
 

1 

 

 

 

 

 

 

Mechanistic Modelling of Microscale Chromatography 

Nick Whitelock 

Industrial Supervisors 

Dr. Mari Spitali & Dr. Razwan Hanif 

Academic Supervisor 

Dr. Vladimir Zivkovic  

A thesis presented for the degree of Engineering Doctorate in 

Biopharmaceutical Process Development 

Biopharmaceutical & Bioprocessing Technology Centre, School of Chemical Engineering and Advanced 

Materials, Newcastle University 

 August 2021  

 



 

2 

 

  

For James, Pat and Sophie 



 

3 

 

Acknowledgments 

 

There are too many people deserving of gratitude to give justice to here, so I shall mention just a small 

proportion without whom none of this would have been possible. 

The staff of the School of Chemical Engineering and Advanced Materials at  Newcastle University, are highly 

appreciated due to providing the training, support and direction needed to take on this work. In particular, my 

academic supervisors Dr. Vladimir Zivkovic, Dr Milan Mijajlovic and Dr. Moritz von Stosch, who, though joining 

the project late, provided a huge amount of ideas, enthusiasm and their valuable time. I have thoroughly enjoyed 

working with them and cannot adequately express how much their hard work, insight and advice has meant to 

myself and the project. Additionally, the administrative staff at Newcastle University, in particular Nikki Hawley, 

have always managed to provide much appreciated organisation of supplies, accommodation and meals for 

stressed students. The other students and teaching staff at Newcastle maintained a jovial atmosphere, and 

somehow made learning often obtuse, unintuitive concepts a fun experience. I remember fondly many good 

times in the Toon, and am glad for the friends and experiences I made there. 

Without the stipend and course fees provided by the EPSRC, I could not have undertaken this course, and will 

be forever grateful for the funding and opportunities I received. 

I owe a debt of gratitude to UCB, who provided the materials, location and direction of this project, in particular, 

Dr. Mari Spitali, whose patience and encouragement was unwavering, if not always merited.  Dr. Razwan Hanif 

has provided a free reign to explore well outside of the project remit with a lot of support and ideas. Additionally, 

a number of people have contributed ideas that have turned out to be fruitful, including Chris Morris, Mark 

Pearce-Higgins, Didier Philippe and Neil Watson. The welcome afforded to me by all the staff in the downstream 

process development group  at UCB was highly appreciated. 

I would never have completed this without my friends and family, who have tolerated having the same  

conversation with me for the past few years; Sophie Porret who has missed evenings, weekends and holidays as 

I focussed on this work (and managed to make a beautiful son whilst I struggled through a thesis!), my 

grandmother, Pat, has been a constant inspiration and is very sorely missed, and finally my father Chris, who has 

been a continual source of sage advice, no matter how often it was ignored.  

 

  



 

4 

 

Contents 

 

Acknowledgments .......................................................................................................................... 3 

Contents ....................................................................................................................................... 4 

List of Figures ................................................................................................................................ 9 

List of Tables ................................................................................................................................12 

Symbols and Abbreviations.............................................................................................................14 

Mechanistic Model Terms ............................................................................................................................................... 16 

EMG Terms ......................................................................................................................................................................... 18 

HETP Terms ........................................................................................................................................................................ 18 

Abstract .......................................................................................................................................20 

Impact Statement .........................................................................................................................21 

1 Introduction ..........................................................................................................................22 

1.1 Project Motivations............................................................................................................................................ 22 

1.2 Biopharmaceuticals............................................................................................................................................ 22 

1.2.1 Antibodies ....................................................................................................................................................... 23 

1.3 Monoclonal Antibody Production Processes................................................................................................. 24 

1.3.1 Upstream Processing..................................................................................................................................... 26 

1.3.2 Downstream Processing ............................................................................................................................... 26 

1.3.3 Bioprocess Development.............................................................................................................................. 29 

1.3.4 Quality by Design  ........................................................................................................................................... 30 

2 Introduction to High Throughput Process Development  ...............................................................34 

2.1 High Throughput Process Development......................................................................................................... 34 

2.1.1 Microscale Chromatography Formats ........................................................................................................ 34 

2.1.2 Scale Considerations ..................................................................................................................................... 36 



 

5 

 

3 Microscale Protein A Capture .................................................................................................. 41 

3.1 Introduction .........................................................................................................................................................41 

3.2 Materials...............................................................................................................................................................42 

3.2.1 Preparation of Load Material .......................................................................................................................42 

3.2.2 Buffers ..............................................................................................................................................................42 

3.2.3 Microtiter plates.............................................................................................................................................43 

3.2.4 Liquid Handling System .................................................................................................................................43 

3.3 Methods ...............................................................................................................................................................45 

3.3.1 Microscale Protein A Capture of an IgG1 and an IgG4 from feedstock .................................................45 

3.3.2 Scaling Strategy ..............................................................................................................................................46 

3.3.3 UV Spectroscopy ............................................................................................................................................46 

3.4 Data processing ...................................................................................................................................................48 

3.4.1 Treating Microtiter Plate Data .....................................................................................................................48 

3.5 Results and Discussion  .......................................................................................................................................48 

3.5.1 Elution Comparability  ....................................................................................................................................51 

3.5.2 Discussion ........................................................................................................................................................53 

4 Column Characterisation ........................................................................................................ 54 

4.1 Introduction .........................................................................................................................................................54 

4.1.1 HETP and Asymmetry ....................................................................................................................................54 

4.1.2 Determining HETP Parameters from Response  ........................................................................................55 

4.2 Established Methods ..........................................................................................................................................60 

4.2.1 Large scale .......................................................................................................................................................60 

4.2.2 Methods on Microscale Columns................................................................................................................62 

4.3 Materials...............................................................................................................................................................64 

4.3.1 Buffers ..............................................................................................................................................................64 

4.3.2 Equipment .......................................................................................................................................................64 

4.4 Experimental Methods ......................................................................................................................................66 



 

6 

 

4.4.1 Ascertaining UV Spectra ............................................................................................................................... 66 

4.4.2 Pulse Tests....................................................................................................................................................... 66 

4.4.3 HETP tests on an FPLC ................................................................................................................................... 67 

4.4.4 Calibration Curves.......................................................................................................................................... 67 

4.4.5 Drop Size Determination  .............................................................................................................................. 69 

4.4.6 Measuring FPLC Dead Volume  .................................................................................................................... 70 

4.4.7 Data Treatment .............................................................................................................................................. 71 

4.5 Results and Discussion ....................................................................................................................................... 71 

4.5.1 Drop Volume Determination  ....................................................................................................................... 71 

4.5.2 HETP resolution improvement .................................................................................................................... 73 

4.5.3 Analyte and Method Selection  .................................................................................................................... 75 

4.5.4 HETP analysis using a liquid handling system (column manufacturers method)  ............................... 79 

4.5.5 Small Scale HETP analysis using an FPLC (Resin manufacturers method)  ........................................... 82 

4.5.6 Discussion........................................................................................................................................................ 87 

5 Dynamic Binding Capacity .......................................................................................................89 

5.1 Introduction......................................................................................................................................................... 89 

5.1.1 Microscale Breakthrough DBC..................................................................................................................... 91 

5.2 Materials and Methods ..................................................................................................................................... 92 

5.2.1 Materials.......................................................................................................................................................... 92 

5.2.2 Methods .......................................................................................................................................................... 93 

5.3 Results and Discussion ....................................................................................................................................... 95 

5.3.1 Comparing DBC10% and Column Volume .................................................................................................... 95 

5.3.2 Assessing the Impact of Syste m and Flow Regime .................................................................................. 97 

5.4 Discussion ..........................................................................................................................................................102 

6 Calibrating a Mechanistic Model of IgG Breakthrough of Protein A at Lab scale .............................. 103 

6.1 Introduction.......................................................................................................................................................103 

6.2 Model formulations .........................................................................................................................................103 



 

7 

 

6.2.2 Adsorption .................................................................................................................................................... 108 

6.2.3 Mass Transfer Parameter Correlations  ................................................................................................... 112 

6.2.4 Adsorption Isotherm De termination  ....................................................................................................... 115 

6.3 Model Fitting with the Inverse Method ....................................................................................................... 116 

6.4 Mechanistic Model Applications  ................................................................................................................... 117 

6.4.1 Published Parameters of IgG-Protein A Chromatography Mechanistic Models .............................. 119 

6.5 Materials and Methods .................................................................................................................................. 120 

6.5.1 Mathe matic al Methods.............................................................................................................................. 120 

6.5.2 Dead Volume Determination  .................................................................................................................... 120 

6.5.3 Optimisation Regimes ................................................................................................................................ 122 

6.5.4 Parameter Estimation................................................................................................................................. 122 

6.5.5 Adsorption Isotherm Parameters ............................................................................................................. 122 

6.5.6 Mass Transfer Parameter Initialisation  ................................................................................................... 123 

6.5.7 Model Calibration Data .............................................................................................................................. 123 

6.5.8 Bed Porosity Determination with Dextran 2,000,000 .......................................................................... 124 

6.5.9 Total porosity determination using PABA............................................................................................... 125 

6.5.10 Accessible Particle Porosity with nonbinding IgG  ............................................................................ 126 

6.5.11 Determining Model Parameters with Breakthrough Data .............................................................. 127 

6.6 Results and Discussion  .................................................................................................................................... 128 

6.6.1 Dead Volume Determination and Simulation  ........................................................................................ 128 

6.6.2 Porosity Determination .............................................................................................................................. 131 

6.6.3 Isotherm Determination  ............................................................................................................................ 142 

6.6.4 Fitting Breakthrough Data ......................................................................................................................... 147 

6.7 Model Parameters of IgG Breakthrough at Lab-scale ............................................................................... 150 

6.7.1 Parameter Sensitivities............................................................................................................................... 151 

6.8 Conclusions ....................................................................................................................................................... 152 

6.8.1 Model Limitations and Assumptions  ....................................................................................................... 153 

7 Scale Prediction from Microscale Data .................................................................................... 155 



 

8 

 

7.1 Introduction.......................................................................................................................................................155 

7.1.1 Impac t of Intermittent Flow.......................................................................................................................157 

7.2 Model Calibration  .............................................................................................................................................159 

7.2.1 Accounting for Intermittent Flow .............................................................................................................159 

7.2.2 Scaling Model Formulation  ........................................................................................................................161 

7.2.3 Determining Column Porosities with PABA, IgG and Dextran 2,000,000. n = 8 ...............................162 

7.2.4 Breakthrough Data ......................................................................................................................................163 

7.2.5 Transforming the Model Between Scales................................................................................................166 

7.3 Predicting Lab Scale Breakthrough with Microscale Data .........................................................................171 

7.4 Discussion ..........................................................................................................................................................175 

8 Conclusions......................................................................................................................... 179 

8.1 Future directions ..............................................................................................................................................181 

8.1.1 Further Applications ....................................................................................................................................181 

8.1.2 Model Framework Improvement..............................................................................................................182 

Bibliography ............................................................................................................................... 184 

 

  



 

9 

 

List of Figures 

Figure 1.1 - A general mAb process, as described in the A-MAb case study (CMC Biotech Working Group, 2009) 25 

Figure 2.1 - Diagrams of a microscale column, compared to a conventional lab-column 37 

Figure 3.1- Diagrams of the Tecan Freedom EVO 200 Workstation.   44 

Figure 3.2 - Process description diagram of the protein A chromatography process used in this study 45 

Figure 3.3 UV Calibration Curves for microtiter plates 47 

Figure 3.4- IgG - Protein A pseudo-chromatograms generated using full area UV transparent plates volume. 49 

Figure 3.5 -  IgG - Protein A pseudo-chromatograms generated using half area UV transparent plates 50 

Figure 3.6 - Elution Chromatograms for 8 columns across 5 runs 51 

Figure 3.7- Box and Whisker Plots of recovery and variability of microscale column elution 52 

Figure 4.1- The derivations of HETP and Asymmetry parameters from a pulse or differentiated frontal experiment 55 

Figure 4.2 – Demonstration that peak maximum (mode), retention volume and average (mean) retention Volume, or first 

moment,  differ with asymmetric peak 56 

Figure 4.4 - Obtaining a pulse trace from a frontal experiment through differentiation 62 

Figure 4.5 - Microscale column manufacturers In-house HETP data 63 

Figure 4.6 - Resin Manufacturers in-house HETP data 63 

Figure 4.6 – Rigs for connecting microscale columns to a FPLC system 65 

Figure 4.8 - Demonstration of well pre-filling 66 

Figure 4.8- Calibration curves for UV saturation estimation and correction 69 

Figure 4.10- Comparison of Step vs Pulse methods of dead volume determination 70 

Figure 4.11 - Histogram of measured drop volume distribution 72 

Figure 4.12 - HETP Pulse with 600 µL columns with column manufacturers protocol and improved resolution  73 

Figure 4.13 – Measurement of microtiter plates filled with solutions of acetone 74 

Figure 4.14 - Spectra of candidate HETP analytes; 75 

Figure 4.15 - HETP Chromatograms for candidate analytes on large scale (58mL) column. 76 

file:///C:/Users/nwh/Desktop/mm22mar21.docx%23_Toc68365417


 

10 

 

Figure 4.16- Comparison of frontal and pulse HETP tests 79 

Figure 4.17- Experimental data and EMG fit for 600 µL columns with PABA  pulse 80 

Figure 4.18-  Peak responses from using 600 µL columns and rigs to attach them to a conventional FPLC 83 

Figure 4.19 - 1mL Column PABA Pulse HETP 84 

Figure 4.20 - Pulse test without column, and the EMG fit 84 

Figure 5.1- Schematic of Dynamic Binding Capacity (DBC) determination using the frontal method, and the Equilibrium 

Binding Capacity (EBC). 90 

Figure 5.2  - A typical breakthrough DBC experiment performed on an LHS 92 

Figure 5.3 – Determination of DBC10% absorbance vales for LHS  and FPLC 95 

Figure 5.4- Breakthrough Curves for three microscale column volumes at three residence times for three volumes of 

microscale columns 96 

Figure 5.5- 4.7mL DBC10% at multiple residence times 97 

Figure 5.6  - DBC experiments performed on 600 µL columns and second rig 98 

Figure 5.7– Comparison of uninterrupted, and interrupted flow, with lab scale column on a FPLC system 100 

Figure 5.8 - Comparison of uninterrupted, and interrupted flow on breakthrough curves for 160 s residence time continuous  

flow  and 130 s interrupted flow, with 30 s pauses 101 

Figure 6.1- Visual Representation of the significant mass transfer processes modelled in chromatography 106 

Figure 6.2 - Visual Representation of three common isotherms 109 

Figure 6.3- System pulse responses at 4 residence times, demonstrating the increased peak offset and width with increased 

flowrate. 121 

Figure 6.4- Dextran pulse data at multiple residence times, peak absorbance normalised to 1 124 

Figure 6.5 – PABA Pulse Experiments, at multiple residence times 125 

Figure 6.6 – Pulse of IgG in nonbinding conditions at multiple residence times 126 

Figure 6.7 – Pulse Response and EMG Fits for Dead Volume Determination at 4 residence times 128 

Figure 6.8- An example step response and CSTR/PFR simulation of system with UV active buffer and PFR -CSTR model for total 

system volume or post column volume  129 

Figure 6.9- A pulse response of system with UV active buffer and PFR-CSTR-CSTR model 129 

file:///C:/Users/nwh/Desktop/mm22mar21.docx%23_Toc68365448
file:///C:/Users/nwh/Desktop/mm22mar21.docx%23_Toc68365450


 

11 

 

Figure 6.10 – Dextran Pulse Experiments and EMG Fits for 4 residence times 131 

Figure 6.11 – Dextran pulse and model fit 133 

Figure 6.12- Axial Dispersion Coefficient, Dax  (from GRM fit, both individual and constrained by the correlation) and Apparent 

Dispersion, DL (from EMG fit)  vs Interstitial Flow Velocity of Dextran 134 

Figure 6.13 – PABA Pulse Experiments and EMG Fits for 4 residence times 135 

Figure 6.14 -Non-binding IgG Pulse Experiments and EMG Fits for 4 residence times 138 

Figure 6.15 - Reduced HETP and Reduced Interstitial Velocity plot for non-binding IgG 139 

Figure 6.16- The fitting of the 1200 s  and 160 s  nonbinding IgG pulse with a single GRM model 141 

Figure 6.17- Experimental data and Langmuir Isotherm fit of IgG binding to Protein A resin using equilibrium batch adsorption.

 143 

Figure 6.18 – Breakthrough Curves at Three Feed Concentration at 240 s Residence time 144 

Figure 6.19 – Saturation Breakthrough and Model fi 145 

Figure 6.20- The simulated and experimental breakthrough of the protein a breakthrough for the calibration and validation 

residence times, demonstrating predictive ability of the model 148 

Figure 6.21 – Parameter sensitivities for the IgG – Protein A model at lab scale 152 

Figure 7.1 - Demonstration of the importance of post-column volume simulation. 160 

Figure 7.2 – Intermittent and continuous flow model fit  for 160 s residence time, with dead volume simulation,  161 

Figure 7.3 - Pulse experiment Performed on a 600uL column with Dextran, PABA and IgG with the model fits 162 

Figure 7.4 – The breakthrough model fits for microscale columns 164 

Figure 7.5 - Comparison of the impact of the flow dependant mass transfer resistancesl. 168 

Figure 7.6 - Process of transforming the model between scales 169 

Figure 7.7 - Microscale prediction of larger scale breakthrough 171 

Figure 7.8- Modelled and measured breakthrough profiles for IgG 172 



 

12 

 

List of Tables 

Table 1.1- Description of some of the major chromatographic chemistries employed in monoclonal antibody 

purification..................................................................................................................................................................... 28 

Table 3.1 - Buffers used in Protein A capture for IgG A and IgG B  ................................................................................ 42 

Table 3.2 - Measure of resolution and volume loss, as a function of fraction size, measured volume determined 

by 977nm – 900nmm absorbance, and dispensed volume is determined by the method on the LHS  ........ 51 

Table 4.1 - Composition of HETP Analyte Buffers  ............................................................................................................ 64 

Table 4.2- Drop size measurements from microscale columns, A – For each column, with 5 experiments per 

column B – For each experiment, with 8 columns per experiment .................................................................... 72 

Table 4.3 - HETP parameters at lab-scale using selected analytes. HETP parameters were determined by EMG 

fitting, and the method of moments approach as well as measurement from peak width at half height and 

retention volume.  n = 3. ............................................................................................................................................. 77 

Table 4.4 - Comparison of EMG parameters for Differentiated Frontal and Pulse HETP Tests, demonstrating good 

similarity between methods (Pulse, and Differentiating a Frontal Experiment). Tau is the parameter with 

the largest deviation, being significantly higher for frontal runs, all other parameters are more consistent.

 ......................................................................................................................................................................................... 78 

Table 4.5- HETP and EMG fitting parameters for LHS derived data with a, 600 µL column, 5mM PABA 2% CV 

Pulse. A- Average Performance per column over every experiment (n = 5), B – Average performance per 

experiment over every column .................................................................................................................................. 81 

Table 4.6 - The EMG Parameters and First, second moments of pulse tests without columns and the associated 

variances and retention volume of the injections, used to correct for dead volume effects  ........................ 85 

Table 4.7 -HETP values and fitting parameters comparing microscale column on LHS, microscale column on FPLC, 

small lab scale column on FPLC and large lab scale column on FPLC using PABA as the tracer .................... 86 

Table 5.1 - Volumetric flowrates used and associated wait commands to meet residence times for 3 volumes of 

microscale column on a LHS.  ...................................................................................................................................... 93 

Table 5.2-Comparison of FPLC and LHS Derived DBC10% values..................................................................................... 99 

Table 5.3 - Comparison of Interrupted and Continuous flow DBC10% values. ...........................................................101 

Table 6.1 - A selection of single component isotherm models often used in simulating preparative  

chromatography .........................................................................................................................................................108 



 

13 

 

Table 6.2 - Published Mass Transfer Parameters of IgG Binding to a Protein A Column  ....................................... 119 

Table 6.3 – Experiments used to calibrate the Mechanistic Model of Protein A binding an IgG .......................... 124 

Table 6.4 – Simulated CSTR and PFR volumes, EMG parameters and first and second moments used to model 

system contributions to brand broadening  for step responses and pulse injections at multiple flowrates. 

....................................................................................................................................................................................... 130 

Table 6.5 -EMG Parameters, moments analysis and inverse mechanistic model fit of the dextran peaks ........ 132 

Table 6.6 – Optimised Values for Axial dispersion Coefficients and Porosity for Dextran on a Protein A resin  135 

Table 6.7  EMG Parameters and Moments analysis of the PABA peaks .................................................................... 137 

Table 6.8 – EMG Parameters and Moments analysis of the non-binding IgG peaks .............................................. 140 

Table 6.9 – DBC10% Values determined at three feed concentrations ....................................................................... 145 

Table 6.10 - Langmuir Isotherm values of IgG - Protein A, determined through batch adsorption, saturation and 

multiple feed-concentration breakthrough experiments................................................................................... 146 

Table 6.11 – The impact on varying the binding rate constant (kads, top) and equilibrium constant (Keq, bottom) 

on model residuals describing IgG saturation breakthrough and literature values ...................................... 147 

Table 6.12- The derived DBC10% values from the model and experimental DBC values ......................................... 149 

Table 6.13- The fitted pore diffusion coefficient at multiple feed concentrations ................................................. 149 

Table 6.14- The model parameters  for simulating breakthrough at a range of residence times, and the methods 

of parameter determination .................................................................................................................................... 150 

Table 7.1 - Pore diffusion coefficients and quality of fit, comparing continuous and intermittent flow on model 

calibration at lab scale, with and without a model formulated for intermittent flow  .................................. 160 

Table 7.2 - Comparison of Porosities and Axial Dispersion Values for a Microscale Column on a LHS and a 

conventional column on a FPLC .............................................................................................................................. 162 

Table 7.3- Model Parameters for the 3 microscale column volumes, compared to the lab-scale model for IgG A

....................................................................................................................................................................................... 165 

Table 7.4 - Experimental, Modelled and Predicted DBC10% values for 4.7 mL, 600 µL, 200 µL and 50 µL columns, 

at 160 s, 240 s and 480 s residence time............................................................................................................... 170 

Table 7.5 - Model parameters for IgG A and IgG B at 600 uL and 4.7 mL  scale  ...................................................... 174 



 

14 

 

 Symbols and Abbreviations 
 

a280 - Absorbance of 280nm radiation, measured in Absorbance Units 

Ax - Absorbance at wavelength x 

AcO - Acetone 

AEX - Anion Exchange  

ANOVA – Analysis of Variance 

AU - Absorbance Units 

BTC – Breakthrough Curve 

CCCF- Clarified Cell Culture Fluid 

CEX - Cation Exchange  

CHO – Chinese Hamster Ovary 

CPP - Critical Process Parameter 

CQA - Critical Quality Attribute 

CSTR – Continuous stirred tank reactor 

CV – Column Volume 

Da - Dalton 

DBC - Dynamic Binding Capacity 

DLVO - Derjaguin-Landau-Verwey-Overbeek 

DMF – Dimethyl Formamide 

DoE - Design of Experiments 



 

15 

 

EBC – Equilibrium Binding Capacity 

ED – Equilibrium Dispersive 

EMG - Exponentially Modified Gaussian  

Fab - Antibody-Antigen binding fragment 

FDA – US Food and Drug Administration 

FPLC - Fast protein liquid chromatography (interchangeable with HPLC in some applications) 

HCP - Host Cell Proteins 

HEK – Human Embryonic Kidney 

HETP - Height Equivalent to a Theoretic Plate 

HPLC – High performance/pressure liquid chromatography 

HTPD - High Throughput Process Development 

ID- Internal Diameter 

IEX - Ion Exchange Chromatography 

IgG - Immunoglobulin class G 

IP – Intellectual Property 

LHS -Liquid Handling System 

M -  Mole/L 

mAb – Monoclonal antibody 

Mol =  6.022 x 1023
 

mAb -  Monoclonal Antibody 

MSS - MabSelect SuRe  



 

16 

 

MSSLX – MabSelect SuRe LX 

NaCl – Sodium Chloride 

PABA – Para (4)-aminobenzoic acid 

PCA - Principal Component Analysis 

PES- Polyethersulfone 

PFR – Plug flow reactor 

PLS - Projection to Latent Structures/Partial Least Squares 

PLW – Post load wash 

PrA - Protein A 

PTM – Post translational modification 

QbD - Quality by Design 

R2 
– Coefficient of determination 

RMM – Relative Molecular Mass 

SMA – Steric Mass Action 

UCB - Union Chemique Belge 

UV - Ultraviolet 

Mechanistic Model Terms 

c- Mobile phase concentration 

dp – Particle diameter  

Dax – Axial Dispersion Coefficient 



 

17 

 

DL – Apparent axial dispersion Coefficient 

DM  - Molecular diffusivity 

Dp – Pore diffusion Coefficient 

H – Height Equivalent to a Theoretical Plate (see HETP) 

kads – Adsorption rate 

kdes – Desorption rate 

kp – Partition coefficient 

Keq - Langmuir equilibrium constant 

kf- Film diffusion coeffient 

Rp -  Particle radius 

Re- Reynolds number 

s - Second 

Sc – Schmidt number 

Sh – Sherwood number 

qmax -Maximum adsorption capacity 

k’ – Retention coefficient 

kf – Film diffusion coefficient  

M -  Molar mass 

q – Stationary phase concentration 

Q – Volumetric flowrate 

Rp – Particle radius 



 

18 

 

u – Interstitial flow velocity 

Vx -  Volume, relating to system x 

v – Superficial flow velocity 

β – Pore fraction (subscript p for particle, b for bed) 

ε - Molar Extinction coefficient (subscript wavelength) or porosity (subscript b for bed, p for particle, t for total 
and eff for effective particle porosity) 

λ – Wavelength 

τ – Bead tortuosity or characteristic time 

ϒ – Coefficient for Ruthven’s axial dispersion correlation  

𝜐 – Kinematic Viscosity 

EMG Terms 

h – EMG peak height 

µg - Gaussian Peak Position 

σg - Gaussian Peak Width 

τ - Exponential decay coefficient 

HETP Terms 

a - Peak width right of centre 

b – Peak width, left of centre  

h - Peak Height 

HETP – height equivalent to a theoretical plate (see H). 

Mn - nth
 statistical moment 

N – Plate count 



 

19 

 

µ - First absolute moment 

σ2 – Variance/second absolute moment 

As - Asymmetry 

W1/2 – Peak width at half maximum  



 

20 

 

Abstract 

Microscale chromatography as an experimental tool has shown much utility in process development due to 

reduced material consumption and ease of parallelisation which are of major benefit when compared to 

conventional lab-scale studies. Microscale columns are commonly used in early process development where the 

most impactful decisions, such as choice of unit operation, purification strategy, resin, and the choice of 

candidate are made with limited resources and knowledge. Understanding the behaviour of microscale 

chromatography and better applying the knowledge gained from microscale studies to large scale 

chromatography may allow faster, more efficient and more robust early process development, and therefore 

more effective processes once a bioprocess is fully developed and products commercialised. It is the overall aim 

of the project to develop a model to determine large scale mass transfer parameters describing a lab-scale 

chromatographic process from microscale data, and allow one to simulate and optimise large scale  separations 

whilst enjoying the benefits of reduced resource consumption of the microscale domain. 

From the outset, characterisation of the differences between lab-scale columns operated on a conventional Fast 

Protein Liquid Chromatography (FPLC) system and microscale columns on a robotic Liquid Handling System (LHS) 

was performed. Determining the common metrics of column performance, HETP,  asymmetry and experiment-

to-experiment or column-to-column variation between columns and experiments provides an understanding of 

some of the key differences between lab-scale and microscale column formats with regards to system, scale and 

data quality, as well as providing an opportunity to optimise  the experimental design of microscale experiments.  

This was performed through evaluating methods of improving resolution, including fashioning rigs to use 

microscale columns on a conventional system, evaluating various tracer substances and evaluating a novel 

strategy of pre-filling collection plates. 

Investigations into ascertaining the dynamic binding capacity (DBC) of IgG to Protein A resin using microscale 

data has been performed with 3 microscale column volumes at several residence times using the high 

throughput system, and repeated at lab scale, with further work into understanding the effect of intermittent 

flow on resin: target interaction by mimicking the microscale operation on a larger system.  

This effort has led towards data used to calibrate a mechanistic model of chromatography at both lab scale and 

microscale with the intention of predicting lab scale behaviour . By correcting for scale, operational and flow 

effects, one may predict large scale performance through calibrating a model with microscale data, enabling 

better process understanding with reduced material consumption. 
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1 Introduction 

1.1 Project Motivations 

A trend in the process industries, especially biopharmaceutical production, is the need for increased process 

understanding (Gronemeyer et al., 2014), considering the high cost of development (PhRMA, 2016), the 

regulatory pressures and benefits of being first to market emphasising rapid, cost effective and robust process 

development. In early process development, when processing decisions have the most impact, resource is often 

scarce, which can lead to non-optimal processes to ensure timely delivery of material. Microscale 

experimentation, coupled with highly automated, parallel liquid handling workstations provide ways of 

obtaining process understanding with reduced material, labour and time consumption, though the operational 

and design differences must be understood and corrected for if the results at this scale can be representative of 

larger scales, such as the conventional laboratory, pilot and manufacturing scale.  

It is the aim of this project to develop a better understanding of microscale protein A chromatography in an 

industrial setting, with the purpose of creating a model for translating results across these scales, leading to 

increased process understanding with reduction in resource consumption. 

1.2 Biopharmaceuticals 

Biopharmaceuticals are medicinal products synthesised using biological systems and are typically proteins, 

nucleic acids, or whole cells. The FDA defines them as “any virus, therapeutic serum, toxin, antitoxin or 

analogous product applicable to the prevention, treatment or cure of diseases or injuries of man” (Code of 

Federal Regulations, 2018) though there a variety definitions in parlance, some of which exclude blood, 

antivenom, hormones, vaccines and other therapies that are directly extracted fr om natural sources, rather than 

genetically engineered organisms (Rader, 2008). Depending on this distinction, human therapeutic 

biopharmaceutical manufacture can be over thirty years with manufacture using genetically modified 

organisms, or a hundred years old considering penicillin productions, or if stretching the definition, thousands 

with the inclusion of alcohol manufacture through yeast fermentation. 

Distinct from the far more established, chemically synthesised small molecule drugs, therapies derived from 

transgenic cell culture have shown much promise in the past few decades. Development on biopharmaceutical 

production has been a major area of research; from the humble beginnings of penicillin manufacture in 

repurposed items such as hospital bedpans (Bud, 2007) merely a century ago, the industry now invests over 

$50B into biopharmaceutical development annually, directly employs over 800,000 people, has over 500 FDA 

approved products with over 7,000 products  in development, representing over 20% of total pharmaceutical 
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sales worldwide (PhRMA, 2016). One of the largest classes of approved biopharmaceuticals are antibodies, with 

their market is expected to value $137-220 billion by 2022 (Grilo & Mantalaris, 2018). 

1.2.1 Antibodies  

Antibodies (Ab), also known as immunoglobulins (Ig) are a superfamily of glycoproteins, imperative to the 

function of the adaptive immune system. They are produced, in vivo, by blood plasma cells and provide humoral 

immunity to the host. They function through binding to complimentary partners, antigens, which are often cell 

surface markers of bacteria, viruses or a range of other adventitious agents (Brekke & Sandlie, 2003), leading to 

neutralisation, agglutination, precipitation of the pathogen or activation of the complement system, and 

protection from disease. 

The huge diversity, specificity and selectivity of these molecules make them very appealing drug candidates, 

offering fine control and modulation of biological pathways, and therefore disease, that smaller compounds 

simply cannot (Buss, 2012). These therapies represent the most prevalent class of biopharmaceutical (Walsh, 

2014), with dozens of currently approved drugs, and over 300 in development (Ecker et al., 2015).  

Monoclonal antibodies as therapeutic entities is a relatively new phenomenon compared to conventional, small 

molecule drugs; the first of its class receiving market approval by regulatory agencies in 1986  with Orthoclone, 

a CD3 binding IgG2 indicated against kidney transplant rejection (Starzl & Fung, 1986, Meijer  et al., 2003)  whilst 

natural antibodies had been known of for many decades, it was only with modern genomic techniques and 

developments in hybridoma technology, in which an antibody producing B cell is hybridised with an immortal 

cancer B cells to form an effective production system,  that they became viable candidates for therapy (Liu, 

2014). 

The synthesis of these molecules is a monumental task when contrasted with typical, small molecule therapies; 

their complex structure with many thousands of functional groups and chiral centres ensures that production 

through chemical means is infeasible, meaning one may only manufacture these entities with a biological system 

with the highly sophisticated machinery which cells possess. Monoclonal antibodies require post translation 

modifications (PTMs) for their therapeutic function, especially glycosylation, to eliminate immunogenic  

responses otherwise expected from incompatible glycosylation patterns. This means that mammalian 

expression systems, such as Chinese Hamster Ovary (CHO) and Human Embryonic Kidney (HEK) cells are the 

typical expression systems due this innate ability to perform PTMs, impossible for the higher producing yeast 

and microbial expression systems (Spadiut et al. 2014). 

In vivo, a plethora of different antibodies, with many different structures and associated sequences, are 

produced; a polyclonal mixture, meaning isolation and expression of a single type is not exhibited in nature and 
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must be created. There is significant heterogeneity across antibody types by species; typically antibodies are 

discovered using non-human animals, such as mice, and then must be modified to remove the non-human 

regions (the Fc region and scaffold) and replace them with motifs expressed in human antibodies, a process aptly 

named ‘Humanisation’; one cannot use the initially discovered antibody or hybridoma for production of 

pharmaceutical antibodies for humans without risking severe immunogenicity.  Typically, this is achieved using 

a chimeric intermediate with the murine variable region grafted to a human Fc region, though other technologies 

such as phage display are also widely employed (Liu, 2014). 

Modern antibody therapies are typically produced through biotechnological means, with genetic modification, 

cell culture and sophisticated processing to manufacture these drugs. The discovery and development of each 

compound is a highly expensive endeavour, taking many years and an average of well over a billion pounds per 

approved molecule (Shaughnessy, 2012). In order to reimburse the huge investments such candidates require, 

process development must lead towards manufacturing processes that can produce sufficient yields and 

throughputs to meet demand, whilst being economically promising allowing for remuneration, and therefore 

funding of further drug development. 

1.3 Monoclonal Antibody Production Processes 

Therapeutic monoclonal antibodies, whilst incredibly diverse in specificity and function, are typically 

manufactured using a similar process. For the wide array of drug candidates; the method of discovery, cell lines 

used, and physicochemical properties are often similar across the entire class of compounds. Companies often 

operate a general platform for most stages of drug discovery and development, such as discovery, candidate  

screening, cell line development and production. Every currently approved monoc lonal antibody is an IgG, 

which, excluding the antigen binding regions, are largely similar in terms of mass, charge and physical structure 

(Shukla et al., 2007). 

Many biopharmaceutical manufacturers operate platform processes; that is, a generic process that is then 

tailored to and optimised for each specific candidate. This enables faster process development, with the 

equipment, staff, facilities and expertise in place to quickly bring a candidate drug to production, assuming it 

‘fits’, or performs well within the platform. When a new drug can bestow a maximum of twenty years patent 

protection from filing, and may take 10 years to develop, every day saved in process development means 

significant remuneration (Mohs et al., 2017). This is possible due to similar cell lines and cell line and media 

development strategies for each candidate leading towards similar upstream processing challenges, and the 

similar physicochemical properties, such as size and isoelectric  point meaning that often only relatively small 

adjustments are typically made to an existing downstream processes to develop a new drug, rather than 

designing a new process ab initio.  
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A well-publicised production process is the ‘A-MAb’ case study, which was commissioned by a consortium of 

biopharmaceutical manufacturers, and describes a general process which is widely adopted by the industry for 

the production monoclonal antibodies using modern practises and paradigms (CMC Biotech Working Group, 

2009). This general process for antibody manufacture is the use of suspension cell culture for product synthesis, 

cultured within bioreactors, followed by extraction of the product through a clarification train typically consisting 

of centrifugation and a series of filtration steps of reducing coarseness, multiple modes of chromatography and 

buffer exchanges as shown in Figure 1.1.  

Cell culture, production and primary recovery is considered the realm of upstream processing (USP), with 

downstream processing (DSP) responsible for transforming a broth of cells, debris and product into a highly 

refined, concentrated, pure drug substance. Platform mAb production processes are often similar, with two or 

three orthogonal (exploiting different physicochemical properties) chromatographic steps, two orthogonal viral 

clearance steps and buffer exchanges for conditioning and formulation, and can be classed into upstream 

processing activities and downstream processing, in which the molecule is captured from harvest material, 

‘polished’ to remove reaming impurities and then concentrated and formulated into a buf fer to form drug 

substance. 

 

Figure 1.1 - A general mAb process, as described in the A-MAb case study (CMC Biotech Working Group, 2009)  
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1.3.1 Upstream Processing 

Upstream processing of biopharmaceuticals concerns ensuring the cell culture is maintained in an optimal state,  

growing to a suitably cell density, maintaining high cell viability and producing antibody with expected and 

consistent quality, yield and impurity profile.  It is during this stage that the cells grow, multiply and express 

protein. In a typical process, small bioreactors or flasks are inoculated, from a cell bank, with genetically modified 

cells which proliferate in media, with larger bioreactors then inoculated with the cell culture fluid from previous 

vessels until a suitable scale is reached through a seed train, enabling the required quantities of material to be 

expressed. Upstream processing is a vast discipline, with the goal of producing large amounts of high-quality, 

consistent product, using a myriad of bioreactor types, control regimes, media and cell lines.  Suffice to say, 

however, upstream processing whilst ensuring the actual manufacture of the product, it is highly time intensive, 

expensive and a major source of process variation, and often the largest factor introducing product variability 

and affecting product quality (Hutchinson, 2014).  

Monoclonal antibodies are expressed extracellularly, meaning no disruption of the cell membranes is required, 

whereas antibody binding fragments (Fabs) expressed in microbial system require some periplasmic disruption  

through shear forces, sonication or enzymatic attack. Extraction is accomplished by separating the cells and large 

particles from the media, typically through centrifugation or depth filtration. If required, flocculants can be 

added to aid aggregation of particles and therefore their clearance, though addition of this must be validated 

for clearance during the process, and risks product binding to the flocculants, reducing yield.  Cells and large 

debris form a pellet during centrifugation, with the product remaining within the fluid phase, or supernatant, 

for further processing (Gottschalk, 2017). 

The supernatant is filtered to remove remaining large particulates, with some processes utilising centrifugation 

for further solids removal whilst reducing the required filtration area. Ultrafiltration may be employed to 

concentrate the product, reducing volume handling required for downstream processing, which is most often 

employed in processes producing very low concentration of product within the bioreactor to better utilise 

expensive chromatographic resin, improve binding capacities, easier facility fit and reduced processing time. 

Once clarified and treated, the material should be free from cells and large particles, containing an expected and 

consistent concentration of monoclonal antibody, though also containing a plethora of host cell proteins, DNA 

fragments, endotoxins, aggregates, virus particles, media components and other  product related and process 

related impurities that require removal (Staby et al., 2017).  

1.3.2 Downstream Processing 

Downstream processing concerns purifying and formulating the product. Purity and efficacy requirements are 

strict; these products are typically intended to be introduced into diseased, possibly immunocompromise d 

people. Concentration, purity and recovery should be consistent throughout a production c ampaign, and due to 
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the expensive nature of the product and process, time and material consumption must be minimised whilst 

maintaining quality. A downstream process train will have a variety of unit operations, demanding each to be 

well optimised and controlled to ensure excessive product is not wasted to cumulative loss and that quality is 

maintained. The standard unit operations are described in Figure 1.1, and are typically classed into filtration to 

remove solids and virus particles, ultrafiltration for product concentration, diafiltration for buffer exchange 

(Houp, 2009), and chromatography for clearing impurities. The order, nature and efficacy of these unit 

operations varies from process to process, and it falls into the responsibility of downstream processing to be 

able to cope with any variation introduced by upstream processing, such as feed concentration, impurity profile 

and volume to consistently provide product of expected quality and recovery. 

1.3.2.1 Chromatography 

A difficulty with purifying antibodies is that they are expressed in low concentrations within the media , though 

thanks to improvements in upstream development, this has improved significantly in the past few decades (Li 

et al., 2010), with ten grams per litre (1% (w/v)) considered a high titre, or concentration, which is less than 1% 

(w/w) of feed material. The products are mixed with a wide array of impurities, from lipids and DNA to viruses 

and media components, and are fragile molecules. These compounds are sensitive to thermal, pH, shear and 

biochemical degradation, and must be kept free from adventitious agents. These impurities, such as host cell 

proteins and viruses, could prove to be infectious or raise an immune response, and must be reduced to proven 

acceptable levels before formulation. It is chromatography that typically performs these activities, from capture 

of product from feedstock, to purifying and polishing out any process or product related impurities. 

Chromatography is considered the workhorse for manufacture of most biopharmaceuticals, especially 

monoclonal antibodies (Kelley, 2007). It is a separation technique, where a multicomponent mixture is 

partitioned into stationary or mobile phase based upon properties of the components and adsorber, such as 

isoelectric point, hydrophobicity and size (Guiochon et al., 2006). Often multiple, orthogonal chromatographic  

steps are used as part of a process, with the vast majority of the host cell proteins (HCP) and DNA are cleared 

through these steps, with orthogonal processing ensuring separation occurs by at least two separate physical 

phenomena, often electrostatic, size and chemical affinity. In addition, chromatography often serves as a 

powerful analytical technique, with a variety of formats used in every aspect of drug development, from product 

and impurity quantification, identification and characterisation. Analytical chromatography will often employ 

the same physical processes and chemistries as preparative chromatography, and largely differs on scale, 

throughput and of course, application. 

There are many forms of chromatography, from the simple thin layer chromatography to more complicated 

arrangements such as two-dimensional and multimodal chromatography. These can operate in bind and elute 

mode, whether product is bound, washed and eluted after contaminants, or flow through mode (Lacki, 2018, 

Collins, 1997), in which contaminants bind and product flows through the column.  A monoclonal antibody 
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process will typically use several techniques (Table 1.1), though most employ a capture in bind and elute mode, 

and DNA clearance through anion exchange chromatography in flow-through mode. 

Table 1.1- Description of some of the major chromatographic chemistries employed in monoclonal antibody purification 

Separation 
Mechanism 

Example 
Chemistry 

Comments Mode 

Cation Exchange 
(CEX) 

Sulfopropyl 
ligand 

Negatively charged ligand binds 
positively charged target or 
contaminants 

Both flow through 
and bind-elute 

Anion Exchange 

(AEX) 

Quaternary 

ammonium 
ligand 

Positively charged ligand binds 

negatively charged target or 
contaminants 

Both flow through 

and bind-elute 

Hydrophobic 
Interaction (HIC) 

Phenyl ligand Hydrophobic ligand interacts with 
hydrophobic patches on target or 
contaminants 

Both flow through 
and bind-elute 

Affinity (AC) Recombinant 

Protein A ligand 

Target or contaminants binds with 

high affinity and selectivity to 
functional groups of ligands through 
hydrogen bonding.  

Typically bind-elute 

Mixed 
mode/Multimodal 

(MMC) 

Ceramic 
Hydroapatite 

Matrix 

Target or contaminants interact 
through a variety of mechanisms, 

including ion exchange, 
hydrophobicity and affinity 

Both flow-through 
and bind-elute 

Size Exclusion (SEC), 
Gel Filtration (GF) or 
Gel Permeation (GP) 

Matrix provides 
separation 
ability, not ligand 

Large molecules elute early, as 
cannot access the full volume 
accessible to smaller molecules. 

