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Abstract
Granular materials are everywhere around us. Their omnipresence makes our inter-
action with them on a daily basis a certainty, and yet our understanding of their
mechanical behaviour is far from complete. Regarding geotechnical applications,
most natural granular materials, such as silts, sands, gravels and ballast, feature
irregular particle shapes, a fact that makes their mechanical behaviour all the more
complex across scales, from micro to meso and macro. A multitude of experimental
and numerical studies have demonstrated the importance of particle morphology in
the shear strength of particulate materials, although rarely demonstrating a direct
link or mechanisms of causality between them. This is mainly due to the high com-
plexity of the problem but also partially due to the lack of intelligible and accessible
tools to quantify the morphology of three-dimensional irregular particles.

This thesis aims to contribute to the current state-of-art studying the character-
isation of granular materials by providing analytical and numerical tools for shape
characterisation. Regarding analytical tools, this thesis attempts a critical review
of existing indices to characterise and classify particle form, while introducing a
new set of indices. Regarding numerical tools, this thesis provides novel software
solutions for automatic particle shape characterisation and for the generation of
image-informed numerical models. These open-source tools are meant to shed light
on the inherent subjectivity of performing shape characterisation on a practical level.
Regarding the generation of numerical models based on imaging data, algorithmic
implementations are offered to create simplified polyhedra and multi-sphere parti-
cles at user-defined fidelity levels of resolution, the morphology of which can also be
characterised and compared to that of the original fidelity level.

Combining the produced analytical and numerical tools, this thesis demonstrates
a seamless workflow between particle imaging data and numerical modelling, using
the discrete element method and non-spherical particles. This workflow is utilised
to develop a methodology for the generation of Representative Element Volumes
(REVs) of non-spherical particles, which represent the polydispersity of both parti-
cle size and shape, aiming to link quantitative morphology characterisation at the
particle scale and mechanical characterisation at the level of a representative assem-
bly of particles. The methodology is then applied to systematically generate REVs
of railway ballast using image-informed multi-sphere particles of various levels of
simulation fidelity, allowing for a parametric study of the effect of several modelling
parameters on the shear strength of the material.
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Chapter 1

Introduction

1.1 Motivation and Background

The discrete element method (DEM) has been extensively used during the last four
decades for the study of granular materials. Being able to simulate grain-to-grain
interactions at the particle scale, it has provided valuable insights on the micro
to macro effects of geomaterials. The majority of discrete element studies still
employ spherical particles, while recently, increasing attention has been brought to
the merits of non-spherical particle modelling.

Although the effect of the grain shape has been identified to be paramount on
the mechanical response of geomaterials (Barrett, 1980, Clayton et al., 2009), its
significance is often highlighted qualitatively. In particular, the particle shape of
realistic grains is employed only in a small -but increasing- part of the relevant
literature, with the majority of past studies using either regularized shapes, like
ellipsoids, superquadratics (Podlozhnyuk et al., 2017) and platonic solids (André
et al., 2012) or randomly generated polyhedral particle shapes (Eliáš, 2014).

The advancement of imaging technologies, complemented by the increased state-
of-the-art computing capabilities during the past decade has allowed for more numer-
ical studies considering realistic particle shapes. The challenge ahead is to generate
assemblies of irregular particles using the Discrete Element Method, which can lead
to representative mechanical behaviour.

Typically, the particles used in numerical simulations have simplified morpho-
logical features compared to the originally scanned one. This reduction of fidelity
is a necessary step, due to the high computational cost associated to the modelling
of very detailed particle morphologies. Albeit necessary, this poses a challenge, as
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oversimplification of the particle morphology can lead to a mismatch with reality, for
models that are otherwise image-informed. The achieved fidelity is closely related to
the simplification approach employed during particle generation in the DEM, as well
as to the metrics used to quantify fidelity. For instance, fidelity can be quantified in
terms of number of particle faces making the surface of a polyhedron or in terms of
number of spheres making a multi-sphere particle.

As a result, it becomes evident that the particle type, the measure of fidelity and
and the simplification method during particle generation in a numerical simulation
do not allow for a universal answer to exist in the question of which fidelity level
corresponds to a good balance between computational efficiency and accuracy of
results. Instead, quantitative shape characterisation can provide a solution to this,
via comparison of the morphology of the simplified particle to the original particle
morphology, for each new material of interest and employed modelling technique.
If a shape analysis software can provide automated particle shape characterisation,
simplification and model generation in a numerical simulation at user-defined fidelity
levels, the required level of fidelity can be estimated in terms of morphological fidelity
(compared to the original fidelity level) and accuracy of results (comparing models
of different morphological fidelity with some form of “ground truth”, usually an
experimental benchmark).

Utilising shape characterisation information can be used in the generation of
numerical models. In particular, shape characterisation can provide a means of
selecting which particles to use in a simulation of irregular particles, at what per-
centages and fidelity levels. This can be facilitated with a methodology to generate
representative element volumes that represent both particle size and shape based on
imaging data, in an automated and seamless manner.

1.2 Aim and objectives

This thesis aims to investigate particle shape effects on the macro-mechanical be-
haviour of granular media, through the prism of quantitative shape characterisation.
A key point of interest is to build a methodology towards linking particle morphol-
ogy and mechanical behaviour, which will for the quantification of how much the
morphology of real particles can be simplified and still be called realistic. To this
end, multi-sphere particles were employed using the DEM, to simulate irregular
particles based on imaging data of real particles. Particle shapes are reconstructed
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from available digital imaging data of geomaterials, using an open-source shape
characterisation code, SHAPE, which was developed in-house, as part of this doctoral
thesis, and was distributed under the open-source GPLv3.0 licence in Angelidakis
et al. (2021b). SHAPE also generates simplified particle shapes for different user-
defined levels of morphological fidelity. In the efforts to create numerical models
with particle shapes informed by imaging data, a second code was developed as part
of this thesis, CLUMP (Angelidakis et al., 2021a), providing implementations of dif-
ferent methods to generate multi-sphere particles, licensed under GPLv3.0 as well.
This thesis focuses on materials with irregular grains, like the products of crushed
rock, with the main engineering application concerning railway ballast. Though, the
numerical and analytical tools developed as part of this thesis have application to
any granular material with irregular particles.

The main objectives of this doctoral thesis are as below:

• O1: To critically review existing formulae that have been proposed to charac-
terise and classify particle form, identify their limitations and develop a new
characterisation and classification system to overcome them.

• O2: To develop open-source numerical tools for automatic particle shape char-
acterisation of assemblies with three-dimensional particles and for the gen-
eration of simplified polyhedral and multi-sphere particles, based on digital
imaging data.

• O3: To conduct particle-shape characterisation analyses for datasets of real
particles, generate simplified ones, which can be used in numerical simulations,
and compare the morphology of the original and simplified particles.

• O4: To generate and simulate Representative Element Volumes (REVs) of
irregular particles under triaxial loading conditions using the Discrete Element
method. These REVs will be generated to faithfully represent the statistical
distribution of both particle size and shape, utilising the produced codes, to
create particles with varying, user-defined levels of morphological fidelity.

Figure 1.1 illustrates a flowchart with the main steps of a methodology employed
in this thesis to generate discrete element simulations across scales, utilising available
digital imaging data of ballast grains. Starting from imaging data representing par-
ticle geometry, such as point clouds and surface meshes (derived with laser scanning)
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or as labelled voxelated images (derived using computed tomography) the surface of
the particles is reconstructed and their interior is tessellated. Their morphology is
characterised at the particle level, in an automated manner, and simplified particle
shapes are generated at fidelity levels affordable by the conventional available nu-
merical tools. The simplified particle can be represented either as convex polyhedra
or multi-sphere particles.

Mechanical characterisation ensues at the scale of a representative assembly of
particles, using the discrete element method. The particle shapes and material
properties resulting from the morphological and mechanical characterisation, re-
spectively, can then be used in boundary value models of real engineering applica-
tions. In this methodology, the right balance can be struck between computational
efficiency and numerical accuracy, as multiple levels of simulation fidelity can be
employed, based on the available computational resources and the needed level of
accuracy for the project at hand.

Grain-shape
derivation

Grain-shape
characterisation

Mechanical
characterisation

Engineering
applications

Particle scale REV scale BVP scale

Figure 1.1: Scales for material characterisation.

Figure 1.2 demonstrates the morphology of a real ballast particle and two can-
didate methods for numerical simulation: (i) convex polyhedra and (ii) clumps of
overlapping spheres. The former simulation approach suffers from the requirement
of the particles to be convex, and requires a specialised and computationally inten-
sive contact detection algorithm. The latter simulation approach does not require
particles to be convex and the contact detection among spheres is computation-
ally efficient; though, using a large number of sphere-members to represent a single
physical particle increases the computational cost significantly. These two modelling
approaches are of interest, as they allow the simulation of a wide spectrum of par-
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ticle shapes, of various form (elongated, flat or compact) and roundness (angular
or rounded) values. The flowchart of Figure 1.3 demonstrates a typical workflow to
generate numerical models based on imaging data.

Simplified mesh - 100 faces

Simplified mesh - 50 faces

Clump – 600 spheres

Clump – 25 spheres

Original mesh

Figure 1.2: Original and simplified representations of particle morphology (left) convex
polyhedra; (right) clumps of spheres.

1.3 Outline of the dissertation

Chapter 2 critically reviews various sets of indices proposed in the literature to
characterise the form of three-dimensional particles. Then, a new set of indices for
particle elongation, flatness and compactness is proposed, which overcomes limita-
tions of similar existing indices, while possessing some of their merits. These new
indices are used to propose a new classification system for particle form, which is in
general agreement with the Zingg system, while it surmounts some of its limitations
for very flat and for very elongated particles.

Chapter 3 introduces a novel open-source code to characterise the morphology of
three-dimensional particles. The input particle geometries can have various formats,
including labeled voxelated images, surface and tetrahedral meshes, point clouds and
surface texture profiles, allowing compatibility with a variety of digital imaging tech-
niques, such as computed tomography, laser scanning and white-light interferometry.
Particle morphology is characterised in terms of three aspects, namely form, round-
ness and roughness. Outputs are offered in the format of the most prominent FEM
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Clump 
generation

Clump surface 
extraction

github.com/vsangelidakis/CLUMP

• Point cloud
• Surface mesh (stl)
• Segmented 3-D image
• Surface topography

Input files for 
numerical codes

Shape statistics 
and graphs

Imaging data

Shape 
characterisation

Shape 
simplification

github.com/vsangelidakis/SHAPE

Figure 1.3: Typical workflow to generate multi-sphere particles and simplified polyhedra
based on imaging data.

and DEM codes currently used in research and industrial practice.

Chapter 4 introduces a novel open-source code to generate multi-sphere parti-
cles, which can be used in Discrete Element simulations. This code, named CLUMP,
comprises implementations of two algorithms proposed in the literature to approx-
imate the geometry of three-dimensional particles using clumps of overlapping or
clusters of non-overlapping spheres, while it proposes a new generation method for
multi-sphere clumps and clusters. A routine to extract the surface of a multi-sphere
particle was developed, allowing for a detailed characterisation of its morphology.
Triaxial tests on sand and rice grains are performed using different particle gen-
eration methods, demonstrating how the clump generation method can affect the
simulation results at the scale of a Representative Elementary Volume.

Chapter 5 discusses two codes to simulate non spherical particles in the Discrete
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Element Method, namely the Potential Blocks and the Potential Particles,
which were developed by Boon (2013) in the open-source code YADE by Smilauer
et al. (2021) to simulate convex polyhedra and generalised three-dimensional convex
particles, respectively. Points of interest are highlighted for both codes, along with
some of their limitations, and applications are demonstrated where available. Part
of this chapter has been shared in the documentation of YADE1 by the doctoral
student, while he was developing this part of the thesis.

Chapter 6 introduces a novel methodology to generate Representative Elemen-
tary Volumes using non-spherical particles in the Discrete Element Method, based
on morphological characterisation of their overall form. A case study for railway
ballast particles is performed, demonstrating the validity of the method via DEM
simulations of multi-sphere particles.

Chapter 7 illustrates the conclusions of this thesis.
Appendix A presents some key algorithmic implementations of SHAPE, comple-

mented with inline comments, aiming to enhance an easy overview of these scripts.
Appendix B presents the main functions of CLUMP, implementing three methods

to generate multi-sphere particles and a proposed method to extract their surface,
allowing for a detailed characterisation of their morphology.

1.4 Contributions

This section aims to clarify the contributions of the doctoral student to each chap-
ter and corresponding piece of published work, where applicable, along with the
contributions of the supervisory team (Dr Nadimi and Prof. Utili) and external
collaborators.

In Chapter 2, the doctoral student visualised the values of the existing indices of
particle form on a Zingg plot, proposed the new formulae for elongation, flatness and
compactness and the new classification system. The supervisory team (Dr Nadimi
and Prof. Utili) reviewed this work, provided feedback on the produced results and
proposed the examples used to compare different sets of indices.

In Chapter 3, the doctoral student developed the majority of the scripts to cal-
culate geometric parameters of three-dimensional particles, characterise their mor-
phology and create an object-oriented data architecture to store these, allowing for
an efficient automated processing of large amounts of particles. Dr Nadimi provided

1https://yade-dem.org/doc/potentialparticles.html
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some functions relating to surface roughness. The full supervisory team (Dr Nadimi
and Prof. Utili) reviewed the chapter and the accompanying manuscript in Com-
puter Physics Communications (Angelidakis et al., 2021b), and proposed feedback
and ideas regarding case studies which were used for code validation.

In Chapter 4, the doctoral student developed all algorithmic implementations
of the clump-generating methods of Favier et al. (1999) and Ferellec and McDow-
ell (2010), along with the newly proposed clump-generation method based on the
Euclidean transform of three-dimensional images and a surface extraction module,
which is used to facilitate shape characterisation of the produced multi-sphere par-
ticles. The student also generated the clumps used in the Illustrative examples
section of the chapter, and characterised their morphology. Dr Nadimi reviewed
the code in its early stages, providing feedback and much-needed alpha-testing (i.e.
testing within the developers group) and provided the physical material of the anal-
ysed sand particle and performed micro Computed Tomography (µCT) scans of the
analysed sand and rice particles and post-processing of the produced images, while
he facilitated the link to collaborate with the group of Dr Otsubo. Dr Masahide
Otsubo from the University of Tokyo provided the physical rice material used in the
study and performed all the numerical triaxial simulations of the sand and rice par-
ticles using the Discrete Element Method and the granular package of the LAMMPS
code, in particular, along with post-processing of the results. The full supervisory
team (Dr Nadimi and Prof. Utili) and Dr Otsubo reviewed the final version of the
manuscript and offered edits and feedback.

In Chapter 5, the described Potential Particles and Potential Blocks codes were
developed in Boon (2013). The student has undertaken the role of maintaining
these codes within the YADE developers’ team during his doctoral project and any
original contributions and improvements are pointed out to the reader of this the-
sis, aiming to clarify what constitutes an original contribution associated with this
thesis and what belongs to the existing literature. Regarding the “Round Robin test
of angle of repose”, the project and full experimental work was organised by the
Japanese branch of Technical Committee 105: Micro to Macro (TC105). The doc-
toral student developed all numerical models using the Potential Particles code and
post-processed all the results. The supervisory team (Dr Nadimi and Prof. Utili)
provided feedback on aspects of generating the numerical model and writing the
report for the submission of the results produced in this thesis to the committee or-
ganising this Round Robin exercise. Improvements on the algorithmic development
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of these codes by the doctoral student are discussed utilising a piece of documenta-
tion 2 the student developed as part of this thesis, detailing the underlying concepts
behind these codes and providing practical tutorials.

In Chapter 6, the full team (student and supervisors) agreed on the idea to create
a method for the generation of Representative Element Volumes that reproduced to a
prescribed degree the statistical distribution of particle form, for of a material with
irregular particles. The doctoral student performed all tasks pertaining to shape
characterisation and simplification of the ballast material, numerical simulations of
triaxial compression tests, and post-processing. Scans of the ballast grains were
generously provided by the research group of Prof. Junhua Xiao, from the College
of Transportation Engineering of Tongji University, China. The supervisory team
offered feedback on the morphological and mechanical characterisation results, along
with overall guidance.

2https://yade-dem.org/doc/potentialparticles.html
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Chapter 2

Characterisation of particle form

2.1 Introduction

A century after the first attempts of Wentworth to characterise the shape of cob-
bles, our understanding of particle morphology is still expanding. A plethora of
shape indices has been proposed in the literature to characterise the morphology of
individual particles. This chapter aims to shed light on the merits and limitations
of the indices currently used to characterise particle form (elongation, flatness and
compactness) adopting a unified classification framework. Second, new indices for
elongation, flatness and compactness are proposed to address the identified short-
comings. Third, a new particle classification system derived from the proposed
indices is illustrated. It is shown the new system overcomes the misclassification of
a range of particles that are incorrectly classified as bladed in the Zingg system.

2.2 Literature review: Existing indices for particle

form

Particle morphology is of interest in soils and rocks description, characterisation and
classification and has been shown to bear significant influence on the mechanical
and hydraulic behaviour of soils and rock aggregates (e.g. Cho et al., 2006; Boon
et al., 2015b; Altuhafi et al., 2016; Kawamoto et al., 2018; Nguyen and Indraratna,
2020). Outside the scope of soil mechanics, particle morphology is believed to be
the controlling factor in spreading of powder bed in additive manufacturing (Nan
et al., 2018), wave velocity anisotropy (Otsubo et al., 2020), railway track sub-
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structure design (Le Pen et al., 2013) and pharmaceutical tableting (Abdel-Hamid
et al., 2011), just to name a few. The morphology of a particle is characterised in
terms of three aspects, namely form (first order approximation of shape), roundness
(second order) and roughness (third order), illustrated in Figure 2.1. This chapter
deals with form.

Form

Roughness

Roundness

Figure 2.1: Aspects of particle shape as introduced in Barrett (1980): Form, roundness
and roughness (after Clayton et al., 2009).

The characterisation of the form of three-dimensional particles is mostly per-
formed via the calculation of two independent indices: flatness and elongation. Flat-
ness is meant to express how flat (or flaky or platy) a particle is, while elongation
is meant to express how elongated (or rod-like) it is. Some approaches consider
a third index as well, compactness. However, compactness is calculated from flat-
ness and elongation so the latter two indices are enough to fully characterise the
form of a particle. Apart from flatness and elongation, several indices representing
sphericity have been proposed in the literature (Rorato et al., 2019), although some
consider sphericity a separate aspect of particle morphology, rather than another
index related to particle form (Blott and Pye, 2008).

All traditional formulae for flatness and elongation make use of the three main
dimensions of a particle, here called a > b > c as in Zingg (1935). In the case of
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regular particle geometries (e.g. cuboids or ellipsoids), the main particle dimensions
are unambiguously defined, whereas for irregular particles, the definition of these
dimensions can be ambiguous. These dimensions provide a simplified description
of the form of a particle, and can be calculated using a variety of methods. For
instance, Fonseca (2011) assumes a,b,c as the dimensions of an oriented bounding
box, calculated using Principal Component Analysis, while Potticary et al. (2015)
assume the axes of an equivalent ellipsoid as the main particle dimensions.

This chapter first describes the classification system proposed by Zingg (1935)
and then compares the indices proposed by Kong and Fonseca (2018), Bagi and Orosz
(2020) and Potticary et al. (2015) in a Zingg plot. This enables a direct comparison
of the indices for particles of the same aspect ratios. By clarifying the advantages
and limitations of each set of indices, the case is laid out for the introduction of
a new set of indices. The advantages of the new indices are illustrated. Then, a
new particle classification system derived from the new indices which overcomes the
shortcomings of the Zingg system is described.

2.2.1 Interpretations of sphericity

Comparing the morphological characteristics of irregular particles with the ones of
idealised shapes has been used in the literature to produce indices associated with
sphericity. Sphericity is meant to represent how closely the morphology of a particle
resembles that of a sphere. Wadell (1932) defined the Degree of true sphericity as
the ratio of the surface area of a sphere with the same volume as the particle, over
the surface area of the particle. For a given volume, a sphere is the shape with
the minimum surface area, and as a result the value of this index varies within the
range (0-1) for non-spherical particles and is equal to unity for spheres. Equation 2.1
demonstrates the formula for the degree of true sphericity.

S =
3
√
36π · V 2

A
(2.1)

Blott and Pye (2008) report that the degree of true sphericity as proposed by
Wadell (1932) is affected both by form and roundness, hence they consider it a
separate aspect of particle form. To visualise this, Figure 2.2 shows how the degree
of true sphericity varies for cuboids and ellipsoids of all possible aspect ratios, by
plotting contour maps of its value on a Zingg plot. It becomes evident that cuboids
and ellipsoids of the same aspect ratio do not demonstrate the same sphericity values.
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In particular, the degree of true sphericity for a cube is equal to 0.804, while for a
sphere it is 1.0. For both types of particles, it is observed that sphericity increases
moving towards the upper-right region of the plot, which corresponds to compact
particles.

(a) (b)

Figure 2.2: Degree of true sphericity (Wadell, 1932) for (a) cuboids and (b) ellipsoids.

Krumbein (1941) proposed an alternative definition of sphericity, named ’In-
tercept sphericity’, aiming to introduce a more efficient way to measure particle
form experimentally, using calipers, by expressing particle form as that of a triax-
ial ellipsoid. Using his approach, sphericity can be calculated just by determining
three main orthogonal dimensions of the particle, without needing to compute the
particle volume or surface area. The formula for intercept sphericity is shown in
Equation 2.2.

S =
3

√
b · c
a2

(2.2)

Sneed and Folk (1958) criticised the degree of true sphericity of Wadell (1932),
observing that “although geometrically valid, [it] is not a behavioristic parameter if
one is concerned with the dynamics of particles under natural hydraulic conditions”.
To support this position, they compared two spheroids with the same degree of true
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sphericity, one elongated (dimensions 100 x 10 x 10 cm) and one flat (dimensions
100 x 100 x 1 cm), illustrated in Figure 2.3. They observed that the flat spheroid is
more inequidimensional, even though it has the same degree of true sphericity, as it
would settle more slowly if left to settle in water, due to its larger projection area.
Aiming to produced a more “natural” measure of sphericity, which takes into account
also the hydraulic behaviour of particles, they proposed the “Maximum projection
sphericity”, which is defined as the ratio of the maximum projection area of a sphere
of the same volume as the particle, over the maximum projection area of the particle
itself, demonstrated in Equation 2.3. The aforementioned spheroids take values of
maximum projection sphericity of 0.464 for the elongated one and 0.046 for the flat
one, while they both demonstrate a degree of true sphericity of 0.216.

Figure 2.3: Spheroids with same degree of true sphericity (Wadell, 1932) from two different
perspectives: (left) prolate spheroid with dimensions 100 x 10 x 10 cm; (right) oblate
spheroid with dimensions 100 x 100 x 1 cm.

S =
3

√
c2

a · b
(2.3)
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Contrary to the sphericity of Wadell (1932), which is affected by both form and
roundness, the formulae of Intercept sphericity (Krumbein, 1941) and Maximum
projection sphericity (Sneed and Folk, 1958) are calculated based on a simplified
representation of the particle form, which is thought to be described fully through the
three main particle dimensions a, b, c and thus, an ellipsoid, a cylinder and a cuboid
with the same dimensions are considered to have the same intercept and maximum
projection sphericity values (Clayton et al., 2009). For example, a sphere, a cylinder
with equal height and diameter, and a cube take values of intercept and maximum
projection sphericity equal to unity. It can be asserted thus, that these indices
do not measure the morphological resemblance of a particle to a sphere, like the
degree of true sphericity. Instead, these indices quantify particle equidimentionality,
which has also been called in the literature as equancy or compactness. Figure 2.4
illustrates contour maps for the intercept and the maximum projection sphericity on
a Zingg plot, for particles of all possible aspect ratios. It becomes evident these two
formulae produce similar values for the same aspect ratios, while their contour maps
are symmetric along the bisect line of the Zingg plot, c/b = b/a. Indeed, both these
sphericity indices take higher values as particles become more compact, comparing
with the Zingg classification system (dotted lines on the graphs).

2.2.2 Interpretations of elongation, flatness and compactness

Zingg (1935) proposed one of the most popular classification systems for form, con-
sidering two aspect ratios to define the form of a particle: c/b being particle flatness
and b/a being elongation (as shown in Equation 2.4).

el =
b

a

fl =
c

b

(2.4)

Plotting the Zingg parameters c/b and b/a in a chart provides an intuitive vi-
sualisation of the form of a particle, in what is widely referred to as a Zingg plot.
Zingg (1935) categorised particle morphology in four classes: oblate if c/b < 2/3

and b/a > 2/3; compact if c/b > 2/3 and b/a > 2/3; blade-like if c/b < 2/3 and
b/a < 2/3 or prolate if c/b > 2/3 and b/a < 2/3, as shown in Figure 2.5a. Although
Zingg (1935) did not use the term flatness nor elongation, b/a and c/b have been
referred to as elongation and flatness respectively in the subsequent literature (e.g.
Blott and Pye, 2008).
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(a) (b)

Figure 2.4: Indices for (a) Intercept sphericity (Krumbein, 1941) and (b) Maximum pro-
jection sphericity (Sneed and Folk, 1958).

tyne, 1993) or blocky (Benn, 2004), but these
risk confusion with other aspects of shape such
as sphericity and roundness. Following Teller
(1976), the term equant is preferred here to
describe equi-dimensional particles regardless of
degree of sphericity or roundness. Forms near
the left corner of the triangular diagram were
termed platy by Sneed & Folk (1958) but have
alternatively been referred to by other authors
as slabby (Benn, 2004), disc-like (Illenberger,
1992) or oblate (Benn & Ballantyne, 1993). Once
again, to avoid any implication of circularity,
sphericity or roundness, the non-specific term
platy is preferred here. Forms in the right
corner of the diagram, which approach a one-
dimensional line, were termed elongated by
Sneed & Folk (1958), but have also been
referred to as rod-like (Krumbein, 1941) or
prolate (Benn & Ballantyne, 1993). The term
elongate is preferred here. Intermediate forms in
the centre of the diagram were described as
bladed by Sneed & Folk (1958), a satisfactory
term which has no connotations of roundness or
sphericity.

It is unclear whether Sneed & Folk (1958)
recognized the full nature of the relationships
between the S/L, S/I and I/L ratios, but Hockey
(1970) pointed out that it is possible to plot I/L
and (I ) S)/L on the same diagram. In fact,
using Hockey’s method, six different parameters
can be calculated and plotted, either parallel to
the sides of the triangle or radially from the
corners:

Isolines parallel to the triangle sides:

S

L

I

L

ðI � SÞ
L

Isolines radial to the triangle corners:

S

I

ðL � IÞ
ðL � SÞ

S

ðL þ S� IÞ

These six parameters define different aspects of
the form of a particle, but only two are required to
locate a particle on the triangular diagram or a
Zingg-type diagram (Fig. 3).

The S/L ratio has been used as a measure of
flatness by several authors (Lüttig, 1956; Barrett,
1980; Ballantyne, 1982; Howard, 1992) but, as
shown in Fig. 3A, particles with an S/L ratio of 0Æ2
can range from square, flat forms (e.g. a square plate
with dimensions 10,10,2) to highly elongate forms
(e.g. a square rod with dimensions 10,2,2). Lines of
equal S/L are arranged parallel to the equant corner
of the diagram and, therefore, S/L is more correctly
a measure of equancy (Illenberger, 1992).

The ratio I/L has long been used as a measure of
elongation (e.g. Lüttig, 1956). Maximum elonga-
tion occurs in the right-hand corner of the
triangular diagram, with lines of equal elongation
parallel to this vertex. As a result, particles with
zero elongation (I/L ¼ 0) plot along the left side of
the diagram.

The parameter (I ) S)/L has also been consid-
ered to be an index of flatness (Illenberger, 1992).
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Fig. 2. (A) The original form clas-
sification diagram and terminology
proposed by Zingg (1935); (B) trian-
gular form classification diagram
proposed by Sneed & Folk (1958),
with 10 classes: C (compact), CP
(compact-platy), CB (compact-bla-
ded), CE (compact-elongate), P
(platy), B (bladed), E (elongate), VP
(very platy), VB (very bladed), VE
(very elongate); (C) the Zingg (1935)
fourfold form classification plotted
on the Sneed & Folk (1958) diagram
with terminology used by Benn &
Ballantyne (1993).
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(a)

Sneed & Folk (1958) recognized three end-mem-
bers, classified mathematically as L > I ¼ S (elon-
gate), L ¼ I > S (platy) and L ¼ I ¼ S (equant)
with values plotted on a ternary diagram. How-
ever, if particles are described by the two inde-
pendent properties of flatness and elongation, it is
logical to deduce that there should be four end-
members, i.e. shapes which are neither flat nor
elongate (equant), flat but not elongate (platy),
elongate but not flat (rod), and both flat and
elongate (blade). Such a system is best plotted on a
diagram with four corners (i.e. the Zingg diagram).
With both systems, three-dimensional shapes

cannot exist at the extreme limits (i.e. on one or
more of the axes), either becoming two-dimen-
sional blades or one-dimensional lines. However,
shapes which are both very long and very flat do
exist (i.e. a tape), as do those which are very long
but equant in cross-section (needles or fibres).

Other form diagrams have been suggested by
some workers. Illenberger (1991) suggested using
a triangular diagram scaled using the Corey shape
factor and the Disc-Rod Index, but this also
produces distortion in the shape continuum.
Hofmann (1994) suggested scaling the triangle
using %L, %I and %S but, when using this
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Fig. 7. Two different sets of regular cuboids plotted on the Sneed and Folk and Zingg diagrams: (A, B) 21 regular
cuboids with their dimensions arithmetically distributed (as shown by Benn & Ballantyne, 1993); (C, D) 36 regular
cuboids with their dimensions geometrically distributed to ensure an even distribution of elongation and flatness
ratios.
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Figure 2.5: (a) The shape classification system of Zingg (1935); (b) cuboids with varying
aspect ratios on a Zingg plot (modified from Blott and Pye (2008) with permission from
Wiley & Sons).

Kong and Fonseca (2018) proposed new formulae for flatness and elongation
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given in Equation 2.5. These indices can be thought of as the complementary to
unity of the ratios in Equation 2.4.

el = 1− b

a

fl = 1− c

b

(2.5)

The advantage of the Kong and Fonseca (2018) formulae is that a flat particle
takes a high value of flatness, an elongated particle takes a high value of elongation,
a blade-like particle (both flat and elongated) takes a high value of both flatness
and elongation, while a compact particle takes a low value for both indices. Also
these indices are easy to understand and visualise (see the Zingg plots of Figure 2.6).
However, a limitation of the indices is that they do not express flatness nor elongation
as percentages of an overall form. For example, a particle with fl = 0.8, so c/b = 0.2,
is not compact, but it could be either flat, if el < 1/3, so b/a > 2/3, or bladed (flat
and elongated) otherwise (see Figure 2.5b). So, according to Kong and Fonseca
(2018)’s definition of flatness and elongation, particles featured by the same value
of fl may feature different degrees of flatness, depending on their elongation values.

(a) (b)

Figure 2.6: Indices of (a) elongation and (b) flatness proposed by Kong and Fonseca (2018).

Bagi and Orosz (2020) proposed the use of a surface orientation tensor to char-
acterise the form of a particle as a solution to the problem of defining the main
dimensions of irregular particles. The tensor is used to calculate elongation, flatness
and compactness of the tessellated surface of a particle. In case of cuboidal parti-
cles, calculation of the surface orientation tensor leads to the following formulae for
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elongation, flatness and compactness:

el =
c

b
− c

a

fl = 1− c

b

co =
c

a

(2.6)

Contour maps of these indices produced on a Zingg plot are shown in Figure 2.7.
From Figure 2.7a emerges that the el index takes low values for particles on the
left (both upper left and lower left) of the Zingg plot. Although the particles on
the upper left part of the plot are indeed flat and not elongated, the particles on
the lower left (i.e. for c/b < 0.2 and b/a < 0.2) are particles that are in fact flat
and elongated. However, most geomaterials do not exhibit such high elongation and
flatness values. Nevertheless a merit of these indices is that they add up to unity
(el+fl+co = 1), so they can be interpreted as percentile representations of a particle
overall form, i.e. a real three-dimensional particle will always have some degree of
elongation, flatness and compactness even if it is predominantly elongated, flat or
compact. Moreover, for values at the extremes of the spectrum, one of the indices is
enough to determine the class of the particle form, e.g. a flatness of 0.8 guarantees
that a particle is flat, regardless of its values of compactness or elongation. However
Bagi and Orosz (2020) did not attempt to employ these indices to improve on the
current particle classification systems.

(a) (b) (c)

Figure 2.7: Indices of (a) elongation, (b) flatness and (c) compactness proposed by Bagi
and Orosz (2020).
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On the other hand Potticary et al. (2015) considered an equivalent scalene el-
lipsoid to define the main dimensions of irregular particles, arriving at a different
definition for el, fl and co:

el =
a− b

a+ b+ c

fl =
2(b− c)
a+ b+ c

co =
3 · c

a+ b+ c

(2.7)

These indices can be seen as percentages of an overall form, while their distri-
bution on a Zingg plot seems in agreement with the shape of the cuboids of varying
aspect ratios of Figure 2.5b. With regard to very bladed particles (i.e. for c/b < 0.2

and b/a < 0.2), the indices show an opposite trend of the indices of Bagi and Orosz
(2020), featuring high elongation and low flatness values for particles that are both
flat and elongated. Contour maps of these indices produced on a Zingg plot are
visible in Figure 2.8.

(a) (b) (c)

Figure 2.8: Indices of (a) elongation, (b) flatness and (c) compactness proposed by Potti-
cary et al. (2015).

2.2.3 Effective form

The indices proposed by Potticary et al. (2015) belong to a small group of indices
which have been shown to demonstrate a clear correlation with the shear strength of
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particulate materials at critical state, i.e. at a state of excessive shear deformation in
which the material keeps deforming, without further increase in its internal stresses.
Potticary et al. (2015) first demonstrated an almost linear trend of their flatness (or
so called platyness) index with the tangent of the critical state friction angle, by
conducting numerical triaxial compression tests of oblate spheroids (i.e. ellipsoids
where their intermediate and long axes are equal) using the DEM, for particles of
zero elongation and increasing flatness values. Potticary et al. (2016) conducted a
similar study for prolate spheroids (i.e. ellipsoids where their small and intermediate
axes are equal), focusing on particles with zero flatness and increasing elongation
values, demonstrating that their elongation index also correlates almost linearly with
the tangent of the critical state friction angle of the studied spheroids.

Combining these observations, Harkness and Zervos (2019) conducted triaxial
compression tests for triaxial ellipsoids, i.e. particles that demonstrated both a de-
gree of flatness and a degree of elongation, for various combinations of aspect ratios.
Based on their analysis, they derived a new index called effective form, described
by Equation 2.8, which correlates almost linearly to the tangent of the critical state
friction angle of the studied ellipsoids. Figure 2.9 illustrates a contour map with
values of this index for particles of all possible aspect ratios c/b and b/a, with the
aid of a Zingg plot. This way of visualisation allows to explore how the values of
the effective form vary for particles of various morphology types.

ef =
a− c

a+ b+ c
(2.8)

Figure 2.9: Contour plot of the effective form proposed by Harkness and Zervos (2019) on
a Zingg plot.
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Plotting the effective form on a Zingg plot makes apparent that the values of the
effective form do not differentiate among the different regions of the Zingg classifi-
cation system, i.e. a flat or an elongated particle can have the same effective form.
Though, using the Zingg classification system, it can be inferred that a flat particle
can take values of effective form within the range 0.15-0.6, a compact particle cannot
have an effective form larger than 0.25, a bladed particle can have an effective form
within the range 0.25-1.0, while for an elongated particle, the parameter can take
values within the range 0.15-1.0. This happens, as the effective form of a particle
can be seen as the sum of its elongation index plus half its flatness index, using the
formulae of Potticary et al. (2015), i.e. ef = el + fl/2.

It is noteworthy, that the effective form shows roughly an inverse trend to the
compactness index on the axes of a Zingg plot. Because of this, it can be argued that
the critical state friction angle shows increased values for non-compact particles and
lesser values for compact particles, which is also found by the analyses of Potticary
et al. (2015, 2016); Harkness and Zervos (2019).

It should be noted that Figure 2.9 demonstrates high values of effective form
-and thus of critical state shear strength- for very elongated particles, moderate
values for flat particles and small values for compact particles. This distribution is
true if particles stay undeformed and intact. When it comes to natural materials,
such as silt and sand, very flat or very elongated particles (e.g. with c/b ≈ 0.01

and b/a ≈ 0.01, respectively) tend to demonstrate low survival rates, as in nature
they fragment and evolve to more moderate particle forms. Buscarnera and Einav
(2021) demonstrate this by introducing the concept of a “shape attractor”, i.e. a
moderate form type representing the shape of fragments which can evolve from
initially flat, elongated, bladed or compact intact particles. The characterisation
“moderate” is here used to describe a particle form that is not particularly flat,
nor particularly elongated, nor particularly bladed, nor particularly compact. For
instance, Buscarnera and Einav (2021) illustrate this point on a Zingg plot, near the
cross-over point among the four classes of form, as defined by Zingg, highlighting a
range within 0.65 < c/b ≈ b/a < 0.8 as the location of the “shape attractor” particle
form.
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2.3 New indices for elongation, flatness and com-

pactness

A new set of indices to characterise particle elongation, flatness and compactness is
here proposed. The indices (Equation 2.9) were designed to add up to unity and
take ’reasonable’ values for the whole range of particle aspect ratios, i.e. for c/b and
b/a ranging within (0,1].

el =
a · c

a · c+ b2
− c

a+ c

fl =
b2

a · c+ b2
− c

a+ c

co =
2 · c
a+ c

(2.9)

(a) (b) (c)

Figure 2.10: Indices of (a) elongation, (b) flatness and (c) compactness proposed in this
study.

Mapping the indices on a Zingg plot (see Figure 2.10), makes it apparent that
the new flatness and elongation indices are symmetric along the bisect line of the
map, c/b = b/a, making their values easier to interpret. The proposed fl and
el indices show a general agreement with the ones proposed by Bagi and Orosz
(2020) and Potticary et al. (2015) in the regions I, II and IV of the Zingg plot (see
Figure 2.5a), featuring flat, compact and elongated particles, respectively. Instead,
this is not the case for the flatness and elongation values of particles falling in the
bladed region of the Zingg classification system, i.e. c/b < 2/3 & b/a < 2/3 (lower
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left region bounded by dashed lines). For example, for particles featured by small
c/b values the el index of Potticary et al. (2015) takes high values although they are
predominantly flat. But their flatness is captured by the new proposed indices. For
instance, a very flat particle is considered, featured by c/b = 0.01 & b/a = 0.2 (see
the red circle in Figure 2.11d), meaning that its short axis c is 100 times smaller
than the intermediate axis b, while the intermediate axis is only 5 times smaller
than the long axis a. According to Potticary et al. (2015) fl = 0.329 & el = 0.666

, whereas using the proposed new indices fl = 0.950 & el = 0.046. Moreover, for
particles with b/a = 0.2 (see the green band in Figure 2.11d) their morphology
becomes more elongated for increasing c/b values. This trend is well captured by
the proposed fl and el indices whereas el of Potticary et al. (2015) takes nearly a
constant value irrespective of the c/b values. Finally with regard to the proposed
compactness index, it exhibits similar values to the ones taken by the indices of Bagi
and Orosz (2020) and Potticary et al. (2015).

2.4 New classification system for particle form

As early as 1958, Sneed and Folk highlighted that the Zingg classification system
underestimates the range of elongated and flat particles, while overestimates the
range of bladed particles. The latter occupies the majority of the Zingg plot (Smal-
ley, 1966) with a range of both flat and elongated particles misclassified as bladed
(Sneed and Folk, 1958).

