origin in the reference. Alignment can be of three types: global, local

and semi-global. A global alignment is defined as the end-to-end alignment of two

strings while a local alignment of two strings r and g is the alignment of substrings of

r and g. Local alignment is performed to find regions of high local similarity because,

normally, we do not know the boundaries of genes and is helpful in searching for a

small read in a large genomic section. Semi-global alignment is used to perform local

alignment in a global alignment setting such that string r is allowed to align with a

substring of g. Conventionally, the seed-and-extend method implies that candidate

location identified using the seed through filtration is extended (or verified) using semi-

global alignment using a dynamic programming algorithm. Global and local alignments

are, usually, performed using Needleman and Wunsch algorithm [94] and its variants

like Smith–Waterman algorithm [95, 96]. For edit distance verification using semi-global

alignment, most modern read mappers use the banded version of Myers bit-vector

algorithm [97] implemented by Hyyrö [98]. Banded Myers bit-vector algorithm is the

fastest algorithm in practice for the δ differences problem working in O(nm/w) time,

where w is the word size in bits and n and m are lengths of the read and substring

of the reference at the candidate location. We discuss our banded Myers bit-vector

implementation in Section 3.3.4.

37



Read Mappers

CPU

FPGA GPU

Hashing FM-Index

Olson et al (2012) Arram et al (2013)

Hashing

Hashing FM-Index

FM-Index

AligneR (2018)

CUSHAW2-GPU (2014)

SOAP3 (2012)

FastHASH (2013)

BLAST (1997)
RazerS3 (2012) BWA-MEM (2010)

Bow�e2 (2012)

GEM (2012)

Yara (2015)

best-mappers all-mappers best-mappers all-mappers

Hobbes3 (2015)

FEM (2018)
BWA-MEM2 (2019)

Minimap2 (2018)

GPU-RMAP (2010)

Figure 2.15: State-of-the-art read mappers targeting different hardware platforms viz. FPGA,
GPU and CPU. Segregation has been performed on basis of data structures used to store the
reference genome. CPU oriented mappers are further segregated into best-mappers and all-mappers.

2.4.4 Previous work

Read mapping is a compute intensive process due to the approximate string matching

problem and the massive amounts of data involved, with the latter making it a memory

intensive process as well. It may be performed multiple times for more insights by
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varying mapping parameters such as edit distance, and to focus more on a certain

genomic section for confirmation and accuracy. As discussed in Section 2.1.1, it is

important to map reads to both forward and reverse strands of the HRG because

the reads obtained from forward and reverse strand may, also, differ due to natural

variations. For acceleration of genome re-assembly using read alignment approach,

several hardware based solutions using FPGA and GPU have been proposed. Fig. 2.15

presents the recent state-of-the-art contributions towards performance oriented and

energy efficient reassembly using read alignment approach where mappers targeting

FPGA, GPU and CPU are shown. Below, we segregate the read mappers according to

their targeted category of hardware.

Application specific and programmable hardware

An application specific integrated circuit (ASIC) or a programmable hardware is used

when specialised accelerators/co-processors are required to perform a specific task or

set of tasks for better performance and/or energy savings. This is possible with an opti-

mised hardware design to perform a task better compared to existing implementations

such as a software tool running on the CPU. The hardware implementations are explored

when a data-centric workload becomes a significant portion of the overall workload,

which is currently the case with genomics. Genomic algorithms consume large amounts

of energy for its computation in data centers as quantitatively shown by Jason et al [99]

using many tools associated with genome analysis. FPGA is a programmable logic that

enables granular optimisations at the hardware level with ability to overcome limitations

of fixed architecture processors and software implementations. It is used to prototype

algorithms to achieve one or more desired design metric such as performance, power,

energy and accuracy. FPGA-based implementations can offer significant energy savings

due to the flexibility in designing parallel hardware compared to fixed hardware of CPU

and GPU, where optimisations are possible only at the software level [100].

Olson et al [101] proposes FPGA implementation using hash-based data structure

with filtering and verification stages derived from BFAST software [102]. The prepro-

cessing is performed offline on a host and streamed to FPGA. Arram et al [103] imple-

ments seed-and-extend strategy using FM-Index on FPGA, where the preprocessing is
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performed offline and transferred to FPGA. It implements separate processors for exact

string matching (ESM) and approximate string matching (ASM). If a read fails in the

ESM then it is forwarded to ASM using homegeneous, heterogeneous, and runtime

reconfigurable designs. AlignerR [104] uses FM-Index to implement process-in-memory

(PIM) hamming distance unit using resistive RAM memory. The main objectives of PIM

is reduce memory accesses and energy consumption. AligneR presents results from

simulations by modeling the power, latency and area of ReRAM arrays by NVSim and

ReRAM CAMs by NVSim-CAM.

A detailed review of FPGA-based implementations of genome reassembly can be

found in [30] and mentions of latest literature can be found in [105, 106]. Genome

reassembly is, generally, difficult to implement on the FPGA due to large memory

footprint of the data structures. FPGA implementations, often, find it challenging to

include indels, which limits the mapping accuracy. The programming effort involved

with FPGA is very high and requires knowledge of hardware description languages

(HDL), software suites and electronic devices. Such skills are, often, not common in

the end-users including geneticists and bioinfomaticians. In addition, any change in

parameters, such as the read length, reference genome and edit distance, will require

rewriting of the program followed with optimisation and validation cycles. For example,

Arram et al [107], implements FM-Index based algorithm, however, limits itself to two

mismatches excluding indels, therefore, limiting the mapping accuracy. To the best

of our knowledge, there is no impetus on designing ASIC for genomic workloads as

the characteristics of raw data is changing rapidly with advances in the sequencing

technology. Along with data, the genome analysis tools are evolving as well [108] which

discourages efforts and expenditure towards ASIC as they will be rendered useless.

GPU

GPUs are parallel computing machines with 100-1000s GPU-cores, which are basically

arithmetic logic units (ALU), capable of performing massive number of operations,

concurrently. They are optimized to accelerate floating-point operations using single-

instruction multiple-data (SIMD) instructions. Unlike FPGA, the internal architecture

of GPU is fixed and, hence, its optimum usage is dependent on the algorithm and
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the programming effort. The amount of memory available on GPUs is, often, more

than FPGA but fixed and limited by the vendor. GPU-based mappers have been

extensively researched to reduce the mapping time. Many GPU-based implementations

are extensions of CPU-based algorithms and focus on intratask parallelism to accelerate a

part of the mapping algorithm, often highly parallel and compute intensive, rather than

the whole algorithm.

CUSHAW [109] employs a quality aware heuristic to perform a bounded search using

FM-Index data structures. It supports, only, substitutions and not indels. CUSHAW2-

GPU [110] is an optimised implementation for CUDA-enabled GPUs. It focuses on inter-

task parallelism where CPU and GPU both perform read mapping concurrently. GPU-

RMAP [111] is a GPU adaptation of hashing based RMAP algorithm [112] optimised for

Nvidia GPUs. It preprocesses the reads to create the hash table and divides genome into

several independent segments. The segments are then scanned in parallel, and a score

is assigned to the mapping locations of all the reads. Binary search algorithm is used

on the hash table. The hash table is transferred to GPU after sequential construction

in the CPU. With the increase in the number of reads the overall computational speed

decreases. SOAP3 [113] is based on BWT data structure and is capable of handling

only mismatches. It heuristically determines reads which produces many divergent

branches and process them using CPU. It uses only the global memory which limits its

performance. SegAlign [114] is a GPU accelerated whole genome aligner which is used

in comparative genomics to understand genomes of different species together. It is not a

read mapper, however, it use the same seed-filter-extend strategy and accelerates seeding

and filtration stage of LASTZ [115] on GPU and extends on CPU cores. It employs hash

based data structure for seeding and is capable of roping in multiple GPU nodes for

speedups. A detailed discussion on other state-of-the-art GPU-based implementations is

presented in [30, 106].

In comparison to FPGA, GPU requires less programming effort and time to deploy-

ment, however, it has been observed to provide lower performance and energy efficiency

for read mapping [30]. Mapping tasks are, often, memory intensive and require frequent

accesses to global memory with poor locality attributes. GPUs are not good at handling

divergent instructions and its programming, often, requires vendor-specific software
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for implementation and managing SIMD threading [116]. A major bottleneck to GPU-

based read mappers is that the dynamic programming based verification stage has

dependencies which are difficult to compute efficiently in parallel and can be handled

better with a CPU core. Additionally, with the change in GPU architecture the mapper

requires reprogramming or tailoring to efficiently use its capabilities. Although GPUs are

categorised as power hungry devices, they are available in most modern heterogeneous

systems including general purpose computers, data centers, and embedded platforms

such as smartphones. The widespread availability calls for their energy-performance

profiling to find if they can perform genomic computations fast enough to produce

energy savings despite high power requirements.

CPU

Conventionally, read mappers can be classified as best-mappers and all-mappers. Best-

mappers aim to directly find the ‘best’ location for mapping the read while all-mappers

attempt to enlist all set of locations within a given edit distance. The selection of either

of the classes depends on the need of downstream analysis. In many applications, it

is desirable to find all mapping locations such as ChIP-seq experiments [117], RNA-

seq transcript abundance quantification, CNVs (copy number variation) calling and

detecting structural variants [27, 118, 119]. Best-mappers employ heuristics to select

the ‘best’ mapping location over the others for a read. The heuristics may use the

read quality score obtained from sequencing or penalising indels differently than

substitutions during alignment. Ideally, best-mappers should outperform all-mappers in

mapping times and selectivity as all-mappers will need to perform more expensive DP-

based verification cycles, however, the results published by state-of-the-art all-mappers,

such as, RazerS3 [2] and Hobbes3 [16] demonstrate otherwise.

Similar to FPGA and GPU-based read mappers, we can segregate CPU-based read

mappers on the type of preprocessing methodology used. Generally, most read mappers

have been first implemented and/or optimised for CPU and then adapted to FPGA and

GPUs. Hash table based mappers include BLAST [120, 121], RazerS [122], FastHASH

[123], RazerS3 [2], Hobbes3 [16], FEM [27] and Minimap2 [124]. BLAST was one of

the most widely used tool before the advent of HTS. It implements seed-and-extend
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strategy using hash lookup tables, refines the results using Smith–Waterman DP-based

local alignment algorithm and reports statistically significant alignments. RazerS is free

from preprocessing stage and constructs a q-gram index in real-time using the read

sequences. It employs q-gram lemma filtering approach proposed in SWIFT [93] and

depending on a user given sensitivity value provides a tradeoff between mapping time

and sensitivity (mapping accuracy). Details of SWIFT implementation of q-gram lemma

was discussed in Section 2.4.2. RazerS3 [2] introduces an option to use pigeonhole

principle with sensitivity control. It employs shared memory parallelism where the sets

of reads are assigned to threads during the filtration stage and the candidate locations

are dumped in a global space. The same threads, then, verify the candidate locations not,

essentially, in the same order while keeping a track of the thread ids the read belongs to.

This dynamic reallocation of reads to thread in the verification stage balances the load

and keeps the thread busy achieving better performance.

FastHASH [123] employs two heuristics in the filtration stage to reduce the number

of verification cycles viz. Adjacency filter and Cheap K-mer selection (CKS). Adjacency

filter is an adaptation of pigeonhole principle, which divides the read into N parts and

only the candidate location which are present adjacently in the location list of (N − δ)

corresponding adjacent k-mers are verified. It, basically, means that (N − δ) k-mers will

be error free and hence, all true candidate locations should be present in the location

list of that many k-mers. Adjacency filter induces additional computational burden as it

conducts binary search through location lists of N k-mers and depending on lengths of

location lists (occurrence frequency), it can grow quadratically. To prevent selection of k-

mers with high frequency, CKS sorts all possible k-mers using quicksort and selects them

based on their frequency. CKS aims to reduce the computational burden of Adjacency

filter.

Hobbes3 [16] is the latest read mapper in the Hobbes series which follows an

approach similar to FastHASH. Similar to Adjacency filter, Hobbes3 divides reads

in (δ + 2) k-mers, which would leave at least two k-mers error-free. Hence, a true

candidate should be adjacently found in the location list of at least two k-mers. CKS

is a heuristic based approach where fixed length seeds are used and the seeds which are

least frequent are selected, however, Hobbes3 implements a DP-based filtering approach
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which selects variable length seeds after exploring the combinations of k-mers that yield

least verification cycles. FEM [27] is a recently proposed mapping tool which constructs

a succinct hashing index with low memory footprint to preprocess the reference genome.

It employs pigeonhole principle and uses DP-based seed selection approach from

Hobbes to select optimum k-mer lengths to minimise the total number of candidate

location ensuring full sensitivity. The succinct hash index provides considerable lower

memory footprint than Hobbes3. Minimap2 [124] reports the first N mapping locations

per read. It it capable of mapping both short and long reads, however, the performance

for for mapping the long reads is better than the short reads. Minimap2 demonstrates

speedups of 2-3× over Bowtie2 and BWA-MEM for simulated short reads but the

mapping times are not compared when real reads were used. The accuracy reported

is similar to best-mappers: Bowtie2 and BWA-MEM.

State-of-the-art FM-Index and BWT based read mappers include BWA-MEM [25,125],

Bowtie2 [26], GEM [28], Yara [24] and BWA-MEM2 [126]. Among these BWA-MEM,

Bowtie2 and GEM are best-mappers while Yara is an all-mapper. FM-Index based mappers

use backward search algorithm to find candidate locations for seeds, discussed in

detail in Section 3.3.3. Bowtie2 enhanced Bowtie by allowing indels and quality aware

backtracking heuristic. Using SIMD instructions available on modern CPUs, it improved

the performance of DP-based verification stage. BWA-MEM employs DP based filtration

and heuristics to report best mapping locations for the reads. A detailed comparison

of Bowtie2 and BWA-MEM is presented in [127]. BWA-MEM2 enhances the BWA-

MEM for Intel processor architecture by improving cache utilisation, memory allocation,

prefetching and algorithm. It demonstrates a 2.4× speedup over BWA-MEM. GEM

employs heuristics to find the best matching position for a read. It uses adaptive seeds

to reduce the total number of candidate locations during filtration and uses Myers bit-

vector algorithm for verification. Yara [24] uses pigeonhole along with approximate

seeds to increase specificity of filtration and stores the reference genome using FM-

Index and suffix arrays. This thesis focuses on all-mappers which includes the mapping

locations reported by best-mappers provided they run in full sensitivity mode. In this

thesis, we have compared our contributions to state-of-the-art best-mappers, viz. BWA-

MEM [25], GEM [28], Yara [24], and all-mappers, viz. RazerS3 [2], Hobbes3 [16] and
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FEM [27]. We have not compared with BWA-MEM2 and Minimap2 as they got published

recently compared to the timeline of the thesis, however, the speedups reported over

BWA-MEM by this thesis is better than BWA-MEM2 and Minimap2.

Figure 2.16: Metrics that determine the algorithm-hardware co-design approach with the
available design space choices.

2.5 Algorithm-Hardware Co-Design

The new hardware systems being designed perform well for many existing model

algorithms but they do not include genomic algorithms, yet. Likewise, the genomic tools

have been developed and used mainly on general purpose computers. Only recently

engineers are exploring genomic workloads on various hardware platforms for speedups

and energy efficiency. Very few work exist on emerging embedded platforms which offer

low power/energy characteristics. In this thesis, we use the algorithm-hardware co-

design to establish a feedback between data-centric computing and embedded platforms

to develop an embedded genomic solution. Fig. 2.16 presents the components of

algorithm-hardware co-design where the resource and performance metrics determine

the choices made in computation design space.

