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Abstract 

Infrastructure networks provide crucial services to the functioning of human settlements. 

Extreme weather events, especially flooding, can lead to disruption or complete loss of these 

crucial infrastructure services, which can have significant impacts on people’s health and 

wellbeing, as well as being costly to repair. Urban areas concentrate infrastructure and people, 

and are consequently particularly sensitive to disruptions due to natural (and human-made) 

disasters. Flooding alone constituted 47% of all weather-related disasters between 1995 and 

2015, causing enormous loss of lives and economic damages. Climate change is projected to 

further exacerbate the impacts that natural disasters have on cities. 

Choices about where to site infrastructure have a significant impact on the impacts of extreme 

weather events. For example, investments in flood risk management have typically focussed 

on prioritising interventions to protect people, houses and businesses. Protection of 

infrastructure services has either been a bonus benefit of flood defence protection of 

property, or been implemented by individual infrastructure operators. Spatial planning is a 

key process to influence the distribution of people and activities over broad spatial scales. 

However, decision-making processes to locate infrastructure services does not typically 

consider resilience issues at broad spatial scales which can lead to inefficient use of resources. 

Moreover, spatial planning typically requires consideration of multiple, sometimes competing, 

objectives with solutions that are not readily tractable.  

Balancing multiple trade-offs in spatial planning with multiple variables at high spatial 

resolution is computationally demanding. This research has developed a new framework for 

multi-objective Pareto-optimal location-allocation problems solving. The RAO (Resource 

Allocation Optimisation) framework developed here is a heuristic approach that makes use of 

a Genetic Algorithm (GA) to produce Pareto-optimal spatial plans that balance a typical trade-

off in spatial planning: the maximisation of accessibility of a given infrastructure service vs the 

minimisation of the costs of providing that service. The method is applied to two case studies: 

(i) Storage of temporary flood defences, and (ii) Location of healthcare facilities. 

The RAO is first applied to a flood risk management case study in the Humber Estuary, UK, to 

optimise the strategic allocation of storing space for emergency resources (like temporary 

flood barriers, portable generators, pumps etc.) by maximising the accessibility of warehouses 

(i.e. minimising travel times from storing locations to deployment sites) and minimising costs. 
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The evaluation of costs involves both capital and operational costs such as the length of 

temporary defences needed, storage site locations, number of lorries and personnel to enable 

their deployment, and maintenance costs. A baseline is tested against a number of scenarios, 

including a flood disrupting road network and thereby deployment operations, as well as 

variable infrastructure and land use costs, different transportation and deployment strategies 

and changing the priority of protecting different critical infrastructures. 

Key findings show investment in strategically located warehouses decreases deployment time 

across the whole region by several hours, while prioritising the protection of the infrastructure 

assets serving larger shares of population can cut costs by 30%. Moreover, the analysis of the 

ensemble of all scenarios provides crucial insights for spatial planners. For example, storage 

sites in Hull or Hedon, and in the areas of Withernsea and Drax are robust choices under all 

scenarios. Meanwhile, the Humber Bridge is shown to play a crucial role in enabling regional 

coverage of temporary barriers. 

The second case study shows how emergency response strategies can be enhanced by optimal 

allocation of healthcare facilities at a regional scale. The RAO framework allocates healthcare 

facilities in Northland (New Zealand) balancing the trade-off between maximisation of 

accessibility (i.e. minimisation of travel times between households and GP clinics) and 

minimisation of costs (i.e. number of clinics and doctors). Results show how c.80% of 

Northland’s population lives within a 20 minutes drive from the closest GP, but this can be 

increased to 90% with strategic investment and relocation of doctors and clinics. By 

accounting for flood and landslide risk, the RAO is used to identify strategies that improve 

accessibility to healthcare services by up to 5% even during extreme events (when compared 

to the current business as usual service accessibility). 

Application to these two problems demonstrates that the RAO framework can identify optimal 

strategies to deploy finite resources to maximise the resilience of infrastructure services. 

Moreover, it provides an analytical appreciation of the sensitivity between planning tradeoffs 

and therefore the overall robustness of a strategy to uncertainty. The method is consequently 

of benefit to local authorities, infrastructure operators and agencies responsible for disaster 

management. Following successful application to regional scale case studies, it is 

recommended that future work scale the analysis to consider resource allocation to protect 

infrastructure at a national scale. 
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1. Introduction 

1.1. Infrastructure and climate risks  

Six hundred million human lives claimed and four billion people impacted by extreme weather 

are the numbers of the last two decades of environmental crisis (CRED and UNISDR, 2015). In 

fact, floods, storms, heatwaves and other weather-related events have caused more than 90% 

of natural disasters in the last 20 years. 

Future natural disasters are foreseen to become more frequent and more severe (Global 

Commission on Adaptation, 2019) and their impact will be higher on cities as the world urban 

population is arising – more than half of the world population already lives in urban 

environments and by 2050 the projections say that it will be around 68% (Batty, 2018; United 

Nations, 2019) . 

Together with high concentrations of population, urban areas imply high concentrations of 

infrastructure. Infrastructure networks are the backbone of all human and economic activities 

undergoing in cities. Therefore, ensuring a high level of resilience to natural disasters to 

strategic infrastructure means making communities more resilient. 

Strategic infrastructure is a particular class of infrastructure that comprises 

telecommunications, power systems, banking and finance, transportation, water supply, 

government and emergency services. Their disruption would imply potentially disastrous 

effects on human lives and economic activities of the country (US President's Commission on 

Critical Infrastructure Protection, 1997). 

Among the other climate change-related hazards that endanger human settlements, flooding 

is particularly devastating both in terms of human lives and economic losses. Floods are a 

worldwide threat and different countries adopt different flood management approaches 

according to the different nature of their environments, their risks and their legislations. 

Current approaches to flood risk management focus on protecting people, as it is not always 

possible to protect infrastructure (especially linear infrastructure networks). This would 

simply require too many resources and too high costs. Hence the need for a sensible approach 

to identifying where to strategically allocate limited resources, in order to optimise 

investments and achieve the best possible results at minimum cost. 
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The National Flood Resilience Review (Cabinet Office and DEFRA, 2016) provides an overview 

of the UK government’s strategy in addressing flood risk management in the country. It 

highlights the fundamental role of strategic infrastructure in underpinning business as usual 

economic activities and even more so during emergencies. 

It also explores the potential role of temporary flood defences not only as a ‘backup’ solution, 

but also as a valid alternative to structural measures to take into consideration when designing 

flood mitigation strategies. The review also presents the funding allocation and plan to 

increase the Environment Agency’s temporary defences stock together with the Agency’s 

intention not only to increase the currently available stock of temporary flood defences, but 

also to identify “further strategic storage sites across the country, enabling temporary barrier 

deployment anywhere in England within 12 hours (3 hours driving and 9 hours loading and 

unloading)” (Cabinet Office and DEFRA, 2016). 

Temporary flood defences are the focus of the main case study of the present work. Starting 

from a real-life allocation problem, this research proposes a spatial multi-objective location-

allocation optimisation methodology. 

 

1.2. Methods 

A Resource Allocation Optimisation (RAO) methodology is developed to solve the spatial 

optimisation problem of temporary flood defences storage space allocation. Nevertheless, the 

optimisation framework is designed to be general enough to be applied to different allocation 

problems of the same nature. 

This choice is justified by the fact that many resource allocation problems dealing with 

emergency response or infrastructure resilience to natural disasters share a common 

conceptual (and therefore mathematical) formulation. A common feature of such problems is 

the presence of conflicting objectives that make it impossible to find a global optimal solution 

of the problem, as improving the performance of solutions with respect to one objective 

necessarily implies the worsening of some other objective. 

An example of this dynamics – relative to spatial optimisation problems – regards the conflict 

between the maximisation of accessibility and the minimisation of costs. When designing 
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emergency response strategies, resources’ accessibility maximisation and costs minimisation 

are the main ingredients of efficient and cost-effective plans. 

These objectives are contrasting by nature and their simultaneous optimisation is impossible 

by definition. Consequently, multi-objective optimisation aims at trade-off balancing; its 

outcome is a portfolio of different solutions that optimally balance the trade-off between 

conflicting objectives, rather than a single optimal global solution 

A series of available optimisation techniques are currently available and extensive literature 

provides methodologies and applications to different problems. However, a spatial 

optimisation framework explicitly designed to solve resources allocation in an emergency 

response context is not present in the literature. 

The digital revolution provides us today with unprecedented tools for complex analyses 

involving big data, together with a likewise unprecedented computational power availability. 

Nonetheless, some problems still involve too big data or too complex analyses to be solved 

with mathematical exact methods in a reasonable time. This is why this work contemplates 

the use of heuristic computational approaches that allow the exploration of broader and more 

complex formulations, considering the acceptance of a margin of error. 

This work applies spatial optimisation to infrastructure resilience and sustainability in 

emergency planning problems. It addresses these problems by proposing a RAO framework 

meant as a potential support tool for urban planners and decision-makers when designing 

emergency management strategies. The final goal is to provide a methodology able to support 

planning decisions that efficiently make use of the available means, ultimately saving money 

and resources, which implicitly implies cost-efficiency and sustainability.  

 

1.3. Thesis outline 

This work aims to develop and demonstrate an optimisation-based decision support tool to 

help infrastructure operators and urban planners to identify strategies that improve the 

resilience of infrastructure services during disruptive natural hazards. In order to achieve this 

aim, the thesis has five objectives: 
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1. To review the field of flood risk management to identify the conflicts and barriers that 

can occur in the allocation of resources to enhance infrastructure resilience; 

2. To review optimisation techniques, in particular their application to spatial resource 

allocation problems, to identify a suitable approach; 

3. To develop a Resource Allocation Optimisation (RAO) framework that generates 

optimal spatial plans, to support infrastructure and urban planners to meet criteria 

identified in objective 2; 

4. The application and demonstration of the RAO approach to different case studies to 

demonstrate its utility and transferability;  

5. The analysis of the results from case studies and discussion of the utility of spatial 

optimisation to help improve infrastructure resilience.  

Objective 1 aims at understanding the state of the art of current flood risk management 

approaches and identifying new strategies to enhance infrastructure resilience. Chapter 2 

presents a review of different flood management strategies and introduces temporary flood 

defences as a potential viable alternative to structural measures for strategic infrastructure 

flood protection.  

Objective 2 has the goal to set the methodological ground of the research and to understand 

the current availability of optimisation techniques in the scientific community, review them 

and find the most suitable to constitute the architecture of the framework to be built. This is 

the topic of Chapter 3, where the mathematical formulation of optimisation problems is 

initially presented, followed by a review of different techniques available for spatial problems. 

Objective 3 aims at the formulation of a mathematically-based approach to solve urban 

planning problems meant to increase infrastructure resilience to natural hazards. This is 

addressed in Chapter 4, where the architecture of the RAO framework is explained together 

with the details and the algorithm’s workflow. 

Objective 4 consists in the application of the RAO developed by Objective 3 to two different 

case studies as proof of concept. Chapter 5 presents a UK case study on temporary flood 

defences storing space optimisation. Here the RAO provides solutions that balance the trade-

off between accessibility maximisation to emergency resources and costs minimisation. 

Chapter 6 presents a second case study in New Zealand, where the RAO is applied to a 
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different problem with a similar mathematical formulation: the spatial optimisation of 

healthcare infrastructure assets allocation. 

Finally, Objective 5, addressed in Chapters 5, 6 and 7, concerns the analysis of the results of 

the case study and explores the potential generalisation and application to other real-life 

urban planning resource management problems. 
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2. Infrastructure resilience and emergency planning 

2.1. Introduction Chapter 2 

Chapter 2 presents a literature review on emergency planning and climate risks in urban areas 

exploring the role of strategic infrastructure in emergency response operations. A definition 

and classification of strategic infrastructure are provided in section 2.2.1, followed by an 

analysis of the urban dimension of climate risks and a highlight of the close relation between 

infrastructure resilience to natural hazards and sustainable planning. The following section 2.3 

presents an overview of different flood emergency planning approaches comparing flood 

protection strategies in the UK and overseas. Finally, temporary flood defences are introduced 

and their use compared to structural measures in section 2.3.2.2, this is particularly relevant 

for the case study described in Chapter 5. 

 

2.2. Climate risks in urban areas 

2.2.1. Strategic infrastructure 

Strategic infrastructure networks underpin the functioning of every human and economic 

activity in urban and rural areas. Understanding and protecting them is crucial to guarantee 

the normal functioning of cities, to prevent failures and to cope with catastrophic events.  

The US President's Commission on Critical Infrastructure Protection (1997) identified different 

typologies of strategic infrastructure: telecommunications, power systems (electric, natural 

gas & oil), banking and finance, transportation, water supply systems, government services 

and emergency services. They are acknowledged as “strategic” because their failure or 

disruption would have severe and potentially catastrophic effects on citizens’ safety or the 

country’s defence and economic security. The same report highly stresses the absolute 

priority of guaranteeing the security, continuity, and availability of such infrastructure 

networks (Vamvakeridou-Lyroudia et al., 2018; Gibson et al., 2019; Vamvakeridou-Lyroudia et 

al., 2020). 

Strategic infrastructures are complex adaptive systems (Axelrod and Cohen, 2000): following 

complex systems’ logic, infrastructure networks cannot just be considered the mere sum of 

their different components, since they constantly interact with and influence each other 
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evolving through time, learning and improving from past experiences. An example of such 

additional complexity is the fact that the well-placed disposition of all the components of a 

water supply system does not guarantee an efficient water supply service; that depends from 

a precise number of other factors, frameworks and services that are external to the physical 

network (e.g. workforce organisation, power supply, telecommunication, etc.). This is typical 

of complex systems: they present an emergent behaviour that is beyond the simple sum of 

their components (Bonabeau et al., 1999). 

Rinaldi et al. (2001) provide a qualitative analysis of infrastructure interdependencies taking 

into account different factors like: 

1) infrastructure characteristics (organisational, operational, temporal, spatial); 

2) their state of operation (normal, repair/restoration, stressed/disrupted); 

3) different types of failure (common cause, cascading, escalating); 

4) different types of interdependencies (physical, cyber, logical, geographic); 

5) coupling and response behaviour (adaptive, loose/tight, inflexible, linear/complex). 

They also provide a clear example of connections and interdependencies between critical 

infrastructure networks, highlighting how failures or disruptions can have direct or indirect 

effects on the entire system. Figure 1 summarises such a series of dependencies and 

interdependencies among different components of the system and emphasises the 

importance of knowing and understanding them in the perspective of the system’s defence 

and resilience. 
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Figure 1 - Developed from (Rinaldi et al., 2001), examples of infrastructure networks interdependencies. 

In a world of increasing complexity due to unprecedented technological progress, it will 

become more and more important to study, analyse, understand and manage complex 

systems of systems to ensure safety and resilience in light of future challenges due to a 

changing climate. This research models several infrastructure disruption scenarios to evaluate 

and improve their resilience to natural disasters, making use of artificial intelligence 

techniques like genetic algorithms and machine learning to cope with the high computational 

effort required by multi-objective optimisation. 

 

2.2.2. Climate change-related problems in cities 

The world faces an environmental crisis: more than 90% of disasters of the last two decades 

have been caused by floods, storms, heatwaves and other weather-related events, claiming 

six hundred millions human lives and leaving a total of four billion people in an emergency 

condition (CRED and UNISDR, 2015). Climate is changing and will continue to change; humans’ 

only choice is to adapt (IPCC, 2014). Climate change’s impacts are predicted to become more 
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severe in the near future in terms of global higher temperatures, rising oceans, more violent 

and unpredictable storms and rainfall (Global Commission on Adaptation, 2019). 

Climate change will have higher repercussions in cities than everywhere else since urban 

environments are where the majority of people lives (55% of the world population in 2018) 

with an even higher predicted concentration in the future (68% by 2050). In western societies, 

the urban population is even higher (around 80%), with European peaks of 92% (Netherlands) 

and 98% (Belgium). Regarding the case studies analysed in this work, the urban population is 

still widely above the global average: 83% for the UK and 87% for New Zealand (United 

Nations, 2019). 

Urban areas are also the places where a higher number of infrastructure networks are 

concentrated and deeply interconnected and where the majority of human and economic 

activities take place. Therefore, cities are necessarily more sensitive to natural hazards’ 

effects, whose impacts are potentially catastrophic because of the high number of people, 

infrastructure and economic interests involved (Garschagen and Romero-Lankao, 2015; Lu et 

al., 2018). 

 

2.2.3. Infrastructure resilience to natural hazards 

Resilience is commonly defined as the capacity of a system of recovering from a disruption 

(Holling, 1973; Holling, 1996; Folke et al., 2010). Such a definition is very broad and somehow 

vague; in fact, numerous different definitions of resilience can be found according to what this 

concept is applied to. In this work, the main interest is the capacity of infrastructure systems 

to cope and recover after natural disasters, with a particular focus on flood events (see chapter 

2.3). 
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Figure 2 - Definition of resilience: the capacity of a system to recover after a disruption. 

Figure 2 shows different ways to make a system resilient to a specific natural hazard. The red 

line represents the performance of the system after the disastrous event: after a certain 

amount of time and investment of resources, the system returns to its standard status of 

“normality”. 

Making the system more resilient means reducing the amount of time necessary to bring it 

back to normality. To achieve this goal, one way is to invest in the recovery side (green line in 

Figure 2): this implies spending resources after the disaster occurred in order to accelerate 

recovery. On the other hand, it is possible to invest on the preparedness or responsiveness 

side (light blue line in Figure 2): this implies investing resources beforehand in order to reduce 

the impact of possible disasters, cutting down the recovery time. 

The second approach is more cost-effective than acting on the restoration side, and more 

cost-effective investments imply lower wastefulness of resources, capitals, emissions and 

ultimately higher sustainability (Tainter and Taylor, 2014). Therefore, this study focuses on the 

preparedness/responsiveness approach with the aim of providing a scientifically-based 

methodology to: 1) solve the real-life problems presented in the case studies of Chapters 5 

and 6 and 2) present a general methodological framework to optimise natural disasters 

preparedness of stratetic infrastructure systems. 

In light of this, the present research is framed within three UN Sustainable Goals (UN General 

Assembly, 2015): 9) Industry innovation and infrastructure, 11) Sustainable cities and 

communities and 13) Climate action (Figure 3) (Adshead et al., 2019). 
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Figure 3 - UN Sustainable Development Goals. 

Sustainable Development (SD), Climate Change Adaptation (CCA) and Disaster Risk Reduction 

(DRR) constitutes different communities, each one with its own framework of reference. The 

2030 Agenda for sustainable development (UN General Assembly, 2015) is the primary 

reference framework for the Sustainable Development community. The Paris Agreement 

(UNFCC, 2015) is an international legally binding document signed by governments to set a 

common agenda in terms of climate change actions. DRR community’s main reference, 

instead, is the Sendai framework for disaster risk reduction (UNISDR, 2015). 

Despite the similarity of their objectives, the three communities address these topics 

independently and often with a lack of coordination and cooperation. All the aforementioned 

reference documents have very similar main objectives, the same timeframe (2015-2030) and 

they have been published almost simultaneously. Nevertheless, they adopt different 

perspectives and rarely overlap nor cite each other’s main topics. For example, the Paris 

agreement cites DRR just one time and no other reference is made in the whole document to 

this field and the Sendai framework actively sustains the artificial distinction between CCA, 

DRR and Sustainable Development (Kelman, 2017). 

A shared focus, instead, is the attention to the urban dimension that all the Post-2015 

frameworks have. They all identify cities and urban areas as critical contexts where policies, 

actions and measures should be concentrated to maximise their impact (Cabinet Office, 2011; 

Garschagen and Romero-Lankao, 2015; Gencer, 2017). It is in this perspective that the focus 

of this work - resilient urban systems - is not just framed within the DRR perspective, but is 

part of the broader picture also involving CCA and SD. 
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Given the current uncertainty regarding the future and the rapidly evolving climate situation, 

current measures, interventions and policies need to be continuously kept up to date, also 

with the awareness that actions taken today may worsen tomorrow’s reality in case of design 

exceedance (Dawson, 2007; Aerts et al., 2011; IPCC, 2012; Pregnolato, 2017). 

 

2.3. Flood emergency planning 

2.3.1. Flood risk management 

Flooding is a major problem both in the UK and overseas (Hu et al., 2019). Many countries 

worldwide periodically face natural disasters like recent events in the USA, with Hurricane 

Harvey (Blake and Zelinsky, 2018), and the devastating floods of the Philippines (Cabrera and 

Lee, 2018) and Japan (Niroshinie et al., 2016; Shakti et al., 2018). In Europe, the most recent 

events happened in Spain (Lorenzo-Lacruz et al., 2019), Italy (Arrighi and Castelli, 2020) and 

Germany (Meyer and Schwarze, 2019). The UK is facing catastrophic flood events with 

increasing recurrence, like Storm Desmond and its consequences on strategic infrastructure 

collapse in Lancaster (Ferranti et al., 2017) and other flood-prone regions that have been hit 

by disastrous floods in the past years like Somerset, Cumbria and Yorkshire. Here 20,000 

properties flooded in 2015/16 with estimate damages of ~£1.5 billion (Cabinet Office and 

DEFRA, 2016). 

Besides, the situation is not expected to improve: the wettest February on record (2020) 

witnessed storms Ciara and Dennis, which had a severe impact on UK infrastructure, causing 

major floods throughout the country (The Parliamentary Office of Science and Technology, 

2020). 

Floods’ heavy toll on economies and human lives make them one of the most significant 

threats of climate change. Hence the interest of the present work to focus on flooding and on 

strategic infrastructure resilience to flooding. In fact, the spatial optimisation analyses of the 

two case studies presented (the first in the UK and the second in New Zealand) consider 

flooding as the natural hazard of reference (with the addition of landslides in the NZ instance). 

The 2016 UK National Flood Resilience Review (Cabinet Office and DEFRA, 2016) provides an 

interesting overview of several international approaches to flood resilience. Three EU 
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countries (UK, France and the Netherlands) and three extra-EU countries (USA, Japan and 

Australia) are compared. 

A first analysis regards the number of people at risk; Figure 4 shows a chart with indicative 

percentages of the at-risk population for each country, with specifications (where available) 

of the annual chance of flooding people are exposed to. 

16% of England’s mainland, comprising around 8% of the country’s population, has an annual 

flood risk greater than 0.1% (Environment Agency, 2015). The UK National Flood Risk 

Management and Coastal Erosion Strategy (Environment Agency and DEFRA, 2011) presents 

an extensive array of approaches to tackle flood risk elaborated after 2007 England flooding 

events and the following Pitt Review (Pitt, 2008). Flood risk is mapped at the national level by 

the Environment Agency, who divided the country into three zones with different associated 

risk levels, as summarised in Table 1. 

Table 1 - Environment Agency's flood risk zones for England. 

 
England’s land area % 

Annual chance of 
flooding from rivers 

Annual chance of 
flooding from the sea 

Zone 3 10% ≥ 1% ≥ 0.5% 

Zone 2 2% ≤ 1% and ≥ 0.1% ≤ 0.5% and ≥ 0.1% 

Zone 1 78% < 0.1% < 0.1% 
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Figure 4 - Indicative percentages of the population at risk of flooding from rivers and the sea. Developed from Cabinet 
Office and DEFRA (2016). 

According to the French National preliminary Flood Risk Assessment (Ministère de L'Écologie, 

2011), in France, the percentage of the country’s population with an annual flood risk of 0.1% 

rises to 28%. If we consider 100 years return period events, 8% of the population would be at 

risk. To address this problem, the French Government implemented different flood risk 

management strategies, like restricted-development areas (flood risk is mapped at the 

national level) and a governmental flood compensation fund. The two reference documents 

with respect to these different approaches are the Programmes d'Action de Prévention des 

Inondations – PAPI (Ministère de l’Écologie, 2017) and the Plan Submersions Rapide 

(Ministère de l’Écologie et al., 2010). In 2014, the French government initiated a 

decentralisation process shifting flood risk management responsibilities to local authorities 

(Larrue et al., 2016). 

Relative numbers significantly grow when considering the Netherlands: 59% of the country’s 

mainland is at risk of flood, and almost the totality (98%) of this land is protected by dykes 

(PBL Netherlands Environmental Assessment Agency, online). Despite these protection 

structures, 65% of the population live in areas that have an annual chance of flooding between 

0.4% and 0.01%. This is due to the peculiar land conformation of the country: a combination 

of several major European river deltas (Rhine and Meuse) and vast portions of the country 
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that are below sea level. Taking that into consideration, flood response lead times are, 

regardless, relatively high (Thieken et al., 2014). 

Differently from England and France, the Dutch government set a legal standard of protection, 

which is the reference that all the flood risk management measures aim to meet. The 

government’s programme ‘Ruimte voor de Rivier’ (in English: room for the river) has been 

active from 2006 to 2015 and involved major actions in reducing riverine flood risk in the 

country adopting a multi-layer safety definition. The interventions included dykes relocation, 

flood bypasses, groynes height reduction, floodplain level lowering, obstacles removal and 

side channels depth lowering (Kaufmann et al., 2016; Vergouwe et al., 2016). Also in the 

Netherlands, flood risk is mapped at the national level, but here flood risk management is less 

centralised: local authorities are in charge to manage their own spatial zoning plans. 

From the fluvial flood perspective, the physical geography of Japan puts the country in a 

completely different position with respect to the Netherlands. While the Dutch mainland is 

predominantly flat and positioned at the mouth of big continental rivers, Japan is an 

archipelago of mountainous islands in the Pacific Ocean. Its rivers are short and steep, 

implying way shorter flood response lead times (Adachi, 2009). 

49% of the Japanese population (127 million people) lives in areas at risk of flood from 

different sources: rivers, heavy rains, tsunamis and typhoons (Adachi, 2009; Suppasri et al., 

2013; Ministry of Land, online). To cope with recurrent disastrous flood events, the Japanese 

government adopts a mixed strategy including structural defences and warning and 

evacuation plans (Huang, 2014; Cabinet Office and DEFRA, 2016). 

Around 40% of the landmass of the United States of America lies within the Mississippi River 

basin. In addition to the fluvial origin of flood risk in the country, the three coasts contribute 

to different kinds of hazard due to their different physical characteristics. The East coast facing 

the Atlantic Ocean is subject to hurricanes, the Gulf coast is subject to heavy rainfalls related 

to the tropical climate of the area and finally, tsunamis and cyclones endanger the West coast 

facing the Pacific Ocean. 

In terms of population at risk of flooding, 2% of the population live in areas with 1% annual 

coastal flood risk, while 1% of the country’s population has an annual chance to be flooded by 

rivers of 1% (Climate Central and ICF International, 2015; World Resources Institute, online). 
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The US government adopts a mixed approach of structural defences and policies to mitigate 

the risk of flooding on its territory (American Society of Civil Engineers, 2017). For example, 

the Federal Emergency Management Agency (FEMA) implemented the National Flood 

Insurance Program (NFIP). This programme is designed to produce Flood Insurance Rate Maps 

and offer affordable insurance to private citizens and businesses and to encourage local 

communities to implement and enforce flood management regulations (FEMA, online). With 

regards to federal buildings, instead, by law, they must be constructed ‘above the hazard level’ 

(NFIP requirement). 

Australia’s climate is one of the driest of the world at a continental level; nevertheless, here, 

it is possible to find extraordinary annual rainfall and runoff variability (Wenger et al., 2013). 

The eastern coastal edge of the country is the most vulnerable from the flooding perspective 

because of the frequency of cyclones. The Australian central government manages flood 

warnings through the Bureau of Meteorology and defines flood risk management best 

practice, but the responsibility of their implementation is held by the single states (Australian 

Emergency Management Institute, 2013; Wenger et al., 2013; Cabinet Office and DEFRA, 

2016). Flood risk mapping, instead, is managed at the state level or even at the municipal level; 

the central government sets guidelines for development in flood-prone zones, but they are 

not binding and the single states develop their own regulations.The Flood and coastal risk 

management Long-term Investment Scenarios (LTIS) 2019 (Environment Agency, 2019) 

provides indications on how flood risk management investment decisions are made in the UK. 

This document assesses several scenarios involving different challenges like climate change, 

assets deterioration and growing population to describe future risks, opportunities and 

different possible long-term investments. It is based on the 2014 report (Environment Agency, 

2014) and includes risk analyses regarding rivers, surface water the sea and coastal erosion. 

Section 11 of LTIS 2019 reports that the optimum level of investment is greater than LTIS’s 

2014 baseline, and it is estimated to have a long-term annual average above £1 billion. The 

document is meant to analyse the cost-effectiveness of different investment strategies to 

provide guidelines for future funding allocation. 

This brief overview of international approaches to flood management shows how different 

countries face the same problem – flooding – with the same objective: more resilient 

communities and infrastructure. Nevertheless, different geographies are impacted by 
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different sources of flooding (e.g. fluvial, pluvial, tidal, etc.). Also, different regulations and 

administrations lead to different flood management solutions, approaches and frameworks. 

Flood resilience is a complex matter that involves different factors (hazards and geographies), 

different governance structures (governments, local administrations, asset owners and 

operators) and a range of physical infrastructure (flood defences, transportation networks 

etc.). Designing effective flood management strategies should consist in a holistic process 

taking into account all these factors and the peculiarities of each case study. 

This study helps address such diversity in areas by developing a framework to balance 

conflicting objectives to identify optimal strategies for resilience. This allows what-if scenarios 

to be tested to identify a portfolio of optimal solutions tailored to minimise local flood risk to 

infrastructure.  

 

2.3.2. Flood defences 

As mentioned in the previous section, the UK’s approach towards flood management 

comprises a mixture of policies and defences aimed at both flood protection and mitigation. 

This section focusses on flood defences that can be firstly categorised into two big families: 

structural and temporary measures. 

 

2.3.2.1.  Structural measures 

Structural flood defences consist of all those measures that have a permanent nature. They 

can be sub-categorised into ‘grey’ and ‘green’ structures or ‘hard’ and ‘soft’ measures (Sayers 

et al., 2013). Grey – or hard – structures consist of dams and levees, while soft structures 

consist in wetlands storage or green infrastructure. 

Hard structural defences have been the traditional way to defend land and people from floods, 

defending them merely creating an obstacle big enough for water not to overcome it. They 

consist of large, permanent and usually expensive engineering structures like dams and 

levees. Due to the high investment these measures require, the interest in the optimisation 

of their design and location strategies is high. Often structural defence strategies require the 

modification of topographic elevation (for instance through levees) or the modification of soil 
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roughness (for example through revegetation). Typically, the strategy definition is tailored to 

the specific needs and peculiarities of each case study. New high-performance computational 

tools allow better surface water models and the fast development of machine learning 

techniques and black-box optimisation open new possibilities for the definition more general 

flood management design principles (Tasseff et al., 2019). 

Several examples of optimisation strategies applied to structural flood defences can be found 

in the literature, like Woodward et al. (2014) who developed a framework for the assessment 

of potential interventions in flood systems and applied it to the Thames Estuary (London, UK). 

In addition, Tasseff et al. (2019) presented an optimisation methodology for structural 

mitigation strategies with constraints that may be either economic or physical (or both). 

This kind of structures provides a solid and robust defence against even the most severe 

events; nevertheless, several shortcomings are peculiar to this category of defences: they are 

permanent structures, so their impact on the territory is very heavy, their construction cost is 

high and their maintenance expensive, and, finally, their adaptability is very limited as their 

upgrade is difficult, making their original design binding and not flexible enough to adjust to 

rapidly changing climates. 

 

2.3.2.2. Temporary measures 

Temporary measures constitute an alternative to permanent structural defences. They cannot 

provide the same level of safety and security of structural measures, but they can offer a set 

of advantages that make them a valuable alternative worth to be considered. Above all, they 

are cheap, fast to implement and – as their name suggests – they have a temporary (and 

therefore lighter) impact on the territory. 

Temporary flood defences are not fixed to the ground, so they can be deployed for the 

necessary amount of time and then removed, stored and reused when needed. There are four 

main categories of temporary barriers (Cabinet Office and DEFRA, 2016): 1) frame barriers, 2) 

free-standing barriers, 3) tubes and 4) filled containers. As Figure 5 shows, filled containers 

can be in turn classified basing on their filling (aggregate or water), and free-standing barriers 

can be either rigid or flexible. 
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A large variety of frame barriers are available on the market; Figure 5.a shows an example of 

a demountable metal framework deployed on a riverside. Frame barriers can adapt to 

different surfaces except for disconnected hard ground; they can also be cleaned and reused 

and given their rigidity, minor maintenance is usually necessary when deployed. On the 

downside, they can be subject to leakages, they require a large amount of storage space and, 

with low water levels, they are vulnerable to strong winds (Cabinet Office and DEFRA, 2016). 

Figure 5.b and Figure 5.c present respectively a rigid and a flexible free-standing barriers. Free-

standing barriers are easy and quick to deploy since they do not require any machinery for 

installation. When the barrier is flexible, its stability is guaranteed by the hydrostatic pressure 

of the water, besides flexible barriers are lighter and require less storage space in comparison 

to the other kinds of temporary defences. Like frame barriers, rigid free-standing barriers 

require a lot of storage space and are challenging to deploy in uneven rigid surfaces. Despite 

being an advantage in terms of storage and transportation, flexible free-standing barriers’ 

lightweight can result in potential weaknesses as well. For example, they are vulnerable to 

strong winds or leakages when the water level is particularly low (Cabinet Office and DEFRA, 

2016).  

Tubes (Figure 5.d) are flexible barriers that can be filled with air or water and deployed to 

block or deflect groundwater. Their flexibility implies small storage areas and ease in their 

transportation and deployment. On the other hand, they require access to a source of water 

for filling and a way to dispose of it. Also, supervision is necessary when in place for multiple 

reasons (like danger of vandalism or risk of undesired displacements due to high water loads) 

(Cabinet Office and DEFRA, 2016).  

Finally, filled containers (Figure 5.e and Figure 5.f) can be deployed where needed and filled 

with water or aggregate to create an impermeable obstacle for floodwater. Differently from 

tubes, they do not require much supervision when in place. Several advantages characterise 

filled containers: for example, local material can be used to fill them, they do not require 

specialised workforce for their installation, can easily be deployed on different terrains and 

their height can be increased at different stages. In contrast, their impact on the soil is 

substantial due to high pressures, their reuse is limited and finally, it is not always available or 

accessible a place for filling material disposal (Cabinet Office and DEFRA, 2016).  
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Figure 5 - Examples of temporary flood defences. a) Frame barriers, b) free-standing barriers (rigid), c) free-standing 
barriers (flexible), d) tubes, e) water-filled container, f) aggregate-filled container. 

Temporary flood barriers are not an effective or unsuccessful flood protection measure per 

se. The applicability and cost-efficiency of this kind of approach vary from case to case 

depending on a series of factors. For instance, not all locations are suitable for all the 

typologies of temporary defences; moreover, this kind of procedure requires a certain amount 

of time for transportation and deployment, consequently good enough flood forecasts are a 

fundamental requisite for the efficacy of a temporary measure. Such forecasts are not always 

available, depending on the nature of the catchment taken into consideration (e.g. long rivers 

estuaries vs fast-responding mountain creeks). 

Temporary defences’ affordability and agility come with the price of lower protection levels 

with respect to permanent measures. According to Woolhouse (2017), the failure rate of 

temporary defences can vary between 20% and 30%, numbers that can be lowered with 

appropriate planning. 

Another factor to take into consideration when assessing the advantages and disadvantages 

of temporary flood management measures is the necessity of staff to pick up, transport, 
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deploy, monitor, dismantle and store the flood defences. In addition to barriers, accessory 

items to carry, deploy and store can be pumps to use complementarily to barriers (or in 

substitution for small areas) and portable generators. The inclusion of the workforce makes 

the planning phase crucial for the efficacy of strategies. 

The National Flood Resilience Review (Cabinet Office and DEFRA, 2016) dedicates an entire 

section (Chapter 3) to the analysis of temporary defences strategies to protect strategic 

infrastructure. A number of conclusions contained in this section constitute the base of some 

main assumptions at the base of the present research work: 

1. 30% to 40% of local strategic infrastructure can be protected using temporary defences 

strategies according to the Environment Agency. Hence, the focus of this work on 

critical infrastructure protection optimisation. 

2. The Environment Agency advises against the use of sandbags, despite their 

affordability, because of their low standard of protection and because of their very 

limited re-usability. For this reason, sandbags are not taken into account when 

evaluating volumes of required amounts of storing space in the optimisation 

framework presented in Chapter 5. 

3. When assessing the suitability of temporary defences, the Environment Agency found 

that the category of strategic infrastructure protected is a "less of a determining factor 

than the size of the site". For this reason, different strategic infrastructure assets are 

generally differentiated only on the base of their site’s dimension in the RAO 

framework presented in Chapter 5; however some scenarios also explore the 

prioritisation infrastructure assets’s protection basing on their different categories. 

4. Currently, temporary flood barriers cannot cope with water depths > 2 metres, and 

only a few have been tested above 1 metre. Hence, the choice to consider 1.5m as a 

reference height of flood defences when estimating maximum volumes required for 

storing space (Chapter 5). 

This study contributes in assessing the efficacy and the cost-effectiveness of flood protection 

strategies involving different typologies temporary defences. In fact, the RAO framework 

presented in Chapter 4 and applied to a UK case study in Chapter 5 allows exploring different 

choices of temporary flood defences which entail different costs, volumes and deployment 

times. 
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Despite the National Flood Resilience Review (Cabinet Office and DEFRA, 2016) recognises the 

effectiveness of temporary flood defences, a systematic national strategy is currently missing. 

Every local authority autonomously decide how to include (or not to include) temporary flood 

barriers in their flood management strategies.  

A clear example is represented by the case study presented in Chapter 5: the different flood 

protection strategies of the local governments of the Humber Estuary region (East Reading of 

Yorkshire, Kingston upon Hull and North Lincolnshire) do not take into account temporary 

flood defences in a systematic way. 

Several investments and projects are currently under development to increase flood 

protection on the different banks of the Humber. For example, the Hull Frontage scheme 

(Environment Agency, 2019) is a £42 million investment flood alleviation scheme in the city of 

Hull on the north bank of the Humber. In the south bank, instead, a £12 million investment in 

flood defences started in 2019 in proximity South Ferriby (North Lincolnshire Council, 2019). 

Both these schemes have been completed in Spring 2021, and both of them only entail 

structural flood protection measures. The Local Food Risk Management Strategy of The East 

Reading of Yorkshire (East Reading of Yorkshire Council, 2015) does not include the use of 

temporary flood barriers if not for extraordinary emergency situations, and it only 

contemplates the use of sandbags, which is deprecated by the National Flood Resilience 

Review (Cabinet Office and DEFRA, 2016). Also, the Flood risk management strategy of the city 

of Hull (Hull City Council, 2015) only mentions free-standing temporary flood barriers as an 

option for private citizens to protect their homes; considering it merely as a private voluntary 

optional initiative. 

This research work provides a novel methodology and an optimisation platform to enrich and 

support the current practice by modelling, exploring and assessing resources’ deployment 

strategies in a digital environment, with the ultimate goal to fill the gap between the national 

recommendations and the local implementation of flood protection strategies including 

temporary flood defences. 
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2.4. Summary 

Chapter 2 focussed on climate risks in urban areas exploring the role of strategic infrastructure 

in emergency response operations. Section 2.2.3, in particular, highlighted the close 

relationship between infrastructure resilience to natural hazards and sustainable planning. 

Section 2.3, instead, presented an overview of different flood emergency planning approaches 

comparing the UK to other countries’ strategies. Of particular interest for the following 

sections is section 2.3.2.2, where temporary flood defences are introduced and their use 

compared to structural measures, and where an analysis of the shortcomings of current 

emergency management involving temporary flood defences in the UK is presented, 

highlighting how the presented research outcomes could enrich and support current practice. 

As anticipated in Chapter 1, the present research aims to fill the gap in the literature 

concerning infrastructure resilience and emergency planning, optimal temporary emergency 

resources management and allocation strategies; therefore, the following Chapter 3 explores 

and reviews several optimisation techniques available in the literature to identify the most 

appropriate tools for the development of the RAO framework presented in Chapter 4. 

  



 
47 

 

3. Review of optimisation techniques 

3.1. Introduction to chapter 3 

Chapter 3 presents a review of the optimisation techniques available in the literature to 

address spatial optimisation problems with the aim to identify the most suitable approach for 

the development of the optimisation framework. Section 3.2 presents an introduction to 

optimisation problems and section 3.3 focuses on the sub-category of interest: multi-objective 

optimisation problems. Section 3.4 reviews a series of popular optimisation techniques 

utilised in spatial problems and identifies genetic algorithms (section 3.4.5) as the most 

appropriate methodology to solve the problems of interest to this research. Finally, section 

3.5 identifies the contributions of this research to the spatial optimisation discipline 

highlighting the theoretical advances and the technical improvements presented in this wok. 

 

3.2. Definition of optimisation problems 

Urban planning for disaster management requires the adoption of optimisation techniques 

due to the very nature of the problem: a limited amount of resources needs to be strategically 

allocated to maximise efficacy and efficiency of emergency response operations when natural 

disasters occur. Because of the complexity of the problems to solve and the high number of 

different variables involved, high computational costs are often required to perform such an 

optimisation. Modern technology allows the implementation of software frameworks 

handling huge amounts of data like never before. The unprecedented computational power 

available today allows finer models and reasonable run times of digital support tools available 

to engineers, urban planners and all the stakeholders involved in the decision-making process 

of disaster planning/management. 

Current planning methodologies can, therefore, be integrated with data-driven support tools 

in allocation decisions. The literature is rich of examples of optimisation techniques applied to 

a range of different planning and design processes, like sewer networks (Liang et al., 2004; 

Berardi et al., 2009; Moeini and Afshar, 2017), transit networks (Kepaptsoglou and Karlaftis, 

2009; Shimamoto et al., 2010; Feng et al., 2019), water distribution networks (Prasad and 

Park, 2004; Kapelan et al., 2005; Vamvakeridou-Lyroudia et al., 2005; Bieupoude et al., 2012; 
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Monsef et al., 2019) and land use allocation (Aerts et al., 2005; Ligmann-Zielinska et al., 2006; 

Li and Parrott, 2016; Wu et al., 2018). 

