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Abstract

Dynamic quantum dots as sources of single electrons open up new avenues to
explore fundamental issues of solid-state physics. These types of single electron
source allow for injection of electrons at energies high above the Fermi level. These
high energies increase the spatial separation between bulk and injected electrons,
reducing electron-electron interactions which are the dominant source of decoherence
for cold electrons. Unfortunately, although these high energies reduce one source of
decoherence, they introduce the potential for others to become dominant.

In this thesis, we investigate two of these sources of decoherence on electrons
which reduce their ability to act quantum mechanically, and explore the conditions
required to mitigate these effects. First we investigate the effect of phase averaging,
which is caused by the uncertainty in the injection energy of an electron. We cal-
culate the phase contributions from beamsplitters, path lengths and the Aharonov-
Bohm phase, as well as the energy dependence of the transmission and reflection
coefficients of the beamsplitters. We find that optimum conditions such that visi-
bility can be maximised are obtained not at zero path length difference as in optics,
but with an offset in the length of the interferometer arms. At the higher energies
in hot-electron quantum optics, longitudinal-optical (LO)-phonon emission becomes
the dominant source of decoherence. In this thesis we derive a complete quantum
master equation to describe the rate of emission of LO-phonons and the behaviour
of electrons undergoing this emission.

The findings in this thesis are vital to the successful implementation of quan-
tum optics-like experiments with hot electrons. These results can be used as input
into both experimental architectures and dynamical simulations, and combined with
previous results provide a complete quantum picture of the incoherent effects in hot
electron quantum-optics.
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2DEG Two-dimensional electron gas
AB Aharonov-Bohm

ATD Arrival time distribution
BS Beamsplitter
LO Longitudinal optical
MZI Mach-Zehnder interferometer
QPC Quantum point contact
SES Single electron source

Symbol Constant name Value

|e| Electron charge 1.60217657× 10−19 C
h Planck’s constant 6.62607015× 10−34 J.s
~ Reduced Planck’s constant 1.054571726× 10−34 J.s

~ωy Confinement 2.7 meV
~ωLO Energy of an LO-phonon ≈ 36 meV
m∗e Effective electron mass (GaAs) 0.067× 9.10938291× 10−31 kg
X Assumed horizontal length of MZI 5µm
σE Initial wavepacket spread in energy 1 meV
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Chapter 1

Introduction

L
eucippus and Democritus postulated the existence of atoms as far back as the
5th century BC [1]. The world today is all but unrecognisable from the one

in which they lived; however, one thing that hasn’t changed is the curiosity of the
human race. Since ruminating on the topic of atoms with the ancient Greeks, our
understanding of the universe has only grown, and with it, the potential to delve
deeper into the unknown. Now, more than two millennia later, it is our turn to
investigate the utility of the quantum realm.

Since Michael Faraday’s invention of the electric motor in 1832 [2], almost all
technology has moved to being electronics-based, from trains, to lighting, to com-
munications. As a species, we are now very good at fabricating devices that use
electricity to make our lives easier. The better we get at making new electronic de-
vices, the more demand there is for increasing power and storage, which is achieved
by making the components of the devices, such as transistors, smaller and smaller.
In 1965, Gordon E. Moore observed that the number of transistors in circuits was
doubling every year, and projected that this would continue in the future [3]. Unfor-
tunately, if we want to keep making more powerful devices, with more transistors,
we either need to start making the devices much bigger or the electrical components
much smaller. At some point, we get to components so small that we have to start
considering quantum effects.

With the recent advent of single-electron sources (SESs) [4], the creation of
components on this scale is a possibility. Not only does this provide a method
of creating smaller electronics, but the wave-like properties of electrons could also
be exploited to bring us into the realms of quantum technology [5]. Single-electron
sources are also a possibility for quantum metrology, and have been used in redefining
the Ampere as the number of electrons passing a point per second [6, 7].

Electronic components with length scales on the order of the coherence lengths of
electrons bring their own challenges along with the ability to create quantum tech-
nologies, as quantum effects, both wanted and unwanted, now become important.
This has led to the demand for better understanding of single-electron transport, and
therefore the creation of better SESs and further investigations into their behaviour.

The purpose of this thesis is to describe some of the incoherent effects of single-
electrons in a high-energy regime, and to investigate the optimal build parame-
ters and experimental conditions to mitigate these effects. It will also give a more
complete quantum picture of electrons undergoing relaxation in an open quantum
system.
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h = 6.63 × 10−34

J.s

Figure 1.1: The relationship between all of the SI units and the fundamental constants.

In this chapter, I will introduce the general background concepts describing the
systems that we will consider in this thesis. I will then present an overview of the
structure for the rest of the work.

1.1 Single-electron sources

Single-photon sources were a revolution in the world of quantum optics [8, 9]; allow-
ing coherent packets of light to travel independently of each other became central to
techniques in quantum key distribution [10] which is central to security in quantum
computing, for example. Following the success of single-photon sources, investiga-
tions began into the creation of SESs, resulting today in a wide selection of SESs to
choose from [4, 11]. ]

Single-electron sources are of considerable interest to the physics community,
due to their use in metrological applications, such as the redefinition of the SI unit
system [6, 12, 7], as well as their use as tunable circuit elements [13].

Until 2019, the definition of the Ampere was the current which would produce
a force equal to 2× 10−7 N between two infinitely long, straight parallel conductors
with negligible circular cross-section placed 1m apart in a vacuum, per metre of
length [7]. This has since been redefined using the charge of a single electron,
e = 1.60217662× 10−19 C. The output current of SESs can be measured as I = ef ,
that is, the current, I, is the product of the electron charge, e and the frequency with
which the electrons are released, f [14]. Defining the current based on these devices
means that the current is based solely on the charge of the electron and the definition

3
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A

B

Step 1

Step 2

Step 3

Vconstant

Vvary

A B A B A B A B

Figure 1.2: A sketch of the gates for a quantum-dot-based single-electron source. Gate B
is kept at a constant voltage that will determine the injection energy of the electron, and
the voltage of gate A is varied up and down, pushing an electron from the source (step
one), into the dot (step two) and then out into the system (step three). Also shown is a
demonstration of how the voltage gate A varies to “push” an electron out into the system.

of the second, which are themselves fundamental constants. The new definition of
the Ampere is also measurable in a lab, whereas due to the unavailability of infinitely
long wires, the old definition was not able to be created in reality. For this to be
successful the accuracy of the SESs must be sufficiently high, such that the new
definition is indeed better than the original. A sketch showing the links between the
SI units and fundamental constants can be seen in Fig. 1.1.

Multiple methods of single-electron injection have been devised over the years,
from the first experimental realisation of a metallic-turnstile-type SES in 1990 [15],
to quantum-dot-based sources [16, 17], with many in between [18, 19]. A review
of SESs can be found in Ref. [19]. In this thesis, we consider a gate-modulated, or
dynamic quantum-dot SES [19–21]. Here I will give a brief overview of this type of
SES, although for the rest of the thesis we will not be looking at the function of the
SES itself, but on the dynamics of the injected electron.

Consider an SES created in a 2-dimensional electron gas (2DEG), which is a
2D layer of electrons between two semiconductors (these will be introduced in more
detail in chapter 2). When a negative voltage is applied to metallic gates on the
surface of the 2DEG, the electrons beneath are repelled, creating a potential barrier.
They can be structured such that a quantum-dot appears between the two gates,
as in Fig. 1.2. If the voltage on gate two is kept high, and the voltage on gate one
is lowered, an electron can fall into the quantum dot. The voltage on gate one can
then be raised until it is above that of gate two, which will push the electron over
into the system. This can be done rapidly, at almost a billion electrons per second,
and reliably at a given energy, with an accuracy better than 1.2ppm [6].

As the voltage on the gate determines the energy of the injected electrons, it can
be set to any (experimentally reasonable) value, and as such the electrons can be
injected at energies far above the Fermi energy. This higher energy of injection is
useful, as the difference in energy translates to a spatial difference between injected
electrons and those in the 2DEG; for example, an injection energy of 100 meV gives

4



CHAPTER 1. INTRODUCTION

a spatial distance from the bulk electrons in the Fermi sea of 100 nm. Electron-
electron interactions are quite strong, but also very short range, so when there is a
large spatial separation they are significantly suppressed, to the point that they can
be ignored for the purposes of this investigation [22].

While electron-electron interactions are insignificant at these higher energies,
other decay channels become relevant. Most notably, phonons become a significant
source of relaxation and decoherence [23–25]. I will later consider in more detail the
effect of one of these phonon processes, namely longitudinal optical (LO)-phonons, in
part III. There is also an uncertainty in the energies, as every electron is not injected
at exactly the same energy due to the non-instantaneous nature of the gate voltage
change, which allows time for tunnelling to occur. This results in phase averaging,
and is discussed further in part II. The spatial separation of these injected electrons
from the bulk means that they are isolated and their movement can be controlled
by building paths into the system which are comparable to optical paths.

1.2 Quantum optics

Quantum optics is the study of the interactions of matter with photons of light,
which has many applications from quantum cryptography [26, 27] to quantum
metrology [28] and also gives us the ability to further understand the fundamen-
tals of quantum mechanics.

One of the main experimental techniques in quantum optics is that of interfer-
ometry, which is the technique of superimposing electromagnetic waves to observe
and extract information, such as the strength of the magnetic field, from the in-
terference patterns. There are many different types of interferometer, all of which
have slightly different setups and uses, but the basic principle is the same for all.
A source of electromagnetic radiation emits light which is manipulated using an
array of mirrors and beamsplitters, causing it to follow a predetermined path. The
light is then detected and any interference caused by differences in the paths can be
observed.

The first interferometer was created for the Michelson-Morley experiment in
1887. This interferometer, now known as the Michelson interferometer, consisted
of two arms and a beamsplitter that splits a beam of light and sends it down both
arms, where they are reflected back, recombined at the beamsplitter and directed
towards a detector, as shown in Fig. 1.3. The Michelson-Morley experiment was
designed to look for evidence of the luminiferous aether, which was thought to be
the material that filled the seemingly empty space through which light could travel
[29].

The results of this experiment were of course negative, as we now know that light
does not need a medium through which to travel and that the majority of space is
in fact a vacuum; however, the technique used to make these measurements has
been used ever since. In more modern times for example, we now have the Laser
Interferometer Gravitational-Wave Observatory, (LIGO), a 4km-long Michelson in-
terferometer used to detect gravitational waves [30].

Since the introduction of interferometry, several new types of interferometer have
been designed, all of which are optimised for different uses. We will be concentrating
specifically on the Mach-Zehnder Interferometer (MZI). A MZI is a device used to
measure the phase shift between two beams of light that have been split from one (or

5
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Source
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M
irro

r

Beam splitter

Detector

Figure 1.3: A simple diagram of a Michelson interferometer where the blue paths are the
input, and the red is the return journey.

two) original emitted beam(s), which means the each beam is initially coherent. The
beams of light are split and travel around the interferometer, rejoining at another
beamsplitter, with the intensity then being measured in two detectors, as shown in
Fig. 1.4. By placing some sort of “obstacle” (for example, something of which the
properties are to be measured) in the paths, or changing the path lengths, a phase
shift can be introduced between the arms, which can be measured by looking at the
intensity at the detectors.

MZIs are useful for a wide range of applications, from measuring the density
of supersonic air streams [31] to understanding processes in quantum cryptography
[32], but their uses are no longer restricted solely to the interference of light.

1.3 Electron quantum optics

Today we are able to exploit the wave nature of electrons and apply the techniques
used for quantum optics to systems of electrons as well. Obviously, the systems used
to investigate the behaviour of photons would be inappropriate for investigating
electrons and so to do similar experiments they have had to be redesigned. In 2003,
Ji et al. created an electronic analogue of the MZI [33]. Systems such as the one
developed by Ji et al. are useful because they function well at the high magnetic
fields required for the quantum Hall effect, which allows for the single-electrons to
be isolated from the bulk. In other types of interferometers, the high magnetic
fields interfere with the symmetry of the experiment. For example, the double slit
experiment is of no use in the detection of electrons under a high magnetic field
as the electrons follow the edges and therefore approach the slits from the side.
Consequently, they go through only the closest slit instead of both, which breaks
the symmetry of the experiment and renders it useless.

The previous section explained the case for an optical MZI; however, the same
principles can be seen in an electrical analogue of the MZI [33] where an electronic
reservoir is at a specific voltage and the rest of the reservoirs are grounded, allowing
an electron to travel around following quantum Hall edge states (see chapter 2). In
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Source 1

Source 2

BS A

BS B

M
irror

M
irror

Detectors3

4

Figure 1.4: A simple diagram of a MZI. A beam of light is emitted from source 1, 2 or
both, and split into two at the beamsplitter. The two beams pick up phases depending on
the path they travel down, and are then rejoined at the second beamsplitter before being
directed towards a detector. Light intensity is measured at detectors 3 and 4, where any
phase difference between the two paths can be seen in the interference pattern.

this version, an extra phase must be taken into account due to the Aharonov-Bohm
(AB) flux [34], a phase shift introduced due to the magnetic field passing through
the device. This is described in more detail in section 2.5.

The MZI can actually make use of the chirality of the system, as there are two
distinct paths down which the electron must travel, so a second edge can be placed
in the middle of the system along which the electrons can travel, without interfering
with the overall functionality of the system.

Just as an optical MZI measures the amplitude of the light wave at the detector,
the electrical analogue measures the amplitude of the wavepacket; however, there
are many interactions and losses that can occur throughout the system, which can
affect the visibility of the wavepackets. Visibility is determined by the ratio of the
amplitude of the initial signal and the amplitude of the detected signal, given by

ν =
Imax − Imin

Imax + Imin

, (1.1)

where Imin/max are the minimum and maximum amplitude of the detected current.
The ratio of these amplitude differences gives the visibility of the system. The
visibility is maximised when difference between the maximum and minimum current
is maximised. The amplitude can be reduced when the wavepacket does not arrive
at the second beamsplitter at the same time from both arms, meaning there will be
some deconstructive interference, which reduces the visibility. Visibility can also be
reduced due to the spreading of the wavepackets, known as by phase averaging.

Of course, there must be analogues to all of the components of the MZI, as an
electron will not be reflected off a mirror (or follow a waveguide or fibre optic),
or interact with a normal beamsplitter in the same way light does. In the case
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CHAPTER 1. INTRODUCTION

of an electronic MZI, mirrors are unnecessary as the electrons will follow the edge
channels of the system in whatever direction they go, as mentioned above. However,
analogues of the beamsplitters are less trivial. In the setups that we consider the
beamsplitters now take the form of quantum point contacts (QPCs). These are
metallic gates placed on the 2DEG, similar to that used for the single-electron
source. A voltage is applied to the QPC that dictates whether or not an electron
can pass through. If the voltage applied to the QPC is much higher than that of
the electrons, then the electron will be unable to pass and will be reflected, whereas
if the voltage applied is much lower, the electron can pass through with no issue
and is transmitted. Electrons of a similar energy to the potential on the QPC
beamsplitter will be reflected and transmitted at an approximately 50:50 ratio, with
the probability of each increasing or decreasing as the electron energy moves away
from that of the QPC potential. The detectors in the electron system are made
of Ohmic contacts. These perfectly absorb the electrons, leading to an electronic
pulse passing a current over the contact, which is the indicator that an electron has
been absorbed [35, 36]. In experiments the electrons are constantly being detected
and are therefore measured as a continuous current using these ohmic contacts as
detectors, however the use of time-dependent detector gates allows for single electron
properties to be derived [37].

1.4 Thesis overview

There are two main concepts that will be considered in this thesis, phase averaging,
which will be covered in part II and LO-phonon emission, which is in part III. Here
I will briefly summarise these topics before giving an overview of the structure of
this thesis.

1.4.1 Phase averaging

There is an uncertainty in the energy at which electrons are injected by a SES, which
we can model as Gaussian. The typical width of one of these electron wavepackets
for theoretical purposes is around 1 meV [38]. The expected path of an electron is
called the “guide centre”. These guide centres are not exact paths followed by the
electrons, but, as the name suggests, guides for the central peak of the electron wave
packets of the expected injection energy. This spread in energy leads to different
guide centres for the electron to travel, with higher (lower) energy electrons following
a guide centre closer to (further from) the edge. These different guide centres change
the path length followed by the electron by a not-insignificant amount, as we will
see later in the thesis.

These differences from the guide centre change the path length of the system and
therefore also the area surrounded by the upper and lower path of the MZI. There
are two phases of the electron that are directly affected by these small changes: the
AB phase, φAB, which is proportional to the area enclosed by the paths; and the
dynamical phase, φdyn, which is proportional to the difference between the upper and
lower path lengths. These are calculated in Chapter 3. There is also a contribution
from the phase obtained within the QPC beamsplitter, φBS, which is more subtle.
This is dealt with in Chapter 4, which considers the arrival time distributions for
both symmetric and asymmetric beamsplitters.

8
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We find that unlike single-photon systems, where the path lengths are optimally
the same length, in single-electron systems we actually maximise the visibility of the
experiments when we set the arms with an offset loffset, determined by the energy
and therefore velocity of the electron. The value of this offset for hot-electrons is a
significant proportion of the size of the whole MZI, which means that it is important
that it is taken into account when building these interferometry experiments in order
to maximise visibility. Fortunately, it also means that the contribution of phase
averaging to the dephasing in an electronic MZI can be completely turned off by
building the interferometer with the correct dimensions for the parameters at which
the experiment will be conducted.

1.4.2 LO-phonon emission

A phonon is a quantised vibration of atoms and molecules in a lattice. If these
vibrations are out of phase, they are called optical phonons. These phonons have
specific energies depending on the material they are in. For gallium arsenide (GaAs),
which is the material that the systems we consider are made from, they have an
energy of 36 meV, so when single-electrons were detected with energies that were
integer multiples of 36 meV below their initial injected energy, this was experimental
evidence of the presence of LO phonons in the MZI systems we have discussed [24].

The behaviour of hot electrons after LO-phonon emission has been modelled
semiclassically, looking only at the diagonal population terms of the density matrix
which describes their behaviour [23]. As we now want to explore more quantum
behaviour of electrons, we need to look at the fully quantum picture, so we must
also consider the coherence (off-diagonal) terms of the density matrix. In this thesis,
I derive this full quantum master equation for a complete description of hot electron
behaviour after LO-phonon emission. We see that the diagonal rates are only ap-
propriate for very small differences in wavenumber, after which the coherence terms
become important. We present numerical simulations of a moving wavepacket with
these off-diagonal coherence terms included. We find that there is dissipation and
dispersion related to these off-diagonal elements, and we investigate the time and
energy ranges for which these values need to be considered.

1.4.3 Thesis structure

Chapter 2 introduces some of the more technical concepts in the background that
have not already been discussed in Chapter 1, including details of the physical struc-
tures we consider in this thesis and the mathematical derivation of the dispersion
relation and velocity of electrons used throughout this work.

In Part II, we look at the effect of phase averaging on the visibility and arrival
time distribution of electrons in a MZI. In Chapter 3 we introduce the research
that has been conducted previously into the different sources of dephasing and de-
coherence in electron quantum optics, for both thermal electrons and hot-electrons.
Later in this chapter, we introduce the concept of phase averaging. Using a simplified
model of the beamsplitters, we will focus on the contribution of the phases picked
up due to the geometry of the system on the visibility of experiments. Previous
approaches have ignored the effect of the uncertainty in the wavepacket energy on
the overall visibility, which is what is addressed in this thesis, in order to ascertain

9



CHAPTER 1. INTRODUCTION

optimum conditions for experiments. In Chapter 4 the arrival time distributions of
the electron are calculated and modelled numerically for both a simplified and full
case for the beamsplitters, and the effect of build parameters from Chapter 3 are also
taken into account. So far the beamsplitters have been assumed to have symmetric
phases, however in this chapter we will introduce the concept of asymmetry in the
beamsplitters. The derivations of the full beamsplitter phases are by Sungguen Ryu
in Ref. [39].

In Part III, we consider the rate of LO-phonon emission and behaviour of elec-
trons after emitting an LO phonon. In Chapter 5 the first experimental observations
of LO-phonons are introduced, and we explore how their discovery was made and the
subsequent attempts to model the phenomenon semiclassically. We also introduce
some of the tools that we will use in Chapter 6 to derive the fully-coherent master
equation. In chapter 6, the master equation to describe the interaction between
electrons and LO-phonons in these single-electron systems is derived, including the
coherences that have been ignored in previous works, to form a complete quantum
picture of the behaviour. The rates of emission of the LO-phonons are calculated
using this master equation and compared to those found in previous works. We also
begin to derive an equation of motion describing the behaviour electrons undergoing
phonon emission, and model the motion of the electron in real space.

In Part IV we conclude by drawing together the results from Parts II and III to
explain how they come together to affect hot-electron quantum optics experiments.
We also speculate on potential future uses for our findings in both experiments and
dynamical simulations.

10



Chapter 2

Quantum transport and solid-state
physics

I
n this chapter, I will introduce the underlying theoretical concepts and derivations
required to understand the systems that we will be considering throughout the

rest of this thesis. Together with the previous chapter, they combine to allow the re-
search presented in this thesis to take place, describing theoretical limits for optimal
experimental builds.

2.1 Mesoscopic physics

Solid state physics is the study of how the atomic properties of a material affect
its macroscopic behaviour. When considering the world of solid state physics and
conductors, there is a distinct model of the microscopic world of atoms and of the
macroscopic world of our everyday interactions, but what happens in the transition
between the two? How do we define objects that are larger than an atom, but
smaller than the characteristic lengths of electrons? Especially given the fact that
these characteristic lengths can vary greatly in size themselves. Enter, mesoscopic
physics. This is the name given to the study of conductors in this size range, usually
made from a 2DEG (see section 2.2). This became relevant in the 1980s, when
the possibility of creating conductors small enough to require this new description
became a reality [40].

As mentioned above, a system is mesoscopic rather than microscopic when it
is larger than the characteristic lengths of electrons. There are three lengths in
particular that are important here.

• The de Broglie wavelength,

λ =
h

mv
(2.1)

is the wavelength of a particle of a certain mass and energy, when looked at
from the wave point of view in wave-particle duality [41]. Here, h is Planck’s
constant, m is the mass of the particle and v the velocity.

• The mean free path is the characteristic distance that an electron can travel
before it’s initial momentum is destroyed, and is given by

Lm = vτm (2.2)

11
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where v is the velocity of the particle and τm is the momentum relaxation time
[40].

• The phase relaxation length is the distance that an electron can travel before its
initial phase is destroyed. This is slightly more complex than the momentum
relaxation time, but is intrinsically linked with its properties. If the phase
relaxation time is smaller than the momentum relaxation time then we have
[40]

Lφ = vτφ (2.3)

where v is the velocity and τφ is the phase relaxation time. However, if the
momentum relaxation time is significantly smaller than the phase relaxation
time, this is no longer the case. After each momentum relaxation time, the
velocity is randomised, such that at the end of a longer phase relaxation time
we must take the root mean squared distance travelled instead, which results
in a phase relaxation length of

L2
φ =

v2τmτφ
2

. (2.4)

The mean free path and phase relaxation length obviously differ depending on
the medium through which the electron is travelling and the energy of the system
as a whole, but making a system which is smaller than these lengths means that
electrons can now be used in new and exciting ways, without having to worry about
interactions that would otherwise render experiments useless, and without losing all
useful information from them. A typical value of the momentum relaxation time for
electrons in GaAs is τm ≈ 10 ns, and as GaAs is a high-electron-mobility-transistor
(HEMT) [42], the phase relaxation time τφ is approximately equal to the momentum
relaxation time [40].

2.2 Two-dimensional electron gas (2DEG)

In order to conduct experiments there needs to be a method of transport for the
electrons, and a medium through which they can travel. A 2DEG is a system which
provides a high quality conductive channel through which the electrons can travel
[40]. Some of the earliest experiments using 2DEGs used the surface of liquid helium
on which free electrons can float and move, as demonstrated in Ref. [43]. More
recently, three-layer graphene films have been used [44]. These offer the advantage of
being solid objects which can be etched, patterned, and have metallic gates attached,
which are useful qualities for experiments as we will see below.

Commonly used in experiments today are gallium arsenide (GaAs) and alu-
minium gallium arsenide (AlGaAs) heterostructures [45]. At the boundary between
GaAs/AlGaAs layers a thin conducting layer is formed, with a typical carrier con-
centration between 2 × 1011cm−2 and 2 × 1012cm−2 [40]. These 2DEGs can be
manipulated by applying a voltage to metallic gates placed above the layer of elec-
trons. The area underneath these gates will then be depleted of electrons, leaving
an empty gap in the 2DEG. This allows for experiments to be built entirely within
the 2DEG, as paths and obstacles can be created and manipulated by applying spe-
cific voltages to the gates. Examples of these will be discussed later. Figure. 2.1
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Figure 2.1: Adapted from Ref. [40]. A 2DEG is formed between layers of AlGaAs and
GaAs. The Fermi level for GaAs is lower than that of AlGaAs, and when the two materials
are brought together electrons spill over from the AlGaAs side into the GaAs layer, leaving
behind positive charges, which causes the valence and conduction bands to bend. The
Fermi energy evens out everywhere, which leaves a well of electrons between the materials,
which is the 2DEG.

depicts this set up for a 2DEG in a GaAs/AlGaAs set up, as well as the energy level
differences that form the layer of electrons.

2.3 Classical Hall effect

When electrons are confined to two-dimensions (x, y), as in the 2DEGs described
above, and have a magnetic field applied in the z-direction, some very interesting
physics can be observed outside of what one would ordinarily expect in the 3D world.

The application of a magnetic field to the 2D layer of electrons causes them to
follow a circular path perpendicular to the field, as shown in Fig. 2.2. This path is
described by the classical mechanics dictating the movement of a charged particle
under a magnetic field. The force exerted on a charged particle by a magnetic field
is known as the Lorentz force, and is given by,

F = qv ×B, (2.5)

where q is the charge of the particle, v is the velocity and B is the magnetic field
vector. For an electron, this can be written as

Fe = m
dv

dt
= −ev ×B, (2.6)

where m is the mass of the electron, and e > 0 is the charge of the electron.
The particle is confined to only the two dimensions (x, y), so the velocity in the

z-direction is zero, and the velocity vector becomes v = (vx, vy, 0). The magnetic
field is applied only in the z-direction, so the x and y components are zero, giving
a magnetic field vector of B = (0, 0, B).

This gives us
Fe = −e(yB,−xB, 0), (2.7)

so the x component is

m
dvx
dt

= −eyB, (2.8)
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B

Figure 2.2: An example of the paths followed by electrons in a 2DEG with a magnetic
field applied “out of the page”. The electrons follow circular paths the radius of which are
determined by the physical parameters of the system, in particular the magnitude of the
magnetic field. The electrons at the edge of the system try to follow this same path, but
they are blocked by the edge, and cannot “bounce” back on themselves, so they continue
along, essentially bouncing along the edge of the system, allowing them to travel, inducing
a current. The size of these orbits determines how far away the electrons travel from the
edge, which is known as the guide centre.

and the y component is

m
dvy
dt

= exB. (2.9)

The Lorentz force acts perpendicular to both the direction of the magnetic field
and the velocity, pushing the electron around in a circle, the direction of which
is dependent on the direction of the magnetic field, and the radius of the circle
is determined by the strength of the magnetic field. The electrons away from the
edges of the sample will stay in place following the same circular path, resulting in
a current of 0, but at the edges of the system the electron cannot continue on it’s
circular path, and cannot move in any other direction, so it “bounces” along the
edge, as shown in Fig. 2.2. The distance away from the edge that the electron travels
is the guide centre that we introduced in chapter 1. This is the classical picture for
the mechanism of electron transport in a 2DEG.

It is also useful to introduce the cyclotron frequency, ωc, which is calculated by
equating the Lorentz force (FL) with the centripetal force (Fc),

FC =
mv2

r
; FL = evB,

⇒mv

r
= eB,

where m and e are the mass and charge of the particle respectively and r is the
radius of the circular path. Angular velocity is given by ωc = v/r, which means that
we have

ωc =
v

r
=
eB

m
. (2.10)

14



CHAPTER 2. QUANTUM TRANSPORT AND SOLID-STATE PHYSICS

The chirality of the system which the Hall effect provides can be seen in Fig. 2.2,
as the electrons on opposite edges are forced to move in opposite directions.