In this thesis, we use CPU, GPU and embedded boards as our targeted hardware

platforms. The tools proposed in the thesis can work on all the three platforms as it uses

OpenCL computing framework. Even though GPUs are power hungry devices they are

available in most modern heterogeneous computers. Thus, in the context of existing

computing infrastructure GPU should be explored to find if energy can be saved by
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lowering computation time at the cost of power. To program Nvidia GPU, generally,

CUDA toolkit [128] is used as it is tailored to its architecture while OpenCL can be used

with GPUs from other vendors, as well, such as AMD and Intel. This is because OpenCL

views every OpenCL conformant device [32] with the same hardware and software level

abstractions. OpenCL allows task-level parallelism with concurrent kernel executions on

multiple devices with low programming effort compared to CUDA. We discuss OpenCL

in Chapter 3 in greater detail. To learn programming using OpenCL the readers can refer

to the book authored by Matthew Scarpino [129].

We use embedded platforms as it a modern computing platform emerged as a

consequence of internet revolution. Today, they occupy space in almost every field

of engineering and massively used in daily lives of people in the form of consumer

electronic devices. It is specifically designed for low power and low energy scenarios

but are capable of working as single board computers (SBC). It can be used as portable

handheld device to be used at point-of-care scenario of P4 medicine discussed in

Chapter 1. A portable handheld genomic device can mitigate privacy concerns arising

due to massive growth in data and its applications. To prove the 2nd hypothesis of

Chapter 1, we need to examine if simpler ARM cores on embedded platforms can utilise

energy better than complex Intel cores in CPU for integer-based operations of genomic

workloads.

In this thesis, we propose algorithms that use pigeonhole principle with variable

length seeding to reduce mapping time. Using pigeonhole principle, fewer k-mers are

pruned and variable length seeding increases specificity producing fewer candidate

locations. The reference genome is indexed using FM-Index, Suffix Array and additional

auxiliary data structures proposed in the thesis to reduce the memory footprint. The

tools are validated using both simulated and real human reads of length 100-150 mapped

with an edit distance of ≤5%.

2.6 Summary

A tremendous amount of research is being conducted on the WGS pipelines, especially,

since the advent of HTS. The sequencing technology is continuously progressing with
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novel technologies cropping up. The newer technologies focus on longer read lengths

with fewer errors. Recent developments in single molecule technology is being termed as

third generation sequencing technology capable of producing very long reads. However,

challenges persist from the error profile of such long reads as they have high error rates.

Long reads with high error rates need novel solutions from the computational front.

SGS reads are shorter in length but have lower error rates. The shortcomings of short

length reads are compensated by their sheer numbers through amplifications during the

sequencing process. A detailed discussion on the SGS technology has been presented in

this chapter.

Low cost sequencing has made data easily available for sharing and research leading

to ample opportunities on improving the computational pipelines of WGS. Genome

reassembly algorithms have been evolving to keep up with the growth in data. Two

broad categories of reassembly approach exists viz. de novo and read alignment

approach. De novo approach does not require a reference template genome to pre-exist

and directly assembles the reads using the overlapping between them. This process

involves the construction of large graphs and is memory and compute intensive. It is

usually used for new species or in cases with focused requirements. The fundamental

algorithms used to solve the de novo problem were discussed in this chapter with their

advantages and shortcomings. A discussion on the state-of-the-art de novo assemblers

was, also, presented in this chapter.

The read alignment approach assumes that a reference template of the genome of

a species exists to which the reads obtained from fresh samples can be mapped. This

significantly reduces the computational burden, since, the structure of genome is already

known. The mapping is performed using approximate string matching algorithms that

permit differences between reads and the reference to account for sequencing errors

and natural variations. Most read mappers in this category, broadly, navigates through

three stages: preprocessing, filtering and verification. Preprocessing stores reference

genome or the reads in the form of data structures that permit quick pruning which

mapping. Filtering employs algorithms which navigates through the preprocessed data

structures to identify the candidate locations where reads are likely to align. Verification

conducts an in-depth alignment of the read to the region of the reference genome
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identified by the candidate location allowing for mismatches and indels. Read alignment

approach is significantly faster than the de novo approach, however, with the availability

of massive amounts of data the need for efficient mapping implementations persists.

Various hardwares such as CPU, GPU and FPGA have been explored to speed-up the

mapping process. This chapter presents a comprehensive review of state-of-the-art

implementations from the last two decades with their achievements and shortcomings.

This chapter paves the path to the major contributions of the thesis which attempt to

mitigate the shortcomings.
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Chapter 3

Verification-aware Read Mapper for
Heterogeneous Systems

3.1 Overview

Central to obtaining genomic data is the process of whole genome sequencing (WGS),

which involves collection of sample, sequencing and reassembly of genome followed

with downstream analysis to extract relevant information. The computational pipelines

of genomics includes genome reassembly and its analysis. Initially, most of the focus

was on optimising the computational pipelines for high performance targeting CPUs in

general purpose computers, workstations, servers and data centers. Numerous contri-

butions proposed novel approximate string algorithms and its associated data structures

to reassemble the genome. These algorithms were then optimised and implemented

on CPUs demonstrating order of magnitude speedups over older counterparts. With

the maturity of SGS technology, the read sizes have increased with changes in the

error profile. For recent SGS reads, read mapping process needs to include insertions

and deletions (indels) along with mismatches sighting high accuracy, making genome

reassembly more challenging. In attempt to shorten the gap between data production

and processing rate, numerous emerging hardware solutions have been explored which

includes implementations targeting FPGA and GPU. A detailed discussion on this was

provided in Section 2.4.4.

A large proportion of genomic data, today, is generated in centralised government
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or commercial genomic centers. As of November 2021, there are only 13 NHS Genomic

Medicine Centres [130] in the UK. The processing of the genomic data is performed at the

genomic centers or may be outsourced to a commercial data center via cloud computing.

In either of the cases, the computing machines employ state-of-the-art high-performance

many-core systems and incur high energy consumption [99]. To realise the P4 scenario,

the installation and maintenance of such high-performance systems will be a bottleneck

in setting up of affordable genomic healthcare infrastructure. Additionally, most modern

platforms available are heterogeneous and consists of at least CPU and GPU together.

To the best of our knowledge, no read mapper has been reported to, concurrently, use

both CPU and GPU. As discussed in Section 2.4.4, often a part of the mapping tool is

accelerated on the GPU and not the entire pipeline. Hence, WGS computation pipeline

requires the exploration of a platform independent computing framework to use all the

available resources on the system for effective performance gains.

This chapter presents a Cross-platfOrm Read mApper using opencL (CORAL)

to map reads on any OpenCL conformant device. Today, a majority of platforms

manufactured by different vendors comply with OpenCL standards [32]. We use

OpenCL framework [129] as a baseline to design the CORAL kernel and apply a series

of algorithmic optimisations to subdue memory constraints. The aim is to enhance the

portability of our aligner across various devices and platforms mitigating the need for

restructuring or rewriting. CORAL is equipped to launch kernels, simultaneously, on

all the available compute units, provided enough memory is available, to distribute

the workload and achieve enhanced performance. With this feature, we address the

limitations encountered in multi-device heterogeneous systems, ranging from servers

to workstations, where all devices can map reads concurrently to speedup the process.

The CORAL algorithm is fully sensitive and capable of reporting all mapping positions,

however, the actual number of mappings reported is, mainly, limited due to the memory

allocation restrictions imposed by OpenCL. We elaborate on this further in Section 3.4.1.

CORAL is verification-aware as it dynamically adapts the k-mer1 length during filtration

to reduce verification costs. It employs FM-Index [89] backward search to detect the

number of candidate locations for a particular k-mer and in accordance with a threshold,
1k-mer is a subsection, of length k, of a read or genome.
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it extends the k-mer to reduce the number of candidate locations to be verified. The

candidate locations are obtained from suffix array data structure [86], preprocessed using

reference genome, and are verified in-situ using banded Myers bit-vector algorithm

[97, 98]. CORAL, automatically, determines the number of workitems (or threads) in

a workgroup for a particular device based on user given workload allocation, distributes

the workload and executes them in a task-parallel fashion. The host code is written in

Python and kernel in C using PyOpenCL primitives. Python enables low programming

effort and fast prototyping. Using CORAL, this chapter addresses the first hypothesis

stated in Section 1.2. CORAL is available at: https://github.com/nclaes/CORAL

3.2 Background

In Section 2.4.4, a detailed discussion on state-of-the-art read mappers targeting different

devices was presented. This chapter compares CORAL with both best-mappers, such as

BWA-MEM [25], Bowtie2 [26] and GEM [28], and all-mappers, such as RazerS3 [2], Yara

[24], Hobbes3 [16] and FEM [27]. Table 3.1 shows the characteristics of aforementioned

state-of-the-art read mappers. These mappers mentioned are based on read-alignment

approach which assumes the availability of the reference genome. As discussed in

Section 2.4.4, they can be categorised as best-mappers and all-mappers which report the

best and all mapping locations. In addition, all-mappers can, also, be tuned to report

first-n mapping locations. This approach has three stages: preprocessing, filtration and

verification, which were discussed in detail in Section 2.4 using Fig. 2.11. To set the

context, this chapter describes the stages briefly. The preprocessing stage uses data

structures such as hashing, FM-Index [89] and suffix arrays [86] to store the reference

genome. Filtration uses the preprocessed data structures and performs approximate

string search of the reads with the reference genome. It prunes the reference genome

using q-gram lemma or pigeonhole principle [36] to identify candidate locations where

the reads may be located. The verification stage identifies the exact mapping location

of the read. Most modern mappers employ banded Myers bit-vector algorithm [97, 98],

which is a variant of semi-global dynamic programming. As verifications are expensive

and runtimes of dynamic programming increase exponentially with the length of the

strings, efficient filtration techniques are desired to narrow down the search space and
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reduce the total number of candidate locations per read. Every aligner, thus, employs a

filtration methodology in order to extract low-frequency k-mers from the read, to reduce

mapping time.

Several investigations have been reported on performance and power-driven explo-

rations of simultaneous kernel execution on CPU and GPU. Prakash et al [131] use

OpenCL to run benchmarks, concurrently, on CPU and GPU cores of Odroid XU3

embedded platform. The goal is to exploit heterogeneity for better power-performance

tradeoffs. They test it using Polybench benchmark suite [132] which contains general-

purpose computing workloads. In [133], the authors present an investigation of

simultaneous kernel execution on both CPU and GPU in a fused CPU-GPU architecture

with shared LLC, mainly targeting the Intel platforms as they are the only one that,

currently, supports OpenCL 2.0’s fine grained SVM. They dynamically allocate the

workitems, of Rodina benchmark suite, on devices to maximize performance. Dynamic

work-item allocation is an ability provided in OpenCL 2.0 standard. Singh et al [134]

propose an energy-efficient run-time thread mapping and partitioning methodology

for concurrent applications on Odroid XU3. All aforementioned works investigate the

scheduling of kernels and partitioning of workitems between CPU and GPU on different

platforms. They use workloads from standard benchmarking suites and attempt to

improve performance-power tradeoffs. CORAL, on the other hand, is an application

specific tool cross-platform read mapper. It utilizes 2×Nvidia GTX 590 GPUs with

4×Intel CPU for high performance without additional programming effort.
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Host

Device

Compute unit Local memoryGlobal Memory

Core

Private 
memory

Figure 3.1: OpenCL programming model with memory hierarchy.

3.3 Methods

In Section 3.3.1, OpenCL’s unique way of looking at any hardware, which enables

CORAL to be used across different devices and platforms, is discussed. Section 3.3.2

presents the preprocessing approach which stores the HRG using FM-Index and suffix

array. Details on the advantages of verification-aware filtration is provided Section 3.3.3.

Section 3.3.4 discusses the banded Myers bit-vector algorithms [2, 97, 98] used for veri-

fication. Finally, Section 3.3.5 elaborates the CORAL algorithm and its implementation

approach.

3.3.1 OpenCL view of the hardware

Fig. 3.1 visualizes how OpenCL [129] views a compatible hardware. From an execution

standpoint, it recognizes two computational divisions viz. host and device; and three

layers of memory with different access rights viz. global, local and private memory. Host

is a software abstraction which issues instructions and data to the hardware device for

execution. The host and device communicate data through the global memory i.e. host

cannot access the local and private memory of the device directly but rather through the

global memory. The host and device need not be different platforms like a CPU-GPU

pair or CPU-FPGA pair, it can be CPU-CPU pair where the host and device share the

same global memory and compute resources in different time slots, meaning the host
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can launch kernels on the device its running along with other available devices. As we

know, the memory hierarchy in CPU consists of off-chip RAM and on-chip caches. Most

CPUs have three levels of caches viz. level 1 (L1), level 2 (L2) and level 3 (L3), with

increasing size and access times. These caches hold data which are accessed frequently,

recently or both to improve the runtime of programs. GPU, in general, have “CPU-

like” cores with multiple arithmetic logic units, cache and registers. Depending on the

vendor, the internal architecture of the core varies along with the definition of GPU-

core, however, all “CPU-like” cores in modern GPUs have registers and cache, generally,

referred as L1 cache. OpenCL, generally, recognizes off-chip RAM and the L1 cache

as global and local memory, respectively. Private memory, generally, are the registers

available to the cores. Host issues instructions in the form of kernel and workitems (or

threads) execute them using different data elements. Workitems are equally divided into

workgroups, with each workgroup occupying a single compute unit during execution.

The workitems within a workgroup execute on all the available cores in the compute

unit. As all compute units have separate L1 caches, all the workitems inside a workgroup

share the local memory. The private memory, however, is only accessible to the workitem

deployed on the core.

It is imperative to consider the memory capacities at all levels while designing

the kernel. An efficient kernel minimizes private memory usage and the intra-data

movements between private, global and local memory. There is no limit on the number

of workgroups, however, the maximum number of workitems allowed in a workgroup

depends on the device specification along with the private and local memory consumed

by the kernel. Generally, GPUs require low memory footprint kernels to achieve higher

utilizations by engaging a greater number of workitems in a workgroup. Thus, designing

of kernels with memory constraints require series of algorithmic optimization with

respect to hardware. Our proposed CORAL kernel requires 380-480 bytes of private

memory, depending on the read size, and does not use the local memory. A discussion

on the scaling of memory footprint of the kernel with read size is presented in Section 3.5.

We discuss about the scaling of memory footprint of CORAL kernel with read lengths

in detail in Section 3.5. Discarding the use of local memory in the kernel enhances the

portability of CORAL as the size of local memory varies across different devices. Each
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workitem executes the kernel for a single read and performs the following operations:

loading read in the private memory, identifying the candidate locations for both forward

and reverse strand, performing in situ verification and writing the verification result

back to global memory. Asynchronous execution is possible as each workitem executes

a single read, independent of the others.
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Figure 3.3: Visualization of preprocessing methodology of CORAL for a small sequence:
GAAATCGZATCATZACCGTG$ using FM-Index and suffix arrays. We store the tally matrix, suffix array
and the modified F array to be used for querying k-mers in the filtration stage.

3.3.2 Preprocessing

We use FM-Index and suffix array data structures to store the reference genome. FM-

Index uses the first and last arrays, denoted as F and L, of a matrix obtained by applying

Burrows-Wheeler transform (BWT) [88] on a string. BWT lexicographically sorts the

list of all reversible permutation of characters of a string. Fig. 3.2 visually presents the

BWT steps and how it can lead to compression. The string is appended with an end-
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of-file character, such as $, which is required to reconstruct the original string from the

compressed form. The final step produces the BWT matrix with first(F)-last(L) arrays

that can be stored using run-length coding, if possible, thus compressing the string. We

demonstrate compression using the examples shown in Fig. 3.2 and demonstrate, how, it

may or may not compress the string. For string ABCABCABC$, the resulting F and L arrays

can be stored using run-length encoding as F=$3A3B3C and L=3C$3A3B. However, for

string ABCDDCBADBCA$, BWT does not produce any compression as L=AC$BCDABDBADC.