This work fits in the wide subject area of infrastructure development and management 

optimisation in relation to climate change-related challenges. This research grounds on a wide 

literature of past spatial optimisation applications; however, this research field is in 

continuous expansion and evolution. Many publications describing new software support 

tools for the decision-making processes for infrastructure management and development 

have been published in the last three years only (the same development time frame of the 

present work). This means that many research institutions are currently working to exploit the 

new possibilities provided by the digital revolution to develop new sustainable and resilient 

infrastructure systems.  

For example, Poo (2020) points out the limited literature in terms of applications for the 

reduction of the uncertainties in the decision-making process when addressing natural 

disasters and climate change-related impacts on cities and human activities. Therefore, they 

present a multi-objective decision support framework for climate change adaptation for 

transport systems like airports and seaports. They make use of an ABC (Artificial Bee Colony) 

optimisation algorithm to enhance environmental sustainability in transport infrastructures. 

Finally, they also observe how climate change adaptation is still at an embryonic stage, 

advocating further research and support tools development for transport planners. 

Together with the management and development of currently in-place infrastructure (like sea 

and air transport systems), recent optimisation frameworks are being developed for the 

design of future infrastructure, like the hydrogen fuelling infrastructure. Basing on the work 

of Agnolucci et al. (2013) on the development of SHIPMod (a mixed-integer linear 

programming model for hydrogen supply chains optimisation), Moreno-Benito et al. (2017) 

propose a SHIPMod extension called MILP (multi-period spatially-explicit mixed-integer linear 

programming) framework. They present an optimisation framework for hydrogen 

infrastructure development to support a low-carbon transport system transition in the UK. 

In 2018, Triantafyllidis et al. (2018) presented resilience.io: an integrated optimisation 

platform for sustainable resource infrastructure planning. This platform makes use of mixed-

integer linear programming to assess new infrastructure designs. The multi-objective 
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optimisation process aims at finding sustainable and cost-effective solutions to support and 

guide future infrastructure development. 

In the following year, Alhamwi et al. (2019) developed FlexiGIS: a GIS-based framework for 

the optimal allocation of distributed battery storage in urban energy systems. In their case 

study of Oldenburg (Germany), FlexiGIS can evaluate different energy scenarios and provide 

optimal solutions for the urban energy infrastructure. 

Multi-objective optimisation in the infrastructure field is not only applied to the improvement 

of infrastructures themselves but also their funding allocation decision-making process. In this 

regard, Samaniego and Treuner (2006) used simulated annealing for the optimisation of 

infrastructure investments in a region. More recently, instead, Saad et al. (2018) developed 

an optimisation framework able to handle conflicting objectives to support stakeholders in 

fund-allocation problems. 

Oléron-Evans and Salhab (2021) applied multi-objective spatial optimisation to assess the 

feasibility and the progress of the Heathrow Airport expansion. They make use of linear 

programming for a multi-objective optimisation of land uses in the Heathrow Opportunity 

Area identified in the London Plan (Greater London Authority, 2021). The ultimate goal of this 

study is to identify how land uses can be best allocated to maximise home, job and gross value 

added in their study area meeting green belt constraints and the declared authorities’ 

objectives. 

In parallel, the literature is rich in examples of the development of digital tools for the risk 

assessments of infrastructure and urban systems. For instance, Chen et al. (2016) present a 

set of GIS-based tools for flood damage assessment in megacities, including the combination 

of multiple events to make predictions on annual damage expectations. Besides, Wang et al. 

(2018), developed an integrated holistic framework for high-resolution urban flood modelling. 

The framework makes use of a Cellular Automata model for flood inundation simulation, and 

it can take into account multiple information sources and urban features. These support tools 

are fundamental for optimisation applications as they allow to make realistic assumptions on 

hazards and risks at the base of infrastructure systems resilience evaluations. 
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These examples show how multi-objective optimisation research for better and more 

sustainable infrastructure systems and services is in rapid evolution and the RAO framework 

presented in this work adds up to the many applications developed in recent years in this field. 

Computer methods allow considering a wide range of solutions with a vast number of 

variables. This, in turn, allows considering complex configurations with reasonably short 

solving times. The conceptual and mathematical formulation of optimisation problems, 

though, is independent of the computational technique adopted to get to the final solutions. 

Human intuition or by hand solution can tackle the same kind of optimisation problems that 

machines solve, only with fewer variables, less formulation complexity and longer times. 

Concerning spatial optimisation, for simple problems, human intuition can also quite 

straightforwardly guess optimal solutions (with a considerably low margin of error) without 

even perform any calculation. Therefore, as a matter of example, if the problem is optimising 

the placement of a retail centre in a densely populated area, it is intuitive to place it 

somewhere near the geographical centroid. However, when, for instance, we want to take 

into consideration travel times instead of Euclidean distance, together with different 

transportation means (like cars, buses and trains) involving a cost variable to the problem and 

maybe not of just one asset, but numerous different retail centres, all with different typologies 

of target clientele, human intuition is not enough anymore. The complexity of the problem 

requires a precise mathematical formulation and a computer to solve it.  

As explained by Papadimitriou and Steiglitz (1998), optimisation problems are mathematical 

approaches aimed at exploring, comparing and selecting potential solutions until an optimum 

is reached. The elements of any optimisation problem are: 1) the variables involved, 2) the 

objective functions to optimise and 3) the constraints defining the problem. 

The nature of the variables involved in an optimisation problem defines the typology of the 

problem itself. The complete set of the variables form the variable space, whose dimension is 

defined by their number 𝑛: 

 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) (3.1) 

Variables may consist of different kinds of data types: integer, discrete, binary or a 

combination of them. Integer programming makes exclusive use of integer or binary values; 
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when the objective function and the constraints are linear, the approach can be defined as 

“integer linear programming” (ILP) (Papadimitriou and Steiglitz, 1998). From the spatial 

optimisation point of view, several studies adopted integer programming, like Aerts et al. 

(2003) for multi-site land-use allocation and Álvarez-Miranda et al. (2020) for multi-criteria 

multi-action conservation plans. 

Discrete variables can be used to define physical characteristics or different strategies in 

different optimisation problems like in Li et al. (2009) with truss structures or in Woodward et 

al. (2014) with flood management decisions. 

Mixed-integer problems, instead, are those problems that make use of both discrete and non-

discrete variables. Again, in the literature is possible to find different spatial problems that 

have been tackled with this kind of approach, like Schouwenaars et al. (2001) with their multi-

vehicle path planning application or Molina Bacca et al. (2020) and their framework aimed at 

the determination of optimal microgrid configuration, capacity, and geographical location. 

Optimisation problems aim to find optimal sets or combinations of those variables according 

to the very nature of the problem to solve. The problem formulation, therefore, translates 

into the definition of objective functions to either be minimised or maximised. Objective 

functions 𝑓 are dependent from a set of variables 𝑋. The collection of all the 𝑚 objective 

functions 𝑓(𝑋) constitutes the set of objective functions 𝐹(𝑋). 

 𝐹(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋),… , 𝑓𝑚(𝑋)) (3.2) 

Objective functions measure the performance of different sets of variables; the totality of such 

performances constitutes the objective space. The final goal of the optimisation process is to 

find the configuration 𝑋 that generates an 𝐹(𝑋) in the best possible region of the objective 

space (Caparros-Midwood, 2015). 

Finally, setting constraints may be necessary to restrain the domain of the variables defining 

the problem. Very often, they aim to eliminate or not even consider unfeasible solutions or, 

in other words, to set the boundaries of the inspection field. For example, regarding spatial 

optimisation, defining physical boundaries is necessary to search for solutions only inside the 

case study area. Another kind of constraints in the spatial optimisation field can regard the 

quality of the solution instead of their location; for instance, in land use allocation problems, 
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only a limited set of potential land uses could be available for specified locations. A specific 

constraint is therefore needed to define the range of available choices as in Qian et al. (2010)’s 

land use application. 

3.3. Multi-objective optimisation problems 

Spatial optimisation, together with many other problem typologies, often require multiple 

objectives to optimise simultaneously, hence the need for a multi-objective optimisation 

approach. These multiple objectives are by nature conflicting (otherwise, they could be 

modelled or mathematically reduced as a single objective); this implies that a single optimal 

solution does not exist. Instead, a set of different optimal solutions that balance the trade-off 

between the conflicting objectives can be found with two different main techniques: weighted 

sum and Pareto-optimisation. 

Weighted sum approach was the traditional methodology adopted for multi-objective 

optimisation problems (Jones et al., 2002), as it is computationally less demanding. It consists 

in the reduction of the multi-objective optimisation problem to a single-objective optimisation 

problem by means of weights applied to the different functions to optimise. The result is the 

maximisation or minimisation of a single objective function 𝐹𝑤 that is the sum of all the 

objective functions multiplied by their specific weight (preference vector). 

 𝐹𝑤 = (𝑤1𝑓1 + 𝑤
2𝑓2 +⋯+𝑤

𝑛𝑓𝑛) (3.3) 

A single solution 𝐹𝑤 is the result of the process of either maximisation or minimisation, and 

this solution is the optimal solution for the whole multi-objective optimisation problem. To 

avoid complications related to different orders of magnitude or scale of different optimisation 

functions, it is common practice to adopt weights that add up to 1 and/or to normalise the 

objective functions (Eastman et al., 1995; Maliszewski et al., 2012). 

As well as for the weights, the values of the normalised functions 𝑓𝑛
𝑛𝑜𝑟𝑚 would be in the range 

[0,1]: 

 𝑓𝑛
𝑛𝑜𝑟𝑚 =

𝑓𝑛 − 𝑓𝑛
𝑚𝑎𝑥

𝑓𝑛
𝑚𝑎𝑥 − 𝑓𝑛

𝑚𝑖𝑛
 (3.4) 

With 𝑓𝑛
𝑚𝑎𝑥 and 𝑓𝑛

𝑚𝑖𝑛 respectively the maximum and the minimum value of the function 𝑓𝑛. 
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Pareto-optimisation, instead, keeps the objective functions separate and independent from 

each other. In his book on genetic algorithms, Goldberg (1989) explains how the base of 

Pareto-optimisation is the concept of ‘domination’. In Pareto-optimisation, a solution is 

defined as optimal if it is ‘non-dominated’ by any other solution. Therefore, considering a 

minimisation problem, a solution 𝑠1 is defined as “non-dominated” by a solution 𝑠2 if 𝑠1 is not 

worse than 𝑠2 in all objectives and it is strictly better in at least one objective:  

 𝑓𝑛(𝑠
1) ≤ 𝑓𝑛(𝑠

2) ∀ 𝑛 = 1, 2, … ,𝑁 (3.5) 

 𝑓𝑛(𝑠
1) < 𝑓𝑛(𝑠

2) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑛 ∈ {1, 2, … ,𝑁} (3.6) 

 

Where 𝑓𝑛 are the N objective functions. For a maximisation problem, instead, the definition 

becomes: 

 𝑓𝑛(𝑠
1) ≥ 𝑓𝑛(𝑠

2) ∀ 𝑛 = 1, 2, … ,𝑁 (3.7) 

 𝑓𝑛(𝑠
1) > 𝑓𝑛(𝑠

2) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑛 ∈ {1, 2, … ,𝑁} (3.8) 

 

After the application of a non-dominated sorting algorithm (Du et al. (2007), Mishra and Harit 

(2010)), the previous equations are applied to all the search results, S, to determine a set of 

non-dominated solutions (Caparros-Midwood, 2015). Such non-dominated solutions are 

selected and saved since they are equally Pareto-optimal, and no other solution could provide 

an improvement of one objective without worsening the others. The result is a Pareto-front 

like the ones shown in Figure 6, according to the nature of the multi-objective optimisation 

problem (minimisation or maximisation). 
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Figure 6 - Examples of solutions space and Pareto fronts for multi-objective minimisation and maximisation problems. 

Comparing the two approaches, a disadvantage of weighted sum with respect to Pareto-

optimisation is the high dependence of final results from initial assumptions. The weighting 

system of different objective functions is an a priori decision that heavily influences the entire 

optimisation process because it assigns different priorities to different objectives. Defining 

weights can be a rather arbitrary decision; also a priori knowledge for such a definition is not 

always available. 

Pareto-optimisation allows avoiding the a priori determination of weighting vectors. On the 

other hand, Pareto-optimisation produces a set of equally optimal solutions, leaving the user 

to decide which solution may be more suitable for their problem. To make this choice, a high 

level of knowledge is required after the optimisation process, while in weighted sum a high 

level of knowledge is required a priori in the choice of weights (Caparros-Midwood, 2015). 

Pareto-optimisation is more computationally demanding than weighted sum because of the 

exploration of a broader range of potential solutions. For this reason, weighted sum 

approaches are still used for applications that require quick results (Sayers et al., 2014). 

Goal Programming is a particular kind of weighted sum: weight vectors dynamically change 

during the optimisation process. An extensive literature is available concerning different 

applications of this technique like in Cao et al. (2012), Stewart and Janssen (2014), Romero et 

al. (1998) and Aerts et al. (2005). 

The best advantage of Pareto-optimisation over weighted sum approaches is the display of 

the Pareto-front. It allows exploring multiple solutions that optimally balance the trade-off 
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between conflicting objectives, allowing cost-benefit analyses among different optimal 

solutions, ultimately providing a richer outcome. 

For these reasons, Pareto-optimisation is the methodology chosen for the spatial multi-

objective optimisation framework presented in Chapter 4. This methodology is largely used in 

spatial optimisation applications literature like Caparros-Midwood (2015), Khalili-Damghani et 

al. (2014), Jiang-Ping and Qun (2009), Masoomi et al. (2013) and Oléron-Evans and Salhab 

(2021). Moreover, the production of Pareto-fronts allows ideal final users of the Resource 

Allocation Optimisation framework (i.e. urban planners dealing with emergency response 

management) to perform the cost-benefit analysis at the base of their decision-making 

process. 

 

3.4. Literature review of spatial optimisation techniques 

Following on from Caparros-Midwood (2015)’s review of optimisation techniques, this section 

explores different approaches available in the literature to solve spatial optimisation problems 

with the aim of understanding which of them is the most appropriate to address the present 

research questions. This review will start investigating more straightforward approaches 

progressing to more sophisticated ones. The scope of the review is not to state which 

approach is the absolute best, as different techniques are more suitable to solve different 

problems. Moreover, in the choice of different approaches, it is always important to keep in 

mind the trade-off between the quality of the results and the computational effort necessary 

to achieve them; it is therefore up to the modeller to choose the most appropriate spatial 

optimisation technique that best suits their needs in terms of quality of results and 

affordability. 

 

3.4.1. Linear programming 

Linear programming is an efficient optimisation technique for those problems that can be 

mathematically formulated as linear in terms of variables and constraints; it is simple, and the 

quality of the results is directly proportional to the fit of the problem with the linear model 

(Chuvieco, 1993; Tarp and Helles, 1997; Orsi et al., 2011). A simple exemplary mathematical 

formulation is provided by Arthur and Nalle (1997): 
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 {
𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒:     𝑧 = 𝑐 ∙ 𝑥
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝐴 ∙ 𝑥~𝑏

 (3.9) 

Where the optimisation is either a maximisation or a minimisation, 𝑧 is a linear function of the 

variables vector 𝑥, and 𝐴 and 𝑏 represent any combination of matrix-vector able to define a 

linear constraint on the variables 𝑥. 

The first land-use application in the literature is Schlager (1965), where a computer-based 

resolution via linear programming is advanced for the first time. Numerous other applications 

have been developed, among which the already cited Chuvieco (1993) with his rural 

unemployment minimisation case study, Cromley and Hanink (1999) with their raster GIS 

implementation, Aerts et al. (2003) and their multi-site land-use allocation (MLUA) problem 

and Oléron-Evans and Salhab (2021) with their land use allocation optimisation in the 

Heathrow Opportunity Area. 

Linear integer programming (LIP) is a particular kind of linear programming where variables 

only have integer values; the MLUA problem mentioned above (Aerts et al., 2003) is an 

example: each land parcel has an integer value assigned corresponding to its land-use. Also 

Ligmann‐Zielinska et al. (2005) made use of linear integer programming in their land-use 

optimisation application on a hypothetical 400 cells raster case study. Tasseff et al. (2016), 

instead, make use of mixed-integer linear programming to design flood structural mitigation 

measures. 

Baskent and Keles (2005) and Qian et al. (2010) are examples of applications that tried to 

overcome a classical limitation of linear programming: the ability to model only single-

objective optimisation problems. In their studies, respectively on forest planning and land-use 

optimisation, they translated the multi-objective optimisation problem into a single objective 

one by turning the extra-objectives into constraints. Aerts et al. (2003), instead, transformed 

their multiple objectives into a single one by the attribution of weights (weighted sum) in 

order to be able to solve the problem with linear programming. 

Notwithstanding this limitation, linear programming has been widely used in urban planning 

studies. In addition to the papers mentioned above, among many others, Maoh and 

Kanaroglou (2009) developed an operational integrated transportation and land-use model 

(ITLUM) for two Canadian cities and Loonen et al. (2007) compared the performance of linear 
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programming and genetic algorithms on different case studied characterised by different 

complexities. Their outcomes proved that for simpler problems, the performances are 

comparable, but when the complexity or the number of variables increases, more 

sophisticated methodologies are necessary to achieve good results. 

 

3.4.2. Simulated annealing 

Simulated annealing is a meta-heuristic approach. Meta-heuristic approaches differ from 

linear programming because they do not guarantee the finding of the global optimum of the 

problem as the search mechanism is not exhaustive. On the other hand, their great advantage 

is the possibility to widen the search keeping run times acceptable, consequently making 

feasible the solution of more complex problems (Loonen et al., 2007). This additional 

complexity is translated as a higher number of variables taken into consideration, a richer 

formulation of objective functions (not linear) and more flexible constraints definitions 

(Papadimitriou and Steiglitz, 1998). 

Kirkpatrick et al. (1983) was the first application of simulated annealing to optimisation 

problems, the approach is inspired by the physical process of cooling of metals, and it is 

designed to find the global minimum of an objective function avoiding to get stuck in local 

optima (Luke, 2015). A full mathematical formulation is provided by Aarts et al. (2005) and it 

is summarised by Dowsland (1993) as the following. The approach is very similar to the hill-

climbing one (Weise, 2011), with the only exception that not only neighbouring solutions that 

improve the objective function are accepted, but also solutions that result in a worsening with 

a certain probability 𝑃(𝛿). This probability decreases with the progression of the algorithm 

and its primary function is to avoid local optima (Murray and Church, 1996). The mathematical 

formulation provided by Dowsland (1993) is: 

 𝑃(𝛿) = 𝑒−
𝛿
𝑡  (3.10) 

Where 𝛿 is the change in the objective function and the parameter 𝑡 is called ‘temperature’ 

as the terminology follows the physical analogy with metal annealing. The temperature 𝑡 has 

an initial high value in order to allow a high acceptance of ‘non-optimal’ solutions and then it 



 
58 

 

decreases progressively according to the cooling schedule (Dowsland, 1993; Caparros-

Midwood, 2015). 

Although simulated annealing cannot guarantee the finding of the global optimum (Rothlauf, 

2011), it is, however, likely to provide good solutions in decent run times if the parameters 

governing the algorithm are appropriately set. The common issue among all heuristic 

approaches is the balancing of the trade-off between the quality of results and feasible run 

times. For simulated annealing, the main parameter governing the convergence is the 

temperature. High initial values and high variabilities allow wider searches and potentially 

better results as the solution space is more widely covered, but the cost of this is translated 

as higher computational efforts (Dowsland, 1996; Caparros-Midwood, 2015). 

Simulated annealing has been proved an efficient tool to solve spatial optimisation problem 

as the wide literature available demonstrates. A significant example is provided by Aerts and 

Heuvelink (2002) who used simulated annealing to solve a non-linear optimisation problem 

for multi-site land-use allocation (MLUA) applied to a case study in Galicia (Spain). Another 

study that makes use of simulated annealing is Santé-Riveira et al. (2008), where the authors 

aim to allocate land units to a set of possible uses in the Terra Chá district (Galicia, Spain). In 

addition, Czyzżak and Jaszkiewicz (1998) developed a procedure to find good approximations 

of the solution set for a multi-objective combinatorial optimisation problem (Pareto simulated 

annealing). Finally, Nam and Park (2000) developed a multi-objective simulated annealing 

strategy able to compete and sometimes to perform even better than genetic algorithms in 

finding the Pareto front. That quality comes with a price though, as such good performances 

are only achievable for small problems. 

 

3.4.3. Tabu search 

Like simulated annealing, tabu search is a meta-heuristic approach. The philosophy of tabu 

search is similar to simulated annealing’s one: finding the global optimum trying to avoiding 

local optima. Glover (1986) is the first formation of tabu search, which has been later 

formalised in Glover (1989) and Glover (1990). The principle of this methodology is to avoiding 

local sub-optima by: 1) allowing inferior solutions if no improvement is available and 2) 

prohibiting (hence the term ‘tabu’) considering previously inspected solutions. 
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Sung et al. (2007) used tabu search to solve a water distribution optimisation problem. They 

applied their methodology to three case studies: New York, Hanoi and Taichung, with good 

results in terms of quality and computational effort. Liang et al. (2004) applied tabu search to 

design gravity wastewater collection systems (GWCS) incorporating adaptive rule and a 

dynamic search strategy to find better solutions. Another network application is Costamagna 

et al. (1998), where tabu search is applied to broadband communication networks topological 

optimisation. These are examples where tabu search is a particularly efficient technique in 

terms of results quality and run times, but its limitation is its efficient applicability to discrete 

problems. When the variables are continuous or the complexity of the problem increases, the 

computational effort becomes too demanding and other heuristic approaches provide better 

balancing of the trade-off between quality of results and low run times (Zhang et al., 2010). 

 

3.4.4. Particle swarm 

Differently from simulated annealing and tabu search, Particle swarm is a population-based 

method. The main difference consists in the fact that it is not a single (the best) solution to be 

analysed and assessed at each step of the process, but instead an entire population of 

potential solutions in the spirit of Pareto optimisation. 

This methodology has been first proposed by Kennedy and Eberhart (1995) in a paper where 

they explain the nature-based inspiration of the method: birds flocking. Solutions are regarded 

as particles that altogether form the ‘swarm’. These particles occupy the solution space and 

change their position during the iterations, exchanging information of their position in the 

process. 

Pulido and Coello Coello (2004) provide a clear formulation: the best position of the particle 

at each iteration is stored in a variable 𝑔𝑏𝑒𝑠𝑡 and the best solutions of the whole process are 

stored in 𝑝𝑏𝑒𝑠𝑡. A velocity vector for each 𝑖𝑑 dimension for the particle 𝑉𝑖𝑑 then determines 

where and how the swarm will move at the next iteration: 

 𝑉𝑖𝑑 = 𝑤 ∙ 𝑉𝑖𝑑 + 𝑐1 ∙ 𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2 ∙ 𝑟2(𝑔𝑏𝑒𝑠𝑡,𝑖𝑑 − 𝑥𝑖𝑑) (3.11) 
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Where 𝑐1 and 𝑐2 are randomly generated numbers in the empirically derived range [1.5, 2.5] 

and 𝑟1 and 𝑟2 are random values in the range [0.0, 1.0]; 𝑤 is called ‘inertia weight’ and 𝑥𝑖𝑑 is 

the current position in the solution space. 

Particle swarm’s nature makes it suitable for Pareto optimisation (Caparros-Midwood, 2015) 

and particularly good in local search for solution – where other evolutionary techniques are 

not always efficient – without the necessity to implement sophisticate evolutionary operators 

(Bai, 2010). 

Particle swarm optimisation has been used for different applications, like in Masoomi et al. 

(2013) for land-use allocation or Reddy and Nagesh Kumar (2007) for reservoir operation 

optimisation. Nevertheless, it does not appear ideal for land use problems due to the 

requirement of continuous variables (Ma et al., 2011). 

 

3.4.5. Genetic algorithms 

Genetic Algorithms (GAs), like particle swarm, are a population-based methodology first 

developed in 1975 and later republished by Holland (1992). The most significant contribution 

for GAs formulation has been given by Goldberg (1989). GAs are inspired by natural evolution 

(hence their name) in the sense that they evolve a population of potential solutions to their 

Pareto-optimal state. This evolution process is based on the application of evolutionary 

operators meant to assess and select the best candidates of each generation to produce a new 

generation by mating and mutating them. 

GAs are part of the larger family of Evolutionary Algorithms (EAs), which also include 

Evolutionary Programming (EP) (Fogel et al., 1966) and Evolutionary Strategies (ESs) 

(Rechenberg, 1973). All these techniques are inspired by natural evolution and are variants 

basing on the same principle; in particular, genetic algorithms simulate the evolution process 

by the application of three evolutionary operators: selection, crossover and mutation. 
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Figure 7 - General workflow of a genetic algorithm. Picture from Lopane et al. (2019). 

Figure 7 represents a generic workflow of a genetic algorithm. An initial population of 

potential solutions is generated and evaluated; the best candidates are selected to produce 

the following generation, which is assessed again with the process continuing until a stop 

criterion is met (for more details see section 4.4). Crucial to this process is the definition of 

the selection process, as – like in natural evolution – it is the main factor in deciding which 

solutions survive and which are discarded Goldberg and Deb (1991). 

An advantage of genetic algorithms, with respect to simulated annealing and tabu search, is 

their ability to explore broader areas of the solution space thanks to the crossover operator 

(for a formal definition see section 4.4). This allows finding global optima of different 

combinatorial problems with considerably shorter run times(Reeves, 1995; Mitchell, 1998; 

Caparros-Midwood, 2015). 

GA’s dynamicity also leads to a downside: the difficulty in setting constraints. Again, here the 

crossover operator is the main factor: swapping attributes between different solutions makes 

it difficult to meet different boundaries, both numerical and spatial. Various techniques can 

be adopted to overcome such difficulties; they are described in Chapter 4 in the constraints 

section. 

GAs are the methodology adopted by a very high number of spatial studies, like Caparros-

Midwood et al. (2019), Caparros-Midwood et al. (2017), Stewart and Janssen (2014), 

Sidiropoulos and Fotakis (2009), Comber et al. (2009), Aerts et al. (2005), and Feng and Lin 

(1999). GAs are widely used since they are particularly suitable for addressing problems 

considering large areas or a high number of variables (Loonen et al., 2007). 
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Several different approaches are available to handle evolution processes, the principal ones 

are: 1) the PAES (Pareto Archive Evolutionary Strategy) (Knowles and Corne, 2000), 2) the 

NSGA-II (Non-dominated Sorting Genetic Algorithm-II) (Deb, 2000) and 3) the SPEA2 (Strength 

Pareto Evolutionary Algorithm 2) (Zitzler et al., 2001). Of these, the last two are the most used 

with GAs since the first (the PAES) is not a population-based method. 

The Non-dominated Sorting Genetic Algorithm prevents Pareto-front regression during the 

iterative process by considering the best solution of both the current and the previous 

generation (Deb, 2001). The Strength Pareto Evolutionary Algorithm, instead, assigns different 

ranks to all the solutions basing on their level of dominance (Zitzler et al., 2001). It is not 

possible to state which methodology is best in absolute terms, as one may be more 

appropriate than the other for some applications and the opposite can be true for other kinds 

of problems (Konak et al., 2006). It is easier to claim, though, that SPEA2 requires on average 

longer running times than NSGA-II (Luke, 2015). 

NSGA-II has been widely used in spatial applications, like by Khalili-Damghani et al. (2014) for 

land-use allocation, Shimamoto et al. (2010), for transit network optimisation (applied to 

Hiroshima’s bus network) and Cao et al. (2012) for sustainable land-use optimisation. 

 

3.5. Contribution of this research to the optimisation field 

This research grounds on the wide literature of optimisation applications presented in section 

3.4, and in particular contributes in expanding the knowledge of the sub-field of multi-

objective spatial optimisation applied to resource allocation problems. As highlighted in 

section 3.4.5, Genetic Algorithms have a number of different advantages that make them 

particularly suitable to solve multi-objective optimisation problems. However, despite 

representing the best available choice for the development of the RAO framework (described 

in Chapter 4), when solving problems involving big data (e.g. due to wide geographical areas 

or high resolutions), long run times can constitute a limitation of this methodology. 

This research contributes in improving the performance and the efficiency of evolutionary 

programming, by coupling it with Machine Learning (i.e. GAs and K-means clustering 

algorithms). To speed up the evolution process, initial popultions are not randomly generated; 

instead, the GA is seeded with spatial plans resulting from a K-means clustering process (for 



 
63 

 

more details, see Chapter 4). This allows wider searches, bigger case studies, higher 

resolutions and a higher number of variables. 

Two are the main contributions of this work to the spatial optimisation discipline: first a novel 

methodological framework that couples Genetic Algorithms evolutionary programming with 

an initialitisation procedure that makes use of Machine Learning; second, a software 

optimisation application developed in Python and available on Github 

(github.com/fdlopane/RAO_HumberEstuary), to solve multi-objective spatial optimisation 

problems applied to infrastructure resilience to natural disasters. The software is open source 

and it is available to the scientific community to download and use. 

 

3.6. Summary 

Chapter 3 presented a literature review of available techniques to address spatial planning 

optimisation. First, the concepts of mathematical and spatial optimisation are introduced and 

then an overview of potential techniques is presented with the aim to understand which of 

these is more suitable to address the problem of interest of this research. Among the 

approaches introduced in section 3.4, genetic algorithms are identified as the most 

appropriate technique for the development of the RAO framework presented in Chapter 4. 

Finally, section 3.5 identifies the contributions of this research to the spatial optimisation 

discipline highlighting the theoretical advances and the technical improvements presented in 

this wok. 
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4. RAO (Resource Allocation Optimisation) framework 

4.1. Introduction Chapter 4 

Chapter 4 introduces the Resource Allocation Optimisation (RAO) framework. The chapter 

describes the architecture and conceptual background of the methodology adopted by this 

research, together with the software implementation of the theoretical framework with an 

indication of the several phases and modules involved in the process (section 4.2). Details 

concerning the choice of the development environment can be found in section 4.3, while 

section 4.4 presents a description of the genetic algorithm adopted for the multi-objective 

spatial optimisation. 

 

4.2. Problem formulation: optimal resource allocation 

4.2.1. Optimisation methodology 

The aim of this research is the determination of Pareto-optimal locations for different facilities 

(warehouses, clinics etc.) with respect to multiple conflicting objectives (i.e. different 

formulations of accessibility and cost functions). 

Among several spatial optimisation approaches (as discussed in Chapter 3), a Genetic 

Algorithm (GA) may be chosen to balance the trade-off between the conflicting objectives. 

Section 3.4.5 highlighted the efficacy of GAs for multi-objective optimisation and their 

application within urban science scholarship, given their improved convergence and quick run 

times(Xiao et al., 2007; Sidiropoulos and Fotakis, 2009; Caparros-Midwood, 2015). 

The presented RAO framework is composed of three phases: 1) Initialisation phase, 2) Solution 

phase and 3) Output phase. In the Initialisation phase, georeferenced vector and raster 

datasets are imported and elaborated. At this stage, if not directly imported from the input 

data, an “availability” dataset is created: here, all the possible locations that can be part of 

potential solutions are stored. The solution phase involves the GA, here a set of initial solutions 

(i.e. spatial plans) is generated and then evolved to its Pareto-optimal state by the application 

of three evolutionary operators: selection, crossover and mutation (see Chapter 4.2.2). Finally, 

the output phase presents the results in different forms: Pareto fronts, tables and Shapefiles 

for GIS map visualisation. 
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The optimisation criterion for the choice of solutions is Pareto efficiency, a methodology that 

has been widely utilised in engineering, urban planning and infrastructure optimisation 

(Vamvakeridou-Lyroudia et al., 2005; Jiang-Ping and Qun, 2009; Cao et al., 2011; Fu et al., 

2012). The main advantage of this approach is its independence from any a priori preference 

(in contrast with other traditional methods like weighted sums). In a multi-objective 

optimisation problem, a solution is defined “Pareto-optimal” based on the concept of 

domination (Goldberg, 1989): a solution is optimal if it is “non-dominated” by any other 

solution. 

Considering the minimisation problem, a solution 𝑠1 is defined as “non-dominated” by a 

solution 𝑠2 if 𝑠1 is not worse than 𝑠2 in all objectives and it is strictly better in at least one 

objective:  

 𝑓𝑛(𝑠
1) ≤ 𝑓𝑛(𝑠

2) ∀ 𝑛 = 1, 2, … ,𝑁 (4.1) 

 𝑓𝑛(𝑠
1) < 𝑓𝑛(𝑠

2) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑛 ∈ {1, 2, … ,𝑁} (4.2) 

Where 𝑓𝑛 are the N objective functions. For a maximisation problem, instead, the definition 

becomes: 

 𝑓𝑛(𝑠
1) ≥ 𝑓𝑛(𝑠

2) ∀ 𝑛 = 1, 2, … ,𝑁 (4.3) 

 𝑓𝑛(𝑠
1) > 𝑓𝑛(𝑠

2) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑛 ∈ {1, 2, … ,𝑁} (4.4) 

After the application of a non-dominated sorting algorithm (Du et al., 2007; Mishra and Harit, 

2010), the previous equations are applied to all search results, S, to determine a set of non-

dominated solutions. Such non-dominated solutions are selected and saved since they are 

equally Pareto-optimal and no other solution could provide an improvement of one objective 

without worsening the others. 

 

4.2.2. Framework structure and software implementation 

As introduced in Chapter 4.2.1, the RAO framework is structured in three phases: Input phase, 

Solution phase and Output phase. The Solution phase, in turn, can be subdivided in different 

processes, as highlighted in Figure 8. 
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Figure 8 - Resource Allocation Optimisation framework flowchart with indication of sections numbers where the different 
components are described. 

Figure 8 presents the phases and the components of the implemented RAO framework. 

Passing through six different phases and the iterative process, the framework generates and 

evolves a set of solutions to get to the final Multi-Objective Pareto-Optimal (MOPO) set N. 
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Referring to the framework structure described in Figure 8, a series of modules have been 

developed to handle the different operations belonging to the several phases of the 

optimisation framework. 

 

Figure 9 - Scheme of the python modules of the Resource Allocation Optimisation (RAO) framework with respective 
functions and dependencies. 

Figure 9 presents an overview of the different python modules composing the RAO 

framework. The main module is where the principal parameters of the problem are defined 

by the user (see the case studies’ chapters 5 and 6 for more details concerning the parameters 

governing the problem) and from which the Genetic algorithm is run (see section 4.4). From 

here, a series of dependent modules are called where needed. 

The main module also allows the user to choose among a broad range of different scenarios 

to be run by the RAO framework: a significant step forward in terms of user interface and 

software structure has been made with respect to previous optimisation framework that 

made use of genetic algorithms (Caparros-Midwood (2015)). The introduction of “scenarios” 

in the main module allows the user to more easily define parameters within the problem 

formulation section of the code and ultimately create a more user friendly working 

environment. 
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The Initialisation module is where georeferenced input datasets are imported, and the 

‘available Lookup’ is created (see section 4.2.2.1). Once the initialisation phase is completed, 

the iterative process of the genetic algorithm can start. The Initialisation module also relies on 

the results of the K-means module for the creation of the first generation. Spatial plans are 

then evaluated by the application of the functions of the Evaluation module (described in 

section 4.2.2.4), which, in turn, relies on the results produced by the network analysis module 

(presented in section 4.2.2.1). 

The K-means module is independent to the other modules of the RAO, it is run beforehand 

and its results are used to create the first generation of solutions. K-means clustering 

(Ostrovsky et al., 2013) is an unsupervised Machine Learning (ML) technique aimed at 

partitioning a series of 𝑛 data into 𝑘 clusters (hence the name). The SciKit-learn (Pedregosa et 

al., 2011; Buitinck et al., 2013) open source Python module utilises a K-means clustering of all 

the available locations and finding the centroids of these clusters. Different numbers of 

clusters are taken into consideration (e.g. in Chapter 5 case study: same range of 

minimum/maximum number of warehouses) and the coordinates of their centroids are saved 

and stored in the results folder. 

The aim of the K-means module is to perform a K-means clustering of the target assets 

(destinations of the network analysis) and determine the centroids of the identified clusters. 

This information is useful for seeding the algorithm with not-randomly generated initial spatial 

plans. According to the case study, the user is able to decide whether to run the K-means 

clustering or not; this decision depends on the user’s needs/intentions, as the K-means 

clustering speeds up the optimisation process, but also constrains the research space: not 

including the K-means clustering would lead to longer run times, but the inspected solution 

space would be wider. Balancing the trade-off between quality of results and run times is one 

of the main advantages of heuristic methods - for more details on this topic see Chapter 3. 

The Network analysis module is run in parallel. Through NetworkX (Hagberg et al., 2008), a 

network analysis is performed to calculate the shortest paths from each origin to each 

destination. The results (expressing distances in terms of travel times) are saved in a ‘Distance 

Lookup’ containing the travel times from each available location to every target asset present 

in the case study area (more details on this procedure in section 4.2.2.1). 
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The Constraints module described in section 4.2.2.4 contains all the functions that represent 

the constraints of the problem, functions that are needed when spatial plans are created both 

in the initialisation phase and after the application of the evolutionary operators. 

Finally, after the last iteration of the evolutionary process, the Output module (section 4.2.2.6) 

is called directly from the Main environment to produce a log file with the details of each 

particular run and the results in the form of Pareto fronts plots and georeferenced datasets 

containing the spatial plans of Pareto-optimal solutions. 

 

4.2.2.1. Initialisation phase 

In this initial phase, a set of georeferenced datasets are imported into the Python 

environment. A first innovative feature of the RAO framework, with respect to previous 

optimisation platforms (e.g. Caparros-Midwood (2015)), consists in its flexibility in terms of 

input data. Both vector and raster datasets can be used as inputs to model the geographies 

and the constraints of the case study areas. This allows a wider transferability and scalability 

of the methodology to different areas and scales in response to different data formats. 

These datasets are pre-processed in a GIS environment and they represent the spatial domain 

of the case study. Different case studies rely upon different datasets and typically consist of 

the road network, destinations (e.g. strategic infrastructure assets to be protected during 

flood events), constraints etc. The initialisation processes are handled by the Initialise.py 

module which contains several functions designed to import spatial data and generate lookup 

tables and spatial plans’ population to evolve to their optimal state by the genetic algorithm.  

At this stage, another significant innovation is introduced to enhance the flexibility and the 

transferability of the methodology: the option to choose whether to import an availability 

raster or to automatically generate it. This is particularly relevant for transferability because 

the knowledge of which are the suitable locations for the final optimal allocation of resources 

is not always available in advance. In response to the case study in question, the modeller may 

not know which locations are available for resource allocations or in other cases they might 

not want to constrain the search to a set of pre-determined locations. 



 
71 

 

The two case studies presented in Chapters 5 (UK) and 6 (New Zealand) showcase the 

adoption of these two assumptions: in the UK case study, the initialisation phase entails the 

generation of an availability raster, in the New Zealand case study, it is imported directly form 

the input data folder. The “Generate_Availability” function takes into account a series of 

physical constraints to model natural barriers (like surface water) and logistic constraints (like 

distance from main roads) to generate an availability raster where cells are defined as 

“available” if they meet all the contraints (for an example of this application, see section 5.4.5). 

The outcome is a georeferenced raster image in a GeoTIFF format that can be imported into 

a GIS environment for visualisation purposes and that can be used in the RAO framework to 

generate a lookup table of available locations. 

Lookup tables are also generated in the initialisation phase; they are useful tools to improve 

the efficiency (and consequently reduce run times) of the whole framework primarily by 

reducing the variables dimensions: since spatial data always have (at least) two dimensions, 

they are represented as 2D variables, i.e. matrices. The use of lookup table allows to collapse 

the bi-dimensionality into a 1D vector variable by creating a list of ordered tuples containing 

the coordinates of each cell (see Figure 10). In this way, it is possible to store bi-dimensional 

spatial data in monodimensional list of coordinates, ultimately making the entire framework 

more computationally efficient. 
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Figure 10 - Dimension reduction in Lookup table creation. 

 

One of the most significant theoretical innovations introduced in this thesis is the coupling of 

the genetic algorithm prodedure with the K-means clustering methodology. Such a 

combination of different approaches contributes in improving the performance and the 

efficiency of evolutionary programming. To speed up the evolution process, initial popultions 

are not randomly generated; instead, the GA is seeded with spatial plans resulting from a K-

means clustering process. This allows wider searches, bigger case studies, higher resolutions 

and a higher number of variables. 

Subsequently, a network analysis is performed to calculate travel times from each available 

location and the closest cluster centroid. The analysis is performed evaluating shortest paths 

where distances are measured as travel times. Then, the available locations are ranked 

according to their proximity to the centroid of their cluster. 

The procedure described above is handled by the KMeans_clustering.py module, which 

produces a series of outputs: shapefiles containing the centroids of all the generated clusters, 

csv files containing the coordinates of the centroids of all the clusters and csv files with 
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available cells ranked according to their distance from their cluster’s centroid. These files are 

useful for visualisation purposes (shapefiles) and are used in the spatial plans generation when 

creating populations of potential solutions (csv files). 

As mentioned above, the KMeans_clustering.py module makes use of information regarding 

distances among different locations (e.g. centorids and available cells). The evaluation of 

distances is another stage of the initialisation phase, and it is carried out by the Network 

Analysis Module. 

The Network analysis module is then run independently from all the other modules of the RAO 

framework (see Figure 9) and it prodcues a Distance Lookup containing all the distances 

between the potential origins and all the potential destinations of the study area. This 

information is necessary to perform the accessibility optimisation central to the RAO 

framework. The input of this module is a shapefile representing the network on which to 

perform the distance analysis: the case studies of Chapter 5 and 6 use the road network and 

distances are measured as travel times (expressed in minutes in the Distance Lookup). 

The Network Analysis Module makes use of the Python package NetworkX (Hagberg et al., 

2008), through which it is possible to calculate the shortest paths from each origin to each 

destination using Dijkstra’s algorithm. The wider the study area (or the higher its spatial 

resolution), the higher the computational effort is; computing shortest paths with NetworkX 

can result in long run times, this is the reason why the evaluation of distances is not performed 

at each iteration of the genetic algorithm, but it is performed in advance, and only once.  