2.4 Quantum Hall effect

The 1985 Nobel prize was awarded to Klaus von Klitzing for his discovery of the
quantum Hall effect. In his 1980 paper his group performed experiments to investi-
gate the fine structure constant of electrons in 2DEGs, and in doing so, discovered
that the energy levels of the electron orbitals were exactly quantised in integer multi-
ples of h/e2, where h is Planck’s constant and e is the electron charge [46]. This was
a surprising result, followed closely by a further surprise - the fractional quantum
Hall effect [47]. The crux of this discovery was that not only are electron orbitals
quantised at integer multiples of h/e2, but also quantised at specific fractions, h/fe2,
where f = 1/3 and 2/3, which was explained using a multi-particle model [48]. Al-
though the fractional quantum Hall effect is not used in this thesis, this discovery
made waves in the mesoscopic physics community [49].

As we saw above in the classical picture, the radius of the circular paths is
inversely proportional to the magnetic field, getting smaller as the magnetic field gets
larger. When considered from a quantum mechanical perspective, we see that there
are plateaus for ranges of magnetic fields, followed by sharp jumps up to another
“radius” which in reality would be the reisistance. The experimental observations
of these plateaus are so accurate that the quantum Hall effect is now used as the
standard for resistance [50].

In order to enter the quantum Hall regime we must have both a very low tem-
perature and a very high magnetic field acting perperndicular to the plane of the
material. We must of course quantify what we mean by “very high” and “very low”.
An example of this can be seen in the 2003 paper by Ji et al. as discussed in section
1.3, where the experimental conditions used to enter the quantum Hall regime are
a magnetic field of B ∼ 5.5T and an environment temperature of T ∼ 6mK [33].

2.5 Aharonov-Bohm phase

The AB phase is the name given to the phase experienced by an electron due to
a magnetic or electric field, despite being shielded from the field [34]. In classi-
cal physics, only the field is important in describing the properties of charges and
currents. It had previously been assumed that the potential was included only for
mathematical purposes, and had no physical effect on them. The observation of the
AB effect changes this, as a physical manifestation of the electromagnetic potential
can be seen in the change in the interference pattern due to a present, but shielded
magnetic field.

In their paper, Aharonov and Bohm suggest possible experimental set-ups with
which to observe the predicted effect [34], such as that shown in Fig. 2.3, where a
solenoid is placed in between the two slits in a double-slit experiment, but shielded
from the rest. If the AB phase shift is indeed present, then a shift in the interference
pattern should be seen when the solenoid is turned on. The next year R. G. Cham-
bers observed just that [51]. There was however, much speculation that the effects
may have been due to the solenoid not being appropriately shielded, and so, many
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Upper path

Lower path

Electrons Solenoid
B

Shield

Figure 2.3: A schematic of the setup for an experiment to examine the AB phase. This is a
Young’s double slit experiment with electrons. A solenoid has been placed in between the
two slits on the screen side, and has then been shielded from the rest of the experiment.
Despite the fact that electrons never enter the magnetic field of the solenoid, a phase shift
due to the field can be seen in the interference pattern on the screen when the solenoid is
turned on.

more experiments were conducted to prove this until in 1986 an experiment was
conducted which laid waste to all scepticism, by covering the magnet with both a
superconducting layer and a copper layer to ensure absolutely no field could escape
[52].

The phase picked up along a path S, is calculated as

φ
(S)
AB =

q

~

∮

S

A · dx, (2.11)

where A is the vector potential, and
∮
S

A dx =
∫
H dS is the total magnetic field

inside the circuit [34]. As this gives a constant value, A 6= 0, within the circuit.

2.6 Landau levels and edge channels

Electrons in a system such as a 2DEG can be described by [40]
[
Ec +

1

2m∗e
(i~∇+ eA)2 + U(r)

]
Ψ(r) = EΨ(r) (2.12)

where Ec is the bulk band bottom energy, U(r) is the confinement energy in each
of the three-dimensions, r = {x, y, z}, A is the vector potential and m∗e = 0.067me

is the effective mass of an electron in GaAs. The electron charge is given by e > 0.
This is the Schrödinger equation, where the Hamiltonian is

Ĥ(r) = Ec +
1

2m∗e
(i~∇+ eA)2 + U(r), (2.13)

so we will start here.
Our system is unconfined in the x-direction, which means that the x-component

of U(r) is 0. Assuming these potentials are decoupled, our Hamiltonian then be-
comes

Ĥ(r) = Ec +
1

2m∗e
(i~∇+ eA)2 + U(y) + U(z). (2.14)
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We consider the case where electron transport occurs in the quantum Hall regime.
In order to enter this regime, we know we must have a strong magnetic field, so
B � 0. We choose to work in the Landau Gauge, where the vector potential is
A = −Byêx, and êx is the unit vector in the x-direction. To simplify further, we
can introduce the momentum operator, p̂ = −i~ ∂

∂x
in one-dimension and

p̂ = −i~∇. (2.15)

in three-dimensions
We can substitute this into (2.13), to give

Ĥ(r) = Ec +
1

2m∗e
(−p̂− eA)2 + U(y) + U(z),

= Ec +
1

2m∗e
(p̂− eByex)2 + U(y) + U(z). (2.16)

This equation can now be split into it’s x, y and z components, giving

Ĥ(r) = Ec +
1

2m∗e
(px − eBy)2 +

p2
y

2m∗e
+ U(y) +

p2
z

2m∗e
+ U(z). (2.17)

We can now introduce the quantum numbers based on the different confinements in
the x-, y- and z-directions. In the x direction, the electrons propagate freely, meaning
that they can be defined in terms of only the momentum kx. In the y-direction, we
have weak parabolic confinement, U(y), so the electrons are quantised with respect
to the Landau level, with quantum number m, where the lower m is, the tighter
the quantum Hall “ring” is in which the electron moves. There is approximately
10 meV between levels, which is a large jump, so we can assume that the electron
stays in the lowest level. There is still some movement in the y-direction due to the
weak confinement, so the momentum k is also used here. In the z-direction we have
very strong confinement, U(z), such that the electron can only move in the x- and
y-directions. This confinement can be modelled as an infinite square well or, more
realistically, a triangular well. For the tight confinement we use here, these wells are
very narrow and the energy levels are very far apart, such that the electron cannot
move between them. These are quantised with quantum number n.

Using these confinements, the Schrödinger equation for this system reads

Ĥ(r)Ψn(r) = EnΨn (2.18)

where n = {n,m, kx} are the indices. In order to solve the Schrödinger equation,
we need to introduce the separable Ansatz,

Ψn(r) = ψkx(x)χmkx(y)φn(z). (2.19)

We will now look at each direction separately. In the z-direction, we have

εnφn(z) = Ec +

(
p2
z

2m∗e
+ U(z)

)
φn(z). (2.20)

where Ec is the band edge energy, pz is the momentum in the z-direction, m∗e is the
effective electron mass in GaAs and U(z) is the confinement in the z direction. If
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we assume this takes the form of an infinite square well, the wavefunctions are given
by

φn(z) =

{ √
2
a

sin(kzz) if 0 ≤ z ≤ a

0 otherwise
(2.21)

where kz = πn
a

and n = 1, 2, .... We can also see the same effect with a triangular
well, the wavefunction for which is given by [53]

φn(z) =

{ √
2a3ze−z/(2a) if 0 ≤ z ≤ a

0 otherwise
(2.22)

With the tight confinement in the z-direction found in a 2DEG, we assume always
that n = 1. The simulations throughout this thesis use a triangular well, with a
width parameter of a = 3 nm [54, 24].

In the x-direction the motion of the electron is unconfined, which means that it
can be described as a plane wave, normalised over the length of the conductor, Lx,
i.e.,

ψkx(x) =
1√
Lx
eikxx. (2.23)

The y-direction is slightly more complicated. We assume weak parabolic confinement
in this direction,

U(y) =
1

2
m∗eω

2
yy

2, (2.24)

where ~ωy is the confinement frequency, and is taken to be 2.7 meV.s for all of our
calculations. Combining this with the vector potential defined above, the Hamilto-
nian in the y-direction becomes

Ĥnkx(y) = εn +
(~kx − eBy)2

2m∗e
+

p2
y

2m∗e
+

1

2
m∗eωyy

2 (2.25)

which has the solution

Ĥnkx(y)χmkx(y) = Enχmkx(y). (2.26)

where χmkx are the eigenfunctions for the Hamiltonian. To find these eigenfunctions,
it is useful now to write this in terms of the cyclotron frequency,

ωc =
eB

m∗e
, (2.27)

and the guide centre co-ordinate,

yG(k) =
ω2
c

Ω2

~kx
eB

=
ωc
Ω2

~kx
m∗e

(2.28)

where Ω2 = ω2
c +ω2

y is the compound frequency made up of the cyclotron frequency
ωc and the confinement frequency in the y-direction, ωy. We can then use these
definitions to rewrite Eq. (2.25) as

Ĥnkx(y) = εn +
(~kx −m∗eωcy)2

2m∗e
+

p2
y

2m∗e
+

1

2
m∗eω

2
yy

2

= εn +
p2
y

2m∗e
+

~2k2
x

2m∗e
− ~kxωcy +

1

2
m∗eΩ

2y2. (2.29)
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Now using the definition of the guide centre co-ordinate given above, we can further
simplify

Ĥnkx = εn +
p2
y

2m∗e
+

1

2m∗e

[
Ω4

ω2
c

m∗ey
2
G

]
− Ω2m∗eyGy +

1

2
m∗eΩ

2y2

= εn +
p2
y

2m∗e
+

1

2
m∗eΩ

2

[
(ω2

c + ω2
y)

ω2
c

y2
G − 2yyG + y2

]

= εn +
p2
y

2m∗e
+

1

2
m∗eΩ

2
ω2
y

ω2
c

y2
G +

1

2
m∗eΩ

2(y − yG)2

= εn +
p2
y

2m∗e
+

~2k2
x

2m∗e

ω2
y

Ω2
+

1

2
m∗eΩ

2(y − yG)2 (2.30)

This is a displaced harmonic oscillator, so we know that the eigenfunctions are

χmkx(y) =
1

lΩ
um

(
y − yG(k)

lΩ

)
(2.31)

where

lΩ =

√
~

m∗eΩ
(2.32)

is the effective confinement length, which is the size of the parabolic trap, and

um(s) =
1√

2mm!

1

π1/4
e−s

2/2Hm(s) (2.33)

where Hm are the Hermite polynomials, H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,
and so on to higher orders.

In the work we will be discussing, we only consider the lowest Landau level,
where m = 0, so

u0(s) =
e−s

2/2

π1/4
. (2.34)

The eigenfunctions are therefore

χ0kx =

√
1

lΩπ1/2
exp

[
−1

2

(
y − yG(k)

lΩ

)2
]
. (2.35)

We can now solve the Schrödinger equation for En which will give us the dispersion
relation for the electrons. We can do this with the equation for the y-direction,
Eq. (2.26). First we multiply both sides of the equation by χ∗m′k′x , and then we
integrate over y.

∫
dyχ∗m′k′x(y)Ĥnkx(y)χmkx(y) =

∫
dyχ∗m′k′x(y)Enχmkx(y),

⇒
∫

dyχ∗m′k′xĤnkxχmkx = En

∫
dyχ∗m′k′x(y)χmkx(y),

⇒
∫

dyχ∗m′k′xĤnkxχmkx = Enδm′mδk′xkx . (2.36)
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which introduces the Kronecker deltas, δm′m and δk′xkx . These are defined as

δm′m =

{
1 if m = m′

0 if m 6= m′
. (2.37)

In order for this integral not to be zero, we must set m = m′ and kx = k′x, such that
the integral can be written as

∫
dyχ∗mkx(y)Ĥnkx(y)χmkx(y) = En. (2.38)

If we now combine Eq. (2.35) and Eq. (2.30) with this integral, we get

En =
1

lΩπ1/2

∫
dy exp

[
−1

2

(
y − yG(k)

lΩ

)2
]

×
[
εn +

p2
y

2m∗e
+

~2k2
x

2m∗e

ω2
y

Ω2
+

1

2
m∗eΩ

2(y − yG)2

]
exp

[
−1

2

(
y − yG(k)

lΩ

)2
]

(2.39)

First we apply the momentum operator, giving

En =
1

lΩπ1/2

∫
dyχ∗mkx exp

[
−
(
y − yG(k)

lΩ

)2
]√

1

lΩπ1/2

[
εn +

k2
x~2

2m∗e

ω2
y

Ω2
+

1

2
~Ω

]

(2.40)
and now performing the integral gives us a dispersion relation of

En = εn +
1

2
~Ω +

ω2
y

Ω2

~2k2
x

2m∗e
. (2.41)

This dispersion relation is central to the description of the systems in use throughout
this thesis. The velocity of the electron can be derived from this dispersion relation,
as [40]

v(n, k) =
1

~
∂E(n, k)

∂kx
=

~k
m∗e

ω2
y

Ω2
. (2.42)

Throughout this thesis we will assume the electron wavepackets move with a constant
velocity across the whole wavepacket, such that v = v0. The energy dispersion
describes the energy levels in which the electron travels, which are also visualised
in Fig. 2.4. Here, the blue dashed and red dotted lines show the edge channels in
which an electron travels. The lines closer to the edge have a higher energy than
those travelling further away from the edge. We can also see the chirality here, as
we could in Fig. 2.2.
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Source
Drain
1

Drain 2

B

Figure 2.4: Hall bar geometry showing the dynamics of an MZI. The blue triangles rep-
resent the QPCs. The edge channels are shown as blue dashed and red dotted lines. We
can see the different edge channels which can be occupied depending on the energy of the
system, and also the chirality that comes from the magnetic field direction and skipping
orbits sketched in Fig. 2.2. Adapted from Ref. [33].
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Chapter 3

Optimising electron
interferometry experiments

O
ver the next two chapters, we will introduce the ongoing research into experi-
ments using both DC sources and SES, and address the methods used in pre-

vious works to describe the behaviour of electrons in these systems. We will also
address the differences between techniques used to analyse the behaviour in systems
using DC sources, cold SESs and finally a new type of SES which allows for the
injection of hot-electrons. We will then derive an equation for the current in an
electronic MZI and use this to calculate the visibility of the system under different
conditions. In this work, we will also include a term that takes into consideration the
uncertainty in the energy of the injected electron, and investigate the effect that this
uncertainty has on the visibility of the system and how any reduction in visibility
can be reduced.

To focus on the key physics, in Chapter 3 we consider a simple model of the
beamsplitters, initially with transmission and reflection coefficients T = R = 1/2,
before introducing a simplified calculation of the beamsplitter phase. In Chapter 4
we will go on to introduce the full effect of the energy dependence of the beamsplit-
ters, including the phases introduced by them which we have neglected in Chapter
3. Again, we will begin with a simplified model of the induced phases, before intro-
ducing the full model as derived in Ref. [39].

3.1 Experiments with DC sources

In 2003, Ji et al. became the first to realise an electronic analogue of the optical
MZI [33]. This interferometer was created in a GaAs-AlGaAs 2DEG, using QPCs
as beamsplitters and ohmic contacts as electron detectors. The interferometers were
found to have a visibility of 62%, which at the time was considered a very high vis-
ibility. It was also observed that with increasing temperature and electron energy,
the visibility was reduced, although at the time the source of the decoherence was
unknown (though they were able to show that it was not from inelastic scattering
events). This realisation paved the way for future electron quantum-optics experi-
ments.

The earlier experiments were conducted with thermal electrons, i.e. electrons
with energies close to the Fermi level. In 2006, Neder et al. developed an experi-
mental set up similar to that in Ref.[33], but with an additional quantum dot which
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allowed for the choice of whether the beam entered the outer edge channel, or the
inner [55]. As in Ref. [33], the length of the interferometer arms could be adjusted
using modulation gates, in order to change the phase between the two arms using
the AB effect [34]. It was found that the visibility of the system evolves in what
they refer to as a “lobe” pattern, as a function of energy. The visibility appeared
to drop to 0% for certain values of energy, at which points the phase, which is
otherwise constant, jumps by π, and then returns abruptly back to it’s constant
value. Reducing the magnetic field reduced the overall visibility, and the periodicity
of the lobes got smaller. Changing the path lengths of the interferometer did not
affect the phase or periodicity of the lobes, but the visibility decreased as the path
difference increased. This unusual behaviour could not be explained by the single
particle model because of the energy dependence of the transmission, and suggests
that there was interference of the electrons with their surroundings.

The decoherence of a single electron MZI was investigated further in 2007 by
Litvin et al., specifically the effects of temperature and voltage on the quantum
interference [56]. The visibilities for this experiment were found to be significantly
lower than those predicted by the theory in Ref. [57] and those found in the previous
experiments by Ref. [33]. The reduction in the visibilities were considered as two
contributions, one from the AB phase, distinguishable by its shift with magnetic
field, and a contribution of small period oscillations from an unknown source sus-
pected to be electrostatic in nature due to their independence from the magnetic
field changes. After investigating the effect of both temperature and bias voltage on
the decay of the oscillations (and therefore visibility) from both sources, it was found
that the visibility decreases steadily with increasing temperature of the system and
also the bias voltage. While the shape of the results matched that predicted by
theory, the experimental visibility was in fact 80 times smaller than predicted by
the theory. The suggested reasoning behind this small visibility is that the internal
degrees of freedom of the QPC are very sensitive to the shape of the QPC potential,
and in these experiments, the QPCs were shaped very differently from the ideal case
assumed by the theory in Ref. [57].

In 2007, Roulleau et al. developed a statistical method to determine the visibility
in electronic MZIs [58]. The experiments discussed previously had seen behaviours
in visibility that were quite different in terms of value. It was determined that the
phase averaging took the form of a Gaussian, proportional to the voltage squared;
however, the source of this phase averaging was at this point still unknown. Although
it has been known for a long time that there is a coherence length related to the
edge states in quantum Hall edge channels, up until 2008, the exact value of this
was not known. In their 2008 paper, Roulleau et al. present a method to determine
a value for this [59]. The visibility was measured in the same system described in
Ref. [58], and was found to decrease exponentially with temperature. They then
define a coherence length, lφ, such that V = V0e

−2L/lφ and lφ ∝ T−1, where V is the
temperature dependent visibility, V0 is the temperature independent contribution
to the visibility and L is the length of the interferometer. The coherence length can
then be inferred by looking at the visibility decrease of three different sizes of MZI.

Later on in 2008, Roulleau et al. investigated how noise affects the dephasing of
the same system [60]. It was found that the decrease in visibility is due to Gaussian
noise, and the results of the experiments were used to calculate the dephasing due
to thermal noise, which matched the measurements of coherence length from the
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previous experiments [59] exceptionally well. They demonstrate that the thermal
noise, as well as the coupling between the two edge states due to the overlap of the
wavefunctions describing each edge state [61], is what determines the finite coherence
length.

The next step for Roulleau et al. was in 2009 to show that if another “floating”
ohmic contact is added into the system, it can be used to destroy the coherence of
the system [62]. Electrons are absorbed by the ohmic contact, and then reintroduced
into the system, such that the detected current is still predictable using the equations
for visibility. The reinjected electrons, however, are not the same electrons that were
absorbed, meaning that their phase is now randomised and they no longer contribute
to the overall interference of the system, thereby destroying the coherence of the
system.

In 2009, Bieri et al. combined the previous studies by investigating the effect of
energy dependence on the transmission probability of the beamsplitters [63]. The
experiments discussed previously all set their beamsplitter transmission and reflec-
tion coefficients to be T = R = 1/2 respectively, in order to ensure the wavepackets
arrive at the second beamsplitter in the same amounts at the same time, to give
maximum visibility. In this experiment, the symmetries of the QPCs was varied,
such that the input QPC transmission varied between 0 − 100% and the output
QPC transmission remained constant. For certain values of T , it was found that the
visibility actually increased from the value at 50%, rather than decreasing as would
be expected, depending on the voltage bias. Their investigations showed that this is
in fact a property of a MZI with edge states, and not the transmission of the QPCs
as beamsplitters. This is due to the fact that in experiments, there may be more
than one edge state in each path, which can be held at different voltages depending
on how they are attached to the source contact or the ground. The visibility in a
system where the current is detected in the outer edge state, is shown in Eq. (3.1).
As there is a coupling to the inner edge state, γ, we can see that there can still be
some increase in the visibility with voltage, even in the case of potential-independent
beamsplitters [63],

VBieri = 2

√√√√
(
T̂21 + V

∂T̂21

∂V

)2

+
(
T̂21V γ

)2

. (3.1)

Jump ahead seven years, and Tewari et al. found that, contrary to theoretical
predictions, the visibility of the electrons in an MZI are actually independent of
energy above a certain threshold, rather than continuing a steady decline [64]. This
hints towards the existence of another relaxation mechanism which has yet to be
investigated.

3.1.1 Explanations of interferometer visibility

In 2004 the dominant dephasing method in these electron interferometer experiments
was unknown. Two methods were proposed in 2004 by Marquardt and Bruder [65],
a fluctuating classical field approach and an approach which involves introducing a
dephasing terminal to the interferometer. Looking at the mean current alone, the
two methods were virtually indistinguishable, however when the visibility of the shot
noise was considered instead the effect of the dephasing depended strongly on the
fluctuations.
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In 2005, the sources of dephasing we investigated further by Chung et al. [57]
who investigated theoretically the effects of dephasing introduced by a voltage probe.
They investigated specifically the effect of finite temperature, applied bias and the
difference in path lengths between the arms of the interferometer, and they found
the dependence of the visibility on the transparency of the beamsplitters. They show
that the phase dependent oscillations are suppressed by a factor on the interference
term of

√
1− ε, where ε = 1 is complete dephasing.

The decay of the AB oscillations, which have been used in the previous works
to investigate the visibility, can also be used to determine the coherence length of
the electrons [66]. In the work by Haack et al. [66], which instead of considering
DC sources, used cold, single-electron sources, the effect of path length difference
on this decay was investigated, and they found that as the path length difference
was increased, the visibility of the system decreased.

The effect of electron-electron interactions in a ballistic MZI was discussed in
detail by Neuenhahn and Marquardt in 2008 [67] for different energy regimes. The
diminishing effect on the coherence of both propagation distance and energy was
discussed and modelled using three different tools depending on the energy regime.

One thing which this still leaves unexplained however, is the unusual oscillations
seen by Neder et al. [55] with changing bias. In 2008, Neder et al. [68] found that
this was in fact due to the Coulomb interaction between electrons, and soon after,
an explanation of this was offered by Levkivskyi et al. [69]. They noted that when
the electrons interact with the QPCs, they excite plasmons. These excitations are
related to the bias voltage applied to the QPC, which would explain the loss seen
in Ref. [55].

3.2 Hot electron sources and decoherence

So far we have concentrated on so-called “cold” electrons which are at energies
around the Fermi level. There have, however, been advances in electron pump
technology [19] which allow electrons to be injected at energies well above the Fermi
level [6, 21, 70–76], as discussed in Chapter 1. This gap in energy also translates to
a physical separation in the electrons from their surroundings, significantly reducing
the effects of electron-electron interactions. For example, if we look at the sketch in
Fig. 3.1, we see that for an electron emitted at approximately 100 meV above the
Fermi energy the spatial separation between the injected electrons and the bulk is
approximately 100nm [22].

In Ref. [38], it was shown that a hot-electron wavepacket can be reliably gener-
ated by quantum-dot-based SES when the Landauer-Büttiker traversal time [77, 78],
which is a time scale describing how long it takes for a plane wave to travel through
a barrier, is much shorter than the passage time [79, 80] which is how long it takes
for the wavepacket to evolve into an orthogonal state. The starting state for an
electron wavepacket in the lowest Landau level (i.e. m = 0, such that |mk〉 = |0k〉)
with momenta distributed according to a Gaussian is given by

|Ψ(0)〉 =
∑

k

Nαe
−α(k−k0)2 |0k〉 =

NαL

2π

∫
dke−α(k−k0)2 |0k〉 , (3.2)

where the central energy and wavenumber of the wavepacket can be expressed in
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terms of

k0 =

√
2m∗e
~2

(
Ω

ωy

)2

E0, (3.3)

and with the norm,

Nα =
(8απ)1/4

√
L

. (3.4)

We also have the quantum Hall energy eigenstate for an energy Ek in position
representation, given by

|x, y〉 〈x, y|0k〉 =
1√
L
eikxχ0k(y) |x, y〉 ,

=
1√
L
eikx

1

π1/4
√
lΩ

exp

{
−1

2

[
y − yG(k)

lΩ

]2
}
|x, y〉 . (3.5)

These will be used in future chapters to describe the electron wavepacket in specific
conditions.

Hot electrons must be treated differently to cold electrons, as they have a much
higher energy, which means that their sources of decoherence differ from those of
electrons near the Fermi energy, as shown in Fig. 3.1, and they have very short
life times. The short duration of these wavepackets means that matching their
arrival at a beamsplitter in a MZI is essential for observing interference. A detailed
description of the arrival time distributions and how they are affected by phase
averaging is therefore required for successful design of hot-electron interferometry
experiments.

When considering cold-electrons, the main source of decoherence was found to
be in electron-electron interactions due to the injected electrons proximity to the
electrons in the rest of the system, the main source of this being through plasmonic
excitations [81–84]. As the energy of the electrons increases, however, the effect
of plasmons is suppressed and other sources of decoherence take over, as shown in
Fig. 3.1. A theoretical overview of the many sources of decoherence in an MZI can
be found in Ref. [22].

In 2019, Ota et al. [25] performed a spectroscopic study of hot-electron transport,
and observed experimentally the many different relaxation effects in the system.
Looking at the lower end of the energy spectrum (∼ 10 meV), one can see evi-
dence to support the idea that plasmon excitations are indeed the primary source
of decoherence, along with other electron-electron interactions. As the electrons
move to higher energies, they their behaviour is close to ballistic, until at the higher
energies (∼ 100 meV) there are very clear echoes of the traces which appear at
energies below the main detected electron. These are known as LO-phonon replicas,
caused by electrons which have emitted an LO-phonon and are therefore detected
at lower energies. LO-phonons have characteristic energies in different materials,
so the appearance of these replicas at integer multiples of this energy below the
injection energy are evidence that LO-phonon emission has become the dominant
relaxation mechanism. This has been investigated theoretically in Ref. [23], and will
be discussed in more detail in part III.
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Figure 3.1: Adapted from Ref. [22]. Sketch of the relationship between energy, guide centre
and wavenumber, along with the dominant relaxation method for the different realms. The
Fermi sea is shown in blue.

3.3 Scattering theory

We can describe the path of electrons through an MZI in terms of scattering matrices,
which describe the behaviour of electrons at the two beamsplitters. For DC sources,
we would use the Landauer-Büttiker method to derive the scattering matrices and
gain an equation for the current; however, with hot electrons we know the path they
are taking, so can move directly to considering the scattering matrices for the paths
followed. In this section, we will look at how these scattering matrices describe an
MZI and the phases picked up in the system.

3.4 Scattering matrices of two beamsplitters

Beamsplitters in an electronic MZI have a dependence on the energy of the electrons,
which affects both the phase and the transmission and reflection coefficients. The
action of the two beamsplitters, i = 1, 2, can be described by

Si =

(
ri t̃i
ti r̃i

)
, (3.6)

which with unitarity gives

Si =

(√
Rie

iρi(k)
√
Tie

iθ̃i(k)
√
Tie

iθi(k)
√
Rie

iρ̃i(k)

)
, (3.7)

with the reflection and transmission coefficients |ri|2 +|ti|2 = Ri+Ti = 1, and phases
obeying

θi(k) + θ̃i(k)− ρi(k)− ρ̃i(k) = (2n+ 1)π (3.8)

where n = 0,±1,±2, ..., which arises from unitarity, fulfilling the intuition of “what
goes in, must come out”, and the reversibility of quantum mechanics.
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Figure 3.2: A sketch of the possible path options for an electron to follow. The solid red
path shows a reflection at BS 1 and 2 and the green dotted line shows a transmission at
BS 1 and BS 2, leading to both being detected in the upper channel. This combination is
described by the equation for rMZI. The yellow dashed and blue dot-dashed lines show a
transmission at BS1 and reflection at BS2, and the vice versa, respectively, to be detected
in the lower channel. This combination is described by the equation for tMZI.