To address the current shortcoming of the Zingg classification system, a sought
new classification system needs 1) to keep unchanged region II of the compact parti-
cles while 2) enlarging the regions of both flat and elongated particles to the expense
of the region of the bladed ones. The first requirement, i.e. keeping region II un-
changed, implies that the region needs to be delimited by the same boundaries as
those of the Zingg classification system, i.e. b/a = 2/3 and c/b = 2/3. These val-
ues plugged into the new indices proposed in this chapter result into fl = 0.2 and
el = 0.2. In Figure 2.11a the curves corresponding to fl = 0.2 and el = 0.2 are plot-
ted as solid lines on a Zingg plot together with the modified regions I, II, III and IV
of the new proposed classification system, where the boundaries between regions are
now provided by fl = 0.2 and el = 0.2 instead of b/a = 2/3 and c/b = 2/3 (drawn
as dashed lines in Figure 2.11a). Visually it is immediately evident that in the new
system, regions I and IV corresponding to flat and elongated particles respectively
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are larger while the size of region III of the bladed particles is smaller, fulfilling the
second aforementioned requirement. In Figure 2.11b and Figure 2.11c, ellipsoids
and cuboids of various aspect ratios are superimposed on the plot of Figure 2.11a,
so that some specific example cases of particles can be analysed in order to assess
the accuracy of the new proposed classification system. Both ellipsoids and cuboids
are visualised, to highlight that using the main particle dimensions to characterise
particle form is not affected by roundness features. For example, a cuboid is consid-
ered, featured by c/b = 0.6 & b/a = 0.2, marked by a red circle in Figure 2.11d. This
is clearly an elongated rather than a bladed particle as per the Zingg classification
system. Second, a cuboid is considered, featured by c/b = 0.01 & b/a = 0.2. This
is a predominantly flat particle rather than flat & elongated (i.e. bladed) as per the
Zingg classification system. In summary, in the proposed new classification system
and unlike the Zingg one, particles featured by b/a < 2/3 and small c/b values are
correctly classified as flat and particles featured by c/b < 2/3 and small b/a values
as elongated.

The proposed indices and classification system are well defined for particles of
all possible aspect ratios (c/b > 0 and b/a > 0). Focusing on the lower-left region
of a Zingg plot, which corresponds to particles with c/b < 0.1 and b/a < 0.1, three
particle shapes will be considered: (i) a flat particle with c/b = 0.01 & b/a =

0.1, (ii) a blade-like particle with c/b = 0.1 and b/a = 0.1 and (iii) an elongated
particle with c/b = 0.1 and b/a = 0.01, aiming to demonstrate the robustness of
calculations for three extreme particle shapes. Cuboids of these aspect ratios are
shown in Figure 2.12, where the morphological difference among these particles
becomes apparent. Moreover, it should be noted that most natural materials, such
as sands or silts, do not feature such extreme particle shapes, as these tend to break
in nature, and evolve into smaller, more regular fragments (Buscarnera and Einav,
2021).

2.5 Comparison of form classification systems

Several classification systems have been proposed in the literature to categorise
particles based on their form. The system of Zingg has become standard practice
due to its simplicity, although as demonstrated in the previous section, it misclassifies
very flat and very elongated particles as bladed, while particles with the same aspect
ratio c/b or b/a can feature significantly different shapes, making the interpretation
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(a) (b)

(c) (d)

Figure 2.11: (a) The proposed classification system with the solid lines denoting the bound-
aries among bladed, elongated, compact and flat particles. The dashed lines denote the
Zingg classification system; (b),(c) ellipsoids and cuboids with varying aspect ratios plotted
over the newly proposed and Zingg’s classification systems; (d) particles in the coloured
bands and red circles were employed in the comparison exercise between form indices.

of these indices less intuitive.

Blott and Pye (2008) proposed an updated Zingg classification system, which
entails a finer discretisation of the aspect ratio domain (c/b− b/a) to 25 categories
of particle form, with the boundaries between categories being determined by the
values of c/b and b/a for intervals of 0.2. Still, this more sophisticated version of the
Zingg classification system suffers from the same limitations as the original Zingg
system, when it comes to very flat and very elongated particles.
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a=1, b=0.1 c=0.001
c/b=0.01, b/a=0.1
el=0.090, fl=0.908

(i) flat

a=1, b=0.1, c=0.01
c/b=0.1, b/a=0.1

el=0.490, fl=0.490

(ii) bladed

a=1, b=0.01, c=0.001
c/b=0.1, b/a=0.01
el=0.908, fl=0.090

(iii) elongated

Figure 2.12: Classification of three cuboids with extreme aspect ratios using the proposed
formulation.

A more refined classification system was proposed by Sneed and Folk (1958),
which considers ten classes of particle form: compact, compact platy, compact
bladed, compact elongated, platy, bladed, elongated, very platy, very bladed, very
elongated. The shape classes of Sneed and Folk (1958) are mapped on a Zingg plot,
where it becomes evident that there is similarity between the trends of the proposed
compactness and the compactness of Sneed and Folk (1958), which was equal to
c/a, same as the compactness proposed by Bagi and Orosz (2020) considering the
surface orientation tensor of cuboidal particles.

Figure 2.13 demonstrates the classification system of Zingg (1935) along with
the proposed one, produced on a Zingg plot, to ease comparisons. The classification
system of Sneed and Folk (1958) exhibits significant differences with the proposed
system and with the system of Zingg (1935), although it agrees with the proposed
system when it comes to classifying particles with low b/a values as elongated.

Figure 2.14 shows the Sneed and Folk classification system in its usual form,

27



Chapter 2. Characterisation of particle form

(a)

(b)

Figure 2.13: (a) The classification system of Sneed and Folk (1958), visualised on a Zingg
plot. The notations stand for C: Compact, P: Platy, B: Blade, E: Elongated, V: Very;
(b) the classification system proposed in this study. The characterisation ’platy’ is here
considered interchangeable with the term ’flat’.
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plotted on a ternary plot, where the parameters controlling the classes become vis-
ible. In particular, the parameter c/a classifies particles based on their degree of
compactness at values c/a = 0.3, c/a = 0.5 and c/a = 0.7, while the parame-
ter (a − b)/(a − c), termed as the “disc-rod index” by Illenberger (1991), classifies
particles of low compactness as platy (for values (a − b)/(a − c) < 1/3), bladed
(1/3 < (a − b)/(a − c) < 2/3) and elongated ((a − b)/(a − c) > 2/3). All parti-
cles with high compactness (c/a > 0.7) are considered compact, regardless of their
disc-rod index value.

tyne, 1993) or blocky (Benn, 2004), but these
risk confusion with other aspects of shape such
as sphericity and roundness. Following Teller
(1976), the term equant is preferred here to
describe equi-dimensional particles regardless of
degree of sphericity or roundness. Forms near
the left corner of the triangular diagram were
termed platy by Sneed & Folk (1958) but have
alternatively been referred to by other authors
as slabby (Benn, 2004), disc-like (Illenberger,
1992) or oblate (Benn & Ballantyne, 1993). Once
again, to avoid any implication of circularity,
sphericity or roundness, the non-specific term
platy is preferred here. Forms in the right
corner of the diagram, which approach a one-
dimensional line, were termed elongated by
Sneed & Folk (1958), but have also been
referred to as rod-like (Krumbein, 1941) or
prolate (Benn & Ballantyne, 1993). The term
elongate is preferred here. Intermediate forms in
the centre of the diagram were described as
bladed by Sneed & Folk (1958), a satisfactory
term which has no connotations of roundness or
sphericity.

It is unclear whether Sneed & Folk (1958)
recognized the full nature of the relationships
between the S/L, S/I and I/L ratios, but Hockey
(1970) pointed out that it is possible to plot I/L
and (I ) S)/L on the same diagram. In fact,
using Hockey’s method, six different parameters
can be calculated and plotted, either parallel to
the sides of the triangle or radially from the
corners:

Isolines parallel to the triangle sides:

S

L

I

L

ðI � SÞ
L

Isolines radial to the triangle corners:

S

I

ðL � IÞ
ðL � SÞ

S

ðL þ S� IÞ

These six parameters define different aspects of
the form of a particle, but only two are required to
locate a particle on the triangular diagram or a
Zingg-type diagram (Fig. 3).

The S/L ratio has been used as a measure of
flatness by several authors (Lüttig, 1956; Barrett,
1980; Ballantyne, 1982; Howard, 1992) but, as
shown in Fig. 3A, particles with an S/L ratio of 0Æ2
can range from square, flat forms (e.g. a square plate
with dimensions 10,10,2) to highly elongate forms
(e.g. a square rod with dimensions 10,2,2). Lines of
equal S/L are arranged parallel to the equant corner
of the diagram and, therefore, S/L is more correctly
a measure of equancy (Illenberger, 1992).

The ratio I/L has long been used as a measure of
elongation (e.g. Lüttig, 1956). Maximum elonga-
tion occurs in the right-hand corner of the
triangular diagram, with lines of equal elongation
parallel to this vertex. As a result, particles with
zero elongation (I/L ¼ 0) plot along the left side of
the diagram.

The parameter (I ) S)/L has also been consid-
ered to be an index of flatness (Illenberger, 1992).
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Fig. 2. (A) The original form clas-
sification diagram and terminology
proposed by Zingg (1935); (B) trian-
gular form classification diagram
proposed by Sneed & Folk (1958),
with 10 classes: C (compact), CP
(compact-platy), CB (compact-bla-
ded), CE (compact-elongate), P
(platy), B (bladed), E (elongate), VP
(very platy), VB (very bladed), VE
(very elongate); (C) the Zingg (1935)
fourfold form classification plotted
on the Sneed & Folk (1958) diagram
with terminology used by Benn &
Ballantyne (1993).
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Figure 2.14: The shape classification system of Sneed and Folk (1958) (modified from Blott
and Pye (2008) with permission from Wiley & Sons). The notations stand for C: Compact,
P: Platy, B: Blade, E: Elongated, V: Very.

The proposed system classifies particle form in terms of flatness (fl) and elonga-
tion (el), while compactness (co) is not used directly, as only two of the proposed fl,
el and co indices are independent, since fl+ el+ co = 1. A deficiency of the system
is identified, as particles with the same value of compactness can be classified in dif-
ferent classes, e.g. for co = 0.75, a particle can be flat if fl = 0.2 and el = 0 (i.e. for
c/b = 0.6 and b/a = 1.0), compact if fl = 0.125 and el = 0.125 (i.e. for c/b = 0.775

and b/a = 0.775) or elongated if fl = 0.0 and el = 0.25 (i.e. for c/b = 1.0 and
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b/a = 0.6). This reveals a limitation of the proposed classification system, as parti-
cles with co > fl can be classified as flat, and particles with co > el can be classified
as elongated, rather than compact. Sneed and Folk (1958) avoided this limitation
by introducing more classes in their system, allowing for combination of features,
such as compact-platy, compact-bladed and compact-elongated particles. This could
be a way forward for the improvement of the future development of the proposed
system, as at the moment the system is in close agreement with the widely-accepted
classification system of Zingg (1935) at these regions of high compactness, as seen
in Figure 2.13b, which also considers four classes. Determining exact boundaries
between classes for any classification system is not trivial, as objective criteria do
not exist to define such boundaries, and the design of the system depends on the
experience and perspective of the researcher designing the system.

2.6 Concluding Remarks

In this chapter, the most popular sets of indices from the literature employed to
classify particle form were critically reviewed with the aid of a Zingg plot, where all
possible combinations of aspect ratios are represented.

New indices for elongation, flatness and compactness were proposed in the at-
tempt to overcome the limitations identified for the indices currently in use. The
newly proposed elongation and flatness indices give rise to Zingg plots which are
symmetric along the bisect line of the plot, making their values easier to interpret.
Also, they take values complementary to unity so they can be interpreted as per-
centages of an overall form. Examples of cuboids are analysed to illustrate the
appropriateness of the indices to describe particle form.

Finally, a new particle classification system derived from the proposed indices
which overcomes the misclassification of a range of particles that are incorrectly
classified as bladed in the Zingg system, is illustrated. Overall, the proposed indices
combine merits of all the other demonstrated sets of indices, as:

• They add up to unity, allowing them to be seen as percentages of an overall
form, thus making their values intuitive and easy to follow.

• The distribution of their values of a Zingg plot allows for them to be used in
a classification system, as in improvement of the Zingg system.

• They provide reasonable fl, el values for very elongated and very flat particles.
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Chapter 3

SHape Analyser for Particle
Engineering (SHAPE): Seamless
characterisation and simplification of
particle morphology from imaging
data

3.1 Introduction

The mechanical and rheological behaviour of particulate and granular assemblies
is significantly influenced by the shape of their individual particles. This chap-
ter presents SHAPE (Angelidakis et al., 2021b), a code to implement shape char-
acterisation of three-dimensional particles in an automated and rigorous manner,
allowing for the processing of samples composed of thousands of irregular particles
within affordable time runs. The input particle geometries can be provided in one of
the following forms: segmented labelled images, three-dimensional surface meshes,
tetrahedral meshes or point-clouds. These can be complemented with surface tex-
ture profiles. Shape characterisation is implemented for three key aspects of shape,
namely surface roughness, roundness and form. Also, simplified particle shapes are
generated by the code which can be used in numerical simulations to characterise the
mechanical behaviour of particulate assemblies, using numerical approaches such as
the Discrete Element method and Molecular Dynamics. Combining these two fea-
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tures in one automated framework, the code allows not only to characterise the
original granular material but also to monitor how its morphological characteristics
change as the shape of the particles is simplified according to the chosen fidelity
level for the application of interest.

3.2 Motivation and significance

Particulate and granular materials are omnipresent in nature, industry and day-
to-day life. They play a crucial role in powder handling (Alizadeh et al., 2017),
additive manufacturing (Nan et al., 2018), landslide hazard assessment (Boon et al.,
2015b) and rock avalanche modelling (Mollon et al., 2015), but to name a few. The
vast majority of particles are featured by a variety of irregular shapes, far from any
idealised geometries. Their morphological characterisation is of interest to a plethora
of research disciplines which study the behaviour of particulate matter, namely
Physics (e.g. Nguyen et al., 2014; Domokos et al., 2015), Civil Engineering (e.g.
Santamarina and Cho, 2004), Pharmaceutical Engineering (e.g. Champion et al.,
2007; Gamble et al., 2015; Hare et al., 2018), Chemical Engineering (e.g. Hodges
et al., 2010), Agricultural Engineering (e.g. Pasha et al., 2016) and Geosciences (e.g.
Williams and Caldwell, 1988; Blott and Pye, 2008). Several studies of particulate
materials have demonstrated the significant influence of particle morphology (i.e.
form, roundness and roughness) on the static and dynamic mechanical behaviour
of assemblies of particles such as shear banding (e.g. Iwashita and Oda, 1999;
Kawamoto et al., 2018), jamming (e.g. Nan et al., 2018), flowability (e.g. Pasha
et al., 2016) and processability (e.g. Shah et al., 2017).

In this study, particle morphology is categorised using three independent aspects
of shape, namely form, roundness and roughness, as defined in Barrett (1980). Form
is a first order morphological property, reflecting the relative proportions of a par-
ticle. Roundness is a second-order aspect of particle morphology, related to the
sharpness of corners and edges, and is therefore appended on top of the form fea-
tures. Surface roughness is a third-order aspect of shape, related to asperities which
are appended on top of roundness features. It should be noted that roughness is
scale dependent, so the level at which this aspect of shape is measured and studied
depends on the problem of interest.

Regarding the characterisation of particle form, the classification system pro-
posed by Zingg (1935) is being predominantly used in both research and practice,
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mainly due to its simplicity. Based on two independent ratios of the three main
dimensions of the particle, Zingg classified the shape of pebbles in four distinct cat-
egories, namely: oblate (or flat), compact (or equant), prolate (or elongated) and
blade-like (or triaxial). The ratios of these dimensions -short (S), intermediate (I)
and long (L)- are used in the Zingg plot of Figure 3.5b). The ratio S/I is related to
how flat a particle is, while the ratio I/L is related to how elongated it is. According
to the Zingg classification system: a particle is oblate if S/I < 2/3 and I/L > 2/3; a
particle is compact if S/I > 2/3 and I/L > 2/3; a particle is blade-like if S/I < 2/3

and I/L < 2/3; a particle is prolate if S/I > 2/3 and I/L < 2/3.

Particle shape characterisation has been an active research topic since the be-
ginning of the 20th century (Wentworth, 1919; Wadell, 1932). Traditionally, a set
of shape indices were employed to describe the main morphological aspects of par-
ticulate materials, mostly in 2-D (Powers, 1953). However, the results of 2-D shape
analyses are largely influenced by the plane chosen for the projection of the real par-
ticle (Fonseca et al., 2012; Nadimi and Fonseca, 2017a). In the last two decades, the
field has made important progress thanks to new experimental techniques, e.g. micro
Computed Tomography (µCT) (Nadimi and Fonseca, 2018; Mehrabi et al., 2021),
laser scanning, white light interferometry and more advanced algorithms combining
2-D images to reconstruct 3-D particle geometries, which in general allowed more
precise particle shape analyses. On the other hand, this progress has made appar-
ent the limitations of the indicators proposed in the 20th century, so, that several
new indicators have been proposed in the last decade (Clayton et al., 2009; Altuhafi
et al., 2016). At the same time, no consensus has yet been reached in the scientific
community about a set of universally accepted shape indicators to fully characterise
a particle shape. Therefore, a software able to calculate the main indicators in the
literature for particles imaged from a variety of experimental techniques is a poten-
tially transformative tool since it provides the community with the opportunity to
estimate shape indicators efficiently and conveniently for current and future datasets
of particles. In this way, researchers will be able to identify over time the best set of
shape indicators for their specific particulate material of interest. Also, this software
has the potential to significantly benefit industry, which still heavily relies on 2-D
image analyses (British Standards Institution, 2006, 2008, 2012, 2014).

The numerical modelling of particulate materials for engineering applications is
currently dominated by the conventional Discrete Element Method (DEM) with par-
ticles modelled as spheres, since detecting contact is mathematically and computa-
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tionally vastly easier, compared to non-spherical particles. Nevertheless, various ap-
proaches have been proposed to model real 3-D particles accounting for their shape,
the main ones being: polyhedral particles (Cundall, 1988; Hart et al., 1988), su-
perquadrics (Williams and Pentland, 1992), clusters of spheres held together (Jensen
et al., 1999; Garcia et al., 2009) or Non-Uniform Rational Basis-Splines (NURBS)
as in Andrade et al. (2012). In principle, any particle can be discretised as a polyhe-
dron and the more complex the shape, the higher the number of faces required for a
faithful representation. A new mathematical formulation extending the concept of
potential particle (Houlsby, 2009) to 3-D polyhedra (Boon et al., 2012, 2013) allows
the efficient DEM modelling of hundred thousands of particles of any convex shape
(Gardner et al., 2017). In this framework, a concave particle can also be simulated
as a cluster of convex polyhedra linked by unbreakable bonds (Boon et al., 2015b).
For the successful modelling of a particulate material, the right balance between
computational efficiency and geometric and mechanical accuracy has to be struck.
For instance, the geometry of a single particle, imaged by a laser scanner, can be
very accurately captured by thousands of faces, but if a DEM simulation of some
thousand particles was attempted, the computational time would be unaffordable.
Therefore, in the context of DEM analysis of particulate matter, particle shapes
need to be simplified, so that the numerical simulation of interest can be performed
without compromising the representativeness of the sample, i.e. the mechanical be-
haviour of the numerical sample still needs to be a faithful replica of the real sample
in terms of the experimental response observed.

Various mathematical techniques can be used to simplify the morphology of a
particle. Zhou et al. (2015) demonstrated the capacity of Spherical Harmonics, a
generalisation of the Fourier transformation in the 3D space, to generate particles
of various fidelity levels. Ouhbi et al. (2017) used statistical techniques and the
Proper Orthogonal Decomposition in particular, which is a variant of Principal
Component Analysis, to generate particles of controlled morphological accuracy.
In addition, mesh-reduction techniques, such as edge-collapse, can be employed to
generate simplified particle morphologies. Comparisons among these methods are
currently missing from the existing literature.

The proposed code is expected to be of interest to the community, since it can
be used to link particle shape to mechanical behaviour, through the calculation of
various shape indices, not only for the original material but also for the simplified
particles it generates and which can be used in numerical analyses. To achieve this,

34



Chapter 3. SHape Analyser for Particle Engineering (SHAPE): Seamless
characterisation and simplification of particle morphology from imaging data

a down-sampling of the original particle geometries is proposed in this section, at
discrete resolution intervals, i.e. fidelity levels, with simultaneous monitoring of the
inescapable alteration of some shape features, to ensure the preservation of the main
morphological profile.

This approach ensures that the selected particle shapes are not oversimplified
and thus that they retain an association to the real particles, morphologically-wise.
With this, the modeller can make an informed choice on the trade-off between ac-
curacy and computational speed for numerical simulations of particulate materials.
A variety of shape descriptors is available, while outputs are provided in multiple
formats, compatible with the syntax of some widely used DEM and FEM codes.

3.3 Software description

The code comprises two main modules, implementing particle shape characterisa-
tion and particle shape simplification, with the latter aiming to generate polyhedral
particles for numerical simulations. An additional auxiliary module provides utility
functions, calculating geometric properties of the polyhedral particles and perform-
ing basic geometric transformations.

3.3.1 Software architecture

SHAPE provides a particle shape characterisation routine for all aspects of particle
shape, namely surface roughness, roundness and form (Barrett, 1980). In addition,
the code includes a module to generate simplified geometries of three-dimensional
particles derived from imaging data, for different levels of simulation fidelity. The
particle geometries are analysed using the particle shape characterisation module,
allowing the user to prescribe the level of particle simplification on the basis of target
shape descriptor values. SHAPE can work for large assemblies of particles, providing
a fully automated framework from digital imaging to numerical simulation.

Figure 3.1 shows the main architectural features of SHAPE. Available imaging
data of a particle can be inserted in the code either as a point cloud, a surface or
tetrahedral mesh (Micó, 2020), or a segmented volumetric image. If a point cloud
is given as input, the particle surface is reconstructed either using the Delaunay
triangulation algorithm or using the Crust method, proposed in Amenta et al. (1998)
and implemented in Matlab by Giaccari (2020). If a segmented volumetric image is
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used, it is transformed into a surface mesh using an implementation of the refined
Delaunay triangulation algorithm developed in The CGAL Project (2020), which is
provided by the Iso2Mesh code (Fang and Boas, 2009). In particular, the functions
surf2vol and vol2surf of Iso2Mesh are used for transformations between surface
and voxelated representations of the particles.

Geometrical characteristics of the particle can be calculated, such as its centroid,
volume, surface area inertia tensor, radius of its largest possible inscribed sphere
and radius of its smallest bounding sphere. Shape characterisation follows, which
is detailed in the next section. If only characterisation is of interest, outputs of
the shape analysis can be extracted and statistics can be provided for the original
geometry of the material at this point.

• Point cloud
• Surface mesh (stl)
• Segmented 3-D image
• Surface topography

Mesh generation

Convex hull

Shape 
characterisation

Reduction of 
shape fidelity

Shape 
characterisation

Shape 
characterisation

Convex
YES

NO

Input files for 
numerical codes

Shape statistics 
and graphs

Figure 3.1: Main architecture of SHAPE.

What comes next is a shape simplification procedure, employing mesh-reduction
techniques. The user can choose at this stage whether the simplified particle needs to
be convex, and the convex hull of the particle is employed in such a case. Preserving
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geometrical characteristics during the simplification of a particle can be of interest.
To this end, SHAPE offers the option to apply an isochoric transformation of the
simplified particle, in order to match the volume of the original one. The isochoric
transformation operates a homothetic scaling of the simplified particle, multiplying
the coordinates of its vertices by a scale factor of 3

√
Voriginal/Vsimplified, where V

represents the volume of the particle for both the original and the simplified fidelity
levels.

Applying this scaling law on the simplified geometry preserves the volume of the
particle across fidelity levels, albeit the same is not achieved for the surface area
nor the inertia tensor of the particle. It should be noted, that scaling the particle
homothetically to achieve an overall isochoric transformation from the input object
to the simplified particle does not affect the parameters related to shape characteri-
sation, like sphericity, convexity, flatness and elongation, but it does change the size
of the particle, so the user should be careful in prescribing scale factors which might
deviate significantly from unity, as the particle size distribution may be affected.

Then, simplified particles are generated using the Iso2Mesh code (Fang and Boas,
2009), which includes binaries of The CGAL Project (2020) and TetGen (Si, 2015)
to implement mesh manipulations, including mesh-reduction. It should be noted
that only some mesh-generation and editing tasks are outsourced in Iso2Mesh and
this external dependency is not used to its full extent.

The outputs of the code include shape characteristics for each particle and statis-
tics of their values if a whole sample is analysed. Additionally, the simplified particle
geometries are exported in various formats, supported by some of the most widely
used FEM and DEM codes.

3.3.1.1 Shape characterisation

To date, particle shape characterisation is not a straightforward procedure. A
plethora of indices (or so-called descriptors) exist, aiming to measure some basic
aspects of shape, which often provide contradicting results if compared. It becomes
evident that the outputs of such a characterisation are highly dependent on the
definition of the chosen indices. To this end, SHAPE calculates a variety of widely
accepted indices, aiming to offer a comparison among their values and provide the
user with an integrated view over the morphological characteristics of the material
of interest.

In many studies, shape characterisation is often limited to the form of the parti-
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cles, while in reality the importance of roundness and surface roughness are reported
to be influencing the mechanical behaviour as well (Otsubo et al., 2017; Yang et al.,
2016; Harkness and Zervos, 2019; Nadimi et al., 2019; Marzulli et al., 2021). Round-
ness can be seen here as the complementary percentage of angularity. SHAPE supports
two definitions of roundness and two definitions of angularity.

In cases where the particle size is relatively small and its morphology is derived
through laser scanning or computed tomography, the available imaging resolution is
not satisfactory to measure its surface roughness. It is common practice to achieve
this by employing tools like white light interferometry. SHAPE calculates five indices
related to surface roughness (texture), based on available data of the surface profile.

Surface roughness data are given in the format of a point cloud. The input can
contain some larger local features (depending on the size of the region of interest),
which are related to the roundness or form of the particle. These features can be
decoupled from roughness through the application of filtering, to remove the smaller
curvatures (corresponding to the largest radii), associated to roundness and form. In
this filtering process, it is integral to choose a cut-off wavelength wisely, in order not
to filter out features related to roughness. To this end, Li et al. (2021) demonstrate
a method to estimate the cut-off wavelength via measurements of roughness, which
can be used to decouple roughness from roundness.

Figure 3.2 demonstrates the main structure of the shape characterisation module.
A list of all the supported shape indices can be found in Table 3.1.

Form

Roundness

Sphericity Convexity

Flatness Elongation

Roughness
Sq, Sa, Sdq, 

Sku, Ssk

Figure 3.2: Shape characterisation module.
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Table 3.1: Supported shape descriptors.

Shape descriptor Formula Range Parameters/Comments

Form

Convexity
V

VCH

[0, 1] VCH : Volume of convex hull

Degree of true sphericity (Wadell, 1932)
3
√
36πV 2

A
[0, 1] V : Volume

A: Surface area
Intercept sphericity (Krumbein, 1941) 3

√
IS

L2
[0, 1] S: Short axis

I: Intermediate axis
L: Long axisFlatness (Zingg, 1935)

S

I
[0, 1]

Elongation (Zingg, 1935)
I

L
[0, 1]

Flatness (Kong and Fonseca, 2018)
I − S
I

[0, 1]

Elongation (Kong and Fonseca, 2018)
L− I
L

[0, 1]

Flatness (Potticary et al., 2015)
2(I − S)
L+ I + S

[0, 1]

Elongation (Potticary et al., 2015)
L− I

L+ I + S
[0, 1]

Flatness (Bagi and Orosz, 2020)
f1 − f2
f1

[0, 1] f1, f2, f3: Eigenvalues
of surface orientation
tensorElongation (Bagi and Orosz, 2020)

f2 − f3
f1

[0, 1]

Compactness (Bagi and Orosz, 2020)
f3
f1

[0, 1]

Flatness (Angelidakis et al., 2022)
I2

S · L+ I2
− S

S + L
[0, 1]

Elongation (Angelidakis et al., 2022)
S · L

S · L+ I2
− S

S + L
[0, 1]

Compactness (Angelidakis et al., 2022)
2S

S + L
[0, 1]

Roundness

Roundness (Wadell, 1932)

(
N∑
i=1

ri

)
/N

Rin

[0, 1] ri: Radius of corner i
N : Number of corners
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1

Sq
3
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∫∫
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3.3.2 Software functionalities

SHAPE is meant to provide an integrated framework which links particle shape char-
acterisation with the generation of polyhedral geometries in numerical simulations,
supporting the creation of simplified particles at measurable fidelity levels affordable
by some of the most popular state-of-the-art numerical solvers. Its main function-
alities can be summarised as particle shape characterisation of 3-D particles for all
shape aspects and generation of simplified polyhedral geometries.

The supported output formats for the simplified particles are compatible with
the following numerical tools:

• the DEM solver YADE (Smilauer et al., 2021), supporting the formats of the
particle classes Polyhedra, PotentialBlock and PotentialParticle;

• the FEA solver Abaqus (2014), supporting the C3D4 element type;

• the DEM solvers 3DEC (Itasca Consulting Group, Inc., 2016) & PFC 6.0
(Itasca Consulting Group, Inc., 2018);

• the DEM solver LMGC90 (Dubois and Jean, 2003);

• the DEM solver BlazeDEM (Govender et al., 2016).

In addition, several utility functions are provided, calculating some key geometric
parameters, detailed in Table 3.2. Last, a set of functions is available, dedicated to
provide graphs and statistics of the particle shape characterisation analysis of a
sample.

3.3.3 Sample code snippet

The morphological analysis of large samples, composed of hundreds or thousands
of particles, necessitates the implementation of a robust data structure, to make
post-processing of the results easier. To this end, SHAPE has been designed following
an object-oriented structure, briefly demonstrated in Figure 3.3.
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Table 3.2: Geometric parameters.

Geometric parameter Method of calculation

Volume Discretisation to tetrahedra
Centroid Discretisation to tetrahedra
Surface area Sum of the areas of the triangles comprising the particle surface
Principal inertia tensor & princi-
pal axes

Superposition of inertia tensor for each tetrahedron and eigenvalue
analysis to calculate the principal tensor and axes

Axis-aligned bounding box
(AABB)

Extreme coordinates for the current particle orientation

Fitted ellipsoid (Petrov, 2020) Least squares fit to point cloud
Oriented bounding box (OBB) Two options:

1. Principal component analysis, using Singular Value Decomposi-
tion

2. Heuristic calculation, with options whether to calculate the
bounding box with minimum volume, surface area or total length
of edges (Korsawe, 2020)

Particle dimensions (Short, Inter-
mediate, Long)

Two options:
1. Axes of the least squares fitted ellipsoid
2. Axes of the oriented bounding box

Maximum inscribed sphere The particle geometry is transformed into a volumetric image,
where the maximum Euclidean distance is equal to the inradius

Minimal bounding sphere
(Semechko, 2020)

Using Welz’s and Ritter’s algorithms

Mean and Gaussian curvatures of
surface mesh

Following a methodology for triangular surface meshes (Dong and
Wang, 2005)

1 Particle % e.g. 1, 2, 3, etc.
2 Particle_type % e.g. Original, Convex_hull, Face_No_100, Face_No_50, etc.
3 Mesh % Surface_mesh, Tetrahedral_mesh, Voxelated_image, Surface_texture
4 Auxiliary_geometries % AABB, OBB, Fitted_ellipsoid, Minimal_bounding_sphere,

Maximal_inscribed_sphere
5 Geometrical_features % Volume, Centroid, Surface_area, Current_inertia_tensor,

Principal_inertia_tensor, Principal_orientations
6 Morphological_features % Form, Roundness, Roughness

Figure 3.3: Object-oriented structure of SHAPE.

3.4 Illustrative examples

Example 1: Single grain simplification

Figure 3.4 shows the reduction of shape resolution of a real soil grain for five fidelity
levels, using the simplification module of the code. The simplified shapes in this
paradigm are created starting from the convex hull of the original particle, meant
to be used by DEM codes, where the particles may need be convex. Fidelity is
quantified in this particular case in terms of number of triangular faces of the mesh
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constituting the particle surface, while in a wider perspective, the user can choose
a different measure of simulation fidelity to represent the detail of resolution of the
particles.

µCT Image 25 faces             50 faces            125 faces           250 faces         500 faces

Figure 3.4: Simplification module: Reduction of shape resolution for five user-defined
fidelity levels.

Table 3.3 presents various shape parameters for the original fidelity level and for
simplified levels of 25, 50, 125, 250 and 500 triangular faces per particle. The high
convexity value of the particle at its original fidelity level (equal to 0.933) indicates
that considering its convex hull as the starting point of the shape simplification
process can lead to representative simplified shapes, not very different from the
original one. Small discrepancies are observed for the degree of true sphericity
(less than 8%) and the shape indices proposed by Bagi and Orosz (2020) (less than
25%) across fidelity levels, which ensure that the simplified particles retain a high
level of similarity to the original particle from a morphological standpoint. To
further examine this, more shape indices were calculated in SHAPE, including the
intercept sphericity (Krumbein, 1941), and the form indices of Kong and Fonseca
(2018), Potticary et al. (2015) and Angelidakis et al. (2022). These indices rely on
the three main particle dimensions, which are in this case calculated both using a
minimal-volume oriented bounding box and a fitted ellipsoid, in an effort to assess
the sensitivity of calculations that take place in these approaches. In both cases,
all indices demonstrate relatively small differences between the original and the
simplified fidelity levels, with the lower fidelity levels exhibiting larger discrepancies.
For this sand particle, the fidelity level of 50 faces exhibits errors in the region of
25% for most of the analysed form indices, compared to the original fidelity level.
Regarding usage of these particles in numerical simulations, e.g. using the DEM, the
fitness of a simplified particle to be considered representative of the real material
depends on the error of shape indices that is considered acceptable by the modeller.
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Table 3.3: Characterisation of particle form of sand particle for various fidelity levels.

Fidelity level
Shape index Original 25 faces 50 faces 125 faces 250 faces 500 faces

Convexity 0.933 1.000 1.000 1.000 1.000 1.000
Degree of true sphericity 0.871 0.901 0.915 0.928 0.933 0.934
Flatness (Bagi and Orosz, 2020) 0.144 0.126 0.163 0.158 0.154 0.152
Elongation (Bagi and Orosz, 2020) 0.116 0.145 0.122 0.127 0.133 0.128
Compactness (Bagi and Orosz, 2020) 0.739 0.729 0.715 0.715 0.713 0.720

Particle dimensions from minimal oriented bounding box

Intercept sphericity (Krumbein, 1941) 0.901 0.892 0.907 0.904 0.902 0.905
Flatness (Kong and Fonseca, 2018) 0.036 0.059 0.046 0.036 0.026 0.026
Elongation (Kong and Fonseca, 2018) 0.129 0.131 0.116 0.125 0.132 0.127
Flatness (Potticary et al., 2015) 0.023 0.038 0.030 0.023 0.017 0.017
Elongation (Potticary et al., 2015) 0.047 0.049 0.043 0.046 0.049 0.047
Compactness (Potticary et al., 2015) 0.929 0.913 0.928 0.931 0.934 0.937
Flatness (Angelidakis et al., 2022) 0.018 0.030 0.023 0.018 0.013 0.013
Elongation (Angelidakis et al., 2022) 0.069 0.070 0.062 0.067 0.071 0.068
Compactness (Angelidakis et al., 2022) 0.913 0.900 0.915 0.915 0.916 0.919

Particle dimensions from fitted ellipsoid

Intercept sphericity (Krumbein, 1941) 0.900 0.902 0.889 0.887 0.895 0.900
Flatness (Kong and Fonseca, 2018) 0.091 0.192 0.114 0.082 0.082 0.085
Elongation (Kong and Fonseca, 2018) 0.105 0.047 0.110 0.127 0.116 0.108
Flatness (Potticary et al., 2015) 0.060 0.134 0.076 0.054 0.054 0.056
Elongation (Potticary et al., 2015) 0.039 0.017 0.041 0.048 0.043 0.040
Compactness (Potticary et al., 2015) 0.901 0.849 0.883 0.898 0.903 0.904
Flatness (Angelidakis et al., 2022) 0.047 0.106 0.060 0.043 0.043 0.044
Elongation (Angelidakis et al., 2022) 0.055 0.024 0.058 0.068 0.062 0.057
Compactness (Angelidakis et al., 2022) 0.898 0.870 0.882 0.889 0.896 0.899

Example 2: Shape characterisation results for a sample of 50

railway ballast particles

In this example, results are demonstrated from a particle shape characterisation
analysis of 50 railway ballast grains. The particle geometries have been scanned by
Xiao et al. (2017) using a hand-held laser scanner. Figure 3.5a shows the alteration
of the degree of true sphericity for the 50 ballast grains, starting from the original
particle, the convex hull and then for descending fidelity levels from 200 to 25 trian-
gular faces on the surface of each particle. Figure 3.5b demonstrates a Zingg plot for
the original particle shapes (Zingg, 1935), along with isolines of intercept sphericity
values (Krumbein, 1941), allowing for a classification of the particles’ morphology
for the whole sample.

To further quantify the loss of fidelity introduced by the simplification of the
ballast particle shapes, the values of more indices of particle form are plotted against
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(a) (b)

Figure 3.5: Shape characterisation of 50 railway ballast grains: (a) Degree of true sphericity
(Wadell, 1932) for various fidelity levels; (b) Zingg plot for the original fidelity level (Zingg,
1935). The contour lines represent the values of Intercept Sphericity (Krumbein, 1941).

the number of faces, i.e. across fidelity levels. In this example, particle shape is
simplified employing a quadric edge-collapse decimation technique, available within
the Computational Geometry Algorithms Library (The CGAL Project, 2020),
a dependency of SHAPE. These indices are calculated based on the main particle
dimensions, which in this case are estimated using both an oriented bounding box
(OBB) of minimal volume and a fitted ellipsoid (ELL), using non-linear least square
fitting, aiming to quantify the sensitivity of each method for different fidelity levels.
Figure 3.6 shows values of Intercept Sphericity (Krumbein, 1941) for both cases
and for all fidelity levels. It becomes evident that for most particles, considering
the oriented bounding box led to higher values of intercept sphericity, compared
to the values corresponding to the fitted ellipsoid, for the analysed particles, by
about 10%. The oriented bounding box results show smaller differences comparing
the original fidelity level to the convex hull and the 200 faces, while for the fitted
ellipsoid results, an increase of intercept sphericity is observed comparing the convex
hull to the simplified fidelity level with 200 faces on the surface of the particle.

Although the values of sphericity can indicate if a particle is compact or not,
as discussed in Chapter 2, it does not provide information on whether non-compact
particles are flat or elongated. To this end, two measures of flatness and elongation,
proposed by Potticary et al. (2015) and Angelidakis et al. (2022) are calculated
across fidelity levels, as shown in Figure 3.7 and Figure 3.8, respectively.
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(a) (b)

Figure 3.6: Intercept Sphericity (Krumbein, 1941) of 50 railway ballast grains. Main
dimensions calculated using a: (a) fitted ellipsoid (ELL); (b) oriented bounding box (OBB).
The first two fidelity levels correspond to: OG: Original Grain, CH: Convex Hull.

For both sets of indices, it can be observed that using an oriented bounding box
to estimate the main particle dimensions leads to better preservation of particle form
(both flatness and elongation) in most cases, comparing the original fidelity level to
the 200 faces and down to 25 faces on the surface of each particle. The OBB-derived
results show high error levels for a small subset of particles (less than 5% of the full
sample), indicating either a limitation of the oriented bounding box to capture the
main particle dimensions consistently or an insufficiency of the employed simplifica-
tion technique to preserve the main morphological characteristics pertaining to the
form of the analysed particles. As a result, if a modeller was to use these particles in
a numerical simulation, they could either attempt a supervised pre-processing before
particle generation in the DEM, to eliminate the simplified particles that did not
preserve their form or else to set a threshold for an acceptable level of error, effec-
tively automating the elimination process for oversimplified particles. The indices
of Potticary et al. (2015) and Angelidakis et al. (2022) show similar levels of sensi-
tivity across fidelity levels, with same trends regarding the consideration of a fitted
ellipsoid or an oriented bounding box, to measure the main particle dimensions.

Example 3: Characterisation of images with noise

The products of digital imaging are always influenced to some degree by the exis-
tence of numerical noise. Regardless of the technique used to digitise the geometry
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(a) (b)

(c) (d)

Figure 3.7: Flatness and elongation (Potticary et al., 2015) of 50 railway ballast grains.
Main dimensions calculated using a: (a,b) fitted ellipsoid (ELL); (c,d) oriented bounding
box (OBB). The first two fidelity levels correspond to: OG: Original Grain, CH: Convex
Hull.

of a particle, (e.g. computerised tomography or laser scanning) or the format of
the output (3D images and point clouds, respectively), defects are always present.
Preparing imaging data at a pre-processing stage is typical before using them for
shape characterisation or numerical simulations of any type, including tasks such as:
filtering, removing of isolated elements (e.g. pixels or points) or applying smoothing
and refining techniques.

Wiebicke et al. (2017) studied how defects of realistic images derived using com-
puterised tomography can affect the segmentation of individual particles. Starting
from computer-generated synthetic-images of spherical assemblies, they generated
realistic-like images, with the addition of Gaussian noise and blur. Gaussian noise
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(a) (b)

(c) (d)

Figure 3.8: Flatness and elongation (Angelidakis et al., 2022) of 50 railway ballast grains.
Main dimensions calculated using a: (a,b) fitted ellipsoid (ELL); (c,d) oriented bounding
box (OBB). The first two fidelity levels correspond to: OG: Original Grain, CH: Convex
Hull.

and blur are the two elements present in every real image captured using comput-
erised tomography.

