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CfiA; 'T`utt 1 

1 ryn " (. 

., ýj, 
Tr ýiýC. P J7Ji,,. r ili 

The work clesaribeä in tliio thosi; was c, irrs. ed out ilý the Deli 

Mechanical Engineering of ti'e lir_Aercity of Newcastle upon Tyne. The progrtir, i.: ie 
, ý' 

of' sYCri: uu. s un: ler;, a%en , 7ith to� aim of adc? i. nr; to the curperi: knorrl. edF; e of 

mechanism dynamics with pa, r, 010: -Ll' I'efc"? 'oi1Go to the four-bar J. i: tF. tlbc: san(; P,, at 

the time the, 'iYOrk' tiiaS ß4i::; 1e? 2("ot?; tiuF, ro A. marked paucity of I)ulalisilvt? ; York 
.... 

/ 

on the topic in this country. 

Part 1 of tine thesis contains it hrief but necessary presentation of the 

1cinomaticu of plan r.; Ii1 tags i1; L`ý^ý`. ý3i1ý3'"'. . Although the prineiplo, s invoivc: z 

have boon , rol. l known for the p' St century (1-51, the equations developed herein 

are T, r3se. itr.;; in n forrn pNLri; icý_l£jri. y appropriate for use with c? i;; ita. l coºýsntli; ers, 

the rcrsent rapid development of which has made the study of Itlookl£Luis. n. l 1cille�uLLicý 

a r. lr: cil simplor t£L; 1; Jan hitherto. The r; o:, hods employed here i~: obtaining 

il. lastratlVe r.; sült: c:. it be sinlpls' ai! £Lj? i. eii for appliCFt. i.: 
i2l to 

cons Movably i:; cro comnl. e_,. than the f oim"-'.: ar cli_ in. Foisiop wic. iy i of the 

mct.. ons of the U1111's in 3u'11 ltieeiltlSiiSr: 1: ý 1° also consicle1'Pd, a sitaple Turi`C1'i. cal 

integration procedure being used for the calculation of coot f icientc; rather than 

the analytical methed developer. by Freuclenstein (25) which is corzsi4erably more 

complicated alld of a nnscrc tý, cý, rctical interest; 

The ? inorlatic. effects of the _, ror onco of a finite c. loai' aneo in the pin-- 

joints of the four-bar linkage arc examined and the ir: ipcr tancc of the effect of 

transmission angle magnitude upon tho arlplitudo of the possible free motion of 

the ouo t-1 u. link is illustrated theoretically and with sample numerical results. 

The considerably rloro complex subject of the dynamic effects of clearance is 

not considered here. 

Tn Part IT the dynamics of planar ]. inkalge mechanisms is examined using the 

ý f on; lul. fte derived in : 'art i to c ; *aluate pi. ll"ýf oz°ces lave Loped duo to the inertia 

of the lillIcs the,.. -selves. : III, equations Keay be simply adapted to inclý. rcle the 



_; ý_ 

effects of c. `l: tornal loading t? "iid Arc a gftiI. in form ouitca to di it: d eo;, ', 1)Ut . 
ß1c" 

An . 
lmpc1 ant extension of this part of t110 work is A. n tho ? 10fß ix ie ). t) t)rt of t11ß 

ccuatiOn0 to include th'ý 0fCocts of balancing, c itlier partial or- totaI It is 

shown that in general there is an optimum balvneirrg conditiotz for üach, of the 

individual 1. illl; s by wh. l oil, oven in the totally bar 'J. c aced ecnd i tic.: ; f1ýcýn 'Lhe not 

force will be zero, the increase in individual. lýi; z-'_ orgies anti t True exerted 

upoi, the frame may be kept to a minimum. 

Tlic work covered in Parts I and 11, which has been lpzbl s: tr. 1 in abbreviated 

f01'! 1 in {: i10 cJaul'Titi). of Mochanica). !!! 
y^ýi. i10tl1'Illý SClii? i, 2 (). 0°) 

y 
dea) : 3t47. tl3 

"ideal" Jaechanislns, viz. ;: lechani. sills in which i"hý; effect, of fri: t:. o" and 

Clearaneo in bearings and elasticity of inciiviiiuai. links aa°e i gnol':: c% P, 11-LS III 

and IV on the other hand are concerned with the d. rd,. ar. lies of rl(: rhanisl, s s"ri: h 

elastic links, in particular the cri1.21l: r. ýncl rocker type lin'_taje -. rith vn elastic 

, COllj)lCl' or COli11CCt1Ilv link. In Part IT 
.T 

LhC CC iIL 4ii11: of ii, (lti0il is derived <:. ne 

subject to cortain linearizing 

Hill' s equation. An account of ýIii:. ' work has bac:. i? tli3l ±ShrCl_ i_? t tho Journal 

of 11echt. Lnical i; nginoL"riitg üci. enc:. ̀  (35)o A perturbation ]il""tiioo. of analysis i. ü 

applied to th: l equation of motion in odor to deterý; lino {, '"e stability criteria 

of thF" system in terms of t]!. e Four. -. er coefficients of th8 periodic functions in 

the CgUa{: i01E, lýhicit are kinematic functions of thvýlinli: (ýG, and ()th: 'I" parameters 

which are kJncmutti. c and dynamic functions of the link. thci,,; e veso It is 

found that the oqu4Aioii of mot. -on may be --iciplifiod under certais, -conditions 

which allow a more thorough examination of the stability criteria. Furthor,. iorc, 

thus analysis of the full equation requires it mortification to the Laia: iliar 

perturbation technique in order to allow the stability critcx"in to be found, 

Descriptions of this i odifi. ecl method have been published in the Journal of 

Applied Mechanics (30) and the Proceedings of the 3rd ; -World Congr cs for the 

Theory of 11achines and I-Jochanicros (29) 

Part; Iv deals with the expcriii. eatf II. investigations carried out in association 

with the theoretical ,, oric of Part III. Vibrat: i. oz: s generated i: a a m=nuaor of 

experimental mechanisms are comparcd i; it. h i. heoi'. ^"t Ct+. I. iav -f o2r.: 3 obtained from 



digital computer so1uti one of i)io equation of motion. Good a{; x"erýmc; x'I, is 

obtained botween expc. "i <ýent and two cocºputed solutions ebta: iej by quite 

different stetl: ods. T1w speeds at which the motion .,, sco, aes wistablo in 

these moel: utisris arc also co: pal°ed with the theoretically prgdi, etr d speeds. 
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I_I*r,, r TUN `t'iGS OF It'týCIliitI-'. 'S 

2.1 Ili s tof ical 

Tie Ludy of the I: inc., iatics of iiechanis=, is may be cons i. clered to have begun 

With the ; ror:: of t; iil is(l) and Roul oux 1) in the latter half of the ; -nineteenth 

centiurye. An extensive literature has been produced since then S; hich covers a 

wade range of geometrical and algebraic techniques applied to the ranalysis of 
(6 

mechanisms of all types, both planar and spaal , 7) 
The present discussion 

will be rests . ctec? to an examination of tho ? kinematic propei"tio of the planar 

four bar linkage and. a limited number of closely associated mechanisms. 

The planar four bar linkage is the basic rmeehan±suas of all higher classes 

of linkage mcchauis' s and consequently a study of the kinematic proporuics forms 

the baais for all subsequent work. Since the first descriptive work of the nine- 

teenth century, many sliýlttly different but essentially similar ; ýc: thocls have bo en 

proposed to deal with the problem. 1OldThýýý has been credited with the first 

use of cc::, ')lox number methods in connection with synthesis of rle( -hani ms but t'u) 

method is equally suited to analytical work and has been widely adopt; cd. It 

will be ust, d also in this wore. 

2.2 Position 

2 
-2. ' Crank- - Rocker and Double Configurations, 

ig., 1 shorts a four bar linkage A1C1', in which AD is the fixed link, or frame 

of. length . et 
, A13 the crank or input lime of length £o, 13C the coupler or 

connecting link of length 23 and CD the f ol. lower or output link of length 4. 

The orientations 91 of the three r.. c: vable links are measured with respect 

to the fixed link and are considered positive in the a. Iticlockvriso sense as sho n. 

This notation is becoming generally accepted internationally and will. be 

used 
, 
thr oughout this works 

In order to develop equation= wlhich will enable the output; angle 9 to be 

evaluated in terms of the input angle 02, we consi; rr the nleclhzauism as a vector 

polygon co, rposod of two pairs of vectors as sho, vi in Fig. 2. 



FIG. 1. FOUR-BAR LINKAGE : Notation 

FIG. 2. FOUR-BAR LINKAGE : Vector Representation 
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AB + BC A"', + DO, 

or,. in torras of the vector lengths 

ý7 
~E' t; 

J 

B 

ti +ý (2.3-1) 

The angular orientations of the vectors are ia, troci ! ecd by considering; the 

horizontal and vertical projections of tie polygon. Gotails of the resultant; 

calculations are given in Appendix 1. ,? c quote bore tho rnnqu: i. rc±l expression 

for the oatput zng7. e,. 

CGS 
. ý. 

-"t: b 

I 
It 

D, 

whore 

/- 

/ý 'E, . Ný 

I. 

ý ~ýl 

1) -" 
(. 

1 
:ý 3) (2 2) 

- zý ý-( ýz t--os%. -- Q, ý 

= 10 
13 

-- 
X 

IL - 
ý` 

r, 
el" 

"i: 1 .62 Cos 
0z 

C= ýý, e2 e, s« 92 
r 

and D=Aý+ 

This equation enables the cosine of the cLli Jut a. n;; ie ýf to be cistcr"i-: tir. ed 

in terms oi -the input. angle ý-º2. The corresnonclin[: , ir. c value may, be obtained 

directly frc; n the cýo, sir. e or from the ecJuzLtion (see xlý;? encliý. 1), 

A cos 9. 
"E B+ C' sin 0 (2.3) 

As will he seen bei otir, the for, -aalwo for angular ;, o I locity and aeceleration 

contain trigonometric functions of the angles 9, rather that the angles 

themselves. It is therefore appropriate to -wort; in terms of these functions, 

especially when using digital computer techniques. 

Having obtained the required functions of 9 
4, 

it remains solely to determine 
r 

in which quadrant the angle occurs. Yo, iever the possibility of two values for 

the cosine necessitates a consideration of the geometry of the linkage : ýtselC. 

Fig. 3 shows the ti, -o possible orientations of the iiochanism for a fixed crank 

position. 

For t; e mechanism AI3CD, 9, must l? e in the first or second quadrant whereas 

for the meehanisºi ABU" D,, 9' will be in the t}ºz. rr? rfo u' h. qý ý, drant. 
4 



i FIG. 3. FOUR-BAR LINKAGE: Two Possible Orientations of links. 

FIG. 4. FOUR-BAR LINKAGE : brag link Notation 

t 
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A further c: xai: iination of equation (2,2) shows that the f irc; f. tors: on t? ýe 
/1. I-- 

right hand side is equivalent to - cos �I; i3. cos I? IDü tirllilc he ,; Pconi t. c, rm is 

. -. ý 
equivalent to sin ADIý. si. n i; lýv. 

Hence equation (2.2) may be 1; rittcll 

ý "ý. 
cos ý/-- cos ( : 1T=B + k; LC ) (:?. i") 

F 

and wo see the significance of the two values of 9 rcflectecl in L110 go mo try 

fý r' ýý+ .. ý=1: " ý. fý tF'L 9. )) !r1 The angle ( 
E11ýiý, s+ 

xji 
F)ý 

'+ ADC 
Of the merllanisnl (i i5 

. i" 

the upper or ' opon' position of ; yhel°eas the alternative value i ý13! I: w liýC 

ADC' (0; -} gri-ves the lower or `crossed` position of 

Having determined from from equation (2.2) 
s it is possible to c:; : lur. t e 

r 

if required either from an analogous equation resulting from the el. i;: mi ation of 

94 or as described in Appendix 1. 

2.202 PraT Lint: Confiauratio u 

The foregoing suggests a possible alternative method of obtaining the correct 

value of the angle in taech4-nws ms -uch as the drag link in ýwhich the r. utput 

its fYSC. ýd ,., >c, ," 'ý 
wy Link 1"otateý ý co:: zpietel, about it. ý .. pivot with th., ý. c; enaýýquenc t, rwae, dl rnn 

lie in any of the four quadrants. The ability to detE: rriine sir.: j. ýly tire sign *"s 

of the Tr i. ý', OIIe1; Aetr_;. e LuTi on J. s of importance in programme writing for digit-al 

Computer worl, whore eauw"t"ione such as (2.2) ar"o Uscii. 

Fig" I, shows a drag link raech, in i. s r� -vitl, angles 9ý defined as Unfclro but 

with additional angles 

defined iuuiec]into IT by 

S in. 

cos 

ý 

0 ±ý 

Y, 

ez 

BD 

ýýý yýý 
defined as shONil. The first cf these is 

Bill 
0 

ý 

-si.: 
2ý 

Then 4> 900, the negative value is given to the cosine and this occurs When 

Q2cos02 el 

The reký: iiuing is to angles are deýine"' by the cosine rule applied to triangle BCD 

as foxZc-, aQ, 



cas /,. 
2Z 3* Il. j 

co,, 
p1,. 

^ 
e? 

+ 13li2 

. a. 2ý 3i) 
ý 

The corresponding sines are aiwaysi positive since both % 
and 4) are always 

less than 1800. 

Finally, 8_ and 8 are dofinod by tha equations ýr 

sin 9.. = sin (ý 
ý" 

ýý 

.. 
ý 

cos 
e., 

_ cos 

sin ßý = 67n j, 
ý 

Cos 0 -" -003 
( ý3 + I. 

, 
= sill I, Co, c{ý - co' \, s7 .n 

4ý 

X! os !. cus -{" s ill 
i, 

S. 1.71 ý 

= sin ý cos ,ý+ cor, ý sin -ý 

. -cos 
ý 

Cos ý: + Sill G1 SýU'ý't 

I: ýnL'I1ft7CS tC bc This method enabJ. is a simpler pI'oüPa. li, t'iIig of the t7,. I'I, fý 1-ink 

achieved and 1-educes the probability, of the use of iltr: orreet sin;: or (+osii, e vztlo,,, 

2,111p, dar Yelocities 

T iie 
ILllgüla! ' velocities of the coupler and follower may be fýetel'i)"L1ý4. 'l from 

tlifferentif:; ion of equation (2.2}. Thi. 5 however causes Coilsiilf: Ptt1? lr UtII. (: f e^S£lI'ý` 

complication in the calelllaLiol? s and a Iaero convenient method i: to cone : c`er ti: a 

vector eql; ^. tion (2j), 

Using tho vector notation e. 
_ 

4i E, A and diýfol antiatini; ý, e have 

c. i,, e 
ý2 

`2.5) 

Again considering horizontal and vertical components, ire obtain two equations 

i:,, 4)_ cos er, + 4, z 4)7 cos e. 
_ ^e, W, cos of-0 ý 

silticfl may be solved simultaneously for W3 and ca4 . 

Gi o -- LJ en 
S1 il C-6 

n -ý 
ý 

ý2c.. 
ý. ».. _..... ý. _ 

ý. 

Qý o in (? 
f 

6ý 
,qs. 

i Qýý (ý- 
-"ý. 

ý 

., -z .,... ) 
iz oz s in 82 + `- 3 

4), u in 133 - jc '14 ")4 s in 8, =C) 
) 

) 
) 
) 
) 
) 
) 

2,6) 

(? 

OI) 



va = 
ý2 

w2 

(. ) = -(A) 

(`)3 

& 
B IBc 

- ß=nc' W3 

12 W2 

B Isc 

13 
sin (T! +©3 g4) sin (84 92) 

.. 
, 
QZsin(82 04) 

32ý, 

3SIt1(83 84) 

FIG. 5. FOUR-BAR LINKAGE : Geometric Properties 
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These 31177. li. G' I'i: 1Fbtlon. S::; ýiS it iciy' also l}( t%ýý: L]IiLG CVS1Y3I110Aý; ýyý fi'Olil. c 

cons id-ration of tho goonac: try of the 11. n.:, ul; U as sl. olrn in Fig. 5. 

2olýiilýer ý1ý. 'CeZCT'tl"ýlOti£ý 

Again differentiating equation (2:. 5) we obtain the ec; u. tinü :, i' the 

ta, c: celer"+Ution vector polygon: 

(i a2 - cJ ý} 
ý2 ý(ia3 -" t. > j)ý -- (oý "- w ýý )ý, 

_. ý(2o i3 ) 

The horizontal anti vertical components of which are 

ý] ý f1 
ýSih0zfi 

-0-50 ý 

(Y35ineaIWS 
CnS t7ý + Sin rljý + : ý; 

j [o<-- ý 

Coi 
0., 

'-3 
(Qý3 

ýS CO3 -Gý 
Stn V! i 

) 
-- 

41 («4 
coS 

ýýF 
. týý Siýn t7ý )=L! 

Solving equations (?. 9) for c:. J, U'. ýr yiclds 

ýCa '_( 
ý3 10. 

a -ý 
t`''ýx c"5 (Bx 941) 

'" \Wx / 

(2.9) 

f3 rv 
(03--ýrýý ý ('? 

"loý 

CJcý lJz co; 
of 

tC; -Eri j -! - 
4' ý -(W, lý 

.e Sin 
/D ý 

ý"' ! izý. taýl C__ý? L'it. ý, aticn 

The equations developed in the foregoing sections arc in a form which is 

particularly suitable for application to digital eompui: ation. Since the angular 

positions, velocity and acceleration of the links are c? eterrincd in terms of the 

sines and cosines of the angles, the latter quantities may be used as the basic 

variables in an algarittun. Such tcrrs as sin (8 6) for instance are 

evaluated from the simple relationship 

sin (8 - eý) sin e, co e -- cos 8 sin 0 
334 

"A simple programme based on -,. his approach and which evaluates positions, 

veloCiOOS and accelerations . 
Cor a crank and rocker typo of four bar linkage is 

shown in Appendix 2, (This pvogrnn: t! e forms 
. 
tIIO c' re of a larger nrogrr. T. u,: e used 

by the Engineering S ionecs Data Unit Iiznet-mtics Co n. mitLOO of the author is 

a member. The progranme will ba used to prOdU ' data. f or r Dos ign ; reraoranduri 

. on Analysis and Synthesis of Four liar linkage t'echanisms) 
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W- 0 ý 
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( I- 

0 90° 

-1. 

FIG. 6(c) OUTPUT ANGULAR ACCELERATION 

10; Value of Pz as shown) 

- -2 



tiiitl! such a prograt; ü.. e availF: })?. e, it is instructive to investigate how the 

Kinematic properties of the Emu- bar linh-ago vary with e}iein;; e of linlc:, gro ct_irietisiua,. =, 

, 
{i': I. gs. 6 show respectively p°sitior., angular vcla! '. ý. tý ar_[i tý,, üi; lel"ation 

of the follower of a cI'iill}C and rocker ! 'lee}3anisr,! ", iit]i Constant= u-nie', speed for 

a range of cran}, longth: i while the remaining three link lengt}ts are constant , Ic; 

equal to each other. As the crz`. ntf length 0, the I; ý`)c}ý4 3. i..: l"i ; Ittains the 

form of an equilateral triangle in which 0ý ý 120° and velocity and acceleration 

appro" c}i zero. At the other end of the rr,, ,, e, as ýI,:; }ýý roaches the Value of 

the tnc c}1llnisl: "weca: aei; a, parallel motion csevico in xrhi czx 1 ,. 3 

g_g, to co and oc = oc ý,. 
In the eaÜe of eonstw; lt input ), lotion, 

!. 22 !h4 

oCý - CaC ,ý_0. 

The g curve for the P01 1.01 311ot: ion IiieC}lüniS31) appears as a Sý'ºT^l'Uai]1 form 

suggesting a discontinuity at r32 G. This is a natural consc:, uex=ce of the 

met; iot}. of showing output angle as a function of input angle, the physical motion 

}; cira;; uoustarlt, rotý-. t, icr.. (1t is worthy of note hure perhaps that in such 

me0hc^onisin8 , ýiynats)ic effects are most 13: 'poi'tant and it is usual to Sub- 

sidiary 3)1e0btiS2lSlas Or Other dev--eoÄ to overcome the problCLi of 'alilliii. x? v or suii. zen 

reversals L. l". (: C; tlCl ýCCY3i. i'L' poS?. tiOU'3). 

2.6 Foul"ie: 
_A. 

uilysi. s 

Freuc]er.. st ein(25) has described an ana?, ytical method i`ar the harmonic axullysis 

of four bar linkage motions. In particular, the output motion is often of 

interest and b'reudenstoin's pnpar Ceal with the prebIoim of obtaiping an expression 

for the output angle in tori; s of harmonies of the input angle. The method 

involves considerable calculation which in the najority of cases would require 

the assistance of a digital eo iputor. A more direct ]method would therefore 

seem to present itself; that of calculating directly the Fourier cneff icients of 

the output angle 0ý whcn expressed as a periodic function of input angle 82" 

AppendiX 3 lists a S1iUp1O intOg ion procedure, using Simpson's rule to eyt lut: te 

any number of suc. u coCif: icionts to any proscrib& areur: oy. The r: ethou worO 

well and a selection of typical rc5; lt$ is shown Al Fig. 7 where sine and ecsine 

coefficients are compared over a z'a,.;; o of 3^cchazi. e": ̂ ft7.3itt 31'ibI! ':. s f. Itt? f be 4Gi;: tý 



50 --I 

a 
04=Zf a�cos n02+ b�sin n®2} 

n=0 

40-i 

ao not shown 

a n 

bn 
30- 

20--- 

10--- 

1- 

n -ý. 

ý 

FIG. 7. FOURIER COMPONENTS of OUTPUT MOTION 
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for shill values of 09, only the first sine and cosine coefficients are 

significant. As @2 increases ltoveve1', Moro of the coefficients become import- 

ant but of the sine terms only the first increases notic . 
bly 

. The cosine terms 

beco e larger and are always greater than the corresjloltding sine terms. 

The coefficients shown in Fig. 7 refer to 61 as a function of e0. The 

proeqdure given in Apionc'i .3 may be used for any periodic function and, as will 

be seen below, this becomes important in tho c'syn_. 'mic vnaly: is of L1oehanisms 

when the Fourier coefficients of periocic forces must be deterniuod. 



ýr: 7ým. "`',:. ' ý. 
.. 
'. 

ýr''{{, "1Jýýý; "r, ^ý'1:. 

fi! J. 
": 

. 
ý`t'1ýlnsý /7{r, t1. rIv: S. TSlý/r, 

J S11.1111 'J11:. lýll``ýftiý l. i 
OF LL,.: ýý 

The kinematic effects of clearances present at the pine ; }o?. nt3 upon the 

output motion of a linkage mechanism are much more eas il}r c: et, in id than are the 

dynamic offects. ijov-ever, they have aitarently beon given lit0c attention and 

there are few references on the subject. It may be uscf; A t! leroforc to e}: anirie 

such offo is of a clearance at one of the pin joints of i"he coupler in It four 

bar linkage. .. 

Fig. 8 shows schematically such a linkage A1 1. ) in rhieh there i. s present 

clearance c at the coupler-follower joint C (the maglitudo of Ouho eiearan;, e is 

exaggerated for clarity",, For a gi. vorl drank angle G2, the no; mir: rl positions 

of the coupler BC and follower CI. ) will be as shown (i. e. with zero clcaranee). 

However in the presence of some finite clearance c, the coupler and i'ollovrer 

may take up any positions betweca the *lvo oxtromo,;; BC'Tr and ß1,3"p. 

To investigate how the range of pos. dibie values of output angle (1, varies 

with crank angle and linkage geometry, we consider the triangles ßC. ), 3C'D and 

BC"D. UsinC the cosine rule uro have 

13C1 = BU2 + CD2 -= 231?. C3 cos 

ý' 2BU. C' Bc os P, C 
2 BD2 + C' I, i2 - 

BC 
2 BI: 2 

;- C"3)2 -- 2ET). 0"D cos 

Now C1º = C' D= C"B 

BC 3 

BC' -t 3+2; 

BC" =2 

Hence 
ý=I; r2 + 

X2 
- 2BI). ý cos 

ýý 

(ý 
j+ 

2}? 
= BD2 £2- 21)», 40ýi cos 1 

and tt BU 2 -i" ýC. 
nnz 

- 2Ii'D° Cos 
_ýt. 

ý. 

I 

( ý/ c2ý2` 
,l. ( "ýo \4ý '1` rýý 

"' ýi Ti e 6l: Uiý 
ý! 

^ vlis 
3 ý, " ý 

ý. r 

Cos co:; 7' 

Gýýlo v. 

; 3. =3 

if. 



FIG. B. KINEMATIC EFFECTS OF CLEARANCE IN COUPLER-FOLLOWER JOINT. 
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Similarly 
p2 

3- 
Cos (7" - CUs -Z, - 

2 BD. Q 
1.. 

Writing 0+ 

and (. 111 ý, 
_ 4,11 

öý} 17c have (for small 

ens 
ý` 

-^" Cos sin 

Cos 6� ="-' Cos ýFý Oil ;. in 

whence ire el7ta]. I]. 

c 
-3 , {. 

4' 
wiý1) P. sill 

. 
ý_c 2 

ý 23ýa 1 ýt sin 
"e., c 

or 
d3ii . 0! S17,4q; 

(3.2) 

(3.3) 

This equation del i_nes the tha,: imum arlgalal' movement of the f of lnwor° Z' or" 

sI. na11 clearance (second order terl%. S in Ff having, been ignored). TJio exact 

equations (3. l) and (). 2) must be used if the clearances are large or when the 

geometry of the linkage is such that comparatively large mcv: ments are possible. 

Vhen the angle ý beco. os very small, the approximate equation (3.3) yields 

increasingly large values for indicating that the 'exact oquaticn Iaust he 

used. Consider the case in which 
ý- 00 (in IL practical mechanism this 

would be an extreme point in u double rocker configuration Fig. 9(a) ), f'{e 

now lirive 
2 

oc 
cos - cos ¢' 

_}4. 2131). ý4- 

and cos = 1. 

I3D = (g +-eý) 
7 .. 

n 
Cr 

/,. Hence cos 
Q3" 

+ 

.r 

I 



FIG. 9(a) KINEMATIC EFFECTS OF CLEARANCE 

(Extreme Position 0= 00) 

FIG, 9. (b) KINEMATIC EFFECTS OF CLEARANCE 

(Extreme Position 0= 900) 
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TIu; value or cos Ju will be similar in this crsts. 

The other limiting case is that for which 9()e (See Fig. 9(tJ)). 

The exact equation no,.,, yields i:: uaedi. atel, y 

2 14 
Cos 2DI). 4 

The flj)preXlm. tbl: c oCjLlFLi, i^! 1 gives a S3I; lJ. l. 
c'Li rcýlilt; 

ýo. * ZLI, 

. 
ý. 

AL n4 
vii t1T BD 

- `' -- C 
j fF 

2 

? L3 i. 6 
4 

Considering again the general approximato equation, we see that the 

magnitude of the possible angular miovomont depends not only upon the amount of 

clearance present, but also upon the geometry of the linkage. Applying tho 

sine rule to triangle BCD we have 

LD 'l. fý 

P whore, fý. - 
ýi"ilnälilSä] OIl angle i, iiL 

sin P, c 7. I1 Jý / 

Therefore ö o' 

This equation shows clearly the dependence of cý' upon the linkage 

goo: netry. As the transmission ra. ngle p. approaches 900, Sý' obtains Us min- .1 

value f or any f ixed c and 

COS n` O tQ sin 
2 

ýýý 
sin 

C 

sin j. 1. 
ri 

Pig. 10 shows the variation of äý, ' with crank anglo 09 for a mechanism of 

dimensions I= £S 10, ý2 
= S, f or a nttrai: er of values of the 

clearance c. 

The maximum value of occurs at G° = 0° corresponding to the ; ainir_rura 

value of transmission angle ý.. r. o There may also ho a local naxii: ium value at 

0, ) 
130° corresponding to the other extreme value of ýL In general these 

extreme values of ý i--rill be respectively -- g0° and 90° so that the raalirrurr 

value of sirt ý will lie between those giving a Iaiili-ußa value of S¢ý'. There 

is. lotisovcr, a range of mechanisms in which the transmission angle is always <. 9Jo. 
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From the Figurc belew, p. is always < g(3° if 

cJ17 1 
)2 10ý 'r L4 

n11C}I cases tim, >> IJ. In'iiitite'1 Valia'L Uxr will occur at (c: 
2 a. 1SC i0 In a... , 

It way be pots tod out that kinc;;. aticii. ily, it is of no consequence irhother 

the cou lcr-Iollowor the clearance is present at tie crank-coupler joint or 

joint. The range of free motion of the follower lint: will be the sane in both 

cases. l Tnari: ý. ca lly, I101' C Vc'I' the ine. i tia 
. of the coupler will be important nand 

mast be taken into ac('ornto hobrino I-iiý11) has examined vibro-"impact systo is 

i3, L gerera), considering also the effect of springs added to the systems, 

Ptilsoný has extuainod. the dynanie off ects of a clearance between slider and 

guide in a slider-crank jailCha. nlsirt with reference to the chango in impact behaviour 

of the slides -;,, ])on geometric and dy3ia>�^. 1e 11, - raliieteI's as e varied The more 

complicated situation of a clear. iiee in the crank and rocker raochanisri discussed 

in this chapter appears not to have boon investigated dyna; ricully so far as the 

author is aware, 
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t. 1 Introduction 

The forces developed in a linkage me-hanisiim during its operat? nm: ? ill in 

general be functions of the link '1: L1ensions and any externally ap; il cý? load. 