Once the Distance Lookup is created and saved in the data folder, it is possible to run as many 

different possible scenarios as required by the user without having to perform a network 

analysis every time. This results in considerable time saving and ultimately a higher efficiency 

of the whole optimisation framework: when travel time information is required by the GA, it 

is directly loaded from the Distance Lookup table instead of being computed. 

The last operation performed in the initialisation phase is the generation of spatial plans (in 

Chapter 5: warehouse spatial plans and in Chapter 6: GP clinics spatial plans). Spatial plans 

constitute the initial population of potential solutions that will be evolved to its Pareto-

optimal state by the genetic algorithm further on. In this phase, spatial plans can be generated 

either considering the K-Means clustering algorithm seeding or neglecting it according to the 
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user’s interests (seeding the algorithm reduces run times but also reduces the solutions’ 

search range). Both these two different options are presented in the case studies of Chapter 

5 and 6. 

The primary purpose of the spatial plan creation is the allocation of assets (i.e. warehouses in 

Chapter 5 case study, or clinics and general practitioners in Chapter 6 case study) to the 

available cells. The number of allocated assets is variable and it is randomly chosen within an 

allowed range (defined by the user). The outcome is a vector (the spatial plan) with a length 

equal to the Lookup table (i.e. list of coordinates of available cells) and with values equal to 0 

and 1 according to wheter an asset (e.g. warehouse or clinic) is allocated to that particular 

available cell (see Figure 11). Representing spatial plans as vectors containing zeroes and ones 

rather than 2D matrices with values and coordinates allows lower run times due to a more 

efficient data handling. This operation is repeated a number of times equal to the dimension 

of the initial population of solutions (defined by the user) that constitutes Generation 0 of 

solutions, which will be evolved to its Pareto-optimal state in the Iterator described in Section 

4.2.2.2. 

 

Figure 11 - Relationship between spatial plans (i.e. potential solutions) and Lookup table. 

 

If the K-Means clustering module is used, 80% of available cells will be randomly selected 

among the top 50 ranking locations in term of proximity to their cluster’s centroid, while the 

other 20% of the spatial plan’s locations are randomly selected from all the available locations 
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of the Lookup table. This means that, if the spatial plan has 10 warehouses or clinics to be 

allocated, the K-Means Module will generate 10 clusters and 8 out of the 10 assets will be 

close to their cluster’s centroid, while the oter 2 assets will be randomly chosen from all the 

available cells in the area. These percentages can be changed by the user according to the 

scenario of interest. If the K-means clustering is not performed, all the assets are randomly 

selected from all the available locations. 

The RAO framework also allows the user to choose whether to include a distance constraint 

in the initialisation phase: according to the study interests, the user can define a minimum 

distance between assets’ allocations. For instance, Chapter 5 presents the case in which, in 

the spatial plans generation, the distance between two allocated warehouses cannot be lower 

than 10 kilometres. For transferability and scalability purposes, this value can be defined by 

the user according to the scale and resolution of the study area. 

After the input data managing process, an initial population of solutions is generated 

(Generation 0). The population is made of individuals that represent singular spatial plans, and 

it represents the initial parent set from which the following generations are created (see 

following section for more details on evolution of the solutions’ population). 

 

4.2.2.2. Iterator 

The iterative process constitute the central part of the RAO framework and it is the one that 

requires the highest share of computational power. As shown in Figure 8, the iterator is 

subdivided in a number of different phases analysed in more detail in the next sections. The 

subsections of the iterator are: the application of the evolutionary operators (section 4.2.2.3), 

the evaluation phase with the application of constraints (section 4.2.2.4) and the Multi-

Objective Pareto-Optimal (MOPO) set maintenance (section 4.2.2.5). All these operations are 

repeated for a number G of iterations, which are called “generations” in the evolutionary 

programming terminology. 

The number of generations G is an input parameter defined by the user (in the software 

implementation it is represented by the variable NGEN). If the user does not have a prior 

knowledge of the case framework, it is possible to calibrate the model by varying the number 

G to determine which is the most appropriate value. Very low values of G allow quick runs, 
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but they do not guarantee exhaustive searches of the solution space, while high values of G 

allow the inspection of a wider share of the solutions space with higher computational costs 

and therefore higher run times. 

The determination of an appropriate value for G consists in balancing the trade-off between 

quality of results and computational effort. An effective way to perform such a calibration is 

analysing the evolution of the Pareto front. Typically, after a certain number of generations, 

the evolution of Pareto fronts slows down the closer it gets to the mathematical solution of 

the problem. After an optimal number G of generations, there is no further significant 

improvement in the quality of solutions. Figure 12 shows an example for minimisation and 

maximisation problems, while Chapters 5 and 6 present applied examples of calibration of the 

different case studies. 

 

Figure 12 - Evolution of Pareto fronts for minimisation and maximisation problems. G represents the number of Generations 
in the evolution process (the values are purely indicative). 

Each generation has a parent set (𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔) from which the child set (𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔) is 

generated by the application of the three evolutionary operators: selection, crossover and 

mutation (see section 4.2.2.3 for more detais on parents and offspring in the evolution 

process). In the following generation (i.e. iteration), a new set of parents is created after the 

application of the selection operator: 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔+1. At this point, the process is repeated 

assigning 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔+1 (see Figure 8). 

The first generation of solutions (Generation 0) is created starting from the spatial plans 

generated in the initialisation phase (see section 4.2.2.1), and to improve the efficiency of data 

handling in the iterative process, a Python function named “Generate_Proposed_Sites” 
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further reduces the dimension of the spatial plan vectors decreasing the computational effort 

required to store the variables’ length as shown in Figure 13. 

 

Figure 13 - Creation of Proposed sites variable to reduce the dimension of the Spatial plan vector for a lighter and more 
computationally efficient data handling. 

 

4.2.2.3. Evolutionary operators 

The population of potential solutions generated in the initialisation phase (section 4.2.2.1) are 

evolved to their Pareto-optimal state in the iterative process presented in section 4.2.2.2. The 

spatial plans’ evolution mimicks natural evolution by combining “parent” plans to generate 

“offspring” plans considering both “selection” (i.e. only the best solutions survive and mate) 

and random mutations taking place in the offspring generation. To translate the concept of 

natural evolution into computer programming, three evolutionary operators are introduced: 

1) the crossover operator, 2) the mutation operator and finally 3) the selection operator. 

The evolutionary operators are applied to the whole solutions’ population at each generation 

(i.e. at each iteration) by the Genetic Algorithm. In order to generate new solutions avoiding 

local optima (Rothlauf, 2011), the evolutionary operators of crossover and mutation are 

applied to each spatial plan with a probability 𝑝𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 and 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 in the Mu-plus-Lambda 

strategy (Mitchell, 1998). 
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A two-point crossover operator (Caparros-Midwood, 2015) is considered: it works by cutting 

two solutions, 𝑆1 and 𝑆2, in two points, 𝑐𝑥1 and 𝑐𝑥2, randomly chosen such that 0 < 𝑐𝑥1< 𝑐𝑥2< 

L (with L = length of 𝑆1and 𝑆2). Their attributes are swapped in the central part of the list (i.e. 

between 𝑐𝑥1and 𝑐𝑥2) and two new solutions 𝑆1′and 𝑆2′ are created with the following 

formulation: 

 {
𝑆1′[𝑐𝑥1: 𝑐𝑥2] = 𝑆

2[𝑐𝑥1: 𝑐𝑥2]

𝑆2′[𝑐𝑥1: 𝑐𝑥2] = 𝑆1[𝑐𝑥1: 𝑐𝑥2]
0 <  𝑐𝑥1 < 𝑐𝑥2 <  L

 (4.5) 

Figure 14 shows the details this process: 

 

Figure 14 - Two-point crossover operator mechanism, adapted from Caparros-Midwood (2015). 

Subsequently, with a probability 𝑝𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛, the mutation operator is applied to those solutions 

on which the crossover has not been applied. In this process, a mutation of a randomly 

selected 𝑖, 𝑗 location transforms the solution S into the new solution S’ as described in Figure 

15. 

 

Figure 15 - Mutation operator mechanism, adapted from Caparros-Midwood (2015). 

This operator has two advantages: the possibility to improve the performance of a solution in 

one or more objectives and the prevention of convergence on a small subset introducing new 

random locations and widening the search area in the solutions’ space. 
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Following this, the selection operator is applied to generate a new set of solutions: 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔. The chosen selection process is the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) (Deb et al., 2002). NSGA-II is particularly appropriate for urban planning problems 

and has been extensively adopted (Jaeggi et al., 2008; Zhang and Fujimura, 2010; Cao et al., 

2011; Caparros-Midwood et al., 2017). Other conventional selection techniques, such 

astournament and roulette selection, are inappropriate for Multi-Objective Pareto-Optimal 

(MOPO) sets. Zhang and Fujimura (2010) also show that NSGA-II is more efficient for multi-

objective optimisation (compared to other widely utilised algorithms, like the Strength Pareto 

Evolutionary Algorithm) in the estimation of the Pareto front. 

 

4.2.2.4. Constraints and evaluate 

The constraint-handling module (Constraints.py in the Python software framework) is 

designed to certify that the generated spatial plans do not exceed the boundaries of the case 

study area and meet other kinds of constraints like the minimum/maximum number of 

allocated resources. Following this, they are evaluated against the objective functions. 

As exhibited by Konak et al. (2006), constraint handling in genetic algorithms can be 

performed with several expedients: 

1. The removal of infeasible solutions. 

2. The application of a penalty function to solutions that break constraints. 

3. Production of only feasible solutions. 

4. Adjusting unfeasible solutions during the process. 

Despite being very popular (Coello Coello, 1999), applications of penalty functions have been 

criticised for the arbitrariness of the weights of the functions to be applied. Moreover, as Liu 

et al. (2015) observe, the application of a penalty function does not preclude the 

representation of infeasible solutions in the search. 

Inspired by Cao et al. (2011)’s approach, the allocation of resources/assets is made based on 

a Lookup variable that contains the coordinates of available cells only (see section 4.2.2.1 for 

more details). Such coordinates derive from the available raster dataset created in the 

initialisation phase. In addition to the computational advantages derived from the variables’ 
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dimensions reduction described in section 4.2.2.1, there are also advantages in using a Lookup 

table from a constraints handling perspective, such as the prevention of development outside 

the boundaries and the consequential avoidance of unfeasible solutions (Caparros-Midwood, 

2015). Problems may occur in terms of spatial or numerical constraints when the evolutionary 

operators are applied, and that is why additional constraint checks are implemented according 

to the nature of the case study. 

Due to the spatial nature of input data, some constraints are implicitly imported in the 

initialisation phase. These kinds of constraints can be defined in any dataset pre-processing or 

occur in the initialisation phase in the definition of “available” cells. For example, in the case 

study analysed in Chapter 5, among other requisites, cells are marked as “available” if they 

are within a distance of 500 metres from a major road. These kind of constraints are case-

dependent, therefore – to guarantee the transferability and scalability of the methodology – 

no predefined formulation is present in the framework’s architecture and it is left up to the 

user to implement any kind formulation that may better represent the real-life problem. 

Resolution represents another constraint of the framework; the architecture is flexible 

according to the dimension of the cells within the raster datasets. Besides, a series of other 

implicit constraints are inevitable when using GIS data. They consist of errors, imprecisions 

and inaccuracies that necessarily constrain any representation of the physical reality to be 

modelled (Pascual, 2011). 

An additional constraint of the datasets is the definition of travel times. Often, road network 

datasets lack information regarding travel times or even allowed speeds on different edges of 

the network. In this case, such information must be evaluated basing on hypotheses that 

necessarily imply a certain degree of uncertainty. A standard procedure is to infer the allowed 

speed from the road typology and then calculate the free-flow speed. From this information, 

travel times can be evaluated in a ‘best case scenario’, i.e. without considering the traffic 

variable. This procedure has been adopted in the case studies analysed in the present work 

(see Chapters 5 and 6). This constitutes an implicit constraint due to the nature of the datasets; 

although it does not appear as an explicit constraint of the RAO, it is important to be aware of 

these kinds of limitations in problem definitions. However, to maximise its transferability, the 

optimisation framework is flexible to different kinds of input data and when complete/good-
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quality input data contain all the needed information, no extra consideration regarding 

implicit constraints is needed. 

The constraints module Constraints.py contains different functions that are designed to 

ensure that the mated, mutated and selected solutions meet the physical and numerical 

boundaries of the case study. These functions are of two types and are applied in two phases 

of the evolution process. Regarding the two typologies, the RAO framework has constraint 

functions that 1) check that potential solutions’ assets allocations are distant enough from 

each other (e.g. allocated warehouses must be at least 10km apart in Chapter 5’s case study) 

and that 2) check that the number of allocated resources meets the allowed boundaries. These 

two typologies of constraints are both applied at two stages of the optimisation process: 1) 

the initialisation phase and 2) the evolutionary operators application phase. 

 

Figure 16 - Example of application of evolutionary operators that do not meet the constraint of the min/max allowed 
number of assets allocation 

Figure 16 shows an application of evolutionary operators that does not meet the constraint of 

the allowed range of assets that can be allocated. As shown, all the initial solutions (i.e. S1 and 

S2 for the crossover application and S for the mutation application) have a number of 

allocations that are within the allowed range (i.e. 3-7), this means that in the initialisation 

phase the constraint on the number of asset is met. Nevertheless, combining or mutating 

acceptable solutions may not necessarily result in acceptable ones. This is why after the 
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application of the crossover and mutation operators – and before the selection process – the 

constraints functions of the Constraints.py module are applied a second time, as previously 

demonstrated within the initialisation process. This ‘double-check’ allows only feasible spatial 

plans to be part of the next generation of solutions. 

Once all the spatial plans within the generation of solutions meet the constraints, they are 

evaluated against the objective functions, and the best-performing ones are selected to form 

the next generation of solutions and thereby undergo the next iteration of the optimisation 

process. 

Although there is no formal restriction on the number of objectives that can be simultaneously 

considered in the optimisation process, the RAO applications presented in Chapters 5 and 6 

both consider a particular trade-off between two conflicting objectives that are typical of 

spatial optimisation of resource allocation: the simultaneous maximisation of infrastructure 

accessibility and the minimisation of costs. This choice results in the definition of two objective 

functions used to evaluate the performance of each potential solution: 1) a distance function 

𝑓𝑑𝑖𝑠𝑡  and 2) a cost function 𝑓𝑐𝑜𝑠𝑡. 

The distance function attributes a distance fitness (𝑓𝑑𝑖𝑠𝑡) to each spatial plan. This fitness is 

minimised in the optimisation process. The fitness is a measure of the performance of the 

spatial plans with regards to a particular function. In both the applications presented in this 

study (UK and New Zealand case studies), distance is evaluated as travel time on the road 

network and travel times among all possible origins and destinations are directly read from 

the Distance Lookup variable created by the Network Analysis module presented in section 

4.2.2.1. 

Several metrics can be taken into consideration to measure the performance of different 

solutions; the RAO framework is extremely flexible in this regard to maximise transferability 

and scalability: since the formulation of optimisation functions is extremely case study 

dependent, Chapter 5 and 6 present a wide range of different formulations of objective 

functions to evaluate both distance and cost fitnesses. For example, regarding the distance 

function, among others, the average travel time between origins and destinations can be 

taken into account, a weighted average, the maximum travel time value, the average of the 

90th quantile of the travel times or a Generalised Uniform Dose (see Chapter 5 for more 
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details) formulation can be adopted. Regarding the cost function formulation, the different 

scenarios presented in Chapters 5 and 6 present a broad range of different options, from linear 

to non-linear cost functions, from discrete to continuous formulations and from equations 

that take into account land values to the size of available vehicles’ fleet to deploy strategic 

resources. 

The choice of the metric has direct repercussions on the choice of Pareto-optimal solutions: 

same spatial plans may or may not result being Pareto-optimal according to different metrics. 

Since the objective functions definitions are strictly case-dependent, more details on the 

mathematical formulation adopted to evaluate spatial plans’ fitness are provided in each 

scenario presentation in Chapters 5 and 6. 

From the software architecture perspective, the evaluation of distance and cost fitnesses is 

handled by the Evaluate.py Python module. The main module, called RAO.py in the Python 

framework, has a function called “Evaluate” that takes a single spatial plan (i.e. a potential 

solution) as an input and, according to which scenario is selected by the user, returns its 

distance and cost fitness evaluated by calling the evaluation functions defined in Evaluate.py. 

The Evaluate function returns a tuple of values stored in the variables “Dist_Fit” and 

“Cost_Fit”. This procedure is repeated for each Individual (i.e. spatial plan) that is part of the 

Generation of solutions. 

 

4.2.2.5. Multi-Objective Pareto-Optimal set maintenance 

After the application of the constraint check and evaluation functions on 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 (see 

section 4.2.2.4), the selection operator is applied to both 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔 to create 

𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔+1. Both 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔 have the same length; this length is: 𝑛𝑝𝑎𝑟𝑒𝑛𝑡𝑠. 

𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔+1 must have a length of 𝑛𝑝𝑎𝑟𝑒𝑛𝑡𝑠 as well. Figure 17 shows how to reduce the 

number 2 ∙ 𝑛𝑝𝑎𝑟𝑒𝑛𝑡𝑠 of the combined sets 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔 to 𝑛𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (which is the 

length of 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔+1). 
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Figure 17 - Non dominated sorting, adapted from Deb et al. (2002). 

First, a non-dominated sorting takes place among 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 and 𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑔, the result is a 

series of N non-dominated sets. Once the first non-dominated set 𝑁1 is found, a new sorting 

takes place among the remaining solutions ‘S’ and the second set 𝑁2 is saved. Such a 

procedure does not stop until all S are allocated to a set N. The first N sets that can completely 

be part of 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 are stored into it, so referring to Figure 17: N1 and N2 are saved in 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1, 𝑁4 and 𝑁5 are discarded, but part of 𝑁3 will be saved, and the other part 

rejected. They are sorted according to a crowding parameter ψ that is determined to decide 

which S ∈ 𝑁3 will be saved. The crowding distance determines the least represented parts of 

the Pareto front based upon the distance from the nearest solution in the objective space 

(Caparros-Midwood, 2015). 

 

4.2.2.6. Outputs 

Once g = G (i.e. the maximum number of generations is reached), the genetic algorithm 

returns the final MOPO set N (see section 4.2.2.5). At this point, the last phase of the 

optimisation framework begins: the production of outputs. Outputs files are generated by the 

Output module (see Figure 8) which corresponds to the Outputs.py Python module in the RAO 

software application. 

The outputs module constitutes another significant improvement with respect to previous 

optimisation frameworks due to its wide range of different output data types. This 

improvement broadens the horizon of possible visualisation techniques that can be adopted 

to present results due to the wider choice of output formats. Moreover, before saving the files 
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in the results folder, the Outputs module formats the information generated by the Genetic 

Algorithm in a suitable and intelligible way. 

The first kind of generated output consists in the Pareto-optimal sets generated by the GA, 

these are the actual solutions of the multi-objective optimisation framework and they are 

saved in a text file stored in the outputs folder. They are formatted as shown in Figure 18. 

 

Figure 18 - Format of Pareto sets. The Pareto sets are saved as text files in the output folder and also plotted in a a graph 
representing the optimisation objectives on each axis. 

The Pareto sets are then plotted on a graph representing the solution space, defined by the 

two optimisation objectives: solutions are plotted according to their fdist and fcost values. The 

plots are saved in JPEG format and are generated using the open source Python library 

Matplotlib (Hunter, 2007). Both the text files and the plots are produced for Pareto sets’ 

absolute values and their normalised values. The “Normalise” function defined in the 

Outputs.py module normlises the pareto sets with respect the minimum and maximum values 

of their distance and cost fitnesses (respectively fdist and fcost ). 

The second typology of output produced by the RAO framework consists in raster files 

representing Pareto-optimal spatial plans in TIFF format. The “Wrtie_Rasters” function 

defined in the Outputs.py module makes use of the Python library rasterIO (Sean Gillies and 

others, 2013) to combine the spatial plans contained in the Pareto sets with their respective 

coordinates stored in the Lookup variable to produce a GeoTIFF file that can be imported in 

any GIS environment (see Figure 19). 
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Figure 19 - Creation of raster output from the Pareto-optimal spatial plans contained in the Pareto sets (i.e. Pareto-optimal 
solutions produced by the Genetic Algorithm). Raster outputs are saved in the GeoTIFF format and can be imported in any 

GIS environment. 

In addition to raster files, also vector files are created to allow the user to have a wide choice 

of formats for visualisation puposes. The procedure is the same as those demonstrated by the 

creation of raster data: the spatial plans contained in the Pareto sets are turned into shapefiles 

(.shp format) through the application of the “Generate_sol_shapefile” function defined in the 

Outputs.py Python module. This function makes use of the Python library GeoPandas (Jordahl 

et al., 2020). 

Finally, the last typology of output files produced by the RAO framework is comma-separated 

values (CSV) files containing information regarding the Pareto-fronts and the Pareto-optimal 

solutions. Pareto-fronts csv files have three columns: the first one indicates the solution 

number, the second one the distance fitness and the third one the cost fitness; they are 

created for both normalised and non-normalised Pareto-fronts. The spatial plans csv files also 

have three columns, but contain information regarding: 1) the solution ID, 2) the X coordinate 

and £) the Y coordinate (for spatial representation in a GIS environment). 
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The RAO framework produces all the outputs described in the previous paragraphs for each 

generation (i.e. iteration) of the Genetic Algorithm, storing them in a subfolder called 

“Generations”. This allows the user to inspect the evolution of the Pareto-fronts for calibration 

purposes. To save memory, the user has the choice to only save the output files of the last 

iteration of the spatial optimisation iterative process. 

 

4.3. Development environment 

The chosen programming environment is Python (Python Software Foundation, 2010). Python 

is a high-level open-source programming language with a wide range of mathematical and 

optimisation modules (Fortin et al., 2012); Python is widely accessible, it easily interfaces with 

ArcGIS (ESRI, 2011) and it allows the use of the Geospatial Data Abstraction Library 

(GDAL/OGR contributors, 2019). Python is the programming reference language of a wide part 

of the literature regarding optimisation applications (Bröker et al., 2005; Hebrard et al., 2010; 

Matott et al., 2011; Beham et al., 2014) and spatial allocation optimisations (Ligmann‐Zielinska 

et al., 2005; Ligmann-Zielinska et al., 2006; Ligmann-Zielinska and Jankowski, 2007; Ligmann‐

Zielinska et al., 2008; Caparros-Midwood et al., 2016). 

RStudio (RStudio Team, 2015) is another open-source programming language that could have 

been chosen thanks to its ability to perform genetic algorithm optimisation (Scrucca, 2013) 

and its GDAL adaptation module: rgdal (Bivand et al., 2019). Nevertheless, it is not broadly 

adopted in spatial optimisation literature and it is mainly used for visualisation purposes 

(Caparros-Midwood, 2015). 

MATLAB (The MathWorks Inc., 2010) and AMPL (Fourer et al., 2003) are both commercial 

software packages that could have been suitable choices as well. MATLAB (abbreviation for 

Matrix Laboratory) is a numerical computing environment in which it is possible to develop 

several optimisation applications (Sigmund, 2001; Lofberg, 2004). The main criticisms on the 

software are the non-user-friendly environment (Siauw and Bayen, 2014) and its inflexible 

language (Bröker et al., 2005). AMPL (A Mathematical Programming Language) is another 

good alternative to perform complex mathematical processes; it is suitable for the 

development of optimisation applications (Fourer et al., 2003), but, concerning spatial 

optimisation, its use is limited in the literature (Caparros-Midwood, 2015). 
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4.4. Genetic Algorithm 

Concerning the choice of the GA, Pyevolve (Perone, 2009) and Pygene (McNab, 2011) are two 

popular Python modules that can handle evolutionary operators. Nevertheless, Pyevolve lacks 

the necessary GAs necessary to perform multi-objective Pareto optimisation; Pygene has the 

operators, but its use in multi-objective optimisation is not well documented (Caparros-

Midwood, 2015). Therefore, in this work, the very well documented DEAP (Distributed 

Evolutionary Algorithms in Python) module is used (Fortin et al., 2012). Table 2 shows the 

DEAP modules used in the framework to handle the multi-objective Pareto-optimisation in the 

𝜇 + 𝜆 strategy (Fortin et al., 2012). 

Table 2 - Table of evolutionary operators used in the RAO framework 

Operator Module 

Selection tools.selNSGA2 

Crossover tools.cxTwoPoint 

Mutation tools.mutUniformInt 

 

Referring to DEAP Documentation (DEAP Project, 2009), the eaMuPlusLambda function 

evolves a population of spatial plans and returns the optimised population together with a 

Logbook containing the statistics of the evolution process. 

The main parameters of the eaMuPlusLambda function are the following: 

 population: list of individuals (spatial plans). 

 toolbox: used to “register” (i.e. define) individuals, population, the evolutionary 

operators and their decorator functions. 

 mu: number of individuals selected to create the following generation. 

 lambda: number of children to create at each generation. 

 cxpb: crossover probability. 

 mutpb: mutation probability. 

 ngen: total number of generations. 

The evolution is performed by the application of the three evolutionary operators: selection 

(tools.selNSGA2), crossover (tools.cxTwoPoint) and mutation (tools.mutUniformInt). Their 

role is, respectively: evaluating and selecting the best performing solutions to create the 
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following generation, mating two “parents” spatial plans to create a new “child” spatial plan 

and, finally, randomly mutating a spatial attribute of a solution (for more details see section 

4.2.2.3). 

The choice of the values for the lambda and ngen parameters is the result of the calibration 

of the model, which consists in performing different runs varying those parameters and 

understanding a proper combination that can guarantee an acceptable quality of results and 

feasible running times. 

The GA is run by the main Python module RAO.py in the function called “Genetic_Algorithm”. 

This function first registers the population of solutions to consider as Generation 0 created in 

the initialisation phase (see section 4.2.2.1). Then, it runs DEAP’s function eaMuPlusLambda, 

and finally returns the variable “hof” (acronym of “hall of fame” as it registers the best 

performing solutions in the evolution process) that contains the Pareto-fronts. 

As demonstrated in the previous paragraphs the “toolbox” is a special container in which to 

store a series of functions useful to the evolutionary process, such as initialisers, evolutionary 

operators and decorator functions. Decorator functions are key elements of the evolutionary 

process as they constitute the means through which the constraints functions defined in the 

Constraints.py module (see section 4.2.2.4) can be applied to the evolutionary operators. 

 

4.5. Summary 

Chapter 4 introduced the methodology of the research conducted within this thesisThe details 

concerning the RAO framework are presented after an initial section presenting the problem 

formulation and describes the needs and drivers of this work. Basing on the information 

presented in chapter 3 concerning the several possible optimisation techniques, chapter 4 

focuses on the justification of the choice of the genetic algorithm for producing Pareto-optimal 

solutions for the allocation problem. 

The RAO framework presented in this chapter constitutes a unique collection of different 

components and techniques, combining established methods and innovative AI procedures 

incorporated in a novel software framework. It makes use of a GA in combination with a 

machine learning process (K-means clustering algorithm) and georeferenced data 
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management modules for input and output data. The development environment and the 

software implementation have been presented to describe the different phases and modules 

constituting the RAO framework, together with the input data and the output results. The 

application to real-life case studies of this methodology is presented in the following chapters. 

 

  



 
91 

 

5. Humber Estuary (UK) case study 

5.1. Introduction Chapter 5 

Chapter 5 presents the Humber Estuary case study. For this case study, the RAO framework is 

applied to an emergency planning optimisation problem. After an introduction to the context 

in which this study is applied (section 5.2), the gathered and produced datasets necessary to 

perform the study are presented (section 5.3). Section 5.4 covers the details of the application 

of the optimisation framework to this case study: from the problem formulation to the 

description of the different phases of the framework and from the definitions of the objective 

functions to the application of constraints. Finally, sections 5.5 and 5.6 present the results of 

the case study together with their discussion. 

Table 3 presents a summary of the key information regarding the nature of the case study. 

Table 3 - UK case study problem definition summary table. 

Case study Humber Estuary (UK) 

Hazard Flooding 

Objectives 

- Minimisation of travel times between temporary flood defences storing 
facilities and deployment sites; 

- Minimisation of costs (i.e. number and size of warehouses). 

Scenarios 

- Scenario 1: Uniform rent price, discrete cost function  

- Scenario 2: Uniform rent price, discrete cost function with road network 
disruption 

- Scenario 3: Uniform rent price, linear continuous cost function 

- Scenario 4: Variable rent price (R/U), linear cost function with fixed 
number of lorries 

- Scenario 5: Variable rent price (R/S/U), linear cost function with fixed 
number of lorries 

- Scenario 6: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (1) 

- Scenario 7: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (2) 

- Scenario 8: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (3) 

- Scenario 9: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (0.5) 

- Scenario 10: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (1), SI priority (top 3) 

- Scenario 11: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (1), SI priority (top 5) 

- Scenario 12: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (1), SI priority (top 10) 
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- Scenario 13: Variable rent price (R/S/U), non-linear cost function with 
variable number of lorries (1), SI priority (top 10 – excluding police and fire 
stations) 

Main constraints 

- Minimum and maximum number of allowed warehouses 

- Minimum distance between allocated warehouses 

- Proximity of warehouses to major road 

- Maximum flood height: 1.5m 

 

5.2. Introduction to case study 

Due to the extreme flood events occurred in recent years the UK (Somerset, Cumbria, 

Yorkshire, etc.), the UK government decided to take action to improve the resilience to 

flooding and ultimately increase the protection from disastrous events. Through the National 

Flood Resilience Review (Cabinet Office and DEFRA, 2016), the government committed £2.3 

billion to be invested in a 6-year time frame to improve flood protection throughout the 

country. Part of this funding, namely £12.5 million, is explicitly allocated for temporary flood 

defences with the aim to improve the Environment Agency’s stock. 

Since the state of the art does not offer any efficient approach specifically designed for optimal 

investments in this kind of resources (Lopane et al., 2019), this research presents a spatial 

optimisation framework – the RAO framework presented in Chapter 4 – originally applied for 

the allocation of temporary flood defences storing space, with the final goal to optimise the 

entire emergency response process. 

The framework is designed to develop spatial plans that provide Pareto-optimal locations for 

warehouses to store temporary flood defences (refer to Chapter 2.3.2.2 for more details on 

temporary resources). 

Strategic infrastructure networks are a priority in terms of protection during flood events, as 

their functioning guarantees the effective execution of emergency response operations. This 

is why, in this case study, strategic infrastructure assets are the main reference in the 

maximisation of the accessibility of emergency resources. 

The multi-objective spatial optimisation framework balances the trade-off between two 

conflicting objectives. The first one consists is the minimisation of travel times from 

warehouses to strategic infrastructure assets (i.e. minimisation of transport and deployment 
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time of temporary flood defences). The second objective is the simultaneous minimisation of 

costs. 

The Humber Estuary is a tidal estuary situated on the East coast of England, facing the North 

Sea; it sets the boundary between Yorkshire (North bank) and Lincolnshire (South bank) 

(Figure 20). It has been chosen as a case study area essentially for two reasons: 1) accessibility 

of data and 2) its nature of flood-prone area (e.g. 2007 and 2013 floods) (Coulthard and 

Frostick, 2010; Hull City Council, 2015; Environment Agency, 2016). 

 

Figure 20 – Great Britain and Humber Estuary map. 

 

5.3. Data 

The source of the data used to model the case study area is the Ordnance Survey Collection 

available on the EDINA Digimap website (digimap.edina.ac.uk). Georeferenced data 

representing geographical features of the studied area are collected in the form of raster and 

vector datasets and pre-processed in a GIS environment (ESRI, 2011). 

They consist of physical constraints (like surface water and green areas) or critical 

infrastructure networks, like the road network (on which the network analysis to calculate 

travel times is based) and other strategic assets selected as priority targets to be protected 

during flood events (electricity production and distribution, gas distribution and storage, 

telecommunications, hospitals, fire stations and police stations). 
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The identification of priority strategic infrastructure assets is based on the fact that they are 

either functional to emergency response operations during disastrous events or particularly 

susceptible/dangerous in case of disruption (e.g. because of cascading effects with 

repercussions on other infrastructure). 

This selection of high-priority strategic infrastructure assets can easily be modified in the input 

phase of the optimisation framework if the user is interested in considering additional or 

different types of infrastructure networks; the scenarios presented in section 5.5 present 

different options in the selection of different strategic infrastructure assets of which to 

prioritise protection. 

Strategic infrastructure assets are considered as “destinations” in the accessibility 

optimisation process, while all the available locations for potential warehouses are assumed 

as “origins” of the journeys to transport and deploy temporary flood defences. The 

destinations’ locations are fixed parameters as they represent in-place infrastructure assets, 

while the origins’ locations are a variable of the the RAO framework, hence the necessity of a 

definition of “availability” for their allocation (for more details, see section 5.4.5). 

Table 4 - Input data for the Humber Estuary case study. 

Input data Format Source 

Road network edges Line shapefile OS OpenData 

Road network nodes Point shapefile OS OpenData 

Green areas Polygon shapefile OS OpenData 

Surface water Polygon shapefile OS OpenData 

Power grid substations Point shapefile ITRC MISTRAL 

Electricity production Point shapefile OS Digimap 

Fire stations Point shapefile OS Digimap 

Gas distribution/storage Point shapefile OS Digimap 

Hospitals Point shapefile OS Digimap 

Police stations Point shapefile OS DigiMap 

Flood zones Polygon shapefile Environment Agency 

Historic floods Polygon shapefile DEFRA 
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5.4. RAO framework applied to Humber Estuary case study 

The RAO framework described in Chapter 4 is applied to the Humber Estuary case study 

introduced in chapter 5.2 to produce Pareto-optimal spatial plans of warehouses for storing 

emergency response resources. The following sections provide details regarding input 

parameters, variables, definitions and the different phases of the RAO framework applied to 

the Humber Estuary cae study. 

 

5.4.1. Input phase 

Referring to the different phases of the optimisation framework described in Figure 9, the RAO 

framework initially takes a series of datasets as input and produces an availability raster 

indicating available locations for warehouses (see chapter 5.4.5 for the definition of 

“available” cells). On the base of this information, the variable “Lookup” is created, containing 

the coordinates of all available locations. Saving the coordinates in a lookup list rather than 

keeping a raster format is a standard procedure meant to reduce run time (refer to section 

4.2.2.1 for more details on Lookup creation and data storing methodology of the RAO software 

framework). 

 

5.4.2. Problem formulation 

In the problem formulation phase, the user can set lower and upper bounds to the number of 

warehouses that can be taken into consideration in the solutions. For example, this study 

assumed a range between 2 and 10 warehouses, as for lower numbers and limited ranges (low 

variability), the RAO can produce Pareto-optimal solutions, but the potential of the approach 

is simply not exploited. For narrow ranges (e.g. exploring solutions with 3, 4 and 5 warehouses 

as well as considering solutions with 20, 21 or 22 warehouses) other approaches (e.g. exact 

methods) can be more efficient. The choice of a heuristic approach (thus the GA) is justified 

when considering a high variability of the number of warehouses taken into consideration: 

the higher this number, the higher the efficiency of this method (i.e. lower run times) with 

respect to exact optimisation methodologies. 
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The comparison between the heuristic approach here adopted and exact methods to solve 

multi-objective optimisation problems is framed in the broader topic of the balancing of the 

trade-off between the quality of results (i.e. how close to the mathematical optimum the 

solutions are) and feasibility (i.e. run times). This is the reason why the choice of the range of 

minimum and maximum number of warehouses to be considered in the solutions is 

fundamental to justify the appropriateness of the adopted optimisation methodology. 

 

5.4.3. Initialisation 

The initialisation module is used at the beginning of the iterative process to generate the first 

generation of solutions. To speed up the evolution process, the initial population is not 

entirely randomly generated; the algorithm is seeded with some spatial plans resulting from 

a K-means clustering process aimed at providing potentially good locations for warehouses 

(refer to section 4.2.2.1 for a methodological definition of all the stages of the initialisation 

phase of the RAO framework). 

K-means clustering (Ostrovsky et al., 2013) is a machine learning technique aimed at 

partitioning a series of 𝑛 data into 𝑘 clusters. The SciKit-learn (Pedregosa et al., 2011; Buitinck 

et al., 2013) open source Python module allows performing a K-means clustering of all the 

available locations and finding the centroids of these clusters. The numbers of clusters taken 

into consideration is equal to the number of warehouses of each solution; this parameter does 

not have a fixed value as it constantly changes within the allowed range of 

minimum/maximum number of warehouses defined by the user. The coordinates of the 

clusters’ centroids are the main outputs of th K-means module and are saved and stored in 

the results folder. 

Subsequently, a network analysis is performed to calculate travel times from each available 

location and the closest cluster centroid (Figure 21). The analysis is performed evaluating 

shortest paths where distances are measured as travel times. Then, the available locations are 

ranked according to their proximity to the centroid of their cluster. 

When the initial population of solutions is created, available cells close to their cluster centroid 

will be selected with a certain probability (definable and modifiable by the user – set at 80% 

in the following use cases), while the other locations are randomly selected from the Lookup 
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variable (see section 4.2.2.1 for more details on the software implementation of the K-means 

module and how its outputs are used in the generation of the initial population of spatial 

plans). 

Figure 21 presents a visual example of the functioning of the K-means clustering: figures a) to 

e) show different ways to cluster strategic infrastructure assets according to the increasing 

number of clusters considered (respectively from 1 to 5). 
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Figure 21 - K-means clustering of strategic infrastructure assets. Assignment to closest cluster centroid is performed 
according to proximity evaluated as travel time on the road network. Figures a) to e) show different ways to cluster 
strategic infrastructure assets according to the increasing number of clusters considered (respectively from 1 to 5). 
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5.4.4. Evaluation 

After the creation of the initial population, individuals (spatial plans) are evaluated against the 

objective functions, then the evolutionary operators are applied and the following generation 

is created. The procedure is repeated again in the iterative process: at every stage, the 

individuals of each generation are evaluated and assigned fitness values for each objective 

function. 

Distance function definition 

As presented in the methodology chapter (section 4.2.2.4), the objective functions are two: 1) 

a distance function 𝑓𝑑𝑖𝑠𝑡  and 2) a cost function 𝑓𝑐𝑜𝑠𝑡. The distance function attributes a 

distance fitness (𝑓𝑑𝑖𝑠𝑡) to each spatial plan. This fitness is minimised in the optimisation 

process. The fitness is a measure of the performance of the spatial plans with regards to a 

particular function. In this study, distance is evaluated as travel time on the road network. 

Several metrics can be taken into consideration to measure the performance of different 

solutions; for example, the average travel time from warehouses to strategic infrastructure 

assets, or the maximum travel time, or the average of the 90th quantile of the travel times. 

The choice of the metric has direct repercussions on the choice of Pareto-optimal solutions: 

same solutions may or may not be Pareto-optimal according to different metrics. 

Two different distance function formulations are implemented in the RAO framework’s 

Humber Estuary application: one is designed to maximise accessibility considering 

warehouses’ service area as the main parameter, and the other is able to take into account 

the vehicles’ fleet dimension to focus on the deployment time of temporary flood defences. 

The choice to maintain two options in the mathematical formulation of accessibility is aimed 

at maximising the flexibility, transferability and scalability of the methodology: according to 

the available input data (i.e. knowledge of details regarding available fleet) the user can 

choose among different optimisation functions the one that is most suitable for the specific 

scenario to evaluate. 

The fisrt definition of distance function consists in a weighted average of travel times from 

storing locations to strategic infrastructure assets that follows the rule: 
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 𝑓𝑑𝑖𝑠𝑡 = √∑𝑇𝑇𝑖
𝑛

𝐴

𝑖=1

𝑛

 (5.1) 

Where: 

 𝐴 = total number of strategic infrastructure assets, 

 𝑇𝑇𝑖= Travel times from each strategic infrastructure asset to the closest warehouse, 

 𝑛 = 2. 

With this formulation, every journey time (from warehouses to strategic infrastructure asset) 

is weighted directly proportionally to its own value: i.e. the higher the travel time, the greater 

the weight. The reason for choosing this formulation is to penalise spatial plans with higher 

travel times without losing information about lower ones (i.e. to avoid bottleneck problems 

when considering wide ranges of possible travel times). 

Equation (5.1) represents the formulation of the generalised Equivalent Uniform Dose (gEUD) 

(Niemierko, 1997), which is used in medical science to measure optimal radiation dosage to 

treat tumours, as cancer treatment is a spatial problem as well: clonogens (i.e. tumour cells) 

must be killed by irradiating the area with a specific amount of radiation (dose). The Equivalent 

Uniform Dose is the amount of uniformly distributed dose that keeps alive the same average 

number of clonogens than an equivalent non-homogeneous distribution. Therefore, the EUD 

is a parameter meant to easily compare different treatment plans when irradiations are not 

homogeneous (Henríquez and Castrillón, 2011). 

In the same fashion, RAO’s gEUD formulation provides a fitness measure that is ideal for 

comparing different non-homogeneous spatial plans like the ones inspected by the RAO. It 

helps to avoid problems especially with outliers and bottleneck effects. The 𝑛 parameter of 

equation (5.1) has a value of 2 since the analysed spatial problems of this work are two-

dimensional. Even though the distance function measures a mono-dimensional quantity (i.e. 

travel time), the nature of the problem is bi-dimensional because what this fitness actually 

wants to measure is the efficiency of the area of influence of each warehouse. 

The alternative distance function formulation takes into account the number of lorries 

necessary to transport emergency resources to deployment sites and the necessary number 

of trips. The formulation is: 
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 𝑓𝑑𝑖𝑠𝑡 =
∑ 2 ∙𝑆𝐼
𝑖=1 𝑇𝑇𝑖
𝑛𝐸𝐹

 (5.2) 

Where: 

 𝑓𝑑𝑖𝑠𝑡 = total amount of time necessary to deploy all the strategic resources, 

 𝑆𝐼 = number of Sritical Infrastructure assets, 

 𝑇𝑇𝑖 = average Travel Time from i-th warehouse to SI sites (in minutes), 

 𝑛𝐸𝐹  = Existing Fleet (i.e. number of available lorries). 

 

Cost function definition 

The cost function attributes a cost fitness (𝑓𝑐𝑜𝑠𝑡) to each spatial plan. Similarly to the distance 

function, the cost fitness is minimised in the optimisation process, and similarly to the distance 

function, several formulations of the cost function are implemented in the RAO framework to 

allow the user to choose the most appropriate to their goal and to their available information. 