This example demonstrates a sensitivity analysis, where a 3D image of an ellip-
soidal particle is analysed using SHAPE. Then, blur and noise of different levels are
added, to identify the effect of the induced noise on the form characterisation of the
overall image. Blur is created by applying Gaussian filtering of varying standard
deviations. Figure 3.9 demonstrates an ellipsoid with radii 150× 75 × 105 mm,
where increasing levels of blur and Gaussian noise are added.

Figure 3.10 shows the absolute error values of several shape parameters, for all
levels of blur and noise. All examined parameters correspond to the characterisation
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of particle form, including Convexity, Intercept sphericity (Krumbein, 1941) and
Flatness and Elongation (defined as in Kong and Fonseca, 2018). Two ways of
calculating the main particle dimensions are employed, corresponding to the axes
of an Oriented Bounding Box (noted with “OBB” in the figure), and the axes of a
fitted ellipsoid (noted with “ELL” in the figure), aiming to quantify the sensitivity
of each method to noise and blur. For all shape parameters, the maximum value of
error is limited below 7.5%, 15% and 20%, for blur levels with standard deviations
σnoise equal to 1, 3 and 5, respectively.

Figure 3.9: 2-D slices of ellipsoids for various levels of blur and noise.
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(a) (b)

(c)

Figure 3.10: Absolute error of shape parameters for images with increasing levels of blur
and noise: (a) σblur = 1; (b) σblur = 3; (c) σblur = 5. Flatness and elongation are calculated
as in Kong and Fonseca (2018). The particle dimensions are calculated using an oriented
bounding box (OBB) and a fitted ellipsoid (ELL).

Example 4: Characterisation of concave particles

This example means to demonstrate the capacity of SHAPE to characterise the mor-
phology of particles with concavities. To establish a meaningful comparison, the
morphology of a ring torus was characterised, where analytical expressions exist for
several of its geometrical characteristics.

The analysed torus shown in Figure 3.11 has a horizontal ring of radius 3.0 cm
and a vertical section of radius 1.0 cm. To tessellate the surface of this particle,
300 subdivisions are considered along its horizontal ring and 100 subdivisions along
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Table 3.4: Morphological characteristics of a torus. Validation of SHAPE against theoretical
values and Meshlab.

Shape parameter Theory SHAPE error=1− SHAPE
Theory

Meshlab error=1− SHAPE
Meshlab

Volume (cm3) 59.21760 59.17430 0.0731% 59.17434 0.0001%
Surface area (cm2) 118.43530 118.41040 0.0210% 118.40588 -0.0038%
Inradius (cm) 1.0000 1.0002 -0.0200% - -
Circumradius (cm) 4.0000 4.0011 -0.0275% - -

Inertia values (cm5)
303.49030 303.22310 0.0880% 303.22311 0.000005%
303.49030 303.22310 0.0880% 303.22311 0.000005%
577.37190 576.87850 0.0855% 576.87848 -0.000004%

Convexity 0.655453 0.655200 0.0387% 0.655200 0.0000%
Sphericity 0.620350 0.620200 0.0242% 0.620202 0.0003%

Outer ring
Gaussian curvature (cm-2) 0.250000 0.251100 -0.4400% 0.250491 -0.2431%
Mean curvature (cm-1) 0.625000 0.625600 -0.0960% 0.625345 -0.0408%

Top ring
Gaussian curvature (cm-2) 0.000000 0.000227 - 0.000228 0.3947%
Mean curvature (cm-1) 0.500000 0.501000 -0.2000% 0.501560 0.1117%

Inner ring
Gaussian curvature (cm-2) -0.500000 -0.497900 0.4200% -0.500564 0.5322%
Mean curvature (cm-1) 0.250000 0.251300 -0.5200% 0.249488 -0.7263%

each of its sections, resulting in a particle with 30,000 vertices and 60,000 faces.
The geometrical parameters of the torus calculated analytically and by SHAPE,

along with the corresponding errors are reported in Table 3.4. The errors are consis-
tently below 0.5%. To further investigate the source of errors, the generated mesh
of the torus was reanalysed using Meshlab (Cignoni et al., 2008). It emerges that
Meshlab and SHAPE provide very similar results and therefore, the errors can be
attributed to the tessellation of the torus into a discrete mesh.

3.5 Software impact

In practice, particle shape characterisation is typically carried out based on a handful
of selected shape indices, while different interpretations of these indices exist in
literature, aiming to describe the same shape aspects. The effectiveness of these
indices to characterise the particle shape is still an open discussion and researchers
and practitioners use the indices they find more representative subjectively, since to
date, a consensus does not exist.

This piece of software is meant to facilitate a framework where the user can have
easy access to a -growing- variety of different shape indices, while they can monitor
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(a)

(b)

(c)

Figure 3.11: Analysed torus:(a) surface mesh; (b) mean curvatures; (c) Gaussian curva-
tures.
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possible differences between indices which are meant to characterise the same shape
aspects. For instance, different interpretations of sphericity can lead to different
results, while all of them are meant to represent how closely a particle resembles
a sphere. That is, this software is expected to provide a better comprehension in
the study of particle shape characterisation, providing a pool of available shape
indices. Users are encouraged to request or further develop the implementation of
more shape indices they might be using in their work.

Utilising the ability of this software to process not just single particles, but whole
particulate assemblies of three-dimensional particles, the authors intend to provide
the community with a comprehensive tool to study the effect of particle shape in a
quantitative and effective manner. This will facilitate the incorporation of 3D shape
characterisation in industrial standards and guidelines.

3.6 Conclusions

A new open-source software is presented to perform shape characterisation of three-
dimensional non-spherical particles. The following conclusions about the significance
and reach of the work can be drawn:

1. SHAPE provides seamless characterisation and simplification of particle mor-
phology, considering three key aspects of particle shape, namely form, round-
ness and surface roughness. This allows the characterisation of large particu-
late assemblies composed of thousands of particles, without human interven-
tion.

2. For each aspect of shape, the code can calculate the most relevant shape
descriptors, along with multiple approaches to calculate the main particle di-
mensions. This means the code can be employed for the many practical ap-
plications involving granular materials across the spectrum of the engineering
and physical sciences.

3. The user is in control of the morphological simplification of each particle pro-
cessed by setting acceptability thresholds for the error measured by the code
for each shape index.

Having developed a shape analyser, which can also generate simplified shapes
to be used in numerical simulations, this tool has the potential to be of use to
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researchers and practitioners alike investigating the influence of particle shape on
the mechanical behaviour of granular assemblies at any scale of interest, including
but not limited to powders, sands, silts, ballast, rockfills, and the many byproducts
of process engineering.

SHAPE provides a user-friendly platform where future shape indices developed by
the research community can be tested and pave the way for the development of new
industrial standards based on 3-D particle characterisation.
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Chapter 4

CLUMP: a Code Library for
Universal Multi-sphere Particles

4.1 Introduction

The numerical simulation of particulate assemblies typically involves the use of
Molecular Dynamics, where spheres are the predominant particle shape, and the
Discrete Element Method (DEM), where more choices exist to model non-spherical
particles. Clumps and clusters of spheres have been used to simulate non-spherical
particles, primarily due to the simplicity of contact detection among spheres and
their ability to approximate practically any irregular geometry. Various approaches
have been proposed in the literature to generate such clumps or clusters, while
open-source numerical codes applying these are scanty. The CLUMP code, proposed
in Angelidakis et al. (2021a) , provides a unified framework, where a particle mor-
phology can be approximated using different clump-generation approaches from the
literature. This framework allows comparing the representations of the particle gen-
erated by the different approaches both quantitatively and qualitatively, providing
the user with the tools to decide which approach is more appropriate for their ap-
plication. Also, one novel generation technique is proposed. Outputs are provided
in formats used by some of the most popular DEM codes. Moreover, the resulting
clumps can be transformed into surface meshes, allowing for easy characterisation
of their morphology. Finally, the effect of clump-generation techniques on the me-
chanical behaviour of granular assemblies is investigated via triaxial compression
tests.
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4.2 Previous work

Modelling real particles as clumps of overlapping spheres or clusters of non-overlapping
spheres (Orefice and Khinast, 2020) is common practice in both academic and in-
dustrial studies, when particle morphology is of interest. Clustering spheres to
represent a single particle offers versatility within a simulation, as the fine de-
tails of particle morphology such as local roundness, roughness or concavities can
be introduced. Moreover, the computational cost is affordable due to the sim-
plicity of performing contact detection among spheres, given the total number of
spheres considered. An abundance of methods has been proposed in the litera-
ture to perform such a feat, including Favier et al. (1999), Matsushima and Sao-
moto (2002), Bradshaw and O’Sullivan (2004), Price et al. (2007), Wang et al.
(2007), Garcia et al. (2009), Ferellec and McDowell (2010), Taghavi (2011), Gao
et al. (2012), Li et al. (2015), Zheng and Hryciw (2016), Haeri (2017), and Kata-
giri (2019). These methods have been employed in multiple research fields, namely
physics (Markauskas et al., 2010), pharmaceutical engineering (Tamadondar and
Rasmuson, 2020), chemical engineering (Nan et al., 2017), agriculture (Pasha et al.,
2016), civil engineering (Wang et al., 2007; Suhr and Six, 2020), mining engineer-
ing (Cho et al., 2007) and geosciences (Kodicherla et al., 2020). However, only a
limited number of implementations are available open access, such as Haeri (2017):
https://github.com/sihaeri/DEM-ClumpedSphere and Bradshaw and O’Sullivan
(2004): https://github.com/mlund/spheretree.

In a typical numerical study employing clumps, the researcher employs an avail-
able method to approximate the real particle morphology. Most commercial DEM
software offer one specific approach, developed in-house, to assist users in defining
such clumps. For example, PFC3D (Itasca) provides the Taghavi (2011) method
and EDEM (Altair Engineering) offers an in-house method in their most recent ver-
sion. Open-source DEM codes (such as YADE or LAMMPS) often do not provide
any methods to generate clumps, although YADE offers functions to fill a target
geometry with non-overlapping spheres. Note that the quality of the particles gen-
erated by the available approaches varies with the type of application / problem
investigated and with particle morphologies. At present, a quantitative analysis of
the effect of clump generation methods is missing from the literature. Also, no or
very little information is provided in the publications that introduce a new method
for generating a clump about the performance of the method in preserving mor-
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phological characteristics. To this end, CLUMP provides a unified framework for the
comparison of different multi-sphere particle generation methods and it facilitates
morphology characterisation of these particles. The code is easy to use and it can
provide an automated workflow to generate thousands of particles within reasonable
time runs.

4.3 Software description

The code comprises three main modules: (1) Functions to generate clumps, (2)
Functions to export clumps and (3) Transformation of clumps to surface meshes,
allowing for their morphological characterisation and comparison with the original
particle. The first module is the main core of the software, while the second and
third ones have an auxiliary role, functioning as utility scripts.

4.3.1 Software architecture

This section details the main structure of the code, which is also visualised in Fig-
ure 4.1.

Module I: Generate Clump CLUMP supports three approaches to generate clumps,
namely Favier et al. (1999), the first multi-sphere approach proposed in the litera-
ture; Ferellec and McDowell (2010), a widely used approach; and a newly proposed
approach based on the Euclidean distance transform of 3D images. Figure 4.2 shows
the main objects of the clump generation module.

Module II: Export Clump The generated clumps represented by the centroids
and radii of multi-spheres can be exported in various formats (*.py, *.csv), compat-
ible with some of the most mainstream commercial and open-source DEM codes,
including EDEM, PFC3D, YADE, and LAMMPS.

Module III: Characterise Clump A surface extraction module is developed,
transforming each clump into a surface mesh, which in turn can be imported in
SHAPE (Angelidakis et al., 2021b), to perform shape characterisation.

CLUMP relies on several external functions available within the Matlab FEX com-
munity. In particular, the outsourced tasks include the handling of stereolithography
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Input 

3D Mesh or
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Surface Extraction

Morphology 
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github.com/vsangelidakis/SHAPEModule with three algorithms to fill the object with overlapping spheres

Clump Generation
Favier et al. (1999)

Ferellec and McDowell (2010) Euclidean transform

Ferellec and McDowell (2010)

Euclidean transform

I used the CLUMP logo in BW

Figure 4.1: The main modules of CLUMP. The surface of a rice grain and a sand grain
are used to generate clumps of overlapping spheres. The surface of each clump can be
extracted, allowing for a quantitative characterisation of their morphology.

Clump
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Figure 4.2: Main objects of the code structure (a) clump (b) mesh.

files (Micó, 2020), mesh manipulations (Fang and Boas, 2009), and calculation of
rigid body parameters (Semechko, 2021).

4.3.2 Software functionalities

CLUMP supports the following clump-generation approaches:

4.3.2.1 Favier et al. (1999)

This method only applies to symmetrical particles which are constructed of spheres
whose centres are located on the particle axis of symmetry. Spheres may overlap
and may vary in diameter along the length of the axis of symmetry. The surface of
a particle is approximated by inscribing spheres such that the surface of each sphere
is tangent to the surface of the particle at the point of contact. The position of each
element sphere is fixed relative to the other elements within a particle.
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4.3.2.2 Ferellec and McDowell (2010)

The clump generation methodology of Ferellec and McDowell (2010) selects random
points of the mesh of the particle surface and generates tangent spheres of increasing
radii, until they intersect a different vertex of the particle surface. This methodology
was designed to eliminate artificial asperities of flat faces, through the consideration
of large numbers of spheres per particle. Due to this, the approach of Ferellec and
McDowell (2010) will not work as well if a small number of spheres is sought, e.g.
2 or 3 spheres per clump, as the selection of the initial points is random. This
happens because the methodology lacks a deterministic criterion of which vertex
to choose every time to generate spheres. In the implementation of the Ferellec
and McDowell (2010) method within CLUMP, a seed parameter is introduced in the
selection of vertices to achieve reproducible clumps. Though, this seed parameter is
not guaranteed to lead in any way to the best-possible clump, for the given number of
spheres, and is only introduced to initialise the random number generation algorithm
used to select the vertices where sphere generation takes place in each iteration.

In more detail, the volume of the real particle is filled optimally with spheres of
different sizes: from a point chosen randomly on the surface, a sphere is grown inter-
nally along the normal vector at that point to the maximum extent possible inside
the boundary of the particle. In other words, the expansion of the sphere continues
until it reaches another point on the surface of the particle. Then, the process is
repeated for other points on the surface of the particle, which must be farther by
a distance dmin to any existing sphere. The number of spheres inside the clump is
directly related to the number of points on the surface, by monitoring a percentage
pmax, which if met, terminates the generation process. If the density of points on
the surface of the particle is high enough, then the process can theoretically lead to
a clump composed of thousands of spheres, although Ferellec and McDowell (2010)
set criteria that can reduce local crowding of spheres, using a minimal radius rmin, or
the aforementioned dmin and pmax variables. If a large number of spheres per clump
is computationally acceptable, this approach can lead to smaller artificial asperities
of flat faces, compared to other methods, as Ferellec and McDowell (2010)report.
This approach was designed to be applied on surface meshes, but is also applicable
directly on point clouds, since techniques do exist to estimate the normal vector of
each member point of a cloud.

Figure 4.3 shows several multi-sphere particles of the sand particle geometry
employed in this study, using the Ferellec and McDowell (2010) approach. These
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clumps were generated using the same parameters dmin, pmax, rmin and only the
seed parameter was varied, demonstrating the randomness of the sphere-generation
points. This issue is minimised for larger numbers of spheres, as in the studies of
Ferellec and McDowell (2010).

Figure 4.3: Sand particle: Clumps generated using the approach of Ferellec and McDowell
(2010) with the same parameters, changing only the seed value.

4.3.2.3 Euclidean distance transform

A new approach is presented in this chapter to generate multi-sphere particles,
based on the concept of the Euclidean distance transform of 3D images. Initially, the
particle morphology is transformed from a surface mesh to a voxelated representation
of a minimum dimension div, where the value of all voxels belonging to the particle
is set equal to zero. Then, the inscribed sphere of the particle is found as the
maximum value of the Euclidean distance transform of the voxelated image. The
voxels corresponding to the inscribed sphere are then set equal to one and the
Euclidean distance map is calculated for the new voxelated image. This process is
repeated until a user-defined number of spheres is found (N) or until the user-defined
minimum radius (rmin) has been reached, as the spheres are generated in decreasing
sizes. This methodology can also generate overlapping spheres, if only a percentage
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of the voxels making each new sphere is set equal to one, instead of all of them,
expressed by a variable overlap, which takes values within the range [0, 1).

A simple example is shown in Figure 4.4 to demonstrate the logic of generating
clumps utilising the Euclidean transform of images. Assuming the triangular 2D
particle of Figure 4.4, the Euclidean transform is applied, and its maximum value
is equal to the radius r of the largest inscribed circle of the particle. A circle with
radius r is generated and the pixels within a circle with radius r · (1 − overlap)

are turned to zero in the next iteration. The procedure continues, applying the
Euclidean transform for each new image of the particle and turning the respective
pixels to zero for each new circle, until the required number of circles is generated,
or the optional, user-defined value for a minimum radius rmin has been reached.
Figure 4.4a demonstrates a step-by-step generation of a clump with three members
with overlap = 0.0, while Figure 4.4b shows the same procedure for overlap = 0.2.

Figure 4.5 shows the algorithms behind the Ferellec and McDowell (2010) and
Euclidean distance transform implementations. The output of the above approaches
is a set of spheres, represented by their centroids and radii, as needed in commercial
and open-source codes.

4.3.2.4 Comparison of clump generation methods for idealised particles

The clump generation method of Ferellec and McDowell (2010) and the proposed
method based on the Euclidean transform are used to generate clumps for the five
platonic solids, as shown in Figure 4.6. It becomes evident that the Euclidean
transform method can lead to clumps that represent the volume and inertia tensor
of the particles with relatively small numbers of spheres (Figure 4.6b). On the other
hand, the method proposed by Ferellec and McDowell works well for larger numbers
of spheres, where it can minimise artificial asperities and lead to almost flat faces
(Figure 4.6a). For small numbers of spheres, the method of Ferellec and McDowell
cannot guarantee a valid representation of the volume or inertia of the particle, due
to the randomness of choosing the generation points of the tangent spheres.

4.3.2.5 Particle surface extraction

One of the main objectives of CLUMP is to allow for a direct comparison among
the morphologies of multi-sphere particles generated using different approaches. To
achieve a quantitative comparison, particle shape-characterisation tools can be used,
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(a)

(b)

Figure 4.4: Clump generation using the Euclidean transform for (a) overlap = 0.0 and (b)
overlap = 0.2.

such as SHAPE (Angelidakis et al., 2021b). To this end, the surface of each clump
has to be extracted in the form of a surface mesh, allowing for compatibility between
the clump generation and the shape characterisation codes.

Extracting the surface of a multi-sphere particle is not a trivial task. The problem
can be tackled using many different approaches. In this implementation, the surface
of each clump is extracted following the steps below:
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until it reaches another 
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Figure 4.5: Flowchart of the main algorithmic steps behind each clump generating approach
(a) Ferellec and McDowell (2010), (b) Euclidean distance transform.

1. Contact detection is performed between all possible pairs of the spheres making
the clump, identifying the pairs with geometric overlap.

2. A point cloud is generated on the surface of each sphere.

3. For each pair of overlapping spheres, the points within the overlap region are
deleted (Figure 4.7).

4. A circle is found as the intersection of each pair of overlapping spheres and
points are generated along each circle, which are added to the point cloud.

5. The point cloud is then tessellated using a surface reconstruction technique,
making the surface of the clump.

It should be noted that generating points on the surface of each sphere introduces
mesh-dependency in the calculation of local shape parameters, like roundness and
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(a) (b)

Figure 4.6: Generation of clumps with increasing numbers of spheres (from left to right:
25, 50, 100, 250) for the five platonic solids (from top to bottom: tetrahedron, hexahedron,
octahedron, dodecahedron, icosahedron), using the methods of (a) Ferellec and McDowell
(2010) and (b) the Euclidean transform.

roughness. Therefore a dense mesh should be chosen when these shape aspects are
of interest. The local morphology can also be affected by the technique chosen to
perform surface reconstruction, which in this case is an implementation of the Crust
method (Amenta et al., 1998) provided by Giaccari (2020). The points on the circles
calculated as the overlap of each pair of spheres are added to the point cloud, aiming
to minimise the numerical noise of the clump surface near the region of an overlap
and provide a smooth transition from the surface of a sphere to its adjacent ones.
Figure 4.7 shows the surface of a clump made of two spheres, where the points
inside the overlap region (removed from the point cloud) and on the intersection
circle (added to the point cloud) can be observed.

4.3.3 Sample code snippets

This section highlights two implementation details of CLUMP. First, Figure 4.8a
demonstrates how the newly introduced approach based on the Euclidean distance
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Figure 4.7: Tessellating the surface of a clump to transform it into a surface mesh. The red
points are generated on the circle defined as the intersection of two overlapping spheres and
added to the tessellation to aid surface reconstruction. The blue points correspond to ver-
tices on the surface of each sphere which fall within the overlap region with a neighbouring
sphere, i.e. they do not belong to the clump surface and are removed before tessellation.

transform allows the generation of overlapping spheres, while Figure 4.8b shows a
typical loop of how a tangent sphere is grown in the methodology of Ferellec and
McDowell (2010).

4.4 Illustrative examples

This example demonstrates the mechanical behaviour of assemblies of rice grains and
soil grains under triaxial compression. The morphological characteristics of clumped
spheres used in this illustrative example are presented in Table 4.1. Hereinafter, EU,
FM and FA refer to grains represented by 25 spheres using the Euclidean transform,
Ferellec and McDowell (2010) and Favier et al. (1999) methods, respectively. The
samples consist of (1) rice grains using all three approaches, and (2) sand grains
using the Euclidean transform and Ferellec and McDowell (2010) approaches. The
surface meshes of the rice and sand particles, along with surface meshes of the
produced clumps can be seen in Figure 4.9 and Figure 4.10. The major axis length
of the rice grain and silica sand was approximately 18 mm and 6 mm, respectively.
The particle shear modulus and particle Poisson’s ratio were considered as 20 MPa
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1 % vox: voxelated representation of particle
2 [dx,dy,dz] = meshgrid(1:size(vox,2), 1:size(vox,1), 1:size(vox,3));
3
4 for k=1:N % N: number of spheres
5 edtImage = bwdist(~vox); % Euclidean map
6 radius = max(edtImage(:)); % Inradius in voxel units
7 [yCenter, xCenter, zCenter]= ind2sub(size(vox),find(edtImage == radius));
8 dists = sqrt(sum(bsxfun(@minus,centroid,[xCenter,yCenter,zCenter]).^2,2));
9 [~,i]=max(dists); % Index of the inscribed sphere

10
11 sph=zeros(length(dy),length(dx),length(dz));
12 sph=sqrt( (dx−xCenter(i)).^2 + (dy−yCenter(i)).^2 + (dz−zCenter(i)).^2 ) > (1−overlap)*radius; %

Sphere
13 vox=and(vox,sph); % Append the new sphere in the particle
14 end

(a)

1 x=P(:,1); y=P(:,2); z=P(:,3);
2 for k=1:length(P) % P: vertices
3 r=rmin;
4 while reachedMaxRadius==false % while the sphere has not reached the surface
5 while sphMin>−tol
6 xC=x+r*n(1); yC=y+r*n(2); zC=z+r*n(3);
7 % n: normal vector of vertex k
8 distance=sqrt((x−xC).^2+(y−yC).^2+(z−zC).^2);
9 % Distances of all points to the center of the sphere

10 sph=(distance/r).^2−1;
11 % Potential function (negative for points inside the sphere)
12 sphMin=min(sph);
13 r=r+rstep; % Grow radius for next step
14 end
15 reachedMaxRadius=true;
16 end
17 end

(b)

Figure 4.8: Code snippets (a) How the overlap of spheres is imposed using a Euclidean
distance map (b) Growing tangent spheres in Ferellec and McDowell (2010).

and 0.1 for rice grains and 29.1 GPa and 0.23 for sand grains, respectively. The
particle density was 1470 kg/m3 for the rice grains and 2650 kg/m3 for the sand
grains; these values were increased by 1000 times to save computational time.

The LAMMPS molecular dynamics code (Plimpton, 1995; Nguyen and Plimpton,
2019) is employed with a modified servocontrol, as used by Hanley et al. (2015) and
Morimoto et al. (2021). Each sample is composed of 5000 clumped grains, which are
generated randomly without initial contacts with other particles, under no gravity
conditions. The sample is subjected to an initial isotropic compression by moving
the boundaries with a controlled velocity, to achieve an isotropic stress of 50 kPa.
A simplified Hertz-Mindlin contact model with Coulomb friction is adopted. Dense,
medium and loose samples are prepared using inter-particle friction coefficients (µ) of
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(a)

(b) (c) (d)

Figure 4.9: (a) Reconstructed rice particle; (b) clump of the rice particle using 25 spheres
and the method of Favier et al. (1999); (c) clump of the rice particle using 25 spheres
and the method of Ferellec and McDowell (2010); (d) clump of the rice particle using 25
spheres and the Euclidean transform method, proposed in this chapter.

(a) (b) (c)

Figure 4.10: (a) Reconstructed sand particle; (b) clump of sand particle using 25 spheres
and the method of Ferellec and McDowell (2010); (c) clump of sand particle using 25
spheres and the Euclidean transform method, proposed in this chapter.

0.0001, ≈0.1 and 0.35, respectively, during the isotropic compression, giving relative
density (Dr) values of 100%, 50% and 0%, following the approach of Morimoto et al.
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(2021). In the subsequent triaxial compression, the µ value was set to 0.35 for all
the cases as a material constant. In the present simulations, no damping was used.

The cubical samples composed of rice grains in Figure 4.11a were subjected to
quasi-static axial compression in the Z-axis while keeping the lateral stresses in
the X- and Y-axes at 50 kPa. The overall trend of stress-strain relationships is
similar for each density level (Figure 4.11b); however, the FA Dr=100% case leads
to lower peak and residual stresses compared to the FM and EU cases, while the
FA cases lead to higher initial stiffness compared to the other two cases, i.e. the
initial increase in deviator stress (Figure 4.11c). A clear difference between FA
and the other approaches is evident in the variation of mean coordination number
(Figure 4.11d). A representative sample composed of sand grains is illustrated in
Figure 4.12a. Similar variations of stress-strain responses are observed between
the EU and FM approaches (Figure 4.12b), although measurable differences in the
variation of void ratio are evident (Figure 4.12c).

For the illustrative examples presented here, the EU and FM approaches gave
comparable results, while the results of the FA approach differed. Referring to
Table 4.1, this discrepancy can be attributed to the difference in the shape param-
eters of the generated multi-sphere particles. EU and FM provide similar shape
parameters, indicating that quantifying shape parameters of the generated clumps
is recommended as an effective measure to ensure the quality of modelling non-
spherical grains. On the other hand, FA cannot represent particles with flatness, as
the axial symmetric clumps it generates can only result in compact or elongated par-
ticle shapes, a fact that shows a distinct effect on the macro-mechanical behaviour
of the simulated triaxial tests on rice. Interesting to note that apart from flatness,
the rest of the studied morphological parameters between FA, and EU and FM are
similar.

Overall, a single clump-generation method has not prevailed as objectively better
than the rest for all particles and for all applications. Different methods will perform
better for different particle shapes and depending on which aspect of shape is sought
to be preserved during clump generation. For instance, the method of Favier et al.
(1999) provides a simple and efficient generation method, but only applies to axisym-
metric particles and cannot be used to approximate particles that demonstrate flat
features or asymmetrical morphology. For irregular particles, the clump-generation
method of Ferellec and McDowell (2010) can generate clumps with minimised artifi-
cial surface asperities, via the consideration of tangent spheres at the particle surface.

68



Chapter 4. CLUMP: a Code Library for Universal Multi-sphere Particles

Table 4.1: Morphological and inertial characteristics of clumped spheres used in the illus-
trative examples.

Shape Parameters Original
particle

Favier
(1999)

Ferellec and
McDowell (2010)

Euclidean
transform

(25 spheres) (25 spheres) (25 spheres)

Rice

Sphericity* 0.6759 0.6831 0.591 0.5872
Convexity 0.9785 0.9645 0.8037 0.7804
Flatness† 0.2238 0.0002 0.2642 0.2195
Elongation† 0.812 0.826 0.7993 0.7964

Centroid (mm) [0,0,0] [0.110,0,0] [-0.028,0,0.001] [-0.248,0.089,0.04]
Volume (mm3) 104.034 97.612 86.259 74.722
Surface area (mm2) 158.263 150.094 159.742 146.105
Principal inertia
values (mm5) [110,2085,2114] [94,1888,1888] [79,1753,1778] [64,1359,1378]

Sand

Sphericity* 0.881

-

0.806 0.782
Convexity 0.935 0.857 0.845
Flatness† 0.101 0.105 0.072
Elongation† 0.076 0.111 0.024

Centroid (mm) [-0.04,0.558,0.538]

-

[-0.043,0.542,0.541] [-0.048,-0.582,0.54]
Volume (mm3) 65.235 54.486 52.458
Surface area (mm2) 88.966 86.186 86.639
Principal inertia
values (mm5) [158,176,193] [118,133,149] [113,124,137]

* Sphericity here corresponds to the degree of true sphericity as in Wadell (1932).
† The flatness and elongation indices were calculated as in Kong and Fonseca (2018).

But, this method requires a large number of spheres per clump in order to achieve
this minimisation of asperities, while for small numbers of spheres the method is not
robust, as spheres are generated tangent to random points of the particle surface.
On the other hand, the Euclidean distance-based method proposed in this chapter
can generate representative clumps even using small numbers of spheres per clump,
compared to the target particle geometry, as spheres are generated where mass is
most under-represented in each iteration, but it does not mitigate the creation of
artificial asperities like Ferellec and McDowell (2010) do. In the Euclidean method,
every new sphere is smaller than the previous, allowing for a systematic prediction
of the balance between morphological fidelity and computational efficiency. The
examples and discussion demonstrated in this section highlight the strengths and
weaknesses of the methods described, analysing the results through the prism of
quantitative shape characterisation.
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(a)

(b) (c)

(d)

Figure 4.11: (a) Layout of triaxial test on rice grains generated using: (left) the Euclidean
distance transform and (right) Favier et al. (1999); (b), (c) stress-strain behaviour of rice
samples at three different relative densities, Dr = 0%, 50% and 100% (inset: radii of
individual spheres); d) mean coordination number versus axial strain of the rice samples.
EU, FA and FM stand for Euclidean transform, Favier et al. (1999) and Ferellec and
McDowell (2010), respectively. 70
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(a)

(b) (c)

Figure 4.12: (a) Layout of triaxial test on sand grains generated with the Euclidean trans-
form approach; (b) stress-strain behaviour of sand samples at three different relative den-
sities, Dr = 0%, 50% and 100% (c) void ratio versus axial strain of the sand samples (inset:
radii of individual spheres). EU and FM stand for Euclidean transform and Ferellec and
McDowell (2010), respectively.

4.5 Software impact

CLUMP enables engineers, researchers and scientists from a variety of disciplines and
industries to examine the dependency of their application to particle shape effects,
through the generation of irregular particle shapes. Recent advances in granular
physics demonstrate a clear need for consideration of particle shape in numerical
modelling. In engineering practice, the clumped-sphere approach has been adopted
in additive manufacturing, railway engineering, pharmaceuticals, etc. However,
there is currently little evidence regarding how many spheres need to be generated.
This is, mainly, due to the limited accessibility of open-source implementations of
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different clump-generation approaches. To this end, CLUMP offers two widely-used
approaches to generate clumps and proposes a new one, aiming to provide an extend-
able library of available scripts. The implementations are computationally efficient,
i.e. it takes few minutes to generate hundreds of spheres per grain.

CLUMP provides an option to extract the surfaces of the generated multi-sphere
particles, allowing for the direct calculations of their shape descriptors, using avail-
able, open-source shape-characterisation codes. Comparing the morphological char-
acteristics of the generated clumps to those of the original particle morphology, one
can decide the number of spheres and method of application based on a quantitative
and rigorous particle-generation approach.

4.6 Conclusions

This chapter presented CLUMP, a code library to approximate three-dimensional par-
ticle morphologies using different multi-sphere generation methods. The software
allows exporting the results in formats compatible with several commercial and open-
source DEM codes. CLUMP enables to assess the suitability of a clump-generation
method for different applications and characterise the degree of manipulation of the
original morphology in a quantitative manner.

The examples illustrated provide insight into the effect of the clump genera-
tion methods on the mechanical behaviour of two granular assemblies subjected to
triaxial compression. In this chapter, it was found that the adoption of particles
with near zero flatness leads to lower values of peak and residual stresses, while the
adoption of larger contacting spheres leads to higher initial stiffness.

It is hoped that code developers will find the framework provided here useful
so that other existing clump-generating approaches and future ones will be imple-
mented too.
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Chapter 5

Potential Particles and Potential
Blocks

5.1 Introduction

This chapter discusses two codes to simulate (i) non-spherical particles using the
concept of the Potential Particles (Houlsby, 2009), with the solution procedures
in Boon et al. (2013) for 3-D, utilising convex optimisation techniques to perform
contact detection and (ii) polyhedral blocks using planar linear inequalities, based
on linear programming concepts (Boon et al., 2012). These codes define two shape
classes in the open-source software YADE (Kozicki and Donze, 2008; Caulk et al.,
2019), namely PotentialParticle and PotentialBlock. Besides some similarities
in syntax, they have distinct differences, concerning morphological characteristics of
the particles and the algorithms employed for contact detection.

Part of this chapter’s content is sourced from the official manuals of YADE
(Smilauer et al., 2021), where a dedicated documentation section1 discussing these
codes was written during this project.

The Potential Particles code (abbreviated herein as PP) is detailed in Boon
et al. (2013), where non-spherical particles are assembled as a combination of 2nd

degree polynomial functions and a fraction of a sphere, while their edges are rounded
with a user-defined radius of curvature. The Potential Blocks code (abbreviated
herein as PB) is used to simulate polyhedral particles with flat surfaces, based on
the work of Boon et al. (2012), where a smooth, inner potential particle is used

1https://www.yade-dem.org/doc/potentialparticles.html
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to calculate the contact normal vector. This code is compatible with the Block
Generation algorithm defined in Boon et al. (2015a), in which Potential Blocks

can be generated by intersections of an initial intact block with discontinuity planes.
These two codes are independent, in the sense that either one of them can be

compiled/used separately, without enabling the other, while they do not interact
with each other (i.e. currently, contact cannot be established between a PP and a
PB). Enabling the PB code causes an automatic compilation of the Block Generation
algorithm.

5.2 Potential Particles

The concept of Potential Particles was introduced and developed by Houlsby (2009).
The problem of contact detection between a pair of potential particles was cast
as a constrained optimisation problem, where the equations are solved using the
Newton-Raphson method in 2-D. In Boon et al. (2013) it was extended to 3-D and
more robust solutions were proposed, formulating contact detection as a Second
Order Conic optimisation Problem (SOCP). Many numerical optimisation solvers
generally cannot cope with discontinuities, ill-conditioned gradients (Jacobians) or
curvatures (Hessians), and these obstacles were overcome in Boon et al. (2013),
by re-formulating the problem and solving the equations using conic optimisation
solvers. Previous versions of the code in the literature made use of MOSEK (using its
academic licence), whereas currently an in-house code written by Boon et al. (2013)
is used to solve the conic optimisation problem. A potential particle is defined as in
Equation 5.1 (Houlsby, 2009; Boon et al., 2013, in 2-D and 3-D, respectively):

f = (1− k)

(
N∑
i=1

〈aix+ biy + ciz − di〉2 − r2
)

+ k(x2 + y2 + z2 −R2) (5.1)

where:

(ai, bi, ci) = is the normal vector of the ith plane in local particle coordinates;
di = is the distance of the plane to the local origin;
〈 〉 = are Macaulay brackets, i.e. , 〈x〉 = x for x > 0; 〈x〉 = 0 for x ≤ 0.

The planes are assembled such that their normal vectors point outwards. They
are summed quadratically and expanded by a distance r, which is also related to the
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radius of the curvature at the corners. Furthermore, a ’shadow’ spherical particle
is added; R is the radius of the sphere, with 0 < k ≤ 1, denoting the fraction
of sphericity of the particle. The geometry of some cuboidal potential particles is
displayed in Figure 5.1, for different values of the parameter k.

Figure 5.1: Construction of potential particles (a) constituent planes are squared and
expanded by a constant r. A fraction of sphere is added. Particles with the spherical term
are visible in (b) k=0.9, (c) k=0.7, and (d) k=0.4 (after Boon et al., 2013).

The potential function is normalized for computational reasons in the form of
Equation 5.2 (Houlsby, 2009):
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f = (1− k)

(
N∑
i=1

〈aix+ biy + ciz − di〉2

r2
− 1

)
+ k

(
x2 + y2 + z2

R2
− 1

)
(5.2)

This potential function takes values:

• f = 0: on the particle surface;

• f < 0: inside the particle;

• f > 0: outside the particle.

To ensure numerical stability, it is not advised to use values approaching k ≈ 0.
In particular, the extreme value k = 0 cannot be used from a theoretical standpoint,
since the Potential Particles were formulated for strictly convex shapes (curved
faces).

5.3 Potential Blocks

The Potential Blocks code was developed during the D.Phil. thesis of CW Boon
(Boon, 2013) and discussed in Boon et al. (2012). It was developed originally
for rock engineering applications, to model polygonal and polyhedral blocks with
flat surfaces. The blocks are defined with linear inequalities only and unlike the
PotentialParticle shape class, no spherical term is considered .

For a convex particle defined by N planes, the space that it occupies can be
defined using the following inequalities of Equation 5.3:

aix+ biy + ciz ≤ di, i = 1 : N (5.3)

where (ai, bi, ci) and di defined as in the previous section. Figure 5.2 illustrates
a Potential Block.

According to Boon et al. (2012), an inner, smooth potential particle is used to
calculate the contact normal, formulated as in Equation 5.4:

f =
N∑
i=1

〈aix+ biy + ciz − di + r〉2 (5.4)
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Figure 5.2: A potential block. The normal vectors of the faces point outwards (after Boon,
2013)

This potential particle is defined inner by a distance r inside the actual particle,
with edges rounded by a radius of curvature ≈ r (equal to r for corners meeting at
a right angle), as well (see Figure 5.3). This inner potential particle is a shrinked,
rounded version of the actual particle, with rounded edges and corners, so that the
calculation of the contact normal becomes robust even for vertex-face and vertex-
vertex contacts. The contact normal is calculated as the value of the gradient of the
inner potential particle at the contact point.

Figure 5.3: A potential particle is defined inside the actual particle. The normal vector of
the particle at any point can be calculated from the first derivative of the potential particle
(after Boon et al., 2012).

An implementation detail: In YADE, the Potential Blocks have a slightly differ-
ent mathematical expression, since their shape is generated as an assembly of planes
as in Equation 5.5:

aix+ biy + ciz − di − r = 0, i = 1 : N (5.5)

while the inner Potential Particle used to calculate the contact normal is defined
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as in Equation 5.6:

f =
N∑
i=1

〈aix+ biy + ciz − di〉2. (5.6)

Now, the Potential Block surface is at a distance of (di + r) from the local particle
center, while the inner potential particle is at a distance d from the local particle
center.

It is worth emphasising that the shape of a Potential Block is defined as the
convex, common space, bounded by a group of planes corresponding to the particle
faces and not by a single, implicit potential function, like in the Potential Particles
code. The inner potential particle in the Potential Blocks code is only used to
calculate the contact normal vectors.

The problem of establishing intersection between a pair of blocks is cast as a
standard linear programming problem of finding a feasible region which satisfies all
the linear inequalities defining both blocks. The contact point is calculated as the
analytic centre of the feasible region (see Figure 5.4), i.e. the inequalities defining
the interior of both particles, inwards from their faces, a well-known concept of
interior-point methods in convex optimisation calculations, found using linear pro-
gramming. From a geometrical point of view, the analytic center is the point which
maximizes the product of the distance among the considered planes, a property also
demonstrated by the centroid of solid bodies.

Figure 5.4: The analytic center for the inequalities defining both particles. The size of the
overlap region is exaggerated for clarity (after Boon et al., 2012).

The linear programming solver for Potential Blocks was originally CPLEX, but
was updated (in Boon, 2013) to CLP, developed by COIN-OR, since the latter can be
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downloaded from Ubuntu or Debian’s distributions without requiring an academic
licence.

