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Abstract

Computing systems are growing increasingly complex, incorporating multiple interactive
components. Performance is a critical attribute in evaluating computing systems. Most
computing systems are now connected to networks, either private or public, raising concerns
about vulnerability and exposure to threats and attacks. A secure system requires effective
security protocols and techniques that do not negatively compromise performance. Analysing
a system’s behaviour under attack and misbehaviour can assist in determining where a
problem is located so as to direct additional resources appropriately. The overall aim of this
thesis is to model the performance of secure systems where behaviour changes in response to
attacks and misbehaviour. Performance Evaluation Process Algebra (PEPA) modelling is
employed to convert formal security protocols and methods into formal performance models.

This thesis addresses the impact and cost of cyber-attacks on the performance of web-
based sales systems. PEPA models are proposed for two scenarios, with and without the
attacks, to understand how the system behaves in different scenarios to provide a sustainable
level of performance. It also explores the performance cost of a security protocol, an
anonymous and failure resilient fair-exchange e-commerce protocol. The proposed PEPA
models were formulated with and without anonymity in order to explore its overhead.
Additionally, we modelled a basic protocol with no misbehviour, not requiring the active
involvement of a Trusted Third Party (TTP), and an extended protocol, for which the TTP’s
participation is essential to resolve disputes. These models provide an insight into the
protocol’s behaviour and the associated performance cost.

An attack graph is a popular method to support a defender in understanding an attacker’s
behaviour. It also supports the defender in detecting possible threats, thereby improving a
system’s security status. Developing a PEPA model version of an attack graph can advance
understanding and identification of key risks, and assist the defender with implementing
appropriate countermeasures. This thesis developed two methods to automate the generation
of the PEPA model based on a pre-existing attack graph specification. The first method is
simple, generating a single sequential component to represent both a system and an attacker.
The second method has more potential, by generating a PEPA model with two sequential
components representing a system and an attacker, as well as the system equation to define
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how they interact. The attacker component enables us to explicitly incorporate attacker
skills into the model. We use case studies to demonstrate how the PEPA models generated
are used to perform path analysis and sensitivity analysis, as well as estimate the time
required for each path. The defender can use this to determine the amount of safe time
remaining before the system is compromised, and rank the risk from all attack paths. In
addition, we developed PEPA models for an attack graph considering two criteria: attacker
expertise and the availability of exploit code to estimate time needed to breach the system.
We proposed three attacker skill levels: beginner, intermediate, and expert. The adaptability
of our proposed PEPA models were improved by incorporating learning behaviours for both
attacker and defender, to demonstrate how this affects the time required to compromise the
system.

The models in this thesis demonstrate an approach to integrating security and performance
concerns to advance understanding of system and attacker behaviour. The performance anal-
ysis undertaken indicates where problems may arise and additional resources needed. This
analysis could be extended in the future to consider alternative design options and dynamic
reconfiguration. Understanding the impact of attackers on system behaviour increases our
ability to design systems that can adapt and tolerate attacks. This thesis represents an initial
step toward greater understanding of the impact of attacks on system performance.
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Chapter 1

Introduction

1.1 Motivation

The advancements to date in computing and technology have involved developing complex
systems comprised of multiple interacting parts. The need for secure systems also leads
to the development of a wide range of sophisticated security protocols and algorithms.
Performance and security are essential factors when developing and evaluating almost all
systems. Security mechanisms impose additional costs on a system, possibly adversely
affecting its performance. Developing a system that has a high level of security could result
in poor performance of the system, and the reduction of some security features and functions
can improve the performance of the system but can impact the security status of the system.
Modelling and measuring the performance of security protocols can help to understand their
behaviour and which parts have the most impact on the performance of a system, in order
to assist in developing a system with acceptable levels of both security and performance
and to support the development of lightweight protocols. Therefore, we are motivated by
whether we can use a performance modelling formalism to formally model security protocols
in different scenarios, such as with and without misbehaviours, and then evaluate models and
derive performance measures such as response time and throughput to explore a protocol.

The growing demand for online sale systems has led to the development of many web-
based sale systems. The online environment suffers from a high-security vulnerability, as it
is an open medium, exposing such a system to threats and attacks. Attacks on such a system
can affect both a merchant and a customer. They can also delay and disrupt sales. The impact
and cost that cyber attacks contribute to the performance of web-based sales system need
to be studied to understand better how the system behaves and adapts in different scenarios,
such as with and without an attack, to remain secure and provide a sustainable performance
level. Although several researchers have studied the performance of a system under an
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attack [30, 55, 76, 87], further research is needed regarding modelling and investigating the
performance cost introduced by the attacks in a web-based sale system as it is clear from
the related work that there are few existing models in this domain. Therefore this can be
valuable additional work. This motivates us to whether we can use a performance modelling
formalism to formally model a web-based sale system in two scenarios, with and without
the presence of attack, and then numerically analyse the models and derive performance
measures such as population level and throughput to explore the effects of an attack on a
performance of a web-based sales system.

Keeping a system secure is not trivial. A defender must keep a system secure by
preventing or early detecting an attacker’s intent in order to response and recover in good
time. This can be done by identifying and analysing the possible ways that an attacker can
use to attack a system in order to assist a defender to implement suitable protection measures.
An attack graph is a popular graph-based method that can support a defender to understand
the attacker’s behaviour and then work to protect a system. By presenting the possible attack
paths using the attack graph, the defender can see the possible attacker’s journeys to achieve
its goal and/or compromise a system. Thus, the defender can evaluate the security status
of a system and analyse the attacks from the attacker’s perspective. Estimating the actual
time to compromise a system is important to indicate how much safe time the system has
before it is compromised. It also supports a defender to implement suitable countermeasures
in timely manner to keep a system secure. This motivates us to study whether it is possible
to translate a pre-existing attack graph to a performance model to represent the interaction
between an attacker and a system, the attacker behaviour and the progression in an attack.
The performance model can be then analysed via a continuous-time Markov chain with rates
to support estimating the time to compromise a system and the time it takes the attacker to
get to a particular vulnerability on a system. We can perform path analysis and sensitivity
analysis on the model in order to explore the security status of a system. This approach also
enables us to estimate the time taken until an attacker compromises a system for each path
by using the vulnerabilities that existed in the system and considering different factors such
as exploit code availability and the attacker’s skill to understand and identify critical threats.

In this thesis, we study whether we can use a performance modelling formalism to model
systems under attacks and misbehaviours with time-variable aspects. The method used
to model, explore and measure those aspects is Performance Evaluation Process Algebra
(PEPA). PEPA is a well-known implementation of Stochastic Process Algebras. It is used to
model systems in this thesis as it supports a compositional, formal and abstract approach to
construct a model. This approach is important to formally construct models for a complex
system in a concise and effective way to be easy to understand, assess, reuse, and modify.
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1.2 Aim and Objectives

Our overall aim is to model secure systems where behaviour changes in response to attack or
misbehaviour. The following is the list of objectives that we need to fulfil this aim:

• Conduct a review of the existing literature regarding existing performance measurement
studies for evaluating the impact of security algorithms and protocols on system
performance, current performance studies of systems under attack, and existing studies
of attacker behaviour using an attack tree and attack graph.

• Explore the impact and cost of cyber-attacks on the performance of web-based sales
system by proposing and evaluating two performance models of the system, one with
no attack and the other under a denial of service attack.

• Explore the performance cost of a security protocol (anonymous and failure resilient
fair-exchange e-commerce protocol) by proposing and evaluating performance models
for different scenarios.

• Propose two methods to automate generation of a PEPA model based on a pre-existing
attack graph specification.

• Demonstrate through a case study how we used the developed PEPA models for an
attack graph to determine the most and the least system security threatening paths and
an attacker’s time to compromise a system.

• Consider the attackers’ skills and the availability of the exploit code when developing
a PEPA model of an attack graph.

• Enhance the adaptability of our proposed PEPA attack graph models by including
learning behaviour for both attacker and defender, and then demonstrate the influence
of learning behaviour on the attacker’s time to compromise the system.

1.3 Contributions

The contributions of this thesis are as follows:

• We explore the development of appropriate models through two PEPA models of a
web-based sales system, one without an attack and the other with the presence of a
denial of service attack. These models are proposed, analysed and compared based on
the performance and security trade-offs in Chapter 3.
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• We explore the impact of anonymity and misbehaviour through PEPA models of an
anonymous and failure resilient fair-exchange e-commerce protocol. These models
proposed, analysed and compared based on the performance and security trade-offs
in four main scenarios: with and without an anonymity feature, and with and without
misbehaviour of any parties, in Chapter 4.

• We explore the specification of models of attack graphs via two methods to create
PEPA models for a pre-existing attack graph in Chapter 5.

• PEPA models of attack graph are explored to enable quantitative analysis via a
continuous-time Markov chain with rates to estimate the attacker’s time to compromise
the system for each attack path and to deduce the most and least security threatening
paths in Chapter 5.

• Sensitivity analysis is applied to the proposed PEPA model of the attack graph to
support analysing the security status of the system and then improving the system’s
security status in Chapter 5.

• We consider the effect of attacker expertise by proposing three different skills for the
attackers: beginner, intermediate and expert. These are proposed and employed in
PEPA models of the attack graph and then the models are numerically analysed and
compared in Chapter 6.

• An availability of exploit code factor is introduced and implemented in the PEPA
models and then the models are analysed to show the impact of this factor on the
attacker’s time to compromise the system in Chapter 6.

• Learning behaviour for the attacker and defender is introduced and implemented in
PEPA models and then the PEPA models are analysed to show how the learning
behaviour for both the attacker and the defender can impact the attacker’s time to
compromise the system in Chapter 6.

1.4 Thesis outline

This thesis comprises seven chapters, including this introduction chapter. The remainder of
this thesis chapters is organised as follows:
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Chapter 2 This chapter discusses performance modelling and the PEPA formalism used in
this thesis to model the systems. It also discusses a sample of studies related to performance
analysis of security-related applications. Additionally, it discusses a sample of studies
examining attacker behaviour through the use of attack trees and attack graphs, as well as
models of attacker behaviour.

Chapter 3 This chapter examines the impact and cost associated with cyber-attacks on
system performance. We proposed PEPA models of a web-based sales system in two different
scenarios: with and without denial of service attacks. The models are numerically analysed
using a fluid approximation based on ordinary differential equations (ODEs) to avoid the
state-space explosion problem. This problem arises as a result of the generation of extremely
large state spaces from the interaction of numerous components, which makes computing
the numerical solution through linear algebra extremely expensive or very difficult. The two
models’ results are compared to gain a better understanding of how the system behaves in
different scenarios.

Chapter 4 This chapter explores the performance cost introduced by a security protocol
known as an anonymous and failure resilient fair-exchange e-commerce protocol. The pro-
posed PEPA models were formulated in two different ways: with and without an anonymity
feature. Moreover, both protocol versions were modelled in two ways: as a basic protocol
with no misbehaviour of any parties whereby it does not require the active involvement of
TTP, and as an extended protocol whereby the TTP’s participation is essential to resolv-
ing disputes between participants. The models were analysed numerically. These enable
understanding the protocol’s behaviour and present the performance cost it introduces.

Chapter 5 This chapter provides two methods for generating a PEPA model based on
a pre-existing attack graph specification. The first method generates a PEPA model that
comprises a single sequential component representing both the system and the attacker.
The second method generates a PEPA model that comprises two sequential components
representing the system and the attacker. Then, we demonstrated through the case studies
how we used the generated PEPA models to perform path and sensitivity analysis and to
deduce the most and the least system security-threatening paths and time to compromise
the system, which a defender can use as an indicator of how much safe time the system has
before it is compromised. In addition, these can rank the risk of all attack paths and help the
defender prioritises the countermeasures.
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Chapter 6 This chapter considers the effect of attacker expertise by proposing three
different skills for the attackers: beginner, intermediate and expert. Based on a attack graph
specification and the three proposed attackers’ skills, we generated the PEPA models for each
attacker’s skill. In this chapter, we considered two criteria: attacker skill and the availability
of exploit code to estimate the attacker’s time to compromise the system. Additionally, we
implemented learning behaviours in the model for an attacker and a defender to improve the
adaptability of the PEPA models. We then illustrated how learning behaviour for both the
attacker and the defender would impact the attacker’s time to compromise the system.

Chapter 7 This chapter presents the conclusion of this thesis. we summarise our contribu-
tions, limitations of our research and possible future study.

1.5 Publications

Almutairi, O. and Thomas, N. (2019). Performance modelling of an anonymous and fail-
ure resilient fair-exchange e-commerce protocol. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, pages 5–12.

Almutairi, O. and Thomas, N. (2020). Performance modelling of the impact of cyber attacks
on a web-based sales system. Electronic Notes in Theoretical Computer Science, 353:5–20.

Almutairi, O. and Thomas, N., (2021). Modelling a Fair-Exchange Protocol in the Presence
of Misbehaviour Using PEPA. In Performance Engineering and Stochastic Modeling, pages
96-114. Springer.



Chapter 2

Background

2.1 The Security and Performance Trade-off

Computing systems are becoming increasingly complex and consist of multiple interactive
components. Performance has been seen as an important aspect for evaluating computing
systems. Performance, as defined by [38], is when a given system, or any of its components,
achieves denominated functions specified under certain constraints, i.e. accuracy, speed
and/or memory consumption. Common metrics that have been widely applied to measure the
performance of a computing system are throughput, which is the amount of work that could
be accomplished in a specific time, utilization, which is the value resulting when dividing
busy time by the time available to the system, and response time, which is the time between
sending a request and receiving a response [38, 84].

Most computing systems are connected to a network, either privately or publicly, and
this can pose vulnerability issues, exposing systems to threats and attacks. In addition, the
security aspect is now considered a more significant factor when developing computing
systems than formerly due to the number of threats and greater awareness. Therefore, many
security protocols and methods have been developed and employed in order to develop
a secure system. A security protocol is a series of steps and security-related operations
designed to support interaction and communication between two or more parties over a
network to satisfy some security purposes [15].

However, the steps taken to make systems more secure can affect their overall perfor-
mance. Security can add an extra overhead to a system, directly influencing its performance;
this is a problem for many different domains. For example, the performance of a web server
reduces in response to the implementation of the secure sockets layer protocol [8, 9], and
the computational cost of security mechanisms adds performance costs to wireless sensor
networks during secure communication [88].
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Increasing the steps and the functions to make a system more secure can adversely affect
its performance. However, improved system performance can be achieved by, for example,
decreasing the security steps or lowering the computational cost of security functions, i.e.
decreasing the length of the key used in encryption and decryption can reduce the computation
cost and subsequently increase the performance of the system [78]. However, this approach
can influence the security status of the system. Thus, it is important to develop a system
affording an optimal balance between security and performance. Therefore, the extra cost
that security functions contribute to the performance of the system has attracted widespread
attention. As a result, developers have conducted explorations and taken measurements with
the aim of developing a secure system that gives a satisfactory performance. A computing
system developer is expected to employ security algorithms and protocols to achieve an
acceptable level of system performance and an acceptable level of security. Therefore,
studying the security methods and protocols by modelling and investigating their performance
could help with the selection of the most suitable option for any computing system.

Performance and security are essential aspects for almost all systems. The methods
used in order to explore and measure those aspects are either experimental as in [47] or
model-based by employing modelling techniques as in [16, 76, 84]. Moreover, employing
a model-based approach can be more tractable and useful to study the performance and
security aspects of the system, as it replaces a complex system with a more simplified model
that can be easily understood, analysed and modified to investigate the different results that
are possible [12].

2.2 Performance modelling methods

A model is a simple version of a system. It requires presenting all relevant aspects of the
system that need to be studied and explored. Employing a model-based approach could prove
more flexible and beneficial for evaluating performance aspects of the system, as it replaces
the pre-existing system with one that can be readily understood, studied and analysed, making
it easier to be modified to investigate the different results that are possible [12]. Performance
modelling provides a better means of understanding the system’s behaviour. Performance
modelling of a system is about creating a mathematical model of a system to study and
analyse the dynamic behaviour of a system [33]. The model can be evaluated by using an
analytical technique to solve equations or by simulating the model [33]. Its evaluation is
based on its parameter values to show its behaviour and derive some numerical results that
can be used to assess a system’s performance for any objective. This is important to gain a
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good understanding of which part of the system is most responsible for influencing its overall
performance, thereby making it possible to design an efficient system.

Several modelling formalisms have been widely employed and used to model system
performance, such as queueing networks [33, 48], Stochastic Petri Nets (SPN) [33] and
Stochastic Process Algebras (SPA) [11, 19]. These formalisms have been employed to
provide in-depth knowledge and understanding of the system’s behaviour and the processes
involved in a system, allowing assessment and measuring the system’s performance. SPA
offers three important features which make it differ from other formalisms. The three key
features of SPA are as follow [35]:

• Compositionality, the ability to model a system as a collective of subsystems and the
interaction between them produce its behaviour.

• Formality, the ability to define all terms in the language precisely.

• Abstraction, the ability to clearly and explicitly model the components and subcompo-
nents of a system ignoring some internal behaviour when appropriate to construct a
complex model.

SPA is a stochastic extension of a process algebra for adding quantification to the model
for performance modelling to derive performance measures such as throughput, utilisation
and response time [19]. A well-known implementation of SPA is Performance Evaluation
Process Algebra (PEPA).

2.3 Performance Evaluation Process Algebra (PEPA)

This subsection provides an overview of Performance Evaluation Process Algebra (PEPA),
this approach is used to model the systems under investigation in this thesis. The advance-
ments to date in computing and technology have involved the development of more complex
computing systems, comprised of multiple different parts. The complex system needs to
decompose into subsystems to clearly and easily be modelled. Unlike other performance
modelling formalism, PEPA supports a compositional, formal and abstract approach to
construct a model. This approach is important to construct models for a complex system to
be easy to understand, assess, reuse and modify.

PEPA is a well-known implementation of Stochastic Process Algebras (SPA). PEPA for-
malism is a high-level description language used for Markov modelling [32]. It is employed
to construct Continuous Time Markov Chain (CTMC) for performance modelling [35]. The
two basic elements of PEPA model are components and activities. The component element
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can be made up of multiple components. The activity is characterised by a combination of an
action type and rate. A system is modelled in PEPA formalism as a set of components that
interact and engage individually or with other components in activities in order to evaluate
its performance [33]. In PEPA modelling, the components represent the active parts in the
system and the behaviour of each part is represented by its activities [35].

PEPA is based on a Markovian Process Algebra in which each action is associated with
a random variable with an exponential distribution to represent the rate at which the action
occurs. The exponential distribution provides a memoryless property, making modelling
easier to specify and analyse because the completion time of the activity depends on the
current state and does not depend on the history of the past states. This activity rate can be
any positive real number. When an activity is performed, the internal state of the component
is changed. PEPA has been used to successfully model the performance of secure systems
[83, 85]. The use of PEPA is appropriate because we just need to understand the current
state of the system to understand the performance of these systems, and we don’t need to
understand the history that has been passed. However, the use of PEPA has the limitation
that we do not explicitly model the content of messages that are passed and so the security
properties are not captured within the security protocols. As a result, we are unable to inspect
and prove the security properties associated with security messages using PEPA.

PEPA models have three different interpretations: explicit state of CTMC for an individual
component view which leads to generating a complete CTMC, aggregated state of CTMC
for studying bigger system and continues approximation of CTMC for fluid flow analysis
based on ordinary differential equation (ODE) for studying very large system [31].

2.3.1 PEPA syntax

The two key elements for PEPA formalism are components and activities. The PEPA formal-
ism also has a few combinators that allow constructing the description of a system from its
different components and activities. The combinators are used to define the components’ be-
haviours through their activities and interactions with other components [35]. The following
are the grammar of the syntax of terms in PEPA model and a brief description of the syntax
for PEPA combinators [35]:

P ::= (α,r) .P | P ◃▹
L

Q | P+Q | P/L | A

Prefix, (α,r) .P, The prefix combinator is a mechanism that constructs the behaviours of
the system’s components. The component evolves to component P when the activity (α,r) is
enabled, and action α performs at rate r. the rate can be any positive real number. It can also
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be passive, which is denoted by the top symbol, ⊤; in this case, the action occurs depending
on the rates of other components.

Choice, P+Q, The choice combinator is used to allow the component of a system to
evolve either to component P or component Q. All current activities of P and Q are enabled.
Moving to either component depends on which component-enabled activities complete first.
The resultant component reflects the internal state of the system, and the other component is
discarded.

Cooperation, P ◃▹
L

Q, The cooperation combinator defines the system’s behaviour via
the cooperation of its components based on the cooperation set. Thus, the synchronisation
behaviours of the system’s components and the interaction between them are modelled using
the cooperation combinator. The cooperation set, denoted by L, contains all actions types
that must be shared between components. The shared action only occurs if the activity of
that type is enabled by both components P and Q. The duration of the activity is based on the
rate of the slowest component. An empty cooperation set means no interaction between the
components, and these components work independently from each other. Two components
or more work independently can also be denoted by P||Q.

Hiding, P/L, The hiding combinator defines a list L of hiding activities for the component
P. Any activities of types in the list L are hidden and private for the component P. The
hidden activities appear as unknown action type τ and are observed as an internal delay of
component P.

Constant, A def
= P, The constant combinator enables components to be assigned names.

For example, constant A, which is a component, is associated with the behaviour of the
component P.

Moreover, we can denote the multiple copies of the component P as P[n] where n is the
number of copies of P. Figure 2.1 shows the operational semantics of a PEPA model. It
defines the semantic rules of how the system evolves based on its components and activities
[33]. These rules specify the activities that a component may engage in at any time and
the completion of each activity results in a transition within a system. R, in Figure 2.1,
means that the rate of a shared action will be at the rate of the slowest participant. A state
transition graph, which is also called a derivation graph, can be generated by following
these rules to describe the potential behaviour of a component within a model [35]. This
graph comprises nodes representing the components and their states and arcs representing the
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potential transitions between states and labelled by activity types and rates. Based on these
semantics rules, PEPA model can be mapped to a CTMC to compute performance metrics.

Fig. 2.1 The operational semantics of PEPA models [33].

2.3.2 Continuous Time Markov Chain (CTMC)

A Continuous Time Markov Chain (CTMC) is a type of quantitative method that shows the
evolution of a system in the time and space dimensions [31]. It is a continuous time stochastic
process with a discrete state space [77]. It is also called Markov process as it satisfies the
Markov property, which is also called the memoryless property. The Markov property means
the future evaluation of the Markov process only depends on the given present state and does
not depend on the history of the past states [77].

CTMCs are widely employed to model stochastic systems and analyse systems perfor-
mance. A CTMC can be used to model system in real time such as computer networks [66].
A PEPA model can be solved by deriving an equivalent CTMC [32]. The system performance
measures based on a CTMC can be derived from the PEPA model of the system by computing
the system’s steady-state probability distribution through the system’s behaviour in the long
run [31]. Markovian PEPA models analysed using CTMCs suffer from the problem of state-
space explosion when evaluating a system that has a large number of states and large numbers
of replicated components [31]. The problem occurs when models of a system become very
large, even for systems that are not very complex. This results in the generation of very large
state spaces, which makes computing the numerical solution through linear algebra costly
or very difficult [34]. As a result, the size of models and consequently the complexity of
systems that can be efficiently studied and analysed using CTMCs are limited. Hence, other
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analysis techniques must be employed to study larger and more complex models, such as
some of those in this thesis.

2.3.3 Fluid semantics for PEPA

Fluid flow analysis based on ordinary differential equation (ODE) is an alternative technique
for analysing PEPA and obtaining performance measures. It is considered as one of PEPA
interpretation. Hillston [34] is the first who introduces this technique to tackle the problem
of state-space explosion. Hillston shows how to analyse the performance of the large-scale
systems that are modelled in PEPA by using the ODE-based analysis [34]. ODE-based
analysis approximates large discrete states to continuous real-valued variables which are
represented by a set of coupled ordinary differential equations to describe the time evaluation
of the continuous variables [34]. It can compute the average behaviour of the system
with high populations in a fraction of a second, unlike simulation analysis which needs to
calculates the average behaviour of the system via multiple simulation runs, which sometimes
takes days [34]. The PEPA model of the system can be solved by computing the system’s
steady-state probability distribution and/or transient probability distribution to derive the
system performance measures based on ODE [34].

The following is a simple example of N processes competing to use M resources:

P1
def
= (think,a).P2

P2
def
= (use,u).P1

R1
def
= (use,u).R2

R2
def
= (update,b).R1

The system equation is given by

System def
= P1[N]◃▹

use
R1[M]

The processes independently think at rate a, before each trying to use a resource. Each
instance of resource component shares the use action, before an update is performed at rate
b and it can be used again.

The CTMC for this model is trivial if N=1. There are four states: R1|P1, R1|P2, R2|P1 and
R2|P2. If we add additional processes and resources, then we rapidly increase the state space
such that it soon becomes difficult to analyse.

In the CTMC semantics for this model, we ensure that exactly one process and one
resource can perform a use action at any time. However, in the ODE semantics, we are only
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concerned with the rates of change of the number of processes and resources at any given
time. Thus, we can compute the rate at which processes move from P1 to P2 and R1 to R2

(and vice versa). The rate at which processes leave the derivative P1, is simply the rate at
which each process does a think action, multiplied by the number of actions doing a think
action (in behaviour P1). However, the rate at which processes enter P1 is more complicated,
because it involves the shared action use.

The rate of a shared action is given as the minimum of the rates of each participant. If
there are P2(t) processes wanting to use the resource at time t, then the demand would be
uP2(t), however the single resource can only be used at u. If, at time t, R1(t) resources are
available to be used the resultant rate is min(uP2(t),uR1(t)).

Thus, we can write an expression for the rate of change of P1 as follows:

d
dt

P1 = u min(P2(t),R1(t))−a P1(t)

We can write similar expressions for the other derivatives in the model as follows:

d
dt

P2 = a P1(t)−u min(P2(t),R1(t))

d
dt

R1 = b R2(t)−u min(P2(t),R1(t))

d
dt

R2 = u min(P2(t),R1(t))−b R2(t)

There are various methods we could use to solve such sets of differential equations. The
simplest approach would be to simulate the evolution of the model in small time increments,
starting from time t = 0 where P1(0) = N, P2(0) = 0, R1(0) = M and R2(0) = 0.

In this model it would be trivial to find the steady state solution given when all the rates
of evolution equal zero, i.e.

a P1(t) = u min(P2(t),R1(t)) = b R2(t)

Bear in mind that P1(t) = N−P2(t) and R1(t) = M−R2(t), so this is a trivial calculation.
A general approach to the calculation of steady state results from ODEs can be found in [71].

2.3.4 PEPA Eclipse plug-in

In this thesis, the creation and performance evaluation of a PEPA model is supported by the
PEPA Eclipse plug-in [25, 74]. This tool has been developed to support the Markovian steady-
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state analysis, Stochastic Simulation Algorithms (SSA) analysis, and Ordinary Differential
Equations (ODE) analysis of the PEPA models in the Eclipse Platform [25, 74]. It also
creates the transition graph, calculates the number of states, and provides the Markov process
matrix of the PEPA models. Therefore, it is used in the thesis to support the creation of
the PEPA models of the systems under investigation and the calculation of the performance
measures. We provide an overview in Appendix A of how to derive performance measures
using the "PEPA Eclipse plug-in" tool.

2.3.5 Performance metrics

In this thesis, we are primarily concerned with three measures of performance; the population,
the throughput and the response time.

Population

The population at time t is defined as the number of instances of a component currently
behaving as a given derivative. At time t = 0, the population of each derivative is given
by the system equation, which defines the starting conditions for the PEPA model. The
ODEs derived from the PEPA model represent the rate of change of the population of each
derivative. Thus, we can simulate the evolution of the model by applying these rates of
change incrementally using small time steps ∆t, starting from the known condition at t = 0.
In this way we can find the population of all derivatives at any time t and hence plot the
population over any given time interval.

Throughput

Each action in PEPA is defined with a given rate, or the combination of given rates in the
case of shared actions. As the population of each derivative varies over time, so does the rate
at which the actions in each derivative are observed to occur. We refer to this observed rate of
an action as its throughput at time t. By computing the population at time t, we can calculate
the throughput of each action that arises from those populations. This is given directly in
the ODEs. Thus, in our example, the throughput of the action think at time t depends on
its given rate a and the population of the derivative P1 at time t. Thus Tthink(t) = aP1(t).
For shared actions the situation is only slightly more complicated, as the rate at which a
shared action occurs will depend on the minimum of the number of derivatives which enable
that action in each component. Thus, the throughput of the action use at time t is given by
umin(P2(t),R1(t)).
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Response time

The notion of response time originates from queueing theory, where it is typically defined
as the time taken from a job entering a queue until it completes service and moves on. The
relationship between the number of jobs, arrival rate and response time is given by the famous
Little’s Law. In PEPA the notion is slightly different, in that we have only components,
derivatives and actions. We can define the response time for a single action to be the time
it takes for that action to occur from being enabled in an instance of a component. For
independent actions, such as think in our example above, this notion of response time is
trivial to compute as it is simply the exponential distribution with the given mean. Thus, in
the simple example, the average response time for think is simply 1/a. However, for shared
actions it is significantly more complicated as we need to take account of the number of
instances of each component which enable the shared action. An instance of the process
component which does a think action to become P2, requires an instance of the resource to
be R1 in order for a use action to occur. Furthermore, if there are n instances of P2 enabled,
then there needs to be n occurrences of use and the rate of each occurrence will depend on
the number of P1 and R2 derivatives in the current evolution of the model.

In [13], the response time is defined as the time it takes for a CTMC to evolve from one
state, the source, to another state, the target. This is then mapped to the PEPA abstraction to
give source and target in terms of the derivatives of a model. In general, a response time can
therefore not only entail more than one action, but potentially also more than one path, if
there are multiple means to evolve the model from source to target. To compute this evolution,
Bradley et al. [13] translate the cyclic PEPA model into an absorbing model by employing a
STOP derivative, as in [72]. The system equation is modified to define the specified source.
The ODEs resulting from the absorbing model can then be simulated, as described previously
and the population over time computed until the required target condition is met.

The method implemented in the PEPA Eclipse Plug-in is based on this approach, but
differs by correcting an error that occurs when instances of a component which have reached
their target are blocked from competing for resources in future, resulting in an overly
optimistic estimation of the response time for multiple occurrences of the same action.
Instead of modifying the component to become absorbing, an additional absorbing one-run
probe component is specified which is tightly coupled to the original component and is used
to detect the target condition without affecting the future behaviour of model. The resulting
model can be simulated from the ODEs as before, or the time to absorption can be calculated
directly from the ODEs to compute the average response time.
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Steady state solution

If the model ergodic, then the population will reach a steady state as t→ infinity and d
dtC→ 0

for all derivatives C, as is shown for the example in Section 2.3.3. This arises when the
rate of flow into each derivative matches the rate of flow out of each derivative. In order to
find the steady state population in general, we can therefore set each ODE to be zero and
solve the resulting set of simultaneous equations, together with the limiting equations for the
total populations within each component. The complication relative to standard elimination
methods for linear solvers is that the set of ODEs will contain one or more minimum function
arising from shared actions. Thus, for each minimum function we get two possible conditions,
arising from either term being the minimum value. The steady state solution to the ODEs is
then found when all these conditions converge as t→ infinity (which requires another set of
simultaneous equations). However, a proof of convergence is not given in [71]. Furthermore,
it is shown in [71] that the presence of multiple minimum functions can affect the agreement
between the steady state solution found by solving the ODEs compared to that found by
solving the CTMC directly. The PEPA Eclipse plug in does not find the steady state solution
in this theoretical way. Instead, the set of ODEs is simulated as described previously until
all solutions are found to be unchanging (subject to a degree of tolerance) or the specified
duration of simulation time has been reached (in which case no solution is found).

2.3.6 Alternative approaches for performance evaluation

A variety of approaches have been used to evaluate system performance. The following
summaries exemplify some of them.

PRISM [45] is a tool for checking probabilistic models. It was developed at the University
of Oxford. The approach enables modelling and analysis of the performance of systems
with random or probabilistic behaviour from a wide range of application domains, including
computer networks, communication systems and distributed protocols. The tool offers
a graphical user interface that incorporates a model editor, simulator and graph-plotting
tools for modelling and analysing a system. It supports the construction and analysis of a
variety of different types of probabilistic models, including CTMC, discrete time Markov
chains (DTMC) and the Markov decision processes. It can be used to perform transient and
steady-state analyses.

Möbius [20, 21] is an integrated multi-formalism and multi-solution approach. It is
primarily designed to support the evaluation of performance and dependability. The tool
can support a wide range of modelling formalisms, including Petri nets, Markov chains, and
stochastic process algebras. It applies numerical and analytical techniques to study Markovian
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models and discrete-event simulations, utilising a well-defined abstract functional interface
that enables the models and their solvers to interact. Möbius is capable of constructing
a CTMC based on a high-level stochastic model, and analysing it, and also derives the
performance metrics for the model. The tool includes a number of analytical solvers that can
perform steady-state and transient analyses, utilising diverse of linear algebra techniques.

SMART tool [17, 18] is a stochastic modelling and analysis software tool designed
to solve the large models, which are necessary to tackle practical systems. It supports
multiple formalisms to define the systems under investigation, such as Petri nets representing
a high-level and DTMCs and CTMCs as a low-level. The tool enables the construction of
parametric models from which a number of performance metrics can be derived. Although
it lacks a graphical user interface for either input models or output visualisation, its rich
textual language supports the construction of complicated parametric models. It also provides
numerical solutions and simulations for stochastic timing analyses.

Mercury [67] is another performance modelling tool, and was developed by the MODCS
research group. It is typically used to assess the dependability and performance of a variety
of systems. It offers a graphical user interface with a model editor and evaluator. Mercury
supports the creation, modification, and evaluation of performance models, including the
CTMC and SPN models. The tool enables users to graphically construct models and conduct
both stationary and transient analyses.

STORM [22] is a probabilistic model checker tool developed at RWTH Aachen University.
The tool supports a variety of Markov model input languages, such as dynamic fault trees
and stochastic Petri nets. It can also analyse CTMC and DTMC models.

However, in this thesis, we used PEPA to formally model and analyse the systems. PEPA
has a well-established toolset that permits flexibility when analysing the model, by supporting
a variety of approaches, as presented in Subsection 2.3.4. It has well-defined semantics that
allow us to explicitly define the models for systems of interest. In addition, prior studies
relevant to our field have made use of PEPA, such as [83, 85].

2.4 Related work

2.4.1 Classical approaches to security protocol evaluation

The methods used to explore and measure the performance of security protocols and methods
are either experimental via measurements-based experimental or a mathematical-based model.
This section presents some works to evaluate security protocols and methods following
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classical approaches via experimental approaches such as using a testbed and a computer
simulation.

Potlapally and Raghunathan [61] propose a measurement-based experimental testbed to
evaluate the performance of cryptographic algorithms and security protocol for small hand-
held devices. The energy consumption of many cryptographic algorithms is tested based on
their three main classes, which are asymmetric, symmetric, and hash. Their evaluation result
shows that asymmetric algorithms have the highest energy costs, whereas hash algorithms
have the least energy costs. It also presents that the energy consumption of asymmetric
algorithms depends on the key size, whereas the energy consumption of symmetric algo-
rithms does not impact by the key size. Also, they study the energy consumption of the
secure sockets layer protocol over wireless networks. The energy costs of cryptographic
functionalities of the protocol were explored. Their evaluation results illustrate how the
additional cryptographic overheads of implementing security protocols cause performance
degradation. In addition, they discuss the possible ways to optimise the energy consumption
of cryptographic algorithms and security protocols.

Dick and Thomas [24] analyse the performance overhead of the pretty good privacy
protocol via measurements-based experiments. The performance measures were computed
based on running the protocol on different machines under Fedora Linux and MS Windows XP.
The performance costs of the protocol are analysed based on different encryption/decryption
algorithms and key lengths.

Furthermore, the performance of encryption/decryption algorithms was studied by Lam-
precht et al. in [47]. To investigate the performance of the algorthems, they created a test
bed using existing Java implementations from two libraries, which are VeriSign’s Trust
Services Integration Kit (TSIK) and Java Cryptography Extensions (JCE). They conducted
a performance comparison of the most commonly used encryption algorithms for online
transactions. They focused on the performance cost when employing different encryption
algorithms. They measured operation time as the performance metrics when testing each
common algorithm, i.e. key generation, encryption and decryption. Their study’s findings
can aid in selecting a suitable encryption algorithm for an online transaction system and asso-
ciated applications. However, as their study is not model-based, they indicate how different
implementations for the same algorithm could result in different runtimes. Therefore, this
might not be accurate enough to generalise from. A more recent study by Alrowaithy [4–6]
conducts a more comprehensive set of experiments using different languages and libraries on
different scales of devices, focussing on systems with limited capacity.

Oluwaranti and Adejumo [58] use a network simulator tool to study the performance of
security protocols across two operating system platforms, which are Linux and Windows.
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Their study investigates the behavioural patterns of IPSec and SSL security protocols based
on the encryption algorithm, cryptographic methods to provide the optimal platform that has
the least performance overhead. They provide scenarios for each protocol to be examined
using OPNET, a tool that provides a realistic networks simulation and a performance data
collection. They evaluate the performance of the protocols by computing the response time
of some services such as Email, HTTP and Remote Login to compare the two protocols.

Moreover, Hirschler and Sauter [36] study the performance overhead of IPsec for resource-
limited devices based on low-performance platforms, which are Intel and ARM-based
platforms. IPsec is a secure network protocol developed to provide secure communication
between two nodes in a network. Their study is measurement-based experiments to compute
the transmission and receiving delays based on different operation modes of the protocol.
It shows the processing delay costs introduced by the security features of the protocol on
devices with limited processing power.

Although the experimental approach can provide useful information, employing a model-
based approach can be more tractable and understandable to study the performance costs of
security methods and protocols on a system, as it replaces a complex system with a more
simplified model that can be easily understood, analysed and modified to investigate the
different results that are possible.

2.4.2 Performance modelling of secure protocols

There are number of researchers have studied and measured the performance of security
related algorithms and protocols via employing a mathematical-based model. For example, in
[78], Wolter and Reinecke studied the interrelation of security with performance, examining
how increasing one affects the other in a model-based evaluation using Generalized Stochastic
Petri Net (GSPN) formalism and the TimeNET tool. The issue their model explored was
the impact of different encryption key lengths on system performance. They hypothesized
that, the longer the key is, the more secure the system. This would clearly also mean, the
longer the key, the greater the computation cost introduced, resulting in implications for
system performance. Therefore, it is important to choose a suitable encryption key length
that ensures the system has an acceptable level of security and performance.

