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Abstract

Given a truncated multisequence of p× p Hermitian matrices S := (Sγ1,...,γd) (γ1,...,γd)∈Nd0
0≤γ1+···+γd≤m

, the

truncated matrix-valued moment problem on Rd asks whether or not there exists a p×p positive

semidefinite matrix-valued measure T, with convergent moments of all orders, such that

Sγ1,...,γd =

∫
· · ·
∫
Rd
xγ1

1 · · ·x
γd
d dT (x1, . . . , xd)

for all (γ1, . . . , γd) ∈ Nd
0 which satisfy 0 ≤

∑d
j=1 γj ≤ m. When such a measure exists we say

that T is a representing measure for S. We shall see that if m is even, then S has a minimal

representing measure (that is,
κ∑
a=1

rankQa is as small as possible) if and only if a block matrix

determined entirely by S has a rank-preserving positive extension. In this case, the support

of the representing measure has a connection with zeros (suitably interpreted) of a system of

matrix-valued polynomials which describe the rank-preserving extension. The proof of this

result relies on operator theory and certain results for ideals of multivariate matrix-valued

polynomials. Our result subsumes the celebrated flat extension theorem of Curto and Fialkow.

We shall pay particularly close attention to the bivariate quadratic matrix-valued moment

problem (that is, where d = 2 and m = 2).
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Chapter 1

Introduction

1.1 The flat extension theorem for matricial moments

We will first introduce frequently used definitions and notation. Commonly used sets are

N0,R,C denoting the sets of nonnegative integers, real numbers and complex numbers respec-

tively. Given a nonempty set E, we let

Ed = {(x1, . . . , xd) : xj ∈ E for j = 1, . . . , d}.

Next, we let Cp×p denote the set of p × p matrices with entries in C and Hp ⊆ Cp×p denote

the set of p× p Hermitian matrices with entries in C. Moreover, let γ = (γ1, . . . , γd) ∈ Nd
0. We

define

Γm,d := {γ ∈ Nd
0 : 0 ≤ |γ| ≤ m}.

Given x = (x1, . . . , xd) ∈ Rd and λ = (λ1, . . . , λd) ∈ Nd
0, we define

xλ =
d∏
j=1

x
λj
j and |λ| = λ1 + · · ·+ λd.

We will be considering the truncated matrix-valued moment problem on Rd. Given a truncated

multisequence S := (Sγ)γ∈Γm,d , we wish to find a p × p positive semidefinite matrix-valued

measure T on Rd such that

Sγ =

∫
Rd
xγdT (x) for γ ∈ Γm,d

and T has convergent moments of all possible orders. When such a measure exists we say that

T is a representing measure for S. We will be interested in the case when the representing

measure T is minimal, that is, T is of the form T =
κ∑
a=1

Qaδw(a) and
κ∑
a=1

rankQa = rankM(n),

or equivalently,
κ∑
a=1

rankQa is as small as possible (see Definition 1.4.31 for the definition of

M(n)).

In order to communicate our solution to the truncated matrix-valued moment problem on

1



1.2. Motivation and aims

Rd we require the notion of flatness for a positive moment matrix. We refer to [16] where this

approach has its origin in the truncated moment problem on Rd.

Definition 1.1.1. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and

M(n) � 0 be the corresponding moment matrix (see Definition 1.4.31). Then M(n) has a

flat extension if there exist (Sγ)γ∈Γ2n+2,d\Γ2n,d
, where Sγ ∈ Hp for γ ∈ Γ2n+2,d \ Γ2n,d such that

M(n+ 1) � 0 and

rankM(n) = rankM(n+ 1).

The main purpose of this thesis is to formulate and prove a flat extension theorem which

features the minimality of a representing measure for the given data and establishes connections

among the flat extension, zeros of the determinants of certain matrix-valued polynomials and

the support of a representing measure.

1.2 Motivation and aims

In [64], Mourrain and Schmüdgen studied extensions and representations for Hermitian func-

tionals L : A → C, where A is a unital ∗-algebra. Let C be a ∗-invariant subspace of a unital

∗-algebra A and C 2 := span{ab : a, b ∈ C }. Suppose B ⊆ C is a ∗-invariant subspace of A

such that 1 ∈ B. Mourrain and Schmüdgen say that a Hermitian linear functional L : C 2 → C
has a flat extension with respect to B if

C = B +KL(C ),

where KL(C ) := {a ∈ C : L(b∗a) = 0}. In [64], Mourrain and Schmüdgen showed that

every positive flat linear functional L : C → C has a unique extension L̃ : A → C.
Mourrain and Schmüdgen also showed that if A = Cd×d[x1, . . . , xd] (see Definition 2.0.1),

B = Cd×d
n [x1, . . . , xd] (see Definition 2.0.2), C = Cd×d

n+1[x1, . . . , xd] and L : C 2 → C is a positive

linear functional which has a flat extension with respect to B, then

L
(
(pjk)

d
j,k=1

)
=

d∑
j,k=1

r∑
i=1

pjk(ti)ukiūji for (pjk) ∈ Cd×d[x1, . . . , xd] (1.1)

for some choice of t1, . . . , tr ∈ Rd and u1, . . . , ur ∈ Cd with ui = col(uki)
d
k=1 for i = 1, . . . , r,

and in particular,

L(xγId) =
d∑
j=1

r∑
i=1

tγi |uji|2 for 0 ≤ |γ| ≤ 2n+ 2. (1.2)

The aim of this thesis is to formulate and prove a flat extension theorem for matri-

cial moments (Sγ) γ∈Nd0
0≤|γ|≤2n

, where Sγ is a p × p Hermitian matrix for all γ ∈ Nd
0 satisfying

0 ≤ |γ| ≤ 2n, that has an integral representation, which is closer in analogy to Curto and

2



1.3. Background

Fialkow’s flat extension theorem (which we have reformulated in Theorem 1.4.27 for the con-

venience of the reader) compared to formula (1.1) that has the additional constraint d = p.

Let us further elaborate on the truncated moment problem on Rd in the scalar setting. In

[16] Curto and Fialkow describe a recursive model for singular positive Hankel matrices and

show that when the truncated moment problem is of flat data type, a solution exists and it

can be constructed from the simultaneous zeros of a collection of polynomials which describe

the linear dependence of the extension of the moment matrix. Curto and Fialkow have used

the flat extension approach to discover a number of truncated moment problems which have a

concrete solution (see, e.g., [17, 18, 19, 20, 21, 22]).

We observe that the flatness condition admits a natural analogue in the setting where

the given finite multisequence is Hermitian matrix-valued. However, it is not immediately

obvious what the role of the variety of a moment matrix should be. With concepts from

noncommutative algebraic geometry for matrix-valued polynomials such as the variety of a

right ideal in the set of matrix-valued polynomials, we can extract information concerning the

representing measure and its support.

Furthermore, in [16], Curto and Fialkow investigate the bivariate quadratic moment prob-

lem in an equivalent setting in C. It is shown that given s00, s10, s01, s20, s11, s02, with s00 > 0,

the corresponding moment matrix being positive semidefinite is enough to guarantee the exis-

tence of a minimal (that is, rankM(1)-atomic) representing measure. It is natural to wonder

if a similar result holds for matrix-valued moments. We investigate the bivariate quadratic

matrix-valued moment problem and present a series of necessary and sufficient conditions for

a minimal solution with the use of the flat extension theorem for matricial moments. We shall

see that the matricial bivariate quadratic moment problem is more technically demanding than

its scalar-valued counterpart considered in [16].

1.3 Background

The moment problem on Rd is a well-known problem in classical analysis and has been studied

by mathematicians and engineers since the late 19th century, beginning with Stieltjes [77],

Hamburger [42, 43], Hausdorff [44] and Riesz [67]. The full moment problem on R has a con-

crete solution discovered by Hamburger [42, 43] which can be communicated solely in terms of

the positivity of Hankel matrices built from the given sequence. It is natural to wonder about a

multidimensional analogue of the full moment problem on R, that is, the full moment problem

on Rd, where the given sequence is a multisequence indexed by d-tuples of nonnegative integers.

It is well known that a natural analogue of Hamburger’s theorem fails (see, e.g., Schmüdgen

[72]), particularly, there exist multisequences such that the corresponding multivariable Hankel

matrices are positive semidefinite yet the multisequences do not have a representing measure.

It turns out that the Hamburger moment problem on Rd is a special case of the full K-moment

problem on Rd (where we wish to find a positive measure which is supported on a given closed

set K ⊆ Rd). We refer the reader to Riesz [67] (solution on R), Haviland [45, 46] (generalisation

3



1.3. Background

for d > 1) and Schmüdgen [70] (when K is a compact semialgebraic set). For a solution to the

truncated K-moment problem on Rd based on commutativity conditions of certain matrices

see Kimsey [52], where an application to the subnormal completion problem is considered.

Moment problems on Rd intertwine many different areas of mathematics such as matrix and

operator theory, probability theory, optimisation theory, and the theory of orthogonal poly-

nomials. Various applications for moment problems on Rd can be found in control theory,

polynomial optimisation and mathematical finance (see, e.g., Lasserre [60] and Laurent [61]).

For approaches to the multidimensional moment problem which utilise techniques from real

algebra see Marshall [62] and Prestel and Delzell [66]. For a treatment of the abstract multi-

dimensional moment problem see Berg, Christensen and Ressel [7] and Sasvári [68], which, in

addition, treats indefinite analogues of multidimensional moment problems.

The truncated moment problem on R, that is, where one is given a truncated sequence

(sj)
m
j=0 with sj ∈ R for j = 0, . . . ,m, has a concrete solution which can be communicated

in terms of positivity of a Hankel matrix and checking a range inclusion. Moreover, a min-

imal representing measure can be constructed from the zeros of the polynomial describing a

rank-preserving positive extension. We refer the reader to the classical works of Akhiezer [1],

Akhiezer and Krein [2], Krein and Nudel’man [59], Shohat and Tamarkin [73] and the fairly

recent work of Curto and Fialkow [15]. An area of active interest concerns the truncated mo-

ment problem on N0 where one seeks a measure whose support is contained in a given closed

subset K ⊆ N0 (see, e.g., Infusino, Kuna, Lebowitz and Speer [49]).

Curto and Fialkow in a series of papers studied scalar truncated moment problems on Rd

and Cd (which is equivalent to the truncated moment problem on R2d). We refer the reader to

[16, 17, 18, 19, 20, 21, 22] where concrete conditions for a solution to various moment problems

are investigated. For connections between bivariate moment matrices and flat extensions see

Fialkow and Nie [37, 38], Fialkow [35] and Curto and Yoo [25]. For the bivariate cubic moment

problem we refer the reader to Curto, Lee and Yoon [24], Kimsey [50], and Curto and Yoo [26].

We next wish to mention alternative approaches to the flat extension theorem for the trun-

cated moment problem on Rd. The core variety approach to the truncated moment problem

began with the study of Fialkow [36]. Subsequently, Blekherman and Fialkow in [8] strength-

ened the core variety approach to feature a necessary and sufficient condition for a solution.

For additional results related to the core variety approach see Schmüdgen [72] and di Dio

and Schmüdgen [30]. Recently, in [23], Curto, Ghasemi, Infusino and Kuhlmann investigated

the theory of positive extensions of linear functionals showing the existence of an integral

representation for the linear functional.

We now wish to bring the matrix-valued and operator-valued moment problem into focus.

The matrix-valued moment problem on R was initially investigated by Krein [57, 58]. See

[65] for a thorough review on Krein’s work on moment problems. Andô in [4] was the first

to study the truncated moment problem in the operator-valued case. Kovalishina studied the

nondegenerate case in [55, 56]. Bolotnikov considered the degenerate truncated matrix-valued

Hamburger and Stieltjes moment problems in terms of a linear fractional transformation, see
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1.4. Known results

[10, 11, 12]. Dym [31] considered the truncated matrix-valued Hamburger moment problem

associating it with parametrised solutions of a matrix interpolation problem. Alpay and Louba-

ton in [3] treated the partial trigonometric moment problem on an interval in the matrix case,

where Toeplitz matrices built from the moments are associated to orthogonal polynomials.

For connections between matrix-valued orthogonal polynomials and CMV matrices we refer

the reader to Dym and Kimsey [32].

Simonov studied the strong matrix-valued Hamburger moment problem in [74, 75]. The

truncated matrix-valued moment problem on a finite closed interval was studied by Choque

Rivero, Dyukarev, Fritzsche and Kirstein [13, 14]. Using Potapov’s method of Fundamental

Matrix Inequalities they characterised the solutions by nonnegative Hermitian block Hankel

matrices and they investigated further the case of an odd number of prescribed moments.

Dyukarev, Fritzsche, Kirstein, Mädler and Thiele [34] studied the truncated matrix-valued

Hamburger moment problem with an algebraic approach based on matrix-valued polynomi-

als built from a nonnegative Hermitian block Hankel matrix. Dyukarev, Fritzsche, Kirstein

and Mädler [33] studied the truncated matrix-valued Stieltjes moment problem via a similar

approach.

Bakonyi and Woerdeman in [5] studied the univariate truncated matrix-valued Hamburger

moment problem and the odd case of the bivariate truncated matrix-valued moment problem.

Kimsey and Woerdeman in [54] investigated the odd case of the truncated matrix-valued

K-moment problem on Rd, Cd and Td, where they discovered easily checked commutativity

conditions for the existence of a minimal representing measure.

Applications on matrix-valued moment problems with related topics have been studied

extensively in recent years. Geronimo [39] studied scattering theory and matrix orthogonal

polynomials with the construction of a matrix-valued distribution function built from matrix-

valued moments. Dette and Studden in [27] investigated matrix orthogonal polynomials and

matrix-valued measures associated with certain matricial moments from a numerical analysis

point of view. In [28], Dette and Studden considered optimal design problems in linear models

as a statistical application of the problem of maximising matrix-valued Hankel determinants

built from matricial moments. Moreover, Dette and Tomecki in [29] studied the distribution

of random Hankel block matrices and random Hankel determinant processes with respect to

certain matricial moments.

1.4 Known results

1.4.1 The truncated moment problem on Rd

We present basic notation and definitions from matrix analysis (see, e.g., [47, 48] for further

details).

Definition 1.4.1. We denote by Cp the p-dimensional complex vector space. We consider Cp

equipped with the standard inner product 〈ξ, η〉 = η∗ξ, where ξ, η ∈ Cp.

5



1.4. Known results

Definition 1.4.2. We denote by Cp×p the set of p × p matrices over the complex numbers C
and by Rp×p the set of p × p matrices over the real numbers R. The p × p matrix of zeros is

denoted by 0p×p and the p× p identity matrix is denoted by Ip.

Definition 1.4.3. A matrix A ∈ Cp×p is called Hermitian if A = A∗.

Definition 1.4.4. We denote by Hp ⊆ Cp×p the set of p× p Hermitian matrices over C.

Definition 1.4.5. A matrix A ∈ Cp×p is called positive semidefinite if x∗Ax ≥ 0 for all x ∈ Cp.

We write A � 0.

Definition 1.4.6. Let A,B ∈ Cp×p. We write A � B if A−B is positive semidefinite.

Definition 1.4.7. A matrix A ∈ Cp×p is called positive definite if x∗Ax > 0 for all x ∈ Cp\{0}.

Definition 1.4.8. Let A,B ∈ Cp×p. We write A � B if A−B is positive definite.

Definition 1.4.9. Let A ∈ Cp×p. If there exists c ∈ C such that Ax = cx for some nonzero

vector x ∈ Cp, then c is called an eigenvalue of A corresponding to the eigenvector x. The set

of all eigenvalues of A is called the spectrum of A and is denoted by σ(A).

Let us provide more definitions used to formulate the truncated moment problem on Rd.

Definition 1.4.10. Let N0 denote the nonnegative integers. Let E be a nonempty set and

Ed = {(x1, . . . , xd) : xj ∈ E for j = 1, . . . , d}.

If E = N0, we let εj ∈ Nd
0 denote a d-tuple of zeros with 1 in the j-th entry.

Definition 1.4.11. ([71, p. 400]) The Borel σ-algebra B(Rd) is the σ-algebra on Rd generated

by the open subsets of Rd. A Borel set in B(Rd) is an element of B(Rd).

Definition 1.4.12. Let w ∈ Rd. We denote by δw the Dirac measure with respect to w, that

is,

δw(A) =

1 if w ∈ A

0 if w /∈ A,

where A ∈ B(Rd).

Definition 1.4.13. Given x = (x1, . . . , xd) ∈ Rd and λ = (λ1, . . . , λd) ∈ Nd
0, we define the

length of λ

|λ| = λ1 + · · ·+ λd

and the product

xλ =
d∏
j=1

x
λj
j .

6



1.4. Known results

Definition 1.4.14. Define by R[x1, . . . , xd] the ring of real multivariate polynomials with real

indeterminates x1, . . . , xd, that is, the ring of polynomials of the form

p(x) =
∑
λ∈Γn,d

pλx
λ,

where pλ ∈ R for λ ∈ Γn,d and x = (x1, . . . , xd) ∈ Rd.

Definition 1.4.15. Let x = (x1, . . . , xd) ∈ Rd and let λ = (λ1, . . . , λd), λ
′ = (λ′1, . . . , λ

′
d) ∈ Nd

0.

We define the lexicographic order ≺lex on R[x1, . . . , xd] as follows:

xλ1
1 · · ·x

λd
d ≺lex x

λ′1
1 · · ·x

λ′d
d for λi > λ′i,

where i is the smallest integer i ∈ {1, . . . , d} for which λi 6= λ′i.

Definition 1.4.16. Let γ = (γ1, . . . , γd) ∈ Nd
0. We define

Γm,d := {γ ∈ Nd
0 : 0 ≤ |γ| ≤ m}.

Let γ̃ = (γ̃1, . . . , γ̃d) ∈ Nd
0. We order Nd

0 by the graded lexicographic order ≺grlex, that is,

γ ≺grlex γ̃ if |γ| < |γ̃|, or, if |γ| = |γ̃| then xγ ≺lex x
γ̃. We note that Γm,d inherits the ordering

of Nd
0 and is such that

card Γm,d =

(
m+ d

d

)
:=

(m+ d)!

m!d!
.

We now formally state the truncated moment problem on Rd.

Problem 1.4.17 (The truncated moment problem on Rd). Let x = (x1, . . . , xd) ∈ Rd. Given

a finite multisequence of real numbers s := (sγ)γ∈Γm,d with s0d > 0, the truncated moment

problem with data s entails finding a positive Borel measure µ on Rd such that

sγ =

∫
Rd
xγdµ(x) :=

∫
· · ·
∫
Rd
xγ1

1 · · ·x
γd
d dµ(x1, . . . , xd) for γ ∈ Γm,d,

and ∫
Rd
|xγ|dµ(x) <∞ for γ ∈ Nd

0.

Definition 1.4.18. Let (vγ)γ∈Γm,d , where vγ ∈ Cp for γ ∈ Γm,d. We denote col(vγ)γ∈Γm,d as

col(vγ)γ∈Γm,d :=



v0,0,...,0

...

vm,0,...,0
...

v0,...,0,m


.

7



1.4. Known results

Definition 1.4.19. Let s := (sγ)γ∈Γ2n,d
be a finite multisequence of real numbers and M(n)

the corresponding moment matrix based on s and defined as follows. We label the rows and

columns by a family of monomials (xγ)γ∈Γn,d ordered by ≺grlex (see Definition 1.4.16). We let

the entry in the row indexed by xγ and in the column indexed by xγ̃ be given by

sγ+γ̃.

Let Xλ := col(sλ+γ)γ∈Γn,d for λ ∈ Γn,d and CM(n) be the column space of M(n). Note that

Xλ ∈ CM(n).

Definition 1.4.20. Let Rn[x1, . . . , xd] be the set of all polynomials in R[x1, . . . , xd] with total

degree n, that is, p(x) can be written as p(x) =
∑

λ∈Γn,d

pλx
λ. We define

p(X) :=
∑
λ∈Γn,d

pλX
λ ∈ CM(n)

and

Z(p) := {(x1, . . . , xd) ∈ Rd : p(x) = 0}.

Definition 1.4.21. ([17, p. 12]) Let s := (sγ)γ∈Γ2n,d
be a finite multisequence of real numbers

and let M(n) the corresponding moment matrix. The variety of M(n), denoted by V(M(n)),

is given by

V(M(n)) :=
⋂

p(X)=0

p∈Rn[x1,...,xd]

Z(p).

An answer to Problem 1.4.17, when p = 1, d > 1 and card suppµ is as small as possible,

can be found in [15]. In [15], it is shown that the Problem 1.4.17 has a minimal solution if and

only if there exists a solution which is r-atomic where r := rankM(n), that is, the solution

can be expressed as the measure µ =
r∑

a=1

%aδu(a) with %a > 0 for every a = 1, . . . , r and δu(a) is

as in Definition 1.4.12. We say that such a measure is an r-atomic representing measure for s.

The following theorem characterises r-atomic solutions of Problem 1.4.17 when d = 1 and

m = 2n (see [15, Theorem 3.9]).

Theorem 1.4.22. Let s := (s0, . . . , s2n) be a finite multisequence of real numbers and let

M(n) =


s0 . . . sn
... . .

. ...

sn . . . s2n

 � 0

be the corresponding moment matrix with r := rankM(n). Then s has an r-atomic representing

measure µ =
r∑

a=1

%aδu(a) if and only if the matrix M(n) has an extension M(n + 1) � 0 such

that rankM(n) = rankM(n + 1). In this case, suppµ = Z(p) and the scalars %1, . . . , %r are

8



1.4. Known results

given by the Vandermonde equation
s0

...

...

sr−1

 =


1 . . . 1

x1 . . . xr
...

...

xn−1
1 . . . xn−1

r




%0

...

...

%r−1

 .

The following example illustrates a way to obtain an r-atomic representing measure for a

given finite multisequence of real numbers. We will make use of the algorithm described in [15,

p. 621].

Example 1.4.23. Let s := (s0, . . . , s4) be a given finite multisequence of real numbers with

corresponding moment matrix

M(2) =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 � 0.

We need first to show that M(2) has an extension M(3) � 0 with rankM(3) = rankM(2).

Since each minor determinant of M(2) is positive, we denote c to be the unique scalar such

that for α, β ∈ R,

α

s1

s2

s3

+ β

s2

s3

s4

 =

s3

s4

c

 .

We then get α = −3
10
, β = 6

5
and c = 165

1000
. Next we extend the original multisequence to

s̃ := (s0, s1, s2, s3, s4, c). It suffices to show that s̃ has a representing measure. Let r = 3 and

denote Φ := Φ(s̃) = (φ0, φ1, φ2) ∈ R3. Then s̃ has a representing measure if and only if

sj = φ0sj−3 + φ1sj−2 + φ2sj−1, j = 3, 4.

By s3

s4

c

 = φ0

s0

s1

s2

+ φ1

s1

s2

s3

+ φ2

s2

s3

s4

 ,

we derive φ0 = 0, φ1 = −3
10

and φ2 = 6
5
. The generating function built from Φ, denoted by

gs̃(x), will give rise to the representing measure µ as follows. Notice that gs̃(x) is given by

gs̃(x) = xr − (φ0 + · · ·+ φr−1x
r−1)

= x3 − (φ0 + φ1x+ φ2x
2)

= x3 − 6
5
x2 + 3

10
x

9



1.4. Known results

with zeros

x1 = 0, x2 =
6 +
√

6

10
and x3 =

6−
√

6

10
.

Since x1, x2, x3 are distinct, the Vandermonde matrix is invertible and % = V −1
x

s1

s2

s3

 is well-

defined. Thus we obtain

%1 =
1

3
, %2 =

16 +
√

6

36
and %3 =

16−
√

6

36
.

Finally µ =
3∑

a=1

%aδu(a) is a 3-atomic representing measure for s̃.

We continue with a characterisation for positive extensions given by Smul’jan [76] via the

following result.

Lemma 1.4.24 ([76]). Let A ∈ Cn×n, A � 0, B ∈ Cn×m, C ∈ Cm×m and let

Ã :=

(
A B

B∗ C

)
.

Then:

(i) Ã is positive semidefinite if and only if B = AW for some W ∈ Cn×m and C � W ∗AW.

(ii) Ã is positive semidefinite and rank Ã = rankA if and only if B = AW for some W ∈ Cn×m

and C = W ∗AW.

Definition 1.4.25. Given distinct points w(1), . . . , w(k) ∈ Rd and a subset Λ = {λ(1), . . . , λ(k)}
of Nd

0, we define the multivariable Vandermonde matrix by

V (w(1), . . . , w(k); Λ) :=


{w(1)}λ(1)

. . . {w(1)}λ(k)

...
...

{w(k)}λ(1)
. . . {w(k)}λ(k)

 .

We now present [54, Theorem 2.13] which is based on [69, Algorithm 1] and provides a

useful machinery throughout this thesis when the invertibility of a multivariable Vandermonde

matrix is needed.

Theorem 1.4.26. Given distinct points w(1), . . . , w(κ) ∈ Rd, there exists Λ ⊆ Nd
0 such that

card Λ = κ and V (w(1), . . . , w(κ); Λ) is invertible.

In one or several variables one can derive solutions for Problem 1.4.17 based on matrix

positivity and extension, see [16]. The next theorem, due to Curto and Fialkow (see [16,

Theorem 5.13]) provides necessary and sufficient conditions for a minimal solution to the

Problem 1.4.17 when m = 2n.