Fig. 3.3 presents the preprocessing strategy of CORAL using an example sequence:

GAAATCGZATCATZACCGTG$. The L array from BWT is used to construct the FM-Index

auxiliary data structure called tally matrix, where each element in a row stores the

number of occurrences of a particular base starting from the first row to the row where

the element is present. It, basically, keeps a track of the numbers of each type of base

encountered. Alongside, a suffix array is obtained that stores the position at which

a particular base in L occurs in the original string. F array can be compressed using

run-length encoding to represent the number of occurrences of all the alphabets in the

string. We further modify F to provide cumulative numbers in the increasing order

rather than the exact number of occurrences, as shown in bottom right of Fig. 3.3.

The undetermined bases of reads due to sequencing errors are represented as N. In our

proposed preprocessing methodology, we replace N with Z as it occurs in the end of the

lexicographical order of alphabets, thus, appearing in the end of F array, after bases A, C,

G and T. For further details on FM-Index and suffix arrays, interested readers may refer

to [86, 89, 135].

3.3.3 Verification-Aware Filtration

We demonstrate our pattern matching methodology using an example where pattern

ATC is searched in the text GAAATCGZATCATZACCGTG$ using FM-Index backward search,

as shown in Fig. 3.4. We demonstrate how search results can be extended if the pattern

changes to AATC by prepending a character in the beginning, thus, increasing its size by

one. Following that, we explain how the pigeonhole principle along with verification-

aware FM-Index backward search can reduce the total number of candidate locations

without affecting sensitivity.
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FM-Index Backward Search

Before we can proceed with FM-Index backward search, the concept of ranking of

characters in the text is required to be understood. The rank of a character indicates the

number of times that character has occurred in the text including the current instance.

For example, the rank of the underlined highlighted base A in GAAATCGZATCATZACCGTG$

is 4. The purpose of the tally matrix obtained in Section 3.3.2 is to store the ranks of all

the desired characters in the text. We do not store ranks for Z or N as they are considered

errors and the corresponding k-mer, where it occurs, need not be searched.

Searching starts from the last character and moves up to the first taking as many cycles

as the length of the pattern. For example, to find pattern ATC, the first cycle identifies the

number and positions of occurrence of C in the F array, as shown in Fig. 3.4. It then

looks for the occurrence of next character i.e. T in the corresponding locations in L array

and store the corresponding ranks from the tally matrix. We can see that T precedes C

at two locations with ranks 1 and 2. Cycle 2 uses the, previously, stored ranks to locate

the corresponding Ts in the F array. We, again, look for the next character i.e. A in the

corresponding locations in L array and store their ranks from the tally matrix. At the

end of cycle 2, we find that A precedes TC at two locations with ranks 4 and 5. Cycle 3,

then, locates A in F array and reports the corresponding locations of occurrence from the

suffix array. Fig. 3.4 shows that pattern ATC matches the text at positions 3 and 8 (zero

based numbering). As the pattern matching begins from the last base backwards, the

method is known as backward search. We can further continue searching if the pattern

size is increased in a similar fashion using extended cycle 3 and cycle 4. At the end of

cycle 4, the pattern AACT can found at location 2 with help of the suffix array. FM-Index,

thus, offers flexibility in the variation of length of k-mers by prepending more bases, each

of which can searched in fixed time O(1). For read mapping, we do not need to store

the L array but require the tally matrix, modified F array, suffix array and the reference

genome.
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Table 3.2: Charaterization of number of occurrences of k-mers for k = 16, 17, 18, 19, 20, 21, 22 in
chromosome 2. Values given are in percentage approximated to the nearest decimal.

Occurrence
count

k-mer lengths
16 17 18 19 20 21 22

Proportion of total k-mers in %

One 91.68 95.13 96.47 97.02 97.29 97.46 97.5
≤100 8.30 4.85 3.51 2.96 2.69 2.52 2.40
≤1000 0.022 0.020 0.019 0.018 0.017 0.016 0.015
>1000 .0015 .0013 .0012 .0011 .001 .0009 .0008

Verification-Aware filtration using Pigeonhole Principle

For mapping reads with an edit distance (or permissible error) of δ using the pigeonhole

principle, a read is divided into (δ + 1) non-overlapping k-mers. CORAL measures the

maximum possible k for equal length non-overlapping k-mers, as k = ⌊ n
δ+1⌋, where n is

the read length. For example, given n = 100 and δ = 5, k = ⌊ 100
6 ⌋ = 16 and for n = 150

and δ = 7, k = ⌊ 150
8 ⌋ = 18. We limit ourselves to n = 100 to 150 and δ = 0 to 8, however,

in theory the method can be generalised to any parametric value. More on this will be

discussed in Section 3.5.

Upon obtaining k, we can calculate the number of extra or spare bases (eb) that remain

after securing (δ + 1) non-overlapping k-mers. For example, eb = n − k × (δ + 1) = 4

for n = 100, δ = 5, and eb = 6 for n = 150 and δ = 7. These extra bases can be

used to extend the length of any k-mer, as discussed in Fig. 3.4, to minimize the number

of candidate locations depending on the given threshold. It should be noted that the

number of non-overlapping k-mers remain intact despite extensions, thus, extensions do

not affecting sensitivity.

Table 3.2 presents the characterization of chromosome 2 on the basis of the number

of occurrences of k-mers for different k. We found that over 90% k-mers occur only once,

however, a consistent number of k-mers can be encountered more than 1000 times. Thus,

these k-mers will produce over 1000 candidate locations, if encountered. The maximum

value ranged up to 1, 644, 958 for a few k-mers. Intuitively, it can be understood that such

high frequency k-mers should be avoided to reduce the average number of candidate
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locations per read. In CORAL, the threshold is set as 1000 as k-mers that produce over

1000 occurrences are extended. This value is heuristic and can be changed depending on

user requirements. The impact of verification-aware k-mer length adaptation is discussed

in Section 3.5.

3.3.4 Implementation of Myers Bitvector Algorithm

The C code presented below represents the implementation of the Myer’s bit-vector

algorithm borrowed from the source code of CORAL kernel to discuss implementation

detail and approximation used in CORAL. CORAL verifies a maximum of 1000 can-

didate locations per k-mer, as seen in line 2. It reports the first-n mapping locations

after verification, where n in first-n is user defined before execution and is denoted by

CAND LOC PER READ. The parameter n in first-n should not be confused with the read

length n used elsewhere in the thesis. The no of locations parameter keeps a count

of number of locations that were mapped successfully, shown in line 56. It is used to

skip the verification of all remaining candidate locations once the condition in line 6

is true, which indicates that the desired number of mappings for the read are found

already. Although, banded Myer’s bit-vector algorithm is a matured technology used in

most of the recent read mappers, coding it can be challenging considering its correct

implementation is critical to the accuracy of the read mapper. The implementation

presented, here, is adapted from Hyyrö’s [98] banded Myer’s algorithm with the help

of its implementation in RazerS3 [2]. For more details, interested readers can refer to

these articles.
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1 // EXCERPT FROM THE SOURCE CODE PRESENTING MYER’S BIT -VECTOR ALGORITHM
2 occurences = (occurences > 1000)?1000:occurences;
3 for(j = 0; j < occurences; j++)
4 {
5 verif_start_pos_in_genome = SA[sa_start_pos + j] - x - ERROR;
6 if(no_of_locations >= CAND_LOC_PER_READ)
7 { continue; }
8 score = c; // Reseting of score
9 edit_dist = ERROR +1;
10 VP = ~0; VN = 0;
11 B[0] = B_F[0]; B[1] = B_F[1];
12 B[2] = B_F[2];B[3] = B_F[3];B[4] = B_F[4];
13 for(k = 0; k < band_len; k++)
14 { // verifying for n+2e length (READ_LENGTH + ERROR + ERROR)
15 B[0] = B[0] >> 1;
16 B[1] = B[1] >> 1;
17 B[2] = B[2] >> 1;
18 B[3] = B[3] >> 1;
19 B[4] = B[4] >> 1;
20 if(k + c < READ_LENGTH)
21 { B[RF[k+c]] = B[RF[k+c]] | MASK; }
22
23 X = B[genome[k + verif_start_pos_in_genome]] | VN;
24 D0 = ((VP + (X & VP)) ^ VP) | X;
25 HN = VP & D0;
26 HP = VN | ~(VP | D0);
27 X = D0 >> 1;
28 VN = X & HP;
29 VP = HN | ~(X | HP);
30
31 if(k < (READ_LENGTH -c))
32 {
33 score = score + 1 - ((D0 >> (W-1)) & 1);
34 }
35 else
36 {
37 s = constant1 - k;
38 //s = (W-2) - (k - (READ_LENGTH - c + 1));
39 score = score + ((HP >> s) & 1);
40 score = score - ((HN >> s) & 1);
41 }
42 if(score < edit_dist && (k >= (READ_LENGTH -c)))
43 {
44 edit_dist = score;
45 temp_location = k + verif_start_pos_in_genome;
46 }
47 }
48 if(edit_dist <= ERROR)
49 {
50 endpos_for_mapped_reads[gid + no_of_locations]
51 = temp_location + 1;
52
53 genomic_strand_and_ED_for_mapped_reads[gid + no_of_locations]
54 = 128 + edit_dist;
55
56 no_of_locations = no_of_locations + 1;
57 }
58 }
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Figure 3.5: Algorithm for the CORAL kernel.

3.3.5 Kernel Algorithm: Search and Verification

Input to the kernel are: Integer encoded reference genome, reads, suffix array, tally

matrix, modified F array and other constants. The integer reference encoded genome,

suffix array, tally matrix and modified F array are generated by the preprocessing step.
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The constants include read length, minimum k-mer length, number of k-mers, δ, eb

and mapping locations to be reported. Except for number of k-mers and eb the rest

constants are user-given parameters during execution. Fig. 3.5 visualizes the algorithmic

procedure followed by the kernel. It starts with loading modified F array and read to

the private memory followed by integer coding and storage of forward and reverse

strand of the read. The tally matrix, reference genome and suffix array are kept in

global memory as they are too huge for private memory. Integer encoding of reads is

performed so that the encoded value can be directly used as index to access the elements

of a particular column and row of tally matrix. It is performed using the following

scheme: {(A : 0), (C : 1), (G : 2), (T : 3), (Z : 4)}. After preprocessing of reads, we

perform filtration and verification of forward strand followed by reverse strand of the

read.

Filtration is divided into two stages: Pre-search and Search, as highlighted in Fig. 3.5.

Pre-search is a preliminary search of all the k-mers using our proposed dynamic extension

approach to identify the unused extra bases, u eb, if any, and record the corresponding

unextended k-mer. In the context of Pre-search u eb = eb > 0, implying that the number of

candidate locations reported by most k-mers were within the threshold of 1000, thus, the

unused bases remain which could be used otherwise to extend the k-mers even though

they meet threshold. Pre-search, thus, gives an estimate of unused bases that can be used

to further extend some of the k-mers to further reduce the overall number of candidate

locations reported by all the k-mers. For example, given n = 100, δ = 5 and eb = 4, if

each of 6 k-mers result in < 1000 candidate locations, then, u eb = 4. The goal, here, is

to consume the entire read in filtration step irrespective of the k-mer lengths. Therefore,

to utilize all the u eb, we extend 4 out of 6 k-mers by one base each, increasing k from 16

to 17. The information on u eb is used during the Search stage, each unextended k-mer is

elongated by one base until u eb = 0. The choice of k-mers is serial starting from the first.

This ensures that all the extra bases are utilized to minimize the number of candidate

locations. Both Pre-search and Search start from the end of the read and depending on

the number of eb, u eb and candidate locations, it extends the k-mer till the number of

candidate locations are < 1000 or all the spare bases are exhausted. As Search proceeds,

all the candidate locations of each k-mer are verified in-situ and the mappings found are
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reported. The same procedure is followed for the reverse strand.

3.4 Experimental Results

The host program of CORAL is written in Python and the kernel is in C. We use PyOpenCL

rather than conventional C-based OpenCL because scripting languages, such as Python,

enables fast modifications and prototyping and is more programmer friendly. We use

OpenCL 1.2 standard to compile the kernel. We choose Python because it considerably

eases string operations and manipulation, especially, the outlier operations which do not

affect the mapping directly.

3.4.1 Experimental setup

We use both real and simulated reads to compare CORAL with RazerS3, Yara, Hobbes3

and FEM from the all-mapper category and BWA-MEM and GEM from the best-mapper

category. We use a total of 6 million simulated reads and 2 million real reads. Wherever

possible, only the mapping times and accuracy have been compared. We have mapped

both simulated and real single-end reads to chromosome (chr) 2 and 21 of the human

genome. The latest version of Mason [29] (mason2-2.0.9) is used to produce simulated

reads. We use 12 sets of 500,000 reads each, 6 of them are derived from chr 2 and other

6 from chr 21. Out of the 6 sets, three of them have reads of length 100 and the other

three have reads of length 150. The three sets, with read length of 100, are segregated

based on edit distances with which they are sequenced from the chromosomes viz. 3 or

less, 4 or less and 5 or less. Similarly, the reads of length 150 are segregated based on edit

distance viz. 5 or less, 6 or less and 7 or less. Thus, resulting in a total of 6 million

simulated reads to be mapped by all the mappers. The chromosomes used in this

chapter are from the human genome version GRCh38/hg38, dated Dec. 2013, and were

downloaded from the UCSC genome browser [136]. We used 1 million (M) real reads

each from NCBI ERR012100 1 and SRR826460 1 of length 100 and 150, respectively. We

run all the mapping tools including CORAL on two separate systems with the following

configurations:

System 1: Intel Core i5-6600 CPU @ 3.30GHz, 64GB RAM
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System 2: Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM + 2 × GeForce GTX 590,

1.5 GB RAM

OpenCL computing framework imposes the following two restrictions:

a) OpenCL 1.2 standard does not permit dynamic memory allocation. Because of

this, CORAL requires the number of mapping locations per read to be mentioned

beforehand, in order to allocate sufficient memory for each read to store the

mapping locations and strands. Thus, it reports a maximum of first-n mapping

locations per read as informed in Table 3.1.

b) It does not permit allocation of more than (1/4)th of the RAM capacity to a single

variable. Example, with 16 GB RAM no variable can have more than 4GB of

memory allocated. It limits both the size of the data structure to be stored and

the number of mapping locations desired per read.

To elaborate further on (a), if a read matches only at few locations, it will still require

to be allotted sufficient space for the given number of mapping locations desired per

read. As we have limited RAM on system 2, especially, in the GPUs, the number of

mapping locations per read must be assigned accordingly to ensure we do not run out of

memory resource. As system 1 has large RAM capacity, we allot 3500 mapping locations

per read to show the accuracy of CORAL and allot 100 mapping locations per read on

system 2 to demonstrate speedups obtained by using multiple devices. The preprocessed

tally matrix size depends on the length of the chromosome i.e. the size for chr 2 is 3.9GB

which is much larger than that of 747.4 MB for chr 21. As GPUs have limited RAM size

of 1.5 GB, the data structure for chr2 cannot be loaded on them. Hence, to demonstrate

the implementation on multiple devices simultaneously, we use smaller chr21 to map

the real and simulated reads. In summary, we present the results for the following

combinations:

CORAL on System 1: Both real and simulated reads are mapped to chr2 and chr21

with 3500 mapping locations per read for different number of errors, using only the

CPU.

CORAL-cpu on System 2: Both real and simulated reads are mapped to chr2 and
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chr21 with 100 mapping locations per read for different number of errors, using

only the CPU.

CORAL-all on System 2: Both real and simulated reads are mapped to chr21, only,

with 100 mapping locations per read for different number of errors, using CPU

along with the GPUs.