The dfferent scenarios presented in section 5.5 present several combinations of different 

distance and cost functions to demonstrate the flexibility and transferability of the 

methodology not only in terms of spatial domain, but also in terms of diversity of available 

data, a priori knowledge, assumptions and solutions’ range of inspection. 

The cost functions presented below have different characteristics in terms of function 

continuity (i.e. discrete functions vs continuous functions), linearity (linear vs non-linear) and 

in terms of external factors taken into account (e.g. land value, urban vs rural locations, 

decreasing market unitary process etc.). 

The first distinction among cost function formulations is between discrete and continuous 

functions. The discrete formulation first calculates the total amount of flood defences that 

must be stored in each warehouse according to the served assets, then, basing on this 

information, it attributes a size to the warehouse. Finally, the cost of each warehouse is 

calculated basing on the annual average cost per square metre for warehouses in the studied 

area. The final value of 𝑓𝑐𝑜𝑠𝑡 is the sum of the costs of all the warehouses considered in each 

spatial plan. 

Considering typical commercial temporary demountable flood barriers and considering flood 

heights up to 1.5 metres, 100m of barriers can be stored in a standard 20 ft shipping container 
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(dimensions: 6m x 2.44m x 2.6m). Maximum flood heights are considered because currently 

temporary flood barriers cannot cope with water depths greater than 2 m and only a few have 

been tested above 1 m (Cabinet Office and DEFRA, 2016). 

The perimeter of strategic infrastructure assets of the case study area has been evaluated and 

an average perimeter has been considered for each typology of infrastructure (Table 5). 

Table 5 - Average perimeter of strategic infrastructure assets in the Humber Estuary region. 

Strategic infrastructure Perimeter [m] 

Power grid substations 400 

Electricity production 2400 

Fire stations 200 

Gas distribution/storage 1200 

Hospitals 900 

Police stations 200 

 

According to the amount of emergency response resources needed by the assets served by a 

particular warehouse, the cost function assigns a dimension to it. Five different typologies for 

warehouses are considered in this study according to their size; more details can be found in 

Table 6. 

Table 6 - Sizes of warehouses for the Humber Estuary case study. 

Warehouse 

dimension [𝐦𝟐] 

Warehouse typology 
(according to 
dimension) 

Number of 20 ft 
shipping containers that 
is possible to store (on 2 

levels) 

Length of flood 
barriers that is 

possible to store 

70 A 4 0.4 km 

320 B 40 4 km 

640 C 80 8 km 

960 D 120 12 km 

1280 E 160 16 km 

 

A market analysis has been performed on industrial rents in the region of Yorkshire for the 

year 2017 (see Figure 22). According to its results, the first (and simplest) assumption is to 

consider the average cost of £55.00 per m2 per annum as a strong correlation between rent 

prices and rural/urban areas does not appear evident. 
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Figure 22 - Industrial rent prices per square metre in Yorkshire (2017). Green dots represent warehouses for rent outside 
urban areas, while grey dots represent warehouses within town borders. 

However, the RAO framework allows the user tho choose among different options in terms of 

linearity of warehouses’ rent price. While the first scenarios presented in section 5.5 make use 

of the average rent price, also more advanced formulations are presented in the following 

scenarios with increasing level of complexity in their formulation. 

When considering a non-linear function representing warehouses rent prices, a logarithmic 

regression provides the best fitting non-linear interpolation of the market research presented 

in Figure 22. Among the different available choices, the logarithmic regression presents the 

highest R2 value copared to the other regression techniques; Figure 23 and Table 7 present 

further details regarding the logarithmic regression and the comparison with different 

regression options. 
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Figure 23 - Relationship between warehouses' dimension and annual rent price with logarithmic regression. 

Table 7 - Regression options for annual rent prices and warehouses' dimensions. 

Trendline Equation R2 value 

Logarithmic 𝑦 = −10.39 ∙ 𝑙𝑛(𝑥) + 114.79 0.3656 

Polinomial 𝑦 = 0.00002 ∙ 𝑥2 − 0.045 ∙ 𝑥 + 68.612 0.3566 

Power 𝑦 = 174.19 ∙ 𝑥−0.206 0.3393 

Linear 𝑦 = −0.0153 ∙ 𝑥 + 60.856 0.2686 

Exponential 𝑦 = −60.163 ∙ 𝑒0.0003∙𝑥 0.2671 

 

For both discrete and continuous, and linear and non-linear formulations, the cost function 

includes capital and operational costs for both warehouses (W) and emergency resources (R) 

(Hendrickson, 1989; Ramos, 2017; Mishra, 2021); the most general formulation is: 

 𝑓𝑐𝑜𝑠𝑡 = 𝑊 + 𝑅 (5.3) 

W and R can be further divided into capital (capex) and operational (opex) costs, to get to the 

following formulation: 

y = -10.39ln(x) + 114.79
R² = 0.3656
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 𝑓𝑐𝑜𝑠𝑡 = 𝑊𝑐𝑎𝑝𝑒𝑥 +𝑊𝑜𝑝𝑒𝑥 + 𝑅𝑐𝑎𝑝𝑒𝑥 + 𝑅𝑜𝑝𝑒𝑥 (5.4) 

In the RAO application to the Humber Estuary case study, warehouses’ and resources’ capital 

and operational costs take into account a number of different parameters, and their 

formulation can be defined as: 

 𝑊𝑐𝑎𝑝𝑒𝑥 =

{
 
 

 
 ∑𝑓𝑖 ∙

𝑊

𝑖=1

𝑝𝑖 , 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

∑(𝛼 ∙ ln (𝑓𝑖) + 𝛽) ∙

𝑊

𝑖=1

𝑝𝑖 , 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 (5.5) 

 𝑊𝑜𝑝𝑒𝑥 = 𝑚𝑤 (5.6) 

 𝑅𝑐𝑎𝑝𝑒𝑥 = 𝑝𝑏 ∙ 𝑙𝑏 (5.7) 

 𝑅𝑜𝑝𝑒𝑥 = ℎ𝑝 ∙ 𝑛𝑝 ∙ 𝑛ℎ + 𝑝𝑙 ∙ 𝑛𝑙 +𝑚𝑟  (5.8) 

To get to the final equations, respectively for linear and non-linear forumulations: 

 

𝑓𝑐𝑜𝑠𝑡

=

{
 
 

 
 ∑𝑓𝑖 ∙

𝑊

𝑖=1

𝑝𝑖 +𝑚𝑤 + 𝑝𝑏 ∙ 𝑙𝑎𝑏 + ℎ𝑝 ∙ 𝑛𝑝 ∙ 𝑛ℎ + 𝑝𝑡 ∙ 𝑛𝑡 +𝑚𝑟                   𝑙𝑖𝑛𝑒𝑎𝑟

∑(𝛼 ∙ ln (𝑓𝑖) + 𝛽) ∙ 𝑝𝑖

𝑊

𝑖=1

+𝑚𝑤 + 𝑝𝑏 ∙ 𝑙𝑎𝑏 + ℎ𝑝 ∙ 𝑛𝑝 ∙ 𝑛ℎ + 𝑝𝑙 ∙ 𝑛𝑙 +𝑚𝑟    𝑛𝑜𝑛 − 𝑙𝑖𝑛.

 
(5.9) 

Where: 

 𝑓𝑐𝑜𝑠𝑡 = total cost of warehouses and emergency resources, 

 𝑊 = total number of warehouses, 

 𝑓𝑖= floor space of the i-th warehouse (in 𝑚2) – floor space can take into account 

multi-storey even if this is unlikely., 

 𝑝𝑖 = annual rental price per square metre of i-th warehouse – either average or 

function of the area (urban/rural), 

 𝛼, 𝛽 = parameters of logarithmic equation (regression from Yorkshire rent prices – 

see Figure 23), 

 hp = hourly pay for personnel, 

 𝑛𝑝 = number of workers for strategic resources’ deployment, 

 𝑛ℎ = number of working hours for deployment and removal of temporary defences, 
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 𝑝𝑙 = rent price of a lorry, 

 𝑛𝑙  = number of additional lorries to existing fleet, 

 𝑚𝑤 = warehouses maintenance costs, 

 𝑚𝑟 = emergency resources maintenance costs, 

 𝑝𝑏 = unitary price of demountable barriers (£/m), 

 𝑙𝑎𝑏 = total length of additional demountable barriers needed. 

 

Cost function – capital cost of warehouses 

Given the numerous factors that compose the cost function formulation, several assumptions 

have been made in the application of the RAO framework to the Humber Estuary case study. 

The first assumption regards the choice of considering warehouses’ floor space to measure 

the capital cost of warehouses: doing so (instead of considering buildings’ footprints) allows 

to take into account multi-storey warehouses, even if this is not a likely scenario as building in 

vertical is always more costly than building one-storey warehouses, especially in non densely 

populated areas. However, choosing floor space as reference measures guarantees a high 

transferability of the methodology even to highly urbanised case studies. 

As anticipated, the parameter 𝑝𝑖 represents warehouses’ annual rental price per square 

metre, and its value is chosen by the user among different options. The scenarios of section 

5.5 present several examples of different choices, which, however, can be summarised as: 

1. Considering the average value of rent prices in the area; 

2. Distinguish between urban and rural areas, considering urban locations as more 

expensive; 

3. Subdivide the case study area in three different categories: urban, suburban and rural. 

Consequently 𝑝𝑖 assumes different values according to which scenario the user considers: 

 𝑝𝑖 = {

𝑝𝑎𝑣
𝑝𝑎𝑣 ∙ 𝛾𝑢 + 𝑝𝑎𝑣 ∙ 𝛾𝑟

𝑝𝑎𝑣 ∙ 𝛾𝑢 + 𝑝𝑎𝑣 ∙ 𝛾𝑠 + 𝑝𝑎𝑣 ∙ 𝛾𝑟
 

average rent price 
urban + rural 
urban + suburban + rural 

(5.10) 

Where: 

 𝑝𝑖 = annual rental price per square metre of i-th warehouse (see equation (5.9)) 

 𝑝𝑎𝑣 = average rent price of the case study; 
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 𝛾𝑢 = multiplier for urban areas; 

 𝛾𝑟  = multiplier for rural areas; 

 𝛾𝑠 = multiplier for suburban areas. 

Reagrding the assumptions made for the Humber Estuary application, the value of 𝑝𝑎𝑣 has 

been calculated from the industrial rent prices per square metre in Yorkshire in 2017 (see 

Figure 22) as £55.00 per square metre per annum. Instead, due to lack of data, the multipliers 

𝛾𝑢, 𝛾𝑟 and 𝛾𝑠 have been assumed respectively as 2.0, 1.0 and 1.5; implying that urban locations 

cost twice as much as rural ones, with suburban values in the middle. 

 

Cost function – urban, suburban and rural areas 

The definition of urban, suburban and rural areas required some research and ultimately some 

assumptions as well, as there is no consistent agreement among scholars concerning the 

definition of what is “urban” and what is not. For instance, D'Acci (2019) presents a case study 

on real estate values depending on several factors like the quality of urban area, the distance 

from city centre, and housing value for the area of Turin (Italy) and shows an incredibly high 

number of different examples form the literature (more than one hundred) that try to relate 

land value to positional factors like distance from CBDs, green areas, social contexts etc. 

An option for the categorisation of urban, suburban and ruual areas was the Coordination of 

Information on the Environment Land Cover (Corine Land Cover - CLC) (Heymann et al., 1994). 

CLC is a computerised land cover inventory of EU countries, however, in most cases the 

dataset is outdated and data are only available for European countries, so a more generally 

applicable definition has been applied to maximise the transferability of the presented 

methodology. 

The UK government introduced the Rural-Urban Definition (The Countryside Agency et al., 

2004) in 2004, determining that settlements with population of 10,000 are defined as urban 

and the rest of the land is defined as rural. Regarding boundaries, reference is made to Office 

for National Statistics’ (ONS) data set based upon land use. Several rural-urban data sets are 

available on ONS’s website for England and Wales at different levels of aggregation, like 

Output Areas (OAs), Lower layer Super Output Areas (LSOAs) and Middle layer Super Output 

Areas (MSOAs). 
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Dijkstra and Poelman (2014) introduce the “degree of urbanisation” (DEGURBA) classification, 

which identifies three categories: 1) densely populated areas (>50% living in high-density 

clusters), 2) intermediate (<50% of population living in rural grid cells and <50% living in high-

density clusters) and 3) thinly populated areas (>50% living in rural grid cells). While Dijkstra 

et al. (2020) present the advantages of the “Degree of Urbanization” (European Commission 

et al., 2020) (also endorsed by the UN Statistical Commission), which identifies three 

categories of settlements: 1) Cities (with population >50,000 and densities >1500 

inhabitants/km2); 2) Towns (with population >5,000 and densities >300 ab inhabitants/km2) 

and 3) Rural areas.  

To maximise the transferability of the methodology, European Commission et al. (2020)’s 

“Degree of Urbanization” is the definition adopted by the RAO application as it has been 

specifically desiged to facilitate international comparisons. Available cells for warehouses 

allocation of the Humber Estuary area have been attributed to “urban”, “suburban” and 

“rural” areas according to the population densities of their corresponding Middle layers Super 

Output Areas (MSOAs) (see Figure 24). 

 

Figure 24 - Rural, suburban and urban areas in the Humber Estuary according to the Degree of urbanization definition. 

 

Cost function – opeartional cost of warehouses 

Regarding storing spaces’ operational costs, warehouses’ maintenance has bees assumed 

proportional to the floor space. The 𝑚𝑤 parameter of equation (5.9) constitutes an input 

parameter and the user can choose its value. To enrich the spcrtum of analysis of the Humber 
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Estuary case study, the scenarios presented in section 5.5 explore different values of 𝑚𝑤: 

respectively 0.0 and 0.2 ∙ 𝑊𝑐𝑎𝑝𝑒𝑥 (i.e. 20% of warehouses’ capital cost). These two values are 

different because, for industrial rents, depending on different contracts’ typologies, 

sometimes the maintenance costs are included in the lease and sometimes they have to be 

paid on top of it as NNNs. NNN is an acronym for “Net, Net, Net” and these fees include 

property taxes, property insurance and CAM (Common Area Maintenance). 

 

Cost function – personnel costs 

Environment Agency’s Temporary and Demountable Flood Protection Guide (Ogunyoye et al., 

2011) provides useful information concerning the assumptions on personnel costs adopted in 

the Humber Estuary RAO framework application. This report highlights how frquently flood 

emergencies occur at nightime and outside working hours; this has repercussions on the 

safety of personnel, since they are often called to address the emergency after a whole day of 

work, being tired and operating in often “dark, wet, cold and slippery conditions”. 

To minimise the risk of accidents, Ogunyoye et al. (2011) provide a series of recommendations 

for emergency procedures, suggesting that they should pay particular attention to staff 

management and shifts allocations for portable barriers deployment when transportation and 

installation require more than six hours. 

Besing on this evidence, the assumption adopted in the RAO software application is that the 

parameter 𝑛𝑝 in equation (5.9) is initialised to 0. This implies that no extra cost for personnel 

are included in the cost function formulation, as it appears clear from Ogunyoye et al. (2011) 

that, in the UK, the specialised workers who deploy temporary flood barriers are full-time 

employees who are called during emergency, in case even outside their normal working hours. 

However, for transferability purposes, the RAO framework’s cost function formulation allows 

the user to include the personnel cost for applications in different regions (e.g. outside the 

UK) or different applications (e.g. extraordinary circumstances in which personnel costs are 

not covered by government bodies’ funding). 
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Cost function – fleet costs 

The Temporary and Demountable Flood Protection Guide (Ogunyoye et al., 2011) also 

provides indications regarding transportation of emergency resources, in particular referring 

to the location of warehouses and their proximity to transporation companies or availability 

of lorries for barriers deployment close enough to the storing facility. 

Several options are contemplated by Ogunyoye et al. (2011): a wide spectrum of vehicles 

ranging from small trailers to large shipping containers for transportation of strategic 

resources from warehouses to deployment sites. No matter what type of vehicle is adopted, 

a high relevance is given to the emergency strategy that should maximise transportation 

means accessibility to guarantee the success of emergency operations during flood events. 

Similarly to the personnel cost assumption, there is no evidence to assume that vehicles are 

rented for single events and their cost does not directly influence the warehouse allocation, 

which is the main objective of the RAO framework. For transferaibility and scalability 

purposes, the user is able to set the value of 𝑛𝑙  in equation (5.9), which represents the 

additional number of lorries to the existing fleet, but in the scenarios presented in section 5.5, 

the most reasonable assumption is to initialise this parameter to zero. 

 

Cost function – temporay flood barriers unitary price 

Environment Agency’s Temporary and demountable flood protection guide (Ogunyoye et al., 

2011) has an interesting appendix providing information on a wide range of commercially 

available temporary flood barriers, covering all the typologies presented in section 2.3.2.2 and 

Figure 5. For each barrier typology, several technical details are available, among which: 

product name, manufacturer, supplier details, description of the product, dimensions, 

structural details, adaptability to terrain conditions, operational details and financial details. 

Every temporary flood barrier presented has a cost section containing information on 

installation requirements and costs, maintenance and cleaning requirements, reusability, 

warranty and deterioration details. 

For instance, the “Mobile Flood Protection System”, manufactured by Flood Protection 

Systems Sweden AB consists in a metal foldable frame covered with a waterproof plastic 
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membrane. The cost for the installation of 100m of barriers is estimated at £12,000 for a 0.8m 

height and it increases to £20,000 for a 1.2m height. According to the materials and the 

manufacturer, however the cost can vary considerably; as a matter of example, another 

Swedish manufacturer, Geodesign AB, produces barriers that cost between £30,000 and 

£50,000 for 100m long and 1.25m high barriers (according on barrier material and storage 

system) (Ogunyoye et al., 2011). 

In the Python formulation of the RAO framework, the linear cost of demountable barrier is 

represented by the variable “barriers_lin_cost”, which refers to the 𝑝𝑏 parameter of equation 

(5.9). The user is able to choose any barrier typology that they deem appropriate to the case 

study terrain or the available budget, and set the linear price of the temporary flood barriers 

accordingly. 

In the scenarios of section 5.5 the assumption for the parameter 𝑝𝑏 is to consider it equal to 

zero. This assumption implies that no additional temporary barrier is going to be acquired in 

the case study scenarios: the RAO framework allocates warehouses to maximise their 

accessibility assuming that the amount of available demountable barriers in the Humber 

region suffices to cover the whole area. Nevertheless, to maximise the transferability of the 

methodology, even if initialised to zero, 𝑝𝑏 is an integral part of the cost formulation and its 

input value can easily be adapted to the considered case study or scenario.  

 

Cost function – temporay flood barriers maintenance costs 

As anticipated in the previous section on barriers’ unitary price, Environment Agency’s 

Temporary and demountable flood protection guide (Ogunyoye et al., 2011) annex provides 

useful information on maintenance costs of commercially available temporary flood barriers. 

The maintenance cost is strictly dependant on the typology of the chosen flood barrier. Some 

temporary measures require more maintenance than others; for instance freestanding 

barriers need to be cleant, dried and packed before being stored, while impermeable 

containers do not require any maintenance at all. 

In the scenarios presented in section 5.5, the parameter 𝑚𝑟 of equation (5.9) representing the 

maintenance costs of demountable barriers is assumed equal to zero as it is assumed to be 

assimilated into the personnel cost: from Ogunyoye et al. (2011), it appears evident that the 
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costs related to the maintenance of temporary flood protections almost always pertain 

personnel costs to perform standard procedures like cleaning and packing. Such operations 

are likely to be carried out by the same personnel deploying the temporary barriers and for 

this reason, this cost is assumed to be covered by the personnel cost. However, to maximise 

transferability and scalability of the optimisation framework, the 𝑚𝑟 parameter is kept 

independent to allow the modelling of non-standard implementations of temporary barriers 

requiring additional maintenance costs. 

 

5.4.5. Constraints 

The chosen programming philosophy aims to leave the algorithm the most unconstrained as 

possible in order to let it free to explore the widest possible area of the solution space. 

Nevertheless, a few constraints are implemented in order to discard unrealistic solutions (see 

section 4.2.2.4 for a general definition of the RAO framework’s contraints implementation). 

Due to the nature of the evolutionary operators meant to modify solutions’ spatial attributes 

(see Chapter 4.2.2), when mating and mutating individuals, it is possible to generate solutions 

that have a number of warehouses that is higher than the maximum allowed or lower than 

the minimum. This is why a constraint decorator is applied to the evolutionary operators' 

functions: it counts the number of warehouses present in the solutions after the application 

of the evolutionary operators and it discards those spatial plans that are outside the 

boundaries. 

Moreover, to speed up run times, a distance constraint is applied when generating new spatial 

plans. This function measures the distance among the warehouses present in a potential 

solution and checks whether they are far apart from each other enough. If two warehouses 

are closer than a minimum distance set by the user, the solution is discarded; after a 

calibration process, a distance of 10 km resulted sufficient to decrease run times without 

heavily constraining the algorithm. 

The definition of available locations for warehouses happens in the initialisation phase (see 

section 4.2.2.1), but it is itself based on meeting a series of constraints; locations are defined 

“available” if: 
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1. They are within the case study boundaries. 

2. They are within 500 metres from a major road (constraint meant to avoid locations 

that are hard to be reached and to speed up the evolution process). 

3. They are outside the flood zone. 

4. They do not overlap protected green areas and/or parks. 

5. They are on dry land. 

 

Figure 25 - Humber Estuary case study: available locations and strategic infrastructure assets. 

Figure 26 shows the algorithm to determine how to label a location as “available” and Figure 

25 shows all the locations that meet the criteria to be labelled as “available” and taken into 

consideration in the network analysis as origins. This is the result of the first phase of the 

optimisation framework: a raster dataset (500 m resolution) containing information about 

available locations. It is created and saved in the data folder, available to be open and used in 

the following phases of the process.  

The 500 m resolution is itself another constraint dictated by run time necessities; higher 

resolutions necessarily imply more precision, but at the same time higher computational 

efforts. Another constraint related to the nature of the input datasets consists of the definition 

of travel times. As anticipated in section 4.2.2, travel times are evaluated based on the free 

flow speed on network edges. This implies neglecting the traffic variable and the 

consequential consideration of a best-case scenario. Besides, the free flow speed is evaluated 

basing on the average speed attributed to each road edge, which depends on the road type 

(e.g. Highways speed: 90 km/h; Secondary roads speed: 80 km/h). 
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Figure 26 - Flowchart of the initialisation process for the Humber Estuary case study. 

Finally, as anticipated (sections 2.3.2.2 and 5.4.4) current commercially available flood barriers 

cannot cope with water depth greater than 2 m and that only a few have been tested for water 

depths greater than 1 m (Cabinet Office and DEFRA, 2016). Hence, the choice to consider 

maximum flood depths of 1.5 m when estimating maximum volumes required for storing 

space. 

 

5.4.6. GA calibration 

As anticipated in Chapter 4.4, the genetic algorithm chosen for the evolution of spatial plans 

is DEAP’s 𝜇 + 𝜆 strategy (Fortin et al., 2012). Referring to DEAP Documentation (DEAP Project, 

2009), the eaMuPlusLambda function evolves a population of spatial plans and returns the 
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optimised population together with a Logbook containing the statistics of the evolution 

process. 

A general description of the main parameters of the eaMuPlusLambda formulation can be 

found in section 4.4. Regarding its application to the Humber Estuary case study, the choice 

of the values for the lambda (number of spatial plans to generate in each generation) and 

ngen (number of generations) parameters is the result of the calibration of the model. 

Calibrating the model means to perform different runs varying those parameters and 

understanding a proper combination that can guarantee an acceptable quality of results and 

feasible running times. 

For this case study, the value of lambda is chosen to be 1000. That means that 1000 solutions 

are created at each generation. With this amount of generated children at each step of the 

iterative process, 50 generations (ngen) are enough to observe convergence in the Pareto-

front, as shown in Figure 27. 
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Figure 27 - Pareto fronts evolution of the Humber Estuary case study: a) Business as usual scenario; b) Disruption 
scenario. 

5.4.7. Output phase 

The output creation phase relies on the Outputs module (see section 4.2.2.6). For the Humber 

Estuary case study, the output files are in the form of plots of Pareto-fronts (normalised and 

non-normalised) and in the form of shapefiles (.shp) containing the spatial references of 

Pareto-optimal solutions (spatial plans). 

Pareto fronts are plotted in the solution space defined by the two objective functions; they 

provide a useful overview of all the solutions inspected by the GA and of the performance of 

Pareto-optimal plans (values of 𝑓𝑑𝑖𝑠𝑡 and 𝑓𝑐𝑜𝑠𝑡). On the other hand, shapefiles are convenient 

for direct visualisation of spatial plans in the form of maps in a GIS environment. 
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For more details, figures, graphs and maps concerning output and results for the Humber 

Estuary case study, see section 5.5. 

 

5.5. Results 

13 different scenarios have been investigated for the Humber Estuary case study inspecting 

different assumptions, testing different levels of emergency and assessing the sensitivity of 

the main parameters characterising the problem. These scenarios will be presented following 

the increasing level of complexity that can be modelled applying the RAO framework, starting 

from the most simplifying assumptions to the most complex formulations. In this case the 

complexity is given by both the considered number of variables and objective functions’ 

equations (e.g. linear vs non-linear, discrete vs continuous etc.). 

 The following sections provide the details regarding the assumptions of each scenario and the 

results of the RAO framework applications. As specified in Chapter 4, the RAO framework’s 

outputs consist in Pareto fronts composed by Pareto-optimal spatial plans. Each Pareto front 

contains on average 30 optimal spatial plans, which are all - by definition - optimally balancing 

the trade-off between accessibility and costs. 

The results of the scenarios can be investigated in two ways: through the analysis of the Pareto 

fronts plotted in the solution spaces or using the maps representing Pareto-optimal spatial 

plans (see sections 5.5.1 -5.5.13). One of the advantages of this methodology is to provide the 

user with a wide portfolio of optimal solutions among which to choose; at the same time, 

though, this consists in a limitation in the results presentation when considering 13 different 

scenarios: since plotting maps for all the 340 optimal plans produced by the RAO framework 

would make this document unreadable, a selection of the most representative results will be 

presented in the following sections. 

The final goal of the presentation of such a wide range of scenarios is the understating of the 

impacts and implications that different assumptions on the objective functions’ formulations 

have on the results produced by the RAO framework application; and, at the same time, to 

provide a sensitivity analysis of the model’s main parameters. 
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5.5.1. Scenario 1: Uniform rent price, discrete cost function  

This scenario optimises the allocation of storing space for temporary flood defences 

considering a situation in which adequate warning is guaranteed before the flood event 

occurs. It is meant to explore the business as usual condition: the road network is considered 

perfectly functional and sufficient time to transport and deploy temporary flood defences is 

available. Table 8 presents a summary of the main assumptions at the base of the scenario. 

Table 8 - Scenario assumptions - Uniform rent price, discrete cost function 

Rent price Uniform 

Cost function Discrete – proportional to warehouses’ dimensions 

Distance function GEUD formulation 

Strategic 
infrastructure 

All strategic infrastructure assets included 

 

The rent price is considered uniform (average value: £55.00 per square metre per annum) in 

the whole Humber Estuary area and this values is used in the discrete cost function 

formulation presented in section 5.4.4; in this scenario, only capital costs for warehouses are 

taken into consideration, so the cost function formulation corresponds to Equation (5.5). The 

gEUD formulation of the distance function is proportional to the service area of each 

warehouse and it is presented in in section 5.4.4 – Equation (5.1). Finally, regarding strategic 

infrastructure assets, they are all included in the scenario and no prioritisation is assumed. 

The outputs of the RAO consist of Pareto-Fronts in the solution space and in spatial plans 

showing Pareto-optimal distributions of warehouses in the region according to different levels 

of costs and travel times. 
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Figure 28 - Solution space and Pareto-front for Humber Estuary case study. Scenario 1. 

 

 

Figure 29 - Normalised solution space and Pareto-front for Humber Estuary case study. Scenario 1. 

Figure 28 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis). The blue triangles represent every solution inspected by the algorithm and the 

dashed red line is the Pareto-front: the solution lying on the Pareto-front are the ones that 

optimally balance the trade-off between the two conflicting objectives. The normalised 

representation showed in Figure 29 helps to better examine the solution space and analyse 

the distribution of the solutions inspected by the algorithm. 

As described in Chapter 4.2.1, Pareto-optimality is based on the concept of domination: the 

solutions on the Pareto-front dominate all the other solutions in the simultaneous 
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minimisation of the two objective functions. This implies that they are not worse than the 

others in all the objectives and strictly better in at least one. 

Every blue triangle in the graph represents a spatial plan of warehouses. This implies that each 

one has a correspondent map showing Pareto-optimal locations for temporary flood defences 

storing space. However, before analysing each Pareto-optimal solution, it could be useful to 

exploit the full potential of the solution space graph. 

For complex case studies involving large regions or high resolutions, the number of Pareto-

optimal spatial plans can be considerably high. However, despite all being optimal, some of 

them may be more significant than others. 

 

Figure 30 - Thresholds in the solution space for the Humber Estuary case study – Scenario 1. Orange threshold: result-
driven. Green thresholds: objective-driven. 

Figure 30 shows a way to narrow down the field of inspection of solutions. It is possible to 

define two different kinds of thresholds: one is result-driven, the other is objective-driven. 

The first typology of threshold (in orange in Figure 30) can be defined simply analysing the 

results: it is possible to observe that beyond certain values there is a worsening in one 

objective without a significant improvement in the other. Analysing the cost function, for 

example, beyond the orange cost threshold there is an increase in costs without a significant 

decreasing of travel times. Similarly, it may happen that beyond a certain time threshold, 

relatively high travel times are considered without a significant decrease in costs. 
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On the other hand, a different kind of threshold can be set according to the user’s needs 

(green in Figure 30). For instance, a limited budget would narrow the range of affordable 

solutions, or local authorities may not be interested in spatial plans that would require travel 

times from warehouses to deployment locations higher than a certain limit. 

These constraints have deliberately not been implemented in the RAO algorithm because they 

can vary according to different needs. Even for the same case study, it is valuable for the user 

having a complete portfolio of solutions and decide which of them are feasible or not 

(according to available budget) and which ones are the most cost-effective. 

The green cost and travel time thresholds shown in Figure 30 are exemplary. They are set 

assuming a hypothetic maximum available budget and a time threshold. Ideal time thresholds 

depend on the availability of staff for temporary flood defences deployment. In this particular 

context, it is important to bear in mind two considerations: 

1) The time variable (in minutes) represented on the x-axis of the graph depends on the 

metric chosen to measure the performance of spatial plans against the distance function 

(for more details, see chapter 5.4.4). 

2) In this scenario, travel times are evaluated on the road network for a single trip from each 

warehouse to the closest strategic infrastructure asset. Nevertheless, multiple trips from 

storing location to deployment site may be required according to the availability of staff 

and means of transport (dimension of the fleet of trucks available for transportation of 

temporary flood defences). These variables vary according to different situations that can 

involve many contingent factors and are explored in the next sections. 

Once the area of interest of the solutions in the Pareto-front is identified, it is possible to 

analyse the spatial plans. They can be visualised in a GIS environment where further analyses 

can be performed if required. To be able to identify which spatial plans to inspect, it is useful 

to take a more in-depth look into the Pareto-front data. Table 9 shows all the solutions (spatial 

plans) that form the Pareto-front, with the respective fitnesses in terms of 𝑓𝑑𝑖𝑠𝑡 and 𝑓𝑐𝑜𝑠𝑡. 

Figure 31, instead, is a highlight of the Pareto-front showed in Figure 28 with indications of 

the number of Pareto-optimal spatial plans. 
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Table 9 - Solutions forming the Pareto-front of the Humber Estuary – scenario 1. 

Solution 𝐟𝐝𝐢𝐬𝐭 𝐟𝐜𝐨𝐬𝐭 [𝐦
𝟐] 𝐟𝐜𝐨𝐬𝐭 [

£
𝐲𝐞𝐚𝐫⁄ ] 

Plan_18102 5268 10310 567050 

Plan_42215 5392 9670 531850 

Plan_40341 5571 9100 500500 

Plan_46012 5871 9030 496650 

Plan_48013 6097 8460 465300 

Plan_42075 6415 8390 461450 

Plan_7034 7967 8320 457600 

Plan_6005 8292 7750 426250 

Plan_37077 8699 7110 391050 

Plan_29188 9862 7040 387200 

Plan_25576 12103 6470 355850 

Plan_39197 12371 6400 352000 

Plan_45520 12936 5830 320650 

Plan_33005 12977 5760 316800 

Plan_37001 13781 5190 285450 

Plan_44002 13881 5120 281600 

Plan_25000 15663 4620 254100 

Plan_14021 15697 4550 250250 

Plan_24263 16393 3910 215050 

Plan_34005 16881 3270 179850 

Plan_17072 19408 2700 148500 
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Figure 31 - Highlight of the Pareto-front for the Humber Estuary – Scenario 1 - with the indication of the number of 
Pareto-optimal spatial plans. Figures A, B, C, D, E and F are visualised respectively in Figure 32, Figure 33, Figure 34, 

Figure 35, Figure 36 and Figure 37. 

The RAO provides a shapefile (.shp) for each Pareto-optimal solution. It is possible to import 

each one of them in a GIS environment and plot it as a map together with any other relevant 

spatial data regarding the case study. 

For clarity and readability, only a selection of Pareto-optimal spatial plans will be reported in 

the following pages. The aim is to provide an example of how to handle this kind of outcomes, 

how to analyse them and draw conclusions out of them. 

For this scenario, a higher number of solutions is presented (6) to provide the reader with an 

overview of the range of possibilities provided by each Pareto front. In the next sections, a 

narrower selection of Pareto-optimal spatial plans (the most significant) will be presented to 

ease readability. To provide solutions from all the areas of the Pareto-front (see Figure 31), six 

spatial plans are presented: Solutions A and B from the top-left side of the front (higher costs 

and lower travel times), Solutions C and D from the middle and Solutions E and F from the 

bottom-right side (lower costs and higher travel times). 

The following pages present the six selected Pareto-optimal spatial plans: Solution A (Figure 

32), Solution B (Figure 33), Solution C (Figure 34), Solution D (Figure 35), Solution E (Figure 36) 
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and Solution F (Figure 37). Every figure shows the location of the warehouses that are part of 

the plan, together with information about their size and travel times to reach the strategic 

infrastructure assets served by each storing location. 

 

Figure 32 - Humber Estuary Scenario 1, Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the road network. 

 

 
Figure 33 - Humber Estuary Scenario 1, Solution B. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 
on the road network. 
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Figure 34 - Humber Estuary Scenario 1, Solution C. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 
on the road network. 

 

 
Figure 35 - Humber Estuary Scenario 1, Solution D. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 
on the road network. 
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Figure 36 - Humber Estuary Scenario 1, Solution E. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 
on the road network. 

 

 
Figure 37 - Humber Estuary Scenario 1, Solution F. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 
on the road network. 
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5.5.2. Scenario 2: Uniform rent price, discrete cost function with road network 

disruption 

The second scenario refers to the same assumptions of the previous one with respect to 

objective functions’ formulation, but it takes into account a disruption in which there might 

be not enough time to act before the beginning of the flood and some parts of the road 

network may be inaccessible due to the presence of floodwater. Table 10 presents a summary 

of the main assumptions at the base of the scenario. 

Table 10 - Scenario assumptions - Uniform rent price, discrete cost function - disrupted road network. 

Rent price Uniform 

Cost function Discrete – proportional to warehouses’ dimensions 

Distance function GEUD formulation 

Strategic 
infrastructure 

All strategic infrastructure assets included, but not 
all reachable from everywhere due to road network 
disruption. 

 

A historic flood map has been considered: it represents the footprint of all past flood events 

in the area. This highlights how many routes are susceptible to blockage and disruption during 

a flood. The result is that two areas resulted disconnected from the rest of the region, as 

shown in Figure 38. 

 

Figure 38 - Disconnected areas due to the flooded road network. 

The disruption scenario shows the possibility of the optimisation methodology to explore 

extreme situations, like those in which there is not enough time to deploy all the required 
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flood defences before the flood begins. This could be due to insufficient warning time or a 

contingent insufficiency of the workforce to deploy all the resources. 

In order to allow the RAO framework to perform the network analysis, a very high travel time 

value has been assigned to the flooded road edges (instead of deleting them). This simulates 

an obstacle on the network and allows NetworkX (Hagberg et al., 2008) to always resolve a 

solution, disconnecting parts of the road network can lead to errors when trying to compile a 

new Origin/Destinations Matrix because shortest path calculations may not be possible. 

As described in section 5.5.1, the outputs have a dual nature: Pareto-fronts in the solution 

space and georeferenced spatial plans. Figure 39 shows the solution space of the disruption 

scenario run of the RAO framework. At first glance, it is possible to observe two areas where 

the solutions are concentrated: there is a cluster of solutions in the left-hand side of the graph 

and there is a second group of more scattered solutions in the right-hand side of the solutions 

space. 

This horizontal distribution of solutions indicates that the second group (right-hand side) has 

considerably high travel times (and generally low costs). This is due to the fact that when fewer 

warehouses are taken into consideration, it is less probable that at least one is present in each 

disconnected area of the case study. When there is not any storing location within the isolated 

area, it is necessary to cross one of the road edges with very high travel time assigned (i.e. 

flooded road), hence the very high travel times assigned to many solutions inspected by the 

algorithm and the resulting dispersion observed in Figure 39. 

As a consequence, only the left-hand side of the Pareto-front will be taken into consideration 

in the analysis of the results, since only solutions that guarantee access to the isolated areas 

will be taken into consideration (see time threshold in Figure 39). 

It is essential to highlight that this choice is up to the user and that the following analysis of 

the results is one of many possibilities. As for other design choices described in the previous 

chapters, this constraint can be a priori implemented with the result of producing only feasible 

solutions (i.e. with a warehouse in every disconnected area). Nevertheless, it seemed 

reasonable to show and highlight the versatility and adaptability of the RAO framework to 

different potential necessities and/or requirements of the ultimate user. 
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Figure 39 - Solution space and Pareto-front for Humber Estuary case study. Scenario 2. 

 

Figure 40 shows a highlight of the left-hand part of the Pareto front of Figure 39, together with 

the indication of the solutions that are inspected. To ease the comparison of results among 

different scenarios, the same amount of Pareto-optimal spatial plant of section 5.5.1 is 

presented, Pareto-optimal solutions are chosen from all the parts of the Pareto-front in order 

to analyse results covering its entire range. Six plans are selected Solutions A (Figure 41) and 

B (Figure 42) from the top‐left side of the front (higher costs and lower travel times), Solutions 

C (Figure 43) and D (Figure 44) from the middle and Solutions E (Figure 45) and F (Figure 46) 

from the bottom‐right side (lower costs and higher travel times). 
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Figure 40 - Highlight of the Pareto‐front for the Humber Estuary disruption scenario with the indication of the number of 
Pareto‐optimal spatial plans. Solutions A, B, C, D, E and F are visualised respectively in Figure 41, Figure 42, Figure 43, 

Figure 44, Figure 45 and Figure 46. 

 

 
Figure 41 - Humber Estuary Scenario 2, Solution A. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 
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Figure 42 - Humber Estuary Scenario 2, Solution B. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 

 

 
Figure 43 - Humber Estuary Scenario 2, Solution C. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 
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Figure 44 - Humber Estuary Scenario 2, Solution D. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 

 

 
Figure 45 - Humber Estuary Scenario 2, Solution E. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 
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Figure 46 - Humber Estuary Scenario 2, Solution F. The green lines are for visualisation purposes: they connect each 

infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel time 
on the road network. 
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5.5.3. Scenario 3: Uniform rent price, linear continuous cost function 

Scenario 3 introduces the first variation in terms of objective funtions’ formulation with 

respect to the previous scenarios. This scenario is meant as a starting point in the exploration 

of the impact that different assumptions regarding parameters and formulations have on the 

results of the RAO framework application to the Humber Estuary case study. 

The distance function formulation refers to Equation (5.2), which takes into account the 

number of lorries necessary to transport emergency resources to deployment sites (fixed fleet 

dimension – assumption: 10 lorries) and the necessary number of trips. 

Similarly to the previous scenarios, only the capital cost of warehouses is considered here, and 

again the warehouses’ rent price per square metre in the case study region is considered 

uniform (average), but the cost function is considered continuous instead of discrete - refer 

to Equation (5.11). 

 

{
 
 

 
 𝑓𝑑𝑖𝑠𝑡 =

∑ 2 ∙𝑆𝐼
𝑖=1 𝑇𝑇𝑖
𝑛𝐸𝐹

𝑓𝑐𝑜𝑠𝑡 =∑𝑓𝑖 ∙

𝑊

𝑖=1

𝑝𝑖

 (5.11) 

The problem of this formulation is the fact that, since the total amount of temporary flood 

defences to deploy is assumed constant, and since the warehouse dimension is directly 

proportional to the amount of strategic resources to store, the total sum of 𝑓𝑐𝑜𝑠𝑡 is constant, 

and the only variability is given by the distance function. 

Consequently, given the absence of a trade off to balance, considering a continuous cost 

function under these assumptions reduces the optimisation problem from a multi-objective 

one to a single objective minimisation problem. The result is the absence of a Pareto front 

(see Figure 47) and the presence of a single solution which minimises the distance function. 
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Figure 47 - Solution space for Scenario 3. 

 

 

Figure 48 - Humber Estuary Scenario 3 Solution. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times on 

the shortest path on the road network. 
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5.5.4. Scenario 4: Variable rent price (R/U), linear cost function with fixed 

number of lorries 

Scenario 4 introduces a new element of spatial variability: a variable rent price function of the 

location of the warehouse. As explained in section 5.4.4, different available cells for 

warehouses allocation have different rent prices associated according to whether they are 

within an urban or a rural area. Scenario 4 subdivides the Humber Estuary region in two zones: 

rural and urban; consequently, equation (5.10) becomes: 

 
𝑝𝑖 = 𝑝𝑎𝑣 ∙ 𝛾𝑢 + 𝑝𝑎𝑣 ∙ 𝛾𝑟  (5.12) 

Where: 

 𝑝𝑖 = annual rental price per square metre of i-th warehouse (see equation (5.9)) 

 𝑝𝑎𝑣 = average rent price; 

 𝛾𝑢 = 2, multiplier for urban areas; 

 𝛾𝑟  = 1, multiplier for rural areas; 

To assess the sensibility of this model to this parameter, the variable rent price is the only 

change in the formulation with respect to Scenario 3. This eases the comparison between 

different scenarios and allows to assess the impact on the model of the change of a single 

assumption. 

