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Abstract

Given a truncated multisequence of p x p Hermitian matrices S := (S, _~,) (1,74

0<y1+++ya<m
truncated matriz-valued moment problem on R? asks whether or not there exists a p x p positive

)eNg y the

semidefinite matrix-valued measure T, with convergent moments of all orders, such that

_ " Ya
5717--.,74—/“'/ it dl(x, .. 2g)
Rd

for all (y1,...,7v4) € N¢ which satisfy 0 < Z;.lzl v; < m. When such a measure exists we say

that 7' is a representing measure for S. We shall see that if m is even, then S has a minimal

representing measure (that is, i rank @), is as small as possible) if and only if a block matrix
determined entirely by S has gzl}ank—preserving positive extension. In this case, the support
of the representing measure has a connection with zeros (suitably interpreted) of a system of
matrix-valued polynomials which describe the rank-preserving extension. The proof of this
result relies on operator theory and certain results for ideals of multivariate matrix-valued
polynomials. Our result subsumes the celebrated flat extension theorem of Curto and Fialkow.

We shall pay particularly close attention to the bivariate quadratic matrix-valued moment

problem (that is, where d = 2 and m = 2).
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Chapter 1

Introduction

1.1 The flat extension theorem for matricial moments

We will first introduce frequently used definitions and notation. Commonly used sets are
Ny, R, C denoting the sets of nonnegative integers, real numbers and complex numbers respec-

tively. Given a nonempty set E, we let
Ed:{(xla"wxd):xj €L for j=1,...,d}.

Next, we let CP*P denote the set of p x p matrices with entries in C and H,, C CP*? denote
the set of p x p Hermitian matrices with entries in C. Moreover, let v = (71, ...,v4) € Nd. We
define

Tpa={yENL:0< |y] <m}.

Given z = (z1,...,24) € R and A = (A, ..., \g) € N, we define

d
ac’\:Hx;j and |\ =X+ + Mg

Jj=1

We will be considering the truncated matriz-valued moment problem on R?. Given a truncated
multisequence S := (S, )+er,, ., We wish to find a p x p positive semidefinite matrix-valued

measure 7 on R? such that
S, = / 27dT(x) fory el a
Rd

and T" has convergent moments of all possible orders. When such a measure exists we say that
T is a representing measure for S. We will be interested in the case when the representing
K

measure 7' is minimal, that is, T is of the form 7' = Y Q,d,,@ and > rank @), = rank M (n),

a=1 a=1

or equivalently, >  rank @, is as small as possible (see Definition 1.4.31 for the definition of
a=1

In order to communicate our solution to the truncated matrix-valued moment problem on
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1.2. Motivation and aims

R? we require the notion of flatness for a positive moment matrix. We refer to [16] where this

approach has its origin in the truncated moment problem on R

Definition 1.1.1. Let S := (S,) er,,, be a given truncated #,-valued multisequence and
M(n) = 0 be the corresponding moment matrix (see Definition 1.4.31). Then M (n) has a
flat extension if there exist (S5 ) ery, s 4\Fon.q) Where S, € Hy, for v € T'onyna \ ['apna such that
M(n+1) > 0 and

rank M (n) = rank M (n + 1).

The main purpose of this thesis is to formulate and prove a flat extension theorem which
features the minimality of a representing measure for the given data and establishes connections
among the flat extension, zeros of the determinants of certain matrix-valued polynomials and

the support of a representing measure.

1.2 Motivation and aims

In [64], Mourrain and Schmiidgen studied extensions and representations for Hermitian func-
tionals L : &/ — C, where 7 is a unital *-algebra. Let € be a *-invariant subspace of a unital
x-algebra &7 and €? := span{ab : a,b € €}. Suppose B C € is a *-invariant subspace of &/
such that 1 € %. Mourrain and Schmiidgen say that a Hermitian linear functional L : € — C

has a flat extension with respect to 4 if
C =B+ KL(F),

where K (%) = {a € € : L(b*a) = 0}. In [64], Mowrrain and Schmiidgen showed that
every positive flat linear functional L : ¥ — C has a unique extension L : & — C.
Mourrain and Schmiidgen also showed that if & = C%™9[zy,..., x4 (see Definition 2.0.1),
B = CPzy, ..., 24] (see Definition 2.0.2), € = C24[z,..., 24 and L : €% — C is a positive

linear functional which has a flat extension with respect to %, then

L((psk) ]k 1) Z Zp]k Jugitiy; for (pjr) € C™Uay, ..., 4] (1.1)
7,k=1 i1=1
for some choice of t,...,t, € R? and uy,...,u, € C? with u; = col(uy)¢_, for i = 1,...,r,

and in particular,

d r

L) =YYt for 0<|y| <2n+2. (1.2)

7j=1 =1

The aim of this thesis is to formulate and prove a flat extension theorem for matri-

cial moments (S,) ,ews , where S, is a p x p Hermitian matrix for all y € N¢ satisfying
0<]y|<2n
0 < |v| < 2n, that has an integral representation, which is closer in analogy to Curto and
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1.3. Background

Fialkow’s flat extension theorem (which we have reformulated in Theorem 1.4.27 for the con-
venience of the reader) compared to formula (1.1) that has the additional constraint d = p.

Let us further elaborate on the truncated moment problem on R? in the scalar setting. In
[16] Curto and Fialkow describe a recursive model for singular positive Hankel matrices and
show that when the truncated moment problem is of flat data type, a solution exists and it
can be constructed from the simultaneous zeros of a collection of polynomials which describe
the linear dependence of the extension of the moment matrix. Curto and Fialkow have used
the flat extension approach to discover a number of truncated moment problems which have a
concrete solution (see, e.g., [17, 18, 19, 20, 21, 22]).

We observe that the flatness condition admits a natural analogue in the setting where
the given finite multisequence is Hermitian matrix-valued. However, it is not immediately
obvious what the role of the variety of a moment matrix should be. With concepts from
noncommutative algebraic geometry for matrix-valued polynomials such as the variety of a
right ideal in the set of matrix-valued polynomials, we can extract information concerning the
representing measure and its support.

Furthermore, in [16], Curto and Fialkow investigate the bivariate quadratic moment prob-
lem in an equivalent setting in C. It is shown that given sgg, S19, So1, S20, S11, So2, With sgg > 0,
the corresponding moment matrix being positive semidefinite is enough to guarantee the exis-
tence of a minimal (that is, rank M (1)-atomic) representing measure. It is natural to wonder
if a similar result holds for matrix-valued moments. We investigate the bivariate quadratic
matrix-valued moment problem and present a series of necessary and sufficient conditions for
a minimal solution with the use of the flat extension theorem for matricial moments. We shall
see that the matricial bivariate quadratic moment problem is more technically demanding than

its scalar-valued counterpart considered in [16].

1.3 Background

The moment problem on R? is a well-known problem in classical analysis and has been studied
by mathematicians and engineers since the late 19th century, beginning with Stieltjes [77],
Hamburger [42, 43], Hausdorft [44] and Riesz [67]. The full moment problem on R has a con-
crete solution discovered by Hamburger [42, 43] which can be communicated solely in terms of
the positivity of Hankel matrices built from the given sequence. It is natural to wonder about a
multidimensional analogue of the full moment problem on R, that is, the full moment problem
on R?, where the given sequence is a multisequence indexed by d-tuples of nonnegative integers.
It is well known that a natural analogue of Hamburger’s theorem fails (see, e.g., Schmiidgen
[72]), particularly, there exist multisequences such that the corresponding multivariable Hankel
matrices are positive semidefinite yet the multisequences do not have a representing measure.
It turns out that the Hamburger moment problem on R? is a special case of the full K-moment
problem on R? (where we wish to find a positive measure which is supported on a given closed
set K C R?). We refer the reader to Riesz [67] (solution on R), Haviland [45, 46] (generalisation

3



1.3. Background

for d > 1) and Schmiidgen [70] (when K is a compact semialgebraic set). For a solution to the
truncated K-moment problem on R¢ based on commutativity conditions of certain matrices
see Kimsey [52], where an application to the subnormal completion problem is considered.
Moment problems on R? intertwine many different areas of mathematics such as matrix and
operator theory, probability theory, optimisation theory, and the theory of orthogonal poly-
nomials. Various applications for moment problems on R¢ can be found in control theory,
polynomial optimisation and mathematical finance (see, e.g., Lasserre [60] and Laurent [61]).
For approaches to the multidimensional moment problem which utilise techniques from real
algebra see Marshall [62] and Prestel and Delzell [66]. For a treatment of the abstract multi-
dimensional moment problem see Berg, Christensen and Ressel [7] and Sasvari [68], which, in

addition, treats indefinite analogues of multidimensional moment problems.

The truncated moment problem on R, that is, where one is given a truncated sequence
(sj)}"zo with s; € R for j = 0,...,m, has a concrete solution which can be communicated
in terms of positivity of a Hankel matrix and checking a range inclusion. Moreover, a min-
imal representing measure can be constructed from the zeros of the polynomial describing a
rank-preserving positive extension. We refer the reader to the classical works of Akhiezer [1],
Akhiezer and Krein [2], Krein and Nudel'man [59], Shohat and Tamarkin [73] and the fairly
recent work of Curto and Fialkow [15]. An area of active interest concerns the truncated mo-
ment problem on Ny where one seeks a measure whose support is contained in a given closed

subset K C Ny (see, e.g., Infusino, Kuna, Lebowitz and Speer [49]).

Curto and Fialkow in a series of papers studied scalar truncated moment problems on R?
and C? (which is equivalent to the truncated moment problem on R??). We refer the reader to
[16, 17, 18, 19, 20, 21, 22] where concrete conditions for a solution to various moment problems
are investigated. For connections between bivariate moment matrices and flat extensions see
Fialkow and Nie [37, 38|, Fialkow [35] and Curto and Yoo [25]. For the bivariate cubic moment
problem we refer the reader to Curto, Lee and Yoon [24], Kimsey [50], and Curto and Yoo [26].

We next wish to mention alternative approaches to the flat extension theorem for the trun-
cated moment problem on RY. The core variety approach to the truncated moment problem
began with the study of Fialkow [36]. Subsequently, Blekherman and Fialkow in [8] strength-
ened the core variety approach to feature a necessary and sufficient condition for a solution.
For additional results related to the core variety approach see Schmiidgen [72] and di Dio
and Schmiidgen [30]. Recently, in [23], Curto, Ghasemi, Infusino and Kuhlmann investigated
the theory of positive extensions of linear functionals showing the existence of an integral

representation for the linear functional.