Estimating accuracy with respect to simulated reads

For the simulated reads, the SAM file obtained from Mason is used as the gold standard

for measuring mapping accuracy. On system 1, CORAL, RazerS3, Hobbes3 and GEM

report up to 3500 mapping locations per read while BWA-MEM, FEM and Yara report

all the mapping locations, since they do not provide the facility to report fixed number

of mappings. On system 2, all the mappers are configured to either report up to 100

mapping locations per read, wherever possible, or all the mapping locations. Simulated

reads originate from a known position reported in the SAM file obtained from Mason.

Hence, to determine the mapping accuracy, the output files from the mappers are parsed

and searched for original mapping location, strand and edit distance. If any of mapping

locations reported by the mappers match to that of the gold standard for a particular

read within the given edit distance ≤ δ, we record an accurate mapping. This procedure

is followed for all the simulated reads and all the mappers under consideration. While

running comparison with the gold standard, we allow for a threshold, τ = ±10 bases

with respect to the original location. Irrespective of the chosen τ, the criteria for

measuring a match remains uniform for all the mappers.

Estimating accuracy with respect to real reads

A similar approach is followed for real reads, however, the SAM file obtained from

RazerS3 is used as the gold standard. We use RazerS3 as it has been used in Hobbes3,

FEM and Yara to build the gold standard due to its high accuracy and all-mapper

capability. On System 1, we use RazerS3 to produce SAM file with up to 1000 mapping

locations per read and all the other mappers (including CORAL) are configured to report

3500 mapping locations per read, if possible, or all the mapping locations. Following
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that, we identify if all the, up to 1000, mapping locations per read reported in the gold

standard are present in the output of other mappers. In comparison with section 3.4.1,

where it is sufficient to find a single known location of origin of a simulated read, here,

for the real reads all the locations reported (up to 1000) by the gold standard is compared

with 3500 mapping locations of other mappers, thus, making the evaluation criteria

relatively stringent.

On System 2, we do the opposite. We configure RazerS3 to produce up to 1000

mapping locations per read and configure the mappers to map up to 100 mapping

locations per read. Here, we measure accuracy by identifying if all the reads mapped

by the gold standard i.e. RazerS3, have been reported by other mappers with at least one

matching mapping location, strand and edit distance. We limit the number of mapping

locations to 100 because of the limitations on RAM capacity of System 2. Using the

aforementioned configurations for evaluation of accuracy, we present results similar

to the benchmarking method used in Rabema [137] i.e. the all and all-best scenario on

System 1, and any-best scenario on System 2.

Configurations of read mappers

RazerS3: We used the latest version available viz. razers3-3.5.8. Pigeonhole filter

was used with thread count of 16 for different percentage identity or error rates and

number of mapping locations. The following provides an example of the command line

parameters used:

razers -fl pigeonhole -tc 16 -i 95 -rr 100 -m 3500 -v

-o OUTPUT.sam chr2.fa INPUT.fq

Yara: The latest version 1.0.2 was used with 16 thread in full sensitivity mode.

yara mapper chr2.index INPUT.fq -v -e 4 -y full -t 16 -o OUTPUT.sam

Hobbes3: We used latest version 3.0 with 16 threads and varying number of maximum

number of mapping locations and errors per read.

hobbes -sref chr2.fa -i chr2 hobbes3 index.hix -k 3500 --indel -q INPUT.fq

-v 5 -p 16 --mapout OUTPUT.sam

FEM: We used latest FEM version available dated 03/13/2018. For index construction,

we used window size of 12 and step size of 4 (e.g. FEM index 12 4 chr2.fa) and for
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mapping we used 16 threads with edit distance configuration. FEM, by default, reports

all the mapping positions. The following provides an example of the command line

parameters used:

FEM align -t 16 -f "vl" --ref chr2.fa --read INPUT.fq -o OUTPUT.sam -e 5

GEM: We used the latest version 3. For simulated reads, we run GEM in sensitive

mapping mode, however, for real reads we used fast mapping mode, as sensitive

took hours to produce results. We used 16 threads with varying number of mapping

locations i.e. 100 or 3500, and error rates viz. 3 to 7. The following provides an example

of the command line parameters used:

gem-mapper --index chr2.gem -v -t 16 -M 3500 --mapping-mode sensitive

-i INPUT.fq -o OUTPUT5.sam -e 0.05

BWA-MEM: We used latest BWA version 0.7.17. We configured BWA-MEM to find

all mapping locations with a thread count of 16. BWA-MEM is configured to skip k-

mers(or seeds) with more than 500 occurrences by default. We increased it to 1000 similar

to the threshold value used for CORAL. BWA-MEM does not permit specifying edit

distance for read mapping unlike BWA-aln, hence, for real reads we could not obtain

mapping times for different edit distance values. The following provides an example of

the command line parameters used:

bwa mem -t 16 -c 1000 -v 3 -a chr2.fa INPUT.fq > OUTPUT.sam

3.4.2 Results

Simulated reads mapped to chr 2

Table 3.3 presents the results of mapping three sets of 500,000 simulated reads to chr 2

on the CPU of System 1 and 2. The three sets of reads have different maximum error or

edit distances viz. 3, 4 and 5, respectively. We can observe that CORAL is 5− 16× faster

than RazerS3 and maps over 99% of reads, showing comparable accuracy. The runtime

of CORAL is better than Hobbes3 for low error rates and comparable for higher error

rates, for example, n = 100, δ = 5 and n = 150, δ = 7. On System 2, as the number of

mapping locations is small, Hobbes3 performs better than CORAL for high error rates.

The accuracy of both Hobbes3 and CORAL are comparable and are over 99%. CORAL
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outperforms Yara and BWA-MEM in all the cases, with up to 2.27× and 4.84× speed-

up, respectively. CORAL beats GEM in runtime for n = 100 and accuracy, however, it

lags for n = 150. FEM runtimes are faster than that of CORAL but it maps less than

40% of reads. GEM performs better as it is a best-mapper and designed to produce fewer

accurate solutions. From the accuracy point of view, CORAL performs comparable to

RazerS3, Hobbes3 and BWA-MEM and outperforms Yara, FEM and GEM in all cases.

With regards to mapping time CORAL is better than Yara, BWA-MEM and RazerS3,

and comparable to Hobbes3 and GEM. It, however, underperforms with respect to FEM,

which is fast but the accuracy is low.

Simulated reads mapped to chr 21

Table 3.4 presents the results of mapping three sets of 500,000 simulated reads to chr 21

on the CPU of system 1 and 2 and CPU+GPU combination of system 2. As mentioned

in previous section, the three sets of simulated reads have maximum error of 3, 4 and

5. Compared to RazerS3, CORAL is 2 − 8× faster and maps over 99% of the reads

accurately. CORAL outperforms Hobbes3 in all cases except for n = 100 and e = 5.

It, considerably, outperforms FEM on mapping accuracy. From Table 3.4, we can observe

that CORAL-all, which distributes a portion of the workload on Nvidia GPUs, results in

up to 2× speedup with the same accuracy. CORAL outperforms Yara and BWA-MEM

in all the cases on System 1, with up to 2.08× and 7.96× speed-up, respectively. For

CORAL-all, we equally distributed 256,000 out of 500,000 reads on two Nvidia devices

and the remaining 244,000 on the CPU to obtain speedups. From the experiments,

we conclude that CORAL-cpu outperforms RazerS3, Hobbes3, GEM, Yara and BWA-

MEM in most of the cases on either mapping time or accuracy or both and if not

produce comparable results. Similar to Section 3.4.2, FEM is faster than CORAL but lags

considerably in accuracy. CORAL-all which uses multiple devices provide an additional

speedup of up to 2×, unlike other mappers who are optimized to operate only on the

CPU.
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Real reads mapped to chr 2

System 1: Table 3.5 presents the results of mapping 1 M real reads on chr2, from two

different databases with different read lengths. RazerS3, Hobbes3, GEM and CORAL-

cpu reported up to 3500 mapping per read. We can observe that CORAL is 3 − 7×
faster than RazerS3 and accurately maps over 94% of reads. It is also evident that it

is considerably better than FEM and GEM in accuracy of mapping reads. We could not

run GEM in the sensitive mode for real reads as it was taking very long runs. For δ = 3,

CORAL outperforms Hobbes3, however, it lags behind for higher error rates. On the

contrary, CORAL outperforms Yara on all cases, especially, for higher error rates, leaving

single case where δ = 3 and n = 100, and beats it on accuracy in all cases. CORAL beats

BWA-MEM on all parameters and cases.

System 2: On System 2, all the mappers are configured to map up to 100 positions

per read. Yet again it can be seen that CORAL outperforms Yara and BWA-MEM in

all the cases on mapping times. On accuracy, leaving for a few cases with respect to

Yara, with a marginal < 0.4% difference, CORAL outperforms both Yara and BWA-

MEM. The accuracy for Yara, BWA-MEM, FEM and GEM are higher on System 2 due

to different comparison criteria used, as discussed in Section 3.4.1. Here, we measure

any-best accuracy of Rabema. For all cases, CORAL, considerably, outperforms GEM and

FEM in accuracy.

Real reads mapped to chr 21

System 1: Table 3.6 presents the results of mapping 1 M real reads, from two different

databases with different read lengths, on chr 21. On System 1, all mappers produce

3500 mapping locations per read, except, the RazerS3 which serves as the gold standard.

We can observe that CORAL is 2 − 4× faster than RazerS3 in all cases. Leaving for

n = 100, δ = 5, CORAL is up to 5× faster than Yara with similar accuracy. It outperforms

BWA-MEM on all accounts. CORAL mapping times are better than Hobbes3 and GEM

for lower error rates except for n = 100, δ = 5 and n = 150, δ = 7. FEM and GEM

reportedly mapped only a small number of reads, hence, CORAL mapping accuracy
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supersedes them.

System 2: On System 2, all mappers report up to 100 mapping locations per read,

except, the RazerS3 which serves as the gold standard. The results, here, follow similar

trend as explained above. However, we can see that mapping times can be halved

if all the available resources are used with judicious workload distribution. CORAL-

all executes on CPU and both the GPUs producing up to 2× speedup. For n = 150,

we mapped 368,000 reads on GPUs and remaining 632,000 reads on the CPU. For

n = 100, we mapped 340,000 reads on the GPU and remaining 660,000 reads on the CPU.

These numbers were chosen depending on the memory capacity of GPUs and kernel

requirements. CORAL-cpu and CORAL-all outperform RazerS3 and BWA-MEM in all

the cases. Except for n = 100, δ = 5 and n = 150, δ = 7, it outperforms Hobbes3, GEM

and Yara in all other cases. In case of FEM, the mapping accuracy were found to be very

low despite successive experiments.

Evaluation of Verification-Aware Filtration

Fig. 3.6 shows the average number of verifications performed per read using three filtra-

tion schemes: non verification-aware (NVA), verification-aware (VA) and verification-

aware with approximations (VA+A). In NVA scheme, we fix the lengths of k-mer and

calculate the total number of verifications required for all the reads. For example, given

n = 100, δ = 5 and n = 150, δ = 7, the k-mer lengths are (17, 17, 17, 17, 16, 16) and

(19, 19, 19, 19, 19, 19, 18, 18), respectively. In VA scheme, CORAL dynamically determines

the lengths of k-mer by extending them depending on the number of verifications

encountered. VA+A scheme is similar to VA with an additional condition that limits

the maximum allowed candidate locations per k-mer to 1000. Experiments performed on

both the real data sets show that the number of verifications reduces significantly (up to

3.67×) across the filtration schemes.
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Figure 3.6: Average number of verifications per read using different filtration schemes for real
data sets, viz. ERR012100 1 (n = 100, δ = 5) and SRR826460 1 (n = 150, δ = 7), on chr2.
NVA - non verification-aware, VA - verification-aware and VA+A - verification-aware along with
approximation. The approximation used, here, limits the maximum number of verifications per
k-mer to 1000.

3.5 Discussion

From Section 3.4.2, we see that, even though GEM uses a similar approach of k-mer

length variation on FM-Index, CORAL outperforms GEM on either mapping times,

accuracy or both for different read lengths, errors and datasets. For real reads, GEM

could not produce any output in the sensitive mode, even after allowing longer runtimes.

Compared to GEM, CORAL is an all-mapper with flexibility to work on heterogeneous

systems. We observe that Hobbes3 outperforms CORAL in few cases, like, with longer

chromosome, chr2, and high error rates, δ = 5, 7. One of the major reasons is that the
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latest mappers use Streaming SIMD Extensions (SSE) instruction set. SSE instruction

set utilizes 128-bit registers to accelerate computations. It enables loading of multiple

bit vectors into a machine word, therefore, accelerating the banded Myers bit-vector

algorithm, which is a major bottleneck in read mappers. OpenCL abstracts different

hardware manifestations of parallel architecture including SIMD, but does not support

the SSE instructions, yet, for portability on wide-spectrum of devices. Difference in

performance between CORAL and Hobbes3 is, also, due to k-mer selection criteria.

CORAL selects the maximum possible length for each k-mer with an objective to reduce

the number of candidate location, of a particular k-mer, by increasing its length using

excess bases, if available. While Hobbes3 uses a dynamic programming based filtration

scheme.

The state-of-the-art mappers have focused on algorithmic innovations and software

optimizations targeting only the CPU. To use them on different hardware, such as GPU

or FPGAs, will require to be either rewritten or tailored. K. Reinert et al [36] present a

review of the existing methods and algorithms, and predict in their concluding remarks

that further improvements in the assembling time will result from accelerators and co-

processors. S. Aluru and N. Jammula [30] present a review on hardware accelerators

for genome assembly on FPGAs and GPUs. Darwin [138] is a FPGA based co-processor

for whole genome alignment aiming at aligning genomes of two or more species. The

authors have reported significant improvements in performance/$ and sensitivity by

employing ungapped seeds. Darwin differs from CORAL as it aligns two genomes

while we are mapping reads to assemble genome. A similarity between the two is

the use of approximate string search algorithms. GateKeeper [139] implements the

filtration stage on the FPGA and reports speedups over existing filtration schemes. The

FPGA implementation, however, suffers from flexibility in mapping parameters such

as read length and permissible edit distance. FPGAs, also, lack in on-board memory

and communication bandwidth for faster data transfer between host processors, RAM

and the FPGA chip, thereby, lagging behind the CPU in performance unless a large or

multiple FPGA chips are used. Additionally, any change in the parameters may require

extensive recoding and verification cycles. Jeremie S. Kim et al [140] present processing-

in-memory (PIM) approach towards acceleration of filtration stage by implementing
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their filter on a 3D-stacked DRAM. It aims to optimize the filtration algorithm for 3D-

stacked memory with high memory bandwidth and PIM capabilities. This, however,

limits its portability to other hardware architectures.

In the case of GPU acceleration, the kernels are, often, designed targeting specific GPU

architecture, often, using vendor specified programming framework such as CUDA, as

discussed in Section 2.4.4. GPU architecture is optimized for floating-point operations

while genome assembly involves integer based operations; hence, GPU may or may

not serve as the best possible choice for accelerating genome assembly. Thus, mappers

optimized for just one platform, be it CPU, GPU or FPGA, are unable to use the

advantage of all the available resources. GPUs, for example, accompany CPU in most

of the modern platforms ranging from workstations to servers. To the best of our

knowledge, CORAL, for the first time, demonstrates simultaneous usage of all available

resources on a system without any additional programming effort and achieving up to

2× speedups. We showcase this by simultaneously deploying kernels on a quad-core

CPU and two Nvidia GPUs. CORAL determines the maximum number of workitems

in a workgroup in multiples of 2, as recommended by the Khronos group for better

performance. OpenCL, then, automatically determines the total number of workgroups.