In the absence of such external loafs, the forces -will be dut: soleter to tile 

inertia of the links therlscl ves aiýd, iIl the Case of a eons Gsnt rotary input, 

the inertia of the coupler and foilovrer links only. In this ch. sptor, equations 

arc derived for the pin-forces a : 1d `'liaking moment produced in a ff, ur bar linkage 

with zero external load. Illustrative results are calculated. for the case of 

crank-rocker mechanisms operating :'t constant input spool. 

/,.? Inertia Forces 

Fig. 11 sho irs the freebody diagram of a four bar linkage AND in which the 

moving li. t'.; s AB, BC, CI) are considered to be uniform burs of mass H2.11: 13 ti 

respectively and corresponding inertia, 12'A' 33h, z/JD about axes perpcniicular 

to the -plane of the mechanismrm throug'a points A, B and Be The crank M3 is driv. n 

anticlockwise at angular volcelty cwt by an applied torque T. In the absence 

of any external load, the forces developed at the pins , will be One entirely to 

the inertia of the mochan i. s: a. The cc: ponents of the pin-forces in the horizontal 

, 2. 
is the horizontal conponent and vertical directions are defined as shown (e., X 

of the force exerted by lint: 2 upon lint; 3). As "a consequence of this definition 

of the pin forces, X1`. ?., i for i, j=1,2,3, /.. The centres of gravity 

of the moving links G9, G3, G,, arc located at distances -f'2 from A, -I3 from ti 

and -t'4 from I: as shown and have acceleration components ( CL 2X, a. 2y)' 

01 a., ) and ( 0',, 
, 

(, ' 
) respectively which are defined by the follol, ing 

equations 
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w3_: 5_ 

Q. 
^1ý 

ýttiJ C03 -F 
CX 

ý? ?1 ý. 
ýS 

: lll 

2 Ct. 
2Y -ý 

ý' 
2(cJý, sin v, ý - lX 2 cos E, 

2) 

CL- -_ - L2 
7(k, 

ý cos ä_ 
}X 

(j. I) 

sill 02) ; fl; + col-, sin. 

_ -ý 
Q, -- a" ( c, ) 

2 
coFý 6; + O. - si. r. 6ý) 

r 1 
ain 8ý - R2 

ýz 
_ d'2 

OL 
2y 

(r, JZ 
>>> 

Q. = -- ^N 
iG; Cos !ý!. /. ýF . ý. 

a 
_- 

j-ý ; G)? j sin 
cv ý+ 

.. bC 
ý ,,. 

- oL yz os 0,, ) 
lG 

s in 0 ) 
r 

Cos 8ý) 

(1, -. 3) 

In order to Gi: ttL112 ßFqressaOIIS for the pin f OrcCs and driving toraai3. ti! -- 

equations of motic3i of all links must be solved. simitltanoously. 

link in turn, the equations are 

link AB: x12 -- x2, = M2 a 2x 

112 - Y`3 _ xy2 a, 2y 

T+ 123 . 10,2 sill E32 - y23 le 2 Cos, 62 '- I2A a' 2 

1 in1: BC: ýý ý Xl *='rtl' 
a' J, t 

Ir? 3 - Y311- ' "'3 a 3y 

X, 3 _r3 sin 03-Y213 -J'3 cos 63 + X343 3) sin e3 - Y31. ( 
? ', 3 

(i-o 2) 

(" 0 s, E)2 )- 4' ( cJ 
2 

is in v.. - oC cos G >>>> >) 

Ta(. it: n eý, ch 

(4.4) 

(. 1.. 5) 

- .t3) cos 83 

= (I _ -ý ýý -d- 2) cx }i 33 3 



I ink CD : ;. } i-: ýý= 
11 f Ct; t/, i-k 

ý`ýý -- I'4-i = 1? t/ lh, li-Y 

- X3/1 ti sin 81, -r- Yjl, ý1,. cos fý`s ý TIijJ Cý, 
4 

(d.. 6) 

These equations may conveniently be put in ºt: atz"ä.: s iot':, 1 and solved by 

invorsion, but in view of the simplicity of most of the equations, it is a 

comparatively simple tasl, to solve them analyti4:. c. lý. ýr ;; itir tltc: following rr, su. l_ts: 

X34- 

\/ý'ý 

( 
S3ß«3 el 

cAS94. P SubCxy 23 
CS B3 

-- m3-t'3 
ýatý CoSdy 

ýLJ? 
Siýýýýý-o31` ; 

iC45! 
ýZ G3)1ý 

ýGJ4 4, Stn(®j - 
041 

I 
(4.7) 

L' (cýl. (? 3, _oý2ýs(ýý, _©3ý 
0 -"ZZ� si'r ( S?. - D, rý 

"Y'3( 
e2lJi 

Cos 
9, 

+ 'PIN, Sin (IL .ý r3 w3 COS 03 ay, -+- "*, 34- ý 

y3=-.,., 
ý3 

fýn 
W- Sin ý 

(4--S) 
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X, z _ 
'1' ýa Clýý ý' f 11 

j 
.ý 7yt 

(+ý 

to 
2 LCA Sý^ ý 

(4.9) 

yz _. --, +ý, ý"MWZ Sýh 8Z -_ zýZ. vSt9zý f YaW 

V 
4-4 02- c. os 

9" + 

' '! 
r-1 

X 34 

Y3 ý;. ,ý 

('i-. w) 

Srý Vz . 
ýýh. Uý 

n XZ2 
... 

LýA (ýA YA 3 '{ ý 
'ý. 

'n1tf. l 
4-" 0 ,, Si, 9, ýýh "ý%f cos ý4-) + 



The force exerted on the frame du(, ' to the raetio<< of the be 

si piy the suit of the inertia forces: 

A_x" Pra"ý.: ý 41 
h 

19 

_ 
!. 1 1 

.. /b; ý `i12 2: F. 

ýý (t,., 1_ý 
T7 

T"ranio -- f lý 
J. 

~ _ -(M7 a� y+ 
ri 3 a3y + fl, 4 

01 
Z, v) 

In addi-i, ion there will be a shaking ri'nont on t},,, - which may eonvepientiy 

be taken about the cram, pivot A 

M Frari, (4.11) 

Equations (t. 
o7) - (x.. 11) and (/1,12), (4.13) give a conpletely general inertia 

force analysis for the four bar linkage which may conveniontly be ctar, iiieds in 

detail with the aid of a digital computer. In the majority of oaLses, the crank 

is considered to rotate with constant velocity so that the equations are siº-: wli- 

Pied slightly by the omission of terms in Mg. Ecntations (4.7) - (4.11) then 

rf; semble those given by Talboiurdet''ý) tiwl'o produced results shovin: - the effect of 

cltilng'_ng the material from which the ]. auks are made. 

In the case when the crank rotates at a constant rate, all Pia tcrecs and 

2 torques will be periodic functions of time or cz'au1; angle (F,, = t) A us' f:. 
_ 

ahoi; lhod of showing the variations of such forces with crank position is the potür 

(Iiagram4 Figs. 12 - 16 shop; a typical set of pin forces for a cram: and 

rocker mechanism of the following proportions 

ý1 
= L3 = 

£4 12" y2 6" 

193 = lYý =1 1Lf 

ý1 I_ CJt, 
3x 

iJ 
79- 

Q, 
/, -X 

i 17 = 0.5 lbf 

1 513 - I4D = 0.125 lbi in sec2 ; Crank speed W2= 10 r.. d/s. 

The convention used in Figs. 12 -- 16 and similar fig res is that value; of 

hid and Yid are plotted simultaneously thus showing the value of Y. 
j 

in magnitude 

and direction for a particular value of the crank angle 5,,. A radial vector 

drawn from the origin to fa point laboiicK 00 for example, will. re present the pin 

nS7tae force in irin, nitude ad direction idion MIC vaLLLIV of E)� is 0. 
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As a cOns07Uene0 of the kinematics of the lin'C. tf; o, the maxima or Lha 

forces occur in the region of 89 -00 where maximum accc: lcvr{tionu occur 

together with nlini-nuua transmission angle. It has alrvalty boon seen that 

naxi. r. nua values of acceleration increase rapidly as the cr&: i length if wi? ("i'etyse(i 

wa. th respnct to the other lints. The coprasponding inz: I°c: nso in pin forces is 

sho; sll in Figs. 17 - 19. The rele`-ir1i, s. ir'c;: 3Lnzs}+1 dimensioas are shown as the 

figures its Which is a useful convention to 'FcCI. OpL as a brief 
12J %+ 

and easily undorstood r ethod of indicating the iii, k length: of any font bar 

linkage . 

All results quoted here as. examples ai'e concerritd only with iner"'ia 

forces. it is a simple matter to include the effects of additional external 

loads acting on the rmechanismn by adding appropriate terms to the pin, force 

equations. 
/ 



(Ibf) 

FIG. 17. FOLLOWER-FRAME FORCE: Effect of Change of Dimensions. 
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---4 1.0 (lbf) 

FIG. 18. FOLLOWER-FRAME FORCE: Effect of Change of Dimensions. 
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FIG. 19. FOLLOWER-FRAME FORCE: Effect of Change of Dimensions. 
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.: ý..: ý.. ýTý'. 
ýtv' 
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ý; ý. ý. uý, P1C yJ vEr 

Tho previous chapter has deal l iti-i th the ; 'orces pro(? lcccd in a n=ifsch_ Ilism 

as a consequence of the inertia or the moving !. i. n; {s. Aj th711r' "t is cofdlSoI1 

j?? ': 'lofi. 7.. c;. ' to ! ks', ý. "ýui; ii' mich to be L. IIi. S oI'P. i rods, they may in f, ý,, t; t tLo]iG' a 

vE. rictj' of f. 'it r; Is mid in many instances the ?. ill'". "; S with f iXe: i iýj Vi)tS i', ", 

'u. uZ&rcafi, -ij;,. te; r p. ý, ri: in-l. Iy or totn. liy. The egI'ati, ms (4.7) - (4.11) will 

not be by this : IoiYevei' except for the necessary .. ZCýýu;, 3tTSeTitä tC, the 

vai. liIas pf .i and -I'., the fatter of which Slav sometimes be Hero. 

In gonefal, the Cii"ýýanei. ll of a link about any axis is r chinned by tiro 

addition of counterweights to thq, t lank with a resultant increase in tilt/ 

17U1ticnt of inort. ta above flint axis. A Cii. reet consequence of this is tltat 

although the total force (en the frame) way bo reduced to zero by bolaneing, 

there will be adverse efforts upon tiro individ-aal pin forcos in the mechanism 

and upon-the. torque flev. "l. o? Ie(i. To achieve au optii; un eondil ion of balunee 

in any i, ºe. ̂, lt ý,:: iý; m therefore, a nurlbnr of important iactorý, m st be borne in 

mind. Figs. 20 (a-cl) show a Itu Cher of ways in which balance may be obtained 

in the foul- bar linkage. Fig. 2. r) (a) shows the unbalanced linkage, Fig. 20 (b) 

the partially balanced ea. oe in. ýrili: Sh crank and follower onl. o are balanced about 

their fixed pivots, while Fig's. 20 (c), ((l) show, two coupletoly balanced 

mocilartisms. The first of tllcsu contains a coupler -uhict is balanced at the 

crank pin anc? a crank which is balanced so that the combined contre of nass of 

coupler and crank is located at the fixed pivot A. The follo, fer is balanced 

on the fixed pivot U as in case (b). The second Hilly balanced linkage, 

Pi;. 20 (d), contains only two counterweights each of which balances the link 

to which it is attached and in adctitio: l a proportion of the coupler which is 

considered to be replaced by its approxirUn. tely equivalent system of tiro 

conce --I:. A"a%r, d rases at ß and C. I. the cen 'I'll'o of nass of fliese tý, o is co-- 

incident with thýýt or the cotiplar, r, nd tho;. r total s: asu is ti, t same as that of 

the coupler, there the inertia ;. oresr; s gencr:. ztetl by , yote: rill 

bo S1i; I7LlF2i' io the OI'1g131zL1 aid the whole rii ^)liula3F"r. 3i: ijr 
be ]litýt4IICCü Z1. S 



U 

C) 

b 

0 N 

H 



ý ý 

ý ý 
ý ý. y 
ý 
C 

0 M 
u 
cc3 

'L7 
41 

. tL 
t. 
cC 
ý 

-i 
© 

.4 

ý 
ý 
ý 

w v ý A 

ö 
-l 

H 

ýs 
b N 
ý 

I-' ý ý 
oi 

m 
-1 

v 
co 
cý x a 
.ý ý 
'O I) 
u 
ý 
cý 

0 

0v 

c, v 
ý ýý 

. _, ... 
0 
... 
ý 
b 

ý 

0 

9 
., ý 
u 

ý 

Cq 

44 
0 

ý 
U 
Q) 

44 
4-t 
W 

H 
N 

ý 
H 
W 



N 
c-' 

0000 NQ c0 OD ON 
IIýI ý- I 

" 
; ql Ui--lo 

ý1-i' 
NN 
ý 4-4 44 
bD to .- . - 4ý 4ý 

33 
y C! 
aý ý+ 
Q C", 

00 
VU 

d 
MN 

. 
ýbýAb4 

ý 
PU v 

. -r VU 

D 
P--4 V--4 

. --ý ý. 0 
ý0>, >, 

ýýýý 

Cti .. 
o u 'Cd 

ýýýý 



_ýýý 

5h 017ri. However, the I1ol: laYli, of inertia of the equivalent system }7i. Ii. differ 

from that of the coupler so that individual pin forces :, ý± the resultant 

torque on the frame may be increaiser,. 

Fig. 21 shows a comparisc, n of the forces exerted ! ipoii the frame by the 

mechanisms shown in Fig. 20 (a) 
, 

(h) . Even partial batlonce ib seen to reduce 

the maximum value by approximately ý¬ý; ýý. Fig. 22 sh. orr� tine torq ie on the 

frame produced by the four caNcas in Fig. 20 (a) -ý (d) The part1 lly 

balanced case causes a 50, incroaise in the maxima of the balanced case whereas 

the corresponding increase caused by the fully balanced exa-mples is aoarrr 1f; C , 

In each case, the mechanism data were as given for Figs. 1.2 - 16. Counter-- 

; reights were assumed to be located C in, from the relevant pin joints. 

The magnitude of the increase in the moment of inertia of any link as a 

consequence of the addition of a counterweight will be governed by the point 

of locution of that count; erwoigh as may be seem from the following simplified 

exa mple. 

Consider a thin uniform rod of length I,, mass IM, pivoted about one. end 

and carrying a cylindrical counterweight of mass i. 1C, radius "ýG , centred at 

distance £ from the pivot. The counterweight thickness is h, material 

density and the extension of the rod is of similar X--section to that of 

the rod itself. 

If the system is pivoted at its centre of gravity G, then the total 

moment of inertia is given by the following expression whore the thickness of 

the rod itself has been ignored; 

/ 

z 

G 

--! . i--O-- - 

P'! 

ýI 

ý 

, 
-. `ý 
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2ý 1G ; bfL ý ?: n1 
2 

-! - i 2M c Pc -+ý ,0e2% 

S; hc; re 11 
L, 2 

2ý 
+ Lieý and rne 

Writing sG in tents of the lion-wiiuonsio: alised off -, 70-1, C'/L wo have 

ý 'A; L F 

1) 

SAP 

(/- 
.n 

AIý 
ýG 

. -1, ^ 
ýiI ý 

i 

-+ 
3} 

+( ýý 
r 
Lý 

}G .:? L2 
,L2 ý' 3) 

Differentiating this expression with respect to and setting; the r esul_ , 

equal to zero yi. old.! an equation s, hich is satisfied by the value 

corresponds to the extrumo valuo or values for I,, 
G. 

ýc zG 
1i1,2 (7 

-ý . 2 
2} 

4 ýý _ 

Re--arl'ttll(j1Itr; this gives. 

r! -a2) .; ý 

and, with k_ 

r .. Trhp ý 7- 

ýý ý ? 
Yriý 

III 
ýý, 'ý ý 

r, t 
2-rr, 2;, P 

^0 

0 

ý5-K ý4 -- ý3 a- K_0 

This equation may be re-arrangod and simplified as follows 

ý: = .. -12). (L. 3- 

3(1 ý : f4 
f ý'TYLI) 

of ý zrtdoh 

Extreme values of IC4 will therefore occur wheit the value of 
K 

coincides 

with e 
"AI + Zý 2) Fig. 23 (a) shows this function of ö the values of ,; h: ich 

ranges froi;; 0 to 0.5 o The vii lue of K must hence lie between these two 

values for an extrei. zo value of IC, to exist. If for o.: u,,: p1o the coiu. ter, - 
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FIG. 23 (a) LOCATION OF COUNTERWEIGHT TO ACHIEVE MINIMUM INERTIA 

IN A BALANCED LINK 
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tiroight density p is lovr so tiSttt the Of ),; ea: ecccýs Q `ý ._, ttlc t; lcfretical 

ext: e: ne v: sluo of le will tot He within the i; 111'r:; ictt. Sl. y possilýle range of 
TI-aoroasiili; p Will. decrease the Corre srýoilC']. ntti '4ýeý1if` of I: ii, lid &i ý'e ii i; ii&R: lil 

vuluo:; of lrH for 0<n< 1ý 

R°a. i; s. 2.5 (b, c) show the iiloLle: lt of 'iLTiei't: la of a i%al a1iCeG 47. riic Ior v, range 

of values of caunterrroight density and for 0 1. 
, Fvr lo-, i density 

va11ics, the inertia occurs at 'T_ 1.0 cor: csisonüin- to 1-, L I. J. 111C. of 

length 2L pivoted at its centre Azoi. nt,, The countcrwoigbt in this ease is 

of zoro radius. For irlerctlse4 values of c'`ensi. ty, the rr.: inimlUu, 

Values occur within the range 0<1, the COl'I'eSpG! ºC; l. '_i, JýOlntc, being 

marked on Fig. 23 (a) lettered lý, iArbitrary values of t, te various 

purrlraoters were, ehoson as iollo-"r, -: III 

20, ! +©, 80, Those oerve adequately 

with $ and p 

-ý: 
1; 1, =1; It = 0.1; p=5, 1.9, 

to uec: tonstratc the variations, of Iý 

The effect of the location of the coulutorwwei ht in the balanced mechanism 

shown in F?. g. 20 (d) is shovm in F. i. g, 2.3 (d). Tito crap.; -coupler force i 
23 

for the unbalanced case is compared with three balanced ca., s in which the two 

counterweights are located 1 in, 3 in, and ci in. from the fixe6 pivots A and D. 

As may be seen., the addition of the counterweights brings about an increase in 

the pin force but by correct choice of the off--set üista , zee (in th case 

approxi; aately 3 inn) the increase can be kept much lower than an ter bilrarily 

chosen value. 

The majority of the work described in Chapters 4 and 5 has been published 

in the Journal of ? Jochanical ?; nil neerir<<r �i ý Science 
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FIG. 23(d) CRANK PIN FORCE : EFFECT OF COUNTERWEIGHT OFFSET 

(a) Unbalanced linkage (FIG. 20(a) ) 

(d) Balanced linkage (FIG. 20(d) ) Offset 6 in. 

(d') Balanced linkage (FIG. 20(d) ') Offset 3 in. 

(d") Balanced linkage (FIG. 20(d) ) Offset a1 in. 
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L/(t 
Tý11tt 11 i-iiäl 

1ýü1v ý 

nra, ý) ! I1 l 77 , nf1Tf'"[RljTr 
LýPP1iCtiý`ni C[i s: lJtili! Vý11 

6.1 modes of Vibration 

The, preel: Ciiug' chapters have dealt with the ki. Ihei; atic ; and dynamics of 

ideal mechanisms in so far as the links have been a. s-liLlcd to be rigid. III 

practice, h011OV0r; the elasticities of ike individua1 links 'hill. ; lave e! o if'i ing 

cileets 11pon both the 1kinc, t: atics and dynamics of the h: toch: 1ni, sm" the magnitudes 

of the effects depending to a large extent upon the clay the links, ceflecct:. In 

Fig, 24. for example, the input motion is transmitted to the crank ß. _l3 by moans 

of the shaft 0 and output motion is taken from 511aft 02D. ati clled 
vtt 

. 
link 

. 
In general, there will be torsional bencilnl; in both shafts in addition to bending 

in the links AB and Ch in the plane of the mechanism. The non-symrtei. ri; zs1 pi;: 

joints at B and C will impose torque, upon all tiu"ce moving links producing 

bending i. rý the plane perpendicular to thpt of the mechanism in addition to about 

the longitudinal axon of the link, The gross s-, A oa of the coupler BC will 

cause transverse vibration in the plane of the mooltanism and end-lra. ds ni11 acid 

to this the possibility of out-of-plane vibrations. 

There are then, 'nadny dillerent possible nodes of vibration which may occur 

and the mechanism is a multiple degree of freedom system in the general case. 

Iioubc, n 
( 1.1) 

has examined ad such. a ,. f; 1t. 7; - bar lTrcange an cl u". linkage has ., developed the coupled 

equations of notion for in-plane bencinG, out-of-piano bonc'irig and torsion of 

the three moving links. The equations are then simplified and their stability 

examined by an. vlogue co; aprtor methods. 

The comploxity of the completely general case is such that it is Usual to 

consider only single anodes of vibration and a. number of these have been invest- 

. gated. Gayfer and ?,. ', ills 
12) 

and Mahalinghttm(13 
) 

have cxaminec3 the vibrations 

of a stationara fear bar linkago in which the cram, and follower arc the 

fleaziblz; e1cr: 1ent3. The problen is akin to that of a portal frame of variable 

geometry ara with a number of different onLi--conditions. 



" FIG. 24. FOUR-BAR LINKAGE WITH ELASTIC COMPONENTS 



ý ýý 

A number of more realistic and eoncider¬;. bly more complex chri;. tt:;: ie iii°obJ. vs; s 

has been e a; it; cu, most notably by 1oyor zur Capullen 1I) 
and h ouk)o 

j) 
uiio 

have carridd, out oxtrsnsive i. nvesti(*, Ltioils into the nature of longitudinal and 

transverse vibrat, ioiih of the elemonts of various linkage rºechanisiust Nouba%#or'', 

Cohen and Hall 
(16) 

h,, vc investigated the transverse vibrations of the connecting 

rod in a crank and slider ; ielhanisr. and Fiore recent work Ims- bcc. n reported by 

Viscomi(17) . Both of th-se la-1A(r references however are entirely theoretical 

in so far as only computed solutions are discussed. 

Meyer zur Capollen and Houbeu have also investigated the longitudinal 

vibrations of linkage elements(? 5) and the torsional vibrations of inpu, and 

output shafts 
1 g) 

. 

Two more general but excellent "standard work s" are those of Kobrinskiiýýl) 

and Bolotin(3`), both of which contain extensive bibliographies. 

'G. 2 Transverse Vibi-acions of b-: n', s 

6.2.1 : 'ransy%i sc Coupler Viorations 

As iiiontioned above, it is usually necessary to restrict attention to one 

particular mode of vibration in order to be able to achieve sole meaningful 

results from an analysis of the ,, roblou. The present investigation svi 1l be 

concerned mainly with the irausversc vibrations of the Coupler in a crank and 

rocker mechanism in iihich both crank and follower are Considered rigid. `Plti 

condition is frequently äý, iot in practice where the. crank usually forms part of a 

relatively large and rigid drive shaft and the follover may form part of a sub- relatively 

mechanism and therefore have larger overall proportions than those of 

the transmission link. 

}Ye shall examine initially vibrations in the plane of the mechanism. 

6.2.2 Equation of Motion. 

Fig. 25 shows a four bar linkage RECD with flexible coupler BC in which 

bending may occur in the piano of the mechanism. The rigid crank AB is 
I 

considered to r otato at c: ýnstan` angular velocity (, ) 2 and the rigid follover Cl) 

has inertia 1 about an axis through E. The coupler has stiffness (ET), mass 

per unit length ýý y alld ä. nc, rti. a A about the crank pin B. 



FIG. 25. FOUR-BAR LINKAGE WITH FLEXIBLE COUPLER. 



To obtain the e ua, tior_ of motion of the flexible coupler with respect to 

its undeflected position 13C, we consider the general deflected forri of the link 

as shown in Via. 26. If the deflection of an elemeni of the coupler situated 

a distance cc, from B is y(x), thon the acceleration corapo, wnts of that element 

are 

Ct, _-Z, W cos (13 -- 8 
ý) - y(1ý) a -- x- w` - ? _y( X 

aY -- 
0 02 sin Y(;: ) Wý +a cX j-, " ý(=ý) 

-v; hero tho axes O'xy have origin at the crank pain 13 and move v; itli tho coupler, 

thcc x direction being defined as tho. unceflectod coupler centre line BC. 

Considering only small oscillations of the beam and ignoring second order 

effects such as change in the x co-"ordii ate due to dofleei ion. y, secs may obtain 

the moment equation for the element at distance x from the crank pin from linear 

beam theory as follo-rs 

ý3 Qz 

d x x. 

(6. ) 

wwdiol exI; "e., .Fs, r, 
a' 

are the components of the pin force i ,tG 

in the x and y direction; respectively and f" fy are the ir. ertia forcos defined 

by 

.\ 
}"tý'ý 

('i) 

1ý cosl8ýýgzl ý ýIýýCC; ýý W3 +' (6,2) 

4- ý(j)Lý 
In order to obtain the equation of ilotion in the usual for. t, we must differentiate 

equation (6.1) twice With resp'-'('t to the variable ; t. This involves the 

differentiation of two integrals id-Lich is aceo, -apli:: hed by use of the follovri,: Vý 

well 

ds 
dx 

`ý 
ý/ 



FIG. 26. ACCELERATION COMPONENTS IN DEFLECTED COUPLER 



Applying, to 
i 

ý ws 

ýx 

ý 

a 

N P, p 
Zx J 

x 

the first integral in 

_ 

- 
YO üý 

and to tho socond 

a: ý. ., 
ýJJS 

T- 

CIO 

hx 
ý yt 

4c - *Cýý 
QS 

a3 y ýx . 

Jc. 

T'. 13 equation of motion may now be rrritton as 

el 
ý4 

ýIý 
rr,: 

aZ4 Y 

;, valuating the intogr al, we obtain 

e2 
{ ýx(Ija 

X. 

e'r 

J 
ý 1 

x 

ÜJ_ Tx l. 4 ýý S 

aýxl 'x 
(x) 

ä (x) ýx ýýý aý - 
aý(x) 

ax ýx 
" 7`l'ýý 

._ 
äy ýkCxJ 

aý ý- 

Cs fJr 
. 

p( f1 ý1 ,ý 
(Q1 s1 i( 

%, ý2(L3 x, cJZCnS(Bi-ýiýý o'3 
\'3-x/ 3f2W3 

5ý(\ 

3 /xx 

(6.3) 

(6 . 41. ) 

and writLi the inertia terms in full, the following form of the equation of 

motion is obtained 

a4 . L. 

ý ý- 
(£, 

ix _ö -hý` 
(13-z)wZws(0 

l-ýZ, + 

w? ýs(ý2_ ezi ýý 
ý 

+vý2 

rµý -ý2GJZ P- D) + 

A 
ý 

". i. 

equation (6.1) yields 

(-, ) aý ý; (. (-1) 

- (3). 0ý ýyýýJ 1 _ 
ýyýýý 

y wz i 

e, e; 
/ 1} 

} 

z1x 

++ ýý3d)1 ý 

xoa3 ýý 

(605) 
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This is the full form of the equation of motion which is seen to be a 

fourth order integro-differential equation with periodic coefficients. III 

order to be able to exa:;: ine this equation further, it i, - aoc ssr. iry to make 

certain approximations, the first of -ah-ich is to ignore second cr or terms in y. 