10



1.4. Known results

Theorem 1.4.27. Let s := (sγ)γ∈Γ2n,d
be a given finite multisequence of real numbers and let

M(n) � 0 be the corresponding moment matrix with r := rankM(n). Then s has an r-atomic

representing measure µ =
r∑

a=1

%aδw(a) if and only if the matrix M(n) admits an extension

M(n+ 1) � 0 such that rankM(n) = rankM(n+ 1).

In this case, suppµ = V(M(n + 1)), and there exists Λ = {λ(1), . . . , λ(r)} ⊆ Nd
0 with

card Λ = r such that V (w(1), . . . , w(r); Λ) is invertible. Then the scalars %1, . . . , %r are given by

the Vandermonde equation

col(%a)
r
a=1 = V (w(1), . . . , w(r); Λ)−1 col(sλ)λ∈Λ,

where V (w(1), . . . , w(r); Λ) ∈ Cr×r.

In the following example we illustrate Theorem 1.4.27 when d = 2 and n = 1. We note that

throughout the thesis when d = 2, we shall use X, Y in place of X1, X2, respectively.

Example 1.4.28. Let (sγ)γ∈Γ2,2 be a finite bisequence of real numbers and let M(1) the

corresponding moment matrix given by

M(1) =


1 X Y

1 1 0 0

X 0 2 0

Y 0 0 3

 � 0.

We have M(1)−1 =

1 0 0

0 1
2

0

0 0 1
3

 . There exists W ∈ C3×3 such that W = M(1)−1B. Choose

B =

 2 0 3

0
√

12 0√
12 0 0

 . Then W =

 2 0 3

0
√

3 0
2
√

3
3

0 0

 and

C = W ∗M(1)W = W ∗B =

8 0 6

0 6 0

6 0 9

 .

By Lemma 1.4.24,

M(2) =

(
M(1) B

B∗ C

)
=



1 X Y X2 XY Y 2

1 1 0 0 2 0 3

X 0 2 0 0
√

12 0

Y 0 0 3
√

12 0 0

X2 2 0
√

12 8 0 6

XY 0
√

12 0 0 6 0

Y 2 3 0 0 6 0 9


� 0

11



1.4. Known results

and

rankM(1) = rankM(2) = 3.

Hence, Theorem 1.4.27 asserts that there exists an r-atomic representing measure for s, which

we compute explicitly as follows. We observe that the columns X2, XY, Y 2 are the linear

combinations of the columns 1, X, Y, that is,

X2 = 2 · 1 +
2
√

3

3
· Y, XY =

√
3 ·X and Y 2 = 3 · 1.

We then have the polynomials in R2[x, y]

p1(x, y) = x2 − (2 +
2
√

3

3
y), p2(x, y) = xy −

√
3x, and p3(x, y) = y2 − 3

and thus V(M(2)) = {(0,
√

3), (2,
√

3), (−2,
√

3)}. Theorem 1.4.27 yields%1

%2

%3

 =

1 0 -1
4

0 1
4

1
8

0 -1
4

1
8


1

0

2


and hence

%1 =
1

2
, %2 =

1

4
, %3 =

1

4
.

Finally a 3-atomic representing measure for s is µ =
3∑

a=1

%aδ(u(a),ya).

We continue with a result on the cardinality of the support of the representing measure

given in [6, Theorem 2].

Theorem 1.4.29. Let s := (sγ)γ∈Γm,d be a given finite multisequence of real numbers with a

representing measure ν. Then s has a finitely atomic representing measure µ with

suppµ ⊆ supp ν and card suppµ ≤
(
m+ d

d

)
.

In view of Theorem 1.4.29, Theorem 1.4.27 can be amplified to the following.

Theorem 1.4.30 ([22, p. 180]). Let s := (sγ)γ∈Γ2n,d
be a given finite multisequence of real

numbers. s has a finitely atomic representing measure if and only if the corresponding moment

matrix M(n) has a positive extension M(n+k) which in turn admits a rank-preserving moment

matrix extension for k ≥ 0.

1.4.2 The truncated matrix-valued moment problem on Rd

In the current subsection we provide preliminary definitions concerning the matricial case and

we pose the truncated matrix-valued moment problem on Rd, see Problem 1.4.37. We refer

the reader to the foundational work of Krein in the matricial setting, see [57].

12



1.4. Known results

Definition 1.4.31. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and

M(n) the corresponding moment matrix based on S and defined as follows. We label the block

rows and block columns by a family of monomials (xγ)γ∈Γn,d ordered by ≺grlex (see Definition

1.4.16). We let the entry in the block row indexed by xγ and in the block column indexed by

xγ̃ be given by

Sγ+γ̃.

Definition 1.4.32. A function T : B(Rd)→ Hp is called a positive Hp-valued Borel measure on

Rd, if for each u ∈ Cp, 〈T (σ)u, u〉 defines a positive Borel measure on Rd for all sets σ ∈ B(Rd),

or, equivalently, if for Tab, 1 ≤ a, b ≤ p, finite complex-valued Borel measures on Rd, we have

T (σ) :=
(
Tab(σ)

)p
a,b=1

=


T11(σ) . . . T1p(σ)
...

. . .
...

T1p(σ) . . . Tpp(σ)

 � 0

for all σ ∈ B(Rd).

Definition 1.4.33. The support of an Hp-valued measure T, denoted by suppT, is defined as

the smallest closed subset G ⊆ B(Rd) such that T (Rd \ G) = 0p×p.

Definition 1.4.34. For a measurable function f : Rd → C, we let its integral∫
Rd
f(x) dT (x) ∈ Hp

be given by

〈
∫
Rd
f(x) dT (x)u, v〉 =

∫
Rd
f(x) d〈T (x)u, v〉

for all u, v ∈ Cp, provided all integrals on the right-hand side converge, that is,∫
Rd
|f(x)| d|〈T (x)u, v〉| <∞,

or, equivalently, ∫
Rd
f(x) dT (x) =

(∫
Rd
f(x) dTab(x)

)p
a,b=1

,

where Tab is as in Definition 1.4.32.

Remark 1.4.35. If an Hp-valued measure T is of the form T =
κ∑
a=1

Qaδw(a) , then

∫
Rd
f(x) dT (x) =

κ∑
a=1

Qaf(w(a)).

Definition 1.4.36. The power moments of a positive Hp-valued measure T on Rd are given

by ∫
Rd

xλdT (x) for λ ∈ Nd
0,

13



1.4. Known results

provided ∫
Rd

|xλ| d|Tab(x)| <∞ for λ ∈ Nd
0 and a, b = 1, . . . , p.

We now present the truncated matrix-valued moment problem on Rd.

Problem 1.4.37 (The truncated matrix-valued moment problem on Rd). Let x = (x1, . . . , xd) ∈
Rd. Given a truncated Hp-valued multisequence S := (Sγ)γ∈Γm,d , the truncated matrix-valued

moment problem with data S entails finding a positive Hp-valued measure T on Rd such that

Sγ =

∫
Rd
xγdT (x) for γ ∈ Γm,d,

provided ∫
Rd
|xγ| d|Tab(x)| <∞ for γ ∈ Nd

0 and a, b = 1, . . . , p.

When such a measure exists we say that T is a representing measure for S.

Definition 1.4.38. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence with a

representing measure T =
κ∑
a=1

Qaδw(a) . We will say that T is minimal, if
κ∑
a=1

rankQa is as small

as possible. It turns out that the corresponding moment matrix M(n) of S has the property

that rankM(n) ≤
κ∑
a=1

rankQa for any representing measure of S (see Lemma 3.3.8) and hence,

any minimal representing measure T satisfies

rankM(n) =
κ∑
a=1

rankQa.

Throughout the thesis the assumption S0d = Ip is being used, as stated and explained in

the next remark.

Remark 1.4.39. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence. We will

assume without loss of generality throughout the thesis that S has the property

S0d = Ip. (A1)

We note that if S0d is invertible, then we may consider S̃ = (S̃γ)γ∈Γ2n,d
in place of S, where

S̃γ = S
− 1

2
0d
SγS

− 1
2

0d
∈ Hp for γ ∈ Γ2n,d.

Notice that S has a representing measure if and only if S̃ has a representing measure. Moreover,

notice that if S0d = 0p×p, then S has the trivial measure. We shall see that if S has a

representing measure, then M(n) � 0 and there exists an extension M(n+1) � 0 (see Lemmas

3.3.1 and 1.4.24). Hence, if S0d is not invertible and S0d 6= 0p×p, then for any γ ∈ Γ2n,d \ {0d},
we have (

S0d Sγ

Sγ S2γ

)
� 0.

14
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Thus, by Lemma 1.4.24,

RanSγ ⊆ RanS0d (1.3)

and so

(RanSγ)
⊥ ⊇ (RanS0d)

⊥.

Therefore, since Sγ, S0d ∈ Hp,

kerSγ ⊇ kerS0d . (1.4)

Let k = rankS0d . Since S0d ∈ Hp, we may order the eigenvalues in decreasing order, say

λ1 ≥ · · · ≥ λk > λk+1 = · · · = λp = 0.

There exists a set of orthonormal eigenvectors, say x(1), . . . , x(p) ∈ Cp, corresponding to the

eigenvalues λ1, . . . , λp, respectively. Let unitary U :=
(
x(1) . . . x(p)

)
∈ Cp×p. Using inclusion

(1.4), we see that there exists S̃γ ∈ Hk such that

U∗SγU =

(
S̃γ 0

0 0

)
for γ ∈ Γ2n,d.

Notice that S̃0d is invertible. Thus we can proceed as above.

The following example shows that if S00 is positive semidefinite and singular, then M(1) � 0

does not guarantee the existence of a representing measure.

Example 1.4.40. Let S := (Sγ)γ∈Γ2,2 be a given truncated H2-valued bisequence and let M(1)

be the corresponding moment matrix given by

M(1) =


1 X Y

1 S00 S10 S01

X S10 S20 S11

Y S01 S11 S02

,

where S00 =

(
1 0

0 0

)
, S20 =

(
2 0

0 2

)
and S10 = S01 = S11 = S02 = 02×2. We shall see that

there are no S30, S21, S12, S03 ∈ H2 such that

Ran

S20 S11 S02

S30 S21 S12

S21 S12 S03

 ⊆ RanM(1).

Write M(2) :=

(
M(1) B

B∗ C

)
, where B, C ∈ C6×6. By Lemma 1.4.24, M(2) � 0 if and only if

there exists W ∈ C6×6 such that

M(1)W = B and C � W ∗B.
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1.5. Results by chapters

Thus M(2) � 0 if and only if

Ran

S20 S11 S02

S30 S21 S12

S21 S12 S03

 ⊆ RanM(1) and C � W ∗M(1)W,

where W ∈ C6×6 is such that M(1)W = B =

S20 S11 S02

S30 S21 S12

S21 S12 S03

 . However, this would imply

that

Ran
(
S20 S11 S02

)
⊆ Ran

(
S00 S10 S01

)
,

which cannot hold (see range inclusion (1.3) in Remark 1.4.39) and hence the claim is proved.

For an example where a truncated H2-valued bisequence does not have a minimal repre-

senting measure we refer the reader to [53].

1.5 Results by chapters

In Chapter 2, we establish several algebraic results involving matrix-valued polynomials with

real indeterminates. We define the notions of a right ideal and the variety of the ideal in our

matricial setting. Furthermore, we are particularly interested in studying the notion of a real

radical of the set of the matrix-valued polynomials.

In Chapter 3, we present a series of results on infinite moment matrices with finite rank.

We establish necessary conditions for the existence of a solution of the matrix-valued moment

problem on Rd for a full or a truncated Hp-valued multisequence. We abstract the notion

of the variety of a moment matrix introduced by Curto and Fialkow in [16] to our matricial

setting and obtain a number of algebraic results such as the notion of a right ideal in the set

of matrix-valued polynomials with real indeterminates.

In the same chapter, through a series of results on the variety of the moment matrix and

its connection with the support of the representing measure, we arrive at the following integral

representation for a full Hp-valued multisequence with corresponding moment matrix of finite

rank.

Theorem 1.5.1. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence. If S(∞) gives rise

to M(∞) � 0 and r := rankM(∞) < ∞, then S(∞) has a unique representing measure T. In

this case,

suppT = V(I),

and moreover,

cardV(I) = r.

In Chapter 3, positive extension results for truncated moment matrices are also provided.
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In Chapter 4, we obtain the main result of this thesis, namely the flat extension theorem

for matricial moments. We establish necessary and sufficient conditions for the existence of a

minimal solution to the truncated matrix-valued moment problem on Rd.

Theorem 1.5.2 (flat extension theorem for matricial moments). Let S := (Sγ)γ∈Γ2n,d
be a

given truncated Hp-valued multisequence, M(n) � 0 be the corresponding moment matrix and

r := rankM(n). S has a representing measure

T =
κ∑
a=1

Qaδw(a)

with
κ∑
a=1

rankQa = r

if and only if the matrix M(n) admits an extension M(n+ 1) � 0 such that

rankM(n) = rankM(n+ 1).

Moreover,

suppT = V(M(n+ 1)),

and there exists Λ = {λ(1), . . . , λ(κ)} ⊆ Nd
0 with card Λ = κ such that the multivariable Van-

dermonde matrix V p×p(w(1), . . . , w(κ); Λ) ∈ Cκp×κp is invertible. Then the positive semidefinite

matrices Q1, . . . , Qκ ∈ Cp×p are given by the Vandermonde equation

col(Qa)
κ
a=1 = V p×p(w(1), . . . , w(κ); Λ)−1 col(Sλ)λ∈Λ.

Proof. See Theorem 4.0.2.

In Chapter 5, we study the bivariate quadratic matrix-valued problem where the given

matricial truncated bisequence is Hp-valued. We investigate a series of necessary and suf-

ficient conditions for a minimal solution to the bivariate quadratic matrix-valued moment

problem. We observe that the matricial setting is more demanding than the scalar-valued

considered in [16]. For p = 1, Curto and Fialkow [16] showed that every S := (Sγ)γ∈Γ2,2 =

(S00, S10, S01, S20, S11, S02), with S00 > 0 and M(1) � 0 has a minimal representing measure.

Curto and Fialkow’s proof is divided in three cases according to the value of rankM(1). The

technical challenges in the matrix-valued setting (p ≥ 1) can been seen in the following theo-

rem where we treat matrix equations to obtain a minimal solution to the bivariate quadratic

matrix-valued moment problem.

Theorem 1.5.3. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence and

M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 be the corresponding moment matrix. S has a minimal repre-
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senting measure if and only if the following conditions hold:

(i) M(1) � 0.

(ii) There exist S30, S21, S12, S03 ∈ Hp such that

Ran

S20 S11 S02

S30 S21 S12

S21 S12 S03

 ⊆ RanM(1)

(hence, there exists W = (Wab)
3
a,b=1 ∈ C3p×3p such that M(1)W = B, where

B =

S20 S11 S02

S30 S21 S12

S21 S12 S03

)

and moreover, the following matrix equations hold:

W ∗
11S11 +W ∗

21S21 +W ∗
31S12 = S11W11 + S21W21 + S12W31, (1.5)

W ∗
13S20 +W ∗

23S30 +W ∗
33S21 = W ∗

12S11 +W ∗
22S21 +W ∗

32S12 (1.6)

and

W ∗
12S02 +W ∗

22S12 +W ∗
32S03 = S02W12 + S12W22 + S03W32. (1.7)

In the same chapter, we also consider special cases where M(1) is positive semidefinite and

singular. When p ≥ 2, we observe that a straightforward analogue of Curto and Fialkow’s

result does not hold. However, through a series of theorems we shall see that S := (Sγ)γ∈Γ2,2 ,

S00 � 0, with M(1) � 0 having certain block columns, has a minimal representing measure.
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Chapter 2

Matrix-valued polynomials

In this chapter, we introduce important definitions and notation while establishing several

algebraic results involving matrix-valued polynomials with real indeterminates. We study the

notions of a right ideal and the variety of the ideal. We also introduce the notion of an ideal

of matrix-valued polynomials being real radical.

Definition 2.0.1. Let Cp×p[x1, . . . , xd] denote the set of p× p matrix-valued polynomials with

real indeterminates x1, . . . , xd, that is, Cp×p[x1, . . . , xd] consists of matrix-valued polynomials

of the form

P (x) =
∑
λ∈Γn,d

xλPλ,

where Pλ ∈ Cp×p, xλ =
d∏
j=1

x
λj
j for λ ∈ Γn,d and n ∈ N0 is arbitrary.

Definition 2.0.2. Let Cp×p
n [x1, . . . , xd] denote the set of p× p matrix-valued polynomials with

degree at most n with real indeterminates x1, . . . , xd, that is, Cp×p
n [x1, . . . , xd] consists of matrix-

valued polynomials of the form

P (x) =
∑
λ∈Γn,d

xλPλ,

where Pλ ∈ Cp×p, xλ =
d∏
j=1

x
λj
j for λ ∈ Γn,d.

Definition 2.0.3. A set I ⊆ Cp×p[x1, . . . , xd] is a right ideal if it satisfies the following

conditions:

(i) P +Q ∈ I whenever P,Q ∈ I .

(ii) PQ ∈ I whenever P ∈ I and Q ∈ Cp×p[x1, . . . , xd].

Definition 2.0.4. Let I ⊆ Cp×p[x1, . . . , xd] be a right ideal. We shall let

V(I ) := {x ∈ Rd : detP (x) = 0 for all P ∈ I }

be the variety associated with the ideal I .
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Definition 2.0.5. A right ideal I ⊆ Cp×p[x1, . . . , xd] is real radical if

κ∑
a=1

P (a)(x){P (a)(x)}∗ ∈ I =⇒ P (a)(x) ∈ I for a = 1, . . . , κ.

Remark 2.0.6. We wish to justify the usage of the moniker real radical of Definition 2.0.5

when p = 1. We note that one usually says that a real ideal K ⊆ R[x1, . . . , xd] is real radical

if
κ∑
a=1

(f (a)(x))2 ∈ K =⇒ f (a) ∈ K for a = 1, . . . , κ

(see, e.g., Laurent [61]). Suppose I = I1 + I2i, where

I1 = {Re(f(x)) : f ∈ I } and I2 = {Im(f(x)) : f ∈ I }

and let f (a) = q(a) + r(a)i, where

q(a)(x) = Re(f(x)) and r(a)(x) = Im(f(x)).

We claim that

κ∑
a=1

((q(a)(x))2 + (r(a)(x))2) ∈ I1 =⇒ q(a) ∈ I1, r
(a) ∈ I2 for a = 1, . . . , κ (2.1)

holds. We wish to demonstrate a connection between the notion of a real ideal K ⊆ R[x1, . . . , xd]

being real radical and our notion of a complex ideal I ⊆ C[x1, . . . , xd] being real radical, that

is,
κ∑
a=1

|f (a)(x)|2 ∈ I =⇒ f (a) ∈ I for a = 1, . . . , κ.

Then

κ∑
a=1

|f (a)(x)|2 =
κ∑
a=1

((q(a)(x))2 + (r(a)(x))2) ∈ I =⇒ q(a)(x) + r(a)(x) ∈ I for a = 1, . . . , κ.

Notice that I1,I2 are closed under scalar addition and multiplication and so they are ideals

in R[x1, . . . , xd]. If
κ∑
a=1

|f (a)(x)|2 ∈ I , then q(a) + r(a)i ∈ I for all a = 1, . . . , κ. But then

q(a) ∈ I1 and r(a) ∈ I2 for a = 1, . . . , κ,

since I = I1 + I2i. However |f (a)(x)|2 = (q(a)(x))2 + (r(a)(x))2 and so

κ∑
a=1

|f (a)(x)|2 ∈ I =⇒ q(a) ∈ I1, r
(a) ∈ I2 for a = 1, . . . , κ
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can be written as

κ∑
a=1

((q(a)(x))2 + (r(a)(x))2) ∈ I =⇒ q(a) ∈ I1, r
(a) ∈ I2 for a = 1, . . . , κ.

Notice that
κ∑
a=1

((q(a)(x))2 +(r(a)(x))2) ∈ I1 from which we conclude that the claim (2.1) holds.

In the following remark we will introduce an additional assumption on I ⊆ C[x1, . . . , xd]

which appears in Remark 2.0.6. As we noted in Remark 2.0.6, I = I1 + I2i, where I1,I2

are real ideals in R[x1, . . . , xd]. Thus, it is clear that f ∈ I vanishes on a set V ⊆ Rd if and

only if Re(f(x)) and ± Im(f(x)) vanish on V. In view of the Real Nullstellensatz (see, e.g., [9]),

any real radical ideal must agree with its vanishing ideal (that is, the set of polynomials which

vanish on the variety). Therefore, if I ⊆ C[x1, . . . , xd] is real radical, then f ∈ I implies that

f̄ ∈ I .

Remark 2.0.7. Let I ⊆ C[x1, . . . , xd] and I1,I2 ⊆ R[x1, . . . , xd] be as in Remark 2.0.6.

Suppose I has the additional property that f ∈ I implies f̄ ∈ I . Then

(i) I1 ⊆ R[x1, . . . , xd] is real radical.

(ii) I2 ⊆ R[x1, . . . , xd] is real radical.

Since I is an ideal in C[x1, . . . , xd] which is closed under complex conjugation, we have

that I1 and I2 are subideals of I over R[x1, . . . , xd]. Hence, we may use the fact that I is

real radical to deduce (i) and (ii) .

Lemma 2.0.8. Fix γ ∈ Nd
0 with |γ| > n and let P (x) = xγIp +

∑
λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd].

Then

detP (x) = xγp +
∑

λ∈Γm,d

xλhλ,

where γp := (γ1p, . . . , γdp) ∈ Nd
0 and m < |γ|p.

Proof. We proceed by induction on p. For p = 2,

P (x) =

(
xγ + β11(x) β12(x)

β21(x) xγ + β22(x)

)
,

where βab(x) =
∑

λ∈Γn,d

xλP
(a,b)
λ ∈ C[x1, . . . , xd] with P

(a,b)
λ the (a, b)-th entry of Pλ, 1 ≤ a, b ≤ 2.

We also have

detP (x) = (xγ + β11(x))(xγ + β22(x))− β12(x)β21(x)

= x2γ + xγβ22(x) + xγβ11(x) + β11(x)β22(x)− β12(x)β21(x)

= x2γ + L(x) + C(x),

where L(x) = xγβ22(x) + +xγβ11(x), C(x) = β11(x)β22(x) − β12(x)β21(x) ∈ C[x1, . . . , xd].
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Suppose the claim holds for p > 2. We have

P (x) =


xγ + β11(x) . . . β1p(x)

...
. . .

...

βp1(x) . . . xγ + βpp(x)


and so

detP (x) = (xγ + β11(x)) det


xγ + β22(x) . . . β2p(x)

...
. . .

...

βp2(x) . . . xγ + βpp(x)

+ · · ·+

+(−1)1+pβ1p(x) det


β21(x) . . . β2,p−1(x)
...

. . .
...

βp1(x) . . . βp,p−1(x)



= (xγ + β11(x))

[
(xγ + β22(x))


xγ + β33(x) . . . β3p(x)

...
. . .

...

βp3(x) . . . xγ + βpp(x)

+ · · ·+

+(−1)1+(2+p−1)β2,p−1(x) det


β31(x) . . . β3,p−2(x)
...

. . .
...

βp1(x) . . . βp−1,p−1(x)

].
Let L̃(x) be the sum of the terms of detP (x) of degree up to γ(p− 1) with |γ| > 0 and C̃(x)

the sum of the terms of detP (x) of degree up to γp with |γ| = 0. Then

L̃(x) + C̃(x) =
∑

λ∈Γm,d

xλhλ,

where m < |γ|p. Thus

detP (x) = xγp +
∑

λ∈Γm,d

xλhλ.

We order the monomials in C[x1, . . . , xd] by the graded lexicographic order ≺grlex (see

Definition 1.4.16).

Remark 2.0.9. Fix γ ∈ Nd
0 with |γ| > n and let P (x) = xγIp +

∑
λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd].

For a polynomial ϕ(x) ∈ C[x1, . . . , xd] given by

ϕ(x) := detP (x) = xγp +
∑

λ∈Γm,d

xλhλ,

where γp := (γ1p, . . . , γdp) ∈ Nd
0 and m < |γ|p, the leading term of ϕ(x) is

LT(ϕ(x)) = xγp.
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Definition 2.0.10. We define the basis of Cp×p viewed as a vector space over C

Ap×p := {E11, E12, . . . , E1p, E21, . . . , E2p, . . . , Ep1, . . . , Epp},

where Ejk ∈ Cp×p is the matrix with 1 in the (j, k)-th entry and 0 in the rest of the entries,

j, k = 1, . . . , p.

Definition 2.0.11. Given a right ideal I ⊆ Cp×p[x1, . . . , xd], we define

Ijk := {f ∈ C[x1, . . . , xd] : there exists F ∈ I such that F (x)Ejk = f(x)Ejk} ⊆ C[x1, . . . , xd],

where Ejk ∈ Cp×p is as in Definition 2.0.10 for all j, k = 1, . . . , p.

Lemma 2.0.12. Suppose I ⊆ Cp×p[x1, . . . , xd] is a right ideal. Then Ijk ⊆ C[x1, . . . , xd] is

an ideal for all j, k = 1, . . . , p.

Proof. If f, g ∈ Ijk, then

f(x)Ejk = F (x)Ejk for F ∈ I

and

g(x)Ejk = G(x)Ejk for G ∈ I .