Separation upon size (hydrodynamic 
volume) and steric hindrance. Rarely 
used in commercial processes due to 

small sample volumes, low flowrates 
and dilution of product. 

Flow through 

Chromatography can be a time-intensive unit operation, due to slow flowrates to preserve bed integrity, reduce 

shear, meet pressure limits and to ensure the chemical processes have adequate time for separation, as mass 

transfer is often a limit to efficiency for protein chromatography. Resin beads are constantly being developed to 

withstand faster flow and exhibit greater binding capacities and lessened kinetic resistances, thus offering faster 

cycling, more efficient cycles and enhanced throughput, with other offerings such as membrane and monolith 

technology designed to improve kinetics and therefore unit operation throughput by improving mass transfer 

(Orr et al., 2013).  

1.3.2.1.1 Affinity Chromatography 

Affinity chromatography functions through separating components by relative affinity, or selectivity for binding 

to a ligand (Costa & Cabral, 1991). This affinity is achieved through selective, reversible interactions, such as 

hydrogen bonding or coordinate covalent bonding, with components with high affinity for the ligand being 

retained within the column, whilst the remaining, unbound components continue to flow and exit the column. 
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Affinity chromatography is frequently used in the purification of proteins; recombinant research proteins are 

often ‘tagged’ with a poly-histamine chain of residues, which coordinates to nickel or cobalt within a column as 

immobilised metal affinity chromatography. This is later eluted with a competitor to the nickel, typically  

imidazole, with many other impurities removed. This same approach is used with a variety of other tags, 

including Strep-tag, maltone binding protein, and chitin binding protein amongst others (Lichty et al., 2005). An 

issue with introducing affinity tags to therapeutic proteins is that they may be immunogenic and therefore must 

be demonstrated to be tolerated and safe to be given to patients or must be removed and purified out before 

formulation. Therefore, affinity tag introduction to therapeutic proteins is discouraged, with not a single 

therapeutic protein with an affinity tag currently approved by the FDA (Dozier & Distefano, 2015), whereas Fc-

fusion proteins are relatively common, this does not serve as an affinity tag for the purposes of purification but 

for biological action (Ogasawara & Alexander, 2019). 

However, affinity is still a highly valuable mechanisms for separation of monoclonal antibodies even without 

introducing exogenous tags to the target. The adaptive immune system has existed for over 500 million years 

(Flajnik & Kasahara, 2010), providing nature a significant head-start in developing methods of preferentially 

binding antibodies. Protein A, Protein G and Protein L are all examples of bacterial proteins which have evolved 

to bind and sequester antibodies, conferring the pathogenic bacteria resistance to their host’s immune  

response. These proteins, immobilised on resin beads, preferentially bind antibodies, interacting with the Fc 

region for A and G, and the Fab region for protein L, without the need to introduce any non-therapeutic moiety 

to the protein. 

1.3.3 Bioprocess Development 

Thanks to progress by process development, biopharmaceutical manufacture has advanced from paltry amounts 

of penicillin manufacture under a century ago, to now multiple tons of therapeutics, representing billions of 

pounds in revenue (Ecker et al., 2015). Cell line development has reached a point where one can express up to 

ten grams of product per litre of culture for well-developed lines, a three log improvement in 20 years (Li et al., 

2010).  Process development concerns ensuring consistent product quality, optimal yields, process robustness 

and throughput, minimising cost of production, whilst contending with this increase in titre, competition and 

increasing regulatory expectations.  

Protein biopharmaceuticals are highly expensive to produce, costing up to tens of thousands of pounds per gram 

(Brian, 2009) in stark contrast to small molecule drugs, which are often manufactured for a fraction of a penny 

per gram (Hill et al., 2018). Therefore, being able to determine, test and validate a process quickly, and robustly, 

is a major driver in bioprocess development. The cost of a process is especially important towards to end of a 

products’ intellectual property protection in which competition is imminent. Even with many years of IP 

protection, costs of goods can easily mean a therapeutic is unprofitable, even if best in class, due to the presence 

of cheaper alternatives. Biosimilars, that is, generic versions of biopharmaceuticals whose patents have expires, 
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have already entered the market, including for mAbs (Raedler, 2016). Early in process development, cost is also 

a major factor, as there is significant chance of failure during trials, minimising the economic risk of this is crucial, 

often through simultaneous development of other candidates to mitigate the risk by hedging a pipeline into 

many separate therapies. Considering the costs of development, benefits of being first to market, and time-

limited protection to IP, rapid and agile process development is crucial. Even a decade ago, every day a 

blockbuster drug is delayed from market; several million dollars is lost in opportunity alone (Sun, 2010).   

With the advent of Quality by Design (QbD), multivariate statistical analysis and highly automated laboratory 

systems, both the need and the ability to gather ever more data became increasingly apparent (Rathore & 

Winkle, 2009). Optimising, characterising and implementing a bioprocess can be incredibly expensive, dwarfing 

manufacturing costs of small molecule drugs, further motivating innovation in bioprocess research and 

development (Farid, 2007). 

1.3.4 Quality by Design 

Quality by Design (QbD) is defined by the FDA as “a systematic approach to development that begins with  

predefined objectives and emphasizes product and process understanding and process control, based on sound 

science and quality risk management” (FDA, 2009). It is an approach to process development that relies on 

product and process characterisation, with statistical modelling and whole process understanding used to aid 

process control, to reduce waste and ensure consistent product quality and supply. 

It is a paradigm born from the pharmaceutical industries’ excessive levels of waste, frequent batch failures and 

poor process control under the previous paradigm of Quality by Testing (QbT). In some cases, waste of product 

was as high as 50% of total batches (Rathore & Winkle, 2009), and often the industry could not acceptably 

demonstrate scale-up, or adequately explain batch failures. These issues threatened a consistent supply and 

increased the cost of these medications, and the FDA was receiving more new drug applications each year and 

risked not being able to regulate them all effectively if their resources were stretched further.  

Need for change was clear, and the FDA responded with the Quality by Design imperative. This prioritised 

process and product understanding, modelling and characterisation, through continual improvement, holistic , 

risk-based approach to process development, in which a process would be studied for sources of variation, and 

how to control variation in such a way to lead to consistent product quality. Rather than being concerned with 

a single unit operation or parameter at a time, with processes being inflexible reactive affairs relying on product 

testing for release, a process would instead be viewed as a whole, with development becoming more proactive 

to face anticipated challenges, with better process understanding, process analytics, control strategy and 

robustness, reducing failure rates, wastage and regularity oversight. 
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Critical Quality Attributes (CQA’s) of the drug, the properties of the product that affect the quality  and efficacy 

of the therapy, such as impurity levels, potency and post translational modifications, must be finely controlled 

during manufacture. These attributes are linked to Critical Process Parameters (CPP’s), parameters in the process 

that must be well understood and managed, such as buffer composition and process temperature, through 

experimental results and modelling with rigorous risk assessment. A product design space, a multidimensional 

space of the acceptable CQAs, is defined as a target product profile (TPP). Assuming a product falls within the 

boundary of this design space, it is within specification, and the process is controlled. A process design space is 

constructed for each unit step built from the CPPs and represents the area in which the process can still be 

controlled to meet desired quality. 

Animal studies, clinical results, product characterisation and historical data are used to define the CQAs, with 

data, risk modelling and statistical understanding used to correlate the CQAs to CPPs.  Clinical data may show 

the maximum dose of HCP before any adverse effect shown, and data from other drugs may form part of this 

criteria. This means that rather than tight specifications determined under the Quality by Testing paradigm, with 

poor understanding of process inputs and how they affect quality, the priority is knowing the ranges in which a 

process can meet this quality, and adequate process understanding and control strategies in place to ensure 

these ranges are adhered to. This also demonstrates that process control, and processes operations are not 

necessarily static, but that the process may be adjustable within this design space to account for external sources 

of variability. 

1.3.4.1 Statistical Understanding 

Process development under the QbD paradigm requires a substantial amount of process and product 

understanding. Bioprocesses are complex affairs and measuring the effect of even a single factor on the quality 

of the product and process overall requires significant investigation, and therefore investigating a combination 

of factors makes this endeavour exponentially more difficult.  With many unit operations, each with a multitude  

of controlled and uncontrolled parameters, optimisation represents a significant experimental burden. 

Statistical techniques allow one to identify and quantify relationships and model complex processes to improve 

process understanding, and with a suitable statistical understanding of the data, the experimental requirement 

can be reduced through models with relatively fewer experiments performed to validate a model. 

Univariate approaches, such as altering a single factor at a time and measuring a response would be prohibitively 

time, material and cost intensive when applied to optimising a bioprocess, as only a single factor may be 

evaluated at a time, and others needing fine control. This approach would fail to show any higher order 

interactions amongst variables, running the risk of optimising within a local optimum specific to the starting 

assumptions, rather than a global optimum for the entire system. This approach also fails to demonstrate a 

holistic understanding of a bioprocess. 



 

32 

 

1.3.4.2 Multivariate Analysis 

Multivariate analysis techniques are of great utility in process development. Design of Expe riments (DoE) is often 

employed in bioprocess development for condition screening, optimisation, robustness testing and modelling 

(Mandenius & Brundin, 2008). DoE is a statistical framework for planning of experiments and interpretation of 

systems to investigate as many conditions in as fewer experiments as practicable, specific to the model used. 

For a DoE investigation, many factors are changed simultaneously to set levels with one or more response 

measured, with both an understanding of the effect of a single factor on the system, and also the relationships 

and interplay between factors.  There are many formats, the most suitable depending on the investigation at 

hand, the desired level of understanding and the experimental limitations.  Full factorial designs have each 

controlled variable investigated at two or more levels, meaning a total number of experiments increases 

exponentially and grows to a large number of experiments with modest amounts of levels and factors. Fractional 

factorial designs require fewer experiments, at the expense of omitting higher order interactions between 

variables. Whilst this allows investigations to take place that would be otherwise too time intensive, the 

parameter estimations are more prone to error, and main effects are often indistinguishable from interactions 

between variables (Gunst & Mason, 2009). Parameter choice and level selection must be carefully considered 

to minimise experimentation whilst ensuring enough data is obtained to adequately understand the system 

under investigation. The results from DoE studies are usually displayed in contour or surface plots through 

response surface methodology, which involves fitting polynomial surfaces to the data (Whitcomb  & Anderson, 

2005). A common use of this is to identify ‘sweet spots’, or optima, of the experimental space, for further 

investigation and analysis. 

Regardless of the design type, for bioprocesses, which may have a plethora of CPP’s to investigate across many 

unit operations, the necessity for considerable numbers of experiments remains, producing large quantities of  

data. Multivariate statistical tools such as principal component analysis (PCA), and projection to latent structures 

(PLS) are useful tool to reduce the complexity of multidimensional data through combining many dependant 

variables into few, independent variables through linear transformations (Maitra, 2008, Malmquist  &  

Danielsson, 2004).  This has shown much use, ranging from chemometrics (Trygg et al., 2007) to clinical trial 

evaluation (Bekke-Hansen et al., 2012), and are powerful tools for the reduction of dimensions within data, and 

therefore easier data interpretation and better process understanding. 

1.3.4.3 Mechanistic Modelling 

The above statistical approaches rely on empirical data for pattern identification and therefore provide little  

ability for extrapolation, as relationships outside the measured data can only be speculated, though 

interpolation is possible as the data may be generalised into a linear or polynomial function. In contrast, 

mechanistic modelling offers, through applying the physical principles and fundamental relationships involved, 

a method of accurately describing the mechanics of a systems and therefore extrapolating outside of a measured 
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response space, whilst also better understanding within this space through their basis in first principles of fluid 

dynamics, transport phenomena and thermodynamics. For most mechanistic models, statistics are also used in 

order to calibrate these models, an example is calibration or validation though measuring a goodness of fit 

metric. One could consider a mechanistic model to be an extension of a statistical model, in which known 

scientific correlations and principles are applied to a dataset, to reduce experimental burden and increase 

confidence in extrapolating outside of the initial dataset (Pandey et al., 2017). 

However, the requirement for such stringent mechanistic understanding can inhibit their implementation; with 

chromatography, there is such a wide variety of parameters and complex relationships that can affect the 

behaviour of the process, such as the resin-protein, protein-solvent and solvent-resin interactions, their rates, 

and their individual properties (Hanke & Ottens, 2014). Models are merely an approximation of a process, and 

the precision can vary significantly based upon the model type, training data and system complexity, though if 

the assumptions are valid, and the model describes the process accurately, it demonstrates a better process 

understanding than statistical modelling alone, being derived from established principles rather than merely an 

approximation of data. Mechanistic models relevant to chromatography, will be discussed in gr eater depth in 

Chapter 6. 

QbD aligned process development is increasingly important for ensuring safe, consistent and economical 

production of therapeutic antibodies; whilst regulatory pressures, cost drivers, increasing candidates count and 

increased throughput and impurity burden from upstream processing are an ever present challenge, paradigms 

such as using platform processes, statistical and mechanistic modelling and the wide variety of chromatographic  

techniques available make better processes and process understanding possible under these conditions. 

However, with the multitude of parameters to test, the experimental burden is increasing, and novel methods 

must be employed to ensure the data requirement can be achieved, and the understanding is robust enough to 

best evaluate, operate and optimise a process to provide crucial medications to those that rely upon them at a 

consistent quality and acceptable cost. 
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2 Introduction to High Throughput Process Development 

2.1 High Throughput Process Development 

Highly automated liquid handling systems becoming more ubiquitous, reliable and economical has facilitated 

the advent of high throughput, microscale experiments in process development, allowing a greater extent of 

experimental space to be investigated with reduced material, time and labour consumption. With modern 

robotic liquid handling systems multiple independent experiments can be performed simultaneously and in 

parallel with very little manual input, with high precision, and lower material requirement than has been possible 

with conventional experimentation. 

With early process development, material availability and process understanding are limited, whilst decisions 

concerning process operation and design parameters must be made, thus screening a large experimental space 

pairs well with a platform process, such as monoclonal antibody purification, and supported by ever increasing 

R&D costs and proportionately fewer drugs in a pipeline being approved each year (Fishbaum, 2011). Due to the 

90% chance of a product entering Phase I trials failing to meet approval (Harrison, 2016), devoting much expense 

to a single IgG in early process development is risky,  therefore products may enter the market and reach patients 

with an uneconomical, non-optimal process when approved. 

Microscale, high throughput techniques are well used in the pharmaceutical industry; high throughput screening 

is frequently used  to identify favourable characteristics from many molecules during candidate discovery, with 

often more than 100,000 assays performed daily on a single system (Bader et al., 2018, Attene-Ramos et al., 

2014). (Cell line development is often performed with microtiter plates, for screening productivity, and 

microscale bioreactors, such as the AMBR 15 and AMBR 250 ranges are often used for investigating culture and 

process quality, respectively (Baumann &  Hubbuch, 2017).  

With downstream processing, as with other areas of process development, robotic systems have shown much 

utility. From increasing assay throughput, such as ELISA, western blot, PCR and spectrometry, modern systems 

also allow filtration, mixing, centrifugation and chromatographic steps to be mimicked on the microscale, and 

investigated with a high throughput approach (Hubbuch, 2012).  

2.1.1 Microscale Chromatography Formats 

For chromatography there are a variety of resin formats and chemistries available for purifying monoclonal 

antibodies in the microscale domain (Chattre & Titchener‐Hooker, 2009). Resin filled tips, resin filled plates and  

microscale columns, such as the Atoll RoboColumn series (Atoll, 2013), are increasingly employed for process 

development. 
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With resin filled tips, a device is connected to the aspiration tips on the liquid handling system arms. The tips 

contain the resin under investigation, with fluids, such as equilibration, load and elution buffers aspirated 

through the device and dispensed into microtiter plates.  Microtiter batch plates are typically 96-well format 

with small volume of resin within, held in position above a filter membrane  with pore sizes significantly below 

the average resin particle diameter. Buffer and load material are aspirated on top and drawn through onto 96 

well plates through vacuum or centrifugation, allowing collection in a plate beneath the filter plate and operating 

the entire plate like many separate columns. 

Both formats are extensively used for screening chromatographic conditions (Wenger et al., 2007, Hanke & 

Ottens 2014, Feliciano et al., 2016), the pipette chromatography tips offering superior fractionation, as one can 

take multiple fractions merely by moving the tips across a plate, rather than changing collection plates entirely. 

However, this is to the detriment of throughput, with 8 resin reservoirs per liquid handling system rather than 

96 for the batch plates. Fluid handling is different for both; the batch plates flow is difficult to control, as  a 

vacuum or centrifugation must be applied to create the required pressure differential for the working fluid to 

transverse the resin, and must be stopped to change collector plates, and therefore collect fractions. The 

micropipette tips operate in a bidirectional manner and can dispense or aspirate a limited volume at a time due 

to machine limitations, which may significantly affect their representation of scale. The batch plates range down 

to 2 µL resin volume and pipette tips in the order of 300 µL. These formats have demonstrated good 

approximation of lab-scale columns for HCP, aggregate clearance and recovery for Protein A chromatography, 

when compared at lab-scale equipment (Chattre & Titchener‐Hooker, 2009). 

2.1.1.1 Microscale Columns 

Miniaturised columns, however, offer an improved tool for chromatographic process development for many 

investigations (Lacki, 2012).  While batch plates and tips are well used in screening buffers, products and resins, 

their inherently different flow regimes, geometries and data collection abilities limit their usefulness, whereas 

microscale columns attempt to mimic lab scale columns more closely, allowing investigations into resolution, 

gradient elutions amongst other experiments typically performed. Miniaturised columns, such as the Atoll 

MiniColumns series, are available with resin volumes of 50 µL to 600 µL, with an internal column diameter of 5 

mm and bed heights from 2.5 mm to 3 cm (Atoll, 2013). They are available prepacked with a wide variety of 

resins, working in a downflow mode and compatible with a range of liquid handling platforms; hand pipetted 

varieties, which offer a low-cost access to microscale chromatography, centrifuge operated types, typically up 

to a 384 well format, and liquid handling system operated columns. Both hand pipette and centrifuge operated 

types offer benefits, such as a high throughput and no need for an expensive liquid handling system, they present 

difficulties in controlling and maintaining a constant, defined flow rate, which is  often of high importance to 

chromatographic studies, as well as requiring considerable manual intervention. Additional problems are 

associated with fraction collection, and performing more complex investigations, such as gradient operations 

which require precise and controlled liquid handling to sufficiently mimic larger scale behaviour. 
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Miniaturised columns designed for use with automated liquid handling systems have a demonstrated ability to 

mimic full chromatographic processes in microscale and parallel when combined with a liquid handling system 

(Britsch et al., 2008, Evans et al., 2017, Treier et al., 2012a, Benner et al., 2019, Khalaf et al., 2016, Keller et al., 

2017). These columns operate by dispensing liquid, such as buffer and load material, through the inlet at the top 

with a liquid handling system, with an O-ring preventing fluid from leaking out the inlet. The liquid handling 

system dispenses liquid, at controlled flowrates through the column and effluent is collected within 96 well 

plates that shuttle along underneath the columns, allowing twelve fractions per column per plate. These systems 

can change and read plates, using an integrated plate moving arm and UV plate reader, as well as prepare assays, 

clean plates and prepare buffers from stock solutions without manual intervention. 

As with both conventional lab-scale columns, which range in the order of millilitres, and these microlitre columns 

the geometry is cylindrical, and  similar with regards to aspect ratio (except for 50 µL and lower columns, in 

which diameter is greater than length), with expected similar packing density to in-house packed columns at 

scale. However, the bed height is drastically changed, and as discussed below, this is likely to have significant 

effects on the separation. Additionally, there are a number of deviations between the scales, geometry, and 

method of use and data acquisition that must be considered, evaluated and if possible, mitigated. 

2.1.2 Scale Considerations 

Scaling of downstream processing is not a new science, and is a common activity during process development, 

transferring from lab sized production to larger scale manufacture as a scale-up, for commercial supply or in-

house material supply, or from large scale to smaller for the purposes of further process development or 

troubleshooting, as a scale-down model (Sofer & Hagel, 1997).   Chromatographic columns are typically scaled 

from lab-scale investigations to pilot and production scale using volumetric expansion, in a radial direction. The 

radius of a chromatographic column is increased, from the order of a few millimetres at lab-scale, to meters at 

pilot and production scale whilst the axial dimension typically remains constant.  This ensures the bed height, 

and thus the superficial fluid velocity, residence time and both fluid and bed pressure remain similar. There are   

small deviations in fluid flow with this approach, due to a difference to the volume to column surface area ratio, 

the wall effect seen with respect to packing density and fluid velocity at the boundary between the column 

interior and wall, as well as resin beds often losing structural integrity with increasing diameters (Tran et al., 

2007). The method of operation between lab-scale and above is very similar, with FPLC machines of increasing 

flow capacity used, typically with similar software and configurations, though with higher volume processing 

capabilities through use of increasingly larger pipe bore, collection vessels and larger pumps. 

Lab-scale columns are available with resins that can be packed manually or bought prepacked. Many can be 

disassembled; parts replaced, repacked and reassembled easily, and are well established in industry and 

academia, and therefore have a myriad of papers and books detailing their use, characterisation and limitations  

(Rathore et al., 2003, Schmidt-Traub, 2006, Carta & Jungbauer, 2010). Their associated systems have been used 
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and developed for decades, and offer fine fluid control, on-line pressure, UV, temperature and conductivity 

measurements, and fractionation, with straightforward automatic use through sequential ‘scouting’ runs 

possible on several systems, and automatic buffer preparation with binary or quaternary pumps with stock 

solutions. 

With a lab-scale and larger columns, the dead volume, the volume of fluid in the flow path of the system not the 

column, is typically minimal compared to the column and thus the system rarely significantly impacts results, 

though, with smaller columns this can be an important consideration (Kaltenbrunner et al., 1997). Additionally, 

with buffers suitably covered, the entire system is static and closed, with no moving parts , except for pump 

pistons, directly interacting with the column matrix or fluid, and no evaporation or fluid loss within the system 

possible if properly prepared.    

 

Figure 2.1 - Diagrams of a microscale column, compared to a conventional lab-column. Of note are the changes in 

dimension, method of use and geometric differences. Images adapted from Wiendahl et al, 2008 and GE Healthcare 
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2.1.2.1 Design Differences 

Whilst typical lab-scale columns are well established, with fine fluid control, microscale columns and are not 

operated in a closed environment, with buffers exposed to the air during operation . They are relatively new 

phenomenon when compared to conventional columns, with the patent filed in 2006 (Schroeder, 2006), and 

therefore do not have the benefit of extensive literature  or understanding. The nature of liquid handlers and the 

columns, with a single experiment using multiple buffer types and columns, simultaneously, precludes  operating 

them in a fully closed system. Though when paired with a liquid handling system (LHS), they offer precise fluid 

control, they exhibit a number of differences due to their geometry (Figure 2.1). The volume within the column 

inlet is variable with regards to needle placement; 2 mm above the bed is suggested by the manufacturers, 

though columns move during use and the column cradle often does not lie completely flat and may be moved 

by the operator. This small variation, of only a few millimetres, can be a significant proportion of a 50 µL column. 

The inlet and outlet void are the only dead volume within the system, with no tubing, as on a FPLC system, to 

delay and holdup fluid. 

The inlet assembly has an O-ring and filter, both of which can be prone to degradation, and cannot easily be 

replaced. The higher surface area to volume ratio at this scale lends itself to significant wall effects, where the 

fluid at the radial boundary of the column is static; poor flow may affect column packing and material 

distribution, and thus column efficiency, with some papers suggesting that the distributor cap on the top of the 

column in ineffective at maintaining plug flow (Chhatre & Titchener-Hooker 2009). This is very pronounced at 

this scale, where the diameter of the column at 5 mm is only a few times larger than typical resin beads, which 

are commonly in the range of 50 to 100 μm, a consideration when packing effects can extend to up to 50 particle 

diameters (Farkas & Guiochon, 1997). Additionally, if any component interacts with the column wall material, it 

will be greatly pronounced at this scale considering the far higher surface area to volume ratio in the microscale 

domain. As already implied, the different bed heights must be considered, as must flow rate. At constant bed 

heights, such as typically employed during  scaling from pilot scale to commercial manufacturing,  the flow rate 

can be scaled as a constant linear flow velocity, which ensures both the flow velocity and the time the material 

spends resident in the column, the residence time, remain constant regardless of scale. At different bed heights, 

as must be used during in microscale chromatography to maintain a similar geometry, mitigate the wall effect 

and match volumes adequately, this it is impossible to scale both factors simultaneously, meaning one must 

choose to either scale for linear flow velocity or residence time, depending of the separation and desired 

performance (Rathore and Sofer, 2012). For instance, separations which are more kinetically limited, such as 

affinity separations, the bed-height is of less importance, and therefore scaling for residence time desired, 

whereas for more hydrodynamically driven separations, such as size exclusion (Rathore & Velayudhan, 2002, 

Lacki, 2012), column efficiency is key, and therefore linear flow velocity has a larger impact. The European 

Union’s Committee for Proprietary Medicinal Products (CPMP) has highlighted bed heights as a key parameter 

to be considered to determine the validity of a scale-down chromatographic model (European Medicines 
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Evaluation Agency, 1995). Regardless of which scaling strategy, all process volumes (e.g. Loading, washing, 

elution lengths) are typically scaled for a number of column volumes (CV). 

With bind-elute chromatography of proteins, kinetic resistances often dominate, meaning scaling flowrates such 

that the material spends equal time within the column is often the most prudent approach. This provides equal 

opportunity for interaction with the resin at each scale, and is the simplest strategy for scaling, assuming the 

rate limiting step is not velocity dependant. Whilst for some experiments, such as investigating bed compression, 

scaling for linear flow velocity may be pragmatic. The fluid control on a Tecan EVO 200, the LHS used in this 

study, is precise but cannot pump at a rate slow enough for some applications, especially with columns with 

very small bed heights combined with chromatography with long residence times. The minimum sustained 

flowrate the system can maintain is 0.8 µL s-1 which corresponds to a linear flowrate of 15 cm h-1 on a 5mm 

diameter column, a maximum residence time of one minute for a 2.5 mm bed height with a 50 µL column. 

2.1.2.2 Operational Differences 

The mechanisms by which these columns are operated are vastly differe nt; on an FPLC system, pumps and valves 

ensure constant flow for the entire operations. With an LHS, however, the maximum volume per aspirate-

dispense cycle is limited by the volume of the pipette, often to 1 mL. This means during a typical 

chromatographic run the pipette tip would enter and exit the column many times. It is possible, however, using 

suitable liquid class settings, to load the pipette with a gradient, or sequence of buffers, with a capillary storage  

within the pipettes and air gaps preventing mixing. Though a gradient must be prepared earlier, rather than 

mixing between two pumps as on a FPLC, they are possible to achieve with a series of steps, though is merely 

an approximation of the smooth gradient easily achievable with FPLC systems. While this reduces the need for 

constant mechanical interaction with the column, this movement, and its associated deviations with column 

pressure, as well as interrupted flow whilst aspirating more fluid, mean the scale operation is not wholly 

mimicked. More flow interruption is introduced with a plate change; it can take several seconds to store a 

generated plate and fetch a new one, during which the flow must stop to prevent wasted effluent. This 

interrupted flow increases the effective residence time and must be properly assessed if residence time is to be 

effectively investigated. 

Additional difficulties arise from the fact that unlike traditional FPLC chromatography, an LHS is an innately open 

system. All buffers, load material and effluent lie open to the ambient air rather than closed containers, for ease 

of pipetting, introducing the risk of evaporation or interaction with the environment. Additionally, as eluate 

forms as drops on the column outlet, and fall at random intervals, aliquot size cannot be finely controlled. There 

is also substantial risk of a drop falling while a plate is absent, or in motion, thus not falling into a well to be 

measured, introducing error loss and presenting difficulties in establishing a mass-balance.  
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The way data is collected is intrinsically different; with modern FPLC systems, UV, pH, conductivity, pre and post 

column pressure and temperature are all continuously monitored with in-line sensors, with fractions taken 

optionally. With a microscale LHS set up, all data is gathered through collection of effluent in fractions on a 96 

well plate. These are read for absorbance at a high throughput for radiation of wavelengths of 230 nm to 1,000 

nm and can have a variety of assays performed upon them. However, conductivity and pH measurements must 

be performed one at a time, in a highly manual manner with specialised probes, highlighting that whilst DSP 

development can be ported onto a high-throughput device, it is best matched with an equivalent leap in 

analytical throughput to enjoy the increase in experimental capability. 

Due to the fact these fraction sizes are limited to the drop size at minimum, resolution is poor when compared 

to a 12 µL flow cell with a high sampling rate, as is typical on FPLCs, used in conjunction with a larger column. 

Resolution is often further limited by the minimum working volume of the collection plate for spectrometric 

determination, which is typically in the order of over 50  µL. Unlike FPLC system, there is no associated 

chromatogram processing software commonly used for microscale column paired with UV absorbance 

measurements in a 96 well format, meaning manual processing is typical. Due to the vast quantities of data the 

system is capable of producing, data must be processed in a high throughput manner. 

Diederich and Hubbuch (2017) have detailed and evaluated a large number of possible error sources when 

performing microscale separations with respect to analysis through UV absorbance, system pipetting accuracy 

and intermittent flow. They have highlighted that the systems are generally accurate with regards to pipetting, 

improving with increased volume, though emphasised the importance of accounting for  the variability of 

microtiter plates and intermittent flow. Different molecules behaved inconsistently with regards to flow regime, 

with some showing no difference between continuous and intermittent flow, and others deviating significantly , 

typically the largest molecules had the greatest effect. This highlights the importance of establishing the 

differences on a case-by-case basis for both molecule, and nature of the study, such as breakthrough, elution or 

pulse tests, and is why intermittent flow in particular is focussed on later in this work. 

Each of these highlighted differences with respect to operation and scale shall be explored with respect to typical 

experiments likely to be performed on these columns, for the purposes of understanding, and if possible, 

mitigating, the effects of these scale and system deviations to better perform high-throughput experiments and 

to improve interpretation of microscale data. 
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3 Microscale Protein A Capture 

3.1 Introduction 

Protein A chromatography typically serves as the first chromatographic operation in downstream processing of 

mAbs, in which product is isolated and concentrated from crude fermentation broth. Recombinant Protein A, 

produced in bacteria, is immobilised onto beads, usually consisting of porous polysaccharides such as agarose  

and dextrose, though a variety of formats are employed, including silica and mesoporous plastic (Schmidt-Traub, 

2006). This matrix proves support, whereas the Protein A provides the resin its function through physicochemical 

selectivity and affinity of the Protein A domains to the Fc region of IgG. Antibodies preferentially bind to these 

ligands in solution, out-competing host cell proteins which often cannot bind, or only bind weakly through 

hydrophobic interactions or electrostatics rather than the highly favourable hydrogen bonding networks 

mediating immunoaffinity binding (Yang et al., 2003). These weakly bound contaminants are largely washed off 

in a low pH buffer, low salt buffers, high salt buffers or a combination thereof  (Post Load Wash, PLW) by shielding 

the electrostatic or hydrophobic interactions between contaminants and ligand, or contaminants and product . 

After impurities are eliminated, the pH is lowered to disrupt the binding between target and ligands to elute the 

purified antibody (Elution).  The column is regenerated, and any remaining species washed off in a stronger acid 

buffer (Strip, Regeneration or Post Elution Wash) and cleaned in a solution (for base tolerant Protein A this is 

typically sodium hydroxide) after a number of cycles to remove bioburden and to solubilise contaminants, as a 

Clean in Place (CIP) operation. At the end of a cycle the column is either discarded (for single use columns), 

stored in a bacteriostatic storage solution, or re-equilibrated for further cycles. 

Protein A ligands offers favourable separation ability for many IgG’s, offering over 99% impurity clearance and 

high recovery in a single operation, and also a large concentration factor (Gottschalk, 2017). For this reason, 

chromatographic capture of product by Protein A is typically the first chromatographic steps in downstream 

processing of monoclonal antibodies. This has the benefit of removing most impurities early, reducing risk of 

chemical and biochemical degradation of the product by the impurities, also removing the burden of further 

processing such components. Unlike ion exchange (IEX)  or  Hydrophobic Interaction Chromatography (HIC) 

steps, adsorption is tolerant of loading buffer pH and conductivity, and the elution conditions (low pH) allow 

facile and efficient viral clearance by holding material in the acidic environment for a set duration, denaturing 

enveloped viruses. 

Protein A does have several limitations; the Protein A may leach from the resin into the material (Carter-Franklin, 

2007), which must be tested for and clearance validated due to the immunogenicity of Protein A (Palmqvist et 

al. 2002). The resin is typically highly expensive, as it is manufactured using recombinant protein, with costs over 

50% higher than other commercially relevant resins, selling over $15,000 per litre   (Rathore et al., 2015) with a 
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process column of over one meter in diameter, as is often used in commercial scale, consuming over $1M in 

Protein A alone (Follman, 2004). 

As the ligand is a recombinant protein, it is sensitive to pH, thermal, and biochemical degradatio n, therefore 

requiring both gentle conditions but also efficacious cleaning regimes. The resin beads are also vulnerable to 

excessive pressure, though modern Protein A resins offers significantly improved pH tolerance, resistance to 

leaching ligand, and ever more binding capacities. 

Due to the efficacy of this step, the high cost of resin and the risk of contaminants, such as Protein A, introduced 

into the process, optimisation of this step is crucial to effective IgG downstream processing. Therefore, 

establishing a scale-down approach will enable the benefits of microscale HTPD, such as increased experimental 

space and reduction in time, material and labour consumption, and more effective processes to be established. 

It is the aim of this chapter to investigate scaling down Protein A separation and explore limitations regarding 

column resolution and consistency, by evaluate the performance of the capture of two IgGs on a 200 μL 

microscale column platform. 

3.2 Materials 

3.2.1 Preparation of Load Material 

IgG A (IgG1) and IgG B (IgG4) clarified cell culture fluid (CCCF) was available from prior pilot scale fermentations , 

in which the cell culture fluid had been clarified by centrifugation followed by a series of filtration steps. This 

CCCF was then filtered through polyethersulfone (PES) membrane with a pore size of a 0.45 µm with pH and 

conductivity measured.  As for all of this work, IgG aliquots were available frozen at -80 °C, which were defrosted 

at 4 °C for 24 hours, bought to room temperature before experimentation, and mixed to ensure homogeneity. 

Titres were provided by Protein A HPLC measurement. 

3.2.2 Buffers 

For each antibody and experiment, a number of buffers were freshly prepared for each experiment 

(Equilibration, Post Load washes, Elution (low pH), Strip, CIP and storage buffers). These were filtered at 0.22 

μm before use and stored at room temperature. Buffer composition is provided in Table 3.1. 

Table 3.1 - Buffers used in Protein A capture for IgG A and IgG B 

Buffer Composition pH 

Equilibration 100mM Sodium Phosphate 7.0 

Wash 
100 mM Sodium Phosphate  (IgG A and B) 

100 mM sodium phosphate + 500 mM Sodium Chloride (IgG B) 
7.0 
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3.2.3 Microtiter plates 

96 well UV transparent, flat bottomed, microtiter plates were provided by Corning, USA, of two volumes. Full 

area plates, with a working volume of 75 µL to 200 µL were available, as were half-area plate’, by the same  

manufacturer, with working volumes of 25 µL to 125 µL. The diameter ranged from 7 mm per well for full area, 

and 5 mm for half area plates. 

Additionally, deep well plates were also used if excessive volumes were being sampled. These are not UV 

transparent, so samples from these plates were often transferred to smaller plates after mixing for 

measurement. 

3.2.4 Liquid Handling System 

For most of the liquid handling performed, a Tecan Freedom EVO 200 system was used, one of three available  

on site. A photograph and the specific layout of used modules is shown below (Figure 3.1). 8 stainless steel tips, 

connected to 1mL pipettes were used to introduce fluid to the columns. These were connected to a liquid 

handling arm (LiHa), which was able to move in x, y and z directions, with each tip able to be independently 

operated in the y and z axis, and in unison along the x-axis,  and dispense at different flowrates. The system is 

capable of sustaining flowrates from 0.8 µL s-1
 to over 1 mL s-1. A robotic manipulator arm (RoMa) moved 

microtiter plates across the deck to the integrated plate reader, cradle or storage blocks, and operated the waste  

tray. A Te-Stack module provided the capability to rapidly store over a dozen plates on two stacks, and a Te -

Chrom module allowing microtiter plates to be shuttled underneath a column cradle to collect effluent. A Tecan 

Infinite 200 PRO plate reader was used to measure absorbance from plates of radiation of wavelengths between 

230 nm and 1 µm with a dynamic range up to 2.3 AU. The system was programmed using the proprietary Tecan 

software, EVOware, which allowed processes to be performed by creating a script describing operations. A 

limitation of the software and system is that operations could not be performed in parallel but sequentially, 

meaning that an operation, such as dispensing fluid, had to be interrupted whilst another operation, such as 

retrieving a microtiter plate, was performed.  

Elution 100mM Sodium Citrate  3.5 

Regeneration 100mM Citric Acid  2.1 

CIP 100mM Sodium Hydroxide High 
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Figure 3.1- Diagrams of the Tecan Freedom EVO 200 Workstation.  A – Photograph of the configuration used, B - Schematic 
Representation in a top-down view, with green arrows indicating external degrees of freedom, and blue represent internal; 

i.e. The RoMa arm can move spatially in 3 dimensions, rotate in one plane, and move its claws in one dimension. 
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3.2.4.1 Columns 

Eight 200 μL Microscale columns were used with bed heights of 1 cm and internal diameters of 5 mm, purchased 

pre-packed with recombinant Staphylococcal Protein A resin (MabSelect SuRe). This is an agarose matrix with 

base tolerant recombinant Z-domain of Protein A allowing high binding capacities and ability to use caustic 

cleaning without denaturing the ligand. 

3.3 Methods 

3.3.1 Microscale Protein A Capture of an IgG1 and an IgG4 from feedstock 

The microscale chromatographic operations followed that at large scale, in that a number of column volumes of 

equilibration buffer were dispensed down the columns, immediately followed by loading the feed material to a 

defined load challenge of 30 g L-1, followed by one wash step for IgG A (IgG1) with equilibration buffer, and two 

for IgG B (IgG4), including a high salt buffer. Columns were eluted, regenerated and cleaned, with storage  

solution flushed across the columns at the end of each set of experiments. IgG A and B had differing titres, so 

the volume to be loaded was tailored to each IgG to meet 30g L -1. 

Equilibration, cleaning and storage flow through fractions were discarded, the other operations effluent was 

collected in UV transparent plates. Between each fluid change, the tips were thoroughly washed in water using 

the integrated wash module. 8 columns were operated in parallel, with each column subject to identical 

conditions. The general procedure is given below (Figure 3.2). 

 

Figure 3.2 - Process description diagram of the protein A chromatography process used in this 
study 
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3.3.2 Scaling Strategy 

Due to the reduced bed height of these microscale columns compared with conventional, lab-scale columns 

used otherwise used on this process (1 cm vs 20 cm), one must decide which flowrates best approximate the 

larger scale system. Residence time scaling, in that the same time for fluid to pass along the length of the column 

regardless of scale, was used, a typical strategy when comparing columns of different bed heights in bind-elute 

of proteins (Rathore & Velayudhan 2002, Kidal & Jensen, 2006) due to minimising differences arrising from mass -

transfer limitted separations. 

A volumetric flowrate of 0.83 µL s-1 was employed, providing an effective residence time of 240 s for the entirety 

of the chromatographic separation, the same residence time as that used for conventional scale columns. A 15 

minute hold step is employed during the CIP to aid efficacy. These process runs were repeated at a number of 

fraction volumes, keeping all other parameters constant between runs. Either half-area plates or full area plates 

were used for fraction collection and analysis. 

3.3.3 UV Spectroscopy 

All microtiter plates were analysed through measuring UV absorbance at 280 nm, 900 nm, 977 nm, 

corresponding to protein concentration, a non-absorbing wavelength and aqueous volume, respectively. 

Standard curves for these plates were generated, in which 12 volumes of fluid (available protein A eluate and 

CCCF for each IgG and elution buffer) were dispensed into the wells (75µL to 200 µL for full area plates, 25µL to 

125µL for half area plates), and then UV absorbance for each well determined at wavelengths of 280nm, 900  

nm and 977 nm. A linear regression was performed for each of the UV absorbance values at each wavelength 

(280 nm and 977 nm – 900nm)  using Microsoft Excel (Figure 3.3).  
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Figure 3.3 UV Calibration Curves for microtiter plates. A -  The UV spectra of an empty well compared against a well filled 

with water. B -  Well containing aromatic amino acid (tryptophan) with absorbance peak at 280nm, blanked with water,  

demonstrating 977nm and 280 nm are the strongest absorbing wavelengths. C - a typical calibration curve of 977nm 

absorbance vs plate volume and (D) 280nm absorbance adjusted to 1cm pathlength for a water and protein solution of known 

concentration, respectively 
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3.4 Data processing 

3.4.1 Treating Microtiter Plate Data 

The microtiter plates generated were measured for UV absorbance at 280 nm, 900 nm and 977 nm in each well. 

Using the raw values, the background absorbance of the plates was subtracted, and the 977  nm and 900 nm 

readings were used to determine the path length, and therefore the volume within the wells with reference 

absorbances, and the following equation [3.1] 

 
(𝐴977,𝑠𝑎𝑚𝑝𝑙𝑒 −  𝐴900 ,𝑠𝑎𝑚𝑝𝑙𝑒 )  ×  𝑟𝑚𝑚

2  ×  𝜋  × 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑚

(𝐴977,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑙𝑒𝑛𝑔𝑡ℎ − 𝐴900,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑙𝑒𝑛𝑔𝑡ℎ )
 = 𝑉 (𝜇𝐿) 

 

 
[3.1] 

280 nm radiation is strongly absorbed by proteins due to the aromatic amino acid residues of tryptophan, 

tyrosine and phenylalanine. 977 nm corresponds to a strong absorbance peak in water, whereas 900  nm is 

chosen as a blank to correct for anomalous and background absorbance; this range is not usually strongly 

absorbing in biological molecules (McGown, 1998). As 977nm absorption is temperature dependant, an 

isosbestic point away from the 977 nm peak maximum, such as 900 nm, is often measured so that absorbance 

values do not change with respect to temperature (McGown & Hafeman, 1998). As all UV measurements were 

taken in a climate-controlled lab, this was not thought to be important, but was collected nevertheless. 

The absorbance readouts were concatenated together into a single file, forming a pseudo-chromatogram. 

Graphs were plotted of the cumulated volume (x-axis), against 280 nm absorption, corrected for plate 

absorbance, and transformed into the signal for a 1 cm path length, thus being invariant to fraction volume and 

representative of concentration. Errant values were removed by selecting for ‘nonsense’ volume measurements, 

such as negative volumes and volumes more than 5 times the average volume, with both the volume and 280 

nm readings removed from this data. 

3.5 Results and Discussion 

Initially, 150 µL fractions were collected during these experiments, which exhibited clear peaks for the load and 

elution operations, though the poor resolution meant one could not clearly discern a consistent, isolated peak 

for the ‘strip’ fractions (Figure 3.4). Slight asymmetry of the elution peaks was evident in the smaller fractions 

for IgG A and IgG B, respectively, which became far more evident as one increased the resolution to 50  µL per 

fraction. 
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A     B 

 

C     D 

 

 

 

Figure 3.4- IgG - Protein A pseudo-chromatograms generated using full area UV transparent plates showing improvement in 

resolution but increase in noise with decreasing fraction size  A – IgG A at 150 µL fraction volume, B – IgG B at150 µL fraction 

volume, C -IgG A at 50 µL fraction volume, D – IgG B at 50 µL fraction volume.  