5.4 Calculation of contact forces

5.4.1 Normal contact force

The normal contact force between two contacting Potential Blocks or Potential
Particles is calculated as:

Fn = kn · (un − δ0) · n = kn,vol · Ac · (un − δ0) · n (5.7)

where:

Fn = the normal component of the contact force (units: force);
kn,vol = the normal volumetric stiffness coefficient (units: stress/distance);
Ac = the contact area (units: length2);
un = the relative displacement along the normal direction (units: length);
δ0 = gap (units: length);
n = the contact normal vector.

The relative normal displacement is calculated heuristically, using a bracketed
bisection search algorithm along the contact normal direction, to find two opposite
points on the overlap region, starting from the contact point, as shown in Fig-
ure 5.5. The distance between these points is considered to be the relative normal
displacement. It should be noted that these codes follow the soft-particle approach
to calculate contact forces (Cundall and Strack, 1979), i.e. the particles are treated
as rigid and any deformations during a contact are expressed by equivalent, phe-
nomenal overlaps of the contacting region.

The gap δ0 represents an initial gap, offering the possibility to simulate contacts
with strength in tension. When un > δ0 the tension is compressive, otherwise when
0 < un < δ0 the contact is under tension. This feature is not used in the simulations
performed in this thesis, where all contact forces were compressive.

The normal stiffness of each contact (units: force/distance) is thus kn = kn,vol ·Ac,
where Ac is updated in every time-step. The contact area is calculated using a
heuristic algorithm to geometrically detect points of the overlap volume, searching
along the contact shear direction. In essence, the contact area is calculated as the
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Figure 5.5: Illustration of the calculation of relative normal displacement. The overlap is
exaggerated for clarity (after Boon, 2013).

area of a 2D slice of the 3D overlap region along the shear direction, passing from
the contact point. For the Potential Blocks, this was developed in Boon (2013),
as shown in Figure 5.6, where the contact area was traced on the boundaries of the
overlap region, along the contact plane, until a closed loop was found.

For the Potential Particles, where the particle faces, edges and corners are
rounded, this tracing technique is not applicable, as it only works for regions with
planar boundaries. Instead, an algorithm was developed in-house as part of this the-
sis, to trace the boundaries of any convex region which does not rely on its boundaries
being planar. This algorithm was developed to offer the choice of a non-linear con-
tact law, with increasing stiffness for increasing stress levels, in simulations using
the potential particles, as this is the experimental behaviour seen in the literature
for the interactions of granular materials (e.g. Nadimi and Fonseca, 2017a). This
algorithm detects points of the overlap region along the contact plane and starting
from the contact point, by considering trace vectors which pass from the contact
point and are pointing to direction around 360° for equal angle steps. Connecting
the contact point with pairs of sequential points of the contact area boundary forms
triangles, which add up to a convex polygon, the area of which (equal to the cu-
mulative surface area of all associated triangles) is equal to the contact area for the
current time-step. This computational approach to calculate the contact area for
convex contact regions with any shape of boundaries, including curved boundaries,
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Figure 5.6: Illustration of the calculation of contact area between two polyhedron in 3-D
(after Boon, 2013).

is illustrated in Figure 5.7 along with an application of the method proposed by
Boon (2013). This approach is subject to discretisation error (unline the method of
Boon (2013) for regions with planar boundaries), while the user is in control of how
many angle steps to consider, with a finer discretisation of the contact area leading
to a more accurate but computationally more expensive calculation.

Figure 5.7 demonstrates four simple case studies calculating the area of contact
regions with planar boundaries, using the computation method of Boon (2013), and
rounded boundaries, including one for a perfectly spherical contact region, using the
method proposed in this section. The first case demonstrates a contact area made
of two rectangular sections of two contacting Potential Blocks, where the exact
contact area is calculated using the algorithm of Boon (2013). The second and third
example demonstrate two rounded contact regions, resulting from two contacting
Potential Particles, the area of which is calculated using the proposed method.
Last, the calculation of a perfectly spherical contact area is demonstrated, as the
Potential Particles can be used to simulate perfect spheres for a value k = 1.
It becomes evident that the more rounded the cross section of the contact region,
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the larger the induced discretisation error of the proposed method, although it is
kept at a maximum of ≈ 2.55% when considering 16 angle steps, to approximate
the boundaries of the contact region, which is a small underestimation of its actual
values, considering the amount of other ambiguities present in a discrete element
simulation of non-spherical particles.

Potential BlocksParticle Shape Potential Particles

Exact Contact Area

82.843 mm2Calculated Contact Area

Potential Particles Potential Particles

82.843 mm2 88.027 mm2

87.463 mm2

106.034 mm2

103.991 mm2

118.838 mm2

115.807 mm2

Angle step (for PPs only) 22.5° 22.5° 22.5°

No of Points on Boundary 1610 16 16

Particle 1 - Particle 2
Contact Area
Search Axes

0Error: (Calc-Exact)/Exact -0.64% -1.92% -2.55%

Figure 5.7: Illustration of the calculation of contact area for contact regions with bound-
aries of various shapes; (left) planar; (middle two) rounded; (right) spherical.

It should be noted, that up till now, and during the work of Boon (2013), the
Potential Blocks only supported the non-linear contact law discussed in this sec-
tion and the Potential Particles only supported a linear contact law, considering
only relative normal displacement (and not contact area). During this project, the
contact law of the Potential Blocks was expanded as part of this thesis to also
support a linear contact model, by setting the contact area Ac = 1.0 in Equa-
tion 5.7, while the contact law of the Potential Particles was modified to take
into account the contact area, leading to non-linear stiffness, with the algorithmic
implementations discussed in this section. This is controlled in a simulation via a
boolean parameter in the YADE scripts calculating characteristics of the contact
geometry, for these codes, entitled calContactArea.

5.4.2 Normal viscous force

When viscous damping is employed, the normal viscous force is calculated as:

Fn,viscous = cn · vn (5.8)
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where:

Fn,viscous = the normal viscous force;
vn = the normal component of the relative velocity of the particles;
cn = 2 · βn ·

√
m · kn the critical damping coefficient;

βn = the normal viscous damping ratio;
m = m1·m2

m1+m2
the equivalent mass of the two particles in contact;

kn = kn,vol · Ac the normal stiffness (units: force/distance);

An upper limit has been set for the viscous normal force, so that its magnitude
does not exceed the one of the actual contact force.

The total normal force is calculated as Fn = Fn,el + Fn,viscous. The normal vis-
cous damping force can exceed the elastic contact force, resulting in a negative total
normal force. This would create an unphysical contact situation, where the particles
are attracting each other during an otherwise compressive collision (as reported in
Modenese, 2013). This check was implemented in the source code of the contact
laws of the Potential Particles and Potential Blocks codes in YADE as part
of this thesis, by introducing a boolean variable allowViscousAttraction, in order
to avoid unnatural attraction between the particles, when Fn,viscous > Fn,elastic. It
has been observed that unphysical attraction can be an unduly byproduct of using
viscous damping (Antypov and Elliott, 2011) usually near the end stages of a con-
tact, when the relative normal displacement and thus the elastic contact force values
are relatively small. Because of this, Schwager and Pöschel (2007) concluded that
attractive forces should be excluded by cutting off the interaction force, and consid-
ered the end of a contact not as the moment of zero relative normal displacement,
but as the moment of zero acceleration. At the moment, this boolean variable leaves
this modelling choice, of whether to set an upper limit for the viscous normal force,
for the user/modeller to decide.

5.4.3 Shear contact force

The shear contact force during a collision of two Potential Blocks is assumed
elastic-perfectly plastic, following the DEMmainstream incremental implementation
of Hart et al. (1988). In Hart et al. (1988), to account for the incremental rotation
of the contact plane, the existing shear force vector Fs is corrected as:

Fs
i_rotated = Fs

i − Fs
i × nold × n (5.9)
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where:

nold = the previous normal vector;
n = the current normal vector;

The increment of the shear force vector ∆Fs before yield is calculated as:

∆Fs = −ks,vol · Ac ·∆us (5.10)

so that the total shear force vector F s can be updated as:

Fs
i+1 = Fs

i_rotated + ∆Fs (5.11)

where:

∆us = the incremental relative shear displacement (units: length);
kn = kn,vol · Ac the normal stiffness (units: force/distance).

The magnitude of shear force is given by:

F s =
√

Fs · Fs (5.12)

The maximum absolute value of shear force Fs,max is defined employing the
Mohr-Coulomb strength criterion, so that:

Fs,max = Fn · tan(φ) (5.13)

If F s > F s
max, the shear force is reduced to its plastic limiting value:

Fs
max = Fs · F

s
max

F s
(5.14)

At the moment, these codes do not consider a shear viscous damping force, even
if viscous damping is applied in the normal contact direction, to avoid interference
of damping with the sliding of contacts, as in Boon (2013). This is a delicate point,
worth revisiting, as Thornton et al. (2013) have reported that the inclusion of a
dashpot in the normal force calculation but not in the tangential force calculation
is not a valid method of dissipating energy in order to obtain values of en < 1, a
conclusion they reached though for spherical particles.
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5.5 Compliance with periodic boundaries

In the original works of Boon et al. (2012, 2013, 2015a,b); Boon (2013), there was no
algorithmic cooperation between the Potential Particles and Potential Blocks

and the periodic boundaries of YADE. So, this feature was developed as part of this
thesis. To achieve the aims of this thesis, the contact detection routines and the con-
tact laws of the Potential Particles and the Potential Blocks were modified
to comply with the periodic boundary conditions, which were already implemented
inside the source code of YADE.

In particular, to achieve contact detection of particles in a periodic domain,
a shift parameter is employed, which monitors the position of each particle and
counts how many cells it has moved away from the initial, reference periodic cell.
According to the value of this parameter, preliminary contact detection is performed
between candidate particles that are in close proximity, across cells, using the sweep
and prune of algorithm already existing in YADE. The accurate contact detection
routines of Boon et al. (2012, 2013) were also modified to account for this shift in
the position of the contacting particles. This shifting parameter is used instead of
modifying the actual position of the particle, in order to avoid abrupt changes in
position and in order to avoid missing contacts, when particles are exactly crossing
the boundary, and thus they appear in two opposite sides of the periodic cell.

In addition to achieving contact detection, the contact laws of the Potential

Particles and the Potential Blocks were updated to handle velocity gradient
fields imposed on the periodic box. Deformations are introduced in a periodic box
as a uniform velocity gradient field∇v, applied on all particles. As a result, a shifting
velocity is considered, accounting for the gradient velocity field and the current size
of the box, which is added to the velocity of all particles.

Developing these algorithmic features was crucial to this project, since periodic
boundaries can be used to investigate material behaviour using an ideal elementary
test, which focuses on the material alone, without any influence of boundaries. This
is achieved through the repetition of a single reference cell, rid of boundary effects,
which introduce unnecessary and unphysical anisotropy in elementary tests, such as
triaxial compression tests Thornton (2000). By avoiding to induce such boundary
effects in the DEM simulations, the size of a Representative Element Volume can
be reduced significantly (while remaining representative), reducing thus also the to-
tal number of contacts in each time-step of the simulation. This downsizing of the
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numerical models, while keeping them representative and free of boundary-induced
anisotropy can be transformative towards achieving efficient and trustworthy DEM
simulations, especially when using non-spherical particles, in which case the compu-
tational cost of performing contact detection is much larger than the alterative of
using spheres.

5.6 Visualisation and output of particles

The source code of YADE is written in its majority in C++, while its many modules
have been wrapped in Python, offering modelling versatility, a friendly user interface
and exposure of most simulation parameters to the user level. This allows for the
user to inquire most model parameters during and after a simulation, enhancing
transparency of the results.

YADE offers 3D rendering based on QGLViewer. Although this is not meant
to be a full post-processing unit, it is an extremely helpful feature while build-
ing a model, as the user has the ability to view the model as it is being built,
without needing to run simulation steps and rely to external, third-party output
programs, e.g. in VTK format, utilising tools such as Paraview. Visualisation of
the geometry of a particle is implemented in YADE through a series of OpenGL
functors, one for each existing particle shape class. Until this doctoral project, the
Potential Blocks code did not have a proper OpenGL functor. A draft functor
existed, which mimicked the functor of the Potential Particles, which used the
Marching Cubes algorithm, to reconstruct the particle surface. This solution re-
sulted in a faulty visualisation of the Potential Blocks, as it could not provide
efficient and geometrically accurate rendering of its planar faces and sharp edges
and corners. In a nutshell, the Marching Cubes algorithm considers a 3D grid, the
points of which are evaluated based on an implicit potential function. Although this
is an appropriate reconstruction solution for the Potential Particles, which are
mathematically described by such an implicit function, the same cannot be said for
the piece-wise, sharp, polyhedral geometry of the Potential Blocks. In addition,
the consideration of such a drawing grid introduces a step-like artificial roughness
on particle faces, which is only minimised by creating a finer grid. Also, 3D grids
are extremely memory demanding, and when some thousand particles are present
in a simulation, their computational cost becomes unaffordable.

As a result, a code developed by Boon et al. (2015a) to calculate the particle
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vertices from the given equations of the particle faces, and to triangulate the particle
surface was utilised and optimised, as part of this thesis. This triangulation was
saved in the shape class of the Potential Blocks code, and used to define a new
OpenGL functor, which offers computationally light and robust visualisation of these
particles. The old and new visualisation of an irregular Potential Block is shown in
Figure 5.8

(a) (b)

Figure 5.8: An irregular potential block (a) existing visualisation algorithm; (b) new visu-
alisation algorithm developed as part of this thesis.

A similar issue of high-memory demand and non-accurate geometric representa-
tion existed with the function to export the geometry of Potential Blocks in VTK
format, where a custom-made function was developed by Boon (2013), based on 3D
grids, like above. VTK is a popular format for the post-processing of results from
numerical simulations of this nature. A new lightweight function was developed
as part of this thesis to export the triangulation of Potential Blocks, within the
export Python module of YADE, entitled exportPotentialBlocks, which is less
memory intensive, generates output files of the minimal possible size and exports
the exact geometry of the particles of interest.

5.7 Practical examples

This section attempts to introduce the reader to practical aspects of building models
using the Potential Particles and the Potential Blocks in YADE.
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5.7.1 Shape definition of a PP and a PB

A strong merit of the Potential Particles and the Potential Blocks codes lies in the
fact that the geometric definition of the particle shape and the contact detection
problem are resolved using only the equations of the faces of the particles. In this
way, using a single data structure, there is no need to store information about
the vertices or their connectivity to establish contact, a feature that makes them
computationally affordable, while all contacts are handled in the same way (there
is no need to distinguish among face-face, face-edge, face-vertex, edge-edge, edge-
vertex or vertex-vertex contacts). Due to this, the geometry of a particle is defined in
the shape class using the values of the normal vectors of the faces and the distances
of the faces from the local origin.

As a result of this, there is no need to triangulate the particle surface, as each
face can have any convex polygonal shape. For example, to define a cuboid (6 faces)
with rounded edges, an edge length of D, centred to its local centroid and aligned
to its principal axes using the Potential Particles code, the following lines of code
suffice to define the geometry of the particle:

1 r=D/5. # radius of edges

2 k=0.3 # degree of spherical term

3 R=D/2. # radius of spherical term

4 b=Body() # a,b,c,d: plane coefficients of faces

5 b.shape=PotentialParticle( r=r, k=k, R=R,

6 a=[ 1.0, -1.0, 0.0, 0.0, 0.0, 0.0],

7 b=[ 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],

8 c=[ 0.0, 0.0, 0.0, 0.0, 1.0, -1.0],

9 d=[D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r], ...)

Using the Potential Particles code, this is not a perfect cube, since the particle
geometry is defined by a potential function as in Equation 5.2. Note that within
this potential function, these planes are summed quadratically, the particle edges
are rounded by a radius of curvature r and then the particle faces are curved by the
addition of a shadow spherical particle with a radius R, to a percentage defined by
the parameter k. A value r is deducted from each element of the vector parameter
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d, to compensate for expanding the potential particle by r in Equation 5.2.
The parameters ai, bi, ci, di stated above correspond to the planes used in Equa-

tion 5.5:

1.0x+ 0.0y + 0.0z = D/2⇒ +x = D/2

−1.0x+ 0.0y + 0.0z = D/2⇒ −x = D/2

0.0x+ 1.0y + 0.0z = D/2⇒ +y = D/2

0.0x− 1.0y + 0.0z = D/2⇒ −y = D/2

0.0x+ 0.0y + 1.0z = D/2⇒ +z = D/2

0.0x+ 0.0y − 1.0z = D/2⇒ −z = D/2

(5.15)

The following lines of code are used to model a cube with an edge of D using
the Potential Blocks code:

1 r=D/5. # radius of inner potential particle

2 b=Body() # a,b,c,d: plane coefficients of faces

3 b.shape=PotentialBlock( r=r,

4 a=[ 1.0, -1.0, 0.0, 0.0, 0.0, 0.0],

5 b=[ 0.0, 0.0, 1.0, -1.0, 0.0, 0.0],

6 c=[ 0.0, 0.0, 0.0, 0.0, 1.0, -1.0],

7 d=[D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r, D/2.-r], ...)

Using the Potential Blocks code, this particle will have sharp edges and flat
faces in what regards its geometry (i.e. the space it occupies), defined by the given
planes, while for the calculation of the contact normal, an inner potential particle
with rounded edges is used, formulated as in Equation 5.6, located fully inside the
actual particle. The distances of the planes from the local origin, stored in the
vector parameter d, are reduced by r to achieve an exact edge length of D, using
Equation 5.5. The value of r must be sufficiently small, so that dmin − r > 0, while
it should be sufficiently large, to allow for a proper calculation of the gradient of the
inner Potential Particle at the contact point. A recommended value is r ≈ 0.5∗dmin,
as it ensures that dmin − r > 0 is positive in all cases, and thus the value of this
parameter can be decided in an automated manner; this automation is especially
valuable if multiple particles are imported in YADE.
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To ensure that the di plane coefficients represent a distance in the local particle
coordinate system, it is advised to normalize the normal vector of each plane, so
that ai2+bi2+ci2 = 1. There is no limit to the number of the particle faces that can
be used, a feature that allows the modelling of a variety of convex particle shapes.

In practice, it is usual for the geometry of a particle to be given in terms of
vertices & their connectivity (e.g. in the form of a surface mesh, like in .stl files). In
such cases, the user can calculate the normal vector of each face, which will give the
coefficients ai, bi, ci and using a vertex of each face, then calculate the coefficients
di. This functionality has been developed within SHAPE (Angelidakis et al., 2021b).

5.7.2 Body definition of a PP and a PB

To define a body (term interchangeable with “particle” in YADE) using the PotentialParticle
or PotentialBlock shape classes, it has to be assembled using the _commonBodySetup
function, which can be found in the file py/utils.py of YADE. For example, to de-
fine a PotentialParticle body using YADE’s Python interface:

1 O.materials.append(FrictMat(frictionAngle=radians(30), density=2650,

label='frictMat'))↪→

2 b=Body()

3 b.shape=PotentialParticle(...)

4 b.aspherical=True # To be used in conjunction with

exactAsphericalRot=True in the NewtonIntegrator↪→

5 # V: Volume

6 # I11, I22, I33: Principal inertias

7 utils._commonBodySetup(b,V,Vector3(I11,I22,I33), material='frictMat',

pos=(0,0,0), fixed=False)↪→

8 b.state.pos=Vector3(xPos,yPos,zPos)

9 b.state.ori=Quaternion((random.random(), random.random(),

random.random()), random.random())↪→

10 b.shape.volume=V;

11 O.bodies.append(b)

The PotentialParticlemust be initially defined, so that the local axes coincide
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with its principal axes, for which the inertia tensor is diagonal. More specifically,
the plane coefficients (ai, bi, ci) defining the plane normals must be rotated, so that
when the orientation of the particle is zero, the PotentialParticle is oriented to its
principal axes. This is a common convention in YADE, to ensure that the reference
orientations correspond to the principal inertial axes, a delicate yet significant point
of interest, which guarantees that the integration of motions for aspherical particles
happens in a local coordinate system where the inertia tensor is diagonal. This
transformation to the principal directions is important for the correct calculation of
particle rotations. It should be noted that the principal inertia values I11, I22, I33
mentioned here are divided by the density of the considered material, since they are
multiplied with the density inside the _commonBodySetup function. The mass of the
particle is calculated within the same function as well, so it does not need to be set
manually b.mass=V · density.

For the Potential Particles code, there is currently no algorithm for the automatic
calculation of volume and inertia, and so they have to be calculated manually by
the user. For the Potential Blocks, an automatic calculation has been implemented
during this project, for the volume and inertia tensor, so the user does not have to
define the particle to its principal axes, since this is handled automatically within
the source code, by an automatic routine developed as part of this thesis.

For example, to define a PotentialBlock body, the following lines can be defined
using the Python interface of YADE:

1 O.materials.append(FrictMat(frictionAngle=radians(30), density=2650,

label='frictMat'))↪→

2 b=Body()

3 b.shape=PotentialBlock(...)

4 b.aspherical=True # To be used in conjunction with

exactAsphericalRot=True in the NewtonIntegrator↪→

5 utils._commonBodySetup(b,b.shape.volume,b.shape.inertia,

material='frictMat', pos=Vector3(xPos,yPos,zPos), fixed=False)↪→

6 b.state.ori=Quaternion((random.random(), random.random(),

random.random()), random.random())↪→

7 O.bodies.append(b)
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More examples of both codes can be found in the folders /examples/Potential-
Particles/ and /examples/PotentialBlocks/, in the source code repository of YADE,
where the syntax of the codes is further demonstrated.

5.8 Energy calculations

This section discusses some energy calculations that have implemented in YADE

as part of this thesis, using the Potential Blocks (Boon et al., 2012) and the
Potential Particles (Boon et al., 2013) codes. These calculations follow con-
ceptually similar ones found in the source code of YADE for spheres, with small
adaptations. Energy calculations are important to check the correctness of a DEM
code and ensure the employed contact law does not violate energy conservation.
This is particularly important for the simulation of dynamic processes.

5.8.1 Energy types present in a simulation

This section lays out the different types of energy that develop during a typical
discrete element simulation. During the contact of two particles, this entails: elastic
potential (strain) energy, plastic dissipation due to friction and dissipation due to
viscous damping. These energy calculations were developed for the Potential Parti-
cles and Potential Blocks codes as part of this thesis, following existing calculations
in YADE of other classes of particle shape. In addition, the gravitational poten-
tial energy, the kinetic energy, the kinetic energy due to the velocity field applied
by moving the periodic boundaries to impose a prescribed strain rate and energy
dissipation due to local damping appear in these simulations, were already imple-
mented in YADE. What follows is a brief description of these energies and their way
of calculation.

5.8.1.1 Gravitational potential energy

Already implemented in YADE. The formulation can be found in this link.

5.8.1.2 Kinetic energy

Already implemented in YADE. The formulation can be found in this link.
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5.8.1.3 Kinetic energy from moving the periodic boundaries

Already implemented in YADE. The formulation can be found in this link.

5.8.1.4 Dissipation due to local damping

Already implemented in YADE. The formulation can be found in this link.

5.8.1.5 Elastic stored strain energy

The elastic strain energy, stored in each contact, is calculated jointly for the normal
and shear contact forces. This calculation takes place after applying the Mohr-
Coulomb criterion, in order to use the updated shear contact forces.

elastPotential =
1

2
knun

2 +
1

2
ksus,el

2 =
1

2

(
Fn

2

kn
+
Fs

2

ks

)
(5.16)

where:

un = the relative displacement along the normal direction;
us,el = the shear increment distance;
kn = kn,vol · Ac the normal stiffness (units: force/distance);
ks = ks,vol · Ac the shear stiffness (units: force/distance);
Fn = the current normal force;
Fs = the current shear force (after applying the M-C criterion).

5.8.1.6 Plastic dissipation due to friction

The plastic dissipation due to friction is calculated for a sliding contact as:

plastDissip =
1

ks
· (Fs,trial − Fs,max) · Fs,max (5.17)

where:

ks = ks,vol · Ac the shear stiffness (units: force/distance);
Fs,trial = ks,vol · Ac · us
Fs,max = the frictional limit from Mohr-Coulomb.

In particular, Fs,trial (shown in Figure 5.9) is the shear force before applying the
Mohr-Coulomb criterion for the sliding contact at hand (i.e. Fs,trial > Fs,max). The
plastic dissipation is monitored inside the code in a cumulative manner, by adding
each new calculated value to the ones of the previous time-steps.
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Figure 5.9: Shear forces and displacements before and after applying the Mohr-Coulomb
criterion.

5.8.1.7 Ratio of sliding contacts and mobilised shear

Although this is not an energy calculation, it is included here, since it is monitored
along with the plastic dissipation due to friction. This ratio can be used to assess the
kinematic state of the particles during a simulation, by identifying what percentage
of contacts is sliding. On each time-step, the ratio of the sliding contacts over the
total number of real contacts can be monitored and assessed at a sample scale. Along
with monitoring the percentage of sliding contacts, this index provides information
of how close each contact is to sliding in a quantified manner as well, by considering
the ratio:

mobilizedShear =
Fs,current

Fs,max

(5.18)

where:

Fs,current = the current shear force;
Fs,max = the frictional limit force from Mohr-Coulomb.

5.8.1.8 Dissipation due to normal viscous damping force

If viscous damping is employed, the plastic dissipation due to the normal viscous
force is calculated as:
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viscousDissip = Fn,viscous · vn · dt (5.19)

where:

Fn,viscous = the normal viscous damping force;
vn = the normal component of the relative velocity;
dt = the time-step.

5.8.1.9 Dissipation due to shear viscous damping force

Currently, wezero dissipation due to viscous damping in the contact shear direction
is considered.

5.8.2 Case studies

This section demonstrates a set of discrete element simulations of different contact
scenarios for the collision of a free cuboid on a flat surface, modelled using the Po-
tential Blocks code, which performs free fall (only gravity is applied with at-rest
initial conditions), such as face-to-face, vertex-to-face and edge-to-face, varying dif-
ferent parameters of the simulation that affect the contact physics. The material
and inertial parameters are kept equal among all simulations. These case studies
aim to investigate if energy conservation is achieved in all cases and discuss po-
tential causes if not. No local damping (proportional to particle acceleration) was
considered for these simulations, as it is unphysical and unduly affects simulations
of dynamic phenomena, like the free falls demonstrated in these examples.

The legend entries in the following figures stand for:

• gravWork: Work of gravity (gravitational potential energy);

• kinTrans: Translational kinetic energy;

• kinRot: Rotational kinetic energy;

• elastPotential: Elastic strain energy stored in each contact;

• total: Overall energy of the system, through superposition of all individual
energy components;
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• normDampDissip: Dissipation due to viscous damping of the contact normal
damping;

• plastDissip: Dissipation due to plastic shear deformation (slip) of sliding
contacts;

Figure 5.10 demonstrates a series of consequent face-to-face elastic contacts (no
dissipation due to friction or viscous damping is considered), during which the energy
of the system is conserved.
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Figure 5.10: Face-face contact - No friction - No viscous damping (inset: initial orientation
of moving particle).

Figure 5.11 demonstrates what happens to the same system of face-to-face colli-
sions if a degree of viscous damping is introduced. The elastic energy of the system
is gradually spent by the viscous dissipation, while the overall energy is again con-
served.

Figure 5.12 demonstrates a series of vertex-to-face collisions of an elastic system,
during which the free particle rotates excessively. After the first collision, the total
energy fluctuates around its initial zero value but is not kept constant at all times.

Figure 5.13 demonstrates what happens to the same vertex-to-face collision sys-
tem if plastic dissipation due to friction occurs. It becomes evident that the energy
balance is not kept constant, as the gravity work equalises after 0.5sec, but the
plastic dissipation keeps increasing due to sliding. This does not reflect natural
behaviour for this dynamic setting.
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Figure 5.11: Face-face contact - No friction - Viscous damping ratio = 0.05 (inset: initial
orientation of moving particle).
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Figure 5.12: Vertex-face contact - No friction - No viscous damping.

Observing how irregular the motion of the vertex-to-face system was, it was
attempted to simulate a simpler situation, of a perfect edge-to-face system, with a
45 ° rotation around the global Y axes, as visualised in the inset of Figure 5.14.
After collision the free particle does not rotate, but keeps translating vertically, as
the system is perfectly symmetric and the calculation of contact normals is robust
enough to not allow rounding errors make the particle rotate. Though, Figure 5.14
makes it apparent that the energy is conserved before and after the contact, but
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Figure 5.13: Vertex-face contact - Interparticle friction angle = 30° - No viscous damping.

not during the contact. This is attributed to the formulation of the current non-
linear, overlap distance-based contact law used in the Potential Blocks code, as it
provides an estimation of the volume of the contact region, rather than an accurate
calculation of the overlap volume enclosed by the contacting polyhedra.
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Figure 5.14: Edge-face contact - 45° initial rotation - No friction - No viscous damping.

Last, another edge-to-face scenario was tested for a 30 ° rotation of the particle
around the global Y axis, aiming to make the free particle rotate post-contact.
Figure 5.15 demonstrates that energy is no longer conserved after contact, when the
particle starts to rotate. These case studies were tested for various time-step values,
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to ensure that this issue was not relating to the integration of motion.
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Figure 5.15: Edge-face contact - 30° initial rotation - No friction - No viscous damping.

Achieving energy conservation is not trivial for simulations involving contacts
among non-spherical particles. Past literature had claimed that energy conservation
cannot be achieved in discrete element simulations of non-spherical particles. In
particular, Matuttis and Chen (2014, p.59) argue that “for many discrete element
models with non-spherical particles, there is no energy conservation”. They continue,
by stating that “This often happens in particle simulations of collisions involving
rotations of non-spherical particles: when the particles turn during the collision, the
repulsive force on approach can be different from the force upon separation”. This is
the behaviour observed in these case studies, where the total energy is conserved only
in the scenarios where no rotations occur. The severity of creating extra, unphysical,
energy in a system with every new contact becomes more profound for simulations in
a periodic cell, since there, small surges of energy generated by individual contacts
propagate through the whole assembly of particles, in the absence of boundaries.

In recent years, theoretical formulations have been proposed in the literature,
defining the characteristics of energy-conserving contact laws for non-spherical par-
ticles in DEM simulations (Feng et al., 2012), which consider the normal contact
force to be a function of the overlap volume. Earlier this year, (Feng and Tan, 2021)
demonstrated that energy conservation is possible also with overlap-distance based
contact laws, and they used the Minskowski difference of simplices to achieve this.
The Expanding Polytope Algorithm (EPA), a traditional pair to calculate contact
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forces when the Gilbert–Johnson–Keerthi (GJK) distance algorithm is used to per-
form contact detection, based on the Miskowski difference of polytopes also leads to
energy calculation (as seen in Zhao and Zhao, 2021).

5.9 Simulating the Round Robin test of AOR with

the Potential Particles

The Japanese domestic committee TC105 (Technical Committee 105: Geo-Mechanics
from Micro to Macro) of the International Society for Soil Mechanics and Geotech-
nical Engineering (ISSMGE) organised in 2019 a round robin series of tests to assess
the angle of repose (AOR) of an artificial, 3D-printed material (see Figure 5.16),
through discrete element simulations 2. This activity aimed to provide experimen-
tal benchmarks and to compare results from various research groups, using various
Discrete Element codes. This section demonstrates results from participation in this
Round Robin exercise using the Potential Particles, to model the particles of the
material of interest. This was an opportunity to compare and validate results of
the Potential Particles code, against the experimental benchmarks and against the
results from the numerical simulations of the other participants.

The contribution of this particular modelling approach in this exercise, using a
single Potential Particle to represent the target 3D-printed particle, aimed to offer
an alternative approach in the simulation of non-spherical particles with rounded
edges, like the ones used in the benchmark tests. With the Potential Particles, each
physical particle can be simulated with one particle, instead of four spheres in a
clump (an obvious choice because of its close resemblance to the physical particle
shape), reducing the complexity of the model. To achieve this, some additional work
was required at a pre-processing stage, compared to the clumped spheres approach,
in order to identify the appropriate shape for the potential particle.

5.9.1 Experimental apparatuses

Several methods have been proposed in the literature to measure the angle of repose
of granular materials (Geldart et al., 2006; Al-Hashemi and Al-Amoudi, 2018). In
this Round Robin exercise, the angle of repose was measured using two experimental

2https://www.issmge.org/news/tc105-dem-round-robin-test
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Figure 5.16: Experimental, 3D-printed material studied in this exercise (source: TC105,
2021).

devices, designed and manufactured by members of the Japanese domestic TC105.
Repose was measured for two conditions: (i) plane strain and (ii) axial-symmetric,
aiming to compare how the angle of repose varies for heaps of different shapes.
Figure 5.17 demonstrates the “Experimental Device I” and the main steps to measure
plane strain AOR formations. Figure 5.18 shows the setup of the “Experimental
Device II” to measure axial-symmetric AOR, while Figure 5.19 shows the main
steps of measurement.
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(a)

(b)

Figure 5.17: (a) Experimental setup and (b) test procedure of Device I, for plane-strain
AOR (source: TC105, 2021).

5.9.2 Preliminary evaluation of this modelling approach

A brief discussion can be found below, listing the pros and cons of using the Poten-
tial Particles to simulate the particles used in this benchmark.

Pros:

• A single particle is used to simulate each physical particle, resulting to fewer
collision checks during the simulation compared to using a clump of spheres
(with four sphere-members for each physical particle).

• The drawbacks of using clumps will be avoided altogether, namely: overesti-
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Figure 5.18: Experimental setup of Device II, for axial-symmetric AOR (source: TC105,
2021).

mated mass and inertia due to non-uniform density within each clump, because
of the sphere-members overlapping.

Cons:

• The contact detection among Potential Particles is much more expensive from
a computational standpoint, compared to contact detection among spheres.

• The concavity of the physical particle cannot be represented, underestimating
their potential to interlock.

• The mass and inertia will still be overestimated in comparison to the physical
particle, as the produced Potential Particle will enclose the physical particle
(and thus has slightly larger volume). This can be mitigated with density
adjustment.
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(a) (b)

(c)

(d)

Figure 5.19: Measurement procedure for Device II: (a) deposition of material on upper
cylinder; (b) air pluviation; (c) lowering of cylindrical sides; (d) reposed condition (source:
TC105, 2021).

5.9.3 Approximating the given particle shape using Potential

Particles

The given particle shape was approximated by a rounded tetrahedron, using the
mathematical formulation of the Potential Particles. Following this approach, the
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particle shape is defined by an implicit function, which is assembled as a combination
of quadratically summed planes and a “shadow” spherical particle, which controls
the curvature of the faces.

To decide which planes to use in order to assemble the Potential Particle in this
exercise, two criteria have to be satisfied: a physical one and a practical one, with
the latter aiming to achieve post-processing convenience:

1. First and foremost, the main criterion is to capture the morphology of the
physical particle as faithfully as possible. This means the generated Potential
Particle has to adequately approximate the size, surface curvature, mass and
inertia of the given physical particle. On a second level, shape descriptors
such as the sphericity of the particle can be computed, to ensure that the se-
lected particle shape is appropriate to describe the morphology of the physical
particle.

2. Having post-processing in mind, where the participants of the exercise had to
give as output the centres of the spheres (if clumped particles are employed), to
evaluate the angle of repose, the potential particle must have a straightforward
analogy to this format.

To achieve these criteria, the planes used to assemble the potential particle were
chosen as the faces of the tetrahedron connecting the centroids of the spheres making
the physical particle, as shown in Figure 5.20. In the Potential Particles formulation,
these planes will be expanded and the edges will be rounded by a radius r, while
the faces will be further curved to a degree specified by k and for a radius of the
“shadow” particle R. This approach can be generalised to approximate any convex
shape, given a tessellation of its surface, or a multi-sphere representation of a particle
made of spheres with equal radii.

To match the local surface curvature of the physical particle, a radius r = rs

was chosen, which controls the roundness of the edges and corners of the Poten-
tial Particle, where rs the radius of each individual sphere making the clump-like
rounded tetrahedral morphology of the physical particle. The radius of the shadow
particle was assigned to R =

√
2 · rs, to capture the curvature of faces of the given

particle shape. The only parameter needed to be calibrated in order to match the
given particle shape was the parameter k, which controls the curvature of the faces.
For small values of k, infinitesimally approaching zero, the particle faces would be
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Figure 5.20: Deciding the planes used to construct the Potential Particle; (left) tetrahedron
connecting the centres of the spheres of the clump; (right) Potential Particle assembled as
a rounded, expanded version of the initially sharp tetrahedron.

practically flat, while for values approximating unity, the potential particle would
become perfectly spherical. A value of k = 0.65 led to a good match with the tar-
get geometry. The following Figure 5.21 and Figure 5.22 demonstrate visually the
geometrical faithfulness of the generated Potential Particle to the shape of the real,
physical particle.

5.9.4 Modelling versatility of this approach

In this exercise, the participants were given to simulate a granular material with non-
spherical particles at two reposed states, using the devices for plane-strain and axial-
symmetric boundary conditions, as in the experimental benchmarks. To simulate
these problems, the participants were tasked to simulate the rounded, tetrahedral-
like grains of the studied material, along with cuboidal elements of various sizes,
making the moving and still parts of the two devices. It is reminded that Device
I consists of an upper and lower box and a vertical moving plate, while Device
II consists of a hollow-cylindrical hopper where the granular material is deposited
initially, a horizontal moving plate and a lower, vertically movable hollow cylinder
with boundaries of oblique ends. Using the Potential Particles in YADE, all the
components of these models can be build using a single, unified approach, i.e. one
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(a)

(b)

Figure 5.21: (a) Front and (b) back views of clump of spheres (left) and rounded tetrahedral
particle using the Potential Particles (right).

code for all shapes, as shown in Figure 5.23.

5.9.5 Particle shape characterisation

As demonstrated in Figure 5.21 and Figure 5.22, the considered Potential Particle
can approximate the morphology of the physical particle faithfully, as it can rep-

107



Chapter 5. Potential Particles and Potential Blocks

Figure 5.22: Overlapping clump of spheres and fitted tetrahedral Potential Particle, viewed
from different perspectives.

Figure 5.23: Definition of rounded tetrahedral, spherical and cuboidal particles using the
Potential Particles.

resent the main dimensions of the particle, determining particle form, along and
the curvatures of its edges/corners, relating to particle roundness. Albeit faithful
enough, the produced Potential Particle cannot represent the concavity of the phys-
ical particle, and thus it is expected that the Potential Particles in the following
simulations will interlock less than the physical material, potentially demonstrating
a slightly smaller angle of repose. A quantitative characterisation of particle form
was performed using SHAPE (Angelidakis et al., 2021b), to identify the fidelity
between the Potential Particle used in the numerical simulations and the physical
particle. The surface mesh of the physical particle was produced by defining it as a
clump of 4 overlapping spheres and using the surface extraction module of CLUMP
(Angelidakis et al., 2021a) to tessellate its surface.

A comparison of geometrical and morphological parameters is also offered with
a clump of spheres, where the overlapping parts of the sphere-members are counted
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Table 5.1: Parameters of particle form for physical particle, potential particle and clump
of overlapping spheres, without correction for overlaps.

Shape
characteristics

[1] [2]
[2]-[1]
[1]

[3]
[3]-[1]
[1]Physical

Particle
Potential
Particle

Clump of
Overlapping Spheres

Volume (m3) 3.3304 · 10-7 3.9248 10-7 17.85% 4.9965 · 10-7 50.03%
Surface
area (m2)

2.491 · 10-4 2.632 · 10-4 5.66% 2.491 · 10-4 0

Inertia
tensor/ρ (m5)

2.584 0 0
0 2.584 0
0 0 2.584

 · 10-12

3.286 0 0
0 3.286 0
0 0 3.286

 · 10-12 27.17%

3.123 0 0
0 3.123 0
0 0 3.123

 · 10-12 20.86%

Convexity 0.954 1 4.82% 0.954 0
Sphericity 0.9328 0.9849 5.59% 0.9328 0

multiple times in the calculation of volume, centroid and inertia. This was carried
out, as to date many DEM codes still calculate these overlapping parts multiple
times when using clumps, causing an overestimation of the inertial characteristics
(mass and inertia tensor) of clumps with overlapping sphere-members. In such cases,
this can lead to particles with non-uniform density, as the density shows a spatial
increase at areas where spheres overlap. To mitigate this, methods to adjust the
density of each sphere-member have been proposed in the literature (such as Ferellec
and McDowell, 2010) to correct mass and inertia. Modern discrete element codes,
such as YADE, mitigate this in a more elegant way: A three-dimensional grid is
considered enclosing the clump particle, and it is evaluated if each element (voxel)
of the grid belongs to one of the sphere-members of the clump. These voxels are
used to calculate particle mass and inertia, without the need for density correction.
This approach is dependent on the resolution of the grid, i.e. a finer grid will produce
more accurate results but will result in higher computational cost; however, this is a
task performed once for each clump, upon initialisation, and has been implemented
by the YADE developers to require minimal input from the user, who only needs to
define the size of the grid, effectively minimising pre-processing efforts compared to
applying density adjustment techniques.