Since (f + g)(x)Ejk = (F +G)(x)Ejk, we have

f + g ∈ Ijk.

If f ∈ Ijk and h ∈ C[x1, . . . , xd], then

(fh)(x)Ejk = (Fh)(x)Ejk

and thus fh ∈ Ijk.

Lemma 2.0.13. Suppose I ⊆ Cp×p[x1, . . . , xd] is a right ideal. If I is real radical, then Ijj

is real radical for all j = 1, . . . , p.

Proof. We need to show

κ∑
a=1

|f (a)(x)|2 ∈ Ijj =⇒ f (a)(x) ∈ Ijj for a = 1, . . . , κ.

Let f(x) =
κ∑
a=1

|f (a)(x)|2 ∈ Ijj. Then there exists F ∈ I such that

f(x)Ejj = F (x)Ejj.

Without loss of generality, we may assume that F (x) = f(x)Ejj. If we let F (a)(x) = f (a)(x)Ejj,

then
κ∑
a=1

F (a)(x){F (a)(x)}∗ =
κ∑
a=1

|f (a)(x)|2Ejj = f(x)Ejj.
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Thus
κ∑
a=1

F (a)(x){F (a)(x)}∗ = F (x)

and hence
κ∑
a=1

F (a)(x){F (a)(x)}∗ ∈ I ,

which implies that F (a)(x) ∈ I for all a = 1, . . . , κ, since I is real radical. Consequently,

f (a)(x) ∈ Ijj for a = 1, . . . , κ

and Ijj is real radical.

24



Chapter 3

Infinite moment matrices with finite

rank

The main aim of this chapter is to study infinite moment matrices with finite rank, necessary

conditions for a full or a truncated Hp-valued multisequence to have a representing measure

and extension results for moment matrices.

3.1 Infinite moment matrices and matrix-valued poly-

nomials

In this section, we define moment matrices associated with an Hp-valued multisequence. Our

aim is to investigate infinite moment matrices and their relation with matrix-valued poly-

nomials. We define the variety of a moment matrix in our matricial setting using zeros of

determinants of matrix-valued polynomials. We also present a series of results which con-

nect positivity of an infinite moment matrix and an associated right ideal of matrix-valued

polynomials being real radical.

In analogy to Definition 1.4.18, we denote the following block column.

Definition 3.1.1. Let (Vλ)λ∈Nd0 , where Vλ ∈ Cp×p for λ ∈ Nd
0. We let

col(Vλ)λ∈Nd0 :=



V0,0,...,0

...

Vm,0,...,0
...

V0,...,0,m

...


.

Definition 3.1.2. A right module E over Cp×p is a set under the operation of addition

+ : E × E → E together with the right multiplication · : E × Cp×p → E , which satisfies

the following axioms:
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3.1. Infinite moment matrices and matrix-valued polynomials

For all V, U ∈ E and Υ,Ξ ∈ Cp×p, we have

(i) (V + U)Υ = VΥ + UΥ.

(ii) V (Υ + Ξ) = VΥ + V Ξ.

(iii) V (ΞΥ) = (V Ξ)Υ.

(iv) V Ip = V.

Definition 3.1.3. Let

(Cp×p)ω0 := {V = col(Vλ)λ∈Nd0 : Vλ ∈ Cp×p and Vλ = 0p×p for all but finitely many λ ∈ Nd
0}.

Lemma 3.1.4. (Cp×p)ω0 is a right module over Cp×p, under the operation of addition given by

A+B = col(Aλ +Bλ)λ∈Nd0 ∈ (Cp×p)ω0

for A = col(Aλ)λ∈Nd0 , B = col(Bλ)λ∈Nd0 ∈ (Cp×p)ω0 , together with the right multiplication given

by

A · C := col(AλC)λ∈Nd0 ∈ (Cp×p)ω0

for A = col(Aλ)λ∈Nd0 ∈ (Cp×p)ω0 and C ∈ Cp×p.

Proof. The axioms of Definition 3.1.2 can be easily verified.

We now give the definition of an infinite moment matrix based on S(∞) := (Sγ)γ∈Nd0 , where

Sγ ∈ Hp for all γ ∈ Nd
0.

Definition 3.1.5. Let S(∞) := (Sγ)γ∈Nd0 be a givenHp-valued multisequence. We define M(∞)

to be the corresponding moment matrix based on S(∞) as follows. We label the block rows and

block columns by a family of monomials (xγ)γ∈Nd0 ordered by ≺grlex (see Definition 1.4.16). We

let the entry in the block row indexed by xγ and in the block column indexed by xγ̃ be given

by

Sγ+γ̃.

Let Xλ := col(Sλ+γ)γ∈Nd0 , λ ∈ Γn,d and CM(∞) = {M(∞)V : V ∈ (Cp×p)ω0 }. We notice that

Xλ ∈ CM(∞).

For S := (Sγ)γ∈Γ2n,d
a given truncated Hp-valued multisequence and M(n) the correspond-

ing moment matrix, we let Xλ := col(Sλ+γ)γ∈Γn,d for λ ∈ Γn,d and CM(n) be the column space

of M(n).

Remark 3.1.6. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence. Then we can view

M(∞) : (Cp×p)ω0 → CM(∞) as a right linear operator, that is,

M(∞)(V Q+ V ) = M(∞)V Q+M(∞)V,

for V = col(Vλ)λ∈Nd0 ∈ (Cp×p)ω0 and Q = col(Qλ)λ∈Nd0 ∈ (Cp×p)ω0 .
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3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.7. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence and let M(∞)

be the corresponding moment matrix. We define

rankM(∞) := sup
n∈N

rankM(n),

where M(n) the corresponding moment matrix based on S := (Sγ)γ∈Γ2n,d
.

Definition 3.1.8. We define the right linear map

Φ : Cp×p[x1, . . . , xd]→ CM(∞)

to be given by

Φ(P ) =
∑
λ∈Γn,d

XλPλ,

where P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd].

Definition 3.1.9. Given P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd], we let

P (X) :=
∑
λ∈Γn,d

XλPλ

and

P̂ := col(Pλ)λ∈Γn,d ⊕ col(0p×p)γ∈Nd0 ∈ (Cp×p)ω0 .

Remark 3.1.10. Given P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd], we observe that

Φ(P ) = M(∞)P̂ .

Indeed, notice that

M(∞)P̂ = col

 ∑
λ∈Γn,d

Sγ+λPλ


γ∈Nd0

=
∑
λ∈Γn,d

XλPλ = P (X) = Φ(P ).

Definition 3.1.11. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence and let M(∞)

be the corresponding moment matrix. Suppose

P (x) =
∑
λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd].

We will write M(∞) � 0 if

P̂ ∗M(∞)P̂ � 0p×p for P ∈ Cp×p[x1, . . . , xd],

or, equivalently, M(n) � 0 for all n ∈ Nd
0.
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3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.12. Let Cp[x1, . . . , xd] be the set of vector-valued polynomials, that is,

q(x) =
∑
λ∈Γn,d

qλx
λ,

where qλ ∈ Cp, xλ =
d∏
j=1

x
λj
j for λ ∈ Γn,d and n is arbitrary.

Lemma 3.1.13. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence and let M(∞) be

the corresponding moment matrix. Suppose

q(x) =
∑
λ∈Γn,d

qλx
λ ∈ Cp[x1, . . . , xd].

If M(∞) � 0, then

q̂∗M(∞)q̂ ≥ 0 for q ∈ Cp[x1, . . . , xd].

Proof. Let P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd]. Then by Definition 3.1.11, M(∞) � 0 if

P̂ ∗M(∞)P̂ � 0p×p for P ∈ Cp×p[x1, . . . , xd].

If e1 is a standard basis vector in Cp, then e∗1P̂
∗M(∞)P̂ e1 ≥ 0. Let q(x) := P (x)e1. Notice

that q ∈ Cp[x1, . . . , xd] and

q̂∗M(∞)q̂ ≥ 0.

Since P ∈ Cp×p[x1, . . . , xd] is arbitrary, so is q ∈ Cp[x1, . . . , xd]. Thus

q̂∗M(∞)q̂ ≥ 0 for q ∈ Cp[x1, . . . , xd].

Definition 3.1.14. Suppose M(∞) � 0. Let P ∈ Cp×p[x1, . . . , xd]. We define the set

I := {P ∈ Cp×p[x1, . . . , xd] : P̂ ∗M(∞)P̂ = 0p×p} ⊆ Cp×p[x1, . . . , xd]

and the kernel of the map Φ : Cp×p[x1, . . . , xd]→ CM(∞) by

ker Φ := {P ∈ Cp×p[x1, . . . , xd] : M(∞)P̂ = col(0p×p)λ∈Nd0}.

Lemma 3.1.15. Suppose M(∞) � 0. Then

I = ker Φ,

where I and ker Φ are as in Definition 3.1.14.

Proof. By Definition 3.1.11, M(∞) � 0 if P̂ ∗M(∞)P̂ � 0p×p for P ∈ Cp×p[x1, . . . , xd] and

thus by Lemma 3.1.13, the corresponding moment matrix M(m) based on S := (Sγ)γ∈Γ2m,d
is

28



3.1. Infinite moment matrices and matrix-valued polynomials

positive semidefinite for all m ∈ N. Hence M(m)
1
2 exists and we let A := M(m)

1
2 col(Pλ)λ∈Γm,d ,

for P (x) =
∑

λ∈Γm,d

xλPλ. Since P ∈ I,

P̂ ∗M(∞)P̂ = 0p×p.

But P̂ ∗M(∞)P̂ = A∗A and hence A∗A = 0p×p. Thus, all singular values of A are 0 and so

rankA = 0, which forces

A = col(0p×p)λ∈Γm,d .

Therefore

M(m)
1
2 col(Pλ)λ∈Γm,d = col(0p×p)λ∈Γm,d

and

M(m) col(Pλ)λ∈Γm,d = col(0p×p)λ∈Γm,d . (3.1)

We have to show

M(∞)P̂ = col(0p×p)γ∈Nd0 .

We will show that for all ` ≥ m,

M(`){col(Pλ)λ∈Γm,d ⊕ col(0p×p)γ∈Γl,d\Γm,d} = col(0p×p)γ∈Γ`,d . (3.2)

First notice

card Γm,d =

(
m+ d

d

)
, card Γ`,d =

(
`+ d

d

)
and

card(Γ`,d \ Γm,d) =

(
`+ d

d

)
−
(
m+ d

d

)
.

We write

M(`) =

(
M(m) B

B∗ C

)
� 0,

where

M(m) ∈ C(card Γm,d)p×(card Γm,d)p, B ∈ C(card Γm,d)p×(card(Γ`,d\Γm,d))p

and C ∈ C(card Γ`,d\Γm,d)p×(card(Γ`,d\Γm,d))p. Since M(`) � 0, by Lemma 1.4.24, there exists

W ∈ C(card Γm,d)p×(card(Γ`,d\Γm,d))p such that M(m)W = B and C � W ∗M(m)W. Then

M(`){col(Pλ)λ∈Γm,d ⊕ col(0p×p)γ∈Γ`,d\Γm,d} =

(
M(m) col(Pλ)λ∈Γm,d

B∗ col(Pλ)λ∈Γm,d

)

=

(
col(0p×p)γ∈Γm,d

W ∗M(m) col(Pλ)λ∈Γm,d

)

= col(0p×p)γ∈Γ`,d ,

by equation (3.1).
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3.1. Infinite moment matrices and matrix-valued polynomials

Thus, equation (3.2) holds for all ` ≥ m and we obtain

M(∞)P̂ = col(0p×p)γ∈Nd0 ,

which implies P ∈ ker Φ.

Conversely, if P ∈ ker Φ then

M(∞)P̂ = col(0p×p)λ∈Nd0

and so P̂ ∗M(∞)P̂ = 0p×p, that is, P ∈ I.

Lemma 3.1.16. Suppose M(∞) � 0. Then I = ker Φ is a right ideal.

Proof. Let P,Q ∈ Cp×p[x1, . . . , xd]. We have to show the following:

(i) If P ∈ ker Φ and Q ∈ ker Φ, then P +Q ∈ ker Φ.

(ii) If P ∈ ker Φ and Q ∈ Cp×p[x1, . . . , xd], then PQ ∈ ker Φ.

To prove (i) notice that since P ∈ ker Φ,

M(∞)P̂ = col(0p×p)λ∈Nd0

and similarly, since Q ∈ ker Φ,

M(∞)Q̂ = col(0p×p)λ∈Nd0 .

We then have

M(∞)Q̂+M(∞)P̂ = M(∞) ̂(P +Q) = col(0p×p)λ∈Nd0 ,

that is, P +Q ∈ ker Φ.

To prove (ii) we need to show that if P ∈ ker Φ and Q ∈ Cp×p[x1, . . . , xd], then

M(∞)(̂PQ) = col(0p×p)λ∈Nd0 .

For

P (x) =
∑
λ∈Γn,d

xλPλ and Q(x) =
∑
λ∈Γn,d

xλQλ,

we let

R(x) = P (x)Q(x) =
∑

λ′∈Γn,d

P (x)xλ
′
Qλ′ .

We will show

M(∞)(x̂λ′P ) = col(0p×p)γ∈Nd0 . (3.3)

We have

M(∞)(x̂λ′P ) = col

 ∑
λ∈Γn,d

Sγ+λ′+λPλ


γ∈Nd0

.
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3.1. Infinite moment matrices and matrix-valued polynomials

But since P ∈ ker Φ,

M(∞)P̂ = col(0p×p)γ̃∈Nd0 ,

which means that

col

 ∑
λ∈Γn,d

Sλ+γ̃Pλ


γ̃∈Nd0

= col(0p×p)γ̃∈Nd0 .

For γ̃ = γ + λ′, we have

col

 ∑
λ∈Γn,d

Sγ+λ′+λPλ


γ∈Nd0

= M(∞)(x̂λ′P ) = col(0p×p)γ∈Nd0

and equation (3.3) holds. For any fixed λ′ ∈ Γn,d, by equation (3.3),

M(∞)(x̂λ′P ) ·Qλ′ = col(0p×p)γ∈Nd0 ·Qλ′

and so

M(∞)(x̂λ′P ) ·Qλ′ = col(0p×p)γ∈Nd0 .

Hence ∑
λ′∈Γn,d

M(∞)(x̂λ′P ) ·Qλ′ =
∑

λ′∈Γn,d

col(0p×p)γ∈Nd0 = col(0p×p)γ∈Nd0 .

Finally, since

R̂ =
∑

λ′∈Γn,d

x̂λ′PQλ′ ,

we have

M(∞)
∑

λ′∈Γn,d

x̂λ′PQλ′ = M(∞)R̂ = col(0p×p)γ∈Nd0 ,

as desired and we derive that ker Φ is a right ideal. By Lemma 3.1.15, I = ker Φ and so I is a

right ideal as well.

Definition 3.1.17. Let M(∞) � 0 and I be as in Definition 3.1.14. We define the right

quotient module

Cp×p[x1, . . . , xd]/I := {P + I : P ∈ Cp×p[x1, . . . , xd]}

of equivalence classes modulo I, that is, we will write

P + I = P ′ + I,

whenever

P − P ′ ∈ I for P, P ′ ∈ Cp×p[x1, . . . , xd].

Lemma 3.1.18. Cp×p[x1, . . . , xd]/I is a right module over Cp×p, under the operation of addi-

tion (+) given by

(P + I) + (P ′ + I) := (P + P ′) + I
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3.1. Infinite moment matrices and matrix-valued polynomials

for P, P ′ ∈ Cp×p[x1, . . . , xd], together with the right multiplication (·) given by

(P + I) ·R := PR + I

for P ∈ Cp×p[x1, . . . , xd] and R ∈ Cp×p.

Proof. Let P,Q ∈ Cp×p[x1, . . . , xd]. The following properties can be easily checked:

(i) ((P + I) + (Q+ I))R = (P + I)R + (Q+ I)R for all R ∈ Cp×p.

(ii) (P + I)(R + S) = (P + I)R + (P + I)S for all R, S ∈ Cp×p.

(ii) (P + I)(SR) = ((P + I)S)R for all R, S ∈ Cp×p.

(iv) (P + I)Ip = P + I.

Definition 3.1.19. For every P,Q ∈ Cp×p[x1, . . . , xd], we define the form

[·, ·] : Cp×p[x1, . . . , xd]/I × Cp×p[x1, . . . , xd]/I → Cp×p

given by

[P + I, Q+ I] := Q̂∗M(∞)P̂ .

The following lemma shows that the form in Definition 3.1.19 is a well-defined positive

semidefinite sesquilinear form.

Lemma 3.1.20. Suppose M(∞) � 0 and let P,Q ∈ Cp×p[x1, . . . , xd]. Then [P + I, Q + I] is

well-defined, sesquilinear and positive semidefinite.

Proof. We first show that the form [P + I, Q + I] is well-defined. We need to prove that if

P + I = P ′ + I and Q+ I = Q′ + I, then

[P + I, Q+ I] = [P ′ + I, Q′ + I],

where P, P ′, Q,Q′ ∈ Cp×p[x1, . . . , xd]. We have

[P + I, Q+ I] = Q̂∗M(∞)P̂ and [P ′ + I, Q′ + I] = Q̂′
∗
M(∞)P̂ ′.

Since P − P ′ ∈ I,
Q̂∗M(∞) ̂(P − P ′) = 0p×p

and since Q−Q′ ∈ I,
̂(Q−Q′)

∗
M(∞)P̂ ′ = 0p×p.

We write

Q̂∗M(∞) ̂(P − P ′) = Q̂∗M(∞)P̂ − Q̂∗M(∞)P̂ ′ = 0p×p (3.4)

and
̂(Q−Q′)

∗
M(∞)P̂ ′ = Q̂∗M(∞)P̂ ′ − Q̂′

∗
M(∞)P̂ ′ = 0p×p. (3.5)
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3.1. Infinite moment matrices and matrix-valued polynomials

We sum both hand sides of equations (3.4) and (3.5) and we obtain

̂(Q−Q′)
∗
M(∞) ̂(P − P ′) = 0p×p,

that is,

Q̂∗M(∞)P̂ = Q̂′
∗
M(∞)P̂ ′.

Therefore

[P + I, Q+ I] = [P ′ + I, Q′ + I].

We now show that [P + I, Q+ I] is sesquilinear. Let A, Ã ∈ Cp×p. If

P (x) =
∑

λ∈Γm,d

xλPλ and Q(x) =
∑
λ∈Γn,d

xλQλ,

then

P (x)A =
∑

λ∈Γm,d

xλPλA and Q(x)A =
∑
λ∈Γn,d

xλQλA.

Let m̃ := max(m,n). Without loss of generality suppose m̃ = m. For λ ∈ Γm,d \ Γn,d, let

Qλ := 0p×p. We may view Q as Q(x) =
∑

λ∈Γm,d

xλQλ. We have

[(P + I)A+ (P̃ + I)Ã, Q+ I] = Q̂∗M(∞)(P̂A+ ̂̃PÃ)

= (Q̂∗M(∞)P̂ )A+ (Q̂∗M(∞) ̂̃P )Ã

= [P + I, Q+ I]A+ [P̃ + I, Q+ I]Ã

and

[Q+ I, (P + I)A+ (P̃ + I)Ã] = (P̂A+ ̂̃PÃ)
∗
M(∞)Q̂

= A∗(P̂ ∗M(∞)Q̂) + Ã∗( ̂̃P ∗M(∞)Q̂)

= A∗[Q+ I, P + I] + Ã∗[Q+ I, P̃ + I]

and so [P+I, Q+I] is sesquilinear. Finally, we show that [P+I, Q+I] is positive semidefinite.

By definition,

[P + I, P + I] = 0p×p if and only if P ∈ I.

Moreover, it follows from the definition of M(∞) � 0 (see Definition 3.1.11) that

[P + I, P + I] = P̂ ∗M(∞)P̂ � 0p×p.

Thus [P + I, Q+ I] is positive semidefinite.

We next define the variety of a moment matrix in our matrix-valued setting. We introduce

zeros of determinants of matrix-valued polynomials abstracting that way the notion of the

variety of a moment matrix introduced by Curto and Fialkow in [16].
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3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.21. Let S := (Sγ)γ∈Γ2n,d
be a truncatedHp-valued multisequence and let M(n)

be the corresponding moment matrix. Let P (x) =
∑

λ∈Γn,d
xλPλ ∈ Cp×p

n [x1, . . . , xd] such that

P (X) ∈ CM(n). The variety of M(n), denoted by V(M(n)), is given by

V(M(n)) :=
⋂

P∈Cp×pn [x1,...,xd]

P (X)=col(0p×p)γ∈Γn,d

Z(det(P (x))).

In analogy to Definition 3.1.21, we define the variety associated with the right ideal I.

Definition 3.1.22. Let I be the right ideal as in Definition 3.1.14 and let the matrix-valued

polynomial P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd]. We define the variety associated with I by

V(I) :=
⋂
P∈I

Z(detP (x)).

Lemma 3.1.23. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and M(n)

the corresponding moment matrix. Suppose M(n) � 0 has an extension M(n+ 1) � 0. If there

exists P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p[x1, . . . , xd] such that P (X) = col(0p×p)γ∈Γn,d ∈ CM(n), then

P (X) = col(0p×p)γ∈Γn+1,d
∈ CM(n+1).

Proof. If there exists P ∈ Cp×p[x1, . . . , xd] such that P (X) = col(0p×p)γ∈Γn,d ∈ CM(n), then

since M(n) � 0, we have

M(n) col(Pλ)λ∈Γn,d = col(0p×p)γ∈Γn,d . (3.6)

We will show

M(n+ 1){col(Pλ)λ∈Γn,d ⊕ col(0p×p)γ∈Γn+1,d\Γn,d} = col(0p×p)γ∈Γn+1,d
. (3.7)

Notice that

card Γn,d =

(
n+ d

d

)
, card Γn+1,d =

(
n+ 1 + d

d

)
and

card(Γn+1,d \ Γn,d) =

(
n+ 1 + d

d

)
−
(
n+ d

d

)
.

We write

M(n+ 1) =

(
M(n) B

B∗ C

)
� 0,

where

M(n) ∈ C(card Γn,d)p×(card Γn,d)p,

B ∈ C(card Γn,d)p×(card(Γn+1,d\Γn,d))p
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3.1. Infinite moment matrices and matrix-valued polynomials

and

C ∈ C(card Γn+1,d\Γn,d)p×(card(Γn+1,d\Γn,d))p.

Since M(n+ 1) � 0, by Lemma 1.4.24, there exists W ∈ C(card Γn,d)p×(card(Γn+1,d\Γn,d))p such that

M(n)W = B and C � W ∗M(n)W.

Then

M(n+ 1){col(Pλ)λ∈Γn,d ⊕ col(0p×p)γ∈Γn+1,d\Γn,d} =

(
M(n) col(Pλ)λ∈Γn,d

B∗ col(Pλ)λ∈Γn,d

)

=

(
col(0p×p)γ∈Γn,d

W ∗M(n) col(Pλ)λ∈Γn,d

)

= col(0p×p)γ∈Γn+1,d
,

by equation (3.6). Thus, equation (3.7) holds and the proof is complete.

Definition 3.1.24. The Kronecker product of A = (aij) i=1,...,p
j=1,...,q

and B = (bij) i=1,...,p
j=1,...,q

∈ Cp×q is

denoted by A⊗B and is defined to be the block matrix

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq.

We refer the reader to [47] for more details on the Kronecker product.

Definition 3.1.25. Given distinct points w(1), . . . , w(k) ∈ Rd and a a subset Λ = {λ(1), . . . , λ(k)}
of Nd

0, we define the multivariable Vandermonde matrix for p × p matrix-valued polynomials

by

V p×p(w(1), . . . , w(k); Λ) :=


{w(1)}λ(1)

Ip . . . {w(1)}λ(k)
Ip

...
...

{w(k)}λ(1)
Ip . . . {w(k)}λ(k)

Ip


= V (w(1), . . . , w(k); Λ)⊗ Ip ∈ Ckp×kp.

The following lemma is well-known. However for completeness, we will provide a proof.

Lemma 3.1.26. Let A ∈ Cn×n and B ∈ Cm×m be given. Then

(detA)m(detB)n = det(A⊗B) = det(B ⊗ A).

A⊗B and B ⊗ A are invertible if and only if A and B are both invertible.

35



3.1. Infinite moment matrices and matrix-valued polynomials

Proof. Let νi be the eigenvalues of A⊗B, i = 1, . . . ,mn. Then

det(A⊗B) =
mn∏
i=1

νi.

If α ∈ σ(A) and x ∈ Cn is a corresponding eigenvector of A, and if β ∈ σ(A) and y ∈ Cm is

a corresponding eigenvector of B, then αβ ∈ σ(A ⊗ B) and x ⊗ y ∈ Cnm is a corresponding

eigenvector of A⊗B. If σ(A) = {α1, . . . , αn} and σ(B) = {β1, . . . , βm}, then

σ(A⊗B) = {αjβk : j = 1, . . . , n, k = 1, . . . ,m}

(including algebraic multiplicities). In particular σ(A ⊗ B) = σ(B ⊗ A) (see [47, Theorem

4.2.12]). Therefore, each eigenvalue of A⊗ B is given by νi = αjβk, where αj is an eigenvalue

of A and βk is an eigenvalue of B for every i = 1, . . . ,mn. Hence

det(A⊗B) =
mn∏
i=1

νi

=
n∏
j=1

m∏
k=1

αjβk

= (
n∏
j=1

αj
m)(

m∏
k=1

βk
n)

= (detA)m(detB)n.