CORAL employs verification-aware filtration scheme which significantly reduces the

average number of verifications performed per read. From Fig. 3.6, we can see that

VA+A filtration scheme outperforms the others by reducing the average number of

candidate locations that need to be verified. The VA+A scheme uses FM-Index backward

search with pigeonhole principle in fully sensitive mode. It imposes approximation by

limiting the maximum number of candidate locations per k-mer to 1000, as discussed

in Section 3.4.1 and 3.4.2, thus, limiting the maximum number of verification 12000 per

read for both forward and backward strand combined. We observed that only about

3.22% and 4.77% of reads in ERR012100 1 and SRR826460 1, respectively, produce large

numbers of candidate locations in the VA case, as can observed in Fig. 3.6. Although, the

proportion of reads is small, however, number of the candidate locations produced per

read is huge enough to skew the average number of verifications from 479 to 1313 and

726 to 1580, respectively. Therefore, we limit the maximum possible verification cycles

to 1000.
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Figure 3.7: The minimum amount of private memory, in bytes, used by each workitem in the
CORAL kernel for different read lengths.

CORAL, algorithmically, doesn’t impose restrictions on the read lengths per se,

however, in the current implementation it is practical to use it with short reads. This

is because CORAL kernel loads read from the global memory to the private memory,

as shown in Fig. 3.5, to reduce frequent memory accesses and from Fig. 3.7, we can

see that the minimum private memory size used by each workitem in the kernel is

proportional to the real length. These values were reported using inbuilt OpenCL

function cl.kernel work group info.PRIVATE MEM SIZE, which returns the minimum

amount of private memory, in bytes, used by each workitem in the kernel [141]. In the

current CORAL implementation, thus, the practicality of using longer reads depends on

the availability of the private memory. CORAL does not produce the CIGAR string and

SAM output format, yet. However, it reports the edit distance upon alignment, mapping
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location, and the strand which is similar to the PAF format of the Minimap2 [124]

and can be used in many genomic analysis pipelines such as metagenomics [142–145]

except for variant calling. The memory footprint of CORAL is large due to tally and

suffix array matrices, as mentioned in Section 3.4.1. These data structures, however,

have the capability to significantly reduce their memory footprint as demonstrated in

[26]. With OpenCL based framework, CORAL can be run on credit-card sized single

board computers (SBCs), designed for embedded scenarios. Such board have multicore

architectures along with GPU, however, limited memory. All the compute units available

in the form of CPU and GPU can be simultaneously used using CORAL unlike other

mappers proposed till date. We present aforementioned improvements in the following

chapters of the thesis.

3.6 Summary

In this chapter, we address the first hypothesis stated in Section 1.2 by presenting a

Cross-platfOrm Read mApper using opencL (CORAL) targeting heterogeneous systems.

Such systems have different kinds of devices in various combinations on a single

platform. Using CORAL all OpenCL conformant devices can be used concurrently to

map reads in task-parallel fashion. For example, this chapter presents a case where

a quad-core Intel CPU is accompanied by two Nvdia GTX 590 GPUs. To efficiently

use all the compute resources on a system, CORAL employs OpenCL programming

framework to launch kernels on the chosen devices and distributes the workload with

the maximum possible workgroup size. Without any additional programming effort,

CORAL can be use devices such as CPUs and GPUs, from different vendors, stitched

together on laptops, workstations and servers. Additionally, it uses a number of

algorithmic optimisations, including verification-aware filtration, to significantly reduce

the computational costs. Both simulated and real reads are used to compare the runtimes

and accuracy of CORAL with the state-of-the-art read mappers and showing competitive

tradeoffs besides portability.
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Chapter 4

Dynamic Programming based Filtra-
tion

4.1 Introduction

Chapter 2 discusses in detail the expansive nature of genomic data, especially, due to the

NGS technology, which produces massive amounts of reads because of oversampling

and amplification of sample genome during the sequencing process. Current trends

indicate that our computation performance will scale poorly under the future demands

generated from a large population [13]. To bridge the widening gap, Chapter 3 insists on

hardware-agnostic, software based solution targeting heterogeneous architecture of most

modern computers for maximum utilisation of available hardware resources to gain

speedups. It showcases a scenario where computational tools are portable and flexible

in using a variety of devices from different vendors across various platforms. This is

achieved using OpenCL computing framework with impetus on mitigating additional

implementation effort.

Besides performance, the energy required to process a large volume of data poses

challenges from cost and environmental aspects. The growth in electricity consumption

due to computing platforms such as laptops, workstations and servers has been higher

than the growth in worldwide electricity consumption [146]. Genomics finds application

in many domains including medicine, agriculture and forensics which has made it a

top contributor to Big Data. The energy requirements posit a significant challenge to

processing genomic data and needs to be addressed.
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MESGA [147] originally explored read mapping on a multiprocessor system on a

chip (MPSoC) based embedded system. They implemented an existing mapping tool,

BWA-aln [25], on 16 processors with 2 GB memory each and showed 7× speed-up

compared to linear pipeline on an Intel server. They achieve this by partitioning the

genome so that the associated data structures can fit in the, respective, memory of each

core. However, their results were demonstrated on a cycle-accurate simulator rather

than a real hardware platform. The results presented were, only, for 1 million simulated

reads without any energy measurement. Besides, an existing state-of-the-art tool was

modified to adapt to embedded platform rather than designing it as per the requirements

of the underlying hardware. As genome analysis involves integer based operations,

more investigation is required to see if simpler cores found on the embedded System-

on-Chip (SoC) platforms may be better suited than complex general purpose CPU cores,

optimised for floating-point operations.

This chapter addresses hypotheses 1 and 2 stated in Section 1.2 by proposing an

OpenCL based REad maPper for heterogeneoUs sysTEms (REPUTE). REPUTE is a

cross-platform tool, similar to CORAL presented in Chapter 3, capable of maximizing

parallelization on multiple OpenCL conformant devices. REPUTE uses a memory

optimized dynamic programming based filtration method inspired by the Optimum

Seed Solver (OSS) [85]. In contrast to OSS which uses hash-based indexing, REPUTE

adopts the underlying theory and presents a novel optimised implementation using

FM-Index and suffix array data structure. Compared to CORAL, which examines k-

mers serially and uses a heuristic based variable length k-mer selection criteria, the DP

based filtration in REPUTE improves selectivity as it examines the entire read before

determining lengths and positions of k-mer. The lengths and position are optimally

selected to minimise the total number of candidate locations per read. REPUTE gets

rid of approximations used in CORAL filtration kernel and provides an efficient, theory

backed, method for variable-length seed selection. Unlike the state-of-the-art mappers,

our OpenCL based implementation enables us to demonstrate performance gains by

launching parallel kernel executions on multiple devices. Most read mappers that have

focused on reducing energy consumption have used an existing tool and implemented

them with necessary modification. REPUTE, on the other hand, has adopted an
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algorithm-hardware co-design approach to design a hardware-aware kernel with low

memory footprint. It articulately integrates DP-based filtration algorithm with FM-

Index backward search while keeping the number of operations to the minimum. In

addition, the REPUTE kernel flow is optimised to mitigate the increase in memory

footprint due to DP based filtration. We compare REPUTE with CORAL, GEM, Hobbes3,

RazerS3, BWA-MEM and Yara [2, 16, 24, 25, 28, 148] by mapping 2 million real reads to

chromosome 21 on two separate systems: 1) Intel CPU + 2×Nvidia GPUs; 2) HiKey970

embedded SoC with ARM Cortex-A73/A53 cores. We demonstrate that REPUTE is up

to 13× faster than existing mappers with similar accuracy on System 1 and consumes

up to 27× less energy on embedded SoC, with comparable performance and similar

accuracy. To the best of our knowledge, this is the first work which demonstrates the

possibilities and potential of Embedded Genomics. The source code can be found at:

https://github.com/nclaes/REPUTE

4.2 Methodology

Sequencing process fragments genome randomly into smaller sections and identifies

them as small strings called reads. To re-assemble the genome, these reads are mapped

to a reference genome with an aim to find the possible candidate locations from where

it may have originated in the actual genome. Approximate string matching is used to

account for errors and variations between the actual and the reference genome. There

are three stages in read mapping: Preprocessing, Filtration and Verification. We discuss

Preprocessing and Verification, briefly, as they employ methods similar to CORAL.

We concentrate our efforts, mainly, on the DP based Filtration method, which is the

bottleneck to performance gains.

4.2.1 Preprocessing and Verification

The aim of the Preprocessing stage is to facilitate quick retrieval of information in the

reference genome to speed-up the Filtration stage. REPUTE uses FM-Index [89] and

suffix array [86] data structures to store the reference genome. These data structures

have been, previously, used in many mappers including GEM, Yara, CORAL and BWA-
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Optimal dividers{A, C, G, T}

13-mer15-mer21-mer14-mer17-mer20-mer

Error Error Error Error ErrorNo Error

2nd k-mer - 661st k-mer - 120 3rd k-mer - 41 4th k-mer - 15 5th k-mer - 8 6th k-mer - 27

Figure 4.1: Fig. 2.13 is reused here to demonstrate the pigeonhole principle for (n = 100, δ = 5),
where n is read length and δ is error. K-mers with their respective number of candidate locations
are displayed. The vertical lines are the optimal dividers, identified in filtration stage, to minimize
the total number of candidate locations. The dots represent one of the four bases: {A, C, G, T}.

MEM. A detailed discussion on these data structures was presented in Chapter 2 and the

algorithms and methodology followed to construct them was presented in Section 3.3.2

of Chapter 3. The objective of approximate string matching algorithm is to identify the

candidate locations for reads in the reference genome where a read is likely to match.

To find candidate locations, a k long section of the read, known as a k-mer as shown in

Fig. 4.1, is searched using FM-Index backward search method. Upon a successful match,

the location is obtained from the Suffix Array. This location points to a section in the

reference genome where the entire read may align within the specified edit distance.

Similar to CORAL, the alignment is performed in the verification stage using the Myer’s

bit vector algorithm. The implementation details of verification for REPUTE remains

similar to that of CORAL, as discussed in Section 3.3.4.

4.2.2 Dynamic Programming based Filtration

Pigeonhole principle [2] states that δ errors cannot occur in more than δ sections of the

read. Therefore, dividing a read in δ + 1 sections will leave at least a section error free,

which should, ideally, match exactly in the reference genome at locations where it is

suppose to have originated. Fig. 4.1 demonstrates pigeonhole principle for read length

n = 100 and δ = 5, divided into k-mers with different lengths (k). As the error-free k-mer is

not pre-known, all the δ+ 1 k-mers are scanned in the reference genome and all candidate

locations are verified. The error free 4th 21-mer shown in Fig. 4.1 is randomly chosen,

without any loss of generality, as it is not known beforehand. Each k-mer produces a

different number of candidate locations depending on the starting, ending positions and

their lengths. The vertical lines, in Fig. 4.1, are called optimal dividers.
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The optimal dividers partition the read into optimum length k-mers to minimize candi-

date locations, for better performance. The objective of a filtration approach, proposed

in any read mapper, is to find an optimum set of k-mers with the aim to minimize the

number of candidate locations. RazerS3 and Hobbes3 use hash-based data structures

to store and retrieve reference genome while CORAL, Yara, BWA-MEM and GEM use

FM-Index based methods.

Fig. 4.2 demonstrates our memory optimized DP based filtration method which is

a variable-length seeding technique. To begin with, the read parameters of (n, δ) and

minimum k-mer length Smin are specified. These parameters are user specified before

execution. The algorithm requires δ iterations for δ + 1 k-mers. In each iteration, a fixed

number of prefixes are explored, called the exploration space (n− Smin × (δ + 1)). The

exploration space ensures that the minimum length of k-mers is not violated. Within

an iteration, each prefix is divided into two sections: 1st and 2nd, with the objective of

identifying optimal divider for the two sections, of each prefix, in the exploration space.

The first iteration aims to find optimal divider for first two k-mers. Therefore, in this

case, the 1st section is the 1st k-mer and 2nd section is the 2nd k-mer. The algorithm, then,

finds optimal divider for each prefix starting from the longest to the shortest, as shown

in Fig. 4.2. The second iteration carries forward the solution of first iteration to identify

the optimal dividers for first three k-mers. However, the difference, here, is that the 1st

section, now, consists of first two k-mers combined while the 2nd section is the 3rd k-

mer. Likewise, in the last iteration, the 1st section will consist of first δ k-mers and the

2nd section will be (δ + 1)th k-mer. At the end of all iterations, the backtracking process

results in optimal divider for all the k-mers, as shown in Fig. 4.2.

For the DP based approach, the optimal dividers for all the prefixes in each iteration is

required to be stored for backtracking in the end. This along with several other additional

variables required by the algorithm, considerably, increases the memory footprint of the

kernel. To avoid this, contrary to OSS, we have limited the exploration space from the

entire read to the minimum space required. Among others, we optimized the bitwidths

of variables to reduced memory footprint used FM-Index backward search in an efficient

way to reduce memory accesses. However, it should be noted that the memory footprint

varies with the size of the exploration space and, hence, depends on the n, δ and Smin. For
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Figure 4.3: Flowchart of the REPUTE kernel.

smaller Smin, a highly optimized solution can be obtained at the cost of greater memory

footprint and filtration time, while a larger Smin results in lower footprint but, relatively,

longer mapping time due to a greater number of candidate locations. Inspired by OSS,

we have retained all the optimizations proposed in [85]. To understand the approach in

greater detail, interested readers can refer to [85].

4.3 Algorithm flowchart

Fig 4.3 presents the flowchart of the REPUTE kernel. When the kernel execution starts

the data structures and inputs are loaded to the global memory. Each workitem loads a

read and modified F array into the private memory for fast access. The read is integer

encoded while loading so that it can be directly used as index to access the relevant

element of the tally matrix and auxiliary data structures. This is followed by filtration

where the optimal dividers that produce minimum candidate locations are identified.

All the occurrences for each k-mer are verified using Myer’s bit-vector algorithm and

successful mapping locations are stored. The entire process is repeated for the reverse
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strand of the reference genome.

4.4 Experimental Setup

The host program of REPUTE is written in Python and the kernel is in C. We use

PyOpenCL because Python enables fast modifications and prototyping, yet, not affecting

the mapping process. We compare REPUTE with CORAL, RazerS3 (3.5.8), Hobbes3

(3.0), Yara(1.0.2), BWA-MEM (0.7.17) and GEM (3). All mappers map 1 million (M)

real reads each from NCBI databases: ERR012100 1 and SRR826460 1, to chromosome 21

of the Human Genome (version GRCh38/hg38) [136]. These databases consists of reads

with lengths 100 and 150, respectively, and are mapped for error range (or edit distance)

of 3-7. We use the following two platforms to map reads:

System 1: Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM and 2 × GeForce GTX

590, 1.5 GB RAM.

System 2: HiKey970 embedded SoC with ARM Cortex-A73 MPCore4 @up to

2.36GHz, ARM Cortex-A53 MPCore4 @up to 1.8GHz and 6 GB RAM.

We have used OpenCL 1.2 standard for portability across variety of platforms. This

standard, however, imposes the following two restrictions:

a) It does not permit dynamic memory allocation. Hence, the number of outputs per

read requires to be specified beforehand, in order to allocate sufficient memory.

b) The maximum amount of memory that can allocated to a variable is (1/4)th of the

RAM capacity.

The aforementioned restrictions limit the maximum number of mapping locations per

read due to the memory available to a variable. Thus, REPUTE reports the first-n

mapping locations. It should be noted that we have compared, only, the mapping

times wherever possible and all mappers used for comparison were configured to their

recommended settings, unless specified. To ensure a comprehensive comparison, we

have designed the following experiments.
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4.4.1 Homogeneous Scenario

In this experiment, we run the mappers on the CPU of System 1. SAM file from RazerS3

is used as the gold standard, as it is an all-mapper with high accuracy and has been

used in Hobbes3 and Yara, previously. We configure RazerS3 to report a maximum of

100 mapping locations per read while other mappers produce up to 1000 locations per

read. As the number of mapping locations reported by any mapper for any read cannot

be pre-determined, hence, we set a limit on the maximum number of locations. Yara

and BWA-MEM were configured to report all locations as they are best-mappers and can

either produce the best mapping location or all the locations. To determine the mapping

accuracy, all the mapping locations reported by the gold standard per read is searched in

the output of other mappers. Along with the mapping locations the genome strand that

the reads were mapped to are, also, matched.