Since wo are considering only small oscillations, S'. c c3 i. minate tilo socend fund 

fourth terms in t, le coefficients of ancý with the redu]. t that the 

1 
ý+ ä2 

-6 
:i 

equation may r. otir be written in tho tollolil. ný forrc, Fifcei9 aor: ý, sýc-zrr"arzgeýnczýt, 

%\ 5E; 1, \l 

oýL 
ý 

ý7ct` ýac 

ýýt 

LZlýs+y°JG? 
1coS(Öi C7F, iýýýý--Jtt1W3 ( 

j 

(Cj, C) 

e Li ý 

, Qiwz c. ý(/6 _ß)+ xa7ý 1 -- y cJ3 .- ýLwý sý.. ý8Z_83 
ýx az3 33 

This equation agrees inrith that obtained by 1-ioube Y(` 
19) 

with the oxeeption of 

terms included by Reuben to take account of the flexibility of the crank. Meyer 

ziur Capellen 
(? ) 

also obtains an equati. -n ossenti: t. ]ly of the above: form but gives 

little help frith the solution apart from a bri: eK dosc. ription of . 
Fouriur series 

methods an(: rial: es no iaonti on of ilstabiiit; . I14onbon(11) Un the other hand 

employs the Galerlkin toehn: iquc to si . p1ify the equaiion -r; hicti seduces to a series 

of e: up]. od 2nd order equaticiýs. Thera, choosing to e: iaDii1tc ü, linkage of extreme 

proportions, he o: xuines the first two coupled equ.. tioiis and shows that not only 

may the coupling terms be ignored, but also that the periodic terms may be 

approximated to simple harmoni. c functions. The problem is thus reduced to the 

examination of two Mathiou equations s"rhich is accomplished by analogue computer 

methods and some experimental verification of the stability boiuid! Lri. cs and 

regions of resonance and instability. 

.A similar but slightly less complex problem of the transverse vibrations of 

the coi, ncctiiig-rod of -a crank and slider nieehanisr.. has been oxaminod by Neubauer, 

Cohen and Hal] 
1J 

. The equation of mot ion which they obtain is essentially 

of the same flePl: l as eCAUtl, t]. OTa (6.6). Linearizing il$SLll. int7. Ci1S are , '. 1aCe 7I1CI11Cý1i1ý 

the reduction of the periodic tern1i to a single cos ý. ne. This simplified 
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fourth order ecuati_oft and " rectucev. second or"er equation (soee bel. ovrj P. re 

examined by dit; itwl co: lputcr techniques and the rosult9. ng solutions ec-. t)ýI ed. 

, 
)f r"7: 1i ýt 

r zur ('! tn _ . s(-{ :, fý ln ý As in ., ýe3 er ZL i_li' 1lGIIi Zýui i no GxpIxClý i RtJ. ý)n i: + l: las. ý ills )lts Y 

in the syste;,., attention beine concentrated on the accm--,:, ey of the corn iting 

me thoc'_s nseei. 

A recent paper by 'i'isccrai and Ayre(17) reports furtheh° anc: Pnrc detailed 

work or the crank and slider in lihich the first two modes of vibration are 

examined. The so3ltticn:. - (obtained by analogue and digital ccmputer) or the 

linearized tl, ni nou-lincariz& equations are compared. 

Movers and Yang 
(20) 

also choose the crank and slider for a detailed study 

by analogue co lputor of the : stabiiiº`. y of vibrations of the connecting rod. 

'Stability charts are shown in which instability is assumed to be present when 

the computed amplitude c ceods a predetermined value. 

III tile preseait i. -tivestigatioji of tlio equation of rýiotion, I'M will follow tI<<ý; 

asual ittothod employed by Houbon any, assu; uo a solution of the form 

OJ 

.-ý. _ ., Y( z, 40 
n-1 

Yn Sin ( -) ý 
e3 

satisfies thP boundary conditions y(0, t) = y( (-3, t) _ 0, 

and y (0, t) =y( �J77t) = 0. 

Substitution of tiiis into c: guatiosi (6.6) leads to a socond Order 

C'ti. f. CCPý3lt1Fý CC1U1tlf, ý, 1 in Yll(t) äiS LQ110i1ý3" 

Equation (f,. 
�l 

) Uccor. ico 
}1^ x\r! YnSiný 

. G/3J 
+G ý3 

' 
Inýýy1 

Jý L..,. 1 
ýn. e! / n=1 
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w 

SYil@P G 

:r7 Lxrý/ 

Z\ 
Qzl 

yn M--) 
teS 

-,.. r Na1 

ý, (x. ý) _ý -r lZ(ý3- x)W2 ýos 
(ý. 

- Bj) 
ý y 

GJ1 Cos 
(18. 

-. (93) 

(_X %%n (1 
j3 

Eý ýzw2 
'n\a. _ý2 

^. c. p(ä 

ý: Ix, ýý - 

\UYf/ 

(6. ) 

ýUeý% 
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:: 1]. S cqu.:, tIUn I'l, ly be si: ++lil], 1l1+: d by j; ilI'OUv'11Cim. i'!: by sIP. 
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ort}iogonz l. ity re_L zt ions3d, ns. 
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ihc; right hand s: it. c, yiclc: s 

x, L`> " Sin ýx ýýJ 
0 
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cos rs ýý Qt rn iý 

-a 
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r 
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ýmTi 

.n 
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SubstititLing the t-rltirss of all of these integrals into the equation aid 

jaiiltiplyi: i;; throughout by 2/, e 
, 

yiolci: ý tho i`; nýýl form of the oýliaý, tioiz 
ý 

4,, 
V 

11 -,, - 
C l. , hý' 

`f 

ý T3) 

i= 

I 
- 
'wq Si 

ov 3 

(IrA, 
o0. 

iG: ) 

ý30ý3 

lrlý-, T 

(6.11) 

SYitish is effectively a set of' equation's in Y, the amplitude of the in th mode 11 

of vibration of the coupler. 11, can be seen that the first ter; a in the 

coefficient of Yn ropresents the natural frequency of vibration of the r., th 

mode'and for it stationary linkage, the equation reduces to the familiar beam 

equation 

(mm)1, Y_ ,tL1 1 Y_ _o i4 
` I3 

, ýk 1 1: 1 ) 
-""3 

ill 

Ll 11 

I Xý + -r ý 
' / (-- 
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Il -0 P1 ti 

-M isýdcl. 

(. i2) 

/! --I 



The coefficient of I'1,1 in oiiurltion (6.1-1) 1} mr. y norr be ); ritten -is 

F. } ^( 
. i. 

)-Ill 

/ 

r3ý3 Stmtiýt q 
l ß.. ý \F 

. 
ll. 

)ý 

-rw; \-a 
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'}' i4 
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ý2 
iF11Ci'G' l'ý 
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"D; 1 
. 
ý.... 

tliC ,( th %Lll. Cl' c rii ical for thwý bel. L, 

J 

r1c117 see that tile "effer, f"ivet' natural i'ret; uc; ney of vhe coupler is e, -U111 to the 

undisturbed ntatrulcll f2'ec, (L(Lney phis two periodic tFar;: ts, one arising, frorl the 

angular veloe9'i: y of the coupler it; itself and the oi:, loi' from the Clici-louc's_ ;x which 

is duo to the inertia of thu liul: s. 

Although in the majority of px"a,; tical examples of mechanism "s, ca3 will be 

Touch. smaller, than the natural frequency .. 
04,,,, and the end-load Fx will. be 

smaller than the critical liuler" load FL, tlleoe terms can not be ne; lc^ted at 

this stage. It has been Shown 
(21) 

that unstable vibration may occur in a rod 

subjected to a varying end load whotie amplitude is considerably smaller than 

that of the first Critical load while it is also oooslble to obtain stable 

vlbratjons in the presence of coasider-tbly larger end loads. The det'cI-wl ination 

of the conditions Under ; llicll such vibrations are stable or Il; IStLlble is it 

problem of considerable complexity and one which ha, be,; n given a great coal of 

attention. however, before considering the stability problem, we will examine 

some of the features of equation 

It is usual, when examining equations of the type i 6. ll) to assume tacitly 

that modes of vibration higher than the first may be ignored in comparison with 

the first. A fe;; workers (e. g. Visce... i'17) and yeubaier at al(ý"')sho; t 

evidence to substantiate the ass. m ption and it will be shown here too that the 

second and third 1ode amplitudes are usuJly two or three orders of magnitude 

smaller than that of the first. This is to be expected fro. il a brief examination 

of equation (G. 11). The natural frequencies are proportional to the fourth 

povior of ra and the Euu1or 1ovds F. to the second. 
n 

i'1 

III 
xý E 

;} 

Conss oý, iicntly t}wo angular 

volocity ter: t for the sc, cnd mode will be 16 tirtý! s srutller and the 

end load torn (1x/1+' ) four times , piallor dran t! ie eorres;; oncliug torms for alte 
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first mode. For thu 1i ghor modes therefore, the form, of the equation of tuetioli 

approaches that of equation (6.12) with the addition of a right hand side which is 

inversely pr"oportiouwl to the mode order m. Hence the forcing terns reduce in 

amplitude with increasing mode order' giving corresponding reduced * espouses. 

The form of the right hand si e ei e uation (b. li) depends upon rrhet., ICr the 

mode is odd or ever. and is Fs soC5ated frith the t aIISVe1'Se acceleration of the 

coupler. 

We now sou that equation (6,11) Contains it nuiubor of periodic ton uhieh 

are all determined uDiquolwr by tlic dimensions of the mechanism. Iii general it 

will be difficult to predict or cstinate the for, - of those periodic terns and onl; 

in certain particular cases will it be possible to ignore some of these or n;, c 

simplifying approxii7tztioits stich as rcpiwcer. ient by harmonic functions. 

Wo now exar: ino in store detail, the nature of the periodic terlE:, in equation 

(6.11). The angular velocity or the coupler 03 is a known function of the 

gcomotry of the liniaWrc and is determined uniquely for a rnochanism of known 1 ink 

lengths. The coupler eii -force F wwhich we consider to be entirely due to the 

inertia of the mochaliisill lin!: s is however less easily doterrlined. in chapter- 

the pile forces of the four bar linkage were o'ral. luated with respect to f. y. xed axes, 

ºte may now consider the force at the coupler'-follower joint and resolve it into 

components parallel and perpendicuiar to the coupler. These compo, tents will be 

the Px and 1+' of equation (6.1. ). From Chapter 1.1w e have, as the horizontal ad 

vertical components (fixed ai. es) of the coupler/follower force, 

O(3 le4, Cos 94 
+ ýyoCy ý3 cns v. _ 'ý1'r3 'Z 

ýýh 
Cni 

B4 ýGJx 
Sih 

ýBL- 
t9glýý 

4 
.3- £3 (03.. 

"ýi 
) 

ý "ý 
T3-(3 4 Sin 84. + ,. 

1. q-064 ý1 

43 
) 

Ti"alisforming now to the system of co-ordinates, 0' iy with origin at the crank pin 

B and mcvin� with the Coupler - such that the angular separation between 0.7' and 

0'ay is 2.,, We obtain the corapor. ents F and F as _ ýy 
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ý3a3ýµ`°s(B3-Dr;. 
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? ýAy. 
ý3 

- ýiZ. r3fýL4CAS(r/t-Lý4ý1ýý75r, ýy2"a? 
Jýs 

. l' ... 
ý 

P 
Y I)3 

A see from this transformation Art Fýý is indopondent of tiro r cllorrey inortia 

and that Fh is dependent upon the inertias of coupler a. zei follower W the 

location of the coupler centre of mass. Ito-vmitillg F, as follows 

F 
x 

n1 ,6 
-j. 130.3 

--^! "l; tg e2Wý SirýCl7x-e*ý coS(8'. -ýy) - -ý. trýl{ 43 

(6.1/, ) 

the contributions from coupler and follower are seen more eas? l; "e For noehzin- 

isms with gooc? tramstalssion characteristics in which (e3 0) =n, the 

coupler inertia term will be very small and the pip. force couponont may be +g-iven 

the approximate value 

F= a 
- .i ff- CC y 

'4" Siý, (©3 - 
g4. ) 

(6.. 5) 

Furthermore, in genoral when the follower is much more irLassivo than the coupler 

(which situation will obtain in many of the cases under investigation since Sie 

are considering a flexible coupler and rigid follower) this approximate forimula 

may be used. ITos, evor, 

full equation of motion, 

we must bear in rind the offoct of i: his torn upon the 

equation (6.11),, which we now sr. ritc in non-dimcnsione, l 

form using the now variables Urýl = yr 

CL 
2 

], ei P3 `")Z ýc. J= d9ýMýý'"ý` 

- ýj ýa. Si� (8-1_ D4) 

_t 1t ' 
£2 ZJ2 s; 

(9 
2-O ! 3ý3 , '1 f 

Q2) 

t 

1 

3' 

ýý ci, 3l 

= (Z t. 
, 

S 

'M 11 
C LJ L ýýýý 

,, 1 cad) (6,16) 
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This equation describes the iii tti mode of transverse vibPat_ion of the coupler brt 

itiay also be considered in more general torDn as describing the vibration of a 

pinned uniforri beaiii, rotating at apgular volocity LL. with angular acceleration J 

cx J, snbjeet to an end load P_. This equation then, covers a wide range of 

situationo but wo i"ä11 oxa iinc in IJ(: tai) only tho case of the coupler of a crank 

and i-ocker linkage. 

Considering again the coefficient of I' 
M, and zTritin,; P, iZe b'" terra 

-; ii 
full its 

fo11or;,, 

wýLZ. 1? 
'1 x n1N 

!3 n1 if --ý3 / 1n Yi 7 
i2 

µ 
ee3 

((ý'ý 
ý -ý 

£t 
;1 (©L) 
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iýz- ý-ý ý'ý^3 "ýr 

4 

t £z ztez) + ýý ýs (eý) 

GJ2. $t vý 
ýýý-ýýý ý 

J 

we see that it contains in effect three periodic torus : Thieh are purely kinet; iatio 

functions of the rreehanisý-, i, and three para. nctors which are functiori:; cf the nass 

distributions of the coupler and followor. 

too written in the following symbolic ; or-, 

d1 U, ý ; 82 ti= 

The full oc_uation c; ' raoticn may ti' s 

1' 1 I/'ny 1; ff ý_ )ä\ 
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This equation is a special form of in. hcmo;; eneous Hill's equation coilt. li. lliitg four 

illdeper. rlcllt parameters in the 
oceffiCi. E. 'x: t of the dependent variable :, T The 

Id 

examination of such an equation inyol yes a grout cleal of lengthy wl'd ce, aplicütecl 

analysis in the co: ll., letcly gc: leru. l case However, because of the nature and 

relative magnitudes of the pzLra=ters involved, it will be scor that it is possible 

in many instances to make simplifying assumptions iFll ich render the equation ilerc 

amenable to analy3is. 

Let us e:: artittc the c; cet'iieier. i of U in equation (6.17; and c: e pare the 
r; t 

i gniitude of the various terms. Th-ý first tern, ra`- ` represents the square of 

the ratio of the m t! t natural frequency of transverse vibration of the coupler 

to the arriving frequency of the cra: tlc. The value of this terra may theoretically 

range front zero to infinity corresponding to infinitely high and zero values of 

'W2 rospec; tively. In practice horiever, since wo siia. Il norr-ally havo w2 << jZ 
9 

the value of 'A will, in the groat majority of instances, be mucli greater than 

unity, The second term, ¢ (3L) is a purely kinematic ten,,, and ti ill ho deter mined 

entirely by the fir. 
_ý tge dime-as i oils, 

From Chapter 2 wo linvo 

LJ3 
3z 

-`"2 Sir. 
2 ((72- 

84-) 
ý3 S'^1 

(©3-C%ý;. ) 

It is therefore not possiblo in general to :: iak; o any estimate of the ri<agnitude of 

this ton-3 other thai: to say that for the majority of cram; and rocker riechanisms 

£2 < and cJ_ -c W., so that in general e (t3ý) < 1. It follows directly 

from the definition of Liat to e minimum value will be zero. 

The remaining three term: are combinations of dynariic and l: iiiematic functions 

and again it is difficult to onoraliso concerning at11-Aitudos of the. kinlenatic 

functions. However the contributions or the civnaiaic factors iar. y be examined 

and ccmparisons runde bet. roen tar. in. The third terra- .1 
fi( 

2P arises from the 

inertia of the coupler, the parmoter :l- i3 n 
21ý t3 being; a func ; icn of the 

mass distribution of this link, Writing I3 in tens of the radius of l; ýýrat: ion 



as 0, 3Cis "-1' 4-,, or 

-E _ 
IT.. 
ý l. ' 

ý 

Wiiicý:, for a. uniform coupler, bocolr: ec 

£ I_ý 
Should the coupler be partially cr totally balaneed abýut tlio crank pin, the r, 

the radius of gyration will be oerresponclin011iy 'Par gel' but taking the llnif orrzl 

Coupler ease as typical, wo obtain an ap, roxiýaate -"aliae of j fox tue 2 rai"arieier fZ* 

The neat per meter IT Z" if sitiilri: "Iv ti Bated is seen to 

have zoro value for a coupler balanced at the cr nk pin (-i 

,T2 -e, j'2 t� for a uniform coupler. Lf 

The f. ietýl paraazei: er ý3 is 

and f GI lower. Writing I 

7 7C° 

ý J 
= U) und. et value 03. 

Since we have £2 `L2/2 

a function of the i>>atss distributions cf coupler 

Mzt2 iYo have Eý- 
. i. -F i 

a uniform follower gives 
+ IF 

.)J 
for the majority of practical 

apprcxirlntu value 

-c ý ä -- U. 

CaseäI the 

relative amplitudes of ., ýhe functions 

iie now have an assessment of the I'e1. tzluive magnitudes of the parar7eters -Z- . :L 

but thore still renains the question of t'. le 

fitg2; . As tvo havo seen, it is not pos$i. bZe to quote figures in guncýrýý. l. and 

the best solution is to extuaino it ninabor of exari; )los of particular linlrVsbes and 

comparo the magnitudes of the kinematic functions fi(62) and ý (8,, ) 

Figs, 27(a - e) show the functions 4) (82) and fi (82) (for i=1., 2,3) fo., 

a representative number of mechanisms fro..: ; which it can be soon that f.: (9,, ) 

is most often the prodominating function. 

in s6vie cases but the angular velocity term 

f1 (9G) 

2ý 
IM !. 

1`- Ti -P. 
( Sr11ic; It, fý. j? l. 

for 

Flli'thCri, lfil°e, itbSlL'Illllg that 

parameter' -C takes the 3 

iC 

o. nd f2 (9, ) ha(: or:; important 

ý(62 ) is comparatively small in all 

cases. Added to this is the contribution of the parameters -C. all of which 

exceed unity and thereby increase the manniLudes of the r, f (i;, ) ter: as 
i 2 

; r. 

comparison with ý(B2) in c01u, ition (6.17). Fig. ^? (c) in particular shows 
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the periodic functions of the linkage use(i by l1oLti; en(1'1) in his Stability 

invesf. i; ýLtionso The functions fl(ý32) FLI2td cý ý(3,, ) arc igiale with respect 

to the f,, (82) and f3 (v2, ) which rise t1iemsc";. Yý: b of coripar; Lble maLlitudes. Reuben 

Irowover ; rakes no mention of the term 1.2(82) and consider: only tIz r effect of 

f-(@2) which he appro d mates quite justifiably to t. cos 82 wh ei°e the nurplitude 

factor= A is detor!: rined by the. follower inertia. 

We conclude therefore that in a wide range "f crank and rocker n echanisris, 

the predominating periodic torms gill be f2(82) ad fß(82) and taking into 

account the relative magnitudes of ¬ and the equation may be written as 

f oil ows 

lý i `y 

tr 
r` J ý `- 

ac 

3 

ýM(ýýl I kG, i8l 

This is the form of the eouati on exwj.?. neü by -any workers who have invest- 

iga. tca the transverse vibrations of links in crank and rocker or crank and slicer 

aechanisna and is equivalent to using the appro;.: Jxa. to form of the coupler en(, -- 

f orce r 
x 

t/I. 
s in (63 - AL, ý) , Jý 

This form is assu'ied by foyci" ztu" Capellen(lll) who obtains ant: equation of 

motion siiailtý: " to equation`6'6ý and describes an approxi::, ate. racthcd of solution 
( 

using, Fourier series. In a much hove detailed investigation liouben19) derives 

tho full equation of motion an (I quotes the full forr: i of- tho force F. However, 

by choosing to investigate experimentally a mechanism of extreme proportions, as 

we have seen, most of the periodic terms are reduced to a neglil; il>? e level and 

the equation of motion is treated as u Iv thicu equation in which the small para- 

meter is considered to be a function of the follower inertia only. 

One further step is possible which simplifies the examination of the 

equation and that is the restriction of the analysis to the principal node of 

'17) 
vibration (viz. m=1 in equation (6,18; ),. Ilou'Oon(l9}, Viscomi` Seevers 

1. 
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yang ýý have c7evelopeü the equations of motion of systerýN esseittiftil l. y 

similar to the present, one and have obtaii ec a series of Coupled Cquati ons 

describing all modes of vibration. Thu, Situation is then so corplox that 

further analysis is only made possible by restricting att ni, ion to the first (and 

in some cases the second) mode. Howe vor it can be shown that the amplitude of 

the first mode is at least one order of magnitude greatcl" than that of the seeord, 

which in turn is an order of magnitude greater than that of th9 third. In 

addition, the speeds of opor, "t, ion at which instabilities may be e _-ýpocted 
in the 

higher taodes will be corrospondingly Higher than those occur ing for he 

principal node and will. thus uzot severely restrict any investigation of 

instability at lower speeds. 

1, comparison of the aripl. ituc'os of tyuieal iiodcs will be made in the 

subsequent sections. ' 

6ý2.. ; Solution 1ý1' Dilgi. tal Cum oration 

Form of 3Soli-: ti 

Equation sinilai in fox,,., to that of equation (6.16) (viz. : econd order 

differential equations in Tlii. c ; the first differential is absent) may conveniently 

he solved using an algor"i. thta due to do Vogolaere _'3 . This algorithm forms the 

basis of a digital corcp, utor programme (see Appendix 4. ) used to aolve equation 

(6.16) for a range of mechanism di. rmersions and par"aneter values on the 9 

computer at Newcastle University, 

In order tb tc:. t the stability and accuracy of the algorithm, the system 

Parameters were kept constant while the step length iii the integration procedure 

was decreased gradually until no appreciable difference in consecutive eorrputocl 

solutions was evident. 1{ ig. " 23 shows the effect of step length upon the form of 

the solutions for a representative set of values. The fundamental wavelength 

of t; ,e solution in this particular case is equivalent to approximately 200 of 

crank rotation. With a step length of 20, the amplitude of this co: a; ronent of 

the solsi tiox rapidly decays and, after one cycle of the crank, has almost disappeared. 

However, with a step length of 1.00, the solution remains approximately constari 

in ara 
'n. Puri: l ifr dcerer_", ý. es ý in st ýn,, 

. 
gtle 

e 

pli. tuu.. stop Ic, (down to J. 1) produce no 
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essential change in the form of the solution. With a stop length of o. 50 

the solution resembles closely that obtained with the 1.00 step length. r'A 

slight phase change is ohs3rv'ed after a fei crank cycles which is of littlo 

consequence to the object of the investigation. (Fig. 29) 

To ensure a "lid representation of the solution hereforo, the step length 

was restricted to a r: "ximum possible value of one twentieth of tho titiavo1ongth 

of the high frequency co iporent in the solution 

This ccrponen correspo�«s e o3cly to the natural frequency of the coupior 

a simple matter to compute a close approximation to the raximum so that it -Ls* 

ýýermissiule výlue oi ýlie sýe,, --leý}ý; ý]? in c? e, rees. 

<` ýý 
" 1lmaa. 1 20 

. 
Slis 

TC 
2 ? 

where 
in 

liork-ing in turirs of the crank angle Eo as independent variable, there will 
tý 

be X oscillations of the funetarsiental mode for every cramk cycle (pore 

ire have 

For the stop-length ii to be less than 1/20th of the ;r tvTlongt; i 

2 
11 

il 1' 

)1< 
20-0.1 101'. W 2 

lC) )ý (2-u f) 
1 

2JA 

srhe--e A is "wavolengt11" of the csr4unk angle i. e. 3600 

Hence the condition h<- cieterr: tincs the maximum value of stop lc'igth ill 

terms of the speed parameter of equation (6.18). 

In general; for the m th mode, the maximum stop length will be determined 

by the relation 

hd lß (whore 'X 
tn ý` 

J? 1 

2. a 

CJ2 

In order to establish the validity of the ]: aethod of solution, the equation 

of motion was also solved using; a standard Kutta-Pierson procedure wich variable 

stop 1 ei. gth. The solution is shown in Fig. 50 compared with that obtained using 

the Cie , c; _olwcre ;: tetlliorf. As in the comparison of two different step-length 

solutions using the do V gelraerc method, (Fig. 29) the solutions here are 
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essentially similar in form with a slight difference in the Lrerue. n_ey of the 

high frequency eo,: iponent. This _s an inevitable feature of tý-c differom-e 

between the two ucthods, one having cI fixed step length and the other having 

the facility for adjusting, the step length at each integration stops As 

already stated, this is not A serious dravibaek since the are interez ci at this 

Stage only in t?? c general 1: orrý of the solution of the equation of -motion, 
i 
u. 2e 7,:? xii ýýier !! odes of Vibration 

In problems of this type, it is customary to e, _cisuir. c in detail only 

the fund rental mode of vibration s! nee higher modes have very sm n! l auplitudos 

in comparison with tht. t of the f irst` l, '17,1)1 . Fig. 31 shows the amplitudes 

of the first three modes of equation (6.18). Considerin only tjlc, arnplituce 

of the high frequency components, it mar be seen that there is more than an 

order of magnitude clifferonee bet57een first and second modes and approximately 

the sumo between second and third. 

The corresponding low frequency components also bear a similar relationship 

to each other. 

It should be noted here that these low frequency components aro similar in 

form in the first and third (i. e. odd) modes but differ from that in the second 

(i. e. even) mode. 1ieferonco to equation (6.14) shows this to be a result of 

the nataýt"o of the "fo cin ; function" " The low frequency components are a result 

of this function (the transverse : inertia force term) which h: is the effect of 

displacing the high frequency component from the mean position as in Fig. 28. 

Typical right hand side functions of equation (6.11, 
-)' 

for the first and second 

modes are shown in Fig. 32. 

G. 2. -3. 
- u`t,. Lbility of Solutions 

A feature of equations of the 11 ill type is that for a particular CC 

(equation (6.15)) there exists an infinite number of ranges of values of the 

parameter for which the corresponding solution u(e2) is unstable, viz. the 

amplitude increases zrithotýt bo:: r_: Is with. increase of the i". iclopenclent vý: j^iablc 62. 
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in Chapter 7 xe St? l. i seclc to d ctcýrrýi. iie theoretical ly those jýa. l:; cN ti; h tcli yield 

sta')ie or unstable solutions. For the present hoti"ieircr we ; 9., yr L7ivcsLil;,, j, tc 

briefly whether the r_tm-iorical method of solving the er-itiati e: x t+'iiJ ý?. elc3, stable 

x2 and unstable forms of the solution for differelit values of the parameters 

anti L-' , ? 'or sw; ¬i. ll -C , unstablo, vibrations may be cxpeci. ecl in t; le 

ý Vicinity of ("? ") 
2 (see (3 1)1. FL,. 33 shovers e,: uastJlc? s Of computed 

solutions of cquation (6.1.5) for 0.2';, 1 ýO2"25 ,, all , -. 'L " ti; iiiclt exb. iüit 

ý rapidly increasing ar. cplituees. Also shown in the figure arc dol. tctions with 
Laý 

f+ ý"_ >> '] Ia pJ ný 0,5,1.5, 
. 
700 (7.. 3C.. \'a. rUi;.,, 

fJeýtiEa(. II the i.. ý. ýýýc'ý,., tl ul1. r ýt: ý7ulG ens I1ct. ii 

( 2)2 ) all of vrhieh have oscillating but bounded ajaplitu. aea.. 

The method of solution thus gives stable or unstable solutions as expected 

from a very brief e.. amination of the theory of Hills equation, A more thorough 

investigation will be possible when the theoretical stability cr: ýterin have been 

determined in the next chapter, 

I 
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Effect of change of stability parameters. 
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rii v7: t rvrtaa? 7'+ }'i}=ý, J ý IT ; 1i> 
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iý . 71t1s ýbO'"ýTy;., ýi 

7.1 Stability Critr: ria 

. 
1. i IltroC'ilctit1I1 

. _ý__. __. _,... r..... w. ýw 

Ifiii`a equs. tioll is cc11--, onlar SrTitton ill the ro). f ol'i11`"ý, 

"2 ý 

r+ 
1% 

+? C-ý71 
d. L 

0 (7.. 1) 

rl 

in which X- is a constant and t? ý isa lýezýi oc: ic ( ,. 5ý: as. l. y oven function of x 

of period T-t or 2Ti by t3ie i_ntrcc'; lic"; ion oý toL ar:; f, i. itado factor defined 

by ý(x) _ p., q (x) equation (701) becomes 

y't + %`) + ýk "q 
(x) 1Y=0 (7,2) 

and now ropreäents p. to para; _tetcsr proale; » in which the (ý, ý ) p1N*_ý.: J", "-Ist 

be divided into stable and unstable rcgionF,. The main problem in dealing, with 

equations of this type therefore is the deterrlir_ation of the stability criteria 

in terms of the two parameters ), and ). t viz. the of the 

equations of the boundaries dividing tho stable and unstable regione. 