Since the eigenvalues of A⊗B and B ⊗ A are the same,

det(A⊗B) = det(B ⊗ A).

So A⊗ B is invertible if and only if (detA)m(detB)n 6= 0, which is in turn true if and only if

detA 6= 0 and detB 6= 0. Finally detA 6= 0 and detB 6= 0 if and only if A and B are both

invertible.

Remark 3.1.27. By Lemma 3.1.26, V p×p(w(1), . . . , w(k); Λ) is invertible if and only if

V (w(1), . . . , w(k); Λ) is invertible and Ip is invertible. However, since Ip is obviously invert-

ible, we have V p×p(w(1), . . . , w(k); Λ) is invertible if and only if V (w(1), . . . , w(k); Λ) is invertible.

In the following example we highlight the importance of the variety of a moment matrix for

computing a representing measure of a truncated H2-valued bisequence. We shall see how the

block column relations of the initial moment matrix M(1) give rise to the respective variety.

As a result, we will construct a positive extension M(2) which is rank-preserving and compute

the variety of M(2). We observe that the variety of the extension is smaller than the variety of

the initial matrix. Finally, via calculations with multivariable Vandermonde matrices for 2× 2

matrix-valued polynomials we shall obtain a representing measure for the truncated H2-valued

bisequence.
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3.1. Infinite moment matrices and matrix-valued polynomials

Example 3.1.28. Let S := (Sγ)γ∈Γ2,2 be a truncated H2-valued bisequence given by

M(1) =


1 X Y

1 S00 S10 S01

X S10 S20 S11

Y S01 S11 S02

 =
1

2



2 0 1 -1 1 -1

0 2 -1 1 -1 1

1 -1 4 0 1 -1

-1 1 0 4 -1 1

1 -1 1 -1 1 -1

-1 1 -1 1 -1 1


� 0.

M(1) is described by the block column relation Y = 1 · P00 ∈ CM(1), where

P00 =

(
1
2

-1
2

-1
2

1
2

)
.

Thus P1(X, Y ) = col(02×2)γ∈Γ1,2 , where

P1(x, y) = yI2 − P00. (3.8)

Since det(P1(x, y)) = y(y − 1), we obtain

V(M(1)) = Z(det(P (x, y))) = {(x, 0) : x ∈ R} ∪ {(x, 1) : x ∈ R}.

Since P1(X, Y ) = col(02×2)γ∈Γ1,2 ∈ CM(1), where P1 as described in formula (3.8), Lemma

3.1.23 implies that any positive extension M(2) =



1 X Y X2 XY Y 2

1 S00 S10 S01 S20 S11 S02

X S10 S20 S11 S30 S21 S12

Y S01 S11 S02 S21 S12 S03

X2 S20 S30 S21 S40 S31 S22

XY S11 S21 S12 S31 S22 S13

Y 2 S02 S12 S03 S22 S13 S04


� 0

must have the block column relation

P1(X, Y ) = col(02×2)γ∈Γ2,2 ∈ CM(2).

Thus S21

S12

S03

 =

S20

S11

S02

P00.

If we let S22

S13

S04

 =

S21

S12

S03

P00 and S40 = 2S20,

then one can check that
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3.1. Infinite moment matrices and matrix-valued polynomials

X2 = 1 · (2I2) ∈ CM(2),

XY = X · P00 ∈ CM(2)

and

Y 2 = Y ∈ CM(2).

Let W =

2I2 0 0

0 P00 0

0 0 I2

 ∈ C6×6. Then

S20 S11 S02

S30 S21 S12

S21 S12 S03

 = M(1)W and

S40 S31 S22

S31 S22 S13

S22 S13 S04

 = W ∗M(1)W.

Lemma 1.4.24 asserts that M(2) � 0 and

rankM(1) = rankM(2).

We have the following matrix-valued polynomials in C2×2[x, y]:

P1(x, y) = yI2 − P00, P2(x, y) = x2I2 − 2I2,

P3(x, y) = xyI2 − xP00, P4(x, y) = y2I2 − yI2,

with

det(P1(x, y)) = y(y − 1), det(P2(x, y)) = (x2 − 2)2,

det(P3(x, y)) = x2y(y − 1), det(P4(x, y)) = y2(y − 1)2.

We obtain

V(M(2)) = {(
√

2, 0), (−
√

2, 0), (
√

2, 1), (−
√

2, 1)}.

We wish now to compute a representing measure for S. Remark 3.1.27 asserts that for a subset

Λ = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊆ N2
0, the matrix

V 2×2((
√

2, 0), (−
√

2, 0), (
√

2, 1), (−
√

2, 1); Λ) =



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1
√
2 0 -

√
2 0

√
2 0 -

√
2 0

0
√
2 0 -

√
2 0

√
2 0 -

√
2

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0
√
2 0 -

√
2 0

0 0 0 0 0
√
2 0 -

√
2


is invertible. The positive semidefinite matrices Q1, Q2, Q3, Q4 ∈ C2×2 are given by the Van-
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dermonde equation

col(Qa)
4
a=1 = V 2×2((

√
2, 0), (−

√
2, 0), (

√
2, 1), (−

√
2, 1); Λ)−1 col(Sλ)λ∈Λ. (3.9)

We then get

V 2×2((
√

2, 0), (−
√

2, 0), (
√

2, 1), (−
√

2, 1); Λ)−1 =



1
2

0
√

2
4

0 -1
2

0 -
√

2
4

0

0 1
2

0
√

2
4

0 -1
2

0 -
√

2
4

1
2

0 -
√

2
4

0 1
2

0
√

2
4

0

0 1
2

0 -
√

2
4

0 1
2

0
√

2
4

0 0 0 0 1
2

0
√

2
4

0

0 0 0 0 0 1
2

0
√

2
4

0 0 0 0 1
2

0 -
√

2
4

0

0 0 0 0 0 1
2

0 -
√

2
4


and so, equation (3.9) yields

Q1 =

(
1
4

1
4

1
4

1
4

)
= Q2, Q3 =

(
1
4

+
√

2
8

-1
4
−
√

2
8

-1
4
−
√

2
8

1
4

+
√

2
8

)
and Q4 =

(
1
4
−
√

2
8

-1
4

+
√

2
8

-1
4

+
√

2
8

1
4
−
√

2
8

)
,

where rankQa = 1 and Qa � 0 for a = 1, . . . , 4. We note that

4∑
a=1

rankQa = rankM(1) = 4.

Finally, a representing measure T for S with
4∑

a=1

rankQa = 4 is T =
4∑

a=1

Qaδw(a) .

3.2 Existence of a representing measure for an infinite

moment matrix with finite rank

In this section we shall see that if M(∞) � 0 and rankM(∞) < ∞, then the associated

Hp-valued multisequence has a representing measure T.

To this end, throughout this section we shall define and use vector-valued polynomials. We

shift our perspective from the previous setting of matrix-valued polynomials and we observe

that vector-valued polynomials shall serve as a tool for defining commuting self-adjoint multi-

plication operators on a quotient space; the desired existence of the representing measure for

an infinite moment matrix will then arise. Both settings are equally important to state and

prove the flat extension theorem for matricial moments (see Theorem 4.0.2).

Definition 3.2.1. We define the vector space

(Cp)ω0 := {v = col(vλ)λ∈Nd0 : vλ ∈ Cp and vλ = 0p for all but finitely many λ ∈ Nd
0}.

39



3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Definition 3.2.2. We let C̃M(∞) be the complex vector space

C̃M(∞) = {M(∞)v : v ∈ (Cp)ω0 }.

Remark 3.2.3. We note that

C̃M(∞) = {M(∞)v : v ∈ (Cp)ω0 } = {
∑
λ∈Γn,d

Xλv(λ) : v ∈ (Cp)ω0 , λ ∈ Γn,d}.

Definition 3.2.4. Given q(x) =
∑

λ∈Γn,d

qλx
λ ∈ Cp[x1, . . . , xd], we let

q̂ := col(qλ)λ∈Γn,d ⊕ col(0p)γ∈Nd0 ∈ (Cp)ω0 .

Lemma 3.2.5. Suppose M(∞) � 0 and r = rankM(∞) <∞. Then r = dim C̃M(∞).

Proof. If dim C̃M(∞) = m and m 6= r, then there exists a basis

B := {Xλ(1)

ek1 , . . . , X
λ(m)

ekm}

of C̃M(∞) for 1 ≤ ka ≤ p, where eka is a standard basis vector in Cp and a = 1, . . . ,m. We will

show that

B̃ := {X̃λ(1)

ek1 , . . . , X̃
λ(m)

ekm}

is a basis of C̃M(κ), where

X̃λ(a)

= col(Sλ(a)+γ)γ∈Γκ,d and κ ≥ max
a=1,...,m

(
|λ(a)|

)
.

First we need to show that B̃ is linearly independent in C̃M(κ). For this, suppose that there

exist c1, . . . , cm ∈ C not all zero such that

m∑
a=1

caX̃
λ(a)

eka = col(0p)γ∈Γκ,d ∈ C̃M(κ). (3.10)

Let v = col(vλ)λ∈Γκ,d be a vector in C(card Γκ,d)p with

vλ =

0p, when λ ∈ Γκ,d \ λ(a)

ca, when λ = λ(a)
for a = 1, . . . ,m.

Then by equation (3.10), M(κ)v = col(0p)γ∈Γκ,d ∈ C̃M(κ). Since M(κ+`) � 0 for all ` = 1, 2, . . . ,

we have

M(κ+ `){v ⊕ col(0p)γ∈Γκ+`,d\Γκ,d} = col(0p)γ∈Γκ+`,d
∈ C̃M(κ).

For η ∈ Cp[x1, . . . , xd] with η̂ := v ⊕ col(0p)γ∈Nd0\Γκ,d , we have

M(∞)η̂ = col(0p)γ∈Nd0 ∈ C̃M(∞),
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that is, there exist c1, . . . , cm ∈ C not all zero such that

m∑
a=1

caX
λ(a)

eka = col(0p)γ∈Nd0 ∈ C̃M(∞).

However, this contradicts the fact that B is linear independent. Hence B̃ is linearly indepen-

dent in C̃M(κ). It remains to show that B̃ spans C̃M(κ). Since B is a basis of C̃M(∞), for any

col(dγ)γ∈Nd0 ∈ C̃M(∞) with dγ ∈ Cp, there exists c1, . . . , cm ∈ C such that

m∑
a=1

caX
λ(a)

eka = col(dγ)γ∈Nd0 .

We next let X λ(a)
= col(Sλ(a)+γ)γ∈Nd0\Γκ,d . We have

m∑
a=1

ca{X̃λ(a) ⊕X λ(a)}eka = col(dγ)γ∈Γκ,d ⊕ col(dγ)γ∈Nd0\Γκ,d

and so
m∑
a=1

caX̃
λ(a)

eka = col(dγ)γ∈Γκ,d .

Hence B̃ spans C̃M(κ). Therefore B̃ is a basis of C̃M(κ), which forces rankM(κ) = m for all κ.

Thus supκ rankM(κ) = supκm for all κ, that is, r = m, a contradiction. Consequently

dim C̃M(∞) = r.

Remark 3.2.6. Presently, we shall view M(∞) as a linear operator

M(∞) : (Cp)ω0 → C̃M(∞)

and not as a linear operator

M(∞) : (Cp×p)ω0 → CM(∞)

as in Section 3.1.

Remark 3.2.7. Assume r = rankM(∞) (or, equivalently, dim C̃M(∞) <∞). Suppose

B := {Xλ(1)

ek1 , . . . , X
λ(r)

ekr} for 1 ≤ ka ≤ p,

is a basis for C̃M(∞), where eka is a standard basis vector in Cp and a = 1, . . . , r. Then there

exist c1, . . . , cr ∈ C such that any w ∈ C̃M(∞) can be written as

w =
r∑

a=1

caX
λ(a)

eka ∈ C̃M(∞).

We shall proceed with a result on positivity when M(∞) is treated as a linear operator

M(∞) : (Cp)ω0 → C̃M(∞).
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In analogy to results from Section 3.1, we move on to the following.

Definition 3.2.8. We define the map φ : Cp[x1, . . . , xd]→ C̃M(∞) given by

φ(v) =
r∑

a=1

caX
λ(a)

eka ,

where v(x) =
∑

λ∈Γn,d

vλx
λ ∈ Cp[x1, . . . , xd].

Definition 3.2.9. Suppose M(∞) � 0. Let q ∈ Cp[x1, . . . , xd]. We define the subspace of

Cp[x1, . . . , xd]

J := {q ∈ Cp[x1, . . . , xd] : 〈M(∞)q̂, q̂〉 = 0}

and the kernel of the map φ

kerφ := {q ∈ Cp[x1, . . . , xd] : φ(q) = col(0p)γ∈Nd0},

where φ is as in Definition 3.2.8.

Lemma 3.2.10. Suppose M(∞) � 0. Then

J = kerφ,

where J and kerφ are as in Definition 3.2.9.

Proof. If q(x) =
∑

λ∈Γn,d

qλx
λ ∈ kerφ, then

φ(q) =
r∑

a=1

caX
λ(a)

eka = col(0p)γ∈Nd0 ,

that is, M(∞)q̂ = col(0p)γ∈Nd0 , where q̂ ∈ (Cp)ω0 . Thus 〈M(∞)q̂, q̂〉 = 0 and so q ∈ J .
Conversely, let q(x) =

∑
λ∈Γn,d

qλx
λ ∈ J . Then 〈M(∞)q̂, q̂〉 = 0. It suffices to show that

for every η(x) =
∑

λ∈Γm,d
ηλx

λ ∈ Cp[x1, . . . , xd],

〈M(∞)q̂, η̂〉 = 0.

Let m̃ = max(n,m). Without loss of generality suppose m̃ = m. Let ηλ = 0p for λ ∈ Γn,d\Γm,d.

We may view η as η(x) =
∑

λ∈Γn,d

ηλx
λ. Since 〈M(∞)q̂, q̂〉 = 0, we have q̂∗M(∞)q̂ = 0 and so

col(qλ)
∗
λ∈Γm,d

M(m) col(qλ)λ∈Γm,d = 0.

Moreover, since M(∞) � 0, M(m) � 0 and hence, the square root of M(m) exists. Next,

〈M(m)
1
2 q̂, q̂〉 = 0 implies 〈M(m)

1
2 q̂,M(m)

1
2 q̂〉 = 0, that is,

‖M(m)
1
2 q̂ ‖= 0.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Then M(m)
1
2 q̂ = col(0p)λ∈Γm,d and

M(m)
1
2M(m)

1
2 q̂ = M(m)

1
2 col(0p)λ∈Γm,d ,

which implies

M(m)q̂ = col(0p)λ∈Γm,d . (3.11)

If q(x) =
∑

λ∈Γn,d

qλx
λ ∈ J and η(x) =

∑
λ∈Γn,d

ηλx
λ ∈ J with q̂, η̂ ∈ (Cp)ω0 , then

〈M(∞)q̂, η̂〉 = η̂∗M(∞)q̂

= col(ηλ)
∗
λ∈Γm,d

M(m) col(qλ)λ∈Γm,d

= 〈M(m)q̂, η̂〉
= 0,

by equation (3.11).

Definition 3.2.11. Let M(∞) � 0 and J be as in Definition 3.2.9. We define the quotient

space

Cp[x1, . . . , xd]/J = {q + J : q ∈ Cp[x1, . . . , xd]}

of equivalence classes modulo J , that is, if

q + J = q′ + J ,

then

q − q′ ∈ J for q, q′ ∈ Cp[x1, . . . , xd].

Definition 3.2.12. For every h, q ∈ Cp[x1, . . . , xd], we define the inner product

〈·, ·〉 : Cp[x1, . . . , xd]/J × Cp[x1, . . . , xd]/J → C

given by

〈h+ J , q + J 〉 = q̂∗M(∞)ĥ.

Lemma 3.2.13. Suppose M(∞) � 0 and let h, q ∈ Cp[x1, . . . , xd]. Then 〈h + J , q + J 〉 is

well-defined, linear and positive semidefinite.

Proof. We first show that the inner product 〈h+ J , q + J 〉 is well-defined. We need to prove

that if h+ J = h′ + J and q + J = q′ + J , then

〈h+ J , q + J 〉 = 〈h′ + J , q′ + J 〉,

where h, h′, q, q′ ∈ Cp[x1, . . . , xd]. We write

〈h+ J , q + J 〉 = q̂∗M(∞)ĥ and 〈h′ + J , q′ + J 〉 = q̂′
∗
M(∞)ĥ′.
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Since h− h′ ∈ J ,
q̂∗M(∞) ̂(h− h′) = 0

and since q − q′ ∈ J ,
̂(q − q′)

∗
M(∞)ĥ′ = 0.

We write

q̂∗M(∞) ̂(h− h′) = q̂∗M(∞)ĥ− q̂∗M(∞)ĥ′ = 0 (3.12)

and
̂(q − q′)

∗
M(∞)ĥ′ = q̂∗M(∞)ĥ′ − q̂′∗M(∞)ĥ′ = 0. (3.13)

We sum both hand sides of equations (3.12) and (3.13) and we obtain

̂(q − q′)
∗
M(∞) ̂(h− h′) = 0,

that is,

q̂∗M(∞)ĥ = q̂′
∗
M(∞)ĥ′,

and hence

〈h+ J , q + J 〉 = 〈h′ + J , q′ + J 〉.

We now show that the inner product 〈h + J , q + J 〉 is linear. We must prove that for every

h, h̃, q ∈ Cp[x1, . . . , xd] and a, ã ∈ C,

〈a(h+ J ) + ã(h̃+ J ), q + J 〉 = a〈h+ J , q + J 〉+ ã〈h̃+ J , q + J 〉.

Let

h(x) =
∑
λ∈Γn,d

hλx
λ and q(x) =

∑
λ∈Γm,d

qλx
λ.

Then

ah(x) =
∑
λ∈Γn,d

ahλx
λ.

Let m̃ = max(n,m). Without loss of generality suppose m̃ = m. Let qλ = 0h for λ ∈ Γn,d\Γm,d.

We may view q as q(x) =
∑

λ∈Γn,d

qλx
λ and we have

〈a(h+ J ) + ã(h̃+ J ), q + J 〉 = q̂∗M(∞) ̂(ah+ ãh̃)

= q̂∗M(∞)(̂ah) + q̂∗M(∞)(̂ãh̃)

= aq̂∗M(∞)ĥ+ ãq̂∗M(∞)ˆ̃h

= a〈h+ J , q + J 〉+ ã〈h̃+ J , q + J 〉.

Finally, we show 〈h+ J , q + J 〉 is positive semidefinite. By definition,

〈h+ J , h+ J 〉 = 0 if and only if h ∈ J .
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Since M(∞) � 0, by Lemma 3.1.13,

〈h+ J , h+ J 〉 = ĥ∗M(∞)ĥ ≥ 0.

Hence 〈h+ J , h+ J 〉 is positive semidefinite.

Definition 3.2.14. We define the map Ψ : C̃M(∞) → Cp[x1, . . . , xd]/J given by

Ψ(w) =
r∑

a=1

cax
λ(a)

eka + J ,

where

w =
r∑

a=1

caX
λ(a)

eka ∈ C̃M(∞).

Lemma 3.2.15. Ψ as in Definition 3.2.14 is an isomorphism.

Proof. We consider the map φ : Cp[x1, . . . , xd] → C̃M(∞) is as in Definition 3.2.8 and we first

show that φ is an homomorphism. For
r∑

a=1

dax
λ(a)

eka ∈ Cp[x1, . . . , xd], where d1, . . . , dr ∈ C,

we have

φ

( r∑
a=1

dax
λ(a)

eka +
r∑

a=1

cax
λ(a)

eka

)
= φ

( r∑
a=1

dax
λ(a)

eka

)
+ φ

( r∑
a=1

cax
λ(a)

eka

)

=
r∑

a=1

daX
λ(a)

eka +
r∑

a=1

caX
λ(a)

eka .

Moreover, we shall see that φ is surjective. Indeed, for every
r∑

a=1

caX
λ(a)

eka ∈ C̃M(∞), there

exists
r∑

a=1

cax
λ(a)

eka ∈ Cp[x1, . . . , xd] such that

φ

( r∑
a=1

cax
λ(a)

eka

)
=

r∑
a=1

caX
λ(a)

eka .

By the Fundamental homomorphism theorem (see, e.g., [41, Theorem 1.11]), C̃M(∞) is isomor-

phic to Cp[x1, . . . , xd]/ kerφ and thus to Cp[x1, . . . , xd]/J , by Lemma 3.2.10. Hence, the map

Ψ is an isomorphism.

Remark 3.2.16. By Lemma 3.2.5, r = rankM(∞) = dim C̃M(∞) <∞. Since Ψ is an isomor-

phism, we derive that r = dim(Cp[x1, . . . , xd]/J ).

In this setting, we present the multiplication operators Mxj , j = 1, . . . , d, as defined below.

Definition 3.2.17. Let q ∈ Cp[x1, . . . , xd]. We define the multiplication operators

Mxj : Cp[x1, . . . , xd]/J → Cp[x1, . . . , xd]/J for j = 1, . . . , d
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given by

Mxj(q + J ) :=

p∑
k=1

M (k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
,

where

M (k)
xj

: Cp[x1, . . . , xd]/J → Cp[x1, . . . , xd]/J

is the multiplication operator defined by

M (k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
:=

∑
λ∈Γm,d

q
(k)
λ xλ+εjek + J

for all j = 1, . . . , d and εj ∈ Nd
0, j = 1, . . . , d.

Let us now continue with lemmas on properties of the multiplication operators Mxj .

Lemma 3.2.18. Let Mxj , j = 1, . . . , d, be the multiplication operators as in Definition 3.2.17.

Then Mxj is well-defined for all j = 1, . . . , d.

Proof. Let q(x) =
∑

λ∈Γm,d

qλx
λ and h(x) =

∑
λ∈Γm,d

hλx
λ. If q + J = h+ J , then

Mxj(q + J ) = Mxj(h+ J ),

that is,
p∑

k=1

M (k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
=

p∑
k=1

M (k)
xj

( ∑
λ∈Γm,d

h
(k)
λ xλek + J

)
,

or equivalently,

∑
λ∈Γm,d

p∑
k=1

q
(k)
λ xλxεjek + J =

∑
λ∈Γm,d

p∑
k=1

h
(k)
λ xλxεjek + J ,

which is equivalent to

xεj
∑

λ∈Γm,d

qλx
λ + J = xεj

∑
λ∈Γm,d

hλx
λ + J ,

that is,

xεjq + J = xεjh+ J ,

and hence

xj(q − h) ∈ J

as required.

Lemma 3.2.19. Let Mxj , j = 1, . . . , d, be as in Definition 3.2.17. Then Mxj(q+J ) = xεjq+J
for all j = 1, . . . , d.
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Proof. For all j = 1, . . . , d,

Mxj(q + J ) =
p∑

k=1

M
(k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
=

p∑
k=1

∑
λ∈Γm,d

q
(k)
λ xλ+εjek + J

=
∑

λ∈Γm,d

p∑
k=1

q
(k)
λ xλxεjek + J

= xεj
∑

λ∈Γm,d

qλx
λ + J

= xεjq + J
= xjq + J

as required.

Lemma 3.2.20. Let Mxj , j = 1, . . . , d, be as in Definition 3.2.17. Then MxjMx` = Mx`Mxj

for all j, ` = 1, . . . , d.

Proof. We need to show that for every q, f ∈ Cp[1, . . . , xd],

〈MxjMx`(q + J ), f + J 〉 = 〈Mx`Mxj(q + J ), f + J 〉,

that is, 〈xεjxε`(q + J ), f + J 〉 = 〈xε`xεj(q + J ), f + J 〉. We have

〈xεjxε`(q + J ), f + J 〉 = 〈xjx`(q + J ), f + J 〉
= f̂ ∗M(∞) ̂(xjx`q)
= f̂ ∗M(∞) ̂(x`xjq)
= 〈x`xj(q + J ), f + J 〉
= 〈xε`xεj(q + J ), f + J 〉.

Thus MxjMx` = Mx`Mxj for all j, ` = 1, . . . , d.

Lemma 3.2.21. Let Mxj , j = 1, . . . , d, be as in Definition 3.2.17. Then Mxj is self-adjoint

for all j = 1, . . . , d.