4.4.2 Heterogeneous Scenario

In this experiment, we execute REPUTE on both CPU and GPU. Due to limited RAM

of 1.5 GB on the GPUs and fairness of comparison, all mappers report 100 locations per

read excluding Yara and BWA-MEM, which report all the mapping locations. Unlike

state-of-the-art mappers, REPUTE distributes the workload on CPU and GPU, as per

user specification, executing the work-items in task-parallel fashion using OpenCL

framework. To obtain accuracy measurements, we employ a method similar to any-best

scenario of the Rabema benchmark [137]. In contrast to Section 4.4.1, we identify if all

the reads mapped by the gold standard have been reported by other mappers with at

least one matching mapping location and strand.

4.4.3 Embedded Scenario

HiKey970 SoC boots with a Linux distribution, Lebuntu, provided by the manufacturer.

It needs to be flash booted instead of a bootable SD card. With limited onboard flash

memory, we could install only a limited number updates and libraries. Among other

mapping tools, we could successfully run, only, RazerS3, Hobbes3, CORAL and REPUTE

on HiKey970. We adopt the same measurement methodology as stated in Section 4.4.2.
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RazerS3 and Hobbes3 are C++ based tools capable of multithreading for concurrent

execution using all the 8 cores available on the embedded board.

4.4.4 Power and Energy Consumption

We compare Hobbes3, RazerS3, CORAL and REPUTE for energy efficiency using a

power meter at the power source of the two systems. We measure the average power

consumption during the mapping process and subtract it with the idle power to measure

the power consumption during mapping process. The power is visually observed

over many runs and is noted once it stabilises during the run. We multiply the

power consumption with mapping time to measure energy consumption. For a fair

comparison between homogeneous and heterogeneous scenarios, we need to distribute,

approximately, equal amounts of reads between the CPU and GPUs. For this purpose,

we chose following cases to take the measurements: n = 100, δ = 3 and n = 150, δ = 5.

The former case maps 480,000 reads and the latter maps 500,000 reads on the GPU using

REPUTE.

4.5 Results and Discussion

Table 4.1 presents the results of the Homogeneous scenario mentioned in Section 4.4.1.

It is evident that REPUTE outperforms RazerS3, Yara, BWA-MEM on both runtimes

and accuracy for all error profiles. REPUTE is up to 13× faster than Yara. RazerS3

is configured to produce 100 outputs per read compared to 1000 outputs for other

mappers, hence, reducing its mapping time significantly. Except for (n = 100, δ = 5),

REPUTE performs better than Hobbes3 and GEM. The mapping accuracy of REPUTE is

considerably better than GEM and is equal or comparable to Hobbes3. We can see that

REPUTE provides up to 4× speedup over Hobbes3 for lower error profiles and longer

read lengths. Compared to CORAL, DP based filtration has reduced the mapping time,

especially, for longer read lengths and high error profiles.

Table 4.2 presents the results of the Heterogeneous scenario discussed in Section 4.4.2.

The performance of REPUTE compared to other mappers follow similar trends as

discussed in the previous paragraph. The contrast between the mapping times in
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REPUTE-cpu and REPUTE-all demonstrate that performance can be enhanced by using

multiple devices in parallel. Using GPUs, we obtained an additional speedup of up to

≈2× making REPUTE up to 7× faster than Hobbes3 for longer reads and smaller error

profiles.

REPUTE-all uses CPU along with two Nvidia GPUs to distribute the workload and

map reads in task parallel fashion. It launches the kernels simultaneously and upon

completion it combines the results, thus, making one of the devices the performance

bottleneck. The distribution of workload among various devices, hence, should be

performed judiciously to obtain optimum performance. The maximum number of

reads that can be mapped on a device is limited by the private memory available to

the compute cores and the global memory or RAM available to the device. Fig. 4.4

presents a scenario of performance gains by offloading more workloads to GPU for

given (n = 150, δ = 5) and fixed minimum k-mer length of 22. Large k-mer lengths

reduces the memory footprint of the kernel allowing more workgroups to be processed

by the GPU without running out of resources. The extreme point on the left in Fig. 4.4,

indicates the mapping time when GPU is not used while the rightmost point gives the

mapping time when all reads are mapped on the GPUs. We can see that utilizing GPUs

along with CPUs can provide additional performance gains, however, using only the

GPUs deteriorates the performance as shown by the rightmost point in Fig. 4.4. This is

because GPUs are not suitable for task-parallel executions compared to the performance

delivered by CPU.
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Figure 4.4: Mapping time for different distributions of workloads on CPU and GPU for (n =

150, δ = 5) and minimum k-mer length of 22. X-axis shows the number of reads, out of 1 million,
mapped by each GPU and the remaining reads are mapped on the CPU.

Fig. 4.5 shows the mapping times for different minimum k-mer lengths with a constant

workload distribution between CPU (820,000 reads) and GPU (90,000). For smaller k-mer

lengths, the mapping time is higher due to exploration of larger number of possibilities in

the DP based filtration method. As the k-mer lengths increase, the time taken in filtration

decreases, still producing similar number of candidate locations per read. However, for

larger k-mer length of 20, the exploration space to select the optimum divisions of read

is fewer, thus, resulting in higher candidate locations per read and, therefore, longer

mapping time. The results presented in Table 4.1 and 4.2 are the best performances of

REPUTE taking into consideration the k-mer lengths and workload distribution.

Table 4.3 presents the results for the embedded Scenario mentioned in Section 4.4.3.

We can see that for (n = 100, δ = 5) and (n = 150, δ = 7), REPUTE performs

comparable to Hobbes3 with similar accuracy while for other cases it outperforms

Hobbes3. REPUTE is up to 4× times faster than RazerS3. Table 4.4 presents the power

and energy measurements mentioned in Section 4.4.4. We observe that REPUTE-all,
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Figure 4.5: Mapping time for different minimum k-mer lengths with same distributions of
workloads on CPU and GPU. CPU mapped 820,000 reads and GPU mapped 90,000 reads each
with the read configuration of (n = 100, δ = 4).

which distributes workload on CPU and GPU, uses more power but less energy and is

faster than other mappers including REPUTE-cpu. On Hikey970, REPUTE outperforms

other mappers, significantly, on the energy consumption. However, the most important

takeaway, in our opinion, is that exploration of genomic computations on embedded

SoCs can produce significant energy savings which can lower down the overall cost of

whole genome sequencing. We demonstrate energy savings of upto 20× on HiKey970

embedded SoC compared to general purpose workstations, as shown in Table 4.4.

Currently, REPUTE is tailored to map short reads of length 100-150, even though the

algorithm does not impose any such restrictions per se. REPUTE reports the mapping

positions, edit distance and strand for each read in the output file. One of the reasons for

large memory footprint of REPUTE is due to limitations on dynamic memory allocation

posed by the OpenCL standard. OpenCL does not allow dynamic memory allocation

and hence, each read should be assigned the same amount of memory to store mapping

locations and associated information, even though it may match to, say, just one location.

99



Table 4.4: Energy consumption in accordance with Section 4.4.4.

n = 100, δ = 3 n = 150, δ = 5

P(W) E(J) P(W) E(J)

System 1 - 160 W (Idle power)

RazerS3 241 2162.7 243 2548.1

Hobbes3 254 1917.6 258 5703.6

CORAL-CPU 365 1440.1 371 3652.3

CORAL-all 454 1540.7 461 3673.1

REPUTE-CPU 354 1691.5 358 2859.1

REPUTE-all 455 1554.7 490 2597.1

System 2 - 3.5 W (Idle power)

RazerS3 7.5 356.3 8.6 493.5

Hobbes3 7.5 216.2 8.4 440.8

CORAL-HiKey 8.5 82.06 9.1 216.5

REPUTE-HiKey 8 78.6 7.8 212.6

Hence, depending on the RAM available, we may have to limit the number of mappings

per read or run the kernel multiple times after grouping reads in sets. Another reason

for large memory footprint is the size of the FM-Index data structure and suffix array,

which becomes prohibitive for large chromosomes, especially, for embedded platforms.

This, however, can be significantly reduced by storing elements after fixed intervals as

used in [26] at the cost additional computational burden.

4.6 Summary

In this chapter, we attempt to prove the hypotheses stated in Section 1.2. We propose

a cross-platform OpenCL based REad maPper for heterogeneoUs sysTEms (REPUTE)
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capable of parallel kernel executions on multiple devices. REPUTE uses a memory

optimized dynamic programming based algorithm for performance driven pruning of

reference genome to map short reads. REPUTE kernel was designed using algorithm-

hardware co-design approach targeting embedded platform with limited memory and

simpler cores. The kernel uses filtration approach inspired by the OSS [85], which

has been shown to select optimum seeds and produce minimum number of candidate

locations for a read. We have compared REPUTE with state-of-the-art read mappers

using real human reads on two different platforms. The low-memory footprint kernel of

REPUTE with optimised implementation for performance, outperforms other mappers

on mapping time and accuracy parameters in most of the cases. REPUTE demonstrates,

for the first time, the potential of embedded genomics for energy efficiency without

loss of accuracy and competitive performance. Compared to other mappers, REPUTE

provides better energy savings. Our results show that moving genomics from high-

performance servers and workstations to embedded systems can potentially unleash

new opportunities for low-cost genomics.
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Chapter 5

Embedded Whole Genome Read Mapping

5.1 Introduction

Prerequisite to genomics is the availability of genome which is obtained from the

sequencing and assembly pipelines of the whole genome sequencing (WGS) [149].

Sequencing process produces fixed-length small subsections of genome, called reads,

which are then reassembled to obtain the original genome. To reassemble the genome,

reads obtained from sequencing cycles are mapped to an existing reference genome

using read mapping tools. The mapping process engages approximate string matching

and dynamic programming (DP) algorithms in tandem with the reference genome,

stored in the form of data structures following a tool-specific preprocessing strategy.

Conventionally, most of the state-of-the-art read mappers, such as [2, 16, 24, 25], have

been optimized for CPU and are oblivious to other hardware resources available in

modern heterogeneous systems such as the GPU. Several platform-specific tools have

been proposed targeting FPGA and GPU; however, they are not flexible to changes in

parameters and, often, require platform-specific programming skills [30].

CORAL [148], proposed in Chapter 3, demonstrates an OpenCL based heterogeneous

read mapping scenario where workloads are distributed on available CPU+GPU to

accelerate read mapping. It, however, uses a heuristic based filtration methodology.

Also, the preprocessed data structures have large memory footprint making it unfit to

be used with longer chromosomes (e.g. chr 1, chr 2) in memory-restricted environments

such as the embedded platforms. REPUTE [150], presented in Chapter 4, proposes a DP
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based filtration methodology using OpenCL to improve performance and demonstrates

an embedded implementation of read mapping on HiKey970 platform with energy

savings of 27× compared to a workstation. Though, REPUTE outperforms state-of-the-

art read mappers for chromosome 21 but the size of data structure renders it infeasible for

longer chromosomes on embedded platforms. Hobbes3 [16] uses a DP based filtration

methodology along with heuristic schemes to optimize performance on q-gram inverted

index for high-performance. RazerS3 [2] is accuracy focused, commonly used as gold

standard for comparison but it does not employ any data structures to accelerate read

mapping. As such, it is slower than other state-of-the-art read mappers. As discussed

in Section 4.1, MESGA [147] is among the few contributions that aim to provide an

embedded genomic solution to the computational pipelines, however, it is a simulation

work rather than an actual implementation. SWARAM [22] is a recent contribution to

embedded genomics, where state-of-the-art read mapper BWA-MEM is modified and

implemented on embedded platform to map reads. It partitions the HRG into sufficiently

small sections to reduce the memory footprint and map a portion of the short read

files in each thread. This process is repeated in a task-parallel fashion covering the

entire HRG to map all the reads distributing the workload on available processing

cores. It, also, integrates downstream analysis tools such as Platypus [151] and/or

GATK HaplotypeCaller [152], to process the assembled genome and accelerate it using

an embedded system cluster. It was demonstrated in Chapters 3 and 4 that CORAL and

REPUTE are faster and accurate than BWA-MEM, especially, when all mapping locations

are needed. This chapter demonstrates similar results and uses algorithm-hardware co-

design approach to design dedicated read mapping tool targeting embedded platforms,

thus proving the second hypothesis stated in Section 1.2.

This chapter proposes a Pyopencl based tooL for gEnomic workloaDs tarGeting

Embedded platforms (PLEDGER). PLEDGER aims to optimise the read mapping al-

gorithm for the target memory-restricted hardware platform to enable translational

genomics. It is an OpenCL based tool offering, in principle, identical portability to that

of CORAL and REPUTE. However, PLEDGER outperforms CORAL and REPUTE as it is

implementable on a memory restricted embedded platforms for all chromosomes: 1-22,

X and Y. PLEDGER employs algorithm-hardware co-design approach to propose a novel
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preprocessing scheme capable of generating memory-aware data structures on platforms

with available RAM capacity of 3.6 GB. It can complete entire read mapping process with

small memory footprint, making it a stand-alone tool tailored for embedded platforms.

It uses DP based filtration and verification kernel akin to REPUTE with modifications

to use memory-aware data structures, which affects the performance as a trade-off.

To improve performance, it optimises the algorithm for the target memory-restricted

platform using bit-vector operations and localized variable optimizations to minimize

the memory footprint of the kernel. In CORAL and REPUTE, the mapping process needs

to be repeated for each chromosome while PLEDGER is capable of mapping to all or user

selected chromosomes, automatically, making it first of its kind implementation to map

the whole genome on an embedded platform. In addition to parallel kernel executions

on heterogeneous systems offered by CORAL and REPUTE, the memory-aware data

structures used in PLEDGER enables mapping the whole genome on any GPU with over

3.6 GB available RAM.

This chapter compares PLEDGER with RazerS3, Hobbes3, CORAL and REPUTE by

mapping 1 million real human reads of lengths 100 and 150 each, to chromosomes 1-22,

X and Y of the human genome. We execute read mappers on two systems 1) Intel i7-

8750H CPU, 16GB RAM + Nvidia GTX 1050 Ti, 4GB RAM; 2) Odroid N2 with quad-core

ARM Cortex-A73 + dual core Cortex-A53, 4GB RAM. Among other state-of-the-art read

mappers, only Hobbes3 and RazerS3, although oriented towards CPU, were successfully

executed on an embedded platform for comparison by REPUTE on HiKey970 with 6GB

RAM for chr21. However, with just 4GB RAM on Odroid N2 platform, only Hobbes3

and PLEDGER could be successfully benchmarked. We demonstrate up to 11× speedup

compared to state-of-the-art read mappers. Our embedded implementation consumes

5.9× less energy than state-of-the-art computing resources. The PLEDGER source code

can be found at: https://github.com/chitlangia/pledger

5.2 Methodology

Fig. 5.1 reuses Fig. 2.11 to visualise an overview of the read mapping process. It starts

with preprocessing the reference genome and storing in the form of data structures
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Preprocessing Filtering Verification

Reference Genome

Input Input

-reads file
-read length
-edit distance
-k-mer length
-...

Input

Figure 5.1: Overview of the read mapping process explained by reusing Fig. 2.11. There are
three stages: Preprocessing, filtration and verification. Reference genome is the input to the
preprocessing and verification stages. The are other inputs to the filtration stage such as reads
file, read length, edit distance, k-mer length, constants, etc.

suitable to filtration scheme of the mapper. The objective is to assist the filtration stage

with rapid pruning of reference genome while searching for possible candidate locations

for a read. These candidate locations are then verified against the reference genome to

find if the read originated from this location in the original genome during sequencing.