We now wish to bring the matrix-valued and operator-valued moment problem into focus.
The matrix-valued moment problem on R was initially investigated by Krein [57, 58]. See
[65] for a thorough review on Krein’s work on moment problems. And6 in [4] was the first
to study the truncated moment problem in the operator-valued case. Kovalishina studied the
nondegenerate case in [55, 56]. Bolotnikov considered the degenerate truncated matrix-valued

Hamburger and Stieltjes moment problems in terms of a linear fractional transformation, see

4



1.4. Known results

[10, 11, 12]. Dym [31] considered the truncated matrix-valued Hamburger moment problem
associating it with parametrised solutions of a matrix interpolation problem. Alpay and Louba-
ton in [3] treated the partial trigonometric moment problem on an interval in the matrix case,
where Toeplitz matrices built from the moments are associated to orthogonal polynomials.
For connections between matrix-valued orthogonal polynomials and CMV matrices we refer
the reader to Dym and Kimsey [32].

Simonov studied the strong matrix-valued Hamburger moment problem in [74, 75]. The
truncated matrix-valued moment problem on a finite closed interval was studied by Choque
Rivero, Dyukarev, Fritzsche and Kirstein [13, 14]. Using Potapov’s method of Fundamental
Matrix Inequalities they characterised the solutions by nonnegative Hermitian block Hankel
matrices and they investigated further the case of an odd number of prescribed moments.
Dyukarev, Fritzsche, Kirstein, Médler and Thiele [34] studied the truncated matrix-valued
Hamburger moment problem with an algebraic approach based on matrix-valued polynomi-
als built from a nonnegative Hermitian block Hankel matrix. Dyukarev, Fritzsche, Kirstein
and Médler [33] studied the truncated matrix-valued Stieltjes moment problem via a similar
approach.

Bakonyi and Woerdeman in [5] studied the univariate truncated matrix-valued Hamburger
moment problem and the odd case of the bivariate truncated matrix-valued moment problem.
Kimsey and Woerdeman in [54] investigated the odd case of the truncated matrix-valued
K-moment problem on R? C?% and T¢, where they discovered easily checked commutativity
conditions for the existence of a minimal representing measure.

Applications on matrix-valued moment problems with related topics have been studied
extensively in recent years. Geronimo [39] studied scattering theory and matrix orthogonal
polynomials with the construction of a matrix-valued distribution function built from matrix-
valued moments. Dette and Studden in [27] investigated matrix orthogonal polynomials and
matrix-valued measures associated with certain matricial moments from a numerical analysis
point of view. In [28], Dette and Studden considered optimal design problems in linear models
as a statistical application of the problem of maximising matrix-valued Hankel determinants
built from matricial moments. Moreover, Dette and Tomecki in [29] studied the distribution
of random Hankel block matrices and random Hankel determinant processes with respect to

certain matricial moments.

1.4 Known results

1.4.1 The truncated moment problem on R?

We present basic notation and definitions from matrix analysis (see, e.g., [47, 48] for further
details).

Definition 1.4.1. We denote by CP the p-dimensional complex vector space. We consider CP

equipped with the standard inner product (£,7n) = n*¢, where &, € CP.

5



1.4. Known results

Definition 1.4.2. We denote by CP*P the set of p x p matrices over the complex numbers C
and by RP*P the set of p X p matrices over the real numbers R. The p x p matrix of zeros is

denoted by 0,4, and the p x p identity matrix is denoted by I,,.
Definition 1.4.3. A matrix A € CP*? is called Hermitian if A = A*.
Definition 1.4.4. We denote by H, C CP*P the set of p X p Hermitian matrices over C.

Definition 1.4.5. A matrix A € CP*? is called positive semidefinite if *Ax > 0 for all z € CP.
We write A = 0.

Definition 1.4.6. Let A, B € CP*P. We write A = B if A — B is positive semidefinite.
Definition 1.4.7. A matrix A € CP*? is called positive definite if x* Az > 0 for all x € CP\{0}.
Definition 1.4.8. Let A, B € CP*P. We write A > B if A — B is positive definite.

Definition 1.4.9. Let A € CP*P. If there exists ¢ € C such that Az = cz for some nonzero
vector x € CP, then c is called an eigenvalue of A corresponding to the eigenvector x. The set

of all eigenvalues of A is called the spectrum of A and is denoted by o(A).
Let us provide more definitions used to formulate the truncated moment problem on R<.

Definition 1.4.10. Let Ny denote the nonnegative integers. Let E be a nonempty set and
E'={(v1,...,24) 2, €E for j=1,...,d}.

If E =Ny, we let ¢; € N¢ denote a d-tuple of zeros with 1 in the j-th entry.

Definition 1.4.11. ([71, p. 400]) The Borel o-algebra B(R?) is the o-algebra on R? generated
by the open subsets of R?. A Borel set in B(R?) is an element of B(R?).

Definition 1.4.12. Let w € R%. We denote by 6, the Dirac measure with respect to w, that
is,
1 fweA
duw(A) =
0 ifwé¢gA,

where A € B(R?).

Definition 1.4.13. Given z = (71,...,74) € R and A = (\1,...,\g) € N&, we define the
length of A
Al =X+ + X\

and the product
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Definition 1.4.14. Define by Rz, ..., z4] the ring of real multivariate polynomials with real
indeterminates x1, ..., x4, that is, the ring of polynomials of the form
plx) = Y pat,
Aanyd

where py € R for A € T,y g and © = (21, ...,24) € R

Definition 1.4.15. Let z = (z1,...,24) € R?and let A = (A1,..., \g), N = (\],...,\;) € N&.

We define the lexicographic order <iox on Rlzq, ..., z4] as follows:
X, bV
T )t e 2 ayt for A > N

where 7 is the smallest integer ¢ € {1,...,d} for which \; # \..

Definition 1.4.16. Let v = (71,...,74) € N&. We define
Lima={y €Ng:0 < |y] <m}.

Let ¥ = (71,...,74) € N&. We order N¢ by the graded lexicographic order <giex, that is,
¥ <grtex 7 1 [7] < |7], or, if [y| = || then 27 < 27. We note that I',, 4 inherits the ordering
of Nd and is such that

|
cardI',, 4 = (m + d) = M

d m!d!

We now formally state the truncated moment problem on R

Problem 1.4.17 (The truncated moment problem on R%). Let z = (z1,...,74) € R% Given
a finite multisequence of real numbers s := (s,),er,,, With so, > 0, the truncated moment

problem with data s entails finding a positive Borel measure i on R? such that

Sy = / 2dp(z) = / . / o)t xidu(r, .. xg)  for v € Thg,
Rd R

and

|27|du(r) < 0o for v € NL.
R4

Definition 1.4.18. Let (vy)-er,, ,, Where v, € C? for v € Iy, . We denote col(vy)qer,, , as

Vo,0,...,0
COl(U’Y)'VGFm,d = | Umyo,....0
Vo,...,0,m
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Definition 1.4.19. Let s := (s,)er,, , be a finite multisequence of real numbers and M (n)
the corresponding moment matriz based on s and defined as follows. We label the rows and
columns by a family of monomials (27),er,, , ordered by <gex (see Definition 1.4.16). We let

the entry in the row indexed by 27 and in the column indexed by 27 be given by

Syt

Let X* = col(8x4y)ver,, for A € T, 4 and Chyny be the column space of M(n). Note that
X* e CM(n)-

Definition 1.4.20. Let R,,[x1, ..., z4] be the set of all polynomials in R[xy, ..., x4| with total

degree n, that is, p(z) can be written as p(zr) = Y. pya*. We define
AETy 4

p(X) = Z p)\X)‘ € CM(n)

)\anyd

and
Z(p) = {(21,...,24) € R: p(x) = 0}.

Definition 1.4.21. ([17, p. 12]) Let s := (s,)yer,, , be a finite multisequence of real numbers
and let M(n) the corresponding moment matrix. The variety of M(n), denoted by V(M (n)),
is given by

VMn) = () Z@)

p(X)=0
pGRn[xl,...,xd}
An answer to Problem 1.4.17, when p = 1, d > 1 and card supp p is as small as possible,
can be found in [15]. In [15], it is shown that the Problem 1.4.17 has a minimal solution if and

only if there exists a solution which is r-atomic where r := rank M (n), that is, the solution
s

can be expressed as the measure = > 0,0, with g, > 0 for every a = 1,...,r and 6§, is
a=1
as in Definition 1.4.12. We say that such a measure is an r-atomic representing measure for s.

The following theorem characterises r-atomic solutions of Problem 1.4.17 when d = 1 and
m = 2n (see [15, Theorem 3.9]).

Theorem 1.4.22. Let s := (s, ..., So,) be a finite multisequence of real numbers and let
So .- Sn
Mn)=1: . 1+ ]=0
Sp ... Sop

be the corresponding moment matriz with r := rank M (n). Then s has an r-atomic representing
measure jt = Y, 040, if and only if the matriz M(n) has an extension M(n + 1) = 0 such

a=1

that rank M (n) = rank M (n + 1). In this case, supppu = Z(p) and the scalars g1, ..., 0, are

8



1.4. Known results

giwen by the Vandermonde equation

So 1 o 1 Qo
. Ty T, .
n—1 n—1
Sr—1 Ly e Ly Or—1

The following example illustrates a way to obtain an r-atomic representing measure for a
given finite multisequence of real numbers. We will make use of the algorithm described in [15,
p. 621].

Example 1.4.23. Let s := (sg,...,54) be a given finite multisequence of real numbers with

corresponding moment matrix

M(2) = > 0.

W= N= =
L Ll Ll S
U= = W=

We need first to show that M(2) has an extension M (3) > 0 with rank M (3) = rank M (2).
Since each minor determinant of M(2) is positive, we denote ¢ to be the unique scalar such
that for «, f € R,

S1 S9 S3
a | So + 5 S3 = Sy
S3 S4 c
_ -3 _ 6 _ 165 - :
We then get o = 73, 8 = ¢ and ¢ = 155 Next we extend the original multisequence to

§ = (S0, S1, 2, S3, S4, ). It suffices to show that § has a representing measure. Let r = 3 and

denote ® := ®(5) = (¢o, ¢1, P2) € R3. Then 5 has a representing measure if and only if

Sj = 00Sj-3 + P18j-2 + D281, J = 3,4

By
S3 S0 51 52
sa|=¢o|s1|+d1|s2| +2|s3],
c Sa S3 S4
we derive ¢ = 0, ¢ = I—g’ and ¢g = g. The generating function built from ®, denoted by

gs(z), will give rise to the representing measure p as follows. Notice that gz(z) is given by

gs(z) =a" —(go+ -+ + g’ )
=2* — (o + P17 + Pox?)
_ 6 3
=23 — 5x2 + 57
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with zeros

6+v6 66
10 T

x1:07 To =

51
Since xy, 9, 3 are distinct, the Vandermonde matrix is invertible and o = V71 | s, | is well-

53
defined. Thus we obtain

_16+6 16 — 6

and o3 =

) @2 36 36

1
Ql=§

3

Finally i = > 040, is a 3-atomic representing measure for §.
a=1

We continue with a characterisation for positive extensions given by Smul’jan [76] via the

following result.