7.1.2 General 'fli cory 

The general Floquet theory describing, the nature of '. Ile solutions of Hill's 

equ'ttion has been described fully in the literature or ; rllieh a good suimnary is 
22 

given by Magnus and Piinkler( . Enough will be given here to make clear ; chat 

fo11o)°ws. 

Floquet's theorem states tint Hhll`s equation will in general possess two 

independent solutions 

i. ax 
yl (1) = e, 

. Pi(X) 
-LC{Z 

p2(. _) 

where pl , p2 are periodic functions of X. Y(o refer to yl , y2 a;, the 

normalised solutions of equation (7.2) if 

Yl(a) =1, Yi(0) = 
) (7ýý) 
) 

J2(J) =0, : '4(G) _1) 



ýY : 8- 

If wo assume q(x) has period Tr i21 equation (7,2) tlae. i yI(Y "i )-i' ) aztd 

; 2(X + -tr )wil. l b0,4111 i; ß solutions amt! 'since 3T1(x) , 3,2(x) are 

it raust be possible to express the fur: ior -as linear combinations of the Mattor. 

I "c +n> aji (x) + a4; '? 
- 
(x ) 

(7. '1, 
Y2 (ii. -i. "It ) `''3`Tl. ( l) + ý'4 y2Ü" ) 

Usin-f, initial colzcIif. i olls (7.3) ue find iz. ý. ediýatýýiy that 

al = yZ(T 

ý,, = yi(ýr) 
ý 

a_ý - y7 (T) 

a4 _ y2 (ý) 

ý0 

"No now consider the clelieral saluLivn y(10 Ayl(x) + t3yg(x) and asyilmo 

it ig of : for'-: 1 such that 

p. y(z) (7ýýý) y(z + 
where p is tt, constant whic3, dotor; sines the stability of the solution, 

'Outting Z 7r in the gonoral solution and using (7,6) wo obtain 

f+, y z( n) - Ap -r Byq (n)_0 

Y11( ý Tt )n + yI I( -tr ). B- Bp 

v; hich is satisfied for nontriviul if 

-1, y, 3( 

yi( ü}(ü} -P . Y2 

This roduces to the form 

I 

(7.5) 

(7.7) 

6 (7.8) 

P- 2ip "; - 0 

where ' (Yl ( Zi' )+ yZ( 

yl( y2( yI( 7). y2( 
TI is known as the ;; ronskiz. n and runy be sho-rru(21) to have the. valuo of 

unity for all x. hence (7,9) becoz: ien 

1) 
2-".: 

rip -1- 1ý0 

(7.9) 

(7.10) 



-49- 

which has roots p1 related by, p1 . I,,. ) 

By co; ýn4. ris Oil of the postulated for, 7s or y1(z) , y2(ý) fuct the ec; urti. cti (7.6), 

it may be 5homi that the two values of the roots of the cIi. ýractorI stic ecalati on ý,.,. . e... . e...,... ý.... ý+.. ý-J.......... ýr... s 

(7.10) are 

i"e7r 
nl. =e$ 1j2 = 

ly -(r 

; ýltere Y iE ilic , )i. trncýicr :, iwiý cý, týancz; t. I 

In goneral pl /- 1)2 and one or t}+e solutions y1 or y2 will be un.: ;: a týlo (s: ýtco 

either pl > or p2 > 1) so that the co:,: leie solution -, vil. i be tliisua, sle. T -Ti 
the case when pl pl the col. iplc; te solution will be stabi. e (sor., ctimos i-efer. roci 

to as neutrally stable) with a period of it if p= +l or of 2ir if p 

In what follows, we shall be interested mainly in investigating the con: dii: ion 

nocessary for a neutrally stoblo solution rather than determining the value of taro 

characteristic exponent. 

7 . 1.3 Deter: ination of Bounds of Stabil itZ 

. 1. x. 1 llcrturbatioii Method 

it is well known. that for small values of 1. c the values of 
2 

corresponding to solutions of period 7r will be in the vicinity of (2)2 for n 1, 

3,5 ..... and for solutions of period ? -ir , in the vicinity of (ý, 1)' zor a ._3, 
4,6 

..... Before goi^g further, we must recognise that whet has been said 

in the foregoing section upplics' to periodic functions Q (x) and q (x) of 

period 1i In what follows, the periodic -function will have period 2-,, r 

in the independent variable e which has tllo effect of producing solutions of 

period 2T or !. T rather than of or 27 

To obtain equations describing the stability boundaries, we use a 
2 

perturbation method in which a is expressed as a poiror sories in the small 

parameter j and seek a periodic solution in series forme {'biting equation 

(7a2) as follows 

,+2 a- f( 8) y0 
ý2 

where f(8) is por: io0io in B of period 2'ir , jre write 

(7.1.1) 



+ o! i 1. t. ++1,2, 

and at tempt to fin(? the coef. fir, -i. cnts OCi which will 'ef: ino the stability 
2 ,n2 büund. aI°ies 7. I the Z'C¬T, I UFt of 

ý 
t7ý .i UI' zero ý, T7C ýiIEtVe the : Ujilti (11l 

3ro _Ai CoS ý, 
ý a- Ec sin ? ýt ýý 

, i3ý 

ý 

which has poriod 2-Ti' or If. ir oorresponc3ing to even or Odd n. 

rýssis;: inýz it solution to (7,11) of the form 

3'.. = ya '1- f't. 3'1 + I' . 3T2 + 9f0 

and substituting this and (7.12) into (7.11) iro obtain 

d811ý° +ýJ, +ý 7z+_.. ý +r 3 ýo ý.,. 3, +1, ý +... ýý l2JL 
ýýýý"ý 

L 

wh Leh yields an infinite set of equations in yi when like powers of ra are 

equated to zero. 

ý2310 
7 

da ` 

.d 
2J'1 

da2. 

.ý d y2 
2 

do 

n 
ý (2) 4 yo 

ý } 
T 

(2 

Y1 

. i. ( ý) 2 
Y2 

0 

- OCfyu -- f(A). 3To 

.. 0( 1y'1 - f(fl) . yI - °C2y 0 

7 1ý' 
_2 

First Ordor Perzls 

Tho solution `to (7.16) is the zeroth order solution (7.13) with 

arbitrary constants A0, I30 . Equation (7.17) then becomes 

dlý 
(8)ý"1 ýoWS(1ý6 ý f3oSýº. (1)Jý 

14- Y 

( 7.3 S; 

( 7, i. 6; 

(7.17) 

(7.18) 

(7.19) 



The periodic function f(E) rtc; st nog, be 010r°ossocl in soW fora ; rich ulloWs the 

right hand side of (7.19) to be ci it : tod and thus make the integration of th 

(? 1., 1 
equation possible. Malkin has described a method in which the periodic 

funetion is itself expressed as a power serio. s in the ýmall parameter. This 

i not possible in the present case hoýrever, since the periodic functions of 

oquar. iou (6.15) are purely kinematic fune'"tions of the linkage whereas 1Jw small 

pares Teter is a function of kinematic an dynamic properties. To express the 

periodic functions explicitly in toms:? of tiLO independent variable £ý "the 

crank angle) is a most difficult task in itself. Fr'eudonstainhas describccd 

n method of harmonic analysis of the four bar linkage in which lent tiiy and cempl ox 

expressions are derived which give the output angle (e4) in tcr,: as of harmonics 

of the crank angle (C-2), To extend this work further in order to obtain similar 

expressicns for the functions fi(e) , 
61 (8) as defined by (6.16) and (6,, 1.7) 

would be unnecessarily tedious. 

I is it much simpler matter to write the functions in terms of their Fourier 

CoripoI, ents which are assumed known. These may easily be calculated for airy 

particular uochanism under examination by digital computer techniques using any 

of a wide variety of integration (procedures (see Appendix 3). Accorditngly, 

we ri"ite 

f( c>), 
-- 

,' 
Cos mD -+ 

bti,,, S, ºý-'PAp, 

1 
o 

a, ucl substitute this into the right hand sine of equation (7019) with i, lxe 

following result. 

L1 
M1 

+ýý p(ý 
QQ Siv. Lý 

ý ý'' 

lý Jtýý 
_ -" O( 

ý 
co t 

{ý} 
\l 

d8 roz 

^z 

Zý(ajo-b, 
R,, ) 

COSým+ 7.8 d' 
(Q.,, 

Ha -i-ýý. º5u CbStM- iýe 

M=O 

. }. 
(aro 

1' o 
i- "h+ "o) S`"ý 

(M 
F ,ý/ 17 - 

ýA"' ýü n A"40) 

(7.20) 

(7.21) 



Since we tire seeking a periodic soliztlon, r;. ll Cl)U2"rU? lv3 y. 
x 

of ýlIU 
' 

solution riunt iberisoltTes be perioJir. Consequently, there must be no 

terms on the might hr. nd side of oquntion (7.21) in sin (2-')G or cos (-)e 

By equating the coefficients of such teeins to zero, `. e obtain two siuult- 

aneau3 er; uaticiis o 

- oc A- ý( 2ý rz ++B i) )_p 
1000 :tP0 11 

I 

rýr 

t7. » 

)ý ý) - oCiBo" _ ti(2ý3oa0 "ý ts0 ýri - ß0 al1 

which may be solved for oc 1 and cither of the arbitrary co. -il.; tv. iits. if we 

choose A arbitrarily, then equations (1022) will yi3ld vLelue3 of C(1 and 13 
0. 

Ro-arrr:. nz ing 
-, as fol lo5rs, 

A 11 Il 

t-ý, E ýýý ýo "º. z>ý ýo 2 
0 

ba 
Ao 2+ Bo( GC 1+ aQ d°2 _0 

w' sec that for a non-trivial solution, tho determinant of hose equations 

miint Dave 701.0 value which gives 

ab 
(ý1 "t ao)? -( 

2)ý 
-( 

ý)` 
- 

(7.23) 
22 

a0 1 "1 
11 + bn 

Substitution into the original equation also yields a value for Bo 

-ý 0ý 
a21 

2L 

+ bil 
(7.21. ) 

We have thus determined the zero order solution yo, the amplitude of 

which is governed by the choice of A0 the arbitrary constant. Furthermore, 

the first coefficient oC 1 in the equation (7.12), is now known and to a first 

order approximation, the boundaries of the nth unstable region are given by 

2 (2)r + 
1 

, 12 (n2 and A 4, 
) ý 

; 7025) 

ýYh«re p(' , ý" are the values of OC 1 obtained front oquation (7.113) taking 
11 

the positive and negative square root values respectively. 
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In order to obtain higher order ap; nro xi-Lations, ec; i, ation (7�17) is 

now solved for y 1. and the resulting expression sitºrstitu:: o0 into equation (7.1F). 

Applying the periodicity condition enables the second coeff ie. ioni; -U 7 
to be 

determined, two values C) ̀ , ul boing obtained eorresponain;; to ý and OC R. 

respectively, This process may be continued for highor orC; e: r approximations 

but the coripl. w. ity of the operation increases oxtrermly rapidly Coi" the 

completely general case considered here. Accordingly, oialýr tl. e s; eeson (L order 

terms will be evaluated in detail. 

la inýý a. i.. avý. rwti, en ý ýa.. i, a ta in s: F'a 

quai: ioii ( 7.7 ý1) 
may noiy be zc, oýeiuüeci all i; ei (2-1) ý eU. ^ 2 

on the right hand side 

Lý ýp Gýeyý 
+ C2ýL ýI 

^ý 
(Q, 

0ßrti ý 
ýGb 

rna I 

`7 
M= 

ýýýýýý 

ür, ßu -(9; ý(? o-1Q, )sý, -"_"ýý ý 
Mýh 

Although this equation is now in integrable forn, it is convenient at this 

stage to ro-arrange the sui: u-mtion turns as follows, Tlio second sumuztion 

terra in equation sin (7.2E) includes terms in 
cos 

j w, xiere j takes the 

(7,26) 

following va1. ucs: 

j11 

If n is even, then the lowest terms to occur will be in 
cos 

0 otherwise if 

n is odd, the lowest terms will be in cän 
+6 For t7 {n there will 

be prosent terms in sin 0 tip to sin 
+ fn _ 1)6 for even n and s n( 

, -1ß) up 
cos cos -- cos 

to sin 
+ (n w 1)d for odd n. For in } n, (say m=n r) tornis will be 

cos -2 
nn in (m - 2) _ 

(r + 2) 
for r=1,2, '3 ..... Vic may therefore 

collect these latter terms and include them in the first summation of equation 

(7026) and ro-arrange the remaining terms in descending order of magnitude 

whence ecjuv. ti. on (7,26) becomes 
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2 
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. týYN a\\\ M ný1,1 
ýOS 

2 ~ý/ 

I Y+1 = 

y 
[0(b. 

\2 

-ý 
[np 

,t+ ýý (, 
N-l i: iJ 

wherc ?' (n -- 1)/2 if n odd 

(n. - 2)/2 i1 r. even. 

and whore the last tern existo only for even n 

It. is convenient now to introduce thy, following notrvtion 

pi 
,n= 

"ý0(aja . ýrti+n) - B0(bin - bM-(-11) 

l 1IIl, 
Il. ' 

-- A0 (b 
in ": - 

f) 
IFli Ajl+B0` 

//a 
ill 

., ý`' ; il-k"Ill 
ý 

PL (i) 
:a+b n-: n) 

R. =A0a III . -r ai. 
-: 1) 0 ra, ii ý 

3ýY. 
D. = Ao(bm - 

ii. 
T-Aý 

nc2ý 

=0 if il odd 

which enables equation (7.27) to be written as 

ý1 

aýý ý ýý ýtiý, 
Do 

ýZ1 
ýn 

Co5(w14 i) 
D ^i 

ýM 

º. 
St.. 

(r+ý-F 
1i, 

vý 

M-1 

ý 
... 

ý 
COSýf1_ ACI 

M =1 
\ 

_--- ., 

41 

1) 
n-. "a 

)- an-M) 

b 
Be ý if n even 

(7.27) 

I 

(7.2B) 

(7.29) 
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The solution of this is 

tR -! 

.3 

? (< 
%H n 

COSýZ. "M, V "' 
ý irn ýZ... 

ttýý il S ný, w C. 
r+% :1 

.1 c"I c nf r. \ý r( r1 

-z 
( 

, 
l)t jý + 

where I'' 

Ji' 
nt, n 

ý 
, I\ 

4 

ý ýmýszi Q 
17, n 

S' 
Ill R r,., 1. 

/I 

rý} t,,,, rot 
( 1ý ý 

ý}ý C. s{i)ý 

n2 
11: fl 

¬ (zýz 
ý 

jl Itý 
ný t (,? - r, l) 

, 

=s (II 
lfl 

-S 

;' 
tyli 

/T ß(r3+3t) S 

=- Qt/ ar(; ý+n) n, Ti 

--'": n, n/ m(n--: r) 

=- ^°ý' 
3'1sil 

/ I? (Il-;: t) 

and A1, B1 arc the arbitrary constants cC the fit-st order complementary 

function. 

iinviril; 3tu; ýr cleterfa: ineü tiic+ first order solution yl sze rofor bank :: o 

equatiozi (7.18) and yeo that by substituting tho known quantities 3' 
o 

(7,3o) 

Y1 and 

oII into the right hand side w3 will obtain two simultaneous equations in 02 

and either nl or BI by applying the periodicity condition. The main difficulty 

in carrying out this operation is the evaluation of the product 

determination of the coefficients of sill (n}®. 
cos 2 

The product yl, f(9) is evaluated as f ollowws: 
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ý (6) Al (05 l 
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4fs 
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We now equate the coefficients of sin (n)9 in the right hand side of 
cos° 2 

equation (7.7.8) to zero. Taking the 3osine terms first we have 

-- OCaPo -- oeraý -! 
(2A. 

Ro -! 'ý ý 
ýi� + ß1ý1rý +2 
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1 
ýr ` 

mný.. 1C() ` 

\7 ºtý 
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/ý 
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ý- 
ýýJ 1i" 

1hýý1 1 14. M f\ Mýý1 ý' 
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ý+ 

M _ý ,a 

and for the sinn terms, 

-«Zß - ýe, P,, --L 
(ß, 

a+nb-rQr) ýý lýºJ2 º� bri 

.4 
V^M 

-Q ri+/ 
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Jýý n 

lN=1 1 MZI 
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I 
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Hero again, the fourth tortes in equations (7031)) and ( 7,321 exist oni for 

even no 

Making use of the i ollowin jr abbreviations, 

ý G' _ ý, 1 S oC 1+ ao + 
a2 

ý' t (n1 ý `rý 

r^ý, ý "ý, 
_ 

I2 -ý ä 
y2 

T 
'r. i1 

a 

? 
11 

Wý 

i0 it 
ti 

Silt-ma? l. on terns in (7.303 

(7.33) 
; 31u. Ir,. Ltion tc. l"l.. s in (7.32) 1 

the simultaneous equations in ß!. 
2 mal B1 niby now be written a:; 

b 
2 B1 + Ao oC 2 r- cr 0 

ýý1 ýA+ 
"O 

a 
2' BI ` "' Md ýC ., 0 -ý 

The solutions to these equvrLtfons are 

-B _Ao 
'r 

eEo 
o-- 

l ý. ý, ý.... _.. _ý _. _y. , +ao _ 
ýyn)Ao 

- 
i. 
^t 

Bo 
2 ý2 

_t«1a 
rti °` Qn ý 

a- _ 
un 

'ý 
.2 ,ý 

cv -ýý 0 -- 
a 

n_) A0nB0 
22 

(7o3, ) 

i7o55; 

which nay h; sordetihzii simplified in fona by use, of ee; ua. ticns - (7.23) and (7024) 

with the following result 

B1 
A0 T-, Iiýcs- 

a2 +b2 n 

(7.3G ) 

OC2 an ß- +b 

ý 2A 
0 2tj, 

0 u2 + bn 

o} 



Values or B and 2 obtained f! -o, a these eeýuýzts. cýns otýrrespaýd to tPL 

values of Be and OC l frol; l equations (7.23) rznc:. (7.240. The positive 

of the cquare root yields r-, ý ', rx' and the negatrwio value y ie]. t's oc and 
12l 

GC which dofine the stability boulic ar; _es of the 11 
b. 

unstable rooion as 
2 

! 

(R)J 

+ 
1\^' r, 

az ý'` ± cr2 . 1ý2 +0 (p3) 
I7 

-'? 
7) 

X12 k? >) 
ý 1ý- 

l 

. 0/, i 

" 
ý(, (` +0 (ý` ý) 

Fit. 34- shows tae second ordbr stability aourclaries fora typical rac; c. harisn 

while Fig. 33 illustrates the effect upon the size of the uns: t. >, lc regions of 

changing the dimonsion: of tha linkage. (The divrc,. sions chosen to cer.: onstrato 

this point are similar in character to those chosen for Figs. 17 19, ire ":? rich 

the lengths of coupler, follower and fixed lint: &: --o iüortical, the carat. length 

being changed as shown in the figure) . 

AS the length of the crank. is incro sed in relation to that of the other 

links, accompanied by an increase in the forces developed in the moehani. sia, the 

speed ranges in which unstable notion may be expected grow in e;; tent, n or swall 

values of crank length the coupler will e. _perience relatively sriall forces so 

that only at high speeds will any instability occur. This is shown in Pi". 35 

in which the first unstable region is the only one not of ne g1. Lgible proportions. 

The presence of damping will also fiurther" reduce the possibility of instability 

at lower speeds, the effect of which wo shall now exa irteo 

701.4_ Effect of 7, ampin 

7.11.4_. 1 I+_lo iet Theory 

lYe now consider the effect upon the stability boundaries of the 

presence of a viscous damping tern in equation (7-11. ). The equation now takes 

the form 

2r 2 
,}A+f, ýl 

ly^ 

'ý `' t2 Sa4y- 

da" ä8 J (7.38) 

where K is the da. Iipinl-g eoei'fieient. This equation may be transfortaec', into a 

fo. "ni similar to that of equation (7oI. 1) by Stritin;; 



FIG. 34. STABILITY CHART 



FIG. 35. STABILITY CHART 

(Effect of change of dimensions) 
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ý ý-I-) 

ý 
ý'(ý) =e... "ý 

.u (a) (7. "1-), 

which yic]. cls, aýtrr substitution ill' o, ýcjiýation ("j, ji; j, an equation in u (, 8; 
7 

(Z -U 

rJ2J2 
_ 

{ ý`' iC2) "ý- ý ýý'(e) 
ý 

r. o (7.40 

Thc; stability cä the now variable u(o) is na� dotel'iainec. in tern: s oil the 
1) ^l 

ý di"ýsI1C { C7'ä ( >ýý' 
-- 1r1 1iTiCl us ýs In the preceding . -. ^. CLtioTi. From '<<I oCýU(3fi ýS 

. 

thcox'y, the solution will have 1: 's7G foi'; i 

it( a) ._ P(6) 

whore p(2) is a Periodic functioa of 9 and the stability of it(G) is determined 

by the magnitude of It may be seen from the definition of y(G) 

(equation 7039) that it is possible for y(G) to be stable while ti(O) is 

unstable if K since in that ease 
' 

(ý1% 

y(ý) = y--r. 
b 

. u; ý3) e 
-ý: - v)9. 

p (9) 

The dot(-'rninatic: n of the criteria of stability for y (6) tlh:: n rests 11)0,., 

the calculation of '3 which is in general a problem of great co, -, iple.: j-'Ly and it'. 

is more instructive to approach the problem from another point of view. 

Perturbation Method 

Consider equation (7.38) in which ý is a small parano ter. We express 

the damnpi. ng coefficient k in terns of this parameter by-choosing a suitable con- 

stant such that K_ý: ýý") 
. A; ow, as in 'the ease without damping, wo 

sock a periodic solution of the. form of equation (7: 14. ) and express 
2 

as a 

power series in ) as in equation (7,1.2). Substitution of those OXpressicns 

into equation (7.38) leads to the following 

7 ()LLcl L 
.. 

1 

Lj d8'. 
L=o 

., o .ý 

rL 
fa lý. 

ýcU j+J) (8) 
t ýý ,1`" ý =F L =0 YLP t, .a 

(741) 



Equating s"ýmiiar po, 'rel-s of to zoro, a seric: s of equations in yi is 

obtained: - 
1) 

Caýy 
O 

7" -F 
dG 2 

dU-- 1 c1ti 

ý ýG; ý y 0 0 

Ct`y, 
m (ý}2 yTI _ýýZ. o 

ý f( `3) vý 2 
dy 

--2 

0 

ý 
aýý 

+ h 

(1v 

- tx 
, yy 

f( 9). y1 -2ýT CiL (i9 

The zero order solution is, as before 

I 

(7.4.2) 

ye = 210 CO3 (ýý0 + i30 sin (R)G 

Wo no-,;, substitute this zero order : Q1i! tioli into the second of equations 

(7.42) and evaluate the right, hai? ü side 

o( 
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(ji (1.43) - aý, 
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`GMýOS 
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/ 

Equating coefficiants of san (T1}8 to zero as befores yields two s: bwlt- 
cos 2 

rýr_cous equations in c; 1 and A0 or B0 

- 
oeº 

h0 

- o(l 
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tl 

ýý C2 A4qo 1 
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r .tC 
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-ý 
ý2 ß Qo 4 Ao b, 

ý - ßo aýl 
-")o 

RU (ýý} 
ý aß ( ý) Ab 

0 I 
ße-arrangiing those equations in terms of the arbitrary constants Ao and Bo 

wo obtain 

( ýX ý+a. o + 
`-n) Ao +(ý+b n)Bý -. 0 

2 

(7.44) 

(7.4-5) 
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j2 
( C: Z; ao 
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The determinant of these equations i;, equated to 

volution and a value for V, results. 

ýý 
7_ - rzo ±$ 

2 
,' al + bn 
ý 

The COL'I'esk7011din; B0 1S 

1 
2 

In 
2 

b2ýýn2 

(bn +22 n} 

Ye see i1L. Iediately that when p^0 those formulae reduce to the 

corresponding values obtained in the previous section. 

The first order stability boundaries in the &. ripoc+ case are given by 

2 
ý' _ (2) + 

(: ý. 4G) 

(7.4-7) 

(;. «) 
1 

ý'ý _ (2)° + ýý ýý 
where the values of oc l are obtained fre; << equation (7.46) l. nicl. n;, the positive 

and negative values of the square root respectively, 

(7, G8) iye have 

2 ý" ý 0ý it' 

Z-01"o, for u ilo. i--trivifll 

Cer. iajr. ist¬; eclw-Aians 

7ý 

= i2Il} ý lt (- ýý b`n "+n ao ±- 1ýý 2n2 ) 

Obviously, O(1 is real only if 

wn2 + b112 !p2n2 

( 7. At-9) 

(7.50) 

Whoa the equality holds, the stability boundaries 'coincide and the region 

of instability disappears i. o. the damping Present is stiff i. eient to stabiliso 

the vibration. 

Fig. ý6 shows the first order approximation to the boundaries of the 

principal unstable region of equation (7.38) for a range of values' of, the 

damping eocffici. ont together with the boundaries for the undampoc: caso. The 

periodic function f(S) was taken to be f, (9) as defined in Chapter 6. b'or any 



FIG. 36. STABILITY CHART. Boundaries of 

Principal Unstable Region. (First Order). 



'ßt' 
2- 

bzvell value of the (la! -aping 
coef' ieaenl, K, there iS a uni-ni-inva value or 

below which no unstable motion occurs, This minimum value increases i`l. t: h 

increased K. In the higher unstable re. -, ions (corre:, =;; onc'ing to lower v. zll±c:, 

of the crank -crelocit, y CO ,, 
) the effect of t! `: l: il)y. iýä 'I! eeoi`ieü 11)rrans'Iigly 1 rofitý 

u 

a laT'-er value Ul ý is required ili UI-der to produce lU1StPii: lP, ;: lol. lon 

(Fig. 37) 

From condition (7.50) wo obtain the minimum value of an 

p 
l"l i21 

2I: n 
(7050 

22 ý, 
Y'cýi 

, "21 

increases with n bat is also so that the value of JA, 
min 

for a given 11, 

th 
inversely proportional to th3 amplitude of the a Fourier componout. S Since 

these eol: iponents generally decrease rapidly in amplitude with inw-oared Ii, the 

values of µ increase so that when even it small. amount of da aping is 
1 I1iIi 

present, only a few unstable regions I. Iay- be expected to exist for sufficiently 

logy values of the parameter A 



FIG. 37. 
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Effect of increasing damping coefficient. 
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IMeiPTIiP. a 
STABILITY Q: ' IIý&, L°FS EQUATION ilXýt'4I ýti1ý. ý 'xIits. Ii k6sG ýý? TýýýJ 

, ý., ý ý ý... 

80. 
. ý....,. mý... ý.... « ý 

In Chapter 7 x7t) o: rrý. n: rtod tia; ý stability of equation (7.11) t; hica. is in 

tho uttanda:. rd fern of H-iý. 1`s cO. tatican", I? narevor oqup-i, iorº (1011. ) ts oL:. yr kin, 

afºpa"oa ination to the full ograc. tz. c, n of motion for tho i1. o. riU1ý c; otaj, ler of a 

foxL-har Ur. t. aea t=hieh, as dorived in Chitp¢, va, 6f contains r: stditionr-1 pnriodic 

tors and may ha wF"itton in the followbig fora 

d22 
ý$ "ý tAp ý(Q, ) ¢£ 1f1(02) + £2ý', (®`) + s}r(Gý) ýy- ý(G, ) (8.1) 
2 

(Thirý 
-Lu effc: csf; iveiy oguatioiº {6,17} with mt- 1 ioe� the ogetaticn of the 

prz. riuipa: 1 node) o 

Thero are thus four indoponclont purarý, 'ttr¢3 -X2, -C IaL 2' wiaieh 

ciotormisss whother the solution y(82) is e. t«trle or wastFblo tobQther u.: th the 

po. iociio ftmotiora ýa(a2) the cooffioioat of ttizich io tuei'ty, In g0ucrak i: E: rrsr 

this rz. a, y be csansidorod to be v. gifth indopcndont pa. ro. raotorQ 

For eopweni. onoot the egtt<:. tiow&ofinin; the paranoters of 3qu:. tion (6.17) 

are quoted again: 
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42 ý`3 e4 
s 

2 
ý(Et2} 

ý 
ý. 