At fractions of 50 µL and below, the data was of very poor completeness (Figure 3.4); the fractions were 

significantly below the working volume of full well plates (75 µL), and therefore the effluent, rather than forming 

a flat meniscus, would form a droplet on one side of the well. This meant that the single point of absorption in 

the middle of the plate did not represent the contents and provided errant readings, either measuring very little 

absorbance (suggesting empty wells), and specular reflection measuring significantly higher absorbances than 

possible with absorbance alone. For some experiments the majority of data points were omitted. Using a half-

area plate mitigated this effect, and fractions were reduced to beneath this value, demonstrating superior 

resolution (Figure 3.5), as well as maintaining the similarity for the larger scale, historical data. 
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A      B 

 

C      D 

  

Figure 3.5 -  IgG - Protein A pseudo-chromatograms generated using half area UV transparent plates A – IgG A with 40 µL 

fractions, B -IgG A with 25 µL fractions, C- IgG B with 25 µL fractions. One can see improved resolution though with increasing 
gaps within the data. D – IgG A at larger scale (historical data) showing qualitative similarity to the microscale separation 

 

Processing removed errant readings through a series of checks for possible values for volume and corrected 280 

nm absorbance, as incorrect readings often gave very high, or negative values due to inaccuracies in either 

pathlength or 280 nm absorbance. These errant values were thought caused through two mechanisms; firstly, 

the aliquots being of too small a size to image through being below the minimum resolvable volume due to the 

meniscus effects, leading to non-central beam paths and reflection of UV radiation. Additionally, as the 

absorbances are processed as UV absorbance corrected to a 1 cm path length, to equate to a metric correlated 

to concentration and to remove any variation caused by wells being unevenly filled, at small volumes this 

calculation became more error prone as relative error increased, though absolute error may have remained the 

same.  

Choosing a suitable fraction volume meant that one could better resolve peaks, though often at the expense of 

losing material (Table 3.2); at very small fraction volumes, effluent could not be measured through either 

increased movement of collection plates leading towards more missed drops or through drops forming within 

wells. This meant that more structure within the data could be observed, at the cost of completeness. 



 

51 

 

Table 3.2 - Measure of resolution and volume loss, as a function of fraction size, measured volume determined by 977nm – 

900nmm absorbance, and dispensed volume is determined by the method on the LHS 

3.5.1 Elution Comparability 

To investigate the consistency of elution between columns and experiments, repeats were performed and 

assessed for IgG A and B with only elution fractions collected. A 40 µL fraction volume was chosen collected on 

a half area plate and performed for IgG A alone.  

 

Figure 3.6 - Elution Chromatograms for 8 columns across 5 runs, demonstrating typical variation between responses 

Variation in elution peaks was observed (Figure 3.6), though with a consistent, significant shoulder on the tail. 

No trends between columns or experiments were identified that lead towards a consistent difference in peak 

profile. The peaks were integrated, and the total amount of collected IgG calculated. The average recovery was 

Fraction Size (µL) Data Points Per Chromatogram Volume Loss (Measured volume by 

UV absorbance  compared to 

dispensed volume) 

150 (with full  area plates) 20 9% 

100 (with full  area plates) 30 14% 

50 (with full  area plates) 60 29% 

40 (with full  area plates) 75 43% 

40 (with half area plates) 75 21% 

25 (with half area plates) 120 33% 
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72%, which, accounting for the volumetric loss (Table 3.2), means an expected actual recovery of 94%, a typical 

value for protein A chromatography (Fahrner et al., 2001, Pabst et al., 2018). 

A

 

B

 

Figure 3.7- Box and Whisker Plots of recovery and variability of microscale column elution, for run-to-run and column-to-
column variability; A – Average for each column measured over 5 experiments; B – Average for each experiment measured 
over all 8 columns 

Similar variations in recovery were observed both between columns during a single experiment and between 

identical columns during separate experiments (Figure 3.7). One can surmise that it is the system itself, such as 

the intrinsic low signal to noise in the microscale domain and stochastic nature of drop formation that are 

responsible rather than lot-to-lot variability of the columns themselves; the columns, whilst variable between 

experiments, seem to be comparable in terms of elution efficiency across an average of 5 runs with 8 columns. 

This was confirmed with one-way ANOVA, in which for data grouped by either experiments or column failed to 

show any significant difference (with a F-critical value greater than F value, and a P value greater than 0.5 for 

both structures). A point to note is that these columns are from the same manufacturing batch, and therefore 

true lot-to-lot variability may actually be greater between adsorber and column lots than what has been 

reported here. 

A 
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3.5.2 Discussion 

Performance on microscale columns for a capture of two IgG’s by Protein A chromatography was assessed by 

UV spectrometry alone, with no analysis of impurity clearance. Poor resolution was observed initially, and 

therefore fraction volume was investigated to for resolution and completeness. Whilst poor recovery was 

observed, this is likely due to experimental limitations in which collection plates failed to determine fractions, 

either due to working volume limitations or drops missing the well and correlated with total volume loss across 

the entire separation. Interestingly, the elution peaks demonstrated a consistent shoulder (3.5 CV for a pool of 

>80% of total eluate product), likely due to packing effects (Kaltenbrunner et al., 1997), significantly more than 

is expected from larger scales, both in this process, and similar processes in literature (Pabst et al., 2018). This 

increased pool volume  has been reported by others (Kiesewetter et al., 2016, Keller et al., 2019), and therefore 

charactering these columns may be able to better explain this discrepancy. 
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4 Column Characterisation 

4.1 Introduction   

Because of the ever-increasing regulatory pressure of proving the efficiency, quality, safety and reproducibility 

of purification of biopharmaceuticals and the associated equipment and consumables, chromatographic  

columns should be qualified before use to ensure expected performance, as well as monitored for resin 

reusability and column equivalency. This is of particular importance when scaling column bed heights, as 

resolution and efficiency will vary significantly. Column qualification is commonly performed on lab-scale and 

larger columns to evaluate packing quality, though with microscale column being a modern development, there 

is few published methods for qualifying these columns. 

4.1.1 HETP and Asymmetry 

HETP (Height Equivalent to a Theoretical Plate) determination with a non-binding tracer is a common metric of 

column efficiency. It is a measure of the axial dispersion of material along a column and describes column 

resolution, with its roots in fractional distillation in which the name was coined (Peters, 1922). A well packed, 

homogenous column should have a small theoretical plate height, though this is wholly dependent on the resin, 

bed characteristics, pore size, packing quality, tracer, solvent and flowrate used (Rathore et al., 2003). 

 

𝐻𝐸𝑇𝑃 =  𝐴 +  
𝐵

𝑢 
 +  (𝐶𝑠 +  𝐶𝑚) ∙  𝑢 

 

 
[4.1] 

HETP values are highly dependent on flow rates, as shown by the Van Deemter equation [4.1], in which u  

represents linear flow velocity, A is Eddy-diffusion parameter, B the Diffusion Coefficient, and C represents the 

resistance to mass transfer of analyte between mobile phase (Cm) and stationary phase (Cs). Resistance to mass-

transfer dependant dispersion correlates linearly with flowrate (C term), as it represents the time taken to for 

material to transport to stationary phase, diffusion related dispersion (B term) is reduced with higher flowrates, 

as low flowrates provide more time in which the analyte diffuses, whilst eddy dispersion (A term), caused by 

channelling and non-ideal packing, is unaffected by flow rate. HETP values are determined from a pulse 

response, which can be directly measured (Figure 4.1), or inferred from a step change response (Figure 4.3).  
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Figure 4.1- The derivations of HETP and Asymmetry parameters from a pulse or differentiated frontal experiment 

A tracer experiment, performed by injecting a small pulse of noninteracting material, is the typical approach to 

determined HETP. A well packed column with many theoretical plates should generate a symmetric,  gaussian  

response, with typical As value between 0.8 and 1.4 (Rathore et al., 2003), determined with [4.2]. While an ideal 

column has an asymmetry value of 1.0, bed irregularities, unfavourable fluid flow and components external to 

the column will increase asymmetry considerably (Helling et al. 2013), as will prohibitively slow mass transfer 

(Jeansonne, 1990). 

 
𝐴𝑠 =

𝑏

𝑎
 

 
[4.2] 

 

4.1.2 Determining HETP Parameters from Response 

For plate count determination with a peak response and using the peak width approach, two parameters are 

needing determination from the response, a retention time or volume (vR or tr), and the width at half height 

(w1/2) in time (subscript t) or volume (subscript v) [4.3] with HETP then determined through[4.4]. The remaining 

parameter is the column length, which is known beforehand. These parameters can be determined directly from 

the peak with ease at sufficient resolution, however, with poor resolution data, the sparseness of points means 

that a single reading may be far away from the true peak maximum and midpoint, meaning one must interpolate 

these values, introducing error inversely proportional to resolution. In addition, considering that a highly 

Asymmetry =  
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asymmetric peak can mean the peak maximum and retention time differ significantly (Schmidt-Traub, 2006), as 

seen with the difference between mean residence volume and peak maximum/retention volume (Figure 4.2).  

 
𝑁 = 8 ln(2) × (

𝑣𝑅

𝑤1
2⁄

)

2

 
 
[4.3] 

 
𝐻𝐸𝑇𝑃 =

𝐿

𝑁
 

 
[4.4] 

Under these conditions, accurately calculating HETP may better use another approach; by using the method of 

moments, a statistical approach that allows estimation of population parameters. Determining these moments 

may be performed with a number of approaches, including approximating the peak with a mathematic al 

function. 

 

 

Figure 4.2 – Demonstration that peak maximum (mode), retention volume and average (mean) retention Volume, or first 
moment,  differ with asymmetric peaks, adapted from Dyson, 1998. 

4.1.2.1 Fitting a Distribution to Data 

One method for analysing and comparing chromatograms is through fitting an equation, curve or distribution to 

the data. This has several benefits, rather than analysing a multitude of data points, each chromatographic peak 

can be reduced to a function with a small number of parameters, allowing direct comparison of these 
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parameters, and therefore performance between systems columns and resins. For lower resolution data, it 

allows an estimation of the true data structure, and interpolation of results, based upon expected peak shape. 

There are several functions one can apply to describe chromatographic peaks, with over 90 described by Di 

Marco and Bobi (2001). Splining and fitting polynomials is simple, and requires no initial knowledge or estimation 

of parameters, though noise and errors will introduce bias into the model. These are very poor approximations 

of chromatographic peaks, with very large numbers of terms needed to fit well, and often leads to over fitting 

in which the random error is included in the model, preventing effective interpretation of the data. Fitting with 

a known function that describes chromatogram peaks offers a method of modelling peaks based upon expected 

characteristics whilst not excessively modelling error. As discussed, an ideal chromatographic peak is a 

symmetric Gaussian (Coning & Swinley, 2019, Kadjo et al., 2017),  however, due to mixing within the system, 

mass transfer resistance, poor packing and material gradients in the column, where the column is not entirely 

homogenous, chromatographic peaks are often asymmetric, or skewed (Rathore et al., 2003). 

Asymmetric Gaussian functions are often used to account for tailing or fronting, which are Gaussian functions 

convoluted with another function, often an exponential decay curve to account for wash-out kinetics. Whilst the 

Poisson distribution describes chromatographic plate theory, which is highly asymmetric at lower occurances, 

with a large number of theoretical plates, as typically seen in preparative chromatography, this is closely 

approximated by the symmetric Gaussian distribution (Said et al., 1982), though this may not be a valid  

assumption for small bed heights considering reduced plate count leading towards this asymmetry. 

Of the many asymmetric functions describing chromatographic peaks, of note are the log-normal, 

Edgeworth/Cramér series and the Gram/Charlier series, though the exponentially modified Gaussian (EMG) is 

the widely for chromatographic analysis due to its good peak approximation, few parameters and correlation of 

these parameters to measurable properties  of the peak (Kalambet  et al., 2011). This is highly beneficial for 

fitting poor completeness, microscale data; the fewer parameters means one can fit them with fewer data 

points, and the correlation to easily measurable parameters, such as peak width and height, providing 

robustness and confidence in the fit (Foley, 1987). 

4.1.2.2 Fitting EMG function to data 

The EMG equations can take many forms, though for the purposes of this, a single definition, provided below 

[4.5]  is used. For fitting an EMG function, the x-axis and y-axis of raw data is typically fed into an optimisation 

regime, or curve fitting tool. The algorithm will typically vary the parameters in to maximise a goodness of fit 

statistic between the equation and data, trying to find a combination of parameters that best describes the data.  
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𝑓(𝑥; ℎ, 𝜇𝑔 , 𝜎𝑔 , 𝜏, 𝑦0) = 𝑦0 +

ℎ𝜎𝑔
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[4.5] 

HETP values may be derived through two methods, from interpolating the modelled peak widths at greater 

resolution  or through integration and moments analysis of the peak.  

A moment is a quantitative measure of the shape or characteristics of a function. There are infinitely many 

moments that can be determined through the general identity in [4.6] though only the first four are typically 

used in chromatographic analysis as estimation of these moments becomes more error prone with increasing 

order, and higher order moments do not lend themselves to intuitive interpretation.  

 

𝑚𝑛 =  
∫ 𝑣𝑛 ∙ 𝑐(𝑣) d𝑣

∞

0

𝑐(𝑣)  d𝑣
 

 
[4.6] 

 

𝑚0 = ∫ 𝑣0 ∙ 𝑐(𝑣)  dv

∞

−∞

=  𝐴 

 
[4.7] 

 

𝑚1 = 𝜇𝑣 =
∫ 𝑣 ∙ 𝑐(𝑣) ∙ d𝑣

∞

0

∫ 𝑐(𝑣) ∙ d𝑣
∞

0

= µ𝐺 +  𝜏 

 
[4.8] 

 

𝑚2 =  𝜎𝑣
2 =

∫ (𝑣 − 𝜇𝑣
)2 ∙ 𝑐(𝑣) ∙ d𝑣

∞

0

∫ 𝑐(𝑣) ∙ d𝑣
∞

0

=  𝜎𝐺
2 + 𝜏2 

 
[4.9] 

 

𝑚3 =
1

𝑚0

∫ 𝑣3 ∙ 𝑐(𝑣)  dv

∞

0

=  2𝜏3 

 
[4.10] 

The zeroth moment corresponds to total peak area [4.7], the first moment the mean residence time or volume 

[4.8], the second moment the variance [4.9], and the third skewness of the peak [4.10]. Further moments 

correlate to distortions of the peak, and typically have lesser contributions to chromatographic peak shape s. 
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𝑁 =  
 𝜇𝑣

2

 𝜎𝑣
2

 

 

 
[4.11] 

Using this approach, HETP can be redefined in terms of the first absolute moment (µ), the variance (σ2) [4.11]., 

providing a measure of plate count whilst better accounting for peak asymmetry. The relative contributions of 

the system and column to band broadening can be considered additive (Schmidt-Traub, 2006, Carta & 

Jungbauer, 2010, Brooks et al., 1988 and Grinias et al., 2015,) one can consider the measured first moment 

(µmeasured) and variance, σ2 measured, to be the summation of the column first moment and second moment 

(µmeasured or σ2
column) and external contributions (µexternal or  σ2

external), the variance introduced by the system and 

by the variance introduced by the injection volume (σ2
inj) [4.12 and 4.13]. This allows better comparison between 

scales, as external volume can be considered, and corrected for, when determining HETP values. The exponential 

decay component of band broadening, τ, is not additive, so therefore asymmetry cannot be accounted for in 

external volumes with this approach (Kaltenbrunner et al. 1997). 

𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 = 𝜎𝑐𝑜𝑙𝑢𝑚𝑛

2 + 𝜎𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
2 + 𝜎𝑖𝑛𝑗

2  
 
[4.12] 

𝜇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝜇𝑐𝑜𝑙𝑢𝑚𝑛 + 𝜇𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +  𝜇𝑖𝑛𝑗  
 
[4.13] 

Additionally, one can also estimate the band broadening and retention caused by the injection itself [4.14 and 

4.15]. 

𝜇𝑣,𝑖𝑛𝑗 =
𝑉𝑖𝑛𝑗

2
 

 
[4.14] 

 𝜎𝑣,𝑖𝑛𝑗
2 =

𝑉𝑖𝑛𝑗
2

12
 

 
[4.15] 

At lab-scale and above, the protocols for performing both frontal and pulse experiments are well established. 

Though each resin manufacturer may specify slightly different parameters such as flow rate, tracer substance, 

concentration and volumes, as well as detection method, the general protocol is usually very similar ;  using a 

pulse of detectable, non-adsorbing material, occasionally step change instead for transition analysis, flowed 
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through the column at constant velocity with the response measured. Within the microscale domain, however, 

the literature is not nearly as extensive.  

It is known the wall effect can alter packing densities and dispersion, which would be especially pronounced at 

microscale (Susanto et al., 2008, Knox et al., 1976, Roberts & Carta, 2020), with HETP subject to this, meaning 

such a method could help to determine and quantify differences experienced across scales. Knox & Parcher 

(1969)  reported that the wall boundary extended to up to 30 particle diameters, whereas Farkas & Guiochon 

(1997) reported 50 particle diameters. Regardless of which value is most appropriate, with mean particle 

diameter of 85 µm, this effect will extend across the entire bed diameter of microscale columns of only 5 mm 

diameter and therefore is a very important consideration. It is the aim of this chapter to develop methods for 

testing HETP and asymmetry of microscale columns in order to assess how representative of larger columns they 

are, and whether HETP can be further used as a test of microscale column performance or as a means to 

determine model parameters. 

4.2 Established Methods 

4.2.1 Large scale 

The pulse method is the most common method of determining HETP, with a small volume of analyte, such as 

salt or a UV absorbing tracer is introduced onto a pre-equilibrated column at a defined superficial flow velocity, 

commonly in the order of 30 - 100 cm h-1.  HETP values can be derived from the response (Figure 4.1). The 

volume of analyte introduced differs between resin manufacturers, though most suggest no greater than 2.5% 

of column volume such that the subsequent peak variance is through dispersive effects alone, rather than 

composed largely of the initial tracer injection. Ideally, this injection should approximate a Dirac delta function 

(of zero width but non-zero area), though in practicality the volume must be large enough to ensure a sufficient 

signal is obtained (Schmidt-Traub, 2006). Additionally, many constrain the tracer to consist of a reasonably low 

concentration of analyte compared to running buffer, typically less than 1% (w/v), to reduce nonidealities due 

to variations in viscosity or flow (Rathore et al., 2003). The column is then pumped with equilibration buffer at 

the same flow rate, and a response measured using conductivity or absorbance of the resulting effluent.  

4.2.1.1 Pulse Method 

The column to be assessed is equilibrated with the buffer of choice, typically the same as the process 

equilibration buffer. The tracer is introduced, and the process buffer is again flowed down the column, with the 

effluent monitored.  

One may account for the dead volume, or extra-column volume, of the set-up, as may greatly influence analysis, 

which can be performed running a pulse through the system without a column. One can then account for this 
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dead volume by removing the peak position without column from the pulse data performed with a column, 

though this will not account for broadening in the system, which can be achieved with mechanistic modelling 

(Chapter 6 and 7) or through moments analysis, though as described, moments analysis will not account for 

additional peak asymmetry. Ideally, one should choose a system with the lowest dead volume and must also 

ensure the pulse volumes handled by the system are accurate. This is not typically a concern for larger scales, 

but with small scale this is an important consideration. 

4.2.1.2 Frontal Method 

The frontal method is very similar, with a pre-equilibrated column being pumped with the equilibration buffer 

with the addition of an analyte, the tracer buffer. Rather than a small pulse, this buffer is continuously pumped 

at the defined flow until the tracer is apparent in the output. This data is commonly available in manufacturing, 

in which step changes are often performed in the process, and therefore may give an insight into column 

performance over a campaign without requiring additional qualification experiments (Larson et al., 2003) 

through measuring transition in conductivity between buffers. As with pulse methodology, the tracer 

concentration must be considered as this may impact the resultant values (Lettner et al., 1995). Care should be 

taken to ensure the buffer switch is as fast as possible. In this investigation, for suitable sized columns, large 

sample loops filled with analyte buffer were used for small columns, rather than a separate buffer inlet, to 

ensure this fast step. As with the pulse method, the dead volume should be accounted  for, if not avoided as 

much as possible. The resulting chromatogram is then differentiated with respect to time or volume, with the 

differentiated signal forming a peak (Figure 4.3). However, because of two different buffers in contact, there 

could be an effect on mixing not apparent during pulse injections, as well as a reduction in signal due to the 

requirement to differentiate the incoming signal. Some have reported a significant difference in HETP estimation 

through these two different methods (Lettner et al., 1995). 
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Figure 4.3 - Obtaining a pulse trace from a frontal experiment through differentiation 

4.2.2 Methods on Microscale Columns 

These protocols, being well established, are facile to follow for the vast majority of columns at lab-scale and 

greater. Difficulties arise where the system is of a separate scale to the column of interest, such as HETP testing 

a small lab scale column on a lab scale system with significant dead volumes. These issues can be mitigated by 

either using a system better suited to the scale concerned, or by removing as many sources of dead volume as 

is practicable, as well as through analysis with the method of moments, though this is less perfreable than 

avoiding the phenomenon experimentally. This may be achieved using sample loops of appropriate size to avoid 

mixing of analyte within the system before introduction to the column.  

For microscale columns several complexities arise. Firstly, the physical design of the column; whereas typical 

lab-scale columns allow direct plumbing to a FPLC system through threaded connectors, microscale columns do 

not possess such adaptors and are operated by pipette.   

Two companies who had published results of HETP testing microscale column were contacted, the column 

manufacturer (Repligen, formally Atoll), and the resin manufacturer (Cytiva, formally GE Healthcare), for 

information on how they performed their microscale column characterisation. The column manufacturer kindly 

forwarded their own internal data, demonstrating that they had used a liquid handling system. The resin 

manufacturer had fashioned a rig with which to attach a microscale to a conventional FPLC system, though did 

not provide their data. 

4.2.2.1 HETP analysis using a liquid handling system (column manufacturer (Repligen)  method) 

 The column manufacture suggested mimicking a HETP experiment entirely on an LHS. This configuration 

presents a number of issues seen with their data; poor resolution meant their fitting was not robust, the weak  

UV signal meant a 25% CV pulse was employed, a 10-fold increase compared to convention. Figure 4.4 exhibits 

this data, with a total of 10 data points, and significant noise.  
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Figure 4.4 - Microscale column manufacturers In-house HETP data, with which they used to HETP qualify the columns. 12 

Data Point per column, 66 µL  (0.33 CV) fraction size, courtesy of Repligen (formally Atoll GmbH) 

4.2.2.2 HETP analysis using a FPLC system (resin manufacturer (Cytiva)  method) 

Whereas testing on a liquid handling system is the most straightforward, experimentally, for microscale 

columns, the resin manufacturer had performed HETP by building a rig to allow connection of the microscale 

column to a conventional FPLC machine, though did not provide raw data, but did confirm in correspondence 

that this was the approach they had used. This provides all the benefits FPLCs bring, in that it is a closed system, 

with continuous fluid control and online monitoring, as well as providing high resolution with a UV flow cell 

volume of a few microliters on smaller FPLC systems, demonstrated in the provided chromatograms (Figure 4.5). 

 

Figure 4.5 - Resin Manufacturers in-house HETP data , courtesy of Cytiva (formally GE Healthcare), with two repeats (blue 
and red) of a 200 µL column. Of note is the increased retention volume (>1 CV), likely due to hold-up volume of their system. 

Obtained  from GE Healthcare. 
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4.3 Materials 

4.3.1 Buffers 

The primary buffer used for this work is the established in-house HETP running buffer (100mM Sodium 

Phosphate, pH 7.0), with different HETP spiking buffers, each with a small concentration of UV active component 

or salt. 

4.3.1.1 HETP Tracer Buffers 

A number of analytes were tested for use in HETP, with their compositions below (Table 4.1). Analytes were 

selected initially from available compounds in the lab (DMF, AcO, AcON, NaCl, Cystamine) and tested for 

absorbance, with further analytes acquired (PABA, Trptophan, Cystamide). These compounds were selected 

based upon strong UV absorbance, lack of toxicity and volatility. All analytes were titrated to a pH of 7.0 ± 0.05 

with phosphoric acid or sodium hydroxide to ensure constant pH. 

Table 4.1 - Composition of HETP Analyte Buffers 

Analyte Composition 

Sodium Chloride (NaCl) 100mM Sodium Phosphate + 0.5 M NaCl 

Acetone (AcO) 100mM Sodium Phosphate + 1% (v/v) AcO 

Acetonitrile (AcON) 100mM Sodium Phosphate + 1% (v/v) AcON 

Dimethylformamide (DMF) 100mM Sodium Phosphate + 1% (v/v) DMF 

Phenylalanine (Phe) 100mM Sodium Phosphate + 5mM Phe 

Toluene 100mM Sodium Phosphate + 0.1% (v/v) Toluene 

Tryptophan (Trp) 100mM Sodium Phosphate + 5mM Trp 

Cystamide 100mM Sodium Phosphate + 5mM Cystamide 

1,4 Aminobenzoic Acid (PABA) 100mM Sodium Phosphate + 5mM PABA 

4.3.2 Equipment 

As before, the Tecan Freedom EVO 200 was used, though this time with larger (600 μL) microscale columns with 

an internal diameter of 5 mm and a bed height of 3 cm. A conventional FPLC system (AKTA Pure 25) was also 

used, paired with a HiScale column (GE Healthcare), and manually packed with 58 mL of Protein A resin 

(MabSelect SuRe, GE Healthcare), with a bed height of 29 cm and internal diameter of 1.6cm. The FPLC systems 

enabled continuous pH, conductivity, UV (190 nm to 700 nm wavelength), and pressure measurement.  
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4.3.2.1 Microscale Column to FPLC Rigs 

In order to benefit from the online measurements that a FPLC system affords, a number of approaches were 

tried to attach microscale columns onto a FPLC. Two rigs were fabricated, the first using silicone tubing and 

larger connectors which were adhered to a spare Tecan LiHa tip, which in turn  was pushed into a microscale 

column. This was followed by more rubber tubing, secured with zip-ties (Figure 4.6A); the second rig used 

capillary tubing (Figure 4.6B), of internal diameter of 0.25mm rather than the conventional tubing of diameter 

0.15 mm, to reduce system pressure, and smaller connecting parts were used. The loops were secured directly 

above the LHS tip, and the column was integrated into the system by forming a screw-thread on the column 

outlet by forcibly twisting the columns into a conventional FPLC female screw thread adapter.  

The minimum volume able to be handled by the system was 10 µL in 10 µL increments, motivating a different 

route to be taken if 12 µL (2% of a 600 µL column volume) was to be handled reliably and accurately. To ensure 

the system injected correct columns of analyte solution, custom loops were fabricated by cutting lengths of PEEK 

tubing (GE Healthcare). Capillary tubing of 0.15 mm internal diameter was used, a length of 68 cm contained 12 

µL of fluid. This was confirmed by weighing empty tubing and weighing again when filled with water. Volumes 

were within error of the balances used (± 0.5 mg). 

The set-up was not ideal; there was significant dead volume (450 μL for rig 1, 290 µL for rig 2, determined by 

filling with water and measuring the mass difference, likely an error prone estimate), ideally the rubber tubing 

needed replacement by capillary tubing to reduce mixing within the tube. Care was taken to minimise leaks, 

though they often occurred due the inherently insecure connections. The additional back pressure (0.3 MPa) 

also put further strain on the column, at faster flowrates the column would separate at the inlet as the housing 

could not withstand the pressure. Additionally, the limitations of testing a single column at a time meant it 

became quite time consuming; while effort was made to optimise and streamline testing through planning 

sequential experiments, going from simultaneously testing eight columns to one was detrimental to throughput.  

 

Figure 4.6 – Rigs for connecting microscale columns to a FPLC system A - The first rig, B the second rig, demonstrating a 

reduction in volume by removing rubber tubing and excess connections. Red arrows highlight the columns 
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4.4  Experimental Methods 

4.4.1 Ascertaining UV Spectra  

100 µL of analyte were pipetted into a Corning 96 well UV transparent flat-bottomed microplate and placed in 

the Infinite 200 PRO plate reader. Absorbances were measured in 5nm increments from 230nm to 1 µm 

wavelengths. Data was plotted to form spectra. Again, background measurements were taken and corrected for 

at every measured wavelength against an empty well. 

4.4.2 Pulse Tests 

Pulse tests, in which a small volume of non-adsorbing material was flowed down columns were commonly 

performed over the course of the project, namely for HETP determination here and column bed characterisation 

in Chapters 6 and 7. Described below is the general methodology for performing these experiments.  

4.4.2.1 Pulse tests using an LHS 

Resolution in 96-well plates can be poor, due to the minimum working volumes of the plates used (schematic in 

Figure 4.7, described in Chapter 3). Beneath this minimum working volume, the effluent forms a ball within the 

well, meaning the single point UV absorbance is subject to specular reflection, and the single point does not 

represent the average contents of the well, or the droplet is entirely outside the path of the radiation. With an 

even meniscus, however, assuming the contents are homogenous, one can measure the absorbance, path length 

and therefore calculate the concentration by applying the Beer-Lambert law [4.16]. A strategy of prefilling the 

wells to above this working volume, and then accounting for this additional volume in processing was attempte d  

as a means of acquiring better resolution by avoiding the minimum working volume limitation. 

 

Figure 4.7 - Demonstration of well pre-filling, exhibiting how an even meniscus, and therefore accurate measurements can 

be achieved by pre-filling wells 

Below working volume, 

Even Meniscus does not form 

Drop is not accurately measured 

Above working volume, 

Meniscus is level 
Volume can be accurately 
measured 
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The plates used (Corning 96 well UV transparent flat-bottomed microplates) were filled with running buffer to 

the working volume (100 µL) before use. These plates were then stacked, with an empty plate on top as a barrier 

to evaporation, in the plate stackers on the LHS before use. For the first dispense cycle, 930 µL of running buffer 

was aspirated, followed by a 2% CV pulse of analyte solution (12µL) and another 8µL of running buffer. This 

ensured that the analyte solution was immediately followed by running buffer without waiting for another 

aspiration cycle and preceded by a small amount of running buffer minimise additional analyte remaining on the 

tip surface, which could affect the peak. The running buffer was dispensed along the columns at a  linear flow 

velocity of 60 cm h-1, higher than the manufacturers guidelines of 30 cm h-1 (GE Healthcare, 2011a) , but used in-

house to save time as well as being safely within the flow capability of the LHS. The time moving the plates was 

not considered, though is expected to be <10 s in total for the vector settings used . Fractions were collected 

every 25 µL in pre-filled plates. Up to two aspiration-dispense cycles were used, corresponding to a total of 3 

CVs of fluid for a 600 µL column, read over 6 plates, meaning 72 fractions for column per run. Columns were 

used in 8-fold replicates. Smaller columns were subject to a single aspiration cycle. The plates were then 

measured for absorbance at 977 nm, 900 nm and 280 nm using the plate reader, for single point absorbance 

measurements, with data then processed with the standard curve approach, detailed in the previous chapter . 

  

4.4.3 HETP tests on an FPLC  

To avoid mixing in the system as much as possible, before introduction of the analyte buffer to the column,  

different pumps were used for equilibration buffer and the running buffer, with a system wash occurring in-

between, except for the microscale columns, in which the analyte was introduced by the sample loop for pulse 

tests (12 µL and 2 mL loop volumes), and sample pump for frontal tests at large scale, largely for system dead 

volume mitigation and greater volume accuracy. All experiments at all scales were performed at a superficial 

flow velocity of 60 cm h-1
. Equilibration volumes were increased from 5 CV to 10 CV to account for the increased 

contribution from system volume for microscale columns and avoid system mixing dominating results. 

4.4.4 Calibration Curves 

As before, calibration curves were generated for the analytes and buffers used, for accurate volume and UV 

absorbance measurement. The FPLC has a UV cell of constant volume, so no volume calibration had to be 

performed, however, the linear range of the detector was measured to investigate the linearity absorbances, 

thus allowing the Beer-Lambert law to be valid [4.16], in which absorbance is linearly correlated to the 

concentration of UV active material and path length. Samples of too high absorbance cannot have their 

concentration accurately measured without  reducing the pathlength or concentration, as too few photons are 

detected to accurately determine absorbance (Wormell & Rodger, 2013). There are many other physical 

processes leading to deviations from Beer-Lambert behaviour, such as concentration dependant intermolecular 

interactions and sample inhomogeneity, which will be ignored due to the low concentration of PABA used (5 
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mM), significantly below the aqueous solubility in standard conditions of 40 mM (Yalkowsky & Yan, 2003), and 

that relatively high absorbances are measured before deviation from linearity is observed (Figure 4.8) means 

these effects were not further considered. 

𝐴(𝜆) = 𝜀𝜆 ∙ 𝑐 ∙ 𝐿 =  log(
𝐼0

𝐼
)  

 

 
[4.16] 

To assess this range in which concentration of UV active material and 280 nm absorbance were related linearly, 

the system was flushed with UV inactive buffer (deionised water). A gradient of UV active buffer (5mM para-

amino benzoic acid (PABA), 0 to 100% over 500 mL) was then applied, to observe at which 280 nm values the 

relationship deviated from linearity. Linear regression was performed for 280 nm absorbance values under 1000 

mAU, and the resulting line equation used to extrapolate the theoretical absorbance at higher concentration of  

PABA. This adjusted 280 nm absorbance was then compared against the experimental 280 nm absorbance. As a 

test for the accuracy of this value, a literature value of the extinction coefficient of PABA was used to determine 

the theoretical absorbance at a given concentration. The system being used has a UV path length of 2 mm, and 

the extinction coefficient at 280 nm (ε280nm) of PABA has been interpolated,  with a linear approximation, from 

a literature dataset to be 5455 M-1 cm-1 (Grammaticakis, 1951). 

The conductivity was also measured to ensure that the pumps were operating correctly, as PABA imparts 

conductivity to the buffer. No significant deviation from linearity (< 5% relative error) was exhibited at 

absorbance below 2,000 mAU (Figure 4.8), with significant increases in deviation between expected absorbance 

and measured above this value. The resulting graph allows a correction of the absorbance for saturated signal  

for PABA, though as the measured absorbance plateaus at 2600 mAU, this approach may only provide an 

improvement of 500 mAU, from 2000 mAU to 2500 mAU, and should not replace diluting the sample to be within 

the linear range, though will be used here to account for any excessive absorbance. The adjustment from 

measured absorbance to theoretical absorbance will also become very error prone as the plateau region is 

approached. The molar extinction coefficient value of PABA can be determined with the calibration curve, and 

differs by less than 5% to the reported value in literature (ε280nm literature = 5455 L M-1 cm-1, ε280nm determined 

through linear regression = 5331 M-1 cm-1), which can be explained by different lots of PABA and small errors in 

preparation. 
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Figure 4.8- Calibration curves for UV saturation estimation and correction. A -Calibration curve of 280nm absorbance vs 

increasing concentration of UV active buffer (from 0 to 5mM PABA over 500mL at 5 mL/min) demonstrating linearity between 
concentration and UV absorbance beneath 2000 mAU, with less than 5% difference between the expected and measured 
absorbances., B- Measured absorbance value when compared against the expected value, by either using literature extinction 

coefficient (blue) and that determined by the linear regression (orange). 

4.4.5 Drop Size Determination 

Experiments to determine the average drop volume from microscale columns were performed through UV 

absorbance. 96 well plates were prediluted (100 µL), measured for volume, and then passed under the columns 

under normal operation collecting drops of effluent. The volume of effluent was determined by measuring the 

difference in volume within the wells before chromatography and afterwards, through 900 nm corrected 977 

nm absorbance. The fraction volume was set on the LHS to be 15 µL, which was considered to be well below the 

drop size, estimated using a manual pipette to be in the order of 30 µL. Wells were prefilled with buffer to ensure 

each drop was resolved, as each drop was additional to a volume that met the minimum measurable volume. A 

script in MatLab was written, which selected for volumes at least 5  µL above the measured prediluted volume 

and removed them from the dataset, such that small variations within aspirated volumes could be ignored 

entirely.  

A 

B 
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4.4.6 Measuring FPLC Dead Volume 

Extra-column, or system, volume can greatly impact results of HETP tests especially at small scale, determining 

this volume was considered crucial for column evaluation and future modelling. Measuring the dead volume 

was performed by equilibrating the system with an equilibration buffer  and determining UV absorbance. Once 

a steady UV signal was achieved, the system was then filled with UV active buffer (1% v/v Acetone) at a defined 

flowrate, and the response measured, until the UV signal stabilised.  Additionally, for pulse tests, one can 

account for dispersion of the analyte material before, or after, introduction of the material onto the column. As 

the pulse material is stored within a sample loop, which is not in line with the system for the breakthrough runs. 

This experiment is performed identically to the pulse tests described above, but with a small length of tubing 

replacing the column. One can see a highly asymmetric peak (Figure 4.9A)., indicating significant mixing within 

the system rather than the rectangular pulse that would occur in an ideal system. When compared by 

differentiating a step response into a peak (Figure 4.9B), or by integrating a pulse response peak into a step 

response, two notable differences are seen, an increase in offset but reduction in peak width for the step 

response, likely due to the difference of flow path in this configuration. This suggests that dead volume 

determination should be tailored to the HETP being performed, both for flowrate but also system configuration.  

 

Figure 4.9- Comparison of Step vs Pulse methods of dead volume determination, A – Compared by processing a step response 
into a pulse by differentiation, of note are the artefacts introduced by the procedure the oscillations are caused by amplifying 

the noise in the raw data, and the increased offset but reduced dispersion for the step response B- Both approaches compared 
by processing a pulse response into a step response by integration. Both approaches were processed by normalising the Y 
axis to percentage of maximum signal 
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4.4.7 Data Treatment 

For all HETP results, the volume was corrected such that the volume was measured from the midpoint of 

injection. The data then had baseline conductivity or 280 nm absorbance removed, and if required, the 

chromatogram was differentiated by calculating the difference in conductivity or 280nm absorbance for each 

subsequent volume/time point. If absorbance exceeded 2,000mAU, but was less than 2,500mAU, a correction 

was performed as detailed in section  4.4.4. The statistical moments were determined through the above 

identities[4.5 to 4.9], with the integrals determined through the trapezium or Simpsons rule (Misra et. al, 2019), 

or through fitting the EMG function and processing of the determined EMG parameters. EMG parameters were 

fitted using a least-squares curve fitting method. 

4.5 Results and Discussion 

Initial work was focussed on improving the resolution of the resultant HETP peaks. Whereas others have taken 

approaches including transferring eluate material from an oversized plate into a smaller, 384 plate with reduced 

minimum working volume (Evans et al. 2017), though not directly used for HETP determination, the additional 

time in regards to material transfer, and requiring additional plates meant other methods of improving 

resolution and signal were investigated. The work by Osberghaus et al., (2012), in which a pulse experiment was 

repeated with an offset was ruled out due to significant losses of liquid through missed drops meaning the peaks 

often overlapped, rather than a true offset, though ideally this should have been further evaluated. 

4.5.1 Drop Volume Determination 

In order to optimise fraction size with the aim to improve data density, if trying to elute single drops, an 

understanding of the drop size distribution is required, as well as seeing drop size variability among the columns. 

Using the prefilling approach, 18 plates were analysed to determine the drop size from microscale columns. 
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Figure 4.10 – Histogram (2 µL bins) of measured drop volume distribution with 18 plates,  

The mean drop size was 28.1µL, with a standard deviation of 6.1µL (Figure 4.10). From 1728 wells measured in 

the experiment, only 1093 had the required volumes for selecting for volume determination indicating a drop 

had been collected, a well occupancy of 62%.  Total mass retention was measured at 22,550 µL (±132µL) across 

all runs, measured from 25,920 µL dispensed by the machine, representing a 13% loss, likely down to plate  

changes and shuttles leading to these lost drops. This a significant improvement compared to the mass retention 

without using the pre-filling technique, which averaged more than twice the volume loss at comparable 

resolution (Table 3.2).  

The impact of the volume loss varies experiment to experiment; experiments such as HETP analysis, where 

constant flowrate is required, may suffer more lost drops due to the need to minimise flow interruption and use 

many plates to capture as much data as possible. Low resolution investigations using fewer wells is likely to lose 

a lot less fluid, due to fewer plate changes and shuttles per volume of fluid, as well as being able to implement 

a pause before plate changes, reducing drop loss. Column variability was shown to be small, both between runs 

and between columns. All drop size averages appeared similar for all runs, columns and column positions (Table  

4.2). One way ANOVA confirmed no significant difference between either individual experiments nor columns.  

Table 4.2- Drop size measurements from microscale columns, A – For each column, with 5 experiments per column B – For 

each experiment, with 8 columns per experiment  

A      B 

  

 

 

 

Column Mean Drop Volume (µL) 

1 31.1 ± 8.3 

2 30.3 ± 7.9 

3 31.4 ± 10.1 

4 30.1 ± 11.6 

5 30.8 ± 9.2 

6 31.2 ± 9.8 

7 34.2 ± 12.5 

8 32.0 ± 7.6 

Experiment Mean Drop 
Volume (µL) 

1 29.3 ± 7.3 

2 30.3 ± 11.2 

3 35.1 ± 9.4 

4 31.4 ± 7.5 

5 32.3 ± 3.8 
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4.5.2 HETP resolution improvement  

Initially, the column manufacturer’s method of a 25% CV pulse was performed, though using a 600 µL column, 

rather than the 200 µL columns used by the manufacturer, for the purposes of improved resolution; a larger 

column increased the number of possible fractions by  a factor of 3 with no other modifications. 

Using 25µL fractions, such that it is just beneath the average drop volume, with the pre-filling strategy, resolution 

was greatly improved, with 72 data points per column, however, the data has significant noise (Figure 4.11), and 

it was not possible to fit an EMG distribution with any degree of confidence.  

 

Figure 4.11 - HETP Pulse with 600 µL columns with column manufacturers protocol and improved resolution, 25% CV pulse of 

2% (v/v) AcO 

The source of poor signal was investigated. Acetone readily evaporates at room temperature, so the impact of 

this was quantified. Two plates filled with phosphate buffer of volumes 50 µL to 300 µL, and acetone 

concentration of 0% to 2% (v/v) were monitored over 5 hours, one subject to UV absorbance read every 5 

minutes, the other at the beginning and end of the experiment. Considering liquid level alone, Figure 4.12A 

demonstrates that evaporation was insignificant, even at these greatly extended timescales. Additionally, 

evaporative losses were comparable for both the continuously read plate, and the one left on the deck, showing 
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the UV reader does not significantly affect evaporation over multiple reads. Linear regression showed total 

evaporative loss was on the order of 80 nL to 150 nL per minute for 50 µL to 300 µL starting volumes respectively. 

The change of evaporation  with well fill volume can be explained by both the frustum geometry of the wells 

meaning greater volumes have slightly more surface area, as well as less shielding from the ambient airflow by 

the headspace of air for less filled wells. 