Lemma 1.4.24 ([76]). Let Ac C™" A > 0,B e CY™" C e C™™ and let

i (4 B
B* C
Then:

(i) A is positive semidefinite if and only if B = AW for some W € C™™ and C = W*AW.
(i1) A is positive semidefinite and rank A = rank A if and only if B = AW for some W & C*™
and C = W*AW.

Definition 1.4.25. Given distinct points w®, ..., w® € R? and a subset A = {\1), ... \®)}

of N&, we define the multivariable Vandermonde matriz by

{wOPY L P

{w®PY L WA

We now present [54, Theorem 2.13] which is based on [69, Algorithm 1] and provides a
useful machinery throughout this thesis when the invertibility of a multivariable Vandermonde

matrix is needed.

Theorem 1.4.26. Given distinct points wD, ... w*) € R%, there exists A C N¢ such that

card A = k and V(wW, ... w*); A) is invertible.

In one or several variables one can derive solutions for Problem 1.4.17 based on matrix
positivity and extension, see [16]. The next theorem, due to Curto and Fialkow (see [16,
Theorem 5.13]) provides necessary and sufficient conditions for a minimal solution to the
Problem 1.4.17 when m = 2n.

10



1.4. Known results

Theorem 1.4.27. Let s := (5,)yer,, , be a given finite multisequence of real numbers and let
M(n) = 0 be the corresponding moment matriz with r := rank M (n). Then s has an r-atomic
representing measure [ = zrj 040y if and only if the matriz M(n) admits an extension
M(n+1) = 0 such that ranli_J\l/[(n) = rank M (n + 1).

In this case, suppp = V(M(n + 1)), and there exists A = {\V ... A"} C N¢ with
card A = 7 such that V(w™W, ... w™; A) is invertible. Then the scalars o1,. .., 0, are given by

the Vandermonde equation
COI(Q(I>:L:1 - V(w(l)) s 7w(T); A)_l COI(SA)AEAv

where V(w®, ... w;A) € C.

In the following example we illustrate Theorem 1.4.27 when d = 2 and n = 1. We note that
throughout the thesis when d = 2, we shall use X,Y in place of X, X5, respectively.

Example 1.4.28. Let (s,)er,, be a finite bisequence of real numbers and let A (1) the

corresponding moment matrix given by

1 X Y
1 /1 0 O
M(1)= x[o0o 2 o |>o.
Y\0 0 3
0 0
We have M(1)™' = [0 1 0 [. There exists W € C*** such that W = M(1)~'B. Choose
00 1
2 0 3 2 0 3
B=| 0 V12 0|.ThenW=1| 0 +3 0| and
Vi2 0 0 280 0
8 0 6
C=WMLW=W*B=|[0 6 0
6 0 9
By Lemma 1.4.24,
1 X Y X? Xy Y?
1 1 0 0 2 0 3
X (o 2 0o 0o V2 o
M(l) B Y 0 0 3 12 0 0
M - (MO BY Vb, .
B* C X212 o0 Vi2 8 0 6
XY|l0o V12 0 0 6 0
Y2 \3 0 0 6 0 9

11



1.4. Known results

and
rank M (1) = rank M(2) = 3.

Hence, Theorem 1.4.27 asserts that there exists an r-atomic representing measure for s, which
we compute explicitly as follows. We observe that the columns X2, XY, Y? are the linear

combinations of the columns 1, X, Y, that is,

2
X2:2-1+$-Y, XY =v3-X and Y2=3-1.

We then have the polynomials in Ry[z, y]

2v/3
pi(z,y) =2°— 2+ =), paw,y) = wy - V3z, and ps(z,y) =y* -3

and thus V(M (2)) = {(0,v3), (2,v3), (=2,v/3)}. Theorem 1.4.27 yields

01 1o -i
o2| =10 5 5|0
03 0-5 5/ \2
and hence
1 1 1
9125, QQ:Z’ 9321-

Finally a 3-atomic representing measure for s is p = > 0a0(u@ y,)-
a=1

We continue with a result on the cardinality of the support of the representing measure

given in [6, Theorem 2].

Theorem 1.4.29. Let s := (s,)yer,,, be a given finite multisequence of real numbers with a

representing measure v. Then s has a finitely atomic representing measure p with

d
supppu C suppr  and cardsupp pu < (m; )

In view of Theorem 1.4.29, Theorem 1.4.27 can be amplified to the following.

Theorem 1.4.30 ([22, p. 180]). Let s := (8y)yer,,q be a given finite multisequence of real
numbers. s has a finitely atomic representing measure if and only if the corresponding moment
matriz M (n) has a positive extension M (n—+k) which in turn admits a rank-preserving moment

matriz extension for k > 0.

1.4.2 The truncated matrix-valued moment problem on R?

In the current subsection we provide preliminary definitions concerning the matricial case and
we pose the truncated matrix-valued moment problem on R? see Problem 1.4.37. We refer

the reader to the foundational work of Krein in the matricial setting, see [57].

12



1.4. Known results

Definition 1.4.31. Let S := (9,)er,,, be a given truncated H,-valued multisequence and
M (n) the corresponding moment matriz based on S and defined as follows. We label the block
rows and block columns by a family of monomials (lE’y),yan7 , ordered by <gex (see Definition
1.4.16). We let the entry in the block row indexed by 7 and in the block column indexed by
27 be given by
va-

Definition 1.4.32. A function T : B(RY) — H,, is called a positive H,-valued Borel measure on
RY, if for each u € CP, (T'(0)u,u) defines a positive Borel measure on R? for all sets o € B(R?),

or, equivalently, if for Tj;, 1 < a,b < p, finite complex-valued Borel measures on R, we have
Tll(a) e T1p<0')

Ti(0) ... Typ(o)

for all o € B(R?).

Definition 1.4.33. The support of an H,-valued measure 7', denoted by supp 7', is defined as
the smallest closed subset G C B(R?) such that T(R%\ G) = 0pxp.

Definition 1.4.34. For a measurable function f : R? — C, we let its integral
f(z) dT'(x) € H,
R4

be given by
([ f@ dr@us) = [ 1) dT @)

for all u,v € CP, provided all integrals on the right-hand side converge, that is,

[ i@l dir @) < .

or, equivalently,
p

[ ar = ([ s ataw)

a,b=1

where T, is as in Definition 1.4.32.

Remark 1.4.35. If an H,-valued measure T is of the form 7' = > Q0 then

N f(a) dT(z) = Quf(w™).

Definition 1.4.36. The power moments of a positive H,-valued measure T' on R? are given
by
/:B’\dT(a:) for A € N¢,

Rd

13



1.4. Known results

provided
/|$)‘| d|Tp(z)] < oo for Ne N and a,b=1,...,p.
R4
We now present the truncated matrix-valued moment problem on R
Problem 1.4.37 (The truncated matrix-valued moment problem on R%). Let = (x1,...,24) €

R?. Given a truncated H,-valued multisequence S := (Sy)~ver,.q» the truncated matriz-valued

moment problem with data S entails finding a positive H,-valued measure 7" on R? such that

S, —/ 27dT(x) for v € ya,
Rd

provided
/Rd 27| d|T(2)| < 00 for y€NE and a,b=1,...,p.

When such a measure exists we say that 1" is a representing measure for S.

Definition 1.4.38. Let S := (5,)er,, , be a given truncated H,-valued multisequence with a

K K

representing measure 7' = > Q,0,,a). We will say that T is minimal, if > rank @, is as small
a=1 a=1

as possible. It turns out that the corresponding moment matrix M (n) of S has the property

that rank M (n) < ) rank @, for any representing measure of S (see Lemma 3.3.8) and hence,

a=1
any minimal representing measure 7" satisfies

K

rank M (n) = Z rank Q.

a=1

Throughout the thesis the assumption Sy, = I, is being used, as stated and explained in

the next remark.

Remark 1.4.39. Let S := (S,)er,, , be a given truncated H,-valued multisequence. We will
assume without loss of generality throughout the thesis that S has the property

So, = I,- (A1)

We note that if Sy, is invertible, then we may consider S = (Sv)yep% , in place of S, where

N

S, =8025,8,7 €H, fory€Tog

Notice that S has a representing measure if and only if S has a representing measure. Moreover,
notice that if Sy, = 0pxp, then S has the trivial measure. We shall see that if S has a
representing measure, then M (n) > 0 and there exists an extension M(n+1) = 0 (see Lemmas
3.3.1 and 1.4.24). Hence, if Sy, is not invertible and Sy, # Opxyp, then for any v € 'y, 4 \ {04},

we have
So, Sy - 0
Sy Say )

14



1.4. Known results

Thus, by Lemma 1.4.24,
Ran S, C Ran S, (1.3)

and so
(Ran S,)* D (Ran Sy, )*.

Therefore, since S, Sy, € Hp,
ker S, D ker Sp,. (1.4)

Let k = rank Sp,. Since Sy, € H,, we may order the eigenvalues in decreasing order, say

M2 2> A==, = 0.
There exists a set of orthonormal eigenvectors, say (), ..., z® € CP, corresponding to the
eigenvalues Aq,..., Ay, respectively. Let unitary U := (x(l)‘ ‘x(p)) € CP*P. Using inclusion

(1.4), we see that there exists S, € Hj, such that

S,

. 0
Uss,U = (0 O) for v € 'y 4.

Notice that Sy , is invertible. Thus we can proceed as above.

The following example shows that if Sy is positive semidefinite and singular, then M (1) = 0

does not guarantee the existence of a representing measure.