Proof. We need to show that〈 p∑
k=1

M (k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
,

p∑
`=1

∑
λ∈Γm,d

f
(`)
λ xλe` + J

〉

=

〈 p∑
k=1

∑
λ∈Γm,d

q
(k)
λ xλek + J ,

p∑
`=1

M (`)
xj

( ∑
λ∈Γm,d

f
(`)
λ xλe` + J

)〉
,

that is,

〈Mxj(q + J ), f + J 〉 = 〈q + J ,Mxj(f + J )〉.
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We have 〈 p∑
k=1

M (k)
xj

( ∑
λ∈Γm,d

q
(k)
λ xλek + J

)
,

p∑
`=1

∑
λ∈Γm,d

f
(`)
λ xλe` + J

〉

=

〈 p∑
k=1

∑
λ∈Γm,d

q
(k)
λ xλ+εjek + J ,

p∑
`=1

∑
λ∈Γm,d

f
(`)
λ xλe` + J

〉
(3.14)

and 〈 p∑
k=1

∑
λ∈Γm,d

q
(k)
λ xλek + J ,

p∑
`=1

M (`)
xj

( ∑
λ∈Γm,d

f
(`)
λ xλe` + J

)〉

=

〈 p∑
k=1

∑
λ∈Γm,d

q
(k)
λ xλek + J ,

p∑
`=1

∑
λ∈Γm,d

f
(`)
λ xλ+εje` + J

〉
. (3.15)

Equation (3.14) is equal to
p∑

k,`=1

f̂ ∗M(∞)(̂xjq),

where f̂ ∈ (Cp)ω0 and (̂xjq) ∈ (Cp)ω0 and equation (3.15) is equal to

p∑
`,k=1

(̂xjf)
∗
M(∞)q̂,

where (̂xjf) ∈ (Cp)ω0 and q̂ ∈ (Cp)ω0 . It remains to show that f̂ ∗M(∞)(̂xjq) = (̂xjf)
∗
M(∞)q̂.

We have
f̂ ∗M(∞)(̂xjq) = f̂ ∗ col(

∑
λ∈Γm,d

Sγ+λ(̂xjq))γ∈Nd0

= f̂ ∗ col(
∑

λ∈Γm,d

Sγ+λ+εj q̂)γ∈Nd0

= (̂xjf)
∗
M(∞)q̂

and the proof is now complete.

Next, we shall use spectral theory involving the preceding multiplication operators. First,

we denote by P the set of the orthogonal projections on Cp[x1, . . . , xd]/J as in the next

definition.

Definition 3.2.22. Let H be a complex Hilbert space. A bounded linear map Q : H → H is

called an orthogonal projection if Q is self-adjoint and Q2 = Q.

We also define P to be the set of the orthogonal projections on Cp[x1, . . . , xd]/J .

Remark 3.2.23. Mxj is self-adjoint for all j = 1, . . . , d and so by the spectral theorem for

bounded self-adjoint operators on a Hilbert space (see, e.g., [71, Theorem 5.1]), there exists a

unique spectral measure Ej : B(σ(Ej))→ P , σ(Ej) ⊆ B(Rd), such that

Mxj(q + J ) =

∫
σ(Ej)

xdEj(x)(q + J ) for j = 1, . . . , d.
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Ej is unique, in the sense that if Fj : B(R)→ P is another spectral measure such that

Mxj(q + J ) =

∫
σ(Ej)

xdFj(x)(q + J ) for j = 1, . . . , d,

then we have

Ej
(
α ∩ σ(Ej)

)
= Fj(α) for α ∈ B(R), j = 1, . . . , d.

By [71, Lemma 4.3], Ej(α)Ej(β) = Ej(α ∩ β) for α, β ∈ B(σ(Ej)), which implies that

Ej(α)Ek(β) = Ek(β)Ej(α) for α ∈ B(σ(Ej)), β ∈ B(σ(Ek), j, k = 1, . . . , d.

Since Mxj is self-adjoint and pairwise commute, that is, MxjMxk = MxkMxj for all

j, k = 1, . . . , d (see Lemma 3.2.20), we have that for all Borel sets α, β ∈ B(Rd),

Mxj(α)Mxk(β) = Mxk(β)Mxj(α) for j, k = 1, . . . , d.

Thus, by [71, Theorem 4.10], there exists a unique spectral measure E on the Borel algebra

B(Ω) of the product space Ω = σ(E1)× · · · × σ(Ed) such that

E(α1 × · · · × αd) = Ex1(α1) · · ·Exd(αd) for αj ∈ B(Ω), j = 1, . . . , d.

Remark 3.2.24 ([71, Theorem 5.23]). For Mxj , j = 1, . . . , d, commuting self-adjoint operators

on the quotient space Cp[x1, . . . , xd]/J , there exists a joint spectral measure E : B(Rd) → P
such that for every q, f ∈ Cp,

〈Mγ1
x1
· · ·Mγd

xd
(q + J ), f + J 〉 =

∫
Rd
xγ1

1 · · · x
γd
d d〈E(x1, . . . , xd)(q + J ), f + J 〉, j = 1, . . . , d.

Definition 3.2.25 ([71, Definition 5.3]). The support of the spectral measure E is called the

joint spectrum of Mx1 , . . . ,Mxd and is denoted by σ(Mx) = σ(Mx1 , . . . ,Mxd).

Lemma 3.2.26. If r = rankM(∞) = dim(Cp[x1, . . . , xd]/J ) <∞, then

cardσ(Mx) ≤ r,

where σ(Mx) is as defined in Definition 3.2.25.

Proof. Since Mxj j = 1, . . . , d are self-adjoint operators on the finite dimensional Hilbert space

Cp[x1, . . . , xd]/J , we have σ(Mxj) ⊆ R with

cardσ(Mxj) ≤ dim(Cp[x1, . . . , xd]/J ) = r <∞.

We next fix a basis D of Cp[x1, . . . , xd]/J and let Aj ∈ Cr×r be the matrix representation of

Mxj with respect to D. Then since Mxj are commuting self-adjoint operators we get

A∗j = Aj for j = 1, . . . , d.
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By [47, Theorem 2.5.5], there exists unitary U ∈ Cr×r such that

Aj = Udiag(ν
(j)
1 , . . . , ν(j)

r )U∗ for j = 1, . . . , d

and diag(ν
(j)
1 , . . . , ν

(j)
r ) ∈ Cr×r with ν

(j)
1 , . . . , ν

(j)
r the eigenvalues of Aj. Therefore

σ(Mx) = {(ν(1)
1 , . . . , ν

(d)
1 ), . . . , (ν(1)

r , . . . , ν(d)
r )},

from which we derive cardσ(Mx) ≤ r.

The following proposition is a significant tool in our construction, since it proves the exis-

tence of a representing measure T for a given Hp-valued multisequence S(∞) := (Sγ)γ∈Nd0 which

gives rise to an infinite moment matrix with finite rank.

Proposition 3.2.27. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence with corre-

sponding moment matrix M(∞) � 0. Suppose r := rankM(∞) < ∞. Then S(∞) has a repre-

senting measure T.

Proof. First we show

v∗Sγv = 〈Mγ1
x1
· · ·Mγd

xd
(v + J ), v + J 〉 =

∫
Rd
xγ1

1 · · ·x
γd
d d〈E(x1, . . . , xd)(v + J ), v + J 〉, (3.16)

that is,

v∗Sγv = 〈Mγ1
x1
· · ·Mγd

xd
(v + J ), v + J 〉 =

∫
Rd
xγd〈E(x1, . . . , xd)(v + J ), v + J 〉 (3.17)

for all v ∈ Cp and γ ∈ Nd
0. For all v ∈ Cp, we have

〈Mγ1
x1
· · ·Mγd

xd
(v + J ), v + J 〉 = 〈xγ1

1 · · ·x
γd
d v + J , v + J 〉

= v̂∗M(∞)(̂xγv)

= v̂∗ col(Sγ̃+γ v̂)γ̃∈Nd0
= v∗Sγv

Therefore, we have obtained the left hand side of the equation (3.16). The right hand side is

implied by Remark 3.2.24. Indeed we have

〈
∫
Rd
xγ1

1 · · ·x
γd
d dE(x1, . . . , xd)(v + J ), (v + J )〉 =

∫
Rd
xγ1

1 · · ·x
γd
d d〈E(x1, . . . , xd)(v + J ), v + J 〉

= 〈Mγ1
x1
· · ·Mγd

xd
(v + J ), v + J 〉,

for γ ∈ Nd
0 and equation (3.17) holds.

Let v∗T (α)v := 〈E(α)(v + J ), v + J 〉 for every α ∈ B(Rd). We rewrite equation (3.17) as

v∗Sγv = 〈Mγ1
x1
· · ·Mγd

xd
(v + J ), v + J 〉 =

∫
Rd
xγd〈T (x)v, v〉
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and let Tv,v(α) := v∗T (α)v, where α ∈ B(Rd). Notice that Tv,v(α) � 0. We need to show

v∗Sγw =

∫
Rd
xγdTw,v(x) for γ ∈ Nd

0.

Fix α ∈ B(Rd) and define

Tw,v(α) :=
1

4
(Tw+v(α)− Tw−v(α) + iTw+iv(α)− iTw−iv(α)) for v, w ∈ Cp. (3.18)

We observe

4

∫
Rd
xγdTw,v(x) =

∫
Rd
xγdTw+v(x)−

∫
Rd
xγdTw−v(x)

+i

∫
Rd
xγdTw+iv(x)− i

∫
Rd
xγdTw−iv(x)

= (w + v)∗Sγ(w + v)− (w − v)∗Sγ(w − v)

+i(w + iv)∗Sγ(w + iv)− i(w − iv)∗Sγ(w − iv)

= 4v∗Sγw

for all γ ∈ Nd
0 and v, w ∈ Cp. Thus

v∗Sγw =

∫
Rd
xγdTw,v(x) for v, w ∈ Cp and γ ∈ Nd

0. (3.19)

Let β(w, v) : Cp × Cp → C be given by β(w, v) := Tw,v(α) where α ∈ B(Rd) is fixed. Using

assumption (A1) we have

Tv,v(α) ≤ Tv,v(Rd) = v∗S0dv = v∗Ipv ≤ max
v∗Ipv

v∗v
v∗v = ||v||2,

by the Rayleigh-Ritz Theorem (see, e.g., [47, Theorem 4.2.2]), where max v∗Ipv
v∗v

, v 6= 0p, is the

maximum eigenvalue of the matrix Ip. For all w, v ∈ Cp, formula (3.18) yields

|β(w, v)| = |Tw,v(α)|

≤
∣∣∣∣14(||w + v||2 − ||w − v||2 + i||w + iv||2 − i||w − iv||2

)∣∣∣∣
=

∣∣∣∣14(||w||2 + ||v||2 + 2Re(〈w, v〉)− (||w||2 + ||v||2 − 2Re(〈w, v〉))

+i(||w||2 + ||v||2 − 2iRe(〈w, v〉))− i(||w||2 + ||v||2 + 2iRe(〈w, v〉))
)∣∣∣∣

= |2Re(〈w, v〉)|
≤ 2||w|| ||v||,

by the Cauchy-Schwarz inequality. Hence β is a bounded sesquilinear form. For every v ∈ Cp,

the linear functional Lv : Cp → C given by Lv(w) = β(w, v) is such that

|Lv(w)| = |β(w, v)| ≤ ||β|| ||w|| ||v||.
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3.3. Necessary conditions for the existence of a representing measure

By the Riesz Representation Theorem for Hilbert spaces (see, e.g., [63, Theorem 4, Section

6.3]), there exists a unique ϕ ∈ Cp such that

Lv(w) = 〈ϕ, v〉 for all v ∈ Cp.

Let T : B(Rd)→ Hp be given by

v∗T (α)w = β(w, v) = Tw,v(α) for w, v ∈ Cp,

for which T (α)w = ϕ, α ∈ B(Rd). Since

w∗T (α)w = Tw,w(α) ≥ 0 for w ∈ Cp,

we have T (α) � 0 for α ∈ B(Rd). Therefore, formula (3.19) implies

Sγ =

∫
Rd
xγdT (x) for γ ∈ Nd

0

and so, S(∞) has a representing measure T.

3.3 Necessary conditions for the existence of a repre-

senting measure

Throughout the section a series of lemmas are shown on the variety of the moment matrix and

its connection with the support of the representing measure. We study necessary conditions for

a solution to the matrix-valued moment problem and our aim is to state and prove the main

result of this chapter (see Theorem 3.3.15). We show that if M(∞) � 0 and rankM(∞) <∞,
then the associated Hp-valued multisequence has a representing measure T with

κ∑
a=1

rankQa =

rankM(∞) and suppT = V(I), where I ⊆ Cp×p[x1, . . . , xd] is the right ideal associated with

M(∞).

This in turn yields to an analogous result (see Corollary 3.3.16) where a truncated Hp-

valued multisequence has a unique representing measure T and is later being used in the proof

of the flat extension theorem for matricial moments (see Theorem 4.0.2).

Lemma 3.3.1. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and M(n)

the corresponding moment matrix. If S has a representing measure T, then M(n) � 0.

Proof. For η = col(ηλ)λ∈Γn,d , we have

η∗M(n)η =

∫
Rd
ζ(x)∗dT (x)ζ(x) ≥ 0,

where ζ(x) =
∑

λ∈Γn,d

xληλ.
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3.3. Necessary conditions for the existence of a representing measure

Definition 3.3.2. Let T be a representing measure for S := (Sγ)γ∈Γ2n,d
, where Sγ ∈ Hp for

γ ∈ Γ2n,d and P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p
n [x1, . . . , xd]. We define

∫
Rd
P (x)∗dT (x)P (x) :=

∑
λ,γ∈Γn,d

P ∗λSγ+λPγ.

Remark 3.3.3. In view of [51, Theorem 2], if S has a representing measure T, then we can

always find a representing measure T̃ for S of the form T̃ =
κ∑
a=1

Qaδw(a) with κ ≤
(

2n+d
d

)
p. Then

we may let ∫
Rd
P (x)∗dT̃ (x)P (x) :=

κ∑
a=1

P (w(a))∗QaP (w(a)).

The following lemma is very important for connecting the support of a representing measure

of an Hp-valued truncated multisequence and the variety of a moment matrix.

Lemma 3.3.4. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence with a

representing measure T. Suppose M(n) is the corresponding moment matrix. If

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d ,

then

suppT ⊆ Z(detP (x)),

where P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p
n [x1, . . . , xd].

Proof. If col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d , then

col

( ∑
λ∈Γn,d

Sγ+λPλ

)∗
γ∈Γn,d

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= 0p×p,

that is,
∑

λ,γ∈Γn,d

P ∗λSγ+λPγ = 0p×p, which is equivalent to
∫
Rd P (x)∗dT (x)P (x) = 0p×p. Indeed

col(Pλ)
∗
λ∈Γn,d

col

( ∑
γ∈Γn,d

Sγ+λPγ

)
λ∈Γn,d

= 0p×p

and so
col(Pλ)

∗
λ∈Γn,d

M(n) col(Pλ)λ∈Γn,d =
∑

λ,γ∈Γn,d

P ∗λSγ+λPγ

=

∫
Rd
P (x)∗dT (x)P (x)

= 0p×p.

Suppose to the contrary that

suppT * Z(detP (x)).
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3.3. Necessary conditions for the existence of a representing measure

Then there exists a point u(0) ∈ suppT such that u(0) /∈ Z(detP (x)) and

Bε(u
(0)) = {x ∈ Rd : ||x− u(0)|| < ε} for ε > 0 small enough,

has the property T (Bε(u(0))) 6= 0p×p and Bε(u(0)) ∩ Z(detP (x)) = ∅. We write∫
Rd
P (x)∗dT (x)P (x) =

∫
Bε(u(0))

P (x)∗dT (x)P (x) +

∫
Rd\Bε(u(0))

P (x)∗dT (x)P (x)

and we note that both terms on the right hand side are positive semidefinite.

Let Y := T |
Bε(u(0))

= T (σ ∩Bε(u(0))) for σ ∈ B(Rd). Consider S̃ := (S̃γ)γ∈Γ2n,d
, where

S̃γ =

∫
Rd
xγdY (x) for γ ∈ Γ2n,d

and note that S̃0d =
∫
Rd dY (x) = Y (Bε(u(0))) 6= 0p×p. Applying [51, Theorem 2] we obtain a

representing measure for S̃ of the form Ỹ =
κ∑
a=1

Qaδu(a) , with nonzero Qa � 0, κ ≤
(

2n+d
d

)
p and

u(1), . . . , u(κ) ∈ Bε(u(0)). But then

0p×p =

∫
Bε(u(0))

P (x)∗dT (x)P (x) =

∫
Rd
P (x)∗dY (x)P (x)

=

∫
Rd
P (x)∗dỸ (x)P (x)

=
κ∑
a=1

P (u(a))∗QaP (u(a)),

by Remark 3.3.3. Since P (u(a))∗QaP (u(a)) � 0p×p for a = 1, . . . κ, we derive

P (u(a))∗QaP (u(a)) = 0p×p for a = 1, . . . κ. (3.20)

But P (u(a)) is invertible and therefore formula (3.20) implies Qa = 0p×p for a = 1, . . . κ, a

contradiction.

The next example illustrates that the converse of Lemma 3.3.4 does not hold when p > 1.

Note that if p = 1, then the assertion in Lemma 3.3.4 is necessary and sufficient, see [16,

Proposition 3.1].

Example 3.3.5. Let S := (Sγ)γ∈Γ2,2 be a truncated H2-valued bisequence with S00 = I2,

S10 = 1
2

(
1 0

0 0

)
= S20, S01 = 1

2

(
0 0

0 1

)
= S02 and S11 = 02×2. Then S has a representing

measure T given by

T =
1

2

(
I2δ(0,0) +

(
1 0

0 0

)
δ(1,0) +

(
0 0

0 1

)
δ(0,1)

)
.
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3.3. Necessary conditions for the existence of a representing measure

Choose the matrix-valued polynomial in C2×2
1 [x, y]

P (x, y) =

(
x 1

0 y

)

=

(
0 1

0 0

)
+ x

(
1 0

0 0

)
+ y

(
0 0

0 1

)

and notice that detP (x, y) = xy and

detP (x, y)|suppT = 0.

We have

P (X, Y ) =

S00

S10

S01

(0 1

0 0

)
+

S10

S20

S11

(1 0

0 0

)
+

S01

S11

S02

(0 0

0 1

)
6= col(02×2)γ∈Γ1,2 ,

which asserts that the converse of Lemma 3.3.4 does not hold.

We continue with results on the variety of a moment matrix and its connection with the

support of a representing measure T.

Lemma 3.3.6. Suppose S := (Sγ)γ∈Γ2n,d
is a given truncated Hp-valued multisequence with a

representing measure T. Let M(n) be the corresponding moment matrix and let V(M(n)) be

the variety of M(n) (see Definition 3.1.21). Let P (x) =
∑

λ∈Γn,d

xλPλ ∈ Cp×p
n [x1, . . . , xd]. If

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d ,

then

suppT ⊆ V(M(n)).

Proof. By Lemma 3.3.4, for any P (x) ∈ Cp×p
n [x1, . . . , xd] with

P (X) = col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d ,

we have suppT ⊆ Z(detP (x)). Thus⋂
P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

suppT ⊆
⋂

P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

Z(detP (x)),

which implies that

suppT ⊆ V(M(n)).
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3.3. Necessary conditions for the existence of a representing measure

Lemma 3.3.7. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and let M(n)

be the corresponding moment matrix. If S has a representing measure T and w(1), . . . , w(κ) ∈ Rd

are given such that

suppT = {w(1), . . . , w(κ)},

then there exists P (x) ∈ Cp×p
n [x1, . . . , xd] such that

Z(detP (x)) = {w(1), . . . , w(κ)}.

Moreover

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d ,

and

V(M(n)) ⊆ suppT,

where V(M(n)) the variety of M(n) (see Definition 3.1.21).

Proof. If we let P (x) :=
∏κ

a=1

∏d
j=1(xj − w(a)

j )Ip, then detP (x) =
∏κ

a=1

∏d
j=1(xj − w(a)

j )p and

so

detP (w(a)) =
κ∏
a=1

d∏
j=1

(w
(a)
j − w

(a)
j )p = 0.

Thus

{w(1), . . . , w(κ)} ⊆ Z(detP (x)). (3.21)

If we let P (x) :=
∏κ

a=1

(∑d
j=1(xj − w(a)

j )2

)
Ip, then detP (x) =

∏κ
a=1

(∑d
j=1(xj − w(a)

j )2

)p
and hence

detP (w(a)) =
κ∏
a=1

( d∑
j=1

(w
(a)
j − w

(a)
j )2

)p
= 0,

which yields

Z(detP (x)) ⊆ {w(1), . . . , w(κ)}. (3.22)

Then by inclusions (3.21) and (3.22), we obtain

Z(detP (x)) = {w(1), . . . , w(κ)}.

Hence Z(detP (x)) = {w(1), . . . , w(κ)} = suppT, where T =
κ∑
a=1

Qaδw(a) . We will next show

that for both choices of P ∈ Cp×p
n [x1, . . . , xd], one obtains

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d

and thus V(M(n)) ⊆ suppT. For the choice of P (x) :=
∏κ

a=1

∏d
j=1(xj−w(a)

j )Ip ∈ Cp×p
n [x1, . . . , xd],
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3.3. Necessary conditions for the existence of a representing measure

we have

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d .

Consider P (X) ∈ CM(n).We have Z(detP (x)) = suppT and we shall see P (X) = col(0p×p)γ∈Γn,d .

We notice

P (X) = col

( ∑
λ∈Γn,d

Xγ+λPλ

)
γ∈Γn,d

= col

(∫
Rd x

γdT (x)P (x)

)
γ∈Γn,d

= col

(∫
Rd x

γdT (x)
κ∏
a=1

d∏
j=1

(xj − w(a)
j )Ip

)
γ∈Γn,d

= col

(∫
Rd x

γϕ(x)dT (x)

)
γ∈Γn,d

,

where ϕ(x) =
∏κ

a=1

∏d
j=1(xj − w(a)

j ) ∈ R[x1, . . . , xd]. Since T =
κ∑
a=1

Qaδw(a) , P (X) becomes

col

(
κ∑
a=1

{w(a)}γϕ(w(a))Qa

)
γ∈Γn,d

= col

(
κ∑
a=1

{w(a)}γ
κ∏
a=1

d∏
j=1

(w
(a)
j − w

(a)
j )Qa

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d

and hence P (X) = col(0p×p)γ∈Γn,d . Since there exists matrix-valued polynomial P (x) such that

P (X) = col(0p×p)γ∈Γn,d and Z(detP (x)) = suppT, we then have⋂
P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

Z(detP (x)) ⊆
⋂

P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

suppT,

which implies V(M(n)) ⊆ suppT. Next, for the choice of P (x) :=
∏κ

a=1

(∑d
j=1(xj−w(a)

j )2

)
Ip,

we will show that

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d .

We have Z(detP (x)) = suppT and we consider P (X) ∈ CM(n). We will show that for this

choice of P (x), P (X) = col(0p×p)γ∈Γn,d . Notice that

P (X) = col

( ∑
λ∈Γn,d

Xγ+λPλ

)
γ∈Γn,d

= col

(∫
Rd x

γdT (x)P (x)

)
γ∈Γn,d

= col

(∫
Rd x

γdT (x)
κ∏
a=1

(
d∑
j=1

(xj − w(a)
j )2

)
Ip

)
γ∈Γn,d

= col

(∫
Rd x

γϕ̃(x)dT (x)

)
γ∈Γn,d

,
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3.3. Necessary conditions for the existence of a representing measure

where ϕ̃(x) =
∏κ

a=1

∑d
j=1(xj − w(a)

j )2 ∈ R[x1, . . . , xd]. Since T =
κ∑
a=1

Qaδw(a) , P (X) becomes

col

( κ∑
a=1

{w(a)}γϕ̃(w(a))Qa

)
γ∈Γn,d

= col

( κ∑
a=1

{w(a)}γ
κ∏
a=1

( d∑
j=1

(w
(a)
j − w

(a)
j )2

)
Qa

)
γ∈Γn,d

= col(0p×p)γ∈Γn,d

and so P (X) = col(0p×p)γ∈Γn,d . We thus conclude that there exists a matrix-valued polynomial

P (x) such that P (X) = col(0p×p)γ∈Γn,d and Z(detP (x)) = suppT and thus we obtain⋂
P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

Z(detP (x)) ⊆
⋂

P (X)=col(0p×p)γ∈Γn,d

P∈Cp×pn [x1,...,xd]

suppT,

which asserts

V(M(n)) ⊆ suppT.

Lemma 3.3.8. Let S := (Sγ)γ∈Γ2n,d
be truncated Hp-valued multisequence and let M(n) be the

corresponding moment matrix. If T is a representing measure for S, then

rankM(n) ≤
κ∑
a=1

rankQa.

Proof. If suppT is infinite, then rankM(n) ≤
κ∑
a=1

rankQa holds trivially. If suppT is finite,

that is, T is of the form T =
κ∑
a=1

Qaδw(a) , then

M(n) = V TR V,

where V := V p×p(w(1), . . . , w(κ); Λ) ∈ Cκp×κp with Λ ⊆ Nd
0 and card Λ = κ and

R := Q1 ⊕ · · · ⊕Qκ =


Q1 0

. . .

0 Qκ

 ∈ Cκp×κp.

Hence
rankM(n) ≤ min(rankV T , rankRV )

≤ min(rankV T , rankR, rankV )

≤ min(rankV, rankR)

≤ rankR

=
κ∑
a=1

rankQa

and the proof is complete.
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3.3. Necessary conditions for the existence of a representing measure

Proposition 3.3.9. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence with a represent-

ing measure T which has
κ∑
a=1

rankQa < ∞ and M(∞) be the corresponding moment matrix.

Then

r := rankM(∞) =
κ∑
a=1

rankQa.