280 nm measurements, however, did exhibit a significant decay (Figure 4.12B) with respect to time. Acetone 

has a boiling point of 56°C (Haynes, 2014), and a high vapor pressure at standard temperatures and ambient 

pressure (Dean & Lange, 1999). Over the course of the experiment, absorbance at 280 nm of the acetone 

containing samples followed an exponential decay curve, with a half-life of 45 minutes. The plates and solutions 

are expected to be exposed to the environment for a similar amount of time  during normal operation, suggesting 

this is a significant source of error in HETP tests with acetone on microscale columns. On a closed FPLC system, 

this evaporation is negligible, hence the common use of acetone as a tracer at this scale  without issue.  

A 

  

B 

 

Figure 4.12 – Measurement of microtiter plates filled with solutions of 300 μL, 120 µL and 60 µL  of 2 % (v/v) acetone measured 

every 5 minutes for 5 hours. A – Volume decay over time determined by 977 nm and 900 nm absorbance B – Acetone loss 

over time determined by 280 nm absorbance 
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4.5.3 Analyte and Method Selection 

Due to the volatility of acetone and the open nature of microscale chromatography, the use of acetone as the 

analyte on LHS runs was discounted. In order to find a suitable spiking agent, UV spectra were taken of all easily 

accessible reagents with the criteria of strong UV absorbance, reduced volatility and minimal toxicity. These 

included the organic solvents dimethylsulphoxide, dimethylfuran (DMF), acetonitrile and toluene. Organic 

powders, such as cystamine hydrochloride, tryptophan, para-aminobenzoic acid (PABA), phenylalanine and 

tyrosine were also investigated, and acetone and sodium chloride served as a standard. UV active salts, such as 

Sodium Nitrite, would have also been worth evaluating, but were not considered at the time. 

Toluene was excluded early, as it readily dissolved the plastic plates at concentrations enough to strongly absorb 

UV. Dimethylformamide, PABA and Tryptophan all exhibited strong absorbance, with the latter two being 

diluted to 0.5 mM for spectral measurement to prevent saturation of the detector and were subsequently 

corrected to 5 mM per the Beer-Lambert law [4.16]. 

 

 

Figure 4.13 - Spectra of candidate HETP analytes; PABA and Tryptophan were diluted to 0.1 mM in order to avoid saturating 

the detector, and the spectra corrected from this diluted sample using the Beer-Lambert law 
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4.5.3.1 Large Scale Screening 

A large lab scale (58 mL) column with a 29 cm bed height, packed with Protein A resin (MabSelect SuRe), was 

used in conjunction with an FPLC system. Several HETP pulse experiments were performed, with NaCl, Acetone, 

DMF, Tryptophan and PABA as the analyte, and a frontal separation of NaCl. Concentrations were standardised 

to 5 mM for PABA and Tryptophan, 1% (v/v) for acetone and DMF and 0.5 M for salt, and a 2% CV volume pulse 

of material used for all pulses.  

 

Figure 4.14 - HETP Chromatograms for candidate analytes on large scale (58mL) column. For NaCl, conductivity is the relevant 

signal, for other analytes, 280nm absorbances were taken. The PABA  was adjusted using the calibration curve, showing a 

slight increase in peak height compared to the non-corrected data. 

NaCl, acetone and DMF co-eluted, whereas PABA showed some retention by the column  and Tryptophan 

demonstrated a strong retention and fronting (Figure 4.14). DMF had strong UV absorbance and equivalence to 

NaCl and Acetone derived HETP and EMG parameters (Table 4.3), it is toxic to humans (Kim & Kim, 2011), limiting 

its suitability. PABA was corrected for UV saturation, though this had no impact to the increase to retention 

time, it has decreased peak width slightly. 
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Table 4.3 - HETP parameters at lab-scale using selected analytes. HETP parameters were determined by EMG fitting, and the 

method of moments approach as well as measurement from peak width at half height and retention volume.  n = 3. 

Analyte First Moment 

(CV) 

Second 

Moment (CV2) 

Plates per 

Meter 

(Peak 

Width 

Approach) 

(m-1) 

Plates per 

Meter (Method 

of Moments 

Approach) (m-

1) 

Asymmetry Peak Signal 

Acetone  0.983 ± 0.007 1.02E-03 

± 2.84E-05 

4878± 7 

 
3377± 6 1.10± 0.02 0.083 AU ± 0.0043 

Sodium 

Chloride  (Pulse) 

0.974 ± 0.006 9.64E-04± 

2.32E-05 

5333± 9 

 

3462± 8 1.12 ± 0.02 18 mS/cm ± 0.01 

Sodium 

Chloride  

(Smoothed, 

Differentiated 

Frontal) 

0.976 ± 0.004 1.09E-03 

± 2.80E-05 

5095± 7 3008±5 1.04± 0.01 n/a 

DMF 0.974 ± 0.005 1.02E-03 ± 

3.11E-05 

4270± 5 3254± 3 1.12± 0.02 1.05 AU  ± 0.02 

PABA (UV, 

saturation 

corrected) 

0.986 ± 0.005 1.09E-03± 

2.84E-05 

3445± 6 2991 ± 5 1.13± 0.02 2.3 AU ± 0.03 

Tryptophan  1.06 ± 0.005 1.22E-03  ± 

3.22E-05 

3199 ± 8 3151 ± 6 0.91± 0.03 1.12 AU ± 0.01 

Minimal differences between numerical integration with either Simpsons or the Trapezium rule (Kalambet et al., 

2018), and EMG determination of the moments were observed, so have not been reported. As adequate fittings 

were observed using the EMG/Method of Moments approach, and as it better approximates efficiency 

regardless of peak asymmetry (Carta & Jungbauer, 2010), this approach was solely used for comparisons across 

scales rather than using the peak width at half height, though this was associated in an increase of plate height. 

Additionally, using the method of moments, one could remove the system contribution to band broadening and 

residence time extension, though for this scale of column the impact of system would be negligible, as system 

volumes were less than 1% of the total volume, so has not been performed here. 

PABA was selected as the analyte of choice; whilst it exhibited the poorest HETP results in  terms of plate number, 

it is non-toxic, being a common UV blocking agent in suntan lotion (Patel et al., 1992), has very high absorbance 

at low concentrations, and elutes in similar volumes to NaCl and Acetone whilst exhibiting similar asymmetry. 

Another benefit is that PABA his a solid at room temperature with a melting point above 180°C, meaning 

evaporation would be a non-issue. Though the  peak width is the second largest after tryptophan, even after 

saturation correction, the asymmetry was comparable to the conventional analytes, NaCl and acetone. 
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Additionally, unlike DMF, PABA has some prior mention in literature as being used as an HETP analyte (Rathore 

et al., 2003). 

Frontal runs were tested, to investigate their suitability to determining HETP and asymmetry parameters. While 

the HETP and asymmetry values were representative of the conventional pulse test, there was significant noise 

introduced (Figure 4.15). As the data is processed by plotting the difference between a measurement and 

subsequent measurements, small deviations are greatly amplified, and the total signal is reduced. While this 

technique does have merit due to it being rather straightforward to perform, with less manipulations than a 

pulse and availability of data during normal operation, it’s intrinsically noisy nature means that at microscale 

data is unlikely to be reliable due the nature of amplifying errors by differentiating the data, though the EMG 

parameters remained similar between the two approaches (Table 4.4). At large scale, one has the benefit of 

having a large number of data points that one can use to smooth the data, using a filter or other methods, and 

reducing this noise. With microscale data, and the scarcity of data points per experiment means there is a high 

risk of losing the structure and information within the data by smoothing and should therefore be avoided where 

possible. 

Table 4.4 - Comparison of EMG parameters for Differentiated Frontal and Pulse HETP Tests, demonstrating good similarity 
between methods (Pulse, and Differentiating a Frontal Experiment). Tau is the parameter with the largest deviation, being 
significantly higher for frontal runs, all other parameters are more consistent. 

 
Differentiated Frontal Response  Pulse Response % Difference Between Approaches 

σ (CV) 

0.0234 0.0229 2.18% 

µ (CV) 

0.971 0.967 0.41% 
Τ (CV) 

0.0129 0.0141 9.30% 
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A 

 

+ 

Figure 4.15- Comparison of frontal and pulse HETP tests. A-  Frontal and Pulse HETP chromatograms at large (58 mL) scale, 

with raw frontal and pulse, and integrated pulse and differentiated frontal data, exhibiting increased noise, which has been 

reduced using smoothing (window of 0.05 mL). B – EMG fits of the raw pulse and differentiated frontal data, demonstrating 

a good quality of fit. The  significant offset between the approaches is likely caused by difference in flow path, considering 

the similarity in volume with the difference in dead volume estimation 

4.5.4 HETP analysis using a liquid handling system (column manufacturers method) 

Below is an example of a HETP run (Figure 4.16), using a 600 µL column, and a 2% CV pulse of 5 mM PABA, and 

a fitted EMG distribution, and fitting parameters and HETP metrics are shown in Table 4.5. One-way ANOVA did 

not show any significant differences between metrics for across individual columns nor individual experiments. 

A 
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B 

 

Figure 4.16- Experimental data and EMG fit for 600 µL columns with PABA  pulse. A-Experimental data for 8 columns. B -  The 

EMG equation fit of the data demonstrating significant retention volume shifts, but similarity in peak width 
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Table 4.5- HETP and EMG fitting parameters for LHS derived data with a, 600 µL column, 5mM PABA 2% CV Pulse. A- Average Performance per column over every experiment (n = 5), B – Average 

performance per experiment over every column (n = 8) 

A 

Column 
EMG Mean 

(µ (CV)) 
EMG Width (σ, 

CV) 
EMG Skew (τ, CV) 

Plates per Mete 
(Method of 

Moments) (m-1) 

Plates per Meter 
(Peak Width) (m-1) 

Asymmetry (As) R2 

1 1.01 ± 0.05 0.080 ± 0.011 0.12 ± 0.01 2068 ± 301 2282 ± 243 1.88± 0.73 0.97 ± 0.02 

2 0.99 ± 0.06 0.077 ± 0.004 0.11 ± 0.02 2233 ± 208 2341 ± 27 2.24 ± 0.72 0.91 ± 0.04 

3 0.99 ± 0.02 0.084 ± 0.002 0.09 ± 0.02 2597 ± 668 2649 ± 185 2.10 ± 0.63 0.97 ± 0.02 

4 1.02 ± 0.03 0.075 ± 0.008 0.09 ± 0.01 3161 ± 359 3267 ± 288 1.99 ± 028 0.94 ± 0.08 

5 0.89 ± 0.03 0.069 ± 0.004 0.15 ± 0.04 1366 ± 159 1366 ± 185 2.72 ± 0.92 0.93 ± 0.06 

6 1.08 ± 0.05 0.091 ± 0.006 0.06 ± 0.01 3538 ± 341 3573 ± 421 1.33 ± 0.99 0.96 ± 0.03 

7 0.91 ± 0.00 0.077 ± 0.008 0.13 ± 0.00 1558 ± 252 1589 ± 193 2.07 ± 0.75 0.94 ± 0.09 

8 0.93 ± 0.04 0.106 ± 0.000 0.05 ± 0.00 2309 ± 586 2425 ± 225 2.75 ± 0.59 0.98 ± 0.01 

B 

Experiment 
EMG Mean 

(µ (CV)) 
EMG Width (σ, CV) EMG Skew (τ, CV) 

Plates per Mete 
(Method of 

Moments) (m-1) 

Plates per Meter 
(Peak Width) (m-1) 

Asymmetry (As) R2 

1 1.06 ± 0.05 0.075 ± 0.007 0.13 ± 0.00 2096 ± 411 3113 ± 416 2.749 ± 0.78 0.94 ± 0.05 

2 1.01 ± 0.00 0.080 ± 0.002 0.11 ± 0.02 2260 ± 172 2321 ± 186 1.758 ± 0.52 0.97 ± 0.01 

3 0.97 ± 0.00 0.074 ± 0.011 0.09 ± 0.01 2759 ± 121 2521 ± 143 1.927 ± 0.59 0.96 ± 0.03 

4 1.02 ± 0.01 0.083 ± 0.002 0.09 ± 0.02 2740 ± 237 3225 ± 253 2.29± 0.69 0.99 ± 0.03 

5 0.94 ± 0.05 0.066 ± 0.002 0.15 ± 0.04 1475 ± 277 3609 ± 302 1.98 ± 0.62 0.94 ± 0.05 
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A secondary, smaller peak was visible after the second, on all runs (Figure 4.16). This was surmised to be a small  

amount of additional analyte introduced with the second aspiration cycle , possibly due to residual amount of 

tracer still present on the pipette tip, as the widths at half height were similar. This peak is entirely separately 

resolved, and therefore does not affect HETP determination and was not fitted by the EMG equation. 

Microscale data demonstrated worse results than seen at lab-scale; with increased plate height and variability 

between runs (Table 4.5) The poorer HETP results are to be expected, the wall effect will dominating at smaller  

scales, worsening packing efficiency, with others also reporting greater band broadening on microscale columns 

(Susanto et al., 2008, Osberghaus et al, 2012, Benner  et al., 2019, Keller et al., 2017). 

A total overall asymmetry of over 2 is double the measured asymmetry value at lab-scale and would fail a column 

for use in production. It is thought the high asymmetry could be due to mixing within the column inlet; a 12µL 

dispense with significant variation in the pipette tip position could mean the analyte solution mixes significantly 

with running buffer before introduction to the column, and therefore introduce highly asymmetry into the inlet. 

Additionally, this may be an artefact of the small plate count; in which an ideal column would be better 

represented by a Poisson distribution, which is highly asymmetric at small rate parameters. 

4.5.5 Small Scale HETP analysis using an FPLC (Resin manufacturers method) 

4.5.5.1 Small Lab scale (1mL) and Microscale columns (600 µL) on an FPLC 

By making a rig  to fashion the microscale columns onto a FPLC like the resin manufacturers (Figure 4.5), it was 

possible to generate an HETP response, though with  significant shouldering of the peak (Figure 4.17A), which 

prohibited fitting the EMG function accurately. This led to the development of the second rig to reduce the 

internal volume, and reduce the system contributions. The second rig produced less asymmetry in the resulting 

HETP peaks and allowed the fitting of an EMG function with good quality of fit. Three runs with the same column 

were performed to test for variation between runs, with very little variation exhibited  between repeats (Figure 

4.17B). 
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A

 

B

 

Figure 4.17-  Peak responses from using 600 µL columns and rigs to attach them to a conventional FPLC. A – The first rig, 

demonstrating a high degree of shouldering and increased retention volume. B – Three repeats with the second rig, with 

reduced internal volume and reduction in shouldering, and retention volume. 

Due to the still highly asymmetric and poor HETP results, a prepacked 1mL column was tested, which has a bed 

height of 25 mm, and a diameter of 7 mm. This was largely to see the effects of small scale HETP testing on a 

FPLC system using a column designed for such a system, thus avoiding issues arising due to the rig. Additionally, 

the column coming prepacked from the manufacturer meant we could assume the column to be packed well, 
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even if HETP results, likely caused by dead volume evidenced by the asymmetry and retention time being above 

the column volume, suggested differently. Figure 4.18 shows the good quality of fit for the EMG equation. 

 

Figure 4.18 - 1mL Column PABA Pulse HETP, demonstrating large asymmetry and a retention volume greater than column 

volume, both  phenomena suggesting the large dead volume of the chromatographic system is influencing the response 

significantly 

4.5.5.2 Dead Volume Correction 

Using the method of moments, one can separate the effects of external and internal peak position and 

broadening  by adjusting the first and second moments with those of the system volume alone. In order to do 

this, the first and second moments of a pulse test without a column were determined, at the flowrate used for 

the pulse tests (equivalent to 60 cm h -1 for the  58 mL, 1 mL, 600 µL columns at 0.2mL/min, 0.4mL/min and 

2.0/mL min respectively). A good quality of fit was observed (Figure 4.19) for all flowrates. 

 

Figure 4.19 - Pulse test without column, and the EMG fit. For the flowrates used for HETP tests Pulse used 5mM PABA, 20 µL 
injection. 
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With the EMG parameters, the first and second moments were determined, shown in Table 4.6. These values 

may then be used to correct for system induced band broadening and changes to the peak location, affording a 

better measure of plate count for the column alone, similar to the work by Grinias et al.(2015). However, the 

system volume of the column parts (frits, etc.) for the large (58 mL) column was not determined, and considering 

the large bore of the tubing, is likely to be a few millilitres, but a small fraction of the total column volume. 

Table 4.6 - The EMG Parameters and First, second moments of pulse tests without columns and the associated variances and 
retention volume of the injections, used to correct for dead volume effects 

Column Volume (mL) 0.6 1 58 

Column ID (mm) 5 7 16 

Column Bed Height (cm) 3 2.5 28 

Flowrate (mL/min) 0.2 0.4 2 

σsystem (mL) 0.02 0.04 0.07 

µsystem (mL) 0.11 0.17 0.24 

τsystem (mL) 0.0847 0.0642 0.0556 

First moment  of system  
(m1, system, mL) 0.13 0.21 0.31 

Second moment  of system band broadening (m2, system, mL2) 

0.0076 0.0057 0.0080 

Injection Volume (mL) 0.012 0.020 1.16 

σ2
injection (mL2) 

1.20E-05 3.33E-05 1.05E-01 

µinjection (mL) 0.006 0.01 0.58 

a2
8

0
 (

m
A

U
) 
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Table 4.7 -HETP values and fitting parameters comparing microscale column on LHS, microscale column on FPLC, small lab scale column on FPLC and large lab scale column on FPLC using PABA as the 

tracer, with and without dead volume correction using method of moments, demonstrating similarity. 3 repeats for each experiment, normalised to column volume 

Experiment Column 
Length (cm) 

EMG Mean 
(µ, (CV)) 

EMG Width 
(σg, (CV) 

EMG Skew (τ)  
(CV) 

Plates per 
Meter (Peak 

Width) (m-1) 

Plates per 
Metre 

(Method of 
Moments) 
(m-1) 

Plates per 
Meter 

(Corrected for 
Dead 
Volume) (m-1) 

Asymmetry 
(As) 

R2 

600 μL 
Column  LHS 

3 0.978 ± 0.063 0.082 ± 0.012 0.100 ± 0.034 2554 ± 739 2316 ± 749 n/a 1.795 ± 0.22 0.96± 0.05 

600 μL 

Column FPLC 

3 1.661 ± 0.027 0.167 ± 0.008 0.181 ± 0.042 1972 ± 31 1862 ± 30 2223± 58 1.812 ±0.17 0.99± 0.01 

1mL HiTrap, 

FPLC 

2.5 1.357 ± 0.071 0.163 ± 0.002 0.174 ± 0.012 2083 ± 7 1649 ± 7 1365± 11 2.02 ±0.112 0.99 ± 0.01 

58mL HiScale, 

PFLC 

29 0.972± 0.012 0.029± 0.003 0.018± 0.009 3445± 6 2991 ± 5 2875± 27 1.13± 0.02 0.99 ± 0.01 



 

87 

 

 

Fitting and HETP statistics for the prepacked 1mL column, the 600 µL microscale column on the LHS, and on the 

FPLC are shown with and without dead volume correction (Table 4.7), with the method bringing the HETP for 

the 600 µL columns more comparable between LHS and FPLC systems. This suggested that the poor results seen 

were a consequence of the scale; mixing dominating the response and leading to increased plate height and 

asymmetry, rather than the columns being of a worse pack. By accounting for system volume, plate counts in 

the small scale were more aligned with a large-scale lab column, but still exhibited increased plate height, in line 

with what others have reported for microscale columns used on an LHS (Susanto et al. 2008). Interestingly, the 

600 µL columns actually measured improved plate height and asymmetry, compared to the 1 mL column 

designed for such the FPLC system, though the reduction in plate height may be an artefact of the dead volume 

of the rig, which was not accounted for in moments analysis.  

4.5.6 Discussion 

Characterising microscale column on a FPLC is a superior method for data quality and consistency  when 

compared to performing these experiments on an LHS; with better signal to noise ratio, completeness of data, 

reproducibility and simplicity of processing (Table 4.7). The dead volume contributions to peak position and 

width, however, limit the reproducibility to scale even with correction; a dedicated, low dead volume system 

could show far more promise by minimising the system volume. The large dead volumes of the system, apparent 

by the larger retention volumes, increased variance (both gaussian and exponential) meant that dilution and 

mixing dominated results through band broadening and shifting true retention and peak width values; by 

correcting the first and second moments with theoretical variance of the tracer, the response of the system and 

using a known distribution that models chromatographic peaks well, the EMG equation, one can account for low 

resolution data. Using the EMG and method of moments approach has allowed responses to be determined 

with better precision for the LHS system and demonstrated similar results between LHS and FPLC, though 

uncertainty in the data prevents a precise determination.  

Issues with handling small volumes of fluid on a system not designed for such a task were resolved, with volumes 

controlled down to a precision of under 10 µL with custom sample loops of a desired volume. Performing 

experiments with small columns (1 mL) designed for use on conventional systems showed high asymmetry , 

comparable to the microscale column, which could not be corrected for using the method of moments approach, 

with high asymmetry also present on data generated using the LHS. Previous issues with the evaporation and 

poor signal were successfully resolved by screening tracer candidates, with PABA demonstrating both strong UV 

absorbance, safety in handling and lack of volatility. Whereas some differences with regards to HETP parameters, 

exacerbated by the high absorbance of PABA (adjusted with the use of a standard curve for UV saturation), the 

impact of this was assumed identical between scales. Further analysis could benefit this, including loading 

differing volumes and concentrations of PABA to see whether any differences are an artefact of overloading. 
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Performing HETP experiments in high throughput is possible, even if the results are more variable. The 

coefficients and parameters derived are comparable to those on the FPLC in regard to peak asymmetry and plate  

height, with the benefit of being far higher throughput. The method development has enabled a significant 

improvement to resolution, such that 12 µL injections of material are able to be resolved in enough detail to fit 

a probability distribution function commonly used in chromatographic characterisation. 

Whilst it has been shown that resolution of the system can be driven far  compared to the column manufacturers 

data (Figure 4.4), to dropwise levels on a liquid handling system (Figure 4.16), to a very high resolution using an 

FPLC (Figure 4.17), there are significant deviations at scale. Asymmetry deviates compared to large lab scale, 

and this is apparent in high resolution data. It is hoped it has been demonstrated that this may be due to scale 

differences rather than system, with small lab-scale columns showing similarly poor characteristics. Dead 

volume correction has been successful in reducing this disparity, and suggests that this should be accounted for 

when scaling results. Additionally, the liquid handling system and microscale column in combination exhibit far 

more variation between equivalent experiments in terms of yield, retention times and peak shape than the FPLC-

lab-scale column counterparts.  Attempts have been made to explain and mitigate the source of these errors, 

such as small deviations in volume, evaporation, low signal, lost drops and operational differences, as well as 

the reduced amount of data per column per experiment, though further analysis will be performed to better 

assess microscale column performance with respect to protein adsorption, and eventually using mechanistic  

models to provide a mathematical insight into these differences. 
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5 Dynamic Binding Capacity 

5.1 Introduction 

The binding capacity of a column is an  important metric for chromatographic process economics, determining 

throughput, cost of goods and the required material and scale of operation. This value is determined by how 

much mass of a specific component can bind per unit volume of resin , with typical values for affinity 

chromatography in the range of tens of grams of counterligand per litre of resin for monoclonal antibody 

processing (Gottschalk, 2017). 

There are two main metrics of this capacity; the static binding capacity (or equilibrium binding capacity, EBC); 

that is, the maximum amount possible to bind assuming an arbitrarily large residence time, when equilibrium is 

reached. This is possible when there is ample opportunity for every possible binding site to be occupied and 

represents the maximum possible degree of product binding with that feed material, which may be determined 

by using a frontal approach, or by batch adsorption. 

 In reality, due to the very high surface area to volume ratio of industrial bioprocess resins, the tortuous pore 

network and large target molecules means a significant proportion of these binding sites are hidden, or shielded, 

by being within poorly accessible pores in the resin, or affected by the binding of product at  proximate sites 

blocking interaction. These less favourable binding positions will take considerably longer time to become 

occupied due to these resistances to mass transfer. One can access more available sites by increasing residence 

time, though to reach the maximum capacity is usually prohibitively time and material consuming, and therefore 

expensive, so a resin binding capacity must be tested under real world use, with a set residence time and 

concentration, within a packed bed, and determined as a dynamic binding capacity (DBC).  

This is commonly accomplished with product continuously loaded on to the column at a set residence time, for 

a suitable load volume until product is seen breaking through the column (Hahn et al., 2005), as a breakthrough 

curve (BTC) analysis [5.1], or the experiment may continue to provide an EBC value  by loading until saturation  

[5.2]. The volumes may (Pabst et al., 2018) or may not be (Carta & Jungbauer, 2010) adjusted with subtracting 

dead volume of the system, and/or the holdup volume of the column which may be then further adjusted to 

account for column porosity and accessible hold-up volume.  
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𝐷𝐵𝐶10% =
𝐶𝐹  𝑉10%

𝑉𝐶

 

 

 
[5.1] 

𝐸𝐵𝐶 =
∫(𝐶𝐹 − 𝐶𝑣)𝑑𝑣

𝑉𝑐

 

 

 
[5.2] 

A breakthrough of 10% of the loading concentration is the conventional measurement for the dynamic binding 

capacity of the particular adsorbate, resin and residence time, though this can vary and  is a compromise  

between a high signal and to minimise product consumption, and if often lowered in cases where the process is 

set to remove a particularly unpleasant impurity (Carta & Jungbauer, 2010). This value then has a safety margin 

applied for use, usually around 80%, such that a column is challenged with 80% of the known DBC10% amount to 

avoid the risk of product wastage in the effluent. 

 

Figure 5.1- Schematic of Dynamic Binding Capacity (DBC) determination using the frontal method, and the Equilibrium Binding 
Capacity (EBC). The vertical line intersecting the effluent concentration at 10% of feed concentration represents the 10% 
breakthrough volume, which may then be used to determine the DBC10% value,  and the integral of the bound volume (in 
yellow) can be used to determine the equilibrium binding capacity through [5.1] 

The residence time optimisation is important; bioprocess resins can be very expensive, especially for Protein A, 

and thus any reduction in requirement is promising economically. As process duration is also an important 

factor, therefore the operation should be a compromise between maintaining acceptable capacity and time.  

Because of the high cost of resin, time and material requirement, being able to perform DBC experiments in a 
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microscale, high throughput manner provides a significant benefit for early process development, especially 

considering the high material consumption of breakthrough experiments. 

5.1.1 Microscale Breakthrough DBC 

Many groups  (Wenger, 2010, Benner et al., 2019, Susanto et al., 2008, Osberghaus et al., 2012 Wiendahl et al., 

2008, Diederich & Hubbuch, 2017) have described some deviation from lab-scale to microscale with interrupted 

flow, due to aspiration-dispense cycles, and plate changes affecting results. The static flow, inherent to high-

throughput chromatography, leads to a higher effective residence time; it can take many seconds to swap a 

plate, greatly increasing binding opportunity for the following fractions, and a reduction of product within the 

effluent. This is apparent on breakthrough experiments in which kinetic limitations are the leading cause of 

nonideality rather than thermodynamics, leading towards a saw-tooth motif, as exemplified with Wiendahl et 

al., 2008 (Figure 5.2). Interestingly, in theory this should lead towards a greater DBC value, though others have 

reported both an inconsistent increase and decrease in expected DBC (Wiendahl et al, 2008), and a decrease 

alone (Welsh et al., 2014), suggesting there are several other factors at play when scaling the separation onto 

microscale columns. As the nature of intermittent flow varies from experiment to experiment, based upon a 

number of factors such as fraction volume, machine specification and feed concentration dictating the flow 

profile, the impact of this needs to be assessed on a case-by-case basis. 

While the LHS can operate at multiple flowrates, to run different flowrates simultaneously is prevented by 

nature of the aspiration-dispense cycle, as all pipette tips cannot move independently across the width of the 

plate but can only do so in unison (Figure 3.1)  limiting the duration of the experiment to a single aspiration 

volume, with different fraction volumes. Additionally, any multiple-speed aspirations must be coded using the 

machine language manually, as the software doesn’t provide this functionality natively. In short, while multiple  

flowrates are possible for certain kinds of experiments, such as elution studies, this is not practical for 

breakthrough experiments, so all investigations were performed in 8 -fold parallel. One could test multiple feed 

streams, or column types in one experiment with ease with this system, still providing a valuable avenue for 

high-throughput DBC determination. 
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Figure 5.2  - A typical breakthrough DBC experiment performed on an LHS, demonstrating the saw-tooth effect of 

interrupted flow (Wiendahl, 2008) 

The chapter aim is to test the viability of an LHS-Microscale Column system to rapidly find the binding capacity 

of novel compounds on a variety of microscale column volumes and flowrates, and to enable optimisation of 

the system with regards to data quality, material use and time. 

5.2 Materials and Methods 

5.2.1 Materials 

5.2.1.1 Load Material 

Purified material was available, in which the IgG (IgG A, an IgG1) had been treated as for the prior Protein A-

microscale work (clarified), and subject to three chromatographic separations (Protein A Affinity, Anion 

Exchange and Cation Exchange), providing a highly pure product. This was then diluted to match the expected 

titre of load material (4.7 g L-1).  Typically crude material would be used for DBC determination, though purified 

material used here meant one could use UV alone for concentration de termination. 

5.2.1.2 Microscale Columns 

Robocolumns were obtained in three volumes; 50 μL, 200 μL and 600 μL, prepacked with a Protein A resin 

(MabSelect SuRe LX) . These had bed heights of 2.5 mm, 10 mm and 30 mm respectively, with internal diameters 

of 5 mm. 
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5.2.1.3 Lab-scale Columns 

4.7 mL HiScreen columns (Cytiva) were obtained, also prepacked with a Protein A resin (MabSelect SuRe LX). 

These had bed heights of 10cm and internal diameters of 0.77cm. These are the smallest columns most process 

development activities are conventionally performed upon with a view to immediate scaleup, as two of these 

columns in series has comparable bed height to typical production scale columns at 20 cm. 

5.2.2 Methods 

5.2.2.1 Frontal Experiments  

Before use all columns were equilibrated in >10CV of Equilibration Buffer, with effluent collected in  waste. Upon 

equilibration, load material is introduced to the columns at a defined flowrate , with effluent being collected in 

160 µL fractions in full area UV transparent microtiter plates for a total of 20 CV, corresponding to a load 

challenge of over 90mg mL-1, significantly above the published capacity of up to 70 mg mL-1 (GE Healthcare, 

2011b).  For retention times under 240 s for 200 µL columns and below, the system was not capable of 

maintaining such low flowrates, so wait operations were programmed in; for every small dispense at high flow, 

the system was halted for a finite time, to average out the flow and maintain a set residence time (Table 5.1). 

Table 5.1 - Volumetric flowrates used and associated wait commands to meet residence times for 3 volumes of microscale 

column on a LHS. Pauses are evened out across the experiment, occurring every 10 seconds of flow (values shown are  

averaged per column volume of material collected). 50 µL columns required this intermittent flow strategy to meet all desired 

residence times, whereas 600 µL columns did not require this strategy at all. 

 Effective Residence Time (s) 

480 240 160 

Column Volume Volumetric 

Flowrate (µL 

s-1) 

Wait 

duration    (s 

CV-1) 

Volumetric 

Flowrate (µL 

s-1) 

Wait 

duration    (s 

CV-1) 

Volumetric 

Flowrate (µL 

s-1) 

Wait 

duration     (s 

CV-1) 

50 µL 0.82 420 0.82 180 0.82 100 

200 µL 0.82 240 0.82 0 1.25 0 

600 µL 1.25 0 2.5 0 3.75 0 

After sample application, columns were then washed in equilibration buffer (>3CV) with material then eluted 

with elution buffer (>3CVs), again with eluate being collected in 160 µL fractions, followed by a strip buffer for 

3CV s, then finally cleaned and stored as appropriate. All plates were measured at 280nm with absorbance 

corrected for background signal, and DBC was determined [5.1]. 
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5.2.2.2 Probing Interrupted Flow 

In order to assess the impact on interupted flow on DBC, a FPLC method was created incorporating the same  

interupted flow as seen on the LHS, accounting for plate changes and aspiration cycles at a given number of 

column volumes of material loaded. To determine the duration of these interruptions the LHS was set to perform 

10 operations, in sequence, of the processes which lead to interupted flow; plate changes and aspiration cycles, 

while the duration was timed. The position of these halts is determined by the volume of the aspiration-dispense  

cycle and the flowrate during loading. 

The plate changes were found to take 10.3 seconds each, whereas an aspiration cycle took 42.7 seconds, 

occuring at every 3.2 and 1.6 column volumes respectively for a 600  µL column. This averages to an effective 

residence time of 30 s, in addition that defined by the flowrate. This regime was then mimicked on a lab-scale 

column on a conventional FPLC, with the column volume increased, but residence time maintained.  

5.2.2.3 Determining Breakthrough UV Absorbance 

In order to define breakthrough absorbance  for each antibody for the LHS, load material was pipetted in a UV 

transparent microtiter plate in  a series of dilutions (from 125% of the standard concentration of feed material 

to a buffer blank) with a fraction volume of 160 µL. This was then measured for 280 nm, 900 nm and 977 nm 

absorbance on a plate reader with linear regression performed on the concentration and volume to 280 nm 

absorbance. Using this relationship, 10% breakthrough was defined as the 280nm absorbance corresponding to 

10% of the feed concentration. Linear regression was also performed as a quality test, though the higher 

concentration fractions (100% CF and above) were omitted, as significant plateau is apparent, suggesting 

reaching the limit of the detector. 

To perform the same on an FPLC, in which the volume is not a variable due to the fixed flow cell, buffer was 

flowed in the system, and then replaced with load material until stable UV signal achieved, and then flushed 

again with buffer. 10% breakthrough was considered as 10% of the difference betwe en load material 280 nm 

absorbance and 280 nm absorbance of running buffer (Figure 5.3). UV absorbances were safely in the dynamic  

range of the detector, meaning 10% breakthrough values calculated this way would not be subject to error with 

respect to UV saturation, and would not need adjustment. 
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Figure 5.3 – Determination of DBC10% absorbance vales for LHS  and FPLC .  A – LHS; The determination for material in 

microtiter plates was determined using a range of dilutions of feed material, from 125% (this material was under diluted 

compared to that used for loading the columns) to 0% of the feed concentration of 4.7 mg mL-1. B – FPLC; The system was 

equilibrated in load material (4.7 mg/mL), before being washed with UV transparent buffer. The absorbance at 10% value 

was determined at 10% of the difference between protein solution and buffer absorbance. 

5.3 Results and Discussion 

As before, work was performed to assess the method, scalability and variability of microscale columns wh en for 

determining breakthrough capacity. The three available volumes of microscale column were assessed, 50 μL, 

200 μL and 600 μL. 

5.3.1 Comparing DBC10% and Column Volume 

One can see that a clear sawtooth motif was exhibited on the resulting chromatograms for 200 µL and above, 

with 50 µL columns not exhibiting this (Figure 5.4), as no plate changes nor aspiration cycles were necessary 

considering the volumes of feed required needed to meet a suitable load challenge . For the 600 µL and 200 µL 

column, larger ‘troughs’ in the curve correspond to plate changes with an aspiration cycle, whereas the smaller  

troughs are associated with aspiration cycles without a plate change. These same experiments were performed 

at scale, in order assess how representative these breakthrough curves are to larger scale columns. 
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Figure 5.4- Breakthrough Curves for three microscale column volumes at three residence times for three volumes of microscale 
columns, demonstrating the saw-tooth motif for the 200 µL and 600 µL columns. The 50 µL columns were subject to a higher 

load challenge due to the sparse data density allowing over 160 mg/mL load challenge on a single plate. 
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For the breakthrough points for 200 µL columns and 600 µL columns, the troughs were ignored, and a trend 

plotted between the peaks; this removed the difficulty of analysing multiple breakthrough points but had to be 

tested to see whether this was a suitable approach for best interpreting the equivalent residence time without 

intermittent flow. 

5.3.2 Assessing the Impact of System and Flow Regime 

In order to obtain lab-scale results, so as to see how representative microscale DBC is to larger scale, a 4.7 mL 

column packed with the same Protein A resin was used for DBC studies. Residence time was set to be identical, 

regardless of column length, a typical approach (Benner et al., 2019, Welsh et al, 2016), as was  load challenge 

and feed material as for the LHS experiments. A clear residence time- breakthrough position relation is exhibited 

(Figure 5.5) across all repeats (n = 3). 

 

Figure 5.5- 4.7mL DBC10% breakthrough curves at multiple residence times, demonstrating significant residence time DBC 

relationship 

Using the second  ‘rig’ described  during the HETP work (Chapter 4), DBC experiments were performed using a 

microscale column operated on a FPLC machine as a control to see whether deviations between the large scale 

data and microscale was due to the system differences, or the columns alone. 
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Figure 5.6  - DBC experiments performed on 600 µL columns and second rig.  A - DBC10% at multiple retention times. At 480 s, 

the breakthrough curve demonstrates oscillatory behaviour, likely due to pressure spikes for the slow speed of  the pump 

affecting the UV spectrometer, or possibly air within the pumps, though would not explain the otherwise stable baseline, and 

the fact this behaviour persisted even after a thorough purge of the system. B- 2 further repeats of the 480 s residence time 

run, showing the oscillatory behaviour persists even after a thorough purge of the system and column C- Visual comparison 

on ambiguity of breakthrough position  for an oscillating curve, in which one may determine the breakthrough point by either 

taking the raw data, the peaks maxima/minima or by smoothing the oscillations 
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At the 480 s residence times, the 600 μL breakthrough curve on the rig demonstrated oscillatory behaviour 

which persisted across purges of the system (Figure 5.6); this may be due to being at the lower limit of the speed 

the systems pumps could maintain, or air being introduced through the handmade nature of the rig leaving 

potential dog-legs in the flow path. This meant 10% breakthrough could be determined much in the same was 

for the microscale systems as on an LHS, through smoothing the entire curve, or taking the trend between the 

troughs or peaks. Either approach will impact the measured DBC10% value. In the above data, when taking the 

maxima, minima and a smoothing function over 1mL, the values are 73, 75 and 78  mg/mL respectively. 

Due to the higher resolution, the fact it more closely approximates a lab-scale column, and the lower variability  

between runs, columns and therefore a clearer DBC-residence time relationship, 600 µL appeared to be the 

most appropriate DBC determination, though at a cost of higher material consumption, as well as still not being 

a perfect representation of the equivalent residence time at scale (Table 5.2) due to an increase in dynamic  

binding capacity. As expected, one can mimic lab-scale breakthrough experiments well on microscale columns 

on both systems (LHS and FPLC) with somewhat comparable results, though greater amounts of variation plague 

interpretation with the LHS compared with FPLC as they did with column qualification.  

Table 5.2-Comparison of FPLC and LHS Derived DBC10% values 

Column Volume 4.7mL  50 µL 200 µL 600 µL 600 µL 

System FPLC LHS LHS LHS FPLC 

Retention Time (s) DBC10% (mg/mL)  

480 64 ± 0.1 85 ± 14.3 44 ± 8.7 71 ± 1.9 73 ±  1.4 

240 53 ± 0.1 55 ± 9.2 30 ± 7.4 58 ± 2.4 60 ±  0.3 

160 44 ± 0.1 39 ± 11.6 28 ± 10.5 48 ± 2.3 47 ±  0.5 

 

Additionally, the impact of the system volume was assessed by taking the holdup volume determined in Chapter 

4 with a step change of UV active buffer (Figure 4.9) for the system, or by the pulse tests without column, of 

which provide an estimate of under 0.3 mL. Considering the larger volumes of fluid used until a response is 

measured, with a HETP pulse occurring within 1.5 CV of feed compared to over 90 CV being required with the 

DBC determination,  this has a far lower impact, with at most an overestimation of DBC10% by 0.3 g L-1 using this 

system. For the microscale column operated on a FPLC, the holdup volume of the system was more significan t, 

introducing up to 4 g L-1, when accounting for both system and rig volume.  
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To assess the impact on interupted flow on DBC results, a FPLC method was created incorporating the same  

interupted flow as seen on the LHS, applied to lab-scale columns. 

A       B    

 

C 

  

 

Figure 5.7– Comparison of uninterrupted, 

and interrupted flow, with lab scale column 

on a FPLC system  

A – 160 s residence time 

B - 240 s residence time 

C- 480 s residence time 
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It was seen that, at higher residence times, the intermittent flow had very little impact on breakthrough position, 

whereas for lower residence times, interrupted flow was significant (Figure 5.3), with the saw tooth motif seen 

with microscale breakthrough performed with a LHS. This is expected, as the 30 s of increased residence time is 

a far larger proportion of 160 s  than of 480 s, a 19% increase compared to 6%, which is apparent in the 

comparison between flow regimes (Table 5.3). 

Table 5.3 - Comparison of Interrupted and Continuous flow DBC10% values. n = 3 

Residence Time Continuous Flow 
DBC10% (mg/mL) 

Interrupted Flow 
DBC10% (mg/mL) 

480 s 64 ± 0.1 64 ±  0.1 

240 s 53 ± 0.1 55 ± 0.0 

160 s 44 ± 0.1 51 ± 0.2 

130 s 37 ± 0.1 45± 0.1 

To investigate whether the effect can be mitigated by reducing the flowrate, an experiment was set up with a 

residence time of 130 s, accounting that the 30 s of interrupted flow per column volume would increase the 

effective residence time to 160 s. 

 

Figure 5.8 - Comparison of uninterrupted, and interrupted flow on breakthrough curves for 160 s residence time continuous 
flow  and 130 s interrupted flow, with 30 s pauses , demonstrating one can mitigate intermittent flow somewhat by altering 

the flow velocity to account for pause time, though the measured 10% value is still not representative, the profile appears to 
match better than without this adjustment. 

 

160s Continuous 130s Intermittent 
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The experiment with 130 s residence time, subject to the same interrupted flow regime demonstrates better 

similarity to the 160 s continuous condition both in term of breakthrough profile, with improved similarity to 

the continuous DBC10% value (Figure 5.8), though still exhibits some significant differences. The breakthrough 

profiles match best towards the end of the saw-tooth motif, with the final data points before a trough having 

the greatest similarity between intermittent and continuous flow, with greater differences exhibited 

immediately after a trough. This supports the hypothesis that the effective residence time, including the robot 

manipulation time, can account for some of the differences observed between an LHS run and a continuous 

FPLC run, but will not fully resolve these differences, and that taking the first breakthrough value, rather than 

subsequent or smoothed value, is the most appropriate approach.  

5.4 Discussion 

Binding capacity studies have exhibited similarity between microscale and lab-scale chromatography, though 

with the increased variability experienced as with HETP determination, with the notable trend that 600 µL 

microscale column have demonstrated a higher breakthrough capacity per unit volume compared to lab scale, 

whereas the other column volumes exhibit both higher and lower capacity, from longer to shorter residence 

time respectively. One must consider the entire system, the contribution of diffusion, wall effect and liquid 

handling at scale, before interpreting any results obtained on the system as representative of larger scale 

breakthrough. Being able to determine these differences, measure them and simulate them may be the first 

step to mitigating them, and better understanding microscale data and how it can describe larger scale 

separations. It is clear that intermittent flow leads towards increased breakthrough capacity when tested at lab 

scale, due to reduction in kinetic limitation due to increased effective residence time, though there are several 

other factors potentially impacting differences at scale, and intermittent flow alone would not explain any 

increase in binding capacity for the longer residence times, as seen with no significant increase with the lab-

scale system. An approach in which an “average” residence time was tested when accounting for intermittent 

flow showed promising results when evaluated on an FPLC for shorter residence times. Further extending the 

tested flowrates could have also been promising, in which the linear velocity was matched between scales rather 

than the residence time.   