We are considering an MZI geometry with two beamsplitters with a phase accu-
mulated in between. Considering input from just the upper arm, we can obtain an
output wavefunction using

(
ΨU

ΨL

)
= SMZI

(
Ψin

0

)
=

(
rMZIΨin

tMZIΨin

)
(3.9)

where SMZI is the total scattering matrix, and is given by

SMZI =

(
rMZI t̃MZI

tMZI r̃MZI

)
=

(
r2 t̃2
t2 r̃2

)(
eiφU (k) 0

0 eiφL(k)

)(
r1 t̃1
t1 r̃1

)
, (3.10)

=

(
r1r2e

iφU (k) + t1t̃2e
iφL(k) t̃1r2e

iφU (k) + r̃1t̃2e
iφL(k)

r1t2e
iφU (k) + t1r̃2e

iφL(k) t̃1t2e
iφU (k) + r̃1r̃2e

iφL(k)

)
. (3.11)

where φU/L are the phase contributions from the dynamical and AB phase which
we will calculate in Section 3.6. The paths corresponding to these are visualised in
Fig. 3.2. Putting this into Eq. (3.9), and combining with Eq. (3.7) we obtain the
important scattering amplitudes

rMZI =r1r2e
iφU (k) + t1t̃2e

iφL(k),

=
√
R1R2e

i(ρ1(k)+ρ2(k)+φU (k)) +
√
T1T2e

i(θ1(k)+θ̃2(k)+φL(k)), (3.12)

tMZI =r1t2e
iφU (k) + t1r̃2e

iφL(k),

=
√
R1T2e

i(ρ1(k)+θ2(k)+φU (k)) +
√
T1R2e

i(θ1(k)+ρ̃2(k)+φL(k)). (3.13)
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This gives rMZI
k

(
rMZI
k′

)∗
and tMZI

k

(
tMZI
k′

)∗
as

rMZI
k

(
rMZI
k′

)∗
=

(√
R

(k)
1 R

(k)
2 ei[ρ1(k)+ρ2(k)+φU (k)] +

√
T

(k)
1 T

(k)
2 ei[θ1(k)+θ̃2(k)+φL(k)]

)

×
(√

R
(k′)
1 R

(k′)
2 e−i[ρ1(k′)+ρ2(k′)+φU (k′)] +

√
T

(k′)
1 T

(k′)
2 e−i[θ1(k′)+θ̃2(k′)+φL(k′)]

)
, (3.14)

and

tMZI
k

(
tMZI
k′

)∗
=

(√
R

(k)
1 T

(k)
2 ei[ρ1(k)+θ2(k)+φU (k)] +

√
T

(k)
1 R

(k)
2 ei[θ1(k)+ρ̃2(k)+φL(k)]

)

×
(√

R
(k′)
1 T

(k′)
2 e−i[ρ1(k′)+θ2(k′)+φU (k′)] +

√
T

(k′)
1 R

(k′)
2 e−i[θ1(k′)+ρ̃2(k′)+φL(k′)]

)
, (3.15)

which expand to

rMZI
k

(
rMZI
k′

)∗
=

√
R

(k)
1 R

(k)
2

√
R

(k′)
1 R

(k′)
2 (3.16)

× exp [i {ρ1(k) + ρ2(k) + φU(k)− ρ1(k′)− ρ2(k′)− φU(k′)}]

+

√
R

(k)
1 R

(k)
2

√
T

(k′)
1 T

(k′)
2 exp

[
i
{
ρ1(k) + ρ2(k) + φU(k)− θ1(k′)− θ̃2(k′)− φU(k′)

}]

+

√
T

(k)
1 T

(k)
2

√
R

(k′)
1 R

(k′)
2 exp

[
i
{
θ1(k) + θ̃2(k) + φL(k)− ρ1(k′)− ρ2(k′)− φU(k′)

}]

+

√
T

(k)
1 T

(k)
2

√
R

(k′)
1 R

(k′)
2 exp

[
i
{
θ1(k) + θ̃2(k) + φL(k)− θ1(k′)− θ̃2(k′)− φL(k′)

}]

and

tMZI
k

(
tMZI
k′

)∗
=

√
R

(k)
1 T

(k)
2

√
R

(k′)
1 T

(k′)
2 (3.17)

× exp [i {ρ1(k) + θ2(k) + φU(k)− ρ1(k′)− θ2(k′)− φU(k′)}]

+

√
R

(k)
1 T

(k)
2

√
T

(k′)
1 R

(k′)
2 exp [i {ρ1(k) + θ2(k) + φU(k)− θ1(k′)− ρ̃2(k′)− φL(k′)}]

+

√
T

(k)
1 R

(k)
2

√
R

(k′)
1 T

(k′)
2 exp [i {θ1(k) + ρ̃2(k) + φL(k)− ρ1(k′)− θ2(k′)− φU(k′)}]

+

√
T

(k)
1 R

(k)
2

√
T

(k′)
1 R

(k′)
2 exp [i {θ1(k) + ρ̃2(k) + φL(k)− θ1(k′)− ρ̃2(k′)− φL(k′)}]

We can use these scattering amplitudes to determine the effect on electrons moving
through the device, by considering the properties of the wavepackets themselves,
as in Section 3.2. We can also use these to calculate the current in a hot-electron
interferometer. In models of electrons from DC sources such as the one found in
Ref. [57], the Landauer-Büttiker method [85] has been used to define the scattering
matrices and the current in a system, however for these hot single-electrons, we
instead multiply the Gaussian function which describes the wavepacket in terms of
energy [38] by the scattering matrix, and integrate over energy to give the current
in the system.

3.4.1 Hot-electron current

To find the current of hot electrons, we multiply the scattering matrix by a Gaussian
distribution of the energy, and then integrate over energy, such that

I = ef

∫ ∞

−∞
T (E)P (E) dE, (3.18)
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Figure 3.3: Schematic of a simple Mach-Zehnder Interferometer (MZI). The grey blocks
show the edges of the interferometer, along which the edge states are formed for the
electrons to travel along. When an electron is injected into the system with an energy
E = E0, the solid black path, known as the guide centre, yG, is followed through the
interferometer. Any small change in the energy leads to a shift, ∆y, from the guide
centre; the blue dashed line shows the path of an electron with energy E = E0 + ∆E
for example. The relationship between the change in energy and the guide centre shift is
shown in Eq. (3.25). The dimensions of the MZI are labelled as X for the horizontal width
of the black path, and YU and YL are the vertical contributions for the upper and lower
black baths respectively. The blue boxes represent the (significantly exaggerated in size)
QPC beamsplitters, with width d. The reflection and transmission parameters are shown
in the beamsplitters as r1, r̃2, t1 and t2 for beamsplitter 1 and 2 respectively. For the
purposes of our calculations, we initially ignore the contribution to the phases of the path
lengths within these regions, as the beamsplitter contribution is considered separately to
the geometric phases from the paths later on in this thesis. A magnetic field is applied to
the system, and the electron travels through the interferometer as shown. The magnetic
field induces an AB phase shift, which also depends on the area surrounded by the paths.
The combination of the dynamical phase from the difference in path lengths and the AB
phase for each arm is represented by φU/L in this figure. Electrons are detected at the
ohmic contact, labelled A(t), which is also where the arrival time distributions (ATDs)
are calculated.

where

T (E) = T2R1 + T1R2 + 2
√
T1T2R1R2 cos(φtot), (3.19)
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with T and R as the transmission and reflection coefficients respectively, φtot is the
total phase contribution from the AB, dynamical and beamsplitter phases, and

P (E) =
1√

2πσE
exp

[
−1

2

(E − E0)2

σ2
E

]
, (3.20)

is a Gaussian distribution function. This expression is adapted from the expression
describing the current in a dc source, which does not depend on the frequency of
emission as this is not a factor for these sources. In Ref. [24] we can see that the gate
voltages are tuned to pump one electron per cycle with a frequency of f = 400µs−1.

To begin with in this chapter, we will assume energy independent beamsplit-
ters, such that all phases due to the beamsplitter are 0, and we focus only on the
dynamical and AB phases. We will also take the transmission and reflection co-
efficients to be Ti = Ri = 1/2. The energy dependence on the transmission and
reflection coefficients of the beamsplitters will be incorporated later in this chapter,
and the full beamsplitter phases are incorporated in Chapter 4. Before performing
the integration, we first need to calculate the AB and dynamical phases for our
interferometer.

3.5 Energy dependence of electron guide centres

Before we can start to calculate the different phases we first need to derive an
equation relating the change in energy, ∆E, to the change in guide centre, ∆y.
Starting with Eq. (2.41),

En = εn +
1

2
~Ω +

1

2
m∗eω

2
y

(
Ω

ωc

)2

y2
G (3.21)

where yG is the guide centre from Eq. (2.28),

yG =
ω2
c

Ω2

~k
eB

. (3.22)

If an electron is emitted at exactly the initial energy, E0, then y = y0 and the guide
centre is,

y0 =
ω2
c

Ω2

~k0

eB
. (3.23)

We know that a change in energy relates directly to a displacement from the guide
centre and change in electron wavenumber, so we can write

y0 + ∆y =
ω2
c

Ω2

~(k0 + ∆k)

eB
. (3.24)

Inputting these definitions into Eq. (3.21) for E0 + ∆E gives,

E0 + ∆E ≈ ε0 +
1

2
~Ω +

1

2
m∗eω

2
y

(
Ω

ωc

)2

y2
0 +m∗eω

2
y

(
Ω

ωc

)2

y0∆y (3.25)

Here, Eq. (3.25) has been linearised, elimating the ∆y2 term, as it is the square
of a very small change and so is negligible (see Appendix B). This is the original
equation for energy, with an added term at the end to include the effect of ∆y. We
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can combine this with the cyclotron frequency, ωc = eB/m∗e, and write it in terms
of the wavenumber, k = k0 + ∆k as well, i.e.

∆E =m∗eω
2
y

Ω2

ω2
c

y0∆y

=
ω2
y

Ω2

~2

m∗e
k0∆k. (3.26)

We can also now introduce the electron velocity, v, as calculated in Chapter 2 which
is described by [40, 37]

v =
1

~
dE

dk
=

1

~
∆E

∆k
=
ω2
y

Ω2

~k
m∗e

. (3.27)

We assume throughout this thesis that the Gaussian is small such that as the energy
is varied across it’s width, the velocity does not change significantly and can therefore
be assumed to be constant, and is evaluated at E0, to give

v0 =
ω2
y

Ω2

~
m∗e

k0. (3.28)

From Eq. (3.27) we can see that for small changes in E, we have

∆E = ~v0∆k, (3.29)

which, in combination with the equation for wavenumber at small changes in E and
therefore y,

∆k =
Ω2

ωc

m∗e
~

∆y (3.30)

gives an equation for ∆E in terms of ∆y,

∆E = v0m
∗
e

Ω2

ωc
∆y; ⇒ ∆y =

ωc
Ω2

∆E

m∗ev0

. (3.31)

These relations will be used in the coming sections to establish the effects of these
small changes in energy, and therefore guide centre, on the different phases of an
electron.

3.5.1 Deviations of the guide centre

The deviation of the guide centre position discussed above, ∆y, changes the geometry
of the interferometer as a whole. This will affect the phases discussed in the next
sections, so here we will determine exactly what changes we encounter in guide
centre due to the small change in energy.

In Fig. 3.3, an electron emitted at exactly energy E0 will follow the central path,
shown by the black solid line and, as discussed above, a small deviation from this
energy will cause the electron to travel either closer to the edge state, in the case of
an increase in energy, or further away if the energy is decreased. The interferometer
in Fig. 3.3 shows the path for an increase in energy as a blue dashed line, however
all of the equations are valid for any ∆y.
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Although these calculations can be performed for any shaped geometry, for ease
of calculations we have chosen to use a rectangular interferometer. If we follow the
solid black line in the diagram, we have vertical lengths YU and YL and horizontal
lengths XU and XL where XU = XL = X, but they are labelled separately for
clarity in the transformations. In this, and all following notation in this chapter, U
refers to the contribution from the upper path of the interferometer, and L to the
lower. This means that the change in path length depends only on the changes in
the length of vertical lengths, leaving the horizontal length unperturbed. In the case
of a small change in energy, we assume that the electron follows the black line inside
the blue box, representing the beamsplitter, and the blue dashed line everywhere
else. This is because, as discussed in section 3.7, we will treat the beamsplitters
separately. We can also take away the size of the beamsplitters, d, from the vertical
sides for the same reason. The dimensions then have the following transformations

YU →YU + ∆y − d/2, (3.32a)

YL →YL −∆y − d/2, (3.32b)

XU →X + 2∆y, (3.32c)

XL →X − 2∆y. (3.32d)

Now that we have the relations between energy, wavenumber and path coor-
dinate, y, as well as their dependence on a change in energy, we can use these
qualities to investigate the effect of these energy changes on the phases picked up
by an electron in a MZI.

3.6 Dynamical and Aharonov-Bohm phases

There are two contributions to the phase shift from the changing geometry of the
system: the AB phase and the dynamical phase. Here we derive the effect on the
detected current and therefore visibility of small shifts in energy on the contributions
of these two phases.

3.6.1 Dynamical Phase

The dynamical phase comes from the difference in length of the upper and lower
paths in the interferometer. If the path lengths are the same there will be no phase
shift from this, however this is not always the case.

The phase, φdyn is calculated by multiplying the path length difference by wavenum-
ber k, i.e. φdyn = k(xU − xL) where xU is the upper path length and xL is the lower
path length. Taking into account the small change in guide centre as shown in
Eq. 3.32, these path lengths are then

xU =2YU +X + 4∆y − d, , (3.33a)

xL =2YL +X − 4∆y − d, (3.33b)

xU − xL =2(YU − YL) + 8∆y. (3.33c)

34



CHAPTER 3. OPTIMISING ELECTRON INTERFEROMETRY
EXPERIMENTS

From this, we can define the central path difference, l0 = 2(YU − YL). If we now
multiply Eq. (3.33c) by the wavenumber k = k0 + ∆k, we get

φdyn =(k0 + ∆k)(l0 + 8∆y), (3.34)

=l0k0 + 8∆yk0 + l0∆k + 8∆y∆k. (3.35)

We can now write this in terms of ∆E, via ∆k, using Eq. (3.24) and Eq. (3.29) to
get

φdyn = l0k0 + 8
ωc
Ω2

~∆k

m∗e
k0 + l0∆k + 8

ωc
Ω2

~∆k2

m∗e
,

= l0k0 + 8
ωc
Ω2

∆Ek0

m∗ev0

+
l0∆E

~v0

+ 8
ωc
Ω2

∆E2

~m∗ev2
0

. (3.36)

We also need k0 in terms of an energy E0, which is given by

E0 =
1

2

~2

m∗e

ω2
y

Ω2
k2

0,

=
1

2
~v0k0,

⇒ k0 =
2E0

~v0

. (3.37)

So Eq. (3.36) becomes

φdyn =
2l0E0

~v0

+ 16
ω2
c

Ω2

E0∆E

~ωcm∗ev2
0

+
l0∆E

~v0

+ 8
ω2
c

Ω2

∆E2

~ωcm∗ev2
0

, (3.38)

which is the dynamical phase at an energy E = E0 + ∆E. This will combine with
the AB phase to give the total phase from the geometry of the system, as calculated
in the next section.

3.6.2 Aharonov-Bohm Phase

The magnetic flux through the MZI causes a phase shift called the AB phase [34].
This phase depends on the area surrounded by the paths of the arms of the inter-
ferometer and the magnetic field strength. The AB phase [34] for the geometry in
Fig. 3.3 is (e > 0, B > 0)

φ
(tot)
AB = φ

(U)
AB − φ

(L)
AB =

e

~
BX(YU + YL) =

e

~
BA, (3.39)

where A is the area of the interferometer loop. Note that the sign of this quantity is
critically important here — see Appendix A for the derivation. By calculating the
area A using the blue dashed line in Fig. 3.3 outside the beamsplitters and the black
solid line inside them, as discussed in section 3.5.1, we obtain,

A = (X + 2∆y)(YU + ∆y) + (X − 2∆y)(YL −∆y),

= A0 + l0∆y + 4(∆y)2. (3.40)
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Here we have introduced the area enclosed by the central (E0) path A0 = X(YU+YL).
Combining Eq. (3.39) and Eq. (3.40) gives an equation for φAB of

φAB =
m∗eωc
~

[
A0 + l0∆y + 4(∆y)2

]
, (3.41)

as the cyclotron frequency, ωc = eB/m∗e.

We can put Eq. (3.41) in terms of ∆E by using Eq. (3.31), to give

φAB =
m∗eωc
~

[
4

(
∆Eωc
v0m∗eΩ

2

)2

+
∆Eωc
v0m∗eΩ

2
l0 + A0

]
,

=
4∆E2

m∗ev
2
0~ωc

ω4
c

Ω4
+

l0
~v0

ω2
c

Ω2
∆E +

m∗eωc
~

A0. (3.42)

This is the AB phase for an electron with an energy E = E0 + ∆E. Combined
with the dynamical phase for the same energy, this gives the total phase from the
geometry of the system for an electron with some uncertainty in the injection energy,
∆E. We can now use these phases to calculate the current in an electronic MZI.

3.6.3 Current with a small energy perturbation

We can calculate the current in an electronic MZI using equation Eq. (3.18), which
includes the total phase from the geometry for the system and from the beamsplitter.
In this section, we will assume a 50:50 beamsplitter which therefore has no phase
contribution. The contribution of the beamsplitter will be taken into account in the
next section. We therefore only need the sum of the AB and dynamical phases for
this section, which is

φtot = φAB + φdyn =
4∆E2

m∗ev
2
0~ωc

(ωc
Ω

)4

+
∆El0
~v0

(ωc
Ω

)2

+
m∗eωc
~

A0

+
8∆E2

m∗ev
2
0~ωc

(ωc
Ω

)2

+
16E0∆E

m∗ev
2~ωc

(ωc
Ω

)2

+
l0∆E

~v0

+
2l0E0

~v0

. (3.43)

This can be written in three parts, one of which depends on ∆E2, one on ∆E and
one which is independent of ∆E. The coefficients of each can be written as a2, a1

and a0 respectively, giving

φtot = a2∆E2 + a1∆E + a0, (3.44)

where

a2 =
4

m∗ev
2
0~ωc

(ωc
Ω

)4

+
8

m∗ev
2
0~ωc

(ωc
Ω

)2

, (3.45a)

a1 =
16E0

m∗ev
2
0~ωc

(ωc
Ω

)2

+
l0
~v0

(ωc
Ω

)2

+
l0
~v0

, (3.45b)

a0 =
m∗eωc
~

A0 +
2l0E0

~v0

. (3.45c)
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Now we can combine Eq. (3.18), Eq. (3.19), Eq. (3.20) and Eq. (3.44), and use
∆E = E − E0 to give

I = ef

∫ ∞

∞

{
(T2R1 + T1R2)√

2πσE
exp

[
−∆E2

2σ2
E

]

+
2
√
T1T2R1R2√

2πσE
cos
(
a2∆E2 + a1∆E + a0

)
exp

[
−∆E2

2σ2
E

]}
dE. (3.46)

This we can write in the form of an exponential to make integration possible. This
we can do as we have the identity 2 cos(x) = [exp(ix) + exp(−ix)] . Once we have
it in terms of the exponentials only, we see that Eq. (3.46) becomes a Gaussian
integral,

I = ef

{
(T2R1 + T1R2) +

exp[ia0]√
2πσE

√
T1T2R1R2

×
(∫ ∞

−∞

{
exp

[
−
(

1

2σ2
E

− a2i

)
∆E2 + a1i∆E

]
+ c.c.

}
dE

)}
, (3.47)

where c.c. is the complex conjugate. Fortunately, Gaussian integrals have standard
results, so this integral can be solved as

∫ ∞

−∞
exp
[
−fx2 + gx

]
dx =

√
π√
f

exp

[
g2

4f

]
, (3.48)

to give

I = ef {(T2R1 + T1R2)

+
√
T1T2R1R2

(
exp[ia0]√
1− 2ia2σ2

E

exp

[
−1

2

a2
1σ

2
E

(1− 2ia2σ2
E)

]
+ c.c.

)}
. (3.49)

This is an equation for current with the effects of phase averaging included. At the
minute, there are still imaginary parts to the equation. The equation for current
should be real, so we need to separate the equation out into its real and imaginary
parts, to see if we can manipulate them such that the final equation involves a
real cosine term instead of imaginary exponentials. This results in the following
expression,

I = ef

{
(T2R1 + T1R2) +

√
T1T2R1R2√

1 + F 2

×
(

exp[i(a0 + θ)] exp

[−a2
1σ

2
E(1 + iF )

2(1 + F 2)

]
+ c.c.

)}
, (3.50)

where F = 2a2σ
2
E. This has introduced a new phase shift, θ, which we find to

be tan 2θ = F , (see Appendix C for details). The aim here has been to write
Eq. (3.50) in such a way that the imaginary terms are removed. To do this, we
separate the terms in the exponential such that the real and imaginary terms are
written separately. This can then be written in terms of two exponentials of the
form eiφ + e−iφ. We can then remove the imaginary terms by moving from the
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Figure 3.4: The potential for the Fertig-Halperin saddle-point model of a quantum point
contact beamsplitter. Depending on the width of the beamsplitter and the magnitude
of the central potential, electrons approaching from the left will either follow round to
the bottom and leave on the left, which is a reflection, or will move through the middle
and exit on the right, which is transmission. The white arrows are sketches of potential
paths for an incoming electron. It should be noted that the x and y here are arbitrary
coordinates, and are not the same as the x and y in the wavefunction, which are time
dependent such that the transport is always in the x-direction.

exponential version of the equation to the cosine version, essentially reversing the
step we took between Eq. (3.46) and Eq. (3.47) now that the integration has been
performed. This gives a full equation for the current of an electron of

I = ef

{
(T2R1 + T1R2) + 2

√
T1T2R1R2√

1 + F 2

× exp

[ −a2
1σ

2
E

2(1 + F 2)

]
cos

[
a0 + θ − a2

1σ
2
EF

2(1 + F 2)

]}
(3.51)

taking into account the AB phase, the dynamical phase, and assuming beamsplitters
which are not dependent on the same energy spreading. The cosine term describes
the oscillations in the current, which are very fast in this system. We will often use
the exponential term multiplied by the square root of the transmission and reflection
coefficients to describe the visibility, as this is the dominant term in the equation. In
the next section, we will incorporate the energy dependence in the beamsplitters into
the model by introducing energy dependent terms for the transmission and reflection
coefficients, and compare the results to the ideal case of perfect 50:50 beamsplitters.

3.7 Energy dependent transmission and reflection

coefficients

Previously we have assumed energy independent beamsplitters, however in a realistic
system the beamsplitters would have an energy dependence which we will take into
account here. We will use the Fertig-Halperin saddle-point potential to describe the
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Figure 3.5: Part (a) Shows a comparison of the approximation in Eq. (3.55). The blue line
is the full equation including the cosh term, and the red line is the gaussian approximation.
Part (b) shows a plot of the energy dependent transmission and reflection coefficients. Both
parts use a value of Esad = 10 meV.

energy dependent beamsplitters, which gives a transmission probability of [86]

T =
1

1 + exp(−πε) , (3.52)

where ε = (∆E + E0 − V0)/Esad. Here, Esad ≈ (UxUy)
1/2/m∗eωc, is the width of

the beamsplitter and V0 is the central energy of the beamsplitter, which can be set
experimentally. A visualisation of this potential can be seen in Fig. 3.4.

We can then calculate the product of the transmission and reflection probabili-
ties, as this combination of TR is the one used for our paths in Eq. (3.51),

TR =
1

1 + exp(−πε)

[
1− 1

1 + exp(−πε)

]
(3.53)

=
1

2

[
1

cosh(πε) + 1

]
. (3.54)

This can be approximated as a Gaussian,

TR =
1

2

[
1

cosh(πε) + 1

]
≈ Tmax exp

[ −ε2
2σ2

TR

]
(3.55)

where Tmax is the amplitude, and σTR is the width of the Gaussian. We can determine
the value for σTR using the Trust-Region algorithm to approximate the function in
the form of a Gaussian. More on the Trust-Region algorithm can be found in
Ref. [87]. We also rewrite ε as ε = ∆E + x, where x = E0 − V0 is the mid-point
of the Gaussian, which represents the QPC acting as a 50:50 beamsplitter. This
approximation can be seen in Fig. 3.5.

Assuming identical beamsplitters, the equation for current becomes

I = ef

∫ ∞

−∞
d∆E 2T (∆E)R(∆E)(1 + cos[φ(∆E)])P (∆E) (3.56)
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Figure 3.6: A comparison of the analytical expression in Eq. (3.59) for the total trans-
mission as a function of magnetic field with that obtained from numerical integra-
tion of Eq. (3.57). From left to right the centre of the electron wave packet was
E0 = 100, 90, 120meV as compared with the centre of the saddle V0 = 100meV. Other

parameters were σE = 1meV, σTR ≈
√

2/π

31/3
Esad, which comes from the Gaussian fit to

the saddle point potential transmission width, and Esad = 10meV which is a beamsplitter
width realistic to experiments.

and inserting the equation for the transmission and reflection product above we get

I = ef
2Tmax√
2πσE

∫ ∞

−∞
d∆E exp

[−(∆E + x)2

2σ2
TR

]
exp

[
−1

2

∆E2

σ2
E

]
(1 + cos [φ(∆E)]) .

(3.57)
In order to facilitate the integration here we can combine the exponentials and write
like terms together, such that it is more obviously a Gaussian integration,

I = ef
2Tmax√
2πσE

exp

[
− x2

2σ2
TR

]

×
{∫ ∞

−∞
exp

[
−
(

1

2σ2
TR

+
1

2σ2
E

)
∆E2 +

( −x
σ2
TR

)
∆E

]
d∆E

+

∫ ∞

−∞
exp

[
−
(

1

2σ2
TR

+
1

2σ2
E

)
∆E2 +

( −x
σ2
TR

)
∆E

]
cos[φ(∆E)] d∆E

}
. (3.58)

These are then integrated using the identity in Eq. (3.48) to give the full equation
for current including the energy dependent beamsplitters,

I = ef
σ′E
2σE

exp

[
−1

2

(
σ′2E
σ2
E

)
x2

σ2
TR

]{
1 + exp

[
−1

2
σ′2Eφ

2
1

]
cos

[
φ0 −

xσ′2Eφ1

σ2
TR

]}
, (3.59)

which is written in terms of the rescaled energy width

σ′2E =
σ2
E

1 +
σ2
E

σ2
TR

. (3.60)

Fig. 3.6 shows the total transmission as a function of magnetic field for three dif-
ferent values of E0. This shows that away from the tails of the Gaussian where the
fringes are strong, the analytical expression agrees well with numerical integration
of Eq. (3.57), which uses the non-approximated expressions.

3.8 Results

Equation (3.59) can be compared with that obtained with the energy-independent
beamsplitters, Eq. (3.51) which in the case where the beamsplitters are identical
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becomes

I = 2efTR
{

1 + e−
1
2
φ21σ

2
E cosφ0

}
. (3.61)

where φ1 contains all terms depending on energy in Eq. (3.51).
Relative to this expression, the energy-dependence of the beamsplitters brings

three effects. First of all, we obtain an overall modulation of the transmission that
simply results from our concrete model of the T and R coefficients. In the case where
the wavepacket is injected such that x = 0, we obtain the forefactor 2TR = σ′E/2σE
relative to the previous expression. In the limit σE � σTR, we have σ′E ≈ σE, and
this forefactor becomes 1/2, consistent with 50:50 beamsplitters. In the opposite
limit, σE � σTR, we have σ′E ≈ σTR and the forefactor becomes σTR/(2σE), which
gives a reduction of the overall current. This is to be expected, as if the wavepacket
is much larger than the beamsplitter, different parts of the wavepacket are “seeing”
different transmission and reflection coefficients to other parts. In the case where
we assume no energy dependence in the beamsplitter, we assume that an electron
experiences each equally, whereas when different parts of the wavepacket experience
different coefficients, they do not interfere perfectly, leading to a loss in visibility of
the current. In the case where the beamsplitter is much larger than the wavepacket,
the electron sees only the centre of the beamsplitter and so the whole wavepacket
experiences essentially the same transmission and reflection coefficients, which is the
same as the case for the 50:50 beamsplitter.