Proof. By Theorem 1.4.26, there exists Λ ⊆ Nd
0 such that card Λ = κ and V (w(1), . . . , w(κ); Λ)

is invertible. If S(∞) has a representing measure T =
κ∑
a=1

Qaδw(a) , then

rankMΛ(∞) ≤ rankM(∞) ≤
κ∑
a=1

rankQa, (3.23)

where MΛ(∞) is a principal submatrix of M(∞) with block rows and block columns indexed

by Λ. Notice that since V (w(1), . . . , w(κ); Λ) is invertible, by Remark 3.1.27 we deduce that

V := V p×p(w(1), . . . , w(κ); Λ) ∈ Cκp×κp is invertible. Moreover, since V ∈ Rκp×κp, MΛ(∞) can

be written as

MΛ(∞) = V TRV = V ∗RV,

where

R := Q1 ⊕ · · · ⊕Qκ =


Q1 0

. . .

0 Qκ

 ∈ Cκp×κp.

By Sylvester’s law of inertia (see, e.g., [48, Theorem 4.5.8]), we have i+(MΛ(∞)) = i+(R),

where i+ indicates the number of positive eigenvalues. So rankMΛ(∞) = rankR. However

rankR =
κ∑
a=1

rankQa. By inequality (3.23),

κ∑
a=1

rankQa ≤ rankM(∞) ≤
κ∑
a=1

rankQa,

which implies
κ∑
a=1

rankQa = rankM(∞) = r.

Lemma 3.3.10. Suppose S := (Sγ)γ∈Γ2n,d
is a truncated Hp-valued multisequence with a repre-

senting measure T. Let M(n) be the corresponding moment matrix and V(M(n)) be the variety

of M(n) (see Definition 3.1.21). Then

rankM(n) ≤ cardV(M(n)).

Proof. Lemma 3.3.8 asserts that rankM(n) ≤
κ∑
a=1

rankQa and by Lemma 3.3.6,

suppT ⊆ V(M(n)),
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3.3. Necessary conditions for the existence of a representing measure

which implies
κ∑
a=1

rankQa ≤ cardV(M(n)). Hence

rankM(n) ≤ cardV(M(n)).

In analogy to Lemma 3.3.7, we proceed to Lemmas 3.3.11 and 3.3.12 for P ∈ Cp×p[x1, . . . , xd].

Lemma 3.3.11. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence. If S(∞) has a

representing measure T and w(1), . . . , w(κ) ∈ Rd are given, then there exists P ∈ Cp×p[x1, . . . , xd]

such that

Z(detP (x)) = {w(1), . . . , w(κ)}.

Moreover, P ∈ I and

V(I) ⊆ suppT

where I is as in Definition 3.1.14 and V(I) the variety of I (see Definition 3.1.22).

Proof. Let the matrix-valued polynomial P (x) :=
∏κ

a=1

∏d
j=1(xj − w(a)

j )Ip ∈ Cp×p[x1, . . . , xd].

Then detP (x) =
∏κ

a=1

∏d
j=1(xj − w(a)

j )p and so

detP (w(a)) =
κ∏
a=1

d∏
j=1

(w
(a)
j − w

(a)
j )p = 0.

Thus {w(1), . . . , w(κ)} ⊆ Z(detP (x)). To show the other inclusion, choose the matrix-valued

polynomial P (x) :=
∏κ

a=1

(∑d
j=1(xj − w

(a)
j )2

)
Ip ∈ Cp×p[x1, . . . , xd]. Then we shall obtain

detP (x) =
∏κ

a=1

(∑d
j=1(xj − w(a)

j )2

)p
and so

detP (w(a)) =
κ∏
a=1

( d∑
j=1

(w
(a)
j − w

(a)
j )2

)p
= 0,

which implies that Z(detP (x)) ⊆ {w(1), . . . , w(κ)}. Thus

Z(detP (x)) = {w(1), . . . , w(κ)}.

Let suppT = {w(1), . . . , w(κ)} where T =
κ∑
a=1

Qaδw(a) . In the following, we shall see that for

both choices of the matrix-valued polynomial P ∈ Cp×p[x1, . . . , xd], one obtains P ∈ I and

this in turn yields the inclusion V(I) ⊆ suppT. Consider first the matrix-valued polynomial

P (x) :=
∏κ

a=1

∏d
j=1(xj − w(a)

j )Ip such that P (X) ∈ CM(∞). We have

Z(detP (x)) = suppT

and we shall show that P (X) = col(0p×p)γ∈Nd0 .
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3.3. Necessary conditions for the existence of a representing measure

Notice that

P (X) = col

( ∑
λ∈Γn,d

Xγ+λPλ

)
γ∈Nd0

= col

(∫
Rd x

γdT (x)P (x)

)
γ∈Nd0

= col

(∫
Rd x

γdT (x)
κ∏
a=1

d∏
j=1

(xj − w(a)
j )Ip

)
γ∈Nd0

= col

(∫
Rd x

γϕ(x)dT (x)

)
γ∈Nd0

,

where ϕ(x) =
∏κ

a=1

∏d
j=1(xj − w(a)

j ) ∈ R[x1, . . . , xd]. Since T =
κ∑
a=1

Qaδw(a) , P (X) becomes

col

(
κ∑
a=1

{w(a)}γϕ(w(a))Qa

)
γ∈Nd0

= col

(
κ∑
a=1

{w(a)}γ
κ∏
a=1

d∏
j=1

(w
(a)
j − w

(a)
j )Qa

)
γ∈Nd0

= col(0p×p)γ∈Nd0

and hence P ∈ I.
Since there exists P ∈ I such that Z(detP (x)) = suppT,

V(I) :=
⋂
P∈I

Z(detP (x)) ⊆
⋂
P∈I

suppT

and thus V(I) ⊆ suppT. We continue on showing that for the choice of the matrix-valued

polynomial P (x) :=
∏κ

a=1

(∑d
j=1(xj − w(a)

j )2

)
Ip, one obtains that P ∈ I as well. Consider

P (X) ∈ CM(∞). We have Z(detP (x)) = suppT and we shall see P (X) = col(0p×p)γ∈Nd0 . Indeed

P (X) = col

( ∑
λ∈Γn,d

Xγ+λPλ

)
γ∈Nd0

= col

(∫
Rd x

γdT (x)P (x)

)
γ∈Nd0

= col

(∫
Rd x

γdT (x)
κ∏
a=1

(
d∑
j=1

(xj − w(a)
j )2

)
Ip

)
γ∈Nd0

= col

(∫
Rd x

γϕ̃(x)dT (x)

)
γ∈Nd0

,

where ϕ̃(x) =
∏κ

a=1

∑d
j=1(xj − w(a)

j )2 ∈ R[x1, . . . , xd]. Since T =
κ∑
a=1

Qaδw(a) , P (X) becomes

col

(
κ∑
a=1

{w(a)}γϕ̃(w(a))Qa

)
γ∈Nd0

= col

(
κ∑
a=1

{w(a)}γ
κ∏
a=1

(
d∑
j=1

(w
(a)
j − w

(a)
j )2

)
Qa

)
γ∈Nd0

= col(0p×p)γ∈Nd0

61



3.3. Necessary conditions for the existence of a representing measure

and so P ∈ I. Since there exists P ∈ I such that Z(detP (x)) = suppT, we again obtain

V(I) ⊆ suppT

as desired.

Lemma 3.3.12. Let T be a representing measure for S(∞) := (Sγ)γ∈Nd0 , where Sγ ∈ Hp, γ ∈ Nd
0

and w(1), . . . , w(κ) ∈ Rd be such that

suppT = {w(1), . . . , w(κ)}.

If there exists P ∈ Cp×p[x1, . . . , xd] with P ∈ I, then

suppT ⊆ V(I),

where I is as in Definition 3.1.14 and V(I) the variety of I (see Definition 3.1.22).

Proof. By Lemma 3.3.11, if we choose P (x) :=
∏κ

a=1

∏d
j=1(xj−w(a)

j )Ip ∈ Cp×p[x1, . . . , xd], then

P ∈ I and

{w(1), . . . , w(κ)} ⊆ Z(detP (x)),

that is,

suppT ⊆ Z(detP (x)).

Therefore ⋂
P∈I

suppT ⊆
⋂
P∈I

Z(detP (x))

and so

suppT ⊆ V(I).

In the next lemma we treat the multiplication operators of Definition 3.2.17 to provide a

connection between the joint spectrum of Mx1 , . . . ,Mxd and a representing measure T.

Lemma 3.3.13. If T is a representing measure for S(∞) := (Sγ)γ∈Nd0 , where Sγ ∈ Hp, γ ∈ Nd
0,

then

suppT ⊆ σ(Mx),

where σ(Mx) is as in Definition 3.2.25.

Proof. Since Mxj , j = 1, . . . , d, are commuting self-adjoint operators on Cp[x1, . . . , xd]/J , by

Remark 3.2.24, there exists a joint spectral measure E : B(Rd) → P such that for every

q, f ∈ Cp,

〈Mγ1
x1
. . .Mγd

xd
(q + J ), f + J 〉 =

∫
Rd
xγ1

1 . . . xγdd d〈E(x1, . . . , xd)(q + J ), f + J 〉, j = 1, . . . , d.

Moreover

v∗T (α)v = 〈E(α)(v + J ), v + J 〉 for every α ∈ B(Rd).

62



3.3. Necessary conditions for the existence of a representing measure

If α ⊆ suppT, then T (α) 6= 0p×p. Thus, there exists v ∈ Cp such that v∗T (α)v > 0. Hence

〈E(α)(v + J ), v + J 〉 > 0

and so E(α) 6= 0p×p.

The next lemma describes the block column relations of an infinite moment matrix in terms

of the variety of a right ideal built from matrix-valued polynomials.

Lemma 3.3.14. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence with a representing

measure T. Let M(∞) be the corresponding moment matrix with r := rankM(∞). If there

exists P ∈ Cp×p[x1, . . . , xd] such that P ∈ I then

cardV(I) = r,

where I is as in Definition 3.1.14 and V(I) the variety of I (see Definition 3.1.22).

Proof. By Lemma 3.3.11, there exists P ∈ I with V(I) ⊆ suppT such that

Z(detP (x)) = suppT

and by Lemma 3.3.13, suppT ⊆ σ(Mx). Then

suppT = Z(detP (x)) ⊆ σ(Mx)

and thus ⋂
P∈I

Z(detP (x)) ⊆ σ(Mx),

which is equivalent to V(I) ⊆ σ(Mx). Therefore

cardV(I) ≤ cardσ(Mx) ≤ dim(Cp[x1, . . . , xd]/J ) = r.

Moreover, by Remark 3.3.6, suppT ⊆ V(I) and so
κ∑
a=1

rankQa ≤ cardV(I). Then Proposition

3.3.9 implies cardV(I) ≥ r. Finally

cardV(I) = r.

We next state and prove the main theorem of this chapter. We shall see that if M(∞) � 0

with rankM(∞) <∞, then the associated Hp-valued multisequence has a unique representing

measure T and one can extract information on the support of the representing measure in

terms of the variety of the right ideal associated with M(∞).

Theorem 3.3.15. Let S(∞) := (Sγ)γ∈Nd0 be a given Hp-valued multisequence. If S(∞) gives rise

to M(∞) � 0 and r := rankM(∞) < ∞, then S(∞) has a unique representing measure T. In
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3.3. Necessary conditions for the existence of a representing measure

this case,

suppT = V(I),

where I is as in Definition 3.1.14, and moreover,

cardV(I) = r.

Proof. By Proposition 3.2.27, if S(∞) gives rise to M(∞) � 0 and r := rankM(∞) <∞, then

S(∞) has a representing measure T. Moreover, by Lemma 3.3.12, we have suppT ⊆ V(I) and

by Lemma 3.3.11, V(I) ⊆ suppT. Thus

suppT = V(I).

Next, Proposition 3.3.9 yields
κ∑
a=1

rankQa = r = rankM(∞). Since
κ∑
a=1

rankQa = r < ∞, the

measure T is of the form T =
κ∑
a=1

Qaδw(a) , with

κ∑
a=1

rankQa = r and Q1, . . . , Qκ � 0.

To prove T is unique, suppose T̃ is another representing measure for S(∞). By Remark 3.3.6,

we have supp T̃ ⊆ V(I) and by Remark 3.3.11, V(I) ⊆ supp T̃ . As before supp T̃ = V(I), and

moreover,
κ̃∑
b=1

rank Q̃b = r <∞, by Proposition 3.3.9. So T̃ is of the form T̃ =
κ̃∑
b=1

Q̃bδw̃(b) with

κ̃∑
b=1

rank Q̃b = r and Q̃1, . . . , Q̃κ � 0.

Since suppT = V(I) = suppT, we have {w(a)}κa=1 = {w̃(b)}κ̃b=1. Thus κ = κ̃ and w(a) =

w̃(b) = w̃(a) for all a = 1, . . . , κ. By Theorem 1.4.26, there exists Λ = {λ(1), . . . , λ(κ)} ⊆ Nd
0

such that card Λ = κ and V (w(1), . . . , w(κ); Λ) is invertible. Remark 3.1.27 implies then that

V p×p(w(1), . . . , w(κ); Λ) is invertible. The positive semidefinite matrices Q1, . . . , Qκ ∈ Cp×p are

computed by the Vandermonde equation

col(Qa)
κ
a=1 = V p×p(w(1), . . . , w(κ); Λ)−1 col(Sλ)λ∈Λ,

where Q1, . . . , Qκ � 0. Moreover, the positive semidefinite matrices Q̃1, . . . , Q̃κ ∈ Cp×p are

computed by the Vandermonde equation

col(Q̃a)
κ
a=1 = V p×p(w(1), . . . , w(κ); Λ)−1 col(Sλ)λ∈Λ,

where Q̃1, . . . , Q̃κ � 0. Hence col(Qa)
κ
a=1 = col(Q̃a)

κ
a=1 and (Qa)

κ
a=1 = (Q̃a)

κ
a=1 which asserts

that the positive semidefinite matrices Q1, . . . , Qκ are uniquely determined for all a = 1, . . . , κ.

Consequently, the representing measure T is unique and the proof is complete.
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3.3. Necessary conditions for the existence of a representing measure

In analogy to Theorem 3.3.15, we formulate the next corollary for a given truncated

Hp-valued multisequence S := (Sγ)γ∈Γ2n,d
.

Corollary 3.3.16. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence. Suppose

there exist moments (Sγ)γ∈Γ2n+2,d\Γ2n,d
such that M(n+ 1) � 0 and

rankM(n) = rankM(n+ 1).

Then (Sγ)γ∈Γ2n+2,d
has a unique representing measure T . In this case,

suppT = V(M(n+ k)) for k = 1, 2, . . . ,

where V(M(n + k)) denotes the variety of M(n + k) for P (x) ∈ Cp×p[x1, . . . , xd] such that

M(n+ k) col(Pλ)λ∈Γn+k,d
= col(0p×p)λ∈Γn+k,d

for all k = 1, 2, . . . , and moreover,

cardV(M(n+ k)) = r.

Proof. By Lemma 3.4.2, there exist moments (Sγ)γ∈Nd0\Γ2n+2,d
which give rise to a unique se-

quence of extensions

M(n+ k) � 0 for k = 2, 3, . . .

and thus to M(∞) � 0. Hence, by Proposition 3.2.27, (Sγ)γ∈Nd0 has a representing measure

T and its uniqueness follows from Theorem 3.3.15. So if S gives rise to M(n + 1) � 0 and

r := rankM(n + 1) = rankM(n) < ∞, then (Sγ)γ∈Γ2n+2,d
has a unique representing measure

T. Moreover, Lemma 3.3.6 applied for P (x) ∈ Cp×p
n+1[x1, . . . , xd] with

col

( ∑
λ∈Γn,d

Sγ+λPλ

)
γ∈Γn+1,d

= col(0p×p)γ∈Γn+1,d

yields

suppT ⊆ V(M(n+ 1)). (3.24)

Notice that since (Sγ)γ∈Γ2n+2,d
has a representing measure T, for P (x) ∈ Cp×p

n+1[x1, . . . , xd],

Lemma 3.3.7 asserts

V(M(n+ 1)) ⊆ suppT, (3.25)

By inclusions (3.24) and (3.25),

suppT = V(M(n+ 1)).

We need to show suppT = V(M(n + k)) for all k = 1, 2, . . . We apply Lemma 3.3.12 for

P (x) ∈ Cp×p[x1, . . . , xd] such that M(n+ k) col(Pλ)λ∈Γn+k,d
= col(0p×p)λ∈Γn+k,d

. Then

suppT ⊆ V(M(n+ k)) for k = 1, 2, . . . (3.26)
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3.3. Necessary conditions for the existence of a representing measure

Next, since (Sγ)γ∈Nd0 has a representing measure T, (Sγ)γ∈Γ2n+2k,d
has a representing measure

T for all k = 1, 2, . . . , and thus, Lemma 3.3.11 applied for P (x) ∈ Cp×p[x1, . . . , xd] implies

V(M(n+ k)) ⊆ suppT for k = 1, 2, . . . (3.27)

We shall derive suppT = V(M(n + k)) for all k = 1, 2, . . . , by inclusions (3.26) and (3.27).

Furthermore, since T is a representing measure for (Sγ)γ∈Nd0 , then T is a representing measure

for (Sγ)γ∈Γ2n+2k,d
and Lemma 3.3.14 implies cardV(M(n + k)) = r for all k = 1, 2, . . . Hence

κ∑
a=1

rankQa = r <∞ and the measure T is of the form T =
κ∑
a=1

Qaδw(a) with

κ∑
a=1

rankQa = r and Q1, . . . , Qκ � 0.

We next present an algebraic result involving an ideal (see Definition 3.1.14) associated to

an infinite positive moment matrix.

Proposition 3.3.17. If M(∞) � 0 and I ⊆ Cp×p[x1, . . . , xd] is the associated right ideal (see

Definition 3.1.14), then I is real radical.

Proof. We need to show that
∑κ

a=1 P
(a){P (a)}∗ ∈ I ⇒ P (a) ∈ I for all a = 1, . . . , κ. Let

R̂(a) := col
(
I

(a)
p,λ

)
λ=(0,...,0)

⊕ col(0p×p)γ∈Γn+1,d\γ=(0,...,0)

and

P̂ (a) := col
(
P

(a)
λ

)
λ∈Γn,d

⊕ col(0p×p)γ∈Γn+1,d\Γn,d for a = 1, . . . , κ.

Since
κ∑
a=1

{R̂(a)}∗M(n+ 1)P̂ (a) = 0p×p, we may write

κ∑
a=1

col

( ∑
λ∈Γn,d

Sγ+λP
(a)
λ

)
γ∈Γn+1,d

col
(
{P (a)

λ }
∗)
λ∈Γn,d

= 0p×p

and so
κ∑
a=1

col

( ∑
λ∈Γn,d

Sγ+λP
(a)
λ {P

(a)
λ }

∗
)
γ∈Γn+1,d

= 0p×p.

We then have

κ∑
a=1

tr

(
col

( ∑
λ∈Γn,d

Sγ+λP
(a)
λ {P

(a)
λ }

∗
))

γ∈Γn,d

= tr(0p×p)γ∈Γn,d ,

which by properties of the trace is equivalent to

κ∑
a=1

tr

(
col

( ∑
λ∈Γn,d

{P (a)
λ }

∗Sγ+λP
(a)
λ

))
γ∈Γn,d

= tr(0p×p)γ∈Γn,d ,
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3.4. Positive extensions of truncated moment matrices

that is,
κ∑
a=1

tr

(
col

( ∑
λ∈Γn,d

{P (a)
λ }

∗Sγ+λP
(a)
λ

))
γ∈Γn,d

= 0

and thus
κ∑
a=1

col
(
{P (a)

λ }
∗)∗
λ∈Γn,d

col

( ∑
λ∈Γn,d

Sγ+λP
(a)
λ

)
γ∈Γn,d

= 0p×p.

Hence
κ∑
a=1

{P̂ (a)}∗M(n)P̂ (a) = 0p×p,

which implies P (a) ∈ I for all a = 1, . . . , κ as desired.

3.4 Positive extensions of truncated moment matrices

In this section, we investigate positive extensions of truncated moment matrices based on a

truncated Hp-valued multisequence. Both results provided in the following are important for

obtaining the flat extension theorem for matricial moments stated and proved in Chapter 4.

The next lemma will be referred to as the extension lemma.

Lemma 3.4.1. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and let

M(n) be the corresponding moment matrix. If M(n) � 0 has an extension M(n+ 1) such that

M(n+ 1) � 0 and rankM(n+ 1) = rankM(n), then there exist (Sγ)γ∈Nd0\Γ2n,d
such that

M(n+ k) � 0

and

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .

Proof. See Lemma A.0.1 for a proof.

Lemma 3.4.2. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and let

M(n) � 0 be the corresponding moment matrix. Suppose that M(n) has a positive extension

M(n+ 1) with

rankM(n+ 1) = rankM(n).

Then there exists a unique sequence of extensions

M(n+ k) � 0

with

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .

Proof. See Lemma A.0.2 for a proof.
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Chapter 4

The flat extension theorem for

matricial moments

In this chapter we will formulate and prove a flat extension theorem for matricial moments.

We shall see that a given truncated Hp-valued multisequence S := (Sγ)γ∈Γ2n,d
has a minimal

representing measure (see Definition 1.4.38) if and only if the corresponding moment matrix

M(n) has a flat extension M(n+ 1). In this case, one can find a minimal representing measure

such that the support of the minimal representing measure is the variety of the moment matrix

M(n+ 1).

The definition that follows is an adaptation of the notion of flatness introduced by Curto

and Fialkow in [16] to our matricial setting.

Definition 4.0.1. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and

M(n) � 0 be the corresponding moment matrix. Then M(n) has a flat extension if there exist

(Sγ)γ∈Γ2n+2,d\Γ2n,d
, where Sγ ∈ Hp for γ ∈ Γ2n+2,d \ Γ2n,d such that M(n+ 1) � 0 and

rankM(n) = rankM(n+ 1).

Theorem 4.0.2 (flat extension theorem for matricial moments). Let S := (Sγ)γ∈Γ2n,d
be a

given truncated Hp-valued multisequence, M(n) � 0 be the corresponding moment matrix and

r := rankM(n). S has a representing measure

T =
κ∑
a=1

Qaδw(a)

with
κ∑
a=1

rankQa = r

if and only if the matrix M(n) admits an extension M(n+ 1) � 0 such that

rankM(n) = rankM(n+ 1).
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Moreover,

suppT = V(M(n+ 1)),

and there exists Λ = {λ(1), . . . , λ(κ)} ⊆ Nd
0 with card Λ = κ such that the multivariable Van-

dermonde matrix V p×p(w(1), . . . , w(κ); Λ) ∈ Cκp×κp is invertible. Then the positive semidefinite

matrices Q1, . . . , Qκ ∈ Cp×p are given by the Vandermonde equation

col(Qa)
κ
a=1 = V p×p(w(1), . . . , w(κ); Λ)−1 col(Sλ)λ∈Λ.

Proof. Suppose the matrix M(n) � 0 admits an extension M(n+ 1) � 0 such that

rankM(n+ 1) = rankM(n) = r.

By Corollary 3.3.16, (Sγ)γ∈Γ2n+2,d
has a unique representing measure T such that

suppT = V(M(n+ 1)) and cardV(M(n+ 1)) = r,

that is,
κ∑
a=1

rankQa = r.

Consequently, T is of the form

T =
κ∑
a=1

Qaδw(a)

with
κ∑
a=1

rankQa = r.

Conversely, suppose that S has a representing measure T =
κ∑
a=1

Qaδw(a) with

κ∑
a=1

rankQa = r.

Consider the matrix M(n + 1) built from the moments (Sγ)γ∈Γ2n+2,d\Γ2n,d
. T is a representing

measure for M(n+ 1) and so, by Lemma 3.3.8 we obtain

rankM(n+ 1) ≤
κ∑
a=1

rankQa = rankM(n).

The extension lemma (see Lemma 3.4.1) asserts that M(n+ 1) is a flat extension of M(n).
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Chapter 5

The bivariate quadratic matrix-valued

moment problem

In this chapter we will study the bivariate quadratic matrix-valued moment problem. Given

a truncated Hp-valued bisequence S := (Sγ)γ∈Γ2,2 = (S00, S10, S01, S20, S11, S02), we wish to

determine when S has a minimal representing measure. For p = 1, Curto and Fialkow [16]

showed that every S = (Sγ)γ∈Γ2,2 with S00 > 0 and M(1) � 0 has a minimal representing

measure.

Notice that a direct analogue of Curto and Fialkow’s result on the bivariate quadratic

moment problem does not hold when p ≥ 2 (see Example 1.4.40). However, we shall see that

if M(1) is positive semidefinite and certain block column relations hold, then S = (Sγ)γ∈Γ2,2 ,

S00 � 0, has a minimal representing measure.

In the following we shall make use of the assumption (A1) of Remark 1.4.39, that is, S0d = Ip

for d = 2.

The next theorem illustrates necessary and sufficient conditions for a given quadratic

Hp-valued bisequence to have a minimal representing measure. We observe that the positivity

and flatness conditions are essential to obtain a minimal solution to the bivariate quadratic

matrix-valued moment problem.

Theorem 5.0.1. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence and

M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 be the corresponding moment matrix. S has a minimal repre-

senting measure if and only if the following conditions hold:

(i) M(1) � 0.