Figure 49 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 50, Figure 51 and 

Figure 52. 
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Figure 49 - Solution space and Pareto-front for Humber Estuary case study. Scenario 4. With the indication of Solutions A, 
B and C that are visualised respectively in Figure 50, Figure 51 and Figure 52. 

 

 

Figure 50 - Humber Estuary Scenario 4 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 51 - Humber Estuary Scenario 4 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 52 - Humber Estuary Scenario 4 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.5. Scenario 5: Variable rent price (R/S/U), linear cost function with fixed 

number of lorries 

Scenario 5 is built basing on the same assumptions and formulation of Scenario 4, with the 

only exception that an extra variable is included in the rent prices categories. As explained in 

section 5.4.4, and as anticipated in section 5.5.4, different available cells for warehouses 

allocation have different rent prices associated according to whether they are within an urban 

or a rural area. Scenario 5 subdivides the Humber Estuary region in three zones: rural, 

suburban and urban; consequently, equation (5.10) becomes: 

 
𝑝𝑖 = 𝑝𝑎𝑣 ∙ 𝛾𝑢 + 𝑝𝑎𝑣 ∙ 𝛾𝑠 + 𝑝𝑎𝑣 ∙ 𝛾𝑟 

(5.13) 

Where: 

 𝑝𝑖 = annual rental price per square metre of i-th warehouse (see equation (5.9)) 

 𝑝𝑎𝑣 = average rent price of the case study; 

 𝛾𝑢 = 2, multiplier for urban areas; 

 𝛾𝑟  = 1, multiplier for rural areas; 

 𝛾𝑠 = 1.5, multiplier for suburban areas. 

Figure 53 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis). As can be observed, the Pareto front ranges between the same values of 

Scenario 4 (see Figure 49); since the three solutions of Scenario 4 (see Figure 50, Figure 51 and 

Figure 52) present a low spatial variability (but considerable in terms of costs), to avoid the 

plot of other almost identical maps, only a representative solution from the central part of the 

Pareto front is presented here (Figure 54). For a compared analysis of solutions from different 

scenarios, refer to section 5.6 and Chapter 7. 
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Figure 53 - Solution space and Pareto-front for Humber Estuary case study. Scenario 5. With the indication of the 
SolutionA that is visualised in Figure 54. 

 

 

Figure 54 - Humber Estuary Scenario 5 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.6. Scenario 6: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (1) 

Scenario 6 introduces a non-linear cost function for the evaluation of rent prices in 

different available cells for the allocation of warehouses. The formulation of the rent price 

follows the logarithmic function of Figure 23; therefore, the capex cost of warehouses 

becomes: 

 𝑊𝑐𝑎𝑝𝑒𝑥 =∑(𝛼 ∙ ln (𝑓𝑖) + 𝛽) ∙

𝑊

𝑖=1

𝑝𝑖 (5.14) 

Scenario 6 also introduces the variability of the fleet dimension for the deployment of 

emergency resources (considered constant in the previous scenarios). The assumption is 1 

lorry per warehouse; consequently, different Pareto-optimal spatial plans will have different 

fleet dimension even within the same Pareto front. 

Figure 55Figure 49 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-

axis) and 𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 56, 

Figure 57 and Figure 58. 

 

Figure 55 - Solution space and Pareto-front for Humber Estuary case study. Scenario 6. With the indication of Solutions A, 
B and C that are visualised respectively in Figure 56, Figure 57 and Figure 58. 
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Figure 56 - Humber Estuary Scenario 6 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 57 - Humber Estuary Scenario 6 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 58 - Humber Estuary Scenario 6 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

  



 
144 

 

5.5.7. Scenario 7: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (2) 

Scenario 7 has the same formulation of Scenario 6, with the only exception of the fleet 

dimension: here the assumption is that each warehouse has 2 lorries for the deployment of 

emergency resources. For more specifics on the formulation of the objective functions, refer 

to section 5.5.6. 

Figure 59 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 60, Figure 61 and 

Figure 62. 

 

Figure 59 - Solution space and Pareto-front for Humber Estuary case study. Scenario 7. With the indication of Solutions A, 
B and C that are visualised respectively in Figure 60, Figure 61 and Figure 62. 
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Figure 60 - Humber Estuary Scenario 7 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 61 - Humber Estuary Scenario 7 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 62 - Humber Estuary Scenario 7 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.8. Scenario 8: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (3) 

Scenario 8 investigates the assumption of 3 lorries per warehouse to deploy emergency 

resources. The mathematical formulation of the objective functions is the same of Scenarios 

6 and 7 presented in the previous sections (refer to section 5.5.6 for more details on the 

assumptions of this set of scenarios). 

Figure 63 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 64, Figure 65 and 

Figure 66. 

 

Figure 63 - Solution space and Pareto-front for Humber Estuary case study. Scenario 8. With the indication of Solutions A, 
B and C that are visualised respectively in Figure 64, Figure 65 and Figure 66 
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Figure 64 - Humber Estuary Scenario 8 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 65 - Humber Estuary Scenario 8 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 66 - Humber Estuary Scenario 8 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.9. Scenario 9: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (0.5) 

Scenario 9 represents the last variation of the scenario formulation presented in section 5.5.6, 

with the assumption of a fleet dimension of 1 lorry every 2 warehouses. 

Figure 67 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 68, Figure 69 and 

Figure 70. 

 

Figure 67 - Solution space and Pareto-front for Humber Estuary case study. Scenario 9. With the indication of Solutions A, 
B and C that are visualised respectively in Figure 68, Figure 69 and Figure 70. 
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Figure 68 - Humber Estuary Scenario 9 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 69 - Humber Estuary Scenario 9 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 70 - Humber Estuary Scenario 8 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.10. Scenario 10: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (1), SI priority (top 3) 

Scenario 10 introduces a new concept: the prioritisation of the strategic infrastructure assets 

to protect in case of flooding. In case of limited budget or limited resources, in the previous 

scenarios the only option was to choose optimal spatial plans from the bottom-right part of 

the Pareto front; i.e. those plans with lower costs, but higher time fitness values. This implied 

lower costs at the price of a lower response time: for example, a smaller number of 

warehouses or a smalle fleet allow lower costs, but higher travel/deployment times for all the 

strategic infrastructure assets in the region. Scenario 10 (and the following ones) explore a 

different approach to reduce costs (or deal with limited resources): to maximise the service 

areas of warehouses only considering the most relevant assets from each category. 

Scenario 10 maintains the same formulation of Scenario 6 (see section 5.5.6): the rent price 

of warehouse varies according to the location (rural, suburban, urban), the cost function 

consists in the non-linear formulation and the fleet dimension is variable, assuming one lorry 

per warehouse; the only extra assumption that only the top 3 assets of each strategic 

infrastructure category will be considered in the minimisation of costs and distances of the 

GA. 

Each strategic infrastructure asset is ranked on the basis of the number of served buildings in 

the region; in absence of specific data for each infrastructure network, the attribution of 

service areas (and therefore of rank values) has been performed with Thiessen polygons in a 

GIS environment. 

Figure 71 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 72. Figure 73 and 

Figure 74. 
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Figure 71 - Solution space and Pareto-front for Humber Estuary case study. Scenario 10. With the indication of Solutions 
A, B and C that are visualised respectively in Figure 72, Figure 73 and Figure 74. 

 

 

Figure 72 - Humber Estuary Scenario 10 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 73 - Humber Estuary Scenario 10 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 74 - Humber Estuary Scenario 10 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.11. Scenario 11: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (1), SI priority (top 5) 

Scenario 11 investigates the assumption of prioritising the top5 assets for each strategic 

infrastructure category. The formulation and other assuptions are the same of the previous 

Scenario (see section 5.5.10 for more details). 

Figure 75 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 76, Figure 77 and 

Figure 78. 

 

 

Figure 75 - Solution space and Pareto-front for Humber Estuary case study. Scenario 11. With the indication of Solutions 
A, B and C that are visualised respectively in Figure 76, Figure 77 and Figure 78. 
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Figure 76 - Humber Estuary Scenario 11 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 77 - Humber Estuary Scenario 11 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 78 - Humber Estuary Scenario 11 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.5.12. Scenario 12: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (1), SI priority (top 10) 

Like the previous one, in Scenario 12, the only variation with respect to Scenario 10’s 

formulation is the prioritisation criterion: here the top 10 assets of each strategic 

infrastructure category are considered as a priority for flood protection. 

Figure 79 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 80, Figure 81 and 

Figure 82. 

 

Figure 79 - Solution space and Pareto-front for Humber Estuary case study. Scenario 12. With the indication of Solutions 
A, B and C that are visualised respectively in Figure 80, Figure 81 and Figure 82. 
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Figure 80 - Humber Estuary Scenario 12 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 81 - Humber Estuary Scenario 12 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 82 - Humber Estuary Scenario 12 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

  



 
162 

 

5.5.13. Scenario 13: Variable rent price (R/S/U), non-linear cost function with 

variable number of lorries (1), SI priority (top 10 – excluding police and fire 

stations) 

Scenario 13 introduces a different prioritisation criterion: like in Scenario 12, the top 10 assets 

of each strategic infrastructure catgory are selectd as priority targets to be protected in case 

of flood, but in this case police and fire stations are excluded, assuming that these categories 

already have in place flood protection resources. 

The mathematical formlation of theobjective functions and the assumptions regarding the 

other main parameters are not different with respect to the previous Scenarios (see section 

5.5.10 for more details). 

Figure 83 shows the solution space defined by the two objective functions 𝑓𝑑𝑖𝑠𝑡 (x-axis) and 

𝑓𝑐𝑜𝑠𝑡 (y-axis), with also the indication of the spatial plans inspected in Figure 84, Figure 85 and 

Figure 86. 

 

Figure 83 - Solution space and Pareto-front for Humber Estuary case study. Scenario 13. With the indication of Solutions 
A, B and C that are visualised respectively in Figure 84, Figure 85 and Figure 86. 
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Figure 84 - Humber Estuary Scenario 13 Solution A. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 

 

 

Figure 85 - Humber Estuary Scenario 13 Solution B. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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Figure 86 - Humber Estuary Scenario 13 Solution C. The green lines are for visualisation purposes: they connect each 
infrastructure asset to the closest warehouse. They do not represent distances, as distances are measured as travel times 

on the shortest path on the road network. 
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5.6. Discussion of Humber Estuary case study results 

Analysing the Pareto-optimal spatial plans of the various scenarios, it is possible to visualise 

on a map the observations made on the solution space. Solutions A have higher costs (in terms 

of warehouses surface areas) and lower travel times: consequently, they will result in more 

numerous warehouses. A higher number of warehouses implies lower travel times due to 

higher coverage of the territory. Solutions B represent middle-ground solutions, while 

solutions C represent the other extreme of the spectrum. They are, in general, more 

centralised spatial plans; they have fewer warehouses, which entails lower costs, but higher 

travel times. 

As well as solutions A-C, any other Pareto-optimal spatial plan can be represented as a map of 

warehouses. Ideally, for real-life applications, the RAO framework would provide not only 

three, but a complete portfolio of printed maps of Pareto-optimal solutions, on which to draw 

conclusions on how to plan the allocation of new warehouses or how to modify/improve the 

current assets’ distribution. To ease the readability, only a selection of Pareto-optimal spatial 

plans are presented as maps in the scenarios of section 5.5, as most of the maps can result 

very similar to each other. For example, this is the case of Scneario 4: the three plotted spatial 

plans appear very similar to each other, all with 8 warehouses allocated in similar locations; 

however, observing the Pareto front, their respective costs are very different (quite steep 

Pareto front): this is due to the different costs associated to rural or urban locations – locating 

a warehouse just outside an urban area might slightly raise the value of 𝑓𝑑𝑖𝑠𝑡, but considerably 

decrease the associated costs. This is why, despite apparent similiraties in spatial distributions, 

solutions from all the areas of Pareto fronts have been plotted in all the scenarios results. 

However, also with only three maps representing solutions from different areas of the Pareto-

front, it is possible to draw some conclusions. For instance, no matter what formulation is 

adopted, a large warehouse is always present in the main town of the region (Kingston upon 

Hull) because a cluster of strategic infrastructure assets is present in this densely populated 

area. 

Perhaps less intuitive is the constant allocation of a warehouse in the most eastern part of the 

estuary. A lower number of strategic infrastructure assets is present here, but due to the 

remoteness of the area, not allocating a warehouse here would imply very high travel times. 
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High travel times are highly penalised in the optimisation process because multiple trips may 

be necessary according to staff availability and/or truck fleet’s dimensions. 

Due to the more restrictive constraints, a lower variability is observed in Scenario 2, where 

the disruption of the road network due to floodwater is simulated. As anticipated in section 

5.5.2, only solutions that include a warehouse in each isolated area are considered (refer to 

Figure 39). This necessarily requires, on average, a higher number of warehouses to be 

considered in Pareto-optimal solutions. 

To better assess th impact of the roads closure assumption, it is useful to consider the entire 

portfolio of spatial plans that form the Pareto front (as opposed to single solutions) of 

Scenarios 1 and 2 (presented in sections 5.5.1 and 5.5.2) as these scenarios have the same 

objective functions’ formulation and the only variation consists in the road network analysis. 

Figure 87 shows a heatmap which represents the probability of a warehouse allocation by the 

RAO framework of scenarios 1 and 2. All the storing facilities of all the spatial plans that form 

the Pareto front are considered when drawing the heatmap. Darker areas represent higher 

probabilities that a storing facility is allocated in that zone. 

The results presented in Figure 87 differ according to the considered scenario. When the road 

network is not affected by flooding (Figure 87.a), Scenario 1 presents higher probability of 

warehouse allocations indicatively correspond to higher concentrations of strategic 

infrastructure assets. Consequently, to avoid flood-related disruptions whilst maximising 

accessibility under normal conditions, temporary flood defences storing facilities should be 

allocated in the areas of Hull, Grimsby, Scunthorpe and Thorne, with a warehouse dimension 

varying according to how many other facilities are present in the spatial plan. In Scenario 1, 

the RAO framework also provides the user with potentially unintuitive insights like the 

necessity of a warehouse allocation in Withernsea for the reasons explained before. 
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Figure 87 - Pareto front heatmap representing the probability of allocation of a warehouse by the RAO framework. a) 
BAU scenario. b) Disruption scenario. 

However, the full potential of the RAO framework is exploited when testing different scenarios 

and situations and when comparing their results. Figure 87.b shows the solutions’ density of 

Scenario 2 (i.e. with road closures due to floodwater). Here the situation changes as the 

highest probability of warehouse allocation is located where road network disruptions 

increase the isolation/remoteness of certain areas (refer to map in Figure 38). 

In terms of results interpretations, different solution densities (i.e. allocation probabilities) 

correspond to different priorities that vary according to the evaluated scenarios: in Scenario 

1, as the road network is perfectly functioning, the driving factor in terms of accessibility is the 

number of infrastructure assets to protect. Spatially, it is translated as a higher probability of 

warehouse allocation where the more significant number of infrastructure is present. On the 
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contrary, in the Scenario 2, the driving factor in terms of accessibility is travel time. Since 

isolated areas are more complicated (or even impossible) to reach due to the disrupted 

condition of the road network, and since areas with a higher number of strategic 

infrastructure assets are also the most interconnected, accessibility of most remote locations 

is the parameter that governs the problem. Therefore, a higher probability of warehouses 

allocation will correspond to difficult-to-reach locations (like Drax or Withernsea); while 

densely populated areas (like Kingston upon Hull or Scunthorpe) have a more disperse 

allocation probability as their spatial variability is less significant due to their high 

interconnection. 

When considering scenarios involving road closures, particular attention is due to the Humber 

Bridge as it represents a crucial asset in the region’s transport system. Due to its nature of 

suspension bridge (its clearance is around 30 meters from the water below), it cannot be 

affected by the presence of floodwater on the road section, and for this reason it has been 

considered fully operative in Scenario 2; however, bridges are vulnerable from many different 

perspectives (e.g. scour) (Pregnolato, 2019) and the potential closure of the Humber Bridge 

wold have dramatic consequences for the connection of different areas of the Estuary. This is 

highlighted by the results of Scenario 2 (Solutions D, E and F shown in Figure 44, Figure 45 and 

Figure 46 ): when considering spatial plans with lower costs (and therefore lower number of 

warehouses), relying on the Humber Bridge becomes an absolute necessity as in all the 

solutions at least one warehouse serves both the city of Hull and the southern bank of the 

Humber. Therefore, the results of the case study highlight that it is crucial for decision-makers 

and final users of the RAO framework to assess the Humber Bridge’s risk of closure when 

designing flood protection strategies involving termporary flood defenses. 
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Figure 88 - Comparison of Pareto fronts from different scenarios. 

In addition to the analysis of the road network functionality assumption, it is possible to assess 

the sensitivity of the model also to the other assumptions explored in the other scenarios. To 

facilitate the analysis, the scenarios can be clustered in three groups: 

1. Scenarios 4 and 5: linear cost function & fixed number of lorries (blue Pareto fronts in 

Figure 88). 

2. Scenarios 6-9: non-linear cost function & variable number of lorries (green Pareto 

fronts in Figure 88). 

3. Scenarios 10-13: Strategic infrastructure prioritisation (orange Pareto fronts in Figure 

88). 

Figure 88 shows the Pareto fornts of scenarios 4-13. The orange Pareto fronts represent the 

SI prioritisation scenarios and entail lower costs as the infrastructure assets to protect are 

fewer and therefore less storing space is required and a smaller fleet is necessary to deploy 

temporary flood defences. Scenarios 10 and 11 (respectively considering the top 3 and top 5 

assets for esch strategic infrastructure category) can correspond up to a 50% decrease of costs 

with respect to considering all the assets of the region, while Scenario 12 (top 10 assets) has 

comparable costs to the green Pareto fronts (considering the full set of strategic infrastructure 
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in the Humber Estuary region), but lower deployment times when compared to Scenario 6, 

which has the same assumption with respect to the fleet dimension (i.e. 1 lorry per 

warehouse). 

Referring to Figure 88, when observing the orange Pareto fronts it is possible to observe a 

general vertical shift corresponding to an increase of costs when the range of SI assets to be 

protected in case of flood expands. On the other hand, in the green Pareto fronts the shift is 

generally horizontal, corresponding to a decrease of deployment time when the dimension of 

the fleet increases. Of course more Si assets to protect imply higher travel times and a larger 

fleet corresponds to higher costs, however, the observation of the Pareto fronts indicates that 

the assumption on the fleet dimension as major repercussion on travel times rather than on 

costs, while the model is more sensitive on the costs side regarding the assumption on the 

number of SI to protect. 

The blue Pareto fronts of Figure 88, instead, allow to assess the sensitivity of the model to the 

land use category assumption: Scenario 4 considers two categories: “urban” and “rural”, while 

Scenario 5 also includes the “suburban” category. The system appears to be less sensitive to 

this assumption with respect to the previous one as the differences in terms of costs and travel 

times are smaller. Costs appear to be lower when considering only two categories, but this is 

due to an overspemplification of the spatial variability of the land uses: since the Humber 

Estuary region has a low level of urbanisation, when considering only two categories, most of 

the available cells are classified as “rural”. Introducing a third category decreases the number 

of “rural” cells and inevitably increases the average costs, this is aimed at a better 

representation of the land values/rent prices of the region. 



 
171 

 

 

Figure 89 - Pareto front heatmap representing the probability of allocation of a warehouse by the RAO framework in all 
scenarios with a fully functional road network. 

Regarding the spatial variability, similarly to Figure 87, Figure 89 shows a heatmap of the 

spatial allocation of warehouses in the Scenarios that consider a fully functional road network. 

With respect to Figure 87.a, which refers to a Scenario with simplifying assumptions like a 

uniform rent price across the region and a discrete cost function, Figure 89 presents a more 

spatially variable panorama. This is helpful to assess the sensitivity of the system to the 

parameters governing the optimisation equations: more refined cost and time functions 

correspond to a more detailed identification of hotspots for warehouses allocations. These 

hotspots are 8: Hedon, Whiternsea, Scunthorpe and Goole/Drax with allocation probabilities 

>70% and Kingston upon Hull, Grimsby, Brigg and Hatfield with allocation frequencies >60%. 

These statistics have been calculated considering all the Pareto-optimal spatial plans of each 

Scenario and plotted using ArcGIS Kernel Density function. 

 

5.7. Summary 

Chapter 5 presented a case study in the Humber Estuary. The RAO framework introduced in 

Chapter 4 was applied to a case study regarding emergency planning. The main objective was 

the optimisation of warehouse allocation for the storage of flood emergency resources. 

Optimally allocated storing locations allow to minimise travel times for the deployment of 

temporary flood defences and simultaneously minimise construction and management costs. 

Initially, an overview of the datasets and initial settings of the framework was presented, 

followed by a detailed description of the problem formulation and the adaptation of the 
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general optimisation methodology to this particular case study. Thirteen different scenarios 

were investigated to show how the same case study area can be investigated from different 

perspectives and taking into consideration different variables using the RAO framework. The 

scenarios investigated both a business as usual situation with a fully functional road network 

and a disrupted road network scenario. 

The business as usal Scenarios investigated the normal situation in which adequate warning 

before the flood event is guaranteed, while the disruption scenario examined a situation in 

which such a warning may not be enough to deploy all the required temporary defences 

effectively. That could also be due to a temporary/contingent lack of available staff or 

insufficiency in the truck fleet necessary to transport the emergency resources into place. 

Assessing 13 different scenarios with different assumptions and optimisation functions 

formulations demonstrates the flexibility of the approach and the adaptability of the 

methodology to potential different a priori knowledge of the case study or data availability. 

The different scenarios also constitute a sensitivity analysis of the governing parameters of 

the problem as explained in the previous sections (see Figure 88). 

Results showed how the first scenario allows more room for different possibilities, while a 

reduced variability in Pareto-optimal solutions is observable in the second one due to its more 

constrained nature. In fact, in the disruption scenario, the disrupted road network isolated 

three different areas, each of which would require at least one warehouse to store the 

temporary defences needed for the strategic infrastructure assets present in those areas. 

Furthermore, as shown in Figure 89, exploring Scenarios with more complex formulations 

allows to draw more precise conclusions on the spatial allocation of warehouses in the 

Humber Estuary, also with higher confidence in the cost valuation. 

The scenarios of the Humber Estuary case study represent an example of how this 

methodology can be applied to produce results to support planning decisions on behalf of 

emergency planners. Section 5.5 demonstrated how versatility and adaptability are major 

drivers in the design of the RAO framework by presenting different applications and solving 

different real-life problems (e.g. allocation of storing space for flood defences and allocation 

of healthcare services – Chapters 5 and 6) with the same conceptual approach. 
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6. Northland (NZ) case study 

6.1. Introduction Chapter 6 

Chapter 6 introduces the Northland (New Zealand) case study. The RAO framework introduced 

in Chapter 4 is applied to solve an allocation problem concerning the healthcare infrastructure 

of the Northland region (New Zealand). The multi-objective spatial optimisation aims to find 

Pareto-optimal locations for clinics (and doctors) to maximise accessibility and simultaneously 

optimise the ratio between doctors and patients. 

Two different scenarios are investigated: one under normal conditions and another one 

involving a disrupted road network due to natural disasters such as floods and landslides. For 

both the scenarios, a Greenfield approach is adopted; this means that the results are to be 

intended as guidelines for future investments in this sector or the improvement of the current 

healthcare infrastructure in Northland. 

The chapter is structured with an introduction to the case study at the beginning (section 6.2), 

followed by the presentation of the sources and the datasets involved (section 6.3). Section 

6.4 presents the problem formulation and the details concerning the application of the 

methodology to this particular case study; sections 6.5 and 6.6, instead, present the results of 

different investigated scenarios. 

Table 11 presents a summary of the key information regarding the nature of the case study. 

Table 11 - Northland case study problem definition summary table. 

Case study Northland (NZ) 

Hazard Flooding and landslides 

Objectives 
- Minimisation of travel times between households and GP clinics. 

- Minimisation of costs (i.e. number of clinics and doctors).  

Scenarios 

- BAU – Target ratio patients/doctors 1500 

- BAU – Target ratio patients/doctors 2500 

- Disruption – Target ratio patients/doctors 1500 

- Disruption – Target ratio patients/doctors 2500 

- Additional scenarios for sensitivity analysis: BAU – TR = 1000, 1500, 2000, 
2500, 3000 and γC = 2, 4, 6 (13 in total) 

Main constraints 

- Minimum and maximum number of allowed clinics 

- Minimum and maximum number of GPs according to served population 

- Clinics aggregated per village/town 

- 20 minutes driving time catchment areas 
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6.2. Introduction to case study 

A significant number of countries worldwide face (or are predicted to face in the near future) 

a shortage of general practitioners (GP). In rural areas, this problem is particularly hard to 

tackle due to a series of factors like wider areas to cover (because of low population densities) 

and low attractiveness for doctors (in terms of profit and/or lifestyle). Solving this problem 

means to balance a trade-off between conflicting objectives, since on one side patients need 

accessible healthcare facilities, but, on the other hand, GPs need a sufficient number of 

patients for their activity to be remunerative. The nature of rural areas exacerbates the 

conflict between these two objectives: population densities are typically low and that implies 

either a small number of patients or high travel times. 

The multi-objective RAO framework presented in Chapter 4 is here applied to the region of 

Northland (New Zealand). Northland constitutes the northern part of the North Island of New 

Zealand (Figure 90). Its population is around 150.000 inhabitants, and its capital is Whangarei. 

 

Figure 90 - New Zealand and Northland maps. 

Before the application of the RAO framework, an analysis of the current situation of Northland 

GP practices system is performed to produce a baseline against which to measure any 

potential improvement provided by the RAO framework results. Figure 91 and Table 12 show 

the results of this analysis: currently, there are 31 clinics with 90 doctors practising in the area. 
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Different locations have different levels of service with considerable discrepancies in terms of 

the average number of patients per doctor and different (average) travel times to reach the 

closest clinic. 

Attribution of patients to clinics has been performed on a distance basis: in the absence of 

more detailed information - and due to the rural nature of the region - it has been assumed 

that the average patient would go to the closest clinic to access primary healthcare services. 

Table 12 - Result of the preliminary analysis of primary healthcare accessibility in Northland. 

Location 
ID 

Town 
N. of 

clinics 
FTE 
GPs 

N. of 
patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Travel 
time 75° 
quantile 

Travel 
time 
95° 

quantile 

Max. 
Travel 
time 

01 Te Kao 1 0.50 1437 2874 17’ 21’ 29’ 41’ 

02 Kaitaia 2 5.25 11742 2237 13’ 16’ 39’ 65’ 

03 Mangonui 1 2.00 3969 1985 11’ 17’ 31’ 34’ 

04 Kaeo 1 2.00 3531 1766 16’ 23’ 30’ 31’ 

05 Kerikeri 2 6.75 10737 1591 9’ 10’ 16’ 27’ 

06 Okaihau 1 2.25 3927 1745 28’ 40’ 77’ 88’ 

07 Kaikohe 1 2.25 9660 4293 18’ 31’ 46’ 55’ 

08 Moerewa 1 4.00 2826 707 7’ 10’ 21’ 36’ 

09 Kawakawa 2 3.00 3345 1115 10’ 17’ 23’ 31’ 

10 Paihia 2 3.50 3804 1087 8’ 12’ 16’ 27’ 

11 Russell 1 2.00 1767 884 11’ 19’ 29’ 30’ 

12 Dargaville 1 13.00 11262 866 17’ 25’ 41’ 53’ 

13 Ngunguru 1 2.50 2664 1066 8’ 9’ 15’ 43’ 

14 Waipu 1 2.00 15120 7560 19’ 25’ 32’ 46’ 

15 Whangarei 13 39.00 65847 1688 9’ 12’ 29’ 42’ 
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Figure 91 - Current distribution of clinics and general practitioners in Northland. 
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Based on this preliminary analysis, and with the perspective of a future shortage of doctors in 

the region, the RAO framework has been applied in a Greenfield approach to investigate 

Pareto-optimal distributions (spatial plans) of clinics and GPs. The results are meant to be 

guidelines to support future decisions, investment and/or policies in terms of allocation of 

clinics and doctors in the region.  

 

6.3. Data 

The source of the georeferenced data used in the Northland case study is the Land Information 

New Zealand (LINZ) service available at data.linz.govt.nz. Among all the available information 

of the open dataset, the ones of interest are the road network and the meshblock dataset. 

Meshblocks constitute the smallest census geographic unit produced by Statistics New 

Zealand (NZ Government department for statistics related to the economy, population and 

society). Meshblocks vary in size (from city blocks to large rural areas) and population (varying 

from around 60 people in rural areas to an average of 110 in urban areas) and can be 

aggregated to form larger units like area units, urban areas, territorial authorities and regional 

councils.  

The road network is used to calculate distances and travel times in the optimisation process; 

the meshblock dataset is used as origins in the travel time evaluation while the available 

locations for clinics represent the destinations. 

Regarding available locations for clinics, all the towns/villages (37 in total) of the region are 

considered to be potential locations for clinics and doctors. Although rural sites may represent 

efficient locations from an accessibility point of view, they are not considered as potential 

available locations because of the remoteness of rural Northland. This region presents vast 

wild areas, very different from rural Europe (to make a comparison with the Humber Estuary 

case study presented in Chapter 5); a GP clinic outside a town or a village in this region would 

not represent a realistic assumption. Figure 92 shows all the available locations for clinics and 

all the meshblock centroids. Every meshblock centroid has a population assigned (census 

data), and distances from meshblock centroids to available locations are measured as travel 

times on the road network. In the optimisation process, these data are combined when 

assessing the performance of spatial plans: i.e. travel times from origins and destinations are 



 
178 

 

weighted with the served population in order to prioritise shorter distances serving a higher 

population (consequently penalising higher distances serving a lower population). 

 

Figure 92 - Available locations for clinics and meshblock centroids in Northland. 
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Table 13 - Input data for the Northland case study. 

Input data Format Source 

Road network edges Line shapefile LINZ 

Road network nodes Point shapefile LINZ 

Meshblocks Polygon shapefile Stats NZ 

Available locations for GP clinics Point shapefile Original 

GP clinics Point shapefile Healthpoint.co.nz 

FTE genral practitioners csv Healthpoint.co.nz 

Road network risk areas Point shapefile Northland Regional Council 

 

6.4. RAO applied to Northland case study 

The RAO framework described in Chapter 4 is applied to the Northland case study introduced 

in chapter 6.2 to produce Pareto-optimal spatial plans of clinics and doctors practising in this 

region. 

 

6.4.1. Input phase 

Referring to the several phases of the framework described in Figure 8 (Section 4.2), the RAO 

initially takes a series of datasets as input and on the base of such datasets defines available 

locations for clinics and doctors. The variable “Lookup” is then created, containing the 

coordinates of all available locations. Saving the coordinates in a lookup list rather than 

keeping a raster/vector format is a standard procedure meant to reduce run time (see Chapter 

4 for more details). 

 

6.4.2. Problem formulation 

In this phase, the user can set lower and upper bounds to the number of clinics that can be 

taken into consideration in the solutions. The term “clinic” is used hereafter to indicate 

“locations for clinics”, meaning that the number of clinics at each location is not prescribed 

like the number of GPs is. As an example, if in a single location 30 doctors are allocated, that 

does not mean that they are practising in the same clinic. Given the rural nature of the area 

though, with the only exception of Whangarei and a few other towns, one clinic per town is 
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generally enough to accommodate the number of doctors generally allocated - hence the 

adopted terminology. 

Regarding the range of considered locations, a minimum of 5 and a maximum of 25 clinics 

have been explored in the results presented in the following paragraphs. The upper bound of 

25 clinics is chosen because it corresponds to almost one clinic in each available location; 

choosing to cut off the extremes (i.e. less than 5 and more than 25 clinics) is a procedure 

meant to speed up the run time excluding “extreme” solutions we would not be interested in 

anyway. This is an input parameter that can be modified by the end-user according to different 

necessities. However, for lower numbers and limited ranges (low variability), the RAO can 

produce Pareto-optimal solutions, but the problem is sufficiently tractable to be solvable using 

simpler methods; for more details about solutions variability and approach efficiency see 

chapter 5.4.2. 

In this phase, the user must define another fundamental parameter: the target ratio (TR) 

patients/doctors and the accepted level of variability around such target ratio. This parameter 

defines how many patients should ideally be assigned to every doctor. This ratio should 

represent a good balance between a trade-off defined as the following: on one side, a GP 

would aspire to have as many patients as possible to have a profitable activity; on the other 

hand, too many patients would imply long waiting lists with a consequential worsening of the 

provided service. 

Finally, the user must define an acceptable level of variability around the target ratio: this 

implies the definition of two thresholds (upper bound and lower bound) below or beyond 

which spatial plans are not considered. This procedure is implemented both in the 

initialisation and constraint phase and it is meant to speed up the evolutionary process. 

Different factors for upper and lower bounds are applied to define the minimum and 

maximum allowed number of doctors for each clinic and the minimum and maximum number 

of doctors in the entire region. 

 

6.4.3. Initialisation 

The initialisation module is used at the beginning of the iterative process to generate the first 

generation of solutions. Spatial plans are randomly generated selecting locations from the 
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Lookup variable (containing available locations for clinics), with a number of clinics within the 

allowed range and with a number of doctors assigned to each clinic within the defined 

variability around the target ratio doctors/patients. 

The allowed range for the number of doctors assigned to each clinic is the result of a pre-

processing of the input data. For every available location, the living population within a 20 

minutes radius has been calculated and, according to the defined target ratio, an ideal number 

of doctors has been assigned. Then, a variability range is applied to this number. The user can 

set the variability range by the definition of two factors: a lower bound and an upper bound. 

For the results presented in the following chapters, the lower bound has been chosen as 75% 

of the ideal number of doctors and the upper bound as 125%. 

 

6.4.4. Evaluation 

After the creation of the initial population, individuals (spatial plans) are evaluated against the 

objective functions, then the evolutionary operators are applied and the following generation 

is created. The procedure is repeated again in the iterative process: at every stage, the 

individuals of each generation are evaluated and assigned fitness values for each objective 

function. 

The objective functions are two: 1) a distance function: 𝑓𝑑𝑖𝑠𝑡 and 2) a cost function: 𝑓𝑐𝑜𝑠𝑡. 

Distance function 

The distance function attributes a distance fitness to each spatial plan. This fitness is 

minimised in the optimisation process. The fitness is a measure of the performance of the 

spatial plan with regards to a particular function. In this study, distance is evaluated as travel 

time on the road network. 

The distance function is defined as a weighted average of travel times between meshblock 

centroids and the closest clinic, where the number of the population living in each meshblock 

represents the weight of the function. The formulation is the following: 

 𝑓𝑑𝑖𝑠𝑡 =
∑ 𝑇𝑇𝑖 ∙ 𝑝𝑖
𝑀
𝑖=1

𝑝𝑇𝑂𝑇
 (6.1) 

Where: 
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 i = single meshblock, 

 M = total number of meshblocks, 

 𝑇𝑇𝑖 = travel time from i-th meshblock to closest clinic, 

 𝑝𝑖 = population living in the i-th meshblock, 

 𝑝𝑇𝑂𝑇 = total population of the case study area. 

Cost function 

The cost function attributes a cost fitness (𝑓𝑐𝑜𝑠𝑡) to each spatial plan. Similarly to the distance 

function, this fitness is minimised in the optimisation process. This function measures the cost 

of each spatial plan intended as a weighted sum of the number of clinics and doctors. In the 

minimisation process, plans with high numbers of clinics and doctors are penalised. The 

formulation is the following: 

 𝑓𝑐𝑜𝑠𝑡 = 𝛾𝐶 ∙ 𝑛𝐶 + 𝛾𝐺𝑃 ∙ 𝑛𝐺𝑃 (6.2) 

Where: 

 𝛾𝐶 = weighting factor for clinics, 

 𝑛𝐶  = number of clinics in the spatial plan. 

 𝛾𝐺𝑃 = weighting factor for GPs, 

 𝑛𝐺𝑃 = number of GPs in the entire spatial plan. 

The weighting factors have been assumed equal to 1 for GPs and 4 for clinics. This assumption 

implies that the allocation of a new clinic will not be cost-effective for less than four doctors; 

the algorithm, instead, will privilege solutions with allocations of extra doctors to close by 

clinics. This means that, for example, for target ratios patients/doctors equal to 1500, the 

allocation of a new clinic will not be cost-efficient for less than 6000 patients. Nevertheless, 

clinics with less than four doctors will be present in the Pareto-optimal solution as in remote 

areas having only clinics with many practitioners would imply too long travel times (the 

distance function mitigates this). 

The value of 𝛾𝐶 = 4 was chosen taking as a reference the medium zise of New Zealand GP 

practices (Goodyear-Smith and Janes, 2008; Leitch et al., 2018), which is comparable with the 

average dimension of UK practices (Kelly and Stoye, 2014) and small-sized US practices 

(Casalino et al., 2003). However, other values of 𝛾𝐶 have been explored in the sensitivity 
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analysis presented in section 6.6, as 𝛾𝐶 is one of the governing parameters of the optimisation 

problem and its choice can actually be considered a policy scenario by itself. The additional 

values of 𝛾𝐶 that have been considered are 𝛾𝐶 = 2 and 𝛾𝐶 = 6, in combination with the 

variation of the other main parameter of the optimisation formulation: the target ratio 

patients/doctors, whose additional explored values are 𝑇𝑅 = 1000, 1500, 2000, 2500, 3000. 

 

6.4.5. Constraints 

As explained in chapter 5.4.5, the aim of the presented methodology is to leave the algorithm 

the most unconstrained as possible (to allow it to explore the whole space of solutions), yet 

the implementation of some constraints can be beneficial to reduce the computational effort. 

Due to the nature of the evolutionary operators meant to modify solutions’ spatial attributes 

(see Chapter 4), when mating and mutating individuals, it is possible to generate solutions that 

have a number of assigned GPs that is higher than the maximum allowed or lower than the 

minimum. 

This is why a constraint decorator is applied to the evolutionary operators’ functions: it counts 

the number of GPs present in the solutions after the application of the evolutionary operators 

and it discards those spatial plans that have less than the minimum or more than the 

maximum allowed number of GP sites. 

The constraint functions are two: one for counting the total number of doctors in the whole 

case study region and another one to check if the number of doctors assigned to each clinic is 

within the acceptable range. 

As in the case of the Humber Estuary case study (see section 5.4.5), several implicit constraints 

are present; these constraints are due to both the initialisation phase and the nature of spatial 

input data. The definition of available locations for clinics and doctors (section 6.3) constitutes 

a spatial constraint regarding the location of potential solutions. Also, as in the UK case study, 

another implicit constraint is represented by the evaluation of travel times. They are evaluated 

in a best-case scenario since the traffic variable is not taken into account. Average allowed 

speeds are deduced from road types. Based on this assumption, free-flow speeds are 

evaluated for each edge of the road network and travel times are consequently calculated. 
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Finally, the weighting factors of the cost function defined in the previous section are also a 

priori determined. This parameter is somewhat arbitrary and, in fact, it constitutes a medical 

policy scenario. For this reason, it is treated as the target ratio patients/doctors: it is an input 

variable of the framework, and different values can be explored according to the user's 

needs/purposes. 

 

6.4.6. GA applied to the Northland case study 

As anticipated in Chapter 4.4, and exactly like in the Humber Estuary case study (see chapter 

5.4.6), the genetic algorithm chosen for the evolution of spatial plans is DEAP’s 𝜇 + 𝜆 strategy 

(Fortin et al., 2012). Referring to DEAP Documentation (DEAP Project, 2009), the 

eaMuPlusLambda function evolves a population of spatial plans and returns the optimised 

population together with a Logbook containing the statistics of the evolution process. 
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Figure 93 - Pareto fronts evolution of the Northland case study: a) Business as usual scenario, target ratio patients/GPs 
1500; b) Business as usual scenario, target ratio 2500; c) Disruption scenario, target ratio 1500; d) Disruption scenario, 

target ratio 2500. 

The framework architecture is the same as the previous case study and the same notation is 

adopted (refer to Chapters 0 and 5 for details and specifics related to the application of the 

𝜇 + 𝜆 strategy). For this case study, the value of lambda is chosen to be 1000. That means that 

1000 solutions are created at each generation. With this amount of generated children at each 

step of the iterative process, 50 generations (ngen) are enough to observe convergence in the 

Pareto-front, as shown in Figure 93. 
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6.5. Results 

Two different scenarios are investigated: 

1) a business as usual (BAU) scenario, with a completely functional road network; 

2) a disruption scenario, where the road network is partially disrupted due to potential 

natural disasters. 

To understand the most critical sections of the road network, reference is made to the 

Regional Land Transport Plan 2015-2021 (Northland Regional Council, 2018), where “Major 

Risk Areas in Northland” are identified and mapped (Figure 94). Table 14 summarises the 

reasons why road sections are identified as critical in Northland’s Regional Land Transport 

Plan. 

Table 14 - Risks on critical road sections in Northland. 

Road number Road section Risk 

- Brynderwyn Hill No easy alternative routes 

- Te Hana Bridges No easy alternative routes 

SH1 

North Cape Road at Mitimiti Stream Bridge 

Flooding and landslips 

Waihou River (Rangiahua) Bridge 

Mangamuka 

Lemons Hill 

North Larmers Rd 

Kamo bypass 

Otiria Stream (Moerewa) 

Whakapara 

Otonga Flats 

Waipu to Whangarei 

Kawakawa 

SH10 

Bulls Gorge 

Flooding and landslips Kaeo 

Kaingaroa Bridge 

SH11 
Tirohanga Stream Bridge 

Flooding 
Kawakawa 

SH12 
through Dargaville 

Flooding and landslips 
Mangatoa 

SH14 Kirikopuni River Bridge Flooding 

- Paparoa – Oakleigh Landslips 



 
188 

 

 

 

Figure 94 - Major risk areas in Northland. Map developed from Northland Regional Council (2018). 