-ý 
WZ z 

a aý 
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to 
2 tan (®-10 

f3(©9) =e 
ar 

tJ 
2a in (0 

3° Qrý) 

Soria discussion of the rol. ativo magnitudes of these paramot--ra'ard their 

waocoiated periodic terms ha. o boon' given in Chapter 6 aftor tzitir. h tho utrabi3i. y 

or tho rodueod equation (7.11) vro, s o=nincc3 in Chapter 7.170 now i, Il#., 

2 
-L2 



af'I'ßov upon tho nyotcry st. ablIfty of rotaiTZi%g fr1114,11cir toýtrýra im the er; caJa. i:;. on 

of motion. This is oe: y«: ivalorxt to C%Au13I1ingr' the Of the j1.2'ilTt}&"ý', io? y of 

. 
the coupIor ftt: ol£ upon the stability of the naohea? mp If wo o. ýnoi. dor 

mochaul6i, f3 in triaioh the courier is balanced at the crank pi. ii ()", 1 ON and f or 

crltxoll the angular rGZocity torF1 1(32) ii; nqgii. eä11o in eompwrisr, n witit the 

ro,. <aiaing terms (sou Fig. 27) thon the equation of notion i, cuornos 

ý- 1 C3 3 %tv2 

This is u form of Flil. los3 oquation with thxYoa independent I: xrawaß. ck, rs and 

two general prss*ä. oc3i. a furcor, i. oed each Of pcriod 2'r in 02 

Klotts3r and I. otcrfzki(` 
6) have exam-, ned the stability of suoh an 

equation in rhiciz the periodic torus wore cimplo cosines. Stability 

boundaries (which are oi'feotivoly surYar; oo in the 1-:: wmonui. oata]. I)n. ramoter 

opco) rzro owlcul. atad for z range of parameter values and photographs of a 

ic31o'otnarli; y cpaca' are prose=ni; edc 3`rutb(27) Ims 'Ost modal of 

dotailcd gvorsotriu¬~l firentwont of this type of equation oencout: ati, Rp; on the 

Qigonvalue problem, whQg'wna In a tore r, )ccnt pespor, Rand(26) has applied the 

porturäwtion todhaiquo to one spacial type of ®quaticn, il3io has four 

izzciopancienW paramotors in which, as in (26), all of tha+ prindio terms are 

cosines of the SY; slepanQlont variable or its multi-plea. However, the 

examples quotod by Rand all reduce to t'o ; zý, ra. L'i©1rie2' str. bil. ity problows, which 

may then be treated by the usual methodW In the completely general situation, 

i. sso whoa odd qnýl oven or mixed periodic functions are prooont -in '. he equation, 

this familiar perturbation approach cannot be applied - no has been pointed 

out by Smith(? -9) and Ilar>ser and Smith(30) , 

In oqw%tion (8.2) the pwiodic funotions will in goneral Uo nci. tiaar odd 

nor ovon and an a d3roat canaoguonrco of thißs amodi. fiaationx to tho porturbrti. oa 

method is nocesenry, 

I"wo will now attoript to apply the ntandard porfiurkaf, i. oza rof; hod of uno, I}TÜ3S 

to oguatiun (8.2) in ordor" to domonaot. ruta this pDir»t. 
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w, ? "ý 'ýw: ý ., rv ýaoM:: e3rL. Kýs ýS ý45 0 lýý' f; Iao, . ýnc3- . ýý ; _, - ". r. 
t°. ý ... _cý, 

7 

g_. tý.. 

ý ý. ýý.......,. ý gý . ý:,.,. ý,. s. ý.... ý.., ý.....,..,..,.,....... a. a.. ý,,..... ý. 

:ý " 
2e8 i. SýY)ýýý. ý: '". {ý. 'ý. C1F7ý C3ý' : 

ýI].: a t. ýt3w?? 
., u. ý . ýn, ý. "... rývýv.. +.. z..... 

We ox^ual. ne aquat. ie, n (3®? ) initially by using tho perturbation tcahu i. gaie 

modified to take aceoi. uit of thsg oooon. ct samuall pa. "imotor -E 3` Writing tho 

ýgctýtion in ito homRgmxxýous form w;, hz= 

Lý 
a. 

ý 
'ýý -: ý -E I` ýEe; -ti ý 

2f2(®) 
aý} 

CB®: 3 

whoro the cu')acript of the iyüepzrdcrýý varwaP? io has b: )ou wittoe, for brevity 

and tho third tcm: in the ssoofficio: _t of y har been a=¬: mi: ahoroci f,, r eorvenyt-:;: 01) 

in Ir. radliug the faRloull. ttg ýýawlyeäs,, 

Applying the parttýýba-tivn moVIioC$A vs) eFip.. rc, s 
2 

as a power aarios In 

the tiro emai. l pprahm: otors its folloTm; - 
00 00 
----ý 

ýZ -C ýýwith Of oi 2r 
ij oo 

ýýý j. 4 

wnd aeeit a solution in f; Ita form 

t: ýIO 

Yý -C 2, 

l ýif ýR=J 

Substitution of (S. ý. ý) and (3oyj into (8.2) yields an ogücctio. in the 

S'£ý trLicii --mw bo- treated as an i: ifi. nito nuatbor of oquuti. onG by t3ott. inZ 

nuccoKaivo porul-ra of and -c 9©qutxi 
to zoro. Thoao cqua. tioti3 

are 

(i7. j 

. ýýý 

C{. 
a 
ýoo 

+I 

ý82 Cz 
10 

d0L 

Of 

dAý ý 

op 

00 

y + (.: 
\) ý`' 

d to 
.2 

+ ýýý-ý ýo, 

0 

- 
ýk;, 

o {. 
ý, (0ý Iy 00 

izýBýj Ioo 

(304) 

(8 5) 

(6- 6) 

(ý. 7 )ý 

(ra"g ) 
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9.2ýrr2 First Order Tarris 

Equations (8.7) and (8.8) are ossontially similar in form to equation 

0.17) and may be treated in an exactly s ii: il. ar man1-ior, Applying the 

priodioity condition to y10 in equation (: 3,7) yialr3e two valvos for the 

coefficient OC1B and si. rai. larly, equation (8.8) yields two values for N 01" 

AoTi; zi. nü the zero ordor solution-as 

" yoo `ý A00 oos(2)@ + Boo týin(ý)9 (8.12) 

and writing tho functions f1(A) and f2(0) in terms of their Fourior oooYfiaiezato 

as 

a,,, cos 8 in r, -% 
, maO 

00 

12 (0) ° 
. --, 

( -, oac ý, 9 ýd �\ äin -M 9) 

-MrA4 

(sa13) 
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wo havo, xor the ß; ºoxiicißnta cv- Fßp c.. oZ 

OCýo "ý Cu 
ý+ 

ý2 
n ý 

OC Uk ". -C -+ ßI 1r Cý "ý ýý 

1 
1 
J 

(8o114 

as ob#; ainoci for the ainCla parorzator uaoo in Chapter 7. U0WOVer 

ooo nn. alyaia c-Iso yio¬do -values for tho arbitrary constant B 
co 

in tAzýýo oä L 

F'ro: ý oqttý, tioa (8a7) re alit"lýº 

(ß 
, 1s) 

and Emu equation (8.8) 

II 
ao 

A: ea dIi 

CIearäyn for oumtiaTaa (E3sl, ci) n. nci (8.16) to bo ßoII£3; GtATlt ro must 

havo 

ý22+ 
us2 Ctin + %n 

nAN 
Cn 

ýt 
1 
II 

® [ 
II 

which may býý radua®d to Uhe ou:. cli :: iows 

O 
bA dg 0 OP aý dn 

:ýu 

(8.15) 

(8,, I -i) 

Tho first of thoao oonditiona in satisfied if both functiona fi(4) and 

f? (D) aro ovon6 puzthoriiio. o, tho second condition will be oe tisf iod if 

0c=0i. o. if the functions are odds, In the slightly Toro general 

of, --90, the wocond condition is satisfied only for special typva of funotion 

which will not occur in the majority of znochaniexis dealt with hero. Wo coo 

thou that this nothod of analysis will work suocossfully for odd or eV-3n 

functions -but in the ooraplotoly goneral case, when neither of condition's 

is satiefiod, the only other conclusion we may roach from a oc, n-Sidoraticn 

of equations (8.15) and (8.16) is that Aoo ta B00 0. This gives 

ýý, ý. _... ý.. aý., a d 
Ii 

T-' 
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inmodfnte 4y y00 w0 vilza eh-)rQ In no stablo zero csrclcr zolution which 

is clearly unaccop"tabloo Wo ccý: ýýý: (zo tlaozto£oro that the ju-caont method 

. feile In tho general cutto tüaeu t? unati. one t1 (0) And £2(©) arc n©3ttcor 

odd nor ý". *ýaý, (wt can fwvfaaL¢ bo shown that if ' 
ý 

:y On/ciý than similar 

anomalies occul, in the higher F. ýprox�zamtlor. s and this mathod predicts 

yio 2 5'ol t'' ylI - oo) 

Sinoo the dii'fiou. ltiy in obtaining --mauzcegi'ul results a. ppoarv to arlsa 

from the preucueo of the a 
th Fnurior tort28 in f1(8) and fý(ýi), wo uýylg ro-- 

4 

oxtam; ino equation (8a3) and vrito it in the form 

ja 
d8 (a, ý. 8} 

f>º 
tnitcrý 

7t (8) 
= t(0) -(Q, n, cv S"n 8-4- b,. 

-% 

C i2 (JA _ 11( 0- (c.. 
c-->, n8 "r- o! ý, ss,. º, 9) 

Tho fn, atý. cae FI(8) :f 2(0) thus eo: atuin no tarrýa in ýýa (r0)o 'i"ýZaccý ; orrýg 

aro aoll©®tod in the last torn of tho cooffieis. ent of y in tho cqutitio: t und 

9n fnn d ýn are dofined fioQordiagive Writing the n 
th 

order t«rmse, wo 

kayo 

1`An oos n©+ bn sin n8)+ 2(0 n CGS ne+ dn sin n 8) 

ý(E1 nn + -E, 2 Q coo n0+£ 1bn + E' 2 dn) sin n8 

nooa 
(n® - n) . 

rrýicro ýýý 
,ý (ýIan ý £2cn) 

2 
ý- (E 

Ibn +ý Zdýi) 
2 

E 2ý`r + :. 2dý Giitý, -1 än . ý. ._ý..... G I; zn + 'C 2°n 

(8029) ý 
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: K'es. v "A. 'ýi9 ýtý f3f3Jº_f3:. CiG2'cELi Ilß tb Ä^t3: I'ýriý g*: ýr. ýy;; e+fi; ý: r, ý iý. @e; ra. t: º: ýý ý+3,: ýä ýý 
sh�3; 

ýQ 
ý Liý, 

r t_ tý *'' ý "+ ' .cr. ý ä: 
L. -ý ý: eýf. d3. ýii0ý 

ýw 
. 7Y`i{ýýt Q AE3 Td GrJe : e. (3¬3 Cý , ý'i°3i: t`sÄ ý3 FsXI{ý I? I'üLýL. frf: fl ý. ýý 

ý. ý` ý rA 

and write 

and £ý a As wo iaw. o f3c0ny 
ýR 

a O 
_fl 
aý n 

ý ýhi-a parzrýater is not ý 

rcrri:,. ecd and vay ineidentaI. ly bo expreesed. 

ýa.! 
t' 

ti' 

, tý ýýN. 
T r ý- a nw 

%- 2 -i' "\ 
$'"atl 

ý 11 

ý, ýýýýý ýr 'llr a, ýý ýs xsrý t, ý ýl 

R-a tho Method 

iia now proceed i, ith the riamIyais of 

r3ai`f1P. ii: 1: os`w -C and 
ý 

,z . 1' 

ýý ýý 

4ý ý_ 

ev aö 

aS 

-£2bn 

equation (6el8) in tarc: s ex 4', kt* three 

._v 
^L ýJ 

ý ? '" 
ij kL1z 71. 

ýý 
oýý 2J 

cV ijK 
E1 ý: 

ýý 

(aý2Cý 

\ý 
. yy1 

v0ý 

3uiýstibiitfon of these oxp. "oasiona into aquatiozi (3.18) gito, r tho fo: Iwtirixýr 
ý 

vqlýat, iozi for yijh e 

nCr 00 CO 

110 d, 
ýý 

ýea 
i. =n 1-ti L=o Z-0 

J 
ý 1=0 

+£ 

a=d 

.o 

( 
, r=O 

dm Sik% r%% iC Cos(n8-IK 

to 

ý1sO 

mýº. 

ce. S mt' 4b Srn r. ti V 

JO 
Cr Ea ý, 

ý _" (8.22) 



2 tsr-$3, to Zvro yxoSýdý3 all 

of tlio fit oä 17lli'c9äi I3ro 

dý ýOCýfI 

+ (n) ýr'3Et0 
dý 

, '`lc; ' lY 2 °qwý . Y0oa 

d2+ 
(n)2 ý. 

ý C"4 +, 
dO2 2" fDýcý ý` ýý f9L0 '"2 ý' ý°` oUo 

d2 t10ý 
. ý- n) 2 

ý* Ct(ý 1 601 000 ý occý(n0 ýý 
c38 

II, 3, a? First Ox"sýýss'TC. ýýaß 
. 

Au b3foro, the «&:, c; oIF'ipch' oquatron is aQlvoü im°.: odiAtalv uuü ysc my 

grits 

Ytaac ° If. 
QßQ ccaN(ýý ýý $000 E3ärS(n} 0 

(8.23) 

(8.24) 

6025 

(s, 26) 

xh© `aIra2tý of oCIßJ snd c; 010 are now dotorminaý. gtii. t; u ci: ipý. y from the por#odicity 

E3oE"ictitiosr appliod to yloo and `r0IQ r; ýnpout; ivtýlyp tiecsorüfnrly, for YIOO to be 

pariodio ( vize tho righf, hand sift of Gquat; ios: (ao24) Mqf. ai. nr no turrM-a in 

©in (?, x) 0) wo find 
cos 2 

oe 1Q0 
L Wý 0 

Similarly from cguation (8.25) 

/ 0.010 
0 

In or dor to obtain a value for the e;, offficivg, t «001D we ror,, it© the 

zoro" order colvtion in tore of new arbitrary QGnetantc as 

e 2ý') yCOO A° 
o00 00; ý(2 0ý ýý )+ B' 

000 sin(-!! 26 

Piquf: tion (0.26) now äaeomos 



Yooä 
t (n)Y ý ý. ° coR ; ýýýý Ir )+ Be 0Y13 O? ooi ®®;! L OOG t r, o00 ýý ý 

ý) d 

( 
(( -E At 

000 CCr: 
ýýýý 

-- 
ý' 

ýj "; CUf2 ä<I1li `ý ý!! 
ýý 2 

pBe ý° 
c; iat G(a9 ciu ýý(ne -ý ýxlý 

ý 

from rihdolx tho poriodicity condition for yo,?.. ;, ýiol. CIs 

At /ý+0 
000 ` 001 

Ti' («- ýý) 
. o 

000 ool. z- 

TItiq rLray be ro-, -jta, tod catj 

j 
if t. 

` 

000 
=G® thon cool + 2' D= 

000 arbitrary 

"I "I 

If ß` 0, then O 
aoo- n 00-1 ký 2n ty1000 arbitrary J 

lse2iJ 

(8.28) 

Wo nots haS"o values for the throo f ii"st ordea, ewa¬i koxenf;: a in equation 

(8.20) which bOcoa? oe 

ý2 ý, (2)2 -C 1 ao -£2ooý`ýa+0 (2) . (8029) 

This definos the boundaries of the r_`Ia unatablo s'ogion to first eurdeY". 

Tho r. uthod may also bo applied to equatioDs rith additional iisdopondent paranetor n 

with a inilar results. 

It ay be pointed out hero too that if -C2 r0, equation (8.29) roduooa 

imr+todi:, toly to a form similar to equation (7.25) which dotiaeu stability 

boundarioc in the single paraiioter case. 

i Sooond ordorT rig 

T ho six. second order equations obtained frc i equation (8.22) are 
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Those oquatione irxy be solved-&s before but, due to the increased nunbor 

of p ai'an otors, the ooraploxity of the operation is considerably greater 

Equations (8030) and (8.31) arc troatod in a. manner ozaotly analogous to that 

used for Lho single paramotor case in Chapter 7. The right hand sides of the 

equations must be evaluated in order to determine the coefficients of 3in(a 
cos 2 

terms, This entails the solving of the first order equations for y100 and 

Y010- We will examine only equation (8.3O) and its inothod of solution to 

illustrate tlio method. 

-In order to evaluate the right hand side of equation (8.30), it is 

noooosary to solve equation (8024) for ylß0 and then carry out the multiplication 

of terms so as to identify the coefficients of torms in ()0. ; giiation (8.24) 

may be writton as 



Gf. 16 No+ý. 
', t)ýV 

d 8z 2 ýý' ý 
w; rl 
v-ý 4- ri 

"F 
rM Sf NM 

©(+ 
I-W d !ý 

C--S 
ý2. J(/ 

1a+9D) CýSrýý 
oao oG 

S. r, . Zý 

, 

slhichý aftc+r earryin;; Out tho raa. eltipRaaatiaau9 i2 oxac'tly abv"? ls. r it1 ; Orla to 

aquw"tiar, O"265 trit}x yißo r"apgwcai. g rr1 and A0ü0s pß30 r"aplaaöti` kolx Bj, Iý'. 

is Qua poc! aäiile to write do-ma tho oquatiora for yIt3o by n dirmet comp..: riean 

tdth ocz"t3, ©rt E 7ý3tý) o 

. iionv© 
l 

loo 

m»= 

X1 ýF/ 
ýymr ý 

5rr, 
ýn1 

FZJ8ý 

ý 
ý, 

r,: 
ýos ýmY 

, 
)& 

1 
. f. _ 2Z'`ýQ 

rf 
Cos ( 

rn1 p -- 
S Sin 

C 

ýýt 
'I IL 

'rvn =1 

---, I ý1A, ý' + ýtoo cosýýýe + 3ýoQ sýrýzýe 

(8 %) 

%8.37) 
týit©rc ýýý otu uro dofined as P' oto (equc; tiuä (7.28) ). ivh Ao9 

so 
i; 0 ropiauOd by Aof? iss '3oßo rau where arý, b aro nuia tho i+oui"äor c:. uMaionts 

of Fz (0) 0 

The right hand aide of oquz: t_cn (8o30) may now be evaluated in order 

to detormino the aoofi'ioi3nts of (ý)® tokýýaa- hy-carryý. nb out the ýul. tiplioatioýa. 

This leads ngain to ioagtlry oxj3t'ossfone of ßomo ponpiQxity arioirsg from the 

Corm f1(0). y100 but nevertheless 72ßU may be found by straightforward means. 

! 020 and Y002 are athilarly found and at the maiao tine, the nooond order 

°°°°' i 200' 0=020 and "002 arc obtained. 

The uothod of caloulating, the romaining second ordor oompondnt3 is no'r 

familiar but the task of constructing {rho oomploto second order solution is 

oueaodxa3gly lengthy in the coznpl ctaly gmr. oral case*, This nothod is poi"hap. 

mord auitod to anplioatio. a to equations in whioh there are rolativoly fc; W 



ý. C£`ý 

i? ok.: aor con,; oz: ont! s in the rxr i. edio 4ctrmr fi(E}). The ziso or this m3thod in 
(7r) 

such oasezs haw Laoza tiesc. ribacl by Haiaeri and Smith "} 
. 

It should ho z: itado olcar in conclusion that the mail., object of the a2azz, daia 

of the equation of motion (8.3) is to obtain +3xnrossioae for the bouadaryoa 'of 

rstaisRizv in the form of Oqtaý.:. =tit+z3 (8.20) rather than :o eYalutite the acl. utißn 

, ii: taUi. f. l. ppr"i. oa. ti. oa of the 1ý1othcd iarodazcoe i'ornula, o for the zero°th order 

v-ol-iztiioza, th3 first order C)L ouobiioi. ents, the first order -solutions, the 

Sooond ordor oooffioi. azlts, etc in gußacssion,. in general thorofore, to obtain 

the k 
th 

ordor fzi}garoxkwantion to the nr, 4iati. on fov the stability boundariec, ii 

in z. a4cossa: y to o4. rrýr out the calculations only up to the (1% "> i) 'th order 

oolut'. crtao In particular, the Fsocond order approxir-ztion to equation (8.20) 

r: il. l be obtained by ovaluzatin8 only the Z'ero"th and first order solutioas to 

equation 

ý, ý ýý1LO, rý, zý. a. t3. výfýiohod 

? RPfi E 0ä dor ''! 'or: na ý ., ý. ý...,. K. ý....... d.... ý... 

, ', e au a? t; erna*t. vr, f, o the z". et; hod of analysis applied to the orluRtioirs : fith 

tz; rao {rdor. oadoat ptLs"RrU, aLUi£ý, the following modxSiaation i7o: i: w well to firs-, 

order und air"ýd)Sifio, i tho work z. nvv? vgcdn 

Co"icdor an öquo. i; ion of 'the form 

2 

de2 
++ EI f1 (e) +c 2r 2(E) r- Q 

(Thno is oquation (8e3) quoted again horo for eonvenionoo) 

By clo£ininb a noTT poriodio torm h(ß) ae follows 

J-. (o) - f(0) 4. 
c? 

" fý(o) - 1 

the eqisat: on may bo rß-m"§. tton urr. 

? ý. a -ý ýý ýýý 
"r ` 4C 1 h(©) 

ýýý0 

(8.38) 

(8.39) 

(8sO) 

Ach that tho' situation has beer, aorýally roda: vad to a two-aparr.: aeYeF" r}ability 

pzýobloaö Applying the atg; aad. sd `oohuiuno to ac; iw. wion (0.40) WO ., rtýin. an 

oxpa"ogaioa for the first order stability boundaries as follows; 



2; `)_ + rx ä -c 1 ($ýýä; 

whQrm ý! 3 
i22 

ý ýo ýZh ýn ý" en 

Tltio oocfficicLt aCi ra u(sa ä-3ftr:. cd in torLa at the 1+'oli3`ttirl 0o3£iiflioZIfia 

of Ii(ß) which thGmaorvoe to defined from equation (8639) re 

2 
x"ý tze t' j "} ýý Efý 

A6 
ý 

a, ýý b. +ý& L1" -e 1 _Y 

aio Ui and oir di aro tho Potý. mic. r coefficients of f1 (6) and f2 (Q) ae bmfaroo 

Su; *ot? tutin8 those valuas lnto uqurýaion (8otr1) we obtain 
e. - i' z'S 2a! ý.. 

n .., 
5) 

fi 0 

= (2) 2- 
ýn¬1 - aa ýý 2 

_____ . ý,. ý tl.. aa m ý.. ý.,... S... �. ý.. ö. ý, ý. 
ý rf ý. 

+ b2) + E; (e2 + d`) +2 "£ -E (a v+bd rq ` is =ti 2nn12nx: na j` ý'" 

This cquati. ou is ogrti. valcnti to oa, ua, tion (8629) ßbtainorl by using thrr 

subaid:. ary parr. motor 
ýns,. 

rd thus aohiovos tho same reault by a ooavoniont 

and moro 4iroot rtpt4iod, at the same time justifying the use o3 equation (8e39) . 

Tt is of interest to oaaarin4 ibo behaviour of the stability bo:: azüar:. os as 

one of icht: small p: iramt*tors booozcs r.; nislainbly srrill6 To see from equation 

(8.43) tºtaü as {: 2 "-ý- 0 swe have 

x2 (an ý 1,2 £1 

2) 2+C1ý- 
nß ±ZV au + bn 

This is tho oquation for the stability boundaries of tho two-paramotor 

(8.44) 

atability probloni ozaminod in the previous chapter. Howovor, its may interpret 

thia equation in anothor way by considering this to be a apecial case of the 

three-parsAraator problem. 'Pro fitauiii. ty chart is in this instance a throoý 

diraonsi. ünal ctazuetur3 in which the boundarios of instability are surfaces in 

(ý2 ofl, 2 elAoo O. Z. c3o? 11! ýAtion (8, V*. ) defines the intersection of those 

(8o42) 

ttu + 
-C z2 

c3n) 
z+ (bl, +dn)2 



ou . ýfatsor with tho -ý2 fr 0 pla, ýc)3 b'os aý 111 non-? oro <al. u3a of £I ýiycýýýiýýý"o 

thz m r. j: l1 a::. Äfat a finite region of i. notabilRwy the v-r'ýcith of rhici, -a-ill be 

oque. l to £ý r`! " aII Ll c In adc'ixticzu, the c31: i, tr3 of this tulstrult. º1e region 

will Lo lucatod at 
ý 
iýs ... TI on tho jý2 -ý axis. 

, Yig. 38 : äl7astraE; ar, this point shozrliag fi. rrAti-ordor 

a drawxlif; y houndar; ca of the alwh ro; iern and ttaoir lnlJGr StiCts:.. ßyl, 9 1n`.: h the 

-C itz ßand -G 0 plancu o Tla. 3 csýýat^. nao of fini tQ ra: ý9GS of Vwiuos of 

the p: tirnuoto. r }" ý 
ca t, 1013,0 n. so a featuro of tilia type of c7qýýýstioýt 

which app3raf"ci to have receivmd litt? o attanti. ou0 The most m-, '; able oa.,. optioit 

Fottye10ki(2cý) in tlhieh an pqtx..; ti. on of this is pDriaaps tho papp by'3zlre; t"43i" and 

tyI}u is ogami. iaad and it: i t'rtalaility space" conotruatode An has already noon 

pointod out horroyoz", the po. ladio ic. anofXoa3 in the equation oxamiuod aro oooiuo 

ftmcti. ©ne only no that tho antal, ycaii io ccmizd®rrrl; ly aimpli. f iiedo 

3J=ui. niri� Pig, äü which c: hovc rh, ý ne th facgich of inotabil:. $y or-iginatYng 

wt point P on the 2 
-" axis, TO soo that for Q,, th-v stability 

noundarioa vivo Y'C ia izd :. 'i7, th: a v: idth of tho rog:. Cn king dofiaod by - 

CO £2ýe; ý 
+ dý 

and the axis I=: 3 of tiw region boing def3noü by tho oquatý. on 

ý? 
e: (2) 2- 

8iräiax»iy, for -E 2m Q, tho stability bßundarioa aro PA and PL with 

AB 
Z + n 

and tho oqm%tion of VG is 

ý2. iý}2 

I'ar äinifO tlFlla$Li of and -E 2 
tho width of tho tuatablo region will be 

EF dof in®d ärori oquatio: 23 (8.43) and (8.29) all 

LA r. -Suef E2 P. 
2 + b`) +ý`"(c2 f ct2) +2 E_ G2 (u 

nc7b 11 
d) 

ý( ýn2unýnn 
I 
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9`ho tr idthS or' the auasttzblQ ragiong an tho C3. =C and c- 2 CD ple. rloo 

are thus proportior. al to the rx. mplitudo of the n, ̀ tli Fourier orn; poä: ort of the 

corresponding porioclio f: iaaet %. oaa r":: ieIa in genoral ui lI d3oreaso : a: raj clly a, ith 

inaroasirag no 

3 Ccýýozýýý. o*ý . ý. a, e... ".. ý...,.. ý., ý..,. 
T ho stability c: nt; lg9riz of M11-typo Q.; uatiflw-I Containing worn t"I, two 

indopeýadcýnt r1. ýra.: ýV'ýorýa has b. 4on : ý`ýQ'ýýinad and the faniý. iir pý: i`vtu"'ütsti4Ts ;: otl: QC' 

has boon o? iowrt to fail in the ofav,; of genoral periodic £tanetioas. A 

aaodifioation to fihic r etheda, being offoctivoly the introduction of an 

additional p . raar. 7ter, hs hon dcr_iwiytrated and cheim to work well in 

producing first order formulae fo. the stability boundaries. The co: ploxity 

of this rothod increases groatly howov? r when i: ioro than three p ramoter e are 

present and also in deriving the second ardor solutions. An advantage of this 

rnothoci on the othRrr hand, is Lh. cs. f the order of the approximation to the 

stability boundaries in alwaayG one gr3ator than that of the solutions. This 

part; cula r nothaft is prartibulilrly useful in equations containing relativDly 

few Fourior" oooffioionts as I= been tierronsts atod elsewhere 
(1ýý 

An alternative rr. thcd of analysis for the three paraanotor case has also 

boon described which gives rosulº; s similar to those of the first rnethoi, Tim 

effect of the presence of a third parai ctor upon the stability of the equation 

has boon discussed and attention braugbt to various features of the stability 

oha-aotoristics which appear to have received little attention hitherto. 

The alternative method of analysis and its application to equation (8.1) 

in connection with the study of stability in mool: atininms has boon reported by 
( 

Sraith and Maunder in the Journal of 2meobauioal Engineering Soienee3ýý. 
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Rý,, 1. 
_7nýtxýýeiýzefi, 

icýý 

The oxporirxont.. l irsvorstiVº. tions carried out in connection with the Work 

described in this thesis are concerned entirely with the ccn4¬, rtt Of Part III. 