Example 1.4.40. Let S := (9, ),er,, be a given truncated H-valued bisequence and let M (1)

be the corresponding moment matrix given by

1 X Y
L (Soo S0 Sm

M(1)= X| S S Su |
Y \So1 St Soz

10 2 0
0 o) Sog = 0 9 and S1g = So1 = S11 = Sg2 = 0342. We shall see that

there are no 530, 521, 312, 803 € Hg such that

where S(]O =

S20 S So2
Ran 530 521 512 g Ran M(].)
So1 S12 Sos
M(1) B
Write M(2) := B(*) o) where B, C € C5%¢. By Lemma 1.4.24, M(2) = 0 if and only if

there exists W € C%%6 such that
M)W =B and C = W*B.

15



1.5. Results by chapters

Thus M (2) = 0 if and only if

So0 St Soz
Ran 83[) So1 Si2 | C Ran M(l) and C = W*M(l)W,
So1 S12 Sos
Soo S Soz
where W € C8%C is such that M(1)W = B = | S5y So1 Siz | - However, this would imply
So1 S12 Sos

that
Ran (So Su Si) € Ran (Soo Swo S

which cannot hold (see range inclusion (1.3) in Remark 1.4.39) and hence the claim is proved.

For an example where a truncated Hs-valued bisequence does not have a minimal repre-

senting measure we refer the reader to [53].

1.5 Results by chapters

In Chapter 2, we establish several algebraic results involving matrix-valued polynomials with
real indeterminates. We define the notions of a right ideal and the variety of the ideal in our
matricial setting. Furthermore, we are particularly interested in studying the notion of a real
radical of the set of the matrix-valued polynomials.

In Chapter 3, we present a series of results on infinite moment matrices with finite rank.
We establish necessary conditions for the existence of a solution of the matrix-valued moment
problem on R? for a full or a truncated H,-valued multisequence. We abstract the notion
of the variety of a moment matrix introduced by Curto and Fialkow in [16] to our matricial
setting and obtain a number of algebraic results such as the notion of a right ideal in the set
of matrix-valued polynomials with real indeterminates.

In the same chapter, through a series of results on the variety of the moment matrix and
its connection with the support of the representing measure, we arrive at the following integral
representation for a full H,-valued multisequence with corresponding moment matrix of finite

rank.

Theorem 1.5.1. Let S := (Sy)veNg be a given H,-valued multisequence. If S(>) gives rise
to M (o) = 0 and r := rank M (00) < oo, then S has a unique representing measure T. In
this case,

supp T' = V(Z),

and moreover,

card V(Z) =r.

In Chapter 3, positive extension results for truncated moment matrices are also provided.

16



1.5. Results by chapters

In Chapter 4, we obtain the main result of this thesis, namely the flat extension theorem
for matricial moments. We establish necessary and sufficient conditions for the existence of a

minimal solution to the truncated matrix-valued moment problem on R¢.

Theorem 1.5.2 (flat extension theorem for matricial moments). Let S := (9,) er,,, be a
given truncated H,-valued multisequence, M(n) = 0 be the corresponding moment matriz and

r:=rank M(n). S has a representing measure

T = Z Qa(sw(a)
a=1

with

K

Zrank Qo=r

a=1

if and only if the matriz M(n) admits an extension M(n+ 1) = 0 such that
rank M (n) = rank M (n + 1).

Moreover,
supp T = V(M (n + 1)),

and there exists A = {\M ... AW} C N with card A = & such that the multivariable Van-
dermonde matriz VP*P(w® .. w®): A) € C**P js invertible. Then the positive semidefinite

matrices Q1, . .., Q. € CP*P are given by the Vandermonde equation
col(Qa)g—1 = Vpo(w(1)7 o w®; A)~tcol(Sy)aea-

Proof. See Theorem 4.0.2. O

In Chapter 5, we study the bivariate quadratic matrix-valued problem where the given
matricial truncated bisequence is H,-valued. We investigate a series of necessary and suf-
ficient conditions for a minimal solution to the bivariate quadratic matrix-valued moment
problem. We observe that the matricial setting is more demanding than the scalar-valued
considered in [16]. For p = 1, Curto and Fialkow [16] showed that every S := (S,)yer,, =
(S00, S105 So1, S20, S11, So2), wWith Sgo > 0 and M(1) = 0 has a minimal representing measure.
Curto and Fialkow’s proof is divided in three cases according to the value of rank M (1). The
technical challenges in the matrix-valued setting (p > 1) can been seen in the following theo-
rem where we treat matrix equations to obtain a minimal solution to the bivariate quadratic

matrix-valued moment problem.

Theorem 1.5.3. Let S := (5,)yer,, be a given truncated Hy-valued bisequence and
1 X Y
1 Ip SlO S[)l

M(1)= X| Sip Sa Sii | be the corresponding moment matriz. S has a minimal repre-

Y SOI Sll SO2

17



1.5. Results by chapters

senting measure if and only if the following conditions hold:
(i) M(1) = 0.
(i1) There exist Sz, Sa1, S12, Sos € H,, such that

S St Sz
Ran | S50 S31 Sip | € Ran M(1)
Sa1 S12 Sos
(hence, there exists W = (I/Vmb)ib:1 € C3*3 such that M(1)W = B, where
S20 S So2
B=18% Sa Suql)
S Si2 Sos

and moreover, the following matriz equations hold:

WS+ W5 821 + Wiy S1a = S1uWhy + SarWor + S1aWa, (1.5)
and
Wi5S02 + WasS1a + WipS03 = SoaWia + S12Waz + SozWia. (1.7)

In the same chapter, we also consider special cases where M (1) is positive semidefinite and
singular. When p > 2, we observe that a straightforward analogue of Curto and Fialkow’s
result does not hold. However, through a series of theorems we shall see that S := (S5)yery.;

Soo = 0, with M (1) = 0 having certain block columns, has a minimal representing measure.

18



Chapter 2
Matrix-valued polynomials

In this chapter, we introduce important definitions and notation while establishing several
algebraic results involving matrix-valued polynomials with real indeterminates. We study the
notions of a right ideal and the variety of the ideal. We also introduce the notion of an ideal

of matrix-valued polynomials being real radical.

Definition 2.0.1. Let CP*P[z4, ..., x4 denote the set of p X p matriz-valued polynomials with
real indeterminates xy, ..., Tq, that is, CP*P[zy, ..., x4] consists of matrix-valued polynomials
of the form

d
where P, € CP*P, z* = IT x?ﬂ for A € I, 4 and n € Ny is arbitrary.
j=1

Definition 2.0.2. Let CP*P[z4, ..., x4 denote the set of p X p matriz-valued polynomials with
degree at most n with real indeterminates xy, . . ., x4, that is, CE*P[z4, ..., x4] consists of matrix-

valued polynomials of the form

P(z) = Z 2 P,

)\ern,d

Aj

i for N eI, 4.

d
X A
where Py, € CP*?, 2" = [ z
j=1

Definition 2.0.3. A set & C CP*P[zy,...,x4) is a right ideal if it satisfies the following
conditions:

(i) P+ Q € # whenever P,QQ € .Z.

(ii) PQ € .# whenever P € . and ) € CP*Plxy, ..., x,).

Definition 2.0.4. Let % C CP*P[xy, ..., x4] be a right ideal. We shall let
V(I) ={zcR: det P(z) =0 forall Pc ./}

be the variety associated with the ideal ..
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Definition 2.0.5. A right ideal .¢ C CP*P[zy, ..., x4] is real radical if
ZP ()} € S = PY2)cs for a=1,...,k

Remark 2.0.6. We wish to justify the usage of the moniker real radical of Definition 2.0.5
when p = 1. We note that one usually says that a real ideal # C R[xy,. .., x4] is real radical
if

K

Z(f(“)(av))2 e = fYDex fora=1,...,k
a=1
(see, e.g., Laurent [61]). Suppose .# = & + i, where
1 ={Re(f(z)): fe I} and S ={Im(f(x)):fe I}

and let f(® = ¢(@ 4 @i where

We claim that

K

Z((q(“)(a:))2 + (Y@ e = ¢V es, r Ve g fora=1,... K (2.1)
a=1
holds. We wish to demonstrate a connection between the notion of a real ideal & C Rz, ..., z4]
being real radical and our notion of a complex ideal .# C C|xy, ..., z4] being real radical, that

is,

S O@Pe S = [P es fora=1....k

Then

K

i |f (@) = Z((q(a)($))2 + (Y@ e S = (D) +rD@)e s for a=1,...,k

a=1 a=1

Notice that .#, .%; are closed under scalar addition and multiplication and so they are ideals
in R[zy,...,2q). If 3 |f9(2)? € #, then ¢@ +r@ie 7 foralla=1,...,x. But then
a=1

¢“ e and rWe.dg for a=1,... k,

since . = S| + Fi. However |f@(2)]? = (¢'(x))? + (@ (x))? and so

Z’f(a)( le g —=¢gDe s, rWe g fora=1,....,k
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can be written as

Y (¢ @)+ (r @) eSS =g e, rW e for a=1,.. K

a=1

K

Notice that > ((¢'?(z))?+ (r®(x))?) € .#; from which we conclude that the claim (2.1) holds.

a=1

In the following remark we will introduce an additional assumption on . C Clzy, ..., x4
which appears in Remark 2.0.6. As we noted in Remark 2.0.6, . = % + %i, where %, %
are real ideals in R[xy, ..., z,4]. Thus, it is clear that f € .# vanishes on a set V C R? if and
only if Re(f(x)) and £ Im(f(x)) vanish on V. In view of the Real Nullstellensatz (see, e.g., [9]),
any real radical ideal must agree with its vanishing ideal (that is, the set of polynomials which
vanish on the variety). Therefore, if & C C[zy, ..., x| is real radical, then f € . implies that
fes.

Remark 2.0.7. Let .# C Clzy,...,z4 and S, % C Rxy,...,24] be as in Remark 2.0.6.
Suppose .# has the additional property that f € . implies f € .#. Then

(i) A C Rz, ..., x4 is real radical.

(i) S C Rlzq, ..., x4 is real radical.

Since .# is an ideal in Clxy,..., 4] which is closed under complex conjugation, we have
that 4 and % are subideals of .# over R|xy,...,x4]. Hence, we may use the fact that .# is
real radical to deduce (i) and (ii) .

Lemma 2.0.8. Fiz v € N with |y| > n and let P(z) = 27, + >, 2P\ € CP*P[xy, ..., z,).

AGFn@
Then

det P(x) = 277 4+ Z 2 hy,

AEFmA

where yp = (11D, ..., vap) € N& and m < |y|p.