We also obtain a shift of the AB phase oscillations, however this is not signif-
icant to the phase averaging results as the shift does not affect that amplitude of
the oscillations, and therefore the visibility. Finally, by finding the maximum and
minimum current, we can use the equation for visibility in Eq. (1.1), we obtain a
modified visibility

ν =
2
√
R1R2T1T2

R1R2 + T1T2

D or ν =
2
√
R1R2T1T2

R1T2 + T1R2

D, (3.62)

depending on the detection channel being considered, where D is the phase averaging
contribution, given by

D = exp

{
−1

2

(
l0 + loff

Σ′l

)2
}
. (3.63)

Here we can see that the visibility can be maximised to 1 for symmetric beamsplitters
where T1 = T2 = R1 = R2 = 1/2. This shows the power of the analytic solutions,
as we can see, without the use of time consuming numerics, that there is a value
of loff that will maximise this equation. This phase averaging contribution is the
same as that without the inclusion of the beamsplitters, but with the rescaled width

Σ′l =
σE
σ′E

Σ =
Ω2

Ω2 + ω2
c

~v0

σ′E
, (3.64)

and the offset,

− loff =
8v0Ω2

ω2
c + Ω2

ωc
ω2
y

. (3.65)

We can see that in the case where the beamsplitters are assumed to be 50:50, ν → D.
Physically, this is because for a 50:50 beamsplitter, there is no impact on the phase
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Figure 3.7: Comparison of visibilities for different values of σE/σTR. Here, σE = 1 meV,

and in a) σTR ≈
√

2/π

31/3
Esad which is approximately 2.7meV when Esad = 10meV, b)

σTR = σE and c) σE = 0.2 meV. The visibility is shown for magnetic fields of 5, 7.5 and
10 Tesla, over a range of E0 − V0.

from the transmission and reflection coordinates themselves, because the wavepacket
splits and recombines evenly at both beamsplitters.

We also see that the size of the path offset loff depends on velocity. For cold
electrons, around E0 = 5 meV, we find loffset ∼ 100 nm. This value is small compared
with typical interferometers, as well as being similar in magnitude to the single-
particle coherence length for cold electrons [66], which explains why in previous
models this effect has not been considered. In contrast, for hot electrons the value
of loff becomes closer to 1µm. This is large in comparison with the size of the
interferometers, and clearly such a significant offset will make a difference to MZI
design, with the geometry of experiments needing to be tailored to a specific injection
energy to ensure optimal visibility.

If we consider the case where σE � σTR, we have σ′E ≈ σE, and therefore
Σ′l ≈ Σl. In this case, the width of the wave packet is the deciding factor for the
visibility. In the opposite limit, σE � σTR, we have σ′E ≈ σTR and Σ′l ≈ ΣlσE/σTR
and the visibility is dominated by the narrow QPC resonance. A comparison of the
visibility with and without beamsplitter energy-dependence can be found in Fig. 3.7.
The maximum visibility obtained in all cases is ν = 1.

The plots shown in Fig. 3.7 demonstrate the importance of the inclusion of the
energy dependence of the beamsplitters. When considering beamsplitters with a
width of around 10 meV, the the energy independent case is a fairly good repre-
sentation of reality. However, as the difference between the size of the wavepacket
and the size of the beamsplitter shrinks, the energy dependence of the beamsplitters
becomes more important and the beamsplitters can no longer be approximated as
energy independent devices. These equations for the visibility of the system derived
in the previous section can be used to investigate the regions of energy for which the
visibility is maximised. We will now explore how the visibility varies with magnetic
field, energy, path length offset and beamsplitter width.

The optimum injection energy to obtain a maximised visibility can be seen in
Fig. 3.8. We introduce here a new variable Epeak, which is the energy for which the
path length difference has been optimised. If the Epeak = 100 meV, then when the
energy E0 = 100 meV, the visibility is maximised. We can do this by using this
energy as the input to calculate the electron velocity, and therefore loff. The reason
for introducing this is that the physical systems can then be built with a path length
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correct for a specific energy, and then the input energy, which is easier to change than
the somewhat permanent MZI size, can be altered to match Epeak. Parts (a), (b)
and (c) show the visibilities for Epeak = 90, 100 and 110 meV respectively. We can
see from these plots that the width of potential injection energies doesn’t change for
each value of Epeak, but the maximum visibility is now centred around E0 = Epeak.
This is to be expected, as our choice of Epeak dictates the optimum energy at which
the effect of phase averaging is eradicated.
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Figure 3.8: On the left, we have the visibility of an electron in a system with changing
values of Epeak. Part (a) is for Epeak = 90 meV, (b) is for Epeak = 100 meV and (c) is
for Epeak = 110 meV. The right hand side shows the visibility for an electron against the
path length offset l0 and the magnetic field, shown for three different values of E0. Part
(d) is for E0 = 50 meV, (e) is for E0 = 100 meV and (f) is for E0 = 150 meV.

The results in Fig. 3.8 (d), (e) and (f) show the visibility against the path length
difference l0 = 2(YU − YL) and magnetic field. Parts (d), (e) and (f) show the
optimum path length difference for injection energies E0 = 50, 100 and 150 meV,
respectively. We can see that for increasing injection energy, the required offset
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between the magnitude of the difference between the upper and lower path lengths
increases. We also see that the range of path length offsets for maximum visibility
increases with energy as well, so you are more likely to get a high visibility from
the interferometer when operated at high energies, as far as phase averaging is
concerned. This is not necessarily the case when other incoherent effects come in
to play, however, as will be discussed later in this thesis. The visibility is more
strongly peaked for higher magnetic fields because as the magnetic field increases,
the width of the wavepacket, Σ′l, decreases which in turn reduces the phase averaging
contribution to the visibility for fixed values of l0 and loff .
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Figure 3.9: A comparison of the effect of energy dependence of the beamsplitters on the
visibility as a function of E0−V0 and magnetic field. Parts (a), (b) and (c) show the energy
independent beamsplitters and (d), (e) and (f) are for energy dependent beamsplitters.
This comparison is shown for various beamsplitter widths. In (a) and (d), Esad = 1 meV,
in (b) and (e), Esad = 10 meV and in (c) and (f), Esad = 100 meV.
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The previous results have all been shown for energetically extremely wide beam-
splitters. In these cases, the energy dependence of the beamsplitters doesn’t have
much of an effect, as the wavepacket only “sees” a small part of the beamsplitter,
and therefore experiences essentially the same transmission and reflection coefficients
throughout, however as the width of the beamsplitter decreases towards the width
of the electron wavepacket (in this case, σE = 1 meV), we find that the dependence
on energy becomes of much more significance. This can be seen in Fig. 3.9. In this
figure, parts (a), (b) and (c) show the energy independent beamsplitters, and (d),
(e) and (f) show the energy dependent beamsplitters derived in the previous section.
They also vary in Esad for each row, where (a) and (d) are for a beamsplitter width
of Esad = 1 meV, (b) and(e) are for Esad = 10 meV and (c) and (f) are for Esad = 100
meV.

It is clear from these heatmaps that the closer in width the electron wavepacket
is to the width of the beamsplitter, the more important it becomes to take into
account the energy dependence. For example, for Esad = σE = 1 meV, the energy
independent calculation of the visibility significantly overestimates the range of E0

values for which the visibility is optimised.
The difference between the energy dependent and energy independent ranges

can be seen in more detail in Fig. 3.10, for varying E0 − V0. Each of the lines is
for a different magnetic field, and we can see that as the magnetic field increases,
the overall percentage difference between the energy dependent and energy inde-
pendent simulations decreases. Interestingly, we see that for the chosen values of
beamsplitter width, the two simulations never match completely. They appear to
converge as E0 → 100 meV, however they are never identical, and the difference
is noticeably large for beamsplitter widths above those which are experimentally
reasonable. The fidelity is defined as

∫
dE ν̃edepν̃indep, where νedep and νindep are the

visibilities for the energy dependent and independent cases respectively, normalised

by ν̃ = ν/
√∫

dE ν2 such that a perfect overlap would correspond to a fidelity of 1.

In the case of the visibility at constant E0 for varying values of l0, as shown in
Fig. 3.8 d, e and f, there is not the same dependence on energy on the visibility, as
the transmission and reflection coefficients do not depend on the path length at all.

This follows the same logic as above. When the beamsplitter width is small (ap-
proaching the width of the wavepacket itself), the wavepacket experiences multiple
transmission and reflection coefficients at different points within itself, such that
it no longer interferes perfectly at the second beamsplitter. If we assume a 50:50
beamsplitter, this effect is non-existent, so when comparing the energy dependent
and independent cases, they differ significantly more in the narrow beamsplitter
regime.

Beggi et al. (following [88]) give a simple theoretical treatment of the visibility
that is the same as the above but does not take into account the change in path
length and therefore phase obtained due to the uncertainty in the electron energy.
Translating into our notation, Beggi’s result for the visibility reads

ν = exp

{
−1

2

σ2
E

(~v0)2
l20

}
. (3.66)

Thus, relative to this result, our theory predicts two effects: the raw path difference
l0 is shifted to an effective value of l0 + loff and the width is reduced by a factor of
Ω2/(Ω2 + ω2

c ) ≤ 1. Beggi et al. also describe full numerical simulations of electron
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Figure 3.10: The fidelity as a percentage similarity of the energy dependent to energy
independent visibilities for varying E0 are shown of the plots in Fig. 3.9, for three chosen
magnetic fields over a continuous range of beamsplitter widths.

transit through a MZI. In the results from these simulations, they do find evidence
of the first of these effects. A numerical fit to their simulations gives a value of
loff ≈ 150 nm, which is within the range described here.

They do not find evidence of the latter effect. Indeed, their simulations show
that the width Σl is increased by a factor in the range 1–2 that depends on the
initial width σE. This they attribute to the energy dependence of the transmission
probabilities, which is presumably captured by the shift from Σl to Σ′l.

3.9 Chapter summary

In this chapter we have calculated the current in an electronic MZI with hot-
electrons. We have established the effect of small changes in the energy of an
electron on the length of the paths travelled inside the interferometer. The elec-
tron wavepacket generates two phase contributions which depend on the geometry
of the system: the dynamical phase and the AB phase. We have found here that
the small changes in energy that cause small changes in the path length actually
have a large effect on the overall phase of the electron on detection. If the electron
picks up slightly different phases due to the uncertainty of the electron energy, the
electron will not interfere perfectly at the second beamsplitter, which reduces the
amplitude of the current and therefore the visibility of the system. We have found
that this effect of phase averaging can be reduced completely by introducing an off-
set to the path lengths of the upper and lower arms. This is contrary to the logic in
optics, where the optimum setup is to have paths the same length, as has also been
discussed in previous analytic treatment of electronic phase averaging [57, 66, 89].
The need for an offset, loff , can be explained by the chirality of the edge channels
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in the system. It’s a lot easier for an electron to travel down in one direction than
in the other, which means that there is an added travel time associated with one of
the paths, which can be compensated for by making one of the paths longer than
the other.

We also compare with the work of Beggi et al. [89] who derived a visibility
with a zero offset. In their full simulations of electron transit through an MZI,
however, they did find evidence of the maximum visibility being located at some
path difference away from zero, which was in the same region as that predicted by
our model. For hot-electrons, we find that this is on the order of 1 µm, which is a
significant fraction of the size of the interferometers, so ensuring that this offset is
taken into account is of significant importance in experiments.

We also investigated what happens when, instead of assuming 50:50 beamsplit-
ters, we take into account the energy dependence of the beamsplitter according to
the Fertig-Halperin model [86]. In the case of our calculations, we take into account
that the energy of the electron is spread around the central energy, which means
that on arrival at the beamsplitter, it will interact with the saddle potential differ-
ently across its width in energy space. We have found that for beamsplitters with
an energy width much larger than that of the wavepacket, they interact as if the
beamsplitter was not energy dependent. The reason for this is that the electron
only “feels” a small part of the beamsplitter energy, such that the behaviour of the
beamsplitter is the same across the energy width of the electron. As the wavepacket
always has some width in energy, the energy dependent and energy independent
models are never identical, however in the case of beamsplitters much wider than
the wavepackets the energy independent model of the beamsplitter is valid. This
is not so for narrower beamsplitters. As the energy width of the beamsplitter de-
creases towards the energy width of the wavepacket, the action of the beamsplitter
on the wavepacket varies across the entire energy width of the wavepacket, affecting
both the phase picked up by the wavepacket and the transmission and reflection
probabilities.
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Chapter 4

Arrival time distributions in
Mach-Zehnder interferometers

A
s well as looking at the visibility of an electron arriving at a detector in a MZI, we
can also investigate a property called the arrival time distribution (ATD), which

describes the probability density that an electron will arrive at the detector at a
certain time. These are calculated using the probability distribution of the electrons,
taking into account all of the phases, including the full beamsplitter phases.

In this chapter, I will derive the ATD of the electrons using the scattering ma-
trices. I start with a simplified version of the beamsplitters, before introducing the
full beamsplitter phases and transmission and reflection coefficients. At the end of
this chapter, I will introduce the concept of asymmetry of the beamsplitters and
calculate the ATDs for different levels of asymmetry.

The numerical results in this chapter use the full equations for the potential of
the system, while the analytics use an approximate form. While less accurate than
the full numerics, these analytics are shown to be good approximations and can be
used as a much faster way to investigate the effects of changes in parameters without
the use of the time consuming numerical simulations. For example, it is useful to
use the analytics to establish an area to focus on before using the numerics to obtain
a much more detailed and accurate picture. It is also useful to give some intuition
as to the behaviour, rather than relying only on the numerical data.

4.1 Arrival time distributions

The arrival time distribution of an electron is the probability density of how likely
an electron of a given energy is to arrive in a channel by at that time. The ATDs
are given by multiplying the probability distribution of an electron being detected
in one of the channels by the velocity of the electron. Considering first an electron
being detected in the upper channel, we can combine Eq. (3.9) and Eq. (3.2) to find
the upper component of the wavefunction in time, which is given as

|ΨU(t)〉 =
NαL

2π

∫
dke−α(k−k0)2rMZIe−iEkt/~ |0k〉 . (4.1)

Electron transport occurs explicitly in the x-direction, so we can take the trace over
y to average over the y contributions and give the probability distribution for the
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upper channel as

PU(x, t) =

∫
dy|〈xy|ΨU(t)〉|2. (4.2)

As |〈xy|ΨU(t)〉|2 = 〈xy|ΨU(t)〉∗ 〈xy|ΨU(t)〉, the probability density is

PU(x, t) =
N2
αL

(2π)2

∫
dy

∫
dk

∫
dk′e−α(k−k0)2e−α(k′−k0)2e−i(Ek−Ek′ )t/~

× rMZI
k

(
rMZI
k′

)∗
eikxe−ik

′xχ0k(y)χ∗0k′(y). (4.3)

We can now take the trace over y to get an expression in terms of only x and t,
using Eq. (3.5)

∫
dyχ∗0k′(y)χ0k(y) =

∫
dy

1√
πlΩ

exp

{
−1

2

[
y − yG(k)

lΩ

]2
}

exp

{
−1

2

[
y − yG(k′)

lΩ

]2
}

(4.4)

= exp

[
−µ

2

4
(k − k′)2

]
, (4.5)

where
µ =

ωc
Ω
lΩ. (4.6)

such that the probability density becomes

PU(x, t) =
N2
αL

(2π)2

∫
dk

∫
dk′e−α(k−k0)2e−α(k′−k0)2 exp

[
−i(Ek − Ek′)t

~

]

× rMZI
k

(
rMZI
k′

)∗
ei(k−k

′)x exp

[
−µ

2

4
(k − k′)2

]
. (4.7)

We can now introduce new integration variables, which will make the numerical
integration easier to perform. Recalling the definition k = k0 + ∆k, we can define

q = ∆k −∆k′ = k − k′; q′ = ∆k + ∆k′ = k + k′ − 2k0, (4.8)

such that
Ek − Ek′ = ~v0(k − k′) = ~v0q. (4.9)

As before, we assume that the electron wavepacket moves with constant velocity
along its whole width, such that the velocity depends on k0 only, rather than k and
k′. We can also combine and rearrange to give expressions for k and k′ in terms of
q and q′,

k =
q + q′

2
+ k0; k′ =

q′ − q
2

+ k0. (4.10)

The integration now becomes
∫

dk

∫
dk′ → 1

2

∫
dq

∫
dq′. (4.11)

where the half comes from the Jacobian. This means that we have an equation for
the probability distribution of

PU(x, t) =
N2
αL

8π2

∫
dq

∫
dq′e−

1
2(α+ 1

2
µ2)q2e−

1
2
αq′2eiq(x−v0t)rMZI

k0+ 1
2

(q+q′)

(
rMZI
k0+ 1

2
(q′−q)

)∗

(4.12)
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and we can use the same method to get an equation for the lower path of

PL(x, t) =
N2
αL

8π2

∫
dq

∫
dq′e−

1
2(α+ 1

2
µ2)q2e−

1
2
αq′2eiq(x−v0t)tMZI

k0+ 1
2

(q+q′)

(
tMZI
k0+ 1

2
(q′−q)

)∗
.

(4.13)
In order to calculate the ATDs, we can multiply this probability distribution by
velocity, which gives

AU(xD, τ) =v0PU(xD, τ), (4.14)

AL(xD, τ) =v0PL(xD, τ). (4.15)

Here, xD is the detector position, which we will choose as 0.

4.2 Energy dependent beamsplitters

Previously, we have set the beamsplitter contribution to the phase to 0. In this
section we will introduce the beamsplitter phases, starting with a simplified version,
where we set ρi = ρ̃i = θ̃i = 0 and θi = π, which gives us equations for the upper
and lower wavefunctions of

rMZI =
√
R1R2e

iφU +
√
T1T2e

i(π+φL), (4.16)

tMZI =
√
R1T2e

i(π+φU ) +
√
T1R2e

i(π+φL). (4.17)

and derive the beamsplitter portions of Eq. (4.12) and Eq. (4.13), i.e.

rMZI
k

(
rMZI
k′

)∗
=

(√
R

(k)
1 R

(k)
2 eiφU (k) +

√
T

(k)
1 T

(k)
2 ei[π+φL(k)]

)

×
(√

R
(k′)
1 R

(k′)
2 e−iφU (k′) +

√
T

(k′)
1 T

(k′)
2 e−i[π+φL(k′)]

)
, (4.18)

tMZI
k

(
tMZI
k′

)∗
=

(√
R

(k)
1 T

(k)
2 ei[π+φU (k)] +

√
T

(k)
1 R

(k)
2 ei[π+φL(k)]

)

×
(√

R
(k′)
1 T

(k′)
2 e−i[π+φU (k′)] +

√
T

(k′)
1 R

(k′)
2 e−i[π+φL(k′)]

)
. (4.19)

For the purposes of legibility, we will continue to refer to everything in terms of k
and k′ for now, but we will switch to the q, q′ variables later on when it has been
simplified as far as possible in current terms. The beamsplitter transmissions have
the saddle point form as discussed in Chapter 3, given by

Ti(Ek) =
1

1 + exp
[
−π(Ek−V0)

Esad

] (4.20)

which is in terms of E as a function of k. The energy width of the beamsplitter is
Esad.
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4.3 Phases

We can now consider the phases for the upper and lower part by first expanding the
phase with respect to the wavenumber k around k0, with ∆k = k − k0, such that

φU/L(k) = φ
U/L
0 + (k − k0)φ

U/L
k1 , (4.21)

with

φ
U/L
0 = φU/L(k0); φ

U/L
k1 =

dφU/L

dk

∣∣∣∣
k=k0

. (4.22)

Applying this to our phase factors we get

rMZI
k

(
rMZI
k′

)∗
=

4∑

n=1

dUn exp
[
i
(
aUn + bUn q + cUn q

′)] (4.23)

tMZI
k

(
tMZI
k′

)∗
=

4∑

n=1

dLn exp
[
i
(
aLn + bLnq + cLnq

′)] . (4.24)

with the coefficients a
U/L
n , b

U/L
n , c

U/L
n and d

U/L
n as in table 4.1. The probability density

of the upper and lower paths can now be written as

PU/L(x, t) =
N2
αL

8π2

4∑

n=1

dU/Ln eia
U/L
n

∫
dq′ exp

[
−α

2
q′2 + icU/Ln q′

]

×
∫

dq exp

[
−
(
α + 1

2
µ2
)

2
q2 + i

(
x− v0t+ bU/Ln

)
q

]
. (4.25)

Now that we know how the phases combine in the integral, we can return to the
geometric phases from Chapter 3, and split these in terms of their relationship to k.

a
U/L
n b

U/L
n c

U/L
n

(
d
U/L
n

)2

PU

n = 1 0 φUk1 0 R
(k)
1 R

(k)
2 R

(k′)
1 R

(k′)
2

n = 2 φU0 − φL0 − π 1
2

(
φUk1 + φLk1

)
1
2

(
φUk1 − φLk1

)
R

(k)
1 R

(k)
2 T

(k′)
1 T

(k′)
2

n = 3 −
(
φU0 − φL0 − π

)
1
2

(
φUk1 + φLk1

)
−1

2

(
φUk1 − φLk1

)
T

(k)
1 T

(k)
2 R

(k′)
1 R

(k′)
2

n = 4 0 φLk1 0 T
(k)
1 T

(k)
2 T

(k′)
1 T

(k′)
2

PL

n = 1 0 φUk1 0 R
(k)
1 T

(k)
2 R

(k′)
1 T

(k′)
2

n = 2 φU0 − φL0 1
2

(
φUk1 + φLk1

)
1
2

(
φUk1 − φLk1

)
R

(k)
1 T

(k)
2 T

(k′)
1 R

(k′)
2

n = 3 −
(
φU0 − φL0

)
1
2

(
φUk1 + φLk1

)
−1

2

(
φUk1 − φLk1

)
T

(k)
1 R

(k)
2 R

(k′)
1 T

(k′)
2

n = 4 0 φLk1 0 T
(k)
1 R

(k)
2 T

(k′)
1 R

(k′)
2

Table 4.1: Coefficients for the upper and lower channels. Here we have d
U/L
n > 0.
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4.4 Dynamical and Aharonov-Bohm phases

We can recall the expressions for the geometric phases from Chapter 3, where YU and
YL are the vertical contributions to the interferometer path and X is the horizontal
path. When we include a small change in energy, ∆E, these contributions become
YU + ∆y and YL −∆y respectively, and X becomes X ± 2∆y, for the upper/lower
paths. We have the dynamical phase,

φ
U/L
dyn = kxU/L (4.26)

where xU and xL are the upper and lower paths, which gives the dynamical phases
as

φ
U/L
dyn = k

[
2YU/L ±X + 4∆y − d

]
(4.27)

and the Aharonov-Bohm phase,

φ
U/L
AB = − e

~

∫ X+2∆y

0

(∓B[YU/L ±∆y]) dx = ± e
~
B[YU/L ±∆y][X ± 2∆y] (4.28)

giving

φ
U/L
AB = ± e

~
BX(YU/L ±∆y) (4.29)

which can be written in terms of k0, as ∆y = (ω2
c/Ω

2) (~/eB) (k − k0). When
combined, our total phases from the upper and lower paths respectively are

φU(k) =
eB

~
XYU +

(ωc
Ω

)2

X(k − k0) + k [2YU +X − d] + 4
(ωc

Ω

)2 ~
eB

(
k2 − k0k

)

(4.30)

φL(k) = −eB
~
XYL +

(ωc
Ω

)2

X(k − k0) + k [2YL +X − d]− 4
(ωc

Ω

)2 ~
eB

(
k2 − k0k

)

(4.31)

So using the relations in Eq. (4.22) we get

φU0 =
eB

~
XYU + k0 [2YU +X − d] (4.32)

φUk1 =
(ωc

Ω

)2

X + [2YU +X − d] + 4
(ωc

Ω

)2 ~
eB

k0 (4.33)

φU0 = −eB
~
XYL + k0 [2YL +X − d] (4.34)

φUk1 =
(ωc

Ω

)2

X + [2YL +X − d]− 4
(ωc

Ω

)2 ~
eB

k0 (4.35)

We can use these simplified delay times to investigate the effect of a change in
the energy, Epeak, (which we recall from Chapter 3 is the energy used to calculate
the optimal path lengths) on the ATD. Figure 4.1 shows the ATDs for an electron
travelling through an interferometer with an energy of E0 = 100 meV, where in each
panel the value of Epeak has been changed such that the interferometer is no longer
optimised for use with an electron of this energy. We can see in Fig. 4.1 that when
Epeak = E0 = 100 meV, as in (a), the lobes from the upper and lower paths arrive
at the same time, such that we have maximum interference between the two paths.
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Figure 4.1: The ATD for electrons with the simple model of the beamsplitters from Section
4.2. Parts (a), (b), (c) and (d) show the results for Epeak = 100, 90, 75 and 125 meV
respectively. We can see the two lobes from the upper and lower paths clearly, and
the interference that occurs in their overlap. Other parameters for these simulations are
σE = 1 meV, Esad = 10.52 meV, B = 11 T, and the lengths of the interferometer arms
had the horizontal length X = 5 and the vertical lengths YU = 2 µm, YL = YU − 1/2loff ,
where loff is calculated at each value ofEpeak.

If we change Epeak such that the path lengths are different to the optimum, we see
that the two lobes no longer meet at E0 = 100 meV. When the path offset isn’t too
far from optimised, as in (b) where Epeak = 90 meV, we still see some interference,
however the amplitude of this interference, and therefore the visibility will no longer
be maximised. The further from the optimum path lengths that we get, the less
interference we see, until the electrons arrive at such different times that there is
no longer any interference observed. In Fig. 4.1 (c) and (d) we see the case where
Epeak = 75 meV and Epeak = 125 meV respectively. We can see clearly here that the
lower path stays in position while the arrival from the upper path is the one that
changes. This is because of the way we have defined YU and YL and their dependence
on loff .

4.5 Delay times

If we assume a narrow wavepacket where
√
α � k−1

0 , we can sum Eq. (4.27) and
Eq. (4.29) and linearise with respect to ∆k to obtain the total phases picked up
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along the arms

φp ≈ ±
eB

~
XYU/L + k0(2YU/L − d+X)

+ ∆k

{
Ω2 + ω2

c

Ω2
(2YpU/L+X)− d± 4k0l

2
Ω

(ωc
Ω

)}
. (4.36)

As ∆y is very small in comparison to the size of the interferometer, we have very
small changes in the paths. The validity of these expressions also relies on the path
changes being small relative to the size of the MZI, i.e.