(ii) There exist S30, S21, S12, S03 ∈ Hp such that

Ran

S20 S11 S02

S30 S21 S12

S21 S12 S03

 ⊆ RanM(1)
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(hence, there exists W = (Wab)
3
a,b=1 ∈ C3p×3p such that M(1)W = B, where

B =

S20 S11 S02

S30 S21 S12

S21 S12 S03

)

and moreover, the following matrix equations hold:

W ∗
11S11 +W ∗

21S21 +W ∗
31S12 = S11W11 + S21W21 + S12W31, (5.1)

W ∗
13S20 +W ∗

23S30 +W ∗
33S21 = W ∗

12S11 +W ∗
22S21 +W ∗

32S12 (5.2)

and

W ∗
12S02 +W ∗

22S12 +W ∗
32S03 = S02W12 + S12W22 + S03W32. (5.3)

Proof. Since

Ran

S20 S11 S02

S30 S21 S12

S21 S12 S03

 ⊆ RanM(1),

there exists W = (Wab)
3
a,b=1 ∈ C3p×3p such that

B :=

S20 S11 S02

S30 S21 S12

S21 S12 S03

 = M(1)W.

Let W :=

W11 W12 W13

W21 W22 W23

W31 W32 W33

 . Then

S20 = W11 + S10W21 + S01W31, (5.4)

S30 = S10W11 + S20W21 + S11W31, (5.5)

S21 = S01W11 + S11W21 + S02W31 (5.6)

= S10W12 + S20W22 + S11W32,

S11 = W12 + S10W22 + S01W32, (5.7)

S12 = S01W12 + S11W22 + S02W32 (5.8)

= S10W13 + S20W23 + S11W33,

S02 = W13 + S10W23 + S01W33 (5.9)

and

S03 = S01W13 + S11W23 + S02W33. (5.10)
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Let C := W ∗M(1)W = W ∗B and write C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 . By formulas (5.6), (5.7) and

(5.8), we have

C12 = W ∗
11S11 +W ∗

21S21 +W ∗
31S12

= W ∗
11(W12 + S10W22 + S01W32) +W ∗

21(S10W12 + S20W22 + S11W32)

+W ∗
31(S01W12 + S11W22 + S02W32).

Since the matrix equation (5.1) holds, C12 = C∗12 = C21. Next, by formulas (5.6), (5.7) and

(5.8),

C22 = W ∗
12S11 +W ∗

22S21 +W ∗
32S12

= W ∗
12(W12 + S10W22 + S01W32) +W ∗

22(S10W12 + S20W22 + S11W32)

+W ∗
32(S01W12 + S11W22 + S02W32)

and by formulas (5.4), (5.5) and (5.6),

C31 = W ∗
13S20 +W ∗

23S30 +W ∗
33S21

= W ∗
13(W11 + S10W21 + S01W31) +W ∗

23(S10W11 + S20W21 + S11W31)

+W ∗
33(S01W11 + S11W21 + S02W31).

Since the matrix equation (5.2) holds, C22 = C31. Moreover, by formulas (5.8), (5.9) and (5.10),

C23 = W ∗
12S02 +W ∗

22S12 +W ∗
32S03

= W ∗
12(W13 + S10W23 + S01W33) +W ∗

22(S10W13 + S20W23 + S11W33)

+W ∗
32(S01W13 + S11W23 + S02W33).

Since the matrix equation (5.3) holds, C23 = C∗23 = C32. Thus, by Lemma 1.4.24,

M(2) :=

(
M(1) B

B∗ C

)
� 0

is a flat extension of M(1). By the flat extension theorem for matricial moments (see Theorem

4.0.2), there exists a minimal representing measure T for S.

Conversely, if S has a minimal representing measure, then by the flat extension theorem for

matricial moments (see Theorem 4.0.2), there exists a flat extension M(2) :=

(
M(1) B

B∗ C

)
� 0

of M(1) such that rankM(1) = rankM(2). By Lemma 1.4.24, C = W ∗M(1)W for some

W ∈ C3p×3p such that

B :=

S20 S11 S02

S30 S21 S12

S21 S12 S03

 = M(1)W
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and consequently, RanB ⊆ RanM(1). Hence there exists W :=

W11 W12 W13

W21 W22 W23

W31 W32 W33

 satisfying

B = M(1)W. Since C =

S40 S31 S22

S31 S22 S13

S22 S13 S04

 = W ∗M(1)W, we have

S31 = W ∗
11S11 +W ∗

21S21 +W ∗
31S12,

S22 = W ∗
13S20 +W ∗

23S30 +W ∗
33S21

= W ∗
12S11 +W ∗

22S21 +W ∗
32S12

and

S13 = W ∗
12S02 +W ∗

22S12 +W ∗
32S03.

We derive the matrix equations (5.1), (5.2) and (5.3), respectively.

The next corollary is a special case of Theorem 5.0.1 when M(1) � 0.

Corollary 5.0.2. Let S := (Sγ)γ∈Γ2,2 ∈ Hp be a given truncated Hp-valued bisequence. Sup-

pose M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 � 0 and write M(1)−1 = (Pab)
3
a,b=1. S has a minimal

representing measure if and only if there exist S30, S21, S12, S03 ∈ Hp such that the following

matrix equations have a solution:

(S20P13 + S30P23 + S21P33)S12 − S12(S20P13 + S30P23 + S21P33)∗ = R1, (5.11)

(S20P13 + S30P23 + S21P33)S03 − S030p×p = R2 (5.12)

and

(S11P13 + S21P23 + S12P33)S03 − S03(S11P13 + S21P23 + S12P33)∗ = R3, (5.13)

where

R1 = S11P11S20 + S11P12S30 + S11P13S21 + S21P
∗
12S20

+ S21P22S30 + S21P23S21 − S20P11S11 − S30P
∗
12S11

− S21P
∗
13S11 − S20P12S21 − S30P22S21 − S21P

∗
23S21,

R2 = S11P11S11 + S21P
∗
12S11 + S12P

∗
13S11 + S11P12S21 + S21P22S21

+ S12P
∗
23S21 + S11P13S12 + S21P23S12 + S12P33S12 − S20P11S02

− S30P
∗
12S02 − S21P

∗
13S02 − S20P12S12 − S30P22S12 − S21P

∗
23S12
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and

R3 = S02P11S11 + S02P12S21 + S02P13S12 + S12P
∗
12S11

+ S12P22S21 + S12P23S12 − S11P11S02 − S21P
∗
12S02

− S12P
∗
13S02 − S11P12S12 − S21P22S12 − S12P

∗
23S12.

Proof. Write

M(1)−1 =

P11 P12 P13

P ∗12 P22 P23

P ∗13 P ∗23 P33



and let W = M(1)−1B, where B :=

S20 S11 S02

S30 S21 S12

S21 S12 S03

 . Then we get M(1)W = B. Write

W :=

W11 W12 W13

W21 W22 W23

W31 W32 W33

 and notice that

W11 = P11S20 + P12S30 + P13S21,

W21 = P ∗12S20 + P22S30 + P23S21,

W31 = P ∗13S20 + P ∗23S30 + P33S21,

W12 = P11S11 + P12S21 + P13S12,

W22 = P ∗12S11 + P22S21 + P23S12,

W32 = P ∗13S11 + P ∗23S21 + P33S12,

W13 = P11S02 + P12S12 + P13S03,

W23 = P ∗12S02 + P22S12 + P23S03

and

W33 = P ∗13S02 + P ∗23S12 + P33S03.

We fix the moments S30, S21 ∈ Hp. The matrix equation (5.1) in Theorem 5.0.1 then becomes

the Lyapunov equation, namely the matrix equation (5.11)

A1S12 − S12A
∗
1 = R1,

where A1 = S20P13 + S30P23 + S21P33 and

R1 = S11P11S20 + S11P12S30 + S11P13S21 + S21P
∗
12S20

+ S21P22S30 + S21P23S21 − S20P11S11 − S30P
∗
12S11

− S21P
∗
13S11 − S20P12S21 − S30P22S21 − S21P

∗
23S21.

75



We next fix the moments S30, S21 and the matrix equation (5.2) in Theorem 5.0.1 yields the

following Sylvester equation, namely the matrix equation (5.12)

A2S03 − S030p×p = R2,

where A2 = S20P13 + S30P23 + S21P33 = A1 and

R2 = S11P11S11 + S21P
∗
12S11 + S12P

∗
13S11 + S11P12S21 + S21P22S21

+ S12P
∗
23S21 + S11P13S12 + S21P23S12 + S12P33S12 − S20P11S02

− S30P
∗
12S02 − S21P

∗
13S02 − S20P12S12 − S30P22S12 − S21P

∗
23S12.

Next, we fix the moments S12, S21. The matrix equation (5.3) in Theorem 5.0.1 yields the

following Lyapunov equation, namely the matrix equation (5.13)

A3S03 − S03A
∗
2 = R3,

where A3 = S11P13 + S21P23 + S12P33 and

R3 = S02P11S11 + S02P12S21 + S02P13S12 + S12P
∗
12S11

+ S12P22S21 + S12P23S12 − S11P11S02 − S21P
∗
12S02

− S12P
∗
13S02 − S11P12S12 − S21P22S12 − S12P

∗
23S12.

Since there exist S30, S21, S12, S03 ∈ Hp such that the above matrix equations have a solution,

Theorem 5.0.1 asserts that there exists a minimal representing measure T for S.

Conversely, if S has a minimal representing measure, then by Theorem 5.0.1, there ex-

ists W :=

W11 W12 W13

W21 W22 W23

W31 W32 W33

 such that M(1)W =

S20 S11 S02

S30 S21 S12

S21 S12 S03

 := B and the matrix

equations (5.1), (5.2) and (5.3) hold. Since M(1) � 0, we have W = M(1)−1B. The matrix

equations (5.11), (5.12) and (5.13) follow from the matrix equations (5.1), (5.2) and (5.3),

respectively.

In the following theorem we obtain a minimal representing measure for a given truncated

Hp-valued bisequence when the associated moment matrix has certain block column relations.

Moreover, we extract information on the support of the representing measure observing its

connection with the aforementioned block column relations. Theorem 5.0.3 can be thought of

as an analogue of [16, Proposition 6.2] for p > 1.

Theorem 5.0.3. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence. Suppose

M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 � 0 and X = 1 · Φ and Y = 1 ·Ψ for Φ,Ψ ∈ Cp×p.
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Then Φ = S10 and Ψ = S01 and there exists a minimal (that is,
κ∑
a=1

rankQa = p) representing

measure T for S of the form

T =
κ∑
a=1

Qaδw(a) ,

where 1 ≤ κ ≤ p and

suppT = {w(1), . . . , w(κ)} ⊆ σ(Φ)× σ(Ψ).

Proof. Since X = 1 · Φ and Y = 1 ·Ψ for Φ,Ψ ∈ Cp×p, we have

S10 = Φ = Φ∗, (5.14)

S20 = S10Φ = Φ2, (5.15)

S01 = Ψ = Ψ∗, (5.16)

S02 = S01Ψ = Ψ2

and

S11 = S10Ψ = ΦΨ. (5.17)

Let

S30 := S10Φ = S20, (5.18)

S21 := S01Φ = ΨΦ, S12 := S10Ψ = ΦΨ = S11

and

S03 := S01Ψ = S02. (5.19)

Then S30, S12 ∈ Hp and S03 ∈ Hp. Moreover, S∗21 = Φ∗Ψ∗ = S∗12 = S12 = S11 and so S21 ∈ Hp

and

S12 = S11 = S21, (5.20)

that is,

ΦΨ = ΨΦ. (5.21)

If we let W :=

0 0 0

Φ Ψ 0

0 0 Ψ

 , then B :=

S20 S11 S02

S30 S21 S12

S21 S12 S03

 = M(1)W.

Notice that B =

S20 S11 S02

S20 S11 S11

S11 S11 S02

 , by formulas (5.18), (5.19) and (5.20). Let

C := W ∗M(1)W = W ∗B =

Φ∗S20 Φ∗S11 Φ∗S11

Ψ∗S20 Ψ∗S11 Ψ∗S11

Ψ∗S11 Ψ∗S11 Ψ∗S02
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and write C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 . In order for C to have the appropriate block Hankel struc-

ture we need to show

Ψ∗S20 = Φ∗S11 and Ψ∗S11 = Φ∗S11.

By formulas (5.14), (5.15) and (5.21),

Ψ∗S20 = Ψ∗Φ2 = ΨΦ2 = ΨΦΦ = ΦΨΦ.

By formulas (5.16), (5.17) and (5.21), we have

Φ∗S11 = Φ∗ΦΨ = Φ2Ψ = ΦΦΨ = ΦΨΦ = Ψ∗S20

as desired. Furthermore, we have C22 = C31 = Ψ∗S11. Thus C31 = Ψ∗S11 ∈ Hp. However

C31 = C∗13 forces C13 = C22 = C31. Hence

M(2) :=

(
M(1) B

B∗ C

)
� 0

is a flat extension of M(1) by Lemma 1.4.24. By the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure T for S of the form

T =
κ∑
a=1

Qaδw(a)

such that suppT = V(M(2)), where

κ∑
a=1

rankQa = cardV(M(2)) = rankM(1) = p.

Since X = 1 · Φ and Y = 1 ·Ψ, the matrix-valued polynomials

P1(x, y) = xIp − Φ and P2(x, y) = yIp −Ψ

are such that P1(X, Y ) = P2(X, Y ) = col(0p×p)γ∈Γ1,2 ∈ CM(2).

Lemma 3.3.6 implies that

suppT = V(M(2)) ⊆ Z(det(P1(x, y)))
⋂
Z(det(P2(x, y)))

= {(x, y) ∈ R2 : det(xIp − Φ) = 0}⋂
{(x, y) ∈ R2 : det(yIp −Ψ) = 0}

= σ(Φ)× σ(Ψ).

Thus

suppT = {w(1), . . . , w(κ)} ⊆ V(M(2)) = σ(Φ)× σ(Ψ)
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and

T =
κ∑
a=1

Qaδw(a)

is a representing measure for S with
κ∑
a=1

rankQa = p. Since 1 ≤ rankQa ≤ p, we must have

1 ≤ κ ≤ p.

The following example showcases Theorem 5.0.3 for an explicit truncated H2-valued bise-

quence.

Example 5.0.4. Let S := (Sγ)γ∈Γ2,2 be a truncated H2-valued bisequence given by

M(1) =


1 X Y

1 I2 S10 S01

X S10 S20 S11

Y S01 S11 S02

 =



1 0 1 0 0 0

0 1 0 0 0 1

1 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1


� 0

and suppose X = 1 ·Φ and Y = 1 ·Ψ for Φ = S10 and Ψ = S01. The matrix-valued polynomials

P1(x, y) = xI2 − Φ and P2(x, y) = yI2 −Ψ are such that

P1(X, Y ) = P2(X, Y ) = col(02×2)γ∈Γ1,2 ∈ CM(1)

and we have det(P1(x, y)) = x(x − 1) and det(P2(x, y)) = y(y − 1). By Theorem 5.0.3, M(1)

has a flat extension of the form

M(2) :=

(
M(1) B

B∗ C

)
=



1 X Y X2 XY Y 2

1 I2 S10 S01 S20 S11 S02

X S10 S20 S11 S20 S11 S11

Y S01 S11 S02 S11 S11 S02

X2 S20 S20 S11 S40 S31 S22

XY S11 S11 S11 S31 S22 S13

Y 2 S02 S11 S02 S22 S13 S04


� 0

and there exists a minimal representing measure T =
κ∑
a=1

Qaδw(a) , where 1 ≤ κ ≤ 2 and

suppT ⊆ σ(Φ)× σ(Ψ)

= Z(det(P1(x, y)))
⋂
Z(det(P2(x, y)))

= {(0, 0), (1, 0), (0, 1), (1, 1)}.

We note that M(2) is also described by the block column relation X + Y = 1 and so the
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matrix-valued polynomial P3(x, y) = I2 − xI2 − yI2 is such that

P3(X, Y ) = P1(X, Y ) = P2(X, Y ) = col(02×2)γ∈Γ1,2 ∈ CM(2).

Then det(P3(x, y)) = (1− x− y)2 and hence V(M(2)) ⊆ {(1, 0), (0, 1)}. We will show

V(M(2)) = {(1, 0), (0, 1)}.

Indeed, if V(M(2)) 6= {(1, 0), (0, 1)}, then since 1 ≤ κ ≤ 2,

V(M(2)) = {(1, 0)} or V(M(2)) = {(0, 1)}.

If V(M(2)) = {(1, 0)}, then

T = Q1δ(1,0)

is a representing measure for S, where rankQ1 = 2. But then rankQ1 = rankS20 = 2, a

contradiction. Similarly, if V(M(2)) = {(0, 1)}, then

T = Q1δ(0,1)

is a representing measure for S, where rankQ1 = 2. However rankQ1 = rankS01 = 2, a

contradiction. Hence κ 6= 1 and

V(M(2)) = {(1, 0), (0, 1)}.

We will now compute a representing measure for S. Remark 3.1.27 for Λ = {(0, 0), (1, 0)} ⊆ N2
0

asserts that the multivariable Vandermonde matrix

V 2×2((1, 0), (0, 1); Λ) =


1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0


is invertible. By the flat extension theorem for matricial moments (see Theorem 4.0.2), the

positive semidefinite matrices Q1, Q2 ∈ C2×2 are given by the Vandermonde equation

col(Qa)
2
a=1 = V 2×2((1, 0), (0, 1); Λ)−1 col(Sλ)λ∈Λ. (5.22)

We have

V 2×2((1, 0), (0, 1); Λ)−1 =


0 0 1 0

0 0 0 1

1 0 −1 0

0 1 0 −1
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and thus by equation (5.22),

Q1 =

(
1 0

0 0

)
and Q2 =

(
0 0

0 1

)
,

where rankQ1 = rankQ2 = 1. Hence T =
2∑

a=1

Qaδw(a) is a representing measure for S with

rankQ1 + rankQ2 = 2.

Next, we shall see that every truncated Hp-valued bisequence S := (Sγ)γ∈Γ2,2 with a certain

description has a minimal representing measure and we will describe its support.

Theorem 5.0.5. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence with moments

S10 = S01 = S11 = S20 = 0p×p. Suppose

M(1) =


1 X Y

1 Ip 0 0

X 0 0 0

Y 0 0 S02

 � 0.

Then S has a minimal representing measure T with

suppT ⊆ {(x, y) ∈ R2 : y2 ∈ σ(S02)}.

Proof. Let S30 = S21 = S12 = S03 = 0p×p. Then W :=

0 0 S02

0 0 0

0 0 0

 will satisfy

B := M(1)W =

0 0 S02

0 0 0

0 0 0

 and C := W ∗M(1)W =

0 0 0

0 0 0

0 0 S2
02

 .

Lemma 1.4.24 asserts that M(2) :=

(
M(1) B

B∗ C

)
� 0 is a flat extension of M(1). By the

flat extension theorem for matricial moments (see Theorem 4.0.2), there exists a minimal

representing measure T for S with suppT = V(M(2)). Let P (0,2)(x, y) = y2Ip−S02 ∈ Cp×p[x, y]

and notice that
V(M(2)) ⊆ Z(det(P (2,0)(x, y)))

= {(x, y) ∈ R2 : det(y2Ip − S02) = 0}
.

Since P (0,2)(y, 0) is not invertible, there exists η ∈ Cp \ {0} such that y2η = S02η. Thus

y2 ∈ σ(S02) and

suppT = V(M(2)) ⊆ {(x, y) ∈ R2 : y2 ∈ σ(S02)}.
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Definition 5.0.6. Let P (x) =
∑

λ∈Γn,2

xλPλ ∈ Cp×p
2 [x, y] and consider the matrix J ∈ C6p×6p.

Suppose the map Ψ(x, y) : R2 → (Cp×p,Cp×p) is given by Ψ(x, y) = (Ψ1(x, y),Ψ2(x, y)) with

Ψ1(x, y) = J00 + J10x+ J01y and Ψ2(x, y) = K00 +K10x+K01y

for some J00, J10, J01, K00, K10, K01 ∈ Cp×p. J is defined as a transformation matrix given by

JP̂ = P̂00 + Ψ1P̂10 + Ψ2P̂01 + Ψ2
1P̂20 + Ψ1Ψ2P̂11 + Ψ∗2Ψ2P̂02.

If J is invertible, then we may view J−1 as the matrix given by

J−1P̂ = P̂00 + Ψ−1
1 P̂10 + Ψ−1

2 P̂01 + (Ψ−1
1 )2P̂20 + Ψ−1

1 Ψ−1
2 P̂11 + Ψ−∗2 Ψ−1

2 P̂02,

where

Ψ−1
1 (x, y) = J̃00 + J̃10x+ J̃01y and Ψ−1

2 (x, y) = K̃00 + K̃10x+ K̃01y

for some J̃00, J̃10, J̃01, K̃00, K̃10, K̃01 ∈ Cp×p.

In the next theorem we derive a minimal representing measure for a given truncated

Hp-valued bisequence when the associated moment matrix has a certain block column relation.

Theorem 5.0.7 can be considered as an analogue of [16, Proposition 6.3] for p > 1.

Theorem 5.0.7. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence and suppose

M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 � 0,

(
Ip S10

S10 S20

)
� 0

and Y = 1 ·W1 +X ·W2 for W1,W2 ∈ Cp×p. Then the following statements hold:

(i) There exist J00, J10, J01, K00, K10, K01 ∈ Cp×p such that J (as in Definition 5.0.6) is invert-

ible, and if we write J =

(
J11 J12

J12 J22

)
, where J11 ∈ C3p×3p, then J∗11M(1)J11 =

Ip 0 0

0 0 0

0 0 S̃02

 ,

where S̃02 = S20 − S2
10 ∈ Hp.

(ii) Let J be as in (i). Let S̃ = (S̃γ)γ∈Γ2,2 be a truncated Hp-valued bisequence given by S̃10 =

S̃01 = S̃11 = 0p×p = S̃20, and let M̃(1) =

Ip 0 0

0 0 0

0 0 S̃02

 be the corresponding moment matrix. If

M̃(2) is a flat extension of M̃(1) such that J−∗M̃(2)J−1 is of the form M(2) :=

(
M(1) B

B∗ C

)
,

for some choice of (Sγ)γ∈Γ2,4\Γ2,2 with Sγ ∈ Hp for γ ∈ Γ2,4 \ Γ2,2, then S has a minimal

representing measure.
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Proof. (i) Let J ∈ C6p×6p be the transformation matrix given in Definition 5.0.6 where

J00 = −S10(S20 − S2
10)−1(S10S01 − S11)− S01,

J10 = (S20 − S2
10)−1(S10S01 − S11), J01 = Ip,

K00 = −S10, K10 = Ip and K01 = 0p×p.

J is invertible and we write J =

(
J11 J12

J12 J22

)
, where J11 ∈ C3p×3p. Then J−1

11 =

Ip J̃00 K̃00

0 J̃10 K̃10

0 J̃01 K̃01

 ,

where J̃00 = S10, J̃10 = 0p×p, J̃01 = Ip, K̃00 = S01, K̃10 = Ip, and K̃01 = −(S20−S2
10)−1(S10S01−

S11) and J∗11M(1)J11 =

Ip 0 0

0 0 0

0 0 S̃02

 , where S̃02 = S20 − S2
10 ∈ Hp.

(ii) Let J be as in (i). Since M̃(2) is a flat extension of M̃(1) and

J−∗M̃(2)J−1 = M(2) :=

(
M(1) B

B∗ C

)
,

we have that M(2) � 0 and

2p = rankM(1) ≤ rankM(2) = rank M̃(2) = rank M̃(1) = 2p.

Thus M(2) is a flat extension of M(1) and so by the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure T for S.

Definition 5.0.8. ([40, p. 405]) If A,B ∈ Cn×n, then the set of all matrices of the form

A − λB, λ ∈ C is a pencil . The generalised eigenvalues of A − λB are elements of the set

σ(A,B) defined by

σ(A,B) := {λ ∈ C : det(A− λB) = 0}.

In the next theorem we shall see that every truncated Hp-valued bisequence S := (Sγ)γ∈Γ2,2

with M(1) � 0 being block diagonal has a minimal representing measure.

Theorem 5.0.9. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence with moments

S10 = S01 = S11 = 0p×p. Suppose M(1) =


1 X Y

1 Ip 0 0

X 0 S20 0

Y 0 0 S02

 � 0. Then S has a minimal

representing measure T with

suppT = {(x, 0) : x ∈ σ(S−1
20 S02,−S02)} ∪ {(1, y) : y2 ∈ σ(S02 + S−1

20 S02)},

where σ(S−1
20 S02,−S02) is the set of generalised eigenvalues of {S−1

20 S02,−S02.}
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Proof. Let B :=

S20 0 S02

S30 S21 S12

S21 S12 S03

 . We have W := M(1)−1B =

 S20 0 S02

S−1
20 S30 S−1

20 S21 S−1
20 S12

S−1
02 S21 S−1

02 S12 S−1
02 S03

 .

We then let C := W ∗M(1)W = W ∗B and we write

C11 C12 C13

C21 C22 C23

C31 C32 C33

 .

Notice that

C12 = S30S
−1
20 S21 + S21S

−1
02 S21,

C13 = S20S02 + S30S
−1
20 S12 + S21S

−1
02 S03,

C22 = S21S
−1
20 S21 + S12S

−1
02 S12

and

C23 = S21S
−1
20 S12 + S12S

−1
02 S03.

Let S21 := 0p×p and S03 := 0p×p. Then C12 = 0p×p = C23 ∈ Hp and

C22 = C13 (5.23)

if and only if

S12S
−1
02 S12 = S20S02 + S30S

−1
20 S12. (5.24)

We assume S12 is invertible and we solve equation (5.24) for S30. We obtain

S30 = (S12S
−1
02 S12 − S20S02)S−1

12 S20.

Hence

S30 = S12S
−1
02 S20 − S20S02S

−1
12 S20.