 Other potential factors influencing different behaviour at scales may include other mass transfer resistances, 

possibly dependant on linear flow velocity and reduced column efficiency, the effect of fractionation compared 

to continuous measurement and the interpretation of true breakthrough position that require a greater level of 

understanding. It is with this goal that mechanistic modelling was to be performed on the system, with a view 

to better interpolate between sparse datapoints, to interpret intermittent flow and the impact on mass transfer 

and therefore performance of the IgG - Protein A capture across scales and systems. 
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6 Calibrating a Mechanistic Model of IgG Breakthrough of 

Protein A at Lab scale 

6.1 Introduction 

Chromatography is often labour, time and materially expensive, with experiments often taking several hours, 

consuming valuable feed material, buffers and resin, all of which may be in poor supply, or prohibitively 

expensive. For a conventional chromatographic process, considering the dynamic action of chromatography and 

myriad of underlying physical mechanisms, to optimise all parameters for the purposes of improving throughput, 

robustness, product quality, or some combination thereof, requires a great deal of experimentation. Despite the 

cost of experimentation, the multitude of process parameters, influence of material quality attributes and 

regulatory pressures, chromatography must be well understood, and well controlled to maintain robust, optimal 

processes and a consistent supply of essential drug substance for patients. 

Process optimisation and characterisation can be a significant undertaking, even for high-throughput process 

development and design of experiments; often one cannot optimise all chromatographic process parameters 

with experimentation alone in an efficient manner, but may rely on a mechanistic modelling approach for better 

process understanding (Lacki, 2018, Shekhawat & Rathore, 2019, Kumar & Lenhoff, 2020). A mechanistic model 

reduces the number of experiments, but does not eliminate the need for experimental data, as an accurate 

model often requires calibration through experimentation to determine model parameters. A strategy of using 

calibration data, engineering correlations and mechanistic modelling to better understand and simulate a 

process will be employed in this work to develop a modelling workflow.  

6.2 Model formulations 

There is a plethora of approaches for mechanistically modelling separations of vastly differing complexities since 

their inception a century ago (Bohart & Adams, 1920). This includes simple models in which only bulk adsorption 

from mobile to stationary phase is simulated (Bak et al., 2007), approaches in which every individual particle 

within the system is modelled as a discrete system and through a molecular dynamics approach (Pasti et al., 

2016), and computational fluid dynamics simulations in which the material distribution and flow in three 

dimensional space and time is simulated (Sharma et al., 2011, Jungreuthmayer et al., 2015, Ghosh et al., 2013, 

Fang, 2009). The choice of models should be performed by considering the assumptions that can be made while 

accurately describing the system, the experimental requirements and feasibility, and computational burden, 

tailored to the level of process understanding required.  

All mechanistic models considered share similarities, in that two distinct processes are simulated; the movement 

of mobile phase material through the column (transport), and transfer and accumulation of material between 
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mobile and stationary phase (adsorption), what separates them is what assumptions are made and which 

mechanisms are simulated to model transport and adsorption behaviour.  The ideal model, or equilibrium model 

only simulates material partitioning as the isotherm dictates, ignoring all other mass transfer resistances 

(Felinger & Guiochon, 2004). Whilst typically poor at predicting peak shape, for retention time prediction and 

estimation of displacement effects these models can be powerful tools and provide a simple method of 

determining the most favourable separation possible  as there can be no improvements over thermodynamics  

(Gu, 1995).  

Plate models approximate a chromatography column as a series of stacked plates, each with complete, 

instantaneous mixing within the plate but slower transfer between the plates. It is these plates that are assumed 

for HETP determination, and unlike ideal models, this class of model can simulate dispersion, proportional to 

the height of these plates. These models lump all sources of band spreading into a single metric, the plate height 

(Velayudhan & Ladisch, 2006), and therefore cannot distinguish between competing mass transfer resistances, 

nor simulate the complex balance of multiple mass transfer resistances, or the mass transfer resistances 

changing with respect to one another or time. Therefore, this class of models has limited predictive ability 

(Guiochon et al., 2006).  

Rate models are a broad class of models and include rate terms or expressions describing the rate of material 

movement and accumulation against a mass transfer resistance. As with previous classes of models, they exist 

in a variety of formats, differing by their base assumptions. The Equilibrium-Dispersive (ED) model includes terms 

describing effective axial dispersion, often used to account mass transfer resistance causing band broadening, 

and the Lumped Kinetic model includes a single kinetic term which describes a summation of all mass transfer 

resistances in addition to axial dispersion. These models, despite their assumptions, have described IgG binding 

to Protein A, with Bak et al., predicting the initial breakthrough curves of rabbit Ig binding to a range of Protein 

A resins using an ideal model with Langmuir kinetics  (Bak et al., 2007), as has Katoh (Katoh et al., 2007), Teeters 

described aggregate clearance with a lumped kinetic model to find optimal process conditions (Teeters et al., 

2009), with Ng et al., using an Equilibrium Dispersive model with Langmuir kinetics to also optimise a Protein A 

capture (Ng et al., 2012).  

The General Rate Model (GRM) is a more rigorous model, simulating convection, axial dispersion, mass transfer 

resistances and adsorption equilibria or kinetics (Schmidt-Traub, 2006), meaning that for systems without a 

single rate limiting step but many, or with few theoretical plates, the general rate model is more suitable than 

other models (Guiochon et al., 2006). There are a number of distinct mass transfer processes and related 

resistances which are simulated in the GRM, which is a system of two partial differential equations (PDE), one 

describing material flow within the interstitial volume of the column [6.1] and one describing the material 

distribution within the interstitial volume of the resin particles [6.2]. 
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The general rate model accounts for convection within the column, with u representing interstitial velocity, 

which is related to superficial velocity, v [6.3].  βp and  βc represent accessible pore fraction for the bed [6.4] and 

particle [6.5] and are defined in relation to the porosity of the respective environments (porosity being the 

fraction of void volume to total volume). Superficial velocity is often used as a metric of flow in bioprocess 

development, which is defined as the volumetric flowrate when divided by the cross-sectional area of the 

column, describing the flow velocity of an empty column subject to ideal plug flow. This is often used in place of 

the interstitial velocity, as one is not often able to calculate nor consider the pore fraction of the column when 

measuring flowrate. Interstitial velocity is the more appropriate term when modelling mass transport inside the 

column, which accounts for the space accessible to the fluid, and is therefore higher than the superficial flow 

velocity. 
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The differential equation over the particle stationary phase within pores (
𝜕𝑞𝑖

𝜕𝑡
) represents the accumulation and 

transfer of material between pore interstitial volume and stationary phase; i.e. the sorption between mobile 

and stationary phase within the bead. This term is defined by which adsorption model, or isotherm, is chosen. 

This simulations are subject to initial and boundary conditions, and have been described by  Guiochon et al., 

(2006). The set of intial conditions establishes the column intersitial volume, the particle void volume and 

stationary phase are all free from absorbing material at the beginning of the simulation  [6.6 to 6.8 respectively]. 

Boundary conditions at the inlet [6.9] often take the form of the Danckwerts boundary conditions (Danckwerts, 
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1953) which dictates that the inlet mobile phase concentration (cin) is determined by convection and dispersion 

(Dax), with systems with relatively small contributions of axial dispersion, such as preparative chromatography, 

able to simply this expression to (c(t, z=0) = c in). The inlet function is often taking the form of a rectangular pulse, 

with frontal simulations performed by setting the injection time (tinj) to the duration of the experiment [6.10]. 

For the outlet condition, only convective transport is considered [6.11]. 
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𝜕𝑐(𝑡, 𝑧 = 𝐿)

𝜕𝑧
= 0 

 
[6.11] 

6.2.1.1 Mass Transfer Processes 

 

 

Figure 6.1- Visual Representation of the significant mass transfer processes modelled in chromatography , with I 
being convection, ii and iii axial dispersion in the interstitial column volume of drug product or resin particles, 

respectively, iv demonstrates  diffusion across the film surrounding resin particles, and v representing diffusion of 
product within the pores. vi, vii and viii represent the diffusion across the surface of the resin bead, and adsorption and 
desorption, respectively. 
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There are a variety of mass transfer parameters simulated in the general rate model, exhibited graphically in 

Figure 6.1. These can be classified into diffusion, convection and adsorption processes. Convection is the axial 

movement of the mobile phase through the column caused by an external force. it is responsible for the 

introduction and removal of mobile phase material from the column, achieved by applying a pressure differential 

across the column. Axial dispersion in the interstitial zone of both mobile phase  material and resin particles 

follows Fick’s laws of diffusion in most implementations of a general rate model, though more complex schemes 

such as the Stefan-Maxwel laws are used when diffusion requires greater understanding (Graham & Dranoff, 

1982, Tao et al., 2011). For many models, this dispersion term is neglected, as for most implementations at 

preparative chromatography, axial dispersion has a negligible (<1%) effect on column performance for bed 

heights above 10 cm (Felinger &  Guiochon, 1995).  

Film diffusion is the transfer across the laminar, stagnant film surrounding the resin beads, and is often not rate 

limiting  as the resistance of material transport within the pores, intraparticle transport, often dominates. There 

are several contributors to effective intraparticle transport, such as molecular diffusion, Knudsen diffusion, 

convection and surface diffusion (Guiochon et al., 2006).  For preparative chromatography of macromolecules 

within micropores, however, typically it is molecular diffusion that dominates, whereas microporous resins may 

have some contribution of convection, though typically very little  (Schmidt-Traub, 2006). Macroporous supports, 

however, can see  significant contribution by convective flow (Frey et al., 1993). Electrostatic interactions 

between the support and protein, diffusion of small molecules within the solid itself and surface diffusion have 

all been described for polymeric ion exchange resins, and often leads to paradoxical results, in which effective 

pore diffusion is greater than molecular diffusion alone, suggesting further mechanisms affecting phenomena 

(Carta & Jungbauer, 2010). An effective pore diffusion coefficient is often used in models describing  affinity 

chromatography on porous resins without such an artefact (Horstmann & Chase, 1984, Pabst et al., 2018, Hahn 

et al., 2005, McCue et al., 2003), accounting for the Fickian diffusion of material, with the driving force 

proportional to the concentration gradient, within a tortuous pore network and approximating every 

contribution to intraparticle flow within this metric. 

The relative contribution of mass transfer resistances depends entirely on the system studied, though for 

preparative protein chromatography, with resin particles of radius greater than 5  µm, which represents the vast 

majority of preparative chromatography resins, pore diffusion and external film transfer represent the kinetic 

rate limiting step for most cases (Schmidt-Traub, 2006), with pore diffusion often the main contributor.  For 

some cases in which pore diffusion dominates and the adsorption is highly favourable and fast, the distribution 

of bound material within the bead follows a shell progressive uptake mechanism (Carta & Jungbauer, 2010), 

facilitating an assumption of the system to a shrinking core model (Bowes & Lenhoff, 2009, Ruthven, 2000) . 
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6.2.2 Adsorption 

Adsorption is the often reversable process in which material binds from the intraparticle mobile phase to the 

stationary phase, through a number of physical processes, such as van der Waals and dipole -dipole interaction, 

hydrophobic interactions and hydrogen bonding (Sun & Yang 2008). Adsorption models describe the relative 

affinity and capacity of adoption, with a selection described in Table 6.1 and a schematic given in Figure 6.2. 

Table 6.1 - A selection of single component isotherm models often used in simulating preparative  chromatography. c is mobile 

phase concentration (cs that of the modifying species), Keq is the equilibrium constant, q is stationary phase concentration 

and qmax the stationary phase capacity.  

Model Equation Model Notes Usage Notes 

Linear 𝑞 = 𝐾𝑒𝑞 ∙ 𝑐 Simple model, stationary phase 

concentration proportion 

mobile phase concentration 

only. 

Valid where column is 

loaded far below 

capacity, such as 

analytical 

chromatography. Often 

used to describe binding 

of contaminants, or 

other species where 

capacity is unlikely to be 

challenged. 

Langmuir 𝑞 = 
𝑞𝑚 ∙ 𝐾𝑒𝑞 ∙ 𝑐

1+(𝐾𝑒𝑞 ∙ 𝑐)
 Accounts for binding site 

occupancy through maximum 

capacity (qm) term 

Most widely used for 

single component 

adsorption, many 

variations exist (Kinetic 

formulations, 

competitive versions, 

mobile phase 

modulators, etc.) 

Steric Mass Action 

(SMA) 

𝑞 =  
𝑐

𝐾𝑒𝑞
 (

𝑐𝑠

Δ − (𝑣 +  𝜎)𝑐
)

𝑣
 Δ is the total ionic capacity of 

stationary phase, σ is the steric 

factor (accounting for blocking 

of binding sites), and v is the 

characteristic charge (for 

maintaining electroneutrality 

of the system/desorption of 

salt) 

Most commonly applied 

to ion exchange 

processes, as steric 

inhibition and charge 

conservation are 

applied. 
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Figure 6.2 - Visual Representation of three common isotherms. Both SMA and Langmuir exhibit a maximum capacity term, 

which is reached when the stationary phase concentration plateaus. Linear isotherms however have no such limiting capacity 
and therefore the concentration of material transferring into the stationary phase continues unlimited; this is useful for 
analytical chromatography and modelling impurity clearance for polishing steps, as capacities are rarely reached in these 

applications. Rectangular isotherms assume binding is infinitely favourable, with all available binding sites able to be occupied 
at all nonzero mobile phase concentrations. 

Adsorption models are typically classed into two distinct groups; equilibrium models and kinetic models, 

Equilibrium models assume that the distribution of material between stationary phase, or isotherm, is achieved 

instantaneously, whereas kinetic models assume both binding and unbinding have finite rates and are therefore 

time dependant. The fast rate of binding for Protein A to IgG Fc domains as evidenced by large second order rate 

constants and high equilibrium constants (Saha  et al. 2003), slow rates of pore diffusion and relatively large 

particle diameters mean binding kinetics are often insignificant  (Carta & Jungbauer, 2010, Horstmann & Chase, 

1984, McCue et al., 2004), though will be important for less conventional systems, such as monoliths and 

membranes which exhibit less prohibitive mass transfer resistances due to their structure enabling convective 

mass transport to binding sites and therefore require accurate estimation of adsorption kinetics to describe the 

system adequately (Boi et al., 2007). 

An adsorption isotherm describes the relationship between mobile phase and stationary phase for the system;  

for small molecules it is commonplace to determine adsorption behaviour using base thermodynamic principles 

(Heeter & Liapis, 1998), and incorporating structure-activity relationships, such that one can predict the 

adsorption process by the species’ structure and composition  alone. However, considering the large mass, 

complexity, variety of adsorption mechanisms, and structural complexity and heterogeneity of proteins, 

determining macroscopic models, though often tedious, provides simple approximations whilst not modelling 

the innate complexity and variability of molecular dynamics (Carta &  Jungbauer, 2010). Simplified models based 
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on physicochemical properties, such as colloidal models, have shown some utility for protein chromatography , 

especially when describing ion exchange (Kumar & Lenhoff, 2020), possibly reducing or removing the need for 

any experimental adsorption data to calibrate a model (Ladiwala et al., 2005), including for mAbs – protein A 

systems to predict a suitable elution pH (Ishihara et al., 2005). 

Of equilibrium models, the linear isotherm is one of the simplest, in which it assumes bound and unbound 

material has a set distribution (Keq), which is met for all load challenge. This simple assumption describes single 

component binding at very low load challenges, as for analytical chromatography, well, and has been used to 

describe contaminant binding (Ng, et al., 2012) for preparative application. However, in preparative 

chromatography of high titre products, where resin utilisation and throughput are important considerations, 

processes are designed to run close to column capacity where the number of available binding sites is material 

is introduced diminishes. In order to account for this, other adsorption models include a maximum capacity term 

to describe site saturation. The rectangular isotherm is another simple model, in which the equilibrium constant 

is assumed to be unimportant, with the only parameter being this maximum capacity which may be met for all 

load concentrations. 

The Langmuir isotherm is perhaps the most ubiquitous in modelling protein chromatography (Ganetsos & 

Barker, 1993, Fornstedt et al. 2016). It may be derived through kinetic (Patiha, et al., 2018) and thermodynamic  

(Bird, 1933) approaches, and describes a reversible, homogenous monolayer adsorption of a single component 

to homogenous, singly occupiable ligands. It assumes no interaction between components, that all binding sites 

are equivalent and singly occupied. Whilst the Langmuir isotherm is widely used to describe protein binding, in 

reality, each one of these assumptions is demonstrably untrue; proteins often aggregate leading to multilayer  

binding, the binding sites and proteins do vary in size and energy in part due to conformation changes and 

variability. Wildtype protein A possesses 5 distinct binding sites for IgG (Jansson et al., 2006), the proteins can 

occupy more than a single binding site, a single binding site can bind multiple proteins, and protein s do interact 

with great complexity, often varying with concentration. However, for a simple approximation, Langmuir often 

suffices to explain macroscopic adsorption behaviour (Latour 2014).  

There are a number of variations applicable to the Langmuir isotherm in use for modelling chromatography; if 

more than one molecule is being simulated, competitive Langmuir allows for each molecule to bind to sites with 

differing equilibria, modelling competitive adsorption between the species. The assumptions are made  that the 

capacity is the same for each species, which is likely untrue, as well as not simulating interactions between 

species. Nonetheless, such models have shown use in IgG purification, with many applying this approach to 

separating aggregates from monomeric proteins or other contaminants (Norde 1996, Close et al., 2014b, Zhang 

et al., 2019, Nilsson 2005). 
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Additionally, one can extend the Langmuir isotherm to simulate two or more distinct sites for binding, the Bi-

Langmuir isotherm. This allows individual capacities and equilibria for each binding site and assumes that it is 

competitive binding between the two. Whilst most systems have more than one binding sites, with even high 

affinity systems such as IgG and Protein A exhibiting many (Borg et al., 2014, Da Silva et al. 2019, Dimartino et 

al., 2015, Perez-Almodovar & Carta, 2009a), the Bi-Langmuir is critical if the relative contribution of these sites 

are similar; if one binding site is far more active than another, the isotherm can be approximated with a single 

binding site for most of the operation, though would fail to correctly describe saturation behaviour. 

If binding is moderated by the presence of another factor such as salt or pH, the Langmuir isotherm is often 

extended further, to include ‘Mobile Phase Modulators’. The binding of protein to ion exchange resins, 

hydrophobic interaction resins or affinity resins is largely determined by mobile phase pH (Sandoval et al., 2012) 

and ionic strength (Guélat et al., 2012), which can be simulated much the same way the target molecule can, 

with mass transfer resistances and capacities. The equilibrium values are often charged as a function of mobile 

phase modulator concentration (Karlsson et al., 2004b). 

The Steric Mass Action (SMA) isotherm models other phenomena, such as steric hindrance of the binding sites 

by species, competitive exchange of species and ions (Chen et al., 2006, Brooks & Cramer, 1986), and charge 

conservation. Each component, such as protein and salt are given a characteristic charge, and a steric component 

describing the blocking of binding sites by the molecules size . This isotherm has shown great utility in simulating 

ion exchange processes (Kumar et al., 2015).  

The kinetics of binding for many preparative chromatographic operations are not rate limiting, instead transport 

processes determine performance. (Müller-Späth et al., 2011) though for cases with adsorption kinetics, rate 

terms can be used instead. This approach is also often used with simpler models, such as the lumped rate and 

ED formulations, to account for some kinetic effect not included in the model  (Ng et al., 2012). In these cases, 

the values for binding rate have no physical meaning, but account for mass tr ansfer not accounted for with 

transport alone, so limit potential for model extrapolation. With regards to IgG capture by Protein A 

chromatography, as in most types of affinity chromatography, the equilibrium constant is rather favourable  with 

dissociation constants in the nanomolar range (Carta & Jungbauer, 2010, Yang et al., 2003, Reader & Shaw, 2017, 

Wilson et al., 2010). One can assume a rectangular isotherm, which is well supported in literature for high Keq 

values in general and notably for Protein A – IgG systems, which it is used to describe adsorption behaviour with 

a shrinking-core model (Zhang et al., 2015, Pfister et al. 2018,  Weinberg et al., 2017, Bankston et al., 2008, 

Bergander et al., 2008, Baur et al., 2018, Wenger, 2010, Subramanian, 2004, Lopes da Silva et al., 2019, Perez-

Almodovar & Carta, 2009a, Sheth, 2009, Steineback et al., 2016, Shi et al., 2020). Even in cases where the 

adsorption is not strictly rectangular, the assumption is often useful to describe such systems (Ruthven, 2000). 
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6.2.3 Mass Transfer Parameter Correlations 

Many engineering correlations have been published for estimating mass transfer resistances applicable to 

chromatography and may be developed upon an experimental and/or theoretical basis (Wang et al., 2005), 

though are often inaccurate compared to empirical determination of mass transfer resistances.   

6.2.3.1 Axial Dispersion 

Axial dispersion is the bidirectional movement of material axially within the interparticle space. Two phenomena 

are responsible for this: molecular diffusion of the protein, and eddy dispersion [6.12]. Several correlations are 

used to estimate this, including Ruthven (1984), in which the total axial dispersion correlated to molecular 

diffusivity and non-idealities through the geometric constraints of γ1 and γ2 usually set to 0.7 and 0.5, 

respectively [6.12]. De Ligny (1971) expanded the second term to include influence by molecular diffusion, based 

upon Gidding’s (1959) random walk  analysis [6.13] , Chung & Wen (1968) have also reported an empirical 

correlation [6.14] in which molecular diffusion was omitted entirely, which is a robust assumption for large 

molecules and faster convection. 

𝐷𝑎𝑥 =  𝛾1𝐷𝑚 +  2𝛾2 𝑟𝑝 𝑢 

 

 
[6.12] 

𝐷𝑎𝑥 =   𝛾1𝐷𝑚 + 
5 𝑟𝑝  𝑢

1 + 4.4 𝐷𝑚  /  (𝑟𝑝 𝑢)  
 

 
[6.13] 

𝐷𝑎𝑥 = 
 2𝑟𝑝 𝑢𝜀𝑏

0.2 + 0.011 𝑅𝑒0.48  
 

 
[6.14] 

  

Molecular diffusivity (DM) of a protein in aqueous solution can be estimated by the correlation of Polson , 1950, 

[6.15], though Tyn’s (Tyn & Gusek, 1990) and He’s (He & Niemeyer, 2003), correlations have shown much 

reduced error between experimentally determined values, though require estimates of gyration radius of IgG, 

viscosity or other measurements. The molecular diffusivity of dextran follows the correlation by Frigon  et al., 

1983 [6.16]. In addition, one can also determine the molecular diffusion of the material chromatographically  by 

determining the variance of a small pulse injection with and without the flow stopping for a defined duration 

(Pathak & Rathore, 2016, Shaw & Schy,  1981), with a peak parking approach. 
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𝐷𝑀
(𝑚2 𝑠−1) = 2.74 × 10−9  𝑀

−
1
3 [6.15] 

𝐷𝑀
(𝑚2  𝑠−1) = 7.04 × 10−9  𝑀−0.47 

 
[6.16] 

One can determine effective axial dispersion experimentally, by performing HETP tests and defining apparent 

axial dispersion (DL) by plate height, H, through a simple identity [6.17] though this is a combination of all mass 

transfer resistances, rather than dispersion in the interstitial bed volume alone, though this is often sufficient 

for simple models (Guiochon  et al., 2006). 

𝐷𝐿 =  
𝐻 𝑢

2 𝜀𝑐

 

 
[6.17] 

6.2.3.1 Film Diffusion 

  

𝑆ℎ = 
𝑘𝑓 𝑑𝑝

𝐷𝑚

 

 
[6.18] 

𝑆ℎ =  
𝑘𝑓 𝑑𝑝

𝜀𝑐

𝑅𝑒
1
3𝑆𝑐

1
3 

 

 
[6.19] 

The film transfer rate, or external mass transfer rate, can be estimated through hydrodynamic principles. To 

estimate film thickness, or resistance to diffusion, a practicable approach to correlate the dimensionless 

numbers, through the Sherwood (Sh) number [6.18 and 6.19], the ratio of convective to diffusive transport, and 

the Schmidt number , Sc, the ratio of momentum diffusivity and mass diffusivity [6.20]. 

𝑆𝑐 =  
𝜐 

𝐷𝑚

 

 
[6.20] 

The flow within chromatographic columns is usually very laminar, with very low Reynolds numbers  (Re), 

considering the slow flow velocities and small particle diameters [6.21], sometimes characterised as Stokes flow 

(Costa & Cabral 1991).  

𝑅𝑒 =  
𝑑𝑝  𝜀𝑐 𝑢 

𝜐
 

 

 
[6.21] 
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Additionally, one may use the correlations for kf from Kataoka et al., (1972) [6.22] which is valid for flow with 

Reynolds numbers up to 100, or Wilson and Geankoplis (1966) [6.23] for flow regimes with Reynolds numbers 

between 0.0015 and 55. Both correlate film diffusion to the cube root of interstitial velocity.  

𝑘𝑓 = 1.165𝑢
1
3 (

𝑟𝑝

𝐷𝑚

)
−

2
3

(
1 − 𝜀𝑏

𝜀𝑏

)

1
3

 
 
[6.22] 

𝑘𝑓 = 0.687𝑢
1
3 (

𝜀𝑏𝑟𝑝

𝐷𝑚

)
−

2
3
 

 
[6.23] 

 

6.2.3.2 Pore Diffusion Coefficient 

Pore diffusion is often the rate limiting mass transfer resistance in preparative chromatography of proteins, 

owing to the relatively large bead diameter, highly tortuous pore networks, relatively large molecules and the 

lack of convective flow within the pores. Due to the favourable binding Protein A:IgG exhibits and literature on 

other systems describing the adsorption of IgG and protein A through a shrinking core model, this is likely to be 

a critical mechanism to model quality.  The magnitude of diffusion is highly dependent on the pore network, size 

distribution and heterogeneity of the intraparticle space, and is therefore often difficult to predict. Indeed, four 

distinct mechanisms contribute to pore diffusion; molecular diffusion, Poiseuille flow, Knudsen diffusion and 

surface diffusion (Guiochon et al., 2006).   

A number of identities of pore diffusion are available; the Mackie and Meares correlation (1955) was developed 

to describe diffusion in ion exchange media and is a poor approximation of macromolecule diffusion as it does 

not take molecule sterics, nor pore structure into account [6.24]. Brenner and Gaydos (1977) introduced this 

capability with their correlation [6.25] assuming cylindrical pores, and accounts for tortuosity (τ) and steric 

hindrance. 

𝐷𝑝 =
𝜀𝑝

(2 − 𝜀𝑝 )
2

 

𝐷𝑚  

 
[6.24] 

𝐷𝑝 =
𝜀𝑝 𝑘𝑝  𝐷𝑚

𝜏
 

 
[6.25] 
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Resin tortuosity is rarely measured but assumed to be between 2 and 6 for most commercial resins (Gu et al., 

2013), and is a measure of how much the pores diverge from a perfect cylinder. The values of kp correlate to size 

exclusion effects, which may vary during column loading (Gutenwik et al., 2004, McCoy & Liapis, 1991, Clark et 

al., 1985). τ must be determined experimentally, either by an inverse method (Kempe et al., 2006), or by 

microscopic methods, such as confocal microscopy (Green & Perry 2007, Carta et al., 2005 Hubbuch et al., 2003). 

Other have  determined the resistance to pore-diffusion for IgG on a Protein A resin with batch adsorption 

(Bergander et al. 2008, Traylor et al., 2014), and some report that this value varies significantly with protein 

concentration (McCue et al., 2003, Hahn et al., 2003 Horstmann & Chase 1989), though Perez-Almodovar & 

Carta (2009a) demonstrated that the concentration dependancy of pore diffusion was mitigated when 

accounting for finite adsorption rates.  

6.2.3.3 Porosity   

Column porosity and total porosity can be determined experimentally through pulse experiments with 

penetrating and non-penetrating analytes. Total porosity (εt) is related to column porosity (𝜀𝑐 ) and particle 

porosity (𝜀𝑝 ) through [6.26]. 

𝜀𝑡 =  𝜀𝑐 + (1 − 𝜀𝑐
)𝜀𝑝  

[6.26] 

 

With a small tracer injection, akin to HETP tests, total porosity may be determined as the proportion of void 

volume to total volume, or the retention volume of the material divided by the volume of the column used. One 

can repeat this experiment with a molecule that cannot penetrate pores, such as Dextran Blue 2,000,000, with 

a molecular mass of 2 x 106 Da and a molecular radius that prevents pore transport in many media, the column, 

or bed porosity is determined as above. This approach can be applied more rigorously, in which analytes of 

known steric size are applied, allowing the size-distribution of pores to be determined (Pabst et al., 2018, Perez-

Almodóvar & Carta, 2009a).  

6.2.4 Adsorption Isotherm Determination 

There are a number of experimental approaches to determining which adsorption isotherm is most appropriate 

and the values of the relevant parameters, including static, frontal and perturbation methods (Seidel-

Morgenstern, 2004). Frontal experiments, in which the concentration of response measured, using the inverse 

method in which adsorption parameters are fitted to the model either in breakthrough (Pan et al., 2005) or 

elution analysis (Rudt et al. 2015), though these often have to rely on assumptions that mass transfer is not 

limiting, or have been well described.  A common approach for isotherm estimation is static, or batch adsorption 
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determination due to the small material consumption and easier interpretation when performed in microtiter 

plates, in which a defined volume of resin, usually in the order of microlites, is equilibrated in feed material of 

varying concentrations or volumes (Bergander et al., 2008). Equilibration must be achieved,  usually by 

incubating and agitating the mixture for several hours. One can also perform analogous experiments in which a 

column, rather than microtiter plates, is saturated with material. This leads to greater material consumption, 

but better accuracy (Gu et al., 2013, Ng et al., 2012) when compared with microtiter plate methods. In the batch 

adsorption approach, a range of load challenges is tested, with a plot of stationary phase concentration and 

mobile phase concentration generated by measuring the concentration of material present in the interstitial 

space compared to the material bound to the resin, enabling the fitting of an appropriate adsorption isotherm. 

For isotherms with a mobile phase dependency, such as the SMA isotherms dependence on salt concentration, 

or extended Langmuir isotherms with Mobile Phase Modulators, such as pH or temperature, one can perf orm 

these experiments with a differing concentration of mobile phase modulator, or different pH’s (Kasche et al., 

2003). This approach can be applied to columns, where one can perform frontal analysis or measure material 

retention under a gradient of inhibiting species (Rudt et al., 2015).   

6.3 Model Fitting with the Inverse Method 

A common approach of parameter determination is the inverse method, in which an algorithm varies model 

parameters, and compares the modelled process it to experimental data. This algorithm then iterates through 

the landscape of allowed variables to minimise the error between model output and experimental data, 

eventually finding a set of optimal values. Care must be taken to avoid finding a local minimum in lieu of the 

global minimum; the search space increases exponentially with parameter number, and these values of each 

parameter can vary by orders of magnitude and interact in similar ways; an unfavourable isotherm can mask a 

larger binding capacity and kinetic effects are often difficult to isolate. A number of previous groups have used 

genetic algorithms (Müller-Späth et al., 2011, Osberghaus et al., 2012, Treier et al., 2012b)  and artificial neural 

networks (Wang et al., 2017a) to improve fitting confidence. 

The objective function, or optimised value, is often the sum of squared error (SSE), which is the difference 

between all experimental and simulated data points, squared [6.27]. This ensures all errors are positive and 

means the optimisation will tend to discriminate against outliers to a greater extent than just measuring an 

absolute error. 

𝑆𝑆𝐸 = ∑(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑖 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖 )2

𝑛

𝑖 =1

 
 
[6.27] 
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As simulations and experiments are often performed with varied number of data points, the mean square of 

error (MSE) is used [6.28]. For this approach, the y-axis is often scaled the same for all simulations, for instance, 

scaling to inlet concentration or maximum absorbance, rather than 280 nm absorbance or protein 

concentration.  

𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑛
 

 
[6.28] 

6.4 Mechanistic Model Applications 

Mechanistic modelling of chromatography has been applied to many bioprocess development activities, across 

the full range of development stages, from determining the best order of unit operations (Nfor et al., 2013) to 

process validation (Degerman et al., 2009, Close et al., 2014b, Rischawy  et al. 2019) and performing root cause 

analysis at manufacturing scale (Wang et al., 2017b). 

Process optimisation is a common application for mechanistic models, in which the chromatographic process is 

optimised for a combination of factors, such as purity, throughput and recovery, across both a single 

chromatographic step (Lienqueo et al.,  2009, Karlsson et al, 2004b, Hahn et al, 2014, Orellana et al., 2009, Shene 

et al., 2006), but also two or more linked together (Nfor et al., 2013, Pirrung et al., 2019, Pirrung et al., 2017, 

Huuk et al., 2014), in which the performance of the first step on the performance on  the second is evaluated, 

optimised or assessed for robustness (Westerberg et al., 2013). Process parameters, such as load challenge, 

buffer composition, pooling criteria and flowrates can be easily changed as boundary conditions in the model 

framework, with the model then predicting process quality.  If the objective function is not well defined, a Pareto 

optimisation may be performed, generating a multidimensional Pareto front (Gétaz  et al., 2013, Joshi et al., 

2017). Often robustness, rather than each individual factor, is of importance, so the remaining factors such as 

recovery, purity and throughput, are often then imposed as constraints rather than objectives. Several groups 

have applied this approach for evaluating the robustness of an operation and specifying a design space 

(Degerman et al., 2009, Jakobsson et al., 2005, Jakobsson  et al., 2007 , Westerberg et al., 2012, Borg et al., 2014, 

Kaltenbrunner  et al., 2007, Close et al., 2014a), with others using this approach to develop a control strategy in 

the face of process variability (Close et al., 2014b, Steinebach et al., 2016). 

Adsorber selection is another activity in which mechanistic models have shown much utility, in which an 

optimised process on one adsorber may be compared against an optimised process of another (Nfor et al., 2011), 

rather than benchmarking on an arbitrary process. Additionally, comparing mass transfer across different 

adsorber types has been performed, from mixed mode (Nfor et al., 2011, Zhang et al., 2019), ion exchange 

(Stable et al., 2017), and affinity (Pabst et al., 2018, McCue et al., 2003) systems. The reusability of protein A 

resin has also been extensively modelled (Shekhawat et al., 2018, Behere et al., 2018, Feidl et al., 2020), and 
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mechanistic models have even been used for  the development of chromatographic supports (Ndocko et al., 

2011). 

Evaluating the impact of scale is another application which exploits a mechanistic model’s ability to account for 

different systems, geometries and flow velocities. Mollerup et al. (2007) optimised a process with a reaction 

dispersive model and accounted for the differing flow velocities and bed heights, successfully predicted scale 

deviation from 8 mL to 55.6 mL. Rischawy et al (2019) predicted behaviour of a 3 L column with a model 

calibrated at 16 mL, with Ghosh et al. (2014a) successfully predicting behaviour of membrane chromatography 

from 5 mL to 140 mL. This work was explored further (Ghosh et al., 2014b), by scaling from an 80 µL cartridge 

to a 1.2 L device. Numerous other groups have calibrated models with microscale columns to predict lab-scale, 

or larger scale, behaviour, and these will be discussed further in the following chapter. 

Determination of adsorber capacity for the purposes of optimisation is widely employed. Due to the high cost 

of Protein A resin compared to other formats, this is typically a major incentive for optimisation (Perez-

Almodóvar & Carta, 2009b). Pabst et al., (2018) conducted an extensive study of 12 Protein A resins with 9 Fc-

containing proteins, including Fc fusions proteins, monospecific and bispecific monoclonal antibodies, using 

batch adsorption (1.25 mL scale) and breakthrough (10 mL scale) to describe breakthrough behaviour and 

optimise productivity. Ghose et al. (2004) optimised a dual flowrate loading strategy, in which the column is 

loaded at a faster flowrate for the initial portion of the load block, with the flowrate reduced later to improve 

both capacity and productivity. Interestingly, their data demonstrated a sawtooth motif on the transition 

between flowrates, which the model described well. Ng et al, (2012) employed a lumped rate model to optimise  

the protein A capture of IgG, and then furthered this work by expanding into a multiple -column chromatography 

system (2014), with Pfister et al., (2017) & Pagkaliwangan et al. (2018)  approaching a similar project of 

optimising continuous capture of IgG by Protein A. Kaltenbrunner  et al., (2016) described breakthrough 

behaviour using the cumulative form of the EMG equation to characterise the profile, and used empirical 

transition functions to predict behaviour across residence times, load concentrations and column lengths.  

As the nature of the optimisation regime, data quality and known parameters are of importance, mechanistic  

modelling shall be applied to the capture of an IgG by Protein A at lab-scale with the view to eventually scale the 

model to simulate and better interpret microscale data. It is hoped this initial system of models will provide an 

understanding of which mass transfer resistances are important. Calibrating a model with the ability to simulate , 

and therefore predict, the flowrate dependency of IgG breakthrough shall be attempted for capture step in order 

to better understand the requirements to build sufficiently accurate models, and the best practice to understand 

and apply the information gained to model building, calibration and interpretation. 
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6.4.1 Published Parameters of IgG-Protein A Chromatography Mechanistic Models 

Modelling chromatography is an expanding science, with ever new methodologies, model formulations and 

techniques available. There have been several papers that have applied mechanistic models of varying types to 

the problem of characterising IgG binding to a Protein A column for various purposes, with some of the relevant 

parameters displayed below (Table 6.2). All of these systems have been subjected to different feed material, IgG 

subtypes and resins, and due to the specificity of model parameters to the whole system,  these therefore cannot 

be directly compared, though should serve as suitable initial estimates. Of note are Pabst et al., (2018), who 

compared many different adsorbers, including MabSelect SuRe LX with a general rate model and a Langmuir  

isotherm with breakthrough data, Hahn et al., (2005) evaluating MabSelect SuRe with batch update experiments 

and determination of pore diffusion assuming a rectangular isotherm and with an analytical model,  and Perez-

Almodóvar & Carta, 2009a evaluated MabSelect with a shrinking core model, a pore diffusion model and a 

heterogenous binding model. This highlights the variation in modelling methodology, calibration data and 

parameters for even models for a relatively focussed application, Protein A capture of mAbs, in the total 

landscape of preparative chromatography. 

Table 6.2 - Published Mass Transfer Parameters of IgG Binding to a Protein A Column  

Parameter Value Reference 

Bed porosity (εb)  0.38-0.45 
McCue et al., 2003, Hahn et al., 2005, Pabst  et al., 2018, McCaw et al., 

2014 

Particle porosity (εp)  0.46-0.98 
McCue et al., 2003, Hahn et al., 2005, Pabst  et al., 2018, Horstmann & 

Chase, 1986, 

Effective particle 

porosity for IgG  (εeff) 
0.34 -0.7 Hahn et al., 2005, Pabst  et al., 2018 

Maximum binding 

capacity of column 

(Qmax) 

30-70 g/L 

McCue et al., 2003, Hahn et al., 2005, Pabst  et al., 2018, Horstmann & 

Chase, 1986, McCaw et al., 2014, Ng et al., 2013 Perez-Almodóvar & 

Carta, 2009a 

Langmuir equilibrium 

Constant (Keq) 
107to 109  M-1

 

McCue et al., 2003, Hahn et al., 2005, Pabst  et al., 2018, Horstmann & 

Chase, 1986, McCaw et al., 2014, Ng et al., 2013, Liu et al., 2015 

Langmuir association 

rate constant (ka) 
103-106 M-1 s-1 

Wilson et al., 2010, Yang at al., 2003, Reader & Shaw, 2017, Hahn et al. 

2005, Pabst et al., 2018, Bak et al.2007 

Pore Diffusion 

Coefficient (Dp) 
0.5 - 5.1 x 10-11 m2 s-1 

Hahn et al., 2005, Horstmann & Chase, 1986, McCue et al., 2003, Pabst  

et al., 2018, Perez-Almodóvar & Carta, 2009a 

Molecular Diffusivity of 

IgG (DM) 
3.7 x 10 -11 m2s-1 Tyn & Gusek, 1990 

Film Diffusion (kf) 3x 10-6 - 4 x 10-6  m s-1 Horstmann & Chase, 1986, Hahn et al., 2005 
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6.5 Materials and Methods 

6.5.1 Mathematical Methods 

A rate model of chromatography was used for all column simulations, using MatLab and the module 

“Chromatography Analysis and Design Toolkit” (CADET), which is a fast and accurate solver for the general rate 

model of chromatography, using a finite volume scheme (Leweke & von Lieres, 2018). This software functions 

using its own external simulator, using MatLab to formulate the model. MatLab was used extensively, both to 

call the CADET simulations, for data handling as well as some simulations not handled in CADET natively, such 

as dead volume simulation. Latter versions of CADET than used for this work, however, do now include mixing 

simulation through continuously stirred tank reactor (CSTR) and plug flow reactor (PFR) models. 

6.5.1.1 Dead Volume Simulation 

Dead volume was approximated by ideal plug flow reactors [6.29], to account for delay, in series with a  

continuous stirred tank reactor [6.30], accounting for dispersion, though this may also be achieved by using  

many CSTRs in series, though may lose the physical significance of the volumes (Mo & Jensen, 2016). This PFR 

and CSTR approach has been employed to simulate or determine dead volume in chromatographic systems for 

multiple systems (Montesinos‐Cisneros et al. 2007, Yang & Etzel, 2003, Ghosh et al. 2014, Sarfert & Etzel, 1997, 

Boi et al., 2007, Dimartino et al, 2011a). The volumes for this were determined with a least squares approach 

using pulse or step responses without a column inline. Whilst any combination of CSTR’s can simulate band 

broadening (Kumar et al. 2015), a combination of both a PFR and CSTR was used to maintain physical meaning 

of the volumes. Microscale column are  assumed to have unmeasurable volume and therefore set to zero, due 

to no external volume to the column, with internal volumes, such inlet chamber being highly variable with 

respect to column position, and other items such as column distributor not able to be easily measured. 

𝑐𝑜𝑢𝑡
(𝑡) =  𝑐𝑖𝑛(𝑡 −

𝑉𝑃 𝐹𝑅

𝑄
) 

 
[6.29] 

𝑉𝐶𝑆𝑇𝑅

𝜕𝑐

𝜕𝑡
= 𝑄(𝑐𝑖𝑛 −  𝑐𝑜𝑢𝑡) 

 
[6.30] 

 

6.5.2 Dead Volume Determination 

Obtaining dead volume calibration data was performed by equilibrating the system with water. Once a steady 

signal was achieved, the machine was then pumped with UV active buffer (1% v/v Acetone) at a defined flowrate, 

and the response measured, until the UV signal stabilised, with the volumes a single PFR and CSTR determined 

through a least-squares fit of the response. For determining the dead volume for the system configuration during 

tracer introduction, an additional CSTR was modelled to improve approximation of the pulse , by accounting for 



 

121 

 

dispersion of tracer before introduction to the rest of the system, with data obtained with a 100 µL pulse. This 

process was repeated for all volumetric flowrates used in this study (Figure 6.3). A offset was observed between 

flowrates, suggesting another uncontrolled factor was influencing behaviour, possible valve switching times  

though this was not further investigated as by simulating this effect, any impact would be mitigated. Fortunately, 

peak areas were comparable between flowrates, with no consistent trend when compared against flowrate. 