Their model was used to quantify some metrics introduced to study system performance,
security and the interrelation between them. Throughput metrics was used to quantify
performance and the probability that the system is secure was used as the security metric. As
their study focused on the interrelatedness of security and performance, they proposed metrics
to be used to measure a combination of performance and security. They combined measures
of throughput and the probability of the system being secure into a single metric, called
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combined performance and security (CPSM), as a way to measure the trade-off between
performance and security. They showed that increasing the length of the key results in
linearly increasing the probability of the system being secure, and in turn reduces throughput
and maximizes the value of the CPSM metric. They were the first to build a simple model to
explore the trade-off between performance and security. However, their model was simple
and so does not accurately represent a complex system. Moreover, the formalism they used
to build their model does not support the modelling of a complex system comprised of
interacting subsystems [19].

As in the previous study, Cho et al. [16] has proposed a system model based on a stochas-
tic Petri net (SPN). They outline a mathematical model for a secure group communication
system in mobile ad hoc networks (MANETs) to analyse performance-security trade-off.
The MANETs environment suffers high security vulnerability, as it is an open medium [16].
Additionally, in MANETs, the members of a group communication system can dynamically
join and leave the group. Therefore, this type of system has to be protected from inside
and outside attackers. In a secure system, any compromised member of a group has to be
detected and evicted. Furthermore, the group has to share a group key for encrypting the
communication messages that go between them. Therefore, the system under study employs
two security techniques, which are intrusion detection systems (IDS) and rekeying techniques.
IDS and rekeying techniques maintain secure communication between group members, pro-
tecting them from inside and outside attackers, respectively. They studied the impact of three
different rekeying protocols, which are Individual rekeying, Trusted and Untrusted Double
Threshold-based rekeying (TUDT) and Join and Leave Double Threshold-based rekeying
(JLDT).

In Cho et al.’s study, the performance of the system is measured by quantifying the
average response time for the message transmitted between the group members. Also, the
system’s security aspect was measured by a Mean Time to Security Failure (MTTSF) metric,
which is when a time till the security failure state is reached. In their model, performance
is affected by members that joining and leave the group and also by rekeying mechanisms,
whereas security is influenced by the rate of compromised and detected members and also
how efficient IDS is as a detection tool. The results of their study clearly show how best
to provide an optimal setting of security techniques in their system, in order to achieve a
satisfactory performance level and guarantee maximum MTTSF value as a security indicator.
Moreover, they show that the Individual rekeying protocol achieved the worst value for
system response time and MTTSF metrics, whereas the TUDT protocol achieved the best
value.
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Moreover, Montecchi et al. [56] studied the trade-off between scalability, performance
and the security aspects of a multi-service web-based platform. Stochastic Activity Networks
(SANs) formalism, which is an extension of stochastic Petri nets, was adopted to construct
a model of the target system. They measured utilization and response time metrics, as the
system performance indicators. The scalability aspect of a system is studied by changing
the parameter value, which represents the number of users with access to the system, and
then evaluated the performance metrics. They study the impact of two security mechanisms,
which are the Intrusion Prevention System (IPS) and input validation mechanism which takes
two approaches: blacklist and whitelist.

However, Montecchi et al.’s study mainly focuses on studying and exploring the scal-
ability of a system with respect to performance, and the security aspect was considered as
having an indirect effect on scalability, through its influence on performance. Therefore,
the security aspect was complementary when studied to support quantification of different
systems’ performance; as security and performance are two aspects of the system that are
strongly interrelated. The positive aspect of their developed system model is that it comprises
multiple small template models, which together represent the overall system model. The
evaluation of that model is based on rearranging small models in different way, to provide
different system configurations. The results of their study show that employing the chosen
security mechanisms to the studied system would have a significant influence on system
performance, which in turn would be expected to influence system scalability.

Furthermore, the security impact on a system’s performance can also be studied using the
Performance Evaluation Process Algebra (PEPA) formalism. This formalism is employed
by Zhao and Thomas [83] to model two security protocols. Zhao and Thomas model Zhou
and Gollman’s non-repudiation protocols which are a type of security protocol, designed
to ensure that when two or more parties interact with one another, no party can have an
advantage over the other. In their study, the performance of each protocol is quantified by
average response time and average queuing length metrics. They clearly illustrate how those
metrics could be influenced by a different population size, which is a number of clients
requesting a service from a Trust Third Party (TTP) in the protocols. Further, they offer a
performance comparison between the two protocols. This could assist developers to carefully
choose between the two protocols.

Elsewhere, Zhao and Thomas studied the performance of a key distribution centre [84].
A key distribution centre is a trusted party that generates a key session for users upon request,
in order that they can communicate securely. They proposed a PEPA model to model the
interaction between a key distribution centre and the users of the centre so as to evaluate
the performance cost of key exchange functions. They trialled their proposed model for
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analysing and quantifying two performance measures. The measures were average utilization
at the key distribution centre, and the key distribution centre’s average response time to users’
requests. The security aspect of the system was based on the reality that the more frequently
a fresh session key is regenerated, the greater the rate to achieve secure communication [68].
Therefore, the key lifetime can be considered an indicator denoting secure communication,
and the longer the key lifetime the less secure the communication. This would increase the
demand imposed on the key distribution centre. Therefore, the security aspect is explored by
increasing and decreasing the rate of the key usage and rekey requests.

Zhao and Thomas clearly illustrate that the performance of the system is influenced by the
security mechanism involving key generating and requesting. The utilization of the system
increases when the number of requests to generate a key rises. In addition, average response
time increases when requests to generate key increase.

Moreover, Zhao and Thomas [85] conducted a performance study of another type of
non-repudiation protocol, called an optimistic fair exchange protocol. This type of security
protocol employs a trusted third party, when one or more parties misbehave during their
interaction in an e-commerce environment. They proposed PEPA models to investigate
the performance costs introduced by the protocol. They modelled the protocol in two
ways. First, they modelled the protocol when there was no misbehaviour or problem event
during the exchanges between the participants. Then they modelled the protocol with a
misbehaviour event from one or more parties during the exchange processes, which required
the involvement of a trusted third party to resolve the issue and ensure a fair exchange between
the parties. The results of their model evaluation clearly showed that a misbehaviour event
leading to TTP involvement increases the performance cost of a system compared to cases
in which there is no misbehaviour between the participants. However, they concentrated
exclusively on steady-state performance and did not employ the technique of transient
analysis.

The influence of different encryption algorithms on a Networked Control System per-
formance is studied by Zeng and Chow in [80]. They proposed a mathematical model to
analyse the trade-off between security and performance; evaluating the real-time dynamic
performance of Networked Control Systems with respect to adopting Data Encryption Stan-
dard (DES) and Advanced Encryption Standard (AES) algorithms with different encryption
key lengths. The key lengths represent the security level of the encryption algorithms in their
study. Their model was evaluated by developing a Simulink based test-bed in MATLAB.
The results of their evaluation show the effectiveness of their proposed model as a means
to illustrate the interrelation between providing acceptable performance and establishing
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sufficient system security. However, they did not show an optimal balance between security
and performance in the system model they considered.

Finally, although many studies have been conducted, more research is needed regarding
modelling and investigating the performance cost introduced by security protocols in order to
support the development of security protocols that offer acceptable levels of both security and
performance. In this thesis, we demonstrate the performance cost introduced by a particular
type of security protocol by developing PEPA models to represent the protocol’s behaviour
and then deriving various performance measures such as throughput and response time using
different analytical techniques such as ODE and transient analysis. Consideration of various
performance metrics enables in-depth understanding of the security protocol’s behaviour in
various scenarios and any associated performance costs.

2.4.3 Performance modelling of systems under an attack

Several researchers have studied and measured the performance of a system under an attack.
For example, Meng et al. studied the performance cost of the security mechanisms of mobile
offloading systems under timing attacks in [55]. They proposed a hybrid Continuous-time
Markov chain (CTMC) and queueing model to explore the performance cost introduced by
the quantified security attributes. They formulate measures that would optimize the trade-off
between security and performance in the studied system. The result of their study presents
the best rekeying rate that provides the optimal balance between security and performance
for their system.

Furthermore, the performance of an email system under three types of attacks was
explored by Wang et al. in [76]. Their study is a model-based system, which utilizes a
queueing network approach. Wang et al. proposed a system model comprised of four
queueing models to evaluate the performance of an email security system by subjecting
it to attacks. One queueing model represents the email information unit and each of the
remaining models represent one attack. They present the effects on the system under the
following attacks: mail bombs such as denial of service attacks, password cracked and a
malicious mail attack that contains, for example, a Trojan Horse. The study evaluates the
trade-off between performance and security system according to three proposed metrics:
system availability and information leakage probability as security metrics and average queue
length as a performance metric. The numerical findings from the study show how effective
and efficient their approach is when analysing the security aspect of email systems under
attack.

Gelenbe and Wang studied the performance of a warehouse in the presence of a denial
of service attack on its webserver [30]. They focused on the economic performance of the
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warehouse that sells perishable products. They predicted the income loss which results
from such an attack. A queuing theory-based technique was applied in their study and their
approach is suggested to be used as an optimization problem to such a system. Zhu and
Martinez studied a resilient control problem for linear systems, which is subject to replay
attacks [87]. They studied the influence of replay attacks on system stability and performance.
Model predictive control method was employed in their study.

Finally, more research is needed regarding modelling and investigating the performance
cost introduced by the attacks in a system. It can be used to understand better how the system
behaves and adapts in different scenarios (with and without a threat) to remain secure and
provide a sustainable performance level.

2.4.4 Evaluation of attacker behaviour

Attack trees and attack graphs are the most popular graph-based representation methods of
an attack [46]. They can aid a defender to understand the different ways that an attacker
can use to breach the system. Attack tree is introduced by Bruce Schneier [64] to model the
different ways to attack a computing system. It has a root node representing the attacker goal
and leaf nodes representing the attacks [64]. Figure 2.2 illustrates an example of an attack
tree defined by Bruce Schneier. The root node is Open Safe which is the attacker’s main goal.
The leaf nodes such as Pick Lock and Learn Combo represent the different attacks that the
attacker can do to achieve the main goal.

Fig. 2.2 Attack tree [64].
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The other popular graph-based representation method of an attack is an attack graph.
Attack graph is proposed by Swiler et al. [70]. It has nodes representing the possible states
of a system and/or a vulnerability and edges representing the transitions between different
states due to the attacker’s actions moving from node to node [70].

Fig. 2.3 Example of network and attack graph [27].

Figure 2.3 shows an example of a network configuration (left side) and an attack graph
(right side) when a malicious workstation user (host 0) tries to get a root access to a database
server (host 2), adopted from [27]. The attacker starts the attack from host 0 aiming to get a
root access on host 2. In Figure 2.3, the network comprise of 3 hosts and firewall. Host 0 is
a user workstation. Host 1 is a file server offering file transfer protocol (ftp), secure shell
(ssh), and remote shell (rsh) services. Host 2 is an internal database server offering ftp and
rsh services. Firewall in the network permits the traffic of ftp, ssh and rsh from host 0 to
other hosts. The intial state of the attacker and the starting point is as a normal user in host 0
(user(0)). The target and the final state of the attacker is as a root user having full privileges
in host 2 (root(2)).

The methods can present one, two or more alternative attack paths to achieve the attacker
goal and/or compromise a system [46]. The attack paths are the different sequence of steps
that attacker can do to exploit the vulnerabilities existed in the system and to reach the
attacker’s main goal. In Figure 2.2, the attack tree has eight possible paths to achieve the
attacker’s main goal, such as the attacker can pick the lock to open a safe. In Figure 2.3,
the attack graph has three possible paths for the attacker to follow in order to achieve root
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access on the database server (host 2). For example, one possible attack path is sshd_bof(0,1)
-> ftp_rhosts(1,2) -> rsh(1,2) -> local_bof(2,2). The attacker is a malicious user in host 0
and can run an ssh buffer overflow attack (sshd_bof(0,1)) from host 0 to host 1. Then, the
attacker can exploit the ftp vulnerability (ftp_rhosts(1,2)) to be able to edit the trusted hosts
list on host 2 from host 1. After that, he is able to use the new trusted hosts list to remotely
run shell commands (rsh(1,2)) on host 2 form host 1. Then, he can run the buffer overflow
attack (local_bof(2,2)) on host 2 to get a root access to host 2 (the database server).

By presenting the possible attack paths, the defender can see the possible attacker’s
journeys to achieve its goal and/or compromise a system. So that the defender can evaluate
the security status of a system and analyse the attacks from the attacker’s perspective. The
defender can also analyse and predict the attacker’s action and behaviour.

Moreover, each node in the graphs can be assigned a weight representing cost, risk, or the
likelihood of the vulnerability to be breached [73]. The weights can be used to evaluate the
security level of a system. They can be used by the defender to calculate, for example, the
attack probability of each path [69] which it is important to prioritise the countermeasures
and make attacks more harder for the attacker to reach its final goal.

Researchers have done many works related to study and predict the attacker behaviour
and action using attack tree and attack graph to aid a defender in making a security-related
decision. Yousefi et al. [79] propose a novel algorithm to create a transition graph from an
attack graph to clearly present the possible movements of an attacker between the vulnerabil-
ities that existed in the system. Then they use a Markov model to predict the behaviour of
an attacker. They calculate the transition probabilities based on the Common Vulnerability
Scoring System (CVSS) score. Then they use the Absorbing Markov Chain to predict the
behaviour of the attacker. Their results present three key information about an attacker
behaviour. First, they clearly present the number of steps the attacker needs to achieve its
final goals. Second, their results show the number of the attacker’s visit for each node when
the attacker starts from a specific node. Third, they present the probability that the attacker
succeeds and achieves its main goals when starting from a specific node in the graph. Their
evaluation results can provide important information that can support the defender on the
security-related decision such as implementing security measures.

Buldas et al. [14] propose a model for the attacker’s decision-making process and then
use an attack tree to analyse the process. They employ the game-theoretic paradigm to build
the model. In their study, they consider an attacker as a player in the attack game. They
assume that the attacker has a rational behaviour which means that the attacker will attack a
system if the cost is less than the gained benefit and chooses the most profitable attacks. They
also consider multiple parameters in their analysis of the attacker’s action and behaviour,
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such as the attacker’s gains, the success probability of the attack, the attack’s cost, penalties
and the caught probability of the attacker. Their study and analysis of the attacker’s action are
based on parametrising an attack tree with these parameters to deduce the success probability
and the cost of attacks.

Lenin et al. [49] introduce a new security analysis tool called ApproxTree+ based on
attack tree and attacker profile. They augmented the power of the attack tree with the
attacker profiling. The attacker profiling is to identify the attacker’s skill and the sufficient
tools and resources that support the attacker to exploit a vulnerability [70]. They made an
attacker profile explicit by including the attacker’s skill, budget, and available time to the
threat modelling to make it possible to identify the attacker’s possible steps and the attack’s
cost. Their study made a clear difference between the vulnerability and threat landscape by
employing attacker profiles.

Beek et al. [10] propose a framework of a graphical security model based on combining
an attack tree with a behavioural model for quantitative security modelling. In their study, the
attack tree represents the vulnerabilities that existed in a system and the behavioural model
represents the attacker’s steps to attack the system successfully. They present the probability
of each attack succeeding from the first try and the average number of steps. Also, They
show the probabilities that each attack succeeded over time.

Zheng et al. [86] propose a quantitative method based on an attack graph and the inter-
national standard CVSS to measure network security risk level and quantify the maximum
reachable possibility of nodes and the importance of nodes. The evaluation of their model
can support security professionals to provide a suitable countermeasure to the network.
Moreover, Sun et al. [69] propose Network Security Risk Assessment Model (NSRAM)
based on attack graph and Markov chain to provide the optimal attack path. Their proposed
model generates the attack graph, and then each vulnerability is assigned attack probability
from the international standard CVSS. Then they use a discrete Markov chain method to
calculate the transition probability from node to node. The enterprise network security risk
level and the attack probability of each path are provided using their proposed model. Their
analysis is based on counting the steps till the system compromised. However, estimating the
actual time to compromise the system is critical to indicate how much a safe time the system
has before it is compromised.

Kotenko and Stepashkin [43] propose a new network security analysis approach. Their
approach is to generate an attack graph based on simulating the attacker’s actions and
behaviour and then computing different security metrics based on CVSS score. The generated
attack graph shows the possible attack scenarios considering the attacker’s skill and location,
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the configuration of the network, and the used security policy. The result of calculating the
metrics support the defender to improve the security level of the system.

Wang and Liou [75] propose an approach for predicting the attack strategy of the attacker
based on an attack graph to support a defender to understand the attacker behaviour and
be a step ahead of the attacker to be better prepared for the attack and defend the system
more efficiently. Their approach appends the attack graph with probabilities based on the
vulnerability database (CVE) and the vulnerability scoring system (CVSS). Then, it matches
the alerts from the intrusion detection system with a specific related node in the attack graph.
Then, the probabilities of the nodes are updated and propagated from the matched node to
the goal node based on that to dynamically update the prediction of the attack strategy to the
change on the current security status of the system.

Durkota et al. [26] present a framework based on a game theory and attack graph to
model the attacker’s behaviour and the interaction between a defender and an attacker in
order to compute the optimal defence strategies. The attacker’s possible steps and actions are
provided based on the attack graph. They compute the optimal attacker’s policies by using
Stackelberg equilibrium, mixed-integer linear programming and Markov decision process.
Their results can support a defender in the decision-making process to defend the system
against complex attacks.

In this thesis, we provide approaches that are based on the PEPA modelling formalism
and attack graphs to model the attacker’s behaviour and the interaction between a system
and an attacker. The PEPA model allows us to perform dynamic analysis to identify the
critical threats and estimate the attacker’s time to compromise a system. The results can help
a defender prioritise countermeasures.

The examples of attack graphs that we considered in Chapters 5 and 6 are all cycle free.
However, the approach should be able to handle cycles but we have not investigated that in
this thesis and so it remains as future work. Work has been done by Matthews et al. [53] on
handling cycles in the attack graph without considering time.

2.4.5 Stochastic models of attacker behaviour

Modelling the interaction between an attacker and a system and/or defender is important to
deeply understand the attacker behaviour to effectively defend a system, evaluate the security
of a system and prioritise countermeasures.

Zhang et al. [81] propose two stochastic models for attacker behaviour based on attack
graph using Markov Decision Process. The two models were used to assess network security
at two stages: design and defense.
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Katipally, Yang and Liu [41] introduce an approach to predict and analyse the attacker
behaviour using a stochastic model called Hidden Markov Model (HMM). They represent
an abstract model of multistep attack. They collect previously learned alerts and intrusions
information to be used as an input to train the HMM model to predict the attacker’s behaviour
effectively. Furthermore, they analyse the optimal possible attack sequence and determine
the type of attack by using the clustering algorithm and HMM. Their study explains how their
proposed approach can profile attackers into different groups based on their goals, intention,
and level of expertise to estimate the attack risk level.

Krautsevich et al. [44] present their initial ideas to model an attacker’s behaviour based
on Markov Decision Processes theory to allow understanding the attacker’s behaviour. The
models present the possible steps and actions that an attacker could take to attack a system
depending on the attacker’s resources and knowledge of the system. This can support the
defender to prevent the most likely attacks. Their analysis is based on the attacker’s view of
a system.

Almasizadeh and Azgomi [3] propose a state-based stochastic model to model the attacker
actions and defender’s reactions. Their focus is to model an attack process over time. They
provide an abstract state-transition diagram and then assign time distribution to the transitions
to translate the diagram into a state-based stochastic model. In their model, the activities
of the attacker and defender are implicitly represented in the model’s transitions. Then,
they computed security quantitative metrics: mean-time to security failure and steady-state
solution to represent the system security status.

Ibidunmoye, Alese and Ogundele [37] propose a stochastic model based on a game-
theoretic approach to model the interaction between the attacker and defender. They devel-
oped a zero-sum stochastic game for the interaction. They explained how the results could
be used to predict the attacker’s actions, identify the most network’s vulnerable assets, and
suggest the best defence strategies. However, their study could not provide analysis on the
attacker’s behaviour and how the attacker exploits the vulnerabilities in the network.

Sedaghatbaf and Abdollahi Azgomi [65] introduce a probabilistic attack modelling
method based on a hierarchical and coloured extension of stochastic activity networks
(HCSAN). In their approach, an attacker behaviour is modelled as a strategic decision-
making process considering the attack’s goal, the costs of the attack, and the system’s defence
strategies. In their paper, they show how their proposed method can be used to compute the
attack success probability and Mean-Time to Security Failure (MTTSF) measures.

Abraham and Nair [1] propose a non-homogenous Markov model using an attack graph
to assess the security state of the network by considering the temporal factor associated
with the vulnerabilities. They focus on their security analysis to estimate Expected Path
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length, Probabilistic Path and Expected Impact metrics. In addition, Abraham [2] proposes a
stochastic model based on a non-homogenous continuous-time Markov model to estimate
the overall mean time to compromise by considering the casual relationship between the
vulnerabilities in the attack graph and the attacker skill. In their model, the coefficients of
different attacker skills were estimated by analysing 15 years of vulnerability data from the
National Vulnerability Database (NVD). His results show that when the attacker has a higher
skill to compromise the system, that causes the time to compromise the system to reduce.

Kaluarachchi, Tsokos and Rajasooriya [40] propose a stochastic model using a Markovian
approach to predict the Expected Path Length, which is the number of attacker’s step to reach
the final goal. Also, they provide the minimum attacker’s steps to reach the final goal. Their
finding is used to support security administrators to understand their system security’s status
clearly.

Jhawar, Lounis and Mauw [39] introduce a new method for evaluating the security of
attack-defense trees based on Continuous Time Markov Chains (CTMC). Attack-defense
trees are a visual representation of security scenarios. They systematically represent the
various actions that an attacker can take to achieve a security goal, as well as the various
actions that a defender can take to prevent the attacker from achieving its goal. To conduct a
quantitative security analysis, attack-defense trees uses a bottom-up approach which assumes
that all (attacks and defenses) actions are independent [39]. This is unrealistic because usually
the actions are dependent on one another [39]. Their proposed method solves this limitation
and considers the actions (attacks and defenses) dependencies. They convert attack-defense
trees to Continuous Time Markov Chains (CTMC) representing attack and defense actions to
allow performing the security assessments and a continuous-time analysis. Also, they study
one type of countermeasure that delay an attack’s success. Then, Lounis [51] proposes a new
stochastic operational semantics based on stochastic Petri-nets for attack-defense trees for
security evaluation. Their proposed stochastic model allows them to conduct qualitative and
quantitative security assessments. Recently, Lounis and Ouchani [52] propose a new CTMC
model with the objective of representing countermeasures to address attacker attempts in
attack-defense trees.

Furthermore, Pokhrel and Tsokos in [60] propose a stochastic model using a host access
attack graph to evaluate the overall security risk of a network. Their model is based on
Markov chains and host access attack graph with CVSS score of each vulnerability. They
introduce a Bias factor to model the attacker’s skill. Their result can support network
administrators in their decision on prioritising the patching of vulnerable nodes existing in
the network.
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Deshmukh, Rade and Kazi [23] introduce a framework to model the attacker behavioural
aspects to attack a system. They modelled the attacker behaviour based on their proposed
Fusion Hidden Markov Model (FHMM). Their approach can help to understand attacker
behaviour to support predicting the attacker’s future action and then prevent the attacker from
compromising a system.

Sadu et al. [63] propose a stochastic approach for create Petri Nets model for an attack tree,
allowing for the investigation of attacker’s attacks. Their work investigates cyber-physical
attacks on critical infrastructures. They also address the dependency between transitions
in the attack tree in their proposed approach because the attack tree follows a bottom-up
approach that implies the transitions are independent in assessing the security status of the
system. The stochastic model allows them to estimate the probability that the attacker will
reach the attack tree’s root node with and without countermeasures, as well as the average
time it will take the attacker to reach the root with and without countermeasures. Their
approach can aid system designers in assessing the attack’s risk which helps to implement
appropriate countermeasures.

In contrast to previous studies, we propose methods for converting an attack graph to
PEPA models. PEPA supports a compositional, formal and abstract approach to construct
a model for an attack graph. The model represented in PEPA involves the attack graph’s
evolution over time. Other approaches using CTMC have previously been explored [39]. The
novelty of our work is that we developed these methods to translate the attack graph to PEPA
models, and then used the PEPA tool to explore the time-dependent aspect of these models
by performing dynamic analysis. Additionally, the model represents an attacker behaviour
and the interaction between an attacker and a system. Evaluating the PEPA models of attack
graph can assist the defender in assessing the system’s security status and determining where
the critical threat exists and where additional countermeasures may be required.

2.5 Context of this thesis

This thesis explores the performance of a web-based sale system in the presence of cyber-
attacks in Chapter 3 and studies the performance of a type of e-commerce security protocol
in Chapter 4. The proposed PEPA models demonstrate an approach to integrating security
and performance concerns in order to gain a better understanding of system behaviour. The
performance analysis undertaken indicates where problems may arise and where additional
resources may be required.

Moreover, this thesis provides methods to generate PEPA models of the interaction
between attacker and system based on a pre-existing attack graph in Chapter 5. It proposes
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PEPA models for the attack graph, taking into two criteria: attacker skill and the availability
of exploit code to estimate the attacker’s time to compromise the system, in Chapter 6. A
better understanding of the impact of attackers on a system improves our ability to design
systems capable of adapting to and tolerating attacks. This also can help the defender to
identify critical threats and prioritise the countermeasures. In Chapter 6, we implement
learning behaviours for the attacker and the defender.

Chapter 3 studies the impact and cost that cyber-attacks contribute to system performance.
We proposed PEPA models of web-based sale system in two scenarios, with and without
the presence of denial of service attacks, to better understand how the system behaves in
different scenarios to provide a sustainable level of performance.

Chapter 4 explores the performance cost introduced by a security protocol known as an
anonymous and failure resilient fair-exchange e-commerce protocol. The proposed PEPA
models were formulated in two different ways: with and without an anonymity feature.
Moreover, both protocol versions were modelled in two ways: as a basic protocol with no
misbehaviour of any parties whereby it does not require the active involvement of TTP, and
as an extended protocol whereby the TTP’s participation is essential to resolving disputes
between participants. These enable understanding the protocol’s behaviour and evaluate the
performance cost it introduces.

Chapter 5 provides two methods to automate the generation of the PEPA model based
on a pre-existing attack graph specification. The first method generates a PEPA model that
comprises one sequential component and system equation. This component represents the
system and attacker coupled together. The second method generates a PEPA model that
comprises two sequential components and the system equation. One component represents
a system or network, and the other component represents an attacker. We used Java to
implement the algorithms; then, we generated PEPA models for a case study. Furthermore,
we demonstrated through the case study how we used the generated PEPA models to do a
sensitivity analysis and deduce the most and the least system security threatening paths and
time to compromise, which the defender can use as an indicator of how much a safe time the
system has before it is compromised.In addition, the time taken to compromise a system for
each attack path resultant from evaluating the model can rank the risk of all attack paths and
help the defender prioritises the countermeasures.

Chapter 6 proposes PEPA models for the attack graph, taking into account three different
skills for the attackers: beginner, intermediate and expert. We considered two criteria: attacker
skill and the availability of exploit code to estimate the attacker’s time to compromise the
system. Also, we implemented learning behaviours in the model for the attacker and the
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defender. We illustrated how learning behaviour for both the attacker and the defender would
impact the time to compromise the system.

Chapter 7 presents the conclusion of this thesis. we summarise our contributions, limita-
tions of our research and our future study.

2.6 Chapter summary

This chapter presents performance modelling and PEPA formalism that is used to model the
systems in this thesis. It also discusses a sample of existing performance measurement studies
designed to test the impact of security algorithms and protocols on systems performance. It
also presents some works done on the performance of systems under attack and evaluation of
attacker behaviour using attack tree and attack graph.



Chapter 3

Performance modelling of the impact of
cyber-attacks on a web-based sales system

3.1 Introduction

The growing demand for online sale systems has led to the development of many web-based
sale systems. The online environment suffers from a high-security vulnerability, as it is an
open medium, which can expose such a system to threats and attacks such as a denial of
service attack. A denial of service attack is a cyber-attack in which an attacker floods a
targeted victim with messages to temporarily or permanently prevent legitimate users from
accessing resources [7].

Performance has been seen as an important aspect of evaluating such systems. The
impact and cost that cyber-attacks contribute to the system’s performance need to be studied.
By modelling the performance of such a system, we can better understand the system’s
behaviour in different scenarios, with and without attacks, to enhance both the security and
performance levels of the system. Although several researchers have studied the performance
of a system under an attack [30, 55, 76, 87], further research is required in terms of modelling
and investigating the performance cost imposed by attacks. It can be used to understand
better how the system behaves and adapts in different scenarios, such as with and without the
presence of a threat, to remain secure and provide a sustainable performance level.

In this chapter, the description of the system we study is based on Gelenbe and Wang [30].
Gelenbe and Wang studied the performance of a warehouse in the presence of a denial of
service attack on its webserver by applying an analytical modelling approach using a queuing
theory-based technique [30]. In their study, they focused on the economic performance of a
warehouse that sells perishable products. Their study focused on exploring and predicting
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the income loss which results from such an attack. Their approach is suggested to be used as
an optimization problem to such a system.

In this study, we use a different approach, using PEPA, to study the system. This approach
offers a formality feature to model a system, as we mentioned in Section 2.2 in Chapter 2.
This feature is not available in the approach that Gelenbe and Wang [30] used. We propose
models of a web-based sale system in two scenarios, with and without the presence of denial
of service attack messages, in order to be able to assess the impact of the attack on the
system performance. Then, we perform an analytical technique on the proposed models and
derive some performance metrics such as throughput and population in order to demonstrate
how an attack on a warehouse’s webserver, which customers use to place orders, affects
the warehouse’s performance, how the attacks prevent some or all customer orders from
being fulfilled, and how the delay in selling products results in products being discarded. In
addition, we illustrate how such an attack on the webserver disrupts warehouse sales.

3.2 Web-Based Sales System

3.2.1 System specification

In this section, we provide the description of the web-based sales system based on Gelenbe
and Wang [30]. The description of the system with no attack is as follows (the words in bold
are the actions name that we used in our proposed PEPA model):

• A warehouse has an online webserver to sell perishable products.

• Perishable products have a limited shelf life.

• Products arrive from supplier to warehouse at a rate s1 (objectArrive).

• The warehouse’s webserver receives the orders from customers at rate r1 order per
time unite (order).

• Webserver forwards the successful order messages to the warehouse at rate r2 (forwardOrder).

• The expiry date of perishable products will be checked periodically in warehouse
(checkObject).

• The two ways to remove the products from the warehouse are:

– Products are removed due to their perishability (removeExpiredObject).

– Products are removed after they are successfully sold (removeSoldObjects).
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• If the warehouse does not have the product that the customer ordered, then the ware-
house will order it from a supplier and pay for it (requestObject, payForObject).
Then the product will be delivered to the warehouse (objectArrive).

• We assume that the warehouse already has some products.

3.2.2 PEPA model of the system without attacks

This section presents the proposed PEPA model for the web-based sales system without
the presence of an attack. The model comprises five parts, one for each component: Cus-
tomer, Webserver, Warehouse and Timer, which move sequentially between their different
behaviours based on the activities specified in the model. The model is formulated as follows:

Customer component

Customer0
def
= (order,c1).Customer1

Customer1
def
= (orderSucess f ullyPlaced,r1).Customer2

Customer2
def
= (complete,c).Customer0

This part of the model specifies the customer’s different behaviours, moving from Customer0

to Customer2. The first state is Customer0. It is the state when a customer visits a webserver
and performs the action order at rate c1 leading to Customer1. Then, in state Customer1,
the only action that happens is orderSucess f ullyPlaced at rate r1 leading to Customer2.
Customer2 is the state when the customer performs the action complete at rate c leading back
to Customer0, which means that the interaction between the customer and the webserver has
finished. After Customer2, the behaviour returns to Customer0 so that the model becomes
cyclic and steady-state measures can be obtained.

Webserver component

Webserver0
def
= (order,c1).Webserver1

Webserver1
def
= (processingOrder,r3).Webserver2

Webserver2
def
= (orderSucess f ullyPlaced,r1).Webserver3

Webserver3
def
= ( f orwardOrder,r2).Webserver0

The above component represents the webserver’s different behaviours, moving from Webserv-
er0 to Webserver3. The first state is Webserver0. When webserver in the state Webserver0,
the webserver performs the action order to receive an order from a customer at rate
c1 leading to Webserver1. Then, in the state Webserver1, the only action that happens
is processingOrder at rate r3 leading to Webserver2. In the state Webserver2, the only
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orederSucess f ullyPlace can occur at rate r1 leading to Webserver3 which is the state when
the webserver forwards the successful order to the warehouse at rate r2.

Warehouse component

Warehouse0
def
= ( f orwardOrder,r2).Warehouse1 +(checkOb ject,w8).Warehouse8

+ (ob jectArrive,s1).Warehouse0

Warehouse1
def
= (ob jectExist,w1).Warehouse5 +(ob jectNotExist,w2).Warehouse2

Warehouse2
def
= (requestOb ject,w3).Warehouse3

Warehouse3
def
= (payForOb ject,w4).Warehouse4

Warehouse4
def
= (ob jectArrive,s1).Warehouse5

Warehouse5
def
= (addOb jectToOrderList,w5).Warehouse6

+ (addOb jectToOrderList,w6).Warehouse1

Warehouse6
def
= (removeSoldOb jects,w7).Warehouse7

Warehouse7
def
= (sendOrderToCustmer,w12).Warehouse0

Warehouse8
def
= (expired,w9).Warehouse9 +(notExpired,w10).Warehouse0

Warehouse9
def
= (removeExpiredOb ject,w11).Warehouse0

The above part of the model is for the warehouse component. In the state Warehouse0, one
of three actions could happen either f orwardOrder at rate r2 leading to Warehouse1 if ware-
house receives an order from the webserver, checkOb ject at rate w8 leading to Warehouse8

when warehouse checks periodically the expiry date of the products, or ob jectArrive at rate
s1 when some products arrive in the warehouse from a supplier leading back to Warehouse0.
In the state Warehouse1, either actions could be performed ob jectExist at rate w1 leading to
Warehouse5 or ob jectNotExist at rate w2 leading to Warehouse2 in order to request the prod-
uct from a supplier. In the state Warehouse2, the only action that happens is requestOb ject
at rate w3 leading to Warehouse3. Then, in the state Warehouse3, there is only one action
that could happen which is payForOb ject at rate w4 leading to Warehouse4 which is the
state when the warehouse receives the object from the supplier after performing the action
ob jectArrive at rate s1 leading to Warehouse5. In the state Warehouse5, one of two actions
could be performed either addOb jectToOrderList at w5 leading to Warehouse6 in order to
remove these products from the warehouse or addOb jectToOrderList at rate w6 leading to
Warehouse1 when there is more than one product in the order. In Warehouse6, the only action
that happens is removeSoldOb jects at rate w7 leading to Warehouse7 which is the state when
the warehouse sends the order to the customer by performing action sendOrderToCustomer
at rate w12 leading back to Warehouse0. In Warehouse8, one of two actions can be performed
either expired at rate w9 leading to Warehouse9 in order to remove the expired product from
the warehouse or notExpired at rate w10 leading back to Warehouse0. Finally, in the state
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Warehouse9, the only action that happens is removeExpiredOb ject at rate w11 leading back
to Warehouse0.

Timer component

Timer0
def
= (tick, t).Timer1 +(notExpired,w10).Timer0

+ (sendOrderToCustmer,w12).Timer0

Timer1
def
= (tick, t).Timer2 +(notExpired,w10).Timer1

+ (sendOrderToCustmer,w12).Timer0

Timer2
def
= (expired,w9).Timer0 +(sendOrderToCustmer,w12).Timer0

This part of the model is for the timer component, which is the part that counts down the time
life of the product in the warehouse. It has three behaviours starting from Timer0. In Timer0,
one of three actions can happen either tick at rate t to count down the time life of the product
in the warehouse leading to Timer1, action notExpired at rate w10 leading back to Timer0 or
action sendOrderToCustomer at rate w12 when the product is sent to the customer before
reaching expiry date leading back to Timer0. Timer1 state has the same actions as in Timer0.
In the state Timer2, one of two actions can be performed either expired when the product
expired at rate w9 leading back to Timer0 or action sendOrderToCustomer at rate w12 when
the product is sent to the customer before reaching expiry date leading back to Timer0.

Supplier component

Supplier def
= (requestOb ject,w3).(payForOb ject,w4).(ob jectArrive,s1).Supplier

The last part of the model is for the supplier component. There is just one state which is
Supplier. The supplier’s main action is ob jectArrive.The rate of this action is controlled by
the supplier.

System equation

The system equation and complete specification are given by

System def
= Customer0[N]◃▹

B
Webserver0[N]◃▹

L
Warehouse0 ◃▹S (Supplier∥Timer0)

Where B={order, orderSucessfullyPlaced}, L={forwardOrder}, S={requestObject, pay-
ForObject, objectArrive, notExpired, expired, sendOrderToCustmer}, any action in list B,
L and S is a shared action between the components specified in system equation. N is the
number of Customer and Webserver instances in the system. The five components are initially
in the states Customer0, Webserver0, Warehouse0, Supplier and Timer0.
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3.2.3 Performance evaluation and results

The current investigation seeks to calculate the throughput of some main actions of the Web-
server and Warehouse which are orderSucess f ullyPlaced and f orwardOrder actions of the
Webserver, and removeSoldOb jects and removeExpiredOb ject actions of the Warehouse
using the ordinary differential equations (ODEs) method. The throughput is the amount of
work that can be accomplished in a specific time [38]. Moreover, we want to investigate
the population level of some states of the components using ODE. The population is the
average number of the component’s copies in a state waiting for action in the model. We
apply transient analysis to derive the population level and throughput measures. The accuracy
of the model changes with N (the number of customers) and converges as N −→ in f inity
[71, 82, 84]. In this study, we keep the total number of customers to 100.

All the action rates for the customer is 1 except complete action is 0.01 to let a customer
waits to use the product before starting again. All the action rates of the webserver are 100
except f orwardOrder action which we assume to be faster and have a rate of 200. They
are divided by the number of the customers using the webserver. All the action rates of the
warehouse are 100 except sendOrderToCustmer action, which we assume to be slower and
has a rate value of 24, and the rates of checkOb ject and ob jectArrive actions, which we
assume they have rate values equal to f orwardOrder action’s rate to avoid action race as
they are in the same state Warehouse0 in the model. The action rate for the timer component
that counts down the time life of the products in the warehouse is 24.