Proof. We proceed by induction on p. For p = 2,

Plo) - ( +Bu(z)  Pulz) ) |
Bo1(x) 27 + Bao(x)

where Bp(z) = 3 2*PY € Clay, ..., x4) with P{*? the (a,b)-th entry of Py, 1 < a,b < 2.
AEFnd
We also have

det P(xz) = (27 4 Bui(x)) (@Y + Pr(x)) — Bio(z) P21 (x)
= 2% + 27 B0(2) + 27 B11(x) + Bui () Paz(x) — Bra(x) B (2)
=2 + L(z) + C(x),

where L(z) = 270a0(x) + +27511(z), C(x) = f11(z)Par(x) — Pra(x)fa(z) € Clay,. .., z4).
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Suppose the claim holds for p > 2. We have

0+ Pr(x) ... Bip(x)
P(z) = : :
Bp1(z) oo @7 Byp(T)
and so
x7 + 622(1’) N ng(l‘)
det P() = (o +Bu(e)det | 0 [+
Bp2(x) coo 2 4 Byp()

Bor(x) ... Pap-i1(x)
H(=D)" By () det | 0 :
B(x) .. Bppi()

¥ + Baz(z) ... Bsp(x)
= (@7 + fu(x)) | (27 + Ba2(x)) : : et
By () oo 20 4 Bpp()
Bsi(z) ... Bsp-a(x)

H=D)HEP By g (2)det |0 :
Bor(x) .. Bpo1p-1(z)

Let L(z) be the sum of the terms of det P(z) of degree up to y(p — 1) with |y| > 0 and C(x)
the sum of the terms of det P(z) of degree up to yp with |y| = 0. Then

L(z)+C(z) = Y a’hy,

)‘erm,d
where m < |y|p. Thus
det P(z) = 27?7 + Z 2 hy. O
DY)
We order the monomials in Clzy,...,z4] by the graded lexicographic order <giex (see

Definition 1.4.16).

Remark 2.0.9. Fix v € N¢ with |y| > n and let P(x) = 271, + > 2*P\ € CP*P[xy,..., 4.
AET 4

For a polynomial p(z) € Clzy,..., x4 given by

o(x) :=det P(z) = 2P + Z a2 hy,

/\EFm’d
where vp := (1p, ..., vap) € N& and m < |7|p, the leading term of p(x) is
LT(p(z) = 2.
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Definition 2.0.10. We define the basis of CP*P viewed as a vector space over C
Apo = {EH, Elg, ce ,Elp, Egl, ce ,Egp, ce 7Ep17 ce ,Epp},

where Ej, € CP*P is the matrix with 1 in the (7, k)-th entry and 0 in the rest of the entries,
g, k=1,...,p.
Definition 2.0.11. Given a right ideal .# C CP*P[xq, ..., 24|, we define

i =A{f € Clxy, ..., x4) : there exists F' € .& such that F(2)E;;, = f(z)Ejr} C Clay, ..., 24,

where Ej;, € CP*P is as in Definition 2.0.10 for all j,k =1,...,p.

Lemma 2.0.12. Suppose & C CP*P[xy,...,x4] is a right ideal. Then I3, C Claq, ..., x4 is
an ideal for all 7,k =1,...,p.

Proof. If f,g € ., then
f(x)Ej, = F(x)Ej, for F e s

and

g(z)E;, = G(x)Ej, for G € .

Since (f + g)(z)Ej, = (F + G)(z)Ejj, we have
f+g¢€ I
If f ey and h € Clxy,..., x4, then
(fh)(x) Ejp = (Fh)(x) Ejp

and thus fh € Fjy. O
Lemma 2.0.13. Suppose & C CP*P[xy,...,x4] is a right ideal. If 7 is real radical, then ;;

15 real radical for all j =1,...,p.

Proof. We need to show

S O@I € Sy = fP@) € Sy for a=1,.n
a=1

Let f(x)

> | @ (x)|? € ;. Then there exists F € .# such that
a=1

f(x)Ej; = F(2)Ej;

17

Without loss of generality, we may assume that F(z) = f(z)E;;. If we let F(@(z) = @ (2)E;
then

S FO@F O ()} = |f @) PE; = f(2)Ej;.
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Thus

K

> FO@){F“(x)}" = F(a)

a=1

and hence

3 FOEFOI @) € s

which implies that F((z) € .# for alla = 1,...,k, since .# is real radical. Consequently,
fD2)e g for a=1,... 5

and .Z; is real radical.

24



Chapter 3

Infinite moment matrices with finite

rank

The main aim of this chapter is to study infinite moment matrices with finite rank, necessary
conditions for a full or a truncated H,-valued multisequence to have a representing measure

and extension results for moment matrices.

3.1 Infinite moment matrices and matrix-valued poly-

nomials

In this section, we define moment matrices associated with an H,-valued multisequence. Our
aim is to investigate infinite moment matrices and their relation with matrix-valued poly-
nomials. We define the variety of a moment matrix in our matricial setting using zeros of
determinants of matrix-valued polynomials. We also present a series of results which con-
nect positivity of an infinite moment matrix and an associated right ideal of matrix-valued
polynomials being real radical.

In analogy to Definition 1.4.18, we denote the following block column.

Definition 3.1.1. Let (Vi) eng, where V) € CP*P for A € Nd. We let

V0,0....0

Vm,O,...,O
col(Vi)scnyt =

‘/(),...,O,m

Definition 3.1.2. A right module £ over CP*P is a set under the operation of addition
+ : & x & — & together with the right multiplication - : & x CP*? — & which satisfies

the following axioms:
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3.1. Infinite moment matrices and matrix-valued polynomials

For all V.U € £ and T, = € CP*P, we have
(i) (V + U)T =VT+UT.

i) V(T+2)=VT+ VE.

(iii) V(ET) = (VE)T.

(iv) VI, =V.

Definition 3.1.3. Let
(C7P)g = A{V = col(Vi)eng : Va € C”*F and V) = 0, for all but finitely many A € N43.
Lemma 3.1.4. (CP*P)¢ is a right module over CP*P_ under the operation of addition given by
A+ B = col(Ax + Bx)yens € (C77)5

for A = col(Ay)rend, B = col(By)yena € (CP*P)g, together with the right multiplication given
by

A - C = col(A\O)yena € (CPF)5
for A = col(Ay)ena € (CP*P)g and C' € CP*P.

Proof. The axioms of Definition 3.1.2 can be easily verified. O]

We now give the definition of an infinite moment matrix based on S(*) := (Sy)yeng, where
S, € H, for all v € Ng.

Definition 3.1.5. Let 5() := (Sy)yeng be a given H,-valued multisequence. We define M (o)
to be the corresponding moment matriz based on S as follows. We label the block rows and
block columns by a family of monomials (27),cne ordered by <gex (see Definition 1.4.16). We
let the entry in the block row indexed by x” and in the block column indexed by z7 be given
by
Sw+ﬁ-

Let X* := col(Sxtry)yengs A € T'na and Chy(e) = {M(00)V : V' € (CP*P)g}. We notice that
X e CM(oo)-

For S := (S,)er,, ., a given truncated H,-valued multisequence and M (n) the correspond-

ing moment matrix, we let X* := col(S,\ﬂ)vepM for A € I',, 4 and Cyy,y be the column space

of M(n).

Remark 3.1.6. Let S = (S, ),yeNd be a given H,-valued multisequence. Then we can view
M(o0) : (CP*P)g — Cr(o) s a right linear operator, that is,

M()(VQ +V) = M(c0)VQ + M(0)V,

for V= col(Vi)eng € (C7P)g and Q = col(Qx)xeng € (C7P)5.
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3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.7. Let S(>) := (Sy)yeng be a given H,-valued multisequence and let M (o)

be the corresponding moment matrix. We define

rank M (oc0) := suprank M (n),

neN
where M(n) the corresponding moment matrix based on S := (S, ) er,, .-

Definition 3.1.8. We define the right linear map
O CP*Pxy, ..., 2q) = Cri(oo)

to be given by
O(P)= Y X'P,

AEFn@

where P(z) = > a*Py € CPP[zy, ... z4).

AEFn@

Definition 3.1.9. Given P(x) = Y 2*P\, € CP*P[xy, ..., z4), we let
AEFHJ

P(X):= ) X'P,

AEFRJ

and
P = C01<P)\))\€Fn7d D COI(OPXP)'VGN#) - ((CPXP)BU.

Remark 3.1.10. Given P(x) = . 2P, € CP*P[zy,...,x4], we observe that
AEFnd

Indeed, notice that

M(co)P =col | Y S,\Py = ) X*P,=P(X)=o(P).

Aan@

Definition 3.1.11. Let S := (Sy)yeng be a given H,-valued multisequence and let M (o)

be the corresponding moment matrix. Suppose

P(x) = Z 2 Py € CP*Pzy,. .., 24].

Aan@

We will write M (oc0) = 0 if
P*M(c00)P = 0y, for P e CP*P[ay,... x4,

or, equivalently, M(n) = 0 for all n € Ng.
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3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.12. Let CP[z4, ..., x4] be the set of vector-valued polynomials, that is,

glx) = Y @

)\GF",d

d
where ¢y € CP, 2* = [] x;‘j for A € I'), g and n is arbitrary.

Lemma 3.1.13. Let S := (Sy)yeng be a given Hy-valued multisequence and let M(oo) be

the corresponding moment matriz. Suppose

d0)= Y ot € ozl

Aan,d

If M(oc0) = 0, then
GM(c0)g >0 for g€ CPlay,..., xg4).

Proof. Let P(x) = Y. a*P, € CP*P[xy,...,z4). Then by Definition 3.1.11, M(cc) = 0 if

)\El—‘n,d
ﬁ*M(oo)ﬁ = 0pxp for P e CP*Plxy, ... x,4).

If e; is a standard basis vector in CP, then efﬁ*M(oo)ﬁel > 0. Let g(z) := P(x)e;. Notice
that g € CP[zy,..., 24| and
" M(c0)§ > 0.

Since P € CP*P[xq, ..., x4 is arbitrary, so is ¢ € CP[xq,...,x4]. Thus
G"M(x)Gg >0 for g€ CPlxy,...,z4). O
Definition 3.1.14. Suppose M (co) = 0. Let P € CP*P[xy, ..., x4]. We define the set
T:={PeC[z,... x4 : PM(c0)P = 0py,} C CP[ay, ... 1]
and the kernel of the map ® : CP*P[xy, ..., 24] = Chr(ec) by
ker ® :={P € CP*P[xq,...,24] : M(oo)lB = COI(Opo)AeNg}-
Lemma 3.1.15. Suppose M(oc0) = 0. Then
7 = ker @,

where I and ker ® are as in Definition 3.1.14.