Table 5.1 demonstrates the shape parameters of the physical particle, of the
produced potential particle and of a clump where the geometrically overlapping
parts of the particles are considered multiple times in the calculation of volume and
geometric inertia (i.e. physical inertia divided by density).

As expected, the considered Potential Particle has larger values of volume and
geometric inertia. To mitigate this, in some of the simulations, the density of
the material was scaled down, multiplied with a scale factor equal to the ratio
of the volume of the physical particle, over the volume of the Potential Particle, i.e.
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SF = 3.3304 · 10−7/3.9248 · 10−7 = 0.849. Translating this into the inertial prop-
erties of the Potential particles, this scaling brings the error of mass down to zero,
while the error in inertia values drops from 27.17 % down to 7.96 % after scaling
density. This is considered to be a better alternative than using clumps of overlap-
ping spheres, as using the Potential Particle modelling approach guarantees uniform
density distribution throughout the particle geometry. It is interesting to note that
using overlapping spheres without some correction for uniform density leads to an
error of 50.03 % for the volume and 20.86 % for the values of the principal inertia
tensor.

5.9.6 Numerical simulations and results

The organisers of this round robin study performed a series of experiments using
the material of interest, at the particle scale, to determine its mechanical properties.
They provided the statistical distribution of each material parameter (TC105, 2021),
and the average values of these distributions were considered in the numerical models
described in this section. Table 5.2 collects the material properties considered in
the Potential Particle simulations. Four cases of different material properties were
considered, aiming to investigate their effect in the angle of repose for both devices.

The normal stiffness (kn), the friction coefficients of the particles with other par-
ticles and with the walls (µpp and µpw respectively) and the normal viscous coefficient
were considered constant across simulations, as shown in Table 5.2, based on the
available experimental evidence. In particular, the normal viscous coefficient (βn =

0.071) was calculated based on the average value of the experimentally-derived coef-
ficient of restitution en ≈ 0.80, via the relationship βn = −(log en)/

√
π2 + (log en)2.

A small number of parameters was varied in a parametric manner, to investigate
their effect on the measured angle of repose for both repose states, i.e. in Device I
and Device II. One parameter was varied at a time, allowing for a direct comparison
among cases with small differences. The shear-to-normal stiffness ratio (kn/ks) was
not defined during the experimental mechanical characterisation of the 3D-printed
material, and so three different cases were defined; first, using an objectively small
value for the ratio (ks/kn = 0.2); second, a value equal to the Poisson ratio of the
material (ks/kn = ν = 0.37), a practice followed within the source code of YADE for
the linear contact model (Smilauer et al., 2021); and third, a larger value based on
the widely-accepted relationship (ks/kn = (1 − ν)/(1 − 0.5ν)) derived analytically
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in Mindlin (1949), and also discussed in Cundall and Strack (1979) and Thornton
et al. (2013). Following the discussion on particle shape in the previous section, two
values were considered for the density of the material: first, the nominal density
(ρ = 1111 kg/m3) and second, the reduced density (ρ = 0.849 · 1111 = 943 kg/m3),
which makes the mass of the potential particle match the mass of the actual 3D-
printed particle. A change in mass triggers a change in the critical time-step of each
simulation group. The time-step was calculated as 10% of the critical time-step,
which was computed using the formula ∆tcrit =

√
2 ·
√
m/kn, where m the mass of

the particle, as in Smilauer et al. (2021).

Group A describes a set of simulations where a small ratio of shear to normal
stiffness coefficients (ks/kn = 0.2) is employed, considering the nominal density of
the material. Group B describes a set of simulations with same small stiffness ratio
but reduced density and thus time-step. Group C considers a stiffness ratio equal
to the Poisson ratio (ks/kn = ν = 0.37) and reduced density. Last, Group D con-
siders the analytically-derived high stiffness ratio (ks/kn = ν = 0.773) and reduced
material density. The simulations in the parameter groups A, B and C consider the
same initial packing arrangement, aiming to focus only on the differences induced
by the different material properties, while the simulations of group D consider dif-
ferent packing arrangements, aiming to investigate the effect of initial packing on
the angle of repose. For Device I, 2 simulations are conducted for each of the pa-
rameter groups A, B and C, and 18 simulations with the parameters of group D,
resulting to a total of 24 DEM simulations. For Device II, 2 simulations are con-
ducted for each of the parameter groups A, B and C, and 19 simulations with the
parameters of group D, resulting to a total of 25 DEM simulations. The parameter
group D was employed for the majority of simulations which investigate the effect of
packing arrangement, as the method used to calculate the shear-to-normal stiffness
ratio, there, is considered to be more realistic considering its analytical derivation
by Mindlin (1949).

Figure 5.24 illustrates the initial state of the models created in YADE, using the
Potential Particles code, to simulate both devices, before air pluviation initiates.
The front plates of Device I and the cylindrical hopper in Device II (containing
initially all particles) are made transparent, to make visualisation of the initial
arrangement of particles clearer.

For Device I, the angle of repose is measured as the angle between the horizontal
plane and a line connecting the center of the apex sphere and the upper end of
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Table 5.2: Material properties used in DEM simulations.

Group of
Parameters A B C D

kn (N/m) 1200 1200 1200 1200
ks/kn 0.2 0.2 0.37 0.773
ρ (kg/m3) 1111 943 943 943
∆t (sec) 8.52 · 10-5 7.86 · 10-5 7.86 · 10-5 7.86 · 10-5

µpp 0.713 0.713 0.713 0.713
µpw 0.514 0.514 0.514 0.514
βn 0.071 0.071 0.071 0.071

the fixed wall (i.e. the wall directly below the moving plate). The apex sphere
corresponds to the sphere of maximum height among the four spheres corresponding
to the physical particle at the highest position, as shown in Equation 5.20.

θ = arctan
( z
L

)
(5.20)

where:

z = is the vertical height difference between the apex sphere and the fixed wall;
L = is the horizontal distance between the apex sphere and the fixed wall.

A similar logic is employed to calculate the angle of repose for Device II. At the
axisymmetric repose state, the apex sphere is not guaranteed to be at the centre
of the the heap and so 360 points are considered on the top of the cylindrical wall,
resulting to 360 measurements from different directions. Two angles are defined
using these measurements, the average angle of repose θiave shown in Equation 5.21
and the average of the maximum and minimum recorded values θmm

ave shown in
Equation 5.22. These averages aim to quantify the mean statistical angle of repose
and the middle of the range of values, as each of the 360 recorded values have
different horizontal distances to the cylindrical wall.

θavei =

∑360
1 θi
360

(5.21)

where:

θi = is the measured angle of repose along a direction i.
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(a) (b)

Figure 5.24: Models of devices to measure the angle of repose using the Potential Particles
(a) plain-strain device; (b) axial-symmetric device.

θavemm =
θmax + θmin

2
(5.22)

where:

θmax = is the maximum θi value;
θmin = is the minimum θi value.

Table 5.3 collects the average, standard deviation, maximum and minimum val-
ues of angle of repose for Device I. The results of Groups A, B and C demonstrate
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Table 5.3: Values of AOR (deg) from the DEM simulations of Device I.

Group of
Parameters

Number of
Simulations

Average
AOR

Standard
Deviation of AOR

Minimum
AOR

Maximum
AOR

A 2 33.6 * 33.4 33.7
B 2 35.6 * 34.2 37.0
C 2 35.4 * 35.1 35.8
D 18 34.8 1.61 32.5 38.0

All simulations 24 34.8 1.52 32.5 38.0
* Standard deviation is not provided, as two values are not an adequate statistical sample.

that employing different shear-to-normal stiffness ratio values did not lead to signif-
icant variations in the measured angle of repose across groups compared to Group
D or had a consistent trend with the change of shear stiffness. Instead, the large
range of results among the simulations of Group D shows that the initial packing
arrangement of the particles leads to more significant values of angle of repose, for
the given devices and sample size. Considering the small effect of varying the shear
stiffness in comparison to the effect of initial particle arrangement, which is con-
sidered to be the defining source of variation among simulations, the results of all
simulations are presented together.

Figure 5.25 demonstrates the results for the angle of repose from the DEM sim-
ulations using the Potential Particles for Device I. Figure 5.25a shows the results for
all four material groups (A,B,C,D), while Figure 5.25b attempts a statistical pro-
cessing of these results, fitting a normal distribution curve to them. The similarity
of results from all groups is further demonstrated by the fact that the entirety of
results falls within two standard deviations (±2 ·σ) of the fitted normal distribution
to the histogram in Figure 5.25b. This similarity of results justifies that the Groups
A, B and C do not demonstrate a high degree of variance compared to Group D and
thus packing arrangement seems to play a more significant role than the stiffness
ratio. Consequently, handling the results differently depending on their stiffness
ratio is not necessary.

Table 5.4 and Table 5.5 show these values for θiave and θmm
ave, respectively,

from the DEM simulations of Device II. Figure 5.26 and Figure 5.27 demonstrate
the results for the θiave and θmm

ave angles of repose, respectively, from the DEM
simulations using the Potential Particles for Device II. As for Device I, the results
from the simulations with different stiffness ratios in Groups A, B and C did not
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(a) (b)

Figure 5.25: Measured AOR using the Potential Particles for Device I (a) results of all
tests; (b) statistical distribution of results.

Table 5.4: Values of θiave AOR (deg) from the DEM simulations of Device II.

Group of
Parameters

Number of
Simulations

Average
θi

ave
Standard

Deviation of θiave
Minimum
θi

ave
Maximum
θi

ave

A 2 29.7 * 29.5 29.9
B 2 28.3 * 27.1 29.4
C 2 29.5 * 29.4 29.6
D 19 29.7 0.78 28.5 31.2

All simulations 25 29.6 0.85 27.1 31.2
* Standard deviation is not provided, as two values are not an adequate statistical sample.

present significant variations compared to Group D; thereby all results are plotted
together, considering the packing arrangement as the only significant differentiating
factor. Figure 5.26a and Figure 5.27a show the results for all four material groups
(A,B,C,D), while Figure 5.26b and Figure 5.27b show a statistical processing of
these results, fitting to them normal distribution curves.

Table 5.6 reports the experimental values of angle of repose for Devices I and II.
Comparing the average values of AOR measured in the numerical simulations with
the ones measured during the physical experiments, it is found: for Device I (34.8°
DEM - 41.4° experimental), while for Device II - θiave (29.6° DEM - 35.3° experi-
mental) and Device II - θmm

ave (29.8° DEM - 35.6° experimental). These differences
of 6.6° for Device I and 5.7° and 5.8° for Device II arise from the convex morphology
of the potential particles used in the simulations. The concavities of the physical
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Table 5.5: Values of θmm
ave AOR (deg) from the DEM simulations of Device II.

Group of
Parameters

Number of
Simulations

Average
θmm

ave
Standard

Deviation of θmm
ave

Minimum
θmm

ave
Maximum
θmm

ave

A 2 30.0 * 29.6 30.4
B 2 29.1 * 28.3 30.0
C 2 29.6 * 29.4 29.7
D 19 29.9 0.79 28.5 31.4

All simulations 25 29.8 0.77 28.3 31.4
* Standard deviation is not provided, as two values are not an adequate statistical sample.

(a) (b)

Figure 5.26: Measured θi
ave using the Potential Particles for Device II (a) results of all

tests; (b) statistical distribution of results.

particles allow them to interlock better, something not represented by the convex
potential particles in the numerical simulations. This is an interesting finding, high-
lighting the importance of particle concavity in the formation of a reposed state.
Even for these physical particles of high convexity (equal to 0.954), using a convex
potential particle led to a notable underestimation of the AOR values, around 15%,
for both devices.

5.10 Conclusions

This chapter discussed features of algorithmic development of two existing codes to
simulate generalised non-spherical particles and sharp polyhedra, namely Potential

Particles and Potential Blocks, implemented as part of this thesis.
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(a) (b)

Figure 5.27: Measured θmm
ave using the Potential Particles for Device II (a) results of all

tests; (b) statistical distribution of results.

Table 5.6: Measurement data of AOR (deg) obtained from experiments (source TC105,
2021).

Num* Average Standard
Deviation Minimum Maximum

Device I

AOR 400 41.4 1.28 38.3 46.3

Device II

θi
ave 50 35.3 0.9 33.3 37.3

θmm
ave 50 35.6 0.9 33.3 37.6
* Num stands for the number of repetitions of each experiment.

The contact laws of both codes were further developed, aiming to widen their
range of applicability. In particular, the contact law of the Potential Blocks code
was extended to also support constant normal and shear stiffness, exhibiting a linear
contact behaviour with viscous damping, while the contact law of the Potential

Particles code was extended to support non-linear stiffness, utilising a novel heuris-
tic algorithm to calculate the contact area of the overlap region.

The contact laws of both codes were further developed to eliminate situations
of non-physical attractive contact forces in the presence of viscous damping, by
limiting the magnitude of the viscous contact force, so that the resultant contact
force exhibits only compressive behaviour.
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The contact detection algorithms of both the Potential Particles and the
Potential Blocks were modified to work with periodic boundary conditions, which
were already implemented in YADE. The development of this feature allows for the
consideration of smaller sample sizes (i.e. numbers of particles), analysed in periodic
space, which are not subjected to boundary effects, offering thus a speedup of com-
putations. Reducing the sample size while retaining the representative nature of the
sample is especially important for non-spherical particles, where the computational
cost of performing contact detection is significant.

Energy calculations were developed for both codes, allowing for the monitoring of
elastic potential (strain) energy, dissipation due to frictional sliding and dissipation
due to viscous damping. These calculations complement existing calculations in
YADE for the calculation of gravitational potential energy, kinetic energy (both
translational and rotational), kinetic energy from moving the periodic boundaries
and dissipation due to local (acceleration-dependent) damping. Two-particle DEM
simulations of non-spherical particles were presented, using the Potential Blocks,
to identify cases where energy was conserved, and opposite cases where the contact
laws and the energy calculations of these codes need to be revisited.

The Potential Particles were employed to simulate two benchmark problems pro-
posed by the Japanese domestic Technical Committe 105 (TC105) of the ISSMGE,
to establish the angle of repose of a 3D-printed material, for plane-strain and ax-
isymmetric repose states. The results indicate that under-representing the concavity
of the physical material using convex potential particles led to an under-estimation
of the angle of repose. Quantified morphological differences between the physical
material and the generated potential particle were provided.

All the features developed in this chapter have been shared with the global
community of YADE users and developers in an open-source manner.
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Chapter 6

Mechanical characterisation of
railway ballast

6.1 Introduction

The study of particulate materials at the mesoscopic scale is conducted using a
Representative Element Volume (REV)1. This is a subset of the bulk material, which
is considered to be representative of its main characteristics. The nature of these
characteristics, as well as the size of the REV depend on the application at hand.

This chapter lays down a methodology to generate REVs of non-spherical parti-
cles, which reflect the statistical distribution of both particle size and shape. This
methodology applies to any modelling approach for granular materials, be it multi-
sphere particles, polyhedra, potential particles and µFE, inter alia. This methodol-
ogy does not mean to replicate an existing sample, as e.g. in Kawamoto et al. (2018),
but it rather attempts to reconstruct a representative sample, given the available
morphological information of the particles at their original fidelity level, before any
simplification or approximation is applied.

The methodology is applied in this chapter to generate representative samples of
railway ballast using multi-sphere particles. Shape characterisation is performed for
particles of the material at their original fidelity level. Then, simplified particles are
generated using the two aforementioned approaches and their morphology is char-
acterised and compared to that of the original particles. Then, simplified particles
are chosen aiming to approximate the size and shape polydispersity of the original

1Often referred to as Representative Elementary Volume or Representative Volume Element
(RVE).
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particles, as closely as possible. Discrete element tests of triaxial compression are
performed for the simplified particles and compared to available experimental data.

6.2 Background

Several studies in the literature have employed the Discrete Element Method to
characterise the mechanical behaviour of granular materials, in terms of critical
state shear strength (Harkness and Zervos, 2019; Angelidakis et al., 2021a), packing
(Nadimi and Fonseca, 2016; Soltanbeigi et al., 2021) and fabric (Orosz et al., 2021).
When spherical particles are employed, size polydispersity plays a crucial role in
the stiffness and compressibility (Minh and Cheng, 2013), the critical state shear
strength (Jiang et al., 2018) and stress distribution (Liu et al., 2021) of granular
assemblies. For non-spherical particles, particle morphology and its polydispersity
play a significant role, additionally to particle size effects.

In recent years, studies using non-spherical particles in discrete element simula-
tions have become more common. Many of these studies employ idealised particle
shapes, such as ellipsoids (Zheng et al., 2013), superellipsoids and superquadrics
(Zhao et al., 2018; Podlozhnyuk et al., 2017) or poly-superellipsoids (Zhao and Zhao,
2019). Regarding realistic particle shapes, multi-sphere particles (Garcia et al.,
2009), polyhedra (Boon et al., 2015b) and potential particles (Ahmed et al., 2016)
have been used to simulate irregular particles. In many occasions, the shape of these
irregular particles is selected randomly; e.g. Eliáš (2014) used Voronoi tessellation
to generate randomly convex polyhedra, which he scaled to generate particles of
varying aspect ratios. Ahmed et al. (2016) used a small number of ballast-particle
images to generate potential particles approximating the realistic ones in a qualita-
tive manner.

When polyhedra are used, it is a common requirement for the particles to be
convex, to achieve efficient contact detection. Multiple convex polyhedra connected
rigidly in a clump have been used to generate concave particles (Govender et al.,
2016; Boon et al., 2015b), a process which increases the number of particles in the
simulation and thus computational cost. Recent advances on the field, aided by
new methods of Computational Geometry to perform Approximate Convex Decom-
position (Lien and Amato, 2008) allow for a systematic decomposition of concave
particles into a small set of non-overlapping, convex particles.

Kawamoto et al. (2018) used the Level-Set DEM (LS-DEM) to simulate the
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mechanical behaviour of concave particles, without needing to decompose them into
subsets of convex ones, demonstrating that “All you need is shape”. Using a voxelated
representation of the particle morphology, the LS-DEM was used to replicate the
exact morphology of particles and their arrangements in a granular assembly imaged
using X-ray Computed Tomography. This allowed for a faithful replica of the real
particle geometries, which were referred to as avatars or digital twins, rather than
models, by Kawamoto et al. (2018) and Jostad et al. (2021), respectively, aiming
to emphasize their increased level of fidelity. In the LS-DEM, particle shape is
represented by a collection of voxels, a data format similar to that of reconstructed
images derived using Computed Tomography. This practical similarity regarding
the voxelated data representation of each particle minimises the extent of pre and
post-processing efforts when image-informed modelling is of interest, as it bridges
the distance between digital imaging and numerical modelling.

Using a voxelated representation of particles for numerical modelling purposes is
not a recent advancement in the field. The DigiPac algorithm, with both 2D and 3D
flavours (Jia and Williams, 2001; Jia et al., 2007), pioneered the modelling of non-
spherical particles, in situations of complex particle morphologies, where spheres
or convex polyhedra could not offer a realistic modelling of packing conditions or
voidage size and evolution. Digipac facilitated the modelling of particles with con-
cavities and intragranular voids, with little computational cost. This was the case, as
initially the software offered geometrical, digitally-based packing prediction, where
the particles could move randomly, without a consideration of the contact forces, a
fact that contributed positively to the computational efficiency of the method, at
the cost of estimation accuracy.

To improve this, Caulkin et al. (2009) presented two new versions of DigiPac,
where the full contact characteristics were taken into consideration, i.e. the interac-
tion forces between particles. Although they reported increased computational cost
associated with these new versions, they observed more realistic simulations of the
packing structures of non-spherical particles under various dynamic loading condi-
tions, including rotations, vibrations and tapping. These two versions introduced
DigiDEM and DigiCGP; DigiDEM is a fully physics-based approach, comprising an
implementation of the Discrete Element method, while DigiCGP is a collision-guided
digital packing model, designed as an intermediate solution between DigiPac and
DigiDEM, and is partially guided by collisions, leading to reduced computational
cost but also accuracy. Caulkin et al. (2015) demonstrated the merits and limita-
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tions of voxel-based modelling approaches, against the multi-sphere and polyhedral
approaches facilitating a discussion from both morphological and computational
standpoints. It should be noted that although both the LS-DEM and DigiDEM
use voxelated particle representations, their similarities do not extend past that, as
each method employs different logics to facilitate contact detection and to estimate
interaction characteristics, such as contact point, contact normal and contact law.

The Finite Element Method (FEM) and the Finite-Discrete Element Method
(FDEM) have been used to simulate non-spherical particles. Both methods merit
from their inherent ability to simulate interactions of concave particles (Nadimi
et al., 2020; Farsi et al., 2021), while Nadimi and Fonseca (2017b); Nadimi et al.
(2017) demonstrated that the “General contact algorithm” of Abaqus (Abaqus, 2014)
has the capacity to replicate the behaviour of analytical contact laws for interact-
ing spheres and different loading conditions, i.e. Hertz (1882) for normal contact
interactions, Mindlin and Deresiewicz (1953) for shear contact interaction, Lubkin
(1951) for torsional loading conditions and Johnson (1987) for rotation. However,
these methods result in an increase of computational cost, compared to the classic
DEM, as they are hindered by the need for a fine discretisation of the interior of
the particle (as shown in Nadimi and Fonseca, 2018), in order to achieve a proper
integration of stresses and calculation of contact characteristics (i.e. contact force
magnitude and normal direction). The FEM and FDEM allow for the direct and
accurate modelling of particle deformability, something that is only approximated
in the classic DEM (Cundall and Strack, 1979) considering soft-particle approach.

Having discussed the various available approaches to simulate non-spherical par-
ticles, the question arises of what shapes these particles should have. A recent
study by Wang et al. (2021) proposed a methodology to generate random packings
of granular materials with complex particle shapes, with controlled form, roundness
and convexity features. Such algorithms are useful to facilitate the generation of
packings with particles of polydisperse sizes and shapes. A delicate point in such
a method is to decide which formulae are useful to quantify the different aspects
of particle shape. As demonstrated in Chapter 2 and Chapter 3, multiple formulae
exist to represent particle form and roundness and thus the results of this packing
generation algorithm will depend on the chosen sets of indices.

When realistic particles are of interest, it is important to ensure that the particles
used in the numerical simulations maintain some association in terms of size and
shape to the particles of the original fidelity level. To this end, it is essential to define
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a methodology based on quantitative shape characterisation, which will ensure the
particles considered in the numerical simulations follow size and shape distributions
with some association to the ones of the physical particles.

6.3 A methodology to generate representative ele-

ment volumes in the DEM using realistic parti-

cle shapes

This section formulates the steps of a proposed methodology, to generate REVs of
non-spherical particles, which follow a target size and shape distribution and can
mimic its shear strength characteristics (in terms of mobilised friction angle and
dilatancy). Although the particle size distribution (PSD) is a well defined term,
the notion of a “shape distribution” has been used loosely in the literature (e.g. see
different definitions in Itoh and Wanibe, 1991; Rorato et al., 2018), to represent the
overall morphological “profile” of the particles of a granular material. This study
focuses on particle form, which is quantified in terms of elongation and flatness,
using the new formulae proposed in Chapter 2. Particle form is here isolated for the
sake of simplicity, and because form affects significantly the packing characteristics
of irregular particles at the REV scale. This does not mean to take away from the
importance of roundness and roughness, as angular particles have been demonstrated
to lead to further interlocking (Nadimi et al., 2020) and stress concentrations, while
rough particle surfaces affect the normal and shear stiffness when they form contacts
with their surrounding particles (Otsubo et al., 2017; Nadimi et al., 2020; Sandeep
et al., 2019).

Reflecting on the structure of this thesis, the methodology proposed in this chap-
ter brings together the formulae for flatness and elongation proposed in Chapter 2
to characterise particle form, the SHAPE and CLUMP codes demonstrated in Chapter 3
and Chapter 4, respectively, for particle shape characterisation, simplification and
for generation of numerical models, as demonstrated in Figure 6.1.

The main steps of the proposed methodology to generate REVs which follow a
size and shape distribution are detailed below:

• The form of the scanned particles is characterised in terms of flatness and
elongation, for the original fidelity level.
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Digital Imaging

SHAPE
Characterisation
& Simplification

CLUMP
Particle generation

YADE/DEM
Numerical modelling

Figure 6.1: Interaction of components to characterise the particle shapes of real particulate
materials based on imaging data, create simplified particle representations, characterise
their morphology and generate them inside numerical codes.

• Simplified particles are generated using multi-sphere particles.

• The morphology of the simplified particles is characterised and compared to
that of the original particles.

• Simplified particles are selected based on their flatness and elongation values,
aiming to approximate the distribution of flatness and elongation of the parti-
cles of the original fidelity level at the REV level. This is performed separately
for each sieve cut.

• Numerical simulations are performed for different fidelity levels.

It should be noted that the simplified particles will typically have a different
shape distribution, in terms of flatness and elongation, compared to the original
fidelity level. This inescapable loss of fidelity is an artifact of the simplification pro-
cess. Following this proposed methodology, the simplified particles are used in such
proportions so that they approximate the shape distribution of the original fidelity
level. As a result, the particles used in the DEM simulation will have altered mor-
phological characteristics if compared to their original counterpart, but the overall
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shape distribution at the sample scale will be close to that of the original fidelity
level.

6.4 Experimental characterisation

The methodology developed in the previous section is applied to study the shear
strength of railway ballast via discrete element simulations. This section discusses re-
sults of experimental characterisation of the material, reported in Xiao et al. (2017).
The material of interest is granite ballast, with regular densities (ρ = 2650kg/m3)
and particle sizes. Figure 6.2 shows the particle size distribution of the ballast ma-
terial, with sieve sizes varying from 16 mm to 63 mm, as detailed in Xiao et al.
(2017).

Figure 6.2: Particle size distribution (PSD) of the ballast material.

Xiao et al. (2017) scanned the morphology of several hundred ballast grains us-
ing a Creaform Go!SCAN3D hand-held imaging laser scanner and they provided a
subset of 100 of their scans in aid of this thesis. The point cloud corresponding to
the surface of each particle was reconstructed in this thesis using the “Ball-Pivoting”
method in Meshlab (Cignoni et al., 2008). The large size of the ballast particles along
with the high resolution of the laser scanner resulted in particle surfaces of approx-
imately 60,000 to 600,000 faces per particle, which provided detailed morphological
information of each particle. Figure 6.3 shows the scanning of a single particle as
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presented in Xiao et al. (2017), while Figure 6.4 shows all the 100 analysed ballast
particles corresponding to each sieve cut.

Figure 6.3: Laser scanning of a single ballast grain (reprinted from Xiao et al. (2017) with
permission from Elsevier).

Xiao et al. (2017) tested cylindrical ballast samples with a diameter of 300mm
and a height of 600mm using a large-scale triaxial apparatus. Initially, the samples
were compacted by artificial vibration, compressed isotropically, and then sheared
under static and cyclic deviatoric loading. The static loading was imposed via strain
control with uniform loading velocity of 3 mm/min (i.e. 0.5% of the sample height per
minute) and for confining pressures of 10 kPa, 30 kPa and 60 kPa. Figure 6.5 shows
the experimental results reported by Xiao et al. (2017) for the static shear tests of
the material, along with results from two-dimensional discrete element simulations
using clumps. It becomes evident that the material exhibits dilative behaviour for
all levels of confining stress. The static triaxial shear tests were conducted for axial
strains up to 10%, which is an average level of imposed deformation, not enough for
the material to reach critical state conditions. More information on the numerical
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10 particles 25 particles 25 particles 32 particles 8 particles

Figure 6.4: Scans of the 100 analysed ballast particles for all sieve cuts.

simulations of this figure can be found in Xiao et al. (2017).

6.5 Morphological characterisation

Quantitative characterisation of particle morphology is at the center of the pro-
posed methodology. The SHAPE and CLUMP codes played a catalytic role in perform-
ing shape characterisation and generating simplified multi-sphere particles, in an
automated manner. This section reports results of shape characterisation for 100
analysed ballast particles.

6.5.1 Original fidelity level

First, the morphology of the scanned particles is characterised in SHAPE for the
original fidelity level, i.e. before any simplification takes place. The bubble charts
of Figure 6.6 show values of the degree of true sphericity, intercept sphericity and
convexity, plotted on top of a Zingg plot. This style of visualisation allows the
direct comparison of different shape indices, e.g. by demonstrating that compact
ballast particles take higher values of sphericity, using both the interpretations of
Wadell (1932) and Krumbein (1941), an observation that was made for cuboids and
ellipsoids in Chapter 2. On the other hand, convexity does not show any correlation
with the particle aspect ratios, as it could be expected, since concavities can appear
on the surface any particle, be it elongated, flat or compact.

The bubble charts of Figure 6.7 illustrate values of elongation, flatness and com-
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Figure 6.5: Experimental and numerical results under static loading, a) axial deviatoric
stress versus axial strain and b) volumetric strain versus axial strain. (reprinted from Xiao
et al. (2017) with permission from Elsevier).

pactness, expressed with the formulae proposed in Chapter 2. The main particle
dimensions used in the calculation of these indices were considered as the sizes of
the Oriented Bounding Box of minimum volume of each particle. Looking into the
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(a) (b)

(c)

Figure 6.6: Shape characteristics of 100 ballast particles for the original fidelity level (a)
Degree of true sphericity (Wadell, 1932); (b) Intercept sphericity (Krumbein, 1941);(c)
Convexity.

values of each shape index (illustrated by the size and color of the bubbles), it be-
comes evident that the particles in the region IV of the Zingg plot for elongated
particles take the highest elongation values using the proposed indices, the particles
in the region I of the Zingg plot for flat particles take the highest values of flatness,
while the particles in the region II of the Zingg plot for compact particles take the
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highest compactness values. This good agreement between the proposed indices and
the Zingg system was expected, considering that all particles fall on the upper-right
region of the plot and this agreement was demonstrated for the regions I, II and IV
in Chapter 2. Figure 6.7d shows a classification of particle form for the 100 ballast
particles at their original fidelity level, based on their flatness and elongation values,
using the proposed classification system introduced in Chapter 2. Overall, 37% of
all particles are flat, 23% are compact, 9% are bladed and 31% are elongated.

Figure 6.8 shows the morphology of some of the ballast particles in more detail,
for each of the four morphological classes for flat, compact, bladed and elongated
particles. Figure 6.8a shows the particles with maximum fl, el and co values, cor-
responding to extreme particle morphologies of flat, elongated and compact ballast
particles, respectively, along with the bladed particle closest to the origin of the
Zingg plot. Figure 6.8b shows four more ballast particles, each corresponding to a
representative particle of each class. These are particles of average size, in respect
to the particle size distribution shown in Figure 6.2, i.e. their size approximates the
D50 particle diameter of the material.

6.5.2 Multi-sphere particles

Having demonstrated the shape characteristics for the original fidelity level, shape
characterisation follows for the multi-sphere particles which will be used in DEM
simulations. The quantitative characterisation of multi-sphere particles is not triv-
ial. The surface extraction routine of the CLUMP code, developed as part of this
thesis, is used to tessellate the surface of each multi-sphere particle, in the form
of a triangulated mesh, which is then processed using the SHAPE code. This was
carried out in an automated manner, utilising the good cooperation between these
two open-source tools, minimising the processing time to mere minutes and also
minimising human error. Several fidelity levels were considered, for 10, 20, 30, 40
and 50 spheres per particle.

The analysis in this section focuses on the elongation, flatness and compactness
indices, which are used to quantify the shape distribution, following the methodology
to generate REVs with shape distribution faithful to that of the original material.
As discussed in Chapter 2, these indices add up to unity (i.e. el + fl + co = 1)
and so their illustration in a ternary plot is considered intuitive, as it allows for a
monitoring of all three of them on the same chart.
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(a) (b)

(c)

37 % 23 %

9 % 31 %

(d)

Figure 6.7: Shape characteristics of 100 ballast particles for the original fidelity levels (a)
Elongation; (b) Flatness; (c) Compactness; (d) Classification of particle form, using the
indices proposed in Chapter 2.

Figure 6.9 illustrates the shape distribution in terms of elongation, flatness and
compactness, for the original 100 particles and for clumps of decreasing fidelity,
with 50, 40, 30, 20 and 10 spheres per particle. These ternary plots are drawn
on top of a density map, a ternary histogram in other words, which counts the
percentage of particles belonging to each bin of the chart. This provides an accurate
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(a)

(b)

Figure 6.8: Railway ballast particles for each morphological class; (a) particles with extreme
shape parameter values; (b) representative particles of average size. Each star marks the
morphology of the visualised particle with same colour, for each class.

132



Chapter 6. Mechanical characterisation of railway ballast

quantification of the alteration of particle morphology, for decreasing particle fidelity.
Following this method of binning the particles for each fidelity level, the changes
among bins are monitored, as the particles can migrate to neighbouring bins during
the simplification of each particle (i.e. model it with less spheres).

Having that information, the problem of creating an REV for each fidelity level,
which follows the shape distribution of the original fidelity level, is simplified to a
problem where the simplified particles are selected to participate in the REV with a
probability equal to the percentage of appearance of particles of the same bin, but
for the original fidelity level. If a bin remains empty after particle simplification, but
was not empty for the original fidelity level, particles from the closest bin are selected
to fill the necessary percentage of similarly-shaped particles, as neighbouring bins
have similar form features. The number of bins depends on the number of available
particles, the dispersion of form parameters within this sample of particles and the
degree of accuracy, i.e. how closely the particle shape distribution of a simplified
fidelity level is sought be kept, in comparison to the original one. In this case study,
where 100 particles were analysed, 5 bins provided an adequate discretisation of the
elongation - flatness - compactness domain.

It should be emphasised that the simplified clump particles are not used in
proportions to their altered shape distribution (marked with red dots in Figures
6.9b to 6.9f) during sample preparation. Instead, the simplified particles are first
categorised using their altered shape distribution, and are then used to approximate
as closely as possible the shape distribution of the original fidelity level (marked
with green dots in Figure 6.9a).
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Figure 6.9: Ternary plots of elongation, flatness and compactness of the 100 analysed
ballast particles for (a) the original fidelity level (green) and clumps (red) with (b) 50
spheres (c) 40 spheres (d) 30 spheres (e) 20 spheres (f) 10 spheres.

6.6 Mechanical characterisation

This section discusses the numerical simulations of triaxial tests on railway ballast
using multi-sphere particles. The Euclidean transform method, proposed in Chap-
ter 4 was used to generate multi-sphere non-spherical particles, having as target
particle geometry the ballast particles scanned by Xiao et al. (2017).
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A parametric study was conducted, varying different modelling parameters, which
aimed to investigate the effect of each parameter in the shear strength of the mate-
rial at critical state conditions. For each variation, only one aspect of the simulation
is altered. Table 6.1 shows the modelling parameters for each group of simula-
tions. The parameters of interest entail: the size of the REV, the initial packing
arrangement of the particles, the number of sphere-members of each clump, the
inter-particle friction and the particle shape distribution.

In the first group of simulations (Group S in Table 6.1), the size of the REV was
investigated, in search for a number of particles per simulation that is adequately
small, to minimise computational cost, but adequately large, to keep the samples
representative. In the second group (Group P in Table 6.1), REVs of the same size
but different initial packings were examined, to ensure that these simulations demon-
strate representative and reproducible mechanical behaviour. Having established an
adequate size of the REV, in the third group of simulations (Group N in Table 6.1),
the number of sphere-members of each clump is varied to different fidelity levels, to
investigate its effect on the shear strength and dilatancy of the material of inter-
est. At this stage, the size and initial packing arrangement of the REV have been
established, and the effect of particle fidelity on the observed behaviour is investi-
gated. To explore the effect of mechanical parameters on the shear strength, in the
fourth group (Group F in Table 6.1), the inter-particle friction angle of the particles
is varied to explore the dispersion of results for cases of low friction coefficients to
cases of high friction coefficients. Extensive literature exists on the effects of inter-
particle friction on the meso-scale shear strength of granular materials (e.g. Angus
et al., 2020; Huang, 2014) and it was deemed interesting to study these effects of
the analysed ballast material and using simulations of image-informed non-spherical
particles. Last, in the fifth group (Group D in Table 6.1), different size and shape
distributions were employed to study their effect on the mechanical response of the
material during shearing. The shear strength of the real material, i.e. considering
the real size and shape distribution, was compared to that of four monodisperse sam-
ples with particles belonging to different shape classes (i.e. flat, compact, bladed
and elongated), along with simplified shape distributions constructed using these
four different particles in different proportions.

In the first four groups of simulations, 100 different particle shapes were pop-
ulated into samples of 5000-1000 particles, representing the real size and shape
distributions of the material, as recorded for the original fidelity level. In the last
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group, monodisperse and simplified polydisperse packings composed of only four
particles with different form were analysed, to quantify the effect of size and shape
polydispersity in the shear behaviour of the material.

6.6.1 Sample preparation

The same sample preparation procedure was followed to generate the initial pack-
ings of all analysed samples. First, each REV was generated at a loose state, where
no particles were in contact, using the makeClumpCloud(minCorner, maxCorner,

clumps, num, seed, periodic) routine of YADE. The minCorner, maxCorner pa-
rameters define the size of a cuboidal domain where the initial sample will be gen-
erated. The clumps parameter is a list of all the different clump particles that will
be used with equal probability to generate the sample. To achieve a target parti-
cle size and shape distribution, each clump must be replicated in this list several
times, proportionally to its probability of appearance. The num parameter defines
the total number of clump particles that will be generated. A seed parameter was
used to generate packings with the same initial position and orientation of particles,
utilising a random number generation routine in YADE. Last, the parameter peri-
odic defines whether the packing should be generated in periodic space, which was
the preferred modelling choice in the triaxial tests discussed in this chapter. Using
makeClumpCloud, each clump is generated in its bounding sphere, and positioned
within the domain defined by [minCorner, maxCorner] if it does not intersect
with the bounding sphere of another existing clump. This generation procedure is
repeated until the total number of clumps (num) is generated or until a maximum
number of 200 attempts to generate a single clump is reached.

The mass and inertia tensor of each clump particle was calculated using the
routine updateClumpProperties(discretization=25) of YADE, which calculates
the inertial characteristics of clumps with overlapping sphere-members assuming
homogeneous density, overcoming the problems of clumps with non-homogeneous
density reported by Ferellec and McDowell (2010). This routine creates a three-
dimensional voxelated grid enclosing the clump, aligned with the global axes of
the model, with resolution controlled by the discretization parameter; if a voxel
falls inside one of the clump sphere-members, it contributes to the calculation of
mass and inertia, thus solving the issue of overestimating the inertial characteristics
for clumps with overlapping members. A grid of size 25 was found to provide an
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adequate estimation of mass and inertia for the studied particles, through a trial-
and-error search, as finer grids led to only small improvements in these calculations,
while they required more available memory.

The sample was isotropically compressed under a low inter-particle friction angle
of 5° and high local damping (70%), a typical process for the efficient generation of
dense packings. The Young’s modulus of the material was considered E = 1GPa

and its Poisson ratio ν = 0.23, which are typical values for granite ballast, as found
in the literature for DEM simulations. In particular, the actual Young’s modulus
of granite is higher (≈ 50 − 70GPa), and down-scaling it is a common practice to
enhance computational efficiency. Also, density scaling was applied, multiplying the
density of the material by 100 (i.e. ρ = 2650 · 100kg/m3 was considered), again
aiming to enhance computational efficiency. Employing these scaling approaches is
typical for the modelling of quasi-static processes, such as the triaxial compression
tests performed in this chapter, which are not affected by inertia effects, as the
applied strain-rate is low, as in Thornton (2000). For dynamic processes which
involve body (i.e. inertial) forces acting on the particles, such as gravity, scaling the
mass and stiffness of the system should be carried out in a way that does not alter
the eigenvalue and frictional characteristics of the system, e.g. via application of
advanced stiffness scaling laws, like in He et al. (2021), where the effect of scaling
stiffness on the tangential behaviour of granular materials was demonstrated.

The packings were compressed to achieve an isotropic stress state at σ3 = 60kPa,
and at a porosity of n = 0.45, as in the experiments of Xiao et al. (2017). Achiev-
ing the target porosity at the target isotropic stress was a product of calibration
of the reduced friction angle. The unbalanced force ratio was monitored to en-
sure that the sample was at an equilibrated state during isotropic compression,
where uf =

√(∑nb

1 (unbalanced forces)2/nb

)
/
(∑nc

1 (contact forces)2/nc

)
(as in

Ng, 2006), where nb, nc the number of particles and contact forces, respectively.
The critical time step was calculated as ∆t = 0.6 · ∆tcrit, where the critical time
step was found based on the sonic speed E/ρ (Young’s modulus over density), so
that an elastic wave does not propagate farther than the minimum distance of in-
tegration points lmin during one step, as detailed in the documentation of YADE

(Smilauer et al., 2021). This distance is considered to be lmin = minRi, i.e. the
radius of the smallest sphere in the simulation, resulting in ∆tcrit = minRi ·

√
ρ/E.