  

Figure 6.3- System pulse responses at 4 residence times, demonstrating the increased peak offset and width with increased 

flowrate. Amplitude has been normalised to 1 for ease of interpretation for the top plot, with raw 280nm absorbance values 
for the bottom plot demonstrating comparable peak areas despite a variation in peak position 

In order to separate pre- and post-column mixing, a column was fully equilibrated in UV active buffer, and taken 

out of the flow path of the system as the system was flushed entirely in UV transparent buffer. After the 

absorbance had baselined again the column was brought back inline and flushed with buffer at defined 

flowrates, and the response measured, and a single PFR and CSTR volume determined corresponding to the 

column valve, post column tubing and UV flow cell. The pre-column CSTR and PFR are then modelled upstream 

of the column, with their outputs serving is the inlet boundary condition for the column model  when combined 

with the step or pulse methods. Additionally, moments analysis was used to determine the first moments of the 

peaks, and correcting for dead volume, separate to the using the inverse method, to serve as estimates of 
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porosity and dispersion for pulse tests, using the same approach as employed in Chapter 4. This work could not 

use the data from Chapter 4 alone, as different flowrates were employed, different adsorber type and a different 

system configuration with larger injections (100 µL) used in the prior work. 

6.5.3 Optimisation Regimes 

An inverse method was used in order to fit the mass transfer parameters to experimental data, based upon 

simulating the system with an estimate of mass transfer parameters, obtained from literature or known 

correlations, with the results of the simulation then compared to experimental data. Constrained optimisation  

was used in MatLab to vary, and therefore calibrate these mass transfer parameters with the function fmincon   

using the interior points algorithm (Byrd et al., 1999).   

6.5.4 Parameter Estimation 

There are a large number of parameters one has to determine to simulate the General Rate Model. Many 

parameters are known beforehand, such as column length, particle diameter, flowrate of the mobile phase and 

feed concentration, and therefore do not need to be calibrated, however, most parameters must be determined 

experimentally or through correlations. Estimations are used to initialise the model; these are altered when the 

model is fully calibrated, with bounds to keep computational burden acceptable. For some parameters the limit 

is straightforward, i.e. the porosities must have a value between 0 and 1, whereas other  parameters can vary 

significantly, often by multiple orders of magnitude. Values taken from the published works (Table 6.2) are taken 

for many of the initial estimates. 

6.5.5 Adsorption Isotherm Parameters 

As a typical Langmuir isotherm is implemented without accounting for adsorption or desorption rates, two 

parameters are required, qmax and Keq, though this was also tested by also initialising for an adsorption rate(kads), 

with the desorption rate being this value divided by the adsorption equilibrium constant, Keq. As previously 

described (Horstmann & Chase, 1984, McCue et al., 2003, Carta & Jungbauer, 2010, Pabst et al., 2018), the finite 

rate of adsorption is often insignificant compared to other mass transfer resistances for preparative protein, so 

is sometimes omitted when describing Protein, A chromatography. qmax was also estimated through product 

data (GE, 2012a) to be 70 g Lbed
 -1, which was comparable  with literature values (Pabst et al., 2018) 

In this work, batch adsorption plates were also used, in which 800 µL volumes of various concentrations of 

material (0 to 4.7 g L-1) was left to equilibrate for 6 hours on resin slurry plate of 20 µL resin volume, following 

the manufacturers protocol. Data was interpreted through applying the Langmuir isotherm to also estimate Keq 

and qmax. Saturation experiments were performed in which material of a known concentration was fed onto a 

column until the breakthrough reached feed concentration.  
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6.5.6 Mass Transfer Parameter Initialisation 

There are a large number of mass transfer parameters estimations to make; these serve as initial guesses for the 

parameters of the model before they are calibrated with experimental data, or are constraints to limit the 

optimisation window, reducing computational burden and reducing the risk of optimising away from the true 

values. 

The film diffusion coefficient, kf, can be one of the mass transfer rate limiting steps for chromatography (Deyl et 

al., 1975), and therefore could have a significant impact on simulations and model quality, though it is unlikely 

to be the rate limiting step in IgG-Protein A chromatography. Typically, correlations are used for determination 

of  this, or through using the inverse method. Film diffusion is dependent on interstitial velocity, so will change 

with scale. Dp is the pore diffusion coefficient, which is often reported to be rate limiting, and should be 

particularly significant for this system (Carta & Jungbauer, 2010). The molecular diffusivity value of IgG           

(3.7x10-11 m2s-1) served as an upper bound, and an initial estimate made at 10 -12 m2s-1.  Pore surface diffusion 

was assumed to be insignificant, as the highly favourable IgG – protein A interaction meant that protein 

unbinding was a rare occurrence in loading conditions, which is required for surface diffusion. Therefore, this 

parameter was given a value of zero and not varied during model calibration. Dax, the axial dispersion coefficient, 

is also reported in literature. This is occasionally omitted from models (Pabst et al., 2018, Bowes & Lenhoff, 

2011, Carta & Jungbauer 2010), as for preparative scale chromatography it is often insignificant, though for 

smaller scales it can have an impact. With the eventual aim to scale down the models, considering the different 

flow regimes and reduction in plate counts, accurately determining this parameter was considered important 

(Roberts & Carta, 2020, Marek et al., 2018). Column and particle porosity are also reported in literature, as is 

effective particle porosity (εeff), which accounts for the size exclusion phenomena that large molec ules, such as 

IgGs, face when diffusing within a constrained pore network. Estimates for these values for IgG binding this 

Protein A resin were reported by Pabst et al., (2018) of 0.7 to 0.4, and by Hahn et al., (2005) of 0.52.  

6.5.7 Model Calibration Data 

The accuracy of a model is wholly dependent on the accuracy of the parameters; therefore, it is crucial to 

determine these parameters with as much precision and accuracy as possible and improve upon the initialised 

values. For this, a number of approaches were used (Table 6.3) to better develop a workflow and to determine 

which experiments were necessary. Data was separated into calibration and validation sets, to build and test 

the model.  As with the binding capacity investigation, all experiments were performed with purified protein, so 

that one could determine concentration directly from the chromatogram, rather than having to perform 

additional experiments, such as size exclusion HPLC and Protein A HPLC. This does limit the validity of the model 

to describe adsorption of crude material, whereas models calibrated with crude material have been employed, 

though require offline analysis to quantify material (Bak et al.,2007, Pirrung et al., 2018). 
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Table 6.3 – Experiments used to calibrate the Mechanistic Model of Protein A binding an IgG 

Experiment Type Probing Material Conditions Parameters Varied 

Breakthrough  Drug product (binding) One concentration (4.7 gL-1), 

five residence times (160 s, 

240 s, 480 s) 

qmax, kf, Dp, 

Breakthrough  Drug product (binding) One residence time (240 s). 

three concentrations (2.3 g 

L-1, 4.7 gL-1, 7.5 g L-1) 

qmax, Keq 

Pulse Drug product 

(nonbinding) 

Four residence times (160 s, 

240 s, 480 s, 1200 s) 

εeff, kf 

Pulse PABA Four residence times (160 s, 

240 s, 480 s, 1200 s) 

εt, εp 

Pulse Dextran Four residence times (160 s, 

240 s, 480 s, 1200 s) 

εc,Dax 

In order to minimise the possibility of fitting the model to a local optimum, experiments were optimised in 

batches; a single parameter may be estimated through a large number of experiments in a sequential manner.  

Moments analysis was employed as an insight into parameter estimation separate of the mechanistic model 

inverse method. 

6.5.8 Bed Porosity Determination with Dextran 2,000,000 

 

Figure 6.4- Dextran pulse data at multiple residence times, peak absorbance normalised to 1 
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The experimental data (Figure 6.4) was obtained for four flowrates, with 100 µL pulses of Dextran 2,000,000 (5 

g L-1) in solution with 100mM sodium hydroxide, to prevent binding to the resin. This data was scaled for a peak 

maximum amplitude of unity for convenience, reducing differences across tracer absorbance and differences in 

tracer volume, and due to the nature of these chromatograms having a single peak, the peak position, width 

and skew was of importance, rather than amplitude. 

Moments analysis was performed at all flowrates for all residence times, with and without a column, and 

corrected for dead volume through fitting the EMG equation and determining the first moment of the peaks for 

all residence times. Integrating the peak numerically, without using the EMG equation was thought to be error 

prone due to the strong shouldering of the peaks, as well as potentially posing a problem when low resolution 

data were to be assessed. 

To evaluate whether the model could estimate the bed porosity through the inverse method, the data was used 

to calibrate a model directly with the inverse method. For the simulations of dextran pulsed through the column, 

a number of parameters were estimated initially. Dextran was assumed to not adsorb in the experimental 

conditions, the adsorption model was omitted. Particle porosity (εp), pore diffusion coefficient (Dp) and Film 

Diffusion Coefficient (keff) were set to zero to account for dextran’s assumed inability to penetrate the pores,  

leaving the bed porosity (εb) and axial dispersion (Dax) to be optimised by fitting to the calibration peak position 

and width. Initial estimates of the molecular diffusivity and axial dispersion were taken from literature and using 

correlations. 

6.5.9 Total porosity determination using PABA 

As with Dextran, a moment approach by application of the EMG equation was employed.  Film and pore diffusion 

coefficients were set arbitrarily high, with particle porosity and axial dispersion being the optimised variables. 

 

Figure 6.5 – PABA Pulse Experiments, at multiple residence times 
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As with dextran pulses, a moments analysis was used, as was the inverse method, with all peak absorbance 

scaled to 1 (Figure 6.5). Total porosity was determined as the dead volume corrected first moment, with particle 

porosity then calculated [6.26]. 

6.5.10 Accessible Particle Porosity with nonbinding IgG 

 

Figure 6.6 – Pulse of IgG in nonbinding conditions at multiple residence times 

Non-binding drug substance was pulsed through the column at multiple flowrates, in order to determine the 

effective particle porosity, the fraction of the resin particles accessible by drug product, and as an initial estimate  

of axial dispersion and pore diffusion. One can see a clear  correlation between residence time and peak maxima 

(Figure 6.6). Binding was prevented by lowering the pH of the feed material to elution conditions, with a pH of 

3.5. Analysis was performed as for dextran and PABA pulses, with the added evaluation using a reduced HETP-v 

curve slop to determine pore diffusivity parameter, using the relationships shown below [6.31 to 6.36], in which 

h is reduced plate height,  v’ is reduced interstitial velocity , v  is superficial velocity, and has been adapted from 

Carta et al., 2005, Perez-Almodóvar & Carta, 2009a, Gritti & Guiochon, 2006);  the intercept of this plot can 

determine the axial dispersion coefficient correlation [6.35], if one assumes it is strictly correlated, linearly, to 

interstitial velocity. 
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𝑣′ =  
𝑢 𝑑𝑝

𝐷𝑚

 
[6.32] 

𝑘′ =  
𝜇 − 𝑉0

𝑉0

 
[6.33] 

𝑉0 = 𝜀𝑏𝑉𝑐  [6.34] 

ℎ = 2 𝛾2 +  
1

30

𝜀𝑏
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1 + 𝑘′
)

2
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[6.35] 

𝐻𝐸𝑇𝑃 =  
𝐿𝜎 2
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(
𝑑𝑝

6𝑘𝑓

+
𝑑𝑝

2

60 𝐷𝑝

) 𝑢 
[6.36] 

 

6.5.11 Determining Model Parameters with Breakthrough Data 

6.5.11.1 Breakthrough at multiple feed concentrations 

Breakthrough Experiments were performed as for chapter 5, in which a column was washed and loaded with 

differing concentrations of IgG A feed material (2.3, 4.7 and 7.5gL-1), and loaded to a maximum concentration of 

90gL-1. For determining the breakthrough absorbance and concentration of material, the UV flow cell was  

blanked with buffer, then washed with protein solution, and UV absorbance obtained, then concentration and 

breakthrough percentage calculated based upon the UV calibration curve , as per the previous chapter. All 

columns were subject to CIP, regeneration and equilibration before use. 

6.5.11.2 Breakthrough at Multiple Residence Times 

Multiple residence times were also probed on the IgG Protein A system during breakthrough, as during chapter 

5, with and without intermittent flow. In addition, the standard process residence time, 240 s, was overloaded 

significantly to explore any behaviours arising at these load challenges and for observation of the saturated 

breakthrough profile. 
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6.6 Results and Discussion 

6.6.1 Dead Volume Determination and Simulation  

Initial work was performed to assess the contribution of dead volume on resultant chromatograms; as relatively 

small volumes of columns are used (4.7 mL), the system volume could be significant and affect model validity, 

though would also serve as a proof of concept for further work performed on smaller columns.  

Both step change responses and pulse responses were obtained at a variety of residence times and were subject 

to analysis through two means. Through inverse-fitting with mechanistically modelling with plug flow reactors 

and continuously stirred tank reactors, for the purpose of introducing and correcting for this within the 

mechanistic modelling framework, and through determining the first moments with the EMG equation for better 

estimating column porosities. For the EMG approach, good fittings were observed for all flowrates (Figure 6.7), 

though for faster flowrates a poorer description of the peak front was apparent than for the peak tail, in which 

material appeared to elute before the injection, likely a limitation of using the EMG equation to characterise 

pulse responses. 

 

Figure 6.7 – Pulse Response and EMG Fits for Dead Volume Determination at 4 flowrates. X -axis plotted as volume, as 
retention time or load challenge have no physical basis in the system. 

For step change simulation, a single PFR and CSTR in series model was employed for determining total system 

volume and post-column volume, whereas for pulse tests an additional CSTR of the same volume was introduced 

to account for dispersion of the material within the loop valve on the system, with better quality of fits observed. 

Improved fittings were also found when applying two CSTR’s for modelling the step response, as others have 

reported (Boi et al., 2007) due to two CSTR’s ability to approximate a sigmoidal breakthrough, though adequate  

fittings were observed without.  Additionally, the post column dead volume was estimated by flowing a 

saturated column (1% (v/v) Acetone) into a system containing water alone, with CSTR and PFR volumes 

estimated. 
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Figure 6.8- An example step response and CSTR/PFR simulation of system with UV active buffer and PFR-CSTR model for total 

system volume (black) or post column volume (grey), demonstrating a good fit but poor approximation of early breakthrough. 

For the pulse response, poor fittings were observed with only a single CSTR with PFR modelled, though 

acceptable with two CSTRs (Figure 6.9). As expected, better fittings were observed when introducing yet another 

CSTR, bringing the total to three, but the fits were adequate with two CSTRs and a PFR with less complexity, and 

therefore was used for modelling system volume. The CSTR volumes were as the post and pre-column CSTRs. 

  

Figure 6.9- A pulse response of system with UV active buffer and PFR-CSTR-CSTR model 

One can see comparability between system volumes measured by both the method of moments and inverse 

method (Table 6.4), in which dead volume appears to increase with flowrate; this is likely due to  system 

limitations such as valve switching time, as other have not reported such a phenomenon (Boi et al., 2007). The 

post column volume was significantly smaller than the total dead volume determined by CSTR and PFR fitting of 

step responses, and within possible errors of the total system volume . Therefore post-column mixing was 

ignored for peak fitting with in which the total variation in post column volume will impact porosity 

determination by less than 1%, whereas total column mixing should describe the additional broadening and lag 

introduced by the system, regardless of position in the flow path.  
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The total system CSTR and PFR models can describe the flow effects well enough for incorporation in a 

mechanistic modelling workflow, and good EMG fits, and therefore first moments can be obtained for better 

estimating porosities, with each approach providing better estimated than neglecting dead volume entirely . For 

the CSTR + PFR approach, the post column model could be applied at any point by adjusting the total system 

model into pre-column mixing and post-column mixing, able to account for fine structure in a response arising 

from the column. Of the two methods of fitting, CSTR/PFR and the EMG equation, the EMG approach exhibited 

better quality of fit, which follows logically, considering the greater number of parameters needed to describe 

the EMG and wide applicability to describe chromatographic peaks. These peaks typically exhibit more 

complexity to describe than two CSTR’s and a PFR with a total of three parameters between them, and typically 

require significantly more CSTR’s modelled in series to approximate a peak shape well described by the EMG 

(Mo  & Jensen, 2016). 

The CSTR and PFR models failed to show a consistent total volume across the various flowrates, likely due to the 

limitation of the system seen in the raw data, in which the peaks shifted with regards to flowrate. However, as 

these successfully described the pulse response, they were integrated into the model, in which e ither the pulse 

or step configuration as simulated based upon the nature of the data. 

Table 6.4 – Simulated CSTR and PFR volumes, EMG parameters and first and second moments used to model system 

contributions to brand broadening  for step responses and pulse injections at multiple flowrates . Uncertainties were 

calculated from  standard deviation of parameters across three repeats 

Residence Time Equivalent (s) 1200 480 240 160 

Flowrate (mL/min) 0.235 0.5875 1.175 1.7625 

σ (mL) 
0.023 ± 
0.001 

0.0465 ± 
0.002 

0.0841 ± 
0.003 

0.112 ± 
0.006 

µ (mL) 
0.0582 ± 

0.002 
0.1079 ± 

0.003 
0.1702 ± 

0.007 
0.2118 ± 

0.008 

τ (mL) 
0.062 ± 
0.002 

0.0617 ± 
0.002 

0.0364 ± 
0.002 

0.0473 ± 
0.001 

First Moment (mL) 
0.121 ± 
0.003 

0.1697 ± 
0.008 

0.2066 ± 
0.007 

0.2591 ± 
0.009 

Second Moment (mL2) 
0.0072 ± 

0.000 
0.0154 ± 

0.001 
0.0303 ± 

0.001 
0.0471 ± 

0.002 

Combined CSTR Volume (pulse response, mL) 
0.082 ± 
0.004 

0.104 ± 
0.005 

0.172 ± 
0.007 

0.204 ± 
0.009 

PFR Volume (pulse response, mL) 
0.083 ± 
0.001 

0.125 ± 
0.006 

0.126 ± 
0.005 

0.132 ± 
0.006 

Total Volume (CSTR1,2 + PFR, pulse response, 
mL) 

0.162 ± 
0.002 

0.229 ± 
0.010 

0.298 ± 
0.012 

0.336 ± 
0.017 

CSTR Volume (step response, mL) 
0.071 ± 

0.003 

0.087 ± 

0.004 

0.103 ± 

0.005 

0.11 ± 

0.005 

PFR Volume (step response, mL) 
0.053 ± 

0.001 

0.054 ± 

0.002 

0.075 ± 

0.004 

0.083 ± 

0.004 

CSTR Volume (post column, step response) 
0.041 ± 
0.001 

0.084 ± 
0.004 

0.079 ± 
0.003 

0.091 ± 
0.004 

PFR Volume (post column, step response) 
0.013 ± 
0.000 

0.015 ± 
0.001 

0.023 ± 
0.001 

0.032 ± 
0.002 

Total Volume (CSTR + PFR, step response) 
0.124 ± 
0.006 

0.141 ± 
0.007 

0.178 ± 
0.007 

0.193 ± 
0.008 
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6.6.2 Porosity Determination 

6.6.2.1 Bed Porosity Determined with a Dextran Pulse 

When performing pulse experiments of Dextran 2,000,000, initially a concentration of 0.5gL -1 was employed; 

this was increased to 5gL -1 on both systems due to poor signal experienced with the latter microscale 

experiments. Dextran pulses were found to bind to the Protein A column, prohibiting porosity determination. 

McCaw et al. (2007), used 7M urea when using a similar Protein A resin to prevent binding, though as urea is a 

powerful denaturant, risking effecting the Protein A ligands and prohibiting binding experiments, other agents 

were screened. It was found that 100mM NaOH was enough to inhibit binding without the risk of deteriorating 

the adsorber, as this is a manufacturer recommended buffer used for CIP of the resin. The quick nature of pulse 

tests, with only two column volumes of effluent measured, meant the column wasn’t in a caustic solution for 

extended periods.  

 

Figure 6.10 – Dextran Pulse Experiments and EMG Fits for 4 residence times, demonstrating large amount of tailing affecting 
EMG fitting 

From the responses, at all  flowrates, though in particular with slower flow, significant shouldering of the peak 

is observed, perhaps due to interaction with the pore network, ligands or particles; the dextran reagent used 

would have a mass distribution, rather than a single species of exactly 2,000,000 Da (Qader et al., 2011), and 

both the particles and  pores in chromatography media also have a significant size distribution (Hagel et al., 

1996, Pabst et al., 2018), suggesting some slow partition of the smaller fractions of dextran into the larger pores 

may explain the high asymmetry. EMG fits were acceptable for all but the highest residence time, as the EMG 

equation could not fully approximate the high degree of tailing (Figure 6.10).This inability of the EMG equation  

to describe the high degree of tailing has previously been reported (Schweiger at al., 2017 Gritti & Guiochon, 
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2012), and likely due to the lack of physical basis of the equation; tailing caused by thermodynamic effects does 

not follow EMG behaviour (Guiochon et al., 2006). 

Without system volume correction, the optimised values for porosity increased with flowrate; this is likely to be 

the contribution from system effects, and the differing flow regimes or system limitations  leading to deviations 

as seen with the dead volume responses. When corrected for, the flowrate dependency was no longer apparent 

and the porosities at all residence times were within the range found in literature, of 0.38-0.45, with significantly  

less of the variation between flowrates as without correction (Table 6.5). 

Table 6.5 -EMG Parameters, moments analysis and inverse mechanistic model fit of the dextran peaks, demonstrating that 
correcting for system improves consistency across residence times.  DL was calculated using [6.17]. Uncertainties were 
measured as standard deviations from 3 repeats. 

Residence Time 1200 480 240 160 

Flowrate (mL/min) 0.235 0.5875 1.175 1.7625 

Method of Moments 

σ (mL) 0.0944 ± 0.003 0.0765 ± 0.001 0.0956 ± 0.003 0.124 ± 0.002 

µ (mL) 1.8396 ± 0.068 1.8947 ± 0.012 1.9376 ± 0.037 2.118 ± 0.049 

τ (mL) 0.36 ± 0.0012 
0.3872 ± 
0.0041 

0.3457 ± 
0.0021 

0.3213 ± 0.013 

First Moment (Measured, 
mL) 

2.1997 ± 0.004 2.2819 ± 0.009 2.2833 ± 0.005 2.4393 ± 0.015 

Second Moment 
(Measured, mL2) 

0.1385 ± 
0.00463 

0.1558 ± 
0.00021 

0.1287 ± 
0.00137 

0.1186 ± 
0.00257 

εb (Without system 
volume Correction) 

0.468 ± 0.019 0.4855 ± 0.013 0.4858 ± 0.008 0.519 ± 0.019 

First Moment (With 

system and injection 
volume correction 

Injection, mL) 

2.0295 ± 0.069 2.0623 ± 0.085 2.0267 ± 0.061 2.1302 ± 0.057 

Second  Moment (With 
system and injection 

volume correction 
Injection, mL2

) 

0.1305 ± 0.002 0.1395 ± 0.001 0.0975 ± 0.002 0.0706 ± 0.003 

DL (m2 s-1) 
3.07 ± 0.09 x 

10-7 

7.95 ± 0.03 x 

10-7 

1.15 ± 0.08 x 

10-7 

1.13 ± 0.04 x 

10-6 

εb (With system volume 
correction) 

0.4318 ± 0.033 
0.4388 ± 
0.0029 

0.4312 ± 
0.0012 

0.4532 ± 
0.0062 

Inverse Method 

εb (Without system 
volume simulation) 

0.4418 ± 0.005 0.4556 ± 0.019 0.4495 ± 0.018 0.4512 ± 0.007 

Dax  (m2s-1) (Without 
system volume 

simulation) 

1.90 ± 0.04 x 
10-7 

5.54 ± 0.11 x 
10-7 

9.76 ± 0.20  x 
10-7 

1.62 ± 0.019  x 
10-6 

εb (With system volume 
simulation) 

0.4312 ± 0.002 0.4291 ± 0.002 0.4329 ± 0.008 0.445 ± 0.005 

Dax (m2s-1) (With system 
volume simulation) 

2.69 ± 0.03 x 
10-7 

5.08 ± 0.09  x 
10-7 

1.14 ± 0.17  x 
10-6 

1.68 ± 0.14 x 
10-6 
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As with moments analysis, correcting for system volume reduced the variability of bed porosity determination 

between flowrates (Table 6.5). Additionally, the Dextran peak can be better approximated by incorporating 

some arbitrarily low particle porosity (εp of 0.1), but a large kinetic resistance the partitioning into the bead 

through a small kf or Dp value (Figure 6.11). Whilst interesting, this approach was not employed in model 

calibration, and particle porosity was assumed to be zero with respect to dextran for the sake of simplicity , 

therefore assigning all band broadening to axial dispersion alone in which DL  is equal to Dax, though this is likely 

to artificially increase this value, as all transport resistances would be lumped within . 

A 

 

B 

 

Figure 6.11 – Dextran pulse and model fit, A – model fit where particle porosity was defined as zero, B -  where particle 

porosity was non-zero (0.1), but a high resistance to mass transfer specified ( low pore diffusion coefficient), demonstrating 

the tailing can be explained with a degree of particle permeability with slow rates of partition.  

 

To generalise the model further, for a multitude of flowrates, one can employ known engineering correlations. 

Using the Frigon correlation, a molecular diffusivity of Dextran 2,000,000 is determined to be 7.69 x 10 -11 m2 s-1, 

within an order of magnitude to the experimentally determined value of 3.15 x 10-11 m2 s-1 reported by Lebrun 

and Junte (1993).  
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Figure 6.12- Axial Dispersion Coefficient, Dax  (from GRM fit, both individual and constrained by the correlation) and Apparent 
Dispersion, DL (from EMG fit)  vs Interstitial Flow Velocity of Dextran, demonstrating strong linearity, and some little 

contribution of an offset, suggesting molecular diffusion is not significant to band broadening for dextran pulses of residence 
time 480 s or less and that the HETP eddy dispersion term is dominant at these flowrates if no pore transport is assumed 

Van Deemter, Ruthven and De Ligny’s correlation specify that the axial dispersion coefficient linearly correlates 

to interstitial velocity with a constant contribution by molecular diffusion, and Chung and Wen specify no 

contribution of molecular diffusion, this is supported by the linear relationship measured to the fitted Dax  values 

(Figure 6.12), in which the apparent diffusion (determined with moments analysis and [6.17])  axial dispersion 

(by individual experiments) and axial dispersion (in which a line ar correlation to flowrate was used) 

demonstrated similar trends. These values are of a similar magnitude to that determined with the Van Deemter 

methodology, though with improved linearity, likely due to the peak tailing significantly affecting EMG fit though 

not impacting GRM as greatly.  Considering that the latter is more constrained in that the resultant 

chromatogram must  be physically possible (e.g., at the outlet concentration is zero at time zero), it was assumed 

to be more reliable .  

The used correlation for axial dispersion may then be reduced to a single relationship, how axial dispersion varies 

with flowrate, neglecting molecular diffusion. The experimental runs are then employed in a group to calibrate 

the model, with the relative axial dispersions set to follow this correlation. Molecular diffusivity will have a 

negligible impact on the axial dispersion for this system, and is therefore ignored (Susanto et al., 2008), due to 

its low magnitude (<10-10 m2 s-1). For this, the correlation of Ruthven is used, introducing the dimensionless, 

geometric constants у2 from [6.12] (Ruthven, 1984). The model was then calibrated with this linear relationship 

with all residence times, instead of allowing freedom for each residence time. 
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Table 6.6 – Optimised Values for Axial dispersion Coefficients and Porosity for Dextran on a Protein A resin, when applying a 

correlation to generalise the model for several flowrates compared to fitting axial dispersion individually 

εb 0.434 ± 0.007 

γ2 4.90 ± 0.16 

Residence Time 160 s 240 s 480 s 1200 s 

Using Correlation 

Dax(m2s-1) 1.88x 10-7 4.69x 10-7 9.39 x 10-7 1.41x 10-6 

Error (MSE, %2) 10.21 

Individually Fitting 

Dax(m2s-1) 2.32x 10-7 4.54x 10-7 9.48 x 10-7 1.31 x 10-6 

Error (MSE, %2 ) 9.63 

 

Reasonable fitting was observed (Table 6.6) , with no improvement when also including the molecular diffusivity 

term. Porosities determined were of similar values published for this resin (0.96 from Pabst et al., 2018), though 

the bed porosity is determined by packing quality, and therefore likely to vary slightly between columns, or 

during the lifetime of use of a single column. Regardless of means of determination, whether through moments 

analysis or through fitting porosity through the inverse method, a bed porosity of 0.434 ± 0.001 was measured. 

Whilst this value is higher than reports by Pabst et al., (2018) with their own packed columns with a compression 

factor of 1.2, greater than the manufacturers recommendation of 1.1, and the porosity measured here is within 

ranges reported for similar resins (Yamamoto et al., 1977, Bowes et al., 2009).  

6.6.2.2 Total Porosity Determination with PABA 

 

Figure 6.13 – PABA Pulse Experiments and EMG Fits for 4 residence times, demonstrating clear broadening of the peak at 

faster flowrates, and less tailing than observed with equivalent dextran responses  

With PABA, a retention volume offset proportional to flowrate was observed, with slightly wider peaks (Figure 

6.13), which may be an artefact of the system, as seen with the dead volume tests (Figure 6.7). Good EMG fits 

were obtained, with moments analysis further supporting the requirement for dead volume corrections (Table  

6.7) , without it, particle porosities were fitted with physically impossible values (εp > 1), whereas after 
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correction, a value of 0.97 ± 0.01 was determined with good consistency across residence times. Though this is 

a rather high value for particle porosity, others have reported similar values for this resin (Pabst et al., 2018), 

with others reporting higher values for similar base matrices (Guan & Guiochon, 1996). 

The inverse method was also followed to determine the particle porosity, and axial dispersion terms for PABA. 

Model formulation was similar to simulating the passage of Dextran through the column, in that binding terms 

were omitted, though unlike Dextran simulation, partitioning into the pores, pore diffusion and particle porosity 

were included in the model formulation. The values for kf, the film transfer rate, was set arbitrarily high, as was 

Dp, the pore diffusion rate. The reasoning behind this was because PABA is a relatively small molecule when 

compared with proteins, with at least one log higher diffusivity when compared to IgGs (Vajda et al., 2015), and 

therefore it was assumed that the mass-transfer limiting step would be convection of the material through the 

column, and that axial dispersion was the main contribution towards band broadening and therefore simulating 

a significant resistance to pore transport would impact any derived values for the particle porosity . Though a 

poor assumption, by performing multiple residence time experiments provides an insight into the validity of this. 

The same dead volume script for both pre-column and post-column mixing was also applied through simulating 

CSTR’s and PFR.  
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Table 6.7  EMG Parameters and Moments analysis of the PABA peaks, demonstrating that correcting for system improves 

consistency across residence times, and ensures porosity values are physically possible  

Residence Time  1200 480 240 160 

Flowrate (mL/min) 0.235 0.5875 1.175 1.7625 

Method of Moments 

σ (mL) 
0.3617 ± 

0.017 
0.4543 ± 

0.020 
0.5147 ± 

0.011 
0.5217 ± 

0.015 

µ (mL) 
4.788 ± 0.042 4.8664 ± 

0.104 
4.8343 ± 

0.117 
4.771 ± 0.137 

τ (mL) 

0.0182 ± 

0.000 

0.0243 ± 

0.001 

0.0183 ± 

0.001 

0.1814 ± 

0.005 

First Moment 
(Measured, mL) 

4.8062 ± 
0.017 

4.8906 ± 
0.021 

4.8526 ± 
0.012 

4.9525 ± 0.02 

Second Moment 
(Measured, mL2) 

0.1312 ± 
0.00176 

0.207 ± 
0.01082 

0.2653 ± 
0.01369 

0.3051 ± 
0.01879 

εt (Without system 
volume Correction) 

1.0226 ± 
0.038 

1.0406 ± 
0.026 

1.0325 ± 
0.018 

1.0537 ± 
0.030 

εp (Without system 

volume Correction) 

1.0397 ± 

0.031 

1.0712 ± 

0.010 

1.0569 ± 

0.014 

1.0942 ± 

0.034 

First Moment (With 
system and injection 

volume correction 
Injection, mL) 

4.6352 ± 
0.085 

4.6709 ± 
0.053 

4.596 ± 0.139 4.6434 ± 
0.136 

Second  Moment (With 

system and injection 
volume correction 

Injection, mL2) 

0.1231 ± 

0.006 

0.1908 ± 

0.007 

0.2341 ± 

0.008 

0.2572 ± 

0.002 

DL (m2 s-1) 
5.55 ± 0.12 x 

10-8 
2.12 ± 0.09 x 

10-7 
5.37± 0.21 x 

10-7 
8.67 ± 0.18 x 

10-7 

εt (With system volume 

correction) 

0.9862 ± 

0.030 

0.9938 ± 

0.038 

0.9779 ± 

0.030 

0.9879 ± 

0.024 

εp (With system volume 

Correction) 

0.9758 ± 
0.014 

0.9891 ± 
0.047 

0.9612 ± 
0.009 

0.9789 ± 
0.029 

Inverse Method 

εp 0.972 ± 0.003 

у2 2.8 ± 0.1 

Dax(m2s-1) 1.07 x 10-7 2.68 x 10-7 5.36 x 10-7 8.04 x 10-7 

The values for bed porosity, as determined above, were introduced to the model, with axial dispersion  

correlation coefficient  у2 and particle porosity serving as the optimised values. Better fits were observed than 

with dextran considering the reduced tailing of the pulses. These values for both bed porosity and total particle 

porosity when determined using the inverse method agreed with published values for comparable Protein A 

resins (Horstmann & Chase 1989, Pabst  et al., 2018, McCaw et al., 2014, Ng et al., 2012, Teeters, et al., 2009), 

the bed porosity is dependent on packing, whereas the particle porosity should be invariant to packing, under 

normal, noncompressive conditions.  Interestingly, the measured and fitted values for axial dispersion were 

about half of  the values for dextran, which does not follow logically with the model assumptions. PABA is 

assumed to be subject to intraparticle mass transfer whereas dextran was not, meaning PABA should have an 

increased apparent dispersion considering more sources of potential band broadening by the above 

assumptions. This reduction suggests that there was some other source of band broadening with the dextran 
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pulses, perhaps that the running buffer (100mM NaOH) was not sufficient to prevent all interaction between 

dextran and the adsorbent. Therefore, the PABA experiments are assumed to be more reliable in determining 

true axial dispersion, though the small increase in plate height as residence time is reduced does suggest there 

is some measurable kinetic resistance to PABA transport, even after dead-volume correction, though the 

contribution by eddy dispersion is the greatest source of band broadening at all the measured flowrates. A 

further concern is that from the screening of PABA and other HETP analytes (Chapter 4), PABA shows a slightly 

greater retention volumes than both other standard tracers, acetone and sodium chloride, though this 

difference was less than 2%, so has not been further considered. 

6.6.2.3 Effective Particle Porosity Determination by IgG, nonbinding 

To describe the effective, or accessible, porosity of a column, one can perform pulse experiments with non -

binding product. This approach is widely used in size-exclusion chromatography modelling (Do et al., 2011), in 

which it can be called ‘effective particle porosity’, or ‘accessible pore volume  fraction’, and has been shown to 

describe size exclusion effects for other modes of chromatography well, including Protein A affinity (Hahn et 

al., 2005, Pabst  et al., 2018, Perez-Almodóvar & Carta, 2009a). 

 

Figure 6.14 -Non-binding IgG Pulse Experiments and EMG Fits for 4 residence times, demonstrating peak maximum is 
correlated with residence time 

From the raw data, one can also see a high degree of tailing in the pulse responses (Figure 6.14), increasing with 

flowrate, as well as variation in peak position, inversely proportional to residence time, the opposite to that 

observed with both dextran and PABA, and therefore contributions by system effects alone can be dismissed as 

the cause. Moments analysis, however revealed that the first absolute moment remained similar for all 

residence times, leading towards an effective particle porosity of 0.65 ± 0.03 (Table 6.8). This follows derivations 

of the general rate model, in which the first moment should be invariant to flow and not depend on any mass 
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transfer resistance, though defined by accessible volume, whereas peak variance will increase with every kinetic 

resistance (Schmidt-Traub, 2006).  

This was further evaluated with a HETP analysis, in which one can correlate pore diffusion to the slope of a 

reduced HETP- reduced flow velocity chart (Figure 6.15), if assuming axial dispersion is strictly linearly correlated 

to flowrate, use the intercept to determine the factor [6.35 and 6.36] a similar approach as Carta et al., (2005), 

Perez-Almodóvar & Carta, (2009a) and Gritti & Guiochon, (2006). Standard deviations were calculated using the 

linear regression toolbox in Microsoft Excel. 

 

Figure 6.15 - Reduced HETP and Reduced Interstitial Velocity plot for non-binding IgG, used to estimate Dp and the linear 
relationship of Dax 

A significantly higher contribution of axial dispersion was determined with this approach, over double of that 

estimated with PABA, and higher than was measured with dextran. The small magnitude of the intercept, 

compared with the deviations from linearity exhibited in the data means difference is not necessarily robust, a 

value of у2 as 0 is within the 95% confidence interval. This could be due to error compounded with this approach, 

both from fitting the EMG not accounting for significant tailing in the IgG pulse data and dead volume pulse data 

reducing confidence in this approach. 
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Table 6.8 – EMG Parameters and Moments analysis of the non-binding IgG peaks. The moments analysis, coupled with 

correcting for system volume reduces the variation in peak position compared to peak maximum alone.  

Residence Time  1200 480 240 160 

Flowrate (mL/min) 0.235 0.5875 1.175 1.7625 

σ (mL) 
0.5078 ± 
0.0018 

0.4564 ± 
0.0096 

0.3054 ± 
0.0071 

0.2187 ± 
0.0025 

µ (mL) 
3.1436 ± 
0.0014 

2.743 ± 
0.0293 

2.3876 ± 
0.0191 

2.2697 ± 
0.0418 

τ (mL) 
0.7947 ± 
0.0099 

1.235 ± 
0.0135 

1.6535 ± 
0.0137 

1.6444 ± 
0.0231 

Method of Moments 

First Moment 
(Measured, mL) 

3.9383 ± 0.065 3.978 ± 0.08 4.0411 ± 
0.072 

3.9141 ± 
0.109 

Second Moment 
(Measured, mL2) 

0.8894 ± 
0.00116 

1.7336 ± 
0.00000 

2.8274 ± 
0.00281 

2.7518 ± 
0.00144 

εt (Without system 
volume Correction) 

0.8379 ± 0.029 0.8464 ± 
0.011 

0.8598 ± 
0.003 

0.8328 ± 
0.031 

εp (Without system 

volume Correction) 

0.7157 ± 0.022 0.7305 ± 

0.016 

0.7541 ± 

0.027 

0.7066 ± 

0.023 

First Moment (With 
system and injection 

volume correction 
Injection, mL) 

3.7673 ± 0.145 3.7583 ± 
0.087 

3.7845 ± 
0.170 

3.605 ± 0.041 

Second  Moment (With 

system and injection 
volume correction 

Injection, mL2) 

0.8822 ± 0.015 1.7182 ± 

0.041 

2.7971 ± 

0.023 

2.7047 ± 

0.109 

εt (With system volume 
correction) 

0.8016 ± 0.029 0.7996 ± 
0.020 

0.8052 ± 
0.036 

0.767 ± 0.020 

εp, eff (With system 

volume Correction) 

0.6518 ± 0.030 0.6485 ± 

0.028 

0.6583 ± 

0.026 

0.5913 ± 

0.006 

Dp (Estimated through 
HETP analysis) m2s-1 1.22 ± 0.20 x 10-11 

у2 (Estimated through 
HETP analysis) 25.2 ± 19.1 

Inverse Method 

у2 

2.8 

 (assumed the same as for PABA, no improvement in model 
quality when unconstrained) 

Dax ( m2 s-1) 1.07 x 10-7 2.68 x 10-7 5.36 x 10-7 8.04 x 10-7 

kf (m s-1) 6.27 x 10-6 8.51 x 10-6 1.07 x 10-5 1.23 x 10-5 

Sherwood Number 15.3 19.6 24.6 28.2 

εp, eff 0.65 ± 0.011 

Dp (m2 s-1) 5.64 ± 0.21 x 10-12 

Error (MSE, %2) 3.31 

The same data was used for model calibration with the inverse method The values for the particle porosity of 

PABA was used as an upper bound for the optimisation regime, with the bed porosity set by the dextran pulse 

results. The film diffusion coefficient was estimated from  the correlation of Wilson & Geankoplis (Equation 21) 

with a molecular diffusivity estimate of 3.7  x 10-11 m2 s-1  (Tyn & Gusek, 1990). Particle porosity, pore diffusion 

and correlation-constrained axial dispersion were the optimised variables.  
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An approach in which the particle porosity was set to the value ascertained by PABA injections, with the 

remaining parameters (DP, Dax) given freedom, was performed to evaluate whether IgG porosity was the 

appropriate metric for describing IgG transport, or whether one could omit this experiment from the workflow.  

When εp was constrained to that determined by PABA injections, very poor GRM fits were observed when 

calibrating for all flowrates compared to allowing particle porosity to be calibrated for this component (Figure 

6.16). The mechanistic model described the peak tailing better than the EMG could, though there was slightly 

poorer description of the peak front for the 160 s residence time . The parameters fitted by the model are in line 

with those in literature, with a pore diffusion coefficient similar to Pabst et al., 2018, with no improvement to 

model quality by varying the у2 value from that determined with PABA. This is a significant reduction in the pore 

diffusion coefficient determined by the HETP analysis, though is within the 95% confidence interval of this 

approach. Effective particle porosity was fitted as 0.65 ± 0.01, the same  value as that determined through 

moments analysis of the  dead volume corrected raw data, and within the ranges published by Pabst et al., 

(2018). 

A 

 

B 

 

Figure 6.16- The fitting of the 1200 s (A) and 160 s (B) nonbinding IgG pulse with a single GRM formulation (describing 4 

residence times; only the extremes are shown for clarity) through either allowing freedom εp of IgG, or through fixing εp of 

IgG to the same εp of PABA, demonstrating  improved model accuracy by specifying a component specific  effective particle 

porosity rather than assuming the full void volume is accessible, and that pore diffusion can account for the peak position- 

residence time relationship. 
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6.6.3 Isotherm Determination 

Having calibrated the bed and column porosity, and axial dispersion coefficients, the adsorption model requires 

calibration to accurately describe breakthrough behaviour. A Langmuir isotherm has been used extensively 

(Horstmann & Chase 1989, Hahn et al., 2005, McCaw, et al., 2014, Pabst et al., 2018) to model Protein A binding 

IgG, and can also describe non-affinity systems well, when considering a single component only (Skidmore et al., 

1990, Kumar et al., 2015). The binding rates of the IgG-Protein A are known to be high (Carta & Jungbauer, 2013, 

Saha 2015, Boi et al., 2007), the kinetic resistance to binding is unlikely to be significant in describing IgG 

breakthrough, however, by first establishing the equilibrium behaviour, one can later probe kinetic effects. 

Considering this highly favourable Protein A:IgG typically exhibits obtaining precision on the value of K eq is 

unlikely to be crucial for model quality, whereas the value of qmax., the saturation concentration is likely to 

dominate.  

Care must be taken when determining and interpreting qmax as there are many metrics of this, the capacity of 

the column or bed is the most commonly used, but this can also refer to the  maximum capacity of the beads 

(considerably higher, as the column is not completely occupied by resin beads but has a significant interstitial  

fraction, determined here to be 0.43), and qmax of the gel which has an even greater amplification of qmax values 

considering the far larger pore fraction of the beads (determined here as 0.98 for small molecules, or 0.65 for 

IgG). qmax values in the model and isotherm have been adjusted to be the qmax of the column bed, and therefore 

being analogous to commonly determined  EBC and DBC values for ease of interpretation.  
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6.6.3.1 Batch Adsorption 

A 

 

B 

 

Figure 6.17- Experimental data and Langmuir Isotherm fit of IgG A binding to Protein A resin using equilibrium batch 

adsorption. q and c are stationary phase, and mobile phase concentration, calculated with absorbance measurements and 

with both load/wash effluent and elution concentrations. A – Langmuir fit with least squares approach, B – Hanes-Woolf plot 

and linear regression. 