Proof. By Definition 3.1.11, M(c0) = 0 if P*M(c0)P = 0,y, for P € CP*?[zy, ... 4] and

thus by Lemma 3.1.13, the corresponding moment matrix M (m) based on S := (9, )+er,,, , 18
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3.1. Infinite moment matrices and matrix-valued polynomials

positive semidefinite for all m € N. Hence M (m)? exists and we let A := M (m)z col(P)) AET.a>
for P(z) = Y. a*Py. Since P € T,

)\El—‘mﬁd
P*M(00)P = 0pyp.

But P*M(co)P = A*A and hence A*A = Opxp- Thus, all singular values of A are 0 and so
rank A = 0, which forces

A= COI(OPXP)AGFm,d'

Therefore

M(m)? col(P)aer,.. = col(Opxp)acr, .

and
M(m) COl(PA)/\Erm’d = col(Opo),\epm,d. (3.1)

We have to show
M (00) P = col(Opxp)yeng-

We will show that for all £ > m,

M<£){COI<P)\))\EFm,d D COI(OPXP>’Y€Fl,d\Fm,d} = COI(OPXP)'YGFZ,d' (3.2)
First notice y ‘1 d
m + +
cardljm’d:< p ), cardFM:( J )
and (+d d
m —+
d(T L) = — .
ettt T = ()= (1)
We write
M B
ey = (MM BY
B* C
where

M(m) c C(cardFm’d)pX(cardFm,d)p7 Be C(cardFm’d)px(card(F[’d\Fm!d))p

and O € CleardTea\Tma)px(card(Cea\lm.a)P - Since M(¢) = 0, by Lemma 1.4.24, there exists
W € Cleardlma)px(card(Te.a\lm,a)P quch that M(m)W = B and C = W*M(m)W. Then

M(m) COI(PA)Aerm,d)

M () {col(P @ col(0 -
( ){ ( )\))\Er‘m’d ( po)'YEFZ,d\Fm,d} ( B* COI(P)\))\GFm,d

_ col(Opxp)yer,.
W*M (m) col(Py)aer,,
= COl(Opxp)yerg,d )

by equation (3.1).

29



3.1. Infinite moment matrices and matrix-valued polynomials

Thus, equation (3.2) holds for all £ > m and we obtain

~

M(oo)P = COI(Opo)yeNga

which implies P € ker ®.
Conversely, if P € ker ® then

~

M{(o0) P = col(Opxp) renyt

and so P*M(c0)P = 0,y,, that is, P € Z. O
Lemma 3.1.16. Suppose M(c0) = 0. Then T = ker ® is a right ideal.

Proof. Let P,Q € CP*P[xy,...,x4). We have to show the following:
(i) If P € ker ® and @ € ker @, then P + @ € ker ®.

(ii) If P € ker® and @ € CP*P[xq,...,24], then PQ € ker .

To prove (i) notice that since P € ker O,

~

M(oo)P = COI(Opxp)AeNg

and similarly, since ) € ker @,

o~

M(o0)Q = COI(Opo>/\eNg-

We then have

M (00)Q + M(00) P = M(00)(P + Q) = col(0psp) renys
that is, P+ () € ker ®.
To prove (ii) we need to show that if P € ker ® and @ € CP*P[xy,...,x4], then

—

M(00)(PQ) = COI(Opo)AeNg~

For
P(x) = Z 2Py and Q(z) = Z Q)

/\EFn,d )\GFn’d

we let

R(z) = P@Q() = 3 P(2)r" Q.

Alern,d

We will show

—

M (00) (2 P) = col(Opxp),end- (3.3)
We have

M) P) = col | 3 SyexvaPs

AL Jend
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3.1. Infinite moment matrices and matrix-valued polynomials

But since P € ker @,

~

M(OO)P - COl(Opo):yeNg,

which means that

col Z S5 P = col(Opxp)5end-
Aern,d ’}/GNg
For 4 = v+ X, we have
col Z MBS ) = M{(00)(2X' P) = col(Opxp),eng
AET 4 Jend

and equation (3.3) holds. For any fixed X' € T',, 4, by equation (3.3),
M(OO)(CEXP) . Q)\/ = COI(OPXP)VENBJ . Q}\/

and so

—

M(00) (@ P) - Qx = col(Opp), ey

Hence
D M(co)(a¥P) - Qu = > col(Opxp)yeng = c0l(Opup)eni-

NET, 4 NET, 4

Finally, since

we have

M (c0) Z 2N PQy = M(co)R = col(Opxp)end;

)\/ern,(i

as desired and we derive that ker ® is a right ideal. By Lemma 3.1.15, Z = ker ® and so Z is a
right ideal as well. O

Definition 3.1.17. Let M(oco) = 0 and Z be as in Definition 3.1.14. We define the right
quotient module
CP*Plx, ..., xq) /T :={P+Z:P € CPPxy,...,x4]}

of equivalence classes modulo Z, that is, we will write

P+TIT=P +1,
whenever
P—P eZI for PP € CPP[xy,..., x4
Lemma 3.1.18. CP*P[xy,...,x4|/Z is a right module over CP*P under the operation of addi-

tion (+) given by
(P+I)+ (P'+I):=(P+P)+Z
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3.1. Infinite moment matrices and matrix-valued polynomials

for P, P" € CP*P[xy, ..., x4], together with the right multiplication (-) given by
(P+I) R:=PR+T

for P € CP*P[xy, ..., x4] and R € CP*P.

Proof. Let P,Q € CP*P[xy,...,x4]. The following properties can be easily checked:

D) (P+I)+(Q+I)R=(P+T)R+ (Q+T)R for all R € CP".

(i) (P+I)(R+S)=(P+I)R+ (P+1I)S foralR,SeCr.

(ii) (P+ZI)(SR) = ((P+Z)S)R forall R, S € CP*P.

(iv) (P + )L, = P+ 1. O

Definition 3.1.19. For every P,Q € CP*P[zy, ..., x4], we define the form
[-,:] : CP*Play, ..., xq) /T x CPPlay,. .., xq4]/T — CP*P

given by
[P+Z,Q+1]:= Q" M(x)P.

The following lemma shows that the form in Definition 3.1.19 is a well-defined positive

semidefinite sesquilinear form.

Lemma 3.1.20. Suppose M(o0) = 0 and let P,Q € CP*Plzy, ... ,x4]. Then [P+ Z,Q + Z] is

well-defined, sesquilinear and positive semidefinite.

Proof. We first show that the form [P + Z,Q + ] is well-defined. We need to prove that if
P+ZT=P+7 and Q+Z=Q +Z, then

[P+Z,Q+7I] =[P +I,Q +1,
where P, P',Q, Q" € CP*P[zy,...,x4). We have
[P+T,Q+7T] =Q"M(cc)P and [P +ZI,Q +7I]=Q M(co)P'.
Since P — P' € T,

and since Q — Q' € Z,
(Q — Q) M(c0)P" = 0pxp-

We write
O"M(c0)(P — P') = Q" M(00)P — Q* M(00)P' = Oy, (3.4)
and
(@~ @) M(00)P' = Q"M(00)P' — @ M(00) P = 0, (3.5)
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3.1. Infinite moment matrices and matrix-valued polynomials

We sum both hand sides of equations (3.4) and (3.5) and we obtain

—_— * —

(Q — Q') M(c0)(P — P') = 0pxp,

that is,
Q*M(c0)P = Q" M(co)P'.
Therefore
[P+Z,Q+I]=[P +ZI,Q + 1.

We now show that [P +Z,Q + T is sesquilinear. Let A, A € CP*?_ If

P(z)= > 2Py, and Q(z)= Y 2*Q,

Aerm,d ’\er"%d

then
P(x)A = Z P A and Q(x)A = Z T QA.

AEFm,d Aern,d

Let m := max(m,n). Without loss of generality suppose m = m. For A € I';;, 4\ I';, 4, let
Q> = 0,pxp. We may view Q as Q(z) = >, 2*Qy. We have

AT a
(P+T)A+(P+T)AQ+T] =Q'M(oo)(PA+PA)

= (Q*M(c0)P)A + (Q*M(o0) P) A
—[P+Z.Q+TA+[P+Z.Q+T]A

and

~

Q+I,(P+T)A+ (P+T)A] = (PA+ PA) M(c0)O i
= A*(P*M(00)Q) + A*(P M(0)Q)
= A [Q+T,P+I)+ A Q+Z,P+1T]

and so [P+Z, Q+Z] is sesquilinear. Finally, we show that [P+Z, Q+Z] is positive semidefinite.
By definition,
[P+Z,P+7Z]=0,, ifandonlyif PeZ.

Moreover, it follows from the definition of M (cc) = 0 (see Definition 3.1.11) that
[P+Z,P+1I] = P"M(co)P = 0y

Thus [P+ Z, Q + Z] is positive semidefinite. ]

We next define the variety of a moment matrix in our matrix-valued setting. We introduce
zeros of determinants of matrix-valued polynomials abstracting that way the notion of the

variety of a moment matrix introduced by Curto and Fialkow in [16].

33



3.1. Infinite moment matrices and matrix-valued polynomials

Definition 3.1.21. Let S := (S,) er,, , be a truncated H,-valued multisequence and let M (n)
be the corresponding moment matrix. Let P(z) = Y0, 2 Py € CP*P[xy,. .., x4] such that
P(X) € Cyny. The variety of M(n), denoted by V(M (n)), is given by

)= () Zde(P@).
Pech Play ... zq)
P(X)=col(0pxp)yer,, 4

In analogy to Definition 3.1.21, we define the variety associated with the right ideal Z.

Definition 3.1.22. Let Z be the right ideal as in Definition 3.1.14 and let the matrix-valued

polynomial P(z) = > 2Py € CP*P[zy,...,x4). We define the variety associated with T by
AEFn,d

V(I) = () Z(det P(x)).