The Hertz-Mindlin contact model was considered (no-slip solution for shear), with
viscosity in the normal contact direction.
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After the desired isotropic state was achieved, the inter-particle friction value
was reinstated to its actual value for each simulation, varied from 20° to 45°, as
shown in Table 6.1. At the very last step of the isotropic compression, and before
deviatoric loading was imposed, all interactions between particles were cleared, using
the routine O.interactions.clear() of YADE, in order to avoid locking stresses,
which would make the sample “prestressed” (as also reported in Ahmed et al., 2016).
Clearing all interactions before shearing ensures that all formed contacts will be new,
without inheriting the shearing history from the preparation stage, which was some-
what artificial, under high local damping and low friction. Still, this preparation
procedure of isotropic compression merits from not imposing any form of anisotropy
during sample preparation; e.g. if air-pluviation was to be employed as a prepa-
ration technique, it would induce orientation fabric anisotropy and stress-induced
anisotropy, as these particles are irregular, with unequal principal inertia values
(and thus unequal preferences to rotate among their three different principal axes),
while gravity acts along one vertical axis; thus, choosing an isotropic compression
procedure for sample preparation aimed to induce the least amount of anisotropy
possible, before shearing.

No local damping was considered during the deviatoric loading stage, while
low viscous damping was considered in the contact normal and shear directions,
using viscous damping ratios of βn = βs = β = 0.071, which correspond to
a coefficient of restitution of en = es = e = 0.8, considering the formula β =

−(log e)/
√
π2 + (log e)2, as detailed in Smilauer et al. (2021).

Shearing was carried out for strains up to 35%, aiming to allow the material
reach critical state, i.e. a state of excessive deformation, where the sample keeps
deforming with no further increase of deviatoric stress.

In the following sections, the mechanical behaviour of the ballast samples is
quantified under triaxial shearing loading conditions, using typical measures of the
critical state theory of soil mechanics (Schofield and Wroth, 1968) and the sign con-
vention of classical soil mechanics, where compressive stress and strain components
are considered positive. The deviatoric stress was calculated as q = σ1−σ3, where σ1
and σ3 the major and minor principal stresses, respectively, while the mean effective
pressure was calculated as p = (σ1 + σ2 + σ3) /3. Volumetric strain was calculated
as εv = ε1 + ε2 + ε3, where ε1, ε2, ε3 are the axial strains along the principal stress
directions. The shear strength is visualised in the following graphs using the stress
ratio q/p and in terms of a so called “mobilised shear strength” (or “mobilised fric-
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Table 6.1: Modelling parameters of parametric triaxial tests, using multi-sphere particles.

ID Number
of particles

Friction
angle° Initial packing Size and shape distribution Spheres

per clump

S - Size of REV

S1 10000 30
Different initial packings Real size and shape distribution 10S2 7000 30

S3 5000 30

P - Packing arrangement

P1=S3 5000 30
Real size and shape distribution 10P2 5000 30 Different initial packings

P3 5000 30

N - Number of clump sphere-members

N1=S3 5000 30

Same initial packing Real size and shape distribution

10
N2 5000 30 20
N3 5000 30 30
N4 5000 30 40
N5 5000 30 50

F - Inter-particle friction angle

F1 5000 20

Same initial packing Real size and shape distribution 10
F2 5000 25
F3=S3 5000 30
F4 5000 35
F5 5000 45

D - Size and shape distribution

D1=S3 5000 30

Same initial positions

Real size and shape distribution

10

D2 5000 30 Monodisperse - Compact
D3 5000 30 Monodisperse - Flat
D4 5000 30 Monodisperse - Elongated
D5 5000 30 Monodisperse - Bladed
D6 5000 30 Polydisperse - Equal
D7 5000 30 Polydisperse - Proportional

tion angle”) φ, expressing the maximum ratio of shear stress to normal stress at
any plane, where φ = arcsin ((σ1 − σ3)/(σ1 + σ3)), as in Ahmed et al. (2016). All
stresses are considered to be effective stresses, since these tests were carried out for
drained conditions.

As shown in Table 6.1, each simulation group considers a case with same simu-
lation parameters, equal to those of case S3, allowing for comparisons as different
parameters are varied. The results of this simulation are marked with black lines in
all of the following Figures 6.10 to 6.15.
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6.6.2 Size of REV

First, an investigation of the size of the REV was conducted, to ensure the number
of clump particles used in the DEM simulations is adequate. Figure 6.10 makes it
apparent that 5000 multi-sphere particles particles were adequate to simulate the
critical-state shear strength of the material of interest. From a deformations point
of view, looking into Figure 6.10c, all studied samples exhibit the same degree of
dilative behaviour. The unbalanced force ratio in Figure 6.10d demonstrates low
values, indicating that the samples remained in an equilibrated state during triaxial
shearing (Ng, 2006). These REVs remain small in size because of the periodic
boundary conditions (Thornton, 2000) imposed in the simulation, which prevent
the consideration of boundaries, which can lead to unrealistic kinematic conditions
within a granular assembly, as particles tend to align with them. If rigid boundaries
were to be considered, a much larger model (in terms of number of particles) would
need to be considered, in order to minimise boundary effects. This is in fact one of
the merits of simulating granular materials inside a periodic cell.

6.6.3 Packing arrangement

Having established the size of the REV, a second check is carried out, aiming to
test if considering a different initial arrangement of the same 5000 ballast particles
will lead to the same critical-state shear strength. Three different initial packing
arrangements are tested and compared, using the sample generation procedure de-
tailed in subsection 6.6.1. As shown in Table 6.1, the particles in all three packings
have the same friction angle and number of spheres per clump. The only varying
factor among these three simulations is the initial position and orientation during
generation of the initial packing, which is controlled by the seed parameter of the
makeClumpCloud function of YADE, as explained in subsection 6.6.1. Using three
different seed values result in the generation of three different initial packings of the
same clump particles. After generation at a loose state, these packings are isotrop-
ically compressed up to σ3 = 60kPa, achieving a porosity of n = 0.45, as in the
experiments of Xiao et al. (2017), before being sheared up to axial strains of 35%.
Figure 6.11 demonstrates that rearrangement of the particles leads to exactly the
same shear strength, validating the representative nature of the considered REVs.
Based on the principles of the Critical State Soil Mechanics theory (Schofield and
Wroth, 1968), the critical state characteristics of a soil are not influenced by the ini-
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(a) (b)

(c) (d)

Figure 6.10: Results of triaxial tests varying the size of the REV (a) Mobilised friction
angle vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric strain vs axial strain;
(d) Unbalanced force ratio vs axial strain.

tial state of the soil, e.g. loose or dense, including the initial packing arrangement.
As a result, the size of the REV consisted of 5000 clumps is deemed adequate to
simulate representative behaviour of the analysed ballast material.

6.6.4 Number of clump sphere-members

When multi-spheres are used to approximate the morphology of real particles, the
number of spheres per particle is a significant parameter, as it relates (a) to how
closely morphological features are captured by the multi-sphere approach, and (b) to
the computational time, as each added sphere increases the consumption of memory
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(a) (b)

(c) (d)

Figure 6.11: Results of triaxial tests varying the initial packing arrangement (a) Mobilised
friction angle vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric strain vs axial
strain; (d) Unbalanced force ratio vs axial strain.

used to track the state of the particle (e.g. its position), used to facilitate contact
detection with other particles. Figure 6.12 demonstrates that for the particles stud-
ied in this case study, 10 spheres sufficed to represent their shear strength, as the
addition of more spheres per particle did not lead to any differentiation in the results
in terms of mobilised friction angle. Interesting to note the effect of the number of
spheres on the dilatancy in terms of volumetric strain shown in Figure 6.12c, where
considering more spheres per particle led to an increase of volumetric strain. Specif-
ically, comparing the results of triaxial behaviour with clumps of 10 spheres and 50
spheres, the volumetric strain shows a discrepancy from 5.1% to 6.4%, respectively.
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(a) (b)

(c) (d)

Figure 6.12: Results of triaxial tests varying the number of spheres of each clump (a)
Mobilised friction angle vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric
strain vs axial strain; (d) Unbalanced force ratio vs axial strain.

6.6.5 Inter-particle friction

Inter-particle friction plays a significant role in the shear strength of granular mate-
rials. Figure 6.13 illustrates the effect of the inter-particle friction angle (at a micro
level) on the mobilised friction angle (at a meso level). The trend of the results is in
agreement with expected values from similar studies (such as Ng, 2006; Modenese,
2013). The higher inter-particle friction values led to a higher peak shear strength,
which then decreases when the material reaches critical state. A potential justi-
fication for this is that high values of inter-particle friction provide a more stable
structure, resulting in nearly simultaneous buckling of the strong force chains, while
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low inter-particle friction values lead to some of the strong force chains yielding while
others have not yet reached the sliding limit, and yielding happens more gradually
(Barreto and O’Sullivan, 2012).

Looking into Figure 6.11c, higher inter-particle friction values led to higher de-
grees of dilatancy, as expected. As discussed in Huang (2014), the shear strength of
a sample drops more rapidly post-peak for higher µ values, a fact that is evident for
the sample with inter-particle friction of 45° in Figure 6.13a. Though, the strength of
this sample at large strains falls below the samples with lower inter-particle friction
values, which is counter-intuitive. This is in agreement with the findings of Huang
et al. (2014), where high friction coefficients in DEM simulations were reported to
lead to unrealistic behaviour.

Another reason for the rapid drop of shear strength in the case of high friction
is that due to the high dilative behaviour, the sample is mobilised more and the
material is not equilibrated at large strains compared to the simulations for lower
inter-particle friction values. This can be evidenced by the high unbalanced force
ratio in Figure 6.13d, compared to the simulations for smaller angles of inter-particle
friction. A mitigation strategy for this would be to repeat the simulation with a lower
strain-rate, which is not carried out here, as the high inter-particle friction coefficient
in this case is deemed unrealistic.

6.6.6 Particle shape distribution

The statistical distribution of particle size and shape affects the stiffness and inter-
locking of granular materials. In this group of tests, the shear strength of the real
material was compared with simplified distributions of particle shape. To take par-
ticle size out of the equation, the mean diameters D50 of the sample was considered
as an average of the sizes present in the sample. Then, a compact, a flat, a bladed
and an elongated particle were selected, all with sizes close to the average particle
size of the material, which are the same particles shown in Figure 6.8b.

Monodisperse samples made of these particles were sheared up to 35% strain,
aiming to quantify the effect of using particles with different shapes on the shear
strength. Regarding the effect of particle shape on the shear strength, Figure 6.14
makes it apparent that the monodisperse sample considering the compact particle
led to the lowest critical state shear strength, while the monodisperse sample with
the flat and elongated particle led to the highest recorded shear strengths at critical
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(a) (b)

(c) (d)

Figure 6.13: Results of triaxial tests varying the inter-particle friction (a) Mobilised friction
angle vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric strain vs axial strain;
(d) Unbalanced force ratio vs axial strain.

state. This is in conceptual agreement with the discussion regarding the “effective
form” index proposed by Harkness and Zervos (2019) (see relevant discussion in
Chapter 2), where compact particles take low values of effective form (and shear
strength), while the elongated and flat ones take higher values.

Then, two simplified polydisperse packings were generated, using the four se-
lected particles of different form, aiming to quantify the effect of shape polydisper-
sity on the shear strength. In case D6 (see Table 6.1), the packing was generated
using the four different particles with equal percentages, i.e. 25% of the sample was
made of the compact, 25% of the flat, 25% of the elongated and 25% of the bladed
particle. On the other hand, in case D7 these particles were used with the same
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(a) (b)

(c) (d)

Figure 6.14: Results of triaxial tests for monodisperse samples (a) Mobilised friction angle
vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric strain vs axial strain; (d)
Unbalanced force ratio vs axial strain. The results of the monodisperse samples are coloured
in accordance to the four shape classes as in Figure 6.8b.

percentages that compact, flat, bladed and elongated particles appeared in the ma-
terial of interest (here the 100 analysed ballast particles), for the original fidelity
level. In particular, using the classification system proposed in Chapter 2, the stud-
ied ballast particles were classified in the four classes of particle form, demonstrating
percentages of: 37% flat, 23% compact, 9% bladed and 31% elongated particles, as
illustrated in Figure 6.7d. These percentages were used to assemble the packing of
simulation D7.

The simplified polydisperse packings consisted of only four different particles
with average particle size demonstrate interesting behaviour patterns, shown in Fig-
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ure 6.15. Packing D6, where the four particles were assigned with equal percentages
overestimated shear strength, in comparison to the average baseline case D1 (which
considers the real shape distribution) so it is not a good candidate to represent
the shear strength of the real material. On the other hand, packing D7, where the
simplified particles were assigned with percentages proportional to the percentage of
similarly-shaped particles in the real material demonstrates a very close match when
compared with the baseline case D1, both in terms of mobilised (macromechanical)
friction angle, and dilatancy. Regarding the latter, the simplified polydisperse sam-
ple D7 exhibits slightly higher dilative behaviour than sample D1. Interesting to note
how the monodisperse packing of flat particles D3 and the polydisperse sample with
equal percentages of the four particles of different form D6 overestimate the dilative
behaviour of the material, unlike D7, which managed to represent adequately the
shear behaviour of the material, both in terms of shear strength and dilatancy. This
indicates that simplified shape distributions have the capacity to represent the shear
behaviour of granular materials in numerical simulations with irregular particles, as
long as the shape distribution of the original material is somehow approximated.

6.7 Conclusions

This chapter presented a methodology to generate Representative Element Volumes
(REVs) in the DEM using realistic particle shapes, along with an application of the
methodology to railway ballast particles.

Results of morphological and mechanical characterisation of railway ballast were
presented, at various fidelity levels, including the original fidelity level of scanning
and simplified levels of multi-sphere particles generated using the Euclidean-distance
transform approach introduced in Chapter 4.

Parametric triaxial tests were carried out for the ballast particles, at the scale
of Representative Element Volumes, varying several modelling parameters and doc-
umenting their effect on the shear strength of the material. The varied parameters
included (i) the size of the REV, (ii) the initial packing arrangement, (iii) the num-
ber of spheres making each clump, (iv) the inter-particle friction and (v) the particle
shape distribution.

Regarding the latter, four monodisperse samples were sheared, made of only
flat, compact, bladed and elongated particles, which were not able to represent the
shear strength of material, compared to a sample following the real size and shape
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(a) (b)

(c) (d)

Figure 6.15: Results of triaxial tests varying the particle shape distribution (a) Mobilised
friction angle vs axial strain; (b) Stress ratio vs axial strain; (c) Volumetric strain vs axial
strain; (d) Unbalanced force ratio vs axial strain.

distribution. Then, two simplified polydisperse samples were tested, made of only
four different particles, with each particle representing one of the shape classes of
the system proposed in Chapter 2. It was found that if these four particles are
used in proportions to the classification of the fully polydisperse material, using the
system proposed in Chapter 2, they can provide an adequate representation of its
shear strength.
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Concluding remarks

7.1 General remarks

This thesis aimed to contribute to the study of image-informed modelling of particu-
late systems, via the development of analytical and numerical tools. The importance
of particle morphology across scales is undeniable, demonstrated in a plethora of ex-
perimental, numerical and analytical studies and applications.

High-resolution image acquisition of particles is nowadays becoming more acces-
sible and low-cost, enhanced by recent technological advances. As a result, devel-
oping accessible and user-friendly numerical tools which can process this increasing
influx of imaging data in an automated and robust way is an integral step in util-
ising imaging data for particle shape characterisation or to inform parameters of
numerical simulations.

The traditional characterisation of particle morphology is still to date highly
subjective. Thus, a comparison of the most prominent characterisation indices from
the literature is essential in deciding which indices are informative and correlate to
mechanical, rheological or hydraulic behaviour.

This thesis aimed to facilitate a link between particle morphology and mechanical
behaviour at the microscopic and mesoscopic scales, by developing numerical tools
to link particle image acquisition and shape characterisation with numerical mod-
elling. To this end, the SHAPE code was shared in an open-source manner, aiming to
enrich the discussion on shape characterisation, offering transparent calculation of
several shape parameters for different aspects of particle morphology. SHAPE was
developed out of the lack of open-source shape analysers of three-dimensional parti-
cles and the necessity to have controlled parameters and assumptions during shape
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characterisation, a procedure where standardisation is lacking and user-dependency
is high. The efforts towards image-informed numerical modelling of particulate sys-
tems were further supported within this thesis via the code development of CLUMP,
yet another one open-source code, which generates multi-sphere particles from avail-
able imaging data of various types. CLUMP was developed out of pure necessity to
generate multi-sphere particles in a systematic and predictable way, balancing mor-
phological accuracy and computational efficiency. To achieve this, a new clump-
generation approach was developed for the purposes of this thesis, which is based
on the Euclidean distance transform of three-dimensional images. Reflecting on the
combined utility provided by SHAPE and CLUMP, the work produced as part of this
thesis aimed to provide intelligible and comprehensive numerical tools for the char-
acterisation and simplification of irregular particles and shed light on gray areas
arising from the practicalities of performing shape characterisation.

Considering the ever-growing amount of literature introducing new indices to
characterise particle morphology, it is paramount to isolate the indices that show
a correlation to physical behaviour. During this thesis, a new system for the char-
acterisation and classification of particle form was developed. Using these indices
to assemble packings of low shape polydispersity led to a good estimation of shear
strength, indicating that these indices have the capacity to characterise particle form
in a comprehensive way.

Two codes for the modelling of sharp and rounded non-spherical particles were
maintained and further developed. As part of this thesis, their user-friendliness was
enhanced, new contact laws were developed for them and their contact detection
algorithms were expanded to work in periodic space. This allowed for a downsizing
of the numerical models of the granular samples analysed in this thesis by simulating
them inside a periodic cell, where boundary effects do not exist and cannot affect
the reliability of the numerical simulations.

The mechanical bulk behaviour of railway ballast was characterised, aided by the
morphological features of individual particles. A methodology to represent the shear
strength of materials with irregular particles was laid out and simplified samples of
low polydispersity were produced, which demonstrated same levels of shear strength.

It should be noted that the findings of this thesis apply to the mechanical charac-
terisation of dense packings of railway ballast during quasi-static, triaxial tests and
should not be generalised for more complex settings. More work is required for pack-
ings at a loose state, as well as packings undergoing dynamic processes. For instance,
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a different level of shape polydispersity might be needed to characterise the rheolog-
ical behaviour of irregular particles in a granular flow. The proposed methodology
of creating samples which follow a specific statistical shape distribution can be used
to establish different levels of needed shape polydispersity for different application,
loading and kinematic settings.

Overall, this thesis aimed not only to answer research questions in itself, but
to also equip colleagues within the shape-characterisation and numerical-modelling
research communities with open-source numerical tools, which allow for a quantified
characterisation of physical materials and an image-informed generation of numerical
models.

7.2 Specific remarks

Specific conclusions are drawn for each chapter of this thesis, aiming to highlight
the impact and contributions made, in the form of tangible outcomes.

Chapter 2 compared several indices used to characterise particle form.

• Mapping shape indices on a Zingg plot (Zingg, 1935), where particles of all
possible aspect ratios can be represented, revealed a means of studying how
the value of each shape parameter varies for different particles in a quantified
manner.

• Plotting the degree of true sphericity (Wadell, 1932), for both cuboids and
ellipsoids, along with the intercept sphericity (Krumbein, 1941) and the max-
imum projection sphericity (Sneed and Folk, 1958) on a Zingg plot led to the
conclusion that the latter two indices measure the compactness of a parti-
cle, rather than its morphological resemblance to a sphere, as they take same
values for ellipsoids and cuboids with same aspect ratio.

• It is shown that all the analysed measures of sphericity take high values (>0.60)
for the particles of most natural materials, such as geomaterials, which appear
at the upper right triangular region of a Zingg plot.

• Also, it is demonstrated that the intercept sphericity and maximum projection
sphericity take very similar values for all aspect ratios.
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• A comparison of three sets of indices for particle flatness, elongation and com-
pactness (Kong and Fonseca, 2018; Bagi and Orosz, 2020; Potticary et al.,
2015), highlighted that every of the existing set bears different limitations.

• Albeit simple to define, the indices of Kong and Fonseca (2018) do not repre-
sent flatness and elongation as percentages of an overall form, and inherit the
limitation of the Zingg system in misclassifying very flat and very elongated
particles as bladed.

• The indices of Bagi and Orosz (2020) and Potticary et al. (2015) are considered
an improvement, as they correspond to percentages of an overall form (i.e. they
add up to unity), but take counter-intuitive values in regions of very flat and
very elongated particles, while the distribution of their values on Zingg plot
indicates that they cannot be used to define a classification system.

• A proposed set of indices for flatness, elongation and compactness resolve the
issues identified in the aforementioned indices, while the distribution of their
values on a Zingg plot shows they can be used to define a classification system
which is in close agreement with the Zingg system for most regular particles
of medium to high compactness, while improving on the classification of very
flat and very elongated particles.

Chapter 3 introduced SHAPE, an open-source code for shape characterisation and
simplification of three-dimensional particles.

• SHAPE allows for the automated processing of thousands of particles within
minutes and with consistent analysis parameters, minimising user-dependency
and user-induced error.

• The user is in control of the analysis parameters, and can compare different
methods and their effect on values of the shape descriptors, as various op-
tions are offered to calculate particle characteristics. For instance, the main
particle dimensions used to calculate several indices of particle form can be
calculated using a fitted ellipsoid or an oriented bounding box. The latter can
be calculated either using the Principal Component Analysis (PCA) or a box
of minimal (i) volume, (ii) surface area or (iii) sum of edges. This feature also
offers modelling versatility, as different methods can be more appropriate for
particles of different morphology.
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• A transparent calculation and comparison of different sets of indices quantify-
ing sphericity, flatness, elongation and compactness, roundness and angularity,
offers a rich and wide range of results, where the user can decide which index
is more representative for the morphology of the analysed particles, instead
of employing a single index, as all indices have limitations and an objectively
best index does not exist.

• SHAPE connects imaging, characterisation and generation of numerical models
seamlessly, as simplified polyhedra can be generated in an automated manner
for varying fidelity levels. Simplification of a single sand grain showed that a
simplified convex polyhedral particle with as many as 25 faces led to adequate
preservation of particle form when compared to the original fidelity level. Sim-
ilar analysis for a sample of 50 ballast grains showed that polyhedra with up to
50 faces preserved their form adequately, with few exceptions, prompting the
conclusion that each material is different and a universally adequate number
of faces cannot be proposed for all particles. This highlights the need for tools
like SHAPE, where automated characterisation and simplification of particles in
bulk scales are possible and computationally efficient.

• Shape characterisation of 3D images of an ellipsoid with various levels of noise
and blur, varied in a parametric manner, showed that image quality affected
the obtained morphological results by as much as 25%, for the analysed range
of parameters.

Chapter 4 introduced CLUMP, an open-source code for the generation and analysis
of three-dimensional, multi-sphere particles.

• CLUMP allows for the automated generation of multi-sphere particles of several
thousands particles within minutes, given imaging data from various sources.

• Implementations of two of the most popular clump-generation techniques are
available, for axisymmetric (Favier et al., 1999) and irregular particles (Ferellec
and McDowell, 2010).

• The strengths and limitations of the method proposed by Ferellec and McDow-
ell (2010) were identified, as it can generate particles with reduced artificial
asperities, but only for large numbers of spheres per clump, as the generation
of each sphere happens at a random point at the particle surface.
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• A new clump-generation approach was proposed, based on the Euclidean dis-
tance transform of three-dimensional images. The new method provides sys-
tematic particle generation, where each new sphere is smaller than the previous
one, and is generated where the mass of the particle is least represented, util-
ising the underlying principles of the Euclidean distance transform. The new
method can generate clumps with controlled degrees of overlap, supporting
both clumps of overlapping spheres and clusters of touching spheres.

• A method was provided to tessellate the surface of a clump, along with an
algorithmic implementation, which allows for a full shape characterisation of
multi-sphere particles. Using this feature, a modeller can characterise the
actual particles used in a simulation, and not just the scans of the original
fidelity level. This approach provides a means of quantifying if a clump is an
oversimplification of the real particle from a morphological standpoint.

• Triaxial tests of rice and sand grains using clumps generated with different
approaches demonstrated that the clump-generation approach has an effect on
the observed shear strength of granular materials. In particular, modelling a
rice grain with an axisymmetric clump created using the method of Favier et al.
(1999) led to significantly different behaviour compared to clumps generated
with other methods, as the axisymmetric clump had zero flatness and thus did
not represent the morphology of the real rice grain.

Chapter 5 discussed the Potential Particles and Potential Blocks codes,
developed within YADE (Smilauer et al., 2021), which were further developed as
part of this thesis.

• A documentation of these codes was developed as part of this thesis, aiming
to clarify the meaning of all modelling parameters involved and their intended
way of usage. This aimed to widen the user-base of the code, as little prac-
tical information was available on how to use these codes properly before the
development of this documentation.

• The source code of the Potential Blocks was further developed to support
automatic calculation of the vertices, volume, centroid and inertia tensor for
each new particle, in an automated manner.
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• The contact detection algorithms and contact laws of both codes were modified
to become compatible with the periodic boundaries already developed in YADE.

• The contact laws of both codes were expanded, via the development of a linear
contact law for the Potential Blocks and a non-linear contact law for the
Potential Particles, utilising a calculation of the contact area.

• A new script was developed in OpenGL to achieve accurate and lightweight
visualisation of Potential Blocks, as initially visualisation was available only
in a third party format (vtk).

• Energy calculations were developed for both codes, corresponding to elastic
stored strain energy and dissipation due to viscous damping and sliding fric-
tion, aiming to quantify the transference of energy from one form to another.

• An investigation of energy conservation was carried out for the Potential

Blocks code and different contact scenarios, noting conservation of energy for
face-to-face contacts and energy imbalance for more complex contact scenarios.
More work is required to identify the source of the latter, i.e. whether it is
related to the methods calculating the contact characteristics (such as contact
point, contact normal, contact law) or to the methods measuring the various
energy components.

• The Potential Particles code was employed to simulate a 3D-printed ma-
terial in a round robin study for the angle of repose for plane-strain and axial
symmetric and repose states. In both cases, considering a convex potential
particle to simulate the originally concave particles led to an underestimation
of the angle of repose by more than 5°. Varying other parameters, such as the
ratio of shear to normal stiffness (ks/kn) or the density of the material did not
show a strong effect on the resulting angle of repose values, for the studied
range of parameters.

Chapter 6 carried out a morphological and mechanical characterisation of railway
ballast, via quantitative shape characterisation and image-informed discrete element
simulations.

• A new methodology was proposed to generate representative element volumes
in the DEM using realistic particle shapes, which represents both particle size
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and shape. The methodology is based on the principle that simplified particles
should follow the same statistical particle shape distribution as the particles
at their original fidelity level.

• Parametric drained triaxial tests were conducted in periodic space for packings
of railway ballast using multi-sphere particles. Periodic boundaries were em-
ployed to simulate perfect triaxial conditions, without the influence of bound-
ary effects. A sample size of 5000 clumps led to representative behaviour,
which was tested for different initial packing arrangements.

• Comparing the results for clumps with 10, 20, 30, 40 and 50 spheres per clump,
all fidelity levels led to similar levels of shear strength, when they followed the
original particle shape distribution. This finding indicates that very simple
clumps of even 10 spheres can led to representative behaviour, as long as
they follow the same morphological statistical “profile” of the material at the
original fidelity level.

• A parametric set of simulations for varying inter-particle friction angle showed
increased peak strength for increasing friction coefficients, while a friction angle
of 45° displayed unrealistic behaviour, with the critical state shear strength
declining below the strength of samples with smaller inter-particle friction
angles.

• Four monodisperse simulations using only (i) flat, (ii) compact, (iii) bladed
and (iv) elongated particles did not manage to approximate adequately the
shear strength of the material with the real shape distribution.

• A simplified polydisperse sample made of these four particles with equal per-
centages of appearance also failed to approach the real shear strength of the
material.

• Another simplified polydisperse sample was simulated, where each of the four
particles was used in proportion to the percentages of flat, compact, bladed
and elongated particles for the original fidelity level, using the classification
system proposed in Chapter 2. This sample generation approach led to a good
estimation of the shear strength of the material with real shape distribution,
using only four different particle shapes. This shows that models of simplified
polydispersity and simplified fidelity can provide a good estimation of shear
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strength, as long as they follow the proposed logic of shape-informed sample
generation.

7.3 Suggestions for future work

This section proposes ideas for future work, which were considered out of the scope of
this thesis. Particle shape characterisation and image-informed numerical modelling
are two active areas of research, with a wide spectrum of possible applications.
This thesis laid down a path for the combination of analytical, experimental and
numerical tools, in the context of quantitative shape characterisation, and how they
can be used to generate representative numerical models informed by real data.

7.3.1 Improvement of the classification system

Following the discussion in Chapter 2, the proposed classification system can be
further refined for cases where co > fl that are currently classified as flat and cases
where co > el that are currently classified as elongated. However, the proposed
classification system in its current form led to a robust prediction of mechanical
behaviour in triaxial testing. An improvement of the system could incorporate
compactness into the classification process, like the system of Sneed and Folk (1958),
as it is currently only involving flatness and elongation and to increase the number of
classes, considering intermediate classes of particle shape, such as “compact-platy”,
“compact-bladed”, “compact-elongated”, like the system of Sneed and Folk (1958).
Such a modification could be useful in other applications.

7.3.2 Further development of SHAPE and CLUMP

Releasing the SHAPE and CLUMP codes in an open-source manner aimed to enhance
transparency of calculations during shape characterisation, a research area with high
degrees of subjectivity and user dependency. The further development of these codes
by future users, with the addition of new shape indices and methods to calculate
auxiliary geometries (for SHAPE) or new methods to generate multi-sphere parti-
cles (for CLUMP) can offer a deeper comparison between methods and help identify
delicate points and good/bad practises during particle shape characterisation and
clump generation. The developed codes are applicable to problems across disci-
plines, such as characterising biomaterials, e.g. cells, microplastics, environmental
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catalysts, battery materials, particulates and other pollutants.

7.3.3 Development of Potential Blocks & Potential Particles

Following the discussion in Chapter 5, it is worthwhile to investigate the reasons that
led energy to not be conserved for complex contact scenarios, and whether it is an
issue with theoretical roots or an artifact of faulty energy measurements. Developing
more contact laws for the Potential Blocks and the Potential Particles codes
can make them applicable to a new range of applications. In particular, developing a
modified Hertzian-like, curvature-dependent contact law for the Potential Particles,
based on the values of the local Hessian matrix around the overlap region of each
contact, as in Harkness (2009), can lead to more comparable results with models of
spheres, where using the Hertz-Mindlin contact law (no-slip solution) is the norm.
The current non-linear contact law relies on two volumetric stiffness parameters, a
normal and a shear one (kn, ks), which are not comparable to the elastic parameters
used in the Hertzian formulation (E, ν), while the relationship of force to contact
area has a different exponent. A curvature-dependent calculation of contact forces
can create the opportunity to use well-established contact laws for adhesive contacts,
such as the JKR model (Johnson, 1987), models for bonded particles or contact laws
for rough contacts (e.g. Otsubo et al., 2017).

7.3.4 Other modelling techniques for irregular particles

The triaxial tests in Chapter 6 were carried out using multi-sphere particles, which
cannot represent angular particle morphologies for small numbers of spheres. Con-
vex polyhedra are the most common modelling approach after multi-sphere particles,
but can underestimate the interlocking capabilities of the material, while overesti-
mate the volume of the particles. Alternative modelling methods, such as the µFE
(Nadimi et al., 2020) or the LS-DEM (Kawamoto et al., 2018), have the capacity
to model interlocking with a higher fidelity, via a more accurate representation of
particle shape in the numerical models, including concave particles. An open-source
implementation of the latter has been recently developed in YADE (Duriez and
Galusinski, 2021), where the computational cost of the method has been quantified
(Duriez and Bonelli, 2021).
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7.3.5 Incorporating roundness and angularity

This thesis focused on the influence of particle form on the shear strength of gran-
ular materials with irregular grains. Incorporating roundness and angularity into a
future investigation can provide insights on its contribution to critical state shear
strength, as it is expected to play a role in the interlocking among particles. Harkness
and Zervos (2019) demonstrated preliminary data of the effect of angularity on the
shear strength at critical state. Implementing a characterisation and classification
of angularity can also inform the methodology for the generation of Representative
Element Volumes that take into account particle shape parameters.

7.3.6 Modelling Boundary Value Problems

After the mechanical characterisation of the material at the REV level as shown in
Chapter 6, the material parameters are established for the particle size and shape
distribution that was considered. Using the same combination of material parame-
ters, and particle size and shape, larger assemblies of the material of interest can be
generated, which are expected to have similar mechanical performance, due to the
rigorous selection of particles during packing generation. This opens up the possi-
bility to simulate boundary value problems (BVPs), in this case stemming from the
field of railway engineering, like in Xiao et al. (2020).

Figure 7.1 demonstrates two three-dimensional models of railway ballast, for
tracks with lateral confinement and for tracks with a shoulder. These models can
be used to study the load dispersion along the depth of a ballasted track, using a
single or multiple sleepers, while considering irregular particles. Periodic boundary
conditions can be employed to minimise boundary effects in the direction across the
longitudinal axis of the track. Employing periodic boundaries allows for a downsizing
of the model in terms of number of particles, offering a computationally affordable
solution for the study of boundary value problems using three-dimensional models.
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(a)

(b)

Figure 7.1: DEM modelling of ballasted tracks: (a) Track with lateral confinement; (b)
track with shoulder.
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Appendix A

SHAPE: Scripts and core algorithmic
operations

This appendix collects some of the main scripts introducing functions and classes
of the SHape Analyser for Particle Engineering (SHAPE). Additional information
and examples can be found in Angelidakis et al. (2021b) and in the code repository:
www.github.com/vsangelidakis/SHAPE.
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Figure A.1: volume_centroid_inertiaTensor.m
1 function [volume, centroid, current_inertia_tensor, inertia_tensor, principalOrientations] =

volume_centroid_inertiaTensor(nodes, elements, calculateInertia)

2 %% Volume, centroid, current inertia tensor and principal inertia tensor and orientations of 3−D

tetrahedral mesh

3
4 %% INPUT

5 % nodes : (Nv,3) Vertices of tetrahedral mesh, where Nv the number of vertices

6 % elements : (Ne,4) Elements of tetrahedral mesh, where Ne the number of elements

7 % calculateInertia: (bool) Whether to calculate the principal inertia tensor and orientations

8 %% OUTPUT

9 % volume : volume of particle (tetrahedral mesh)

10 % centroid : centroid of particle (tetrahedral mesh)

11 % current_inertia_tensor: inertia tensor of particle for its current orientation

12 % inertia_tensor : principal inertia tensor of particle

13 % principalOrientations: orientation of principal axis system of the particle, relative to the current

coordination system

14
15 %% Calculation of "Centroid" & "Volume"

16 volume=0;

17 vx=0; vy=0; vz=0;

18
19 v=zeros(1,size(elements,1));

20 xcm = zeros(1,size(elements,1));

21 ycm = zeros(1,size(elements,1));

22 zcm = zeros(1,size(elements,1));

23
24 for i=1:size(elements,1)

25 a=nodes(elements(i,1),:)';

26 b=nodes(elements(i,2),:)';

27 c=nodes(elements(i,3),:)';

28 d=nodes(elements(i,4),:)';

29
30 v(i)=abs((1/6)*det([a−d, b−d, c−d]));
31 volume=volume+v(i);

32
33 xcm(i) = mean([a(1),b(1),c(1),d(1)]);

34 ycm(i) = mean([a(2),b(2),c(2),d(2)]);

35 zcm(i) = mean([a(3),b(3),c(3),d(3)]);

36
37 vx=vx+v(i)* xcm(i);

38 vy=vy+v(i)* ycm(i);

39 vz=vz+v(i)* zcm(i);

40 end

41
42 %% Particle centroid=[x,y,z]

43 x=vx/volume;

44 y=vy/volume;

45 z=vz/volume;

46 centroid=[x,y,z];

47
48 if calculateInertia==false

49 inertia_tensor=zeros(3);
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50 principalOrientations=zeros(3);

51 else

52 %% Centering of the particle to its centroid to calculate inertia tensor

53 nodes(:,1)=nodes(:,1)−x;
54 nodes(:,2)=nodes(:,2)−y;
55 nodes(:,3)=nodes(:,3)−z;
56 % P1=nodes;

57
58 %% Calculation of Inertia Tensor to the Centroid of the Particle

59 Ixx = zeros(1,size(elements,1));

60 Iyy = zeros(1,size(elements,1));

61 Izz = zeros(1,size(elements,1));

62 Ixy = zeros(1,size(elements,1));

63 Ixz = zeros(1,size(elements,1));

64 Iyz = zeros(1,size(elements,1));

65
66 for i=1:length(elements)

67 a=nodes(elements(i,1),:)';

68 b=nodes(elements(i,2),:)';

69 c=nodes(elements(i,3),:)';

70 d=nodes(elements(i,4),:)';

71
72 x1=a(1); y1=a(2); z1=a(3);

73 x2=b(1); y2=b(2); z2=b(3);

74 x3=c(1); y3=c(2); z3=c(3);

75 x4=d(1); y4=d(2); z4=d(3);

76
77 % Inertia tensor of each tetrahedron to the centroid of the particle (Tonon, 2005)

78 % a

79 Ixx(i)=6*v(i)*( y1^2 + y1*y2 + y2^2 + y1*y3 + y2*y3 +...

80 + y3^2 + y1*y4 + y2*y4 + y3*y4 + y4^2 + z1^2 + z1*z2+...

81 + z2^2 + z1*z3 + z2*z3 + z3^2 + z1*z4 + z2*z4 + z3*z4 + z4^2)/60;

82 % b

83 Iyy(i)=6*v(i)*( x1^2 + x1*x2 + x2^2 + x1*x3 + x2*x3 +...

84 + x3^2 + x1*x4 + x2*x4 + x3*x4 + x4^2 + z1^2 + z1*z2+...

85 + z2^2 + z1*z3 + z2*z3 + z3^2 + z1*z4 + z2*z4 + z3*z4 + z4^2)/60;

86 % c

87 Izz(i)=6*v(i)*( x1^2 + x1*x2 + x2^2 + x1*x3 + x2*x3 +...

88 + x3^2 + x1*x4 + x2*x4 + x3*x4 + x4^2 + y1^2 + y1*y2 +...

89 + y2^2 + y1*y3 + y2*y3 + y3^2 + y1*y4 + y2*y4 + y3*y4 + y4^2)/60;

90 % a'

91 Iyz(i)=6*v(i)*( 2*y1*z1 + y2*z1 + y3*z1 + y4*z1 + y1*z2 +...

92 + 2*y2*z2 + y3*z2 + y4*z2 + y1*z3 + y2*z3 + 2*y3*z3+...

93 + y4*z3 + y1*z4 + y2*z4 + y3*z4 + 2*y4*z4)/120;

94 % c'

95 Ixy(i)=6*v(i)*( 2*x1*y1 + x2*y1 + x3*y1 + x4*y1 + x1*y2 +...

96 + 2*x2*y2 + x3*y2 + x4*y2 + x1*y3 + x2*y3 + 2*x3*y3+...

97 + x4*y3 + x1*y4 + x2*y4 + x3*y4 + 2*x4*y4)/120;

98 % b'

99 Ixz(i)=6*v(i)*( 2*x1*z1 + x2*z1 + x3*z1 + x4*z1 + x1*z2 +...

100 + 2*x2*z2 + x3*z2 + x4*z2 + x1*z3 + x2*z3 + 2*x3*z3+...

101 + x4*z3 + x1*z4 + x2*z4 + x3*z4 + 2*x4*z4)/120;

102 % clear a b c d
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103 end

104
105 %Inertia tensor of the particle superposing the inertia tensors of each tetrahedron

106 Ixx_final=0; for i=1:length(elements), Ixx_final=Ixx_final+Ixx(i); end

107 Iyy_final=0; for i=1:length(elements), Iyy_final=Iyy_final+Iyy(i); end

108 Izz_final=0; for i=1:length(elements), Izz_final=Izz_final+Izz(i); end

109
110 Iyz_final=0; for i=1:length(elements), Iyz_final=Iyz_final+Iyz(i); end

111 Ixy_final=0; for i=1:length(elements), Ixy_final=Ixy_final+Ixy(i); end

112 Ixz_final=0; for i=1:length(elements), Ixz_final=Ixz_final+Ixz(i); end

113
114 current_inertia_tensor=[ Ixx_final −Ixy_final −Ixz_final
115 −Ixy_final Iyy_final −Iyz_final
116 −Ixz_final −Iyz_final Izz_final];

117
118 %% Principal Inertia Tensor & New axis system

119 % when the principal inertia tensor has been already calculated.