Let S12 := S02 � 0 and S30 := S20 − S2
20. Then S30 ∈ Hp and equation (5.23) holds. Hence,

by Lemma 1.4.24 M(2) :=

(
M(1) B

B∗ C

)
� 0 is a flat extension of M(1). By the flat exten-

sion theorem for matricial moments (see Theorem 4.0.2), there exists a minimal representing

measure T for S. We now write

B =

S20 0 S02

S30 0 S02

0 S02 0


and W becomes

W = M(1)−1B =

 S20 0 S02

Ip − S20 0 S−1
20 S02

0 Ip 0

 .
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We let the following matrix-valued polynomials in Cp×p[x, y]:

P (2,0)(x, y) = x2Ip − S20 − x(Ip − S20),

P (1,1)(x, y) = xyIp − yIp

and

P (0,2)(x, y) = y2Ip − S02 − x(S−1
20 S02).

Let Z20 := Z(det(P (2,0)(x, y))), Z11 := Z(det(P (1,1)(x, y))) and Z02 := Z(det(P (0,2)(x, y))).

Then

suppT = Z20

⋂
Z11

⋂
Z02.

We observe that (x, y) ∈ Z20 if and only if P (2,0)(x, y) is singular, i.e., there exists a nonzero

vector ξ ∈ Cp \ {0} such that

{x2Ip − S20 − x(Ip − S20)}ξ = 0,

that is,

x(x− 1)ξ = −(x− 1)S20ξ. (5.25)

We have Z11 = {(1, y) : y ∈ R} ∪ {(x, 0) : x ∈ R} and, in view of equation (5.25), we get

Z11 ∩ Z20 = {(x, 0) : −x ∈ σ(S20)} ∪ {(1, y) : y ∈ R}.

Notice that P (0,2)(x, y) is singular if and only if

y2ξ = (S02 + S−1
20 S02x)ξ for ξ ∈ Cp \ {0}. (5.26)

By equations (5.25) and (5.26) we see that

Z11 ∩ Z20 ∩ Z02 = {(x, 0) : ξ ∈ Cp \ {0} such that xS−1
20 S02ξ = −S02ξ}

∪ {(1, y) : ξ ∈ Cp \ {0} such that y2ξ = (S02 + S−1
20 S02)ξ},

that is,

Z11 ∩ Z20 ∩ Z02 = {(x, 0) : x ∈ σ(S−1
20 S02,−S02)} ∪ {(1, y) : y2 ∈ σ(S02 + S−1

20 S02)},

where σ(S−1
20 S02,−S02) is the set of generalised eigenvalues of {S−1

20 S02,−S02.}
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Remark 5.0.10. We note that the set {(x, 0) : x ∈ σ(S−1
20 S02,−S02)} describing the support

of the representing measure in Theorem 5.0.9 is finite. Notice that both S−1
20 S02 and −S02

are invertible and thus the upper triangular matrices appearing in the respective Generalised

Schur Decomposition are invertible. Hence the set of generalised eigenvalues of {S−1
20 S02,−S02}

σ(S−1
20 S02,−S02) is finite. We refer the reader to [40, Theorem 7.7.1] for further details.

In the next theorem we shall see that every truncated Hp-valued bisequence S := (Sγ)γ∈Γ2,2

with M(1) � 0 satisfying a certain matrix transformation has a minimal representing measure.

We note that if p = 1, then Theorem 5.0.11 can be viewed as an analogue of [16, Proposition

6.5], albeit M(1) � 0 is sufficient to prove that there exists a minimal representing measure.

Theorem 5.0.11. Let S := (Sγ)γ∈Γ2,2 be a given truncated Hp-valued bisequence and suppose

M(1) =


1 X Y

1 Ip S10 S01

X S10 S20 S11

Y S01 S11 S02

 � 0.

(i) There exist J00, J10, J01, K00, K10, K01 ∈ Cp×p such that J (as in Definition 5.0.6) is invert-

ible, and if we write J =

(
J11 J12

J12 J22

)
, where J11 ∈ C3p×3p, then J∗11M(1)J11 =

Ip 0 0

0 Ip 0

0 0 Ip

 .

(ii) Let J be as in (i). Let S̃ = (S̃γ)γ∈Γ2,2 be a truncated Hp-valued bisequence given by

S̃10 = S̃01 = S̃11 = 0p×p and let M̃(1) =

Ip 0 0

0 Ip 0

0 0 Ip

 be the corresponding moment matrix. If

M̃(2) is a flat extension of M̃(1) such that J−∗M̃(2)J−1 is of the form M(2) :=

(
M(1) B

B∗ C

)
,

for some choice of (Sγ)γ∈Γ2,4\Γ2,2 with Sγ ∈ Hp for γ ∈ Γ2,4 \ Γ2,2, then S has a minimal

representing measure.

Proof. (i) Suppose Θ = S20 − S2
10. Θ � 0, by a Schur complement argument applied to

M(1) � 0. Let

Ω = −(S10S01 − S11)∗(S20 − S2
10)−1(S10S01 − S11) + S02 − S2

01

and J ∈ C3p×3p be as in Definition 5.0.6 with

J00 = −S10(S20 − S2
10)−1(S10S01 − S11)− S01,

J10 = (S20 − S2
10)−1(S10S01 − S11),J01 = Ip,

K00 = −S10,K10 = Ip and K01 = 0p×p.

Then J is invertible and if we write J =

(
J11 J12

J12 J22

)
, where J11 ∈ C3p×3p, then J11 is

invertible and the (2, 2) block of J ∗11M(1)J11 � 0 is given by Ω, and hence Ω � 0. Next we let

J ∈ C6p×6p be the transformation matrix given in Definition 5.0.6 where
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J00 = {−S10(S20 − S2
10)−1(S10S01 − S11)− S01}Ω−1/2,

J10 = (S20 − S2
10)−1(S10S01 − S11)Ω−1/2, J01 = Ω−1/2,

K00 = −S10Θ−1/2, K10 = Θ−1/2 and K01 = 0p×p.

Then J is invertible and we write J =

(
J11 J12

J12 J22

)
, where J11 ∈ C3p×3p. We then have J−1

11 =Ip J̃00 K̃00

0 J̃10 K̃10

0 J̃01 K̃01

 , where J̃00 = S10, J̃10 = 0p×p, J̃01 = Θ1/2, K̃00 = S01, K̃10 = Ω1/2, K̃01 =

−Θ−1/2(S10S01 − S11) and J∗11M(1)J11 =

Ip 0 0

0 Ip 0

0 0 Ip

 .

(ii) Let J be as in (i) . Since M̃(2) is a flat extension of M̃(1) and

J−∗M̃(2)J−1 = M(2) :=

(
M(1) B

B∗ C

)
,

we have that M(2) � 0 and

3p = rankM(1) ≤ rankM(2) = rank M̃(2) = rank M̃(1) = 3p.

Hence M(2) is a flat extension of M(1) and so by the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure T for S.
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Appendix A

Proof of the extension lemma

The goal of this Appendix is to provide proofs for Lemma 3.4.1 and Lemma 3.4.2, which deal

with extensions of moment matrices based on matricial moments.

Lemma A.0.1 (extension lemma). Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued mul-

tisequence and let M(n) be the corresponding moment matrix. If M(n) � 0 has an extension

M(n+1) such that M(n+1) � 0 and rankM(n+1) = rankM(n), then there exist (Sγ)γ∈Nd0\Γ2n,d

such that

M(n+ k) � 0

and

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .

Proof. We first consider the case when d = 2, while the general case d > 2 can be proved

similarly. We have

M(n) � 0 and rankM(n) = rankM(n− 1).

We wish to choose moments (Sγ)γ∈N2
0\Γ2n,2

such that M(n+ 1) � 0 and

rankM(n+ 1) = rankM(n).

There exist matrix-valued polynomials in Cp×p
n [x, y]

P (a,b)(x, y) = xaybIp −
∑

(j,k)∈Γn−1,2

xjykP
(a,b)
jk ,

with (a, b) ∈ Γn,2

P (n,0)(x, y) = xnIp −
∑

(j,k)∈Γn−1,2

xjykP
(n,0)
jk

and

P (0,n)(x, y) = ynIp −
∑

(j,k)∈Γn−1,2

xjykP
(0,n)
jk

such that

P (a,b)(X, Y ) = P (n,0)(X, Y ) = P (0,n)(X, Y ) = col(0p×p)γ∈Γn,d . (A.1)
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Let the new moments in M(n+ 1) be defined by

Xn+1 = (xP (n,0))(X, Y ) and Y n+1 = (yP (0,n))(X, Y ).

Write Xn+1 ∈ CM(n+1) as

Xn+1 = (xP (n,0))(X, Y )

= col

(
Sn+1+c,d

)
(c,d)∈Γn+1,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk

)
(c,d)∈Γn+1,2

and Y n+1 ∈ CM(n+1) as

Y n+1 = (yP (0,n))(X, Y )

= col

(
Sc,d+n+1

)
(c,d)∈Γn+1,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk

)
(c,d)∈Γn+1,2

.

We shall proceed by following certain steps to check that there exists a rank preserving exten-

sion M(n+ 1). We write

M(n+ 1) =

(
M(n) B

B∗ C

)
,

where

M(n) ∈ C(card Γn,2)p×(card Γn,2)p,

B ∈ C(card Γn,2)p×(card(Γn+1,2\Γn,2))p

and

C ∈ C(card Γn+1,2\Γn,2)p×(card(Γn+1,2\Γn,2))p.

Step 1: We need to show that

Sn+1+c,d =
∑

(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk (A.2)

for all (n+ 1 + c, d) ∈ Γ2n,2, that is, (c, d) ∈ Γn−1,2. Similarly, we must prove

Sc,d+n+1 =
∑

(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk (A.3)

for all (c, d+ n+ 1) ∈ Γ2n,2, that is, (c, d) ∈ Γn−1,2.
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We have Xn = P (n,0)(X, Y ) ∈ CM(n), which is equivalent to

col

(
Sn+`,m

)
(`,m)∈Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j,m+kP
(n,0)
jk

)
(`,m)∈Γn,2

.

Thus Sn+`,m =
∑

(j,k)∈Γn−1,2

S`+j,m+kP
(n,0)
jk for all (`,m) ∈ Γn,2. Let ` = c+ 1 and m = d. We then

have (`,m) ∈ Γn,2 and so the equation (A.2) holds for all (c, d) ∈ Γn−1,2. Similarly, since

Y n = P (0,n)(X, Y ) ∈ CM(n),

that is,

col

(
S`,m+n

)
(`,m)∈Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j,m+kP
(0,n)
jk

)
(`,m)∈Γn,2

,

we obtain S`,m+n =
∑

(j,k)∈Γn−1,2

S`+j,m+kP
(0,n)
jk for all (`,m) ∈ Γn,2. Let ` = c and m = d + 1.

Then (`,m) ∈ Γn,2 and thus the equation (A.3) holds for all (c, d) ∈ Γn−1,2. Notice that the

moments

col

(
Sc+n+1,d

)
(c,d)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk

)
(c,d)∈Γn+1,2\Γn,2

are already defined. We wish to show that for all (c, d) ∈ Γn,2,

Sn+1+c,d :=
∑

(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk ∈ Hp,

which are new moments. For this, considerM as the submatrix of M(n+1) with block columns

indexed by {(j+c+1, d+k) : (j, k) ∈ Γn−1,2} and block rows indexed by (j, k) ∈ Γn−1,2. Notice

that M is Hermitian. We have

∑
(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk = col

(
Sc+j+1,d+k

)∗
(j,k)∈Γn−1,2

col

(
P

(n,0)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(n,0)
jk

)∗
(j,k)∈Γn−1,2

M col

(
P

(n,0)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(n,0)
jk

)∗
(j,k)∈Γn−1,2

col

(
Sc+j+1,d+k

)
(j,k)∈Γn−1,2

=
∑

(j,k)∈Γn−1,2

P
(n,0)
jk

∗
Sc+j+1,d+k

= S∗n+1+c,d.

Similarly, we shall note that

col

(
Sc,n+1+d

)
(c,d)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk

)
(c,d)∈Γn+1,2\Γn,2
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are already defined and we need to show that the new moments

Sc,n+1+d :=
∑

(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk ∈ Hp

for all (c, d) ∈ Γn,2. As before

∑
(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk = col

(
Sc+j,d+k+1

)∗
(j,k)∈Γn−1,2

col

(
P

(0,n)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(0,n)
jk

)∗
(j,k)∈Γn−1,2

M col

(
P

(0,n)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(0,n)
jk

)∗
(j,k)∈Γn−1,2

col

(
Sc+j,d+k+1

)
(j,k)∈Γn−1,2

=
∑

(j,k)∈Γn−1,2

P
(0,n)
jk

∗
Sc+j,d+k+1

= S∗c,n+1+d.

Step 2: In this step, we need to show

Xa+1Y b = (xP (n,0))(X, Y ) ∈ CM(n+1)

for all a+ b = n with a 6= n and b 6= 0, and moreover,

XaY b+1 = (yP (0,n))(X, Y ) ∈ CM(n+1)

for all a + b = n with a 6= 0 and b 6= n, where Xa+1Y b and XaY b+1 are block columns of the

B block.

We first consider the case when (c, d) ∈ Γn,2. We have

Xa+1Y b = col

(
Sa+1+c,b+d

)
(c,d)∈Γn−1,2

and

(xP (n,0))(X, Y ) = col

( ∑
(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk

)
(c,d)∈Γn−1,2

.

By condition (A.1), Xn = P (n,0)(X, Y ) ∈ CM(n), that is,

col

(
Sn+`,m

)
(`,m)∈Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j,m+kP
(n,0)
jk

)
(`,m)∈Γn,2

and thus Sn+`,m =
∑

(j,k)∈Γn−1,2

S`+j,m+kP
(n,0)
jk for all (`,m) ∈ Γn,2. If we let ` = c+ 1 and m = d,

then (a+ 1 + c, b+ d) ∈ Γ2n,2.
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Similarly, we have

XaY b+1 = col

(
Sa+c,b+d+1

)
(c,d)∈Γn−1,2

and

(yP (0,n))(X, Y ) = col

( ∑
(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk

)
(c,d)∈Γn−1,2

.

Furthermore, by condition (A.1), Y n = P (0,n)(X, Y ) ∈ CM(n), that is,

col

(
S`,n+m

)
(`,m)∈Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j,m+kP
(0,n)
jk

)
(`,m)∈Γn,2

and hence

S`,n+m =
∑

(j,k)∈Γn−1,2

S`+j,m+kP
(0,n)
jk

for all (`,m) ∈ Γn,2. If we let ` = c and m = d+ 1, then (a+ c, b+ d+ 1) ∈ Γ2n,2. We continue

with the case when (c, d) ∈ Γn+1,2 \ Γn,2. We have defined

col

(
Sn+`+1,m

)
(`,m)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j+1,m+kP
(n,0)
jk

)
(`,m)∈Γn+1,2\Γn,2

.

We have to show

col

(
Sa+c+1,b+d

)
(c,d)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j+1,d+kP
(n,0)
jk

)
(c,d)∈Γn+1,2\Γn,2

.

For ` = c and m = d, we obtain (a+ c+ 1, b+ d) ∈ Γ2n+2,2. We have also defined

col

(
S`,m+n+1

)
(`,m)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

S`+j,m+k+1P
(0,n)
jk

)
(`,m)∈Γn+1,2\Γn,2

.

As before, we need to prove

col

(
Sa+c,b+d+1

)
(c,d)∈Γn+1,2\Γn,2

= col

( ∑
(j,k)∈Γn−1,2

Sc+j,d+k+1P
(0,n)
jk

)
(c,d)∈Γn+1,2\Γn,2

.

For ` = c and m = d, we derive (a+ c, b+ d+ 1) ∈ Γ2n+2,2.

Step 3: Let the following moment of the C block Sn+1,n+1 :=
∑

(j,k)∈Γn−1,2

Sj+1,k+n+1P
(n,0)
jk . We

must show

Sn+1,n+1 =
∑

(j,k)∈Γn−1,2

Sj+n+1,k+1P
(0,n)
jk .

Consider the submatrix M of M(n+ 1) as described in Step 1.

93



We compute

∑
(j,k)∈Γn−1,2

Sj+n+1,k+1P
(0,n)
jk = col

(
Sj+n+1,k+1

)∗
(j,k)∈Γn−1,2

col

(
P

(0,n)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(0,n)
jk

)∗
(j,k)∈Γn−1,2

M col

(
P

(0,n)
jk

)
(j,k)∈Γn−1,2

= col

(
P

(0,n)
jk

)∗
(j,k)∈Γn−1,2

col

(
Sj+1,k+n+1

)
(j,k)∈Γn−1,2

= S∗n+1,n+1

by the definition of Sn+`,m in Step 2 for ` = 1 and m = n+ 1.

Step 4: In the final step of this proof, we shall consider the case when d > 2. If M(n) � 0

and rankM(n) = rankM(n− 1), then we must choose moments (Sγ)γ∈Nd0\Γ2n,d
such that

M(n+ 1) � 0 and rankM(n+ 1) = rankM(n).

There exist matrix-valued polynomials of the form

P (x) = xγIp −
∑
λ∈Γn,d

xλPλ ∈ Cp×p
n [x1, . . . , xd]

with |γ| > 0 such that

P (X) = col(0p×p)γ∈Γn,d .

Application of Steps 1-3 (for d > 2) will yield the existence of moments (Sγ)γ∈Nd0\Γ2n,d
such that

M(n+ k) � 0

and

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .

as desired.

Lemma A.0.2. Let S := (Sγ)γ∈Γ2n,d
be a given truncated Hp-valued multisequence and let

M(n) � 0 be the corresponding moment matrix. Suppose that M(n) has a positive extension

M(n+ 1) with

rankM(n+ 1) = rankM(n).

Then there exists a unique sequence of extensions

M(n+ k) � 0

with

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .
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Proof. Suppose there exists a choice of moments (Sγ)γ∈Nd0\Γ2n+2,d
which gives rise to a sequence

of extensions M(n + k) � 0 for all k = 2, 3, . . . and thus to M(∞) � 0. Consider a matrix-

valued polynomial P ∈ Cp×p[x1, . . . , xd] and let I be the right ideal associated with M(∞) (see

Definition 3.1.14 for the precise definition of I). Suppose there exists another choice of moments

(S̃γ)γ∈Nd0\Γ2n+2,d
which gives rise to M̃(∞) � 0 and is such that S̃γ = Sγ for all γ ∈ Γ2n+2,d.

Let Ĩ be the right ideal associated with M̃(∞). Since M(n) has a positive extension M(n+ 1)

with

rankM(n+ 1) = rankM(n),

there exist matrix-valued polynomials of the form

P (γ)(x) = xγIp +
∑
λ∈Γn,d

xλP
(γ)
λ ∈ Cp×p[x1, . . . , xd]

with γ ∈ Γn+1,d \ Γn,d such that P (γ)(X) = col(0p×p)γ̃∈Nd0 ∈ CM(∞). Thus for εj ∈ Nd
0,

col
(
S(n+1)εj+γ̃

)
γ̃∈Nd0

= − col

 ∑
λ∈Γn,d

Sλ+γ̃P
(γ)
λ


γ̃∈Nd0

for j = 1, . . . , d. (A.4)

We need to show first that

{P (γ)}γ∈Γn+1,d\Γn,d ⊆ Ĩ.

Since S̃γ = Sγ for all γ ∈ Γ2n+2,d, we have

S̃(n+1)εj+γ̃ = S(n+1)εj+γ̃ for γ̃ ∈ Γn+1,d.

By equation (A.4),

col
(
S̃(n+1)εj+γ̃

)
γ̃∈Γn+1,d

= − col

 ∑
λ∈Γn,d

S̃λ+γ̃P
(γ)
λ


γ̃∈Γn+1,d

and
M̃(n+ 1) col(P

(γ)
λ )λ∈Γn+1,d

= M(n+ 1) col(P
(γ)
λ )λ∈Γn+1,d

= col(0p×p)γ̃∈Γn+1,d
.

(A.5)

To show {P (γ)}γ∈Γn+1,d\Γn,d ⊆ Ĩ, we need to prove

M̃(n+k){col(P
(γ)
λ )λ∈Γn+1,d

⊕col(0p×p)γ̃∈Γn+k,d\Γn+1,d
} = col(0p×p)γ̃∈Γn+k,d

for k = 2, 3, . . . (A.6)

Write

M̃(n+ k) =

(
M̃(n+ 1) B

B∗ C

)
� 0,

where

M̃(n+ 1) ∈ C(card Γn+1,d)p×(card Γn+1,d)p,
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B ∈ C(card Γn+1,d)p×(card(Γn+k,d\Γn+1,d))p

and

C ∈ C(card Γn+k,d\Γn+1,d)p×(card(Γn+k,d\Γn+1,d))p.

Since M̃(n+ k) � 0, by Lemma 1.4.24, there exists W ∈ C(card Γn+1,d)p×(card(Γn+k,d\Γn+1,d))p such

that

M̃(n+ 1)W = B and C � W ∗M̃(n+ 1)W.

Then

M̃(n+ k){col(P
(γ)
λ )λ∈Γn+1,d

⊕ col(0p×p)γ̃∈Γn+k,d\Γn+1,d
} =

(
M̃(n+ 1) col(P

(γ)
λ )λ∈Γn+1,d

B∗ col(P
(γ)
λ )λ∈Γn+1,d

)

=

(
M(n+ 1) col(P

(γ)
λ )λ∈Γn+1,d

B∗ col(P
(γ)
λ )λ∈Γn+1,d

)

=

(
col(0p×p)γ̃∈Γn+1,d

W ∗M(n+ 1) col(Pλ)λ∈Γn+1,d

)

= col(0p×p)γ̃∈Γn+k,d

for all k = 2, 3, . . . , by equation (A.5). Thus, equation (A.6) holds as desired and so

{P (γ)}γ∈Γn+1,d\Γn,d ⊆ Ĩ.

This in turn will yield xεjP (γ) ∈ Ĩ. Indeed

M̃(∞)
(
xεj col(P

(γ)
λ )λ∈Γn,d

)
= col

 ∑
λ∈Γn,d

S̃λ′+εj+λP
(a)
λ


λ′∈Nd0

.

But since P (γ) ∈ Ĩ,
M̃(∞) col(P

(γ)
λ )λ∈Γn,d = col(0p×p)γ̃∈Nd0 ,

that is,

col

 ∑
λ∈Γn,d

S̃λ+γ̃P
(γ)
λ


γ̃∈Nd0

= col(0p×p)γ̃∈Nd0 ,

For γ̃ = λ′ + εj, j = 1, . . . , d,

col

 ∑
λ∈Γn,d

S̃λ′+εj+λP
(γ)
λ


λ′∈Nd0

= col(0p×p)λ′∈Nd0

and so

M̃(∞)
(
xεj col(P

(γ)
λ )λ∈Γn,d

)
= col(0p×p)γ̃∈Nd0 .
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Since xεjP (γ) ∈ Ĩ, we have

col
(
S(n+2)εj+γ̃

)
γ̃∈Γn,d

= − col

 ∑
λ∈Γn,d

Sλ+γ̃+εjP
(γ)
λ


γ̃∈Γn,d

for j = 1, . . . , d.

Moreover

col
(
S̃(n+2)εj+γ̃

)
γ̃∈Γn+1,d\Γn,d

= − col

 ∑
λ∈Γn,d

Sλ+γ̃+εjP
(γ)
λ


γ̃∈Γn+1,d\Γn,d

(A.7)

and

col
(
S̃(n+2)εj+γ̃

)
γ̃∈Nd0\Γn+1,d

= − col

 ∑
λ∈Γn,d

S̃λ+γ̃+εjP
(γ)
λ


γ̃∈Nd0\Γn+1,d

(A.8)

for all j = 1, . . . , d. In view of equation (A.4),

S̃(n+2)εj+γ̃ = S(n+2)εj+γ̃ for γ̃ ∈ Γn+1,d \ Γn,d and j = 1, . . . , d.

Hence S̃λ̃ = Sλ̃ for λ̃ ∈ Γ2n+3,d. We next rewrite the equations (A.7) and (A.8) as

col
(
S̃(n+2)εj+γ̃

)
γ̃∈Γn+2,d\Γn+1,d

= − col

 ∑
λ∈Γn,d

Sλ+γ̃+εjP
(γ)
λ


γ̃∈Γn+2,d\Γn+1,d

and

col
(
S̃(n+2)εj+γ̃

)
γ̃∈Nd0\Γn+2,d

= − col

 ∑
λ∈Γn,d

S̃λ+γ̃+εjP
(γ)
λ


γ̃∈Nd0\Γn+2,d

for all j = 1, . . . , d. Thus

S̃(n+2)εj+γ̃ = S(n+2)εj+γ̃ for γ̃ ∈ Γn+2,d \ Γn+1,d and j = 1, . . . , d.

Hence S̃λ̃ = Sλ̃ for all λ̃ ∈ Γ2n+4,d. Continuing inductively we conclude that

S̃λ̃ = Sλ̃ for λ̃ ∈ Nd
0,

from which we derive uniqueness for the sequence of extensions

M(n+ k) � 0

with

rankM(n+ k) = rankM(n+ k − 1) for k = 2, 3, . . .
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