Pel

Lemma 3.1.23. Let S := (S,)yery, , be a given truncated H,y-valued multisequence and M(n)

the corresponding moment matriz. Suppose M(n) = 0 has an extension M(n+ 1) = 0. If there

exists P(x) = Y. a*Py € CP*Plzy, ..., x4) such that P(X) = col(Opxp)rer, » € Crign), then
AETy 4

P(X) = C01<Opxp)’7€Fn+1,d S CM(n+1)'

Proof. If there exists P € CP*P[xy,..., 24| such that P(X) = col(Opxp)rer, s € Cun), then

since M (n) = 0, we have
M(n) col(Px)xer, , = c0l(Opxp)yer, .- (3.6)
We will show
M(n + 1){col(Py)xer, o ® cOlOpxp)rer, 1 a\Luat = COU0pxp)rer,, i a (3.7)

Notice that J L d
cardI', 4 = (n + ), cardI'y11 4 = (n Tt )

d d
and 1+d d

n+1+ n+

card(Cny1,4 \ Tna) = < d ) B < d )

We write

M(n) B

M(n+1)= = 0,
B* C

where

M(n) € (C(CardFn,d)pX(Caran,d)p’

Be C(Card Ty a)px(card(T'y11,4\'n,q))p
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3.1. Infinite moment matrices and matrix-valued polynomials

and
C e C(cardLnp1,a\I'n,a)px (card(Tn41,d\'n,a))P_

Since M (n+1) = 0, by Lemma 1.4.24, there exists W € C(cardTn.a)px(card(Tni1,a\l'n.a)P guch that
Mn)W =B and C = W*M(n)W.

Then

M(n + 1>{C01(P/\))\€Fn,d D COI(OPXP)’YGFn+1,d\Fn,d} = <

_ COI(Opo)wan,d
W*M(n) C01<P)\))\€Fn7d

= COI(OPXP>'Y€Fn+1,d7

M(n) COI(PA))\GFn,d
B* COI(P)\)AGFn,d

by equation (3.6). Thus, equation (3.7) holds and the proof is complete. O

.....

Definition 3.1.24. The Kronecker product of A = (a;j)i=1.., and B = (b;;) =1
i =
denoted by A ® B and is defined to be the block matrix

CZHB s alnB
A®B: E ..' E Ecmpan.
amB - am,B

We refer the reader to [47] for more details on the Kronecker product.

Definition 3.1.25. Given distinct points w(V), ..., w® € R and a asubset A = {\) ... AR}
of N¢, we define the multivariable Vandermonde matriz for p X p matrix-valued polynomials
by

{fwOP L WP
V(W w®)A) = :
{fwP PV {w™ WL

=V, ..., w®™;A) @I, € Cw*kr,

The following lemma is well-known. However for completeness, we will provide a proof.

Lemma 3.1.26. Let A € C™*" and B € C™*™ be given. Then
(det A)™(det B)" = det(A ® B) = det(B ® A).

A® B and B® A are invertible if and only if A and B are both invertible.
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3.1. Infinite moment matrices and matrix-valued polynomials

Proof. Let v; be the eigenvalues of A® B, 7 =1,...,mn. Then
i=1

If « € 0(A) and z € C" is a corresponding eigenvector of A, and if 5 € ¢(A) and y € C™ is
a corresponding eigenvector of B, then aff € (A ® B) and z ® y € C" is a corresponding
eigenvector of A® B. If 0(A) ={a1,...,a,} and o(B) = {b1,..., Bm}, then

o(A®B)={a;fr:j=1,...,n, k=1,...,m}

(including algebraic multiplicities). In particular 0(A ® B) = o(B ® A) (see [47, Theorem
4.2.12]). Therefore, each eigenvalue of A ® B is given by v; = «; ), where o is an eigenvalue

of A and [} is an eigenvalue of B for every i = 1,...,mn. Hence

Since the eigenvalues of A ® B and B ® A are the same,
det(A® B) = det(B ® A).

So A ® B is invertible if and only if (det A)™(det B)™ # 0, which is in turn true if and only if
det A # 0 and det B # 0. Finally det A # 0 and det B # 0 if and only if A and B are both

invertible. O

Remark 3.1.27. By Lemma 3.1.26, VP*?(w® ... w®;A) is invertible if and only if
V(w®, ... ,w®:A) is invertible and I,, is invertible. However, since [, is obviously invert-

ible, we have VP*P(w® ... w®); A) is invertible if and only if V(w®, ... w®);A) is invertible.

In the following example we highlight the importance of the variety of a moment matrix for
computing a representing measure of a truncated Ho-valued bisequence. We shall see how the
block column relations of the initial moment matrix M (1) give rise to the respective variety.
As a result, we will construct a positive extension M (2) which is rank-preserving and compute
the variety of M (2). We observe that the variety of the extension is smaller than the variety of
the initial matrix. Finally, via calculations with multivariable Vandermonde matrices for 2 x 2
matrix-valued polynomials we shall obtain a representing measure for the truncated Hs-valued

bisequence.
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3.1. Infinite moment matrices and matrix-valued polynomials

Example 3.1.28. Let S := (5,)4er,, be a truncated Hp-valued bisequence given by

1 X v 2 0 1-11-1
] Su i Sor 0 2-11-11

M(1)= X| S S Su :1 bobao - =0
vy \ S0, i Su 21-1 10 4-1 1
1-11-11-1
-1 1-1 1-11

M (1) is described by the block column relation Y = 1- Py € Cyy(1), where

ay

S

I
AT N
NI— N
N [\')Ihi
SN——

Thus Py(X,Y) = col(Ogx2)er, ,, Where
Pi(z,y) = yly — Pyo. (3.8)
Since det(Py(z,)) = y(y — 1), we obtain
V(M(1)) = Z(det(P(z,y))) = {(x,0) : 2 e R} U {(z,1) : 7 € R}.

Since P1(X,Y) = col(02x2)rer,, € Crry, where Py as described in formula (3.8), Lemma
1 X Y X2 Xy Y2
1 Soo S0 So1 S20 St Soz
X S0 S20 St Sz St Si2
Y S, S S S S S
3.1.23 implies that any positive extension M(2) = R PN}
X Sao S30 S21 Sao Szt S22
XY | Suu So1 Sz Sz S Sis
Y2 \So2 S1i2 Sos Sa2 Sis S

must have the block column relation

Pl(X, Y) = 001(02x2)76F2,2 S OM(2)-

Thus
So1 Sap
Sz | = | Su | Foo-
So3 So2
If we let
Sa9 So1
Sis | =1 Si2 | oo and Sy = 25,
Soa So3

then one can check that
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3.1. Infinite moment matrices and matrix-valued polynomials

X?=1. (2]2) S CM(Q),
XY =X-Fy GCM(Q)

and
Y2:Y€CM(2).
2, 0 O
Let W = 0 POO O € (CGXG. Then
0 0 I
S0 St Soz Sao Ssz1 S
Sso Sa1 Si2 | = M(1)W and S31 Sag Sz | =WM(1)W.
So1 S12 Sos Sae S13 Soa

Lemma 1.4.24 asserts that M(2) »= 0 and
rank M (1) = rank M(2).
We have the following matrix-valued polynomials in C**?|[x, y]:
Py(z,y) = yly — Py, Pa(z,y) = 2°I, — 21,

P3($7y) = xyly — x Py, P4(56’7 y) = y2]2 —yls,

with
det(Pi(z,y)) = y(y — 1), det(Py(z,y)) = (2° = 2)?,

det(Py(w,y)) = 2°y(y — 1), det(Pi(z,y)) = y*(y — 1)*.

We obtain

V(M<2)) = {(\/57 0)7 (_\/57 0)7 (\/57 1)7 (_\/57 1)}

We wish now to compute a representing measure for S. Remark 3.1.27 asserts that for a subset
A = {(0,0), (1,0),(0,1), (1,1)} C N3, the matrix

1 0 1 0 1 0 1 0
o 1 0 1 0 1 o0 1
V2 0 «vV/2 0 V2 0 -v2 0
VR(V3,0), (—V3,0), (VE 1), (—VE A = | D V20 V20V 0
0o 0 0 0 1 0 1 0
0o 0 0 0 0 1 o0 1
0 0 0 0 V2 0 -v2 0
0 0 0 0 0 V2 0 -v2

is invertible. The positive semidefinite matrices Q1, @2, Q3, @4 € C**? are given by the Van-
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

dermonde equation

COl(Qa)izl = VQXQ((\/Z 0)7 (_\/5’ 0)7 (\/5’ 1)7 (_\/57 1); A)_l COl(SA)/\EA- (39)

We then get
V2 V2
o002 o
0 3 0 T 0 &-72
02 0 50 ¥ 0
2x2((,/9 NG NG V2 1 03 0 ‘\/Ti 03 0 \/Ti
V22((v2,0), (=v/2,0), (V2,1), (—=v2,1); A)~! = 2 2
(V2.0 (V2.0.020, (VRN =T
00 0 0011 0 2
00 0 0 L o0-2 0
v
00 0 0 03 0 -¥
and so, equation (3.9) yields
11 1, V2 1 V2 1_v2 1,2
_ (7 31} _ _ (2T 1T % _ (17 % 1T %
11 478 17778 478 1778
where rank @), = 1 and @, = 0 for a = 1,...,4. We note that
4
Zrank Q. =rank M (1) = 4.
a=1
4 4
Finally, a representing measure T for S with Y rankQ, =418 T = > Qa0 -
a=1 a=1

3.2 Existence of a representing measure for an infinite

moment matrix with finite rank

In this section we shall see that if M(oco) > 0 and rank M(co) < oo, then the associated
‘H,-valued multisequence has a representing measure 7.

To this end, throughout this section we shall define and use vector-valued polynomials. We
shift our perspective from the previous setting of matrix-valued polynomials and we observe
that vector-valued polynomials shall serve as a tool for defining commuting self-adjoint multi-
plication operators on a quotient space; the desired existence of the representing measure for
an infinite moment matrix will then arise. Both settings are equally important to state and

prove the flat extension theorem for matricial moments (see Theorem 4.0.2).

Definition 3.2.1. We define the vector space

(C”)g :={v = col(va)reng : v» € C”  and vy = 0, for all but finitely many A € N¢1.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Definition 3.2.2. We let é’M(OO) be the complex vector space
Chur(oo) = {M(c0)v : v € (CP)&}.

Remark 3.2.3. We note that

)\EFn}d

Definition 3.2.4. Given q(z) = Y. qa* € CP[zy,. .., z4), we let
Aern,d

q:= COl(q)\>/\€Fn,d D C01<Op)'yeNg € (Cr)g.