120 [principalOrientations,inertia_tensor]=eig(current_inertia_tensor); % Principal Moments of Inertia:

Eigenvalues

121 % P1=P1*DirP; % Rotation of the vertices to the principal orientations: Eigenvectors.

122
123 end

Figure A.2: surface_area.m
1 function [surfaceArea] = surface_area(nodes, faces)

2 %% INPUT

3 % nodes : Nodes of surface mesh (Np,3), Np the number of nodes

4 % faces : Faces of surface mesh (Nf,3), Nf the number of faces

5 %% OUTPUT

6 % surfaceArea : Surface area of 3−D triangular (surface) mesh

7
8 surfaceArea=0;

9 for i=1:size(faces,1)

10
11 a=nodes(faces(i,1),:)';

12 b=nodes(faces(i,2),:)';

13 c=nodes(faces(i,3),:)';

14
15 n1=b−a; n2=c−a;
16
17 areaTr=0.5*norm(cross(n1',n2'));

18 surfaceArea=surfaceArea+areaTr;

19 end

20 end

Figure A.3: Sphericity_Wadell.m
1 function [sphericity] = Sphericity_Wadell(Volume, Surface_area)

2 %% Degree of true sphericity proposed by Wadell (1932)

3 % Volume: Volume of tetrahedral mesh

4 % Surface_area: Surface (outer) area of tetrahedral mesh

5 sphericity = 6*Volume/((6*Volume/pi)^(1/3)*Surface_area);
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6 end

Figure A.4: Sphericity_Krumbein.m
1 function [sphericity] = Sphericity_Krumbein(c,b,a)

2 %% Intercept sphericity proposed by Krumbein (1941)

3 % c,b,a: Short, Intermediate and Long dimension of a particle (aka S,I,L)

4 sphericity = (b*c/a^2)^(1/3);

5 end

Figure A.5: Convexity.m
1 function [convexity] = Convexity(Volume, Volume_CH)

2 % Function to calculate the Convexity index

3 %% INPUT

4 % Volume : Volume of the particle

5 % Volume_CH : Volume of convex hull of the particle

6 %% OUTPUT

7 % convexity: Convexity index (0,1]

8 convexity=Volume/Volume_CH;

9 end

Figure A.6: Form_parameters.m
1 function [c_over_b, b_over_a] = Form_parameters_Zingg(c,b,a)

2 %% Form parameters proposed by Zingg (1935)

3 % c,b,a: Short, Intermediate and Long dimension of a particle (aka S,I,L)

4 c_over_b=c/b;

5 b_over_a=b/a;

6 end

7
8
9 function [flatness, elongation] = Form_parameters_Kong_and_Fonseca(c,b,a)

10 %% Form parameters proposed by Kong and Fonseca (2018)

11 % c,b,a: Short, Intermediate and Long dimension of a particle (aka S,I,L)

12 flatness = (b−c)/b;
13 elongation = (a−b)/a;
14 end

15
16
17 function [flatness, elongation] = Form_parameters_Potticary_et_al(c,b,a)

18 %% Form parameters proposed by Potticary et al (2015)

19 % c,b,a: Short, Intermediate and Long dimension of a particle (aka S,I,L)

20 flatness = 2*(b−c)/(a+b+c);
21 elongation = (a−b)/(a+b+c);
22 end

Figure A.7: SurfaceOrientationTensor.m
1 function [C, F, R, eigenValues, eigenVectors] = SurfaceOrientationTensor(nodes, faces)

2 % Surface orientation tensor as introduced by Bagi & Orosz (2020)

3 %% INPUT
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4 % nodes: Nodes of surface mesh (Np,3), Np the number of nodes

5 % faces: Faces of surface mesh (Nf,3), Nf the number of faces

6
7 %% OUTPUT

8 % C: Compactness (or equancy)

9 % F: Flakiness (or flatness or platyness)

10 % R: Rodness (or elongation)

11
12 facesNo=size(faces,1); % Number of faces

13
14 n=zeros(facesNo,3);

15 Area=zeros(facesNo,1);

16 for i=1:size(faces,1)

17 A=nodes(faces(i,1),:);

18 B=nodes(faces(i,2),:);

19 C=nodes(faces(i,3),:);

20
21 e_AB=B−A;
22 e_BC=C−B;
23
24 v=cross(e_AB,e_BC); % normal vector of triangle i

25 Area(i)=0.5*norm(v); % surface area of triangle i

26 n(i,1:3)=v/norm(v); % normal vector of triangle i (normalised)

27 end

28
29 %% Surface orientation tensor

30 f=zeros(3);

31 for k=1:facesNo

32 f = f + Area(k)*(n(k,:)'*n(k,:)); % Outer product

33 end

34 f=f/sum(Area); % Normalise to the total surface area

35
36 %% Eigenvalues & Shape indices

37 [vectors,eigen]=eig(f,'vector');

38 [eigenValues,index]=sort(eigen,'descend'); % Sort eigenvalues in descending order

39
40 f1=eigenValues(1); % Largest eigenvalue

41 f2=eigenValues(2); % Intermediate eigenvalue

42 f3=eigenValues(3); % Smallest eigenvalue

43
44 eigenVectors=[vectors(:,index(1)),vectors(:,index(2)),vectors(:,index(3))]; % Sort eigenVectors

45
46 %% Compactness − Flakiness − Rodness

47 C = f3/f1; % Compactness

48 F = (f1−f2)/f1; % Flakiness

49 R = (f2−f3)/f1; % Rodness

50 end

Figure A.8: Roughness_parameters.m
1 function [Sa] = Sa(Z)

2 %% INPUT

3 % Z : (MxN) Elevation of rough surface points given on an M x N grid
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4 %% OUTPUT

5 % Sa : Arithmetical mean height of rough surface

6 [i,j]=size(Z);

7 Zm=1./(i*j)*sum(Z(:));

8 Sa=1./(i*j)*sum(sum(abs(Z−Zm)));
9 end

10
11 function [Sq] = Sq(Z)

12 %% INPUT

13 % Z : (MxN) − Elevation of rough surface points given on an M x N grid

14 %% OUTPUT

15 % Sq : Root mean square of rough surface height

16 [i,j]=size(Z);

17 Zm=1./(i*j)*sum(Z(:));

18 Sq=(1./(i*j)*sum(sum((Z−Zm).^2)))^0.5;
19 end

20
21 function [St,Sp,Sv] = St(Z)

22 %% INPUT

23 % Z : (MxN) Elevation of rough surface points given on an M x N grid

24 %% OUTPUT

25 % St : Total height of rough surface

26 % Sp : Maximum peak height of rough surface

27 % Sv : Maximum pit height of rough surface

28 Sp=max(Z(:));

29 Sv=min(Z(:));

30 St=Sp−Sv;
31 end

32
33 function [Sdq] = Sdq(Z,dx,dy)

34 %% INPUT

35 % Z : (MxN) Elevation of rough surface points given on an M x N grid

36 % dx : (scalar): Step size of grid along X axis (in length units)

37 % dy : (scalar): Step size of grid along Y axis (in length units)

38 %% OUTPUT

39 % Sdq : Root mean square gradient of rough surface

40 [i,j]=size(Z);

41 Sdq=(1./((i−1)*(j−1))*(sum(sum((diff(Z,1,2)/dx).^2))+sum(sum(diff(Z,1,1)/dy)).^2))^0.5;

42 end

43
44 function [Ssk] = Ssk(Z,Sq)

45 %% INPUT

46 % Z : (MxN) − Elevation of rough surface points given on an M x N grid

47 % Sq : (scalar) Root mean square of rough surface height

48 %% OUTPUT

49 % Ssk : Skewness of rough surface

50 [i,j]=size(Z);

51 Zm=1./(i*j)*sum(Z(:));

52 Ssk=1/(Sq^3)/(i*j)*sum(sum((Z−Zm).^3));
53 end

54
55 function [Sku] = Sku(Z,Sq)

56 %% INPUT
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57 % Z : (MxN) Elevation of rough surface points given on an M x N grid

58 % Sq : (scalar) Root mean square of rough surface height

59 %% OUTPUT

60 % Sku : Kurtosis of rough surface

61 [i,j]=size(Z);

62 Zm=1./(i*j)*sum(Z(:));

63 Sku=1/(Sq^4)/(i*j)*sum(sum((Z−Zm).^4));
64 end

65
66 function [Ssc,Rs] = Ssc(Z,dx,dy)

67 %% INPUT

68 % Z : (MxN) Elevation of rough surface points given on an M x N grid

69 % dx : (scalar): Step size of grid along X axis (in length units)

70 % dy : (scalar): Step size of grid along Y axis (in length units)

71 %% OUTPUT

72 % Ssc: Mean curvature of summits

73 [i,j]=size(Z);

74 Ssc=−0.5*(1./((i−2)*(j−2))*(sum(sum(diff(Z,2,2)/dx^2))+sum(sum(diff(Z,2,1)/dy^2))));

75 Rs=1/Ssc;

76 end

Figure A.9: OrientedBoundingBox_PCA_SVD.m
1 function [cornerpoints,rotmat,volume,surface,center,dimensions]=OBB_PCA_SVD(X)

2 %% Function to calculate OBB using SVD/PCA, based on: https://www.mathworks.com/matlabcentral/answers

/405327−reparameterize−3d−points−with−respect−to−pca−vector#answer_324419?s_tid=prof_contriblnk
3 %% INPUT

4 % X: Vertices

5
6 %% OUTPUT

7 % cornerpoints − (8x3) the cornerpoints of the bounding box.

8 %

9 % rotmat − (3x3) rotation matrix for mapping of the pointcloud into a box which is axis−parallel (use

inv(rotmat) for inverse mapping).

10 %

11 % volume − (scalar) volume of the minimal box itself.

12 %

13 % surface − (scalar) surface of the minimal box as found.

14 %

15 % center − (1x3) centroid of bounding box

16 %

17 % dimensions − (1x3) dimensions of the bounding box

18
19 % Perform PCA on X

20 X_ave=mean(X,1); % centroid

21 dX=bsxfun(@minus,X,X_ave); % center the vertices

22 C=dX'*dX; % covariance matrix

23 [U,~]=svd(C);

24
25 U(:,3)=cross(U(:,1),U(:,2)); % make sure there is no reflection

26
27 % Transformation that aligns centroid of X with the origin and its

28 % principal axes with Cartesian basis vectors
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29 T1=eye(4); T1(1:3,4)=−X_ave(:);

30 T2=eye(4); T2(1:3,1:3)=U';

31 T=T2*T1;

32
33 % Apply T to X to get Y

34 Y=X;

35 Y(:,4)=1;

36 Y=(T*Y')';

37 Y(:,4)=[];

38
39 % PCA−based bounding box (for better visualization)

40 BBo=unit_cube;

41 L=max(Y)−min(Y);
42
43 V=bsxfun(@times,L,BBo.vertices);

44 V=bsxfun(@plus,V,min(Y));

45 BBo.vertices=V; % BB around Y

46
47 V(:,4)=1;

48 V=(T\V')';

49 V(:,4)=[];

50 BB=BBo;

51 BB.vertices=V; % BB around X; same as BBo but rotated and translated

52
53 v1=V(1,:); v2=V(2,:); v4=V(4,:); v5=V(5,:); % Isolate vertices used to calculate dimensions of OBB

54 edgeX=v2−v1; edgeY=v4−v1; edgeZ=v5−v1;
55 R=[edgeX'/norm(edgeX), edgeY'/norm(edgeY), edgeZ'/norm(edgeZ)]; % Each column represents a unit vector

of the box

56 D=[norm(edgeX),norm(edgeY),norm(edgeZ)];

57
58 [S_obb, ind_S] = min(D); D(ind_S)=−1;

59 [L_obb, ind_L] = max(D);

60 ind_I=6 − ind_S − ind_L;

61 I_obb = D(ind_I);

62
63 cornerpoints=V;

64 rotmat=[R(:,ind_S), R(:,ind_I), R(:,ind_L)]; % Sorted unit vectors, following the order of S,I,L axes

65 volume=prod([S_obb, I_obb, L_obb]);

66 surface=2*(S_obb*I_obb+S_obb*L_obb+I_obb*L_obb);

67 center=mean(cornerpoints);

68 dimensions=[S_obb, I_obb, L_obb];

69 end

70
71 function fv=unit_cube

72 % Create axis−aligned unit cube

73 fv.vertices=[ 0 0 0; 1 0 0; 1 1 0; 0 1 0;

74 0 0 1; 1 0 1; 1 1 1; 0 1 1 ];

75
76 fv.faces=[ 1 4 3 2; 5 6 7 8; 2 3 7 6;

77 3 4 8 7; 1 5 8 4; 1 2 6 5 ];

78 end
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Figure A.10: Particle.m
1 classdef Particle < dynamicprops

2 % PARTICLE: Class containing all the information of a particle

3 properties

4 Original

5 end

6
7 methods

8 function obj = Particle(Vertices,Faces,Voxelated_image,Texture,options)

9 % Whether to display warnings

10 if strcmp(options.warning,'on')

11 warning on

12 elseif strcmp(options.warning,'off')

13 warning off

14 else

15 warning on

16 warning('warning must be "on" or "off"')

17 end

18
19 %% Workflow for different inputs: meshes and point clouds vs voxelated images

20 if isempty(Vertices)==false % Vertices are given as input

21 shp=alphaShape(Vertices,inf); % Create convex hull as an alpha−shape with radius=inf

22 Volume_CH=volume(shp); % Volume_of_convex_hull

23 obj.Original=Particle_type(Vertices,Faces,[],Texture,options,Volume_CH);

24
25 if options.useConvexHull

26 obj.addprop('Convex_hull');

27 [F, V] = boundaryFacets(shp);

28 obj.Convex_hull=Particle_type(V,F,[],[],options); % []: Voxelated_image

29 end

30
31 else % Voxelated_image is given as input

32 if ~isa(Voxelated_image.img,'uint8')

33 Voxelated_image.img=uint8(Voxelated_image.img); % Transform voxelated image to uint8

array

34 end

35 obj.Original=Particle_type([],[],Voxelated_image,Texture,options,0);

36
37 if options.useConvexHull

38 obj.addprop('Convex_hull');

39 shp=alphaShape(obj.Original.Mesh.Surface_mesh.Vertices,inf);

40 [F, V] = boundaryFacets(shp);

41 obj.Convex_hull=Particle_type(V,F,[],[],options); % []: Voxelated_image

42 end

43 end

44 end

45
46 %% Method to simplify particle geometry

47 function Simplify(obj,options) %Simplify(obj,options)

48 % % obj=Particle;

49 if ~options.useConvexHull

50 Pm_ini=obj.Original.Mesh.Surface_mesh.Vertices;

51 Fm_ini=obj.Original.Mesh.Surface_mesh.Faces;
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52 else

53 Pm_ini=obj.Convex_hull.Mesh.Surface_mesh.Vertices;

54 Fm_ini=obj.Convex_hull.Mesh.Surface_mesh.Faces;

55 end

56
57 for numFaces=options.Simplify.numFaces

58 % Add dynamic property in the Particle class

59 pSimplified=obj.addprop(['Faces_No_',num2str(numFaces)]);

60
61 % CGAL − resample

62 keepratio=numFaces/length(Fm_ini);

63 [P_simplified,F_simplified]=meshresample(Pm_ini,Fm_ini,keepratio); %[node,elem]

64
65 % Generate convex simplified particle

66 shp=alphaShape(P_simplified,inf); % Convex hull;

67
68 if options.useConvexHull

69 [F_simplified, P_simplified]=boundaryFacets(shp); % Boundary faces of convex hull

70 end

71
72 obj.(pSimplified.Name)=Particle_type(P_simplified,F_simplified,[],[],options,volume(shp)

);

73 end

74 end

75 end

76 end

Figure A.11: Auxiliary_geometries.m
1 classdef Auxiliary_geometries

2 %AUXILIARY_GEOMETRIES: Used for shape characterisation:

3 % AABB (Axis−aligned bounding box for the current orientation)

4 % Extrema (Coordinates of two extreme points)

5 % Dimensions (length of edges)

6 % OBB (Oriented bounding box)

7 % Extrema (Coordinates of two extreme points)

8 % Dimensions (length of edges)

9 % Centroid

10 % Volume

11 % Surface_area

12 % Orientation

13 % Fitted_ellipsoid (using least squares)

14 % Extrema (Coordinates of two extreme points)

15 % Dimensions (length of axes)

16 % Centroid

17 % Orientation

18 % Minimal_bounding_sphere (using Welzl's or Ritter's algorithm)

19 % Radius

20 % Centre

21 % Maximal_inscribed_sphere (using a Euclidean map)

22 % Radius

23 % Centre

24
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25 properties

26 AABB

27 OBB

28 Fitted_ellipsoid

29 Minimal_bounding_sphere

30 Maximal_inscribed_sphere

31 end

32
33 methods

34 function obj = Auxiliary_geometries(ms,options) %ms,geom,options

35 %AUXILIARY_GEOMETRIES Constructor to calculate characteristics of bounding volumes and

fitted ellipsoid

36 ver_surf=ms.Surface_mesh.Vertices;

37
38 img=ms.Voxelated_image.img;

39
40 %% AABB

41 obj.AABB.Extrema=[min(ver_surf); max(ver_surf)];

42 obj.AABB.Centroid=mean(obj.AABB.Extrema);

43
44 %% OBB

45 minimalOBB={'minVolume','minSurfaceArea','minSumEdges'};

46 [LIA, LOC] = ismember(options.Auxiliary_Geometries.OBB.method, minimalOBB);

47 if LIA

48 %% Minimal OBB (minimal volume or surface area or sum of edges)

49 metric={'v','s','e'}; % Cell serving as dictionary to minimalOBB variable

50 [R,cornerpoints,volume,surface,~] = minboundbox(ver_surf(:,1),ver_surf(:,2),ver_surf

(:,3),metric{LOC},3);

51 E1=cornerpoints(1,:); E2=cornerpoints(2,:); E4=cornerpoints(4,:); E5=cornerpoints(5,:);

52 D(1)=norm(E1−E2); D(2)=norm(E1−E4); D(3)=norm(E1−E5);
53
54 [S_obb, ind_S] = min(D); D(ind_S)=−1;

55 [L_obb, ind_L] = max(D);

56 ind_I=6 − ind_S − ind_L;

57 I_obb = D(ind_I);

58
59 obj.OBB.cornerpoints=cornerpoints;

60 obj.OBB.rotmat=[R(:,ind_S), R(:,ind_I), R(:,ind_L)]; % Sorted unit vectors, following

the order of S, I, L axes

61 obj.OBB.volume=volume;

62 obj.OBB.surface=surface;

63 obj.OBB.center=mean(cornerpoints);

64 obj.OBB.dimensions=[S_obb, I_obb, L_obb];

65 clear ind_S ind_L

66
67 elseif strcmp(options.Auxiliary_Geometries.OBB.method,'PCA_points')

68 switch options.Auxiliary_Geometries.OBB.points

69 case 'Surface_points'

70 ver=ver_surf;

71 case 'Tetrahedra_points'

72 ver=ms.Tetrahedral_mesh.Vertices;

73 case 'Voxel_points'

74
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75 % Here I center the voxel coordinates to the centroid of the voxelated image

76 voxelData=ms.Voxelated_image.img;

77 [data(:,1),data(:,2),data(:,3)] = ind2sub(size(voxelData),find(voxelData>0));

78 tempData=data*ms.Voxelated_image.voxel_size(1);

79 ver=tempData − mean(tempData);% + geom.Centroid;

80 otherwise

81 error('options.Auxiliary_Geometries.OBB.points must be either: "Surface_points",

"Tetrahedra_points" or "Voxel_points".')

82 end

83 [obj.OBB.cornerpoints,obj.OBB.rotmat,obj.OBB.volume,obj.OBB.surface,obj.OBB.center,obj.

OBB.dimensions]=OBB_PCA_SVD(ver);

84 else

85 error('options.Auxiliary_Geometries.OBB.method must be either "PCA_points", "minVolume",

"minSurfaceArea" or "minSumEdges"')

86 end

87
88 %% Fitted ellipsoid

89 [center, radii, evecs, v, chi] = ellipsoid_fit(ver_surf,'');

90
91 [S_eli, ind_S] = min(radii); radii(ind_S)=−1;

92 [L_eli, ind_L] = max(radii);

93 ind_I=6 − ind_S − ind_L;

94 I_eli = radii(ind_I);

95
96 % Multiply the radii with 2 to get the length of the axes of the ellipsoid (double the radii

).

97 S_eli = S_eli * 2;

98 I_eli = I_eli * 2;

99 L_eli = L_eli * 2;

100
101 rotmat=[evecs(:,ind_S), evecs(:,ind_I), evecs(:,ind_L)];

102
103 obj.Fitted_ellipsoid.center=center';

104 obj.Fitted_ellipsoid.rotmat=rotmat;

105 obj.Fitted_ellipsoid.dimensions=[S_eli, I_eli, L_eli];

106 obj.Fitted_ellipsoid.v=v;

107 obj.Fitted_ellipsoid.chi=chi;

108
109 %% Minimal bounding sphere

110 try

111 % Calculate the exact bounding sphere, using Welzl's algorithm

112 [R,C,Xb]=ExactMinBoundSphere3D(ver_surf);

113 obj.Minimal_bounding_sphere.Xb=Xb; % Points used to calculate the sphere

114 catch

115 % Calculate an approximate bounding sphere, using Ritter's algorithm

116 [R,C]=ApproxMinBoundSphereND(ver_surf);

117 end

118 obj.Minimal_bounding_sphere.radius=R; % Circumradius

119 obj.Minimal_bounding_sphere.center=C; % Center

120
121 %% Maximal inscribed sphere

122 edtImage = bwdist(~img); % Euclidean map (Euclidean distance transformation)

123 radius = max(edtImage(:)); %−1 % Inradius in voxel units
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124 [xCenter, yCenter, zCenter]= ind2sub(size(img),find(edtImage == radius)); % Center in voxel

units

125
126 % TODO: If the particle is convex, use linear programming, to specify the inradius using the

Chebychev center.

127
128 %% Instead of using the first element, find the element closest to the centroid!

129 xCenter=xCenter(1);

130 yCenter=yCenter(1);

131 zCenter=zCenter(1);

132
133 dx=ms.Voxelated_image.voxel_size;

134
135 xC=obj.AABB.Extrema(1,1)−dx(1)+xCenter*dx(1); % Remap voxels of centroid to Cartesian space

136 yC=obj.AABB.Extrema(1,2)−dx(2)+yCenter*dx(2);
137 zC=obj.AABB.Extrema(1,3)−dx(3)+zCenter*dx(3);
138
139 obj.Maximal_inscribed_sphere.radius=radius*mean(dx); % Transform radius to Cartesian space

140 obj.Maximal_inscribed_sphere.center=[xC, yC, zC];

141 end

142 end

143 end

Figure A.12: Mesh.m
1 % I can put the classes in a separate file

2 classdef Mesh

3 % MESH: Discretised geometric representations of the particle:

4 % Surface_Mesh

5 % Tetrahedral_Mesh

6 % Voxelated_image

7 % Surface_texture

8
9 properties

10 Surface_mesh

11 Tetrahedral_mesh

12 Voxelated_image

13 Surface_texture

14 end

15
16 methods

17 function obj = Mesh(Vertices,Faces,Voxelated_image,Texture,options)

18 % MESH Constructor from point cloud, mesh (surface or tetrahedral) or voxelated image

19
20 %% Safeguard input

21 if (isempty(Vertices)==false || isempty(Faces)==false) && isempty(Voxelated_image)==false %

Check input variables: Do not allow simultaneous definition of Vertices−Faces and

Voxelated_image

22 error('Too many input arguments. Define either: "Vertices" or "Vertices" and Faces or "

Voxelated_image"')

23 end

24
25 if isempty(Vertices) && isempty(Faces)==false % Check input variables: Do not allow
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definition of Faces without defining Vertices (the inverse is allowed)

26 error('If Faces are defined, Vertices must be defined as well.')

27 end

28
29 %% If the user provides vertices (i.e. the input is either a point cloud, a surface or a

tetrahedral mesh)

30 if isempty(Vertices)==false

31 if nargin==1 || isempty(Faces) % Point cloud, no faces are given

32 if strcmp(options.Mesh.reconstructPointCloudMethod,'Crust') % Use Crust method to

reconstruct the particle surface

33 [Faces,~]=MyRobustCrust(Vertices);

34 elseif strcmp(options.Mesh.reconstructPointCloudMethod,'Delaunay') % Use Delaunay

triangulation to reconstruct the particle surface

35 TR = delaunayTriangulation(Vertices);

36 [Faces,Vertices] = freeBoundary(TR);

37 else

38 error('options.Mesh.reconstructPointCloudMethod must be either "Crust" or "

Delaunay"'); % or "alphaShape"

39 end

40 end

41
42 if size(Faces,2)==3

43 %% Surface mesh, vertices and faces are given

44 assignin('base','ISO2MESH_TETGENOPT',[' −A −Q −q1.414a' num2str(options.Mesh.

surf2mesh.maxvol)]) % tetgen settings

45
46 if options.meshcheckrepair % Repair mesh

47 [Vertices,Faces]=stlSlimVerts(Vertices,Faces); % stlTools: Remove

duplicate vertices

48 [Vertices,Faces]=meshcheckrepair(Vertices,Faces,'meshfix'); % iso2mesh: repair a

closed surface using the meshfix utility. It can remove self−intersecting
elements and fill holes

49 end

50
51 [Pm,Fmtetra,~]=s2m(Vertices,Faces,1.0,options.Mesh.surf2mesh.maxvol,'tetgen',[],[]);

% Transform surface mesh to tetrahedral mesh

52
53 obj.Surface_mesh.Vertices=Vertices;

54 obj.Surface_mesh.Faces=Faces;

55
56 obj.Tetrahedral_mesh.Vertices=Pm;

57 obj.Tetrahedral_mesh.Faces=Fmtetra(:,1:4);

58
59 elseif size(Faces,2)==4

60 %% Tetrahedral mesh, vertices and elements are given

61 tri=triangulation(Faces,Vertices);

62 [F,P] = freeBoundary(tri);

63
64 if options.meshcheckrepair % Repair mesh

65 [P,F]=stlSlimVerts(P,F); % stlTools: Remove duplicate vertices

66 [P,F]=meshcheckrepair(P,F,'meshfix'); % iso2mesh: repair a closed surface

using the meshfix utility. It can remove self−intersecting elements and

fill holes
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67 end

68
69 obj.Surface_mesh.Vertices=P;

70 obj.Surface_mesh.Faces=F;

71 obj.Tetrahedral_mesh.Vertices=tri.Points;

72 obj.Tetrahedral_mesh.Faces=tri.ConnectivityList;

73 end

74
75 %% Transform surface mesh to voxelated image (of a single particle)

76 [imgTemp, map]=s2v(obj.Surface_mesh.Vertices,obj.Surface_mesh.Faces,options.Mesh.

Voxelated_Image.div);

77 imgTemp2=imfill(imgTemp); % Fill the interior of the particle

78 img=zeros(size(imgTemp2)+2); % Enlarge the image by 2 voxels per direction, to ensure

that outer voxels are empty (zero)

79 img(2:end−1,2:end−1,2:end−1)=imgTemp2;

80 clear imgTemp imgTemp2

81
82 obj.Voxelated_image.img=img; clear img;

83 obj.Voxelated_image.map=map;

84 obj.Voxelated_image.voxel_size=[map(1,1) map(2,2) map(3,3)];

85
86 elseif isempty(Vertices) && isempty(Faces) && isempty(Voxelated_image)==false % Voxelated

image is given

87 opt=2; %see vol2mesh function in iso2mesh

88 method='cgalmesh';

89 isovalues=[]; %see vol2mesh function in iso2mesh

90 assignin('base','ISO2MESH_TETGENOPT',[' −A −Q −q1.414a' num2str(options.Mesh.surf2mesh.

maxvol)])

91 [node,elem,face]=v2m(Voxelated_image.img,isovalues,opt,options.Mesh.surf2mesh.maxvol,

method);

92
93 node=node*Voxelated_image.voxel_size(1); % Transform from voxel space to Cartesian space

94
95 obj.Surface_mesh.Vertices=node(:,1:3);

96 obj.Surface_mesh.Faces=face(:,1:3);

97
98 obj.Tetrahedral_mesh.Vertices=node(:,1:3);

99 obj.Tetrahedral_mesh.Faces=elem(:,1:4);

100
101 obj.Voxelated_image.img=Voxelated_image.img;

102 obj.Voxelated_image.voxel_size=Voxelated_image.voxel_size;

103 end

104
105 if isempty(Texture)==false

106 obj.Surface_texture=Texture;

107 end

108 end

109 end

110 end
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CLUMP: Function scripts

This appendix collects the main functions of the Code Library to generate Multi-
sphere Particles (CLUMP). Additional information and examples can be found in
Angelidakis et al. (2021a) and in the code repository: www.github.com/vsangelidakis/
CLUMP.
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Figure B.1: GenerateClump_Favier.m
1 function [mesh, clump]=GenerateClump_Favier( inputGeom, N, varargin )

2 %% Implementation of the clump−generation concept proposed by Favier et al. (1999) [1]

3 % 2021 \copyright V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili.

4 % [1] Favier, J.F., Fard, M.H., Kremmer, M. and Raji, A.O., 1999. Engineering Computations: Int J for

Computer−Aided Engineering, 16(4), pp.467−480.

5
6 %% The main concept of this methodology:

7 % 1. We import the geometry of a particle either as a surface mesh or a

8 % voxelated 3D image.

9 % 2. If a voxelated image is given, we transform it into a surface mesh,

10 % providing its vertices and faces (vertex connectivity).

11 % 3. We calculate the inertial characteristics of the particle and center

12 % it to its centroid and align it to its principal axes.

13 % 4. We create a number of N points along the longest particle axis and

14 % identify the particle vertices belonging to each of the newly formed

15 % (N+1) spans.

16 % 5. We generate a sphere centered to each of the N points. The radius of

17 % each sphere is calculated based on the distances of the vertices

18 % within the span of interest. The default behaviour considers the

19 % minimum distance, although an optional parameter (varargin) exists

20 % that takes the values 'min' (default), 'avg' and 'max'.

21
22 %% INPUT:

23 % −inputGeom: Input geometry, given in one of the formats below:

24 % 1. Directory of .stl file (for surface meshes)

25 % 2. Directory of .mat file (for binary voxelated images)

26 % 3. Struct with fields {vertices,faces} (for surface meshes)

27 % 4. Struct with fields {img,voxel_size} (for binary voxelated images)

28 % where

29 % − img: [Nx x Ny x Nz] voxelated image

30 % − voxel_size: [1x3] voxel size in Cartesian space

31 %

32 % − N: Number of spheres to be generated.

33 %

34 % − chooseDistance: Preferred method to specify the radii of the

35 % spheres, which can be either the minimum ('min'), the

36 % average ('avg') or the maximum ('max') distance of

37 % the vertices within the span of interest.

38 %

39 % − output: File name for output of the clump in .txt form (optional)*.

40 % If not assigned, a .txt output file is not created.

41 %

42 % −visualise: Whether to plot the clump and mesh (optional)*.

43 %

44 % * varargin can contain the 'chooseDistance', the 'output' and the

45 % 'visualise' variables. They are all optional.

46
47 %% OUTPUT:

48 % − mesh : structure containing all relevant parameters of polyhedron

49 % mesh.vertices

50 % mesh.faces

51 % mesh.centroid
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52 % mesh.volume

53 % mesh.inertia

54 % mesh.inertiaPrincipal

55 % mesh.orientationsPrincipal

56 %

57 % − clump : structure containing all relevant clump parameters

58 % clump.positions : M−by−3 matrix containing the

59 % position of each generated sphere.

60 % clump.radii : M−by−1 vector containing the radius

61 % of each generated sphere

62 % clump.minRadius : Minimum generated sphere (might

63 % differ from rmin)

64 % clump.maxRadius : Maximum generated sphere

65 %

66 % clump.numSpheres : Total number of spheres

67 %

68 % − output : txt file with centroids and radii, with format: [x,y,z,r]

69
70 %% EXAMPLE

71 % inputGeom='ParticleGeometries/Cylinder.stl'; N=20; chooseDistance='min'; output='FA_cylinder.txt';

visualise=true;

72 % [mesh, clump]=GenerateClump_Favier( inputGeom, N, chooseDistance, output, visualise );

73
74 %% Define variables based on the type of the optional parameters (varargin)

75 chooseDistance='min'; % Default method to choose radius.

76 for i=1:length(varargin)

77 switch class(varargin{i})

78 % case 'double'

79 % seed=varargin{i}; rng(seed); % Fixed seed to achieve reproducible (random)

results

80 case 'char'

81 if strcmp(varargin{i},'min') || strcmp(varargin{i},'avg') || strcmp(varargin{i},'max')

82 chooseDistance=varargin{i};

83 else

84 output=varargin{i};

85 end

86 case 'logical'

87 visualise=varargin{i};

88 otherwise

89 error('Wrong optional parameter type.')

90 end

91 end

92
93 %% Main body of the function

94 %% Import Dependencies

95 addpath(genpath('../lib')) % Add path to dependencies (external codes)

96
97 %% Configure input particle geometry based on the variable type of inputGeom

98 switch class(inputGeom)

99 case 'char'

100 if strcmp(inputGeom(end−3:end),'.stl') % input file is .stl (surface mesh)

101 [P,F,~] = stlRead(inputGeom);

102 elseif strcmp(inputGeom(end−3:end),'.mat') % input file is .mat (voxelated image)
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103 vox=load(inputGeom);

104 temp=fieldnames(vox); temp=temp{1}; vox=vox.(temp); clear temp;

105 voxel_size=vox.voxel_size;

106 % vox

107
108 opt=2; %see vol2mesh function in iso2mesh

109 isovalues=[]; %see vol2mesh function in iso2mesh

110 [P,F]=v2s(vox.img,isovalues,opt,'cgalmesh');

111 P=P*voxel_size(1,1);

112 else

113 error('Not recognised inputGeom format.')

114 end

115 case 'struct'

116 if isfield(inputGeom,'Vertices') || isfield(inputGeom,'vertices') % input file is struct

containing surface mesh

117 try P=inputGeom.Vertices; catch, P=inputGeom.vertices; end

118 try F=inputGeom.Faces; catch, F=inputGeom.faces; end

119 elseif isfield(inputGeom,'img') % input file is struct containing voxelated image

120 voxel_size=inputGeom.voxel_size;

121 opt=2; %see vol2mesh function in iso2mesh

122 isovalues=[]; %see vol2mesh function in iso2mesh

123 [P,F]=v2s(inputGeom.img,isovalues,opt,'cgalmesh');

124 P=P*voxel_size(1,1);

125 else

126 error('Not recognised inputGeom format.')

127 end

128 case 'triangulation'

129 try

130 F=inputGeom.ConnectivityList;

131 P=inputGeom.Points;

132 catch

133 error('Not recognised −triangulation− format.')

134 end

135 otherwise

136 error('Not recognised inputGeom format.')

137 end

138
139 % Ensure all face normals are oriented coherently, pointing outwards

140 TR2=triangulation(F,P);

141 [TR,~]=ConsistentNormalOrientation(TR2); %numInvFaces

142
143 [RBP,~]=RigidBodyParams(TR);

144 % Attention: For cubic particles, with no elongation, the RigidBodyParams

145 % function mis−identifies the principal planes as the ones of the diagonal.

146 % This is the same mistake the PCA typically does for particles with three

147 % equal dimensions. Thankfully, the method of Favier et al (1999) is meant

148 % to be used for elongated and somewhat axi−symmetric particles.

149
150 % % Plot original particle

151 % patch('Faces',F,'Vertices',P,'FaceColor','r') %'r'

152 % axis equal; camlight

153
154 %% Center particle around its centroid and align it along its principal axes.
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155 rot=RBP.PAI;

156
157 % Transform rotation matrix to align longest axis along X direction

158 temp=rot(:,1);

159 rot(:,1)=rot(:,3);

160 rot(:,3)=temp;

161
162 P=P−RBP.centroid;
163 P=P*rot;

164
165 % % Plot particle centered around its centroid and aligned to its principal axes

166 % patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.3) %'r'

167 % axis equal; camlight

168
169 X_extremas=[min(P(:,1)),max(P(:,1))];

170
171 a=X_extremas(1);

172 b=X_extremas(2);

173 nSegments=N;

174 %Example:

175 endPoints = linspace(a,b,nSegments + 1); %4 endpoints for 3 segments

176 start = endPoints(1:end−1); %3 starting points

177 stop = endPoints(2:end); %3 stopping points

178 midPoints = stop − ((stop(1)−start(1))/2); %3 middle points

179
180 % scatter(endPoints,zeros(length(endPoints)),'r','filled') % endPoints

181 % scatter(midPoints,zeros(length(midPoints)),'b','filled') % midPoints

182
183 minDistance=zeros(1,length(midPoints));

184 minDx=zeros(1,length(midPoints));

185 for i=1:length(midPoints) % For each midpoint

186 count=1;

187 % Find vertices within each sector

188 for j=1:size(P,1) % for each point on the particle surface (in principal axes)

189 if P(j,1)>=endPoints(i) && P(j,1)<=endPoints(i+1)

190 p{i}(count,1:3)=P(j,1:3);

191 count=count+1;

192 end

193 end

194 % scatter3(p{1,i}(:,1),p{1,i}(:,2),p{1,i}(:,3),20,i/length(midPoints)*rand(1,3),'filled'); hold on

%20*i

195
196 % Find closest distance of midpoint to any surface vertex

197 xM=midPoints(i); yM=0; zM=0;

198 x1=endPoints(1); %y1=0; z1=0;

199 x2=endPoints(end); %y2=0; z2=0;

200
201 % Closest distance between midpoint and particle surface

202 minDistance(i)=min(sqrt( (P(:,1)−xM).^2 + (P(:,2)−yM).^2 + (P(:,3)−zM).^2 ));

203
204 % Closest distane between midpoint and particle X limits

205 minDx(i)=min( abs(x1−xM) , abs(x2−xM) );

206
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207 % minDx(i)=min(sqrt( (x1−xM).^2 + (y1−yM).^2 + (z1−zM).^2 ),...

208 % sqrt( (x2−xM).^2 + (y2−yM).^2 + (z2−zM).^2 ) );

209 end

210
211 %% Build "clump" structure

212 clump=struct;

213 clump.positions=[];

214 clump.radii=[];

215
216 % radius=zeros(1,midPoints);

217 radius=zeros(1,length(midPoints));

218 for i=1:length(midPoints)

219 if ~isempty(p{1,i})

220 distance=sqrt( (p{1,i}(:,1)−midPoints(i)).^2 + (p{1,i}(:,2)−0).^2 + (p{1,i}(:,3)−0).^2 );

221 switch chooseDistance

222 case 'min'

223 radius(i)=min(distance); % Minimum distance

224 case 'avg'

225 radius(i)=mean(distance); % Average distance

226 case 'max'

227 radius(i)=max(distance); % Maximum distance

228 end

229 % [min(distance),mean(distance),max(distance)]

230 % Limit radius to not exceed the particle length (along X axis)

231 radius(i)=min(radius(i),minDx(i));

232
233 % The code below uses the minimum distance to the particle

234 % surface, not the smallest to the particle X limits

235 % radius(i)=min(radius(i),minDistance(i));

236 % radius(i)=minDistance(i);

237
238 clump.positions(i,:)=[midPoints(i),0,0];

239 clump.radii(i,1)=radius(i);

240 else

241 error('The number of particle vertices is small for the requested number of spheres. Either

remesh the particle surface or choose a smaller number of spheres.')