Verification is performed in the ambit of δ mismatches and indels, known as error or

edit distance, which originate during the sequencing process or are natural variations

between the genomes of different individuals. Verification leverages a variant of the

semi-global DP algorithm, known as Myer’s bit vector algorithm. It is one of the fastest

and widely used method whose details can be found in Chapter 2 and 3. The algorithmic

flowchart for PLEDGER kernel is similar to that of REPUTE discussed in Section 4.3

using Fig 4.3.

In the following subsections, we focus on the proposed preprocessing scheme

and associated filtration modifications to reduce the memory footprint and improve

performance of the read mapper.
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5.2.1 Memory-aware preprocessing

The reference genome is preprocessed and stores as the auxiliary data structures of FM-

Index and suffix array. FM-Index backward search offers O(n) time complexity to search

a string of length n, making it one of the fastest approximate string matching algorithm.

These data structures have been, previously, used in many mappers including Bowtie2,

Yara and BWA-MEM and were discussed in detail in Chapters 2 and 3. Fig. 5.2 visualizes

the construction of FM-Index data structure for the string GAAATCGZATCATZACCGTG$.

It involves the formation of tally matrix using F and L arrays obtained by applying

Burrows-Wheeler transform on the string. The length of tally matrix depends on the

length of the chromosome/genome and each row stores four integers (16 Bytes) making

it a major bottleneck to low-memory implementations. For example, for the longest

chromosome, chr1, the size of tally matrix is 4GB.

To reduce the size of tally matrix, only a limited number of rows at fixed intervals

can be stored, provided the L array is available to reconstruct the missing rows during

run-time. During run-time, the L array will have to be looped over the rows missing in

the tally matrix to count the number of occurrences of bases (A C G T). This count will be

added to the nearest available row, in the tally matrix, to obtain the values of the desired

row. The DP based filtration methodology used in this chapter would require repetitive

looping over the L array numerous times which will significantly increase the filtration

time. To reduce the complexity from O(n) to O(1), we eliminate looping and use bit-

vector operations with the help of an additional tally offset array as shown in Fig. 5.2.

We store every 16th row in the tally matrix and store the number of occurrences of A C

G T for the missing 15 rows using 4-bits each, enabling a 16-bit unsigned integer to store

the information of each row of the L array. This step compresses the data structure and

as we will see in the next subsection it is decompressed in run-time during filtration.

As preprocessing is a one-off task, it does not affect the runtime and prevents looping.

The proposed preprocessing scheme reduces the size of tally matrix by ≈ 5.5×, bringing

4 GB down to 746.9 MB for chr1. PLEDGER requires five types of preprocessed data

structure during runtime for read mapping: integer encoded reference genome (A C G T

to 0 1 2 3), suffix array, tally low-memory footprint (LMF) matrix, tally offset array and
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run-length encoded version of F array. The total size of these data structures varies from

373.6 MB to 746.9 MB for chr 1-22, X and Y.

5.2.2 Filtration for memory aware data structures

Approximate string matching with error δ will require the use of pigeonhole principle

[2]. Pigeonhole principle states that if a read is divided into non-overlapping δ + 1

sections, then at least one section would be left error-free and match exactly at its place of

origination. The non-overlapping sections of length k are called k-mer. Each k-mer from

the read is pruned through the reference genome using FM-Index backward search to

find the candidate locations. Fewer number of candidate locations will lead to less DP-

based verification cycles and will greatly reduce the overall mapping time. The objective

of filtration is to identify suitable k-mers to minimize the total number of candidate

locations. We use DP-based filtration algorithm proposed in [150]; however, with our

proposed memory aware data structure we modify the backward search of the algorithm

using bit-vector operations in conjunction with method used to build tally offset array.

Through this method, the desired value of tally matrix is known in O(1) time by adding

the tally offset value to the immediate tally matrix value before it, as shown in Fig. 5.3.

At the end of filtration, the candidate locations are obtained from the Suffix Array and

verified, in situ for alignment within error δ in the same work-item (or thread).

5.3 Experimental setup

PLEDGER is PyOpenCL based with the host program written in Python and the kernel

in C. Python enables easy handling of strings and fast prototyping. We compare

PLEDGER with REPUTE, CORAL, RazerS3 (3.5.8) and Hobbes3 (3.0). As mentioned

in Section 5.1, we use RazerS3 as the gold standard and use a method similar to any-best

scenario of the Rabema benchmark [137] for accuracy comparison. All mappers map 1

million (M) real reads each from NCBI databases: ERR012100 1 and SRR826460 1, with

lengths 100 and 150, respectively, to chromosome 1-22, X and Y of the Human Genome

(version GRCh38/hg38) [136]. We perform verification with 5% error rate i.e. δ = 5 and

7 for read length n = 100 and 150, respectively. We use the following two platforms to
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A        C        G        T
0         0        1         0
0         0        2         0
1         0        2         0
1         0        2         0
1         0        2         0
2         0        2         0
2         1        2         0
2         1        2         1
3         1        2         1
3         2        2         1
3         2        2         2
3         2        2         3
3         2        2         3
3         3        2         3
3         4        2         3
4         4        2         3
5         4        2         3
5         4        3         3
6         4        3         3
6         4        3         4
6         4        4         4     

Tally Low-Memory 
Footprint (LMF) Matrix Tally Offset Array

0011 0010 0101 0001
0000 0000 0000 0000
0001 0000 0000 0000
0001 0000 0000 0000
0001 0000 0000 0000
0010 0000 0000 0000
0010 0001 0000 0000
0010 0001 0000 0001
0011 0001 0000 0001
0011 0010 0000 0001
0011 0010 0000 0010
0011 0010 0000 0011
0011 0010 0000 0011
0011 0011 0000 0011
0011 0100 0000 0011
0100 0100 0000 0011
0101 0100 0000 0011
0000 0000 0000 0000
0001 0000 0000 0000
0001 0000 0000 0001
0001 0000 0001 0001

+

Figure 5.3: Visualization of bit-vector operation to obtain the desired element of the tally matrix
using tally LMF matrix and tally offset array.

map reads:

System 1: Intel i7-8750H CPU, 16GB RAM + Nvidia GTX 1050 Ti, 4GB RAM.

System 2: Odroid N2 with quad-core ARM Cortex-A73 + dual core Cortex-A53,

4GB RAM.

We use OpenCL 1.2 standard to support portability across different devices. OpenCL

1.2, however, does not allow dynamic memory allocation and the maximum memory

that can be allocated to one variable cannot exceed (1/4)th of the RAM capacity. This

had earlier restricted floating of large tally matrices in CORAL and REPUTE on memory

restricted platforms. Similar to REPUTE and CORAL, PLEDGER reports the first-n

mapping locations. We compare the mapping times of different mappers, with their

recommended settings, configured to report 100 mapping locations per read.
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5.4 Results and discussion

All mappers in the following experiments have been configured to report 100 mapping

locations per read. In the following subsections, we present mapping times for different

read lengths and chromosomes on system 1 and 2.

5.4.1 System 1 - CPU+GPU

In this experiment, we run RazerS3, Hobbes3, CORAL and REPUTE on the CPU of

System 1. Although, CORAL and REPUTE can execute on heterogeneous platforms,

however, the memory requirements prohibit them to do so for longer chromosomes.

Table 5.1 compares different mappers for reads of length n = 100, and error δ = 5.

PLEDGER was run twice: once only on the CPU, denoted as PLEDGER-cpu, and second

time both on the CPU and GPU by distributing workload in the ratio 4:1, denoted as

PLEDGER-all. As per our observation, using this ratio produce the best mapping times.

We can see that PLEDGER-cpu and PLEDGER-all outperforms RazerS3 and CORAL

for all chromosomes, producing 1.6-11× speedups. CORAL is slower than PLEDGER

as it uses heuristic based filtration methodology producing more candidate locations

that lead to as many expensive DP based verification cycles. PLEDGER performance

is comparable to REPUTE while PLEDGER-all outperforms as it can use GPU due

to low-memory footprint data structures. Hobbes3 has outperformed PLEDGER in

performance. The performance gap, however, narrows when PLEDGER distributes

workload on available GPU using its parallel heterogeneous execution capabilities. We

can observe similar trends for n = 150 and δ = 7 as shown in Table 5.2. For chromosome

Y in Table 5.2, we see that PLEDGER-all outperforms Hobbes3. Chromosome Y is the

smallest of all chromosomes and we observe that PLEDGER’s performance improves for

smaller chromosomes. In Section 5.4.5, we discuss the reasons for high performance of

Hobbes3 compared to PLEDGER.

110



5.4.2 System 2 - Odroid N2

Table 5.3, 5.4 present the mapping times for Hobbes3 and PLEDGER on Odroid N2

embedded platform. Among existing read mappers, only Hobbes3 is capable of

executing in a memory restricted environment. From the tables, we can see that Hobbes3

outperforms PLEDGER in all cases. Even though PLEDGER is capable of using the

on-board Mali GPU but we found that distributing workload to GPU, like in system

1 (Section 5.4.1), does not yield any additional performance gains. This is because

on-board Mali GPU doesn’t have a dedicated RAM and shares the RAM with ARM

processors. The architecture of Mali is, relatively, simple compared to Nvidia GPU

and has low operational frequency of 950 MHz compared to 1392 MHz for the Nvidia

GPU. Although, PLEDGER is slower compared to Hobbes3 it provides an opportunity

for portability to OpenCL conformant devices and scalability for implementation on an

embedded cluster to accelerate data intensive genomic workloads.
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Table 5.5: Energy consumption in accordance with Section 5.4.4.

n = 100, δ = 5 n = 150, δ = 7

P(W) E(J) P(W) E(J)

System 1 - 20 W (Idle power)

Hobbes3 79 20006.9 80 44028

PLEDGER-cpu 78 41035 79 78605.7

PLEDGER-all 113 51205.8 114 98859.8

System 2 - 3 W (Idle power)

Hobbes3 6.6 4611.8 6.6 7422.69

PLEDGER 6 9396 6.1 18404.7

5.4.3 Accuracy

Due to limited RAM capacity, all mappers are configured to report 100 locations per

read. As mentioned in Section 5.3, to determine the accuracy of mapped reads we adopt a

method similar to any-best scenario of the Rabema benchmark [137], where each reported

location for a read is compared to those reported by RazerS3, the gold standard, for the

same read. If any of the location and strand matches to the gold standard, we report it as

an accurate match. In our experiments, we have found that all mappers produced over

99% accuracy in reporting locations in comparison to the gold standard.

5.4.4 Power and energy consumption

We compare the power and energy utilization of Hobbes3 and PLEDGER on system 1

and system 2. We measure the average power consumption during the mapping process

and deduct the idle power to measure the power consumption during mapping process.

To measure energy consumption, we multiply the power consumption with the total

mapping time for 24 chromosomes. Table 5.5 presents the energy measurements on

system 1 and system 2. We observe that using embedded platform for read mapping can

lead to 4.34-5.93× energy savings compared to general purpose computers. It is, also,
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Figure 5.4: Comparison between average number of candidate locations per read verified by

PLEDGER and Hobbes3. Values presented for n = 150 and δ = 7

.

evident that high performance can directly yield huge energy savings in the embedded

scenario.

5.4.5 Performance gap and future work

Hobbes3 and PLEDGER both use DP based filtration methodology to minimize the

number of candidate locations. In principle, both DP based approaches evaluate the

read to select similar optimum k-mers, however, Hobbes3 applies additional heuristic

optimization to exclude multiple verification of similar candidate locations obtained

from multiple k-mers. One such optimization is to divide read in δ + 2 non-overlapping

k-mers rather than, traditionally used, δ + 1 k-mers. In this scenario, only those candidate

locations which are found in at least two k-mers are verified. This significantly improves

specificity of identifying candidate locations. PLEDGER, presently, does not use any

post-filtration optimizations which leads to many more verification cycles than needed.

Fig. 5.4 visualizes the average number of candidate locations, per read per chromosome,
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Figure 5.5: Linear normalization of mapping times for PLEDGER if it reports same number of

candidate locations as Hobbes3. Values presented for n = 150 and δ = 7.

verified by PLEDGER compared to Hobbes3. We can see that PLEDGER verifies 3-5×
more locations per read which leads to longer mapping times. Fig. 5.5 presents a linear

estimation of mapping time taken by PLEDGER if it had to verify the same number of

candidate locations as Hobbes3. Although, computation times do not necessarily scale

linearly, it demonstrates significant scope of improving performance. In our future work,

we intend to append our filtration scheme with post-filtration optimizations to increase

the specificity of selection of candidate locations.

5.4.6 Challenges with OpenCL

OpenCL imposes restrictions on the memory such that no variable can be allocated more

than 1/4th of the total RAM on the device. Thus, the data structures should fit within

the limited window of available memory which inspired us to compress the FM-Index

auxiliary data structures . It does not allow dynamic memory allocation which leads to

inefficient use of memory while reporting mapping locations per read. For example, all

reads will be allocated the same amount of memory to store the mapping locations even
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if the locations reported for one read is much smaller than the other. Additionally, it is

sometimes difficult to find and install the OpenCL driver of a device as some vendors

may not make it open source.

5.5 Summary

We present a Pyopencl based tooL for gEnomic workloaDs tarGeting Embedded plat-

forms (PLEDGER). PLEDGER is a stand-alone tool capable of generating data structures

and mapping reads to the whole human genome in an embedded environment with

limited available RAM capacity, as low as 3.6 GB. Its an automated tool that provides

option of mapping reads to a selected or all the chromosomes of an organism. The

underlying OpenCL framework supports portability across different devices enabling

parallel kernel executions on multiple devices, such as CPU, GPU, simultaneously.

It uses memory-aware data structures and algorithm-hardware co-design to target

embedded scenarios for energy efficiency. It uses bit-vector operations and memory

optimized dynamic programming based algorithm to accelerate the mapping process.We

compare PLEDGER with state-of-the-art read mappers and demonstrate significant

performance gains and energy savings. PLEDGER is first of its kind implementation

that maps real reads to the entire human genome. With continuous growth in genomic

data due to high-throughput sequencing, embedded genomics supported by PyopenCL

framework, as presented by PLEDGER, can play a key role in translation genomics and

next-generation medicine.
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Chapter 6

Conclusion

6.1 Contributions

In this research, we aim to provide an energy-efficient and performance-driven novel

hardware solution to the read mapping problem. Our approach towards solving the

problem is as follows:

• We study the existing mappers and their target devices to understand the bottle-

necks to efficient utilisation of available hardware resources in modern heteroge-

neous architectures.

• To target heterogeneous architectures, which often includes CPU and GPU together

in most modern workstations and laptops, a method with cross-platform flexibility

and low-programming effort is required. The aim is to distribute workload, without

any additional effort, concurrently on different devices for speedups

• The advent of Internet-of-Things (IoT) has led to emergence of a variety of

embedded platforms for low-power and low-energy requirements. They have

limited memory capacity but are capable of battery powered operations and have

sufficient compute capacity to run heavy smartphone workloads, making them

worthy of exploration for genomic pipelines.
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Most modern workstations, laptops and even smartphones are equipped with GPUs

alongside CPU to accelerate parallel operations. To mitigate the extra programming

effort required to program GPUs and, yet, use its availability, we develop a novel cross-

platform read mapper, called CORAL, to target heterogeneous systems which can utilise

all available hardware resources in a system. CORAL is based on OpenCL and is capable

of parallel kernel executions on CPU and GPU, concurrently, distributing the workload

judiciously in task-parallel fashion to achieve speedups. It can execute on any number

of OpenCL conformant CPUs and GPUs on the same platform, simultaneously, as per

user-specified workload distribution and collects the mapping result to a single file.