 

6.5.1. Business as usual (BAU) scenario 

Business as usual (BAU) scenario investigates the typical situation with a completely functional 

road network. It is meant to explore Pareto-optimal clinics and doctors spatial plans with a 

Greenfield approach: the current distribution of clinics and practitioners is neglected in the 

spirit of finding ideal solutions and critically comparing them with the current situation and 

future plans. 
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Like in the UK case study presented in chapter 5, the outputs of the RAO framework are in the 

form of Pareto-fronts plotted in the solution space and georeferenced spatial plans 

displayable in a GIS environment. 

Two different target ratios between patients and GPs are investigated: 1500 and 2500 (i.e. 

1500 patients per GP and 2500 patients per GP), resulting in a reasonable average patient 

number per GP in rural New Zealand to guarantee profit for the clinic and simulatenously 

avoid overcrowding (Goodyear-Smith and Janes, 2008). 

The methodology is easily adaptable to inspect different ratios between patients and doctors 

according to the user’s needs (by changing a single input variable). In other words, different 

motivations could drive the final user of the RAO framework: this tool can be used to make 

the most out of some available resources (i.e. doctors and clinics) or, on the other hand, use 

the optimisation framework to support future investments aimed at the improvement of the 

current health infrastructure. 

 

6.5.1.1. BAU scenario – Target ratio patients/GPs: 1500 

Figure 95 shows the plot of the solutions inspected by the algorithm in the solution space 

defined by the two objective functions. On the x-axis, 𝑓𝑑𝑖𝑠𝑡 represents the average travel times 

weighted by the served population of each clinic. On the y-axis, 𝑓𝑐𝑜𝑠𝑡 represents the weighted 

sum of clinics and doctors (for more details on the objective functions, see section 6.4.4). 
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Figure 95 - Solution space and Pareto-front for Northland case study. BAU scenario, target ratio 1500. 

Every blue triangle of Figure 95 represents a solution inspected by the GA, the dashed red line, 

instead, connects the Pareto-optimal solutions, i.e. the ones that are non-dominated by all 

the others. “Domination” is the concept on which Pareto-optimality is based on: a solution is 

not dominated if it is not worse than all the others in all the objectives and it is strictly better 

in at least one. The non-dominated solutions form the Pareto-front. 

As observed in chapter 5.5.1, a first analysis of the results consists in understanding the area 

of interest of the solution space. A time and a cost threshold can be set in a preliminary 

qualitative analysis of the Pareto-front. As shown in Figure 96, beyond the time threshold, we 

have an increase in travel times without a significant decreasing of the cost fitness and vice 

versa beyond the cost threshold. 
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Figure 96 - Thresholds in the solution space for Northland case study. BAU scenario, target ratio 1500. 

The green area of Figure 96 represents the area of interest of our results; from this area, the 

solutions plotted in the remaining part of this section are selected and identified in Figure 97. 

For clarity and readability, not all the spatial plans forming the Pareto-front are going to be 

plotted. Only a selection of them, covering different areas of the Pareto-front are showed and 

analysed: 

 Solution A (Figure 98 and Table 15) from the top-left side of the Pareto-front (lower 

travel times, but a high number of clinics and doctors); 

 Solution B (Figure 99 and Table 16) from the bottom-right side (lower costs, but higher 

travel times). 
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Figure 97 - Highlight of the Pareto‐front for the Northland BAU scenario (target ratio 1500) with the indication of the 
number of Pareto-optimal spatial plans. Solutions A and B are visualised in Figure 98, Figure 99, Table 15 and Table 16. 
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Figure 98 - Northland Case study, BAU scenario, Target ratio patients/GPs: 1500, Solution A (from Figure 97). The green 
lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not represent 

distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 15 - Northland case study, BAU scenario, target ratio patients/GPs: 1500, solution A (from Figure 97). Accessibility 
table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Kaiwaka 4 5214 1304 14’ 29’ 

Maungaturoto 4 3654 914 13’ 38’ 

Te Kopuru 4 1545 386 9’ 40’ 

Dargaville 5 8310 1662 12’ 33’ 

Ruakaka 4 6798 1700 11’ 25’ 

Maungakaramea 3 2580 860 13’ 30’ 

Titoki 3 3360 1120 15’ 41’ 

Whangarei 31 61110 1971 9’ 37’ 

Ngunguru 5 2664 533 8’ 43’ 

Omapere 2 2613 1307 13’ 35’ 

Kaikohe 8 8868 1109 11’ 46’ 

Kawakawa 5 7740 1548 11’ 32’ 

Kohukohu 1 1701 1701 25’ 49’ 

Russell 1 1767 1767 11’ 30’ 

Kerikeri 8 13452 1682 9’ 42’ 

Awanui 6 11361 1894 20’ 59’ 

Matauri Bay 1 1743 1743 19’ 30’ 

Mangonui 2 2907 1454 7’ 28’ 

Taupo Bay 1 1575 1575 18’ 40’ 

Karikari 1 810 810 5’ 13’ 

Pukenui 1 1734 1734 20’ 59’ 
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Figure 99 - Northland Case study, BAU scenario, Target ratio patients/GPs: 1500, Solution B (from Figure 97). The green 
lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not represent 

distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 16 - Northland case study, BAU scenario, target ratio patients/GPs: 1500, solution B (from Figure 97). Accessibility 
table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Maungaturoto 7 17355 2479 25’ 50’ 

Titoki 6 12903 2151 38’ 88’ 

Whangarei 35 65640 1875 12’ 68’ 

Ngunguru 7 2664 381 8’ 43’ 

Okaihau 9 13713 1524 29’ 88’ 

Kerikeri 8 22467 2808 20’ 54’ 

Awanui 8 16896 2112 18’ 84’ 
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6.5.1.2. BAU scenario – Target ratio patients/GPs: 2500 

The same methodology with the same parameters of section 6.5.1.1 is applied one more time, 

with the only difference of the input datum “target ratio patients/GPs”. In this run, the ratio 

is 2500 (for more details see 6.5.1). As shown in the previous section, in Figure 100, the 

solutions inspected by the algorithm are plotted in the solution space defined by the two 

objective functions (x-axis: 𝑓𝑑𝑖𝑠𝑡 - average travel times weighted by the served population of 

each clinic; y-axis: 𝑓𝑐𝑜𝑠𝑡 - weighted sum of number of clinics and doctors). 

 

Figure 100 - Solution space and Pareto-front for Northland case study. BAU scenario, target ratio 2500. 

 

Figure 100 represents all the solutions inspected by the GA (blue triangles), and the dashed 

red line is the Pareto-front, where Pareto-optimal solutions lie. The green lines represent a 

time and a cost threshold (see previous sections for thresholds definitions) beyond which 

there is a worsening of one objective without a significant improvement of the other. This is a 

preliminary qualitative analysis aimed at understanding the area of interest of the Pareto-

front. 
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Figure 101 - Highlight of the Pareto‐front for the Northland BAU scenario (target ratio 2500) with the indication of the 
number of Pareto-optimal spatial plans. Solution A and B are visualised in Figure 102, Figure 103, Table 17 and Table 18. 

 

The green area of Figure 100 represents the area of interest of our results, from the same 

area, two spatial plans are selected (Figure 101) and plotted in the remaining part of this 

section. For clarity and readability, not all the spatial plans forming the Pareto-front are 

plotted. Only a selection of them, covering different areas of the Pareto-front are showed and 

analysed: 

 Solution A (Figure 102 and Table 17) from the top-left side of the Pareto-front (lower 

travel times, but higher cost); 

 Solution B (Figure 103 and Table 18) from the bottom-right side (lower cost, but higher 

travel times). 
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Figure 102 - Northland Case study, BAU scenario, Target ratio patients/GPs: 2500, Solution A (from Figure 101). The 
green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 17 - Northland case study, BAU scenario, target ratio patients/GPs: 2500, solution A (from Figure 101). Accessibility 
table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Mangawhai 3 4851 1617 11’ 40’ 

Maungaturoto 3 3969 1323 13’ 38’ 

Te Kopuru 2 1545 773 9’ 40’ 

Dargaville 3 8310 2770 12’ 33’ 

Ruakaka 2 6846 3423 10’ 24’ 

Maungakaramea 2 2580 1290 13’ 30’ 

Titoki 2 3360 1680 15’ 41’ 

Whangarei 19 62877 3309 11’ 68’ 

Ngunguru 3 2664 888 8’ 43’ 

Omapere 1 2613 2613 13’ 35’ 

Kaikohe 3 8868 2956 11’ 46’ 

Kawakawa 3 5439 1813 10’ 32’ 

Kohukohu 1 1701 1701 25’ 49’ 

Paihia 2 3804 1902 8’ 27’ 

Kerikeri 5 12024 2405 7’ 28’ 

Awanui 4 11361 2840 12’ 47’ 

Matauri Bay 1 3114 3114 29’ 49’ 

Mangonui 1 3978 3978 12’ 43’ 

Pukenui 1 1734 1734 20’ 59’ 
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Figure 103 - Northland Case study, BAU scenario, Target ratio patients/GPs: 2500, Solution B (form Figure 101). The 
green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 18 - Northland case study, BAU scenario, target ratio patients/GPs: 2500, solution B (from Figure 101). Accessibility 
table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Maungaturoto 4 17356 4339 25’ 50’ 

Titoki 3 12724 4241 38’ 88’ 

Whangarei 21 64645 3078 11’ 68’ 

Ngunguru 3 2665 888 8’ 43’ 

Kawakawa 3 9643 3214 14’ 43’ 

Okaihau 7 27544 3935 29’ 88’ 

Awanui 5 17068 3414 18’ 84’ 

 

 

6.5.2. Disruption scenario 

As explained in section 6.5, the second scenario is the one that takes into consideration the 

possibility of road closures due to natural disasters. To understand the vulnerabilities of 

Northland’s road network, reference is made to the Regional Land Transport Plan 2015-2021 

(Northland Regional Council, 2018), from which Figure 94 is extracted. To simulate road 

closures due to landslides and/or floods, the road edges of Table 14 are removed from the 

network and not considered in the road network analysis. 

Subsequently, the same analysis of section 6.5.1 is performed: two different target ratios 

between patients and GPs are considered: 1500 and 2500. The choice of the same parameters 

allows comparing the results in the different scenarios, but as stated in the previous section, 

different numbers can be set as inputs to produce richer portfolios of results for more in-depth 

analyses. 

 

6.5.2.1. Disruption scenario – Target ratio patients/GPs: 1500 

Figure 104 shows the solutions inspected by the genetic algorithm (blue triangles) and the 

Pareto-front on which Pareto-optimal solutions lie. It also represents the result of a 

preliminary qualitative analysis regarding the area of interest of Pareto-optimal solutions. 

Beyond the cost threshold, there is a considerable worsening of 𝑓𝑐𝑜𝑠𝑡 without any relevant 
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improvement in the travel time performance. Similarly, beyond the time threshold, there is 

no improvement in the cost performance of solutions despite higher travel times. 

 

 

Figure 104 - Thresholds in the solution space for Northland case study. Disruption scenario, target ratio 1500. 

The green area of Figure 104 represents the area of interest of Pareto-optimal solutions. 

Figure 105 shows the solutions selected from the area of interest that will be plotted in the 

following pages. A selection of Pareto-optimal solutions is imported in a GIS environment to 

produce maps for georeferenced visualisation. These solutions cover different areas of the 

Pareto-front: 

 Solution A (Figure 106 and Table 19) from the top-left side of the Pareto-front (lower 

travel times, but higher cost); 

 Solution B (Figure 107 and Table 20) from the bottom-right side (lower cost, but higher 

travel times). 
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Figure 105 - Highlight of the Pareto‐front for the Northland disruption case study (target ratio 1500) with the indication 
of the number of Pareto-optimal spatial plans. Solutions A and B are visualised in Figure 106, Figure 107, Table 19 and 

Table 20. 
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Figure 106 - Northland Case study, disruption scenario, Target ratio patients/GPs: 1500, Solution A (from Figure 105). 
The green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 

 



 
206 

 

Table 19 - Northland case study, Disruption scenario, target ratio patients/GPs: 1500, solution A (from Figure 105). 
Accessibility table. 

Town 
FTE 
GPs 

N. of 
patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Mangawhai 4 3066 767 13’ 40’ 

Maungaturoto 4 4047 1012 13’ 38’ 

Mangawhai Heads 3 1899 633 5’ 19’ 

Te Kopuru 4 1545 386 9’ 40’ 

Dargaville 5 8397 1679 13’ 44’ 

Ruakaka 4 6198 1550 9’ 25’ 

Maungakaramea 3 3138 1046 17’ 38’ 

Titoki 5 3408 682 15’ 41’ 

Whangarei 31 59772 1928 8’ 37’ 

Ngunguru 5 3339 668 14’ 43’ 

Kaikohe 5 10146 2029 15’ 47’ 

Rawene 2 2982 1491 17’ 35’ 

Kawakawa 5 2814 563 19’ 51’ 

Kohukohu 1 1668 1668 25’ 49’ 

Paihia 3 4368 1456 10’ 37’ 

Russell 1 2130 2130 15’ 45’ 

Kerikeri 8 12435 1554 8’ 28’ 

Awanui 6 11106 1851 13’ 47’ 

Matauri Bay 1 1710 1710 19’ 31’ 

Mangonui 3 3318 1106 8’ 28’ 

Taupo Bay 1 1608 1608 18’ 40’ 

Karikari 1 810 810 5’ 13’ 

Pukenui 1 1734 1734 20’ 59’ 
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Figure 107 - Northland Case study, disruption scenario, Target ratio patients/GPs: 1500, Solution B (from Figure 105). 
The green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 20 - Northland case study, Disruption scenario, target ratio patients/GPs: 1500, solution B (from Figure 105). 
Accessibility table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Maungaturoto 5 15174 3035 25’ 50’ 

Titoki 4 12420 3105 38’ 88’ 

Whangarei 31 62073 2002 9’ 45’ 

Ngunguru 8 5469 684 44’ 91’ 

Kaikohe 9 13284 1476 22’ 71’ 

Kawakawa 5 5715 1143 22’ 51’ 

Kerikeri 14 13902 993 10’ 42’ 

Awanui 9 18636 2071 32’ 128’ 

Matauri Bay 1 3318 3318 36’ 60’ 

 

6.5.2.2. Disruption scenario – Target ratio patients/GPs: 2500 

The same methodology with the same parameters of section 6.5.2.1 is applied one more time, 

with the only difference of the input datum “target ratio patients/GPs”. In this run, the ratio 

is 2500 (for more details see 6.5.2). 

As shown in the previous section, in Figure 108, the solutions inspected by the algorithm are 

plotted in the solution space defined by the two objective functions (x-axis: 𝑓𝑑𝑖𝑠𝑡  - average 

travel times weighted by the served population of each clinic; y-axis: 𝑓𝑐𝑜𝑠𝑡 – weighted sum of 

number of clinics and doctors). 
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Figure 108 - Solution space and Pareto-front for Northland case study. Disruption scenario, target ratio 2500. 

As explained in the previous section, Figure 108 represents all the solutions inspected by the 

GA (blue triangles) and the dashed red line is the Pareto-front, where Pareto-optimal solutions 

lie. The green area represents the area of interest of Pareto-optimal solutions (see the 

previous section for more details on time and cost thresholds). This is a preliminary qualitative 

analysis aimed at understanding the area of interest of the Pareto-front. Figure 109 shows the 

spatial plans plotted in the remaining part of this section. For clarity and readability, not all 

the spatial plans forming the Pareto-front are plotted. Only a selection of them, covering 

different areas of the Pareto-front are showed and analysed: 

 Solution A (Figure 110 and Table 21) from the top-left side of the Pareto-front (lower 

travel times, higher cost); 

 Solution B (Figure 111 and Table 22) from the bottom-right side (lower cost, but higher 

travel times). 
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Figure 109 - Highlight of the Pareto‐front for the Northland disruption scenario (target ratio 2500) with the indication of 
the number of Pareto-optimal spatial plans. Solutions A and B are visualised in Figure 110 Figure 111, Table 21 and Table 

22. 
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Figure 110 - Northland Case study, disruption scenario, Target ratio patients/GPs: 2500, Solution A (from Figure 109). 
The green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 21 - Northland case study, Disruption scenario, target ratio patients/GPs: 2500, solution A (from Figure 109). 
Accessibility table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Mangawhai 3 4851 1617 11’ 40’ 

Maungaturoto 3 4047 1349 13’ 38’ 

Te Kopuru 2 1545 773 9’ 40’ 

Dargaville 3 8379 2793 13’ 44’ 

Ruakaka 2 6312 3156 10’ 25’ 

Maungakaramea 2 3138 1569 17’ 38’ 

Titoki 2 3408 1704 15’ 41’ 

Whangarei 19 59772 3146 8’ 37’ 

Ngunguru 3 3339 1113 14’ 43’ 

Kaikohe 3 10146 3382 15’ 47’ 

Rawene 1 2982 2982 17’ 35’ 

Kawakawa 3 2814 938 19’ 51’ 

Kohukohu 1 1668 1668 25’ 49’ 

Paihia 2 4368 2184 10’ 37’ 

Russell 1 2130 2130 15’ 45’ 

Kerikeri 5 1299 260 7’ 28’ 

Kaeo 2 2268 1134 24’ 72’ 

Awanui 4 11106 2777 13’ 47’ 

Mangonui 1 5514 5514 24’ 73’ 

Pukenui 1 1734 1734 20’ 59’ 
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Figure 111 - Northland Case study, disruption scenario, Target ratio patients/GPs: 2500, Solution B (from Figure 109). 
The green lines are for visualisation purposes: they connect each meshblock centroid to the closest GP clinic. They do not 

represent distances, as distances are measured as travel times on the shortest path on the road network. 
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Table 22 - Northland case study, Disruption scenario, target ratio patients/GPs: 2500, solution B (from Figure 109). 
Accessibility table. 

Town FTE GPs 
N. of 

patients 

Av. 
Patients 
per GP 

Av. 
Travel 
time 

Max. 
Travel 
time 

Maungaturoto 4 16821 4205 25’ 50’ 

Titoki 2 12420 6210 38’ 88’ 

Whangarei 19 62073 3267 9’ 45’ 

Ngunguru 5 5469 1094 44’ 91’ 

Kaikohe 5 13284 2657 22’ 71’ 

Kawakawa 3 5715 1905 22’ 51’ 

Kerikeri 5 13566 2713 10’ 42’ 

Kaeo 3 3314 1105 43’ 81’ 

Awanui 7 18936 2705 32’ 128’ 

 

 

6.6. Discussion of Northland case study results 

BAU scenario’s maps allow the visualisation of what observed in the solution space plots: a 

portfolio of solutions spanning from one edge of the spectrum of investigated spatial plans to 

the other. On the first edge, solutions with lower travel times and lower target ratios present 

more spread clinics with higher accessibility, on the other, as expected, more concentrated 

clinics plans with higher travel times, but clinics and doctors limited to the main towns. The 

same variability of solutions is observed in the disruption scenario, where there is a similarity 

in the nature of the solutions, but a difference in the average travel times due to road network 

disruptions. 

A particular mention is due to the cost function formulation and the consequent results. As 

explained in section 6.4.3, the attribution of the number of doctors to each clinic happens 

randomly within an allowed range. This allowed range is a priori determined considering the 

population living within a 20 minutes’ drive radius from the potential clinic location. It may 

happen, though, that in the final solutions clinics are assigned to adjacent towns that may 

share the same served population in the 20 minutes’ drive radius. This overlapping problem 

results in possible over-attribution of doctors in close-by clinics. This is why the maps showing 

the Pareto-optimal spatial plans also have the indication of the allowed range of doctors for 

each clinic and the residing population in the catchment area. It is up to the final user to 
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critically analyse the spatial plans and draw conclusions concerning possible overlapping of 

service areas of close-by clinics. Possible solutions can be either choosing to “merge” close 

enough locations or keeping them separate but considering a reduction in the number of 

doctors. 

To ease the comparison of different spatial plans, maps like the ones in Figure 112 help 

understanding the differences among different solutions with respect to a single parameter. 

As a matter of example, Figure 112 shows the different levels of accessibility in two solutions 

that represent the extremes of the spectrum of solutions presented in section 6.5. Here travel 

times are compared in two very different situations; Figure 112.a shows an accessibility map 

for the solution represented in Figure 98. In the BAU scenario, the road network is fully 

functional, and Solution A lies in the top-left area of the Pareto front associated with lower 

travel times. On the other hand, Figure 112.b presents the overall lower accessibility 

associated with the disrupted road network of the disruption scenario. In addition to the 

variability due to the different scenario conditions, Solution B represents the spatial plan 

illustrated in Figure 107, a solution lying in the bottom-right area of the Pareto front 

associated with higher travel times (but lower costs). 
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Figure 112 - Comparison of different levels of accessibility in different scenarios: a) BAU scenario, b) Disruption scenario. 

Figure 112 is just one of the many possible examples in terms of comparison of results. The 

RAO framework provides georeferenced solutions that can be easily processed in any GIS 

environment to address any kind of analysis of interest to the final user. 
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Table 23 - Northland scenarios accessibility comparison. The current distribution of clinics and GPs in Northland is considered 
as the baseline for the assessment of the improvements provided by the different Pareto-optimal solutions in terms of 

accessibility and costs. 

Travel time 
< 10 
min 

10-20 
min 

20-30 
min 

30-40 
min 

40-50 
min 

> 50 
min 

    

Current 
situation 

Pop served 83277 39423 18750 7554 1557 1077   N of GPs 

% Pop 55% 26% 12% 5% 1% 1%   90 

BAU 
TR 1500 

Sol A 

Pop served 86385 46905 14094 3513 657 84   N of GPs 

% Pop 57 31 9 2 0 0   100 

± % +2% +5% -3% -3% -1% -1%   (+11%) 

BAU 
TR 1500 

Sol B 

Pop served 61791 36840 24105 16512 6768 5622   N of GPs 

% Pop 41 24 16 11 4 4   80 

± % -14% -2% +4% +6% +3% +3%   (-11%) 

BAU 
TR 2500 

Sol A 

Pop served 88221 42948 13494 3558 1818 1599   N of GPs 

% Pop 58 28 9 2 1 1   61 

± % +3% +2% -3% -3% +0.2% +0.3%   (-32%) 

BAU 
TR 2500 

Sol B 

Pop served 57424 38001 28314 14232 7026 6648   N of GPs 

% Pop 38 25 19 9 5 4   46 

± % -17% -1% +6% +4% +4% +4%   (-49%) 

Disruption 
TR 1500 

Sol A 

Pop served 88257 41967 13233 6546 1452 183   N of GPs 

% Pop 58 28 9 4 1 0   110 

± % +3% +2% -4% -1% -0.1% -1%   (+22%) 

Disruption 
TR 1500 

Sol B 

Pop served 67512 31521 20976 16524 7473 7632   N of GPs 

% Pop 45 21 14 11 5 5   86 

± % -10% -5% +1% +6% +4% +4%   (-4%) 

Disruption 
TR 2500 

Sol A 

Pop served 87456 41289 12708 6609 1929 1647   N of GPs 

% Pop 58 27 8 4 1 1   63 

± % +3% +1% -4% -1% +0.2% +0.4%   (-30%) 

Disruption 
TR 2500 

Sol B 

Pop served 67764 31365 20526 16230 7296 8457   N of GPs 

% Pop 45 21 14 11 5 6   53 

± % -10% -5% +1% +6% +4% +5%   (-41%) 

 

Table 23 provides an overview of the solutions of sections 6.5.1 and 6.5.2. Here, the served 

population’s travel times are compared to the current clinics and doctors layout in Northland, 

which is taken as a baseline for the assessment of the improvements provided by the different 
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Pareto-optimal solutions. Relative percentage increments (or reductions) are measured 

against the current service in Northland (see Figure 91 and Table 12). 

In the business as usual scenario, we can observe that solutions A (top-left area of Pareto 

fronts, i.e. high accessibility and high costs) present increments in accessibility (i.e. more 

people served in less than 20 minutes). This is achieved with an increment of 11% in the 

number of doctors when considering a target ratio patients/doctors of 1500, and with a 

reduction of almost a third of the number of doctors when considering a ratio of 2500. The 

same trend is observed in the disruption scenario, with the only difference consisting in the 

fact that maintaining the same level of service would require an extra 10% increment in the 

number of doctors when considering the 1500 ratio. This means that the higher is the number 

of doctors, the higher is the extra expense to maintain the service provision in case of 

disruption. 

Solutions B, instead, are those spatial plans from the bottom-right area of the Pareto fronts. 

This implies lower accessibility and lower costs. These solutions are useful to understand the 

consequences of potential reductions in the number of available GPs. They necessarily imply 

reductions in the served population in less than 20 minutes, but provide useful information 

regarding optimal allocations of a reduced number of resources. 

The disruption scenario takes into account the simultaneous disruption of all the most critical 

sites of Northland’s road network. This represents a quite unlikely worst-case scenario; 

nevertheless, it provides the opportunity to find and focus on the most resilient solutions 

generated by the RAO framework. 

As stated in the introduction of this chapter, a Greenfield approach has been adopted for this 

case study. This makes these results not applicable to the reality tout court; instead, they need 

to be analysed and then taken as a reference for the improvement of the current situation of 

the health service provided in Northland. This is why the overlapping of catchments areas does 

not appear as a conceptual obstacle to the interpretation of the RAO framework results. 

Moreover, highlighting interconnections and implications between infrastructure design and 

natural disasters is one of the main objectives of this research. In this spirit, the results of the 

disruption scenario are meant to highlight potential criticalities putting together two aspects 

of infrastructure design that may not always be taken into consideration at the same time. 
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The main drivers behind the opening or relocation of GP clinics are usually related to the 

personal motivations of the practitioners as small entrepreneurs. This study aims at proposing 

a new perspective on this particular infrastructure planning, a top-down approach in which 

the main drivers are not (just) the personal interests of singular professionals, but also a 

collective perspective that takes into account a higher level of optimisation of the healthcare 

service provision. This is why the presented results are meant not as a prescription, but as 

guidance for future investments in the area or a reorganisation of the status quo. 

The attribution of weighting factors to general practitioners and clinics in the evaluation phase 

presented in section 6.4.4 represents a final discussion point. These weighting factors are an 

input parameter adjustable by the end-user, however, rather than an assumption, this must 

be considered as an actual medical policy scenario. Assigning different weighting factors has 

repercussions on the final optimal spatial plans, and their determination is unquestionably 

arbitrary. Nevertheless, in case of lack of data regarding costs and profits of the private 

healthcare business (in terms of clinics and practitioners), it is necessary to make a reasonable 

assumption to obtain sensible results. 

Additional values of clinics’ weighting factors are explored in Table 24 together with additional 

values of target ratios patients/doctors to assess the sensitivity of the problem to the two 

main parameters defining the optimisation formulation. The assessed values in this sensitivity 

analysis are: 𝛾𝐶 = 2, 4, 6 and 𝑇𝑅 = 1000, 1500, 2000, 2500, 3000. 

To allow the comparison among different scenarios and combinations of 𝛾𝐶 an TR, Table 24 

considers different spatial plans with the same ftime fitness; therefore, it is not surprising to 

observe small differences in accessibility fitnesses: between +2% and +4% of served 

population under 10 minutes with respect to current situation in Northland for ftime = 22 min. 

However, it is interesting to observe how the infrastructure cost varies (i.e. number of FTE GPs 

and clinics) to achieve such an improvement in terms of accessibility (i.e. % of population 

served under 10, 20, 30 etc. minutes). 
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Table 24 - Accessibility analysis of BAU scenario for different values γC of and TR for a vixed value of ftime. 

Travel time < 10’ 10’-20’ 20’-30’ 30’-40’ 40’-50’ >50’   

         

Current situation 
Pop 83277 39423 18750 7554 1557 1077  GPs 

% Pop 55 26 12 5 1 1  90 

             

γC TR Sol ID ftime Pop  86811 45114 13680 3543 891 1599  GPs 

2 1000 49201 22’ 
% Pop 57 30 9 2 1 1  114 

± % +2 +4 -3 -3 -0.4 +0.3  +27% 

γC TR Sol ID ftime Pop  86871 44943 15312 3744 684 84  GPs 

2 1500 43040 22’ 
% Pop 57 30 10 2 < 1 < 1  80 

± % +2 +4 -2 -3 +0.1 +0.3  -11% 

γC TR Sol ID ftime Pop 86232 45600 13044 3414 1749 1599  GPs 

2 2000 39062 22’ 
% Pop 57 30 9 2 1 1  57 

± % +2 +4 -4 -3 +0.1 +0.3  -37% 

γC TR Sol ID ftime Pop  88248 45276 13899 3450 681 84  GPs 

2 2500 49149 22’ 
% Pop 58 30 9 2 0 0  48 

± % +3 +4 -3 -3 -1 -1  -47% 

γC TR Sol ID ftime Pop  89175 43374 13866 3528 1611 84  GPs 

2 3000 41995 22’ 
% Pop 59 29 9 2 1 0  40 

± % +4 +3 -3 -3 +0.04 -1  -56% 

             

γC TR Sol ID ftime Pop  86973 45651 14079 4083 768 84  GPs 

4 1000 47192 22’ 
% Pop 57 30 9 3 1 0  117 

± % +2 +4 -3 -2 -1 -1  +30% 

γC TR Sol ID ftime Pop  86385 46905 14094 3513 657 84  GPs 

4 1500 48254 22’ 
% Pop 57 31 9 2 0 0  100 

± % +2 +5 -3 -3 -1 -1  +11% 

γC TR Sol ID ftime Pop  86988 45507 14433 3942 684 84  GPs 

4 2000 42010 22’ 
% Pop 57 30 10 3 0 0  64 

± % +2 +4 -3 -2 -1 -1  -29% 

γC TR Sol ID ftime Pop  88221 42948 13494 3558 1818 1599  GPs 

4 2500 41222 22’ 
% Pop 58 28 9 2 1 1  61 

± % +3 +2 -3 -3 +0.2 +0.3  -32% 

γC TR Sol ID ftime Pop  89268 43398 13524 3669 1695 84  GPs 

4 3000 43489 22’ 
% Pop 59 29 9 2 1 0  43 

± % +4 +3 -3 -3 +0.1 -1  -52% 

             

γC TR Sol ID ftime Pop  87720 44886 13842 3486 1620 84  GPs 

6 1000 48080 22’ 
% Pop 58 30 9 2 1 0  117 

± % +3 +4 -3 -3 +0.04 -1  +30% 

γC TR Sol ID ftime Pop  86988 45507 14433 3942 684 84  GPs 

6 1500 42003 22’ 
% Pop 57 30 10 3 0 0  88 

± % +2 +4 -3 -2 -1 -1  -2% 

γC TR Sol ID ftime Pop  87159 45594 14229 3873 624 159  GPs 

6 2000 41211 22’ 
% Pop 57 30 9 3 0 0  67 

± % +3 +4 -3 -2 -1 -1  -26% 

γC TR Sol ID ftime Pop  86811 45114 13680 3543 891 1599  GPs 

6 2500 46014 22’ 
% Pop 57 30 9 2 1 1  50 

± % +2 +4 -3 -3 -0.4 +0.3  -44% 

γC TR Sol ID ftime Pop  87894 44571 13464 3945 1680 84  GPs 

6 3000 35209 22’ 
% Pop 58 29 9 3 1 0  50 

± % +3 +3 -3 -2 +0.1 -1  -44% 
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Figure 113 shows the comparison of infrastructure costs (i.e. relative increment of number of 

GPs) with respect to the current Northland situation presented in section 6.2 corresponding 

to different TR and 𝛾𝐶 values (and for a fixed value of 𝑓𝑡𝑖𝑚𝑒 = 22′). 

When considering 1000 patients per GP, an increment in the number of GPs of nearly 30% is 

necessary for all the inspected 𝛾𝐶 values. Increasing the value of TR (i.e. allowing more patients 

per GP), it is possible to achieve the same accessibility (i.e. 𝑓𝑡𝑖𝑚𝑒 = 22′) with less doctors and 

therefore with a lower infrastructure cost, even with less GPs than the current Northland 

situation. 

 

Figure 113 - Comparison of infrastructure cost with respect to current Northland situation for different values of γC and 
TR for a fixed value of ftime. 

Different values of 𝛾𝐶 imply different numbers of employed doctors, since lower values of 𝛾𝐶 

correspond to lower costs in opening new clinics compared to adding GPs to existing ones. 

The mathematical formulation of the infrastructure cost function involves 𝛾𝐶 as a parameter 

to capture the competition between close-by available locations for clinics, therefore its value 

is not directly proportional to the cost fitness. Moreover, a general trend is observable from 

Figure 113: increasing the value of TR always corresponds to a lowering of the total number 

of GPs in the region; therefore, 𝛾𝐶 does not influence the behaviour of the Pareto-optimal 

solution as much as TR. The target ratio patients/doctors is the governing parameter of the 

problem, since its variations have grater influence on the global costs of the regional case 

study, while 𝛾𝐶 is a secondary modelling parameter meant to capture local competition. 
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6.7. Summary 

Chapter 6 presented the Northland case study. Here the RAO framework has been applied to 

the healthcare infrastructure of the Northland region (New Zealand). The focus is general 

practitioners’ clinics' optimal allocation. A Greenfield approach is applied for the 

determination of Pareto-optimal locations in the multi-objective spatial optimisation process. 

The two objectives are: 1) maximisation of accessibility (translated as minimisation of travel 

times on the road network) and 2) minimisation of costs (number of clinics and doctors). 

After an introduction to the case study (section 6.2), a description of the sources and the 

datasets taken into consideration (section 6.3) and a description of the problem formulation 

(section 6.4), the results are presented and discussed in sections 6.5 and 6.6. 

Two different scenarios are investigated: a BAU scenario and a disruption scenario. The first 

one aims at optimising the healthcare service in Northland under normal circumstances; the 

second one investigates a disrupted road network condition due to natural disasters. The 

simulations otherwise use the parameters in order to allow a comparison between the 

different situations. 

As highlighted in section 6.6, the results of this case study do not have a prescriptive nature, 

but the final user should consider them as a reference for future investments or a 

reorganisation of the current situation for more cost-effective management of the healthcare 

infrastructure of the region. 

Since the visualisation of single spatial plans does not facilitate the comparison between 

different solutions and scenarios, Figure 112 provides an example of accessibility comparison 

between different spatial plans belonging to different scenarios. Figure 112 is meant to show 

the variability in terms of a particular parameter (travel time) between solutions that are at 

different extremes of the spectrum provided by the RAO framework. Of course, travel time is 

not the only significant parameter, and other comparison maps can be produced according to 

different potential particular needs of the end-user. 

Figure 112 confirms some information already evidenced from the previous maps: for 

example, no matter what number of clinics are part of a solution, the area around Whangarei 

(the capital and most populated centre) always has a quite constant good coverage; together 

with the area around Kaitaia, in the northern part of the region. Higher variability, as expected, 
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is encountered in more remote and less populated areas. This happens for two reasons: first, 

the population works as a weighting factor in the evaluation phase; meaning that solutions 

that better serve bigger portions of the population are always prioritised. Secondly, because 

of the lower grade of interconnection of remote areas: when a disruption occurs, remote 

areas have less network redundancy to count on, making them ultimately less resilient to 

network disruptions. 
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7. Discussion 

7.1. Introduction 

The increase of climate risks in urban areas, coupled with increasing global urban population, 

continuous development of urban environments and the generally limited availability of 

resources to cope with natural disasters are the drivers behind new system scale approaches 

to urban planning and infrastructure management (Caparros-Midwood, 2015). The literature 

review of Chapter 2 explored the current flood management approaches, and Chapter 4 

highlighted the challenges in achieving different (and conflicting) objectives in the same 

strategy. 

The overall goal of the present research is the improvement of infrastructure services’ 

resilience through the spatial optimisation of resources allocation. To achieve this goal, a 

Resource Allocation Optimisation (RAO) framework is presented in Chapter 4. The formulation 

of the framework’s structure, the choice of the methodology and the nature of the different 

components are based on the review of optimisation techniques presented in Chapter 3. 

The RAO framework represents the core of this research work; it is meant as a both theoretical 

and practical spatial methodology aimed at balancing the typical trade-offs in urban and 

emergency planning like accessibility maximisation and cost optimisation. It is designed to 

optimally allocate multiple facilities to improve infrastructure services in the two case study 

areas, focussing respectively on reducing flood impacts (UK case study – Chapter 5) and 

improving access to healthcare infrastructure (NZ case study – Chapter 6). 

This section will explore the results of the RAO framework concerning the two applications 

developed for the flood emergency response problem (Humber Estuary case study) and the 

healthcare infrastructure accessibility problem (Northland case study). Section 7.2 frames the 

case studies within the general subject of trade-off balancing in spatial problems, presenting 

its rationale and highlighting the main issues to address in this particular context. Section 7.3, 

instead, explores the evidence from the case studies results providing details on their 

interpretation and implications. Section 7.5 presents the main assumptions and model 

limitations, together with the indication of potential starting points for the future 

development of this research work. Finally, section 7.6 focusses on the software 

implementation of the RAO framework and its implications. 
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7.2. Balancing conflicts and trade-offs in spatial planning 

Accessibility maximisation vs cost minimisation is a typical trade-off in spatial optimisation. 

Both public administrative authorities and private companies perform location-allocation 

analyses when they need to determine optimal locations for facilities with a catchment area. 

The spatial (and mathematical) problem to solve is the same whether the facility to allocate is 

a hospital, a school, a power plant or a shopping centre. It is relatively straightforward to 

determine optimal locations for single facilities with ordinary network solvers embedded in 

most GIS software packages (like ArcGIS or QGIS). It is less trivial when more than one facility 

is to be allocated, but still quite easily achievable (depending on the case study) if the number 

of facilities is a fixed number. 

This research work addresses the case in which the number of multiple facilities to be 

optimally allocated is variable. Adding an extra variable transforms the problem from a single-

objective spatial optimisation problem to a multi-objective one. The new extra variable is the 

number of facilities to be allocated, which is directly proportional to the cost invested. 

Allocating more facilities means improving accessibility but at the same time it entails 

investing more resources. According to how this cost is evaluated (i.e. proportional to the 

number of facilities or to the floor space of each facility, etc. – see section 5.5 for different 

cost function formulations) more refined analyses can be performed. Moreover, the 

advantages of considering different locations are not necessarily related only to accessibility, 

since different locations can provide different benefits. For instance, different infrastructure 

assets can serve different shares of the population according to their dimension (e.g. a 

transformer could serve either 100 or 1000 houses – sections 5.5.10-5.5.13 explore a critical 

infrastructure protection prioritisation based on the served population of each asset). 

The case study presented in Chapter 5 describes the allocation of storing space for temporary 

flood defences, based upon the problem defined by the UK National Flood Resilience Review 

(Cabinet Office and DEFRA, 2016). In this document, the UK government committed £2.3 

billion to be invested in a 6-year time frame to improve flood protection throughout the 

country. Part of this funding - namely £12.5 million - is explicitly allocated for temporary flood 

defences with the aim to improve the Environment Agency’s stock. These new temporary 

defences need to be allocated in strategic locations to allow a prompt and efficient 

deployment when needed. For this reason, the RAO framework has been developed and then 
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applied to the Humber Estuary region to test the spatial optimisation framework and produce 

spatial plans of warehouses that optimally balance the trade-off between the maximisation of 

accessibility and minimisation of costs. 

The case study presented in Chapter 6 is a different application of the RAO framework. The 

case study is different, but the mathematical formulation of the problem is the same. This 

proves the versatility and transferability of the optimisation methodology: the RAO 

framework has been originally developed for the emergency response scenario, but its flexible 

design makes it suitable to a series of spatial multi-objective optimisation problems and 

applications in different fields and locations. Here the RAO framework is applied to solve the 

optimal allocation of healthcare facilities (and personnel) in a rural area of New Zealand. The 

balanced trade-off is once again between the maximisation of facilities’ accessibility and the 

minimisation of costs, which in this case is translated as a Pareto-optimal number of clinics 

and practising doctors. 

As these examples illustrate, the presented RAO framework has the potential to support the 

decision-making process when spatially allocating multiple resources or facilities. Optimal 

allocation is directly translated as resilience and cost-efficiency, which, in turn, are directly 

linked to sustainability as expressed in Chapter 2. Planning future resilient sustainable 

infrastructure cannot disregard holistic approaches given the complex nature of cities and 

urban areas and the level of interconnection and interdependencies of different infrastructure 

networks. The digital revolution provides us with unprecedented tools to model and try to 

manage this complexity. 

This work aims to be beneficial to the scientific community on two different levels: first, by 

setting the ground for a new conceptual approach in emergency planning based on new digital 

tools with a rigorous mathematical and scientific background. Second, being a pilot and a 

reference for the future development of support digital tools for decision-makers and urban 

planners dealing with spatial optimisation and resource allocation. 

 

7.3. Flood Incident Management  

The outcomes of the RAO framework applied to the different case studies are presented in 

section 5.5 and 6.5. The optimisation methodology produces a set of different outputs: 1) 
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Pareto-fronts in the solution space showing the performance of all the inspected solutions 

(diagram) and the ones that optimally balance the trade-off between the conflicting 

objectives; 2) georeferenced spatial plans (either in shape or CSV format) presenting the 

Pareto-optimal plans in the form of a map. These datasets can be handled in any GIS 

environment to produce maps containing any relevant information together with the Pareto-

optimal location of assets/facilities of interest to the particular case study. 

The combination of locations and attributes of the Pareto-optimally allocated facilities allows 

the final user to make comparisons and draw conclusions on otherwise unintuitive cost-

benefits analyses of different spatial plans. While allocating a single warehouse or a GP clinic 

may be a rather quick and intuitive process, the allocation of 10 or 20 facilities at a regional 

scale against conflicting objectives (simultaneously meeting boundaries and constraints and 

with non-linear cost formulations) is a process that requires automation and a discrete 

amount of computational power. 

Information like the Pareto-optimal spatial plans presented in sections 5.5 and 6.5 represents 

a good example of numerical support in the decision-making process of resources allocation. 

If this kind of information was available in all the processes that require a choice of where to 

spatially allocate a variable number of facilities, more informed, cost-effective and ultimately 

sustainable strategies could be produced. 