242 end

243 end

244
245 %% Transform the mesh and the clump coordinates back to the initial (non−principal) system

246 P=P*rot'; % use either the transposed rot' or inverse inv(rot) rotation matrix to return to the initial

coordinate system

247 P=P+RBP.centroid;

248
249 clump.positions=clump.positions*rot';

250 clump.positions=clump.positions+RBP.centroid;

251
252 %% Build "mesh" and finalise "clump" structures

253 mesh=struct;

254 mesh.vertices=P;

255 mesh.faces=F;

256 mesh.centroid=RBP.centroid;

257 mesh.volume=RBP.volume;
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258 mesh.inertia=RBP.inertia_tensor;

259 mesh.inertiaPrincipal=RBP.eigs;

260 mesh.orientationsPrincipal=RBP.PAI;

261
262 [clump.minSphere.centroid, clump.minSphere.radius]=min(clump.radii);

263 [clump.maxSphere.centroid, clump.maxSphere.radius]=max(clump.radii);

264 clump.numSpheres=length(clump.radii);

265
266 %% Plot clump and mesh (optional)

267 if visualise

268 patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.5,'EdgeColor','none');

269 axis equal

270 camlight

271 box on; grid on; hold on

272 alpha 0.4

273
274 %% Plot spheres

275 for j=1:length(clump.radii)

276 [X,Y,Z]=sphere;

277 xSph=X*clump.radii(j);

278 ySph=Y*clump.radii(j);

279 zSph=Z*clump.radii(j);

280
281 color=rand(1,3);

282 xC=clump.positions(j,1);

283 yC=clump.positions(j,2);

284 zC=clump.positions(j,3);

285
286 surf(xSph+xC,ySph+yC,zSph+zC,'EdgeColor','none','FaceAlpha',0.6,'FaceColor',color)

287 end

288 end

289
290 %% Export clump (optional)

291 % Output is offered in the generic format x_y_z_r. For more specialised

292 % formats, try the exportClump module.

293 if isempty(output)==false

294 dlmwrite(output, [clump.positions, clump.radii], 'delimiter', ',', 'precision', '%10f')

295 end

296
297 end
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Figure B.2: GenerateClump_Ferellec_McDowell.m
1 function [mesh, clump]=GenerateClump_Ferellec_McDowell( inputGeom, dmin, rmin, rstep, pmax, varargin )

2 %% Implementation of the clump−generation concept proposed by Ferellec and McDowell (2010) [1]

3 % 2021 \copyright V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili.

4 % [1] Ferellec, J.F. and McDowell, G.R., 2010. Granular Matter, 12(5), pp.459−467. DOI 10.1007/s10035

−010−0205−8

5
6 %% The main concept of this methodology:

7 % 1. We import the geometry of a particle either as a surface mesh or a

8 % voxelated 3D image.

9 % 2. If a voxelated image is given, we transform it into a surface mesh,

10 % providing its vertices and faces (vertex connectivity).

11 % 3. We calculate the normal of each vertex pointing inwards.

12 % 4. For a random vertex on the particle surface, we start creating

13 % tangent spheres with incremental radii along the vertex normal,

14 % starting from 'rmin', with a step of 'rstep', until they meet the

15 % surface of the particle.

16 % 5. We select a new vertex randomly, which has a distance larger

17 % than 'dmin' from the existing spheres and do the same.

18 % 6. When a percentage 'pmax' of all the vertices is used to generate

19 % spheres, the generation procedure stops.

20 % − An optional 'seed' parameter is introduced, to generate reproducible

21 % clumps.

22
23 %% Influence of parameters

24 % rmin: (0,inf) Larger rmin will lead to a smaller number of spheres

25 % dmin: [0,inf) Larger dmin will lead to a smaller number of spheres

26 % pmax: (0,1] Larger pmax will lead to a larger number of spheres

27
28 % Pros: The authors of this methodology claim efficiency and preservation

29 % of flat faces (reduced artificial roughness compared to other techniques).

30 % Cons: The methodology is mesh−dependent, as spheres are generated at the

31 % vertices of the input mesh.

32 % Warning: The authors of this methodology advise that if the initial mesh

33 % is very finely discretised, an adequately large rmin value

34 % should be used, to guard the process against "parasitic

35 % spheres", i.e. very small spheres which might result to

36 % numerical instabilities when using DEM.

37
38 %% INPUT:

39 % −inputGeom: Input geometry, given in one of the formats below:

40 % 1. Directory of .stl file (for surface meshes)

41 % 2. Directory of .mat file (for binary voxelated images)

42 % 3. Struct with fields {vertices,faces} (for surface meshes)

43 % 4. Struct with fields {img,voxel_size} (for binary voxelated images)

44 % where

45 % − img: [Nx x Ny x Nz] voxelated image

46 % − voxel_size: [1x3] voxel size in Cartesian space

47 %

48 % − dmin : Minimum allowed distance between new vertex of the surface

49 % mesh and existing spheres. If left zero, this distance is

50 % not cheched.

51 %
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52 % − rmin : Minimum radius of sphere to be generated. For coarse

53 % meshes, the actual minimum radius might be >rmin.

54 %

55 % − rstep : Step used to increase the radius in each iteration, until

56 % the generated sphere meets another point of the particle.

57 %

58 % − pmax : Percentage of vertices which will be used to generate

59 % spheres. The selection of vertices is random.

60 %

61 % − seed : Seed value, used to achieve reproducible (random) results (optional)*

62 %

63 % − output: File name for output of the clump in .txt form (optional)*.

64 % If not assigned, a .txt output file is not created.

65 %

66 % −visualise: Whether to plot the clump and mesh (optional)*.

67 %

68 % * varargin can contain either of the optimal variables "seed", "output",

69 % visualise" or else: seed=varargin{1}; output=varargin{2}; visualise=varargin{3}.

70
71 %% OUTPUT:

72 % − mesh : structure containing all relevant parameters of polyhedron

73 % mesh.vertices

74 % mesh.faces

75 % mesh.centroid

76 % mesh.volume

77 % mesh.inertia

78 % mesh.inertiaPrincipal

79 % mesh.orientationsPrincipal

80 %

81 % − clump : structure containing all relevant clump parameters

82 % clump.positions : M−by−3 matrix containing the

83 % position of each generated sphere.

84 % clump.radii : M−by−1 vector containing the radius

85 % of each generated sphere

86 % clump.minRadius : Minimum generated sphere (might

87 % differ from rmin)

88 % clump.maxRadius : Maximum generated sphere

89 %

90 % clump.numSpheres : Total number of spheres

91 %

92 % − output : txt file with centroids and radii, with format: [x,y,z,r]

93
94 %% EXAMPLE

95 % inputGeom='Hexahedron_Fine_Mesh.stl'; dmin=0.01; rmin=0.01; rstep=0.001; pmax=1.0; seed=5; output='

hexaFine.txt'; visualise=true;

96 % [mesh, clump]=clumpGenerator_Ferellec_McDowell( inputGeom, dmin, rmin, rstep, pmax, seed, output,

visualise );

97
98 %% Define variables based on the type of the optional parameters (varargin)

99 output=[];

100 visualise=false;

101 for i=1:length(varargin)

102 switch class(varargin{i})
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103 case 'double'

104 seed=varargin{i}; rng(seed); % Fixed seed to achieve reproducible (random) results

105 case 'char'

106 output=varargin{i};

107 case 'logical'

108 visualise=varargin{i};

109 otherwise

110 error('Wrong optional parameter type.')

111 end

112 end

113
114 %% Main body of the function

115 %% Import Dependencies

116 addpath(genpath('../lib')) % Add path to dependencies (external codes)

117
118 %% Configure input particle geometry based on the variable type of inputGeom

119 switch class(inputGeom)

120 case 'char'

121 if strcmp(inputGeom(end−3:end),'.stl') % input file is .stl (surface mesh)

122 [P,F,~] = stlRead(inputGeom);

123 elseif strcmp(inputGeom(end−3:end),'.mat') % input file is .mat (voxelated image)

124 vox=load(inputGeom);

125 temp=fieldnames(vox); temp=temp{1}; vox=vox.(temp); clear temp;

126 voxel_size=vox.voxel_size;

127
128 opt=2; %see vol2mesh function in iso2mesh

129 isovalues=[]; %see vol2mesh function in iso2mesh

130 [P,F]=v2s(vox.img,isovalues,opt,'cgalmesh');

131 P=P*voxel_size(1,1);

132 else

133 error('Not recognised inputGeom format.')

134 end

135 case 'struct'

136 if isfield(inputGeom,'Vertices') || isfield(inputGeom,'vertices') % input file is struct

containing surface mesh

137 try P=inputGeom.Vertices; catch, P=inputGeom.vertices; end

138 try F=inputGeom.Faces; catch, F=inputGeom.faces; end

139 elseif isfield(inputGeom,'img') % input file is struct containing voxelated image

140 voxel_size=inputGeom.voxel_size;

141 opt=2; %see vol2mesh function in iso2mesh

142 isovalues=[]; %see vol2mesh function in iso2mesh

143 [P,F]=v2s(inputGeom.img,isovalues,opt,'cgalmesh');

144 P=P*voxel_size(1,1);

145 else

146 error('Not recognised inputGeom format.')

147 end

148 case 'triangulation'

149 try

150 F=inputGeom.ConnectivityList;

151 P=inputGeom.Points;

152 catch

153 error('Not recognised −triangulation− format.')

154 end
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155 otherwise

156 error('Not recognised inputGeom format.')

157 end

158
159 % Create struct with fields faces/vertices (patch format)

160 FV=struct();

161 FV.vertices=P;

162
163 % Ensure all face normals are oriented coherently, pointing outwards

164 TR2=triangulation(F,P);

165 [TR2_fix,~]=ConsistentNormalOrientation(TR2); %numInvFaces

166 FV.faces=TR2_fix.ConnectivityList;

167
168 % Invert normals to point inwards, to grow tangent spheres

169 N=−TR2_fix.vertexNormal;

170
171 % Calculate Rigid Body Parameters (RBP): Centroid, Volume, Inertia Tensor

172 [RBP,~]=RigidBodyParams(FV);

173
174 % Visualise the normal vectors

175 % quiver3(P(:,1),P(:,2),P(:,3),N(:,1)*5,N(:,2)*5,N(:,3)*5); axis equal

176
177 % P=P−RBP.centroid; % Center the particle to its centroid.

178
179 Pmax=1:length(P); % List of vertices indices

180
181 Vertices=Pmax(randperm(length(Pmax))); % Shuffle indices of vertices (random selection)

182 % Vertices=Pmax; % Ordered indices of vertices (ordered selection)

183
184 tol=rmin/1000; % Tolerance so that the starting vertex is considered outside the sphere

185
186 %% Build "mesh" structure

187 mesh=struct;

188 mesh.vertices=P;

189 mesh.faces=F;

190 mesh.centroid=RBP.centroid;

191 mesh.volume=RBP.volume;

192 mesh.inertia=RBP.inertia_tensor;

193 mesh.inertiaPrincipal=RBP.eigs;

194 mesh.orientationsPrincipal=RBP.PAI;

195
196 %% Build "clump" structure

197 clump=struct;

198 clump.positions=[];

199 clump.radii=[];

200
201 counter=1;

202 iCount=1;

203 for k=Pmax

204 i=Vertices(iCount);

205 r=rmin;

206 reachedMaxRadius=false; % The maximum radius is reached when the sphere becomes large enough to

include a point of the mesh
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207
208 x=P(i,1); % Vertex used to generate sphere

209 y=P(i,2);

210 z=P(i,3);

211
212 n=N(i,:); % Vertex normal facing inwards

213
214 %% Check if vertex is closer than dmin to the surface of one of the existing spheres

215 if iCount>1 && dmin>0

216 dcur=min(sqrt( (x−clump.positions(:,1)).^2 + (y−clump.positions(:,2)).^2 + (z−clump.positions
(:,3)).^2 ) − clump.radii(:) ); % Distances of all points to the center of the sphere

217 if dcur<dmin

218 iCount=iCount+1;

219 continue

220 end

221 end

222
223 %% Alternative, non−vectorised loop for dmin check

224 % skipVertex=false;

225 % for m=1:length(clump.radii)

226 % dcur=min(sqrt( (x−clump.positions(m,1)).^2 + (y−clump.positions(m,2)).^2 + (z−clump.
positions(m,3)).^2 ) − clump.radii(m) );

227 % if abs(dcur)<clump.radii(m) && dcur<dmin

228 % skipVertex=true;

229 % end

230 % end

231 %

232 % if skipVertex

233 % iCount=iCount+1;

234 % continue

235 % end

236
237 % scatter3(x, y, z,'r') % Uncomment to visualise each point that is used to generate spheres

238
239 while reachedMaxRadius==false % while the sphere has not reached the particle surface

240 sphMin=1e15; % Minimum value of potential function

241 while sphMin>−tol

242 xC=x+r*n(1);

243 yC=y+r*n(2);

244 zC=z+r*n(3);

245
246 distance=sqrt( (P(:,1)−xC).^2 + (P(:,2)−yC).^2 + (P(:,3)−zC).^2 ); % Distances of all

points to the center of the sphere

247 sph=(distance/r).^2−1; % Value of spherical

potential function (negative for points inside the sphere)

248 sphMin=min(sph);

249
250 r=r+rstep; % Grow radius for next step

251 end

252 reachedMaxRadius=true;

253 indMin=find(sph==sphMin);

254
255 pointInside=P(indMin(1),:);
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256
257 % for k=1:length(indMin) % Uncomment to visualise the points of the mesh that are included

in the current sphere

258 % scatter3(P(indMin(k),1), P(indMin(k),2), P(indMin(k),3),'b')

259 % end

260
261 vAB=[pointInside(1)−x, pointInside(2)−y, pointInside(3)−z]; % Vector from starting point to

point with min distance to the center of the sphere

262 vAD=dot(vAB,n)/norm(n); % Projection of previous vector on

the current normal vector

263 % theta =atan2( vecnorm(cross(n,vAB,2),2,2) , dot(n,vAB,2) ); % Angle between vAB and

normal vector n

264
265 AB=norm(vAB);

266 AD=norm(vAD);

267 % BD=sqrt(AB^2−AD^2);

268
269 radius=AB^2/AD/2;

270
271 xC=x+radius*n(1);

272 yC=y+radius*n(2);

273 zC=z+radius*n(3);

274
275 clump.positions(counter,:)=[xC,yC,zC];

276 clump.radii(counter,1)=radius;

277 counter=counter+1;

278
279 end

280 %% Check whether the maximum percentage of vertices has been used

281 pcur=length(clump.radii)/length(P); % Current percentage of vertices used

282 if pcur<pmax

283 iCount=iCount+1;

284 else

285 break

286 end

287 end

288
289 [clump.minSphere.centroid, clump.minSphere.radius]=min(clump.radii);

290 [clump.maxSphere.centroid, clump.maxSphere.radius]=max(clump.radii);

291 clump.numSpheres=length(clump.radii);

292
293 %% Plot clump and mesh (optional)

294 if visualise

295 % patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.15,'EdgeColor','none','EdgeAlpha

',0.1) ;%[0.5,0.5,0.5]

296 % patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.1,'EdgeColor','none','EdgeAlpha

',0.15);

297 patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.2,'EdgeColor','none','EdgeAlpha',0.4); %

[0,0.4,0]

298 axis equal

299 camlight

300 % hL1=camlight('headlight');

301 % set(hL1,'style','infinite','position',mesh.centroid*2)
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302 % set(gca,'visible','off')

303 box on; grid on; hold on

304 alpha 0.5

305
306 %% Plot normals (they should point inwards)

307 % quiver3(P(:,1),P(:,2),P(:,3),N(:,1),N(:,2),N(:,3)) % Uncomment to visualise normal vectors of

vertices. They should all point inwards

308
309 %% Plot spheres

310 for j=1:length(clump.radii)

311 [X,Y,Z]=sphere;

312 xSph=X*clump.radii(j);

313 ySph=Y*clump.radii(j);

314 zSph=Z*clump.radii(j);

315
316 color=rand(1,3);

317 % color='g';

318 xC=clump.positions(j,1);

319 yC=clump.positions(j,2);

320 zC=clump.positions(j,3);

321
322 surf(xSph+xC,ySph+yC,zSph+zC,'EdgeColor','none','FaceColor','g','FaceAlpha',1,'FaceColor',color)

323 end

324 end

325
326 %% Export clump (optional)

327 % Output is offered in the generic format x_y_z_r. For more specialised

328 % formats, try the exportClump module.

329 if isempty(output)==false

330 dlmwrite(output, [clump.positions, clump.radii], 'delimiter', ',', 'precision', '%10f')

331 end

332
333 end
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Figure B.3: GenerateClump_Euclidean_3D.m
1 function [mesh, clump]=GenerateClump_Euclidean_3D( inputGeom, N, rMin, div, overlap, varargin )

2 %% Clump generator using the Euclidean map for voxelated, 3D particles

3 % 2021 \copyright V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili.

4
5 %% The main concept of this methodology:

6 % 1. We import the geometry of a particle either as a surface mesh or a

7 % voxelated 3D image.

8 % 2. If a mesh is given, we transform it into a voxelated representation,

9 % i.e. a binary 3D image, where each voxel belonging to the particle is

10 % equal to zero.

11 % 3. The Euclidean distance transform of the 3D image is computed and

12 % the radius of the largest inscribed sphere is found as the maximum

13 % value of the Euclidean transform of the voxelated image.

14 % 4. The voxels corresponding to the inscribed sphere are then set equal to

15 % one. This methodology can also generate overlapping spheres, if only a

16 % percentage of the voxels of each new sphere are set equal to one,

17 % instead of all of them.

18 % 5. This process is repeated until a user−defined number of spheres 'N' is

19 % found or until the user−defined minimum radius criterion has been met,

20 % as the spheres are generated in decreasing sizes.

21
22 %% Influence of parameters

23 % N: [1,inf) Larger N will lead to a larger number of spheres

24 % rMin: (0,inf) Larger rMin will lead to a smaller number of spheres

25 % div: (5,inf] Larger div will lead to better shape resolution in voxel space

26 % overlap: [0,1) Larger overlap will lead to larger spheres overall

27
28 %% INPUT:

29 % −inputGeom: Input geometry, given in one of the formats below:

30 % 1. Directory of .stl file (for surface meshes)

31 % 2. Directory of .mat file (for binary voxelated images)

32 % 3. Struct with fields {vertices,faces} (for surface meshes)

33 % 4. Struct with fields {img,voxel_size} (for binary voxelated images)

34 % where

35 % − img: [Nx x Ny x Nz] voxelated image

36 % − voxel_size: [1x3] voxel size in Cartesian space

37 %

38 % − N: Number of spheres to be generated.

39 %

40 % − rMin: Minimum allowed radius: When this radius is met, the

41 % generation procedure stops even before N spheres are

42 % generated.

43 %

44 % − div: Division number along the shortest edge of the axes−aligned
45 % bounding box (AABB) of the particle during voxelisation,

46 % i.e. during the transformation of an input surface mesh

47 % into a 3D image. It controls the resolution of the

48 % voxelated representation of the particle. Not used when a

49 % 3D image is provided directly as input. If not given,

50 % div=50 (default value in iso2mesh).

51 %

52 % − overlap: Overlap percentage: [0,1): 0 for non−overlapping spheres,
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53 % 0.4 for 40% overlap of radii, etc.

54 %

55 % − output: File name for output of the clump in .txt form (optional)*.

56 % If not assigned, a .txt output file is not created.

57 %

58 % −visualise: Whether to plot the clump and mesh (optional)*.

59 %

60 % * varargin can contain either of the optional variables "output",

61 % "visualise" or else: output=varargin{1}; visualise=varargin{2}.

62
63 %% OUTPUT:

64 % − mesh : structure containing all relevant parameters of input polyhedron

65 % mesh.vertices

66 % mesh.faces

67 % mesh.centroid

68 % mesh.volume

69 % mesh.inertia

70 % mesh.inertiaPrincipal

71 % mesh.orientationsPrincipal

72 %

73 % − clump : structure containing all relevant clump parameters

74 % clump.positions : M−by−3 matrix containing the

75 % position of each generated sphere.

76 % clump.radii : M−by−1 vector containing the radius

77 % of each generated sphere

78 % clump.minRadius : Minimum generated sphere (might

79 % differ from rmin)

80 % clump.maxRadius : Maximum generated sphere

81 %

82 % clump.numSpheres : Total number of spheres

83 %

84 % − output : txt file with centroids and radii, with format: [x,y,z,r]

85
86 %% EXAMPLE

87 % inputGeom='Hexahedron_Coarse_Mesh.stl'; N=24; rMin=0; div=102; overlap=0.6; output='EU_octaCoarse.txt

'; visualise=true;

88 % [mesh, clump]=GenerateClump_Euclidean_3D( inputGeom, N, rMin, div, overlap, output, visualise );

89
90 %% Define variables based on the type of the optional parameters (varargin)

91 output=[];

92 visualise=false;

93 for i=1:length(varargin)

94 switch class(varargin{i})

95 case 'char'

96 output=varargin{i};

97 case 'logical'

98 visualise=varargin{i};

99 otherwise

100 error('Wrong optional parameter type.')

101 end

102 end

103
104 %% Main body of the function
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105 %% Import dependencies

106 addpath(genpath('../lib')) % Add path to dependencies (external codes)

107
108 %% Configure input particle geometry based on the variable type of inputGeom

109 switch class(inputGeom)

110 case 'char'

111 if strcmp(inputGeom(end−3:end),'.stl') % input file is .stl (surface mesh)

112 [P,F,~] = stlRead(inputGeom);

113
114 % Calculate Rigid Body Parameters (RBP)

115 FV=struct(); FV.vertices=P; FV.faces=F; [RBP,~]=RigidBodyParams(FV);

116
117 % Transform surface mesh to voxelated image

118 [imgTemp, map]=s2v(P,F,div);

119
120 imgTemp2=fillholes3d(imgTemp,2); % This causes some loss of accuracy around the value of 2

voxels (uses imclose), but is needed to ensure that imfill below works properly.

121 imgTemp2=imfill(imgTemp2); % Fill the interior of the particle with true values (1).

122 % imgTemp2=imfill(imgTemp); % Fill the interior of the particle with true values (1).

123 img=zeros(size(imgTemp2)+2); % Expand the image by 2 voxels in each direction, to ensure the

boundary voxels are false (zeros).

124 img(2:end−1,2:end−1,2:end−1)=imgTemp2;

125 clear imgTemp imgTemp2

126
127 % Ensure the voxel size is the same in all 3 directions −> Might be an overkill, but still

128 if abs((map(1,1)−map(2,2))/map(1,1))<1e−6 || abs((map(2,2)−map(3,3))/map(2,2))<1e−6
129 voxel_size=map(1,1);

130 else

131 warning('The affine transformation from voxels to Cartesian dimensions is not the same

in all directions. Voxel size is not the same in X,Y,Z! Potentially wrong radii in

Cartesian units!')

132 voxel_size=map(1,1);

133 end

134
135 elseif strcmp(inputGeom(end−3:end),'.mat') % input file is .mat (voxelated image)

136 vox=load(inputGeom);

137 temp=fieldnames(vox); temp=temp{1}; vox=vox.(temp); clear temp;

138 img=vox.img;

139 voxel_size=vox.voxel_size;

140
141 opt=2; %see vol2mesh function in iso2mesh

142 isovalues=[]; %see vol2mesh function in iso2mesh

143 [P,F]=v2s(vox.img,isovalues,opt,'cgalmesh');

144 P=P*voxel_size(1,1);

145
146 % Calculate Rigid Body Parameters (RBP)

147 FV=struct(); FV.vertices=P; FV.faces=F; [RBP,~]=RigidBodyParams(FV);

148 else

149 error('Not recognised inputGeom format.')

150 end

151 case 'struct'

152 if isfield(inputGeom,'Vertices') || isfield(inputGeom,'vertices') % input file is struct

containing surface mesh
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153 try P=inputGeom.Vertices; catch, P=inputGeom.vertices; end

154 try F=inputGeom.Faces; catch, F=inputGeom.faces; end

155
156 % Calculate Rigid Body Parameters (RBP)

157 [RBP,~]=RigidBodyParams(inputGeom);

158
159 % Transform surface mesh to voxelated image

160 [imgTemp, map]=s2v(P,F,div);

161
162 imgTemp2=fillholes3d(imgTemp,2); % This causes some loss of accuracy around the value of 2

voxels (uses imclose), but is needed to ensure that imfill below works properly.

163 imgTemp2=imfill(imgTemp2); % Fill the interior of the particle with true values (1).

164 % imgTemp2=imfill(imgTemp); % Fill the interior of the particle with true values (1).

165 img=zeros(size(imgTemp2)+2); % Expand the image by 2 voxels in each direction, to ensure the

boundary voxels are false (zeros).

166 img(2:end−1,2:end−1,2:end−1)=imgTemp2;

167 clear imgTemp imgTemp2

168
169 % Ensure the voxel size is the same in all 3 directions −> Might be an overkill, but still

170 if abs((map(1,1)−map(2,2))/map(1,1))<1e−6 || abs((map(2,2)−map(3,3))/map(2,2))<1e−6
171 voxel_size=map(1,1);

172 else

173 warning('The affine transformation from voxels to Cartesian dimensions is not the same

in all directions. Voxel size is not the same in X,Y,Z! Potentially wrong radii in

Cartesian units!')

174 voxel_size=map(1,1);

175 end

176
177 elseif isfield(inputGeom,'img') % input file is struct containing voxelated image

178 img=inputGeom.img;

179 voxel_size=inputGeom.voxel_size;

180
181 opt=2; %see vol2mesh function in iso2mesh

182 isovalues=[]; %see vol2mesh function in iso2mesh

183 [P,F]=v2s(inputGeom.img,isovalues,opt,'cgalmesh');

184 P=P*voxel_size(1,1);

185
186 % Calculate Rigid Body Parameters (RBP)

187 FV=struct(); FV.vertices=P; FV.faces=F; [RBP,~]=RigidBodyParams(FV);

188 else

189 error('Not recognised inputGeom format.')

190 end

191 otherwise

192 error('Not recognised inputGeom format.')

193 end

194
195 % figure()

196 % volshow(img)

197
198 % The if statement below fixes a bug in the sign of volume/inertia in the RBP code, if the surface

normal vectors point inwards.

199 if RBP.volume<eps

200 RBP.volume=−RBP.volume;
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201 % RBP.inertia=−RBP.inertia;

202 % RBP.orientationsPrincipal=−1*RBP.orientationsPrincipal;

203 disp('Correcting the sign of volume, attributed to inverted normals.') % volume and inertia

204 end

205
206 %% Build "mesh" structure

207 mesh=struct;

208 mesh.vertices=P;

209 mesh.faces=F;

210 mesh.centroid=RBP.centroid;

211 mesh.volume=RBP.volume;

212 mesh.inertia=RBP.inertia_tensor;

213 mesh.inertiaPrincipal=RBP.eigs;

214 mesh.orientationsPrincipal=RBP.PAI;

215
216 %% Build "clump" structure

217 clump=struct;

218 clump.positions=[];

219 clump.radii=[];

220
221 %% Calculate extreme coordinates & centroid of the AABB of the particle

222 minX=min(P(:,1)); maxX=max(P(:,1)); aveX=mean([minX,maxX]); %ave: centroid of the AABB

223 minY=min(P(:,2)); maxY=max(P(:,2)); aveY=mean([minY,maxY]);

224 minZ=min(P(:,3)); maxZ=max(P(:,3)); aveZ=mean([minZ,maxZ]);

225
226 %% Center the particle to the centroid of its AABB

227 P(:,1)=P(:,1)−aveX;
228 P(:,2)=P(:,2)−aveY;
229 P(:,3)=P(:,3)−aveZ;
230
231 %% Dimensions of the new image

232 halfSize=[size(img,2)/2, size(img,1)/2, size(img,3)/2];

233
234 [dx,dy,dz] = meshgrid(1:size(img,2), 1:size(img,1), 1:size(img,3));

235
236 %% Calculate centroid of the voxelated image

237 stats = regionprops3(img,'Centroid'); % 'all'

238 centroid=stats.Centroid; % Centroid of the initial particle

239
240 counter=1;

241 intersection=img;

242
243 for k=1:N %N:numberofspheres

244 edtImage = bwdist(~intersection); % Euclidean map

245 radius = max(edtImage(:)); % Inradius in voxel units

246
247 % Note: rMin is given in Cartesian units, not in voxel units, hence the

248 % multiplication with the voxel size below

249 if radius*voxel_size(1,1)<rMin % Break the loop if the minimum radius has been met using less than N

spheres

250 warning(['The mimimum radius rMin=',num2str(rMin),' has been met using ', num2str(k−1),' spheres

'])

251 break
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252 end

253
254 [yCenter, xCenter, zCenter]= ind2sub(size(intersection),find(edtImage == radius)); % Center in voxel

units

255
256 dists = sqrt(sum(bsxfun(@minus,centroid,[xCenter,yCenter,zCenter]).^2,2));

257 [~,i]=max(dists); % Index of the inscribed sphere closest (min) / farthest (max) to the centroid

258
259 sph=sqrt( (dx−xCenter(i)).^2 + (dy−yCenter(i)).^2 + (dz−zCenter(i)).^2 ) > (1−overlap)*radius; %

Sphere

260 intersection=and(intersection,sph); % Append the new sphere in the particle

261
262 xC=xCenter(i)−halfSize(1); %+1

263 yC=yCenter(i)−halfSize(2); %+1

264 zC=zCenter(i)−halfSize(3); %+1

265
266 clump.positions(counter,:)=[yC,xC,zC]*voxel_size(1,1)+[aveX,aveY,aveZ]; % Here we add [aveX,aveY,

aveZ] to return to the initial coordinate system

267 clump.radii(counter,1)=radius*voxel_size(1,1);

268 counter=counter+1;

269 end

270
271 [clump.minSphere.centroid, clump.minSphere.radius]=min(clump.radii);

272 [clump.maxSphere.centroid, clump.maxSphere.radius]=max(clump.radii);

273 clump.numSpheres=length(clump.radii);

274
275 %% Plot spheres in voxelised space (if overlap>0, these are not the actual spheres, but the scaled ones,

used to facilitate the overlap)

276 % figure()

277 % load('config.mat') % "config" is only used to visualise transparent voxelated images

278 % volshow(intersection,config);

279
280 % Restore the mesh in the original coordinate system

281 P(:,1)=P(:,1)+aveX;

282 P(:,2)=P(:,2)+aveY;

283 P(:,3)=P(:,3)+aveZ;

284
285 %% Plot clump and mesh in Cartesian space (optional)

286 if visualise

287 % patch('Faces',F,'Vertices',P,'FaceColor','g','EdgeColor','none','FaceAlpha',0.4)

288 % patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.15,'EdgeColor',[0.2,0.7,0.2],'EdgeAlpha

',0.1);

289 patch('Faces',F,'Vertices',P,'FaceColor','g','FaceAlpha',0.2,'EdgeColor','none','EdgeAlpha',0.4); %

[0,0.4,0]

290 axis equal

291 camlight

292 box on; grid on

293 alpha 0.5

294
295 %% Plot spheres

296 [X,Y,Z]=sphere(20);

297 for i=1:length(clump.radii)

298 hold on
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299 x=clump.positions(i,1);

300 y=clump.positions(i,2);

301 z=clump.positions(i,3);

302 r=clump.radii(i);

303 surf(r*X+x, r*Y+y, r*Z+z, 'FaceColor',rand(1,3), 'EdgeColor','none','FaceAlpha',1)

304 end

305 end

306
307 %% Export clump (optional)

308 % Output is offered in the generic format x_y_z_r.

309 % For more specialised formats, try the ExportClump module.

310 if ~isempty(output)

311 dlmwrite(output, [clump.positions, clump.radii], 'delimiter', ',', 'precision', '%10f')

312 end

313 end
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Figure B.4: ExtractSurface.m
1 function [faces,vertices]=ExtractSurface(clump, N_sphere, N_circle, visualise)

2 %% Tesselation of the surface of a clump into a surface mesh

3 % 2021 \copyright V. Angelidakis, S. Nadimi, M. Otsubo, S. Utili.

4
5 %% INPUT:

6 % − clump : either "clump" object or N x 4 matrix with columns of [x,y,z,r], where x,y,z the

centroid of each sphere and r its radius

7 % − N_sphere : Number of vertices on the surface of each member−sphere of the clump

8 % − N_circle : Number of vertices on the circle defined as the intersection of two overlapping spheres

9 % − visualise: Boolean whether to plot the generated surface mesh of the clump surface

10
11 %% OUTPUT:

12 % − faces : faces of generated surface mesh

13 % − vertices : vertices of generated surface mesh

14
15 %% EXAMPLE

16 %

17 % N_sphere=400;

18 % N_circle=200;

19 % clump=[

20 % 1,0,0,1.1;

21 % 2,1,0,1.1;

22 % 3,0,0,1.2;

23 % ];

24 % [faces,vertices]=ExtractSurface(clump,N_sphere,N_circle,visualise)

25
26 %% Check format of input

27 switch class(clump)

28 case 'struct'

29 if isfield(clump,'positions') && isfield(clump,'radii')

30 if size(clump.positions,2)<3

31 error('Invalid format; clump.positions should have size N x 3!')

32 end

33 if size(clump.radii,2)>1

34 error('Invalid format; clump.radii should have size N x 1!')

35 end

36 spheresList=[clump.positions,clump.radii];

37
38 else

39 error('Invalid format! The struct should have fields "positions" and "radii"!')

40 end

41 case 'double'

42 if size(clump,2)~=4

43 error('Invalid format, should be x,y,z,r!')

44 end

45 spheresList=clump;

46 end

47
48 [x,y,z,r]=deal(spheresList(:,1),spheresList(:,2),spheresList(:,3),spheresList(:,4));

49
50 %% Main body of the function

51 %% Import Dependencies
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52 addpath(genpath('MyCrust'))

53
54 %% Contact detection between all spheres (all possible combinations) − Record interactions

55 interactions=[];

56 ind=1;

57 for i=1:size(spheresList,1)−1

58 for j=i+1:size(spheresList,1)

59 if i==j

60 continue

61 end

62 inContact=sphereContact(spheresList(i,:),spheresList(j,:));

63 if inContact

64 interactions(ind,1:2)=[i,j];

65 ind=ind+1;

66 end

67 end

68 end

69
70 %% Generate points for each sphere

71 for i=1:size(spheresList,1)

72 [S{i}.vertices,S{i}.faces]=makeSphere(x(i),y(i),z(i),r(i),N_sphere);

73 end

74
75 %% Perform contact detection to detect and delete points of each sphere that are included in other

spheres, in order to get only the points on the surface of the clump

76 for i=1:size(interactions,1)

77
78 % For interaction [sphere1,sphere2], check which vertices of sphere1 are inside sphere2

79 for j=size(S{1,interactions(i,1)}.vertices,1):−1:1 % start deleting from end to start

80 if spherePotential(S{1,interactions(i,1)}.vertices(j,:),spheresList(interactions(i,2),:),true)

81 v=S{1,interactions(i,1)}.vertices(j,:);

82 % scatter3(v(:,1),v(:,2),v(:,3),20,'b','filled')

83 S{1,interactions(i,1)}.vertices(j,:)=[];

84 end

85 end

86
87 % For interaction [sphere1,sphere2], check which vertices of sphere2 are inside sphere1

88 for j=size(S{1,interactions(i,2)}.vertices,1):−1:1 % start deleting from end to start

89 if spherePotential(S{1,interactions(i,2)}.vertices(j,:),spheresList(interactions(i,1),:),true)

90 v=S{1,interactions(i,2)}.vertices(j,:);

91 % scatter3(v(:,1),v(:,2),v(:,3),20,'b','filled')

92 S{1,interactions(i,2)}.vertices(j,:)=[];

93 end

94 end

95
96 end

97 % scatter3(S{1,1}.vertices(:,1),S{1,1}.vertices(:,2),S{1,1}.vertices(:,3),'filled')

98 % scatter3(S{1,2}.vertices(:,1),S{1,2}.vertices(:,2),S{1,2}.vertices(:,3),'filled')

99
100
101 %% Calculate points on the intersection of each pair of interacting spheres

102 vertices=[];

103 for i=1:size(interactions,1)
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104 n=spheresList(interactions(i,2),1:3)−spheresList(interactions(i,1),1:3); % (not normalised) normal

vector of each interaction

105
106 d=norm(n); % centroidal distance between sphere1−sphere2 in each interaction

107 n=n/norm(n); % normalised normal vector of each interaction

108
109 r1=spheresList(interactions(i,1),4); % radius of sphere1

110 r2=spheresList(interactions(i,2),4); % radius of sphere2

111
112 h = sqrt( (2*r1*d)^2 − (r1^2 + d^2 − r2^2)^2 )/(2*d); % Radius of intersection circle

113 alph=acos( (r1^1+d^2−r2^2) / (2*r1*d) );

114 h1=r1*(1−cos(alph));

115
116 C=spheresList(interactions(i,1),1:3)+n*(r1−h1); % Contact point

117
118 n3=n;

119 n1=[n(3) 0 −n(1)]; % Vector perpendicular to n

120 if norm(n1)==0

121 n1=[n(2) 0 −n(1)];
122 end

123 n1=n1/norm(n1); % Normalise n1

124 n2=cross(n3,n1);

125 % dot(n1,n3)

126
127 % Generate points of intersection circle

128 a=−2*pi:pi/(N_circle/4):2*pi;

129 % For each circle point.

130 px = C(1) + h * (n1(1) * cos(a) + n2(1) * sin(a));

131 py = C(2) + h * (n1(2) * cos(a) + n2(2) * sin(a));

132 pz = C(3) + h * (n1(3) * cos(a) + n2(3) * sin(a));

133
134 if imag(px(1,1))>0

135 % i

136 break

137 end

138
139 % if ~isnan(px(1,1))

140 S{1,interactions(i,1)}.circlevertices=[px' py' pz'];

141 % S{1,i}.circlevertices=[px' py' pz'];

142
143 vertices=[vertices;[px' py' pz']];

144 % scatter3(px,py,pz,20,'filled','r')

145 % end

146 end

147
148 %% Collect vertices from all spheres in one variable

149 for i=1:size(S,2)

150 vertices=[vertices;S{1,i}.vertices];

151 end

152 vertices = real(unique(vertices,'rows'));

153
154 %% Generate mesh using the Crust algorithm (Amenta et al, 1999)

155 % p=vertices;

218



Appendix B. CLUMP: Function scripts

156 [faces,~]=MyRobustCrust(vertices);

157 faces=double(faces); % transform from int32 to double

158
159 if visualise

160 fig=figure('Position',[200 200 600 600]);

161 box on; grid on; hold on;

162 axis vis3d equal

163 patch('Faces',faces,'vertices',vertices,'FaceColor','c','EdgeColor','none')

164 % trisurf(faces,vertices(:,1),vertices(:,2),vertices(:,3),'facecolor','c','edgecolor','none')

165 alpha 0.5

166 view(3)

167 set(gca,'visible','off')

168 camlight

169 camproj('perspective')

170 end

171 end

172
173
174 function inContact=sphereContact(sphere1,sphere2)

175 %% Function to perform contact detection between two spheres

176 % inContact: boolean: whether sphere1 and sphere2 intersect

177 % sphere1: [1 x 4] [x,y,z,r]: test sphere 1

178 % sphere2: [1 x 4] [x,y,z,r]: test sphere 2

179
180 d0=norm(sphere2(1:3)−sphere1(1:3)); % Centroidal distance of the spheres

181 if d0<=(sphere1(4)+sphere2(4))

182 inContact=true;

183 else

184 inContact=false;

185 end

186 % inContact=sqrt( ( (sphere(1)−point(1))^2 + (sphere(2)−point(2))^2 + (sphere(3)−point(3))^2 )/(sphere

(4))^2 ) − 1 <= 0;

187 end

188
189
190 function isInside=spherePotential(point,sphere,allowZero)

191 %% Function to determine whether a point is inside a sphere

192 % isInside: boolean: whether the test point is inside the sphere of interest

193 % point: [1 x 3] x,y,z: test point

194 % sphere: [1 x 4] x,y,z,r sphere of interest

195 % allowZero: boolean: whether to consider 0 values as contact, i.e. returning true

196 if allowZero

197 isInside=sqrt( ( (sphere(1)−point(1))^2 + (sphere(2)−point(2))^2 + (sphere(3)−point(3))^2 )/(sphere

(4))^2 ) − 1 <= 0;

198 else

199 isInside=sqrt( ( (sphere(1)−point(1))^2 + (sphere(2)−point(2))^2 + (sphere(3)−point(3))^2 )/(sphere

(4))^2 ) − 1 < 0;

200 end

201 end

202
203
204 function [vertices,faces]=makeSphere(X,Y,Z,radius,N) %radius

205 %% Function to create a surface mesh of a sphere with radius r, centered at (x,y,z) with N vertices.
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206 % Returns vertices/faces

207
208 vertices=zeros(N,3);

209 inc=pi*(3−sqrt(5));

210 off=2/N;

211 for k=0:N−1
212 y=k*off−1+off/2;

213 r=sqrt(1−y^2);

214 phi=k*inc;

215 vertices(k+1,1:3)=[cos(phi)*r*radius, y*radius, sin(phi)*r*radius];

216 end

217 vertices=vertices+[X,Y,Z];

218
219 faces=convhull(vertices);

220 % patch('vertices',vertices,'Faces',k,'FaceColor','g')

221 end
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