√
α � l2c/(2YU/L + X) for

ωc � ωy. The beamsplitter transmission and reflection probabilities vary slowly
with k when compared with the phases, so we can evaluate T and R at the central
wave number k0. Linearising the dispersion, as in Eq. (3.29) such that we have
Ek ' Ek0 + ~v0∆k and performing the integration in Eq. (4.12) combined with
Eq. (4.14) we get an equation for the ATD in the upper channel of the interferometer
of

A(t) ≈
√

v2
0

π (2α + µ2)

{
R

(0)
1 R

(0)
2 exp

[
−{xD − v0(t− τU)}2

2α + µ2

]

+T
(0)
1 T

(0)
2 exp

[
−{xD − v0(t− τL)}2

2α + µ2

]
+ 2

√
R

(0)
1 R

(0)
2 T

(0)
1 T

(0)
2

× exp

[
−v

2
0(τU − τL)2

8α
−
{
xD − v0(t− 1

2
τL − 1

2
τU)
}2

2α + µ2

]
cos Φ0

}
. (4.37)

We can see that the ATD shows two moving lobes, resulting from travel round the
upper and lower paths, and an interference term between them. The delay time of
the two lobes is given by

τp = ~
dΦp

dE

∣∣∣∣
E=E0

=
1

v0

dΦp

dk

∣∣∣∣
k=k0

, (4.38)

where

ΦU = ρ1 + ρ2 + φU ; ΦL = θ1 + θ̃2 + φL. (4.39)

The interference term shows oscillations as a function of the central phase difference

Φ0 = ΦU − ΦL|k=k0
= −πeB

~
a0 + k0l0 + ΦBS

0 , (4.40)

expressed in terms of the area enclosed by the central path, a0, and the corresponding
central path difference, l0. We have also identified the beamsplitter contribution

ΦBS
0 = ρ1 − θ1 + ρ2 − θ̃2

∣∣∣
k=k0

. (4.41)

Integrating Eq. (4.37) over time, we obtain the total probability of detection at the
output to be

Ptot = R
(0)
1 R

(0)
2 + T

(0)
1 T

(0)
2 + 2

√
R

(0)
1 R

(0)
2 T

(0)
1 T

(0)
2 D cos (Φ0) (4.42)
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where D = exp [−v2
0(∆τ)2/ (8α)], depends on the difference in delay times

∆τ =τU − τL
=v−1

0

d

dk
[φU − φL]k=k0 + ∆τBS. (4.43)

with

∆τBS = v−1
0

d

dk

(
ρ1 + ρ2 − θ1 − θ̃2

)
, (4.44)

the contribution due to the beamsplitters. The visibility of oscillations displayed by
Eq. (4.42) is

V = D ×
2

√
R

(0)
1 R

(0)
2 T

(0)
1 T

(0)
2

R
(0)
1 R

(0)
2 + T

(0)
1 T

(0)
2

(4.45)

such that D is observed to be the non-trivial contribution to the visibility that arises
from phase averaging. We can see from this that when the beamsplitter is 50:50,
V → D. Writing α = (~v0/2σE)2 in terms of the energetic width σE of the initial
wave packet, we can rewrite this phase-averaging factor as

D = exp

{
−1

2

(
l0 + loffset

Σl

)2
}
. (4.46)

This is the same as the phase averaging factor in Chapter 3, now with an expression
for loffset which also includes a contribution from the delay time of the electron,

loffset =
Ω2v0

Ω2 + ω2
c

[
8ωc
ω2
y

+ ∆τBS

]
, (4.47)

and the coherence length of the electron wave packet

Σl =
Ω2

Ω2 + ω2
c

~v0

σE
. (4.48)

Addressing the beamsplitter contribution in the above, if we make no further as-
sumptions about the beamsplitters other than that they act symmetrically on elec-
trons coming from different directions, the beamsplitter phases obey

ρi = ρ̃i = θi − π/2 = θ̃i − π/2, (4.49)

at all wave numbers k. From this it follows that the delay difference is zero, ∆τBS =
0, and the beamsplitters do not affect the phase averaging. The effect of asymmetric
beamsplitters is discussed in Sec. 4.7.

Then, assuming symmetric beamsplitters and parameters typical of hot-electron
experiments we find the offset length to assume a value loffset ≈ 700 nm. In contrast,
the coherence length is Σl ≈ 34 nm for a wave packet of energetic width σE = 1 meV.
Thus, it is essential that the construction of a hot-electron MZI be such that the
path difference satisfies l0 ≈ −loffset at the injection energy, E0 if interference is to
be observed. At high magnetic fields, the offset length is largely independent of the
field strength because the dependency from the cyclotron frequency cancels with
that of the velocity.
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4.6 Numerical results

We can use the transmission and reflection coefficients, along with the beamsplitter
and geometrical phases to numerically simulate the arrival time distributions. These
numerical models are useful because they are more accurate than the analytical
approximations, however they take a lot more time to obtain results than using the
analytics. They can be used in conjunction with one another, with the analytics
giving a quick way to find an interesting location to look in, to then use the numerics
to investigate in more detail. The predicted offset found in Chapter 3 depends on
v0, and therefore energy, E0, so we can reintroduce the variable Epeak at which this
loff is optimised, and phase averaging effects vanish. The phase averaging factor can
then be written as

D = exp

{
−1

2

(
E0 − Epeak

ΣE

)2
}

(4.50)

where

ΣE =
~ω2

yEpeak

4ωcσE
(4.51)

is the energetic width of the visibility peak. For all of the calculations in this section,
we set Epeak = 100 meV such that we obtain an offset of loffset ≈ 700 nm. We can
then use this loffset to define the lengths of the beamsplitter arms.

We focus first of all on the scenario where the beamsplitters are symmetric and
identical, i.e. T1 = T2 = T . As in Chapter 3, we consider the Fertig-Halperin saddle
model of a quantum point contact [86], the transmission of which is

T =
1

[1 + exp (−πε)] (4.52)

with ε = (E−V0)/Esad; where Esad = ~ω2
BS/(2ωc) with ~ωBS an energy characterising

the curvature of the saddle. The phase associated with transmission through the
beamsplitter is 1

θ = −1

2
ε+X

√
X2 + ε+

1

2
ε ln

( |ε|
2

)
− εg

(
X2/ε

)
+ Im

[
ln Γ

(
1

2
− i

2
ε

)]
, (4.53)

where g(x) = ln
∣∣∣
√
|x|+ sgn(x)−

√
|x|
∣∣∣, X =

[
(d/lc)−

(
2ε(0)lc/d

)]
/
√

8, and ε(0) =

(E0−V0)/Esad. In this model, the size d of the beamsplitter region is rather arbitrary,
and here we set d = 3

√
2lc. As explained in the appendix of Ref. [39], the finiteness of

this beamsplitter region means that the theory is only valid for energies |E − V0| ≤
~ω2

BSd
2/ (4ωcl

2
c). The other three beamsplitter phases are obtained through the

relation (4.49) in the symmetric case.
Figure 4.2 shows the numerical energy-resolved arrival time distribution, plotted

about the mean arrival time t =
∫
dt t A(t). Parts (a) and (b) of this figure show

results for when the effective width of the beamsplitter transmission Esad is large
compared with the visibility width of Eq. (4.51) (~ωBS = 100 meV giving Esad ≈
263 meV compared with a width of ΣE ≈ 10 meV). In this case, both interferometer
paths contribute to the arrival time distribution across the range shown and the

1The derivation of these phases was conducted by Sungguen Ryu, one of the coauthors of our
paper, Ref. [39].

56



CHAPTER 4. ARRIVAL TIME DISTRIBUTIONS IN MACH-ZEHNDER
INTERFEROMETERS

−20

−10

0

10

20

E
0
−

E
p
e
a
k

[m
eV

]

-2 -1 0 1

−20

−10

0

10

20

2
t− t̄ [ps]

E
0
−

E
p
e
a
k

[m
eV

]

-1 0 1 2
t− t̄ [ps]

(a) (b)

(c) (d)

Figure 4.2: The arrival time distributions of electrons after they travel through an MZI as
a function of time and injection energy E0, calculated through the numerical evaluation
of Eq. (4.14). The MZI path difference l0 is set such that l0 = −loffset at an energy
of Epeak = 100 meV. Results are plotted about the mean arrival time t at each energy.
Panels (a) and (b) show results for ~ωBS = 100 meV with V0 = 100 meV and V0 = 120 meV
respectively (marked with horizontal lines). With this beamsplitter width, interference is
observed around E0 = Epeak and the position of V0 is unimportant. Panels (c) and (d)
show the same but with ~ωBS = 20 meV. For this narrower beamsplitter, interference is
observed around V0 instead.

picture captured by analytic expression Eq. (4.37) is very much born out here. We
see two lobes in the arrival time distribution that coincide when E0 = Epeak such
that interference takes place. Figure 4.3 shows the visibility extracted from this
numerical data (symbols), in comparison with the analytic result of Eq. (4.45) (solid
lines). For the wide beamsplitter case shown in Fig. 4.3a, we see that the visibility is
hardly affected by moderate changes in the centre of the beamsplitter transmission
V0. Thus we see the whole of the Gaussian visibility feature predicted by Eq. (4.50).
The cross pattern in Fig. 4.2 (a) and (b) is caused by the beamsplitter acting as
essentially a 50:50 beamsplitter, due to the fact that the electron only feels a small
part of the beamsplitter. The paths in the arrival times are then split between
electrons that followed the upper and lower paths equally.

In contrast, Figs. 4.2 (c) and (d) show results for a narrower beamsplitter with
~ωBS = 20 meV and Esad = 10.52 meV, which is approximately the visibility width
ΣE. In this case, the appearance of fringes is heavily influenced by the beamsplitter
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Figure 4.3: The MZI visibility as a function of injection energy E0 for three values of the
beamsplitter centre, V0 = 100, 110 and 120 meV. Part (a) shows results for a beamsplitter
width ~ωBS = 100 meV; part (b) for ~ωBS = 20 meV. Numerical results determined from
Fig. 4.2 are shown as symbols; the analytic expression of Eq. (4.45) is shown as solid lines
and the phase-averaging factor D of Eq. (4.46) is shown as a dashed line.

transmission. For the upper and lower energy ranges of Fig. 4.2c, only a single path
of the MZI is traversed, and thus interference is restricted to a narrow range around
V0 where the product TR is significantly different from zero. The energy at which
this occurs changes as we vary the beamsplitter centre V0, as can be appreciated
in Fig. 4.2d where V0 = 120 meV and the fringes occur at the top of the displayed
energy range. These changes are apparent in the visibility plots of Fig. 4.3 (b),
where we see numerical visibility for three different values of V0. We note that
the phase-averaging factor D (dashed line) acts as an approximate envelope for the
maximum visibilities as V0 is changed.

4.7 Role of the beamsplitter phases

The effect of the beamsplitter phases on the MZI properties can be captured by the
two quantities: the mean delay

τ̄BS =
1

2
v−1

0

d

dk

(
ρ1 + ρ2 + θ1 + θ̃2

)
, (4.54)

and the delay difference of Eq. (4.44). In the symmetric case, the wave packet delay
given by the phase of Eq. (4.53) is

τθ =
~

2Esad

{
ln
|ε|
2
− 2g

(
X2

ε

)
− Reψ

(
1

2
+
i

2
|ε|
)}

(4.55)

where ψ is the digamma function. In this case, since all beamsplitter delay times are
identical, we have τBS = 4τθ and ∆τBS = 0. Then as noted above, the beamsplitter
plays no role in determining the interference, only in shifting the overall position of
the arrival time distribution. We now introduce an asymmetry into the action of
the beamsplitters by considering a saddle with a different energetic width on either
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side of the midpoint. Taking into account the asymmetry of the beamsplitters, the
phases become 2

θ(E) =
∑

α=L,R

[
−1

4
εα +

1

2
Xα(E)

√
X2
α(E) + εα +

1

4
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4
− 1
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]
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4
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4
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]
, (4.56)

ρ(E) = −1

2
εL +XL(E)

√
X2

L(E) + εL +
1

2
εL ln

|εL|
4
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and transmission and reflection coefficients which are calculated as

T (E) =
E1R

E1L

e−
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, (4.58)
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, (4.59)

where the subscripts L and R here denote the left and right sides of the beamsplitter.
When εR = εL = ε, we can see that the above equations cancel to the symmetric
case, as εR/L = (E − V0)/Esad

L/R.
We can introduce the parameter η, which describes the degree of asymmetry

of the saddle, with η = 0 equivalent to the symmetric case above, and η → 1 an
extreme limit of asymmetry in which the beamsplitter all but closes on one side.
This is chosen such that the mean width

1

2

(
Esad

L + Esad
R

)
=

~ (ω2
L + ω2

R)

4ωc
=

~ωBS

2ωc
, (4.60)

is independent of η and compares directly with the expression Esad in the symmetric
case. Here we use ωL and ωR, where ~ωL/R are the confinement energies on either
side of the saddle. In the symmetric case we set ωL = ωR = ωBS and the L/R
subscript can be dropped, however for the asymmetric case we set

ωL =
√

2ωBS cos

[
1

4
π(1 + η)

]
, (4.61a)

ωR =
√

2ωBS sin

[
1

4
π(1 + η)

]
. (4.61b)

2The derivation of these phases was conducted by Sungguen Ryu, one of the coauthors of our
paper, Ref. [39].
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Figure 4.4: Panel (a) shows beamsplitter contribution to the difference in delay times
∆τBS as a function of beamsplitter asymmetry parameter η for various injection energies
E0. Panel (b) shows the corresponding mean beamsplitter delay time τ̄BS. The parameters
here are B = 11 T, σE = 1 meV, Esad = 100 meV, V0 = 100 meV and ~ωBS = 20 meV.

The energy range for which this model of the beamsplitter is valid is

|E − V0|
~

≤
(
d

lc

)2
ω2
BS

2ωc
cos2

[π
4

(η + 1)
]
. (4.62)

Thus, as the degree of asymmetry increases, the region of validity decreases, and
goes to zero for η → 1. Fig. 4.4 shows the delay-time difference and the mean delay
of the beamsplitters as a function of asymmetry for typical parameters and for
several different values of E0. We see that both these quantities have a very similar
dependence on both η and E0, with the main difference being that ∆τBS → 0 for
η → 0 whereas τBS tends to the finite value of Eq. (4.55). For a given value of η,
the delay difference is maximised when E0 = V0. As η increases, so does ∆τBS and,
for E0 = V0 this time even diverges in the limit η → 1.

The size of the delay difference determines the role that the beamsplitters play
in the interference pattern. Taking an example of η = 1/2 with E0 = V0 = Epeak =
100 meV we obtain ∆τBS ≈ 0.1 ps. Since this is small compared with temporal
width of the wave packet, ∼ 1 ps, this level of asymmetry will not significantly
affect the observed interference. In contrast, For larger asymmetries, e.g. η = 3/4,
we find ∆τBS = 0.7 ps and since this is comparable with the temporal width, we
can expect beamsplitter phases to be important here. Fig. 4.5 shows the energy-
resolved arrival time distribution of an electron for two values of asymmetry: (a)
η = 1/2 and (b) η = 3/4, with other parameters that match Fig. 4.2c (which
may be thought of as the η = 0 case in this sequence). Fig. 4.5a shows that this
level of asymmetry changes the arrival distribution very little, with the main effect
being that the distribution becomes non-symmetric about E0 − V0 = 0. This stems
from a corresponding asymmetry about V0 in the transmission probability of the
beamsplitters. Increasing η further, as in Fig. 4.5c, we observe that the interference
pattern becomes significantly modified indicating that the beamsplitter phases here
are playing a significant role in determining the details of the interference. We note
that, for wider saddles [e.g. ~ωBS = 100 meV such as in Fig. 4.2a], the magnitude
of ∆τBS is substantially less than observed here and the effect on the arrival time
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Figure 4.5: As Fig. 4.2c but here with asymmetric beamsplitters with asymmetry param-
eter: (a) η = 0, (b) η = 1/2, and (c) η = 3/4. The plot in (a) is the equivalent of using
symmetric beamsplitters. Increasing the asymmetry first shifts the position of maximum
visibility [as in (b)] and then at higher levels [as in (c)] modifies the interference pattern.
The energy ranges used here are compatible with keeping the majority of the wave packet
within the window defined by Eq. (4.62).

distributions for the same level of asymmetry is negligible.

4.8 Chapter summary

In this chapter we have derived a wavepacket picture of the interference in a hot-
electron MZI, and focused on the energy-dependent arrival time distribution, as can
be read out in experiment [74, 75]. We calculated the arrival time distribution of the
electron wavepackets, investigating the effect of the width of the beamsplitters on
these arrival times. First of all, we introduced a simplified model of the beamsplitter
phases to get an idea of how they will affect the arrival time distributions. We have
investigated what happens when the injection energy of the electron deviates from
the energy for which the path lengths are optimised. The results of these numerical
simulations clearly showed two lobes for the electrons arriving from the different
paths. If the electron energy is not that for which the path lengths have been
optimised, we see evidence that the electrons arrive at different times, meaning
there is reduced or no interference observed between the lobes.

We have then included the complete beamsplitter phases, as seen in Ref. [39],
in determining interference patterns. We found that for energetically wide beam-
splitters, the size of visibility features is essentially determined by the single-particle
coherence length Σl. The central energy of the beamsplitter has little effect on the
arrival time for electrons in this case, as the electrons feel only a small percentage
of the width, and therefore the same energy across the whole. Away from this limit,
the transmission properties of the beamsplitters become important for determining
the range of energy over which oscillations can be observed, as the beamsplitter is
now of the same order of size as the electron itself. Looking at Fig. 3.4, we can
see that if the wavepacket is approximately the same size as the beamsplitter, it
will experience a range of energies, and therefore transmission and reflection coef-
ficients. When modelling these systems, it is therefore important to include these
beamsplitter phases and transmission and reflection coefficients in simulations to
get a realistic view of what is happening. Concerning the contribution of the beam-
splitters to the travel times and hence to phase averaging, if the beamsplitters are
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symmetric or if they are asymmetric but alike and aligned, then they only contribute
an overall delay to the arrival times, and no loss of visibility is observed. On the
other hand, opposing asymmetries in the beamsplitters can affect both the quality
and the structure of the interference patterns. However, we found that this only
becomes relevant at rather high degrees of asymmetry.

We also calculated the visibility of the electrons from the arrival time distribu-
tions, and compared these to the analytic approximations for visibility. We found
that for wide beamsplitters, the visibility is not affected by the central energy of
the beamsplitter, V0, however when the beamsplitter is narrower, the maximum
visibility decreases with distance away from Epeak. Without the transmission and
reflection coefficients included, we see that the phase averaging factor, D is a good
model for the maximum visibility for values of E0 6= Epeak.
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Part III

LO-phonon emission
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Chapter 5

LO-phonons in electron quantum
optics

I
n the same way that a photon is a quanta of light [90], a phonon is a quanta
of sound waves. More specifically, they are the collective excitation of atoms in

a crystalline structure [91]. In this chapter, I will describe the history of phonon
emission in hot-electron quantum-optics experiments, before deriving some of the
general tools that we will use in Chapter 6.

5.1 Phonons in condensed matter systems

Phonons come in two main categories: optical phonons and acoustic phonons. The
type of phonon depends on the direction of its travel. If the atoms in the crystal
are displaced in the same direction of propagation of the wave, it is known as an
acoustic phonon, causing the atoms to behave in the same way as if a sound wave was
passing through. If the atoms move out of phase with each other, this is known as
an optical phonon, so named because in certain types of crystal, they can be excited
by infrared radiation. While acoustic phonons are also relevant in single-electron
systems [22, 24, 92, 54], this thesis will concentrate only on LO-phonons.

LO-phonons have different characteristic energies depending on the material of
the system they are found in. In GaAs, they have an energy of 36 meV, and are
approximately dispersionless [92], so they are easy to distinguish from other effects
in experiments, as we will discuss in the next section.

5.2 Experimental observations

In 2011, the relaxation mechanisms of electrons above the Fermi level were inves-
tigated in detail by Taubert et al. [92]. In their paper, they investigate multi-
ple relaxation methods, including electron-phonon interactions. Their experiments,
conducted for a range of magnetic fields, found that as the magnetic field increases,
the role of LO-phonon emission in electron relaxation becomes dominant. This is
actually the opposite to the results of the 2013 study by Fletcher et al., who set out
to investigate experimentally the detection of electrons emitted at energies around
150 meV above the Fermi level [74], and found that for the higher magnetic fields,
evidence of LO-phonon emission is absent. It should, however, be noted that the
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experiments of the latter were conducted in a magnetic field range much higher than
those in the former, which means direct comparison is not possible [74].

Both sets of experiments were performed in a GaAs/AlGaAs 2DEG such as that
described in part I [92, 74]. In Ref. [74], electrons were pumped from the source
and then detected 3µm away. These experiments were performed at two magnetic
fields, B = 6 T and B = 12 T. At the higher of the two magnetic fields, a distinct
peak shows the arrival of electrons with an energy that increases linearly with the
voltage of the input gate [74], however, for the lower magnetic field, B = 6 T,
there are further peaks observed at multiple integers of 36 meV below the injection
energy. This is evidence of LO-phonon emission, as LO-phonons in GaAs are known
to have an energy of 36 meV, so each “phonon replica”, as they are thus referred
to, represents an electron detected after having emitted one or more LO-phonons.

Since these experiments detecting the presence of LO-phonon emission, more
have been conducted specifically to investigate the rate at which LO-phonons are
emitted [24]. The study in Ref. [24] is a detailed investigation into the effect of
electron energy, edge-potential profile and and magnetic field on the rate of emission
of LO phonons. Particularly interesting is the effect of the magnetic field on the
emission rate, given the discrepencies in the experiments discussed previously [74,
92]. It was here found that the higher the magnetic field, the lower the rate of
emission of the LO phonons, although emission was still observed at B = 12 T,
unlike in [74] which was performed at much higher energies than Ref. [24]. It is
thought that the reason for this discrepency is that the behaviour changes between
the regimes the two papers studied, and so the same behaviour could not be seen in
both.

Ota et al. performed a full experimental investigation into the different mech-
anisms for relaxation in a single-electron system [25]. Their results very clearly
showed that for low energies, plasmon emission and other electron-electron interac-
tions are dominant. These Coulomb interactions are then suppressed with increasing
energy, leading to near ballistic motion of the electrons, up to higher energies around
150 meV, at which point the dominant mechanism becomes LO-phonon emission, as
indicated by the presence of phonon-replicas at integer multiples of 36 meV below
the injection energy, which is seen in Ref. [74].

5.3 Theoretical background

In 2016, Emary et al. [23] considered the effect of LO phonon emission on the
relaxation rates of single electrons in quantum Hall edge channels. The electron-
phonon interactions are described using the Fröhlich Hamiltonian [93, 94], which is
the method that has been adopted in this thesis. The Fröhlich Hamiltonian takes
the Hamiltonians describing electrons and phonons individually, and the interaction
Hamiltonian between the two, and combines these elements to describe the overall
interaction between electrons and phonons. The Hamiltonian for the electrons is
given by

He = Σn~ωnc
†
ncn, (5.1)
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where cn and c†n are the annihilation and creation operators for an electron. The
phonon Hamiltonian is written as

Hp =
∑

q

~ωLOa†qaq, (5.2)

where ~ωLO is the energy of the LO-phonons and a†q and aq are the annihilation and
creation operators for an LO-phonon. The Hamiltonian for the interaction between
the electrons and phonons is

He−ph =
∑

n

∑

q

Λn′nc
†
n′cn

(
aq + a†−q

)
(5.3)

These are derived fully in the next section.
It was found that the phonon scattering rate as a function of magnetic field

drops approximately exponentially, with the drop being significantly steeper at low
injection energies (50 meV) than high (150 meV) [23] (we can see this in our later
plots in Fig. 6.1 (a)). This is understandable in that LO phonons can only be
emitted if the electron is of a high enough energy in the first place, so for higher
energy electrons, it is possible for more phonons to be emitted than for lower energy
electrons.

It was in comparison with the theory in this paper that Johnson et al. [24]
noticed that in certain regimes, the rates derived in Ref. [23] were in fact several
orders of magnitude too small [24]. This suggested that there was something else
missing from the story, which was later found to be scattering between Landau levels
due to the emission of acoustic phonons [24]. These are not something which will
be considered in this thesis, but they are an interesting phenomenon nonetheless.
The theory of this emission was studied by Emary et al. [54] in 2019. It was
found that acoustic phonons are suppressed at higher energies, due to the speed of
the electron through the system, however it is at these higher energies that LO-
phonons become the dominating effect. The emission rate of acoustic phonons also
depends significantly on the strength of the confinement in the z-direction, and can
be suppressed by using a wider well, which does not affect the rate of emission of
LO-phonons as strongly as acoustic phonons, thereby avoiding having to increase
the effect of LO-phonon in order to reduce the acoustic [23, 54]. In 2020, Clark et
al. described multiple decoherence mechanisms in a single-electron system, with the
goal of finding optimum experimental conditions which mitigate the decoherence as
much as possible [22].

In part II of this thesis, we found optimal regions for reducing the dephasing
due to phase averaging. We can therefore use this in conjunction with Ref. [22]
to determine the optimal conditions for experiments. The LO-phonon rates were
calculated using only the diagonal-terms of the master equation, and the inter-
arm coherence was considered, however the intra-arm coherences were not taken
into account, which is the addition made in this thesis. The results of Ref. [22]
show that the dephasing and incoherent effects do not all vary with magnetic field
and injection energy in the same way, meaning that there has to be some trade
off between the different sources of decoherence. This means that one mechanism
cannot be suppressed by increasing a parameter without subsequently increasing
the effect of another, including LO-phonon emission [22]. In fact, if we compare the
results of this paper with those found in part II of this thesis, we see that the range
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of energies for which dephasing due to phase averaging is suppressed is the greatest
when the magnetic field is low, however in Ref. [22], low magnetic fields actually
increase the effect on dephasing of LO phonons (as calculated using the semiclassical
rates and no intra-arm coherences).

The 2016 paper is a theoretical approach to calculating the emission rates of
LO phonons, describing the behaviour of electrons after emission semi-classically
[23]. In order to calculate a complete quantum picture, one must also consider the
coherence of the electrons, which is the addition made in this thesis.

5.4 Fröhlich Hamiltonian

In this Part of this thesis, we will be deriving a fully-quantum master equation
to describe the behaviour of electrons undergoing LO-phonon emission. We will
describe this behaviour using the Fröhlich Hamiltonian [93], which we will briefly
derive in this section, following the methods set out in Refs. [94, 95].

Phonons in a semiconductor are the group wave motion of the ions in the semi-
conductor. To first order, the wavefunction of the coupling between electrons and
ions is given as Ψ(r; R) = χ(R)ψ(r; R), which obeys the Schrödinger equation

He−i(R)ψn(r; R) = En(R)ψn(r; R). (5.4)

Here, r is the position of the electron, R is the position of the ion, and He−i is the
Hamiltonian describing the interaction between the electron and the ion.

When the ions in the semiconductor are displaced such that R = R0 + u, where
u is the displacement, the electrons feel a change in potential, V , where V 0 is the
potential due to only the electron-ion interaction. This linear change in potential is
then given as

δRV = u · ∇V 0
∣∣
R0

(5.5)

In semiconductors, however, the electrons in the bulk are not isolated, such that
any interaction between one electron with the ions is also affected by interactions
between all of the other electrons and ions in the system. This can be dealt with by
introducing a screening term into Eq. (5.5). The measure of screening here is the
inverse dielectric constant, ε [96, 97], such that

δRV = u · ε−1∇V 0
∣∣
R0
. (5.6)

We now have an equation describing the change in potential felt by an electron in
an electron-ion interaction. The next step in deriving the Fröhlich Hamiltonian, is
to decide what it is that we want to consider. We’re looking for a Hamiltonian to
describe the interaction between an electron and a phonon, which comes from the
equation we have just derived. In its simplest form, the Fröhlich Hamiltonian looks
like

H = He +Hph +He−ph, (5.7)

where He is the Hamiltonian describing the electron, Hph is the Hamiltonian describ-
ing the phonon, and He−ph is the Hamiltonian describing the interaction between
the two. The next step, then, is to define these terms, so that we can combine them
to give the Fröhlich Hamiltonian.
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The Hamiltonian for an electron, in its most general form is

He =
∑

kνσ

Ekνc
†
kνσckνσ (5.8)

where Ekνσ is the band energy, c†kνσ and ckνσ are the creation and annihilation
operators for an electron in the state where k is the momentum, ν is the band index
and σ is the spin. We can describe phonons using the simple harmonic oscillator,
such that the Hamiltonian is

Hph =
∑

qj

~ωqj

(
a†qjaqj +

1

2

)
(5.9)

where a†qj and aqj are the creation and annihilation operators of phonons for which
q is the momentum and j is the branch index and ~ωqj is the energy.