The Humber Estuary case study is an example of how the RAO framework can be applied to 

solve the optimal spatial allocation of warehouses to store temporary flood defences. The 

analysis of thirteen different scenarios allows exploring and implementing different strategies 

according to different boundary conditions and different cost formulations (that can be 

implemented according to the scope of the final user, or according to the data availability of 

the case study). Approaching the problem with a perfectly functional road network or 

considering potential road closures due to the presence of floodwater are both valid choices. 

They are directly proportional to the level of confidence that the final user has concerning 

factors like a reliable alert system or the dimension of the fleet (and staff) available to 

transport and deploy the flood defences. When there are uncertainties regarding such a level 

of confidence, it can be valuable to consider both the scenarios to explore the variability of 

the solutions. This variability is strictly case-dependent. Different regions may present very 

different variabilities due to their geography, which in the RAO framework is translated as 
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network redundancy. In general, the more the road network is interconnected, the more 

resilient it will be to potential road closures. Also, comparing the outcomes of different 

scenarios considering different assumptions (e.g. cost functions, fleet dimension, strategic 

infrastructure prioritisation etc.) allows a wider range of insights on the strategic planning of 

critical infrastructure’s resilience to natural hazards, with socio-economic benefits related to 

costs optimisation, safety measures implementation and economic and environmental 

sustainability. 

Figure 87, Figure 89 and Figure 112 are examples of accessibility comparisons between 

different scenarios. While spatial plans maps allow visualising different data in the same place 

(e.g. locations, dimensions, travel times, etc.), heatmaps allow to efficiently visualise just one 

variable at a time (for example accessibility) providing an effective way to compare different 

scenarios or set of multiple spatial plans at a glance. 

The BAU and the disruption scenarios explored in both Chapters 5 and 6 represent respectively 

a best-case and a worst-case scenario; intermediate situations could also be considered (see 

the section on future development). Flooding is a dynamic phenomenon: together with the 

preparation time guaranteed by alert systems, an extra amount of time is necessary to reach 

the flood peak; this allows to evaluate the promptness and efficiency of emergency response 

and, in case, consider middle ground scenarios (e.g. partially flooded road network with 

consequent reduced allowed speeds). However, in the absence of detailed information, it is 

recommended to consider the worst-case scenario as during emergencies it is usually difficult 

to guarantee a perfectly functional road network and, by definition, risks can be minimised, 

but not eliminated. 

The Humber Estuary results allow drawing some conclusions and drafting some 

recommendations. For example, Figure 89 identifies eight hotspots for warehouses allocation: 

Hedon, Whiternsea, Scunthorpe and Goole/Drax with allocation probabilities >70% and 

Kingston upon Hull, Grimsby, Brigg and Hatfield with allocation frequencies >60%. As 

explained in section 5.6, the reasons why these locations are hotspots for storing space 

allocations are different, like the presence of a cluster of strategic infrastructure assets or the 

remoteness/accessibility of the area. 
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When considering a disrupted road network due to the presence of floodwater, the Pareto-

optimal solutions’ pattern changes because of the presence of isolated areas. If at least one 

warehouse must be accessible from the whole region’s territory, the mandatory allocation of 

warehouses to this potentially isolated areas results in very different spatial plans if compared 

to the business as usual scenario. For example, in the Humber Estuary case study, this is the 

case of Drax (Figure 87). 

In addition to the analysis of the road network functionality assumption, Figure 88 allows the 

assessment of the model’s sensitivity to the other assumptions explored in the several 

scenarios of Chapter 5. The Pareto fronts of different scenarios can be clustered in three 

groups according to the different cost function formulations or to other assumptions (e.g. fleet 

dimension or strategic infrastructure assets prioritisation) and compared in the solution space 

in terms of costs and accessibility. This is valuable to the final user when assessing different 

assumptions on missing data (e.g. when applying the methodology to other regions, data on 

rent prices in different locations or details regarding the costs of operating a fleet of lorries 

might not be available) or different cost functions (e.g. when deciding whether to consider the 

expansion of the available fleet of lorries or only using the already in-place resources, different 

cost functions are taken into consideration in the RAO framework application). 

The novelty of the presented approach makes it hard to compare the RAO framework’s results 

with a current in-place strategy, because a strategy for temporary flood defences storing and 

deployment has not been found in the literature or policy documents. This is because the 

Humber Estuary region is divided into different local authorities: the East Reading of Yorkshire, 

Kingston upon Hull and North Lincolnshire. As explained in Chapter 2, these different local 

governments are autonomous in terms of flood management strategies and, to date, they 

have not produced a joint flood protection strategy that considers the whole Humber Estuary 

at a regional level. Moreover, their local flood protection strategies do not take into account 

temporary flood defences. 

Together with considering temporary flood defences as a viable tool for effective flood 

management in a region (see section 2.3.2), the novelty of the presented approach resides 

also in the scale of the studied instances; in fact, it optimises the emergency response 

infrastructure at a regional level, with the aim to overcome local authorities boundaries for 

more efficient and cost-effective flood management strategies. 
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7.4. Embedding infrastructure network vulnerability into strategic planning 

The recommendations emerging from the RAO framework results’ analysis are valuable for 

both planning future emergency response strategies and comparing already-in-place 

infrastructure. In fact, in real-life problems, the Greenfield approach adopted in the case study 

of section 5 is hardly ever a realistic option. Rather a current in-place strategy is usually 

assessed and, in case, options to improve it are evaluated and implemented. The RAO 

framework provides a support tool for this kind of situations. This means that, in this regard, 

for the Humber Estuary case study, the recommendations for the temporary measures will 

need to be integrated with the already-in-place structural measures and with the ones 

currently under development.  

This is true also for the Northland instance. The Greenfield approach does not allow drawing 

direct conclusions concerning the Pareto-optimal spatial plans of clinics and doctors, as it will 

never be the case that all the GP clinics of the region will be relocated at the same time. 

Nevertheless, the results of the spatial analysis are valuable for different reasons. First, they 

allow assessing the Pareto-optimality of the current distribution of healthcare facilities in the 

region with respect to accessibility and cost (intended as the number of clinics, doctors and 

number of patients per GP). Besides, they allow making useful considerations in terms of 

policymaking and in terms of resilience to road network disruptions in different areas (e.g. 

allocation of clinics in vulnerable locations – either on a permanent base or as temporary 

solutions during emergencies). 

The different scenarios of the maps produced by the RAO framework allow local authorities 

to understand which areas are more resilient to potential natural disasters (like floods or 

landslides) and which ones are more vulnerable. The diversity of Northland with respect to 

population densities and infrastructure distribution on the territory necessarily implies 

profound differences in terms of accessibility to GPs. The RAO framework’s results help to 

understand which are the critical locations for clinics for the provision of an adequate level of 

service at the minimum cost. 

The RAO framework’s results can be compared to the baseline provided by the current 

distribution of clinics and general practitioners in Northland. In this regard, Table 23 and Table 

24 provide an overview of all the solutions of the different scenarios analysed for the 

Northland case study. Here, the served population’s travel times are compared to the current 
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clinics and doctors layout, i.e. the baseline for the assessment of the improvements provided 

by the different Pareto-optimal solutions. Relative percentage increments (or reductions) are 

measured against the current service in Northland (see Figure 91 and Table 12). 

A detailed analysis of these results is presented in section 6.6; improvements with respect to 

the baseline are evaluated in terms of accessibility, i.e. percentages of the population served 

below different travel time thresholds. The Pareto fronts provide portfolios of solutions 

ranging from one extreme (many clinics, short travel times) to the other (few clinics, higher 

travel times). The closer the solutions are to the top-left extreme of the Pareto-front (i.e. high 

costs, short travel times), the higher the improvement is in terms of accessibility with respect 

to the baseline. This improvement comes at a cost though; Table 23 and Table 24 provide 

information regarding how much it is necessary to invest (in terms of clinics and doctors) to 

achieve such improvements. The same results can also be read from the opposite perspective: 

when exploring results from the bottom-right extreme of the Pareto front, they can be 

interpreted as the effects of a reduction of the number of clinics and general practitioners in 

the region. In this case, Table 23 and Table 24 show the reduction of the number of doctors 

from 5% up to 50% (according to the different target ratios doctors/patients considered). As 

a matter of example, for the BAU scenario, solutions in the top-left area of Pareto fronts 

present increments in the served in less than 20 minutes around 5-7%. This is achieved with 

an increment of 11% in the number of GPs when considering a target ratio patients/doctors 

of 1500 and with a reduction of almost 30% of the number of doctors when considering a ratio 

of 2500. 

The disruption scenario presents the same trend observed in the BAU scenario; however, 

when considering the 1500 ratio, maintaining the same level of service implies an extra 10% 

increment in the number of doctors. This means that the higher is the number of doctors, the 

higher is the extra expense to maintain the service provision in case of disruption. 

Moreover, Figure 113 allows the observation of a general trend of all the inspected scenarios 

and to draw conclusions on the governing parameters of the model: increasing the value of 

the patients/doctors ratio always corresponds to a lowering of the total number of GPs in the 

region; therefore, the 𝛾𝐶 parameter does not influence the behaviour of the Pareto-optimal 

solution as much as TR. The target ratio patients/doctors is the governing parameter of the 
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problem, since its variations have grater influence on the global costs of the regional case 

study, while 𝛾𝐶 is a secondary modelling parameter meant to capture local competition. 

Ultimately, based on these results, local authorities may outline policies (or foster 

investments) to encourage general practitioners to open (or relocate) clinics in key locations 

in terms of accessibility or natural hazards vulnerability. 

 

7.5. Model limitations and future development 

Heuristic approaches are very powerful tools to address complex problems; they allow solving 

problems involving big data and/or high resolutions with reasonable run times. As seen in the 

previous sections, they are also extremely useful when handling a high number of variables 

like in multi-objective spatial optimisation problems. However, their significant efficacy comes 

at a cost; and this cost is precision. By nature, heuristic approaches do not provide exact 

solutions as not all the possible solutions to the problem are actually inspected/assessed. 

This limitation has repercussions on the concept of optimality. Solutions achieved with 

heuristic approaches are not mathematically optimal, but they can be close enough to the 

mathematical solution of the problem, according to how strong the mathematical formulation 

is and how good the calibration process is. Mathematically optimal solutions can be achieved 

with exact methods, which, in turn, would imply incredibly high run times when addressing 

complex problems. This is why, despite their intrinsic margin of error, heuristic approaches 

are very popular in engineering applications like shown in the literature review section 

(Chapter 3). 

Being heuristics, genetic algorithms inherit this kind of uncertainty. However, with proper 

calibrations, the margin of error can be minimised with a good level of confidence. To achieve 

this, a sensitivity analysis with respect to the governing parameters is sufficient to understand 

how many iterations are necessary to reach the convergence of the Pareto-front. In both the 

case studies presented, 50 iterations were more than enough to observe this convergence. 

Moreover, the assessment of several scenarios testing different assumptions in both the case 

studes allowed to test the sensitivity of the models to different parameters and formulations 

(see sections 5.5 and 6.5). This is valuable because through the RAO framework it is possible 

to build models that, by nature, are data driven models, and since data are not always 
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available for all the potential applications where the RAO framework might be implemented, 

it is fundamental to have a clear idea of what are the capabilities and limitations of different 

assumptions and objective functions formulations. 

The RAO methodology relies on several assumptions that necessarily imply some limitations. 

An exhaustive enumeration of these assumptions can be found in Chapter 4, here below are 

the more relevant: 

- Accessibility is evaluated though the means of travel times. Travel times, in turn, are 

based on free-flow speeds on the road network. This necessarily implies that what is 

evaluated is a best-case scenario in terms of traffic. 

- The resolution of GIS input data necessarily constrains the precision of results. The 

RAO framework does not present any restriction with respect to this parameter; it only 

has repercussions on run times. 

- The definition of available locations for facilities allocation is an a priori choice. The 

two case studies present different variations of this: in the Humber Estuary case study, 

the RAO framework automatically determines available locations for warehouses, but 

the user has to provide a set of physical constraints to be met. Alternatively, in the 

Northland case study, no physical constraints are required, but a list of potential clinics 

location is taken as an input. 

- The a priori choice that more heavily influence the spatial optimisation process is the 

definition of the optimisation functions. This must necessarily be a modeller choice; 

how to evaluate the performances of different spatial plans in terms of accessibility or 

cost is a delicate matter. For example, concerning accessibility, there is not a best 

choice in absolute terms. Choosing to consider the average travel time over the 75th 

quantile may be the right choice or the wrong one according to the mathematical 

formulation of the problem. Chapters 5.4.4 and 6.4.4 provide explanations of why in 

this work different metrics have been chosen for different case studies. Similarly, 

assuming different cost function formulations lead to different outcomes in terms of 

Pareto-optimal allocations as explored in the several scenarios of sections 5.5 and 6.5. 

These assumptions imply some limitations of the optimisation methodology, but, at the same 

time, they provide a good starting point for the future development of this research. In terms 

of accessibility evaluation, better input data regarding the road networks could provide a 
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better evaluation of travel times. For instance, if allowed speeds for each network edge were 

available instead of relying on the road type information, more accurate input data would lead 

to more reliable results. The inclusion of the traffic variable would also provide added value 

to the methodology, providing a more precise simulation of the emergency situation and 

allowing the formulation of more accurate assumptions. 

Regarding the network disruption scenarios, the presented results explore the case of road 

closures due to floodwater presence. Additional scenarios may be explored, for instance, 

considering speed reductions instead of complete closures. Adding a dimension to the flood 

risk analysis (for instance considering water depth) would allow a better modelling of the flood 

hazard and more sensible assumptions on road closures or speed reductions due to the 

presence of floodwater on the road. 

As mentioned in the previous section, in both the case studies, the disruption scenarios 

consider all road network disruptions happening simultaneously. This represents a worst-case 

scenario worth investigating; however, a more refined scenario evaluation could be 

developed in the future development of this work. An interesting development of the 

disruption scenario could involve a better evaluation of the flood hazard, for instance 

considering not only fluvial but also pluvial flooding and their coupled effect, like explored in 

Zhang et al. (2010). Moreover, considering the dynamic nature of floods would improve the 

quality of the hazard evaluation. Time is a fundamental factor in emergency management, and 

a dynamic flood simulation would allow better consideration of the temporal dimension in the 

RAO framework. This would expand the current range of objectives, including the analysis of 

dynamic phenomena and their potential effects on complex systems of infrastructure 

networks. 

In the Northland case study, the disruption scenario takes into account the simultaneous 

disruption of all the most critical sites of Northland’s road network. This represents a quite 

unlikely worst-case scenario; nevertheless, it provides the opportunity to find and focus on 

the most resilient solutions generated by the RAO framework. This represents an interesting 

potential future development of this research: it would be interesting to evolve this approach 

considering the likelihood of individual disruptions and optimise against all possible events 

(e.g. either optimising all individually or in combination or otherwise randomly selecting 

different disruptions in the optimisation routine).  



 
236 

 

Future development of this research would involve the application of the RAO framework to 

different areas, at different scales and for different applications. The UK and NZ case studies 

presented in Chapters 5 and 6 already demonstrated the transferability of the methodology 

to different areas of different countries with different data availabilities, and also the flexibility 

of the methodology to be applied to different optimisation problems (from flood defences 

storing space to general practitioners allocation). Particular attention would require the 

application at different scales as building national scale models would pose different 

challenges. Mainaining the same resolution would simply imply too big data to be handled 

and consequently not reasonable run times. Changing the resolution would imply a 

redefinition of the problem formulation because of the impossibility to represent the physical 

constraints that limit the definition of available locations (e.g. distance from main roads, 

surface water, urban vs suburban etc.) as low resolutions would not be able to capture the 

spatial variability of the studied area unless changing the evaluation criteria for the 

determination of available locations. Different solutions could be explored to address this 

issue: like considering vector files instead of raster data to reduce the computational effort or 

considering parallel programming subdividing the national territory into sub-regions to be 

analysed in parallel. 

Finally, another potentially interesting improvement would be including the current situation 

as a starting point of the RAO framework instead of considering a Greenfield approach. An 

interesting perspective would include further expanding the range of objectives by exploring 

how to evolve the current distribution of facilities to achieve the best possible solution at the 

smallest possible cost. This problem would have a quite different nature (and thus 

mathematical formulation), but this work could provide a solid background on which to base 

this further research. 

In conclusion, this research aimed at widening the scale of analysis of infrastructure resilience 

to natural hazards. Both the analysed case studies areas constitute regional level analyses. As 

seen for the Humber Estuary case study, a regional-scale analysis already goes beyond the 

current flood management approaches, which only considers smaller areas. Future 

development of this approach will ideally consider even bigger scales (e.g. national scale), 

which would imply the simultaneous consideration of multiple regions allowing a better 
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optimisation process and ultimately allowing making consideration on resources and fund 

allocations. 

 

7.6. Software challenges for spatial optimisation 

Chapter 4 presents the software architecture of the RAO framework (see also Figure 9). All the 

different components of the optimisation framework are developed in Python. This 

development environment has been chosen for its flexibility and its rich range of 

mathematical and optimisation modules (Fortin et al., 2012). The programming language 

represents a strong assumption in the modelling phase; R and MATLAB represent viable 

potential alternatives for the development of a multi-objective spatial optimisation 

framework; however, Python’s accessibility and ease of interface with ArcGIS and GDAL make 

it the best choice for the presented RAO framework development. Also, the use of Python for 

optimisation applications is well-grounded in the literature, like in Caparros-Midwood et al. 

(2019), Beham et al. (2014), Matott et al. (2011), Hebrard et al. (2010), Ligmann‐Zielinska et 

al. (2008) and Bröker et al. (2005). 

In terms of code performance, the network analyses are performed using NetworkX, which 

requires quite high run times. This is the reason why this process has been separated from the 

GA (for more details, see Chapter 4) and run beforehand. This separation allows the network 

analysis to be performed just once, at the beginning of the process, alowing multiple scenarios 

evaluations using the same network. Alternative potentially more efficient solutions in terms 

of computational effort may be explored in future development of this research (e.g. igraph - 

https://igraph.org/) to try and improve run times of the network analysis. 

Another significant methodological assumption and novel feature of the methodology 

consists in using the K-means clustering algorithm (Ostrovsky et al., 2013) for the generation 

of spatial plans to seed the GA at the beginning of the iterative process. The module aims to 

perform a K-means clustering of the target assets (destinations of the network analysis) and 

determine the centroids of the identified clusters. This information is useful for seeding the 

algorithm with not-randomly generated initial spatial plans. 

K- means clustering is a machine learning technique aimed at partitioning a series of 𝑛 data 

into 𝑘 clusters. This is implemented through the Python module “SciKit-learn” (Pedregosa et 
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al., 2011; Buitinck et al., 2013) that allows the K-means clustering of all the available locations 

and finding the centroids of these clusters. Network analysis is then performed to calculate 

travel times from each available location and the closest cluster centroid (Figure 21). 

Subsequently, the available locations are ranked according to their proximity to the centroid 

of their cluster. 

When the initial population of solutions is created, available cells close to their cluster 

centroids are selected with a certain probability (set by the user), while the other locations 

are randomly selected from the Lookup variable. This procedure is meant to speed up the 

iterative process, and it is based on the assumption that cluster centroids are good locations 

in terms of accessibility. This is generally true; however, this procedure is only meant as a 

starting point in the search of Pareto-optimal solutions as it alone does not take into 

consideration any cost factor. The true value and the novelty of the methodology does not 

consist in the employment of one approach or the other (GA vs K-means), but in their coupling 

to make the most out of each technique exploiting their respective strengths and mitigating 

their shortcomings. 

Moreover, in addition to the innovative coupling of K-means clustering to enhance the 

performance of the Genetic Algorithm, other steps forward with respect to traditional spatial 

optimisation frameworks – and in particular with respect to Caparros-Midwood (2015)’s 

approach – costist in both methodological and technical aspects. From the software 

perspective, the RAO framework allows a better management of scenarios and input choices 

on behalf of the final user because of its flexibility and ease in switching from one scenario to 

another in the main module (refer to Figure 9 and to the GitHub main RAO script: 

github.com/fdlopane/RAO_HumberEstuary/blob/master/RAO.py). Also, the RAO fraweork 

provides a richer range of possible outputs datatypes (see the Outputs.py module in the 

GitHub repository github.com/fdlopane/RAO_HumberEstuary), a wider range of optimisation 

functions from which to choose (as shown in sections 5.5 and 6.5) which translate into 

additional Python functions available to the user in the Evaluation module. The case studies 

of Chapters 5 and 6 also showcased the wider range of possibilities in terms of acceptable 

input data formats that the RAO framework offers to the final user: according to the user’s a 

priori knowledge/data availability, the RAO framework is flexible enough to allow the user to 

decide wether to provide the available locations for resources allocation as an input csv file or 
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to allow the RAO framework to automatically define an availability raster providing shapefiles 

as input datasets to model the physical constraints of the studied area. The flexibility and 

transferability of the RAO frameworks translates into a methodological novelty: traditionally 

the spatial optimistion frameworks present in the literature (refer to Chapter 3) consist in 

bespoke models to solve a particular engineering problem; the RAO framework’s novelty, in 

this context, consists in its level of astraction which allows its applicability to quite different 

real life problems as shown in this thesis’ case studies: from emergency resources in the UK 

to healthcare facilities in New Zealand. 

Despite addressing complex spatial problems involving different modelling assumptions and 

allowing several options, the RAO framework is quite straightforward to run. To apply the 

framework to real-life problems, the final user has to perform 3 steps: 

1. Upload the data in the data folder; 

2. Run the Network analysis module; 

3. Set up the input variables and run the Main module. 

The first step involves uploading all the spatial data that are necessary to represent the case 

study, its constraints, the infrastructure networks and the potential disruptions to the road 

network that they might want to investigate. To ease the operation on behalf of the user, all 

the input data can be uploaded in the same “Data” folder even if they have different formats 

(e.g. shapefiles, csv, txt etc.). 

The second step is to run the Network analysis module. To do this, a Python compiler is used, 

and provided that the user uploaded the road network shapefile in the data folder, the only 

operation required is to hit the “run” button. No input parameters are required in this phase, 

as this module will produce a lookup txt file containing the travel times (in minutes) of all the 

road network nodes pairs evaluated using Dijkstra’s shortest path algorithm implemented 

through NetworkX (Hagberg et al., 2008). 

The third and final step consists in defining the input parameters and running the Main 

module. The input parameters are those defining the scenarios of each case study (e.g. see 

sections 5.5 and 6.5), but also those defining some constraints and inspection ranges (e.g. 

minimum and maximum number of warehouses/clinics/doctors, minimum distance between 

allocated assets etc.). Once all the input parameters are defined by typing their values in the 
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first section of the Python script, the user can select which scenario to considerate and run 

the code with the Python compiler. 

To evaluate different scenarios of the same case study, the user only has to repeat the final 

step (step 3) modifying the input parameters. A subfolder of the “Results” folder will be 

created for each run, avoiding overwriting or mixing up results from previous runs. 

The methodological choice to adopt a genetic algorithm for the multi-objective spatial 

optimisation procedure is explained in section 3.4.5. Regarding the software implementation, 

DEAP (Distributed Evolutionary Algorithms in Python) (Fortin et al., 2012) has been chosen 

over Pyevolve (Perone, 2009) and Pygene (McNab, 2011) (for more details, see section 4.4). 

Consequently, the evolution of the solutions is performed through DEAP by the application of 

the three evolutionary operators: selection (tools.selNSGA2), crossover (tools.cxTwoPoint) 

and mutation (tools.mutUniformInt) (as explained in Chapter 4). 

A limitation of this approach is the predetermined number of iterations of the algorithm. For 

the case studies analysed in Chapter 5 and 6, the model calibration showed that after 50 

generations, a convergence of the Pareto front was achieved. However, running the code 

several times to determine the appropriate number of iterations to implement is acceptable 

in a research context and for geographically limited case studies. For applications that would 

involve higher resolutions or bigger areas, longer run times would complicate the calibration 

process. Future development of the RAO framework would include the automatic termination 

of the iteration upon the achieving of the Pareto front’s convergence. 

Finally, another significant potential improvement on the software implementation front is 

represented by the development of a user interface that would allow the setting of input 

parameters and bring together the outputs in a single platform. In his regard, PyQt could 

represent a valid option for the development of a bespoke UI in Python (Harwani, 2018). 
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8. Conclusions 

The focus of this research work is strategic infrastructure services. The primary goal of this 

research is the development and demonstration of an optimisation-based decision support 

tool to help infrastructure operators and urban planners to identify strategies that improve 

the resilience of infrastructure services during disruptive natural hazards. 

As introduced in Chapter 1, In order to achieve this aim, the work has been structured around 

five objectives. The review of these objectives will be the focus of the following sections of 

this chapter. Finally, a conclusive section summarises the implications of this research basing 

on the discussion chapter and the analyses of the outcomes of the case studies presented in 

Chapters 5 and 6. 

 

8.1. Review of Objective 1: flood risk management and infrastructure resilience 

Objective 1 includes the review of flood risk management practice, to identify the conflicts 

and barriers that can occur in the allocation of resources to enhance infrastructure resilience. 

Objective 1 has been achieved in Chapter 2, which highlighted how natural disasters’ impacts 

on cities and infrastructure are predicted to increase as disastrous events are foreseen to 

increase in frequency and severity and because of the fact that global urban population is 

continuously arising (Global Commission on Adaptation, 2019; United Nations, 2019).  

Urban areas are therefore key locations in terms of vulnerability and resilience to natural 

disaster due to their concentration of residing population and infrastructure. Strategic 

infrastructure, in particular, is crucial for the normal functioning of urban environments in 

business as usual scenarios and even more so during emergencies (Cabinet Office and DEFRA, 

2016). 

Therefore, this research’s focus is on strategic infrastructure resilience to natural disasters (in 

particular floods) by proposing a multi-objective spatial optimisation methodology for urban 

planning and the allocation of resources in emergency response. 

The UK National Flood Resilience Review (Cabinet Office and DEFRA, 2016) explores the 

potential role of temporary flood defences not only as a ‘backup’ solution, but also as a valid 



 
242 

 

alternative to structural measures to take into consideration when designing flood mitigation 

strategies. It also explicitly declares the intention of the Environment Agency not only to 

increase the currently available stock of temporary flood defences, but also to identify 

“further strategic storage sites across the country, enabling temporary barrier deployment 

anywhere in England within 12 hours” (Cabinet Office and DEFRA, 2016). This is the focus of 

the main case study of this research work: the optimal allocation of storing space for 

temporary flood defences (see Objective 4). 

A second case study is also explored to test the versatility and transferability of the 

optimisation methodology. The RAO framework (see Objective 3) is applied to a different kind 

of resource allocation problem: clinics and general practitioners in rural areas. Also in this 

instance, a business as usual scenario is compared to a disruption scenario to assess 

infrastructure’s resilience to potential disruptions due to floods or landslides (most common 

natural hazards in the case study region). 

 

8.2. Review of Objective 2: optimisation techniques 

The review optimisation techniques, in particular their application to spatial resource 

allocation problems, to identify a suitable approach constitutes Objective 2 of this research. 

This has been addressed in Chapter 3, where the mathematical formulation of optimisation 

problems is initially presented, followed by a review of different techniques available for 

spatial problems. 

The literature presents a wide range of different optimisation applications developed to solve 

different problems. The focus of the review presented in Chapter 3 is on spatial applications 

as this is the main interest of this work. Even narrowing down the field only to spatial 

problems, the available approaches are numerous; this is why section 3.3 further limits the 

research to multi-objective optimisation problems and section 3.4 presents an overview of 

the most popular solutions adopted in the past to solve this kind of problems. 

In light of this review, heuristics appeared as the most suitable technique for spatial problems 

involving big data and/or high resolutions (as the one intended to be explored in this 

research). For this reason, Pareto optimisation has been identified as the most appropriate 

approach to address the multi-objective spatial optimisation problem of this work. Then, 
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Genetic Algorithms (section 3.4.5) have been identified as one of the best available tools to 

address the Pareto multi-objective spatial optimisation. 

 

8.3. Review of Objective 3: the RAO framework 

Objective 3 consists in the development of a RAO framework that generates optimal spatial 

plans, to support infrastructure and urban planners to meet criteria identified in objective 2. 

The Resources Allocation Optimisation framework is presented in Chapter 4. Initially, the 

multi-objective spatial nature of the optimisation is declared and defined. Section 4.2 then 

presents the framework architecture. The structure is summarised in the diagram represented 

in Figure 8; here, all the different components and stages are shown in a flow chart. 

In order to ease its handling, clarity and intelligibility, the RAO framework has been structured 

in six phases: 1) the initialisation phase, 2) the iterator, 3) the evolutionary operator, 4) the 

constraints and evaluation phase, 5) the MOPO set maintenance and finally 6) the output 

phase. The relationship among these components is not linear, as phases 3, 4, and 5 can be 

considered as sub-components of the iterator. However, they are presented separately to 

ease the comprehension of the structure and the understanding of each component's 

function. 

Sections 4.3 and 4.4 focus on the choice of the development environment and the type of 

adopted genetic algorithm. Python is chosen as the reference programming language because 

of its accessibility, its ease of interface with ArcGIS and its instrumental Geospatial Data 

Abstraction Library (GDAL), together with the fact that it has been used in a wide part of the 

literature on optimisation applications in general and in particular on spatial allocation 

optimisation. Python also offers the Distributed Evolutionary Algorithms in Python (DEAP) 

module that is used for the implementation of the μ+λ strategy (Fortin et al., 2012) adopted 

by the RAO framework. 

The RAO framework formulation represents the theoretical core of this research as it 

embodies the optimisation methodology for solving multi-objective optimisation problems 

addressed in the case studies (Objective 4). 
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8.4. Review of Objective 4: case studies 

Objective 4 entails the application and demonstration of the RAO approach to different case 

studies to demonstrate its utility and transferability. This is addressed in Chapters 5 and 6. 

Chapter 5 presents a UK case study regarding temporary flood defences storing space 

optimisation in the Humber Estuary region. For this case study, the RAO provides solutions 

that balance the trade-off between accessibility to emergency resources maximisation and 

costs minimisation. The RAO framework is applied to identify Pareto-optimal warehouses 

locations for temporary flood defences storing space. The focus is on strategic infrastructure 

networks as they are identified as priority assets to be protected in case of flooding. The 

results consist of spatial plans showing different options with a different number of facilities 

for storing emergency response resources. Distances are evaluated as travel times on the road 

network, and the warehouses' locations are optimised to minimise transportation and 

deployment times together with the simultaneous minimisation of costs (i.e. number and 

dimension of storing facilities). 

Chapter 6 presents a New Zealand case study, where the RAO is applied to a different problem 

with a similar mathematical formulation: the spatial optimisation of healthcare infrastructure 

assets allocation in Northland. The RAO framework here provides Pareto-optimal spatial plans 

of locations for GP clinics to maximise accessibility and resilience in case of road closures due 

to natural disasters. 

The Northland instance proves the transferability of the methodology to different case study 

areas and different multi-objective spatial optimisation problems. Further development of 

this work could either improve the performance and refine the case studies analysed or apply 

the RAO framework to new case studies in different regions, at different scales or to solve 

different problems. 

 

8.5. Review of Objective 5: cases studies’ results analysis 

The final objective is the analysis of the results from case studies and discussion of the utility 

of spatial optimisation to help improve infrastructure resilience. The results of the RAO 

framework come in two forms: Pareto fronts in the solution space and maps representing the 

different spatial plans forming the Pareto front. 
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The Pareto fronts are useful as all the inspected solutions are plotted in the solution space 

defined by the two objective functions (i.e. minimisation of costs and minimisation of travel 

times). The solutions that form the Pareto front are the ones that outperform all the others in 

at least one objective. In fact, Pareto-optimisation produces a portfolio of equally optimal 

solutions, and it is up to the end-user to choose which one to adopt or which part of the Pareto 

front to inspect. 

Maps allow analysing every single Pareto-optimal solution. In general, solutions from the top-

left area of the Pareto-front will result in maps with many allocated assets with short travel 

times (but in general higher costs) while the solutions from the bottom-right area of the 

Pareto-front result in more centralised spatial plans with higher associated travel times (but 

lower costs). 

In terms of results interpretation, as highlighted in section 7.3, the Humber Estuary case study 

represents a novel approach for flood management in this area for three main reasons. First, 

temporary flood defences are not considered in current flood management strategies if not 

for sandbags in emergency situations, which, however, are deprecated by the National 

Resilience Review (Cabinet Office and DEFRA, 2016) and, in case, as optional citizens’ private 

initiative to protect their dwellings. Second, this research work provides the only regional 

analysis of this area, as there is no unique flood management strategy for this region at this 

scale because the Humber Estuary is divided into three different local authorities with 

autonomous and independent policies in terms of flood protection. Furthermore, the novelty 

also resides in considering strategic infrastructure as priorities in flood management strategies 

- as advocated by Cabinet Office and DEFRA (2016) - as dwellings are very often prioritised in 

this context. 

For the Northland case study, it is easier to measure the benefits of the application of the RAO 

framework as it is possible to compare the results with the baseline represented by the current 

distribution of clinics and general practitioners in the area. In this regard, Table 23 and Table 

24 provide an overview of all the solutions of the different analysed scenarios. The served 

population’s travel times are compared to the current clinics and doctors layout, i.e. the 

baseline for the assessment of the improvements provided by the different Pareto-optimal 

solutions. Relative percentage increments (or reductions) are measured against the current 

service in Northland (see Figure 91 and Table 12). 
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The analysis of these results is presented in section 6.6 and 7.3; improvements with respect 

to the baseline are evaluated in terms of accessibility, in fact, it is possible to observe the 

percentage increases (or decreases) of the population served below different travel time 

thresholds (i.e. 10 min, 20 min, 30 min, 40 min and 50 min). According to how many doctors 

and clinics are allocated (Table 23 and Table 24 also show this information in terms of 

percentage increment), the served population percentages change, and they can be compared 

to the baseline. These analyses are summarised in the form of heatmaps in Figure 112. This 

information is not meant to have a prescriptive nature, but the final user should consider it as 

a reference for future investments or a reorganisation of the current situation for more cost-

effective management of the healthcare infrastructure of the region. 

 

8.6. Implications of the research 

As explored in Chapter 3, a series of available optimisation techniques are currently available 

and extensive literature provides methodologies and applications to different problems. 

However, a spatial optimisation framework explicitly designed to solve resources allocation in 

an emergency response context is not present in the literature. 

The focus of this piece of research is strategic infrastructure services, as they underpin every 

human and economic activity in urban areas under normal conditions; they are also even more 

crucial when facing natural disasters or in any kind of emergency response situation. For this 

reason, different scenarios have been evaluated considering a business as usual condition of 

the road network and its potential disruption due to natural disasters like floods or landslides. 

This allows us to make comparisons among the different conditions and draw conclusions on 

the resilience of different infrastructure services. 

The digital revolution provides us with unprecedented tools for complex analyses involving 

big data, together with a likewise unprecedented computational power availability. 

Nonetheless, some problems still involve too big data or too complex analyses to be solved 

with mathematical exact methods in a reasonable time. This is why this work makes use of a 

heuristic approach that allows addressing multi-objective spatial optimisation problems 

exploring different scenarios. 
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This work applies spatial optimisation to infrastructure resilience and sustainability in 

emergency planning problems. It addresses problems by proposing a RAO framework meant 

as a potential support tool for urban planners and decision-makers when designing emergency 

management strategies. Spatial optimisation has the potential to support planning decisions 

that efficiently make use of the available means, ultimately saving money and resources, 

which implicitly implies cost-efficiency and sustainability. 

The beneficiaries of the presented support tool are local authorities facing spatial planning 

decisions in the presence of multiple conflicting objectives. Engineers and infrastructure 

operators can benefit from this research as the RAO framework is designed to be flexible 

enough to adapt to different case studies and different situations. The outcomes in the form 

of diagrams and maps ease the comparison between different optimal solutions and allow 

visualising sensitivity analyses of particular parameters (for example, comparing accessibility 

maps when varying a single - or even multiple - parameter of interest). 

This study will benefit planners and public agencies because it represents a novel perspective 

in infrastructure management strategies involving a wide-scale spatial optimisation approach 

to assess multiple scenarios to improve current infrastructure services (as in the Northland 

instance) or even implement new ones (like in the case of the Humber Estuary, where no in-

place strategy is present at this scale for temporary flood defences). 

In addition to the practical benefits to the potential end-users of the RAO framework, this 

work also aims at representing an inspiration for the development of other support tools for 

decision-making processes. We, as engineers and researchers, have now the means to build 

digital tools to help to undertake better decisions. When these tools are applied to 

infrastructure improvements, the whole society benefits for having more resilient 

infrastructure services for two main reasons: higher safety levels, which imply lower impacts 

of natural disasters on people and economies, and more sustainable emergency response 

systems, since, as highlighted in Chapter 2, resilient systems require fewer resources and 

efforts to recover after the occurrence of natural disasters. 

Optimality is a concept that can hardly ever be achieved in real-life problems because they are 

typically open systems; nevertheless, it should be our duty at least to do our best to identify 

and design solutions that provide the best possible outcomes. For complex and 
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computationally demanding problems such as the urban planning and emergency response 

problem presented here, this thesis has shown how application of spatial optimisation 

algorithms can lead to more cost-effective strategies and ultimately more resilient and 

sustainable infrastructure. 

  



 
249 

 

9. References 

Aarts, E., Korst, J. and Michiels, W. (2005) 'Simulated Annealing', in Burke, E.K. and Kendall, G. 
(eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support 
Techniques. Boston, MA: Springer US, pp. 187-210. 

Adachi, T. (2009) 'Flood damage mitigation efforts in Japan'. April 2020. Available at: 
https://www.mlit.go.jp/river/basic_info/english/pdf/conf_09-0.pdf. 

Adshead, D., Thacker, S., Fuldauer, L.I. and Hall, J.W. (2019) 'Delivering on the Sustainable 
Development Goals through long-term infrastructure planning', Global Environmental 
Change, 59, p. 101975. 

Aerts, J., Botzen, W., Bowman, M., Dircke, P. and Ward, P. (2011) Climate Adaptation and 
Flood Risk in Coastal Cities. London: Routledge. 

Aerts, J., Van Herwijnen, M., Janssen, R. and Stewart, T. (2005) 'Evaluating Spatial Design 
Techniques for Solving Land-use Allocation Problems', Journal of Environmental Planning and 
Management, 48(1), pp. 121-142. 

Aerts, J.C.J.H., Eisinger, E., Heuvelink, G.B.M. and Stewart, T.J. (2003) 'Using Linear Integer 
Programming for Multi-Site Land-Use Allocation', Geographical Analysis, 35(2), pp. 148-169. 

Aerts, J.C.J.H. and Heuvelink, G.B.M. (2002) 'Using simulated annealing for resource 
allocation', International Journal of Geographical Information Science, 16(6), pp. 571-587. 

Agnolucci, P., Akgul, O., McDowall, W. and Papageorgiou, L.G. (2013) 'The importance of 
economies of scale, transport costs and demand patterns in optimising hydrogen fuelling 
infrastructure: An exploration with SHIPMod (Spatial hydrogen infrastructure planning 
model)', International Journal of Hydrogen Energy, 38(26), pp. 11189-11201. 

Alhamwi, A., Medjroubi, W., Vogt, T. and Agert, C. (2019) 'Development of a GIS-based 
platform for the allocation and optimisation of distributed storage in urban energy systems', 
Applied Energy, 251, p. 113360. 

Álvarez-Miranda, E., Salgado-Rojas, J., Hermoso, V., Garcia-Gonzalo, J. and Weintraub, A. 
(2020) 'An integer programming method for the design of multi-criteria multi-action 
conservation plans', Omega, 92, p. 102147. 

American Society of Civil Engineers (2017) Levees - Infrastructure Report Card. [Online]. 
Available at: https://www.infrastructurereportcard.org/cat-item/levees/. 

Arrighi, C. and Castelli, F. (2020)  Cham. Springer International Publishing. 

Arthur, J.L. and Nalle, D.J. (1997) 'Clarification on the use of linear programming and GIS for 
land-use modelling', International Journal of Geographical Information Science, 11(4), pp. 397-
402. 

Australian Emergency Management Institute (2013) Managing the floodplain: a guide to best 
practice in flood risk management in Australia. 

https://www.mlit.go.jp/river/basic_info/english/pdf/conf_09-0.pdf
https://www.infrastructurereportcard.org/cat-item/levees/


 
250 

 

Axelrod, R.M. and Cohen, M.D. (2000) Harnessing complexity : organizational implications of 
a scientific frontier. New York (USA): Basic Books. 

Bai, Q. (2010) 'Analysis of Particle Swarm Optimization Algorithm', Computer and Information 
Science, 3(1), pp. 180-184. 

Baskent, E.Z. and Keles, S. (2005) 'Spatial forest planning: A review', Ecological Modelling, 
188(2), pp. 145-173. 

Batty, M. (2018) Inventing future cities. MIT Press. 

Beham, A., Karder, J., Kronberger, G., Wagner, S., Kommenda, M. and Scheibenpflug, A. (2014) 
'Scripting and Framework Integration in Heuristic Optimization Environments', 2014 Annual 
Conference on Genetic and Evolutionary Computation. Vancouver. pp. pp. 1109–1116. 

Berardi, L., Giustolisi, O., Savic, D.A. and Kapelan, Z.S. (2009) 'An effective multi-objective 
approach to prioritisation of sewer pipe inspection', Water Science and Technology, 60(4), pp. 
841-850. 

Bieupoude, P., Azoumah, Y. and Neveu, P. (2012) 'Optimization of drinking water distribution 
networks: Computer-based methods and constructal design', Computers, Environment and 
Urban Systems, 36(5), pp. 434-444. 

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Rouault, E., 
Warmerdam, F., Ooms, J. and Rundel, C. (2019) Bindings for the 'Geospatial' Data Abstraction 
Library, 1.4-6 [Computer program]. 

Blake, E.S. and Zelinsky, D.A. (2018) National Hurricane Center Tropical Cyclone Report: 
Hurricane Harvey. U.S. Department of Commerce. 

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) From Natural to Artificial Swarm 
Intelligence. Oxford University Press, Inc. 

Bröker, O., Chinellato, O. and Geus, R. (2005) 'Using Python for large scale linear algebra 
applications', Future Generation Computer Systems, 21(6), pp. 969-979. 