Figures 3.1 and 3.2 show the throughput values of the actions orderSucess f ullyPlaced,
f orwardOrder, removeSoldOb jects and removeExpiredOb ject. In Figure 3.1, the through-
put values of the action orderSucess f ullyPlaced reach the peak of about 27 and then reach
the stead-state at 0.7 at a short period of time. Figure 3.2 clearly illustrate that the throughput
values of f orwardOrder and removeSoldOb jects are larger than the throughput values of
removeExpiredOb ject. This indicates that larger products are sold and less products are
discarded when there is no attack in the system.
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Fig. 3.1 The Throughput Analysis of orderSucess f ullyPlaced.

Fig. 3.2 The Throughput Analysis of f orwardOrder, removeExpiredOb ject and
removeSoldOb jects.

The following two graphs show the population level analysis for the following states:
Customer1 (the customer’s state when waiting to receive a successful order confirmation
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message from the webserver), Webserver3 (the webserver’s state when waiting to forward
the successful order to the warehouse), Warehouse6 (the warehouse’s state when removes
sold products from the warehouse) and Warehouse9 (the warehouse’s state when removes
expired products from warehouse due to their perishability). As you can see from Figure 3.3
and 3.4, all the customers have their orders forwarded to the warehouse. Figure 3.4 illustrates
that, in the warehouse, the number of sold products is larger than the number of discarded
products when there is no attack.

Fig. 3.3 The population level analysis of Customer1 and Webserver3.
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Fig. 3.4 The population level analysis of Warehouse6 and Warehouse9.

3.3 Web-Based Sales system in the presence of the attacks

3.3.1 System specification

In this section, we are going to introduce an attack on the system. The kind of attack that we
want to consider is a denial of service attack, whereby an attacker floods the system with
bogus requests. The attacker behaves similarly to a negative customer in G-networks [29].
The effect of this increase in traffic is to delay the processing of legitimate orders. If this
delay is sufficiently long, orders will fail due to timeouts, and hence revenue will be lost
and goods may perish. A real-world denial of service attack may cause systems to overflow,
resulting in message loss, although we do not model this aspect of the attack. Our aim in
modelling this form of attack is to investigate the relationship between the rate of attack and
the impact on order throughput and products perishing in the warehouse.

The system has the same steps as in Section 3.2.1 and the following are steps of introduc-
ing the attack to the system as described in [30] (the words in bold are the actions name used
in our proposed PEPA model):

• The webserver receives an attack message at some rate a1 per time units based on their
vulnerability to attack message with a probability q (attackM).

• Each attack message destroy one processing order (destroyedOrder).
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• The customer that has a destroyed order could repeat the same order with a probability
p (repeatOrder).

We assume that the number of attack message is equal to the number of website copy
created for each customer. If the website is vulnerable to attack message, the current
processing order will be destroyed.

3.3.2 PEPA model of the system in the presence of the attacks

This section presents the proposed PEPA model for the web-based sales system in the
presence of an attack. In our PEPA model, there are six types of components: Customer,
Attacker messages, Webserver, Warehouse, Timer and Supplier. The model comprises six
parts, one for each component. Customer, Attacker messages, Webserver, Warehouse and
Timer move sequentially from their different behaviours based on the activities specified in
the model. The model is formulated as follows:

Customer component

Customer0
def
= (order,c1).Customer1

Customer1
def
= (orderSuccess f ullyPlaced,r1).Customer3

+ (destroyedOrder,a2 ∗ p).Customer2

+ (destroyedOrder,a2 ∗ (1− p)).Customer3

Customer2
def
= (repeatOrder,c2).Customer1

Customer3
def
= (complete,c).Customer0

This part of the model specifies customer’s different behaviours. The first state is the same
as the first customer state in Section 3.2.2. Then, in state Customer1, one of three actions can
happen either orderSucess f ullyPlaced at rate r1 leading to Customer3, destroyOrder at rate
a2 ∗ p leading to Customer2 or destroyOrder at rate a2 ∗ (1− p) leading to Customer3 which
is the state when a customer performs action complete at rate c leading back to Customer0

which it means that the interaction between the customer and the webserver has finished. In
Customer2, the only action that happens is repeatOrder at rate c2 leading back to Customer1.

AttackerM component

AttackerM0
def
= (attackM,a1).AttackerM1

AttackerM1
def
= (destroyedOrder,a2).AttackerM0

The above component represents the two attacker message’s behaviours. The first state is
AttackerM0. It is when the attacker sends an attack message by performing attackM action
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at rate a1 leading to AttackerM1. The second state is AttackerM1. It is when the attacker
message destroys the current processing order based on the webserver’s vulnerability to
attack message by performing destroyedOrder at rate a2 leading back to AttackerM0.

Webserver component

Webserver0
def
= (order,c1).Webserver1

+ (repeatOrder,c2).Webserver1

Webserver1
def
= (processingOrder,r3 ∗q).Webserver4

+ (processingOrder,r3 ∗ (1−q)).Webserver2

Webserver2
def
= (orderSucess f ullyPlaced,r1).Webserver3

Webserver3
def
= ( f orwardOrder,r2).Webserver0

Webserver4
def
= (attackM,a1).Webserver5

Webserver5
def
= (destroyedOrder,a2).Webserver0

The above component of the model is for the webserver’s different behaviours. The local
states increase to five states compared to the webserver component when there is no attack
(Section 3.2.2). The first state is Webserver0. When the webserver in state Webserver0, the
webserver performs one of two actions either order to receive an order from customer at
rate c1 leading to Webserver1 or repeatOrder at rate c2 leading also to Webserver1. Then,
in state Webserver1, one of two actions can happen either processingOrder at rate r3 ∗ q
leading to Webserver4 or processingOrder at rate r3 ∗ (1−q) leading to Webserver2. The
states Webserver2 and Webserver3 are the same as the webserver’s states in Section 3.2.2. In
the state Webserver4, the only attackM can occur at rate a1 leading to Webserver5, which is
when a current processing order is destroyed in the webserver by performing destroyedOrder
at rate a2.

Other components

Warehouse, Timer and Supplier components have the same behaviours as in Section 3.2.2.

System equation

The system equation and complete specification are given by

System def
= ((Customer0[N]◃▹

H
AttackerM0[N])◃▹

M
Webserver0[N]◃▹

L
Warehouse0

◃▹
B

(Supplier∥Timer0))
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Where H= {destroyedOrder}, M= {order, orderSucessfullyPlaced, destroyedOrder, re-
peatOrder, attackM}, L={forwardOrder}, B={requestObject, payForObject, objectArrive,
notExpired, expired, sendOrderToCustmer} any action in list H, M, L and B is a shared action
between the components specified in the system equation. N is the number of Customer,
AttackerM and Webserver instances in the system. The six components are initially in the
states Customer0, AttackerM0, Webserver0, Warehouse0, Supplier and Timer0.

3.3.3 Performance evaluation and results for the extended model

In this section, we seek to illustrate how the performance of the warehouse’s sale would
be affected by a denial of service attack by preventing some or all customers’ orders from
being fulfilled. Then, the delay in selling perishable products would result in products being
discarded. So the warehouse would lose customers and waste products which would also
affect the warehouse economically. All the same actions as in Section 3.2.2 have the same
rate values as specified in Section 3.2.3. However, we assume all AttackerM’s actions rate is
4, which is faster than customer’s rates. We also assume that a customer with a destroyed
order can repeat the same order with a probability of 0.5 (50%).

Our investigation seeks to calculate the throughput of some main actions of Customer,
AttackerM, Webserver and Warehouse components using ODEs. These actions are repeatOr-
der action of Customer, destroyedOrder action of AttackerM, orderSucess f ullyPlaced and
f orwardOrder actions of Webserver, and removeSoldOb jects and removeExpiredOb ject
actions of Warehouse. Moreover, we want to investigate the population level of some states
of the components using ODE. We assume all perishable products are fresh at the beginning
of the interaction then the Timer component counts down its lifetime.

The throughput analysis

The following graphs, Figures 3.5 to 3.12, show the throughput values of repeatOrder,
destroyedOrder, orderSucessfullyPlaced, forwardOrder, removeSoldObjects and removeEx-
piredObject actions. The throughput values of the actions were calculated based on changing
the probability of the webserver to be vulnerable to the attacker’s message to 90%, 50%, and
then 10%.

Figures 3.5 to 3.12 show how increasing the probability of the webserver being vulnerable
to the attacker’s message resulted in more orders were destroyed, sale delay and then more
products were discarded due to their perishability. The throughput values of destroyedOrder
and removeExpiredObject are larger than orderSucessfullyPlaced and removeSoldObjects,
when the probabilities of the webserver to be vulnerable to the attacker’s message are 90%
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and 50%. They also show that the larger the probability of the webserver being vulnerable
to the attacker’s message, the faster the system loses its control to deal with the orders and
attacker’s messages which then causing a delay in the sale due to preventing some or all
customers’ orders from being fulfilled and then increasing the number of products that have
been discarded.

In Figures 3.5, 3.6 and 3.7, the probability of the webserver to be vulnerable to the
attacker’s message is 90% (q = 0.9). Figure 3.5 shows that the throughput values of
destroyedOrder start larger than the throughput values of orderSucess f ullyPlaced for a
period of time. This means many orders are prevented from being fulfilled due to the attacks.
In Figures 3.6 and 3.7, the throughput values of removeExpiredOb ject start less than the
throughput values of f orwardOrder and removeSoldOb jects and then start to increase dur-
ing a short period of time. This indicates that the delay in the sale of the products cause a
larger amount of products to be discarded due to their limited shelf life.

Fig. 3.5 The Throughput Analysis of destroyedOrder, orderSucess f ullyPlaced and
repeatOrder when q = 0.9.
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Fig. 3.6 The Throughput Analysis of f orwardOrder, removeExpiredOb ject and
removeSoldOb jects when q = 0.9.

Fig. 3.7 The Throughput Analysis of f orwardOrder, removeExpiredOb ject and
removeSoldOb jects during a longer time when q = 0.9.

In Figures 3.8, 3.9 and 3.10, the probability of the webserver to be vulnerable to the
attacker’s message is 50% (q = 0.5). Decreasing the probability of the webserver to be
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vulnerable to the attacker’s message causes the throughput values of destroyedOrder to
decrease and the throughput values of orderSucessfullyPlaced to increase as shown in Figure
3.8 compared to Figure 3.5 when the probability is larger. Moreover, when the probability
of the webserver to be vulnerable is larger, as in shown Figures 3.6 and 3.7, the system
loses control of dealing with customer orders and attacks faster than when the probability is
decreased, as shown in Figure 3.10.

Fig. 3.8 The throughput analysis of destroyedOrder, orderSucess f ullyPlaced and
repeatOrder when q = 0.5.
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Fig. 3.9 The throughput analysis of f orwardOrder, removeExpiredOb ject and remo-
veSoldOb jects when q = 0.5.

Fig. 3.10 The throughput analysis of f orwardOrder, removeExpiredOb ject and remo-
veSoldOb jects during a longer time when q = 0.5.

In Figures 3.11 and 3.12, the probability of the webserver to be vulnerable to the attacker’s
message is 10% (q = 0.1). When the probability of the webserver being vulnerable is
low, the larger number of customers orders is fulfilled. The throughput values of the
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actions orderSucess f ullyPlaced, f orwardOrder and removeSoldOb jects are larger than
the throughput value of destroyedOrder and removeExpiredOb ject.

Fig. 3.11 The throughput analysis of destroyedOrder, orderSucess f ullyPlaced and
repeatOrder when q = 0.1.

Fig. 3.12 The throughput analysis of f orwardOrder, removeExpiredOb ject and remo-
veSoldOb jects when q = 0.1.
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Moreover, Figures 3.13 and 3.14 shows the different throughput values of destroyedOrder,
orderSucess f ullyPlaced, repeatOrder, f orwardOrder, removeExpiredOb ject and remove-
SoldOb jects actions in relation to different probability values (q) of the webserver to be
vulnerable to the attacker’s message. They illustrate how increasing q would have a significant
impact on the throughput values of the actions.

Fig. 3.13 The throughput analysis of destroyedOrder, orderSucess f ullyPlaced and
repeatOrder in relation to q different values.
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Fig. 3.14 The throughput analysis of f orwardOrder, removeExpiredOb ject and remo-
veSoldOb jects in relation to q different values.

The population level analysis

The following graphs, Figures 3.15 to 3.17, show the population level analysis for the
following states: Customer2 (the customer’s state when waiting to repeat their destroyed
order), Webserver2 (the webserver’s state when waiting to forward the successful order to
the warehouse), Webserver5 (the webserver’s state when the order is destroyed), Warehouse6

(the warehouse’s state when removing sold products from the warehouse) and warehouse9

(the warehouse’s state when removing expired products from the warehouse due to their
perishability). Figures 3.15 to 3.17 illustrate how increasing the probability of the webserver
to be vulnerable to the attacker’s message causes the average number of Warehouse6 and
Webserver2 copies to decrease and Warehouse9, Customer2 and Webserver5 to increase. In
Figure 3.15, the probability of the webserver being vulnerable to the attacker’s message
is 90% (q = 0.9). In Figure 3.16, the probability is 50% (q = 0.5). In Figure 3.17, the
probability is 10% (q = 0.1).
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(a) (b)

Fig. 3.15 The population level analysis when q=0.9.

(a) (b)

Fig. 3.16 The population level analysis when q=0.5.

(a) (b)

Fig. 3.17 The population level analysis when q=0.1.

Moreover, Figures 3.18 and 3.19 show the different population levels of Warehouse9,
Warehouse6, Customer2, Webserver2 and Webserver5 states in relation to different proba-
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bility values (q) of the webserver to be vulnerable to the attacker’s message. They illustrate
how increasing q would have a significant impact on the population level of the states.

Fig. 3.18 The population level analysis of Warehouse9 and Warehouse9 in relation to q
different values.

Fig. 3.19 The population level analysis of Customer2, Webserver2 and Webserver5 in rela-
tion to q different values.
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Moreover, in order to make the system less vulnerable to the attacks, some work is needed
to be done to protect the system and that might slow down the system. Therefore, varying
q rate could have some other implications in the system, for example, slowing down the
processing of the orders.

3.4 Conclusion

In this chapter, we present the performance models of web-based sale system in two scenarios,
with and without the presence of denial of service attacks. It is clear from the related work
in Chapter 2 that there are few existing models in this domain and therefore this work is a
potentially valuable addition. The proposed PEPA models illustrated the high-level interaction
between the components. The parameters used are somewhat arbitrary, nevertheless, the
evaluation of the throughput and population level of the proposed models shows how the
attacks would prevent some or all positive customers’ orders from being fulfilled and how
the delay in selling products would result in products being discarded.

The action rates for the proposed model were chosen arbitrarily. Clearly, the rates of
actions used in the model will impact the effect of any attack. Therefore, it is desirable to
obtain more realistic parameter values from a real or similar system and thereby validate the
model. However, even without this, the model clearly demonstrates the impact of a denial of
service attack on this system. This means that the model could be extended to explore the
cost and benefit of potential defensive mechanisms and further understand the performance
security trade-off in this context.

3.5 Chapter Summary

This chapter presents two performance models of a web-based sales system, one without an
attack and the other with a denial of service attack. The approach used to model a system
under investigation is PEPA. The PEPA Eclipse plug-in supports the creation of the PEPA
models and the calculation of the performance measures. We used ordinary differential
equations (ODEs) to evaluate and investigate some aspects of system performance. The
evaluation of the models illustrates how the performance of the warehouse’s sale is negatively
affected by the denial of service attack by preventing some or all customers’ orders from
being fulfilled. The resultant delay in selling perishable products would result in products
being discarded.

A more complex system will be discussed in the following chapter. It studies the
performance overheads introduced by an e-commerce security protocol that ensures a fair
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exchange between two parties by modelling and then evaluating the protocol’s performance.
We investigate the performance costs associated with the protocol’s security features and
behaviour. Additionally, we investigate the performance cost imposed by a security protocol
in the event of misbehaviour during online commercial transactions.





Chapter 4

Performance modelling of an anonymous
and failure resilient fair-exchange
protocol

4.1 Introduction

In the previous chapter, we explored the performance of a web-based sales system, without
and with a denial of service attack. In this chapter, we extended our study by considering
a more complex system. We study the performance of an anonymous and failure resilient
fair-exchange e-commerce protocol that was proposed by Ray et al. [62]. Ray et al. provide
in [62] a detailed description of their proposed protocol and its security properties. In this
study, we formally convert their proposed protocol to PEPA models in order to explore
the performance overheads introduced by the security features and protocol’s behaviour.
The performance overheads introduced by a misbehaviour of any parties in e-commerce
security protocol are also examined. This e-commerce protocol guarantees a fair-exchange
between two parties. It satisfies the following features: first, fairness – no party can have
any advantages over the other party during the exchange course; second, the anonymity
of the parties – the parties, a customer, and/or a merchant can interact without disclosing
any personal information; third, no manual dispute resolution; fourth, not relying on the
service of a single trusted third party (TTP) – instead, multiple TTPs are available to provide
services; fifth, offline TTP – the involvement of such a party must be at a minimum level, only
when any problem occurs; and finally, any types of digital merchandise can be exchanged.
Moreover, the protocol is based on an approach called ‘cross-validation’, which allows the
customer to validate the encrypted electronic product without decrypting it.
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An anonymous and failure resilient fair-exchange e-commerce protocol relies on TTPs
but does not need them to be active at any time except if a problem occurs. Therefore,
the protocol has two main descriptions depending on the type of TTP involvement: offline
TTP (basic) and online TTP (extension) [62]. With offline TTP involvement type, there is
no TTP active involvement as no parties misbehave or prematurely terminate the protocol.
However, with online TTP, when parties misbehave or prematurely terminate the protocol,
the TTP must be involved in resolving the problem and ensuring fair-exchange. Following
the description provided by Ray et al. in [62], we first present PEPA models of a failure
resilient fair-exchange protocol without a customer anonymity feature. Then, PEPA models
of an optimistic anonymous protocol with a customer anonymity feature are presented and
evaluated. Both versions of the protocol are modelled in two ways: with and without dispute
between parties. In addition, the discussion focuses on the behaviour aspects of the protocols
in order to analyse their performance.

4.2 Protocol specification

4.2.1 The basic failure resilient fair-exchange protocol specification

This protocol preserves all the features identified in the introduction (Section 4.1) except for
the customer’s anonymity. In this version of the protocol, the true identity of a party can
be disclosed by obtaining a payment token. A formal description of this protocol with the
security-related details is given in [62]. The basic protocol with no misbehaviour of any
parties is as follows:

Fig. 4.1 The basic failure resilient fair-exchange protocol shows the interaction between a
customer (C), a merchant (M) and a trust third party (TTP).
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Before the protocol starts, the environment needs to be set up with the following two
steps:

I. A customer (C) needs to create an account with a financial institution (Bank) (B). B
creates a pair of keys. One is sent to C, and the other is kept by B.

II. A merchant (M) needs to register with a Trust Third Party (TTP). TTP creates a pair
of keys. One is sent to M, and the other is kept by TTP. For every product M wants
to sell, M sends a product and its description along with the product identifier (PID)
to TTP. TTP then encrypts the electronic product with the same key that is sent to M
before uploading the product to its website to be advertised.

Then, the protocol has the following five interaction steps, Figure 4.1. The words in bold are
the actions name that we used in our proposed PEPA model:

1. download (TTP→C): C visits the TTP website and downloads the encrypted electronic
product and the product identifier (PID) from the TTP server. C cannot obtain the
product without a decryption key. This encrypted electronic product can be used to
validate the product received from M. So if C is interested in the product, s/he contacts
M and begins an interaction with them by sending the next message.

2. sendMPO (C→M): C sends a message containing the purchase order (PO) to M. This
message contains a digitally signed PO cryptographic checksum, the payment token
(PT), and the identity of its financial institution (B).

3. sendCEP or sendCAbort (M→C): M sends the encrypted product to C or sends a
transaction abort statement. After M receives the message from C containing the PO
(step 2), it checks its content to see if it meets the satisfaction criteria. If M is satisfied,
it sends the encrypted electronic product to C along with a signed cryptographic
checksum of the PO, a signed cryptographic checksum of the encrypted electronic
product, an encrypted random number, and a signed cryptographic checksum of the
encrypted random number.

4. sendMPTDk or sendMAbort (C→M): C sends the decryption key for the PT or a
transaction abort statement to M. After C receives the message from M (step 3), C
checks it. If it contains an abort statement, then C aborts the transaction. If it contains
the encrypted electronic product, then C validates it with the encrypted electronic
product received from the TTP (step 1). If the product is valid, C sends the decryption
key for the PT. The key is encrypted with M’s public key. Also C sends a signed
cryptographic checksum of the encrypted electronic product received to M. Then C
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waits for the product decryption key by setting a timer (if C does not receive the key
within this time, C will require TTP involvement to resolve the dispute). If the product
is not valid, C requests the product once again from M (step 2) or sends an abort
statement along with a signed cryptographic checksum of the encrypted electronic
product received to M.

5. sendCPDk (M→C): M sends the electronic product decryption key to C or ends the
transaction. On receiving the message from C, M checks its content. If the message
contains an abort statement, then M terminates the transaction. If the message includes
the decryption key for the PT, M obtains the PT and then sends the decryption key for
the electronic product to C. The decryption key is encrypted with C’s public key.

4.2.2 The basic protocol extension for handling misbehaviours and
communication problems

Subsection 4.2.1 presents the basic version of the failure resilient fair-exchange protocol,
which is executed when there is no dispute between the exchange parties. However, when
misbehaviours and/or communication problems occur, the extended protocol is initiated and
TTP status is changed to online during protocol execution. The execution of the extended
protocol is started when the customer’s timer expires (during Step 4 in the basic protocol)
and the basic protocol does not reach completion status, or when any misbehaviour occurs
during the execution of the basic protocol. However, the extended protocol is always initiated
by the customer [62]. This is because the merchant always receives the payment and can
check its validity before sending the product decryption key to the customer.

Therefore, when the merchant (M) misbehaves, the customer (C) starts the extended
protocol by sending the signed cryptographic checksums of the encrypted product and the
random number received from M together with the signed cryptographic checksum of the PO
and the payment token that have been sent to M (as evidence of M’s misbehaviour) to TTP;
this is called an initiation message. The misbehaviour scenarios considered by Ray et al [62]
and solved by the extended protocol are illustrated as follows (all texts in bold indicate the
names of the actions used in the PEPA model presented in this chapter):

Merchant behaves improperly

Scenario 1: M sends an invalid product decryption key after receiving the payment token
decryption key (Step 5 in the basic protocol). The interaction actions for resolving this
dispute are as follows:
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1. sendTTPinfo: C initiates the execution of the extended protocol by sending an initiation
message after receiving an invalid product decryption key.

2. askMForValidK: TTP orders M to send a valid product decryption key and then sets a
timer for M’s response.

3. sendTTPvalidK or timeoutTTP: M responds within the timeout period by sending the
valid product decryption key to TTP, or M does not respond and the timeout expires.

4. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP receives the valid
product decryption key from M, it forwards it to C, or if TTP does not receive the valid
product decryption key within a specified timeout period, TTP sends C the preserved
product decryption key and takes action against M.

Scenario 2: M disappears without sending a valid product decryption key after receiving
a payment token decryption key (Step 5 in the basic protocol). The interaction actions for
resolving this dispute are as follows:

1. cTimeoutExpired then sendTTPinfo: C initiates the extended protocol by sending
an initiation message after the timeout period for receiving the decryption key has
expired.

2. askMForValidK: TTP asks M to send a valid product decryption key and then sets a
timer for M’s response.

3. timeoutTTP or sendTTPvalidK: M does not respond and the timeout expires, or M
responds within the timeout period by sending the valid product decryption key to TTP.

4. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP receives the valid
product decryption key from M, it forwards it to C, or if TTP does not receive the valid
product decryption key within the specified timeout period, TTP sends C the preserved
product decryption key and takes action against M.

Scenario 3: M claims that a valid product decryption key has not been sent because payment
from C has not been received. The interaction actions for resolving this dispute are as follows:

1. sendTTPreason: M responds to TTP by identifying the reason for not sending the
valid product decryption key to C.

2. sendTTPvalidK: M must still send TTP the valid product decryption key.

3. sendMpKbyTTP and sendCkbyTTP: When TTP receives the valid product decryption
key from M, it sends M the valid payment decryption key and C the valid product
decryption key.
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Customer behaves improperly

In this case, after C sends TTP an initiation message for the extended protocol, TTP checks
all information and discovers that C has sent an invalid payment decryption key. As a result,
TTP will not forward the valid product decryption key to C (discoverIncorrectK).

4.2.3 The optimistic anonymous protocol

This version of the protocol ensures that customer privacy is protected from any other
parties. The customer does not need to share any personal information with a merchant
to buy. Thus, the customer’s true identity is hidden from the merchant. In the protocol
described previously (see Subsection 4.2.1), the payment token that the customer sends
to the merchant contains some personal information, such as the customer’s identity and
bank account information. Therefore, the merchant will have detailed personal information
of the customer once it receives the payment token. This will deter some customers from
buying from some merchants as they are not willing to share these personal details. Thus,
as well as delivering all the features provided by the failure resilient fair-exchange protocol
(see Subsection 4.2.1), the optimistic anonymous protocol also preserves the customer’s
anonymity.

Ray et al. [62] modified the basic failure resilient fair-exchange protocol to prevent
the customer’s personal information from being known by the merchant by following the
electronic cash system described in [57]. The customer uses digital base money to buy from
merchants. By using this method, merchants cannot obtain any personal information from
the customer or create a customer profile without permission.

The formal description of the protocol and security-related details are provided in [62].
The following is an informal description of the protocol. As with the basic failure resilient fair-
exchange protocol, before the protocol is initiated, the environment needs to be set up with
the same steps detailed in Subsection 4.2.1. Unlike the basic failure resilient fair-exchange
protocol, the customer (C) uses a pseudo identifier (C′) when starting a new transaction with
the merchant (M) to preserve the anonymity of C. Thus, no parties in the protocol except the
customers themselves have sufficient information to link the C′ used in the transaction with
C, which is the real customer identity. The optimistic anonymous protocol with no dispute
between M and C has the following nine interaction steps [62] (all texts in bold indicate the
names of the actions used in the PEPA model):
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Fig. 4.2 The optimistic anonymous protocol shows the interaction between a customer (C), a
merchant (M), a trust third party (TTP) and a bank (B).

1. download (TTP→C): C visits the TTP website and downloads the encrypted electronic
product and the product identifier (PID) from the TTP server. The customer cannot
get the product without a decryption key. This encrypted electronic product can be
used to validate the product received from M, so if C is interested in the product, they
must contact their bank (B) to request digital coins to buy the product with, as per the
following message.

2. requestBDigitalCoins (C→B): C sends a request to B for digital coins. C’s request
message contains an unsigned blinded coin, a signed cryptographic checksum of the
blind coin, the true identity of the customer, the account number, and a nonce. The
signed cryptographic checksum ensures that the unsigned blinded coin is correct and
not altered during the transfer. The nonce is used in the request message to prevent
replying the same message again.

3. sendCDigitalCoins (B→C): Once B has received the request message, C’s bank
account is debited for the same amount of money as the value of the unsigned blinded
coin. Then B generates the digital coin by signing the blinded coin, and sends the
digital coin to C.

4. sendMPO (C′→M): C′ sends a message containing the purchase order (PO) to M. The
PO contains the product identifier, the customer’s pseudo identifier (C′), the product
price, and a nonce which prevents replying the PO. This message also contains a
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digitally signed PO cryptographic checksum and the digital coin encrypted with C’s
secret key. Note that the customer uses a one-time private/public key pair.

5. sendCEP or sendCAbort (M→C′): M sends the encrypted product to C′ or sends an
abort statement to end the transaction. After receiving the message from C′ containing
the PO (step 4), M checks the message’s contents to ensure they are satisfactory. If
M is satisfied, it sends the encrypted electronic product to C′ along with a signed
cryptographic checksum of the PO, a signed cryptographic checksum of the encrypted
electronic product, an encrypted random number, and a signed cryptographic checksum
of the encrypted random number. If M is not satisfied, it sends an abort message to C′

to terminate the exchange process.

6. sendMCoinDk or sendMAbort (C′→M): C′ sends the decryption key of the digital
coin to M or sends an abort message to end the transaction. After receiving the message
from M (step 5), C′ checks it. If it contains an abort statement, then C′ aborts the
transaction. If it contains the encrypted electronic product, then C′ validates it with
the encrypted electronic product received from TTP (step 1). If the product is valid,
C′ sends the decryption key for the digital coin, which has been encrypted with M’s
public key, along with a signed cryptographic checksum of the encrypted electronic
product received to M and then waits for the product decryption key by setting a timer.
If C′ does not receive the key within the time set, they will require TTP involvement
(as in Subsection 4.2.2). If the product is not valid, C′ requests the product once again
from M (step 4) or sends an abort statement with a signed cryptographic checksum of
the encrypted electronic product received to M.

7. sendBCoinByM or sendCAbort (M→B or M→C′): M sends B their identity and the
digital coin that they have signed, or M sends C′ an abort message to terminate the
transaction. On receiving the decryption key for the digital coin from C′, M checks B’s
signature on the coin and whether or not the amount received is equal to the price of
the product. If M is satisfied, M sends B their identity and the signed digital coin and
then sets a timer. If the timeout period expires, M sends B the message again. If M is
unsatisfied for any reason, M sends C′ an abort message to terminate the transaction.

8. sendMyes or sendMno (B→M): B sends M either ‘yes’ or ‘no’. Once B receives the
coin from M, B checks whether or not the coin has been spent. If the coin has been
spent, B sends M ‘no’. If the coin has not been spent, B credits M’s account with the
same amount of money as the digital coin and then sends M ‘yes’.
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9. sendCPDk or sendCAbort (M→C′): M sends the electronic product decryption key to
C′ after receiving ‘yes’ from B, or ends the transaction by sending an abort message
to C′ after receiving ‘no’ from B. On receiving the ‘yes’ message from B, M sends
the electronic product decryption key to C′. The decryption key is encrypted with C′

public key.

4.2.4 The optimistic anonymous extended protocol for handling misbe-
haviours and communication problems

This is an extended version of the optimistic anonymous protocol (Subsection 4.2.3). The
protocol in Subsection 4.2.3 is executed when there is no dispute between the exchange
parties. In this subsection, we present the description of the protocol’s extension to solve
any dispute between the merchant and the customer. Therefore, when misbehaviours and/or
communication problems occur, the extended protocol is initiated and TTP status is changed
to online during the protocol execution. The execution of the extended protocol is started
when the customer’s timer expires (after Step 6 in the optimistic anonymous protocol) and
the protocol does not reach completion status, or when customer receive an abort message or
an invalid product decryption key as a reply to Step 9.

A dispute resolution is initiated when a customer sends TTP an initiation message similar
to one in the extended basic protocol (Subsection 4.2.2) that it contains an evidence of
misbehaving. The misbehaviour scenarios solved by the extended protocol are illustrated as
follows (all texts in bold indicate the actions names employed in the PEPA models):

Merchant behaves improperly

Scenario 1: M sends an invalid product decryption key (Step 9 in the optimistic anonymous
protocol). The interaction actions for resolving this dispute are as follows:

1. seekingHelpFromTTP and then sendTTPinfo: C initiates the execution of the extended
protocol by seeking help from TTP. Then C sends an initiation message to TTP to seek
a resolution of the problem of receiving an invalid product decryption key.

2. validateCoinToB: TTP receives the customer’s dispute resolution request. Then it
starts to contact B to validate the coin.

3. sendTTPyes: B confirms that the coin is valid, which means that the customer play
fairly. Then TTP starts the following message to solve the dispute.
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4. askMForValidK: TTP orders M to send a valid product decryption key and then sets a
timer for M’s response.

5. sendTTPvalidK or timeoutTTP: M responds within the timeout period by sending the
valid product decryption key to TTP, or M does not respond and the timeout expires.

6. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP receives the valid
product decryption key from M, it forwards it to C. However, if TTP does not receive
the valid product decryption key within a specified timeout period, TTP sends C the
preserved product decryption key and then takes action against M.

Scenario 2: M sends an invalid product decryption key (Step 9 in the optimistic anonymous
protocol). The coin in this scenario is invalid. The interaction actions for resolving this
dispute are as follows:

1. seekingHelpFromTTP and then sendTTPinfo: C initiates the execution of the extended
protocol by seeking help from TTP. Then C sends an initiation message to TTP to seek
a resolution of the problem of receiving an invalid product decryption key.

2. validateCoinToB: TTP receives the customer’s dispute resolution request. Then it
starts to contact B to validate the coin.

3. sendTTPno: B confirms that the coin is invalid, which means that TTP needs to
investigate who spent the coin. Then, TTP starts the following message to solve the
dispute.

4. investigationInvalidCoinToB: TTP contacts B to investigate who spent the coin.

5. mspentTheCoinToTTP: B confirms that the coin is spent by M. Then, TTP starts the
following message to solve the dispute.

6. askMForValidK: TTP orders M to send a valid product decryption key and then sets a
timer for M’s response.

7. sendTTPvalidK or timeoutTTP: M responds within the timeout period by sending the
valid product decryption key to TTP, or M does not respond and the timeout expires.

8. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP receives the valid
product decryption key from M, it forwards it to C. However, if TTP does not receive
the valid product decryption key within a specified timeout period, TTP sends C the
preserved product decryption key and then takes action against M.
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Scenario 3: M disappears without sending a valid product decryption key (Step 9 in the
optimistic anonymous protocol). The interaction actions for resolving this dispute are as
follows:

1. cTimeoutExpired and then sendTTPinfo: C initiates the extended protocol by sending
an initiation message after the timeout period for receiving the decryption key has
expired.

2. validateCoinToB: TTP receives the dispute resolution request from customer. Then it
starts to contact B to validate the coin.

3. sendTTPyes: B confirms that the coin is valid, which means that the customer plays
fairly. Then TTP starts the following message to solve the dispute.

4. askMForValidK: TTP orders M to send a valid product decryption key and then sets a
timer for M’s response.

5. sendTTPvalidK or timeoutTTP: M responds within the timeout period by sending the
valid product decryption key to TTP, or M does not respond and the timeout expires.

6. forwardKtoC or sendCkByTTP and takeActionAgainstM: If TTP receives the valid
product decryption key from M, it forwards it to C. However, if TTP does not receive
the valid product decryption key within a specified timeout period, TTP sends C the
preserved product decryption key and then takes action against M.

Scenario 4: M claims that a valid product decryption key has not been sent because an
invalid coin’s decryption key has been received from C. The interaction actions for resolving
this dispute are as follows:

1. sendTTPreason: M responds to TTP by identifying the reason for not sending the
valid product decryption key to C after TTP contacts it to send a valid decryption key.

2. sendTTPvalidK: M must still send TTP the valid product decryption key.

3. sendMpKbyTTP and forwardKtoC: When TTP receives the valid product decryption
key from M, it sends M the valid coin decryption key and forwards the valid product
decryption key to C.
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Customer behaves improperly

In this case, after C sends TTP an initiation message for the extended protocol, TTP starts
contacting B to validate the coin. If the coin is invalid (sendTTPno), TTP then starts
contacting B to investigate who spent the coin (investigationInvalidCoinToB). If B confirms
that the customer is who spent the coin (cspentTheCoinToTTP), TTP will not forward the
valid product decryption key to C (discoverMisbehavingC).

4.3 PEPA models

This section presents our proposed PEPA models for the anonymous and failure resilient
fair-exchange e-commerce protocol. We proposed PEPA models for each version of the
protocol, as specified in the protocol specification Section 4.2.

4.3.1 A PEPA model of the basic failure resilient fair-exchange ecom-
merce protocol

This subsection presents PEPA model for the basic failure resilient fair-exchange ecommerce
protocol. This protocol is the basic protocol with no misbehaviour of any parties, as described
in Subsection 4.2.1. In our proposed PEPA model, there are three types of components:
customer (C), merchant (M) and trust third party (TTP). C and M are sequential components
whereas TTP is static component. The model comprises of three parts, one for each com-
ponent. C and M move sequentially from their different behaviours based on the activities
specified in the model. The model is formulated as follows:

Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M5

M2
def
= (sendMPT dk,rsendMPT dk).M3 +(sendMAbort,rsendMAbort).M4

M3
def
= (sendCPDk,rsendCPDk).M4

M4
def
= (complete,rcomplete).M0

M5
def
= (sendMAbort,rsendMAbort).M4

The above model component specifies M’s different behaviours, moving from M0 to M5.
When M is in state M0 (step 2 in the protocol’s description), M performs action sendMPO at
rate rsendMPO leading to M1. Then, in state M1 (step 3 in the protocol’s description), either
can happen action sendCEP at rate rsendCEP leading to M2 or action sendCAbort at rate
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rsendCAbort leading to M5. In state M2 (step 4), M can perform either action sendMPT dk at
rate rsendMPT dk leading to M3 or action sendMAbort at rate rsendMAbort leading to M4. Then,
in state M3 (step 5), the only action that happens is sendCPDk at rate rsendCPDk leading to
M4, which is the state when M acts complete at rate rcomplete leading back to M0, which it
means that the exchange between C and M has finished. The state M5 is when M performs
action sendMAbort due to performing action sendCAbort in state M1 leading to M4. This
is to keep smooth communication between M and C. Therefore, when M sends abort to C
(during state M1), C also sends abort to M (during state M5) and then moves to the last state
M4, to terminate the interaction. After M4, the behaviour returns to M0 so that the model
becomes cyclic and steady-state measures can be obtained.

Customer component

C0
def
= (download,rd).C1

C1
def
= (sendMPO,rsendMPO).C2

C2
def
= (sendCEP,rsendCEP).C3 +(sendCAbort,rsendCAbort).C6

C3
def
= (sendMPT dk,rsendMPT dk).C4 +(sendMAbort,rsendMAbort).C5

C4
def
= (sendCPDk,rsendCPDk).C5

C5
def
= (complete,rcomplete).C0

C6
def
= (sendMAbort,rsendMAbort).C5

The above component presents C’s different behaviours, moving from C0 to C6. The first
state is C0. It represents step 1 in the protocol’s description, see Subsection 4.2.1. It is the
state when C visits the TTP website and performs action download for a specific product at
rate rd leading to C1. Then, in state C1 (step 2 in the protocol’s description), the only action
happens sendMPO at rate rsendMPO leading to C2. In state C2 (step 3), one of two actions
can happen, either sendCEP at rate rsendCEP leading to C3 or sendCAbort at rate rsendCAbort

leading to C6. In state C3 (reflects step 4), there is one of two actions that can happen, either
sendMPT dk at rate rsendMPT dk leading to C4 or sendMAbort at rate rsendMAbort leading to C5.
In C4 (represents step 5 in the protocol’s description), sendCPDk can occur at rate rsendCPDk

leading to C5. The state C5 is a termination step when C performs action complete at rate
rcomplete leading back to C0 to finish the interaction and maybe use the product before starting
again. In state C6, C performs action sendMAbort at rate rsendMAbort to receive abort from
M as a result of performing action sendCAbort in state C2. Performing C6’s action leads to
C5. This step allows C to respond to M and starts the interaction again, providing correct
information.
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TTP component

T T P def
= (download,rd).T T P

In the model, TTP has only one state. In state T T P (represents step 1 in protocol’s de-
scription), the only action can happen is download at rate rd leading to the same state
T T P.