The creation and annhilation operators for a quantum harmonic oscillator as
describes the phonons are [94]

a†q =

√
mωq

2~

(
x̂q +

i

mωq

p̂−q

)
(5.10)

aq =

√
mωq

2~

(
x̂q −

i

mωq

p̂−q

)
(5.11)

where x̂q and p̂−q are the position and momentum operators respectively. We can
see from this that the sum of the creation and annihilation operators is proportional
to only the position operator, x̂q,

a†qj + aqj =

√
2mωqj

~
x̂qj (5.12)

We then need the operator of atom displacements, which can be obtained from the
solid state properties of the materials. In the electron-phonon system, these are
given as the sum total of the equilibrium position Aqj

sα multiplied by the position
operator, written in terms of the creation and annihilation operators

ulsα = eiqR
0
ls

1√
Nq

∑

qj

Aqj
sα

(
aqj + a†−qj

)
(5.13)

where

Aqj
sα = ηsα(qj)

√
~

2msωqj

(5.14)

Here, the indices l, s denote the unit cell and atoms inside the unit cell, respectively,
and η is the eigenvector of the normal mode qj. The coupling constant for the
electrons and phonons can be determined using Eq. (5.6) and Eq. (5.13), as

Λk+qν′,kν
qj =

∑

sα

Aqj
sα 〈k + qν ′σ|δqsαV |kνσ〉 (5.15)

From Eq. (5.6) we then obtain the full equation for the electron-phonon interaction
Hamiltonian,

He−ph =
∑

kνν′σ

∑

qj

Λk+qν′,kν
qj c†k+qν′σckν′σ

(
aqj + a†−qj

)
(5.16)

These are the components necessary for the Fröhlich Hamiltonian as we will be using
it for the rest of this thesis.
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5.5 General Master Equation

In this section we will derive a general master equation to which we will later use to
derive the master equation for our specific system. Here we follow the method set out
in Ref. [98]. To derive our master equation we will work in the interaction picture.
The interaction picture is used when we do not want to look at any free evolution
of the state, only interactions, such that both the state vectors and the operators
concerned have a time dependence, unlike the Schrödinger and Heisenberg pictures
which have time dependence in only the state vectors or the operators respectively.
The interaction and Schrödinger pictures are related as to enter the interaction
picture, we can split a Hamiltonian in the Schrödinger picture into two components,
HS = H0,S + H1,S. Usually, we choose to split the Hamiltonian such that H0,S

contains only the time independent terms and H1,S contains the time dependent
terms.

We define H ≡ H0 +V as the Hamiltonian where H0 ≡ HS +HB is the Hamilto-
nian of the uncoupled “system” (HS) and “bath” (HB) Hamiltonians, and V ≡ HSB

is the perturbation which describes the interaction between the two. The full Hamil-
tonian is therefore H = HS +HB +HSB

We will consider the description as two parts; one that we are interested in,
which is the system, and one that we want to separate the system from, which is
the bath. In our case the system is the electrons and the bath is the LO-phonons.
We aren’t interested in the behavious of the LO-phonons themselves, but we are
interested in their interaction with the system, our electrons. To do this, we need
to derive a description which takes into account only the system information, using
the Hamiltonians above.

To describe the system we also need a density matrix, χ, that describes the full
system and bath, and obeys the Liouville-von-Neumann equation,

d

dt
χ(t) = − i

~
[H,χ(t)] (5.17)

⇒χ(t) = e−iHt/~χ(t = 0)eiHt/~. (5.18)

Here, χ(t = 0) is our initial condition at t = 0.
We need to convert this density operator from the Schrödinger picture to the

interaction picture. To move between the two, we can use the relationship

χ̃(t) ≡ eiH0t/~χ(t)e−iH0t/~ (5.19)

We can now find the equation of motion for the density operator in the interaction
picture. To do this we need to apply Eq. (5.19) to Eq. (5.18) and move through
time

d

dt
χ̃(t) =

[
d

dt
eiH0t/~

]
χ(t)e−iH0t/~ + euH0t/~

[
d

dt
χ(t)

]
e−iH0t/~ + eiH0t/~χ(t)

[
d

dt
e−iH0t/~

]
,

=
iH0

~
eiH0t/~χ(t)e−iH0t/~ + eiH0t/~

[
d

dt
χ(t)

]
e−iH0t/~ − i

~
eiH0t/~χ(t)

[
H0e

−iH0t/~
]
.

(5.20)

We can use the definition of the commutator and Eq. (5.19) to simplify this to

d

dt
χ̃(t) =

i

~
[H0, χ̃(t)] + eiH0t/~ d

dt
χ(t)e−iH0t/~ (5.21)
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Now we can use Eq. (5.17) and the definitions above of H ≡ H0 + V and H0 ≡
HS +HB to give

d

dt
χ̃(t) =

i

~
[H0, χ̃(t)]− ieiH0t/~[H,χ(t)]e−iH0t/~ (5.22)

=
i

~
[H0, χ̃(t)]− ieiH0t/~[H0 + V, χ(t)]e−iH0t/~

=
i

~
[H0, χ̃(t)]− i

~
[H0 + Ṽ (t), χ̃(t)]

= − i
~

[Ṽ (t), χ̃(t)]. (5.23)

we can integrate this, to give

χ̃(t) = χ(t = 0)− i
∫ t

0

dt′
[
Ṽ (t′), χ̃(t′)

]
, (5.24)

which we can then insert back in to Eq. (5.23), which gives us

d

dt
χ̃(t) = − i

~

[
Ṽ (t),

{
χ(t = 0)− i

∫ t

0

dt′
[
Ṽ (t′), χ̃(t′)

]}]
(5.25)

= − i
~

{
Ṽ (t)χ(t = 0)− i

∫ t

0

dt′
[
Ṽ (t′), χ̃(t′)

]
(5.26)

−χ(t = 0)− i
∫ t

0

dt′
[
Ṽ (t′), χ̃(t′)

]
Ṽ (t)

}
(5.27)

= − i
~

[Ṽ (t), χ(t = 0)]−
∫ ∞

0

dt′[Ṽ (t), [Ṽ (t′), χ̃(t′)]] (5.28)

Now that we have our equation of motion for the density matrix for the initial
conditions, we want to find the effective density matrix of the system only, which is
the bit we’re interested in i.e. the electrons. We can do this by taking the trace over
the bath of the density matrix, ρ(t) ≡ TrB[χ(t)]. To do this, we must first introduce
the Born Approximation and the Bath Correlation functions.

5.5.1 Born approximation

The Born approximation is the assumption that the interaction between the bath
and system is weak, so that any influence on the bath is small, and can therefore be
treated as a constant [99]. This can be written as

χ̃(t′) ≈ R0 ⊗ ρ̃(t′) (5.29)

where ρ̃ is the density matrix describing the system in the interaction picture. We
assume a thermal equilibrium for the bath, i.e.

R0 =
e−βHB

Tr e−βHB
, (5.30)

where β = 1/kBT . We are working at zero temperature, so as T → 0, β → ∞,
which means that R0 → |0〉 〈0|. Eq. (5.28) therefore becomes

d

dt
ρ̃(t) = − i

~
TrB

[
Ṽ (t), R0 ⊗ ρ̃(t = 0)

]
−
∫ t

0

dt′TrB

[
Ṽ (t),

[
Ṽ (t′), R0 ⊗ ρ̃(t′)

]]

(5.31)
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We can denote our system operators as Sα and bath operators Bα, such that

V =
∑

α

Sα ⊗Bα. (5.32)

We can input this into Eq. (5.31), to give

d

dt
ρ̃(t) = − i

~
∑

α1

TrB

[
S̃α1(t)B̃α1(t), R0 ⊗ ρ(t = 0)

]

−
∫ t

0

dt′
∑

α1α2

TrB

[
S̃α1(t)B̃α1(t),

[
S̃α2(t

′)B̃α2(t
′), R0 ⊗ ρ̃(t′)

]]
(5.33)

We can now make some assumptions in order to simplify our master equation. We
assume that the inital state, ρ(t = 0) represents an interaction which generates no
first order dynamics in the bath. If the bath term creates or destroys anything, the
trace over the bath will be zero, so there are only non-zero first order terms if there
is a system interaction coupled with the bath. The first term therefore disappears.
Now we need only concentrate on the integral term. Evaluating the commutator
within the integral gives

d

dt
ρ̃(t) = −

∫ t

0

dt′
∑

α1α2

{
Tr
[
B̃α1(t)B̃α2(t

′)R0

]
S̃α1(t)S̃α2(t

′)ρ̃(t′)

−Tr
[
B̃α1(t)R0B̃α2(t

′)
]
S̃α1(t)ρ̃(t′)S̃α2(t

′)− Tr
[
B̃α2(t

′)R0B̃α1(t)
]
S̃α2 ρ̃(t′)S̃α1(t)

+ Tr
[
R0B̃α2(t

′)B̃α1(t)
]
ρ̃(t′)S̃α2(t

′)S̃α1(t)
}

(5.34)

This form of the master equation is still quite unwieldy; however, by introducing
the bath correlation functions, we can trace over the bath terms to further simplify
the equation.

5.5.2 Bath correlation functions

We can now introduce the bath correlation functions,

Cα1α2(t, t
′) ≡ TrB

[
B̃α1(t)B̃α2(t

′)R0

]
, (5.35)

and
Cα2α1(t

′, t) ≡ TrB

[
B̃α2(t

′)B̃α1(t)R0

]
. (5.36)

We can assume that for a bath in equilibrium [R0, HB] = 0, so

Cα1α2(t, t
′) ≡ Cα1α2(t− t′), (5.37)

and
Cα2α1(t

′, t) ≡ Cα2α1(t
′ − t) (5.38)

We can now rewrite Eq. (5.34) as

d

dt
ρ̃(t) = −

∫ t

0

dt′
∑

α1α2

{
Cα1α2(t− t′)

[
S̃α1(t)S̃α2(t

′)ρ̃(t′)− S̃α2 ρ̃(t′)S̃α1(t)
]

+Cα2α1(t
′ − t)

[
ρ̃(t′)S̃α2(t

′)S̃α1(t)− S̃α1(t)ρ̃(t′)S̃α2(t
′)
]}

(5.39)

In order to deal with the bath correlation functions mathematically, we can introduce
another approximation.
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5.5.3 Markov approximation

The Markov approximation assumes that the bath correlation function is strongly
peaked around τ ≡ t− t′ ' 0⇒ t ' t′, with a peak width of δτ , and that this peak
width is much smaller than the rate of change of ρ̃(t′). We can then say that for ρ̃ in
the interaction picture, t = t′, so we can replace ρ̃(t′) with ρ̃(t) within the integral.

The Markov approximation is valid in the case where the decay rate is small
enough such that the time scale introduced for the integration is large enough that
the correlation functions are sharply peaked. Interestingly, this has to be verified a
posteriori, so we will ensure the consistency of the approximation after seeing the
end results.

Later we will be calculating the equation of motion for the travelling wave, so we
can now move from the interaction picture back into the Schrödinger picture, using
the relation

d

dt
ρ̃(t) =

i

~
[HS, ρ̃(t)] + eiHSt/~

d

dt
ρ(t)e−iHSt/~ (5.40)

⇒ d

dt
ρ(t) = − i

~
[HS, ρ(t)] + e−iHSt/~

d

dt
ρ̃(t)eiHSt/~. (5.41)

such that

d

dt
ρ(t) = − i

~
[HS, ρ(t)]

−
∫ t

0

dt′
∑

α1α2

{
Cα1α2(t− t′)

[
Sα1S̃α2(t

′ − t)ρ(t)− S̃α2(t
′ − t)ρ(t)Sα1

]

+Cα2α1(t
′ − t)

[
ρ(t)S̃α2(t

′ − t)Sα1 − Sα1ρ(t)S̃α2(t
′ − t)

]}
(5.42)

Due to the sharp peak, the integral [0, t] ≈ [0,∞], as the function is highly localised
in time. We can now define

Dα1 ≡ lim
t→∞

∫ t

0

dτ
∑

α2

Cα1α2(τ)S̃α2(−τ) (5.43)

Eα1 ≡ lim
t→∞

∫ t

0

dτ
∑

α2

Cα2α1(−τ)S̃α2(−τ) (5.44)

where τ = t − t′ as above. This allows us to write our master equation in the
simplified form

d

dt
ρ(t) = − i

~
[HS, ρ(t)]−

∑

α1

[Sα1Dα1ρ(t)−Dα1ρ(t)Sα1 + ρ(t)Eα1Sα1 − Sα1ρ(t)Eα1 ]

(5.45)
This is the general master equation which we will use in the next chapter, inputting
the specific Hamiltonians for the electron system that we are considering.

5.6 Chapter summary

In the following chapter I will use the general master equation above derive a fully
quantum master equation to describe the dynamics of the electrons undergoing loss
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via LO-phonon emission. To do this, I will calculate the rates using the method in
Ref. [23], with the addition that I will now also consider the off-diagonal rates in the
master equation. I will also use the Fröhlich Hamiltonian for LO-phonon emission
[23, 93, 94] in the interaction picture to describe the behaviour of the electron, again
keeping the off-diagonal terms of the density matrix which describe the coherence
of the electron as well as the population.
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Chapter 6

Fully-quantum description of
LO-phonon emission

W
e derive a fully quantum master equation to describe the dissipation experienced
by a single electron upon emitting an LO-phonon. We will use a Fermi’s

Golden Rule approach to calculate the rate of phonon emission, and then derive
the master equation using the Fröhlich Hamiltonian, including both the diagonal
(population) and off diagonal (coherence) terms of the density matrix. Previous
approaches have considered only the population terms, making them semi-classical
explanations of electron behaviour under phonon emission [23]. The inclusion of the
coherence terms here completes the picture of the quantum behaviour.

In order to derive the equation, we will start with the system and bath Hamilto-
nians and move into the interaction picture as we want to concentrate only on the
system and the interaction of the system with the bath. We will then use the Born
approximation and the Markov approximation in order to reduce the complexity of
the master equation and make it solvable. After this we will calculate the rate of
emission of the LO-phonons and compare to the semiclassical case as seen in Ref.
[23].

Once we have a fully quantum master equation including the rate of emission,
in Sec. 6.5 we will present solutions to a subensemble of the dynamics that un-
dergoes no-phonon emission by considering an unravelling of the dynamics of the
previously determined master equation. We will also see the numerical solution for
the conditional dynamics in order to visualise the decay of an electron under these
circumstances.

In experiments it is generally the electrons that have not emitted a phonon that
we are interested in detecting as they are still coherent, so for this thesis we will
concentrate on examining the dynamics of this case.

6.1 Master equation for LO phonon emission

Now that we have the general form of the master equation we can input the specific
bath and system Hamiltonians for our system, i.e. the LO-phonon bath and the
electron system derived in Chapter 5. For n = {m,n, k}, the system Hamiltonian is

HS =
∑

n

~ωnc
†
ncn, (6.1)
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and the bath Hamiltonian is

HB =
∑

q

~ωLOa
†
qaq, (6.2)

where q = |q|, and q is the three-dimensional wave vector of the bulk LO-phonons.
The interaction term can then be given in terms of the system and bath operators,
Sα and Bα as we saw in Sec. 5.5,

HSB =
∑

α

Sα ⊗Bα

=
∑

nn′

c†n′cn
∑

q

Λn′n(q)(a†−q + aq), (6.3)

where α = {nn′}. We also have that aq is the annihilation operator for these
phonons and Λn′n is the matrix element from the Fröhlich Hamiltonian, Eq. (5.16)
[94, 95], and in full is [23]

Λn′n(q) =
∑

p

M(q) 〈Ψn′ |p + q〉 〈p|Ψn〉 , (6.4)

where

M(q) =
M0√
V

1

|q| , (6.5)

and

M2
0 = 4πα~

(~ωLO)3/2

(2m∗e)
1/2

. (6.6)

This we will evaluate more precisely later in Sec. 6.3. We can split our interaction
term into the system operators and the bath operators. We have Bα1 and Bα2 , Sα1

and Sα2 , defined as

Sα1 =c†n′1
cn1 , (6.7a)

Sα2 =c†n′2
cn2 , (6.7b)

Bα1 =
∑

q1

Λn′1n1
(q1)(a†−q1

+ aq1), (6.7c)

Bα2 =
∑

q2

Λn′2n2
(q2)(a†−q2

+ aq2). (6.7d)

As we are looking at the interaction of phonons and electrons, we will work in the
interaction picture. An operator in the Schrödinger picture can be transformed to
the interaction picture using

AI(t) = eiH0,St/~ASe
−iH0,St/~. (6.8)

The time dependent operators for our system in the interaction picture then become

S̃α1(t) =c†n′1
e
iωn′1

t
cn1e

−iωn1 t, (6.9a)

S̃α2(t) =c†n′2
e
iωn′2

t′
cn2e

−iωn2 t
′
, (6.9b)

B̃α1(t) =
∑

q1

Λn′1n1
(q1)

(
a†−q1

eiωLOt + aq1e
−iωLOt

)
, (6.9c)

B̃α2(t
′) =

∑

q2

Λn′2n2
(q2)

(
a†−q2

eiωLOt
′
+ aq2e

−iωLOt
′
)
. (6.9d)
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We can now use these in Eq. (5.45) to derive a master equation specific to this
system.

6.2 Master equation

Recalling Eq. (5.43) and Eq. (5.44), we can evaluate D1 and E2 using Eqs (6.9a),
(6.9b), (6.9c) and (6.9d). Taking the trace over the bath operators and using
Eq. (5.43) and Eq. (5.44), we get the equations

D1 =
∑

q

Λn′1n1
(q)Λn′2n2

(−q)
∑

n2n′2

c†n′2
cn2

∫ ∞

0

dτ exp
[
i
(
ωn2 − ωn′2

− ωLO

)
τ
]
,

(6.10)

E2 =
∑

q

Λ∗n′1n1
(q)Λ∗n′2n2

(−q)
∑

n1n′1

c†n′1
cn1

∫ ∞

0

dτ exp
[
i
(
ωn1 − ωn′1

+ ωLO

)
τ
]
.

(6.11)

In order to evaluate this integral we use the Cauchy principal value theorem to
evaluate the improper integral, adding an infinitesimal Cauchy term, ετ , and working
in the limit ε→ 0+. If we first look at the integral term in D1, which we denote as
Dint, including the infinitesimal ετ we have

Dint = lim
ε→0+

∫ ∞

0

dτ exp
[
i
(
ωn2 − ωn′2

− ωLO

)
τ − ετ

]
,

= lim
ε→0+

[
exp

[
i
(
ωn2 − ωn′2

− ωLO

)
τ − ετ

]

i
(
ωn2 − ωn′2

− ωLO

)
− ε

]∞

0

,

= lim
ε→0+

[
0− 1

i
(
ωn2 − ωn′2

− ωLO

)
− ε

]
, (6.12)

= lim
ε→0+

i(
ωn2 − ωn′2

− ωLO

)
+ iε

. (6.13)

As ε is an infinitesimal, we can take the limit of this as ε→ 0+, and evaluate

Dint = lim
ε→0+

i

(
ωn2 − ωn′2

− ωLO

)
− iε

(
ωn2 − ωn′2

− ωLO

)2
+ ε2

,

=
i(

ωn2 − ωn′2
− ωLO

) − lim
ε→0+

i

(
iε

(
ωn2 − ωn′2

− ωLO

)2
+ ε2

)
(6.14)

here, we have taken the limit of the left hand term already. To take the limit of the
right hand term, we notice that it is of the form of a Lorentzian,

L(x) =
1

π

ε

ω2 + ε2
, (6.15)

which is normalised such that
∫∞
−∞ L(x) dx = 1. Due to its shape, when we take

the limit of ε→ 0 of the Lorentzian, it becomes infinitely narrow and infinitely tall,
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whilst still maintaining it’s normalisation - in other words, at the limit of ε → 0+,
Eq. (6.15) is a delta function δ(ω). We can put this back into our equation, to give

Dint =

[
P

i(
ωn2 − ωn′2

− ωLO

) + πδ
(
ωn2 − ωn′2

− ωLO

)
]
, (6.16)

where P is the Cauchy principle value. The first term in this equation is what’s
known as a level shift, a small shift in the energy levels, which can be absorbed into
the states. Placing this back into Eq. (6.10) gives

D1 =
∑

q

Λ
k′1k1
n′1n1

(q)Λ
k′2k2
n′2n2

(−q)
∑

n2n′2

∑

k2k′2

c†n′2
cn2

[
πδ
(
ωn2 − ωn′2

− ωLO

)]
. (6.17)

We can apply exactly the same process to Eq. (6.11), which leaves us with

E2 =
∑

q

Λ∗n′1n1
(q)Λ∗n′2n2

(−q)
∑

n1n′1

c†n′1
cn1

[
πδ
(
ωn1 − ωn′1

+ ωLO

)]
. (6.18)

Using Eq. (6.17) and Eq. (6.18), we can go back to the general master equation,
Eq. (5.45). The definition of M(q) depends only on |q|, so any negative in this term
is removed. We can now input −q in place of q, then taking the complex conjugate
and utilising the fact that we have a sum over all q, we find that

Λn′n(−q) = [Λnn′(q)]∗ (6.19)

Our master equation then becomes

d

dt
ρ(t) = − i

~
[HS, ρ(t)]

−
∑

n1,n′1,
n2,n′2,q

{
Λn′1n1

(q)Λ
k2k′2∗
n2n′2

(q)πδ(~ωn2 − ~ωn′2
− ~ωLO)c†n′1

cn1c
†
n′2
cn2ρ(t)

−Λn′1n1
(q)Λ∗n2n′2

(q)πδ(~ωn2 − ~ωn′2
− ~ωLO)c†n′2

cn2ρ(t)c†n′1
cn1

+Λ∗n2n′2
(q)Λn′1n1

(q)πδ(~ωn2 − ~ωn′2
+ ~ωLO)ρ(t)c†n′2

cn2c
†
n′1
cn1

−Λ∗n2n′2
(q)Λn′1n1

(q)πδ(~ωn2 − ~ωn′2
+ ~ωLO)c†n′1

cn1ρ(t)c†n′2
cn2

}
. (6.20)

With the master equation in this form, we can see the three different “types” of
term that make up the master equation. The first term in this equation is the
von Neumann term and gives the closed system dynamics, which come from having
moved from the interaction picture into the Schrödinger picture. The second type
are the so-called “jump” terms, which have the form LρL†, where L is a Lindblad
operator (in Eq. (6.20), these are the third and fifth lines of the equation). These
correspond to a quantum jump in which the system shifts from one state to another.
The final type are the reset terms, of the form L†Lρ or ρL†L (in Eq. (6.20), these
are the second and fourth lines of the equation). The reset term doesn’t change the
state, as the jump term does, but rather reduces the population within the current
state.

This is a multi-particle model. We want to concentrate on one particle only so
need to find expectation value, 〈n′|ρ̇(t)|n〉. The creation and annihilation opera-
tors in each of the terms in the sum introduce Kronecker deltas when taking the
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expectation value. The non-zero elements of these Kronecker deltas then allow us
to narrow down the indices that we are using, such that

d

dt
〈n4|ρ(t)|n3〉 =

−i
~
〈n4|[HS, ρ(t)]|n3〉

−
∑

q




∑

n2,n′2

Λn4n′2
(q)Λ∗n2n′2

(q)πδ(~ωn2 − ~ωn′2
− ~ωLO) 〈n2|ρ(t)|n3〉

−
∑

n′1,n2

Λn′1n3
(q)Λ∗n2n4

(q)πδ(~ωn2 − ~ωn4 − ~ωLO) 〈n2|ρ(t)|n′1〉

+
∑

n2,n′2

Λ∗n2n′2
(q)Λn2n3(q)πδ(~ωn2 − ~ωn′2

+ ~ωLO) 〈n4|ρ(t)|n′2〉

−
∑

n1,n′2

Λ∗n3n′2
(q)Λn4n1(q)πδ(~ωn3 − ~ωn′2

+ ~ωLO) 〈n1|ρ(t)|n′2〉



 . (6.21)

In our continued attempts to simplify the master equation and make some more
sense of the many indices we have to consider, we can rename the indices such that
they are numbered only. Within the sum of q, the indices represented by n1/2(′) are
the starting states of the electron. All of these indices actually only represent two
states in total, and as the terms of the equation are independent from each other,
we can rewrite the starting indices as simply n1/2 = n1 and n′1/2 = n2. Rearranging

the matrix elements according to the relation in Eq. (6.19) and using the fact that
delta functions are even functions, i.e. δ(−x) = δ(x), we get

d

dt
〈n4|ρ(t)|n3〉 = − i

~
〈n4|[HS, ρ(t)]|n3〉

−
∑

n1

∑

n2

∑

q

Λn4n1(q)Λ∗n2n1
(q)πδ(~ωn2 − ~ωn1 − ~ωLO) 〈n2|ρ(t)|n3〉

+
∑

n1

∑

n2

∑

q

Λ∗n3n1
(−q)Λn4n2(−q)πδ(~ωn2 − ~ωn4 − ~ωLO) 〈n2|ρ(t)|n1〉

−
∑

n1

∑

n2

∑

q

Λ∗n2n1
(q)Λn2n3(q)πδ(~ωn1 − ~ωn2 − ~ωLO) 〈n4|ρ(t)|n1〉

+
∑

n1

∑

n2

∑

q

Λ∗n3n1
(q)Λn4n2(q)πδ(~ωn1 − ~ωn3 − ~ωLO) 〈n2|ρ(t)|n1〉 . (6.22)

We want to rearrange the Λ in each term so that the order of indices better matches
the delta function of each term, and to put them all in the same form such that we
can write a general equation for the decay rate to describe all of them. To do this,
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we recall the relation in Eq. (6.19), and rearrange each of the terms, to give

d

dt
〈n4|ρ(t)|n3〉 = − i

~
〈n4|[HS, ρ(t)]|n3〉

−
∑

n1n2q

Λ∗n2n1
(q)Λn4n1(q)πδ(~ωn2 − ~ωn1 − ~ωLO) 〈n2|ρ(t)|n3〉

+
∑

n1n2q

Λ∗n2n4
(q)Λn1n3(q)δ(~ωn2 − ~ωn4 − ~ωLO) 〈n2|ρ(t)|n1〉

−
∑

n1n2q

[
Λ∗n1n2

(q)Λn3n2(q)πδ(~ωn1 − ~ωn2 − ~ωLO)
]∗ 〈n4|ρ(t)|n1〉

+
∑

n1n2q

[
Λ∗n1n3

(q)Λn2n4(q)πδ(~ωn1 − ~ωn3 − ~ωLO)
]∗ 〈n2|ρ(t)|n1〉 . (6.23)

Now that we have similar forms for each term. We need to write a definition for
the rate of emission of an LO-phonon, Γ, which works for all terms. To do this, we
use Fermi’s Golden rule, which gives the transition probability from an initial state,
|i〉, to a final state, |f〉, as Γfi = (2π/~)| 〈f |H1|i〉|2ξ(Ef ), where ξ is the density
of states (as we consider single particles well away from the Fermi energy, and at
zero temperature, we can set ρ = 1) and H1 is the Hamiltonian describing the
perturbation of the state going from i to f [100]. Applying this to the elements of
our master equation, we get equations for the rates of

Γn1n2
n1n4

=
2π

~
∑

q

Λ∗n2n1
(q)Λn4n1(q)δ(~ωn2 − ~ωn1 − ~ωLO), (6.24)

Γn4n2
n3n1

=
2π

~
∑

q

Λ∗n2n4
(q)Λn1n3(q)δ(~ωn2 − ~ωn4 − ~ωLO), (6.25)

Γn2n1
n2n3

=
2π

~
∑

q

Λ∗n1n2
(q)Λn3n2(q)δ(~ωn1 − ~ωn2 − ~ωLO), (6.26)

Γn3n1
n4n2

=
2π

~
∑

q

Λ∗n1n3
(q)Λn2n4(q)δ(~ωn1 − ~ωn3 − ~ωLO). (6.27)

We can now use these definitions in the full equation to simplify further to give

d

dt
〈n4|ρ(t)|n3〉 = − i

~
〈n4|[HS, ρ(t)]|n3〉+

1

2

∑

n1n2

{
Γn4n2
n3n1
〈n2|ρ(t)|n1〉

+
[
Γn3n1
n4n2
〈n1|ρ(t)|n2〉

]∗ − Γn1n2
n1n4
〈n2|ρ(t)|n3〉 −

[
Γn2n1
n2n3
〈n1|ρ(t)|n4〉

]∗}
. (6.28)

We now have a master equation describing the emission of LO-phonons, but we still
need to evaluate the rates themselves.