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., 
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vanderplas, J., Joly, A., Holt, B. and 
Varoquaux, G. (2013) 'API design for machine learning software: experiences from the scikit-
learn project', European Conference on Machine Learning and Principles and Practices of 
Knowledge Discovery in Databases. 

Cabinet Office (2011) Keeping the Country Running: Natural Hazards and Infrastructure. 
London (UK): Civil Contingencies Secretariat, Cabinet Office. [Online]. Available at: 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_
data/file/61342/natural-hazards-infrastructure.pdf. 

Cabinet Office and DEFRA (2016) National flood resilience review. Department for 
Environment, Food & Rural Affairs, Cabinet Office, The Rt HonBen Gummer MP, The Rt Hon 
Andrea Leadsom MP. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/61342/natural-hazards-infrastructure.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/61342/natural-hazards-infrastructure.pdf


 
251 

 

Cabrera, J.S. and Lee, H.S. (2018) 'Impacts of climate change on flood-prone areas in Davao 
Oriental, Philippines', Water (Switzerland), 10(7). 

Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L. and Chen, J. (2011) 'Spatial multi-objective land use 
optimization: extensions to the non-dominated sorting genetic algorithm-II', International 
Journal of Geographical Information Science, 25(12), pp. 1949-1969. 

Cao, K., Huang, B., Wang, S. and Lin, H. (2012) 'Sustainable land use optimization using 
Boundary-based Fast Genetic Algorithm', Computers, Environment and Urban Systems, 36(3), 
pp. 257-269. 

Caparros-Midwood, D. (2015) Spatial optimization of multiple planning objectives for 
sustainable urban development. PhD thesis. Newcastle University. 

Caparros-Midwood, D., Barr, S. and Dawson, R. (2017) 'Spatial Optimization of Future Urban 
Development with Regards to Climate Risk and Sustainability Objectives', Risk Analysis. 

Caparros-Midwood, D., Dawson, R. and Barr, S. (2016) 'Optimization of urban spatial 
development against flooding and other climate risks, and wider sustainability objectives', 
FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. Lyon. 

Caparros-Midwood, D., Dawson, R. and Barr, S. (2019) 'Low Carbon, Low Risk, Low Density: 
Resolving choices about sustainable development in cities', Cities, 89, pp. 252-267. 

Casalino, L.P., Devers, K.J., Lake, T.K., Reed, M. and Stoddard, J.J. (2003) 'Benefits of and 
barriers to large medical group practice in the United States', Arch Intern Med, 163(16), pp. 
1958-64. 

Chen, A.S., Hammond, M.J., Djordjević, S., Butler, D., Khan, D.M. and Veerbeek, W. (2016) 
'From hazard to impact: flood damage assessment tools for mega cities', Natural Hazards, 
82(2), pp. 857-890. 

Chuvieco, E. (1993) 'Integration of linear programming and GIS for land-use modelling', 
International Journal of Geographical Information Systems, 7(1), pp. 71-83. 

Climate Central and ICF International (2015) States At Risk: America’s Preparedness Report 
Card 2015. 

Coello Coello, C.A. (1999) A Survey of Constraint Handling Techniques used with Evolutionary 
Algorithms. Laboratorio Nacional de Informatica Avanzada Rébsamen 80, Xalapa, Veracruz 
91090, México. 

Comber, A., Brunsdon, C., Hardy, J. and Radburn, R. (2009) 'Using a GIS—Based Network 
Analysis and Optimisation Routines to Evaluate Service Provision: A Case Study of the UK Post 
Office', Applied Spatial Analysis and Policy, 2(1), pp. 47-64. 

Costamagna, E., Fanni, A. and Giacinto, G. (1998) 'A Tabu Search algorithm for the optimisation 
of telecommunication networks', European Journal of Operational Research, 106(2), pp. 357-
372. 



 
252 

 

Coulthard, T.J. and Frostick, L.E. (2010) 'The Hull floods of 2007: implications for the 
governance and management of urban drainage systems', Journal of Flood Risk Management, 
3(3), pp. 223-231. 

CRED and UNISDR (2015) The human cost of weather-related disasters 1995-2015. 

Cromley, R.G. and Hanink, D.M. (1999) 'Coupling land use allocation models with raster GIS', 
Journal of Geographical Systems, 1(2), pp. 137-153. 

Czyzżak, P. and Jaszkiewicz, A. (1998) 'Pareto simulated annealing—a metaheuristic technique 
for multiple-objective combinatorial optimization', Journal of Multi-Criteria Decision Analysis, 
7(1), pp. 34-47. 

D'Acci, L. (2019) 'Quality of urban area, distance from city centre, and housing value. Case 
study on real estate values in Turin', Cities, 91, pp. 71-92. 

Dawson, R. (2007) 'Re-engineering cities: a framework for adaptation to global change', 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 
Sciences, 365(1861), pp. 3085-3098. 

DEAP Project (2009) DEAP 1.3.0 Documentation. Available at: 
https://deap.readthedocs.io/en/master/ (Accessed: Oct 28, 2019). 

Deb, K. (2000) 'An efficient constraint handling method for genetic algorithms', Computer 
Methods in Applied Mechanics and Engineering, 186(2), pp. 311-338. 

Deb, K. (2001) Multi-objective optimization using evolutionary algorithms. 1st ed.. edn. 
Chichester: Chichester : John Wiley &amp; Sons. 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) 'A fast and elitist multiobjective 
genetic algorithm: NSGA-II', Evolutionary Computation, IEEE Transactions on, 6(2), pp. 182-
197. 

Dijkstra, L., Hamilton, E., Lall, S. and Wahba, S. (2020) 'How do we define cities, towns, and 
rural areas?', World Bank Blogs. 

Dijkstra, L. and Poelman, H. (2014) 'A harmonised definition of cities and rural areas: the new 
degree of urbanisation'. 

Dowsland, K.A. (1993) 'Some experiments with simulated annealing techniques for packing 
problems', European Journal of Operational Research, 68(3), pp. 389-399. 

Dowsland, K.A. (1996) 'Genetic Algorithms-a Tool for OR?', Journal of the Operational 
Research Society, 47(4), p. 550. 

Du, J., Cai, Z. and Chen, Y. 4 (2007) 'A Sorting Based Algorithm for Finding a Non-dominated 
Set in Multi-objective Optimization'. pp. 436-440. 

https://deap.readthedocs.io/en/master/


 
253 

 

East Reading of Yorkshire Council (2015) Local flood risk management strategy 2015-2027. 
[Online]. Available at: https://www.eastriding.gov.uk/council/plans-and-policies/other-plans-
and-policies-information/flood-risk/local-flood-risk-management-strategy/. 

Eastman, J.R., Jin, W., Kyem, P.A.K. and Toledano, J. (1995) 'Raster procedures for multi-
criteria/multi-objective decisions', Photogrammetric Engineering & Remote Sensing, (61), pp. 
539-547. 

Environment Agency (2014) Flood and coastal erosion risk management. Long-term 
investment scenarios (LTIS) 2014. 

Environment Agency (2015) NAFRA April 2015 - Appendix K people at risk. 

Environment Agency (2016) Humber river basin district flood risk management plan 2015 to 
2021. 

Environment Agency (2019) Flood and coastal risk management: Long-term investment 
scenarios (LTIS) 2019. 

Environment Agency and DEFRA (2011) 'Understanding the risks, empowering communities, 
building resilience: the national flood and coastal erosion risk management strategy for 
England'. 

ESRI (2011) ArcGIS Desktop: Release 10 [Computer program]. 

European Commission, Eurostat, Directorate-General for Regional and Urban Policy, 
International Labour Organization, Food and Agriculture Organization, Organisation for 
Economic Co-operation and Development, UN-Habitat and Bank, W. (2020) A 
recommendation on the method to delineate cities, urban and rural areas for international 
statistical comparisons. 

FEMA (online) 'The National Flood Insurance Program'. April 2020. Available at: 
https://www.fema.gov/national-flood-insurance-program. 

Feng, C.-M. and Lin, J.-J. (1999) 'Using a genetic algorithm to generate alternative sketch maps 
for urban planning', Computers, Environment and Urban Systems, 23(2), pp. 91-108. 

Feng, X., Zhu, X., Qian, X., Jie, Y., Ma, F. and Niu, X. (2019) 'A new transit network design study 
in consideration of transfer time composition', Transportation Research Part D: Transport and 
Environment, 66, pp. 85-94. 

Ferranti, E., Chapman, L. and Whyatt, D. (2017) 'A Perfect Storm? The collapse of Lancaster's 
critical infrastructure networks following intense rainfall on 4/5 December 2015', Weather, 
72(1), pp. 3-7. 

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966) Artificial intelligence through simulated 
evolution. Oxford, England: John Wiley & Sons. 

https://www.eastriding.gov.uk/council/plans-and-policies/other-plans-and-policies-information/flood-risk/local-flood-risk-management-strategy/
https://www.eastriding.gov.uk/council/plans-and-policies/other-plans-and-policies-information/flood-risk/local-flood-risk-management-strategy/
https://www.fema.gov/national-flood-insurance-program


 
254 

 

Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Chapin, T. and Rockström, J. (2010) 
'Resilience Thinking: Integrating Resilience, Adaptability and Transformability', Ecology and 
Society, 15(4). 

Fortin, F.-A., De Rainville, F.o.-M., Gardner, M.-A., Parizeau, M. and Gagńe, C. (2012) 'DEAP: 
Evolutionary algorithms made easy', Journal of Machine Learning Research, 13, pp. 2171-
2175. 

Fourer, R., Gay, D.M. and Kernighan, B.W. (2003) AMPL: A Modeling Language for 
Mathematical Programming: second edition. Brooks/Cole Publishing Company. 

Fu, G., Kapelan, Z.S., Kasprzyk, J. and Reed, P. (2012) 'Optimal Design of Water Distribution 
Systems Using Many-Objective Visual Analytics', Journal of Water Resources Planning and 
Management, 139(6), pp. 624-633. 

Garschagen, M. and Romero-Lankao, P. (2015) 'Exploring the relationships between 
urbanization trends and climate change vulnerability', Climatic Change, 133(1), pp. 37-52. 

GDAL/OGR contributors (2019) GDAL/OGR Geospatial Data Abstraction software Library 
[Computer program]. Available at: https://gdal.org. 

Gencer, E. (2017) Local government powers for disaster risk reduction: A study on local-level 
authority and capacity for resilience. 

Gibson, M.J., Chen, A.S., Khoury, M., Vamvakeridou-Lyroudia, L.S., Stewart, D., Wood, M., 
Savić, D.A. and Djordjević, S. (2019) 'Case study of the cascading effects on critical 
infrastructure in Torbay coastal/pluvial flooding with climate change and 3D visualisation', 
Journal of Hydroinformatics, 22(1), pp. 77-92. 

Global Commission on Adaptation (2019) Adapt now: a global call for leadership on climate 
resilience. 

Glover, F. (1986) 'Future paths for integer programming and links to artificial intelligence', 
Computers & Operations Research, 13(5), pp. 533-549. 

Glover, F. (1989) 'Tabu Search—Part I', ORSA Journal on Computing, 1(3), pp. 190-206. 

Glover, F. (1990) 'Tabu Search—Part II', ORSA Journal on Computing, 2(1), pp. 4-32. 

Goldberg, D.E. (1989) Genetic algorithms in search, optimization, and machine learning. 
Reading, Mass.: Reading, Mass. : Addison-Wesley Pub. Co. 

Goldberg, D.E. and Deb, K. (1991) 'A comparison of selection schemes used in genetic 
algorithms', in  Foundations of Genetic Algorithms. San Mateo, Calif. : M. Kaufmann Publishers, 
pp. 69-93. 

Goodyear-Smith, F. and Janes, R. (2008) 'New Zealand rural primary health care workforce in 
2005: more than just a doctor shortage', Aust J Rural Health, 16(1), pp. 40-6. 

https://gdal.org/


 
255 

 

Greater London Authority (2021) The London Plan: The Spatial Development Strategy for 
Greater London. London (UK): Greater London Authority. [Online]. Available at: 
https://www.london.gov.uk/sites/default/files/the_london_plan_2021.pdf. 

Hagberg, A.A., Schult, D.A. and Swart, P.J. (2008) 7th Python in Science Conference (SciPy 
2008). Pasadena, CA. 

Harwani, B.M. (2018) Qt5 Python GUI Programming Cookbook: Building Responsive and 
Powerful Cross-Platform Applications with Pyqt. Birmingham: Birmingham: Packt Publishing, 
Limited. 

Hebrard, E., O'Mahony, E. and O'Sullivan, B. (2010) 'Constraint programming and 
combinatorial optimisation in numberjack', in  Integration of AI and OR techniques in 
Constraint Programming for Combinatiorial Optimization Problems., pp. 181-185. 

Hendrickson, C.T. (1989) Project management for construction / Chris Hendrickson, Tung Au. 
Englewood Cliffs, N.J.: Englewood Cliffs, N.J. : Prentice Hall. 

Henríquez, F.C. and Castrillón, S.V. (2011) 'A quality index for equivalent uniform dose', Journal 
of medical physics, 36(3), pp. 126-132. 

Heymann, Y., Steenmans, C., Croisille, G., Bossard, M., Lenco, M., Wyatt, B., Weber, J.-L., 
O'Brian, C., Cornaert, M.-H. and Sifakis, N. (1994) Corine land cover : guide technique / ed. 
Commissions of the European Communities, Brussels. Communities, C.o.t.E. 

Holland, J.H. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with 
Applications to Biology, Control and Artificial Intelligence. MIT Press. 

Holling, C.S. (1973) 'Resilience and Stability of Ecological Systems', Annual Review of Ecology 
and Systematics, 4(1), pp. 1-23. 

Holling, C.S. (1996) 'Engineering Resilience versus Ecological Resilience', in Engineering, N.A.o. 
(ed.) Engineering Within Ecological Constraints. Washington, DC: The National Academies 
Press. 

Hu, X., Pant, R., Hall, J.W., Surminski, S. and Huang, J. (2019) 'Multi-Scale Assessment of the 
Economic Impacts of Flooding: Evidence from Firm to Macro-Level Analysis in the Chinese 
Manufacturing Sector', Sustainability, 11(7). 

Huang, G. (2014) 'A Comparative Study on Flood Management in China and Japan', Water, 
6(9), pp. 2821-2829. 

Hull City Council (2015) Local flood risk management strategy. 

Hunter, J.D. (2007) 'Matplotlib: A 2D Graphics Environment', Computing in Science & 
Engineering, 9(3), pp. 90-95. 

IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation. Cambridge, UK, and New York, NY, USA: The Intergovernmental Panel on Climate 
Change (IPCC) Press, C.U. 

https://www.london.gov.uk/sites/default/files/the_london_plan_2021.pdf


 
256 

 

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, 
Switzerland: IPCC. 

Jaeggi, D.M., Parks, G.T., Kipouros, T. and Clarkson, P.J. (2008) 'The development of a multi-
objective Tabu Search algorithm for continuous optimisation problems', European Journal of 
Operational Research, 185(3), pp. 1192-1212. 

Jiang-Ping, W. and Qun, T. (2009) ISECS International Colloquium on Computing, 
Communication, Control, and Management. 

Jones, D.F., Mirrazavi, S.K. and Tamiz, M. (2002) 'Multi-objective meta-heuristics: An overview 
of the current state-of-the-art', European Journal of Operational Research, 137(1), pp. 1-9. 

Jordahl, K., Van den Bossche, J., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., 
Tratner, J., Perry, M., Garcia Badaracco, A., Farmer, C., Hjelle, G.A., Snow, A.D., Cochran, M., 
Gillies , S., Culbertson, L., Bartos, M., Eubank, N., maxalbert, Bilogur, A., Rey, S., Ren, C., 
Arribas-Bel, D., Wasser, L., Wolf, L.J., Journois, M., Wilson, J., Greenhall, A., Holdgraf, C., Filipe 
and Leblanc, F. (2020) geopandas/geopandas: v0.8.1 (Version v0.8.1) [Computer program]. 
Zenodo. Available at: https://doi.org/10.5281/zenodo.3946761. 

Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2005) 'Multiobjective design of water distribution 
systems under uncertainty', Water Resources Research, 41. 

Kaufmann, M., van Doorn-Hoekveld, W., Gilissen, H.K. and van Rijswick, M. (2016) Analysing 
and evaluating flood risk governance in the Netherlands. 

Kelly, E. and Stoye, G. (2014). 

Kelman, I. (2017) 'Linking disaster risk reduction, climate change, and the sustainable 
development goals', Disaster Prevention and Management: An International Journal, 26(3), 
pp. 254-258. 

Kennedy, J. and Eberhart, R. (1995) Proceedings of ICNN'95 - International Conference on 
Neural Networks. 27 Nov.-1 Dec. 1995. 

Kepaptsoglou, K. and Karlaftis, M. (2009) 'Transit Route Network Design Problem: Review', 
Journal of Transportation Engineering, 135(8), pp. 491-505. 

Khalili-Damghani, K., Aminzadeh-Goharrizi, B., Rastegar, S. and Aminzadeh-Goharrizi, B. 
(2014) 'Solving land-use suitability analysis and planning problem by a hybrid meta-heuristic 
algorithm', International Journal of Geographical Information Science, pp. 1-27. 

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) 'Optimization by Simulated Annealing', 
Science, 220(4598), pp. 671-680. 

Knowles, J.D. and Corne, D.W. (2000) 'Approximating the nondominated front using the 
Pareto Archived Evolution Strategy', Evolutionary computation, 8(2), p. 149. 

https://doi.org/10.5281/zenodo.3946761


 
257 

 

Konak, A., Coit, D.W. and Smith, A.E. (2006) 'Multi-objective optimization using genetic 
algorithms: A tutorial', Reliability Engineering and System Safety, 91(9), pp. 992-1007. 

Larrue, C., Bruzzone, S., Lévy, L., Gralepois, M., Schellenberger, M., Trémorin, J.-B., Fournier, 
M., Manson, C. and Thuillier, T. (2016) Analysing and evaluating Flood Risk Governance in 
France: from State Policy to Local Strategies. Rapport national. 

Leitch, S., Dovey, S.M., Samaranayaka, A., Reith, D.M., Wallis, K.A., Eggleton, K.S., 
McMenamin, A.W., Cunningham, W.K., Williamson, M.I., Lillis, S. and Tilyard, M.W. (2018) 
'Characteristics of a stratified random sample of New Zealand general practices', J Prim Health 
Care, 10(2), pp. 114-124. 

Li, L.J., Huang, Z.B. and Liu, F. (2009) 'A heuristic particle swarm optimization method for truss 
structures with discrete variables', Computers & Structures, 87(7), pp. 435-443. 

Li, X. and Parrott, L. (2016) 'An improved Genetic Algorithm for spatial optimization of multi-
objective and multi-site land use allocation', Computers, Environment and Urban Systems, 59, 
pp. 184-194. 

Liang, L.Y., Thompson, R.G. and Young, D.M. (2004) 'Optimising the design of sewer networks 
using genetic algorithms and tabu search', Engineering, Construction and Architectural 
Management, 11(2), pp. 101-112. 

Ligmann-Zielinska, A., Church, R. and Jankowski, P. (2006) 'Development Density-Based 
Optimization Modeling of Sustainable Land Use Patterns', in Riedl, A., Kainz, W. and Elmes, 
G.A. (eds.) Progress in Spatial Data Handling: 12th International Symposium on Spatial Data 
Handling. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 881-896. 

Ligmann-Zielinska, A. and Jankowski, P. (2007) 'Agent-Based Models as Laboratories for 
Spatially Explicit Planning Policies', Environment and Planning B: Planning and Design, 34(2), 
pp. 316-335. 

Ligmann‐Zielinska, A., Church, R. and Jankowski, P. (2005) 'Sustainable Urban Land Use 
Allocation With Spatial Optimization', 8th ICA Workshop on Generalisation and Multiple 
Representation. 

Ligmann‐Zielinska, A., Church, R.L. and Jankowski, P. (2008) 'Spatial optimization as a 
generative technique for sustainable multiobjective land‐use allocation', International Journal 
of Geographical Information Science, 22(6), pp. 601-622. 

Liu, Y., Tang, W., He, J., Liu, Y., Ai, T. and Liu, D. (2015) 'A land-use spatial optimization model 
based on genetic optimization and game theory', Computers, Environment and Urban 
Systems, 49, pp. 1-14. 

Lofberg, J. (2004) 'YALMIP : a toolbox for modeling and optimization in MATLAB', 2004 IEEE 
International Symposium on Computer Aided Control Systems Design. Taipei, Taiwan. pp. 284-
289. 

Loonen, W., Heuberger, P. and Kuijpers-Linde, M. (2007) 'Spatial Optimisation in Land-Use.', 
in  Modelling Land Use Change: Progress and Applications. 



 
258 

 

Lopane, F.D., Barr, S., James, P. and Dawson, R. (2019) 'Optimization of resource storage 
location for managing flood emergencies', 2nd International Conference on Natural Hazards 
& Infrastructure. Chania (GR). 

Lorenzo-Lacruz, J., Amengual, A., Garcia, C., Morán-Tejeda, E., Homar, V., Maimó-Far, A., 
Hermoso, A., Ramis, C. and Romero, R. (2019) 'Hydro-meteorological reconstruction and 
geomorphological impact assessment of the October 2018 catastrophic flash flood at Sant 
Llorenç, Mallorca (Spain)', Nat. Hazards Earth Syst. Sci., 19(11), pp. 2597-2617. 

Lu, Q., Chang, N.-B., Joyce, J., Chen, A.S., Savic, D.A., Djordjevic, S. and Fu, G. (2018) 'Exploring 
the potential climate change impact on urban growth in London by a cellular automata-based 
Markov chain model', Computers, Environment and Urban Systems, 68, pp. 121-132. 

Luke, S. (2015) 'Essentials of metaheuristics'. 

Ma, S., He, J., Liu, F. and Yu, Y. (2011) 'Land-use spatial optimization based on PSO algorithm', 
Geo-spatial Information Science, 14(1), pp. 54-61. 

Maliszewski, P.J., Kuby, M.J. and Horner, M.W. (2012) 'A comparison of multi-objective spatial 
dispersion models for managing critical assets in urban areas', Computers, Environment and 
Urban Systems, 36(4), pp. 331-341. 

Maoh, H. and Kanaroglou, P. (2009) 'A tool for evaluating urban sustainability via integrated 
transportation and land use simulation models', Environnement Urbain / Urban Environment, 
3, pp. 28-46. 

Masoomi, Z., Mesgari, M.S. and Hamrah, M. (2013) 'Allocation of urban land uses by Multi-
Objective Particle Swarm Optimization algorithm', International Journal of Geographical 
Information Science, 27(3), pp. 542-566. 

Matott, L.S., Leung, K. and Sim, J. (2011) 'Application of MATLAB and Python optimizers to two 
case studies involving groundwater flow and contaminant transport modeling', Computers 
and Geosciences, 37(11), pp. 1894-1899. 

McNab, D. (2011) pygene [Computer program]. 

Meyer, V. and Schwarze, R. (2019) 'The Economics and Management of Flood Risk in 
Germany', in Köster, S., Reese, M. and Zuo, J.e. (eds.) Urban Water Management for Future 
Cities: Technical and Institutional Aspects from Chinese and German Perspective. Cham: 
Springer International Publishing, pp. 473-495. 

Ministère de L'Écologie, du Développement durable et de l'Énergie, (2011) 'National 
preliminary flood risk assessment'. 

Ministère de l’Écologie, du Développement Durable,, des Transports et du Logement, (2017) 
'Programmes d’action de prévention des inondations (PAPI)'. 

Ministère de l’Écologie, du Développement Durable,, des Transports et du Logement,, 
Ministère de l'Intérieur, de l'Outre-mer,, des Collectivités Territoriales et de l'Immigration,, 
Ministère de l’Économie, des Finances et de l'industrie, and Ministère du Budget, des 



 
259 

 

Computes Publics,, de la Fonction Publique et de la Réforme de l'État, (2010) 'Plan 
submersions rapides'. 

Ministry of Land, Infrastructure,, Transport and Tourism, (online) 'Flood management in 
Japan'. April 2020. Available at: http://www.mlit.go.jp/river/basic_info/english/pdf/conf_01-
6.pdf. 

Mishra, G. (2021) 'Types of Construction Project Costs – Direct and Indirect Costs'. The 
Constructor. Available at: https://theconstructor.org/construction/construction-project-
costs-direct-indirect-costs/7677/. 

Mishra, K.K. and Harit, S. (2010) 'A Fast Algorithm for Finding the Non Dominated Set in Multi 
objective Optimization', International Journal of Computer Applications, Volume 1(25), pp. 35–
39. 

Mitchell, M. (1998) An introduction to genetic algorithms. London: London : MIT. 

Moeini, R. and Afshar, M.H. (2017) 'Arc Based Ant Colony Optimization Algorithm for optimal 
design of gravitational sewer networks', Ain Shams Engineering Journal, 8(2), pp. 207-223. 

Molina Bacca, E.J., Knight, A. and Trifkovic, M. (2020) 'Optimal land use and distributed 
generation technology selection via geographic-based multicriteria decision analysis and 
mixed-integer programming', Sustainable Cities and Society, 55, p. 102055. 

Monsef, H., Naghashzadegan, M., Jamali, A. and Farmani, R. (2019) 'Comparison of 
evolutionary multi objective optimization algorithms in optimum design of water distribution 
network', Ain Shams Engineering Journal, 10(1), pp. 103-111. 

Moreno-Benito, M., Agnolucci, P. and Papageorgiou, L.G. (2017) 'Towards a sustainable 
hydrogen economy: Optimisation-based framework for hydrogen infrastructure 
development', Computers & Chemical Engineering, 102, pp. 110-127. 

Murray, A.T. and Church, R.L. (1996) 'Applying simulated annealing to location-planning 
models', Journal of Heuristics, 2(1), pp. 31-53. 

Nam, D. and Park, C.H. (2000) 'Multiobjective Simulated Annealing: A Comparative Study to 
Evolutionary Algorithms', International Journal of Fuzzy Systems 2(2). 

Niemierko, A. (1997) 'Reporting and analyzing dose distributions: A concept of equivalent 
uniform dose', Medical Physics, 24(1), pp. 103-110. 

Niroshinie, M.A.C., Ohtuski, K. and Nihei, Y. (2016) 'Effect of Small Rivers for the Inundations 
Due to Levee Failure at Kinu River in Japan', Procedia Engineering, 154, pp. 794-800. 

North Lincolnshire Council (2019) Flood defence work gathers pace on south Humber bank. 
[Online]. Available at: https://www.northlincs.gov.uk/news/flood-defence-work-gathers-
pace-on-south-humber-bank/. 

Northland Regional Council (2018) Regional Land Transport Plan 2015-2021 - Three year 
review. 

http://www.mlit.go.jp/river/basic_info/english/pdf/conf_01-6.pdf
http://www.mlit.go.jp/river/basic_info/english/pdf/conf_01-6.pdf
https://theconstructor.org/construction/construction-project-costs-direct-indirect-costs/7677/
https://theconstructor.org/construction/construction-project-costs-direct-indirect-costs/7677/
https://www.northlincs.gov.uk/news/flood-defence-work-gathers-pace-on-south-humber-bank/
https://www.northlincs.gov.uk/news/flood-defence-work-gathers-pace-on-south-humber-bank/


 
260 

 

Ogunyoye, F., Stevens, R. and Underwood, S. (2011) Temporary and demountable flood 
protection guide.Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH. 

Oléron-Evans, T.P. and Salhab, M. (2021) 'Optimal land use allocation for the Heathrow 
opportunity area using multi-objective linear programming', Land Use Policy, 105(C). 

Orsi, F., Church, R.L. and Geneletti, D. (2011) 'Restoring forest landscapes for biodiversity 
conservation and rural livelihoods: A spatial optimisation model', Environmental Modelling & 
Software, 26(12), pp. 1622-1638. 

Ostrovsky, R., Rabani, Y., Schulman, L.J. and Swamy, C. (2013) 'The effectiveness of lloyd-type 
methods for the k-means problem', J. ACM, 59(6), pp. 1-22. 

Papadimitriou, C.H. and Steiglitz, K. (1998) Combinatorial optimization : algorithms and 
complexity. Mineola, N.Y: Mineola, N.Y : Dover Publications. 

Pascual, M.S. (2011) 'GIS Data: A Look at Accuracy, Precision, and Types of Errors' [Article]. 
May 2020. GIS Lounge. Available at: https://www.gislounge.com/gis-data-a-look-at-accuracy-
precision-and-types-of-errors/. 

PBL Netherlands Environmental Assessment Agency (online) 'Correction wording flood risks 
for the Netherlands in IPCC report'. April 2020. Available at: 
https://www.pbl.nl/en/correction-wording-flood-risks. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 
M., Perrot, M. and Duchesnay, É. (2011) 'Scikit-learn: Machine Learning in Python', Journal of 
Machine Learning Research, 12, pp. 2825-2830. 

Perone, C.S. (2009) 'Pyevolve: a Python open-source framework for genetic algorithms', 
SIGEVOlution, 4(1), pp. 12-20. 

Pitt, M. (2008) Learning lessons from the 2007 floods. London: London : Pitt Review. 

Poo, C.P. (2020) Climate change adaptation for seaports and airports. Liverpool John Moores 
University [Online]. Available at: http://researchonline.ljmu.ac.uk/id/eprint/13421/. 

Prasad, T. and Park, N. (2004) 'Multiobjective genetic algorithms for design of water 
distribution networks', J. Water Resour. Plan. Manage.-ASCE, 130(1), pp. 73-82. 

Pregnolato, M. (2017) Risk analysis of the disruption to urban transport networks from pluvial 
flooding. Newcastle University. 

Pregnolato, M. (2019) 'Bridge safety is not for granted – A novel approach to bridge 
management', Engineering Structures, 196, p. 109193. 

Pulido, G.T. and Coello Coello, C.A. (2004) Proceedings of the 2004 Congress on Evolutionary 
Computation (IEEE Cat. No.04TH8753). 19-23 June 2004. 

https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-and-types-of-errors/
https://www.gislounge.com/gis-data-a-look-at-accuracy-precision-and-types-of-errors/
https://www.pbl.nl/en/correction-wording-flood-risks
http://researchonline.ljmu.ac.uk/id/eprint/13421/


 
261 

 

Python Software Foundation (2010) Python Language Reference, version 2.7 [Computer 
program]. Available at: http://www.python.org. 

Qian, M., Pu, L., Zhu, M. and Weng, L. (2010) 18th International Conference on Geoinformatics. 
18-20 June 2010. 

Ramos, D. (2017) 'Construction Cost Estimating: The Basics and Beyond'. Available at: 
https://www.smartsheet.com/construction-cost-estimating. 

Rechenberg, I. (1973) 'Evolutionsstrategie — Optimierung technischer Systeme nach 
Prinzipien der biologischen Evolution.', Feddes Repertorium, 86(5), pp. 337-337. 

Reddy, M.J. and Nagesh Kumar, D. (2007) 'Multi-objective particle swarm optimization for 
generating optimal trade-offs in reservoir operation', Hydrological Processes, 21(21), pp. 
2897-2909. 

Reeves, C.R. (1995) Modern Heuristic Techniques for Combinatorial Problems. 

Rinaldi, S.M., Peerenboom, J.P. and Kelly, T.K. (2001) 'Identifying, understanding, and 
analyzing critical infrastructure interdependencies', IEEE Control Systems Magazine, 21(6), pp. 
11-25. 

Romero, C., Tamiz, M. and Jones, D.F. (1998) 'Goal programming, compromise programming 
and reference point method formulations: linkages and utility interpretations', Journal of the 
Operational Research Society, 49(9), pp. 986-991. 

Rothlauf, F. (2011) Design of modern heuristics principles and application. 

RStudio Team (2015) RStudio: Integrated Development for R [Computer program]. Available 
at: http://www.rstudio.com/. 

Saad, D.A., Mansour, H. and Osman, H. (2018) 'Concurrent bilevel multi-objective optimisation 
of renewal funding decisions for large-scale infrastructure networks', Structure and 
Infrastructure Engineering, 14(5), pp. 594-603. 

Samaniego, L. and Treuner, P. (2006) 'Optimisation of Infrastructure Location', Jahrbuch für 
Regionalwissenschaft, 26(2), pp. 119-145. 

Santé-Riveira, I., Boullón-Magán, M., Crecente-Maseda, R. and Miranda-Barrós, D. (2008) 
'Algorithm based on simulated annealing for land-use allocation', Computers & Geosciences, 
34(3), pp. 259-268. 

Sayers, P., Li, Y., Le Quesne, T., Fuxin, S., Galloway, G., Penning-Rowsell, E., Wen, K. and Chen, 
Y. (2013) Flood risk management: a strategic approach. 

Sayers, W., Savić, D., Kapelan, Z. and Kellagher, R. (2014) 'Artificial Intelligence Techniques for 
Flood Risk Management in Urban Environments', Procedia Engineering, 70, pp. 1505-1512. 

Schlager, K.J. (1965) 'A LAND USE PLAN DESIGN MODEL', Journal of the American Institute of 
Planners, 31(2), pp. 103-111. 

http://www.python.org/
https://www.smartsheet.com/construction-cost-estimating
http://www.rstudio.com/


 
262 

 

Schouwenaars, T., Moor, B.D., Feron, E. and How, J. (2001) 2001 European Control Conference 
(ECC). 4-7 Sept. 2001. 

Scrucca, L. (2013) 'GA : A Package for Genetic Algorithms in R', Journal of Statistical Software, 
53(4). 

Sean Gillies and others (2013) Rasterio: geospatial raster I/O for Python programmers 
[Computer program]. Available at: https://github.com/mapbox/rasterio. 

Shakti, P.C., Nakatani, T. and Misumi, R. (2018) 'Analysis of flood inundation in ungauged 
mountainous river basins: A case study of an extreme rain event on 5–6 july 2017 in Northern 
Kyushu, Japan', Journal of Disaster Research, 13(5), pp. 860-872. 

Shimamoto, H., Murayama, N., Fujiwara, A. and Zhang, J. (2010) 'Evaluation of an existing bus 
network using a transit network optimisation model: a case study of the Hiroshima City Bus 
network', Planning - Policy - Research - Practice, 37(5), pp. 801-823. 

Siauw, T. and Bayen, A.M. 1 (2014) 'An Introduction to MATLAB Programming and Numerical 
Methods for Engineers'. Beaverton: Ringgold Inc. 

Sidiropoulos, E. and Fotakis, D. (2009) 'Cell-based genetic algorithm and simulated annealing 
for spatial groundwater allocation', WSEAS Transactions on Environment and Development, 
5(4), pp. 351-360. 

Sigmund, O. (2001) 'A 99 line topology optimization code written in Matlab', Structural and 
Multidisciplinary Optimization, 21(2), pp. 120-127. 

Stewart, T.J. and Janssen, R. (2014) 'A multiobjective GIS-based land use planning algorithm', 
Computers, Environment and Urban Systems, 46, pp. 25-34. 

Sung, Y.-H., Lin, M.-D., Lin, Y.-H. and Liu, Y.-L. (2007) 'Tabu Search Solution of Water 
Distribution Network Optimization', J. Environ. Eng. Manage., 17(3), pp. 177-187. 

Suppasri, A., Shuto, N., Imamura, F., Koshimura, S., Mas, E. and Yalciner, A.C. (2013) 'Lessons 
Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, 
Coastal Buildings, and Tsunami Evacuation in Japan', Pure and Applied Geophysics, 170(6), pp. 
993-1018. 

Tainter, J.A. and Taylor, T.G. (2014) 'Complexity, problem-solving, sustainability and 
resilience', Building Research & Information, 42(2), pp. 168-181. 

Tarp, P. and Helles, F. (1997) 'Spatial optimization by simulated annealing and linear 
programming', Scandinavian Journal of Forest Research, 12(4), pp. 390-402. 

Tasseff, B., Bent, R. and Van Hentenryck, P. (2016) Integration of AI and OR Techniques in 
Constraint Programming. Cham, 2016//. Springer International Publishing. 

Tasseff, B., Bent, R. and Van Hentenryck, P. (2019) 'Optimization of Structural Flood Mitigation 
Strategies', Water Resources Research, 55(2), pp. 1490-1509. 

https://github.com/mapbox/rasterio


 
263 

 

The Countryside Agency, DEFRA, Office of the Deputy Prime Minister, Office for National 
Statistics and Welsh Assembly Government (2004) Rural and Urban Area Classification 2004 - 
An Introductory Guide. 

The MathWorks Inc. (2010) MATLAB version 7.10.0 (R2010a) [Computer program]. 

The Parliamentary Office of Science and Technology (2020) Natural mitigation of flood risk. 
London, UK: UK Parliament. [Online]. Available at: https://post.parliament.uk/research-
briefings/post-pn-0623/. 

Thieken, A.H., Mariani, S., Longfield, S. and Vanneuville, W. (2014) 'Preface: Flood resilient 
communities - managing the consequences of flooding', Natural hazards and earth system 
sciences, 14(1), pp. 33-39. 

Triantafyllidis, C.P., Koppelaar, R.H.E.M., Wang, X., van Dam, K.H. and Shah, N. (2018) 'An 
integrated optimisation platform for sustainable resource and infrastructure planning', 
Environmental Modelling & Software, 101, pp. 146-168. 

UN General Assembly (2015) Transforming our world: the 2030 Agenda for Sustainable 
Development. UN General Assembly. [Online]. Available at: 
https://www.refworld.org/docid/57b6e3e44.html. 

UNFCC (2015) Paris Agreement from the Conference of Parties 21 (COP21). Paris: United 
Nations. 

UNISDR (2015) Sendai Framework for Disaster Risk Reduction 2015-2030. United Nations - 
Headquarters, (UNDRR), U.N.O.f.D.R.R. 

United Nations, D.o.E.a.S.A., Population Division, (2019) World Urbanization Prospects: The 
2018 Revision. New York (USA). 

US President's Commission on Critical Infrastructure Protection (1997) Critical Foundations: 
Protecting America's Infrastructures. Protection, U.S.P.s.C.o.C.I. 

Vamvakeridou-Lyroudia, L., Walters, G. and Savic, D.A. (2005) 'Fuzzy Multiobjective 
Optimization of Water Distribution Networks', Journal of Water Resources Planning and 
Management, 131(6), pp. 467-476. 

Vamvakeridou-Lyroudia, L.S., Chen, A.S., Khoury, M., Gibson, M.J., Kostaridis, A., Stewart, D., 
Wood, M., Djordjevic, S. and Savic, D.A. (2018) 'Enhancing the resilience of interconnected 
critical infrastructures to urban flooding: an integrated approach', 1st International WDSA / 
CCWI 2018 Joint Conference. Kingston, Ontario, Canada. 

Vamvakeridou-Lyroudia, L.S., Chen, A.S., Khoury, M., Gibson, M.J., Kostaridis, A., Stewart, D., 
Wood, M., Djordjevic, S. and Savic, D.A. (2020) 'Assessing and visualising hazard impacts to 
enhance the resilience of Critical Infrastructures to urban flooding', Science of The Total 
Environment, 707, p. 136078. 

Vergouwe, R., Sarink, H.M. and Bisschop, C. (2016) The national flood risk analysis for the 
Netherlands: final report. Rijkswaterstaat VNK Project Office. 

https://post.parliament.uk/research-briefings/post-pn-0623/
https://post.parliament.uk/research-briefings/post-pn-0623/
https://www.refworld.org/docid/57b6e3e44.html


 
264 

 

Wang, L., Shi, H. and Gan, L. (2018) 'Healthcare Facility Location-Allocation Optimization for 
China’s Developing Cities Utilizing a Multi-Objective Decision Support Approach', 
Sustainability, 10(12). 

Weise, T. (2011) Global Optimization Algorithms - Theory and Application. Third edn. 

Wenger, C., Hussey, K. and Pittock, J. (2013) Living with floods: Key lessons from Australia and 
abroad. Facility, N.C.C.A.R. [Online]. Available at: 
https://www.nccarf.edu.au/sites/default/files/attached_files_publications/Wenger_2013_Li
ving_with_floods.pdf. 

Woodward, M., Kapelan, Z. and Gouldby, B. (2014) 'Adaptive Flood Risk Management Under 
Climate Change Uncertainty Using Real Options and Optimization', Risk Analysis, 34(1), pp. 75-
92. 

Woolhouse, C. (2017) 'The case for temporary flood defences'. May 2020. Available at: 
https://www.ice.org.uk/news-and-insight/the-civil-engineer/march-2017/the-case-for-
temporary-flood-defences. 

World Resources Institute (online) 'Global Flood Analyser'. Available at: 
https://www.wri.org/applications/aqueduct/floods/risk. 

Wu, X., Wang, S., Fu, B., Liu, Y. and Zhu, Y. (2018) 'Land use optimization based on ecosystem 
service assessment: A case study in the Yanhe watershed', Land Use Policy, 72, pp. 303-312. 

Xiao, N., Bennett, D.A. and Armstrong, M.P. (2007) 'Interactive evolutionary approaches to 
multiobjective spatial decision making: A synthetic review', Computers, Environment and 
Urban Systems, 31(3), pp. 232-252. 

Zhang, T., Shao, Z., Zhang, Y., Yu, Z. and Jiang, J. (2010) Advances in Swarm Intelligence. Berlin, 
Heidelberg, 2010//. Springer Berlin Heidelberg. 

Zhang, W. and Fujimura, S. (2010) 'Improved Vector Evaluated Genetic Algorithm with Archive 
for Solving Multiobjective PPS Problem'. pp. 1-4. 

Zitzler, E., Laumanns, M. and Thiele, L. (2001) SPEA2: Improving the Strength Pareto 
Evolutionary Algorithm. Zurich, Switzerland: Department of Electrical Engineering, Swiss 
Federal Institute of Technology (ETH) Zurich. 

 

https://www.nccarf.edu.au/sites/default/files/attached_files_publications/Wenger_2013_Living_with_floods.pdf
https://www.nccarf.edu.au/sites/default/files/attached_files_publications/Wenger_2013_Living_with_floods.pdf
https://www.ice.org.uk/news-and-insight/the-civil-engineer/march-2017/the-case-for-temporary-flood-defences
https://www.ice.org.uk/news-and-insight/the-civil-engineer/march-2017/the-case-for-temporary-flood-defences
https://www.wri.org/applications/aqueduct/floods/risk