The system equation

The system equation and complete specification are given by

System def
= T T P[K]◃▹

J
C0[N]◃▹

L
M0[N]

Where J={download}, L={sendMPO, sendCEP, sendCAbort, sendMPTDk, sendMAbort,
sendCPDk, complete}, any action in the list J and L is a shared action between the components
specified in the system equation. N is the number instances of C and M copies in the system.
K is the number of TTPs. The three components are initially in the states T T P, C0 and M0.

Moreover, the number of M’s copies depends on the number of C. M can has multiple
copies, and each copy is associated with one C to serve it. This indicates that the rates of M’s
main activities are divided by the number of Cs that interact with it. M’s main activities are
sendCEP, sendCAbort and sendCPDk. The rates are calculated as follows:

rsendCEP =
rsendCEP1

N

rsendCAbort =
rsendCAbort1

N

rsendCPDk =
rsendCPDk1

N
N is the number of instances of the merchant component M, which is related to the

number of customers using M’s website. rsendCEP1, rsendCAbort1 and rsendCPDk1 are the rates
of M’s main activities.
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4.3.2 PEPA model of the extended failure resilient fair-exchange proto-
col

This subsection presents the proposed PEPA model for the basic protocol extension for han-
dling misbehaviours and communication problems. This extended protocol is executed when
the disputes occur, as described in Subsection 4.2.2. There are three types of components in
our proposed PEPA model: customer (C), merchant (M) and trust third party (TTP). C and
M are sequential components whereas TTP is static component. The PEPA model comprises
of three main parts, one for each component: M, C and TTP. The model is formulated as
follows:

Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M5

M2
def
= (sendMPT dk,rsendMPT dk).M3 +(sendMAbort,rsendMAbort).M4

M3
def
= (sendCPDk,rsendCPDk).M4 +(cTimeoutExpired,rcTimeout).M4

M4
def
= (complete,rcomplete).M0 +(askMForValidK,raskMForValidK).M6

M5
def
= (sendMAbort,rsendMAbort).M4

M6
def
= (sendT T PvalidK ,rsendT T PvalidK).M4 +(timeoutT T P,rtimeout1).M7

+ (sendT T Preason,rsendT T Preason).M8

M7
def
= (takeActionAgainstM,rtakeActionAgainstM).M4

M8
def
= (sendT T PvalidK,rsendT T PvalidK).M9

M9
def
= (sendMpKbyT T P,rsendMpKbyT T P).M4

The local states of the M component increase to 10 states compared to the M component
of the basic protocol presented in Subsection 4.3.1. This has similar states as in the basic
protocol described in Subsection 4.3.1 except from state M3. In M3, either sendCPDk occurs
at rate rsendCPDk leading to M4 or action cTimeoutExpired at rate rcTimeout leading also to M4,
which it reflects step 1 in scenario 2 in the protocol description, see Subsection 4.2.2. When
M is in state M4, M can perform either action complete if both parties are happy to finish the
interaction or action askMForValidK at rate raskMForValidK leading to M6 when misbehaviour
occurs (as described in step 2 of scenario 1 and 2). Then, in state M6 any of three actions
can happen;sendT T PvalidK at rate rsendT T PvalidK leading to M4, timeoutT T P at rate rtimeout1

leading to M7 or sendT T Preason at rate rsendT T Preason leading to M8 as described in step 3
in scenario 1 and 2 for the first two actions and in step 1 in scenario 3 for the last action. In
state M7, the only action happens is takeActionAgainstM at rate rtakeActionAgainstM leading
to M4, reflecting step 4 in both scenario 1 and 2, see Subsection 4.2.2. When M is in state
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M8, it can do action sendT T PvalidK at rate rsendT T PvalidK leading to M9. This reflects step
2 in scenario 3 in the protocol description. Then in state M9, the only action that happens is
sendMpKbyT T P at rate rsendMpKbyT T P leading to M4, as described in step 3 in scenario 3.

Customer component

C0
def
= (download,rd).C1

C1
def
= (sendMPO,rsendMPO).C2

C2
def
= (sendCEP,rsendCEP).C3 +(sendCAbort,rsendCAbort).C6

C3
def
= (sendMPT dk,rsendMPT dk).C4 +(sendMAbort,rsendMAbort).C5

C4
def
= (sendCPDk,rsendCPDk).C5 +(cTimeoutExpired,rcTimeoutExpired).C7

C5
def
= (complete,rcomplete).C0 +(seekingHel pFromT T P,rseekingHel p).C7

C6
def
= (sendMAbort,rsendMAbort).C5

C7
def
= (sendT T Pin f o,rsendT T Pin f o).C8

C8
def
= ( f orwardKtoC,r f orwardKtoC).C5 +(sendCkByT T P,rsendCkByT T P).C5

+ (discoverIncorrectK,rdiscoverIncorrectK).C5

The C component’s part of the model has similar states to the basic protocol PEPA model
except from state C4. Moreover, the local states of this component increases to 9 compared to
the basic protocol PEPA model presented in Subsection 4.3.1. In state C4, one of two actions
can happen either action sendCPDk in order to receive the product decryption key from M
leading to C5 or action cTimeoutExpired at rate rcTimeout leading to C7, as described in step 1
in scenario 2 (Subsection 4.2.2). In state C5, If C has not received a valid product decryption
key, action seekingHel pFromT T P happens at rate rseekingHel p leading to C7 (as described in
Subsection 4.2.2 in step 1 in scenario 1) otherwise action complete happens to finalise the
interaction. When C is in state C7 as a result of performing action cTimeoutExpired, the only
action that happens is sendT T Pin f o at rate rsendT T Pin f oleading to C8. This reflects step 1 in
scenario 2. Then, in state C8, either f orwardKtoC occurs at rate r f orwardKtoC, sendCkByT T P
at rate rsendCkByT T P or discoverIncorrectK at rate rdiscoverIncorrectKall of which lead to C5

to finish the interaction. The first two actions reflect step 4 in both scenario 1 and 2
whereas action discoverIncorrectPT K is a result of customer misbehaviour of sending
invalid payment decryption key so TTP will not forward the valid product decryption key to
C as described in Subsection 4.2.2.
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TTP component

T T P def
= (download,rd).T T P+(sendT T Pin f o,rsendT T Pin f o).T T P
+ (askMForValidK,raskMForValidK).T T P+(timeoutT T P,rtimeoutT T P).T T P
+ (discoverIncorrectK,rdiscoverIncorrectK).T T P
+ ( f orwardKtoC,r f orwardKtoC).T T P+(sendCkByT T P,rsendCkByT T P).T T P
+ (takeActionAgainstM,rtakeActionAgainstM).T T P
+ (sendMpKbyT T P,rsendMpKbyT T P).T T P+(sendT T Preason,rsendT T Preason).T T P

The last part of the model is the TTP component. The TTP has more actions to
control the interaction between the other two components and to resolve the dispute be-
tween them compared to the PEPA model of the basic protocol presented in Subsection
4.3.1. There is just one state. The TTP’s main actions to resolve the misbehaviour are
askMForValidK, timeoutT T P, discoverIncorrectK, f orwardKtoC, takeActionAgainstM
and sendMpKbyT T P, as described in the protocol description, see Subsection 4.2.2. The
rates of those actions are controlled by TTP.

The system equation

The system equation and complete specification are given by

System def
= T T P[K]◃▹

R
(C0[N]◃▹

L
M0[N])

Where R={download, sendTTPinfo, askMForValidK, timeoutTTP, sendTTPvalidK, dis-
coverIncorrectK, forwardKtoC, sendCkByTTP, takeActionAgainstM, sendMpKbyTTP, sendT-
TPreason}, L={sendMPO, sendCEP, cTimeoutExpired, sendCAbort, sendMPTDk, sendMAb-
ort, sendCPDk, complete}, any action in the list R and L is a shared action between the
components specified in the system equation. N is the number of C and M copies in the
system. K is the number of TTPs. The three components are initially in the states T T P, C0

and M0.
In this PEPA model of the extended protocol, the number of actions is larger than in the

basic protocol. The service rates of all the main actions carried out by M depend on the
number of Cs interacting with M. M’s main actions are sendCEP, sendCAbort, sendCPDk,
sendT T Preason, and sendT T PvalidK. So, each service rate is divided by the number of Cs
interacting with M, as in the basic protocol:

rsendCEP =
rsendCEP1

N

rsendCAbort =
rsendCAbort1

N
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rsendCPDk =
rsendCPDk1

N

rsendT T Preason =
rsendT T Preason1

N

rsendT T PvalidK =
rsendT T PvalidK1

N
Where N is M copies instances which is related to the number of customers using M’s

website. rsendCEP1, rsendCAbort1, rsendCPDk1, rsendT T Preason1 and rsendT T PvalidK1 are the rates
of M’s main activities.

Furthermore, the service rates of all TTP actions depend on the number of both Cs and
TTPs interacting with each other. TTP’s main actions are f orwardKtoC, sendCkByT T P,
download, askMForValidK, takeActionAgainstM, discoverIncorrectPT K, and sendMpKb-
yT T P. One, two or more TTPs can be involved in the protocol [62]. Thus, each service rate
can be calculated as follows:

rd =
(rdownload

N

)
∗K

r f orwardKtoC =
(r f orwardKtoC1

N

)
∗K

rsendCkByT T P =
(rsendCkByT T P1

N

)
∗K

raskMForValidK =
(raskMForValidK1

N

)
∗K

rtakeActionAgainstM =
(rtakeActionAgainstM1

N

)
∗K

rsendMpKbyT T P =
(rsendMpKbyT T P1

N

)
∗K

rdiscoverIncorrectK =
(rdiscoverIncorrectK1

N

)
∗K

Where N is the number of customer and K is the number of TTP instances. rdownload ,
r f orwardKtoC1, rsendCkByT T P1, raskMForValidK1, rtakeActionAgainstM1, rsendMpKbyT T P1 and
rdiscoverIncorrectK1 are the rates of the TTP’s main actions.

4.3.3 PEPA model of the optimistic anonymous protocol

This subsection presents the proposed PEPA model for the optimistic anonymous protocol.
This version of the protocol ensures that customer privacy is protected from any other parties,
as presented in Subsection 4.2.3. The following PEPA model is for the optimistic anonymous
protocol when there is no dispute between M and C. The proposed PEPA model contains four
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components; Merchant (M), Customer (C), Trust Third Party (TTP) and Bank (B). In our
PEPA model, M and C are sequential components whereas TTP and B are static components.
The model comprises four main parts, one for each component: M, C, TTP and B. The model
is formulated as follows:

Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M8

M2
def
= (sendMCoinDk,rsendMCoinDk).M3 +(sendMAbort,rsendMAbort).M6

M3
def
= (startContactB,rstartContactB).M3a +(sendCAbort,rsendCAbort).M8

M3a
def
= (sendBCoinByM,rsendBCoinByM).M4

M4
def
= (sendMyes,rsendMyes).M5 +(sendMno,rsendMno).M7

M5
def
= (sendCPDk,rsendCPDk).M6

M6
def
= (complete,rcomplete).M0

M7
def
= (sendCAbort,rsendCAbort).M8

M8
def
= (sendMAbort,rsendMAbort).M6

The above part of the model is for the M component. The first two states are the same
as states M0 and M1 described in the previous protocol models. The states M0 and M1

reflect step 4 and 5 of the optimistic anonymous protocol description presented in Subsection
4.2.3, respectively. In the state M2, one of two actions can happen either sendMCoinDk at
rate rsendMCDk leading to M3 if a customer receives an encrypted product or sendMAbort
at rate rsendMAbort leading to M6 if the customer is not satisfied. This state reflects step 6
of the optimistic anonymous protocol description. When M reaches state M3, one of two
actions happen either startContactB at rate rstartContactB leading to M3a if M is satisfied with
the amount of the digital coins or sendCAbort at rate rsendCAbort leading to M8 if M is not
satisfied, as described in step 7. In state M3a, the only action can happen is sendBCoinByM
at rate rsendBCByM. In state M4, either action can be performed sendMyes at rate rsendMyes

leading to M5 to have a confirmation from the bank that the coins are valid or sendMno at rate
rsendMno leading to M7 in order to send an abort to the customer when M has a confirmation
from the bank that the coins are invalid, as described in step 8. Then, in state M5, the only
action that happens is sendCPDk at rate rsendCPDk leading to M6, which is the state when M
acts complete at rate rcomplete leading back to M0, which it means that the exchange between
C and M has finished. M5 reflects step 9 in the protocol description.
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Customer component

C0
def
= (download,rd).C1

C1
def
= (requestBDigitalCoins,rrequestBDC).C2

C2
def
= (sendCDigitalCoins,rsendCDC).C3

C3
def
= (sendMPO,rsendMPO).C4

C4
def
= (sendCEP,rsendCEP).C5 +(sendCAbort,rsendCAbort).C8

C5
def
= (sendMCoinDk,rsendMCDk).C6 +(sendMAbort,rsendMAbort).C7

C6
def
= (sendCPDk,rsendCPDk).C7 +(sendCAbort,rsendCAbort).C8

C7
def
= (complete,rcomplete).C0

C8
def
= (sendMAbort,rsendMAbort).C7

The different states of the C component are formulated above. After C performs
action download in C0, it moves to C1. In state C1, the only action that happens is
requestBDigitalCoins at rate rrequestBDC in order to request a digital coin from the bank
leading C1to C2, as described in step 2. Then in state C2, there is only one action that can
happen: sendCDigitalCoins at rate rsendCDC to get the digital coin from the bank leading to
C3, as described in step 3 in Subsection 4.2.3. The states C3and C4 are the same as states C1

and C2 described in previous protocol models. They reflect step 4 and 5 in the description of
this protocol, respectively. Then when C reaches C5, one of two possible actions happens
either sendMCoinDk at rate rsendMCDk leading to C6 when C gets valid encryption product
or sendMAbort at rate rsendMAbort leading to C7 when C gets invalid encryption product M
during state C4, as described in step 6. The states C6, C7 and C8are similar to states C4, C5

and C6 in the basic protocol model presented in Subsection 4.3.1, respectively. State C6
reflects step 9 of the optimistic anonymous protocol description.

TTP component

T T P def
= (download,rd).T T P

In this model, TTP has only one state. In state T T P, the only action could happen is
download at rate rd leading to the same state T T P. This reflects step 1 in the protocol’s
description.

Bank component

B def
= (requestBDigitalCoins,rrequestBDC).B+(sendCDigitalCoins,rsendCDC).B
+ (sendBCoinByM,rsendBCByM).B+(sendMyes,rsendMyes).B
+ (sendMno,rsendMno).B
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The last part of the model is for the B component. There is just one state which is B. The
B’s main actions to support the purchase processes between C and M are sendCDigitalCoins,
sendMyes and sendMno as described in step 3 and 8 of the optimistic anonymous protocol
description. The rates of those actions are controlled by B.

The system equation

The system equation and complete specification are given by

System def
= T T P[K]◃▹

R
(C0[N]◃▹

L
M0[N])◃▹

M
B[S]

Where the cooperation sets R={download}, L={sendMPO, sendCEP, sendCAbort, sendM-
CoinDk, sendMAbort, sendCPDk, complete}, and M={requestBDigitalCoins, sendCDigital-
Coins, sendMno, sendBCoinByM, sendMyes}, any action in list R, L and M is shared actions
between the components specified in the system equation. N is the number of customers and
merchant copies on the system, K is the number of TTPs, S is the number of Bs. The four
components are initially in the states T T P, C0, M0 and B.

Moreover, the rates of all the main actions carried out by M depend on the number of
Cs interacting with M. The M’s main actions are sendCEP, sendCAbort, startContactB,
sendBCoinByM and sendCPDk. So, each rate is divided by the number of Cs interacting
with M, as in the basic and extended protocols, as described in Subsections 4.3.1 and 4.3.2.

Furthermore, the service rate of all actions for B – sendCDigitalCoins, sendMno, and
sendMyes – is dependent on the number of Cs, Ms and Bs involved in the interaction. One,
two or more Bs can be involved in the protocol to serve C and M. So, each rate is calculated
as follows:

rsendCDC =
(rsendCDigitalCoins1

N

)
∗S

rsendMno =
(rsendMno1

N

)
∗S

rsendMyes =
(rsendMyes1

N

)
∗S

Where S is the number of financial institutions and N is the number of customers and
merchant copies. rsendCDigitalCoins1, rsendMno1 and rsendMyes1 are the rates of the B’s main
actions.
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4.3.4 PEPA models of the extended optimistic anonymous protocol

This subsection presents three proposed PEPA models for the optimistic anonymous protocol
extension for handling misbehaviours and communication problems. This extended protocol
is executed when the disputes occur between the parties, as described in Subsection 4.2.4.
We provide three different PEPA models based on different scenarios. The first PEPA model
presented is a basic extended optimistic anonymous protocol to solve the misbehaving event
between M and C parties. The second PEPA model is similar to the first one but with
probabilities of M misbehaving. The third model is a PEPA model comprises two types of C
interacting with M. One type of Cs is honest C and one is misbehaving C.

The PEPA models comprise of four main components. The four components are Merchant
(M), Customer (C), Trust Third Party (TTP) and Bank (B). In the PEPA models, M, C and
TTP are sequential components whereas B is a static component. Unlike the previous PEPA
models, TTP component becomes a sequential component to effectively interact and solve
the dispute between M and C in this extended protocol.

PEPA model for the extended optimistic anonymous protocol

The extended PEPA model for the extended optimistic anonymous protocol is formulated as
follows:

Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M8

M2
def
= (sendMCoinDk,rsendMCoinDk).M3 +(sendMAbort,rsendMAbort).M6

M3
def
= (startContactB,rstartContactB).M3a +(sendCAbort,rsendCAbort).M8

M3a
def
= (sendBCoinByM,rsendBCoinByM).M4

M4
def
= (sendMyes,rsendMyes).M5 +(sendMno,rsendMno).M7

M5
def
= (sendCPDk,rsendCPDk).M6 +(cTimeoutExpired,rcTimeoutExpired).M6

M6
def
= (complete,rcomplete).M0 +(askM f orValidK,raskM f orValidK).M9

M7
def
= (sendCAbort,rsendCAbort).M8

M8
def
= (sendMAbort,rsendMAbort).M6

M9
def
= (sendT T PvalidK,rsendT T PvalidK).M6 +(timeoutT T P,rtimeoutT T P).M10

+ (sendT T Preason,rsendT T Preason).M11

M10
def
= (takeActionAgainstM,rtakeActionAgainstM).M6

M11
def
= (sendT T PvalidK,rsendT T PvalidK).M12

M12
def
= (sendMpkbyT T P,rsendMpkbyT T P).M6
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The local states of the M component increased to fourteen states compared to the protocol
without a dispute between M and C (Subsection 4.3.3). This model has similar states as in
the optimistic anonymous protocol described in Subsection 4.3.3 except from state M6 which
is when the dispute occurs and M has been asked for a valid product decryption key. Then
appropriate actions based on the specified rate are followed to solve the dispute between M
and C.

Customer component

C0
def
= (download,rd).C1

C1
def
= (requestBDigitalCoins,rrequestBDC).C2

C2
def
= (sendCDigitalCoins,rsendCDC).C3

C3
def
= (sendMPO,rsendMPO).C4

C4
def
= (sendCEP,rsendCEP).C5 +(sendCAbort,rsendCAbort).C8

C5
def
= (sendMCoinDk,rsendMCDk).C6 +(sendMAbort,rsendMAbort).C7

C6
def
= (sendCPDk,rsendCPDk).C7 +(sendCAbort,rsendCAbort).C8

+ (cTimeoutExpired,rcTimeoutExpired).C9

C7
def
= (complete,rcomplete).C0 +(seekingHel pFromT T P,rseekingHel p).C9

C8
def
= (sendMAbort,rsendMAbort).C7

C9
def
= (sendT T Pin f o,rsendT T Pin f o).C10

C10
def
= ( f orwardKtoC,r f orwardKtoC).C7 +(sendCkByT T P,rsendCkByT T P).C7

+ (discoverMisbehavingC,rdiscoverMisbehavingC).C7

The above component presents C’s different behaviours, moving from C0 to C10. In this
model, the local states of C increased to eleven compared to the model without misbehaviour
between C and M. This also has similar states as in the optimistic anonymous protocol
(Subsection 4.3.3) except from state C6 which when the dispute occurs and/or C’s timeout
expired. Then C seeks help form TTP and sends some evidence to TTP to solve the problem.
Then, the appropriate actions based on the specified rate are followed to solve the dispute
between M and C, as presented in the model.
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TTP component

T T P0
def
= (download,rd).T T P0 +(sendT T Pin f o,rsendT T Pin f o).T T P1

T T P1
def
= (validateCoinToB,rvr).T T P2

T T P2
def
= (sendT T Pyes,ryes).T T P3 +(sendT T Pno ,rno).T T P7

T T P3
def
= (askM f orValidK,raskM f orValidK).T T P4

T T P4
def
= (sendT T PvalidK,rsendT T PvalidK).T T P5a +(timeoutT T P,rtimeoutT T P).T T P6

+ (sendT T Preason,rsendT T Preason).T T P4a

T T P4a
def
= (sendT T PvalidK,rsendT T PvalidK).T T P5

T T P5
def
= (sendMpkbyT T P,rsendMpkbyT T P).T T P5a

T T P5a
def
= ( f orwardKtoC,r f orwardKtoC).T T P0

T T P6
def
= (sendCkByT T P,rsendCkByT T P).T T P8

T T P7
def
= (investigationInvalidCoinToB,rinvestigationInvalidCoinToB).T T P9

T T P8
def
= (takeActionAgainstM,rtakeActionAgainstM).T T P0

T T P9
def
= (cspentT heCoinToT T P,rcspentT heCoin).T T P10

+ (mspentT heCoinToT T P,rmspentT heCoin).T T P3

T T P10
def
= (discoverMisbehavingC,rdiscoverMisbehavingC).T T P0

In this model, TTP becomes a sequential component and has thirteen states compared to
TTP component in previous PEPA models. TTP moves from states T T P0 to T T P10 to solve
the dispute between C and M. The number of actions increased and are preformed based on the
specified rates in order for TTP to involve in the interaction and provide a fair resolution for
the disputed parties. TTP’s main actions are download, validateCoinToB, askM f orValidK,
timeoutT T P, sendMpkbyT T P, f orwardKtoC, sendCkByT T P, investigationInvalidCoinT -
oB, takeActionAgainstM and discoverMisbehavingC. TTP controls the rates of those ac-
tions.

Bank component

B def
= (requestBDigitalCoins,rrequestBDC).B+(sendCDigitalCoins,rsendCDC).B
+ (sendBCoinByM,rsendBCByM).B+(sendMyes,rsendMyes).B
+ (sendMno,rsendMno).B+(cspentT heCoinToT T P,rcspentT heCoin).B
+ (mspentT heCoinToT T P,rmspentT heCoin).B+(validateCoinToB,rvc).B
+ (sendT T Pyes,ryes).B+(sendT T Pno,rno).B
+ (investigationInvalidCoinToB,rinvestigationInvalidCoinToB).B

The last part of the model is for B component. As in the optimistic anonymous proto-
col model, B just has one state. In this model, B’s actions increased compared to the B
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component in the previous model. The B’s main actions to support the purchase processes
between the components C and M are sendCDigitalCoins, sendMyes and sendMno and to
support the dispute resolution are sendT T Pyes, sendT T Pno, cspentT heCoinToT T P and
mspentT heCoinToT T P as described in the scenarios of the extended optimistic anonymous
protocol specification (Subsection 4.2.4). The rates of these actions are controlled by B.

The system equation, The system equation and complete specification are given by

System def
= T T P[K]◃▹

R
(B[S]◃▹

M
(C0[N]◃▹

L
M0[N]))

Where the cooperation sets R={download, sendTTPinfo, validateCoinToB, sendTTPyes,
sendTTPno, askMforValidK, sendTTPvalidK, timeoutTTP, sendTTPreason, sendMpkbyTTP,
forwardKtoC, sendCkByTTP, investigationInvalidCoinToB, takeActionAgainstM, cspent-
TheCoinToTTP, mspentTheCoinToTTP, discoverMisbehavingC}, M={requestBDigitalCoins,
sendCDigitalCoins, sendMno, sendBCoinByM, sendMyes} and L={sendMPO, sendCEP,
sendCAbort, sendMCoinDk, sendMAbort, sendCPDk, complete, cTimeoutExpired}, any
action in the lists R, L and M is shared action between the components specified in the system
equation. N is the number of customers and merchant copies on the system, K is the number
of TTPs, S is the number of Bs. The four components are initially in the states T T P0, C0, M0

and B.
Furthermore, like all the previous PEPA models, the service rates of all the main actions

carried out by M depend on the number of Cs interacting with M. The M’s main actions are
sendCEP, sendCAbort, startContactB, sendBCoinByM, sendCPDk, sendT T PvalidK and
sendT T Preason. Also, the service rates of all the main actions of B are calculated based
on the number of C and M’s copies as well as the number of Bs involved in the interaction,
as described in Subsection 4.3.3. The B’s main actions are sendCDigitalCoins, sendMno,
sendMyes, mspentT heCoinToT T P, cspentT heCoinToT T P, sendT T Pyes and sendT T Pno.
Further, the service rates of all TTP’s main actions depend on the number of both Cs
and TTPs interacting with each other, as mentioned in Subsection 4.3.2. TTP’s main ac-
tions are f orwardKtoC, download, sendCkByT T P, askMForValidK, takeActionAgainstM,
discoverIncorrectPT K, sendMpKbyT T P, validateCoinToB, sendMpkbyT T P and investig-
ationIvalidCoinToB.

Alternative PEPA model for the extended optimistic anonymous protocol with probabil-
ities distribution of misbehaviour

The extended PEPA model with the probabilities of M misbehaviour is formulated as follows:
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Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M8

M2
def
= (sendMCoinDk,rsendMCoinDk).M3 +(sendMAbort,rsendMAbort).M6

M3
def
= (startContactB,rstartContactB).M3a +(sendCAbort,rsendCAbort).M6

M3a
def
= (sendBCoinByM,rsendBCoinByM).M4

M4
def
= (sendMyes,rsendMyes).M5 +(sendMno,rsendMno).M7

M5
def
= (sendCPDk,rsendCPDk).M6 +(cTimeoutExpired,rcTimeoutExpired).M6

M6
def
= (complete,rcomplete).M0 +(askM f orValidK,raskM f orValidK).M9

M7
def
= (sendCAbort,rsendCAbort).M6

M8
def
= (sendMAbort,rsendMAbort).M6

M9
def
= (sendT T PvalidK,rsendT T PvalidK).M6 +(timeoutT T P,rtimeoutT T P).M10

+ (sendT T Preason,rsendT T Preason).M11

M10
def
= (takeActionAgainstM,rtakeActionAgainstM).M6

M11
def
= (sendT T PvalidK,rsendT T PvalidK).M12

M12
def
= (sendMpkbyT T P,rsendMpkbyT T P).M6

The states and actions of M in this model are similar to those in the previous PEPA model
except in state M3 and M7. In these states, the merchant can send customer abort and then
move to M6 instead of moving to M8. So merchant just sent an abort message without the
necessity to receive an abort from the customer, if the merchant is not satisfied.

Customer component

C0
def
= (download,rd).C1

C1
def
= (requestBDigitalCoins,rrequestBDC).C2

C2
def
= (sendCDigitalCoins,rsendCDC).C3

C3
def
= (sendMPO,rsendMPO).C4

C4
def
= (sendCEP,rsendCEP).C5 +(sendCAbort,rsendCAbort).C8

C5
def
= (sendMCoinDk,rsendMCDk).C6 +(sendMAbort,rsendMAbort).C7

C6
def
= (sendCPDk, p∗ rsendCPDk).C7 +(sendCPDk,(1− p)∗ rsendCPDk).C9

+ (sendCAbort, p∗ rsendCAbort).C7 +(sendCAbort,(1− p)∗ rsendCAbort).C9

+ (cTimeoutExpired, p∗ rcTimeoutExpired).C7

+ (cTimeoutExpired,(1− p)∗ rcTimeoutExpired).C9

C7
def
= (complete,rcomplete).C0

C8
def
= (sendMAbort,rsendMAbort).C7
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C9
def
= (sendT T Pin f o,rsendT T Pin f o).C10

C10
def
= ( f orwardKtoC,r f orwardKtoC).C7 +(sendCkByT T P,rsendCkByT T P).C7

+ (discoverMisbehavingC,rdiscoverMisbehavingC).C7

The above component represents C’s different behaviours which are similar to the C
component in the previous PEPA model except for state C6. In C6, we introduced a probability
of M misbehaving in the actions rates as the customer is the one who always initiates contact
with TTP seeking dispute resolution. p indicates the probability that C will receive an honest
or satisfactory response from M (assuming M is honest), and (1− p) indicates the probability
that C will receive an invalid or no response from M (assuming M is misbehaving). When
C receives an invalid or no response from M, C will initiate contact with TTP to resolve
the dispute. Therefore, in C6, there are 6 actions could happen either sendCPDk at rate
rsendCPDk ∗ p moving to C7, sendCPDk at rate rsendCPDk ∗ (1− p) moving to C9 to seek a
dispute resolution form TTP, sendCAbort at rate rsendCAbort ∗ p moving to C7, sendCAbort at
rate rsendCAbort ∗ (1− p) moving to C9, cTimeoutExpired at rate rcTimeoutExpired ∗ p moving
to C7 or cTimeoutExpired at rate rcTimeoutExpired ∗ (1− p) moving to C9.

TTP and B components, TTP and B components have the same states and actions as TTP
and B components in the previous PEPA model.

The system equation, The system equation is the same as the equation in the previous
model.

Alternative PEPA model for the extended optimistic anonymous protocol when an
honest M interacts with two types of C

This subsection proposes a PEPA model presenting honest M’s copies interacting with two
types of C; honest C and misbehaving C. In this model, we introduced two honest M. Each
M has the appropriate states and behaviours to interact with one type of customer. The
model comprises six main parts: two Ms, two Cs, one TTP and one B. The PEPA model is
formulated as follows:

Merchant component

M0
def
= (sendMPO,rsendMPO).M1

M1
def
= (sendCEP,rsendCEP).M2 +(sendCAbort,rsendCAbort).M8

M2
def
= (sendMCoinDk,rsendMCoinDk).M3 +(sendMAbort,rsendMAbort).M6
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M3
def
= (startContactB,rstartContactB).M3a +(sendCAbort,rsendCAbort).M8

M3a
def
= (sendBCoinByM,rsendBCoinByM).M4

M4
def
= (sendMno,rsendMno).M5 +(sendMno,rsendMno).M7

M5
def
= (cTimeoutExpired,rcTimeoutExpired).M6

M6
def
= (complete,rcomplete).M0

M7
def
= (sendCAbort,rsendCAbort).M6

M8
def
= (sendMAbort,rsendMAbort).M6

The above part of the model presents the different states and actions of the honest
merchant when interacting with the misbehaving customer. In state M5, M does not send C
the product decryption key when M is informed by B that the coin is invalid during the state
M4. This means that C is playing unfairly.

The following part of the model from M00 to M08 shows the different states and actions
of the honest merchant when interacting with an honest customer. The two parts have the
same actions and states except for state M5 and M05 which have different actions to deal with
different customer type.

M00
def
= (sendMPO,rsendMPO).M01

M01
def
= (sendCEP,rsendCEP).M02 +(sendCAbort,rsendCAbort).M08

M02
def
= (sendMCoinDk,rsendMCoinDk).M03 +(sendMAbort,rsendMAbort).M06

M03
def
= (startContactB,rstartContactB).M03a +(sendCAbort,rsendCAbort).M08

M03a
def
= (sendBCoinByM,rsendBCoinByM).M04

M04
def
= (sendMyes,rsendMyes).M05 +(sendMno,rsendMno).M07

M05
def
= (sendCPDk,rsendCPDk).M06

M06
def
= (complete,rcomplete).M00

M07
def
= (sendCAbort,rsendCAbort).M06

M08
def
= (sendMAbort,rsendMAbort).M06

Customer component

C0
def
= (download,rd).C1

C1
def
= (requestBDigitalCoins,rrequestBDC).C2

C2
def
= (sendCDigitalCoins,rsendCDC).C3

C3
def
= (sendMPO,rsendMPO).C4

C4
def
= (sendCEP,rsendCEP).C5 +(sendCAbort,rsendCAbort).C8

C5
def
= (sendMCoinDk,rsendMCDk).C6 +(sendMAbort,rsendMAbort).C7

C6
def
= (sendCAbort,rsendCAbort).C9

+ (cTimeoutExpired,rcTimeoutExpired).C9
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C7
def
= (complete,rcomplete).C0

C8
def
= (sendMAbort,rsendMAbort).C7

C9
def
= (sendT T Pin f o,rsendT T Pin f o).C10

C10
def
= (discoverMisbehavingC,rdiscoverMisbehavingC).C7

The above part of the model from C0 to C10 are the different states and actions for a
misbehaving customer. In state C6, the only two actions that could happen are sendCAbort
or cTimeoutExpired, which lead to state C9 seeking help from TTP. So the misbehaving
customer does not get the product decryption key from M as a result of their misbehaviour.

The following part of the model is for the honest customer different behaviours, moving
from C00 to C08. This part of the model is the same as the C component in the PEPA model
of the optimistic primitive protocol when there is no dispute between the two parties.

C00
def
= (download,rd).C01

C01
def
= (requestBDigitalCoins,rrequestBDC).C02

C02
def
= (sendCDigitalCoins,rsendCDC).C03

C03
def
= (sendMPO,rsendMPO).C04

C04
def
= (sendCEP,rsendCEP).C05 +(sendCAbort,rsendCAbort).C08

C05
def
= (sendMCoinDk,rsendMCDk).C06 +(sendMAbort,rsendMAbort).C07

C06
def
= (sendCAbort,rsendCAbort).C08 +(sendCPDk,rsendCPDk).C07

C07
def
= (complete,rcomplete).C00

C08
def
= (sendMAbort,rsendMAbort).C07

TTP component

T T P0
def
= (download,rd).T T P0 +(sendT T Pin f o,rsendT T Pin f o).T T P1

T T P1
def
= (validateCoinToB,rvr).T T P2

T T P2
def
= (sendT T Pno,rno).T T P3

T T P3
def
= (investigationInvalidCoinToB,rinvestigationInvalidCoinToB).T T P4

T T P4
def
= (cspentT heCoinToT T P,rcspentT heCoin).T T P5

T T P5
def
= (discoverMisbehavingC,rdiscoverMisbehavingC).T T P0

The TTP component contains just 6 states to solve the dispute between an honest M
and a misbehaving C. The TTP checks the validation of the coin with B during T T P1.
The B informs TTP that the coin is invalid during T T P2. In state T T P3, TTP performs
investigationInvalidCoinToB at rate rinvestigationInvalidCoinToB to investigate on who spent the
digital coin. In state T T P4 and T T P5, TTP performs cspentT heCoinToT T P and discoverMis-
behavingC, respectively. TTP discovers that C plays unfairly.
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Bank component

B def
= (requestBDigitalCoins,rrequestBDC).B+(sendCDigitalCoins,rsendCDC).B
+ (sendBCoinByM,rsendBCByM).B+(sendMyes,rsendMyes).B
+ (sendMno,rsendMno).B+(cspentT heCoinToT T P,rcspentT heCoin).B
+ (validateCoinToB,rvc).B+(sendT T Pno,rno).B
+ (investigationInvalidCoinToB,rinvestigationInvalidCoinToB).B

The last part of the model is for the B component which has only one state. In this model,
B performs nine actions. B’s main actions to support the purchase processes between the
components C and M are sendCDigitalCoins, sendMyes and sendMno and to support the
dispute resolution are sendT T Pno and cspentT heCoinToT T P. The rates of these actions
are controlled by B.

The system equation, The system equation and complete specification are given by

System def
= T T P[K]◃▹

R
(B[S]◃▹

M
(C0[Y ]◃▹L M0[Y ]||C00[N−Y ]◃▹

I
M00[N−Y ]))

Where the cooperation sets R={download, sendTTPinfo, validateCoinToB, sendTTPno, in-
vestigationInvalidCoinToB, cspentTheCoinToTTP, discoverMisbehavingC}, M={requestBD-
igitalCoins, sendCDigitalCoins, sendMno, sendBCoinByM, sendMyes} and L={sendMPO,
sendCEP, sendCAbort, sendMCoinDk, sendMAbort, complete, cTimeoutExpired}, I={sendM-
PO, sendCEP, sendCAbort, sendMCoinDk, sendMAbort, sendCPDk, complete}, any action
in list R, L, I and M is shared action between the components specified in the system equation.
N is the number of clients and merchant copies on the system, Y is a number of misbehaving
customers and an honest merchant copies interacting in the system. K is the number of TTPs,
S is the number of Bs. The six components are initially in state T T P0, C0, C00, M0, M00 and
B.
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4.4 Numerical results

This section presents the evaluation results of the proposed PEPA models.

4.4.1 Performance evaluation of the basic failure resilient fair-exchange
protocol model

In this subsection, the evaluation of PEPA models proposed in Subsection 4.3.1 is presented.
We evaluate and study some aspects of the system performance using the ordinary differential
equations (ODEs) method. The investigation seeks to calculate the average response time of
the merchant that customers will observe, population-level during some states and throughput
analyses of some main actions. We apply steady state analysis to calculate the average
response time and transient analysis to derive the population level and throughput. We
assigned 1 to the rate of all actions except the rate rcomplete is assigned 0.01 to allow the
customer waits before starting again. The M’s actions rates are calculated based on the
number of customers M interacts with (as mentioned in Subsection 4.3.1).

Fig. 4.3 The average response time of M1 and M3 using ODE.

Figure 4.3 shows clearly how increasing the number of customers affected the merchant’s
average response time for the actions sendCEP, sendCAbort, and sendCPDk. M1 and M3

are the states of a merchant when performing these actions to respond to customers during
the interaction course.
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Figures 4.4 and 4.5 shows the population level analysis that shows the average number
of C’s copies in state C2 and C4 waiting to receive a response from M. In the state C2, the
customers wait to receive a response from M to receive the encrypted product or abort. In the
state C4, the customers wait to receive the product decryption key.