6.3 Evaluating the emission rates

From Eq. (6.4), we have a general definition for Λn′n(q) of [23, 94]

Λn′n(q) = M(q)δqx,k′x−kxG
(y)
m′k′x,mkx

(qy)G
(z)
n′n(qz). (6.29)
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The overlaps of the wavefunctions are given by

G
(y)
m′k′x,mkx

(qy) =

∫
dyeiqyyχ∗m′k′x(y)χmkx(y), (6.30)

in the y-direction and

G
(z)
n′n(qz) =

∫
dzeiqzzφ∗n′(z)φn(z), (6.31)

in the z-direction. For simplicity, we will calculate the rates for the lowest subbands,
where m = 0 and n = 1, however the same methods can be used for higher subbands
too. This means that the equation for the overlap of wavefunctions in the z-direction
becomes

G
(z)
11 (qz) =

∫
deiqzzφ∗1(z′)φ1(z). (6.32)

In order to keep this derivation as general as possible, this equation will kept in
this form for now. Specific parameters for the overlap in the z-direction will be
introduced when the calculations are performed later. From the Hamiltonian with
parabolic confinement and a magnetic field, we have eigenfunctions of [101]

χmkx(y) =

√
1

lΩ
um

(
y − yG
lΩ

)
, (6.33)

where

um(s) =
1√

2mm!

1

π1/4
e−s

2/2Hm(s). (6.34)

and Hm are the Hermite polynomials, as discussed in Chapter 2. At the lowest
Landau level then, we have

u0 =
1

π1/4
exp

[
−1

2

(
y − yG
lΩ

)2
]
, (6.35)

which makes the eigenfunctions

χmkx(y) =

√
1

lΩ

1

π1/4
exp

[
−1

2

(
y − yG
lΩ

)2
]
. (6.36)

This describes a Gaussian centred on the guide centre, yG, with a width of the
confinement length, lΩ. To get the overlap in the y-direction, we can combine
Eq. (6.30) and Eq. (6.36) to give

G
(y)
0k′,0k =

1

lΩ
√
π

∫
dyeiqyy exp

[
−1

2

(
y − y′G
lΩ

)2
]

exp

[
−1

2

(
y − yG
lΩ

)2
]
, (6.37)

=
1

lΩ
√
π

exp

[−(y′2G + y2
G)

2l2Ω

] ∫
dy exp

[
−y

2

l2Ω
+

(
y′G + yG
l2Ω

+ iqy

)
y

]
, (6.38)

which, when integrated with infinite limits, gives

G
(y)
0k′,0k(qy) = exp

[
−(y′G − yG)2

4l2Ω

]
exp

[
−q

2
yl

2
Ω

4
+
iqy
2

(y′G + yG)

]
. (6.39)
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It’s more natural to consider this equation in terms of wavenumber, k, instead of
guide centre yG. We can recall the definition of guide centre,

yG(k) =
ωc
Ω2

~k
m∗e

, (6.40)

hence the overlap function is

G
(y)
0k′,0k(qy) = exp

[
−ω

2
c

Ω4

~2

m∗e

(k′ − k)2

4l2Ω

]
exp

[
−q

2
yl

2
Ω

4
+
iqy
2

ωc
Ω2

~
m∗e

(k′ + k)

]
, (6.41)

in terms of wavenumber.

We can take these generalised equations, and combine them to calculate the
decay rates from Eqs. (6.24), (6.25), (6.26) and (6.27). As these equations are all
of the same form, we can look at just Eq. (6.25) and then apply the same method
to all four equations for rate. We are considering the case where m = 0, so we can
write the rate equation out only in terms of k. First, we need to calculate the matrix
elements. We have the general matrix element Λn′n(q) given by Eq. (6.29). We can
use Eq. (6.19) to get

Λ∗nn′ = Λn′n(−q) = M(−q)δ−qx,k′−kG
(y)
0k′,0k(−qy)G

(z)
11 (−qz). (6.42)

in the lowest Landau level. The matrix element, M , is dependent on only |q|, so
the negative in this term can be ignored.

We can now move from the general case to one specific to our needs. The
probability that a phonon will not be emitted is described by the reset terms, and
the probability that a phonon will be emitted is given by the jump terms, which we
recall from section 6.2 describe a change from one state to another. We have four
terms involving the rate in our master equation; two jump and two reset. We will
calculate a general case which can be adapted to represent any one of these four
cases, i.e.

Γn4n2
n3n1

=
2π

~
∑

q

Λ∗n2n4
(q)Λn1n3(q)δ (~ωn2 − ~ωn4 − ~ωLO) , (6.43)

which gives us matrix elements of

Λn1n3(q) = M(q)δqx,k1−k3G
(y)
0k1,0k3

(qy)G
(z)
11 (qz), (6.44)

Λ∗n2n4
(q) = M(q)δ−qx,k4−k2G

(y)
0k4,0k2

(−qy)G(z)
11 (−qz). (6.45)

Recalling also Eq. (6.5) and Eq. (6.6), our equation for the rate becomes

Γn4n2
n3n1

=
2π

~
∑

q

M2
0

V

1

|q|2
δ−qx,k4−k2δqx,k1−k3

∣∣∣G(z)
11 (qz)

∣∣∣
2

G
(y)
0k4,0k2

(−qy)G(y)
0k1,0k3

(qy)

× δ (~ωn2 − ~ωn4 − ~ωLO) . (6.46)

Splitting the sum over q into three sums over, qx, qy and qz, we can then perform
the sum over qx, which results in qx = k1−k3. We can also write everything in terms
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of kj because as mentioned above, we are working in the lowest subband. This gives
us a rate of

Γk4k2k3k1
=

2π

~
M2

0

V
δ−(k1−k3),k4−k2

∑

qy

∑

qz

1

(k1 − k3)2 + q2
y + q2

z

∣∣∣G(z)
11 (qz)

∣∣∣
2

× δ (~ωk2 − ~ωk4 − ~ωLO) exp

[
−ω

2
c

Ω4

~2

m∗2e

1

4l2Ω

{
(k4 − k2)2 + (k1 − k3)2

}]

× exp

[
−q

2
yl

2
Ω

2
+
iqy
2

ωc
Ω2

~
m∗e
{k1 + k3 − k4 − k2}

]
. (6.47)

The notation convention we will use is that for Γk4k2k3k1
, the outer indices, in this case

k2 and k1 are for the initial state and inner indices, here k3 and k4, are the final
states.

We now change to the integral form. The confinement in the z-direction can
be modelled as multiple different shapes. The simplest model is of a square well,
however more closely related to the experimental confinement is the triangular well
[53]. We can define the width of the confinement well, a and multiply the wavenum-
bers by this to give a unitless value, such that Qy = aqy, Qz = aqz and Kj = akj,
(j = 1, 2, 3, 4) and the equation for rate becomes

Γk4k2k3k1
=

2π

~
M2

0

V
δk3−k1,k4−k2

(
L

2π

)2 ∫
d
Qy

a

∫
d
Qz

a

a2

[
(K1 −K3)2 +Q2

y +Q2
z

]

×
∣∣∣G(z)

11 (Qz/a)
∣∣∣
2

δ (~ωk2 − ~ωk4 − ~ωLO)

× exp

[
−ω

2
c

Ω4

~2

m∗2e

1

4l2Ωa
2

{
(K4 −K2)2 + (K1 −K3)2

}]

×
[
−Q

2
yl

2
Ω

2a2
+
iQy

2a2

ωc
Ω2

~
m∗e
{K1 +K3 −K4 −K2}

]
. (6.48)

We can write the integral over Qz as

F
(z)
11 (A) ≡

∫
dQz

1

A2 +Q2
z

∣∣∣G(z)
11 (Qz/a)

∣∣∣
2

, (6.49)

where A =
√

(K1 −K3)2 +Q2
y. Evaluating these integrals for different confinements

results in different F factors. For a square well, we have

F
(z)
11 (A) =

32π5
[
e−A + A− 1

]
+ 20π3A3 + 3πA5

(A2 + 4π2)2A3
, (6.50)

and for a triangular well, we have

F
(z)
11 (A) =

π(3A5 − 10A3 + 15A− 8)

8A[(A− 1)3(A+ 1)3]
. (6.51)

The results displayed later in this section are calculated with the more realistic
triangular well. We can also name the part from the y-overlap, such that

F (y)(Qy) = exp

[
−ω

2
c

Ω2

l2Ω
4a2

{
(K4 −K2)2 + (K1 −K3)2

}]

× exp

[
−Q

2
yl

2
Ω

2a2
+
iQyl

2
Ω

2a2

ωc
Ω
{K1 +K3 −K4 −K2}

]
. (6.52)
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Combining all of this gives the equation for the rate to be

Γk4k2k3k1
=

M2
0

2π~L
δk3−k1,k4−k2δ (~ωk2 − ~ωk4 − ~ωLO)

∫
dQyF

(z)
11 (A)F (y)(Qy). (6.53)

Using the Kronecker delta we can eliminate k4, as the non-zero value of δk3−k1,k4−k2
results when k3− k1 = k4− k2 so that we can replace k4 with k4 = k3 + k2− k1. For
clarity, we can now refer to the integral in this equation as

I(k3, k2, k1) =

∫
dQyF

(z)
11 (A)F (y)(Qy), (6.54)

such that

Γk4k2k3k1
=

M2
0

2π~L
δk3−k1,k4−k2δ (~ωk2 − ~ωk4 − ~ωLO) I(k3, k2, k1). (6.55)

In order to get the total rate out of our initial k values, we have to integrate over
our final k values. As we have eliminated k4 from the proceedings, we can change
to the unitless version and integrate only over K3,

Γk1k2out =
L

2π

∫
dk3Γk4k2k3k1

, (6.56)

⇒ ΓK1K2
out =

L

2πa

∫
dK3ΓK4K2

K3K1
. (6.57)

which gives us an equation for the total rate out of,

ΓK1K2
out =

M2
0

(2π)2a~

∫
dK3I(K3)δ (~ωK2 − ~ωK4 − ~ωLO) , (6.58)

=
M2

0

(2π)2a~
I(K0

3)

2Ec|K1 −K2 −K0
3 |
, (6.59)

where

K0
3 = K1 −K2 +

√
K2

2 −
~ωLO

Ec
, (6.60)

and

Ec =
ω2
y

Ω2

~2

2m∗ea
2
. (6.61)

In order to compare to previous results, we can rearrange this equation using the
definitions in Eq. (6.5) and Eq. (6.6) in Eq. (6.59) to give

ΓK1K2
out =

1

2

αΩωLO

πωy

√
~ωLO

I(K0
3)∣∣∣

√
EcK2

2 − ~ωLO

∣∣∣
. (6.62)

Now as

E =
1

2
~Ω +

ω2
y

Ω2

~2k2
x

2m
, (6.63)

our equation for the rate becomes

ΓK1K2
out =

αΩωLO

2πωy

√
~ωLO

∆0

I(K0
3), (6.64)
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where ∆0 ≡ E − 1
2
~Ω − ~ωLO and E is calculated with kx = K2/a. This is the

general equation for the rate out of K1 and K2, where I(K0
3) is the integral over the

y- and z-overlaps. We can now find an analytical expression for the rates with these
integrals evaluated using the complex saddle point approximation,

I(C) =

∫

Γ

dzf(z) exp [Cg(z)] (6.65)

=

√
2π

C
exp [Cg(z0)]

ηf(z0)√
−η2g′′(z0)

(1 +O(1/C)), (6.66)

where
z = z0 +

ηy√
C
. (6.67)

Applying this to I(K0
3), and using C = l2Ω/2a

2, we have

g(Qy) =
(
Qy − i

ωc
Ω

(K1 −K2)
)2

, (6.68)

and defining the zero of this function as Q0, we find

Q0 = i
ωc
Ω

(K1 −K2). (6.69)

So Eq. (6.66) becomes

I

(
C =

l2Ω
2a2

)
=
√

2π exp [0]
ηF

(z)
11 (A0)√
−η2g′′(Q)

(1 +O(
2a2

l2Ω
)), (6.70)

where A0 is A evaluated at Q0. We also have

g(Qy) = −
[
Q2
y − 2i

ωc
Ω

(K1 −K2)Qy −
ω2
c

Ω2
(K1 −K2)2

]
,

g′(Qy) = −2
[
Qy − i

ωc
Ω

(K1 −K2)
]

(= 0 at the turning point),

g′′(Qy) = −2. (6.71)

This gives us a result for the integral of

I

(
C =

l2Ω
2a2

)
=

√
2πa2

l2Ω
F

(z)
11 (A0), (6.72)

as O(1/C) is small when C = l2Ω/2a
2. This means that our equation for the rate is

now

ΓK1K2
out =

αΩωLOa√
2πωylΩ

√
~ωLO

∆0

exp


−ω

2
c

Ω2

l2Ω
2a2

(
K2 −

√
K2

2 −
~ωLO

Ec

)2

F (z)

11 (A0),

(6.73)
where

A0 =

√√√√
(
K2 −

√
K2

2 −
~ωLO

Ec

)2

− ω2
c

Ω2
(K1 −K2)2. (6.74)
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We now would like to make substitutions for the wavenumbers K1 and K2, in terms
of a mean wavenumber, K̄ = (K1 +K2)/2, and the separation between them, κ12 =
K2 −K1,

K1 = K̄ − κ12

2
, (6.75)

K2 = K̄ +
κ12

2
. (6.76)

Using these substitutions gives a total rate out of
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Figure 6.1: Panel (a) shows rates at κ12 = 0 against magnetic field for three different
injection energies, which match up with the diagonal rates shown in Ref. [23], with the
exception that we look here only at the lowest Landau level n = 1, such that we don’t
see the behaviour attributed to different Landau levels for low magnetic fields. The green
horizontal line at Γ0 = 0.1 ps−1 is the rate of damping of LO-phonons in GaAs, Γph,
and gives the cut off for the validity of the Markov approximation. Panel (b) shows the
weighted average of our rates with the off diagonal terms taken into account with the rates
of emission of LO phonons in the diagonal case. There is a contribution to the rate from the
transitions in both the positive and negative direction, and the sum of these contributions
gives the total weight, which is shown here. This is plotted against Eκ = (ω2

y~2/Ω2m∗e)κ
2
12,

which is the energy range proportional to the difference in K values shown by κ12. This
is shown for two different magnetic fields, B = 6 T and B = 11 T. Other parameters
for these simulations were wavepacket width σE = 1 meV, confinement in the y-direction
~ωy = 2.7 meV and a = 3 nm

ΓK̄κ12out =
αΩωLOa√

2πωylΩ

√
~ωLO

∆0

F
(z)
11 (A0)

× exp


−ω

2
c

Ω2

l2Ω
2a2

(
K̄ +

κ12

2
−
√(

K̄ +
κ12

2

)2

− ~ωLO

Ec

)2

 , (6.77)

where

A0 =

√√√√
{(

K̄ +
κ12

2

)
−
√(

K̄ +
κ12

2

)2

− ~ωLO

Ec

}2

− ω2
c

Ω2
(κ12)2. (6.78)
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This equation can be compared to the equation for the rate in Ref. [23], which is

Γn′n(E) =
αΩωLO

2πωy

√
~ωLO

∆n′
Θ(∆n′)In′n(δG), (6.79)

where In′n is the diagonal equivalent to our term I(K0
3), and Θ(x) is the Heaviside

function, Θ =
∫ x
−∞ δ(s) ds.

The rate relative to the rate at K̄ is shown in Fig. 6.1. It is clear here that
for small values of ∆E and therefore κ12, the diagonal rates match well with the
full rates, as when κ = 0, k = k′, the behaviour includes only diagonal terms. As
we move away from ∆E = 0, and therefore κ = 0, we see a very steep drop off
in the ratio, which means that the previous approach, which considered only the
population terms, begins to differ significantly from our full equation with the off-
diagonal coherence terms. At this point, therefore, we can no longer ignore these
coherence terms. Theoretically, we consider wavepackets where ∆E is around 1
meV, and we can see from this plot that in this case, the diagonal rates are a good
approximation, however, it is not unreasonable to expect wavepackets still on the
order of 1 meV, but creeping up towards 4 meV [102]. In this case, there is a
much more obvious difference between the diagonal and off-diagonal rates, the ratio
being 0.7 and 0.8. As the full quantum approach becomes important quite quickly,
it is also useful to develop an equation of motion for electrons undergoing phonon
emission which also takes into account the coherence terms.

This is now a fully quantum master equation, which can be solved to show the
fully quantum dynamics of the system under LO-phonon emission. The next step,
then, is to investigate how this affects the electron, and compare this to the results
using the semi-classical description of previous works [23]. In the next section, we
will consider the evolution of the conditional dynamics of this system.

6.4 Validity of the Markov approximation

The Markov approximation in the case of LO-phonons in GaAs is discussed in
Ref. [103], and found to be valid under certain conditions. LO-phonon modes in
GaAs are damped with a rate of Γph = 0.1 ps−1 [104, 105]. As long as the LO-
phonon rates calculated in this thesis are sufficiently small compared to Γph, the
Markov approximation is valid. We can now take into account the results shown in
Fig. 6.1a. This shows that for sufficiently high values of magnetic field, the Markov
approximation is indeed valid. The green horizontal line in Fig. 6.1a shows Γph for
GaAs. Comparing our rates to this, we can see that for the Markov approximation
to be valid for all energies considered, we must consider magnetic fields of at least
6 T.

Qualitatively, we can also consider the time scales for the lifetime and reabsorp-
tion of an LO-phonon with the distance travelled by an electron in this period. In
the case of LO-phonons in GaAs, an electron will have travelled around 1 nm dur-
ing the lifetime of the LO-phonon, meaning that the scope for reabsorption of an
electron is extremely low.

It is worth noting that there are other approaches to this problem that can be
considered, which were also explored in Ref. [105]. These approaches do not make
the Markov approximation, which treats the LO-phonons as a bath that can be
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safely ignored, but instead explicitly consider the LO-phonons as a system in their
own right. In regimes where the coupling between the electron system and the LO-
phonons is high, this becomes an important consideration. We do not consider such
strong couplings in this thesis and as such make use of the Markov approximation.

6.5 Equation of motion

When considering the quantum world, decoherence is something that we wish to
avoid at all costs; the more decoherence something experiences, the more classical
it gets. Naturally, this is not ideal for investigating a quantum system. The most
important case to consider, then, is the subensemble that hasn’t emitted a phonon,
and therefore is coherent. This is lucky for us as this subensemble is slightly easier to
calculate because it only undergoes loss, and not jumps and therefore remains pure
and can be modelled through a non-Hermitian Schrödinger equation. The subensem-
ble that undergoes phonon emission is a much more complicated calculation, and
is beyond the scope of this thesis. In this section we will split the dynamics into
these two subensembles, and consider the evolution of the one which undergoes no
phonon emission. As well as numerically modelling the behaviour, we will also de-
rive an analytic approximation of the dynamics to ascertain a rough understanding
of the behaviour.

Returning now to Eq. (6.28), we can see that due to the localisation in energy
space of the wavepacket, we can split density matrix up into sectors labelled M =
0, 1, ... depending on how many phonons have been emitted. We can split these such
that the equation for the density matrix with no phonons depends only on the reset
terms in the master equation,

d

dt
〈n4|ρ(0)(t)|n3〉 = − i

~
〈n4|[HS, ρ

(0)(t)]|n3〉

− 1

2

∑

n1n2

{
Γn1n2
n1n4
〈n2|ρ(0)(t)|n3〉+

[
Γn2n1
n2n3
〈n1|ρ(0)(t)|n4〉

]∗}
, (6.80)

and the equation for the case where we have emission of phonons depends on both
the reset terms and the jump terms which describe the probability of emission. The
expectation value here of 〈n4|[HS, ρ

(M)](t)|n3〉 describes the behaviour of an electron
after phonon emission, such that the master equation for the case where phonons
are emitted becomes

d

dt
〈n4|ρ(M)(t)|n3〉 = − i

~
〈n4|[HS, ρ

(M)(t)]|n3〉

− 1

2

∑

n1n2

{
Γn1n2
n1n4
〈n2|ρ(M)(t)|n3〉+

[
Γn2n1
n2n3
〈n1|ρ(M)(t)|n4〉

]∗}

+
1

2

∑

n1n2

{
Γn4n2
n3n1

+
[
Γn3n1
n4n2

]∗} 〈n2|ρ(M−1)(t)|n1〉 . (6.81)

As we approach the band bottom, there is no longer enough energy in the electron
to emit an LO-phonon, which sets a maximum to the number of phonons emitted.
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We can therefore write the emission part as

d

dt
〈n4|ρ(Mmax)(t)|n3〉 = − i

~
〈n4|[HS, ρ

(Mmax)(t)]|n3〉

+
1

2

∑

n1n2

{
Γn4n2
n3n1

+
[
Γn3n1
n4n2

]∗} 〈n2|ρ(Mmax−1)(t)|n1〉 , (6.82)

where M ≤ Mmax. At any value lower than Mmax = 1, there is no emission of a
phonon and the electron passes straight through the system, as far as LO-phonons
are concerned; they are not necessarily unaffected by other incoherent effects which
we do not consider here. In this case we have

d

dt
〈n4|ρ(0)(t)|n3〉 = − i

~
〈n4|[HS, ρ

(0)(t)]|n3〉

− 1

2

∑

n1n2

{
Γn1n2
n1n4
〈n2|ρ(0)(t)|n3〉+

[
Γn2n1
n2n3
〈n1|ρ(0)(t)|n4〉

]∗}
, (6.83)

d

dt
〈n4|ρ(1)(t)|n3〉 = − i

~
〈n4|[HS, ρ

(1)(t)]|n3〉

+
1

2

∑

n1n2

{
Γn4n2
n3n1

+
[
Γn3n1
n4n2

]∗} 〈n2|ρ(0)(t)|n1〉 . (6.84)

Here is where we shall leave the case of a system which emits at least one phonon,
as the calculation of these dynamics is beyond the scope of this thesis. In reality,
any quantum experiment is the most useful when it does not undergo decoherence,
so we will now examine the behaviour of an electron moving through the system
without emitting a phonon.

These are general equations for the rate, but we are interested only in the lowest
subband, so ni = {0, ki}. We know that the rate Γkckdkakb

depends on δka−kb,kc−kd , and

also in general we have Γkakbkakb
= Γkakb∗kakb

. We can also now evaluate 〈n4|[HS, ρ(t)]|n3〉,
where HS =

∑
nEnc

†
ncn, and n = {0, n}.

〈k4|[HS, ρ(t)]|k3〉 = 〈k4|HSρ(t)− ρ(t)HS|k3〉 ,
= 〈k4|

∑

k

Ekc
†
kckρ(t)− ρ(t)

∑

k

Ekc
†
kck|k3〉 ,

= (Ek4 − Ek3) 〈k4|ρ(t)|k3〉 . (6.85)

Combining all of this means that we can rewrite Eq. (6.83) as

d

dt
〈k4|ρ(0)(t)|k3〉 = − i

~
〈k4|[HS, ρ

(0)(t)]|k3〉

− 1

2

∑

k1k2

{
Γk1k4k1k4

〈k4|ρ(0)(t)|k3〉+ Γk2k3k2k3
〈k4|ρ(0)(t)|k3〉

}
,

=

{
− i
~

(Ek4 − Ek3)−
1

2

∑

k1k2

(
Γk1k4k1k4

+ Γk2k3k2k3

)
}
〈k4|ρ(0)(t)|k3〉 .

(6.86)
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Integrating with respect to t, we get

〈k4|ρ(0)(t)|k3〉 = 〈k4|ρ(0)(t = 0)|k3〉

× exp

[{
− i
~

(Ek4 − Ek3)−
1

2

∑

k1k2

(
Γk1k4k1k4

+ Γk2k3k2k3

)
}
t

]
, (6.87)

which we can write as

〈k4|ρ(0)(t)|k3〉 = exp

[
−1

2

∑

k1k2

(
Γk1k4k1k4

+ Γk2k3k2k3

)
t

]
%

(0)
k4k3

(t), (6.88)

where %
(0)
k4k3

(t) is the solution of the problem without phonons.
If we define the k4 = k0 + ∆k4 and k3 = k0−∆k3, and change the notation such

that
∑

a Γabac = Γcbout, and Γddout = Γdout, we can rewrite the contents of the exponential
as

1

2

∑

k1k2

(
Γk1k4k1k4

+ Γk2k3k2k3

)
=

1

2

(
Γk4out + Γk3out

)
=

1

2

(
Γk0+∆k4

out + Γk0+∆k3
out

)
. (6.89)

Using the Taylor expansion gives an expression for these rates of

1

2

∑

k1k2

(
Γk1k4k1k4

+ Γk2k3k2k3

)
≈ Γk0out +

1

2
(∆k3 + ∆k4)

dΓkout

dk

∣∣∣∣
k=k0

+
1

4

(
∆k2

3 + ∆k2
4

) d2Γkout

dk2
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k=k0

. (6.90)

So we can rewrite Eq. (6.88) as

〈k4|ρ(0)(t)|k3〉 = exp
[
−Γk0outt

]
exp

[
−
{

1

2
(∆k3 + ∆k4)

dΓkout

dk

∣∣∣∣
k=k0

+
1

4

(
∆k2

3 + ∆k2
4

) d2Γkout

dk2

∣∣∣∣
k=k0

}
t

]
%

(0)
k4k3

(t). (6.91)

In order to examine the behaviour of the electron in position space, we need to
look at the wavepacket properties. In Section 3.2 we introduced the starting state
for an electron wavepacket in the lowest Landau level with momentum distributed
according to a Gaussian, as [23]

|ψ(0)〉 =
∑

k

Nαe
−α(k−k0)2 |k〉 (6.92)

where Nα is the normalisation constant

Nα =
(8απ)1/4

√
L

. (6.93)

and α = (2σ)−2. The density matrix as a function of time is given as

ρ(t) ≡ |ψ(t)〉〈ψ(t)| , (6.94)
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so we have
ρ(0) = |ψ〉〈ψ| =

∑

kk′

Nαe
−α(k−k0)2 |k〉〈k′|Nαe

−α(k′−k0)2 . (6.95)

Density operators evolve according to the Liouville-von Neumann equation, which
states that [106]

i~
∂ρ

∂t
= [H, ρ] (6.96)

the time evolution for a time-independent Hamiltonian is then

ρ(t) = e−iHt/~ρ(0)eiHt/~. (6.97)

If we input our Hamiltonian and combine Eq. (6.95) and Eq. (6.97), then we get

〈0k′|ρ(t)|0k〉 =
(8βπ)1/2

L
exp

[
−1

4

(Ek − E0)2

σ2
E

− 1

4

(Ek′ − E0)2

σ2
E

]

× exp

[
− i
~

(Ek′ − Ek)t
]
, (6.98)

where

β =

(
~v0

2σE

)2

, (6.99)

as ∆E = ~v0∆k move from in terms of k to E. We can then introduce the quantum
Hall energy, as mentioned in chapter 5,

〈x′y′|0k′〉 =
1√
L
eik
′x′ 1

π1/4
√
lΩ

exp

[
−1

2

(
y′ − yG(k′)

lΩ

)2
]
, (6.100)

〈0k|xy〉 =
1√
L
e−ikx

1

π1/4
√
lΩ

exp

[
−1

2

(
y − yG(k)

lΩ

)2
]
, (6.101)

where yG(k) = ωc
Ω2

~k
m∗e

= ωc
Ω
l2Ωk is the guide centre as introduced in Part I. We can also

include the damping from Eq. (6.91) by multiplying by the exponential containing
the damping term and moving into the same notation, i.e. where k′ = k4 and k = k3.
If we combine all of the constituents so far and sum over k, k′ we can write this in
integral form as

∑

k3k4

〈x′y′|0k4〉 〈0k4|ρ(t)|0k3〉 〈0k3|xy〉 =

∫
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. (6.102)
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Due to the transport being solely in the x-direction, we shall trace over the y-
component as it offers little physical insight into the dynamics. Recalling the con-
finement length, lΩ =

√
~/m∗eΩ, we can define

µ =
(ωc

Ω

)
lΩ, (6.103)

and take the trace by integrating over y = y′ to give,
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4
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]
(6.104)

Using the dispersion relation for the wavepacket shown in Part I, the expansion
k = k0 + ∆k and linearising in k, we have

Ek =
1

2
~Ω +

(ωy
Ω

)2 ~2

2m∗e
(k0 + ∆k)2,

=
1

2
~Ω +

(ωy
Ω

)2 ~2k2
0

2m∗e
+
(ωy

Ω

)2 ~2k0∆k

m∗e
,

=E0 + ∆E, (6.105)

where

E0 =
1

2
~Ω +

(ωy
Ω

)2 ~2

m∗e
k2

0; ∆E =
(ωy

Ω

)2 ~2

m∗e
k0∆k. (6.106)

We have the definition of velocity also from Section 2.6,

v0 =
1

~
∂E

∂k
=

1

~
∆E

∆k
=
(ωy

Ω

)2 ~
m∗e

k0. (6.107)

We therefore have

Ek3 =E0 + ~v0∆k3, (6.108)

Ek4 =E0 + ~v0∆k4. (6.109)

which we can put into into Eq. (6.104). After expanding using k = k0 + ∆k, we
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linearise with respect to ∆k, to give
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Performing this integration gives a result of

ρ(x, x′, t) =

√
2

π

~v0σE
~2v2

0 + σ2
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exp
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]

× exp
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2
]

+
1

2
(Γ′t)

2
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, (6.111)

where for clarity, we have written

Γ′′ =
d2Γkout

dk2

∣∣∣∣
k=k0

; Γ′ =
dΓkout

dk

∣∣∣∣
k=k0

. (6.112)

We can use this equation to investigate the motion of the electron. Including coher-
ences means that we should get a travelling wavepacket, and the −Γout exponential
suggests that there will be a dissipation over time. We also have dispersion from the
Γ′′ term in the denominator. The natural dispersion from the wavepackets initial
width in k-space has been removed by the linearisation of the energy dispersion
relation, such that what we see here is from the Γ′′ term alone. The density matrix
does not preserve the trace, due to the conditional evolution, and accordingly the
trace now gives the probability of such a non-Hermition evolution occurring.