Since the inarti. a forcer generated in linkage mochrmisr:: v way -be calculated - 

o:: Actly by sÜr"sciGilt foryirar¬i ret. hods, no uttmf, t, has been wvvt, tr bero to obtain any 

axporimorttal. verification of the content of Parts 1 or 11. Part III hm-r: vor, 

which ctaal¬r with the etynnrnic stability of linkages with fle-ni. blo o3. emer. ts, 

contains a, pproxiuftto methods of analysis of the equations of motion f or ~rhic°h 

some exporirientnll, justification is doairaln. e. This chapter dOscvibos the 

results obtained from esx. ptsrimonts carried out on a. rtn: ncor of crank-rocker typo 

rzoohanissIs of various dimensions, co3:, lý. r"iarºn being tutcdo with coraptitc-d rosaclf ý 

based on the theoretical prat] i. r. tions of vibration and stvbi. litý; aht: raciei-ist3csý 

C)1.2 cº¬zi, _Vn 
Of I, p:. ý antn 

Theoroticral nos urination of the trnnsversex vibrations of the coupior in a 

crank-rocker linkage has shown that the nature of the vibratioua is governed 

by curtain kinoriatic and dynamic paraLtrlotor s of, the linkage.. -Those parcmetorn, 

being well-defined ft ictIonu of the linkage geometry and of the I: hycical 

properties of the individual links, form the basis upon, which the ezporimontal 

work is organised. Those paraz oters which are purely kinematic functions of 

the linkage will, in general, be common to all linkages of the 'same geonetri. cal 

proportions (viz, linkages having the swine link-length ratios). These 

functions are the periodic functions of the equation of notion, equation (8.1), 

and are determined entirely by the linkage geometry*. Once the link-length 

ratios are determined, thorn remain those parameters which are functions of 

the individual link characteristics (coupler stiffness, follower inortia, etc) 

which may ba changed independently of linkage geometry, 



It is consequently convenient to choose those latter paranoters as those 

which will be used as the indopendent. variables in the invostigation of the 

system vibrational characteri. sties. As has boon demonstrated in Part III 

these parameters are also those in torus of which st. bili. ty charts are normally 

constructed. Any stability chart io therefore unique to its particular 

mochriniem, the location of the boundaries between regions of stable and unstable 

motion bcing determined by kinor. atic propartios for any fixed valves of the 

dynariio puramdtors. 

The parameters which a . re independent of linkage proportions (i. e`kincrraties) 

silo 
2, the "speed parameter", defined res the square of the ratio of the coupler 

natural frequency to the angular velocity of the crams, and the -E. which appear 

as coef f ioi nts of the periodic functions in tho equation of motion. The 

theoretical range of /k2 is evidently from zero to infinity but will., in the 

groat mjority of practical or-sea, not, fall below some value in the region of 

unity (.; e^rocponding to an operational epeod of the same order an the principal 

mode of vibration of the coupler) . This practical mini auk value of A is 

determined not only by V )o operational sped w2, but also by fl the coupler 

natural frequency which is itself dependent upon coupler stiffness and mass 

distribution. 

;; hanging stiffness will have no offoct upon other parameters in the system 

but an alteration to tho mass of the coupler vill produce it corresponding change 

in the parameter -E } defined as 

t1 
It 

2 
lil k" 

r 

In addition, tlioro may also be an effect upon" -E i 

ýu 
-x 

2 j''i 

1 Q2 

r 
ýý 3, 

if the mass distribution of the coupler ib n1tange; d. ' However, both £1 and 



f? may be unaffected if the couPiflr rer-Azne uni. xol. -".. (Fora Strictly, if 

radius of ration and location cr: eor, tro of maao, are unchanged. ) 

-E 2= 

2 
`ý 'ý2 iT' 

ýý 

In deciding upon the method of changing the values of those pcramotgrsY 

2, 
£1,2, £ .i one must therefore ensure either that each r iy be varied 

independently of the other or that the consequent effects upon other parai'zetors 

are recognised. 

Prow, the definitions of the paremeters -EL , it is evident that any change 

in follower inertia If will affect only -e 3 and, as has been dineusscd in 

Part, III, in a groat many linkage configurations the magnitude of the f3f3(0) 

term predominates over that of the E1f 1(0) and -c2f2(0) terms. Since we 

will be. considering light couplers and relatively heavy follower links, the 

ecntriP)ution of the tome which are functions of the couplozr r.: nss-d_stvihution 

( E1 and -c 2) will be relatively small. Consequently, the two predominating 

parameters governing the behaviour of the flexible coupler will be the "speed 
11 

pn, rumetor't i, 2 and the "load ptarar7eter 'e- 3 4 

By using a number of uniform coupler links of different thickness, the 

coupler stiffness may be changed without affecting C. f or -c 2 and the appropriate 

range of operation of the linkage is thus determined entirely by . 
l.. 

, the 

natural frequency of coupler vibration. 

As has already been pointed out, the follower inertia may be varied by 

arty convenient method without affecting the other system parameters. 

By designing the follower link so that the inertia is initially small, it 

is posui. blo to increase the moment of inertia about the fixed pivot by attaching 

a weight or weights to the link at points on its axis. This method is simple 

to use and, as will be described below-, allowed the inertia to be changed 

quickly without necessitating the dismantling of any of the links. 



-$2. 

The most ixa,; ortsnt, governing pltrýt3m©t6,. rs of the cY"steca are thus ee. cn to b3 

the sti¬£nrss of tlzo cotaplor"y the cpee. i of operation of the rzechstaýsie. and the 

fol. loirer inertia. The first of these has a direct effect upon the coupler 

natural frequency and thus doterrýi, iec the practical range of the speed of 

operation. X11 follower inertia may be varied independently of the other 

two parameters, its range being dofiaed mainly by design ceasidoratior. a. 

The most logical, snd, convenient method of examining the behaviour. - of the 

system is acedrdingly to oheerve the vibrations of the coupler in a particular 

linkage over the practical speed range for knotwi values of stiffness and inertia. 

Changing the inertia will create a different pattern of behaviour with all other 

conditions unchanged. Having examined the vibrational behaviour over the 

complete range of follower inertia *aluosi one may then examine either a linkage 

of similar proportions with a coupler of different stiffness or a linkage of 

different dimensions. in the farrier ease, the behaviour of the cuupier° may 

lie expected to resemble that of the first linkage examined for similý. r values 

of u non-dimensional speed parameter expressed in terms of the coupler natural 

frequency (wz/Sj). Results from these two oxperiments would then be treated 

as corroborative evidence for a situation in which the governing parameter 

values are identical while the experimental conditions differ in certain respeetc. 

The alternative choice of changing the linkage dimensions brings about 

fundamental changes in the expected behaviour of the coupler and is therefore 

preferably treated as a. separate sot of experirments. 

9.1j, 
-Description 

of Apparatus 

. 3.1 Mechaniea. l i nents 

Fig. 39 shows a general view of the apparatus. The linkage is mounted 

on & . stool bed plate (1) supported on an angle-iron frame (2). The crank 

or input link takes the form of a flywheel (3) mounted in bearings located 

balrriq the plate (Fig. 40) which relieve side-thrust and end-load on the sl's, ft 

of the drive motor (20) which is attached to the hearing housing (21). 
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The crank pin (4) (see nir; b r1) locaatod in ono or two po: reible positions 

oil tic- fiythoel (3) ßrraaismits º.; etioii to the follower (5) through the flexible 

co tplor= (6". The coup lcr'-followor joint is a syroetrical fork to co:: ntcrret 

i orraienal offocts while the follower heaving is a rigid pin attached diroetly 

to , Iº. s bodplato. 

Fit!, 42 . hews details of ilic ocuplor ssrLrl fol cancer- links. Toc couplers 

ue: A ere *'-'wide strips of gauge plate of riff oront thicknesses. The ot, da- 

baaringia 
:Tc constructed so as to minini w und-ef f efts on the coupler vibration 

and cc-s, cisst of bronso ', gushes (7) attached to the coup.. sr by steel taper (8) 

onto ;; '3a &P. h sprýaoers (9) are brazed. I°: ach bush and tape is held in r'lae° by 

a nut and bolt (10). The sr Lcors are doeignod to aceonm ato td nominal 

coupler thicknoss of 1/16 ixa. which was the thickest used. Thinner couplers 

were attaashed to the bearing assomblios using suitable shi. srr. Two 

diffor .a views of the assembled couplai bearing may be soon in Figures 4.1 and 1,2. 

The follower lirºic and associated addUtional weielito are rl1sr, shouu L. Fig. /, I. 

The Zink is coupoued of a in. stainlosc stool tube (11) carried in an 

aluniniu alloy boss (12) which is fitted with a copper bush (13). The 

coupler is attaehe(d to the followor by the alumi)iium alloy 1^ork (lt) in which 

r. stainlos;: e; stool tubs (15) ferns the pivot for the coupler beazrin;. F7" ae 

f ori: (14. ) and bass (12) are hold in place by tapered pins (16) °: h i1c the pivot 

pin (15) is hold by grub screws (17) in the arms of the fork. 

The additional weights (18) are brass cylinders which may be attached to 

the renrword axtonnion of the follower (19) at predetermined positions in order 

to inqrRease the moinont of inertia. 

2,5.2 Ll. octrßaýei Co, uponOnýS 

lflje linkage is drivon by a CQ, 'i : 'I.?. motor (l+ig. /. ý) (2(1)) attaohod to the 

crank bearing housing (21) mounted bol o4r tlaci bed-plate. 'eho me, to; - and its 

tLaýcociýý, tari doaatrol. u. zit (iý ig. 39 (22)) 'TYPO ? d. s 47ý So, vomat Cor. tý: rulß Ltd) 

iort: l a : ery f le;. iblo systom whicl. 'provorl to be well Suitor] to tlais phr i: icnlAr 

a: pp} icatition, The accur4;. ßy of Bpood control jrua in most inritancos 



adequate t2e ir. g the control box sca1u (for which an ; zr., cýt=r"n+y of 7.5; 3 is 

guaranteed by the m. anufacturox"s). Drift in the u: otor sppo., Smtt very low 

and causod no difficulty s: i. aa. o the linkage not mquired to i=un fo. " long 

periods at constant spood. In addition, the torqu3 of 

the system are such that speed variation tiiroul,; zoe: f, one cy-elo 1; rvi ýniyiww:: 1 

no that ra constant angular -velocity could be ussumod oµocapi, aul the lomiat 

apocds (tower than thocz3 speeds at uhich arýýý asigni. ficfýz. t. cýsper"iiwentvai 

ohßer v:: t'ionEi trä . re raadc). 

As rr,. secondary method of measuring speed of the motor, an Inductive 

probe (9. I. T, td., Typo G. 308) (I'i;;. 41(2ý7)) C; i: s mounted adjaccat to the. 

crrcuºaforonco of the crank fZywhs3el. A timing probe (24. ) mountc; d oa the 

flyrhc4l gave pulses corraapandirg to the boginninu cpf each cyalip (62 (-ýo} 

which were used in paratlol with the signal frara the strain gauge apparatus 

(sea heloir) to relate vibrational r, mpl. itudo to crank- position, 

The pulses from the probe could also be used in con junction, with an 

electronic counter (Fig. 39, (25)) as a check on crank spool üut in practice 

it was found uor o convenient and sufficiently accurate to uasc the motor control 

box actzlO from which to read the motor spend directly. 

Vibration of the coupler link was detected using two standard strain 

gauges (26) attached back--to' back directly to the coupler pear to the follower- 

coupler joint. (Figuren 41 and ! 2) The Druol and Kjaoi" apparatus Typo 

1516 (Fig. 39, (27)) used in conjunction with the strain gauges enabled the 

overall sensitivity of the experimental apparatus to be controlled over tt wido 

range. The signal fed to the ultr a--violet roeordor (28) could thus be 

amplified so as to produce full scale deflection for a range of sensitivity 

settings (coo Calibration below). 

Tho output signals from the strain gauge apparatus and timing probe Iyoro 

displayed simultaneously on the oscilloscope (29) and ultraviolet ro'Jordor 

(Typo S. L. 2000). The former signal was passed through it simple R-C 
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filter unit to oliminnte the carrier frequency and then to the u-v rveC,: cler 

via ft junction I: ox zchirzh contained the damping resistar_co for the gal -; zanomo 4, oil. 

. 
The circuit diagram is shown eaherirtica. lly in Fig. 43 together titfi the üotailo 

of filter unit and junction box, 

9Zc: f I 

ß. lý., l. Poll tat; mr inertia 

Thb mom-ant of ir. ertia of the follower about the fixod nivc', was noatsul"cd 

by sits pQnc? ing the link as a compound p. sndul? u. z. in addition, by using a 

bifilar suspension, the i: zortia about the centre of gravity was def"orrc: i; znd and 

used as a chock on the values obtained from the cempound pondullzn tuc! thod. 

Having determined the values of inertia for the follower alone (1 
11 MIN) 

and for the f ollouor' plus both additional !. eights nt their , oxtrome po! Afi icn 

(Ifr 
I, UX a niumber of valuos approximately oqually spaced botwoen thoso two 

were chosen and the corresponding positions of the ., eights calculated by 

interpolation, 'rho exact values of inertia for the follower plus weights 

in these positions wore then dotorz; iinod by experiments the srae. llc: of he two 

weights being used for the lower values, the larger weight for intermediate 

values, and both Weights for the higher values. 

The table below shows the values obtained in this way which wore used in 

the experiments to be described. 

-, NT MOM OF INERTIA OF FOLLOWER ABOUT FIXED PIVOT 

Iiinirauni Inertia (Follower a. lon. o) 040058 0.0001 lbf. ßn. eoß2 

Follower plus smallor weight . 0069 ± 0.0002 

n n uu , 0079 ý 0.0002 

it it it . 0109 0.0003 

� fe larger it . 0130 ý 0.0003 

it both woights . 0114 ý 0.0004 

11 tY nn " 016/ 0.0004 

ý.. _.. _.... --- - 
ý01; 0 ý 0.0305 



, 2. ". /, A A2 ..,. ý ...,... . .,.. ý ý. ý... .. _ ýý 

The cf"iffnccscaof the couplers smd ti'mre r:. jewPu. týad by dotcr". a;. i: i. stl; the 

doflection duo to an applied load. The coupler under investigation was 

supported horizontally b; twdoar two !:. ni, foaeclgas and an increasing contral load 

n. ppliod. The stiffness was then isiraply determined from the slops of ti o 

resulting lcµd/deflecti. or: eurvo. I 

Theoroticaä calculrs, tiona, based upon the cross ccotional area or the 

coupler and the modulus of elasticity of the ºuato. ia. l used, gave good agr oe. donf. 

with the cxpgrim©nka. l ly determined values. 

Fig. f; -lt show: a typical ioaa/d3ilection curvo obtaiF. od in tho manner 

described. For the case illuctrat; ecl, (a coupler of 
zr in. thict. mss) the 

calculated value of stiffness obtained is (BI) = 171,5 lbf. in2 which gives a 

theoretical natural frequency of transverse vibration of 26.5 Hz for a coupler 

of 15 in. length (neglecting end-affects). This is in close agroarueni. with 

the f. oque? ýe; r of tho experimentally observed damped free vibration. Aa 

~rill be diaeussed later, the damped natural frequency of the coupler ras found 

to be irithin 2% of the theoretical (undampod) value. Similar agree lent as 

found with couplers of different thickness, the observed natural frequencies 

being in proportion to their thickness indicating that any end (ffeets were 

minimal and could be neglected. 

ýb/ý3 
-Vi 

tarltiors-al Ac2.. i. ý�tcüa 

The accurate determination of the amplitude of vibration of the coupler ia 

required in the lower speed ranges tirhon the experimental waveform, nay be 

compared frith computed results in o. dei' to verify the theoretical analysis. 

At the high end of the speed ranges, vibrational amplitude inoroasec to a value 

at which the small deflection theory no longer holds and the detection of the 

onset of instability is of prime importance. In addition, non-li. -near effects 

become important and the mode shape may contain terms higher than the first. 

At all cp eds except those however, the theory predicts that the prcdetzi. idatirg 

mode wiil be thu fundamental so that higher harmonies may be ignored. 
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The strain gauges placed back-to-back on the coupler are near the coupler- 

followor joint. Initial invo: tige -ions with centrally placed gauges sho, 1ed 

that over-, -; training occurred at comparatively lost speod: n together with failuz' 

of the eel nt bonding. Consequently, the gauges wore placed near to one end 

of the coupler in a ro; ion of lower strain, the end nearer the fo? lowc'r being 

chosen no the most convenient for carrying t ho strain gauge signal to a point 

on the fixed frame via the follower link. 

The calibration of the g auge-bridge-roeozdor cystom was cara"io'i out as 

follows. As previously described, the Druol and I: jaor apparatus gives ample 

provioion for sensitivity adjustment so that all that is required is the 

correlation of vibrational amplitude with settle deflection on the recorder. A 

static point-load method of deflecting the coupler was used which provided an 

acceptable approximation to the theoretical sinusoidal mode shapo. Pig. 45 

shows the close agreement between the doflootod zaodo shape due to a central 

point load (non-dimenoionalised so as to give unit riaxlmum awplitude) . acid a 

sinusoidal rode shape for half the beam length. 

The gauges are attached at a point approximately one tenth of the total 

length of the coupler from the coupler-follower joints The corresponding 

difference between the two mode shapes here is loss than 5%, the sinusoidal 

mode being the greater, indicating that the apparent amplitudes measte-ed will 

be slightly larger than the true amplitudes, Some evidence will be presented 

in the next section to support this expected difference. 

Flg. 46 shows the calibration. curvee for three couplers of different thick- 

noes, each at three sensitivity settings of the ßruol and Kjaer apparatus. 

Deflection of the trace on the u-v recorder is plotted against corresponding 

mid-point deflection of the coupler, readings being taken of deflection in both 

positive end negative senses. As may be seen from the figure, most of the 

curves show a slight non-linearity to a greater or lesser extent, with sensitivity 

docroasing as umplitt. de ineroases. The thinnest coupler used shows the 



FIG. 45. CALIBRATION OF VIBRATIONAL AMPLITUDE 

Comparison of Point-Load and Sinusoidal 

Mode-Shapes. 
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greatest, fto"", ntion fron linearity but the calibration is still suffici(tntly 

linear for the eltte. ̂neteristi. cs of the vibrations to be evident fror. + the 

recorder traces, the calibration curves boing necesnory only whon r. ccurrito 

nt3asuroments arc desirable. The three saaiSitivsty settings used are the 

1001.. - , 3ýý'lA- and 1000, p- ranges on the tlruel and ý:;; acr aPparntuc szit: b a 

bridge voltage of 3V. ' 

2s. ß. lt rill to 

t5. z1 ? rt; rodi tor. 

It is possible to consider the oxpariWontai results in thrf, o sand rate 

ways ouch of which lays a slightly different emphasis on the interpretation of 

those, results. Firstly, as u. verification of the validity of. the derived 

equation of motion together with the methods of solution by digital computation 

as describod earlier in this thosic, the detailed nature of the observed 

vibration ¬ ay be examined and compar od with the theoretical ti. ý. ve-ferns over a 

range of conditions. it is sufficient here to consider only one full cycle 

of the crank at the speed under investigation lrllen dealing with stable periodic 

vibration. This aspect of the experimental work may thus be considered as a 

test of the validity of the equation of motion . 
itself in describing the mode 

of coupler vibration. 

In addition to examining the details of the vibration throughout one crank 

eyelet the general behaviour of the coupler may bo, oxt. minod o\'er the complete 

speed range of any particular mechanism under a given sot of conditions. This 

may be, likened for tho froquonoy, rosponso of that mechanism und a nlm}ber of 

resonant froquoncios will be detected at which the fundamental node of vibration 

will be excited as it consequence of the harmonics present in the periodic forces 

generated by the mechanism motion. This is the second way in which., tho 

rosults may be considered and as in. tho first, the . majority of the vibrations 

examined will be stable. The stability analysis outlined in the foregoing, 

chapters deals mainly with the prediction of the speed at which unstable 



vibrations ; rill occur in any raccbaniSr operating undor prodeterninod conditions. 

It is not concerned with the nature of those vibrations although solutions to thG 

oquation of motion at the limit of stability (v z. on the stability boundarias of 

the stability chart) are produced as a consequence of the analytic prýncessa 

The mein eniphasic in the examination of the systoia stability therefore will be 

on the speeds at which instability ccewrs and is in this ray closely related 

to the determination of the speeds at which resonant t. ibraticons occur as mentioned 
above. 

Tliooo two latter aspects of the results may be viewed jointly by the 

construction of a set of rospan¬3o curves (ono for each particular truluo of 

follower inertia in each linkago examined) the upper limit of which is the spend 

at which the vibration becomes unstable. As will be discussed below, it is 

comotimes possible to obtain stable vibrations at. epeods higher than this by 

passing through the unstable region, Various factors affect the ease with 

which such conditions may loo obtained, including the width of the : 'cltivrnnt 

tunstable region and the amplitude of the foreod "vihra Lions in rug jacont stable 

rogi. ons. 

Tho three aspects of the experimental results will now be discussed in 

more detail. 

,2 Vibrational Ohara 

I The detailed nature of. the stable vibrations'of thri couplers in three 

crank-rocker liukages of different link-length ratios wits exaninoü and compared 

with-that of the corresponding theoretical wave-forms obtained by digital 

computation, As has been described in Chapter 6, two entirely different 

methods of solving the equation of motion were employed using two di. fforent 

computers. One of the mothods used (on the. KDF9 computer) is explained in 

Appendix 4 and is based on an algorithm duo to do Yogelaero(2)) solving the 

equation by a fixocl-.; tora method. The second taothod uood a etanflard Kutta- 

t. torson variable a 4ep-longth procodtiro which is embodied in the Continuous 

System Modelling Program (C. S. 11.1'. ) on the IBýI. r60 comput. Ar. 



pigures 47 a- 51 nhow a seiootion of typical rcaultc obtained in i, Ixie way 

compsrod with corresponding 

of the crank. 

The vibrations re, 

proportions (5,, 1,5,2). Similar agreement was i'ommcl to obtain fer the other 

two I. inlmger, ßxrzar, i. iAeid which were of rr+: r, tiva proportions (2,1;: 
, 2) and 

Figuro, 47 sIiovr:. x the resonant vibration observed at speed Coa°a-oapondinl; to 

one eighth of the coupler natural frequency. The experimental and theoretical 

vrý. týcaf orniN chow close agreement In phase and amplitude with a sma. ll ýlx fferQnea in 

mean level in the second half of the cycle. Figure !. 8 tthu�a the name general 

aggraom. onf: at a highal, speed whilo in Fig. 49, ut one quarter of tho natural 

froquency, the amp? i tudiDs of all throe curves are in very close agreement. At 

the no,. t resonant speed, the increased awplitudee again agree whi.. o one of the 

computed solutions (the I: utta"4.1orson netho t) exhibits a srra ll phrýea shift in 

relation to the other over approximately one wavelength of the fundamenta], 

vibration. It is evident that, in general, there is better agreement between 

the experimental curves and the computed curves using the d9 Vogolaero method 

than with the :; utta-ktereon method. 

Figure 51 shows the observed vibration at a non-resonant speed together 

with two computed solutions, one with damping taken Into account and one without. 

The tuidainped wave-form shows the expected frequency relationship between tho 

coupler vi. brati. on and crank rotation, there being 4.. 7 vibrations of the coupler 

per crank revolution, for a speed of cat a . 
R/4.7, and the general naturo of 

the vibration correlates well with that of the adjacent resonant frequencies. 

Agreement between the damped theoretical ; rave-form and the observed vibration 

is poorer than in the previous figures however and is indicative of. the partial 

failure of the assumption that damping is purely viscous. In computing the 

solutions to the damped equation of notion in this case, a range of values of 

the viscous damping coefficient was I umined and. ein-ve shown 11:. Fig. 51 is the 
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FIG. 47. COMPARISON OF THEORETICAL AND EXPERIMENTAL WAVE-FORMS 

REPRESENTATIVE RESULTS FOR ONE CRANK CYCLE 
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beat fit obtained. The offocis of damping upon rosonaaco and iuutr, üiUty 

will be further diee; usao`I later,, 

One general feature of the experimentally obsorv« d vibrations is that 

there is a tendency for the amplitude to exceed who theoretical a! 1In])litudes by 

a muall amount (see for oXnrnplo F; gs. 47 and 48)8 A contributing faeter to 

this divergence ? r= the r: lothoe" of calibrating the vibrational amplitude as has 

already been d. ie cur sed. 

Ilonover, . this ;, shall effect is not sufficient to detract from the good 

agroeuent between all three wavo-forma over a wide range of crank opoods. 

As has been stated above, throe linkages of different dimensions were used' 

in these experiments, one of which has been used to illustrate the type of 

results obtained. The choice of linkage dimnons; ons has a most important 

bearing upon the range throughout i, hich resonant vibrations may be observed. 

If the dim: enaions are such that the accelerations of the driven linke are high, 

then the inertia forces generated at. quite low speeds will be sufficient to 

o cito resonance. in a iyechr,. nissn of relative proportions (2,1,2,2) for 

instance, resonant vibrations ware detected at speeds down to one oi. teenth 

of the coupler natural frequency. At the other end of the practical speed 

range however, the amplitude of vibration became too large to allow any 

sensible rioasurements to be made in the vicinity of the. couplor natural frequency. 

Choo3iug dimensions of relative proportions (5,1,5,2), in which the inertia 

forces are reduced as a consequence of the comparatively lower accolerations, 

enabled the higher resonant regions to be oxamined with an accompanying loss 

of detectable resonance below approximately .2 /10. 

It ie evident therefore that the choice of linkage dimensions is important 

not only in providing a wide range of experimentally detectable resonant regions 

but also in enabling the higher resonant and unstable regions to be examined. 

It is customary, when analysing such systems as this, to consider special 

cases in which the dimensions chosen reduce the equation of notion to a Mathieu 

equation, viz. the disturbing force is approximated to a harmonic function. 
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As a eou: leCptieneo of this siinp=. iä ioation a groat deal of generality ik4 1084- at the 

%fjcpezzrýc oi reduced analytical eoTtp3laxity. Lioubozt(7I'l9) for ouawp3o chooseci 

a crf4ltl: mr ocker taechani.. ct of o:: tror~o 
proportions with Zliaicia to aüraiAiT'C1 Q: 1p3(3I'i-M41'clv"'ll 

verification of his 3iýplif;. eü ecittýüior, s of Motion. I`iniiýtnl account is Üiver. 

of the cxporimontal work it3(3li't tt_Q P! sajority of the two works quoted boing 

concerned with theoretical cyoaa; ti. clerrations and analogue ecmptitor rosttltsr 

The use of analogue cor. t; ui%9r9 in the oxar. tinßtion of the atability of physical 

ay: itosns in which paramata'ic vibrations occur has gained il; cma sing popularity 

olF3ow»ero. Seovor2 and Yang 
(20) 

for instance, have examined the vi. br'atiaue; 

of the connecting rod in a crank and slider (a sirrplifiod version. of the cranh- 

rocker) using analogue methods a. nd produced stability charts in which tile on-, -, )t 

of instability was dotoriainod rather arbitrarily. Viscorai and Ay1.0(17) also 

oxuainod the crank and slider in more detai s comparisons being made between the 

solutions of linearized and aona-linoarized equations obtained by analogue and 

digital moans, Earlier work by Noubauer, Cohen and Hall 
(16) 

dome entirely 

ttiitlt dig*ital solut:. onso 

Thera nnpon, rs to bo little rcýporiod experimental work on parýalaotrio 

Vibrations in linkage ! noch. nnisiaa in which the forcos taro not puroly or enjy 

appro; irauta1y hxrmoirz.. For this reason the dimensions of the linkages e: taminerd 

in the present work -, ore selected so as to preserve the non-harr,. onic nature of 

farces lihilo enabling the vibrations to be observed over a reasonably wide range 

of operating speed. As already mentioned, the ehoieo must be made so as to 

limit the resonant amplitudes in the high speed ranges which is accomplished to 

some extent by limiting the aeoolorations of the links to Some acceptable level. 

This in itself is accompanied by the reduction of higher harmonies in the 

periodic function appearing in the equation of motion but as has been disoussod 

in Part I, up to ten sine and cosine Fourier coefficients may be necessary to 

obtain an acceptable approximation to such non-harmonic functions. 

The non-harmonic nature of the forces gives rise to non-harmonic responpos 

which the:, iselvos create certain problems of interpretation as will be disou-cSoct 

in the next section, 



ý}t )c J IS+r ýi: i Zl4iü IeÜ}'. ýLiýä ýý . 

The frequency responses of the linkages previously discusscd wt ro examined 

over the ranges of np ed in which stable vibrations oecii. rrod. The upper limit 

of the practical speed of operation for the (2,112,2) linkage was reFtric: tod 

by the large forced vibrational auiplitudo and for this reason will net ho 

discussed in detail in this or the next section. Attention will be 

concentrated on ttie hohrviour of the remaining ttvro linkage configurations 

(vis (5,1,5,2)_ and (10,1,10,4) } for which considerably wirer speed ranges were 

obtainable. 

The lower limit of the speed vaangofi examined was fixed arbitrarily at 

approxir: Aately 100 r. p. Gm, since in. the rwn-jority of instances resonance could be 

detected down to this level while observations below this speed wore of little 

relevance to the object of the investigations. 