Fig. 4.4 The population level analysis using ODE with K=100 and N=100.

Fig. 4.5 The population level analysis using ODE with K=100 and N=400.
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The average number of copies of C2 and C4 increased when N (the number of C and
M copies) was increased from 100 to 400. Figure 4.5 shows that having larger customer
population size causes the system to take longer time to reach the steady state compared to
Figure 4.4. Moreover, more customers waiting to be served in C2 than in C4. This means that
some customers abort the process and would not reach the state C4.

Figures 4.6 and 4.7 illustrate the throughput values for sendCAbort, sendCEP and
sendCPDk actions which are the M’s main actions to response to and serve C. The actions
sendCAbort and sendCEP have the same throughput values whereas action sendCPDk has
lower values which mean some customers abort the interaction before the stage where the
product decryption key is sent. Further, the larger the customer population size, the longer
time it takes the system to stabilise and reach a steady state.

Fig. 4.6 The throughput analysis using ODE with K=100 and N=100.
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Fig. 4.7 The throughput analysis using ODE with K=100 and N=400.

4.4.2 Performance evaluation of the extended failure resilient fair ex-
change protocol model

In this subsection, we seek to investigate the average response time of merchant, population-
level and throughput analyses when TTP involve in the interaction to solve the dispute
between the parties. The rate of all actions is 1 except the rate rcomplete is assigned 0.01.
M’s actions rates are calculated based on the number of customers that M interacts with, as
mentioned in Subsection 4.3.2.

The average merchant response times are calculated through M1 and M3 behaviours
using ODE. M1 and M3 are the main states when M is responding to serve the customers in
the system. Figure 4.8 shows that the average response time of M1 is slightly larger when
misbehaviour occurred compared to the average response time of M1 when no misbehaviour
occurred, as shown in Figure 4.3. In Figure 4.8, the average response time of M1 is larger and
significantly increasing when the number of customers is increased. Whereas the average
response time of M3 is low and slightly increasing when the number of customer increases.
Also, the average response times of M3 are lower compared to M3 when no misbehaviour
occurred, as shown in Figure 4.3. We believe this is because a large number of customers are
seeking for resolving the dispute from TTP.
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Fig. 4.8 The average response time of M1 and M3 using ODE and K=20.

Figures from 4.9 to 4.14 show the population level analysis that shows the average number
of customers in C2 and C4 waiting to have a response from M and in C8 waiting to get a
dispute resolution from TTP in relation to different population size of customers (N) and
TTP (K).

Figures 4.9 and 4.10 show that the average number of C’s copies in the states C2 and C4

waiting to receive a response from M is decreased when the disputes happen and the TTPs
involve solving the disputes compared to the average number of C’s copies in the states C2

and C4 when there are no disputes between C and M, as shown in Figures 4.4 and 4.5.
Moreover, Figures from 4.9 to 4.14 clearly illustrate when the number of K (the number

of TTP) increases, the number of customers in C8 decreased. This suggests that the more
TTPs participated in the protocol, the better the performance of the extended protocol would
be. Figure 4.11 shows the increasing number of C8 copies when the number of TTP is 20
whereas the number of C8 copies is decreased when number of TTP increased to 50, as
shown in Figure 4.12. However, in Figure 4.13, when the number of customers in the system
becomes larger (400) and the number of TTPs involved in solving the disputes remain 50,
this creates loads for TTPs and increases the number of customers waiting to receive the
dispute resolution in C8.
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Fig. 4.9 The population level analysis for C2, C4 and C8 using ODE with K=100 and N=100.

Fig. 4.10 The population level analysis for C2, C4 and C8 using ODE with K=100 and N=400.
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Fig. 4.11 The population level analysis for C2, C4 and C8 using ODE with K=20 and N=100.

Fig. 4.12 The population level analysis for C2, C4 and C8 using ODE with K=50 and N=100.
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Fig. 4.13 The population level analysis for C2, C4 and C8 using ODE with K=50 and N=400.

Fig. 4.14 The population level analysis for C2, C4 and C8 using ODE with K=200 and N=400.

Figures from 4.15 to 4.22 show the throughput values of the six actions, which are
sendCAbort, sendCEP, sendCPDk, discoverIncorrectPT K, f orwardKtoC and sendCkByT T P,
and how having different population sizes of K and N could affect the throughput values of
these actions.
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Figures 4.15, 4.16, 4.17 and 4.18 show the throughput values for sendCAbort, sendCEP
and sendCPDk actions, which are the M’s main actions to respond to and serve C. You can
notice from the graphs that the first two actions have the same throughput values. In contrast,
action sendCPDk has extremely low values, indicating the misbehaviour that occurred
from M. Moreover, the figures clearly show the throughput improvement for sendCAbort,
sendCEP actions when the number of TTPs is larger. This is because in our model the
customers first download the encrypted product from TTP to validate the encrypted product
received from M before sending the payment token decryption key.

Fig. 4.15 The throughput analysis for sendCAbort, sendCEP and sendCPDk using ODE
with K=20 and N=100.
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Fig. 4.16 The throughput analysis for sendCAbort, sendCEP and sendCPDk using ODE
with K=50 and N=100.

Fig. 4.17 The throughput analysis for sendCAbort, sendCEP and sendCPDk using ODE
with K=50 and N=400.
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Fig. 4.18 The throughput analysis for sendCAbort, sendCEP and sendCPDk using ODE
with K=200 and N=400.

Figures 4.19, 4.20, 4.21 and 4.22 illustrate the throughput values for discoverIncorrectPT -
K, f orwardKtoC and sendCkByT T P, which are the main actions of TTP to resolve the
dispute between C and M. As you can see from the figures, the throughput values of all
three actions have the same values. Graphs reveal that more customers asked for a resolution
from TTPs for misbehaviour during the interaction between the customer and the merchant.
The throughput of the actions increased when the number of TTP increased. Therefore, we
believe that having more TTPs to serve the customers would mitigate the performance cost.
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Fig. 4.19 The throughput analysis for discoverIncorrectPT K, f orwardKtoC and send-
CkByT T P using ODE with K=20 and N=100.

Fig. 4.20 The throughput analysis for discoverIncorrectPT K, f orwardKtoC and send-
CkByT T P using ODE with K=50 and N=100.
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Fig. 4.21 The throughput analysis for discoverIncorrectPT K, f orwardKtoC and send-
CkByT T P using ODE with K=50 and N=400.

Fig. 4.22 The throughput analysis for discoverIncorrectPT K, f orwardKtoC and send-
CkByT T P using ODE with K=200 and N=400.
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4.4.3 Performance evaluation of the optimistic anonymous protocol

This investigation also seeks to calculate the average response times of M. We assigned 1 as
a value for all rates. However, the main actions of M are calculated based on the number of
customers in the system. The average response times of M1 and M5 in relation to the number
of customers is presented in Figure 4.23. The figure clearly shows that the average response
time of M1 and M5 increased when the number of customers increased. Moreover, the
average response times of M1 and M5 are larger when introducing the customer’s anonymous
feature on this protocol compared to the average response times of M1 and M3 of the basic
protocol without this feature in Figure 4.3 in Subsection 4.4.1. For instance, in Figure 4.23,
when the protocol preserves anonymity and the customer number is 1000, the response
time of M1 is 960.97 time units, which is longer than the response time of M1 when the
protocol does not preserve anonymity; the response time of M1 is 499.99 time units, as shown
in Figure 4.3. M1 and M5 in this protocol are same as M1 and M3 in the basic protocol,
respectively. Additionally, Figures 4.3 and 4.23 indicate that M5’s response time is slightly
longer than M3’s response time. Therefore, adding such a feature to the protocol would add
more performance overhead to the system.

Fig. 4.23 The average response time of M1 and M5 using ODE (K=20 and S=20).

The following graphs are the population level analysis for the average number of cus-
tomers in C4 and C6 for having a service from M and in C2 for having a service from B to get
a digital coin. C4 is the state when the customer waiting to receive the encrypted product or
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abort from M. C6 is the state when the customer is waiting for the product decryption key or
abort from M.

In Figures 4.24, 4.25 and 4.26, we changed the number of the banks involved in the C
and M interaction from 5 in Figure 4.24, to 20 in Figure 4.25, and then to 50 in Figure 4.26
whereas the number of customer and TTP are 100 and 20, respectively. The Figures show a
decrease in the average number of C2 copies when the number of B is increased.

Then, in Figure 4.27, we increased the number of TTP to 50, which did not show
significant change except the peak of C2 and C4 for just a short period of time. Moreover, the
figures show a significant increase in the number of customers who are waiting to receive the
product decryption key or abort (C6 copies) from M when the number of bank is relatively
small, as in Figure 4.24, compared to C6 copies when the number of B is larger, as in Figures
4.25 and 4.26.

Then, in Figures 4.28 and 4.29, we increased the number of customer to 400 and kept
TTP’s to 50 whereas the number of banks are 50 in Figure 4.28 and 100 in Figure 4.29. The
Figures also show a decrease in the average number of C2 copies. Then, in Figure 4.30, we
increased the number of TTP to 100, which did not also show significant change except the
peak of C2 and C4 for just a short period of time. This is because there is no dispute between
the parties.

Fig. 4.24 The population level analysis for C2, C4 and C6 using ODE with K=20, N=100 and
S=5.
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Fig. 4.25 The population level analysis for C2, C4 and C6 using ODE with K=20, N=100 and
S=20.

Fig. 4.26 The population level analysis for C2, C4 and C6 using ODE with K=20, N=100 and
S=50.
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Fig. 4.27 The population level analysis for C2, C4 and C6 using ODE with K=50, N=100 and
S=50.

Fig. 4.28 The population level analysis for C2, C4 and C6 using ODE with K=50, N=400 and
S=50.
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Fig. 4.29 The population level analysis for C2, C4 and C6 using ODE with K=50, N=400 and
S=100.

Fig. 4.30 The population level analysis for C2, C4 and C6 using ODE with K=100, N=400
and S=100.

Figures 4.24 to 4.30 illustrate how increasing the number of B involved in the protocol
caused the average number of C2 copies to decrease. This suggests that the more Bs are
involved in the protocol, the better the performance of the protocol would be. Moreover, more
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customers are in C6 than C4 for a service from M; this is because M needs to check the digital
coins with B before sending the product decryption key. Increasing the number of Bs and
having a reasonable number of TTP involved in the system would mitigate the performance
cost if the system has a large number of customers to serve. Further, this would cause the
system to settle faster and reach a steady-state during a shorter time period, as shown in
Figures 4.24, 4.25, 4.28 and 4.29. In Figure 4.24, the system reached the steady-state at
4125.383 time units when the number of bank is 5 whereas in Figure 4.25 the system reached
the steady-state at 1233.198 time units when the number of banks increased to 20. Moreover,
when the number of customers in the system is larger, the system reached the steady-state
at 7262.322 time units when the number of banks is 50 (Figure 4.29) whereas the system
reached the steady-state at 4073.783 time units when the number of banks increased to 100
(Figure 4.30).

Furthermore, in Figure 4.30, the number of customers who are waiting to receive the
product decryption key or abort (C6 copies) form M is larger compared to the number of
customers who are waiting to receive the product decryption key or abort (C4 copies) when
the customer’s anonymity feature does not exist in the protocol, as shown in Figure 4.5. For
example, at 900 time-units, when the protocol keeps the anonymity feature, the population
level of C6 is 234.37 (as illustrated in Figure 4.30), which is greater than the population level
of C4 (C4 = 128.98, as illustrated in Figure 4.5) when the protocol does not have this feature.

The following graphs, Figures 4.31 to 4.34, illustrate the throughput of sendCAbort,
sendCDigitalCoins, sendCEP, and sendCPDk actions. They show throughput values of the
main actions to serve the customers in this protocol in relation to the different population size
of K, N and S. They illustrate how increasing the number of customers (N) would significantly
impact the actions throughput. The throughput values of action sendCPDk are the lowest
values in all graphs compared to the other actions. Moreover, action sendCDigitalCoins
has the largest throughput values in all graphs. We believe this is because components are
moving sequentially from state to state and customer needs first to download product from
TTP website and then action sendCDigitalCoins have to be performed for all customers to
be able to perform other actions. Thus increasing the number of Bs involved in the protocol
could improve the protocol performance. Also, having a reasonable number of TTP in the
system would influence the throughput of all actions. Actions sendCAbort and sendCEP
have started with relatively similar values and then sendCEP action’s throughput value
becomes larger.
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Fig. 4.31 The throughput analysis for sendCAbort, sendCDigitalCoins, sendCEP and
sendCPDk using ODE with K=20, N=100 and S=5.

Fig. 4.32 The throughput analysis for sendCAbort, sendCDigitalCoins, sendCEP and
sendCPDk using ODE with K=20, N=100 and S=20.
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Fig. 4.33 The throughput analysis for sendCAbort, sendCDigitalCoins, sendCEP and
sendCPDk using ODE with K=50, N=400 and S=50.

Fig. 4.34 The throughput analysis for sendCAbort, sendCDigitalCoins, sendCEP and
sendCPDk using ODE with K=50, N=600 and S=50.
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4.4.4 Performance evaluation of the extended optimistic anonymous
protocol

The basic extended optimistic anonymous protocol

The average response times of M and TTP, we seek to calculate the average response
times of M and TTP to serve C. We assigned 1 as a value for all rates. The main actions of M
are calculated based on the number of customers in the system and the main actions of TTP
are calculated based on the number of customers and TTP in the system, as mentioned in
Subsection 4.3.4.

Fig. 4.35 The average response time of M1 and M5 using ODE.

Figure 4.35 shows the merchant’s average response time in case of the TTP involvement to
solve the dispute between the customer and the merchant. The M1 and M5 are the behaviour
of sending to a customer the encrypted product and the decryption key of the product,
respectively. The average response time of M1 is large and significantly increased when the
number of customers is increased, whereas M5 has low average response times numbers. We
believe this result is because many customers are seeking help from TTP for resolving the
dispute. Further, unlike the extended failure resilient fair-exchange protocol, this extended
optimistic anonymous protocol preserves customer anonymity, introducing more performance
overhead in a protocol when the dispute occurs. Starting from C requesting and receiving
a digital coin from B, then M needs to contact B to check the validity of the digital coins
before responding to the customer to provide a product decryption key and finally when a
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dispute occurs, TTP also needs to contact B to check the validity of the digital coin and/or
investigate on who spent the digital coin before starting to solve the dispute between C and
M. Figures 4.36 and 4.37 show the average response time of some of TTP’s state to serve the
customer and solve the dispute by sending/forwarding the product decryption key or discover
a misbehaving customer.

Fig. 4.36 The average response time of T T P5a, T T P6 and T T P10 using ODE, K=20, S=20.

In Figure 4.36, the number of TTP involved in the system is 20 and we change the number
of customers from 200 to 1000 to show how increasing the number of the customer seeking
help from TTP would impact the performance of the protocol. The average response time of
TTP for all main states (T T P5a, T T P6 and T T P10) to solve the dispute is the same. Having a
large number of customers significantly increases the average response time of TTPs which
creates more performance overhead. However, in Figure 4.37, the number of TTP increased
to 60 which decreases the response time in relation to the number of customers in the system
compared to Figure 4.36. Therefore, having a larger number of TTPs involved in the protocol
when the dispute occurs between C and M mitigates the security protocol’s performance
overhead.
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Fig. 4.37 The average response time of T T P5a, T T P6 and T T P10 using ODE, K=60, S=20.

The population level and throughput analysis, we seek to investigate the population
level analysis for the average number of customers in C4 and C6 for having a service from M,
C2 for having a digital coin from B, and C9 and C10 for interacting and having a service from
TTP to get a dispute resolution.

Fig. 4.38 The population level analysis using ODE with K=20, N=100 and S=20.
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Figure 4.38 shows the population level of C2, C4, C6 and C10 when the number of TTP
(K), C and M copies (N) and bank (S) are 20, 100 and 20, respectively. The average number
of customer in C6 is significantly decreased compared to C6 copies in Figure 4.25 when there
is no dispute. This is because the customer’s timeout expired before receiving the product
encryption key. The rate of cTimeoutExpired is larger than the rate of the other actions in
the same state. Moreover, some customer is waiting to receive a dispute resolution from TTP
in C10. However, there is a slight decrease in the average number of customer in C4 and no
change in the average number of customer in C2 compared to C4 and C2 in Figure 4.25 when
there is no dispute.

In the following experiments, we changed the rate values of the actions sendCAbort,
sendMAbort and cTimeoutExpired to show how this would affect the system performance.
The number of customers (C) interacting with the merchant (M) is 200.

First experiment in this experiment, the rate of aborting the customer request (for action
sendCAbort) is decreased to be slower than the actions of the merchant to send the customer
an encrypted product and to send the customer the product encryption key. The rate of
sendCAbort action is calculated based on the number of customers interacting with the
merchant. It is calculated as follows:

rsendCAbort1 = 0.5,rsendCAbort = 0.5/N,

rsendCAbort = 0.5/200 = 0.0025

Where N is the number of customer and merchant copies.
Moreover, we assumed that it is more likely that the merchant sends the customer the

valid encrypted product, so the customer will not send him an abort message (sendMAbort
action). So the rate of a customer to abort is decreased to 0.5.

Furthermore, we assumed that it is more likely that the customer will receive a response
from the merchant before its timeout expired, so the rate of cTimeoutExpired action should
be lower than the other optional actions in state C6. Therefore, we assigned 0.001 to the rate
of cTimeoutExpired action.

The following figures show the population level analysis for C4 and C6 for having a
service from M, and C9 and C10 for interacting and having a service from TTP for solving
the dispute.
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Fig. 4.39 The population level analysis using ODE with K=20, N=200 and S=20.

Fig. 4.40 The population level analysis using ODE with K=60, N=200 and S=20.



4.4 Numerical results 115

Fig. 4.41 The population level analysis using ODE with K=60, N=200 and S=40.

Figures 4.39 to 4.41 show how increasing the number of TTP would have a positive
influence on decreasing the copies of C10 whereas increasing the number B would have a
significant effect on decreasing the copies of C6 as M needs to check the validity of coin
before sending C the decryption key. However, no clear change happened to the copies of C9,
which is when the customer starts sending the evidence of M misbehaving to TTP. Moreover,
increasing the number of TTP and B involved in the system would make the system reach
the stable state faster than having a lower number of these resources. The steady-states of
the system are 1930.478, 1874.386 and 1708.432 time units in Figures 4.39, 4.40 and 4.41,
respectively.

The following figures are the throughput analysis of some main actions related to the
customer (C) when gets a service and interacts with M, B and TTP. cTimeoutExpired,
sendCAbort, sendCEP, sendCPDk are the actions when the customer interacts with M.
sendCDigitalCoins is the action when the customer gets digital coins from B. discoverMisbeh-
avingC, f orwardKtoC, seekingHel pFromT T P, sendCkByT T P, sendT T Pin f o are actions
when the customer gets services from TTP to solve the disputes between C and M.

Figures 4.42 to 4.44 show a clear improvement in the actions throughput of a service
that customers get from TTP, M and B and the faster settlement of the system when the
number of TTP and B increased. Moreover, the throughput of sendCEP action is larger
then sendCAbort in Figures 4.42(a), 4.43(a) and 4.44(a). This reflects our purpose in this
experiment that M is more likely to send the customers the encrypted product than an abort.
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(a) (b)

Fig. 4.42 The throughput analysis of the actions using ODE with K=20, N=200 and S=20.

(a) (b)

Fig. 4.43 The throughput analysis of the actions using ODE with K=60, N=200 and S=20.

(a) (b)

Fig. 4.44 The throughput analysis of the actions using ODE with K=60, N=200 and S=40.

Second experiment now the rate values of the actions sendCAbort, sendMAbort and
cTimeoutExpired are increased and be larger than the other action rates in the same states.
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Therefore, the rate of aborting the customer request (for action sendCAbort) is increased to
be faster than the actions of the merchant to send the customer an encrypted product and to
send the customer the product encryption key. The rate of sendCAbort action is calculated
based on the number of customers interacting with the merchant. It is calculated as follows:

rsendCAbort1 = 2,rsendCAbort = 2/N,

rsendCAbort = 2/200 = 0.01

Where N is the number of customer and merchant copies.
Moreover, we assumed that it is more likely that the merchant does not send the customer

the valid encrypted product, so the customer will send him an abort message (sendMAbort
action). So the rate of a customer to abort is increased to 2.

Furthermore, we assumed that it is more likely that the customer’s timeout expired before
receiving a response from the merchant, so the rate of cTimeoutExpired action should be
larger than the other optional actions in state C6. Therefore, we assigned 0.009 to the rate of
cTimeoutExpired action.

The following figures show the population level analysis for C4 and C6 for having a
service from M, and C9 and C10 for interacting and having a service from TTP for solving
the dispute. Figure 4.45 shows the fluctuation that the system experienced on the number
of copies of all the states (C4, C6, C9 and C10) when the rates of sendCAbort, sendMAbort
and cTimeoutExpired are increased. However, these fluctuations are disappeared when the
number of TTP and B involving in the system increased, Figure 4.46 and 4.47. Moreover,
the C10 copies increase in all figures compared to the C10 copies in Figures 4.39, 4.40 and
4.41 when the rates of these actions are lower. This indicates that many disputes occurred.
Further, C6 copies are less in Figures 4.45, 4.46 and 4.47 compared to C6 copies in 4.39, 4.40
and 4.41, respectively. This means larger number of customers contacted TTP to solve the
disputes.

Also when we increased the number of both B and TTP, the system reached the steady-
state at 904.277 time units, Figure 4.47. However, the system reached the steady-state in
Figure 4.45 at 1922.812 time units and in Figure 4.46 at 2976.602 time units. The TTP also
needs to contact B to solve the disputes between C and M. Therefore, increasing the number
of both B and TTP will make the system reaches the steady-state faster.
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Fig. 4.45 The population level analysis using ODE with K=20, N=200 and S=20.

Fig. 4.46 The population level analysis using ODE with K=60, N=200 and S=20.
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Fig. 4.47 The population level analysis using ODE with K=60, N=200 and S=40.

The following figures are the throughput analysis of some main actions related to the
customer (C) when gets a service and interacts with M, B and TTP. cTimeoutExpired,
sendCAbort, sendCEP, sendCPDk are the actions when the customer interacts with M.
sendCDigitalCoins is the action when the customer gets digital coins from B. discoverMisbeh-
avingC, f orwardKtoC, seekingHel pFromT T P, sendCkByT T P, sendT T Pin f o are actions
when the customer gets services from TTP to solve the disputes between C and M.

Figures 4.48 to 4.50 show a clear improvement in the actions throughput of a service that
customers get from TTP, M and B and the faster settlement of the system when the number
of TTP and B are increased. Figure 4.48 show a clear fluctuation that the system experienced
on the throughput of the actions. Moreover, the throughput of sendCAbort action is larger
then sendCEP in Figures 4.48(a), 4.49(a) and 4.50(a). Furthermore, Figures 4.48(b), 4.49(b)
and 4.50(b) shows how increasing the number of both TTP and B have a clear increase on
the throughput of the TTP actions when response to Cs requests to solve the disputes.
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(a) (b)

Fig. 4.48 The throughput analysis of the actions using ODE with K=20, N=200 and S=20.

(a) (b)

Fig. 4.49 The throughput analysis of the actions using ODE with K=60, N=200 and S=20.

(a) (b)

Fig. 4.50 The throughput analysis of the actions using ODE with K=60, N=200 and S=40.
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The extended optimistic anonymous protocol with probabilities distribution of misbe-
haviour

We are interested in investigating the population level analysis of C4, C6, C9 and C10 (C4 and
C6 for having a service from M and C9 and C10 for interacting and having a service from
TTP) and throughput analysis of some main actions that provide service to C. Both analyses
are studied in relation to different probabilities of M to be honest and the population number
of Cs and M’s copies. We assigned 1 as a value for all rates. The main actions of M are
calculated based on the number of customers in the system and the main actions of TTP
are calculated based on the number of customers and TTP in the system, as mentioned in
Subsection 4.3.4.

In Figures 4.51 and 4.52, the probabilities for M to be honest are changed from p = 0.1 to
p = 0.9, the number of TTP is 20, the number of C and M’s copies is 200 and the number of
banks is 20. Figure 4.51 shows how increasing the probabilities of M to be honest has a clear
effect on decreasing the number of C10 copies. So less customers seek dispute resolution.
However, the number of C in C4 and C6 does not experience any change but there are more Cs
in C6 waiting to get a decryption key for the encrypted product than in C4 to get an encrypted
product. Figure 4.52 illustrates the significant decrease in the throughput of the TTP’s actions
that provide the dispute resolution when the probabilities of M to be honest is increasing. We
believe this is because fewer customers are seeking help from TTP.

Fig. 4.51 The population level analysis using ODE with K=20, N=200 and S=20 in relation
to different probabilities of M to be honest.
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Fig. 4.52 The throughput analysis of actions using ODE with K=20, N=200 and S=20 in
relation to different probabilities of M to be honest.

In Figures 4.53 and 4.54, the number of C and M’s copies (N) is increased to 600.
Increasing the number of Cs in a system has a clear impact on the population level and
the actions’ throughputs. Just like Figure 4.51, Figure 4.53 shows how increasing the
probabilities of M to be honest has a clear effect on decreasing the average number of C10

as fewer customers seek a dispute resolution. Also, the number of Cs in C4 and C6 does not
experience any change, but more Cs in C6 waiting to get a decryption key for the encrypted
product than in C4 to get an encrypted product. However, increasing the number of Cs in
the system does not significantly impact C9 and C10. The impact is clearly on C4 and C6,
compared to C4 and C6 in Figure 4.51.

Moreover, Figure 4.54 shows the decrease in the throughput of the TTP’s actions that
provide the dispute resolution when the probabilities of M to be honest is increasing. We
believe this is because fewer customers are seeking help from TTP. Moreover, all actions have
a clear reduction on their throughput when we increased the number of C. The throughput of
the TTP’s actions are less than the throughput of the TTP’s actions in Figure 4.52 when the
the number of Cs in a system is 200. Therefore, more customers in the system will have an
affect on the TTP’s responses.
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Fig. 4.53 The population level analysis using ODE with K=20, N=600 and S=20 in relation
to different probabilities of M to be honest.

Fig. 4.54 The throughput analysis of actions using ODE with K=20, N=600 and S=20 in
relation to different probabilities of M to be honest.

Figure 4.55 shows how faster the system settled in relation to the population number of
Cs and M’s copies and the probabilities of M to be honest. The larger the population number
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is and the less probability of M to be honest is, the longer time will be taken for the system
to settle.

Fig. 4.55 The steady-state detection time in relation to the population number (N=200 and
N=600).

Now we interested in changing the rates of the shared actions between M and B. The
shared actions between M and B are rsendBCoinByM, rsendMyes and rsendMno. We
increased and decreased the rates to show how these would have an impact on the system
performance. First, the shared actions rates between M and B decreased to r=0.2 and r=0.5.
Then they increased to r=2 and r=4. The rates are calculated depend on the number of N and
S involved in the system, as follows:

rsendBCoinByM = r/N
rsendMyes = (r/N)∗S
rsendMno = (r/N)∗S

Where N is the number of Cs and M’s copies and S is the number of banks.
The following figures show the population level analysis of C4 and C6 for having a service

from M and C9 and C10 for interacting and having a service from TTP. The probability for M
to be honest is changed from p = 0.1 to p = 0.9. Figures 4.56 and 4.57 illustrate that when
the shared actions rates between M and B to check the C’s digital coin’s validity are slow, C
experiences a big delay in receiving a product decryption key. There are large waiting Cs
in C6. In Figures 4.56 and 4.57, you can notice that the population levels of C9 and C10 are
slightly decreased. We believe this is because more Cs waiting in C4 and C6 to be served
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before moving to C9 and C10. So the faster the rate, the less delay would be, as shown in
Figure 4.58 and 4.59. Moreover, Figures 4.58 and 4.59 show a significant increase in the
population levels of C10.

Fig. 4.56 The population level analysis using ODE with K=20, N=200 and S=20 when r=0.2.

Fig. 4.57 The population level analysis using ODE with K=20, N=200 and S=20 when r=0.5.
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Fig. 4.58 The population level analysis using ODE with K=20, N=200 and S=20 when r=2.

Fig. 4.59 The population level analysis using ODE with K=20, N=200 and S=20 when r = 4.

In Figures 4.60, 4.61, 4.62 and 4.63, we change the number of Cs and M’s copies to 600.
This creates even more delay that Cs need to wait to receive a response from M during state
C6, compared to when N=200 in Figure 4.56, 4.57, 4.58 and 4.59. Moreover, increasing these
actions’ rates mitigates the negative influence to some points till it loses its control when the
probability of M to be honest increases, as illustrated in Figures 4.62 and 4.63.
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Fig. 4.60 The population level analysis using ODE with K=20, N=600 and S=20 when r=0.2.

Fig. 4.61 The population level analysis using ODE with K=20, N=600 and S=20 when r=0.5.
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Fig. 4.62 The population level analysis using ODE with K=20, N=600 and S=20 when r=2.

Fig. 4.63 The population level analysis using ODE with K=20, N=600 and S=20 when r=4.

Figure 4.64 shows the throughput of some main actions to serve a customer. These
actions are discoverMisbehavingC, f orwardKtoC, sendCkByT T P and sendT T Pin f o to
interact and seek a help form TTP and sendCAbort, sendCEP and sendCPDk to get a service
form M and cTimeoutExpired. In Figure 4.64, the probabilities for M to be honest are
changed from p = 0.1 to p = 0.9, the number of TTP is 20, the number of C and M’s copies
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is 200 and the number of banks is 20. The shared actions rates between M and B decreased
to r = 0.2 and r = 0.5 and then increased to r = 2 and r = 4. The rates are calculated based
on the number of N and S involved in the system, as mentioned in this subsection.

Figure 4.64 illustrates a significant decrease in the throughput of the TTP’s actions that
provide the dispute resolution when M’s probabilities to be honest are increasing in all Sub
figures. The TTP’s actions are discoverMisbehavingC, f orwardKtoC, sendCkByT T P and
sendT T Pin f o. We believe this is because fewer customers are seeking help from TTP when
M’s probabilities to be honest are higher. Moreover, there is a considerable improvement
in all actions’ throughputs when the shared actions rates between M and B to check the C’s
digital coin’s validity are higher.

(a) r = 0.2 (b) r = 0.5

(c) r = 2 (d) r = 4

Fig. 4.64 The throughput analysis using ODE with K=20, N=200 and S=20 and with different
rates for the shared actions between M and B.

The extended optimistic anonymous protocol when honest Ms interacts with two types
of Cs

In this subsection, we explore our third proposed PEPA model presented in Subsection
4.3.4. In this model, the honest Ms copies interact with two types of customers: honest and
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misbehaving. Thus we evaluated the model providing a different population of honest and
misbehaving customers to study how this would impact the system performance. We are
interested in investigating the population level and the throughput analyses as performance
measures. We assigned 1 as a value for all action rates. The main actions of M are calculated
based on the number of customers in the system, and the main actions of TTP are calculated
based on the number of customers and TTP in the system, as mentioned in Section 4.3.4.

We are interested in the population level analysis of C4, C6, C04, C06, C9 and C10 states.
C4 and C6 are the states of misbehaving customer waiting to be served by M. C04 and C06 are
the states of the honest customer to have a service from M. C9 and C10 are the states when
C sends TTP a request to solve the dispute and receives a response from TTP, respectively.
Further, we provide the throughput analysis of some actions of M and TTP to serve the
customers when the system deals with different populations of honest and misbehaving
customers.

First, the number of TTP and Bs in the system are assigned to 20 for both. Figure 4.65
shows the population level analysis using ODE when the number of customers is 100 and
10 of them are misbehaving customers. Figure 4.66 shows the population level analysis
using ODE when the number of customers is 100 and 90 of them are misbehaving customers.
Comparing the results of the two figures, when the number of misbehaving customers
increased, this would trigger the load on TTP to increase, causing the waiting customer on
C10 to increase. Also, the number of honest customers waiting on C06 to receive the product
decryption key is larger in Figure 4.65 compared to the number of misbehaving customers
waiting on C6 in Figure 4.66 to receive a response from M. This is because misbehaving
customers would seek a dispute resolution from TTP.



4.4 Numerical results 131

Fig. 4.65 The population level analysis using ODE with K=20, N=100 and S=20 (10 misbe-
having customers).

Fig. 4.66 The population level analysis using ODE with K=20, N=100 and S=20 (90 misbe-
having customers).

Figures 4.67 and 4.68 present the throughput analysis of some actions to serve the
customers from M and TTP when the number of misbehaving customers in the system
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is 10 and 90, respectively. In Figure 4.67, when the number of honest customers larger
in the system, the throughput of action sendCPDk is larger than the throughput of action
sendCPDk in Figure 4.68 when we have just 10 honest customers in the system. This
means more honesty customers are waiting to receive the product decryption key from the
honest Merchant. Further, you could see clearly that the throughput values of the actions
cTimeoutExpired, sendT T Pin f o, cspendT heCoinToT T P, and discoverMisbehavingC are
larger in Figure 4.68 when we have a larger number of misbehaving customer in the system,
compared to Figure 4.67.

Fig. 4.67 The throughput analysis of actions using ODE with K=20, N=100 and S=20 (10
misbehaving customers).
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Fig. 4.68 The throughput analysis of actions using ODE with K=20, N=100 and S=20 (90
misbehaving customers).

Second, we increased the number of the customer population to 500 and kept the number
of TTP and Bs in the system to 20 to see how having a relatively small number of resources
would influence the system performance. Figure 4.69 shows the population level when the
number of misbehaving customers is 50, which is 10% of the total population. Compared to
Figure 4.65, when the number of customers is 100 and 10% of them misbehaving, there are
a large variance between C4 and C6, and C04 and C06 for a much longer time. Furthermore,
increasing the population to 500 causes the system to take a much longer time to settle
and reached a steady state. Figure 4.70 shows the population level when the number of
misbehaving customers is 450, which is 90% of the total population. Having a larger number
of misbehaving customer would cause the system to fluctuate for quite a long time, compared
to Figure 4.69.

Figures 4.71 and 4.72 present the throughput analysis of some actions to serve the cus-
tomers from M and TTP when the number of misbehaving customers in the system is 50 and
450, respectively. Figure 4.72 shows the fluctuation in the throughput values of sendCAbort,
sendCEP, sendT T Pin f o, cspendT heCoinToT T P, and discoverMisbehavingC actions when
the population number is 500 and 90% of them are misbehaving, compared to Figure 4.71
when just 10% of the population are misbehaving. Further, It shows the system takes a longer
time to settle.
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Fig. 4.69 The population level analysis using ODE with K=20, N=500 and S=20 (50 misbe-
having customers).

Fig. 4.70 The population level analysis using ODE with K=20, N=500 and S=20 (450
misbehaving customers).
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Fig. 4.71 The throughput analysis of actions using ODE with K=20, N=500 and S=20 (50
misbehaving customers).

Fig. 4.72 The throughput analysis of actions using ODE with K=20, N=500 and S=20 (450
misbehaving customers).

Moreover, we seek to investigate how increasing the number of resources such as TTP
and Bs would mitigate the performance cost. Figure 4.73 shows the population level when
the number of misbehaving customers is 450, which is 90% of the total population, and the
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number of TTP in the system is increased to 100. The fluctuation that the system experienced
has disappeared, compared to Figure 4.70. However, increasing the number of Bs to 40 has a
significant improvement in the population level, causing them to decrease much quicker, as
seen in Figure 4.74. Therefore having a reasonable number of resources in relation to the
number of customers in the system could mitigate the performance cost introduced by the
protocol behaviours.

Further, Figures 4.75 and 4.76 show the throughput analysis of the same actions as in
Figure 4.72. They show how increasing the resources would improve the throughput values
of the actions and cause the system to settle faster.

Fig. 4.73 The population level analysis using ODE with K=100, N=500 and S=20 (450
misbehaving customers).
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Fig. 4.74 The population level analysis using ODE with K=100, N=500 and S=40 (450
misbehaving customers).

Fig. 4.75 The throughput analysis of actions using ODE with K=100, N=500 and S=20 (450
misbehaving customers).
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Fig. 4.76 The throughput analysis of actions using ODE with K=100, N=500 and S=40 (450
misbehaving customers).

4.5 Conclusion

This investigation considers a type of e-commerce fair-exchange protocol called an anony-
mous and failure resilient fair-exchange e-commerce protocol [62], which is a type of a
non-repudiation security protocol implemented during e-commerce transactions. In an elec-
tronic commerce environment, two or more parties interact with each other to exchange
products. These types of security protocols have been developed to ensure fair exchange
between participants and that no party can take advantage over the other party. We proposed
PEPA models for the anonymous and failure resilient fair-exchange e-commerce protocol
which is proposed by Ray et al. [62]. We formulated the PEPA models in different ways
based on the description provided by Ray et al. to have a complete understanding of the
protocol’s behaviours. The models are then evaluated based on different scenarios, which
help achieve an in-depth understanding of protocol behaviour and the associated performance
costs.

The results indicated that the basic failure protocol without an anonymity feature intro-
duced lower performance cost than when the protocol preserved the anonymity of customer
which introduced extra performance cost. Furthermore, when there is a dispute between
participants so that TTP involvement is active, this would introduce extra load on TTP
and/or Bs which in turn would influence the system performance. Moreover, we showed
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how scaling up TTP and/or B resources to handle escalating misbehaving party mitigates a
negative impact on the system performance.

4.6 Chapter Summary

This chapter explores the performance cost introduced by a security protocol known as
an anonymous and failure resilient fair-exchange e-commerce protocol. Following the
description provided by Ray et al. in [62], the PEPA models were formulated in two different
ways: with and without an anonymity feature. Moreover, both protocol versions were also
modelled in two ways: as a basic protocol with no misbehaviour of any parties whereby it
does not require the active involvement of TTP, and as an extended protocol whereby the
involvement of TTP is essential to resolving disputes between participants. These enable
understanding the protocol’s behaviour, evaluating the performance cost it introduces and
showing how adding more security features, such as anonymity, introduces extra performance
overhead. We evaluated and studied some aspects of the system performance using the
ordinary differential equations (ODEs). Understanding the behaviour of these protocols and
the performance cost they introduce could enable the development of lightweight ecommerce
protocols. This study uses a PEPA Eclipse plug-in to support the creation and evaluation of
the proposed PEPA models.