The isotherms for the IgG: Protein A were determined with batch adsorption with a 20 µ bed, under sufficient 

incubation (>6h) to ensure equilibrium is reached, including washes (1 mL) to remove non-specifically bound 

material. A single component Langmuir isotherm was used to interpret the data.  The fit was achieved with both 

solver and least squares (Figure 6.17A), and through linearization with a Hanes-Woolf plot (Hanes, 1932) (Figure 

6.17B). The Langmuir isotherm demonstrates very favourable equilibrium constant (Keq), in line with literature 

values (Table 6.2). With the Hanes plot, Keq values were not determinable, as the standard error exceeded the 

value of the y-intercept of the Hanes plot, though are clearly high considering the very low value for this 

intercept, suggesting a rectangular isotherm would also be valid. A qmax of 72.35  g L-1, less than as determined 

through saturation experiments, though explainable through error in packed bed volume determination (a 20 

µL bed volume has been extrapolated from), errors in protein concentration determination,  as well as likely 
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different packing densities between the plates and columns, a common consideration with batch determination 

of isotherm (Carta, 2012, Bergander et al., 2008, Bergander & Lacki, 2015).  

 

6.6.3.2 The impact of Feed Concentration on Breakthrough 

 

 

 

Figure 6.18 – Breakthrough Curves at Three Feed Concentration at 240 s Residence time. A – Without accounting for column 

holdup volume , B – With column holdup volume correction, demonstrating better consistency between feed concentrations 

When comparing breakthrough between different feed concentrations, one can see a clear offset in 

breakthrough, which is removed when one accounts for the holdup volume of the column itself (Figure 6.18), 

here determined to be the  total column volume accessible to IgG, calculated through the non-binding IgG 

pulses. Table 6.9 lists the corrected and non-corrected DBC10% values, showing good constancy between feed 

concentrations, suggesting that the isotherm is not limiting capacity, and therefore is very favourable, which 

agrees with the batch adsorption determination and literature values. Others have reported a concentration-

DBC relationship of IgG binding to Protein A by membrane technologies (Dancette et al., 1999, Boi et al,, 2013), 

though performed their experiments at for lower feed concentrations, further from the plateau region of the 

Langmuir isotherm where stationary phase capacity is not influenced by feed concentration. 
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Table 6.9 – DBC10% Values determined at three feed concentrations, with and without adjusting for column holdup volumes 

demonstrating consistency in DBC10% value regardless of feed concentration 

Feed Concentration Non-corrected DBC10% (g L-1-) Corrected DBC10% (g L-1-) 

2.3 51.6 49.7 

4.6 53.1 49.4 
7.3 55.8 50.0 

 

6.6.3.1 Column Saturation and Modelling 

 

Figure 6.19 – Saturation Breakthrough and Model fit, used to determine the equilibrium binning capacity (EBC)  of the column 
at a feed concentration of 4.7 g L–1 

Saturation experiments were integrated to determine the EBC at the feed concentration of 4.7 g L-1
 , with the 

integral of the breakthrough subtracted from the feed amount and holdup volume of the column. Additionally, 

a model was fitted to evaluate what value of qmax would converge, with a good description of breakthrough 

behaviour (Figure 6.19). For this, the axial dispersion was assumed to follow the correlation used to describe the 

PABA pulses, and the bed porosities as described above, Pore-diffusion and the qmax  parameters were left to 

vary to fit the data, with Dp fitting to a value of 3.52 x 10-12 m2 s-1, within an order of magnitude of literature 

values and that measured through non-binding IgG pulses. Good fits were observed for up to 80% of 

breakthrough, after which the model deviates from the experimental curve. This could be due to a number of 

reasons; changes in mass transfer resistances during the run, or possibly IgG-IgG interaction, which would falsely 

inflate the Langmuir capacity (Bruce & Chase, 2001). Other possible explanations include the increasingly 

restricted pore diffusion at high loading densities (Susanto et al., 2007), protein unfolding (McCue et al., 2008)  

heterogenous bead size distributions (Stone & Carta, 2007), the existence of more than one binding site with 
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different binding kinetics (Dimartino et al., 2015, Dimartino et al., 2011,  Perez-Almodóvar & Carta, 2009a, Boi 

et al., 2007), displacement effects between aggregates and monomers (Hunter & Carta, 2001) , as well as  a 

shrinking-core phenomenon followed by rearrangement of the adsorbate (Bowes and Lenhoff, 2011). 

6.6.3.2 Comparison of methods 

Table 6.10 details the qmax. EBC and Keq values determined through batch adsorption, saturation and feed-

concentration experiments, in which clearly the equilibrium is very favourable, as evidenced by literature, the 

negligible impact of feed concentration of capacity and the favourable partitioning during batch adsorption. For 

this work, the EBC determined through the saturations experiment is likely to be the most accurate descriptor 

of column capacity, as it is not subject to errors through poor volume determination and representation of bed 

packing as during batch adsorption. 

Table 6.10 - Langmuir Isotherm values of IgG - Protein A, determined through batch adsorption, saturation and multiple feed-
concentration breakthrough experiments 

EBC estimated from integrating above 

chromatogram, saturation experiment 

85.21 g L-1 

EBC estimated from integrating above 

chromatogram, saturation model 

83.23 g L-1 

qmax  estimated from batch adsorption (Langmuir) 72.35 ± 1.01 g L-1 

Keq estimated from batch adsorption (Langmuir) High (standard error was greater than fitted value)   

Keq estimated from multiple feed concentration 

breakthrough experiments 

High (no significant impact on breakthrough profile 

at likely values) 

The impact of these parameters on a model was tested by varying this parameter through several orders of 

magnitude, and measuring the impact on the error of the saturation model, using the estimate of Dp fitted with 

a single residence time; whilst this will not be as accurate as that fitted under multiple residence times, it is likely 

to be correct within 1 order of magnitude, whereas the adsorption parameters are being varied by multiple  

orders. One can see that the isotherm equilibrium constant, and adsorption rate do not impact the model unless 

brought to values significantly beneath that determined either from batch adsorption (for equilibrium constant) , 

or literature values (Table 6.11), with no detriment to model quality if these values are increased. For the kinetic 

constant, this is logical, as characteristic times (τ)  of adsorption, as with film transfer (rp/kf, <1s)  are far smaller  

compared to pore diffusion (rp
2/Dp,  102 to 103 s),  convection (L/v, ~102s) and axial dispersion (L2/Dax, >104 s) 

(Bird et al., 2006). This observation supports reducing the isotherm to a rectangular isotherm with a single 

parameter, qmax, and not simulate finite binding kinetics, but assume that equilibrium is reached 

instantaneously, which is a relatively common assumption for this system (see section 6.2.2). This reduces the 

model to a transport dispersive model. This interaction is mediated by at a single site of IgG which is conserved 

across all subtypes of IgG, except IgG3 (Van Loghem et al., 1982), suggesting such a simplification would still be  
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useful for a variety of IgG subtypes.  Whilst this is a simplification of the true adsorption behaviour, in which 

there is heterogeneity in binding and the presence of multiple, distinct binding site s, it is hoped this assumption 

will enable adequate description of breakthrough, which has otherwise been performed with an even simpler 

model, including a lumped Langmuir kinetic model by Bak et al.(2007), which was not able to describe the 

asymmetric breakthrough seen here, whereas Ng et al., (2012) surmised that it was the finite adsorption rates 

that led towards poor description of saturation behaviour for their Protein A breakthrough model; for better 

saturation description this resistance to binding would need to be included into the model.  

Table 6.11 – The impact on varying the binding rate constant (kads, top) and equilibrium constant (Keq, bottom) on model 
residuals describing IgG saturation breakthrough and literature values, suggesting that neither mass adsorption rate, nor 

equilibrium behaviour requires accurate estimates to describe breakthrough of IgG-Protein A at the expected ranges. 

Adsorption Kinetics 

Error (SSE, 
%2) 

τ (s) kads (M-1 s-1) kads (L g-1s-1)
  

Literature kads(M-1 s-1) 

3.95 3.26E-02  1.00E+06 6.67E+00 

8 x 103 to 3.5 x 105  
(Wilson et al., 2010, Yang at al., 2003, 

Reader & Shaw, 2017, Hahn et al. 2005) 

3.95 3.26E-01  1.00E+05 6.67E-01 

3.95 3.26E+00  1.00E+04 6.67E-02 

8.32 3.26E+01  1.00E+03 6.67E-03 

75.36 3.26E+02  1.00E+02 6.67E-04 

1040.2 3.26E+03  1.00E+01 6.67E-05 

2753.9 3.26E+04  1.00E+00 6.67E-06 

3379.7 3.26E+05  1.00E-01 6.67E-07 

3391.9 3.26E+06  1.00E-02 6.67E-08 

3391.9 3.26E+07 1.00E-03 6.67E-09 

Adsorption Equilibrium 

Error (SSE, 
%2) 

Keq (M-1) Keq (L g-1)
  

Literature Keq (M-1) 

3.95 1.00E+10 6.67E+04 

107to 109  

(McCue et al., 2003, Hahn et al., 2005, 
Pabst  et al., 2018, Horstmann & Chase, 

1986,  McCaw et al., 2014, Ng et al., 
2013, Liu et al., 2015) 

3.95 1.00E+09 6.67E+03 

3.95 1.00E+08 6.67E+02 

3.95 1.00E+07 6.67E+01 

19.09 1.00E+06 6.67E+00 

322.67 1.00E+05 6.67E-01 

2299.2 1.00E+04 6.67E-02 

3247.3 1.00E+03 6.67E-03 

3378.4 1.00E+02 6.67E-04 

3379.7 1.00E+01 6.67E-05 

6.6.4 Fitting Breakthrough Data 

6.6.4.1 Residence Time 

Having determined the column, particle and effective porosities, the axial dispersion of the column, and reducing 

the adsorption model to rectangular isotherm, the model was fitted to further breakthrough data at multiple  

flowrates to estimate the transport limitations. As the model is desired to be a predictive model, to simulate  

breakthrough at a range of flowrates, the data was split into calibration and validation sets, 160 s and 480 s 
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chosen as they spanned the current process residence time, with 130 s and 240 s chosen as validation such that 

one could interpolate and extrapolate for a single residence time. These were first fitted with the parameters 

determined above, with qmax set by the EBC, determined by saturation breakthrough experiments, and the most 

significant mass transfer resistance (Dp)  given freedom to fit to any value. 

A 

 

B 

 

Figure 6.20- The simulated and experimental breakthrough of the protein a breakthrough for the A – calibration (160 and 

480 s) and B - validation (130 and 240 s) residence times, demonstrating predictive ability of the model 

 Acceptable quality of model fit was observed, and good predictive ability was exhibited for the remaining, 

validation residence times, both in the 10% breakthrough values (Table 6.12), and for overall breakthrough 

profile (Figure 6.20). The validation dataset (100 s and 240 s) demonstrated similar fitting quality to the 

calibration dataset (240 s and 480 s) . An average deviation of 4.0% for DBC10% values, and an MSE of 3.6 %2 

suggests the model is of reasonable quality for prediction between the flowrates the model was calibrated with , 

though the remaining error is likely due to the assumptions with regard to the adsorption model.  
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 Table 6.12- The derived DBC10% values from the model and experimental DBC values 

Residence Time 100 s 160 s 240 s 480 s 

DBC10% (Experimental) 34 ± 0.1 44 ± 0.1 53 ± 0.1 64 ± 0.1 

DBC10% (Simulated) 31 44 54 66 

6.6.4.2 Concentration of feed material 

An expected influence on breakthrough behaviour on this system  is the impact of feed concentration on 

resistance to pore diffusion as there are several reports in the literature that the rate of pore diffusion is inversely 

proportional to mobile phase concentration (McCue et al., 2003, Hahn et al., 2003 Horstmann & Chase 1989). 

The breakthrough experiments performed at a variety of feed concentrations are used provide an estimation of 

how this value varies with respect to feed concentration.  To investigate whether this was the case with data 

generated here,  unlikely to be the case due to the similar breakthrough profile when accounting for column and 

system hold-up (Figure 6.18), the three feed concentration runs were set to estimate the pore diffusion 

coefficient only, with the remaining parameters set the same between runs. 

There was no significant trend in the pore diffusion coefficient with increasing concentration, both from the 

breakthrough profile (Figure 6.18) and the fitted model (Table 6.13), as reported in literature when testing for a 

wider range of feed concentrations, suggesting this model is viable for the full range of concentrations of IgG 

likely to be encountered during this capture step considering expected titres of 2-10 mg mL-1, at least for 

predicting early breakthrough. This does not, however, mean that the pore diffusion is well modelled for the full 

ranges of load challenges, nor for saturation behaviour, as binding sites become occupied, pore diffusion may 

become restricted, hindering pore diffusion (Gutenwik et al., 2004, McCoy & Liapis, 1991, Clark et al., 1985), nor 

that the pore diffusion is comporable to that expected with crude feedstock, which may well vary with titre and 

will have higher viscocity than pure target protein. Additionally, the inability to explain saturation effects, and 

the significant tailing of the breakthrough, which others have explained by introducing a kinetic isotherm with 

multiples binding sites (Boi et al., 2007, Perez-Almodovar & Carta, 2009a), does introduce error into this 

estimation and limit the suitability to describe early breakthrough alone, and for separations in which pore 

diffusion is the dominant resistance. 

Table 6.13- The fitted pore diffusion coefficient at multiple feed concentrations 

Concentration of Feed (g L -1) Dp (x 10-12 m2 s-1) Error (MSE, %2 ) 

7.5 3.67 3.17 

4.7 3.72 4.73 

2.3 3.58 3.21 
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6.7 Model Parameters of IgG Breakthrough at Lab-scale 

Having established the predictive nature of the model, by using two breakthrough curves to fit the pore diffusion 

resistance, and a saturation run to fit the maximum capacity, and predicting the breakthrough behaviour of two 

untested residence times, it was investigated whether one could forego the saturation experiment. This was 

considered as running breakthrough to full saturation consumes significantly more material, with loading to 200 

g L-1 for saturation compared loading to under 100 g L -1
 for conventional breakthrough experiments, as well as 

poor description of saturation behavior with this model. Though this would likely improve model fidelity for 

early breakthrough, which is more important for batch chromatography, a limitation would be that this would 

make the model less powerful when predicting multiple column chromatography, where high degree of column 

saturation is met. With this approach, focussed on describing early breakthrough and omitting saturation data, 

the model was then calibrated by introducing another breakthrough residence time (240 s), with an initial 

estimate of the capacity term back to 70 g L-1
column  as per the resin manufacturer’s claim, to evaluate whether 

one could forgo both saturation and batch adsorption experiments, based upon the assumption that a 

rectangular isotherm would be appropriate. The model was then set to calibrate as before, though with the 

breakthrough curves also set to estimate maximum binding capacity as well as pore diffusion. A qmax of 80.45 g 

L-1
Column was determined, compared 85.21 g L-1

column determined from the saturation runs (Table 6.14), potentially 

due to no longer fitting saturation behaviour which increases effecting binding capacity at very high load 

challenges. 

Table 6.14- The model parameters  for simulating breakthrough at a range of residence times, and the methods of parameter 

determination 

Parameter Value Method of Determination 

Bed porosity (εb)  0.43 ± 0.00 Pulse Tests (Dextran) 

Particle porosity (εp)  0.97 ± 0.00 Pulse Tests (PABA) 

Effective particle porosity for IgG  (εeff) 0.65 ± 0.01 Pulse Tests (IgG) 

Maximum binding capacity of column (qmax) 80.45 g L-1
column Breakthrough 

Langmuir Equilibrium Constant (Keq) Rectangular  Batch Adsorption, Breakthrough 

Pore Diffusion Coefficient (Dp) 3.61 ± 0.12 x 10-12 m2 s-1 Breakthrough  

Axial Dispersion correlation constant (у2) 2.8 ± 0.1 PABA Pulse 

Axial Dispersion Coefficient (Dax) 1.1 to 8.0  x 10-7 m2 s -1 Correlation with у2 

Film Diffusion Coefficient (kf) 6 to 12 x 10-6 m s-1 Correlation 

Column Length 0.1 m Product Data 

Particle Diameter 85 μm Product Data 

Feed Concentration 2.3 to 10 g L-1  280 nm UV absorbance 

Residence Time 160 to 480 s Flowrate 

Model error (MSE, %2) 4.45 Experimental vs Simulated data 
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6.7.1 Parameter Sensitivities 

Having fitted a model, it was decided to assess which parameters are most sensitive to change, as well as 

whether any other parameter sets within the estimation space could also fit the data with similar quality. The 

fitted parameters are varied singularly with the change in error measured, which has been widely employed to 

evaluate critical and sensitive parameters in a process (Gu, 1995), without the mathematical rigour of 

determining the Fisher Information Matrix and determining confidence intervals, which can also be used to 

determine the significance of each parameter (Engell & Toumi, 2004). This was performed on both IgG pulse and 

breakthrough tests, at all experimental flowrates. 

For pulse tests of non-binding IgG, the pore diffusion coefficient is the most sensitive to change  (Figure 6.21A), 

further demonstrating its significance. Film diffusion had negligible effect on model quality for pulse tests, if it 

was above a critical value, corresponding to a value when this mechanism becomes rate limiting.  Axial dispersion 

had very modest impact on pulse model quality beneath a value for which it became dominant. The Keq and kads 

values were previously shown to be insignificant to model quality if bounded by reasonable values, with no 

impact by assuming equilibrium is reached instantaneously  and adsorption is approximated as a rectangular 

isotherm (Table 6.11).  

With the same methodology applied to the breakthrough models at all residence times, q max is clearly a highly 

sensitive parameter (Figure 6.21B), with only modest changes impacting model quality significantly. Again, pore 

diffusion is also highly sensitive, with film diffusion having a negligible impact on model quality above a criti cal 

value. Axial dispersion had a slight effect on the model, with a relatively modest increase in error by neglecting 

it completely. The model sensitivity to porosity was also high, with particle porosity having a slightly greater 

impact on model quality than column porosity (Figure 6.21C), likely due to the dominance of pore diffusion on 

model quality, which has also been supported by assessing the characteristic times as above, in which pore 

diffusion and convection are the rate limiting transport step, and film transfer and binding are relatively 

insignificant. As changes to both qmax and Dp reduced model quality and could not be compensated by allowing 

the remaining parameters to fit within a reasonable range, there is confidence that these are reliable estimate s 

for these parameters.  
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A 

 

B 

  

C 

 

Figure 6.21 – Parameter sensitivities for the IgG – Protein A model at lab scale A – For non-binding IgG pulse model. B – Kinetic 

and thermodynamic parameters on the breakthrough model. C – Bed and particle porosity on both pulse and breakthrough 

quality 

6.8 Conclusions 

A model describing the capture of IgG by Protein A chromatography has been calibrated and parameters 

determined (Table 6.14). It has demonstrated ability to describe breakthrough behaviour at a variety of 

residence times and feed concentrations by using a general rate model in tandem with mass transfer correlations 

to reduce the estimation space and account for flow dependencies. Models describing the system contribution 

to peak position and broadening at numerous flowrates have been calibrated to supplement this, through both 

the EMG-method of moments approach, and through modelling PFR and CSTRs, enabling the model to better 

account for system contributions, which are of particular importance for pulse studies on small columns. 
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Mass transfer parameters were determined by the inverse method, and through fitting for multiple experiments 

with known correlations allowed one to mitigate the risks of optimising for  a local minimum, or overfitting error. 

Two widely used correlations for axial dispersion relation to linear velocity, de Ligny and Van Deemter, correlate 

axial dispersion linearly with flow velocity, which described both pulse and breakthrough data well. The small 

magnitude of axial dispersion and shallow sensitivity demonstrates this mechanism is not as important to 

describing and predicting breakthrough behaviour at this scale and system compared to the other parameters, 

DP and qmax . DL was determined through a method of moments approach, whereas Dax was determined through 

an inverse method, both using pulse response of a tracer, and using non-binding IgG pulses to verify the fitting. 

Film diffusion was estimated using a widely used correlation (Wilson & Geankoplis, 1966), and described both 

IgG pulse and breakthrough data well when constrained to this correlation, with negligible improvements to 

model quality by constraining this during parameter estimation at the flowrates on interest. The pore diffusion 

coefficient converged to a higher value for pulse responses compared to breakthrough studies, possibly an 

artefact of the dilute material during pulse experiments diffusing more rapidly compared to the breakthrough 

studies using constant injection of concentrated feed, or possibly due to errors in accounting for dead volume 

and fluid handling and inaccuracies in the determination of the statistical moments. 

The relative insignificance of the equilibrium constant (Keq) and the impact of the adsorption rate (kads) enabled 

the assumption of a rectangular, equilibrium adsorption model. This simplified the model to a transport 

dispersive model, rather than the full general rate model, whereas the relative dominance of pore diffusion 

compared to other mass transfer resistances suggests the model may be reduced further to a shrinking core 

model  for this scale. 

This approach allows one to probe the flowrates between the calibration flowrates accurately, allowing one to 

both predict breakthrough behaviour, but to also understand the impact of the physical processes behind this 

chromatographic operation, the significant mass transfer parameters, and probe how changing the residence 

time can impact performance. The model is valid for suitable range of flowrates and concentrations likely to be 

employed on an industrial IgG- Protein A capture operation. 

6.8.1  Model Limitations and Assumptions 

Unlike the typical, preparative process of IgG capture, these experiments were performed with purified material 

for ease of interpretation, though a robust model describing capture of crude material should be calibrated with 

crude material. Deviations in the mass transfer resistances, such as film, molecular and pore diffusion are likely 

to be observed between purified and raw feed capture , though the magnitude of this has not been assessed. 

These could be determined through repeating a subset of experiments to evaluate for changes in parameters. 
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Another source of error is the choice of binding model. As mentioned, proteins often violate the assumptions of 

Langmuir isotherms, and that the isotherm employed here is valid for a single component; for affinity 

separations, this is less of a complication, considering the highly favourable isotherm means the IgG will rarely   

be outcompeted for a binding site. However, if contaminants exhibit high affinity for the ligand or irreversible 

binding and seen with column fouling (Pathak & Rathore, 2016) , or exist in a high concentration, one may have 

to determine the isotherm in the presence of contaminants. If important for the separation, determining the 

mass transfer parameters for these contaminants may need to be performed; all of these experiments increase 

the material, time and analytical requirement significantly, and therefore being able to scale down this 

methodology could be very powerful avenue for process understanding. Additionally, with high load challenges, 

IgG-IgG interactions may lead to a significantly higher effective binding capacity, which has not been included in 

the model but has been alluded to in the data, in which significant tailing of the saturation may be explained by 

such a phenomenon, though others have also explained this phenomena by accounting for heterogeneous 

binding mechanisms and finite rates between Protein A and IgG (Boi et al, 2007, Perez-Almodóvar & Carta, 

2009a) and various other mechanisms for other adsorber chemistries (see section 6.6.3.1). 

As film diffusion has only a small effect on total error above the Wilson and Geankoplis (1966) value with increase 

in model error of 5% at 100-fold increase in value, but significantly beneath this value at 2,400% increase in error 

at 1% of the correlated value for both pulse and breakthrough responses. This demonstrates that for these 

tested flowrates, one can omit film diffusion resistance from the model with only small impact to model quality 

and approximating all particle mass transfer resistances into pore diffusion alone. In conditions where film 

diffusion is likely to be more significant, such as low feed concentration or linear velocity, this would be an 

inappropriate approach (Lacki 2018, Macek  et al., 2011). 

It is clear that determining the pore diffusion coefficient accurately is of utmost importance to calibrating an 

accurate model for this system, with the column porosity, particle porosity and maximum binding capacity also 

highly sensitive. The correlation of Mackie and Mears (1955) overestimated the fitted value of this by four-fold 

(1.43x 10-11 m2  s-1 vs 3.6 x 10-12 m2 s-1), highlighting that estimation of the resistance generated by a tortuous 

pore network requires calibration experiments to determine effective diffusion rates. 

Using batch adsorption data for the binding capacity provided an estimate of the column capacity, though the 

small volumes and variable data inhibited an accurate estimation, though did provide an estimate of Keq; 

saturation experiments provided the best model fit and accurate qmax values but used a significant amount of 

material, with load challenges of 200 g L -1, and overestimated the column capacity, possibly due to the 

aforementioned simplifications to the binding model. Calibrating the model with three partial breakthrough 

experiments enabled a reasonably reliable estimate for both the qmax, and DP values, whilst consuming a small 

fraction of the material as consumed during saturation experiments. 
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7 Scale Prediction from Microscale Data 

7.1 Introduction  

A model has been calibrated describing and predicting IgG breakthrough behaviour at lab-scale, with an 

understanding of the critical model parameters and suitable workflow for determination. An attempt will be 

made to adapt the model for microscale chromatography to see whether one could scale the model formulation, 

calibration and account for the impact of intermittent flow and other scaling artefacts, and ideally, use this to 

predict behaviour at large scale. This will allow one to optimise, understand and better control chromatographic  

operations at large scale, by evaluating conditions with the reduced material consumption at microscale. 

There have been a number of studies that have calibrated mechanistic models using microscale data; a study 

used microscale columns integrated into a conventional FPLC to determine breakthrough and pulse studies  

(Susanto et al. 2008), with isotherms determined using a robotic platform in conjunction with resin plates.  This 

was then compared with models calibrated using a conventional scale c olumn, with the models demonstrating 

notable parameter differences across scales, with an increase in axial dispersion, potentially caused by the wall 

effect, and an increase in the kinetic rate coefficient apparent at microscale, which was less well under stood, 

though suggested packing differences as the cause. They also employed system volume characterisation to 

decouple the impact of external band broadening and assumed a bed porosity of 0.37. 

Keller et al. (2015) have also employed a dispersive model to estimate parameters of a microscale cation 

exchange process, using a steric mass action isotherm, coupled with moment analysis and calibration data 

including a series of linear salt gradient (20 to 100 CV in length) to calibrate the  isotherm parameters, 

characteristic charge and equilibrium constant, with the Yamamoto approach (Rudt et al. 2015, Yamamoto et 

al., 1983a & 1983b). They employed an understanding of the system differences, including hold-up volumes of 

an FPLC system, the lessened signal to noise ratio of the microscale system, and compared a lab scale column - 

FPLC (1 mL) and microscale column – LHS (600 µL)  separation. This demonstrated good similarity between 

scales, with retention volumes differing under 5% for all model proteins across scales, though they highlighted 

the importance of accounting of all sources of offset. However, despite acceptable differences in retention 

volumes of the peaks, determined through moments analysis, significant differences in the linear isotherm 

parameters were highlighted, without further explanation. Additionally, the Peclet number varied across scale 

with no consistent pattern, suggesting the axial dispersion coefficient was both increased and reduced, 

depending on gradient length, between systems, though this may be an artefact of the lumped nature of their 

model. The authors confirmed the microscale system was a useful tool for predicting benchtop performance, 

though also mentioned model quality was poorer for the microscale system, when simulated experimental data  

and experimental data were compared, but was adequate for acceptable lab-scale predictions to be made for 

their purposes. 
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The same group furthered their work (Keller et al. 2017) by further evaluating system differences; namely the 

nature of detection, with fractions subjected to batch UV absorbance measurements compared to online UV 

absorbance measurements, the nature of the gradient formation (multistep and true linear gradient) and the 

increased axial dispersion evident on the microscale domain, based upon the previously described model. Again, 

the lumped kinetic model was used to account for all resistances to mass transfer, with porosities of the columns 

assumed rather than measured, and dispersion was determined to be greater on the FPLC system. 

A general rate model has been used to describe separations, with model calibration with the inverse method 

using a genetic algorithm, with a 1 mL column, and demonstrated one could predict behaviour at 160 L using 

the described strategy. This work used conventional FPLC systems, rather than  a robotic LHS (Gerontas et al 

2010) and evaluated the system across three resins, and successfully predicted retention times at scale. 

Heterogeneity in the feed proteins, however, was highlighted as an issue that prevented better model fidelity. 

Axial dispersion and film transfer were estimated by correlation only. 

Others have taken this approach further, and used a liquid handling system for breakthrough experiments, also 

calibrating a mechanistic model to predict large scale behaviour from microscale data and used this to optimise  

the larger scale operation with success (Osberghaus et al., 2012). However, they mentioned that robotic induced 

effects, such as the saw-tooth motif previously described, as well as poor resolution, inhibited greater 

interpretation of this data. They employed a novel technique during pulse tests by repeating the pulse test, the 

second time with an offset, and combining the data, enabling one to improve the workin g-volume determined 

resolution by a factor of two, (67 µL to 33.5 µL) and employed spectral analysis to determine protein identity 

and concentration. They employed both dextran and acetone pulses, but the relative size of the columns (200 

µL), even with the novel offset method for improving resolution meant bed porosity d etermination had a 

minimum expected error of 23% and was therefore not used for model calibration. Axial dispersion, lumped 

kinetic resistance and ionic capacity values were not determined from elution/pulse peaks, but were instead 

estimated from FPLC experiments due to the improved resolution. 

Pirrung et al., (2018) explored the use of 200 µL Robocolumns when developing a model for IgG purification 

from a crude feedstock. They also used an adaptor to use a microscale column on a conventional 

chromatography system, though employed a HPLC system with low dead volume (estimated at 30 µL). They also 

employed UV absorbance measurements at multiple points on the well surface, enabling characterisation of 

meniscus topology and therefore more reliable volume determination. They employed this approach to both a 

mixed-mode and cation exchange resin with crude feedstock and accounted for IgG self-association within the 

adsorption model. Interestingly, the large macropores of one of the  bimodal adsorbers precluded bed porosity 

determination even by very large dextran standards, so instead they used the Blake‐Kozeny equation and 

measured pressure drop across the bed to determine bed porosity. 
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Khalaf et al., (2016) used a different approach for determining retention behaviour of a monoclonal antibody 

and Fc fusion protein on a cation adsorber with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a colloidal 

theory in which the structure of the protein is used to estimate the thermodynamics of bindin g. Experiments 

performed at 600 µL column volume with a LHS and 1 mL column with a conventional system were used to 

further calibrate a lumped rate model and validate the model-based design space. 

Benner et al., (2019) investigated parameter estimation with microscale columns for both a cation exchange and 

Protein A affinity chromatography with a lumped rate model.  They performed penetrating tracer tests on 4 mL 

scale with FPLC’s, and performed non-binding product pulse tests at this scale at a single flowrate to quantify 

the accessible particle porosity and lumped kinetic parameter for each component, and evaluated scales of 7 

mL, 4 mL and 600 µL with conventional FPLCs, and 600 µL column on a LHS. They scaled for residence time and 

focused on better understanding differences in elution pool volumes. They ruled out system effects and column 

geometries and posited that it was the linear flow velocity dependence of the axial dispersion coefficient that is 

responsible for an increase in pool volume in the microscale domain. This is in agreement with our own data, in 

which the HETP between microscale columns and lab scale columns was comparable  (with some increase in 

dispersion on the microscale domain on both FPLC and LHS)  when operating at the same linear flow velocity, 

and that a linear dependence of axial dispersion to flowrate described interparticle dispersion . 

While calibrating mechanistic models of small or microscale chromatography is increasingly routine, the system 

effects plague the accuracy of the resultant models. While work has been performed to mitigate these 

differences, including increasing the resolution of the data with novel strategies such as repeating runs with 

offsets, incorporating microscale columns on conventional FPLCS and identifying how dispersive effects differ at 

scale, there is an unexplored opportunity to investigate, model and mitigate the effects of system and scale with 

a focus on intermittent flow. It is the focus of this chapter to further investigate the impact of these system 

effects, and ascertain whether one can account, and mitigate them through mechanistic modelling  by 

accounting for the most significant mass transfer resistances by first investigating a microscale model using the 

same feed stream as used in above chapters, and then using the learnings form this to predict breakthrough 

behaviour for a new feed stream (IgG B) at lab-scale, based upon microscale breakthrough experiments. 

7.1.1 Impact of Intermittent Flow 

In the previous chapter, the impact of intermittent flow has been probed experimentally; it is clear that the 

impact of halting upon binding for high residence times is insignificant; a sawtooth motif is present, but the 

majority of the chromatogram, ignoring the small trough region, is indistinguishable between continuous and 

intermittent flow for slow flowrates. For lower residence times however, there are significant differences in that 

the intermittent flow lags behind continuous flow in breakthrough. This is likely to inhibi t ascertaining accurate 

mass transfer parameters if using this data to develop a mechanistic model, unless these discrepancies are 

accounted for.  
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If taking the mass transfer correlations used in chapter 6, one can see that axial dispersion, at times where 

superficial flow becomes zero, tends towards the molecular diffusion coefficient, multiplied by some geometric 

constant. This follows logically, the second term of the correlations correspond to eddy dispersion, which is a 

phenomenon occurring during flow only, and should not occur for static fluid, whereas molecular diffusivity 

would continue unhindered. Considering the relatively small magnitude of the contribution of molecular 

diffusion (<10-10 m2s-1), this is unlikely to be a significant effect. 

Stopped, or interrupted, flow during chromatographic operations has been used for investigating mass transfer 

resistances during HPLC and UPLC, called the ‘peak parking’ method (Li et al. 2008, Gritti & Guiochon, 2011, 

Miyabe et al., 2007).  Using this strategy, a peak of material is pumped down a column, and held for a set amount 

of time during the experiment, set for when the pulse is about midway down the column. Probing the separation 

with a set of defined pauses across a range of experiments allows one to determine the molecular diffusivity of 

components (Miyabe et al., 2007), and to improve the data quality by avoiding signal saturation (Li et al., 2008). 

The pauses used for this type of study usually are significantly longer than experienced during LHS operation 

(30-600 minutes  for ‘peak parking’, compared to 40-60 seconds of intermittent flow), though the underlying 

assumptions should hold true; that during static flow, axial dispersion tends towards molecular diffusivity. Gritti  

and Guiochon (2011) furthered the peak parking approach by including a location element, in which the peaks 

were parked at different positions along the length of the column, c alled multiple location peak parking. They 

employed this to evaluate column homogeneity in the axial dimension and advised caution due to the 

propagation of pressure spikes, due to the rapid changes in flowrates, impacting results.  

Diederich and Hubbuch (2017) performed an extensive error analysis on microscale  chromatography, including 

a focus on the impact of fractionation and the intermittent flow on liquid handlers, demonstrating that it was 

associated with an increase in retention time and elution peak width for large proteins, though not consistently  

for all proteins,  and advised taking this phenomenon into account when calibrating mechanistic models for the 

purposes of scaling-up. 

Effective pore diffusion, whether mediated by surface or bulk diffusion, will be invariant to flow, and therefore 

the associated coefficient will have the same value for the periods without flow as for the periods with flow. 

Convective flow within the pores is not considered, as this is negligible for microporous beads ( Carta & 

Jungbauer, 2010).  Film diffusion, no matter which correlation is followed, tends to zero at zero flow; this is 

unlikely to be the case as the correlations are valid at low flow velocities, but not for static fluid. The limit of this 

correlation is 55 > Re > 0.0015, which corresponds to superficial flow velocities of 0.65 m s -1  to 1.76 x 10-5 m s-1 

for this system (assuming a kinematic viscosity of protein solution at 10-6 m2s-1). With microscale 

chromatography at low bed heights and high residence time, this means the limit where this correlation is valid 

is 200 µL columns at 480 s residence time,  where further reduced bed heights will fall outside of this range. For 

stagnant flow, material is likely to diffuse across the film, though at a reduced rate, though it is unknown how 
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important this is to describe the sawtooth motif. Considering the small contribution of molecular diffusivity, and 

the sharp change in concentration exhibited after interrupted flow, this suggests that even during stopped flow, 

pore diffusion is rate limiting (SenGupta, 2017). This is further supported by [6.23] in which even at the lowest 

valid Reynolds number (0.0015) for the Wilson and Geankoplis correlation, with the above modelled pore 

diffusion (3.6 x 10-12 m2s-1) provides almost tenfold the resistance to mass transfer compared to film diffusion 

(3.73 x 10-6 m s-1) for resin particles of 85 µm diameter (37.5 s vs 4.02 s).   

This chapter will focus on determining the magnitude of the mass transfer resistances during static flow and 

other differences arising from scale on IgG breakthrough. The intention is to use this understanding to build a 

model accounting for intermittent flow, microscale resolution and low linear flow velocities and any differences 

with respect to packing quality, and better interpret microscale data. 

7.2 Model Calibration 

7.2.1 Accounting for Intermittent Flow 

To determine the mass transfer resistance during stopped flow, the models describing the continuous large-

scale flow determined in the previous chapter are taken, with additional parameters describing transport during 

stopped flow. This model is identical to the continuous model, though with alterations; two new mass transfer 

parameters are introduced, Dax(0) and kf(0), corresponding to the axial dispersion, and the film diffusion coefficient 

of static flow, respectively. When the model simulated stopped flow, these parameters replaced the 

conventional axial dispersion and film diffusion parameters, and convective transport was halted, with pore 

diffusion continuing unhindered.   

To determine these parameters most accurately, the model describing continuous flow, calibrated on 

continuous data as in Chapter 6 was used. This model had these two new parameters introduced and the model 

was formulated to follow the experimental flow regime, with defined flow interruptions. The output of the 

model was transformed to omit stopped flow from the resulting chromatogram, to mimic the chromatogram 

generated experimentally. As with the previous work, dead volumes are simulated in addition to the column 

models; the effect of post-column dead volumes is likely to be far more significant for intermittent flow 

considering the fine structure of the sawtooth motif. A benchmark was performed for comparison of models 

with and without intermittent flow and the impact on model quality. 

7.2.1.1 Breakthrough Simulation with and without Intermittent Flow 

By calibrating the continuous model with the intermittent flow data, small deviations in the fitted mass transfer 

parameters are observed; the pore diffusion coefficient increases to account for the additional time for diffusion 

not accounted for with a continuous model. The error is significantly higher for the discontinuous data (Table  
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7.1) compared to continuous when applied to the continuous model, likely due to the delayed breakthrough of 

discontinuous runs, the inaccurate mass transfer resistances being fitted, and the saw-tooth motif which is 

absent from the model formulation all contributing towards the increase in model error. Three residence time  

(160 s, 240 s, and 480 s) were used as calibration, as they represented the most industrially relevant flowrates 

for this system.  

Table 7.1 - Pore diffusion coefficients and quality of fit, comparing continuous and intermittent flow on model calibration at 

lab scale, with and without a model formulated for intermittent flow, demonstrating the significance of intermittent flow to 
model quality 

Data Model Pore Diffusion Coefficient (Dp) Error (MSE, %2) 

Continuous Continuous 3.61 ± 0.12 x 10-12 m2 s-1 4.28 

Intermittent Continuous 4.00 ± 0.23  x 10-12 m2 s-1 11.56 

Intermittent Intermittent 3.42 x ± 0.14 x 10-12 m2 s-1 5.37 

 

Dax(0) was found to be insignificant at any value, when bounded between the molecular diffusivity (DM) and zero, 

as predicted by the simplified correlation used in Chapter 6, whereas kf(0) was found to not be significant to 

model quality, no matter which value was employed ( 0 ≤ kf(0) ≤ kf) . The post column dead-volume simulation, 

developed in Chapter 6,  is applied to the simulated breakthrough curves, as the rapid changes in outlet 

concentration means mixing would have a more significant effect and explained both the slight offset and 

smoothing of the sawtooth motif well for the 160 s data (Figure 7.1). 

 

Figure 7.1 - Demonstration of the importance of post-column volume simulation, established in chapter 6 through fitting 

wash-out curved from a saturated column, demonstrating the smoothing and offset enabling better description of the 
sawtooth motif then the column model alone. 
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It is clear that one can model this intermittent flow, and that the general rate model and shrinking core model, 

when formulated for this flow regime, accurately described the data in correcting for the offset breakthrough, 

and the magnitude of the sawtooth effect (Figure 7.2). No additional parameters are needed to describe this 

intermittent flow, so the rectangular equilibrium isotherm is maintained and both Dax(0) and kf(0) are set as 0, and 

the fitted value of DP does not vary significantly between continuous data and model, and intermittent data and 

intermittent model, suggesting this is the correct model for traversing between the microscale and lab scale 

breakthrough. 

 

Figure 7.2 – Intermittent and continuous flow model fit  for 160 s residence time, with dead volume simulation, demonstrating 

model description of both the offset in breakthrough and subsequent saw-tooth motif apparent after stopped flow 

7.2.2 Scaling Model Formulation 

A model is calibrated from microscale data as before; pulse data achieved with the pre dilution method was 

applied to calibrate bed parameters, using Dextran, IgG and PABA, though at a single residence time (240 s) 

considering the method of moments and inverse method, no matter which flowrate was assessed, were 

consistent in pulse test porosity determination (Chapter 6).  The precision of these pulse tests, while an 

improvement over the manufacturer’s data, is still poor, with an average of 20 points per colu mn volume, allows 

a fitting or porosity with poor precision, though the use of an EMG distribution was hoped to improve this, poor 

resolution is a concern due to the sensitivity of the model to this parameter (Figure 6.21). Additionally, errors in 

volume determination may impact parameter estimation. Combining multiple pulse tests provided no increase 

in resolution as the small errors in measuring effluent volume meant the individual columns are not immediately 

comparable, unlike the more promising results of Osberghaus et al., (2012) in which they deliberately introduced 

an offset between runs, doubling data density. 
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7.2.3 Determining Column Porosities with PABA, IgG and Dextran 2,000,000. n = 8 

 

Figure 7.3 - Pulse experiment Performed on a 600uL column with Dextran, PABA and IgG with the model fits  

Using pulse experimental data for porosity determination  was only practical for 600 μL columns; a 20 μL fraction 

volume for a 50 μL column corresponded to a precision of 40% CV, and 10% CV for 200 μL columns (Figure 7.3). 

As the microscale column had the same internal bed diameter, it is hoped the values for bed porosities for 600 

μL will be valid for the lower column volumes, though this is an untested assumption.   

Table 7.2 - Comparison of Porosities and Axial Dispersion Values for a Microscale Column on a LHS and a conventional column 

on a FPLC. Errors are provided based upon the standard deviations of  independent fits per column, 240 s residence time. 

Parameter 600 μL column on a LHS 4.7mL HiScreen on a FPLC 

Bed porosity (εb) 0.34 ± 0.09 0.43 ± 0.00 

Particle porosity (εp)  0.97  ± 0.23 0.97 ± 0.00 

Effective Particle Porosity for IgG 

(εp, eff)  

0.57 ± 0.19 0.65 ± 0.01 

Axial dispersion correlation 

constant (у2) 

3.6 ± 1.1 2.8  ± 0.1 

Number of repeats 8 3 

A decrease in porosity and increase in axial dispersion correlation coefficient (у2) as compared to the large scale 

calibrations correlation (Table 7.2) is observed, though due to the variable nature of these tests, the significance 

of this difference is not reliable. Repeats of the larger scale system showed no such variability, as has been 

demonstrated with prior HETP and DBC work, showing that the results are repeatable with minimal variation. 

The increased in dispersion and reduction in porosity is  in line with reports from Susanto et al. (2008) of an 
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increase of over 50% of their derived dispersion coefficients, corresponding to an increase in у2 from 8.49 to 

12.82. They suggested this was likely caused by the wall effect impacting packing efficiency, a phenomenon that 

is amplified at the very small bed diameters microscale columns possess (Guiochon et al., 1997).  