In Fig. 6.2 we can see that Eq. (6.111) describes a moving wavepacket. Parts
(a - f) show the wavepacket over time as it moves through space at a velocity v0.
This equation also describes a dissipation of the wavepacket, given by the term
exp

[
−Γk0outt

]
which can be seen in the fading of the wavepacket over time. The fact

that these changes occur in the case of Eq. (6.83) gives credence to the results of
the semiclassical only case in Ref. [23], as this is the case where there is no emission
of phonons, so there is no effect from the spread κ involved.

There is clearly a dependence on the energy of the electron for derivatives of the
emission rate terms. Looking at Fig. 6.3 we see how (a) Γ′/v0 and (b) σ2

EΓ′′/~2v2
0 vary

with injection energy and for different values of magnetic field B. At lower energies
these values are close to 0 so the terms involving them are of little importance in the
equation, however as the energy increases these terms become larger and therefore
their effects cannot be ignored. Perhaps a more intuitive view of the importance
of the Γ′′ term can be seen in Fig. 6.4. Panel (a) shows the time in microseconds
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Figure 6.2: Each of the parts (a-f) show the wavepacket at time intervals of 25 ps each,
normalised with respect to the initial state. We can see then that we do indeed have a
wavepacket which moves over time, and dissipates as well which can be seen due to the
fading. The parameters used for this simulation were magnetic field, B = 5 T, central
energy, E0 = 150 meV, wavepacket width, σE = 1 meV and confinement in the y-direction,
~ωy = 2.7 meV and a = 3 nm.

at which the second derivative of the emission rate becomes the dominant term
and the wavepacket has dispersed significantly and panel (b) shows the maximum
distance an electron can travel before complete dispersion. We can see that for
higher magnetic fields and low energies, these times and distances are outside the
realms of realistic experimental values, however as the magnetic field drops and the
energy increases the time and distance reduce significantly such that the rate with
the off-diagonal coherence terms need to be taken into account.

The next step for this analysis is to further develop equation Eq. (6.84), which
gives the probability of the emission of a phonon, as opposed to the probability
that a phonon is not emitted in equation Eq. (6.83). The first step in developing
Eq. (6.84) is the same as for Eq. (6.83), i.e.

〈k4|[HS, ρ
(1)(t)]|k3〉 = (Ek4 − Ek3) 〈k4|ρ(1)(t)|k3〉 (6.113)

We also have the term 〈k2|ρ(0)(t)|k1〉, which we have just calculated in Eq. (6.91),
albeit with different wavenumbers. This shows that the equation with phonon emis-
sion occuring is some perturbation multiplied by the no-phonon case.

This is where we stop for this thesis, however, future research could develop this
equation further, to investigate how it varies with κ34 = k4 − k3. If there is change
in the motion of the wavepacket with increasing κ, then we can use the semiclassical
case without issue, however, if over time this causes a great deal of spreading of
the wavepacket, then we will see that the semiclassical model no longer accurately
predicts to motion of an electron undergoing phonon emission.
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Figure 6.3: The terms Γ′/v0 and σ2
E/(~2v2

0)Γ′′ from Eq. (6.111) are shown here. We can
see from these plots that the values of these terms increase to the point that we are
unable to ignore their effects, within the scope of the energy and magnetic field ranges
that we consider in experiments. The parameters used for these plots are σE = 1 meV,
y-confinement, ~ωy = 2.7 meV and central energy E0 = 100 meV.
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Figure 6.4: Panel (a) shows the mean time in microseconds until an electron undergoes
significant decoherence for a range of energies and magnetic fields. Panel (b) shows the
mean path length for the same values of energy and magnetic field. As magnetic field
decreases, the life time and mean free path of the electron decreases significantly, such that
the semiclassical view of the system is no longer a good approximation for the behaviour
of an electron.

6.6 Chapter summary

In this chapter we have derived a master equation describing the emission rate of LO-
phonons and the behaviour of electrons undergoing this emission. First, we derived
an equation for the rate which takes into account the off-diagonal terms of the
density matrix which describe the coherence of the electron whereas previous works
[23] have treated only the diagonal elements. We show that for small differences in
the starting state wavenumbers, (i.e. wavepacket widths) this diagonal only equation
for the emission rate can be used as a good approximation to the full rates with
the coherences, however as the wavepacket widths increase, the off diagonal terms

94



CHAPTER 6. FULLY-QUANTUM DESCRIPTION OF LO-PHONON
EMISSION

become increasingly important such that they can no longer be ignored.
We have then derived an equation of motion to describe the motion of electrons

with these full equations for the emission rate included. We have concentrated here
on the case where phonons are not emitted, and have found that including the full
emission rates we see a moving wavepacket which also has a dissipation related to the
diagonal rate, which validates the previous approach, but also dispersion over time
related to the second derivative of the rate, which in the off diagonal case becomes
important at energies and magnetic fields within the ranges that we consider here.
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Chapter 7

Conclusions and future work

T
hroughout this thesis, we have explored the world of hot-electron quantum-
optics, and its uses in modern technology. The ability to use electrons with

tunable energies opens up opportunities to perform experiments with these hot-
electrons, which can mitigate the issues of electrons interacting with their surround-
ings. Raising the energy of these electrons is not without its issues however, and
effects that are negligible for cold-electrons become more important at these higher
energies.

7.1 Conclusions

In Part II, we considered an electronic MZI, which was attached to a quantum-dot-
based SES. There is an uncertainty in the energy of electrons injected from these
sources, which can lead to a change in the path followed by the electron. Given their
dependence on the path lengths of the interferometer, the phases can be very much
affected by this shift. When the electron wavepacket splits at the quantum point
contact beamsplitters, the phase picked up may be random due to the uncertainty in
the injected electron’s energy, leading to interference. In extreme cases the electrons
arrive at different times entirely. The interference leads to amplitude reduction,
which in turn reduces the visibility of the system. In this thesis we have investigated
the effect that these small uncertainties in energy have on the visibility.

We have found that for a given MZI build, the effect of this phase averaging
can be removed entirely with correct choice of parameters. Specifically, we have
found that unlike classical optics, where paths of equal length would give optimal
interference, for an electron system there needs to be an offset to the path lengths
loffset in order to eradicate the effect of phase averaging. Typical sizes for the required
offset for hot electrons is on the order of 1µm in length, which is an unexpectedly
large offset in comparison with predictions from previous works. This loffset is then
of vital importance to experiments and has a large effect on the visibility if ignored.

While the visibility can be maximised for any choice of magnetic field and energy,
there is always the chance of experimental error. For higher energies and lower
magnetic field the range of energies and offsets for which the visibility is maximised
is broader, so there is more room for error. In Ref. [22] an MZI of similar path
lengths was investigated and the same combination of magnetic field and energy
was found to optimally reduce the effects of decoherence due to phonon scattering,
with the caveat that this requires reduced signal strength due to filtering out the
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LO-phonon replicas discussed in Chapter 5.

The results in this thesis are directly relevant to current experiments [37, 24].
In these experiments electrons are transported over paths of between 5 and 28µm.
With QPC beamsplitters already in use for time of flight experiments [37] all of the
components to build a hot-electron MZI exist and building one is completely feasible
in the near future. Due to the substantial offset length previously not accounted for
the results from this thesis are crucial for the successful implementation of this type
of experiment.

Moreover, previous works [56, 58, 60] have assumed that beamsplitters used in
experiments reflect and transmit wavepackets at a 50 : 50 ratio, however we show
in Chapter 3 that with the Fertig-Halperin saddle point model of the beamsplitters,
there is an energy dependence on both the transmission and reflection coefficients,
and the phase induced by the beamsplitters. Comparing the visibility when using
the full energy dependent transmission and reflection coefficients with the visibility
when they are assumed to be 50 : 50, we have found that the range at which the
visibility is maximised is significantly over estimated depending on the energetic
width of the beamsplitters, as shown in Fig. 3.9, thus highlighting the importance
of these calculations. In Chapter 4 we investigated arrival time distributions of
electrons taking into account the energy dependence on the beamsplitter phases
and examined how this is affected by the energy uncertainty. We also introduced
the concept of asymmetric beamsplitters, where each side of the beamsplitter is a
different width. We again calculated the arrival time distributions and investigated
how this asymmetry affects the arrival time of the electron, and the energy at which
any interference takes place.

We have found that for wide beamsplitters, the energy profile has little effect on
the transmission and reflection coefficients or the phase of the electron, as the elec-
tron only sees a small portion of it and therefore experiences only a tiny difference
in potential across its width. This means that the central energy of the beamsplitter
has no impact on where the interference will take place. For narrower beamsplit-
ters however, the electron will experience different effects from the potential profile,
such that the central position now predicts the energy at which the interference
takes place. When looking at the visibility as calculated from these simulations, we
see that the phase averaging contribution provides an envelope for the maximum
visibilities possible as the central energy of the beamsplitter varies from the energy
for which the path lengths have been optimised, Epeak. As visibility is maximised
when the beamsplitters are 50 : 50, we have found that wider beamsplitters in com-
parison to the width of the wavepacket will yield a higher visibility of the system
over a larger energy range.

Up until now, the beamsplitters have always been modelled as symmetric. We
then introduced the concept of asymmetry, and investigate the effect that this has
on ATDs of the electrons. We found that for small asymmetry there is a slight
shift in the position at which the interference occurs, however when the asymmetry
is larger the interference pattern itself is modified by the asymmetry of the beam-
splitters. This is another example of how a thorough theoretical investigation can
benefit experimental design. Asymmetry in the beamsplitters can shift the energy at
which interference occurs, thereby changing the required offset length to maximise
visibility, which we know from Chapter 3 is of vital importance in the building of
hot-electron interferometers.
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The combination of these effects with the results from Ref. [22] gives unprece-
dented insight into the successful design of electronic MZI experiments for future
quantum technology applications.

The phase averaging affects investigated in Part II are not the only incoherent
effect that we have considered. At the higher energies of the hot-electrons, the effect
of LO-phonon emission becomes dominant, as there is now enough energy in the
electrons (at least 36 meV is required in GaAs systems, while we consider electrons
with energies around 100 meV and up) to emit LO-phonons, which we considered
in Part III.

For this part we considered only electrons emitted from a single-electron source
and then detected a short distance later, without attachment to a MZI. Previous
theoretical models of the emission rates of LO-phonons and the behaviour of elec-
trons undergoing this emission have been semiclassical. They assumed a narrow
wavepacket such that there is no difference between either side of the wavepacket,
k and k′, meaning that only the diagonal elements of the density matrix describing
the electron are included. To get a complete quantum picture of electron behaviour,
these coherence terms must also be taken into account. To this end, we have derived
the rates and master equation for a hot-electron, keeping the off diagonal rates in.
We found that for small wavepackets, the diagonal-terms-only model in Ref. [23] is
acceptable, however once the wavepackets are approximately 1 meV in width the
off-diagonal terms become important. We also obtain an equation of motion to in-
vestigate the behaviour of an electron after a phonon has been emitted. This we
have split into two parts, the first of which we investigated in this thesis, and the
second of which we consider as part of the future work.

We have found that for the subensemble with no LO-phonon emission, additional
terms for the dispersion and dissipation of an electron are introduced that depend
on the rates which take into account the coherence terms of the density matrix.
The contributions to the equation of motion of these terms were found to be small
for high magnetic fields and lower energies, however decreasing the magnetic field
down by as little as 3T increases dispersion significantly over the course of 1µs, and
over much shorter times for energies over 100 meV. Dissipation is also built into this
model, and depends only on the central wave number k0, and not the width, which is
also predicted by the semiclassical model. Dispersion times on the order of 1µs are
insignificant on the scale of single-electron experiments, thereby justifying the use
of the semiclassical model, at least in the case of the no-phonon ensemble, where we
find that the wavepacket maintains complete quantum coherence over time. We have
also found the maximum distance that an electron can travel before the dispersion
due to phonons is significant, which for higher magnetic fields and low energies is
much larger than typical experiments; however, as the magnetic field decreases and
the energy increases these mean free paths decrease such that the coherence terms
become important in modelling electrons.

7.2 Future work

While the findings in this thesis offer significant enhancements to future hot-electron
physics, there is still much more to be explored.

The next stage for the investigation into LO-phonon emission will be to consider
the second half of the equation of motion in Eq. (6.84), which gives the probabil-

99



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ity that a phonon will be emitted. When we consider this second term, a loss of
coherence of the electron due to phonon emission should appear as phonon replicas
trailing behind the wavepackets, because after emission of a phonon these wavepack-
ets have lower energy and therefore move with a lower velocity. This would be seen
as phonon replicas trailing behind wavepackets such as those seen in Fig. 6.2. In-
vestigating this term would lead to one of two conclusions: if the effect from this
difference is minimal, we can conclude that the semiclassical description is appropri-
ate in most cases for small electron widths, however if there is a large contribution
from this term over time, the coherence terms become much more important in
modelling single-electron systems.

The same model for the LO-phonons derived here could be applied with acoustic
phonons [54]. This could then be further incorporated into the model of inter-
arm coherence in an MZI studied in [22] for a complete quantum description of an
electron travelling in an MZI. This complete picture of the electron behaviour in
an MZI could then be combined with the complete microscopic model of the device
itself described by the findings in Part II of this thesis.

Combining the results from Parts II and III gives further insight into how we can
reduce the incoherent effects in hot-electron quantum-optics experiments. We have
found that the optimal conditions for the different effects do not necessarily coincide
with each other, such that some trade off between the effects must be made. These
results can be used as inputs into future experimental design such that the results
from any experiments performed in the same systems can be as clear as possible and
any potential future uses for these experiments can be made a reality with fewer
obstacles.

There is also currently ongoing work towards creating dynamic simulations of
MZI experiments [89, 107, 108]. Our work could be used as an input to these
simulations giving a more complete view of the action of the beamsplitters in these
works, as they are currently based on a simplified model. We could also introduce
the full description of the behaviour of electrons undergoing LO-phonon emission to
these simulations to visualise this effect within an MZI.

There is also the potential for future investigations into the behaviour of electrons
in an MZI when two single-electrons are injected, one from each potential source.
This would require building in the Coulomb interaction and incorporating the phase
averaging foundations for one electron experiments derived in this work. As well as
increasing the number of electrons in these experiments, the MZI setups themselves
could increase in complexity. Bigger networks of MZIs will show increasingly com-
plex effects and open up the possibility of observing more signatures of quantum
behaviour. The work in this thesis has laid the foundations of these calculations
giving a starting point for modelling more complicated systems.

The findings in this thesis combine to give an overall view of two significant
incoherent effects in hot-electron quantum optics: phase averaging and LO-phonon
emission. Future experiments and dynamic simulations can use these results to
optimise their outcomes.
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Appendix A

Calculation of the
Aharonov-Bohm phase

Consider the Mach-Zehnder Interferometer in Fig. A.1. We choose coordinate system
and a Landau gauge such that the vector potential reads

A = (−By, 0, 0). (A.1)

The important thing to note is that for y > 0, A points in the −x direction; for

y

x

O

YU

−YL

X

A

A

Figure A.1: Regular AB loop with coordinate system chosen for ease of use.

y < 0, it points in the opposite, +x direction.
In general, the AB phase picked up along a path S is [34]

φ
(S)
AB =

q

~

∮

S

A. dx. (A.2)

With the above gauge choice, the contributions on the vertical parts of the interfer-
ometer paths are exactly zero, leaving only contributions from the horizontal parts.
Along the upper path for an electron (q = −e, with e > 0) we have

φ
(U)
AB =

−e
~

∫ X

0

(−BYU) dx = cBYUX; (A.3)
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along the lower

φ
(L)
AB =

−e
~

∫ X

0

(−BYL) dx = −cBYLX; . (A.4)

These two have different signs due to the different direction of A along the two
paths.

Taking into account only the AB phase, the wave function just before the second
beamsplitter is

|Ψ〉 =
1√
2

(
eiφ

(U)
AB

∣∣Φ(U)
〉

+ eiφ
(L)
AB

∣∣Φ(L)
〉)

(A.5)

and therefore the interference term will be proportional to

cos
(
φ

(U)
AB − φ

(L)
AB

)
(A.6)

The total phase difference between upper and lower is thus

φAB = φ
(U)
AB − φ

(L)
AB =

e

~
BYUX +

e

~
BYLX =

e

~
BX(YU + YL) =

e

~
Ba (A.7)

where a is the interferometer area (and e > 0).
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Appendix B

Linearisation of dispersion relation

To calculate the energy with an additional small change in energy the guide centre
was chosen to be y = y0 + ∆y, that is, the original guide centre of the black path in
Fig. 3.3 plus a small change in the guide centre, ∆y, which corresponds to the blue
dashed path in Fig 3.3. Using this guide centre, Eq. (3.21) becomes,

E0 + ∆E = εn + ~Ω

(
n+

1

2

)
+

1

2
mω2

y

(
Ω

ωc

)2

(y0 + ∆y)2, (B.1)

E0 + ∆E = εn + ~Ω

(
m+

1

2

)
+

1

2
mω2

y

(
Ω

ωc

)2

y2
0

+mω2
y

(
Ω

ωc

)2

(y0∆y) +
1

2
mω2

y

(
Ω

ωc

)2

∆y2. (B.2)

The following is a justification for the linearisation to first order of this equation. In
order to show this, the total phase, φtot = φAB + φdyn was calculated including the
∆y2 term and compared to the total phase without this term.

If, instead of linearising the dispersion relation to get Eq. (3.25), we keep the full
equation, we can see that

∆E = mω2
y

(
Ω

ωc

)2

(y0∆y) +
1

2
mω2

y

(
Ω

ωc

)2

∆y2. (B.3)

We need to solve this for ∆y in order to use this as an input into our equations for
φAB and φdyn.

mω2
y

(
Ω

ωc

)2

∆y2 + 2mω2
y

(
Ω

ωc

)2

(y0∆y)− 2∆E = 0 (B.4)

Using the quadratic equation and simplifying gives

∆y = ±
√
y2

0 +
2∆Eω2

c

Ω2mω2
y

− y0 (B.5)

We can then substitute for y0 in terms of k0 and introduce the velocity v0 to simplify
further, which gives

∆y =
ωc
ωy

[
− v0

ωy
±
√
v2

ω2
y

+
2∆E

mΩ2

]
, (B.6)
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and

∆y2 =

(
ωc
ωy

)2
[

2v2

ω2
y

+
2∆E

mΩ2
∓ 2v

ωy

√
v2

ω2
y

+
2∆E

mΩ2

]
. (B.7)

These can now be used in Eq. (3.38) and Eq. (3.42) to give new equations for the
two phases including the higher order term.

φAB =
m∗eωc
~

{
A0 + l0

ωc
ωy

[
− v0

ωy
±
√
v2

0

ω2
y

+
2∆E

m∗eΩ
2
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+4

(
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0
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y

+
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2
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√
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2
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(B.8)

φdyn =
2l0E0

~v0

+
16E0

~v0

ωc
ωy
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ωy
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√
v2

0
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. (B.9)

Whether to choose the positive or negative form of the quadratic is decided by
looking at the coefficient a0. As this coefficient depends only on the original equation
for E0, it should remain unchanged. The positive sign of the quadratic gives this
result, so this is the one we choose. It corresponds to an electron travelling along
the edges defined in Fig. 3.3, whereas the negative sign corresponds to an electron
travelling along the opposite edge. This gives an equation of φtot of

φtot =
m∗eωc
~

{
A0 + l0

ωc
ωy

[
− v0

ωy
+

√
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0
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. (B.10)

Previously we have split φtot into three terms based on their dependencies on ∆E,
and then named the coefficents of ∆E2 and ∆E, a2 and a1 respectively, and terms
with no dependence on the change in energy were grouped into a term called a0.

It is necessary to find these coefficients for our new equation of φtot. We must
perform Taylor series expansions on the square root terms in order to write them in
the same way as before.

[
1 +

2∆E

m∗ev
2
0

(ωy
Ω

)2
]1/2

= 1 +
∆E

m∗ev
2
0

(ωy
Ω

)2

− ∆E2

2m∗e
2v4

0

(ωy
Ω

)4

(B.11)
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Substituting Eq. (B.11) into Eq. (B.10) gives

φtot =
2l0E0
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The coefficients anew2 , anew1 and anew0 are therefore

anew2 =
4

~ωcm∗ev2
0
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c
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[
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ω2
c

Ω2

]
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0
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2
c
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(B.13)

anew1 =
16E0

~ωcm∗ev2
0

ω2
c

Ω2
+

l0
~v0

+
ω2
c

Ω2

l0
~v0

(B.14)

anew0 =
2l0E0

~v0

+
m∗eωc
~

A0 (B.15)

If we compare Eqs. (B.13), (B.14) and (B.15) with Eq. (3.45a), (3.45b) and (3.45c)
respectively we see that the only equation which has changed is anew2 (Eq. (B.13))
from a2 (Eq. (3.45a)).
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Figure B.1: The ratio of the total phase with and without the ∆y2 is always within a
few percent of 1 for the energies that we are interested in. We can therefore say that the
exclusion of the ∆y2 term does not affect the outcome significantly.

To confirm whether or not we can disregard the ∆y2 dependent term in Eq. (B.2)
we can look at the the ratio of a2/a

new
2 . If this is ≈ 1 we can say the two coefficients

are the same, and therefore the inclusion of the ∆y2 term does not have a significant
contribution. Figure B.1 shows this ratio of a2/a

new
2 . It is ∼ 1, so we can say that

the two coefficients are approximately equal. Considering this result, we can confirm
that the linearisation to first order of Eq. (B.2) is an acceptable approximation.
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Appendix C

Calculating additional phase shift

The extra phase shift from Section 3.6.3 is found by rearranging the terms containing
F in Eq. (3.50), and looking at the real and imaginary parts separately,

√
1 + F 2 =(1− iF )(cos(2θ) + i sin(2θ))

= cos(2θ) + F sin(2θ) + i(sin(2θ)− F cos()2θ)). (C.1)

The imaginary part gives,

sin(2θ)− F cos(2θ) = 0

⇒ tan 2θ = F (C.2)

and if we look at the real part we have

√
1 + F 2 = cos(2θ) + F sin(2θ). (C.3)

We can use the fact that sin(2θ) = F cos(2θ) from the imaginary part, to give

√
1 + F 2 = cos(2θ) + F 2 cos(2θ)

⇒ 1√
1 + F 2

= cos(2θ)

⇒ sin2(2θ) + cos2(2θ) = (1 + F 2) cos2(2θ)

⇒ tan(2θ) = F. (C.4)

Both parts of the equation have given us the same value of θ of

θ =
1

2
arctan(F ). (C.5)

This phase shift can be absorbed into the E-independent part of the phase in the
equation for current, as it is just a shift.
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[96] L.J. Sham and J.M. Ziman. The electron-phonon interaction, volume 15 of
Solid State Physics. Academic Press, 1963.

[97] S. K. Sinha. Electron-phonon interaction and phonon dispersion relations
using the augmented-plane-wave method. Phys. Rev., 169:477–495, 1968.

[98] T. Brandes. Lectures on background to quantum infromation: Quantum dis-
sipation, 2004.

[99] C. A. Brasil, F. F. Fanchini, and R. d. J. Napolitano. A simple derivation of
the Lindblad equation. Rev. Bras. de Ensino de Fis., 35:01 – 09, 2013.

113



REFERENCES

[100] P. A. M. Dirac. The quantum theory of the emission and absorption of radi-
ation. Proc. R. Soc. Lond. A, 114(767):243–265, 1927.

[101] A. Bhuiyan and F. Marsiglio. Landau levels, edge states, and gauge choice in
2d quantum dots. Am. J. Phys., 88(11):986–1005, 2020.

[102] N. Johnson, J. D. Fletcher, D. A. Humphreys, P. See, J. P. Griffiths, G. A. C.
Jones, I. Farrer, D. A. Ritchie, M. Pepper, T. J. B. M. Janssen, and
M. Kataoka. Ultrafast voltage sampling using single-electron wavepackets.
Appl. Phys. Lett., 110(10):102105, 2017.

[103] H. T. Duc, Q. T. Vu, T. Meier, H. Haug, and S. W. Koch. Temporal decay of
coherently optically injected charge and spin currents due to carrier–lo-phonon
and carrier-carrier scattering. Phys. Rev. B, 74:165328, 2006.

[104] F. Vallée. Time-resolved investigation of coherent lo-phonon relaxation in iii-v
semiconductors. Phys. Rev. B, 49:2460–2468, 1994.

[105] R Okuyama, M Eto, and T Brandes. Lasing and antibunching of optical
phonons in semiconductor double quantum dots. New J. Phys., 15(8):083032,
2013.

[106] H.-P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford
University Press, 2002.

[107] J. H. Davies. Electronic states in narrow semiconducting wires near threshold.
Semicond. Sci. Technol., 3(10):995–1009, 1988.

[108] J. H. Davies, Larkin. I. A., and E. V. Sukhorukov. Modeling the patterned
two-dimensional electron gas: Electrostatics. J. of Appl. Phys., 77(9):4504–
4512, 1995.

114


	I Introduction 
	Introduction 
	Single-electron sources
	Quantum optics
	Electron quantum optics 
	Thesis overview 
	Phase averaging
	LO-phonon emission
	Thesis structure


	Quantum transport and solid-state physics 
	Mesoscopic physics
	Two-dimensional electron gas (2DEG) 
	Classical Hall effect
	Quantum Hall effect
	Aharonov-Bohm phase 
	Landau levels and edge channels


	II Phase Averaging 
	Optimising electron interferometry experiments 
	Experiments with DC sources
	Explanations of interferometer visibility

	Hot electron sources and decoherence 
	 Scattering theory
	Scattering matrices of two beamsplitters
	Hot-electron current

	 Energy dependence of electron guide centres
	 Deviations of the guide centre

	Dynamical and Aharonov-Bohm phases 
	 Dynamical Phase
	 Aharonov-Bohm Phase
	 Current with a small energy perturbation

	Energy dependent transmission and reflection coefficients 
	Results 
	Chapter summary

	Arrival time distributions in Mach-Zehnder interferometers 
	Arrival time distributions
	Energy dependent beamsplitters 
	Phases
	Dynamical and Aharonov-Bohm phases
	Delay times
	Numerical results 
	Role of the beamsplitter phases 
	Chapter summary 


	III LO-phonon emission 
	LO-phonons in electron quantum optics 
	Phonons in condensed matter systems
	Experimental observations
	Theoretical background 
	Fröhlich Hamiltonian
	General Master Equation 
	Born approximation
	Bath correlation functions
	Markov approximation

	Chapter summary

	Fully-quantum description of LO-phonon emission 
	Master equation for LO phonon emission
	Master equation 
	Evaluating the emission rates 
	Validity of the Markov approximation
	Equation of motion 
	Chapter summary


	IV Conclusions, outlook and appendices 
	Conclusions and future work
	Conclusions 
	Future work 

	Calculation of the Aharonov-Bohm phase 
	 Linearisation of dispersion relation
	Calculating additional phase shift 