In this chapter, we have begun to model how a user of the system can misbehave. We
extend this idea in the following chapter by introducing explict models of the misbehaving
person/attacker. We investigate systems under attack by developing a PEPA model for an
attacker behaviour based on an attack graph. We provide two methods for automating the
generation of PEPA models based on an existing attack graph specification. We investigate
the attacker’s behaviour by evaluating the PEPA models. We perform path analysis, sensitivity
analysis, and estimating the time to compromise a system which can assist a defender in
developing an effective defence strategy.





Chapter 5

Performance modelling of attack graphs

5.1 Introduction

Defending a system or a network and keeping it secure is not trivial. A defender must keep
a system secure by preventing or early detecting the attacker’s intent in order to react and
recover in good time. This can be accomplished by identifying and analysing all possible
attack paths that an attacker could use to attack the system, and then implementing appropriate
protection measures. An attack graph is a popular graph-based method proposed by Swiler
et al. [70]. It can support the defender to understand the attacker’s behaviour and then work
to protect a system [46]. Attack graphs present the different attack paths that attacker can
follow to exploit multiple vulnerabilities in a system in order to achieve its final goal [42, 46].
In an attack graph, each attack path is a sequence of nodes representing the vulnerabilities or
exploits in a system or host [46]. It shows an attacker’s behaviour in exploiting vulnerabilities
in a system or host from an initial node [42].

Doing a risk assessment based on the attack graph of a system allows a defender to see the
system from an attacker’s perspective. The defender can perform path analysis to identify the
most significant threatening path that the attacker can exploit to compromise a system [70].
Moreover, the defender can then perform a sensitivity analysis to show how hardening the
security of some nodes would affect the security status of the system. Many studies have
been conducted in the field of risk assessment using attack graphs [1, 2, 40, 60, 69, 86].

Building a Performance Evaluation Process Algebra (PEPA) model version of the attack
graph can help to understand attacker behaviour and identify critical threats, estimate time
to compromise a system, and then implement suitable countermeasures in timely to keep a
system secure. The time to compromise a system is the time it takes an attacker to successfully
compromise a system [54]. It is an important factor in determining how much safe time a
system has before it is compromised. In this chapter, we develop methods to build a PEPA
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model of an existing attack graph to represent the attacker’s behaviour and interaction with a
system with time-variable aspects. This allow us to perform path analysis, sensitivity analysis
and to estimate the time to compromise a system. Our proposed PEPA models of an attack
graph can be analysed via a continuous-time Markov chain with rates to support estimating
the time to compromise the system and the time it takes the attacker to get to a particular
vulnerability on a system.

This chapter presents two methods to create PEPA model for a pre-constructed attack
graph with its vulnerabilities that already assigned attack probability from the international
standard CVSS. The first method generates PEPA model that comprises of a system and an
attacker as a coupled component. The second method generates a PEPA model that comprises
of separate system and attacker components. The first method is simpler, whereas the second
method has more potential. The second method allows us to construct a PEPA model of
an attack graph that includes an attacker component, allowing us to explicitly implement
different attacker skills into the model. In this chapter, we show through a case study how we
can use the generated PEPA models to perform path analysis and sensitivity analysis, and to
estimate the attacker’s time to compromise the system.

5.2 Methods for creating a PEPA model for a given attack
graph

5.2.1 Basic PEPA model

The outcome of the algorithm

We propose an algorithm which derives an equivalence PEPA model of a pre-existing attack
graph specification. The PEPA model comprises of a coupled component of system and
attacker. For each node in the attack graph, a vulnerability name is an action name. The
action rate is based on the probability of the vulnerability being breached and the transition
probability. The probability of the vulnerability being breached is defined by the complexity
of the attack in the Common Vulnerability Scoring System (CVSS). A f ailed action and
rate for each node are introduced in the model. This action occurs when the attacker fails to
exploit the vulnerability in that node. The f ailed action rate is based on the probability that
an attacker is unable to exploit the vulnerability. In this method, we assume that when an
attacker fails to exploit a vulnerability, the attacker returns to the attack graph’s root node,
as this can be a possible consequence. While it is possible that a failed attack would give
the attacker more knowledge of the system, we do not model that learning aspect in this
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version of the model. In Chapter 6, we will consider different models of attacker expertise
and the potential for learning. The resultant PEPA model can be used to perform attack graph
analysis, such as path analysis and sensitivity analysis.

The starting point of the algorithm

The input to the algorithm is an attack graph specification, which includes information about
the relationship between nodes in the attack graph, the vulnerability name, and the probability
of the vulnerability being breached for each node. The transition probability from one node
to the next node is calculated by Markov chain as explained in [69]. For example, Figure 5.1
illustrates a simple example of an attack graph. The attack graph comprises four nodes.
Node Start is where the attack begins, and H1, H2 and H3 are hosts in a system. The breach
probability of the vulnerability in node H1 is 0.4 (bH1 = 0.4), and the breach probability of
the vulnerability in node H2 is 0.8 (bH2 = 0.8). We calculate the transition probability from
the Start node to node H1 (PSH1) based on the following equation:

PSH1 =
bH1

bH1+bH2
Where PSH1 is the transition probability from the Start node to node H1, bH1 is the breach
probability of the vulnerability in H1 and bH2 is the breach probability of the vulnerability
in H2.

PSH1 =
0.4

0.4+0.8
= 0.33

The transition probability from the Start node to node H1 is 0.33 (PSH1 = 0.33).
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Fig. 5.1 An example of an attack graph that comprises four nodes: Start, host 1 (H1), host 2
(H2), and host 3 (H3).

The steps

Algorithm 1 Create the system and attacker component based on the attack graph given
1: print "Start=(start,1).SystemAttacker"+first node’s name";"
2: for all node ∈ attackGraph do
3: if #directNeighbournode > 0 & node ! = goalnode then
4: print "SystemAttacker"+node name+"="
5: s← #directNeighbournode

6: for all neigh ∈ directNeighbournode do
7: s← s−1
8: convert at least first letter of neigh’s vulnerability name to lower case
9: print "("+neigh’s vulnerability name+","

+node’s BreachProbability*neigh’s TransitionProbability
+").SystemAttacker" +neigh’s name

10: if s = 0 then
11: if this node ! = first node in attackGraph then
12: print "(failed,"+ (1−node’s BreachProbability)+").System"

+attackGraph’s first node name ";"+new line
13: else
14: print ";"+new line
15: end if
16: else
17: print "+"
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18: end if
19: end for
20: else
21: print "SystemAttacker"+node’s name+"=(compromised, "

+node’s BreachProbability +").Completed+(failed,"
+(1−node’s BreachProbability)+").SystemAttacker"
+ attackGraph’s first node name";" + new line

22: print "Completed=(completed,1).Start;"
23: end if
24: end for

Example

In this subsection, we illustrate an example of a valid PEPA model resulting from implement-
ing and running the method using Java. This model can be evaluated by using the PEPA
Eclipse plug-in. Figure 5.2 illustrates the attack graph. The probability of a vulnerability to
be breached for each host is presented in Table 5.1.

Fig. 5.2 Attack graph consists of six nodes: node A is the starting node, and the H1, H2, H3,
H4, and H5 nodes are the hosts in a system [69].

Table 5.1 The probabilities of vulnerabilities to be breached [69].

Host H1 H2 H3 H4 H5

The vulnerability action servU5 telnet sql rpc remoteLog
The breach probability 0.4 0.8 0.6 0.5 0.9
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The PEPA model for the attack graph is as follows:

The sequential component of an attacker and a system

Start = (start,1).SystemAttackerA;
SystemAttackerA = (servU5,0.33).SystemAttackerH1

+ (telnet,0.67).SystemAttackerH2;
SystemAttackerH1 = (sql,0.12).SystemAttackerH3+(rpc,0.1).SystemAttackerH4

+ (remoteLogin,0.18).SystemAttackerH5
+ ( f ailed,0.6).SystemAttackerA;

SystemAttackerH2 = (sql,0.24).SystemAttackerH3+(rpc,0.2).SystemAttackerH4
+ (remoteLogin,0.36).SystemAttackerH5
+ ( f ailed,0.2).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed +( f ailed,0.4).SystemAttackerA;
Completed = (completed,1).Start;

SystemAttackerH4 = (sql,0.5).SystemAttackerH3+( f ailed,0.5).SystemAttackerA;
SystemAttackerH5 = (sql,0.9).SystemAttackerH3+( f ailed,0.1).SystemAttackerA;

The above component presents a coupled component of the attacker and system. It has
eight behaviours. The behaviours SystemAttackerA, SystemAttackerH1, SystemAttackerH2,
SystemAttackerH3, SystemAttackerH4, SystemAttackerH5 represent the nodes A, H1, H2,
H3, H4 and H5 in the attack graph, respectively. Start and Completed represent that the
attacker starts the attack and the attacker successfully completes the attack, respectively. The
actions servU5, telnet, sql, rpc and remoteLogin are the vulnerabilities in the attack graph
and the action rates are based on the probability of the vulnerability being breached and the
transition probability. The f ailed action is when the attacker fails to exploit the vulnerability
and its rate is based on the probability of the attacker failing to breach the vulnerability. The
compromised action is performed by the attacker when the attacker successfully reaches its
final goal in the attack graph.

5.2.2 Multiple component PEPA model

The outcome of the algorithm

We propose an algorithm which derives an equivalent PEPA model of a pre-constructed attack
graph. The PEPA model comprises two sequential components, representing system and
attacker, and an equation for the model with the cooperation set. For each node in the attack
graph, a vulnerability name is an action name. The action rate is based on the probability of
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the vulnerability being breached and the transition probability. In this method, we considered
an alternative consequence that can happen when an attacker fails to exploit the vulnerability,
which is different from the outcome assumed in the first method presented in Section 5.2.1. In
this method, we assumed that when an attacker fails to exploit the vulnerability, the attacker
remains on the current node, as this can also be a possible outcome.

The starting point of the algorithm

The inputs are:

• The attack graph: the relationship between nodes in the attack graph, the vulnerability
name, and the probability of the vulnerability being breached for each node. The
transition probability from one node to the next node is calculated by Markov chain as
explained in [69] and described in Section 5.2.1.

• The abilities/steps of an attacker that the attacker follows to compromise a system:
The relationship between the attacker’s abilities, the attacker’s different abilities name,
and rate are inputs to the algorithm. An example of the attacker’s abilities/steps to
compromise a system and the relation between them is presented in the following
graph:

Fig. 5.3 An example of the attacker’s abilities/steps to compromise a system.
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The steps

Algorithm 2 Create a system component based on the attack graph given
1: print "Start=(start,1).System"+first node’s name";"
2: for all node ∈ attackGraph do
3: if #directNeighbournode > 0 & node ! = goalnode then
4: print "System"+node name+"="
5: s← #directNeighbournode

6: for all neigh ∈ directNeighbournode do
7: s← s−1
8: convert at least first letter of neigh’s vulnerability name to lower case
9: print "("+neigh’s vulnerability name+","

+node’s BreachProbability*neigh’s TransitionProbability
+").System" +neigh’s name

10: if s = 0 then
11: if this node ! = first node in attackGraph then
12: print "(failed,"+ (1−node’s BreachProbability)+").System"

+node’ name+";"+new line
13: else
14: print ";"+new line
15: end if
16: else
17: print "+"
18: end if
19: end for
20: else
21: print "System"+node’s name+"=(compromised, "

+node’s BreachProbability +").Completed+(failed,"
+(1−node’s BreachProbability)+").System"
+node’ name";" + new line

22: print "Completed=(completed,1).Start;"
23: end if
24: end for

Algorithm 3 Create an attacker component based on the given attacker’s steps to attack a
system and the attack graph

1: convert at least first letter of attacker’s name to upper case
2: print attacker’s name+"Start=(start,1)."+ attacker’s name+ first node’s name+";"
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3: for all node ∈ attackGraph do
4: if node ! = first node in attackGraph then
5: for all step ∈ attackerSteps do
6: print attacker’s name+step’s number +node’s name +"="
7: if #directNextStepsstep > 0 then
8: r← #directNextStepsstep

9: for all nextStep ∈ directNextStepsstep do
10: r← r−1
11: convert at least first letter of step’s name to lower case
12: print "("+ step’s name+","+ step’s rate +")."+attacker’s name

+ nextStep’s number+node’s name
13: if r = 0 then
14: print ";" + new line
15: else
16: print "+"
17: end if
18: end for
19: else
20: convert at least first letter of step’s name to lower case
21: print "("+ step’s name +","+ step’s rate+")."+attacker’s name + node’s name

+";" + new line
22: end if
23: end for
24: end if
25: if #directNeighbournode > 0 & node ! = goalnode then
26: print attacker’s name + node’s name +"="
27: s← #directNeighbournode

28: for all neigh ∈ directNeighbournode do
29: s← s−1
30: convert at least first letter of neigh’s vulnerability name to lower case
31: print "("+neigh’s vulnerability name+","

+node’s BreachProbability*neigh’s TransitionProbability
+")." +attacker’s name+attacker’s first step’s number+neigh’s name

32: if s = 0 then
33: if this node ! = first node in attackGraph then
34: print "(failed,"+ (1−node’s BreachProbability)+")."
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+attacker’s name+first step’s number +node’s name+";"+new line
35: else
36: print ";"+new line
37: end if
38: else
39: print "+"
40: end if
41: end for
42: else
43: print attacker’s name+node’s name+"=(compromised, "

+node’s BreachProbability +").Completed+(failed,"
+(1−node’s BreachProbability)+")."
+attacker’s name+first step’s number +node’s name+";"

44: print "Completed=(completed,1)."+ attacker’s name+"Start; "
45: end if
46: end for

Algorithm 4 Create a system equation for the model
1: print attacker’s name+ "Start<start, f ailed,compromised,completed"
2: for all node ∈ attackGraph do
3: if node’s vulenrabilty’s name ! = null then
4: if node ! = last node in attackGraph then
5: print node’s vulnerability’ name+","
6: else
7: print node’s vulnerability’ name
8: end if
9: end if

10: end for
11: print ">"+"Start"

Example

The following is a valid PEPA model that comprises of an attacker component, a system
component and a system equation. This model was generated by implementing and running
the method using Java. This model can be evaluated using the PEPA Eclipse plug-in.
The attack graph is the same as the attack graph in Figure 5.2, and the probability of a
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vulnerability being breached for each host is given in Table 5.1. Figure 5.4 shows the
attacker’s abilities/steps to compromise a system. The PEPA model for the attack graph is as
follows:

Fig. 5.4 An example of the attacker’s abilities to compromise a system.

System component

Start = (start,1).SystemA;
SystemA = (servU5,0.33).SystemH1+(telnet,0.67).SystemH2;

SystemH1 = (sql,0.12).SystemH3+(rpc,0.1).SystemH4
+ (remoteLogin,0.18).SystemH5
+ ( f ailed,0.6).SystemH1;

SystemH2 = (sql,0.24).SystemH3+(rpc,0.2).SystemH4
+ (remoteLogin,0.36).SystemH5
+ ( f ailed,0.2).SystemH2;

SystemH3 = (compromised,0.6).Completed +( f ailed,0.4).SystemH3;
Completed = (completed,1).Start;
SystemH4 = (sql,0.5).SystemH3+( f ailed,0.5).SystemH4;
SystemH5 = (sql,0.9).SystemH3+( f ailed,0.1).SystemH5;

The system is depicted by the component above. The discribtion of this component is
similar to the component described in the example in Section 5.2.1.
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Attacker component

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1;
Attacker1H1 = (searchCode,1).Attacker2H1;
Attacker2H1 = (studyExploit,1).Attacker3H1

+ (studyExploit,1).Attacker4H1;
Attacker3H1 = (runExploit,1).AttackerH1;
Attacker4H1 = ( f ail,1).Attacker1H1;
AttackerH1 = (sql,0.12).Attacker0H3+(rpc,0.1).Attacker0H4

+ (remoteLogin,0.18).Attacker0H5
+ ( f ailed,0.6).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2;
Attacker1H2 = (searchCode,1).Attacker2H2;
Attacker2H2 = (studyExploit,1).Attacker3H2

+ (studyExploit,1).Attacker4H2;
Attacker3H2 = (runExploit,1).AttackerH2;
Attacker4H2 = ( f ail,1).Attacker1H2;
AttackerH2 = (sql,0.24).Attacker0H3+(rpc,0.2).Attacker0H4

+ (remoteLogin,0.36).Attacker0H5
+ ( f ailed,0.2).Attacker0H2;

Attacker0H3 = (recogniseVuln,1).Attacker1H3;
Attacker1H3 = (searchCode,1).Attacker2H3;
Attacker2H3 = (studyExploit,1).Attacker3H3

+ (studyExploit,1).Attacker4H3;
Attacker3H3 = (runExploit,1).AttackerH3;
Attacker4H3 = ( f ail,1).Attacker1H3;
AttackerH3 = (compromised,0.6).AttackerCompleted

+ ( f ailed,0.4).Attacker0H3;
AttackerCompleted = (completed,1).AttackerStart;

Attacker0H4 = (recogniseVuln,1).Attacker1H4;
Attacker1H4 = (searchCode,1).Attacker2H4;
Attacker2H4 = (studyExploit,1).Attacker3H4

+ (studyExploit,1).Attacker4H4;
Attacker3H4 = (runExploit,1).AttackerH4;
Attacker4H4 = ( f ail,1).Attacker1H4;
AttackerH4 = (sql,0.5).Attacker0H3+( f ailed,0.5).Attacker0H4;
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Attacker0H5 = (recogniseVuln,1).Attacker1H5;
Attacker1H5 = (searchCode,1).Attacker2H5;
Attacker2H5 = (studyExploit,1).Attacker3H5

+ (studyExploit,1).Attacker4H5;
Attacker3H5 = (runExploit,1).AttackerH5;
Attacker4H5 = ( f ail,1).Attacker1H5;
AttackerH5 = (sql,0.9).Attacker0H3+( f ailed,0.1).Attacker0H5;

This component represents the attacker’s behaviours. The attacker moves sequen-
tially from state AttackerStart to AttackerCompleted to successfully attack the system
and reach its final goal. AttackerA, AttackerH1, AttackerH2, AttackerH3, AttackerH4 and
AttackerH5 reflect A, H1, H2, H3, H4 and H5 in the attack graph, respectively. The ac-
tions servU5, telnet, sql, rpc and remoteLogin are the vulnerabilities of the hosts in the
attack graph. Their rates are based on the probability of the vulnerability being breached
and the transition probability. The f ailed action reflects the attacker failure to exploit the
vulnerability and its rate is the probability of the attacker failing to breach the vulnerability.
The behaviours between AttackerA and AttackerH1 represent the attacker’s steps/abilities
to exploit the vulnerability in the host, as it is shown in Figure 5.4. They are Attacker0H1,
Attacker1H1, Attacker2H1, Attacker3H1 and Attacker4H1. They are the same behaviours
formulated between each connected hosts in the attack graph to present the attacker’s steps
to exploit the hosts’ vulnerabilities. The actions recogniseVuln, searchCode, studyExploit,
runExploit and f ail are the behaviour’s action of Attacker0H1, Attacker1H1, Attacker2H1,
Attacker3H1 and Attacker4H1, respectively. The attacker follows the steps suggested in
Figure 5.4 when it moves from host to host to exploit their vulnerabilities.

System equation

AttackerStart < start, f ailed,compromised,completed,
servU5, telnet,sql,rpc,remoteLogin > Start

This is the system equation. The components are initially in their first state, AttackerStart
and Start. The actions between the components are shared actions.



154 Performance modelling of attack graphs

5.3 Case study 1: Basic PEPA model for attack graph

5.3.1 System specification

The attack graph is taken from Sun et al. [69]. Sun et al. [69] propose Network Security
Risk Assessment Model (NSRAM) based on attack graph and Markov chain to provide
the optimal attack path. Their proposed model generates the attack graph, and then each
vulnerability is assigned attack probability from the international standard CVSS. Then they
use a Markov chain method to calculate the transition probability from node to node. The
enterprise network security risk level and the attack probability of each path are provided
using their proposed model. Their analysis is based on counting the steps till the system is
compromised. However, estimating the actual time to compromise the system is critical to
indicate how much a safe time the system has before it is compromised. Building a stochastic
model of an attack graph enables to estimate the time is taken the attacker to compromise a
system.

Fig. 5.5 Attack graph [69].

As in [69], the attack graph comprises of six nodes, as shown in Figure 5.5. Node A is
the starting node, and node H3 is the target node. H1, H2, H3, H4 and H5 are hosts in the
system that attacker tries to exploit their vulnerabilities in order to reach the final goal. Each
host has a vulnerability name and probability value that the attacker could breach the host
through it as in the following table, Table 5.2.
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Table 5.2 The probabilities of vulnerabilities to be breached [69].

Host H1 H2 H3 H4 H5

The vulnerability servU5 telnet sql rpc remoteLog
The breach probability 0.4 0.8 0.6 0.5 0.9

5.3.2 PEPA model

The following is a valid PEPA model that is generated by implementing Algorithm 1. In
the PEPA model, there is one sequential component that represents the system and attacker
moving sequentially from the different behaviours based on the activities specified in the
model. The model is formulated as follows:

The sequential component of an attacker and a system

Start = (start,1).SystemAttackerA;
SystemAttackerA = (servU5,0.33).SystemAttackerH1

+ (telnet,0.67).SystemAttackerH2;
SystemAttackerH1 = (sql,0.12).SystemAttackerH3+(rpc,0.1).SystemAttackerH4

+ (remoteLogin,0.18).SystemAttackerH5
+ ( f ailed,0.6).SystemAttackerA;

SystemAttackerH2 = (sql,0.24).SystemAttackerH3+(rpc,0.2).SystemAttackerH4
+ (remoteLogin,0.36).SystemAttackerH5
+ ( f ailed,0.2).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed +( f ailed,0.4).SystemAttackerA;
Completed = (completed,1).Start;

SystemAttackerH4 = (sql,0.5).SystemAttackerH3+( f ailed,0.5).SystemAttackerA;
SystemAttackerH5 = (sql,0.9).SystemAttackerH3+( f ailed,0.1).SystemAttackerA;

The first state in our model is Start state. It is a starting point for the attacker to attack
the system in our model. The attacker performs action start at rate 1 leading to state
SyatemAttackerA, which represents the first node in the attack graph. Then, the attacker can
perform either action servU5 at rate 0.33, which is the transition probability to H1, leading
to SystemAttackerH1 or telnet action at rate 0.67, which is the transition probability to H2,
leading to SystemAttackerH2. SystemAttackerH1 and SystemAttackerH2 represent H1 and
H2 in the attack graph, respectively.
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When the attacker in state SystemAttackerH1, there is one of four actions could happen
either sql at rate 0.12, which is the product of the probability of servU5 being breached and
the transition probability to H3, leading to SystemAttackerH3, rpc at rate 0.1 ,which is the
product of the probability of servU5 being breached and the transition probability to H4, lead-
ing to SystemAttackerH4, remoteLogin at rate 0.18, which is the product of the probability
of servU5 being breached and the transition probability to H5, leading to SystemAttackerH5
or f ailed at rate 0.6, which is the result of (1-the probability of servU5 being breached),
leading to SystemAttackerA. SystemAttackerH3, SystemAttackerH4, SystemAttackerH5
and SystemAttackerA represent H3, H4, H5 and A in the attack graph, respectively.

In state SystemAttackerH2, there is also one of four actions that could be performed
either sql at rate 0.24, which is the product of the probability of telnet being breached
and the transition probability to H3, leading to SystemAttackerH3, rpc at rate 0.2, which
is the product of the probability of telnet being breached and the transition probability
to H4, leading to SystemAttackerH4, remoteLogin at rate 0.36, which is the product of
the probability of telnet being breached and the transition probability to H5, leading to
SystemAttackerH5 or f ailed at rate 0.2, which is the result of (1-the probability of telnet to
be breached), leading to SystemAttackerA.

When the attacker in state SystemAttackerH4, it can perform either sql at rate 0.5,
which is the product of the probability of rpc being breached and the transition proba-
bility to H3, leading to SystemAttackerH3 or f ailed at rate 0.5, which is the result of
(1- the probability of rpc being breached), leading back to SystemAttackerA. In state
SystemAttackerH5, one of two actions can happen either sql at rate 0.9, which is the product
of the probability of remoteLogin being breached and the transition probability to H3, lead-
ing to SystemAttackerH3 or f ailed at rate 0.1, which is the result of (1-the probability of
remoteLog being breached), leading back to SystemAttackerA.

In state SystemAttackerH3 which represents the attacker starts to attack the target node
by performing either action compromised at rate 0.6, which is the probability of sql being
breached, leading to Completed state or action f ailed at rate 0.4, which is the result of
(1-the probability of sql to be breached) leading back to SystemAttackerA. Completed is the
state that represents the system is successfully attacked. In the Completed state, the attacker
performs action complete at rate 1 returning back to Start state so that the model becomes
cyclic and steady-state measures can be obtained.

System equation

Start
This is the system equation. The component is initially in the first state.
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5.3.3 Performance evaluation

Path analysis

There are six possible paths that the attacker can follow to compromise the system [69]. We
are interested in estimating the time to compromise which is the time that the attacker takes
to compromise the system. The time to compromise is calculated for each path in the attack
graph. Therefore, we perform the passage-time analysis for each path. In this model, when
the attacker fails to exploit the vulnerability of any node, the attacker goes back to the first
node in the attack graph.

The following graph, Figure 5.6, shows the passage-time analysis for each path in the
attack graph from the first vulnerability action in a path to compromised action. If the
attacker fails to exploit the vulnerability, it returns to SystemAttackerA state.

Fig. 5.6 Passage-time analysis for each path in the attack graph.
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Table 5.3 Attack Paths and probabilities, Sun et al. [69].

Path number Starting node Target node The path Attack probability
1 A H3 A�H1�H4�H3 0.0099
2 A H3 A�H1�H3 0.02376
3 A H3 A�H1�H5�H3 0.032076
4 A H3 A�H2�H4�H3 0.0402
5 A H3 A�H2�H3 0.09684
6 A H3 A�H2�H5�H3 0.130248

Table 5.3 is taken from Sun et al. [69]. It shows the attack path and the attack probability
of each path. The lowest attack probability is for path 1, whereas the highest attack probability
is for path 6. Figure 5.6 shows our evaluation results which are the time until the system
is compromised for each path in the attack graph. The fastest path is path 6, which has the
highest attack probability, as in Table 5.3. The slowest path is path 1, which has the lowest
attack probability, as in Table 5.3.

Table 5.4 The path order from our results and Sun et al. [69].

The fastest path form PEPA model The highest attack probability from [69]

Path 6 Path 6
Path 5 Path 5
Path 4 Path 4
Path 3 Path 3
Path 2 Path 2
Path 1 Path 1

The slowest path The lowest attack probability

Table 5.4 presents the fastest to slowest paths from our PEPA model evaluation result and
the highest to lowest attack probabilities from Sun et al.’s work. Our evaluation result has
the same path order as in Sun et al.’s work. It shows clearly the most threatening path to the
lowest threatening path in the attack graph. Moreover, It shows the safe time the system has
before it is compromised.

Moreover, to attack the system, the attacker first needs to exploit either servU5 vulnera-
bility in H1 or telnet vulnerability in H2. The following figure, Figure 5.7, shows when the
attacker chooses to exploit telnet first, the attacker’s time to compromise the system is less
than the time when the attacker starts to exploit servU5.
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Fig. 5.7 Passage-time analysis for exploiting servU5 and telnet to compromised action.

Sensitivity analysis

We are also interested in performing sensitivity analysis on the propoesd PEPA model to
evaluate the sensitivity of each path that the attacker can follow to compromise the system.
We are going to change the probability of the vulnerability to be breached of telnet action
and then perform the passage-time analysis for each path to see how sensitive each path
is and how the time to compromise for each path will be affected. We change the telnet
action rate to 0.5 and then to 0.1 and keep all other actions unchanged. Figures 5.8 and 5.9
show when we reduce the probability of telnet to be breached, the time takes the attacker to
successfully reach its final goal increases for path 6, 5 and 4.
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Fig. 5.8 Passage-time analysis for all paths when telnet action rate=0.5.

Fig. 5.9 Passage-time analysis for all paths when telnet action rate=0.1.

Following the same way of Sun et al. [69] to calculate the attack probability of each path,
the new attack probability after changing the value of telnet is presented in Table 5.5. In
Table 5.5, the attack probability of each path when the probability of telnet to be breached is
0.8 is taken from [69]. The attack probability of each path when the probability of telnet to
be breached is changed to 0.5 and 0.1 are calculated by following the same approach that
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Sun et al. follow. As you can see from Table 5.5, there is a significant decrease in the attack
probability of path 4, 5 and 6 when the probability of telnet to be breached is reduced. This
is shown in our evaluation results, Figures 5.8 and 5.9, as an increase in the attacker’s time to
compromise. The attack probability of path 1, 2 and 3 slightly increased.

Table 5.5 The attack probability of each path when the probability of telnet to be breach is
equal to 0.8, 0.5 and 0.1.

Attack path telnet=0.8 telnet=0.5 telnet=0.1

Path 1 0.0099 0.0132 0.024
Path 2 0.02376 0.03168 0.0576
Path 3 0.032076 0.042768 0.07776
Path 4 0.0402 0.020625 0.0015
Path 5 0.09684 0.0495 0.0036
Path 6 0.130248 0.066825 0.00486

In Figure 5.8, when telnet is 0.5, the fastest path is path 6, which has the highest attack
probability. Whereas the slowest path is path 1, which has the lowest attack probability
as in Table 5.5. However, path 6 in Figure 5.6 when telnet is 0.8 is faster than path 6 in
Figure 5.8. When the attacker follows path 6 to compromise the system, the attacker’s time
to compromise is 155 time units when telnet is 0.8 and 290 time units when telnet is 0.5.
In Figure 5.9, when telnet is reduced to 0.1, the fastest path becomes path 3, which has the
highest attack probability. Whereas the slowest path is path 4, which has the lowest attack
probability as it is shown in Table 5.5. That shows that our evaluation result reflects the
change in the probability of telnet to be breached.

Furthermore, to compromise the system, the attacker has to first attack either H1 by
exploiting servU5 or H2 by exploiting telnet. We change the telnet action rate to 0.9, 0.5
and 0.1 and keep all other actions unchanged to see the impact of the change on the attacker’s
time to compromise.

Changing the probability of telnet to be breached could significantly impact the attacker’s
time to compromise the system. The probability could be reduced by implementing some
protecting tools or security measures in host H2 to make it difficult for the attacker to exploit
the vulnerability. The following figures, Figure 5.10, 5.11 and 5.12, illustrate how reducing
the probability rate of telnet action to be breached causes the attacker’s time to compromise
the system to increase when the attacker attacks the system by exploiting telnet.
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Fig. 5.10 Passage-time analysis when telnet action rate =0.9.

Fig. 5.11 Passage-time analysis when telnet action rate =0.5.
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Fig. 5.12 Passage-time analysis when telnet action rate =0.1.

5.3.4 Alternative PEPA model

In this alternative model, when the attacker fails to exploit the host’s vulnerability, he returns
to the previous state instead of returning to the state of the first node in the attack graph as
suggested in the previous PEPA model, shown in Section 5.3.2. This could be a possible
consequence. For clarity, we model the attack graph path separately. We could model them
as a single model, but this would make interpretation more challenging. The following are
the PEPA models for each path in the attack graph.

Path 1

Start = (start,1).SystemAttackerA;
SystemAttackerA = (servU5,0.33).SystemAttackerH1;

SystemAttackerH1 = (rpc,0.1).SystemAttackerH4
+ ( f ailed,0.6).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH4;

Completed = (completed,1).Start;
SystemAttackerH4 = (sql,0.5).SystemAttackerH3

+ ( f ailed,0.5).SystemAttackerH1;
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Path 2

Start = (start,1).SystemAttackerA;
SystemAttackerA = (servU5,0.33).SystemAttackerH1;

SystemAttackerH1 = (sql,0.12).SystemAttackerH3
+ ( f ailed,0.6).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH1;

Completed = (completed,1).Start;

Path 3

Start = (start,1).SystemAttackerA;
SystemAttackerA = (servU5,0.33).SystemAttackerH1;

SystemAttackerH1 = (remoteLogin,0.18).SystemAttackerH5
+ ( f ailed,0.6).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH5;

Completed = (completed,1).Start;
SystemAttackerH5 = (sql,0.9).SystemAttackerH3

+ ( f ailed,0.1).SystemAttackerH1;

Path 4

Start = (start,1).SystemAttackerA;
SystemAttackerA = (telnet,0.67).SystemAttackerH2;

SystemAttackerH2 = (rpc,0.2).SystemAttackerH4
+ ( f ailed,0.2).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH4;

Completed = (completed,1).Start;
SystemAttackerH4 = (sql,0.5).SystemAttackerH3

+ ( f ailed,0.5).SystemAttackerH2;
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Path 5

Start = (start,1).SystemAttackerA;
SystemAttackerA = (telnet,0.67).SystemAttackerH2;

SystemAttackerH2 = (sql,0.24).SystemAttackerH3
+ ( f ailed,0.2).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH2;

Completed = (completed,1).Start;

Path 6

Start = (start,1).SystemAttackerA;
SystemAttackerA = (telnet,0.67).SystemAttackerH2;

SystemAttackerH2 = (remoteLogin,0.36).SystemAttackerH5
+ ( f ailed,0.2).SystemAttackerA;

SystemAttackerH3 = (compromised,0.6).Completed
+ ( f ailed,0.4).SystemAttackerH5;

Completed = (completed,1).Start;
SystemAttackerH5 = (sql,0.9).SystemAttackerH3

+ ( f ailed,0.1).SystemAttackerH2;

5.3.5 Performance evaluation of alternative PEPA model

Now, we perform the passage-time analysis for each path in the alternative PEPA models of
the attack graph to calculate the attacker’s time to compromise from the first vulnerability
action reflecting the vulnerability of the first host in the attack graph to compromised action,
which reflects that the attacker reaches its goal.
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Fig. 5.13 Passage-time analysis for each path in the alternative PEPA models.

Figure 5.13 shows that the evaluation has the same path order as in previous PEPA model,
Figure 5.6. However, the attacker’s time to compromise the system for each path when the
attacker returns to the previous state after it fails to exploit a vulnerability in one host is less
than the times when the attacker returns to the first node after failure as in the previous PEPA
model, Figure 5.6. In Figure 5.13, the time to compromise for path 1, path 2, path 3, path 4,
path 5 and path 6 are 1150, 610, 305, 300, 150 and 85 time units, respectively. Whereas in
Figure 5.6, the attacker’s time to compromise for path 1, path 2, path 3, path 4, path 5 and
path 6 are 1530, 635, 510, 425, 165 and 155 time units, respectively.

5.4 Case study 2: Multiple component PEPA model for
attack graph

5.4.1 System specification

Now, we introduce an attacker component as a separate sequential component to our PEPA
model. We assign some steps/abilities to the attacker. The proposed steps/abilities that
the attacker follows to support compromising the system are presented in the following
graph, Figure 5.14. In this case study, the attack graph is the same as the attack graph in
Section 5.3.1.

In Figure 5.14, the attacker first recognises the vulnerability, then he can either search for
existing suitable exploit code or write an exploit code. If the attacker finds a suitable exploit
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code, he runs it in order to exploit the vulnerability. If the attacker does not find suitable
code, he goes back to search again. If the attacker writes an exploit code, he goes to run
action to exploit the vulnerability. Each node in the attacker abilities/steps graph is an action
with a rate in our model.

Fig. 5.14 The attacker’s abilities/steps to compromise the system.

5.4.2 PEPA model

The following is a valid PEPA model that is generated by implementing and executing Algo-
rithm 2 for the system component, Algorithm 3 for the attacker component, and Algorithm 4
for the system equation using Java. In this PEPA model, there are two types of components:
system and attacker. The model comprises of two parts, one for each component. The system
and the attacker move sequentially from their different behaviours based on the activities
specified in the model. The model is formulated as follows:
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A system component

Start = (start,1).SystemA;
SystemA = (servU5,0.33).SystemH1+(telnet,0.67).SystemH2;

SystemH1 = (sql,0.12).SystemH3+(rpc,0.1).SystemH4
+ (remoteLogin,0.18).SystemH5
+ ( f ailed,0.6).SystemH1;

SystemH2 = (sql,0.24).SystemH3+(rpc,0.2).SystemH4
+ (remoteLogin,0.36).SystemH5
+ ( f ailed,0.2).SystemH2;

SystemH3 = (compromised,0.6).Completed +( f ailed,0.4).SystemH3;
Completed = (completed,1).Start;
SystemH4 = (sql,0.5).SystemH3+( f ailed,0.5).SystemH4;
SystemH5 = (sql,0.9).SystemH3+( f ailed,0.1).SystemH5;

The above model component specifies the System’s different behaviours, moving from
Start to Completed. The description of this component is similar to the description of the
component in Section 5.3.2, except that when a f ailed action happens, the system remains
in the same state.