CORAL used FM-Index and suffix array based data structures to preprocess and store the

reference genome. It uses FM-Index backward search to implement a verification-aware

filtration methodology which aims to reduce the total number of candidate locations

that are verified using expensive DP-based banded Myers bit-vector algorithm. CORAL

is validated by mapping both real and simulated reads to chr2 and chr21 of the human

genome and is compared with state-of-the-art read mappers such as RazerS3, Hobbes3,

FEM, BWA-MEM, GEM and Yara. CORAL is an all-mapper and outperforms best-mappers

such as BWA-MEM both in performance and accuracy and GEM in accuracy. It, also,

outperforms RazerS3 and Yara in performance and FEM in accuracy, while performs

competitive against Hobbes3. The kernel was written in C with host code in Python and

executions using PyOpenCL libraries for rapid modifications and prototyping. CORAL

demonstrates that read mapping is more suitable for CPUs than GPUs unless GPU-

specific implementation is adopted, however, outsourcing smaller workload to GPU

in task parallel fashion can provide 2× or more speedups depending on the GPU

architecture.

With the advent of IoT and its, direct and indirect, widespread adoption in most

applications related to human society worldwide, tremendous effort has been put in

developing low-power and energy-efficient embedded systems. Embedded systems,

usually, have many-core architecture with low-complexity processing cores, often,

accompanied with smaller and simpler GPUs. Genomic computational pipelines,

generally, includes string searching and matching algorithms, which use integer based

operations and, hence, may underutilise complex processors optimised for handling
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floating-point operations. With this hypothesis, we propose an OpenCL-based read

mapper for heterogeneous systems, called REPUTE, with focus on mapping reads on

embedded platforms. REPUTE posits two major contributions: first, a dynamic pro-

gramming (DP) based filtration method is proposed using FM-Index backward search

for improved performance, and second, using algorithm-hardware co-design REPUTE is

tailored for embedded platforms with limited memory. DP based filtration methodology

implemented in REPUTE is among the most efficient methods available that selects seeds

with lowest cumulative frequency. This reduces the number of candidate locations to be

verified, therefor, reducing mapping times. Limited memory on embedded boards are

the major bottleneck in using them for memory intensive genomic pipelines. REPUTE

uses algorithm-hardware co-design to optimise the kernel for low-memory footprint so

that more work-items (or threads) can run, concurrently, on ARM cores with smaller

register capacity compared to complex processors. REPUTE inherits cross-platform

flexibility from CORAL and can execute on multiple devices, simultaneously, on the

same platform. REPUTE shows improved performance and accuracy when using CPU,

Nvidia GPUs and HiKey 970 platform. It not only outperforms CORAL but, also, other

state-of-the-art mappers including Hobbes3 using real reads demonstrating up to 13×
speedups. On Hikey 970 embedded platform, REPUTE demonstrated up to 27× energy

savings compared to workstation with Intel Core i7-2600 CPU and 2× Nvidia GeForce

GTX 590.

REPUTE demonstrates that genomic computational pipelines, tagged as memory

intensive applications, can be done on embedded platforms obtaining significant energy

savings with competitive performance. However, the reads were mapped to a small

chromosome, chr21, because the data structures to store larger chromosomes require

higher memory capacity. This is major bottleneck to bringing whole genome map-

ping to embedded systems. To address this, we propose a PyOpenCL based tool for

genomic workloads targeting embedded platforms (PLEDGER). PLEDGER is a memory-

aware whole genome read mapping implementation which proposes generation of low

memory footprint (LMF) data structures at the preprocessing stage. Using algorithm-

hardware co-design, it re-constructs the REPUTE kernel to efficiently use the LMF data

structures and mitigate the additional computational burden using bit-vector operations.
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It implements variable level optimisations to minimise the memory footprint of the

kernel. Additionally, PLEDGER is completely automated tool which maps the given

reads to user selected chromosomes with options of mapping it all or one chromosome

segregates the output files in separate folders. PLEDGER demonstrates, for the first time,

that entire genome can be mapped on a single Odroid N2 board with <3.6 GB available

RAM. It demonstrates up to 11× speedups compared to state-of-the-art mappers and

energy savings of 5.9× compared to computing system with Intel i7-8750H CPU and

Nvidia GTX 1050 Ti.

In summary, this thesis presents three whole genome read mapping tools viz.

CORAL, REPUTE and PLEDGER. These three tools are build progressively with the aim

of providing an energy-efficient and performance-driven novel hardware solution to the

reassembly pipeline of the whole genome sequencing. PLEDGER is the latest version

of the tool set that target embedded platforms and attempts to mitigate limitations of

other hardware platforms such as FPGA and GPU, yet, retaining the advantages they

provide such as speedups and energy savings. A major advantage of using an embedded

platform is its low cost and negligible maintenance requirements. They do not require

any cooling system which can result in saving huge electricity bills. The tools have

been validated against state-of-the-art tools used by geneticists and bioinformaticians

demonstrating speedups and high accuracy.

6.2 Future Work

In the following paragraphs we discuss possible directions of future work to enable

translational genomics by providing an energy-efficient and performance-driven hard-

ware solution to computational pipelines of genomics.

Chapter 3 presents an OpenCL-based read mapper implementing efficient heuristic

for filtration to target heterogeneous architecture of modern computing machines with

cross-platform capabilities. It presents a case where both CPU and GPU can be used

together with minimal programming effort to obtain speedups. However, there is a

scope of significant improvements in the filtration approach which is implemented in

REPUTE, presented in Chapter 4. REPUTE proposes a dynamic programming based
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filtration approach with theoretical background of providing best possible selection of

seeds resulting in fewer candidate locations, overall. This results in fewer verification

cycles leading to reduction in mapping time. It, also, presents an optimized kernel with

low-memory footprint suited for embedded platforms. However, there remains two

major shortcomings in the approach with scope of further improvements in mapping

time. First, the memory footprint of the data structures for bigger chromosomes are

prohibitive and they cannot be mapped on an embedded platform with limited memory.

Second, there are many candidate locations which are verified more than once for the

same read. Multiple verification for same candidate locations happen because multiple

k-mers adjacently generate same candidate locations corresponding to their respective

positions in the read. It happens when two or more k-mers are free of error.

PLEDGER, proposed in Chapter 5, mitigates the first shortcoming of REPUTE. It

proposes a novel proprocessing methodology that, significantly, reduces the memory

footprint of the data structures and is able to map to all the chromosomes in human

genome. This, however, increases the filtration time because of the additional com-

putational burden of obtaining the missing information in new data structure. To

mitigate performance degradation, PLEDGER uses an additional auxiliary array and

employs bit-vector operations for fast retrieval of information missing in the data

structure. It produces competitive timings and, in most cases, outperforms REPUTE.

The second shortcoming remains unresolved in both REPUTE and PLEDGER, where

multiple verification is performed for the same candidate location generated by adjacent

k-mers. Hobbes3 [16] prevents extra verification by obtaining candidate locations for

(δ + 2) k-mers and verifying those locations which appear at least twice by pruning

through the entry list in the hash table. FEM [27], also, practices a similar method

and employ binary search method to find a copy of candidate location in the list and

verifies, only, if it appears at least twice. This method prevents multiple verification of

the same candidate location and increases the selectivity of these mappers by reducing

fast positives. A similar approach can be integrated with PLEDGER to obtain further

speedups.

This thesis presents a working prototype of mapping entire genome on a single

embedded platform. However, genome reassembly is the first computational pipeline
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of WGS. It is followed by downstream analysis of genomic data. Downstream analysis

is increasingly dominating the computational requirements as large number of genomes

are being sequenced. Geneticists and bioinformaticians are working towards making

sense of massive amounts of data to translate it into improvements in diagnosis and

therapy of genetic disorders. Among others, analysis includes variant calling such as

SNP and indel or deletions and duplications [82, 153], genotype calling and annotations

[154]. Assembling genome without follow-up analysis renders the data useless and,

therefore, there is a need to integrate reassembly pipeline with analysis to deliver

meaningful insights. SWARAM [22] is a recent attempt, along the same lines, where

state-of-the-art existing mapping and analysis algorithms, such as BWA-MEM, Platypus

[151] and/or GATK HaplotypeCaller [152], are stitched together and accelerated on an

embedded system cluster. SWARAM divides the human genome depending on the

number of devices available and then distributes the workload keeping a track of the

memory available on board. Designing an optimised embedded genomics solution for

the entire computational pipeline of WGS targeting an application requires attention.

This thesis does not report mapping output in the form of SAM output format which

would require backtracking after application of semi-global dynamic programming to

produce the CIGAR string [155]. CIGAR string shows the sequence and position of

each match, substitution, insertion, and deletion for the read with respect to the selected

mapping location of the reference. The output files produced by CORAL, REPUTE and

PLEDGER report the edit distance upon alignment, mapping location, and the strand

which is similar to the PAF format of the Minimap2 [124] and can be used in many

genomic analysis pipelines such as metagenomics [142–145] except for variant calling.

The embedded genomic scenario discussed earlier may mitigate the need of SAM format

as mapped reads can be analysed directly without intermediary format of storage.

The advent of third generation of sequencing technology, which employs single-

molecule technology and produces long reads with different error profiles, will require

novel computational approaches. These reads are produced at very low-cost compared

to NGS short reads, however, they have higher error rates. Long reads have an important

advantage of spanning large portions of repeats which dominate genomes of larger

and complex species. Third generation sequencing technology holds great potential
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in providing affordable healthcare with opportunities for application of embedded

genomics.
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mapping with sensitivity control,” Genome research, vol. 19, no. 9, pp. 1646–1654,

2009.

[123] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan, “Accelerating

read mapping with fasthash,” in BMC genomics, vol. 14, no. 1. Springer, 2013, pp.

1–13.

[124] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics,

vol. 34, no. 18, pp. 3094–3100, 05 2018. [Online]. Available: https://doi.org/10.

1093/bioinformatics/bty191

[125] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–

wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[126] M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient architecture-aware

acceleration of bwa-mem for multicore systems,” in 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 2019, pp. 314–324.

[127] S. Thankaswamy-Kosalai, P. Sen, and I. Nookaew, “Evaluation and assessment of

read-mapping by multiple next-generation sequencing aligners based on genome-

wide characteristics,” Genomics, vol. 109, no. 3, pp. 186–191, 2017.

[128] “Cuda toolkit,” 2021. [Online]. Available: https://developer.nvidia.com/

cuda-toolkit

[129] M. Scarpino, OpenCL in Action: How to accelerate graphics and computations.

Manning Publications, 2011.

[130] “Nhs genomic medicine centres,” 2021. [Online]. Avail-

able: https://www.genomicsengland.co.uk/about-genomics-england/

the-100000-genomes-project/genomic-medicine-centres/

139

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/genomic-medicine-centres/
https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/genomic-medicine-centres/


[131] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-efficient execution of

data-parallel applications on heterogeneous mobile platforms,” in 2015 33rd IEEE

International Conference on Computer Design (ICCD), Oct 2015, pp. 208–215.

[132] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-

tuning a high-level language targeted to gpu codes,” in 2012 Innovative Parallel

Computing (InPar), May 2012, pp. 1–10.

[133] M. Damschen, F. Mueller, and J. Henkel, “Co-scheduling on fused cpu-gpu

architectures with shared last level caches,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2337–2347, Nov 2018.

[134] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M.

Al-Hashimi, “Energy-efficient run-time mapping and thread partitioning of

concurrent opencl applications on cpu-gpu mpsocs,” ACM Trans. Embed.

Comput. Syst., vol. 16, no. 5s, pp. 147:1–147:22, Sep. 2017. [Online]. Available:

http://doi.acm.org/10.1145/3126548

[135] B. Langmead. (2014) Teaching materials: video lectures. [Online]. Available:

http://www.langmead-lab.org/teaching-materials/

[136] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler,

Haussler, and David, “The human genome browser at ucsc,” Genome Research,

vol. 12, no. 6, pp. 996–1006, 2002.

[137] M. Holtgrewe, A.-K. Emde, D. Weese, and K. Reinert, “A novel and well-defined

benchmarking method for second generation read mapping,” BMC Bioinformatics,

vol. 12, no. 1, p. 210, May 2011.

[138] Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, “Darwin-wga: A co-

processor provides increased sensitivity in whole genome alignments with high

speedup,” in 2019 IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2019, pp. 359–372.

[139] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan, “GateKeeper:

a new hardware architecture for accelerating pre-alignment in DNA short read

140

http://doi.acm.org/10.1145/3126548
http://www.langmead-lab.org/teaching-materials/


mapping,” Bioinformatics, vol. 33, no. 21, pp. 3355–3363, 05 2017. [Online].

Available: https://doi.org/10.1093/bioinformatics/btx342

[140] J. S. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan, O. Ergin,

C. Alkan, and O. Mutlu, “Grim-filter: Fast seed location filtering in dna read

mapping using processing-in-memory technologies,” BMC Genomics, vol. 19, no. 2,

p. 89, May 2018. [Online]. Available: https://doi.org/10.1186/s12864-018-4460-0

[141] “clgetkernelworkgroupinfo manual page,” 2021. [Online]. Avail-

able: https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/

clGetKernelWorkGroupInfo.html

[142] N. LaPierre, M. Alser, E. Eskin, D. Koslicki, and S. Mangul, “Metalign: efficient

alignment-based metagenomic profiling via containment min hash,” Genome

biology, vol. 21, no. 1, pp. 1–15, 2020.

[143] N. LaPierre, S. Mangul, M. Alser, I. Mandric, N. C. Wu, D. Koslicki, and E. Eskin,

“Micop: microbial community profiling method for detecting viral and fungal

organisms in metagenomic samples,” BMC genomics, vol. 20, no. 5, pp. 1–10, 2019.

[144] F. Meyer, A. Fritz, Z.-L. Deng, D. Koslicki, A. Gurevich, G. Robertson, M. Alser,

D. Antipov, F. Beghini, D. Bertrand, J. J. Brito, C. Brown, J. Buchmann,

A. Buluç, B. Chen, R. Chikhi, P. T. Clausen, A. Cristian, P. W. Dabrowski,

A. E. Darling, R. Egan, E. Eskin, E. Georganas, E. Goltsman, M. A. Gray,

L. H. Hansen, S. Hofmeyr, P. Huang, L. Irber, H. Jia, T. S. Jørgensen, S. D.

Kieser, T. Klemetsen, A. Kola, M. Kolmogorov, A. Korobeynikov, J. Kwan,

N. LaPierre, C. Lemaitre, C. Li, A. Limasset, F. Malcher-Miranda, S. Mangul,

V. R. Marcelino, C. Marchet, P. Marijon, D. Meleshko, D. R. Mende, A. Milanese,

N. Nagarajan, J. Nissen, S. Nurk, L. Oliker, L. Paoli, P. Peterlongo, V. C.

Piro, J. S. Porter, S. Rasmussen, E. R. Rees, K. Reinert, B. Renard, E. M.

Robertsen, G. L. Rosen, H.-J. Ruscheweyh, V. Sarwal, N. Segata, E. Seiler,

L. Shi, F. Sun, S. Sunagawa, S. J. Sørensen, A. Thomas, C. Tong, M. Trajkovski,

J. Tremblay, G. Uritskiy, R. Vicedomini, Z. Wang, Z. Wang, Z. Wang,

A. Warren, N. P. Willassen, K. Yelick, R. You, G. Zeller, Z. Zhao, S. Zhu,

141

https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1186/s12864-018-4460-0
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clGetKernelWorkGroupInfo.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clGetKernelWorkGroupInfo.html


J. Zhu, R. Garrido-Oter, P. Gastmeier, S. Hacquard, S. Häußler, A. Khaledi,
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