F guro 52 shows a typical "response curve" as obtained on the u-v recorder 

for the (5,1,5,2) linkage with a coupler of 3/Gtr in. thickness. An tuber of 

resonant frequencies are evident throughout the range shown corresponding to 

apocd, i of one tenth up to one third of the coupler natural frequency, 

As a consequence of the non-harmonic nature of the vibration, there is 

rrppnront an "inner structure" of the trace as obtained with the compressed time 

seals used hero in order to short as large a speed range as possible. Expanding 

t ho titre scale allows individual resonances to be examined as' for example in 

Fig. 53 which shows resonance near 350 r. p. m. in the (10,1,10,1,. ) linkage. The 

total amplitude of vibration at speeds higher than this remains substantially 

constant while the inner amplitude reduces steadily With increased speed. 

(Values of crank speed cot are shorn at the right-hand edge of this and subsequent 

figures). 
.A 

further increase in the time scale shows the details of the 

vibration as has boon oxaminod in previous sections. Comparison of the r-tavo- 

forms ut speeds above and below rocenanco with the resonant wave-form, as in 

Fig. 54 (for tho (5t', 5,2) iitylca;; e with 16 in. couplcr), indicates clearly the 
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CHANGE bF MODE SHAPE THROUGH RESONANCE 



FIG. 55. 

Effect of Follower Inertia Upon Coupler Vibration 

(5, l,. 5,2) 

Z2 0.1r^ 

24 = 0.0109 

1"o - 

0-5 -ý 

A 

3 

0.5 -ý 

1.0 - 

I 

. sJl IIi\I\I. ' 

I 

", MAX 

i 

T 



rapid inoroase in amplitude o:. 1 -7 ' the ftrndar: rontcal vibration of the coupior rit 

rosonunco which brings about as correopoading increase in the total vibrcittional 

amplitude. At non-rosonant speed!, the reduction in the fundrimmout: cl 

vibration together with the changod pause relationship between this and the 

rotation of the crank, causes a change in the mode of vibration (us indicated 

by upper and loiTer traces in Fig. 5 "). This non-harmonic natca_ro of the 

coupler vibration i, general c, auzoc no difficulty in iuterprotr tiara of the 

observed ttav©. forms oxeopt in a few isolated cases whore the total amplitude 

attains a r; aaxiru: rr valuo at a npaod slightly difforer. t from that at -Phici. i vho 

a; mplitud3 of the inner structure attains its maximum. This phone' enen is 

associated with non-linear characteristics exhibited at higher speeds which 

will be dealt with below. The sample wave-forms shown in Figures 52,53 

rand 54. serve to demonstrate the nature of the non-harmonic vibrations observed 

in the . linkages and their offect upon the appearance of the response curves 

(Fig, 52). Different examples nave been chosen for each of the figures to 

illustrate the general. nature of the phenomenon in all linkage configurations. 

In addition to the speed of operation of the linkage, the follower inertia 

has an important effect upon the coupler vibration. In general, inoreasing 

the inertia will inereace the end-load on the coupler and produce correspondingly 

increased vibrational amplitude. The situation is considerably more complex 

than this however, due to the prosenve of regions of instability and this very 

goneral statonent will only apply at speeds for which no unstable vibration 

occurs. Figure 55 shows the effect of folloirer inertia upon a stable vibration 

in the (5,1,5,2) linkage with a coupler of--! in. thickness and at a speed of 

230 r. p. m. At speeds other than this, the vibration may become unstable as 

inertia is increased, a feature which will be discussed in the next section. 

'The experimentally obtained response curves for the (5,1,5,2) linkage with 

the thinnest coupler are shown in Figs. 56 - 61. The same sensitivity is 

used throughout so that resonances at the lower end of the speed range are lose 

evident here-than at the higher sensitivities which score used for the-determin- 

ation of these lower resonant spoeds. Nevertheless the figures servo to 



dorionstrllto the i, ah: tvioiu" or the coupler over the particular speed rangt,. 

For lorr valttos of l'olý. oe, orti iý? e, "tir the rrasponsa: s oho� a s;: ýll" ;? ̂A_: i; ýrý resonance 

near 6J2 m 250 r. p. rs. corresponding, to the third sub-: ar-, rmaztic fF, euatßncýý. Thic 

roaonanr, tl occure at prrsgrosr; iE"alv lower spotad7 as t%o i2.3rtia inw-cases boing 

oh>; sorvod near Q2 = 220 r. p, r3. for 1. MAX 
(Fig. 61). 

At higher t3pi6F. t1s there is, Tr3. tji 14 MIN 
(Pig. 56) a small Pint, in amplitnelle 

noar W 2= 
300 r. ptm. which boco>äss a: aost considerable inc; ro4sA in ruti:, litttdcj 

following a EsiaglQ invroto't irfolloror inertia (Pig. 57). For highor inertia 

values, tbo vibration diapi rs a iron--poriodio nature in the range 260 - 2S0 r. p. m. 

This io oquivalont to the region of s. ns viability around 0= 
2 

which trill 

be considered in the next section. 

Figures 62,63 and 65 show a soloction of similar responses for the 

(10,1,10,4) linkage, again with a coupler of 32 in, thickness, Resonant 

amplitudes are, in general, smaller than the previous example duo to the reduced 

ir. orti. al loads in the linkage. This alloys correspondingly higher rescarant 

regions to he examined with in; creating results. 

Figures 62 and 63 show the response of the (10,1,10,4) linkage with urizai*rum 

follower inertia from 300 r. p. m. up to epproximatoly 530 r. p. w. the vertical. 

scale being continuous from Fig, 62 to Fig. 63. The rosonanee at 360 r. p, r,, 

is clearly different in character from that in the region of 460 r. p, na., i. ho 

latter being somewhat less "regular" in appearance than the former. Closer 

examination of the wave-form at 460 r. p. m. reveals that the periodicity is /. 'f; - 

(viz. two crank rotations per cycle of coupler vibration) as shown in Fig. 64t. 

As described in Chapter 7, such a periodicity may be expected when .R 
/cj 

2 =". '''L/2 

if m. is an odd integer. At this speed we are observing the vibration in the 

third region of instability (, n, = 3) corresponding to a crank speed of the order 

of afro-thirds of the coupler natural frequency (0, _ 2A/3). The damping 

present in the system is sufficient tto-render the vibration stable although it 

is possible'that if the I inkage were to be rum at this spend for some time, their 

the amplitude may be expected to increase exponentially. Under the conditions 

obtaining when the vibrations in pig. 63 were observed, the crank speed was 
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slowly increasing, so that a otable region was entered ( w2 ý, - 450 r. p. m. ) 

beforo any such ina: ability occurred. 

Figura 65 shows the response of the linkage for a slightly increased 

follower inortia. The resonance at 360 r". p. u:. (corresponding to £L/2) 

is still prosont but Mw tho vibration jr, unstable above 450 r4p. ni. The 

damping present is no longer sufficient to stabilise the motion, 

An iittcrosting foaturo of the roeoranco at 2/2 ie the non--1inoar 

character displVed in Vigs. G2 and. 65. The figures referred to so far 

have all boon obtainod with an inoreasing crank cpc-- . 
i. e. vibrations have been 

recorded by increasing the crank speed slowly from Zero up to the practicable 

maximum. If however, the higher resonant regions are examined by decreasing 

through the resonant frequency, ' the non-linoar character of the vibration 

becomes much more apparent. Figures 66 and 67 show the effoct of decreasing 

the i; rtt^k shoed from 500 r. p. r... to below 300 r. p. m. Condi. iione arc otlior- 

ti isb as for Pigs. 62 and 63 (taore is however a considerable -overlap between 

Figs. 66 and 67 in order, tto, show each region in its entirety. Figure 68 shows 

tho analogous case applicable to conditions obtaining in Fig. 65. 

The two speed raiigos of interest in this particular ease correspond to the 

11/2 resonsnt region and tho-2 1113 unstable region. In the former, 

instability is also possiblc whereas in the latter resonance does not occur. 

For this reason the characteristics' of the vibration differ in certain respects, 

the main difference being the periodicity of the vibration. As has boon 

shown, vibration in the unstable region has a period equivalent to two crank 

rotations and this is-inunediatoly obvious from rigs. 63 and 66. The shapes 

of the response curves are, typical of a non-linear softening spring character- 

istic showing a rapid rice in awplitu& followed by a gradual decrease when speed 

is increased through resonance and a gradual increase to a greater amplitude 

followed by, a rapid fall: when speed is decreased through resonance, since the 

vibration near 2 A.. /3'cannot strictly be described as a resonance, one must take 

care to distinguish between the inherent instability of the system under those 

conditions and the non-linear resonance with its out difforont type of 



-97- 

instability, near S1/2. It is not interdod in this thesis to exaxiino in 

groat detail the non-linearity of the vibrations 4it the higher speed rangen; 

its pre enco is merely demonstrated and commented upon. ' To illustrate the 

ncn-tiaoarity more eloariy, the responses in rigs. 62,63 and 67 are plotted 

in Tho more conventional manner in Fi. g. 69. 'ncc amplitude values are lpoak- 

tc-'peak amplitudes taken directly from the u-v recorder traces, viz. no account 

is to er, here of the calibration so that the figure : loos not strictly represent. 

the w . ipiitude of the coupler. However, this is of minor importance since the 

fiCuro is itself meant solely ac an illustration of th3 non-linear nattmc of 

higher resonances, in which the solid lire drawn through the exporiincntal, 

pointy has no theoretical basis. 

One further interesting aspect of those none-linear resonances is the 

osci11ation in amplitude level observed in certain cases after the resonant 

frequency is passed. Figures 70 and 71 show such a case (the (5,1,5,2) linº, age 

tv,?: h 
16 

in. coupler) in which the amplitude oscillates as the crank; anoi is 

rr. ieed and lowered through the l13 resonant region. This phe"omenon is 

de: eribed by Logoliubov and Mitrepolsky(36) and is a consequence of the non- 

linear nature of the "stationary" response curve. By this latter term is 

meant the amplitude--frequency relit &nuhip obtained with a fi; cd frequoncy. The 

rospoz: se of the system as obtained by the raising or lowering of the frequency 

though any particular resonant region rill differ from the "stationary" response 

in important respects. Not only is there an oscillation of the obsol, vod 

amplitude whoso frequency depends upon the rate of change of the forcing 

frequency (in this case the crank speed) but the maximum amplitudes will occur 

at frequencies different from those corresponding to the maximum "stationary" 

amplitudes. The governing factor hero is again the rate of change of the 

forcing frequency and consequently the detailed examination of such non-linear 

phenomena is a most involved process. No attempt has been raudo hero to 

aitaly so the system: the responses shown in Fig. 70 and 71 are presented only to 

domonstpate the nature of the phenomenon. Also evident in these figures i4 
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a amall change in mean lovel through ; ho roaon«nco which is a oonsoquonco 
. 'ý 

of the change in node ehano as 1-tab i: ýic n discussed abov3. 

The frequency response of each linkage nay be horn in terns of crank spood 

and follorer inertia (rather than vibrational anmiituclo) on a stability chart 

in which no indication of amplitude is given The prosenco of a, resonance is 

indicated by a point appropriate to the spend at which it is' deteetcd for a 

particular value of follower inertia. In this way a concise picture may be 

built up to indicate the behaviour of the coupler in any linkage. The 

theoretical values of crank speed at which resonance may be e: peoted are obtained, 

for the lower speeds, directly from determination of the natural frequency of 

the coupler. In. tho higher speed ranges the location of the regions of 

instability becomes important and the stability these must be used to looato 

thn'rolevant boundaries., The coupler natural frequencies were determined by 

calculation based upon stiffness measurements as previously doecribod and also 

by observation of the damped free vibrations in situ. Figuro 72 shows the 

dumped fron vibration of a 1/16 in. couple: ' from shish the frequency is determined 

as 26 11z, , which is within 2% of the calculated value of 26,5 if=, and correlates 

'well with the speeds at which the sub-harmonic resonances warn detected. 

In Fig. 73 the corresponding vibration of a 3/64 in. coupler is shown from 

which the natural frequency is found, to be 20 Hz. A selection of responses 

for this thickness of coupler in the (5,1,5,2) linkage is given in Figs. 74 - 78. 

The first of these shone the response over the range 200-600 rpm, at low 

sensitivity, in which the 
.1/! _, 

S2 /3 and -(). /2 resonances are soon together 

with an apparent resonance in the 2 £1/5 unstable region. Awl unsymraotric 

resonant vibration 
, 
is evident near 600, rpm (2 R) 

which is duo once again to the 

onset of the one-half eubharmonic resonance, the mean level of which differs from 

the undsflectod position.,. Pidiu"c 75 demonstrates, more clearly at increased 

sensitivity, the increase of forced amplitude with speed together with the super- 

irapoeted resonances at 300,400, and 500 rpn. Figure 76 shows the resonance 

detected at the lower, speeds at a further increased sensitivity, an even higher 
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sensitivity being required for accurate dotormiuation of the $p oods at which 

resonances occur below 150 rpm. At the other cud of the. speed range, there is 

again evidence of non-linearity of the response (Fig. 74. ). Furt er examination 

of t: w vibration near : 00 rpri (Figs 77,78) shows again the typical 2, softoning 

spring" characteristic as has already been described. 

The final figures in this section (Figs. 79,80) sshcw the response of the 

(5,1,5,2) linkage with 1/16 in. coupler over the speed range 200-900 rpm at one 

sensitivity setting, the vertical scale being continuous with e1ight overlap 

between the two figures., The large resonance in the centre of Fig. 80 is the 

one-half subharmonic resonance, the motion becoming unstable in the 211/3 

region above 900 rpm. 

In this section, the frequency responcea of couplors of throe thicknesses 

have boon oxamined in two linkages of clil'foront dimensions. A solcwtion of 

the experimentally obtained responses has been shown to illustrate the nature 

of the observed vibrations tog6ther with some qualitative discussion of non- 

linearities observoa at the higher speeds. Some eonsido*'at? on has inevitably 

boon given to instability where appropriate and this will be discussed further 

in ttie iollorring sc=a: ion, 

2,. Instability 
The stability characteristics of the linkages are nocossa. rily very closely 

associated with the response characteristics of the forced vibrationm. Whereas 

the stability of such systems mny be theoretically- divorced fror. the forced 

vibration by considering only-the homogeneous equation of motion, it is not 

possible to soparat;, the two practically for experimental purposes except in 

certain specialised and simplified cases. As has been seen in the foregoing 

section, the non-linear nature of some of the higher resonances producoa an 

instability which is characteristic of the "softening spring" type of response 

(Fig. 69). This instability differs in nature from paramotric instability in 

that there is always a finite amplitude of vibration. Thn instability arises 

as a result of the possibility of there Fboi. ng o;. tho' two or three different 



vibrational urtplitudoa within cortain -speed ranges� In the case of parametric 

instability oha.: "tacteristia of bill e equation, th, 
-t vibrational amplitude increases 

cxpo:, a; itiaily in acco^rionco irith theory. In practical oases the vibration mazy 

be ä.. hiitod by daring in the system or, if the damping is insufficient to 

stabilisa the motion, failure of one or more components may result. 

Din w. uture of parametric instability in the linkago mechanisms examined 

has aIreacly been doaerib d b, lei+y ;n the proviaitbs section since it has usually 

boon , his which forms the upper speed limit of the, frequency responses. 

Exami. nat3. on of the vibrational wave-form has shown, that the periodicity is /&. -j 

(Lwu crank cycles) in rogions, of (theoro,, ical) . instability where damping is ; just 

sufficient to stabilise . tho motion. In, a, niuabor of instances it-has boon 

posciblc to incroaso; -th3 speed of operation, of the, linkage past such unstable 

region:, so ba to attain the next stable region (see for example Fig. 58) Under 

different conditions however, instability may occur almost instantaneously with 

ec,: apioto. lass of periodicity of. the previously. enable vibreti ons: Fig! Are 81. 

&1ow8 such an example. Crank speed, is . i. ncreasod slowly in the s tab le region 

between the 211/5 and . f11/2. Instable regionso in this boundary of the latter 

region is crossed, the amplitude of vibration increases rapidly by approxi: rately 

the motion of the. linkage becomes violently unstable. In a number of 30 and 

such Baste examined,, the couplers became strained beyond the olastic limit due 

to the excessive amplitudes imposed upon te'n, whereas in other instances, the 

linkages could be stopped before such damage occurred. In these latter cases, 

instability was normally, detected by direct observation of the linnkage. Ir_ 

addition the change from periodic stable vibration, to aperiodic unstable motion 

could be readily detected audibly and this was a further aid to the rapid 

reduction of crank speed to prevent undue damage to the linkage. 

The majority of-the information contained in the frequency response 

figures discussed in the,, previous section is giver, in condensed form in the 

stability charts shown in Figs.. 82--87. A sepal ate chart is shovm for each 

iir, irige--coupler combination. It is possible to condense the results still 
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further onto two stability charts, one for each linkage, however the 

presentation of each sot of results soprratoiy soatly clarifies the nature 

of the stability of the corresponding linkage-coupler arrangement. A combined 

non-diruonsionalisod chart which, while emphasising the point that the stability 

boundaries are determined entirely by the linkage dimonsions, would create an 

unnecessarily complicated pioturo of the results. 

The stability charts are plotted in tei"iis of the crank speed w2 and 

follower inertia 14* Also shown on the cot-axis are fractional Values of 

the i; utu-al frequency J1 corresponding to resonant and umstab1o rogious. 11110 

stability boundaries of regions in 
which true rosorance may also ho expected 

S2 
(i. e. for CO2 = , fi 

) are indicated by dashed lines whereas those unstable 

regions in which no resonance may occur 
2 S`' (i. e. for . o2 odd) are shorn 

by much shorter dashes. Only one or two of those latter regions are 

indicated since damping effectively elininat. os all but the higb-os t. 

Those theoretical stability boundaries are calculated fer the simpliliod 

equation of motion (equation (6.18)) in irhich the periodic terms which 8.2-e 

functions of the coupler inertia and mass distribution are neglected with respect 

to the follower inertia term. In the linkages examined bore, the coupler- 

dependent terms were all at least one order of magnitude smaller than the 

followero-dependont term, even for the mi. ii. mum value of the latter. The 

bounrurios of lower speed regions are givca preference to those of the adjacent 

higher speed regions in accordance with the theory since the intrinsic value of 

the parameter )ý2 will be greater for the lciror speed boundaries. 

Each point at Which resonance was detected is rop: "eseutod by it circle tehile 

instability is indicated by a triangle. For some of the higher resonant 

regions, two circles are shown corresponding to the speeds at which resonance 

was detected with increasing and docronsing crank, speed. As has boon pointed 

out above the speeds at which maximum amplitudes occur in such nen-nlinear resonfºnt 

rogi ens will be determined by the rate of 3hango or crank speed. No attompt 

was made to examine this phonorhenor. in detail however and since this particular 

i 
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effect is of li ttl o consequence to the dotocti or, of rosonanco, the resui t"s are 

presented on the ctability charts to give some indication of the :: xtent of the 

non-linoarities present in the higher resonant rogions. 

In Fig. 82 it may be seen thai; the 
7 unstable region is detected only for 

higher values of follower inert a. With the a.. imrýrý inertir, nstPbilj. tý. 

occurs in this region but the rrcximity of the 
L IL. z", ay. also have some offeet. 

The speeds at which unstable nwwtien cc curs in the 2 
region s;. o, Y good agreement 5 

with the theoretical curvos, As &J-the two points, for lowest values of ino: etia, 

epproaehir. ü the half--spend resonant region . By comporiso Pig. tý 3 indica tee 

a grouter degree of daripi. ng present in that there- is no experimental indicatior, 

whatever ei the presence of the = region of instability. In adlitLon 

instabil instability in the 2 
region is only induced by i. nt: roasod inertia and it is 

poss iblo to detect both sides of the half-spaod resonant region, albeit for only 

one value of follower inertia. A, similar pattern is seen in Fig. 44. with the 

upper boundary of the 2 
region bc-in. detectable. 

in ull of the case described abovo, i.. e. for the (5,1,5,2) linicage, the 

highest observable region is the, half-s, ecd subharmonic resonance. In this 

region not only is there fc:: -eod resonance present but there is the possibility 

of inctability., ocourring. An increased amplitude in this regi. r, n will therefore 

be inevitable , whereas the onset of unstable vibrations depends upon tho level of 

damping rxmsent. The adjaeer: t region hewover is one of instability only, no 

r esornance being expected a' ., a speed between one half and one third of the natural 

frequency. The observation of any apparent resonance for low inertia values 

or instability for higher inertia values is therefore evidence in support of the 

theoretically predicted stability bouralar"ios. In two of the three examples 

presented, this is the, only, non-r'osonant unstablo region detected,. In the 

third, the next lowest region is = =ý--7 is detected for the ;. argcr inertia 

values. The damping present in the linkages is Sufficient to suppress all 

lover unstable regions within the range of inertia examined so that. Only the 

resonant regions (c: ý _) are obaervabio at lower speeds. 
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By reducing the inertia forces in the linkage, it is posniblo to examine 

higher regions of instability since the accompany-ng resonant vibration will 

also be reduced. The (10,1,10,4) linkage stability charts are shown in 

Figs. 85-87 from which it is soon that the ` region is now attainable. The 

highest region examined in those oV. aripiios is now a true region of instability 

having no associated resonance. .A consequence of the change of dimensions 

of the linkage is a narrowing of the regions of instability so that it is 

correspondingly simpler to cross, for example, the hall-speed resonant region 

for any particular value of inertia. In additions the offents of damping 

will ho oor"respondi. ngly greater and this too faGil. itß. tE)s the examination of 

the higher unstable regions. 

In Fig. 85 the °5 unstable region is detected for some of the higher inertia 

values only. (Compare this with Fig. 82 in which it is observed throughout the 

whole Tango of inertia values). The non-linearity of the half speed resonn; res 

is observed for the lower inertia valuer-, the oxp rii ontal "width" of the region 

agraeiug quite well with the theoretical curves as in all ether cases for the 

resonance. With increased inortiaa the 
Al 

rep-on bocomes unstable with 

the expori1! ental points lying close to the thcorotice-1 boundary. Similarly, 

in Figs. 86 and 87 the 2 region becomes unstable for the higher values of inertia 

while a few points indicate the presence of the region, In Fig. 87 (the 

thickest coupler) instability occurs on the high speed side of the 2 region yzhich, 

for higher inertia values, lies close to the 3Z region. In this region too, 

instability occurs on the high speed side for lour inertia values, an increase in 

amplitude being noted at the lost speed side. 

In the majority o'f cases then, the exporinental points lie close to the 

theoretical stability boundaries. In the case of the (10,1,10,4) linkage 

especiallly9 the detection of apparent resonance or instability in the region of 

is a satisfactory justification of the theoretical protlictions, iioro 

iü so perhaps than in the caso of the (5,1,5: 2) linkage where the upper limit 

near rJ2 
2 

where large resonant amplitudes would *. 1so be expected. t. f. o71 



-1Q1, - 

points may be seen to lie above the uppor unstable region:; axa, ninod (Fig. 84,85, a7) 

rather r than on tho boundaries of those regions. All of these points were 

dotec. tod with low values of follower inertia there being oily an increased 

amplitude rather than instability noted as the highest observable region was 

passed. Since instability then occurred at speeds nuch Uz1ew the next unstable 

regiert in the ease of the (10,1,10,4) linkage, the Liest probes ; le explanation for 

this is that, the greatly increased amplitude produwod at this high apooü caused 

failure of the coupler. A high-spool tin' film of the iiiik' , go at the point 

cf becoming unstable shcwod the behaviour of the coupler in greater detcil. 

A selection of frames from this film is shc; m in Figs. 88 and 89� lizitiall. y, 

the coupler vibrates in a stable periodic manner until instability occurs, The 

amplitude then increases rapidly and higher modos of vibration may be soon (in 

the examples shorn both the second and third modos are visible). under such 

conditions of excessively large, amplitude, the follower may "rsn p through" so 

that the lin! cago takes up its ulcorrativo orientation (viz. the vitrionativr, 

position in which coupler and follower may be corrected. See Fig. 3 and last 

frame of Fig. 89. ). hlien examining the behaviour of the thinnoat coupler 

under such conditions, it was found that such "snap-through" changes occur red 

In an appaa"ontly random fashion -hile the motion roti! ained vuzstahle. A 

reduction in speed restored. the stable vibration of the coupler ; ý, spite the 

over-straining to which it had been subjected during the "snap-throu;; h". 

Damning 

The effect of damping upon the stability has been mentioned briefly in a 

qualitative manner in this and the previous section. In Chapter 7 the effect 

of damping upcu the theoretical stability charts has been oxamined, tha nature 

of damping being assumed to 
. 
be purely viscous. As we have seen, this is not 

often the only type of damping present in practice and indeed in the present 

system, there will be frictional arld viscous damping in the coupler bearings 

in addition to the internal damping of the coupler itself. 

The estimation of the damping affecting the free vibration oti individual 

couplers is a comparatively simple task in the stationary case and l'igs. 72 and 73 
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Show typical dazapsd vibrations. Measurement of the logarithmic decroment 

of such vibration gave values of betwee:, 0.35 and 0.30 for the x 
: L! ), Coupler, 7 

botwoon 0.10 and 0.27 for tho in. coupler and a much lower value of 0.05 

to 0.10 for the i6 in. coupler. Theso vulu^, s serve merely to indicate ort3ere 

of magnitude since the conditions raider which the coupler vibrates while the 

linkage in in notion differ grcatly from those obtaining r; ie: li the linkage 

stationary. Not only are the journals rotating at varying sliced i*c the 

acupl©r bearings but the loads on-thoso bearings are also varying. The 

f ©bfoctive damping in such a situation is an o;: troneiy difficult ostis niioi, of 

prasztical problem and will not ho porsuod at length hero. One method of 

obtaining some rough estimate of damping in the linkages is to examine the 

stability c4arts and attempt to locate the appropriate damped stability boundary 

for a number of unstable regions. In Chapter 7, a first order estimation of 

the miriimum value of the parameter ju is obtained below which notion w, 111 be 

stable for any given value of the damping coefficient K. Exa; ninration of, 

for example, the 
5 

unstable ragxnn in Figo82 shows that the motion becomes 

unstablo whet follower inertia is increased from 0.0069 to 0.0079 lbf. in. aec2 

The appropriate duped stability boundary must therefore lie botwwocu the two 

points and working from this assumpticn, it is possible to deduce an approxi.: mte 

value of the corresponding damping coefficient. In this case the Vtiuo of K 

obtained is 0.02. Applying the same reasoning to the region, a value of 

0,01 rosulta. Obviously such approximations can only be used as a very rough 

guide to indicate the level of effective damping; since the calculations involved 

are subjcot to a number of widely differing assumptions. Thero does appoac- 

however to be some cons i'steucy in these figures to within less than an ardor of 

magnitude. The 
2 

'and 
?r 

regions in Fi8.85, for instance, yield values for 

the damping cooffioient of 0.005 and 0.02 respectively. 

In general, the accurate determination of the effective damping in, such 

meobunisis as have boon examined hope is not of prims importance. The major 

problo4 is usually the location of the boundaries of the unstable rogioas and 

the prose: lco of a any dm pßng is r dvantaghous in reducing the size of those 

r 
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rogions in addition to having an ovorsall stabilising offeat upon the system. 

äE3 has boon deiaone'"rntod by roforonco to the stability ehartty, vibrations in 

a region of m u, tability (not accompanied by a resonant : "ogion) cal, behave in 

a rarnor similar to those of non-linoar resonant rogions in so ia' as increased 

araplitudos will be produced over a range of operating speed� Per this 

reason, the inuin aim of the analysis and accompanying work is the 

prodieticn and doteot:? on of those areas on the stabilit. y char is ix, which large 

resonant or unstable vibrations may be expected. If in pra et t co the unstable 

v ibrationus sro lituited to. areas eme, llor than sxpaetttd, due to tho presonce of 

damping, thou this may be taker, as a bonofit to the theorot3. cal ,, redictionu 

since one is then given a wider choice of stable eonditiona in zhh ich any 

particular mochanism may operate. 

9,6 Summary, Conclusions and Stt º, t . an for Further 'Fork 

The exporimental work do scribed in this chapter has boon concerned solely 

with the vevitieati. on of the theoretical rrork developed in Part ill of this 

thesis. The equation of motion of the flexible coupler ir_ a c. ank--rookery 

lln. 1kagc has been derived in Chapter 6 and some cor. sideri, tion has been given to 

mothods of solution by digital ccmputntion. Appendix r lists a prograrimo 

suitable for this task and sample results have boon pr'eocnzod together with 

experimentally observed gave forms which show good agreement with this wrd an 

alternative computer solution. 