Attacker component

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1
+ (recogniseVuln,1).Attacker5H1;

Attacker1H1 = (searchCode,1).Attacker2H1+(searchCode,1).Attacker3H1;
Attacker2H1 = ( f indSuitableCode,1).Attacker4H1;
Attacker3H1 = ( f ailToFindSuitableCode,1).Attacker1H1;
Attacker4H1 = (runExploitCode,1).AttackerH1;
Attacker5H1 = (writeExploitCode,1).Attacker4H1;
AttackerH1 = (sql,0.12).Attacker0H3+(rpc,0.1).Attacker0H4

+ (remoteLogin,0.18).Attacker0H5
+ ( f ailed,0.6).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2
+ (recogniseVuln,1).Attacker5H2;

Attacker1H2 = (searchCode,1).Attacker2H2+(searchCode,1).Attacker3H2;
Attacker2H2 = ( f indSuitableCode,1).Attacker4H2;
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Attacker3H2 = ( f ailToFindSuitableCode,1).Attacker1H2;
Attacker4H2 = (runExploitCode,1).AttackerH2;
Attacker5H2 = (writeExploitCode,1).Attacker4H2;
AttackerH2 = (sql,0.24).Attacker0H3+(rpc,0.2).Attacker0H4

+ (remoteLogin,0.36).Attacker0H5
+ ( f ailed,0.2).Attacker0H2;

Attacker0H3 = (recogniseVuln,1).Attacker1H3
+ (recogniseVuln,1).Attacker5H3;

Attacker1H3 = (searchCode,1).Attacker2H3+(searchCode,1).Attacker3H3;
Attacker2H3 = ( f indSuitableCode,1).Attacker4H3;
Attacker3H3 = ( f ailToFindSuitableCode,1).Attacker1H3;
Attacker4H3 = (runExploitCode,1).AttackerH3;
Attacker5H3 = (writeExploitCode,1).Attacker4H3;
AttackerH3 = (compromised,0.6).AttackerCompleted

+ ( f ailed,0.4).Attacker0H3;
AttackerCompleted = (completed,1).AttackerStart;

Attacker0H4 = (recogniseVuln,1).Attacker1H4
+ (recogniseVuln,1).Attacker5H4;

Attacker1H4 = (searchCode,1).Attacker2H4+(searchCode,1).Attacker3H4;
Attacker2H4 = ( f indSuitableCode,1).Attacker4H4;
Attacker3H4 = ( f ailToFindSuitableCode,1).Attacker1H4;
Attacker4H4 = (runExploitCode,1).AttackerH4;
Attacker5H4 = (writeExploitCode,1).Attacker4H4;
AttackerH4 = (sql,0.5).Attacker0H3+( f ailed,0.5).Attacker0H4;

Attacker0H5 = (recogniseVuln,1).Attacker1H5
+ (recogniseVuln,1).Attacker5H5;

Attacker1H5 = (searchCode,1).Attacker2H5+(searchCode,1).Attacker3H5;
Attacker2H5 = ( f indSuitableCode,1).Attacker4H5;
Attacker3H5 = ( f ailToFindSuitableCode,1).Attacker1H5;
Attacker4H5 = (runExploitCode,1).AttackerH5;
Attacker5H5 = (writeExploitCode,1).Attacker4H5;
AttackerH5 = (sql,0.9).Attacker0H3+( f ailed,0.1).Attacker0H5;

The above part of the model represents the attacker’s different behaviours, moving from
AttackerStart to AttackerCompleted to compromise the system. The attacker first performs
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action start at rate 1 leading to AttackerA which is the first node in the attack graph. Then,
the attacker can perform either servU5 at rate 0.33 leading to Attacker0H1 or telnet at
rate 0.67 leading to Attacker0H2. In state Attacker0H1, one of two actions could happen
either recogniseVuln at rate 1 leading to Attacker1H1 or recogniseVuln at rate 1 leading
to Attacker5H1. This reflects the first node in the attacker ability/steps graph, as shown in
Figure 5.14.

When the attacker is in the state Attacker1H1, he can perform either action searchCode
at rate 1 leading to Attacker2H1 or action searchCode at rate 1 leading to Attacker3H1.
Attacker1H1 represents when an attacker is in the ‘search for exploit code’ node in the at-
tacker’s ability/steps graph. In state Attacker2H1, the only action could happen is f indSuitab-
leCode at rate 1 leading to Attacker4H1. Attacker2H1 reflects ‘Find suitable code’ node in
the attacker’s ability/steps graph.

When the attacker is in the state Attacker4H1, he can perform runExploitCode at rate
1 leading to AttackerH1 which means the attacker is in the H1 node trying to exploit the
vulnerability to be able to move to the next host in the attack graph. In state Attacker3H1,
the attacker performs f ailToFindCode action at rate 1 leading it back to state Attacker1H1.
In state Attacker5H1, the only action could happen is writeExploitCode at rate 1 leading to
state Attacker4H1.

In state AttackerH1, one of four actions could be performed either f ailed action at
rate 0.6 leading back to Attacker0H1 which is the first state of the attacker’s ability/steps
graph, sql action at rate 0.12 leading to Attacker0H3, rpc action at rate 0.1 leading to
Attacker0H4 or remoteLogin action at rate 0.18 leading to Attacker0H5. State Attacker0H3,
Attacker0H4 and Attacker0H5 reflect when the attacker is in the first ability’s node in the
attacker’s ability/steps graph trying to attack H3, H4 and H5 host in the attack graph,
respectively. Then moving from state to state repeats until reaching the last state which is
state AttackerCompleted.

System equation

The system equation and complete specification are given by

AttackerStart < start, f ailed,compromised,completed,
servU5, telnet,sql,rpc,remoteLogin > Start

The two components are initially in state AttackerStart and Start. The actions between them
are shared actions between the two components.
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5.4.3 Performance evaluation

We are again interested in calculating the time to compromise a system for each path that
attacker can follow on the attack graph. There are six possible paths that the attacker can
follow to compromise the system [69]. We performed the passage-time analysis for each
path in order to estimate the time that the attacker takes to compromise the system. The
action rate for each attacker’ abilities/steps is 1.

The following graph, Figure 5.15, shows the passage-time analysis for each path in the
attack graph that the attacker can follow to reach its final target. The passage-time analysis is
calculated from the first vulnerability action in a path to completed action. If the attacker
fails to exploit the vulnerability, it returns to the first step in the attacker’s ability/steps graph
in order to try again to find way to exploit the vulnerability in the host. Figure 5.15 shows
that the fastest path is path 6, which has the highest attack probability as in [69] and the
slowest path is path 1, which has the lowest attack probability as in [69]. Our evaluation
result has the same path order as in Sun et al. [69].The evaluation results clearly illustrate
the most threatening attack paths, the least threatening attack path, and the time it takes the
attacker to compromise the system for each path in the attack graph. The time to compromise
for each attack path that is resulted from evaluating the model can rank the risk of all attack
paths. It can also provide a safe time that the system has before the attacker successfully
attacks the system/network.

Fig. 5.15 Passage-time analysis of each path in the attack graph.
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5.5 Conclusion

In this chapter, we provided two methods to automate the generation of PEPA model based
on a pre-existing attack graph specification. The first method is more straightforward. It
generates a PEPA model that comprises one sequential component and system equation.
This component represents the system and attacker coupled together. The second method
has greater potential. It generates a PEPA model that comprises two sequential components
and the system equation. One component represents a system or network, and the other
component represents an attacker. The attacker component enables us to explicitly implement
different attacker skills. Furthermore, when we developed the PEPA models for the attack
graph, we considered the alternative consequences that might happen when an attacker fails
to exploit the vulnerabilities. When an attacker fails, he may return to the initial node, return
to the previous node, or remain at the current node.

Furthermore, we demonstrated through the case study how we used the generated PEPA
models to deduce the most and the least system security threatening paths and time to
compromise, which can be used by the defender as an indicator of how much a safe time the
system has before it is compromised. In addition, the time it takes to compromise a system
for each attack path can be used to rank the risk of all attack paths.

Moreover, we performed a sensitivity analysis by changing the probability of the vul-
nerability being breached of some actions and then did the passage-time analysis for all
paths. The evolution of the model clearly shows the sensitivity of each path to the change
and the effect on the attacker’s time to compromise the system of each path. This can help
the defender to prioritise the countermeasures. This study used a PEPA Eclipse plug-in to
support the evaluation of the PEPA model.

5.6 Chapter Summary

An attack graph is one of the popular graph-based methods that can support a defender in
understanding the attacker’s behaviour [46]. It also supports the defender to detect a possible
threat and then work to defend the system or network. It shows the possible attack paths that
an attacker can follow to exploit multiple vulnerabilities in a system to successfully reach
its final goal [42, 46]. Therefore, building a PEPA model version of an attack graph could
help to enhance the understanding of the attacker’s behaviour and assist in identifying critical
threats.

This chapter represents an initial study into using Performance Evaluation Process
Algebra (PEPA) to model and analyse the attack graphs. Such an approach adds timing
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information into the model and therefore extends the range of available analysis techniques.
In this chapter, we proposed methods to generate PEPA model based on an existing attack
graph. PEPA models can support the defender to enhance its understanding of the system’s
security current state. By using the PEPA models, the defender can deduce the most and
the least threatening attack path in the system. The time takes the attacker to compromise
the system (time to compromise) can also be estimated. The PEPA model is analysed
via a continuous-time Markov chain with rates to estimate the time to compromise the
system and the time it takes the attacker to get to a particular vulnerability on a system.
Knowledge of time to compromise the system can also support prioritising implementing the
countermeasures.

It is also important to consider critical factors such as the attackers’ skills and the
availability of the exploit code when developing a PEPA model version of the attack graph to
help gain a better understanding of the attack and assist in identifying critical threats. In the
next chapter, we extended our study by modelling three types of attackers and employing the
probability of the exploit code availability in the proposed PEPA models. Also, we enhance
the adaptability of our proposed PEPA models by incorporating learning behaviour for the
attacker and defender and then show the impact on the attacker’s time to compromise the
system.





Chapter 6

Advanced models of attacker behaviour

6.1 Introduction

There are a number of factors that can be used to estimate how fast the attackers can com-
promise a system, such as the different attackers’ capabilities [28, 50] and the availability of
exploit code for a vulnerability [28]. Different types of attackers can attack and compromise
a system in different ways. The attackers can be classified based on their capabilities into
beginner, intermediate and expert [50]. The beginner attacker can attack a system by using
existing exploit code, the intermediate attacker can use and/or modify existing exploit code
and an expert attacker can use, modify and create exploit code [50].

Furthermore, the attacker’s and defender’s learning abilities can influence how long it
takes the attacker to compromise the system. After the failed attack attempts, the attacker can
learn more about the target system and gain knowledge from previous attack attempts [59].
The defender can also learn about the attack activity by monitoring the system and looking for
any attack activity indicators such as system alerts and anomaly detection in a log file. The
defender can then work to secure the system by implementing additional security measures
that make it more difficult for the attacker to compromise the system.

In this chapter, we propose the attacker’s steps/abilities graph for three different types of
attackers: beginners, intermediates, and experts. Then, for each attacker, we generate the
PEPA models using the second method proposed in Chapter 5. The time required until the
attacker compromises the system is then estimated for each path using the vulnerabilities
in the attack graph and taking into account the probability of exploit code availability and
the attacker’s skill. In addition, we include learning behaviours in the model for both the
attacker and the defender. Then, we show how learning behaviours affect the attacker’s time
to compromise the system.
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6.2 PEPA models of attacker skill

In this section, we introduce different components of the attacker to the attack graph PEPA
model in Section 5.4. Each component represents a different attacker capability to compro-
mise the system based on the attacker’s skills. They are created based on Algorithm 3 in
Chapter 5.

Moreover, to introduce an exploit code availability factor in our model, we introduce
a rate of p, which represents the probability of an exploit code availability. The rate of
searchCode actions in all attacker’s states is modelled by having a probabilistic choice p
to go to the state Attacker2H1 when the suitable code is found or to the state Attacker3H1
when the suitable exploit code is not found.

In the following, we used the same case study in Chapter 5 in Section 5.4. The system
component is kept unchanged. It is the same as the system component in subsection 5.4.2.
The attacker component is changed based on its skill and capabilities.

6.2.1 Beginner attacker component

A beginner attacker can only exploit a known vulnerability by utilising pre-existing exploit
code. Figure 6.1 shows the proposed beginner attacker’s ability/steps graph.

Fig. 6.1 The beginner attacker’s capabilities to compromise the system.



6.2 PEPA models of attacker skill 177

The PEPA sequential component for the beginner attacker

This part of the model represents the beginner attacker’s different behaviours, moving from
AttackerStart to AttackerCompleted to compromise the system.

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1;
Attacker1H1 = (searchCode,1∗ p).Attacker2H1

+ (searchCode,1∗ (1− p)).Attacker3H1;
Attacker2H1 = ( f indSuitableCode,1).Attacker4H1;
Attacker3H1 = ( f ailToFindSuitableCode,1).Attacker1H1;
Attacker4H1 = (runExploitCode,1).AttackerH1;
AttackerH1 = (sql,0.12).Attacker0H3+(rpc,0.1).Attacker0H4

+ (remoteLogin,0.18).Attacker0H5
+ ( f ailed,0.6).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2;
Attacker1H2 = (searchCode,1∗ p).Attacker2H2

+ (searchCode,1∗ (1− p)).Attacker3H2;
Attacker2H2 = ( f indSuitableCode,1).Attacker4H2;
Attacker3H2 = ( f ailToFindSuitableCode,1).Attacker1H2;
Attacker4H2 = (runExploitCode,1).AttackerH2;
AttackerH2 = (sql,0.24).Attacker0H3+(rpc,0.2).Attacker0H4

+ (remoteLogin,0.36).Attacker0H5
+ ( f ailed,0.2).Attacker0H2;

Attacker0H3 = (recogniseVuln,1).Attacker1H3;
Attacker1H3 = (searchCode,1∗ p).Attacker2H3

+ (searchCode,1∗ (1− p)).Attacker3H3;
Attacker2H3 = ( f indSuitableCode,1).Attacker4H3;
Attacker3H3 = ( f ailToFindSuitableCode,1).Attacker1H3;
Attacker4H3 = (runExploitCode,1).AttackerH3;
AttackerH3 = (compromised,0.6).AttackerCompleted

+ ( f ailed,0.4).Attacker0H3;
AttackerCompleted = (completed,1).AttackerStart;

Attacker0H4 = (recogniseVuln,1).Attacker1H4;
Attacker1H4 = (searchCode,1∗ p).Attacker2H4

+ (searchCode,1∗ (1− p)).Attacker3H4;
Attacker2H4 = ( f indSuitableCode,1).Attacker4H4;
Attacker3H4 = ( f ailToFindSuitableCode,1).Attacker1H4;
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Attacker4H4 = (runExploitCode,1).AttackerH4;
AttackerH4 = (sql,0.5).Attacker0H3+( f ailed,0.5).Attacker0H4;

Attacker0H5 = (recogniseVuln,1).Attacker1H5;
Attacker1H5 = (searchCode,1∗ p).Attacker2H5

+ (searchCode,1∗ (1− p)).Attacker3H5;
Attacker2H5 = ( f indSuitableCode,1).Attacker4H5;
Attacker3H5 = ( f ailToFindSuitableCode,1).Attacker1H5;
Attacker4H5 = (runExploitCode,1).AttackerH5;
AttackerH5 = (sql,0.9).Attacker0H3+( f ailed,0.1).Attacker0H5;

6.2.2 Intermediate attacker component

The intermediate attacker has the capability of utilising and/or modifying pre-existing exploit
code. Figure 6.2 shows the proposed intermediate attacker’s ability/steps graph.

Fig. 6.2 The intermediate attacker’s capabilities to compromise the system.
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The PEPA sequential component for the intermediate attacker

This part of the model represents the intermediate attacker’s different behaviours, moving
from AttackerStart to AttackerCompleted to compromise the system.

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1;
Attacker1H1 = (searchCode,1∗ p).Attacker2H1

+ (searchCode,1∗ (1− p)).Attacker3H1;
Attacker2H1 = ( f indSuitableCode,1).Attacker4H1;
Attacker3H1 = ( f ailToFindSuitableCode,1).Attacker1H1

+ ( f ailToFindSuitableCode,1).Attacker5H1;
Attacker4H1 = (runExploitCode,1).AttackerH1;
Attacker5H1 = (modi f yExploitCode,1).Attacker4H1;
AttackerH1 = (sql,0.12).Attacker0H3+(rpc,0.1).Attacker0H4

+ (remoteLogin,0.18).Attacker0H5
+ ( f ailed,0.6).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2;
Attacker1H2 = (searchCode,1∗ p).Attacker2H2

+ (searchCode,1∗ (1− p)).Attacker3H2;
Attacker2H2 = ( f indSuitableCode,1).Attacker4H2;
Attacker3H2 = ( f ailToFindSuitableCode,1).Attacker1H2

+ ( f ailToFindSuitableCode,1).Attacker5H2;
Attacker4H2 = (runExploitCode,1).AttackerH2;
Attacker5H2 = (modi f yExploitCode,1).Attacker4H2;
AttackerH2 = (sql,0.24).Attacker0H3+(rpc,0.2).Attacker0H4

+ (remoteLogin,0.36).Attacker0H5
+ ( f ailed,0.2).Attacker0H2;

Attacker0H3 = (recogniseVuln,1).Attacker1H3;
Attacker1H3 = (searchCode,1∗ p).Attacker2H3

+ (searchCode,1∗ (1− p)).Attacker3H3;
Attacker2H3 = ( f indSuitableCode,1).Attacker4H3;
Attacker3H3 = ( f ailToFindSuitableCode,1).Attacker1H3

+ ( f ailToFindSuitableCode,1).Attacker5H3;
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Attacker4H3 = (runExploitCode,1).AttackerH3;
Attacker5H3 = (modi f yExploitCode,1).Attacker4H3;
AttackerH3 = (compromised,0.6).AttackerCompleted

+ ( f ailed,0.4).Attacker0H3;
AttackerCompleted = (completed,1).AttackerStart;

Attacker0H4 = (recogniseVuln,1).Attacker1H4;
Attacker1H4 = (searchCode,1∗ p).Attacker2H4

+ (searchCode,1∗ (1− p)).Attacker3H4;
Attacker2H4 = ( f indSuitableCode,1).Attacker4H4;
Attacker3H4 = ( f ailToFindSuitableCode,1).Attacker1H4

+ ( f ailToFindSuitableCode,1).Attacker5H4;
Attacker4H4 = (runExploitCode,1).AttackerH4;
Attacker5H4 = (modi f yExploitCode,1).Attacker4H4;
AttackerH4 = (sql,0.5).Attacker0H3+( f ailed,0.5).Attacker0H4;

Attacker0H5 = (recogniseVuln,1).Attacker1H5;
Attacker1H5 = (searchCode,1∗ p).Attacker2H5

+ (searchCode,1∗ (1− p)).Attacker3H5;
Attacker2H5 = ( f indSuitableCode,1).Attacker4H5;
Attacker3H5 = ( f ailToFindSuitableCode,1).Attacker1H5

+ ( f ailToFindSuitableCode,1).Attacker5H5;
Attacker4H5 = (runExploitCode,1).AttackerH5;
Attacker5H5 = (modi f yExploitCode,1).Attacker4H5;
AttackerH5 = (sql,0.9).Attacker0H3+( f ailed,0.1).Attacker0H5;

6.2.3 Expert attacker component

An expert attacker is able to use and/or modify a pre-existing exploit code or write a new
exploit code. Figure 6.3 shows the proposed expert attacker’s ability/steps graph.
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Fig. 6.3 The expert attacker’s capabilities to compromise the system.

The PEPA sequential component for the expert attacker

This part of the model represents the expert attacker’s different behaviours, moving from
AttackerStart to AttackerCompleted to compromise the system.

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1
+ (recogniseVuln,1).Attacker6H1;

Attacker1H1 = (searchCode,1∗ p).Attacker2H1
+ (searchCode,1∗ (1− p)).Attacker3H1;

Attacker2H1 = ( f indSuitableCode,1).Attacker4H1;
Attacker3H1 = ( f ailToFindSuitableCode,1).Attacker1H1

+ ( f ailToFindSuitableCode,1).Attacker5H1;
Attacker4H1 = (runExploitCode,1).AttackerH1;
Attacker5H1 = (modi f yExploitCode,1).Attacker4H1;
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Attacker6H1 = (writeExploitCode,1).Attacker4H1;
AttackerH1 = (sql,0.12).Attacker0H3+(rpc,0.1).Attacker0H4

+ (remoteLogin,0.18).Attacker0H5
+ ( f ailed,0.6).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2
+ (recogniseVuln,1).Attacker6H2;

Attacker1H2 = (searchCode,1∗ p).Attacker2H2
+ (searchCode,1∗ (1− p)).Attacker3H2;

Attacker2H2 = ( f indSuitableCode,1).Attacker4H2;
Attacker3H2 = ( f ailToFindSuitableCode,1).Attacker1H2

+ ( f ailToFindSuitableCode,1).Attacker5H2;
Attacker4H2 = (runExploitCode,1).AttackerH2;
Attacker5H2 = (modi f yExploitCode,1).Attacker4H2;
Attacker6H2 = (writeExploitCode,1).Attacker4H2;
AttackerH2 = (sql,0.24).Attacker0H3+(rpc,0.2).Attacker0H4

+ (remoteLogin,0.36).Attacker0H5
+ ( f ailed,0.2).Attacker0H2;

Attacker0H3 = (recogniseVuln,1).Attacker1H3
+ (recogniseVuln,1).Attacker6H3;

Attacker1H3 = (searchCode,1∗ p).Attacker2H3
+ (searchCode,1∗ (1− p)).Attacker3H3;

Attacker2H3 = ( f indSuitableCode,1).Attacker4H3;
Attacker3H3 = ( f ailToFindSuitableCode,1).Attacker1H3

+ ( f ailToFindSuitableCode,1).Attacker5H3;
Attacker4H3 = (runExploitCode,1).AttackerH3;
Attacker5H3 = (modi f yExploitCode,1).Attacker4H3;
Attacker6H3 = (writeExploitCode,1).Attacker4H3;
AttackerH3 = (compromised,0.6).AttackerCompleted

+ ( f ailed,0.4).Attacker0H3;
AttackerCompleted = (completed,1).AttackerStart;

Attacker0H4 = (recogniseVuln,1).Attacker1H4
+ (recogniseVuln,1).Attacker6H4;

Attacker1H4 = (searchCode,1∗ p).Attacker2H4
+ (searchCode,1∗ (1− p)).Attacker3H4;

Attacker2H4 = ( f indSuitableCode,1).Attacker4H4;
Attacker3H4 = ( f ailToFindSuitableCode,1).Attacker1H4

+ ( f ailToFindSuitableCode,1).Attacker5H4;
Attacker4H4 = (runExploitCode,1).AttackerH4;
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Attacker5H4 = (modi f yExploitCode,1).Attacker4H4;
Attacker6H4 = (writeExploitCode,1).Attacker4H4;
AttackerH4 = (sql,0.5).Attacker0H3+( f ailed,0.5).Attacker0H4;

Attacker0H5 = (recogniseVuln,1).Attacker1H5
+ (recogniseVuln,1).Attacker6H5;

Attacker1H5 = (searchCode,1∗ p).Attacker2H5
+ (searchCode,1∗ (1− p)).Attacker3H5;

Attacker2H5 = ( f indSuitableCode,1).Attacker4H5;
Attacker3H5 = ( f ailToFindSuitableCode,1).Attacker1H5

+ ( f ailToFindSuitableCode,1).Attacker5H5;
Attacker4H5 = (runExploitCode,1).AttackerH5;
Attacker5H5 = (modi f yExploitCode,1).Attacker4H5;
Attacker6H5 = (writeExploitCode,1).Attacker4H5;
AttackerH5 = (sql,0.9).Attacker0H3+( f ailed,0.1).Attacker0H5;

6.3 Performance evaluation of alternative PEPA models

We are interested in estimating the time to compromise for each path that each attacker can
follow. Thus, we evaluate the PEPA models by performing passage-time analysis. We set
the probability of exploit code availability to 0.2 (p = 0.2) to show the impact of the lack
of exploit code on each attacker. The time to compromise for each attack path in the attack
graph for the different attackers when the probability of exploit code availability is 0.2 are
shown in Figures 6.4, 6.5 and 6.6. The time to compromise of paths 1, 2, 3, 4, 5 and 6 for
the expert attacker is less than paths 1, 2, 3, 4, 5 and 6 for other attackers, respectively. The
fastest path in our PEPA model for the attack graph is path 6 which has the highest attack
probability in [69]. The time to compromise the system for path 6 for the beginner attacker is
430 time units which is larger compared to the time to compromise the system for path 6 for
the intermediate and the expert attackers. The time to compromise the system for path 6 for
the intermediate and the expert attackers are 190 and 150 time units, respectively. Moreover,
the figures clearly show the significant effect of lack of exploit code on the beginner attacker.
The time to compromise for each path is larger for beginner attacker compared to each attack
path for the other attackers.
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Fig. 6.4 Passage-time analysis of each path in the attack graph for the beginner attacker when
the probability of exploit code availability is 0.2.

Fig. 6.5 Passage-time analysis of each path in the attack graph for the intermediate attacker
when the probability of exploit code availability is 0.2.
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Fig. 6.6 Passage-time analysis of each path in the attack graph for the expert attacker when
the probability of exploit code availability is 0.2.

Now we set the probability of exploit code availability p to 0.8 (p = 0.8). Figures 6.7, 6.8
and 6.9 illustrate the impact of the exploit code availability on the attacker’s time to compro-
mise of path 6 for each attacker based on two probability values of exploit code availability:
when p = 0.2 and when p = 0.8. Path 6 is the fastest path and the most threatening path in
our PEPA model for the attack graph. The impact of exploit code availability on the beginner
attacker’s time to compromise is significant as this attacker can only capable of using an
existing exploit code, Figure 6.7. Whereas, the expert attacker has minimal impact as this
attacker is capable of modifying and creating exploit code when the suitable exploit code is
not available, as shown in Figure 6.9.
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Fig. 6.7 Path 6 in the attack graph for beginner attacker with two probabilities value of exploit
code availability (p=0.2 and 0.8).

Fig. 6.8 Path 6 in the attack graph for intermediate attacker with two probabilities value of
exploit code availability (p=0.2 and 0.8).
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Fig. 6.9 Path 6 in the attack graph for expert attacker with two probabilities value of exploit
code availability (p=0.2 and 0.8).

Moreover, as shown in the attack graph and our PEPA model for the attackers, the attacker
first needs to exploit either servU5 vulnerability in H1 or telnet vulnerability in H2 to start
to attack the system. We perform passage-time analysis for beginner and expert attackers
when they start by exploiting servU5 in H1 and when they start by exploiting telnet in H2.
Figures 6.10 and 6.11 show when the beginner and expert attackers choose to exploit telnet
first, the attacker’s time to compromise the system is less than the time when the attacker
starts to exploit servU5. This is because the probability of talnet being breached is 0.8,
whereas the probability of servU5 to be breached is 0.4. It is much harder to exploit servU5
than talnet. However, the figures show that the expert attacker is faster than beginner attacker.
In Figures 6.10 and 6.11, the probability of exploit code availability for all vulnerabilities set
to 0.2. Then, we set the probability of exploit code availability for all vulnerabilities to 0.8.
Table 6.1 shows the significant impact of increasing the probability of exploit code availability
for all vulnerabilities from 0.2 (p = 0.2) to 0.8 (p = 0.8) on the time to compromise the
system for the beginner attacker. Whereas the expert attacker has just a slight impact, as
shown in Table 6.2.
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Fig. 6.10 Passage-time analysis for the beginner attacker when p = 0.2.

Fig. 6.11 Passage-time analysis for the expert attacker when p = 0.2.
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Table 6.1 The average time to compromise the system for beginner attacker.

The probability of
exploit code availability

From servU5 to
completed action

From telnet to
completed action

p = 0.2 602 time units 465 time units
p = 0.8 237 time units 178 time units

Table 6.2 The average time to compromise the system for expert attacker.

The probability of
exploit code availability

From servU5 to
completed action

From telnet to
completed action

p = 0.2 205 time units 156 time units
p = 0.8 180 time units 136 time units

Furthermore, Figures 6.4, 6.5 and 6.6 show the same risk order of the attack paths as in
the first case study, as shown in Figure 5.6. However, in this case study, we considered and
implemented two important factors that impact the time to compromise the system. These
factors are the probability of exploit code availability and attacker skill. Our evaluations of
this case study clearly show the impact of these factors on the attacker time to compromise
the system, as shown in Figures 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9. In this case study, If attacker
fails to exploit the vulnerability, it returns to the first step in the attacker’s steps graph to
try again to attack the same host. Whereas in the first case study, when the attacker fails to
exploit the vulnerability in any host, the attacker returns to the root node in the attack graph.
This is clearly shown as an increase in the attacker time to compromise the system in the first
case study, as illustrated in Figure 5.6.

6.4 Attacker learning behaviour

Now, we introduce a learning behaviour to the PEPA model of the attack graph. The learning
behaviour is implemented for the attacker component by adding a counter component to the
model. The counter will change the rate of the f ailed action of the vulnerability. The more
the attacker fails to exploit the vulnerability, the more the attacker learns and gains knowledge
from previous attempts and the less the probability to fail. The counter will slow the rate of
the f ailed action. The change here is on the f ailed action’s rate of the vulnerability. The
probability of the vulnerability to be breach kept unchanged.
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6.4.1 Attack graph PEPA model with attacker learning behaviour

We apply the learning behaviour to the beginner attacker in this case study. We add the
learning counters to the PEPA model for the beginner attacker. The following are the
beginner attacker and counter components. The system component is the same as the system
component in Subsection 5.4.2.

The beginner attacker component

This component represents the beginner attacker’s different behaviours, moving from Attacker-
Start to AttackerCompleted to compromise the system. The description of this component
is the same as the beginner attacker PEPA component in Subsection 6.2 except we introduce
4 states to allow us to implement the learning counters. These states are AttackerNextH3,
AttackerNextH4, AttackerNextH5 and AttackerNextCompleted.

AttackerStart = (start,1).AttackerA;
AttackerA = (servU5,0.33).Attacker0H1+(telnet,0.67).Attacker0H2;

Attacker0H1 = (recogniseVuln,1).Attacker1H1;
Attacker1H1 = (searchCode,1∗ p).Attacker2H1

+ (searchCode,1∗ (1− p)).Attacker3H1;
Attacker2H1 = ( f indSuitableCode,1).Attacker4H1;
Attacker3H1 = ( f ailToFindSuitableCode,1).Attacker1H1;
Attacker4H1 = (runExploitCode,1).AttackerH1;
AttackerH1 = (sql,0.12).AttackerNextH3+(rpc,0.1).AttackerNextH4

+ (remoteLogin,0.18).AttackerNextH5
+ ( f ailed,T ).Attacker0H1;

Attacker0H2 = (recogniseVuln,1).Attacker1H2;
Attacker1H2 = (searchCode,1∗ p).Attacker2H2

+ (searchCode,1∗ (1− p)).Attacker3H2;
Attacker2H2 = ( f indSuitableCode,1).Attacker4H2;
Attacker3H2 = ( f ailToFindSuitableCode,1).Attacker1H2;
Attacker4H2 = (runExploitCode,1).AttackerH2;
AttackerH2 = (sql,0.24).AttackerNextH3+(rpc,0.2).AttackerNextH4

+ (remoteLogin,0.36).AttackerNextH5
+ ( f ailed,T ).Attacker0H2;
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AttackerNextH3 = (nextH1,nextRate).Attacker0H3
+ (nextH2,nextRate).Attacker0H3
+ (nextH4,nextRate).Attacker0H3
+ (nextH5,nextRate).Attacker0H3;

Attacker0H3 = (recogniseVuln,1).Attacker1H3;
Attacker1H3 = (searchCode,1∗ p).Attacker2H3

+ (searchCode,1∗ (1− p)).Attacker3H3;
Attacker2H3 = ( f indSuitableCode,1).Attacker4H3;
Attacker3H3 = ( f ailToFindSuitableCode,1).Attacker1H3;
Attacker4H3 = (runExploitCode,1).AttackerH3;
AttackerH3 = (compromised,0.6).AttackerNextCompleted

+ ( f ailed,T ).Attacker0H3;
AttackerNextCompleted = (next,nextRate).AttackerCompleted;

AttackerCompleted = (completed,1).AttackerStart;
AttackerNextH4 = (nextH1,nextRate).Attacker0H4

+ (nextH2,nextRate).Attacker0H4;
Attacker0H4 = (recogniseVuln,1).Attacker1H4;
Attacker1H4 = (searchCode,1∗ p).Attacker2H4

+ (searchCode,1∗ (1− p)).Attacker3H4;
Attacker2H4 = ( f indSuitableCode,1).Attacker4H4;
Attacker3H4 = ( f ailToFindSuitableCode,1).Attacker1H4;
Attacker4H4 = (runExploitCode,1).AttackerH4;
AttackerH4 = (sql,0.5).AttackerNextH3+( f ailed,T ).Attacker0H4;

AttackerNextH5 = (nextH1,nextRate).Attacker0H5
+ (nextH2,nextRate).Attacker0H5;

Attacker0H5 = (recogniseVuln,1).Attacker1H5;
Attacker1H5 = (searchCode,1∗ p).Attacker2H5

+ (searchCode,1∗ (1− p)).Attacker3H5;
Attacker2H5 = ( f indSuitableCode,1).Attacker4H5;
Attacker3H5 = ( f ailToFindSuitableCode,1).Attacker1H5;
Attacker4H5 = (runExploitCode,1).AttackerH5;
AttackerH5 = (sql,0.9).AttackerNextH3+( f ailed,T ).Attacker0H5;
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The counter components

The attack graph has five vulnerabilities. As the f ailed action rate for each vulnerability
is different, we have to implement a counter for each vulnerability. The following are five
counter components, one for each vulnerability.

servU5’s f ailed action rate counter

CounterS = (servU5,T ).CounterS0;
CounterS0 = (gainKnowledge,a1).CounterS1

+ ( f ailed, f ailedServU5).CounterS0
+ (nextH1,nextRate).CounterS;

CounterS1 = (gainKnowledge,a1).CounterS2
+ ( f ailed, f ailedServU5∗0.1).CounterS1
+ (nextH1,nextRate).CounterS;

CounterS2 = (gainKnowledge,a1).CounterS3
+ ( f ailed, f ailedServU5∗0.09).CounterS2
+ (nextH1,nextRate).CounterS;

CounterS3 = (gainKnowledge,a1).CounterS4
+ ( f ailed, f ailedServU5∗0.07).CounterS3
+ (nextH1,nextRate).CounterS;

CounterS4 = (gainKnowledge,a1).CounterS5
+ ( f ailed, f ailedServU5∗0.05).CounterS4
+ (nextH1,nextRate).CounterS;

CounterS5 = ( f ailed, f ailedServU5∗0.03).CounterS5
+ (nextH1,nextRate).CounterS;

The above part of the model is for a counter component which is the part that slows
the f ailed action’s rate each time the attacker learns and gains knowledge after a failure
happened. This counter is for servU5 vulnerability in H1 in the attack graph. It has 7
behaviours starting from CounterS. In state CounterS, the only action that can happen is
servU5 leading to CounterS0. In state CounterS0, one of three actions can happen either
gainKnowledge at rate a1 leading to next state CounterS1, f ailed at rate f ailedServU5 and
then stay in current state CounterS0 or nextH1 at rate nextRate leading it back to the first state
CounterS which means that the attacker exploits this vulnerability. This will be repeated for
CounterS1, CounterS2, CounterS3 and CounterS4. The only changes in these states are the
f ailed action’s rate value. While the counter sequentially moves to CounterS1, CounterS2,
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CounterS3, CounterS4 and then to CounterS5, the f ailed action’s rate is multiplied by 0.1,
0.09, 0.07, 0.05 and then 0.03, respectively. This slows the f ailed action’s rate of the
vulnerability to indicate the leaning behaviour of the attacker. The more the attacker fails to
exploit the vulnerability the more the attacker learns and gains knowledge and the less the
probability to fail.

In the last state CounterS5, one of two actions can be performed either f ailed at rate
f ailedServU5 ∗ 0.03 and then stay in current state CounterS5 or nextH1 at rate nextRate
leading back to the first state in this component.

The following are the counter components for telnet, sql, rpc and remoteLogin vulnera-
bilities. They follow the same approach that servU5’s counter follows.

telnet’s f ailed action rate counter

CounterT = (telnet,T ).CounterT 0;
CounterT 0 = (gainKnowledge,a1).CounterT 1

+ ( f ailed, f ailedTelnet).CounterT 0
+ (nextH2,nextRate).CounterT ;

CounterT 1 = (gainKnowledge,a1).CounterT 2
+ ( f ailed, f ailedTelnet ∗0.1).CounterT 1
+ (nextH2,nextRate).CounterT ;

CounterT 2 = (gainKnowledge,a1).CounterT 3
+ ( f ailed, f ailedTelnet ∗0.09).CounterT 2
+ (nextH2,nextRate).CounterT ;

CounterT 3 = (gainKnowledge,a1).CounterT 4
+ ( f ailed, f ailedTelnet ∗0.07).CounterT 3
+ (nextH2,nextRate).CounterT ;

CounterT 4 = (gainKnowledge,a1).CounterT 5
+ ( f ailed, f ailedTelnet ∗0.05).CounterT 4
+ (nextH2,nextRate).CounterT ;

CounterT 5 = ( f ailed, f ailedTelnet ∗0.03).CounterT 5
+ (nextH2,nextRate).CounterT ;
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sql’s f ailed action rate counter

CounterSQ = (sql,T ).CounterSQ0;
CounterSQ0 = (gainKnowledge,a1).CounterSQ1

+ ( f ailed, f ailedSql).CounterSQ0
+ (next,nextRate).CounterSQ;

CounterSQ1 = (gainKnowledge,a1).CounterSQ2
+ ( f ailed, f ailedSql ∗0.1).CounterSQ1
+ (next,nextRate).CounterSQ;

CounterSQ2 = (gainKnowledge,a1).CounterSQ3
+ ( f ailed, f ailedSql ∗0.09).CounterSQ2
+ (next,nextRate).CounterSQ;

CounterSQ3 = (gainKnowledge,a1).CounterSQ4
+ ( f ailed, f ailedSql ∗0.07).CounterSQ3
+ (next,nextRate).CounterSQ;

CounterSQ4 = (gainKnowledge,a1).CounterSQ5
+ ( f ailed, f ailedSql ∗0.05).CounterSQ4
+ (next,nextRate).CounterSQ;

CounterSQ5 = ( f ailed, f ailedTelnet ∗0.03).CounterSQ5
+ (next,nextRate).CounterSQ;

rpc’s f ailed action rate counter

CounterR = (rpc,T ).CounterR0;
CounterR0 = (gainKnowledge,a1).CounterR1

+ ( f ailed, f ailRpc).CounterR0
+ (nextH4,nextRate).CounterR;

CounterR1 = (gainKnowledge,a1).CounterR2
+ ( f ailed, f ailRpc∗0.1).CounterR1
+ (nextH4,nextRate).CounterR;

CounterR2 = (gainKnowledge,a1).CounterR3
+ ( f ailed, f ailRpc∗0.09).CounterR2
+ (nextH4,nextRate).CounterR;

CounterR3 = (gainKnowledge,a1).CounterR4
+ ( f ailed, f ailRpc∗0.07).CounterR3
+ (nextH4,nextRate).CounterR;
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CounterR4 = (gainKnowledge,a1).CounterR5
+ ( f ailed, f ailRpc∗0.05).CounterR4
+ (nextH4,nextRate).CounterR;

CounterR5 = ( f ailed, f ailRpc∗0.03).CounterR5
+ (nextH4,nextRate).CounterR;

remoteLogin’s f ailed action rate counter

CounterRO = (remoteLogin,T ).CounterRO0;
CounterRO0 = (gainKnowledge,a1).CounterRO1

+ ( f ailed, f ailedRemoteLog).CounterRO0
+ (nextH5,nextRate).CounterRO;

CounterRO1 = (gainKnowledge,a1).CounterRO2
+ ( f ailed, f ailedRemoteLog∗0.1).CounterRO1
+ (nextH5,nextRate).CounterRO;

CounterRO2 = (gainKnowledge,a1).CounterRO3
+ ( f ailed, f ailedRemoteLog∗0.09).CounterRO2
+ (nextH5,nextRate).CounterRO;

CounterRO3 = (gainKnowledge,a1).CounterRO4
+ ( f ailed, f ailedRemoteLog∗0.07).CounterRO3
+ (nextH5,nextRate).CounterRO;

CounterRO4 = (gainKnowledge,a1).CounterRO5
+ ( f ailed, f ailedRemoteLog∗0.05).CounterRO4
+ (nextH5,nextRate).CounterRO;

CounterRO5 = ( f ailed, f ailedRemoteLog∗0.03).CounterRO5
+ (nextH5,nextRate).CounterRO;

The system equation

The system equation and complete specification are given by

System def
= (CounterS||CounterSQ||CounterR||CounterRO
|| CounterT )◃▹

F
AttackerStart ◃▹

N
Start

Where F= {failed,next,nextH1,nextH2,nextH4,nextH5,servU5,telnet,sql,rpc,remoteLogin}
and N={start,failed,compromised,completed,servU5,telnet,sql,rpc,remoteLogin}. Any action
in the list F and N is a shared action between the components specified in system equa-
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tion.The components are initially in the states CounterS, CounterSQ, CounterR, CounterRO,
CounterT , AttackerStart and Start.