7.2.4 Breakthrough Data 

Breakthrough data, obtained in chapter 5 was used for model calibration, also using the inverse method, and 

the bed parameters fitted above. The model was formulated like the full scale intermittent flow model, though 

with fractions taken by averaging a continuous chromatogram between the fraction volumes, rather than using 

its single point as being an accurate representation of the concentration at that particular time  or volume, a 

similar approach to Keller et al., (2017). Additionally, the intermittent flow, deliberately introduced to maintain 

a suitable residence time for the 50 µL and 200 µL columns (Chapter 4), was also introduced for these 

simulations. The fractionation averaging was not applied to the FPLC system in the previous chapter, as the high 

data density meant this was not an important consideration, as very little mixing occurs within the small UV flow 

cell. Whilst axial dispersion at static flow was unimportant for describe lab scale intermittent flow, this is 

evaluated with half the value of the molecular diffusivity of IgG’s in aqueous solution  (Guiochon, 2006), a value 

of 3.7 x 10-11 m2s-1  (Tyn & Gusek, 1990), as the reduced length of the micoscale columns, as little as 2.5 mm for 

the 50 µL column ( 1% of a typical lab scale column), will amplify the impact of this band broadening. All fits were 

performed by allowing qmax  and Dp to vary, and the Dax and ε values as established with the pulse tests of the 

600 µL columns, with Dax following a linear flow-rate dependency with у2 determined through fitting of the PABA  

peak. Film diffusion followed the correlations of Wilson & Geankoplis with no adjustment, and column length 

was adjusted for each scale. Models were fitted with an averaged porosity from pulse data, but individually 

fitted to each columns’ breakthrough profile , generating 8 models, each describing a single column. Model 

parameters are given as the average and standard deviation across all of these models (Table 7-3), and 600 µL 

columns connected to the FPLC were omitted due to the oscillatory behaviour seen at longer residence times.  
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A       B 

 

C 

Figure 7.4 – The breakthrough model fits for 

microscale columns. The simulated profile is given as 
the average of all 8 fitted breakthrough profiles 

A - 600μL columns  

B - 200 μL columns  

C -50 μL columns,  

All three experiments were performed at three 
residence times in 8-fold replicate, with each column 
for all residence times described by a single model 
formulation. The average of determined model 
parameters is plotted (qmax, DP).  

 

As expected, the 600 μL scale models demonstrated the best fitting to the experimental data, with quality of fit 

worsening for the 200 µL column, and 50 µL columns, though the sawtooth motif present at the 200 µL scale 

described well also (Figure 7.4). Additionally, the parameters fitted showed reduced variability between columns  

compared to the smaller volumes, therefore a more robust fit achievable with 600 µL columns. For the larger 
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scale system, as repeats had very little variation between runs (a difference in DBC10% values of less than 0.5 g L 

as determined in Chapter 5, within model error), the variation in model parameters is determined through 

individual fits per experiment across every residence time simultaneously (n = 3), with 8 fold repeats in 

microscale. All of these repeats were performed on a single column at lab scale, and with all columns at 

microscale,  and therefore cannot account for lot to lot variability between resin batches. Other have reported 

lot-to-lot variability on similar protein A resins as having negligible impact on capacity (Trexler-Schmidt et al. 

2009), though this is a significant consideration in other adsorber types, such as ion exchangers (Aono et al., 

2013, Wahome et al., 2008). 

Table 7.3- Model Parameters for the 3 microscale column volumes, compared to the lab-scale model for IgG A 

Parameter Value Method of Determination 

Column Volume 4.7 mL 600 μL 200 μL 50 μL 

System Used FPLC LHS 

Bed porosity (εb)  0.43  0.36 ± 0.09 (determined with 600 µL 

columns) 

Pulse Test  

Particle porosity (εp)

  

0.97  0.96  ± 0.13 (determined with 600 µL 

columns) 

Pulse Test (PABA) 

Effective particle 

porosity for IgG  (εeff) 

0.65  0.57 ± 0.11 (determined with 600 µL 

columns) 

Pulse test (IgG, 

nonbinding conditions) 

Maximum binding 

capacity of column 

(Qmax, g L-1
column) 

80.77    86.11 ± 

2.17  

 

67.33 ± 

4.93 

 

103.08 ± 

21.84 

Initial estimate from 

batch adsorption, refined 

with breakthrough 

Axial dispersion 

correlation constant 

(у2) 

2. 8   3.6 ± 1.1 Pulse tests (PABA) to fit 

Ruthven’s (1984) 

correlation 

Film Diffusion 

Coefficient (kf) 

1.3 x 10-5 m s-1 to 2.7 x 10-6 m s-1 Correlation (Wilson and 

Geankoplis, 1966) 

Pore Diffusion 

Coefficient  

(Dp, x 10-12 m2 s-1) 

3.6   3.4 ± 0.3 2.7 ± 0.6 1.6 ± 0.9 Breakthrough Data 

MSE (%2) 4.28 8.31 11.30 19.60 Experimental data vs 

Simulation (at the same 

scale) 

Column Length 0.1 m 0.03 m 0.01m 0.0025 m Product data 

Column Diameter 7.7 mm 5 mm Product data 

Particle Diameter 85 μm Product data 

Residence Time 160 s, 240 s  and 480 s Set by experiment 
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With a mechanistic model describing both the lab scale and microscale breakthrough behaviour, an 

understanding of column characteristics (bed height, porosity, axial dispersion), system contributions 

(fractionation, intermittent flow, dead volume) and adsorption behaviour, one can isolate and transform each 

of these phenomena, with the aim to better predict and account for differences across scale and system.  All 

parameters at the larger scale match reasonably well with 600 µL column derived parameters. The notable 

exception was axial dispersion, which is amplified at the microscale, in agreement with literature reports 

(Osberghaus et al., 2012) and prior HETP work (Chapter 4), whereas even at constant axial dispersion correlation 

(γ2) value, greater band broadening is to be expected considering the reduced bed height, though, as discussed, 

experimental limitations reduce confidence in this assertion. Additionally, differences in column geometry and 

construction may likely influence this rather than packing quality alone, as flow distributors and tip-placement 

within the column could neither be determined nor controlled. Film mass transfer may well be significant for 

the smallest bed heights (2.5 mm) considering the parameter sensitivities established in the previous chapter 

and the fact that the Wilson and Geankoplis correlation cannot describe this parameter at such low flow 

velocities (Re < 0.0015) though has not been explored further as the data density was not sufficient to better 

assess this contribution.  A significant limitation in the workflow is the model sensitivity to bed porosity, and the 

error prone method of determination. The impact of axial dispersion on microscale breakthrough is more 

pronounced, considering the reduced bed height alone even if the linear dep endence of the coefficient remains 

identical, and the flowrate scaled for residence time. Though this  has a relatively small impact on breakthrough 

profile at lab scale, it is important in describing the saw-tooth motif. The main contributors to any scale 

dependant offset in breakthrough is the bed porosity, and to a lesser extent film diffusion. The bed porosity is 

consistently lower than at labscale, though the variable nature of the data means this difference is not 

statistically significant from pulse tests alone but will be further evaluated.   

7.2.5 Transforming the Model Between Scales 

An evaluation of the impact of Dax and kf to scale performance was performed, in which the 4.7 mL scale 

breakthrough model was transformed to predict breakthrough profile at a range of column lengths, at constant 

residence time (Figure 7.5). The parameters kf, Dax were evaluated with respect to bed height and whether 

following correlations у2 to axial dispersion, and X for a multiplicative factor applied to the Wilson and Geankoplis 

(1966) correlation [6.23], was appropriate. With respect to kf, no significant change in model quality was seen 

when allowing this to fit to reasonable values (0.5 < X <10), with relatively minor increase in model error at X < 

0.1  on the lab scale model, so a non-corrected Wilson and Geankoplis correlations has been assumed to be 

accurate enough, which is supported by both the sensitivity analysis and characteristic time de termination in 

the previous chapter. 

For axial dispersion, one can see a clear Impact on breakthrough profiles  whether using the у2  factor determined 

with the 600 µL columns (3.6), or the 4.7 mL scale (2.8), with a greater effect with the axial dispersion scaling 

factor determined with the microscale experiments. kf alone has a modest impact on breakthrough profile when 
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ignoring axial dispersion completely, with a minimal difference between 100 cm to 3 cm, though this effect is 

pronounced at the smallest column lengths (2.5 mm). Whilst still not as significant as the pore diffusion or axial 

dispersion, this resistance does lead towards additional column length dependant broadening.  

Assuming the Dax ascertained with a 10 cm column at 240 s residence time is universally applicable for all bed 

heights led towards the greatest degree of column length dependant band broadening and demonstrates that 

this value should be estimated at each flowrate, or neglected entirely, but not assumed to be constant for this 

system as the greatest component of axial dispersion is likely to be eddy dispersion, also supported by the linear 

relationship demonstrated in the previous chapter.  

For each parameter tested, minimal differences were seen between a 10 cm and 1 m bed height (data not shown 

for clarity, though overlaid the 10 cm column in all conditions), which is unsurprising as at high column length 

and constant residence time, the impact of pore diffusion and convection remains unchanged, whereas the 

impact of film diffusion and axial dispersion is reduced. The largest contribution for column length dependant 

breakthrough shape was axial dispersion alone, highlighting the importance of determining this as accurately as 

possible, whereas kf is an important consideration for especially small bed heights. If both of these phenomena 

are ignored, there is no difference whatsoever for scaling bed height, suggesting that these other mass transfer 

resistances are of concern due to the requirement for scaling for very low bed heights within this project, and 

therefore demanding the use of such a model comprising of multiple transport resistances. 

The microscale model was transitioned by considering the reduced axial dispersion and porosity, achievable with 

small material consumption on pulse tests at either scale, with the model describing fractionation, flow regime 

and any contribution of dead volume (Figure 7.6). The film dispersion coefficient was set to the correlation flow 

rate dependencies of Wilson and Geankoplis (1966) with no adjustment, with adsorption modelled by 

rectangular isotherm, with qmax and  Dp determined at each scale through inverse fitting of breakthrough, 

enabling prediction at either scale based upon pulse experimental data alone. For prediction purposes, qmax was 

therefore determined as a function of resin particle volume as determined with dextran pulses, rather than for 

the entire column, enabling the impact of column porosity to qmax to be described explicitly. Particle porosity 

was set to be constant regardless of scale, and therefore used lab scale parameters, with axial dispersion was 

set to the value determined by the PABA pulse responses of the predicted scale. Therefore qmax of the particle  

and DP were the only experimentally determined parameters kept constant between scales. 
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Figure 7.5 - Comparison of the impact of the flow dependant mass transfer resistances, Axial dispersion (Dax) and film diffusion 
(kf) on breakthrough profiles at constant residence time with varying bed height based upon the 240 s residence time, 10 cm 

bed height  model. 

This variation in bed porosity was supported by refitting the microscale model with large scale parameters, 

accounting for flowrate dependencies, leaving bed porosity as the only free variable, which also then converged 

to a reduced value compared to the larger scale fit, with a comparable model residual (εb = 0.33, MSE = 9.05 %2
, 

an increase from 8.31%2 when given freedom of all parameters though still a reasonable fit), supporting reducing 

the bed porosity for the  microscale system. This porosity value is rather low, but within ranges reported by 

others (Liu et al., 2017, López et al., 1997, de Neuville et al., 2013, Diederich & Hubbuch, 2017) and may be 

indicative of excessive compression compared to labscale columns (Kong et al., 2017).  Roberts & Carta (2020) 

recommended using such a strongly binding tracer for characterisation of microscale columns, which has 
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supported the reduction in porosity. Considering the variability in ascertaining the porosity on the microscale 

with dextran pulses and relatively poor data density, and the prevalence of assuming the bed porosity at 

microscale to be similar value rather than directly measuring (Susanto et al., 2008, Keller et al., 2015 & 2017, 

Benner et al., 2019,) and others reporting a reduction in porosity compared to larger columns (Osber ghaus et 

al., 2012, Pirrung et al., 2018), this transformation appears to be appropriate, though as discussed, could be a 

significant source of error.  

 
Figure 7.6 - Process of transforming the model between scales, in which the column geometries are determined at both 
scales with pulse responses. The large scale system is used to determine the particle porosity, due to better resolution, and 

that this parameter is assumed invariant to scale, whereas the small scale system’s pulse tests determine both axial 
dispersion and bed porosity, which is then used to calibrate the model with microscale breakthrough responses. The model, 

describing the microscale column and system, could then be transformed into predicting large scale by correcting for 
dispersion, porosity, bed height removing intermittent flow and fractionation and introducing dead volume simulation 

 

Using the microscale determined axial dispersion correlation coefficient and the reduced porosity, the models 

describing microscale breakthrough were transformed to predict larger scale breakthrough. Unsurprisingly, the 

600 µL columns predicted large scale behaviour best, significantly better than the small column volumes (Table  

7.4). The 200 µL columns provided a poor description of labscale breakthrough, with the worst DBC 10% prediction 

of the set, whereas the 50 µL columns did provide a more accurate prediction of DBC10% value, but worse 

estimation of lab scale model parameters – it is likely the underestimation of pore diffusion combined with the 

overestimation of qmax opposed one another and lead towards more equivalent DBC10% values, though a poorly 

representative model. The poor description of large scale behaviour is likely due to the poor data quality and 

fluid effects not modelled, considering that axial dispersion was assumed to be identical as for the 600  µL 

columns, likely a poor assumption as this mechanism is especially important with such small bed heights. A 

further concern to this is the fluid regimes specified during the experiment; the flowrates required to meet the 
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residence times at scale were beneath the minimum flowrate of the system, so a deliberate intermittent flow 

regimes was introduced (Table 5.1), and though this was incorporated into the mechanistic model, it may have 

introduced further artefacts. Small differences in column volumes, or hold-up volumes within the column 

housing are particularly impactful here and were not assessed. The film diffusion coefficient was not fitted, but 

instead followed Wilson and Geankoplis’s (1966) correlation with no correction factor, this is likely to be error 

prone, but could not be estimated with a greater degree of accuracy as it appeared to not impact larger scale 

behaviour. 

Table 7.4 - Experimental, Modelled and Predicted DBC10% values for 4.7 mL, 600 µL, 200 µL and 50 µL columns, at 160 s, 240 
s and 480 s residence time, demonstrating an improved description of 4.7mL scale breakthrough with 600 µL columns by 

calibrating a mechanistic model  

Column Volume 4.7mL  50 µL 200 µL 600 µL Source 

System FPLC LHS LHS LHS 

Retention Time (s) DBC10% (mg/mLcolumn) 

480 64 ± 0.1 85 ± 14.3 44 ± 8.7 70 ± 1.9 Experimental 

240 53 ± 0.3 55 ± 9.2 30 ± 7.4 55 ± 2.4 

160 44 ± 0.2 39 ± 11.6 28 ± 10.5 48 ± 2.3 

480 66± 0.2 89± 16.6 49 ± 9.5 70 ± 3.7 Model 

240 54± 0.2 58 ± 14.3 36 ± 9.1 57 ± 3.0 

160 44± 0.2 48 ± 10.1 29 ± 8.6 50 ± 2.7 

480 71 ± 0.2a
 88 ± 16.1 b 44± 9.5 b 66 ± 2.5 b Scale corrected 

model 240 57 ± 0.2 a 55 ± 12.7 b 34 ± 9.0 b 54 ± 2.4b 

160 47 ± 0.2 a  36 ± 8.3 b 24± 8.1 b 45 ± 2.4b 

a = scaled to 600 µL column on LHS, b = scaled to 4.7 mL column on FPLC 

Regardless of the issues facing the smaller column volumes, the model based prediction of 4.7 mL scale derived 

from the 600 µL column data was very good,  describing early breakthrough well for 160 s and 240 s, with the 

480 s residence time formulation still failing to describe early breakthrough (Figure 7.7). All DBC10% values from 

this prediction were within 1 standard deviation of the experimental data, with generally  good fitting across the 

profile, supporting the workflow that mechanistic model facilitated interpretation of scale up can account for 

many of these apparent differences. 
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Figure 7.7 - Microscale prediction of larger scale breakthrough, demonstrating good description of the larger scale 
breakthrough behaviour. The standard deviations of each model prediction are shown in shade, by calibrating a model for 
each column breakthrough (n = 8) 

This approach of using microscale breakthrough to predict lab scale breakthrough will  be validated through 

calibrating a model with microscale data at 600 μL to establish the kinetic and equilibrium parameters with pulse 

data on the microscale columns for bed characterisation, for a separate drug candidate, IgG B. The resultant 

model will then be used to predict large scale behaviour  through ascertaining mass transfer parameters, altering 

as needed for the differences in scale. 

7.3 Predicting Lab Scale Breakthrough with Microscale Data 

IgG B concentration calibration and standard curved were generated in the same way as for  the previous IgG. 

As the batch breakthrough married with sensitivity analysis demonstrated the adsorption model could be 

adequately reduced to an equilibrium, rectangular isotherm, only qmax needs determination to adequately 

describe the adsorption behaviour, which may be performed as above with partial breakthrough studies, along 

with the primary mass transfer resistance, DP. Dax was assumed to follow the same flowrate dependency as for 

IgG A, with Ruthven’s (1984) flowrate dependency and a value of у2 of 3.6 at microscale and 2.8 at labscale, with 

bed porosities of 0.36 and 0.43 respectively. 
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A      B 

 

C      D 

 

 

Figure 7.8- Modelled and measured breakthrough profiles for IgG B. A – The 600 µL experimental breakthroughs and model 

fit (single model describing 160 s, 240 s and 480 s residence times), B – The model prediction of large scale behaviour and 

experimental breakthrough of large scale, C – Comparison of the experimentally determined breakthrough for both 600 µL 

and 4.7 mL scale, D – Lab scale breakthrough model calibrated with lab scale data 

Having calibrated model describing the microscale operation (Figure 7.8A) with an acceptable quality of fit, the 

model is transformed in the same manner as for IgG A, in which pulse response data is used to determine the 

column dispersion at either scale. In this case, the columns were the same as used for IgG A, so the same  

parameters for porosity and axial dispersion were used. qmax was again scaled based upon the phase ratio of the 

adsorber. As before, experimental 4.7 mL breakthrough curves were generated and were compared to the 

model predictions (Figure 7.8B), with confidence intervals plotted based upon the standard deviation in model 

parameters across 8 columns, with these lab-scale breakthrough curves further used to generate a large-scale 

model. These were used to compare model parameters between prediction and experimentally validated 
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performance at lab scale, as for IgG A. One can see a clear offset between scales, modelled by the change in bed 

porosity, and broader breakthrough in the microscale  domain (Figure 7.8C), an artefact of the reduced efficiency 

considering the difference in length and greater contribution of axial dispersion. As with the first IgG, the labscale 

model calibrated with labscale data had a better quality of fit, though slight deviations in describing early 

breakthrough (Figure 7.8D). 

 

Figure 7.9 Experimental, Modelled and Scale Corrected Model (SCM)  DBC10% values for IgG B on 4.7 m L and  600 µL columns, 
at 160 s, 240 s and 480 s residence time, demonstrating an improved description of 4.7mL scale breakthrough with 600 µL 
columns by calibrating a mechanistic model, seen here with the SCM bars (in which one scale, FPLC (4.7 mL) or LHS (600 µL) 
were used to predict the other scale), as per the workflow in Figure 7.6) Error bars for the microscale system are determined 
across 8 fold replicates; singlicate experiments were used for labscale studies.  

For the predicted DBC10% values, again better comparability between results is seen when accounting for the 

system and scale effects by using a mechanistic model. As expected, the 600 µL models exhibit far more 

variability than their lab scale counterparts. The reduction  in DBC10% differences between scales has not been 

as effective as with IgG A, as over half of the initial difference between scales remains whilst employing this 

approach (Figure 7.9). However, as with the IgG A, relatively good comparability is seen with the determined 

model parameters (Table 7.5). 
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Table 7.5 - Model parameters for IgG A and IgG B at 600 uL and 4.7 mL  scale 

Parameter Value Method of 

Determination 

 

Protein IgG A (IgG1) IgG B (IgG4) 

Column Volume 4.7 mL 600 μL 4.7 mL 600 μL 

System Used FPLC LHS FPLC LHS 

Bed porosity (εb)  0.43 0.36 ± 

0.05  

0.43  0.36 ± 0.05  Pulse Test  (Dextran) 

Particle porosity (εp)

  

0.97  0.98  ± 

0.13 

0.97  0.98  ± 0.13 Pulse Test (PABA, 

Assumed to be 

identical between 

scales at 0.97) 

Effective particle 

porosity for IgG  (εeff) 

0.65  0.57 ± 

0.11  

0.65  0.57 ± 0.11  Pulse test (IgG A, 

nonbinding conditions. 

Assumed to be 

identical between 

scales at 0.65) 

Maximum binding 

capacity of column 

(Qmax, g L-1
column) 

80.77   86.11 ± 

2.17  

 

84.11    90.83 ± 2.94 Initial estimate from 

batch adsorption, 

refined with 

breakthrough 

Axial dispersion 

correlation constant 

(у2) 

2.8    3.6   2.8   3.6 Pulse tests (Dextran) 

to fit  Ruthven’s (1984) 

correlations 

Adsorption model Rectangular Batch Adsorption, 

sensitivity analysis 

Film Diffusion 

Coefficient (kf) 

1.3 x 10 -5 m s-1 to 2.7 x 10 -6 m s-1 Correlation (Wilson 

and Geankoplis, 1966) 

Pore Diffusion 

Coefficient (Dp, x 10-12 

m2 s-1) 

3.6  3.4 ± 0.3 3.3  3.0 ± 0.3  Partial Breakthrough  

(three residence times) 

MSE (%2) 4.28 8.31 3.62 10.21 Experimental data vs 

Simulation 

Column Length (m) 0.1 0.03 0.1 0.03 Product data 

Column Diameter (m) 0.0077 0.005 0.0077 0.005 Product data 

Particle Diameter 85 μm Product data 

Residence Time 160 s, 240 s  and 480 s Set by experiment 
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7.4 Discussion 

There are a large number of assumptions within the approach taken above, considering the model formulation, 

experimental design and analysis, and as clear by the remaining differences in both predicted DBC10% values and 

in model parameters, this approach has failed to provide an entirely accurate description of breakthrough 

behaviour at either scale when testing with another IgG, though has made a prediction closer to the 

experimental DBC10% values compared to raw data alone, as well as converging on similar mass transfer 

parameters to the lab scale model.  

Whilst a modelling approach has been able to describe each of the deviations with respect to scale ( including 

reduced column efficiency at small bed heights, fractionation, intermittent flow, dead volumes and flowrate  

dependency of some mass transfer resistances), the experimental set-up has introduced a significant variability, 

which has been apparent in raw data. Whilst work has been performed to minimise this as much as possible,  

the method of running microscale experiments on an LHS has several sources of error that modelling could not 

mitigate.  Variable tip placement on the system was not assessed, the open nature of the experiment in that 

effluent was not entirely contained, the resolution and  method of determining effluent concentration with 

variable UV pathlengths all introduce further variability. Small deviations in column packing , considering the  

miniscule working volume of the columns, is likely to be significant, as others have highlighted (Roberts & Carta, 

2020). This was particularly important for porosity measurements, which have been shown to be critical to 

model quality but limited in the precision obtainable. The most impactful deviations between scale were 

highlighted as a difference in this measured porosity, and better comparability between large and small column’s 

model parameters when this was left to vary, however a large amount of uncertainty remains over this 

parameter’s value, and the evidence this has varied may not be robust, though has also been rep orted by others 

on these columns when comparing to labscale (Susanto et al., 2008).  

It is possible that it is the radial heterogeneity present in such small diameter columns that have led towards 

this supposed reduction in porosity, as the wall effect has been previously reported to increase packing density 

at the radial boundary (Shalliker et al., 2000),  with the interstitial velocity, determined by the bed porosity and 

flowrate,  directly impacting the efficiency of the remaining mass transfer phenomena. Only through further 

experiments on other IgG candidates, perhaps resin chemistries, or through other means of testing for this 

discrepancy, may more confidence in this transformation be acquired. Other ways of determining bed porosity 

include through measuring pressure drops across the bed and using the Blake-Kozeny equation or performing 

dextran exclusion experiments on a more extensive or precise manner. Both of these approaches may have been 

possible with further optimising the manner of attaching a microscale column to a FPLC and using the wider 

range of sensors and resolution available, which also would have paired well with the dead volume corrections 

used in this work. Roberts and Carta (2020) suggested using breakthrough curves of a strongly bound tracer for 

column qualification, which has been performed in this work, and has further supported the reduction in 

porosity based upon retroactive fitting of the labscale model to the microscale data. 
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Many of the previous experiments were not optimal for the purposes of mechanistic modelling. Saturation runs 

of the microscale columns and on the lab scale column at more residence times would have been beneficial, for 

both an insight into saturation behaviour and as additional quality checks on the models. Interestingly, for the 

saturations run available, the model failed to describe saturation behaviour well , which has previously been 

described. Others have better described this when accounting for multiple binding sites  (Boi et al, 2007, Perez-

Almodóvar, 2009a), which may have improved model quality, though model calibration with saturated 

breakthrough experiments, or through kinetic batch adsorption experiments. By implementing the Langmuir  

adsorption isotherm, rather than the rectangular isotherm, would extend the model’s capability to describe 

binding by dilute feed material, though this was not a consideration for the industrial process with expected 

high feed titre. 

This work has demonstrated that microscale columns perform similarly to lab-scale counterparts with regards 

to mass transfer resistance, and binding capacity per solid phase, with the notable exception of axial dispersion 

and bed porosity, and of course, typical mode of operation relying on low linear flow velocities. This also serves 

to illustrate that using a complex model such as the general rate model, is important. Simulating many transport 

resistances can in some way improve interpretation of results at microscale, with explicit simulation of film 

diffusion, pore diffusion and axial dispersion and the flowrate dependencies thereof has enabled an insight into  

the impact of flowrate on mass transfer resistances and process performance. This is the first application of such 

a comprehensive mechanistic model, accounting for all significant transport resistances, being applied to 

interpret microscale data, and also the first of its kind looking at multiple volumes of microscale column s across 

multiple feed types. 

Perhaps using a small column suitable for use on an FPLC, considering the improved data quality with a relatively 

minor increase in material consumption, would be an improvement when used with a FPLC designed for such 

small flowrates, though this would be at the cost of throughput. Even with large scale columns, and high 

resolution and high completeness data, there have been some behaviours not adequately described by the 

models, most notable both early and late breakthrough profile  likely due to the assumptions of the rectangular 

isotherm incorrectly describing both low concentration adsorption and saturation, and imperfect description of 

the flowrate-breakthrough relationship with a single model formulation. With respect to the model framework 

itself, several sources of error have been identified. 

Firstly, the model used assumes all parameters do not change during the experiment, in that pore diffusion and 

axial dispersion coefficients and bed characteristics do not vary with respect to time, concentration of protein 

or any other factor. This is likely to be incorrect; we know that at high concentrations, pore diffusion is restricted  

in the literature (Schultze-Jena et al., 2020), that axial dispersion and pore diffusion will be reduced within the 

more viscous fluid at high concentrations, though this dependence has not been suggested by data here of 

breakthrough at various feed concentrations, which a feed concentration of less than 10 g L -1 was tested, far 
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beneath binding capacity. Another consideration is that the resin particles pore network will also be increasingly 

restricted as more protein binds within it, further hindering pore diffusion  (Boyer & Hsu, 1992). Others have 

reported notable differences in mass transfer of protein A resins after several reuses (Pathak & Rathore, 2016). 

The columns used during this study had been subject to several experiments, and there is a very real possibility 

that the actual pore diffusion and capacity has diminished over both the duration of a single load event, and 

multiple reuses of the same columns. 

The model also assumes that the columns are radially and axially homogenous in adsorber distribution and flow 

regime, and radially homogenous also with respect to protein concentration. This is not a robust assumption, it 

is known that the wall effect, leading to radial heterogeneity, is significant at small column diameters (Abia et 

al., 2009), and there is a significant risk of axial heterogeneity considering that the resin is compressed within 

the column during manufacture. It is assumed this leads to the variations in axial dispersions as reported here 

and elsewhere (Susanto et al. 2008, Benner et al., 2019), in which even small deviations in packing efficiency 

lead to significant deviations from expected behaviour (Roberts & Carta, 2020).  

The rectangular adsorption model is likely a poor assumption, with even the Langmuir model shown to be a 

simplification of the true behaviour, considering that proteins are highly heterogeneous, with a great variety of 

binding mechanisms, and do interact with themselves frequently, all assumed to not happen within the 

Langmuir framework. This would be of considerable concern if the purpose of this study were to assess the 

impact of saturation, in which these non-ideal effects are apparent. Others have better described this when 

accounting for heterogeneous binding (Perez-Almodóvar & Carta, 2009a, Boi et al., 2007) within a Langmuir  

framework. The single component Langmuir model assumes all proteins and binding sites are equivalent, and 

considering the structural freedom of proteins, this is incorrect. The Langmuir isotherm here was further 

simplified to a rectangular isotherm with infinite binding rates, which as others have demonstrated fails to 

describe saturation behaviour (Perez-Almodovar & Carta, 2009a), though has been widely used to simplify the 

complex behaviour to a single model parameter, though a difference in binding kinetics has been previously 

reported on these systems by Sustanto et al., (2008). Additionally, this model used in this work is inappropriate 

for all but the load phase of the separation; elution, washing and clearance of impurities has not been included, 

greatly limiting its potential as this is the actual utility of such a step.  

Another consideration is within the experimental design; the experiments used to calibrate the model were 

performed with semi-purified (post protein A capture) material for the purpose of direct protein quantification 

through UV absorbance, rather than using raw feed material with a plethora of different proteins, lipids and 

DNA which could also absorb UV radiation, which would need to be measured using Protein A HPLC or other 

quantitative methods. Purified material will be less viscous than crude feed, likely affecting the mass transfer 

resistances, and will not be subject to competitive binding by contaminants. This means that for any truly 

rigorous model describing Protein A capture of antibodies from complex feedstock would need to be calibrated 
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using complex feedstock; the same strategy could be used, but with considerably more analysis. This has been 

performed by others, notable Bak et al., (2007), and using microscale column with Pirrung, et al., (2018). This 

variation would have been worsened by the method of determining protein concentration and volume  

introducing error, which has likely propagated into the model. 

It is clear one can successfully use microscale data, if of suitably high quality, to predict behaviour at larger scales, 

though more error prone than using labscale columns alone, or using lab scale columns to calibrate a model to 

predict behaviour of untested residence times. In order to perform each breakthrough experiment at lab-scale, 

up to 500 mg of product must be used, whereas at microscale as little as 50 mg of product is consumed. With 

three breakthrough curves, and small volumes of material for pulse tests at scale, one can calibrate a model with 

under 200 mg of product, less that that consumed for a single breakthrough experiment at lab scale. 

Additionally, with this approach, up to 8 individual experiments can be performed simultaneously; one could 

calibrate 8 models each describing a different IgG, resin, or load composition. Whilst not as accurate as models 

generated using lab-scale data and is not of comparable quality to predict lab scale behaviour as a lab-scale 

derived model, this approach is suited for early drug development where material and time must be optimised 

to gain as much information about as many candidates as possible.  

A benefit of using a mechanistic modelling approach to facilitate improved data interpretation in early-stage  

process development would be for the purposes of process optimisation, assessing process robustness, or has 

been achieved here, predicting the performance of the process on a different scale and system. Adsorber 

screening, a very early stage activity (Liu et al., 2017b) also well suited to microscale chromatography, in which 

the process may be effectively locked in to a particular type of resin, could benefit from improved prediction of 

large scale behaviour; With a mechanistic model, resins could therefore be ranked by the performance expected 

at commercial scale, rather than what was observed at lab scale. Additionally, upstream development often 

occurs simultaneously, the feed stream is likely to also be subject to changes, with expected improvement in 

titre and quality between early development and commercialisation, the performance of an improved feedstock 

may also be predicted with a lean dataset and limited material consumption, and enable extrapolation to 

different feed titres, column scale and operation.   
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8 Conclusions 

The project focussed on enabling a better understanding of microscale chromatography in an industrial setting, 

which has been achieved in part. At the beginning of the project, several ways of operating these columns, such 

as increasing wash lengths, were being performed routinely based upon prior observations and anecdotal 

evidence. To find better ways of interpreting microscale data, a project of assessing a microscale separation on 

two IgG’s for improved resolution, means of characterising the columns with conventional metrics such as HETP 

and DBC, and a mechanistic modelling approach were undertaken. 

With microscale columns on a high throughput platform, a number of differences were identified when 

compared to conventional lab-scale columns, chiefly the operational differences (intermittent flow, 

fractionation, dead volumes) the scale differences (wall effect, low superficial flow velocities at a given residence 

time) and the poorer data quality (fewer data points, no online UV, conductivity, pressur e, volume or pH 

measurement) meant interpreting results across scale could benefit from a mechanistic understanding of the 

process. 

Work was performed initially to observe the data quality from these columns in a standard Protein A capture, 

which demonstrated that there was a hard limit to increasing resolution; the minimum working volume of the 

collection vessel. Smaller vessels reduced this minimum volume but allowed more drops of effluent to miss the 

well, and therefore not be measured. Whilst a low resolution could be suitable for screening adsorbers or IgG 

candidates, in order to qualify these columns, and measure porosities or HETP, a more sensitive approach was 

developed. 

The pre-filling of collection plates allowed one to resolve individual drops from microscale columns, a novel 

approach that has greatly improved resolution to dropwise levels when paired with a suitable tracer. HETP tracer 

screening at large scale found PABA to be an acceptable compromise considering available mater ials, 

considering favourable safety profile, strong UV absorbance and stability in solution at room temperature, 

though also highlighted slight deviations in HETP values.  Potentially collating any retention by PABA to a typical 

standard, such as acetone, would have been a suitable route forward, and therefore allowed one to correct for 

any adsorption. An effort was made to improve the resolution further, and allow pH, conductivity and pressure 

measurements by rigging a microscale column onto a conventional FPLC system. This was possible, but problems 

with leaking fluid, the low throughput when compared with the robotic system, the  excessive dead volumes and 

variable positioning limited the utility of this approach and highlighted that using the conventional LHS for such 

a study may be a better solution Using the prefilling method, HETP results of adequate quality for fitting a widely 

used probability distribution function, the Exponentially Modified Gaussian (EMG) distribution, were generated, 

and facilitated determination of the statistical moments, interpolation of the peaks and the HETP parameters. 

This approach was also compared against the full width at half height approach which was the conventional 
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approach used in-house. This approach also allowed estimations of bed porosities for mechanistic modelling, as 

well as measuring the drop volume and mass retention in order to better assess fraction volumes. 

Dynamic breakthrough studies were performed at several residence times with 50 μL, 200 μL, 600 μL and 4.7 

mL columns to evaluate consistency across and between scales and was paired with the method of moments 

and system volume tests to separate column and system effects on breakthrough for the smaller columns. As 

expected, the larger microscale columns demonstrated better scaling, data quality and consistency between 

runs. The intermittent flow was the most noticeable difference across scale and was therefore screened on a 

lab-scale column with a system programmed to mimic this intermittent flow regime. It was clear that 

intermittent flow had a significant effect at lower residence times with regards to breakthrough position, which 

was intuitive. Significant differences in measured dynamic binding capacity was observed across all columns and 

scales, and therefore mechanistic modelling was explored in order to attempt to mitigate the scale and system 

effects. 

Mechanistic modelling was first applied to the lab-scale system, allowing prediction of the residence time-

breakthrough relationship of IgG A binding to a column, after calibrating with two residence times. Breakthrough 

experiments were used to estimate the kinetic parameters of the General Rate Model, with batch adsorption 

for the thermodynamic parameters to initially estimate a Langmuir, later rectangular, isotherm, and pulse 

studies used to estimate the bed and particle porosity of the system and axial dispersion across multiple  

flowrates.  Dead volume simulation was employed to better interpret pulse experiments and showed modest 

improvements in fitting porosities at a range of flowrates. The correlations used fitted the data well, with pore 

diffusion appearing to be the most critical of the kinetic parameters to fit. Additionally, the intermittent flow 

was simulated, and found that the pore diffusion alone explained the saw-tooth motif, apparent in microscale 

breakthrough experiments, well, with no further mass transport parameters needed. 

This approach was then further adapted to microscale chromatography, with a model describing the 

intermittent flow calibrated with breakthrough, pulse and batch adsorption data. This intermittent flow model 

was then corrected for a greater bed height, large scale bed parameters, the intermittent flow, fractionation 

and dead volume. This allowed prediction of large-scale behaviour at a range of residence times, and was a 

significant improvement merely comparing the raw data alone, in terms of measured DBC10% values, allowing a 

better understanding of the scale separation, whilst using microscale volumes of material. However, better 

interpretation of the problem at hand, accounting for artefacts of scale and system to better interpret microscale 

chromatography may have been achievable with modifications to both the experimental and modelling 

workflow, though the work does represent a better interpretation of microscale breakthrough data than was 

initially being performed. 
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8.1 Future directions 

8.1.1 Further Applications 

The data and models as they stand could be further expanded to explore a variety of other applications. Capture 

of biomolecules by other chemistries, including ion exchange, hydrophobic interaction and other affinity formats 

would be straightforward with the approach described in this work for scaling models. However. modifications 

would need to be made to the workflow, including using a more extensive binding model, such as SMA and 

calibrating with elution data, such that elution behaviour could also be simulated. Interestingly, the published 

cases of microscale IgG breakthrough on ion exchange resins (Welsh et al., 2014, Wiendahl  et al., 2008, 

Osberghaus et al., 2012) did not demonstrate such a strong saw-tooth motif than seen in our Protein A data, 

suggesting intermittent flow is less of an issue for their adsorbers at the tested residence time. The high-

throughput workflow and methods would apply well for more complex isotherms such as SMA, or 

multicomponent Langmuir, or to simulate impurity clearance, all of which would need a greater amount of 

calibration data, easily achievable with the high throughput LHS.  

Continuous operation of chromatography, such as simulated moving bed  and periodic counter-current 

chromatography, can be easily modelled from this as well; a core advantage of these models is that the 

distribution of material in the column is modelled, not just the e ffluent, meaning one can account for the 

material distribution and concentration at all lengths of the column for the same simulation, and therefore 

better predict the load concentration of subsequent columns. One can optimise loading block length, flow rates 

and strategy of column recycling quicker, cheaper and more easily than performing experiments with multiple  

columns. Additionally, all calibration experiments may be performed with a single column and simpler 

equipment, (Kaltenbrunner et al.,  2016 and Pagkaliwangan et al., 2018), considerably simpler and cheaper than 

using multiple-column systems, with simulations performed by linking each of the column models in series in 

silico. Another benefit of a mechanistic understanding is that one can search well outside of the conventional 

search space for a process optimum, including looking at novel elution modes (Joshi et al., 2017), or 

interconnected steps (Nfor et al., 2013, Pirrung et al., 2017 & 2019, Huuk et al., 2014). 

Pairing with microscale bioreactors could be an interesting approach for a more integrated process development 

strategy; the volumes of microscale bioreactors (15 mL to 250 mL) pair well with microscale column volumes; 

15mL of CCCF at a typical titre of 3-5gL-1 will provide two to three cycles of Protein A capture on a 600 μL column, 

allowing one to rapidly measure the upstream effect on capture of IgG, or to rapidly generate small volumes  of 

purified material (Kiss et al., 2018). Baumann et al., (2015) used mechanistic modelling to evaluate and optimise  

a downstream process, and used this to determine optimal upstream conditions, demonstrating a high degree 

of synergy between these technologies and a holistic approach to bioprocess development. 
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It is hoped that the method described for improving resolution by dilution of the collection plates will provide 

another tool for high throughput method development. For the purposes this was employed for in this study, 

dilution of material was not a problem, as the UV absorption of the material was the only important metric, 

though assuming the diluent does not affect the material other than reducing concentration, this strategy may 

present difficulties where such manipulations are unsuitable, such as evaluating stability of eluate. 

8.1.2 Model Framework Improvement 

Model improvements would include having the ability to specify pore diffusion coefficients varying with the 

stationary phase concentration during loading, to account for pore constriction, as per the work of Hagemann 

et al., (2020) Significant differences in pore diffusion were described in literature, and the models failed to 

account for the saturation segment of the breakthrough curves, inhibiting accurate model behaviour as the 

product concentration increases, which is an intrinsic property of breakthrough studies. This means estimate s 

for the kinetic resistance, notable Dp, will be inaccurate when this behaviour is seen, which has been highlighted 

by others when evaluating this resin mechanistically (Baur et al., 2018, Pabst et al., 2018). As discussed, by 

introducing a more complex adsorption model this behaviour may have been explained. 

A better understanding of model robustness could have been performed with further experimental validations, 

assessing the confidence interval of the parameters through synthesising the Fisher information matrix, a search 

for parameter correlations, and a more thorough analysis of how model uncertainty propagates to process 

uncertainty with sampling (Borg et al.2013)., Considering the relatively few parameters needed in this model 

and calibration strategy using both the inverse method and method of moments, it is likely the parameters are 

well fitted, but a better statistical framework would have been best practice. 

Model calibration could be improved with other algorithms; artificial neural networks have shown much utility, 

especially when forming hybrid mechanistic-statistical models (Wang et al., 2017a & 2017b) . Artificial neural 

network based approaches have allowed one to determine model parameters from operational runs, rather 

than dedicated calibration experiments, with parameter estimation occurring in milliseconds, rather than the 

significantly longer time taken by conventional, inverse model calibration, with the models here often taking 

several hours to several days. A drawback, however, is that many model simulations must be run to calibrate 

the artificial neutral network, though this is purely in silico, and would not consume valuable product, just 

computation and time. 

The effect of interrupted flow could be further explored, perhaps as a means of calibrating the models with 

fewer residence times being used, as the stopped flow will allow one to distinguish between band broadening 

caused by thermodynamic effects, such as an unfavourable isotherm or capacity being challenged, when 

compared to kinetic effects, such as dispersion and diffusion. The former would not be affected by the flow 

interruptions, whereas the latter would, perhaps enabling simultaneous determination of isotherm and kinetic 
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parameters. In this study, the intermittent flow was considered an obstacle, though did allow further model 

quality assessment as the troughs in the resulting chromatogram became an opportunity for model training. 

Perhaps using the drawback of the LHS system to better probe the transport and binding within a column 

without a dedicated separate experiment would have been a valuable avenue for improved understanding. 

Additionally, other types of model could show much benefit. Models employing computational fluid dynamics 

could enable a better understanding of the flow regimes within the microscale columns. The wall effect has been 

alluded to, and in our data seems to be best described by the axial dispersion and bed porosities being 

significantly different compared to conventional scale columns, but computational fluid dynamics, coupled with 

suitable calibration experiments, could provide a stronger understanding the impact, and to better simulate  

radial heterogeneity and any differences in packing efficiency. Any further insight into column geometry would 

have greatly helped interpretation of results at microscale mechanistically. Roberts & Carta (2020) better 

described breakthrough data by implementing a non-uniform flow model compared with the conventional 

approach used in this work. 

Modelling of chromatography will become ever more important due to the increasing complexity, variety and 

required understanding of bioprocesses, and facilitated by better software and equipment, model formulations 

and expertise. It is hoped that this work will aid those seeking to mitigate the differences experienced with 

microscale chromatography and looking to improve data quality and predictive ability of their microscale process 

development, to deliver better, more robust and more economical processes, quickly. 
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