Chapter 7 deals with the determination of the location of the stability 

boundaries in terms of the operating speed of the mechanism and a parameter 

which is a function of the follower inertia. Experimentally obtained results 

show close a. greoment with the thocretical stability boundari for the 

simplified equation. irmwhich-couplor-'dope ndont terms are neglected. Those 

terms may be neglectod in the present situation as a consequence of the choice 

of linkage dimensions- which rundere them small in comparison with the %ollower- 

dependent terry. he, periodic: coa. Yiejor. ts in this simplifioci equation are 

however not"replacee, 3alo by harmonic functions as ha. s been done by other workers 

(Noubausr o% al 
( 16) 

, lioubo. n( 
19) 

and i, oytr -ýajr CrLpa i. 1Ar, 0.4)1. 
The nualys ifs 
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is therof ore eorronpondingly more prolonged duo to the large nunbor" of Fourier 

terms which must h3 retained in order to obtain an acceptable ai3proäimation to 

those periodic functions. 

Chapter 8 examines the stabil i:. y of 11111-typo equations with more than two 

independent parameters which appears to have received little attention olsowhoro. 

Certain difficulties arise in the application of standard porturbatic technique. 

and a modified method is i. oposod whicit works well to a first cpprux:. u, ation. 

Further work is dosirublo, on problems of this typo either by extension of 

existing porturbation analysis methods or by alternative aeons. The full 

linearised equation of motion for the coupler vibration contains four periodic 

terms (five independent parameters) and is thus a most difficult equation to 

analyse fully. 

One additional aspect of the theory which is highlighted by the oxporimontsi1 

work ig the non-linear nature of the resonances at higher speeds. This has been 

doscry. hed qualitatively but no guantitative'vork has been atteuptor1� An 

examination of the non-linear t: arxr in the full equation of motion may load to 

a more thorough tunderstanding of the eharaeteristies of the coupler vibration at 

high spood (i. o. above approximately l! 3). Yiscomi and Ayx-o(17 have 

roportod some Stork on a closely essooiatod problour using analogu, a computer 

techniques but there nppoa. rs to be a luck of any experimental work c: t this topic. 

The recording of the coupler vibrations by high-speed tine film brought to 

light the presence of higher maces of vibration at the onset of instability. 

No evidence of the existence of these modes was found under stable conditions 

but it is possible that their pr oser; ce may have important offocts upon the 

stability characteristics in some cases. again, no experimental work appears 

to have been reported while some theoretical analysis has been carried out by 

Seevcrs and Yang 
(20) 

who oxamine the effect of the second mode. 

Among those working on various aspects of vibrations in linkage mcohanicros, 

it has b'ion almost universal practice to consider only vibrations in the plane 

of the mechanism, In many practical cases this is the mode of vibration 

most likely to bs encountered ar. d for this reason many mechanism links are 
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oonstruoted to withstand bonding in this plane while boing ^os:, parativoly 

floxiblo in the plane perpendicular to that of thm mechanism. Vibrations 

in this plane are therefore worthy of examination, the corresponding equation 

oa° motion being mirnilar to that which has been examined here but differing in 

svnzo into+resding respects in tIi_ c t5ortain tc: mns3 are absont.. The iinvüetigatxoil 

Of aIncli vibrations eToL: id Amin au use parLa? 1: o1 to the r3i"esent Yror"k. 

Ths majority of this section bits concentrated on the conteut of tart III 

of thosia since the content of Parts I and II are cotnpar4A. tivoly vrei1 known 

and have baen investigated thoroughly. Tb ro aro sLll however ono or tv,, ty 

riper is of ruohanisr dynamics. worthy of further study in connection with the 

presort work and these are listed below together with the topics previously 

mon Cloned. 

Sumßr+ed, ýica i(3r fi: u"ther stý& 

I, Tsevestigation of the effect upon stability of the preseucc of 

higher modos of vibratica in th coupler. 

Further- examination of the non-linear terms in the equation of 

r., otion and their afloat upon high-spoed resoiiancos. 

Development of techniques for the analysis of 4ii.. l't3 equation 

with t: roro than two indepo; icient parateoters. 

(This im., be considered a pu. roly mathematical problem but 

it has a direct bearing upon problems such as that 

investigated here) 

1,.. F4au: ination of out«of-plano bending of mechanism links 

(especially the coupler). 

5. Optimi. sption of pin-forces and torques in general plaw. r linkage 

mechanisms (3. g. Reduction of pin forces by change of mass 

distribution of individual links while avoiding aocovpanying 

i er f ase in torque). ' 

.f 
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6r gxaminf, 4ion of the mffoct3 of springs, flexiblo olomo: itss 

UaIaneing and pasaibly backlash in a: ty combins, tioü to 

acItiovo special objectives (e. g. TIio reduction of the 

offects of clearance ;: y the addition of sp1ingo)� 

I 
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FIG. 86 STABILITY CHART 

2Q 800 

01 

(r Pm) 

2 
600 

15} 

ýýý 

3 
400 

12 

Sl 
5 

31 200 

(10,1; 10,4) 
64 

in 

ý ... izz 
11 

ý 

,ne 
ý-ý 

O\Np 

N 

\ 
eý 

``0.. 
Ö 

O ýýý 
\\ 

-! ar - 
3 

COUPLER. 

-ý- ---4_ 1 ýý 

-8ý 

-p --0--p - ---@- -@- -ý- -0- -9 

ý 

---p -A-O-- ý---s--- A- A-- A- ---9- 

--ý --ft- 

--fl -9-0 --II- -a- -6ý-' -9- -p_ 

--O --0-0 A- 9- A- -f, 3-- 6 

--0-6-0 --6-- --A- -6-- -8---, --0- 

(2 

8) 

4 
5 I10 15 

3 24X1Q (Ibf In sOe2) 

I 
20 



FIG. 87 STABILITY CHART 

L3-11 
1I rm 4-- -- , 

1000 + 

t, 5a 
(rpm) 

ý 
ý 

(10,1,10,4) 16 in COUPLER 

*-. Q 

\ ýe ý \ 

\ 

ý 
\ý 

(22) 
800+ 

f201 
-- - 

600 

IM VT3) 

24) 400 

C5) 

C6) 

(7) 
ý 200 

- 0-O 

0 

*N 
ý 

ý 
A\ 

\ 
ý-- 

-ý 
ýý 

ý 
ýý 

ö 
ý 

oý 
ý _ Z: _ý Ö-'' -O' - ~Q- ._ -_ -` . _. 

. _ý 
0O. O 

o ý- 
00 

$ -p- --$- Q__ $ 

ý 
ý 

0-0$ --Q- --Q- ýA- ---0 

-O ---A-4 

--O 

Ge90 

0 
-e- -0 - s- ---0 - 

0 05 10 15 20 

I4X103 (Ibf in sec') -. 

ý 

- --cL o. -ý fl'ý-o 
ö 

-NW am °'-===_- 

ý ý 



FiG. 88 

(CL) 

.l 

R 

(cN 

rl 

v 

(e) 

r4 

(b) 

(d ) 

(ý) 

, q. 4 

16 4 

%4 

ý 



(a) 

(c. ) 

(e) 

1 

FiG. 89 

ý 

r1 

r4 

'-ý 
.. 

(b) 

(d 

(4) 

16 4 

rt 

%4 



References 

1. WILLIS, R. Principles of Mechanism. Longmans Green and Co., 

London (1841) 

2. REULIUX, F. Kinematics of Machinery. (English Translation by 

A. B. W. Kennedy). Macmillan & Co., London (1876) 

3. do JONGE, A. E. R. What is wrong with Kinematics and Mechanisms. 

MECH. ENG. , 4,273-278 and 744-751-, (1942) 

4. SMITH, R. TRANS. ROY. SOC. EDIN. 
, 
22,507, (1885) 

5. BURMESTER, L. ` Lehrbuch der Kinematik. A. Felix Verlag, Leipzig, 

(1888). 

6. FREUDENSTEIN, F. Trends in the Kinematics of Mechanisms, APP. MECH. REV. 

12, No. 9, (1959) 

7. BOTTEf4A, 0. and FREUDr2ISTEIN, F., 

Kinematics and the Theory of Mechanisms. 

APP. ME)Ii. REV. 12, No. 4, (1966) 

8. BLOKH, S. S. On the Synthesis of Four-Link Mechanisms. Izv. 

Akad. Nauk SSSR., OTD. TEKH. NAUK. It 47-54" (1940) 

9. TALBOURDET, G. J. Mathematical Solution of Four-bar Linkages 

MACHINE DESIGN, 11 Nos. 5,6,7, (1941) 

10. SMITH, M. R., and MAUNDER, L., 

Inertia Forces in a Four-bar Linkage 

J. M. E. S. g, No. 3,218-225, (1967) 
"" 

U. HOUBrýJ, H. Uber die Stabilitat von Schwingungen in Gelenkgetriehen 

FORSCH. des LANDES NORDRHEIN-WESTFALEN, No. 1959, (1968) 

12. GAYFER, J. R., and HILLS, B. 

Small Amplitude, vibrations of the four-bar linkage 

chain. J. M. E. S. 7, No. 3,252-258, (1965) 

13. MAHALINGHAM, S. Small-amplitude vibrations of a four-bar mechanism 

J. M. E. S. 8, No. 4,156-458, (1966) 



14. MEYER ZUR GAP'i' EN, W. 

Biegungsschwingungen in dar Koppel einer 
flo 

Kurbelschwinge. OST. ING. ARCH. 16, No. 4, 

341-348, (1962) 

15. MEYER ZUR GAPMI, Etd, W., and HOUßM, H. 
N 

Untersuchungen uber elastische schwingungen in 

periodischen Getrieben. FORSCH. DES LANDES 

NORDRHEIN-WESTFALEN, Ne. 1394, (1964) 

16. NEUBAUER, A. H., COHEN, R., and HALL, A. S. 

An analytical study of the dynamics of an elastic 

linkage. TRANS. A. S. M. E., J. ENG. for INDUS. 88, 

No. 3,311-317 (1966) 

17. VISCOMI, B. V., and AYRE, R. S. 

Nonlinear dynamic response of elastic slider-crank 

mechanism, TRANS. A. S. M. E., J. ENG. for INDUS. 

91, No. l, 251-262 (1971) 

18. MEYER ZUR CAPELLEN, W., and HOUBEN, H., 

Torsionsschwingungen im An- und Abtrieb von 

Viergelenkgetriebon. FORSCH. des LANDES NORDRHEIN - 

WESTFALEN No. 1429 (1965) 

19. HOUBEN, H. Untersuchungen'über die Stabilität elastischer 

Bewegungen in der Koppel eines Viergelenkgetriebes. 

Dissertation, Tech. Hochschule, Aachen (1965) 

20. SEEVERS, J. A., and YANG, A. T. 

Dynamic Stability Analysis of Linkages with elastic 

members via analogue simulation 

A. S. M. E. Paper 70-MECH-48. (1970) 

21. McLAUGHLAN, N. W. Theory and application of Mathieu Functions 

DOVER PUBLICATIONS INC., NEW YORK, (1964) 

22. MAGNUS, W., and WINKLER, S. 

Hill's Equation, INTERSCIENCE PUBLISHERS (1966) 



23. DE VOGELAEERE, R. A method for the numerical integration of differential 

equations of second order without explicit first 

derivatives. J. RES. NAT. BUR. STANDARDS. 5A, 119-125. - 

(1955) 

24. MALKIN, I. G. On the stability of motion. MOSCOW-LENINGRAD (1952) 

Translation by U. S. ATOMIC ENERGY COMMISSION, OFFICE 

of TECHNICAL INFORMATION 

25. FREUDENSTEIN, F. Harmonic Analysis of crank and rocker mechanisms with 

application. TRANS. A. S. M. L., J. APP. MECH., 26, No. 4, 

673-675, (1959) 

26. KLOTTER, K., and KOTOWSKI, G. 
0@ 
Uber die Stabilität der Lösungen Hillscher 

Differentialgleichungen mit drei unabh'ngigen 

parametern. Z. A. M. M. Q. No. 3,149-155, (1943) 

27. STRUTT, M. J. O. Reelle Eigenwerte verallgemeinerter Hillscher 

Eigenwertaufgaben 2. Ordnung. MAT. ZEIT. La, 

593-643, (1943-4) 

28. RAND, R. H. On the stability of Hill's equation with four 

independent parameters. TRANS. A. S. M. E., J. APP. MECH. 

L6, No. 4,885-886, (1969) 

29. SMITH, M. R. Determination of the stability of vibrations in 

mechanisms by a modified perturbation method. 

PROG. 3rd WORLD CONG. for T. M. M., KUPARI, JUGOSLAVIA, 

VOL. B, 225-234, (1971) 

30. HAMFRp K., and SMITH, M. R. 

On the stability of the general Hill's equation with 

three independent parameters. TRANS. A. S. M. E. 

J. APP. MECH. 33, No. l, 276-278, (1972) 



31. KOBRINSKII, A. E. Dynamics of mechanisms with elastic connections and 

impact systems. ILIFFE BOOKS LTD., London, (1969) 

32., BOLOTIN, V. V. Dynamic Stability of elastic systems, 

HOLDEN-DAY INC. (1964) 

33. PORTER, B. A Theoretical analysis of the torsional oscillation 

of a system incorporating a Hooke's joint. 

J. M. E. S. 
. 
2, No. 4,324-329, (1961) 

34. WILSON, R. The Dynamics of the Slider Crank mechanism with 

clearance in the sliding bearing. Ph. D. Thesis 

University of Newcastle upon Tyne, Oct. 1971. 

35" SMITH, M. R., and MAUNDER, L. 

Stability of a four-bar linkage with flexible coupler. 
C 

J. M. E. S. No. 4,207-21+2p (1971) 

36. BOGOLIUBOV, N. N. and MITROPOLSKY, Y. A. 

Asymptotio methods in the theory of non-linear 

osoillations. (English Translation) 

Hindustan Publishing Corp., Delhi (1961) 



Appendix 1 

Planar Mechanism Kinematics 

In Chapter 2, the kinematics of the four bar linkage are examined 

briefly and the equations giving angular position, velocity and acceleration 

of the links are quoted. They are obtained as follows. 

Fig. 1 shows the four bar linkage and its parameters and Fig. 2 the 

-equivalent vector representation. The horizontal and vertical projections 

of the vector polygon maybe written as 

ý2 oos A2 + £3 cos 03 _ 1l + 14 cos 94 A. 1 

2 sin A2 + . 
Q3 sin 63 _ . 

Q4 sin e4 A. 2 

Elimination of A. is achieved by re-arrangement as follows 

i3 Cos 03 

e3 sin 9 3= 

ý2 oos A2 + ý4 oos A4 A. 3 

- ý2 ein 92 +Z ein. 04 ' A. 4 

Squaring and-adding, these equations-yields 

222, 

1+ .Q2 Q3=£ 2 cos A2 +24 cos 4 212 e4 oos(A2- A4) 

A. 5 

which is transformed-to the',, ' Well-known Freudenstein equation using the 

abbreviations 
i1 

ý- 91, 

whence we obtain 

R1 oos 02- R2 oos 94 ft3 = cos (e2' - 94) A. 6 

However this is not the most convenient form of this equation for 

present purposes since 64 is required explicitly. Writing equation (A. 5) as 
ýi +`22 £3 + ¬4 -2 $l 

2 Cos 02=2 L2 i4 Cos (A2 -64) -2 Zl J4 Cos 64 

=(2e2t4Cos 62-2 2114) Cos 64 

t (2 -t 2. Z4 sin 62) ein 64 



and using the notation 

Aa 2ý4 ý , i2 cos 02-1 
1) 

2_2 
-2- c1 -e2 L4 

t4 sin 0 2 

we obtain 

A cos A4.. +. B. +0 Bin 84 =0 

+2 Q1 
-ý 2 Cos 62 

Squaring this equation and re-arranging, a quadratic equation in 

cos O is, pröduced which hae'tho solution 

AB AB 
"-2 

B2 
ooe 

we4 . , 
-- D2 

ý 
D2 

_"D 

: where D2 = A2 + C2 

A similar procedure may be folLowed to determine cos 93 when an 

analogous equatiönwill: -be ` obtained.. Alternatively equations (A. 3) 

and (A. 4) may bo usediin-which: case sin 94 is Calculated from the 

appropriate valueýof cos 04 

A. 7 

A. 8 



APPENDIX 2. 

DIGITAL COMPUTER PROGRAMME FOR CALCULATION OF 

LINKAGE KINEMATICS. 
/ 

begin libra_ry AO, A6, A12; 
; open t2 

open30; 
write text(30, [[25s)FOUR*BAR*LINKAGE*KINEMATICSL2cII); 

begin real X, Y, Z; 

procedure FORBAR 2(L2, L3, L4); comment This procedure 
calculates the position, angular velocity and angular 

acceleration of the members of a four bar linkage in 
which L2 is the length of the crank , L3-that of the 
coupler and L4 that of the follower. 
The distance between the crank and follower pivots is 
taken as unity. The calculation is carried out in 10 
degree steps of the crank angle; 

value L2, L3, L4; real L2, L3, L4; 

-begin real a, b, c, d, e, k, th2, th3, th4, csth3, snth3, csth4, snth4, 

omega3, omega4, alpha3, alpha4; 

integer i, xl , x2, yl , y2, fl , f2, f3, f4, f5; 

f1: =format [sndds ; 
f2: =format r4sndd ; 
f3: =format r3sdd ; 
f4: =format r4s+n (d. ddddj); 
f5: =format tssnd. ddl, ); 

write 30, f5, L2 ; 
write 30, f5, L3 ; 
write 30, f5, L4 ; 

write text(30, [[2c crank[5s coupler[5s]cou ler(6s1 
couple75s follower sjfollower[5s]follower [c]angle[6s anglet6s]angular[6sja lar(6sý 
angle ll7sTangular[Es]ä lar[cs deg 5s deg 
(2s]min('5s, Lvelocit3r s acceTnL sldegý, 

ks, 
1min 

L5slvelocityL5s jacceln 2ci]. ); 

k: =L3T2-L2T2-L4T2-1; 
for i: = 0 step 1 until 36 do 

in th2: _ . 174 '95 Xi 
a : =2XL2XL4Xcos(th23-2XL4; 
b : =k+2XL2Xcos th2 j 
c : =if abs(sin(th2 <1 -3 then 0 

else 2XL2XL4Xsin(th2"f; 
d : =-a/(aT2+cT2 ); 
e := (bT2-cT2)/(aT2+c12 ); 



csth4 : =if c=O then d else if th2 < arctan(1 )X4 
then d+sgrt 2-e 
else d-sgrtýdTdT2-e 

3; 

csth3 ": =(1-L2XCOS th2 +L4Xcsth4)/L3;, 
snth4 :s rt 1- cs th4 T2 " 
snth3 : =sgrtýl-ýcsth3 T2ý' 

th4 : =arctan(snth4/csth4); 
th3 : =arctan(snth3/csth3)); 

x1: = entier th3x18U/3.1415926); 
y1: =((th3x1 U/3.1415926)-x1)x6U; 
x2: = entier(th4X18U/3.14415926); 
y2: ==((th4x18U/3.1415926)-x2)x6U; 

omegä3: aL2x(snth4xcos(th2)-csth4xsin(th2 / 
(L3x(snth3xcsth4-csth3xsnth43 ; 

omega4: =-L2x snth3xcos(th2)-csth3xsin(th2 )/ ýL4x(snth4xcsth3-csth4xsnth3)ý; 

alpha3: =+(L2X csth4xcos(th2)+snth4xsin(th2)) 
-ýomega4)T2xL4+(omega3)T2x (csth3xcsth4+snth3xsnth4)xL3)/ 
(L3x(snth4xcsth3-csth4xsnth3)); 

alpha4: =-(L2X csth3xcos(th2)+snth3xsin(th2)) 
+ýomega3)T2xL3-(omega4)T2x 

csth3xcsth4+snth3xsnth4)xL4 / ýL4x(snth3xcsth4-csth3xsnth4; 
); 

write 
write 
write 
write 
write 
write 
write 
write 
write 

end; 
e d; 

X: =read 20 ; 
Y: =read 20 ; 
Z: =read 20 ; 
FORBAR2(X, Y, Z); 
end; 
close 20 ; 
close(3U ; 
e nd-+ 

newline(30,1); 

30, f1,10xi); 
30, f2, if x1<O then 180+x1 else x1); 
30, f3, ß); 
30, f4, omega3 ; 
30, f4, alpha3 ; 
30, f2, if x2<0 then 180+x2 else x2); 
30, f3, ß'); 
30, f? 4, omegal); 
30 , f4, a 1pha4) ; 



( 
APPENDIX 3. 

DIGITAL COMPUTER PROGRAMME FOR CALCULATION OF 

FOURIER COEFFICIENTS. 

Below is listed a procedure FOUSIM which calculates 

the first M sine and cosine Fourier coefficients of the 

function f(z) which is considered periodic in z within 

the range x< 
., 

z 

M 

f(z) a aU/2+L 
' 

(a 
m 

cos mz +bm sin mz) 

M=l 

Integration by Simpson's rule is carried out 

repeatedly until successive values of the coefficients 

differ by less than the desired accuracy parameter eps. 

The m th cosine and sine coefficients are stored 

in the array elements a[m] and b[m] respectively. 



procedure FOUSIM(x, y, f, M, eps ); 
value x, y; integer M; real x, y, eps; real procedure f; 
begin real h, , ', 7; i_n_teg_err i, m, n, p; 

array A, B, C,, D3IO; li, I2, JO, Ji, J2[O: M ; 
for m: =O stye ?1 until M do A[m] : =B[m) : =C[m] : -D h= (y-x )/2; 
n "=1 " 
F: =f (x ); G: =f(y); J for m: 0 ste 1 until M do 
min IOLm : =F Fcos mx +Gxcos mfr ; 

JU[m]: =Fxsin mxx)+Gxsin(mxy;; 
11[m]: =J1 [ml : =O; 

end; 
L1: or i: a1 step 1 until n do 

5ýFin, P: = x+( x)xhT; 
for m: -U ste 1 until M do 
begin Bým : =B[m +Pxcos mX x+ 2Xi-1 Xh ; 

D[m]: =D[m]+PXsinmXýx+ý2X1-13Xh33; 
end; 

0 

end ; 
for m: ==O step 1 until M do 
begin Im : =hX(IZ5['m)+ XB[m]+2XA[mj 3/3; end; 

J2 m]: =hX((JO[m +14XD[m]+2XC[m /3; 

p: =O; 
for m: =O step 1 until M do 
U-egin if abs (121-m T--Il ( iT)<eps 

_ 
and abs (J2[m] -J1 (m1)<epa 

L3: end; 
then Soto J, 6 else p: =p+l; 

if p=U then oto L2; 
for m: =Ü'steuntil M do 
begin Imf : =I m; 

J1[m]: =J2[m]; 
A m] := A[m]+B[m]; 
C m] : _= C[m]+D[m]; 
B[m] := D[[m] :=0; 

end; 
2" "=h/, 

n : =2Xn; 
goto L1; 

L2: for m: =U ste 1 until M do 
begin am : al2nm '"/ý. 1 4'fýj9265; 

b[m : aJ2[m]/3.14159265; 
2n D 

if m>M then a[m] : ==li[m] : =U; 

end FOUSIM ; a701 : =aTU72; 
_ý 



Appendix 

Computer Programme for Solution of Hill's Equation 

The programme listed below integrates equations of the form 

2 
9+ ý2(1 + r, F(9 ) )y = g(e ) 

according to the algorithm due to de vogelaere(23). 

The procedure f(th, y) defines the second derivative of y in terms of th 

(theta, the independent variable) and y the dependent variable. 

Integration is carried out in steps of h which is initially given 

the value of 100 and then halved, repeatedly until it is less than 

the derived maximum. (See Chapter 6). 

The solution is printed out after every two steps together with the 

corresponding value of the independent variable (viz. crank angle in 

degrees). 

. 
The integration is terminated if y the non-dimensional amplitude exceeds 

unity but will otherwise proceed indefinitely. 

Input requirements are as follows: - 

'e1,82, 'e3' 
W2 

Y 

TA 

o' 

The mechanism link lengths. 

crank spood '( ý/s) 

initial values of crank angle, 0, 

amplitude y,, and slope 
dy/d0 

. 

.. Mode of vibration (rn =. 1 for fundamental) 

equation parameters. 



begin library AO A6, A12; 
open 2U ; open(30); 
write text(30, tSOLUTION*OF*DIFFERENTIAL*EQUATION*BY 

*DE*VOGELAERE*METHOD[2c]]); 

begin real 11,12,13,14, omega2, xU, yU, zU, h, x, p, g, r, s, t, lamsg, mu; 
integer m, n, f1, f2, f3, f4, f5, f6, f7; 

real procedure f (th, y ); 
value th, y; real th, y; 

ein real a, b, c, d, e, k, snth3, snth4, csth3, csth4, 
omega3, omega4, alpha3, alpha4; 

k: =13T2-l1T2-12T2-14T2; 
a: =2x12x14xcos(th)-2X11x14; 
b: =k+2Xl1X12Xcos th); 
e : =if abs (sin(th )<le-3 then 0 

Me 2X12X14Xsin(th); 
d: =a b (aT2+cT2); 
e: =(bT2-cT2)/(aT2+cT2); 

csth4 := if abs (sin(th) )<lo- then d else 
if th < 4xa. rctan(1 }3 =ten d-sq t(dT2-e ) 
else d+sgrt(dT2-e); 

csth3 : =(1-f-l2Xcos(th -14Xcsth4)/13; 
snth4 : =-sgrt 1- csthý T2 ; 
snth3 : =+sgrtýl-ýcsth3; T2ý; 

omega3 : =omega2X12x(snth4Xcos(th)-csth4Xsin(th))/ (13x(snth3xcsth4-csth3xsnth4)); 
omega4 : aomega2x12X(snth3Xcos(th)-csth3Xsin(th))/ (14x(snth4xcsth3-csth4xsnth3 ); 
alpha3 : =(( omega2 T2xl2X csth4Xcos(th; +snth4Xsin(th)) 

+ýomega4ýT2X14+ýomega3)T2X(csth3Xcsth4+snth3 
xsnth4)X13)/(13x(snth4xcsth3-csth4xsnth3))' 

al ha4 := omega2 T2X12x csth3Xcos(th)+snth3Xsin(thj) p 
+ýomega3ýT2X13+ýomega4)T2x(csth3xcsth4+snth3 
xsnth4)x14)/(14x(snth3xcsth4-csth3Xsnth4)); 

f: =-yxlamsgX(1+muxalpha4/(omega2T2x(snth3XCSth4-esth3xsnth4)))+ 

(if (mT2x2-m)/U then 4x12x(sin(th)xcsth3-cos(th)Xsnth3)/ 

(mx13x3.14159265)-2xalpha3/(mxomega2T2x3.14159265) 

else 2xa1pha3/(mxomega2T2X3.14159265)); 

end; 

f1: =format [ndssl); f2: =format [nd. ddssf)" 
f3: =format Tnd. ddddsj); f4: =format rnddddssss 
f5 : =format rnds ] ); f6 : ==format rd j); f7: =format Dsndd. dddj); 

11: =read 20); 12: ==read 20 ; 13: =read 20 ; 14: =read 20 " 
omega2: =read 2Ü ; xO: =read 20 ; y0: mread 20 ; 

zO: =read(2U3; 
m: =read 20 ; lamsq: =read 20 ; mu : read 20 ; 



h"-1U" "- ý L2: if h >18/sgrt(lamsq) then begin h: =h/2; goto L2; end; 

write text(3C, L(c1Us]L1[2sýL2[2sýL3[2s]L4[3s]W2[4sjxo[s]yo[sý 

zo [ 2s]h[ 4s, ]m[ s] lamsqL2slmu[ c1 Usýin[ 2sýin[ 2sliný2sjin[ 2s, ýR/SEC 

[11s], deg[2c1Us]I ); 

write 
write 
write 
write 
write 
write 
newline(3U, 2); 

h: =hx3.14159265/180; 
n"=U; . 
x: =x0; 
p : =Yýý 
q: =hXzU; 
r : =hT2xf (x,, p)/3; 
t: =p-q+3Xr/2; 
s: =hT2Xf(-h, t)/3; 

L1: q: =q+r; 
p: =p+g; 
s: =p+r-s/2; 
x: =x+h; 
s: =hT2Xf(x, s)/3; 
q: =g+4Xs; 
p: =p+g; 
x: =x+h; 
r: =hT2Xf(x, p)/3; 
q : =q+r; 
n: =n+1 ; 
write S30, format [sndddd. dý), xX18U/3.14159265); 
write t 3U, format 

ýrs+d. 
ddddio+ndj_) ,p); if n+5X5=n then newline(30,1); 

if p>1 then oto FAIL; 

goto L1; 

FAIL: write text(3U, [ CIUNSTABLE1); 

end; - 
close (20); 
close(3U)); 
end- 

30, floll ); write(30, f1,12); write(30, f1,13); write(30, f1,1t); 
30, f2, omega2); 
30, f5, xo ; write(30, f5, yQ); write(30, f5, zO); write(3Us22, h); 

-. 
30, f6, m); _ 30, format [ssn. dd] , lamsq); 
39, format rssn. dd_ , mu); 