6.4.2 Performance evaluation of the PEPA model with attacker learning
behaviour

We are interested in performing passage-time analysis for each attack path to estimate the time
it takes the beginner attacker’s to compromise the system for each path in the attack graph. We
assign 1 to nextRate, 0.2 to p and 0.01 to a1 which is the rate of gainKnowledge action. The
action rates for f ailedServU5, f ailedTelnet, f ailedSql, f ailedRpc and f ailedRemoteLog
are 0.6, 0.2, 0.4, 0.5 and 0.1, respectively.

Figure 6.12 shows the passage-time analysis for each path when gainKnowledge action
rate is 0.01 (a1 = 0.01) for the beginner attacker. Figure 6.12 shows decrease in the time to
compromise for each path compared to the result of the model without learning behaviour, as
shown in Figure 6.4. In Figure 6.12, for example, the time it takes the attacker to compromise
the system for path 6, which is the fastest path, is 365 time units. Whereas, in Figure 6.4, the
attacker’s time for path 6 is 430 time units.

Fig. 6.12 Passage-time analysis for each path when gainKnowledge action rate a1=0.01

Now, we increase the rate of gainKnowledge action to 0.1 to show how increasing the
leaning behaviour impacts the time to compromise the system for each path. Figure 6.13
shows the passage-time analysis for each path when gainKnowledge action rate a1=0.1 for
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the beginner attacker. This result also shows a significant decrease on the time to compromise
the system for each path when gainKnowledge action rate (a1) is equal to 0.1. For example,
the time to compromise the system for path 6 is 260 time units, Figure 6.13. Whereas in
Figure 6.12, the attacker’s time for path 6 is 365 time units. Thus, the faster the attacker
learns, the lesser time it takes the attacker to exploit the vulnerability.

Fig. 6.13 Passage-time analysis for each path when gainKnowledge action rate a1=0.1.

The following figures, Figures 6.14 and 6.15, clearly illustrate the impact of implementing
the learning behaviour and increasing the rate of gainKnowledge action on the time it takes
the attacker to compromise the system for path 1 and path 6. Figure 6.14 shows a significant
impact on path 1 when we increased the rate a1 to 0.1 for the gainKnowledge action.
Whereas, Figure 6.15 shows a slight impact on path 6 when we increased the rate a1 to 0.1
for the gainKnowledge action. This is because path 1, which is the slowest path in the attack
graph, has a great impact when we increased the learning behaviour (the gainKnowledge
action) rate.
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Fig. 6.14 The impact of implementing learning behaviour for the attacker on path 1.

Fig. 6.15 The impact of implementing learning behaviour for the attacker on path 6.

6.5 Defender learning behaviour

In this subsection, we implement the learning behaviour to the system component for
defending it. The defender can learn from each attack that targets the system’s vulnerabilities.
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This can be when the defender notices or detects abnormal behaviour in the system or receives
the system alerts. The defender will work to make exploiting the vulnerabilities harder for
the attacker by for example implementing more security measures.

Learning is represented in the PEPA model by implementing a counter component. The
counter will change the rate of the f ailed action of the vulnerability. The counter will
increase the rate of f ailed actions after an unsuccessful attempt to exploit a vulnerability.
This means that the f ailed action will be faster, increasing the probability that the f ailed
action will be executed. In Section 6.4, however, we implemented the opposite. We developed
the counter that decreases the f ailed action rate after an unsuccessful attempt to exploit
the vulnerabilities to reflect the attacker’s learning behaviour. This indicates that the f ailed
action will take longer to finish, decreasing the probability that it will complete before the
other actions in the same state in the PEPA model. Further, in both cases, the rates of the
other actions in the model kept unchanged.

6.5.1 Attack graph PEPA model with defender learning behaviour

We apply the learning behaviour to the system when interacting with the expert attacker. We
add a learning counter to the PEPA model of the expert attacker. The PEPA model comprises
of system, expert attacker and counters components.

The system component

This component represents the system’s different behaviours, moving from Start to Completed.
The description of this component is the same as the system component in Subsection 5.4.2,
except we introduced four states to allow us to implement the learning counter. These states
are AttackerNextH3, AttackerNextH4, AttackerNextH5 and AttackerNextCompleted.

Start = (start,1).SystemA;
SystemA = (servU5,0.33).SystemH1+(telnet,0.67).SystemH2;

SystemH1 = (sql,0.12).SystemNextH3+(rpc,0.1).SystemNextH4
+ (remoteLogin,0.18).SystemNextH5
+ ( f ailed,T ).SystemH1;

SystemH2 = (sql,0.24).SystemNextH3+(rpc,0.2).SystemNextH4
+ (remoteLogin,0.36).SystemNextH5
+ ( f ailed,T ).SystemH2;

SystemNextH3 = (nextH1,nextRate).SystemH3+(nextH2,nextRate).SystemH3
+ (nextH4,nextRate).SystemH3+(nextH5,nextRate).SystemH3;



200 Advanced models of attacker behaviour

SystemH3 = (compromised,0.6).CompletedNext +( f ailed,T ).SystemH3;
CompletedNext = (next,nextRate).Completed;

Completed = (completed,1).Start;
SystemNextH4 = (nextH1,nextRate).SystemH4+(nextH2,nextRate).SystemH4;

SystemH4 = (sql,0.5).SystemNextH3+( f ailed,T ).SystemH4;
SystemNextH5 = (nextH1,nextRate).SystemH5+(nextH2,nextRate).SystemH5;

SystemH5 = (sql,0.9).SystemNextH3+( f ailed,T ).SystemH5;

The expert attacker component

The expert attacker component is the same as the expert attacker in Subsection 6.2.

Counter components

The attack graph has five vulnerabilities. As the f ailed action’s rate for each vulnerability is
different, we have to implement counter for each vulnerability. The five counters components
are the same as the counter components in Subsection 6.4, except the rate of f ailed action’s.
The f ailed action rate is multiplied by 2.1 after the second fail, 2.3 after the third fail, 2.5
after the fourth fail, 2.7 after the fifth fail and then by 2.9 after the sixth fail to speed the
f ailed rate gradually.

The system equation

The system equation and complete specification are given by

System def
= AttackerStart ◃▹

N
Start ◃▹

F
(CounterS||CounterSQ

|| CounterR||CounterRO||CounterT )

Where F= {failed,next,nextH1,nextH2,nextH4,nextH5,servU5,telnet,sql,rpc,remoteLogin}
and N={start,failed,compromised,completed,servU5,telnet,sql,rpc,remoteLogin}. Any action
in the lists F and N is a shared action between the components specified in system equa-
tion.The components are initially in the states CounterS, CounterSQ, CounterR, CounterRO,
CounterT , AttackerStart and Start.

6.5.2 Performance evaluation of the PEPA model with defender learn-
ing behaviour

We are also interested in doing passage-time analysis for paths 1 and 6 to predict the time
takes the expert attacker to compromise the system for these paths in the attack graph. Path 6
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and path 1 are the fastest and slowest paths in the attack graph, respectively. Thus, we want
to show how implementing the learning behaviour will have an impact on these paths and
how the learning behaviour rate will have an impact on the time to compromise.

We assign 1 to nextRate and 0.2 to p for exploit code availability. The action rates for
f ailedServU5, f ailedTelnet, f ailedSql, f ailedRpc and f ailedRemoteLog are 0.6, 0.2, 0.4,
0.5 and 0.1, respectively.

Figures 6.16 and 6.17, clearly illustrate the impact of implementing the learning be-
haviour for the defender. They show an increase in the time to compromise. Moreover, the
time to compromise for path 1 and 6 are calculated when gainKnowledge action’s rate (a1) is
0.1 and then 0.01. The following figures present how increasing the rate of gainKnowledge
action for the defender will have an affect on the time it takes the attacker to compromise
the system for path 1 and path 6. For example, in Figure 6.17, the time to compromise is
175 time units for path 6 when gainKnowledge action’s rate is 0.01, whereas the time to
compromise is 200 time units for path 6 when gainKnowledge action’s rate is 0.1.

However, path 1 is the slowest path in the attack graph and has the lowest attack prob-
ability, see Table 5.3. Our result shows that path 1 has been noticeably impacted when
implementing the learning behaviour for the defender compared to path 6.

Fig. 6.16 The impact of implementing learning behaviour for the defender on path 1.
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Fig. 6.17 The impact of implementing learning behaviour for the defender on path 6.

6.6 Conclusion

In this chapter, we considered three types of attackers: beginner, intermediate and expert.
We proposed the attacker’s steps/abilities graph for each attacker type. Then we generated
the PEPA attack graph models for each attacker. We considered the attacker skill and
the availability of exploit code to estimate the attacker’s time to compromise the system.
Moreover, we showed how the different attacker skills and the probability of exploit code
availability differently impact the attacker’s time to compromise the system. We also
presented how the lack of exploit code impacts significantly the beginner attacker’s time to
compromise compared to the other attackers.

Furthermore, we implemented learning behaviours in the model for the attacker and the
defender. We illustrated how learning behaviour for both the attacker and the defender would
impact the time to compromise the system for the attack path. When the attacker learns about
the target system and learns from previous attack attempts, this will help minimise the time
to compromise the system. Further, when the defender learns about the attacker’s behaviour
and previous attack attempts, the defender will implement more security measures to make it
difficult to compromise the system and maximise the time to compromise it. This study used
the PEPA Eclipse plug-in to support the evaluation of the PEPA model.
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6.7 Chapter Summary

This chapter proposes PEPA models for a pre-constructed attack graph taking into account
three different skills for the attackers: beginner, intermediate and expert. Each model was
evaluated to estimate the attacker’s time to compromise the system for each attack path in
the attack graph. Moreover, the exploit code availability is introduced as a rate of p for
searchCode actions in all attacker’s components by having a probabilistic choice p to move
to next state to run the exploit code when the suitable code is found or go back to search state
again. p represents the probability of an exploit code availability. The attacker skills and an
exploit code availability have an impact on the time it takes the attacker to compromise a
system. Building a PEPA model version of the attack graph by considering the attackers’
skills and the availability of the exploit code can enhance the defender understanding and
help identify critical threats.

Furthermore, we improve the adaptability of our proposed PEPA models by incorporating
learning behaviour for the attacker and defender. The learning behaviours were introduced
as sequential components in the PEPA model. The components will change the rate of the
f ailed action of the vulnerabilities after each failed attack attempt. The PEPA models are
analysed via a continuous-time Markov chain with rates to estimate the time to compromise
the system.





Chapter 7

Conclusion

7.1 Summary of the research

In this thesis, we used the Performance Evaluation Process Algebra (PEPA) formalism
to model systems under attack and misbehaviour with time-variable aspects in order to
investigate the performance-security trade-off. This thesis investigates the performance of a
web-based sales system in the presence of cyber-attacks, investigates the performance of a
type of e-commerce security protocol, and provides methods for generating PEPA models of
the interaction between the attacker and the system based on a pre-constructed attack graph.
To begin, in Chapter 3, we investigated the impact and cost that cyber-attacks have on the
performance of the web-based sales system. We proposed PEPA models of web-based sales
system in two scenarios: with and without denial of service attacks. The proposed PEPA
models depict the high-level interaction between the system’s components. The models
were analysed and the evaluation of the proposed models’ throughput and population-level
measures demonstrates how the attacks would prevent some or all positive customer orders
from being fulfilled and how the delay in selling products would result in product discarding.

Then, Chapter 4 investigates a type of e-commerce fair-exchange protocol called an
anonymous and failure resilient fair-exchange e-commerce protocol [62], which is a type of
non-repudiation security protocol implemented during e-commerce transactions. This type
of security protocol has been developed to ensure fair exchange between participants and that
no party can take advantage over the other party. We proposed PEPA models for this protocol
proposed by Ray et al. [62]. The proposed PEPA models show a high-level interaction
between all parties involved in the protocol. We formulated the PEPA models in different
ways based on the description provided by Ray et al. to have a complete understanding of the
protocol’s behaviours. The models were formulated in different ways; with and without an
anonymity feature and with and without misbehaviour. The models were then evaluated based
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on different scenarios, which aids in the development of a comprehensive understanding of
protocol behaviour and associated performance costs.

In Chapter 5, we translate a pre-constructed attack graph to a PEPA model to build a
stochastic model of an attacker behaviour and show the interaction between the attacker and
the system. We proposed two methods to automate the generation of the PEPA model based
on a pre-existing attack graph specification. The first method generates a PEPA model that
comprises a single sequential component representing the system and attacker. The second
method generates PEPA model that comprises two sequential components. The system is
represented by one component, while the attacker is represented by the other component.
Furthermore, through the case study, we demonstrated how we used the generated PEPA
models to perform path analysis and to deduce the most and the least system security
threatening paths and the attacker’s time to compromise the system, which the defender can
use as an indicator of how much safe time the system has before being compromised. In
addition, the time taken to compromise a system for each attack path resultant from evaluating
the model can rank the risk of all attack paths. Moreover, we performed a sensitivity analysis
by changing the probability of the vulnerability to be breached of some action and then did the
passage-time analysis for all paths. The evolution of the model clearly shows the sensitivity
of each path to the change and the effect on the attacker’s time to compromise the system of
each path. This can assist the defender in determining the priority of countermeasures.

Chapter 6 proposed PEPA models for the attack graph, taking into account three levels of
attacker skill: beginner, intermediate, and expert. We first proposed the attacker’s abilities
graph for each attacker type. The PEPA models were then created for each attacker based
on the attack graph specification and the proposed attacker’s abilities graph. Following that,
each model was evaluated to estimate the attacker’s time to compromise the system for each
attack path in the attack graph. Moreover, the exploit code availability factor is integrated
in the models as a rate. The attacker skills and exploit code availability have an impact
on the time it takes the attacker to compromise a system. We showed how the different
levels of attacker skill and the probability of exploit code availability differently impact the
attacker’s time to compromise the system. We also demonstrated how the lack of exploit
code affects the beginner attacker’s time to compromise significantly more than the other
attackers. Constructing and analysing a PEPA model version of the attack graph while taking
into account the attackers’ capabilities and availability of the exploit code can help improve
the defender’s comprehension of the attacker’s behaviours and system’s security status and
detect key risks. Furthermore, we implemented a learning behaviour for the attacker and
defender. The learning behaviours were introduced as sequential components in the PEPA
models. After each failed attack attempt, the components alter the rate of the f ailed action
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of the vulnerabilities. The PEPA models are analysed via a continuous-time Markov chain
with rates to estimate the attacker’s time to compromise the system. Then, we illustrated how
learning behaviour for both the attacker and the defender impact the time to compromise the
system. When the attacker learns about the target system and learns from previous attack
attempts, this helps minimise the time to compromise the system. Further, as the defender
learns about the attacker’s behaviour and previous attack attempts, the defender implements
additional security measures to make it more difficult to compromise the system and to
maximise the time it takes to compromise it. For the evaluation of all our proposed PEPA
models, we used the PEPA Eclipse Plug-in, which includes an editor for PEPA model and
performance analysis tools using CTMC and ODE methods.

7.2 Summary of contributions

We used PEPA formalism to develop appropriate models for a web-based sales system. The
system was modelled in two different scenarios: without an attack and with a denial of
service attack. We proposed two PEPA models for the system. In Chapter 3, the models were
presented, then analysed and compared based on performance and security trade-offs. We
studied the system’s performance using the ordinary differential equations (ODEs) method,
which is well-suited for large-scale systems with replicated components.

Following that, we studied a more complex system. We developed PEPA models to
explore the impact of anonymity and misbehaviour of an anonymous and failure resilient
fair-exchange e-commerce protocol. We proposed PEPA models for the protocol based
on four main scenarios: with and without an anonymity feature, and with and without the
misbehaviour of any parties. We investigated the performance cost imposed by the protocol.
In Chapter 4, the models were presented, then analysed by using ordinary differential
equations (ODEs) method and compared based on performance and security trade-offs.

Then, we explicitly model the misbehaving person/attacker. We study systems under
attack by creating a PEPA model based on an attack graph for an attacker’s behaviour. In
Chapter 5, we explored the specification of models of attack graphs via two methods to create
PEPA models for an attack graph to represent the attacker’s behaviour and interaction with a
system. Such an approach incorporates timing information into the model. Two methods are
proposed to generate a PEPA model for a pre-existing attack graph with known vulnerabilities
that assigned attack probability from the international standard CVSS. The first method builds
a PEPA model that comprises of system and attacker as a coupled component. The second
method generates a PEPA model that comprises separate components of system and attacker
and an equation for the model with the cooperation set. Then, we showed through two case
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studies how we used the created PEPA models to do path analysis, sensitivity analysis and
estimate an attacker’s time to compromise a system for each attack path.

Furthermore, we considered the effect of attacker expertise by proposing three different
skills for the attackers: beginner, intermediate and expert in Chapter 6. Based on the attack
graph specification and the three proposed attackers’ skills, we used the second method to
generate the PEPA models for each attacker’s skill. Then, the models were numerically
analysed and compared to show the impact on the time it takes the attacker to compromise a
system. Also, in Chapter 6, we considered the effect of the availability of exploit code factor
on the attacker’s time to compromise a system by introducing the probability of an exploit
code’s availability into some of the actions rates in the PEPA models. The models were then
analysed and compared based on different probability values to demonstrate the effect on the
time it takes an attacker to compromise a system.

Moreover, we improved the adaptability of our proposed PEPA models by incorporating
learning behaviour for the attacker and defender in Chapter 6. The learning behaviours
were introduced as sequential components in the PEPA model. The components change
the rate of the f ailed action of the vulnerabilities after each failing attack attempt. In case
of an attacker, they decrease the f ailed action rate after a failure to exploit a vulnerability
happened. In case of a defender, they increase the f ailed action rate after a failure to exploit
a vulnerability happened. The PEPA models were then analysed to show the impact of
the learning behaviours for both the attacker and the defender on the attacker’s time to
compromise the system for the attack path and the security status of the system.

7.3 Limitations of the research

In this thesis, the PEPA modelling formalism is used to model, investigate, and measure the
performance and security aspects of the security protocol and attack graph as it allows a
compositional, formal, and abstract approach to constructing a model of a complex system.
However, PEPA allows just certain types of analysis using CTMC and ODE methods. As
PEPA is a Markovian Process Algebra, it can only support actions with negative exponentially
distributed rates. The duration of each activity is represented by a random variable with an
exponential distribution. Different distributions, particularly those with a higher variance,
produce different results. We could approximate these by using multiple actions to create
phase-type distributions, but that greatly increases the specification and the number of states
in the model. Another limitation is the absence of a real system against which we can validate
or derive parameters for our PEPA models.
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In Chapter 4, when we evaluate the PEPA models of security protocol, we have not
changed most of the rates of the actions from the values that we assigned as stated in
Subsections 4.4.1, 4.4.2, 4.4.3 and 4.4.4. We have not explored the protocol based on
changing all actions rates. Evaluating the PEPA models based on modifying the different
actions’ rates in the models can provide valuable insight and help learn more about the
protocol. Moreover, in Chapters 5 and 6, time constraints prevent us from consider a temporal
metric when modelling attack graph as we just considered the attack complexity metric. A
temporal metric is a critical metric that indicates how the probability of a vulnerability being
exploited changes over time. Additionally, we have proposed and then implemented three
different categories of attackers in the proposed PEPA models (beginner, intermediate, and
expert attacker). Various other categories of attackers might be considered when examining
the consequences of their behaviour.

7.4 Suggestions for future work

This thesis represents an initial step toward gaining a better knowledge of the impact of at-
tackers and security measures on system performance. In our future work, we are considering
modelling and analysing different types of security protocols with PEPA. In Chapter 4, to
further investigate the security protocol, we will try to adjust the rates of the proposed PEPA
model’s actions instead of keeping most of them unchanged. Furthermore, we will model
the security protocol and the systems under attack using different modelling formalisms in
order to compare the results and gain a comprehensive understanding of the performance
cost imposed by the security mechanism and the attacks.

In the case of the attack graph, in Chapter 5, the PEPA models of an attack graph can
be expanded by taking into consideration many other factors, such as the different CVSS
metrics of the vulnerabilities for assessing system risk. We just considered the complexity of
the attack metric for each node to define the probability of the vulnerability being breached.
Employing and implementing the temporal metrics in the model and evaluating the PEPA
models of the attack graph based on it is also important to acquire a better understanding of
the influence on the system and derive some useful information about the system’s security
status. This metric is critical because it illustrates the evolution of the probability of a
vulnerability being exploited over time. It can be used to determine the probability that a
system will reach a given state at a specified time. The examples in this context can be to
illustrate the probability of the system being breached at a particular point in time and to
show the probability of the system not being compromised within a year. This metric can



210 Conclusion

allow us to provide a time base for the state of the system. Therefore, PEPA models can be
extended to include the temporal metrics into the rate.

In this thesis, the attack graph that we studied is relatively small. However, real networked
systems have a large number of nodes, each with multiple exploitable vulnerabilities. As a
result, a network vulnerability scan generates a large attack graph. Therefore, we will explore
the issue of attack graph scale in PEPA model generation and analysis.

Furthermore, sensitivity analysis is an effective method for discovering serious threats.
Therefore, we will perform more sensitivity analysis on PEPA models of an attack graph
to assess the impact of various threats on a system’s security status. Sensitivity analysis
allows learning how sensitive the PEPA model evaluation results to the change in one or
more vulnerabilities rates and how such sensitivity may affect decision-making related to
prioritising countermeasure implementation. We will repeatedly change one or more vulnera-
bility action rates in the PEPA models and keep the other rates unchanged to identify which
vulnerability most impacts a system’s overall security status.

We will also incorporate some defence mechanisms into our proposed PEPA model of
attack graph in order to demonstrate the competition between attacker and defender and the
impact on the system’s performance and security. Additionally, we are also interested in
considering several attackers competing for the opportunity to compromise the system to
show the influence on the system’ performance and security status. Our ultimate goal is to be
able to monitor attacks in progress and develop an adaptive model capable of forecasting
future attacker behaviour in real-time in order to provide an effective defence mechanism.
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[26] Durkota, K., Lisỳ, V., Bošanskỳ, B., Kiekintveld, C., and Pěchouček, M. (2019).
Hardening networks against strategic attackers using attack graph games. Computers &
Security, 87:101578.

[27] Frigault, M., Wang, L., Singhal, A., and Jajodia, S. (2008). Measuring network security
using dynamic bayesian network. In Proceedings of the 4th ACM Workshop on Quality of
Protection, pages 23–30.

[28] Garg, U., Sikka, G., and Aawsthi, L. (2018). A systematic review of attack graph
generation and analysis techniques. In Computer and cyber security: principles, algorithm,
applications, and perspectives, pages 115–146. CRC Press.

[29] Gelenbe, E. (1991). Product-form queueing networks with negative and positive
customers. Journal of Applied Probability, 28(3):656–663.

[30] Gelenbe, E. and Wang, Y. (2019). Modelling the impact of cyber-attacks on web based
sales. Submitted for Publication.

[31] Gilmore, S. (2005). Continuous-time and continuous-space process algebra. Process
Algebra and Stochastically Timed Activities (PASTA’05).

[32] Gilmore, S. and Hillston, J. (2003). A survey of the PEPA tools. In Proc. 2nd PASTA
Workshop, pages 40–49.

[33] Hillston, J. (2005a). A compositional approach to performance modelling. Cambridge
University Press.

[34] Hillston, J. (2005b). Fluid flow approximation of PEPA models. In Second International
Conference on the Quantitative Evaluation of Systems (QEST’05), pages 33–42. IEEE.

[35] Hillston, J. and Ribaudo, M. (1998). Stochastic process algebras: a new approach to
performance modeling. Modeling and Simulation of Advanced Computer Systems. Gordon
Breach.

[36] Hirschler, B. and Sauter, T. (2016). Performance impact of ipsec in resource-limited
smart grid communication. In 2016 IEEE World Conference on Factory Communication
Systems (WFCS), pages 1–8. IEEE.

[37] Ibidunmoye, O. E., Alese, B. K., and Ogundele, O. S. (2013). Modeling attacker-
defender interaction as a zero-sum stochastic game. Journal of Computer Sciences and
Applications, 1(2):27–32.

[38] IEEE (1990). IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1–84.

[39] Jhawar, R., Lounis, K., and Mauw, S. (2016). A stochastic framework for quantita-
tive analysis of attack-defense trees. In International Workshop on Security and Trust
Management, pages 138–153. Springer.

[40] Kaluarachchi, P. K., Tsokos, C. P., and Rajasooriya, S. M. (2016). Cybersecurity: a
statistical predictive model for the expected path length. Journal of Information Security,
7(3):112–128.



214 References

[41] Katipally, R., Yang, L., and Liu, A. (2011). Attacker behavior analysis in multi-stage
attack detection system. In Proceedings of the Seventh Annual Workshop on Cyber
Security and Information Intelligence Research, pages 1–1.

[42] Khaitan, S. and Raheja, S. (2011). Finding optimal attack path using attack graphs: a
survey. International Journal of Soft Computing and Engineering, 1(3):2231–2307.

[43] Kotenko, I. and Stepashkin, M. (2006). Analyzing network security using malefactor
action graphs. International Journal of Computer Science and Network Security, 6(6):226–
235.

[44] Krautsevich, L., Martinelli, F., and Yautsiukhin, A. (2012). Towards modelling adaptive
attacker’s behaviour. In International Symposium on Foundations and Practice of Security,
pages 357–364. Springer.

[45] Kwiatkowska, M., Norman, G., and Parker, D. (2009). Prism: Probabilistic model
checking for performance and reliability analysis. ACM SIGMETRICS Performance
Evaluation Review, 36(4):40–45.

[46] Lallie, H. S., Debattista, K., and Bal, J. (2020). A review of attack graph and attack
tree visual syntax in cyber security. Computer Science Review, 35:100219.

[47] Lamprecht, C., van Moorsel, A., Tomlinson, P., and Thomas, N. (2006). Investigating
the efficiency of cryptographic algorithms in online transactions. International Journal of
Simulation: Systems, Science & Technology, 7(2):63–75.

[48] Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quantitative
system performance: computer system analysis using queueing network models. Prentice-
Hall, Inc.

[49] Lenin, A., Willemson, J., and Sari, D. P. (2014). Attacker profiling in quantitative
security assessment based on attack trees. In Nordic Conference on Secure IT Systems,
pages 199–212. Springer.

[50] Leversage, D. J. and Byres, E. J. (2008). Estimating a system’s mean time-to-
compromise. IEEE Security & Privacy, 6(1):52–60.

[51] Lounis, K. (2018). Stochastic-based semantics of attack-defense trees for security
assessment. Electronic Notes in Theoretical Computer Science, 337:135–154.

[52] Lounis, K. and Ouchani, S. (2020). Modeling attack-defense trees’ countermeasures us-
ing continuous time Markov chains. In International Conference on Software Engineering
and Formal Methods, pages 30–42. Springer.

[53] Matthews, I., Mace, J., Soudjani, S., and van Moorsel, A. (2020). Cyclic bayesian
attack graphs: a systematic computational approach. In 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 129–136. IEEE.

[54] McQueen, M. A., Boyer, W. F., Flynn, M. A., and Beitel, G. A. (2006). Time-to-
compromise model for cyber risk reduction estimation. In Quality of Protection, pages
49–64. Springer.



References 215

[55] Meng, T., Wolter, K., and Wang, Q. (2015). Security and performance tradeoff analysis
of mobile offloading systems under timing attacks. In European Workshop on Performance
Engineering, pages 32–46. Springer.

[56] Montecchi, L., Nostro, N., Ceccarelli, A., Vella, G., Caruso, A., and Bondavalli, A.
(2015). Model-based evaluation of scalability and security tradeoffs: A case study on a
multi-service platform. Electronic Notes in Theoretical Computer Science, 310:113–133.

[57] Okamoto, T. and Ohta, K. (1991). Universal electronic cash. In Annual International
Cryptology Conference, pages 324–337. Springer.

[58] Oluwaranti, A. and Adejumo, E. (2013). Performance evaluation of network security
protocols on open source and microsoft windows platforms. Performance Evaluation,
3(7).

[59] Outkin, A. V., Eames, B. K., Jones, S. T., Vugrin, E. D., Phillips, C. A., Walsh, S.,
Hobbs, J. A., Verzi, S. J., and Heersink, B. (2016). A framework for analysis of attacker-
defender interaction in cyber systems. Technical report, Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[60] Pokhrel, N. R. and Tsokos, C. P. (2017). Cybersecurity: A stochastic predictive model to
determine overall network security risk using Markovian process. Journal of Information
Security, 8(2):91–105.

[61] Potlapally, N. R., Ravi, S., Raghunathan, A., and Jha, N. K. (2005). A study of the
energy consumption characteristics of cryptographic algorithms and security protocols.
IEEE Transactions on Mobile Computing, 5(2):128–143.

[62] Ray, I., Ray, I., and Natarajan, N. (2005). An anonymous and failure resilient fair-
exchange e-commerce protocol. Decision Support Systems, 39(3):267–292.

[63] Sadu, A., Stevic, M., Wirtz, N., and Monti, A. (2020). A stochastic assessment of
attacks based on continuous-time Markov chains. In 2020 6th IEEE International Energy
Conference (ENERGYCon), pages 11–16. IEEE.

[64] Schneier, B. (1999). Attack trees. Dr. Dobb’s journal, 24(12):21–29.

[65] Sedaghatbaf, A. and Abdollahi Azgomi, M. (2014). Attack modelling and security
evaluation based on stochastic activity networks. Security and Communication Networks,
7(4):714–737.

[66] Serfozo, R. (2009). Basics of applied stochastic processes. Springer Science & Business
Media.

[67] Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J.,
Lobo, A., Alves, V., and Maciel, P. (2015). Mercury: An integrated environment for
performance and dependability evaluation of general systems. In Proceedings of Industrial
Track at 45th Dependable Systems and Networks Conference, DSN.

[68] Stallings, W. (2006). Cryptography and network security, 4/E. Pearson Education
India.



216 References

[69] Sun, F., Pi, J., Lv, J., and Cao, T. (2017). Network security risk assessment system based
on attack graph and Markov chain. In Journal of Physics: Conference Series, volume 910,
page 012005. IOP Publishing.

[70] Swiler, L. P., Phillips, C., and Gaylor, T. (1998). A graph-based network-vulnerability
analysis system. Technical report, Sandia National Labs., Albuquerque, NM (United
States).

[71] Thomas, N. (2009). Using ODEs from PEPA models to derive asymptotic solutions for
a class of closed queueing networks. 8th Worshop on Process Algebra and Stochastically
Timed Activities, University of Edinburgh.

[72] Thomas, N. and Bradley, J. (2001). Terminating processes in pepa. In Proceedings of
the Seventeenth UK Performance Engineering Workshop, pages 143–154.

[73] Tidwell, T., Larson, R., Fitch, K., and Hale, J. (2001). Modeling Internet attacks.
In Proceedings of the 2001 IEEE Workshop on Information Assurance and security,
volume 59. United States Military Academy West Point, NY.

[74] Tribastone, M., Duguid, A., and Gilmore, S. (2009). The PEPA eclipse plugin. ACM
SIGMETRICS Performance Evaluation Review, 36(4):28–33.

[75] Wang, C.-H. and Liou, R.-W. (2018). Attack strategy prediction with precisely estimated
probability and evidence mapping. Journal of Advances in Computer Networks, 6(1).

[76] Wang, Y., Lin, C., and Li, Q.-L. (2010). Performance analysis of email systems under
three types of attacks. Performance Evaluation, 67(6):485–499.

[77] Whitt, W. (2006). Continuous-time Markov chains. Dept. of Industrial Engineering
and Operations Research, Columbia University, New York.

[78] Wolter, K. and Reinecke, P. (2010). Performance and security tradeoff. In International
School on Formal Methods for the Design of Computer, Communication and Software
Systems, pages 135–167. Springer.

[79] Yousefi, M., Mtetwa, N., Zhang, Y., and Tianfield, H. (2017). A novel approach for
analysis of attack graph. In 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI), pages 7–12. IEEE.

[80] Zeng, W. and Chow, M.-Y. (2011). A trade-off model for performance and security in
secured networked control systems. In 2011 IEEE International Symposium on Industrial
Electronics, pages 1997–2002. IEEE.

[81] Zhang, Y., Fan, X., Xue, Z., and Xu, H. (2008). Two stochastic models for security
evaluation based on attack graph. In 2008 The 9th International Conference for Young
Computer Scientists, pages 2198–2203. IEEE.

[82] Zhao, Y. and Thomas, N. (2008). Approximate solution of a pepa model of a key
distribution centre. In SPEC International Performance Evaluation Workshop, pages
44–57. Springer.



References 217

[83] Zhao, Y. and Thomas, N. (2009). Efficient analysis of PEPA model of non-repudiation
protocols. School of Computing Science Technical Report Series.

[84] Zhao, Y. and Thomas, N. (2010). Efficient solutions of a PEPA model of a key
distribution centre. Performance Evaluation, 67(8):740–756.

[85] Zhao, Y. and Thomas, N. (2016). Performance modelling of optimistic fair exchange.
In International Conference on Analytical and Stochastic Modeling Techniques and
Applications, pages 298–313. Springer.

[86] Zheng, Y., Lv, K., and Hu, C. (2017). A quantitative method for evaluating network
security based on attack graph. In International Conference on Network and System
Security, pages 349–358. Springer.

[87] Zhu, M. and Martinez, S. (2013). On the performance analysis of resilient networked
control systems under replay attacks. IEEE Transactions on Automatic Control, 59(3):804–
808.

[88] Zia, T., Zomaya, A., and Ababneh, N. (2007). Evaluation of overheads in security
mechanisms in wireless sensor networks. In 2007 International Conference on Sensor
Technologies and Applications (SENSORCOMM 2007), pages 181–185. IEEE.





Appendix A

The PEPA Plug-in tool features

A.1 Overview

The PEPA Eclipse Plug-in facilitates the development and analysis of performance models.
The tool enables us to edit PEPA models, derive the underlying CTMC for steady-state
analysis, and conduct time series analysis using SSA or ODE in the Eclipse Platform.
Additionally, it allows for the creation of the transition graph, the calculation of the number
of states of the model for PEPA models based on the system equation. The tool is used
in this study to support the creation of our proposed PEPA models of the systems under
investigation and the calculation of the performance measures.

The PEPA Eclipse Plug-in tool interface is shown in Figure A.1. Before you can use the
tool and create a PEPA model file, you must first create a project container. To generate a
new project, choose File > New > Project. Then, choose General > Project and click Next.
Then, write a name for the project and click Finish. To create a PEPA model file, right click
on the project name and choose File > New > File. Following that, choose a name for the file
with a .pepa extension, which is the file extension for the PEPA model file, and then click
Finish. Now, you are able to create, edit, and analyse your PEPA model.
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Fig. A.1 The PEPA Eclipse Plug-in interface.

Figure A.1 illustrates the PEPA Eclipse Plug-in interface that shows an editor for the
PEPA model with an example of a simple PEPA model, the State Space View displaying
the Markov chain’s state space, the Throughput tab of the Performance Evaluation view,
the Console view showing that the model has been solved for steady-state analysis, and the
Abstract Syntax Tree (AST) view.

A.2 Performance evaluation

In this section, we will demonstrate how we used the tool to do performance analysis and to
derive population, throughput, and average response time measures.

A.2.1 Population level

To derive the population measure, select PEPA > Scalable Analysis > Population Level.
Then, from the pop-up box that displays, select the type of analysis, as shown in Figure A.2.
We choose ODE analysis. Then, specify appropriate settings in the pop-up box that opens and
then select Analyse, Figure A.3. You can choose the kind of analysis to be either transient
or steady state from the pop-up box. After that, The population level graph is shown on the
Graph View and you can also export CSV file of the graph, as shown in Figure A.4.
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Fig. A.2 The population level analysis.

Fig. A.3 The population level analysis pop-up box.
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Fig. A.4 The graph view of population level.

A.2.2 Throughput

To derive the throughput measure, select PEPA > Scalable Analysis > Throughput. Then,
from the pop-up box, choose the type of analysis, as shown in Figure A.5. ODE analysis is
chosen. Then, in the pop-up window that appears, enter the proper settings and then click
Analyse, Figure A.6.The pop-up box allows you to select either transient or steady state
analysis. Following that, the throughput graph is displayed in the Graph View, and you can
also export the graph as a CSV file, as shown in Figure A.7.

Fig. A.5 The throughput analysis.
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Fig. A.6 The throughput analysis pop-up box.

Fig. A.7 The graph view of throughput.

A.2.3 Average response time

To derive the average response time, select PEPA > Scalable Analysis > Average Response
Time. As with previous measurements, select the type of analysis from the pop-up window,
as shown in Figure A.8. The ODE analysis is selected. Then, in the pop-up box, enter the
appropriate options and click Analyse, Figure A.9. Following that, the result window for the
average response is displayed, as shown in Figure A.10.



224 The PEPA Plug-in tool features

Fig. A.8 The average response time.

Fig. A.9 The average response pop-up box.
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Fig. A.10 The average response’s result window.

A.2.4 Passage time analysis

To calculate the passage time measure, select PEPA > CTMC > Passage-Time Analysis, as
shown in Figure A.11. Then, in the pop-up window that appears, enter the proper settings
and then click Finish, Figure A.12.The pop-up box allows you to select start time, time
step, stop time, source action and target action. Following that, the graph of passage time is
displayed in the Graph View, and the graph can also be exported as a CSV file, as shown in
Figure A.13.

Fig. A.11 The Passage Time Analysis.
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Fig. A.12 The Passage Time pop-up box.

Fig. A.13 The graph view for the passage time result.
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