Lemma 3.2.5. Suppose M(o0) = 0 and r = rank M (c0) < co. Then r = dim éM(<><>)~

Proof. If dim C'M(OO) = m and m # r, then there exists a basis

1) (m)
B = {XAlekl,...,X)‘ ekm}

Crtor) = {M(c0)v: v € (C)g} ={ > XV :we (C)y, AeT,a}

of C’M(oo) for 1 < k, < p, where e, is a standard basis vector in C” and a =1, ..., m. We will

show that
5 A - A(m)
B:={X""¢er,. ..., X e}

is a basis of OM(H), where

X’\(a):col(S,\(a)ﬂ)yepmd and k> max (IA@]).

a=1,....m

First we need to show that B is linearly independent in C’M(H). For this, suppose that there

exist ¢y, ...,¢, € C not all zero such that

o \(a) =
Z ca X €ky = COI(Op)van,d € Cu)-

a=1

Let v = col(vy)er, , be a vector in Cl@ 4= with

0,, when A €T, 4\ A@

vy = for a=1,...,m.

Ca, when \ =\

(3.10)

Then by equation (3.10), M (x)v = col(0p)+er, , € C’M(K). Since M (k+¢) = Oforall{ =1,2,...,

we have

M(K + f){v D C01<Op)7€rn+£,d\rn,d} = COI(OP)'YEFIH»Z,d € CM(H)'

For n € CPlay, ..., xq] with §) := v & col(0,)enerr, ,» We have
M(oo)h) = COI(Op)yeNg = éM(OO)?
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

that is, there exist ¢q,..., ¢, € C not all zero such that
m
(@) ~
ZCQX)‘ €k, = C01<0p)76N3 € CM(oo)~
a=1

However, this contradicts the fact that B is linear independent. Hence B is linearly indepen-
dent in C‘M(R). It remains to show that B spans C’M(H). Since B is a basis of C’M(m), for any
col(dy) ene € éM(oo) with d, € CP, there exists ¢y, ..., ¢, € C such that

m
@
Z ca XM ey, = col(dy ) eng-
a=1
We next let X2 = COl(Sy@) 4 )yenarr, .- We have

- (@) (a)
Z XM @ XN Yy, = col(dy )ser, , ® COl(d’Y)weNg\Fmd

a=1

and so
m

(@)
E CaX €k, = CO](dﬂ/)Vermd.

a=1

Hence B spans CM(H). Therefore B is a basis of C’M(H), which forces rank M (k) = m for all k.
Thus sup, rank M (k) = sup,m for all s, that is, » = m, a contradiction. Consequently

dim é’M(OO) = O

Remark 3.2.6. Presently, we shall view M (c0) as a linear operator
M(0) : (C)§ = Crroo)

and not as a linear operator

M(c0) : (CP"P)5 — Chr(oo)
as in Section 3.1.

Remark 3.2.7. Assume r = rank M (oco) (or, equivalently, dim éM(oo) < 00). Suppose
B = {X’\(l)ekl, o ,XA(T)ekT} for 1 <k, <p,

is a basis for C’M(OO), where ey, is a standard basis vector in C? and a = 1,...,r. Then there

exist ¢, ..., ¢, € C such that any w € C’M(oo) can be written as

T
w = Z CaX)‘(a) ek, € éM(m).
a=1
We shall proceed with a result on positivity when M(oo) is treated as a linear operator

M(00) : (CP)g = Caroo)-
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

In analogy to results from Section 3.1, we move on to the following.

Definition 3.2.8. We define the map ¢ : CP[zy,...,24] = Cuy(s0) given by

¢(U> = Z CGXA(Q)eka,

a=1

where v(z) = Y. vt € CPlay, ..., x4).
)\GFn,d

Definition 3.2.9. Suppose M(c0) = 0. Let ¢ € CP[zy,...,z4). We define the subspace of
CP[ID s 7$d]

J ={q € C[xy,..., x4 : (M(00)q,q) = 0}
and the kernel of the map ¢

ker ¢ := {q € CP[z1,...,24] : #(q) = col(0p),enat,

where ¢ is as in Definition 3.2.8.

Lemma 3.2.10. Suppose M (o) = 0. Then
J = ker ¢,

where J and ker ¢ are as in Definition 3.2.9.

Proof. If q(z) = Y. qaz* € ker ¢, then

Ael“n,d

- (a)
o(q) = ZCaXA e, = col(0p) end,
a=1

that is, M(00)q = col(0p),eng, where ¢ € (CP)g. Thus (M (c0)g,q) =0 and so ¢ € J.
Conversely, let g(z) = ZAerndq,\x’\ € J. Then (M(c0)q,q) = 0. It suffices to show that
for every n(z) = Y \er, mar € CPlxy, ..., x4,

(M (00)g,7) = 0.
Let m = max(n, m). Without loss of generality suppose m = m. Let n, = 0, for A € ', 4\ ', 4.
We may view n as n(z) = >, ma?. Since (M (<), §) = 0, we have §*M(00)§ = 0 and so
)\EFn,d

col(gx)xer,, .M (m) col(gr)xer,, , = 0.

Moreover, since M(oco) = 0, M(m) = 0 and hence, the square root of M(m) exists. Next,
(M(m)2q,q) = 0 implies (M (m)zg, M(m)2q) = 0, that is,

1 ~
| M(m)>q ||= 0.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Then M(m)2q = col(0p)xer,, , and
M(m)2M(m)2§ = M(m) col(0)er,, ,»

which implies
M(m)q = col(0p)rer,, 4- (3.11)

Ifg(z)= > qa*eJandn(x)= > ma* e J with ¢,% € (CP)¥, then
AETy 4 AET,, 4

(M(o0)g, 1) =0"M(00)q
= COI(UA)f\erm,dM(m) COl(CL\)Aerm,d
= (M(m)q, )
=0,

by equation (3.11). O

Definition 3.2.11. Let M(co) = 0 and J be as in Definition 3.2.9. We define the quotient
space
Clor,. . 2d/T ={a+ T a0 € Clar, ..z}

of equivalence classes modulo 7, that is, if
+JT=4¢+J,

then
q—q¢ €J for q,¢ € CPlxy,... x4

Definition 3.2.12. For every h,q € CP[xq,. .., x4], we define the inner product
<‘,'> : Cp[:cl,...,xd]/j X Cp[l'l,...,ﬂﬁd]/j — C

given by

(h+T,q+T)=q*M(c0)h.

Lemma 3.2.13. Suppose M(c0) = 0 and let h,q € CP[xy,...,x4]. Then (h + T, q+ J) is

well-defined, linear and positive semidefinite.

Proof. We first show that the inner product (h + 7,q+ J) is well-defined. We need to prove
that if h+ 7 =h +J and ¢+ J =¢ + J, then

(h+T,q+T)=(N+T,d+7T),
where h,h',q,q € CP[xq, ..., x4]. We write
(h+ T, q+T) =3 M(oo)h and (W' +T.,q +T) =q M(co)h.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Since h — W € J,
and since ¢ — ¢ € J,

We write

§* M (00)(hh — W) = §*M(c0)h — ¢* M (co)i = 0 (3.12)

and

%

(q—q') M(co)h! = §*M(co)h! — ¢ M(oo)h! = 0. (3.13)
We sum both hand sides of equations (3.12) and (3.13) and we obtain

o — % o —

(g —4q') M(co)(h—N)=0,

that is,

~

G M(co)h = ¢~ M(co),

and hence

(h+ T, q+T)=MW+T, ¢ +T).

We now show that the inner product (h+ J,q+ J) is linear. We must prove that for every
h,h,q € CPlxy,...,24] and a,a € C,

(ah+T)+ath+T),q+T)=alh+ T.q+ Ty +alh+ T, q+T).

Let

Then
ah(zx) = Z ahyz,

AET, 4
Let m = max(n, m). Without loss of generality suppose m = m. Let gy = 05, for A € T'), 4\ 'y, -

We may view ¢ as ¢(z) = Y. ¢az* and we have
Aan,d

(alh + ) +ah+ T).q+T) = Meo)ah +ah)
= " M(o0)(ah) + §"M(00) (ah)

= ag* M (co)h + ag* M (co)h
=alh+ T, q+T)+alh+T,q+ 7).

Finally, we show (h + J,q+ J) is positive semidefinite. By definition,

(h+ T, h+T)=0 ifand onlyif he J.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Since M (o0) = 0, by Lemma 3.1.13,
(h+ T, h+T) = h*M(co)h > 0.

Hence (h+ J,h + J) is positive semidefinite. O

Definition 3.2.14. We define the map ¥ : Ciy(oy — CP[x1, ..., 4]/ T given by

where

w = Z caX’\(a) €k, € C’M(oo).

a=1

Lemma 3.2.15. ¥ as in Definition 3.2.14 is an isomorphism.

Proof. We consider the map ¢ : CP[xq,..., 24 — C’M(OO) is as in Definition 3.2.8 and we first

(a)

show that ¢ is an homomorphism. For Y d,a2*"e;, € CPlay, ..., z4], where di,...,d, € C,

a=1
we have

o L e + Lo e ) o L, ) +0( L, )
a=1 a=1 a=1

a=1

= i daX)‘(a)eka + i caX)‘(a)eka.
a=1 a=1

(a)

Moreover, we shall see that ¢ is surjective. Indeed, for every > ¢, X*"e,, € C’M(Oo), there

a=1

T
exists > cax)‘(a)eka € CP[zy, ..., x4 such that
a=1

¢ ( i caxk(a)eka> = i caXA(a)eka.
a=1 a=1

By the Fundamental homomorphism theorem (see, e.g., [41, Theorem 1.11}), C’M(Oo) is isomor-
phic to CP[zy, ..., 24|/ ker ¢ and thus to CP|xy, ..., 24]/T, by Lemma 3.2.10. Hence, the map

¥ is an isomorphism. O

Remark 3.2.16. By Lemma 3.2.5, 7 = rank M (c0) = dim Ciyy(o) < 00. Since ¥ is an isomor-
phism, we derive that r = dim(CP[zy, ..., z4]/T).

In this setting, we present the multiplication operators M, j = 1,...,d, as defined below.

Definition 3.2.17. Let ¢ € CP[xq, ..., z4]. We define the multiplication operators

My, : CPloy, ... xq)/T — CPlay,...,2q)/T for j=1,....d
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

given by
p

My (q+ ) = Méf)( > qgﬂ)l‘keﬁj)a
1

k= AEFm’d

where

M®  CPlay, . wd /T = CPlan, .. xdl | T

is the multiplication operator defined by

(3 e ) 3 g

VST AET,, 4
forall j=1,...,dand g; e NI, j=1,...,d.
Let us now continue with lemmas on properties of the multiplication operators M,,.

Lemma 3.2.18. Let M,;, j = 1,...,d, be the multiplication operators as in Definition 3.2.17.
Then M, is well-defined for all j =1,...,d.

Proof. Let q(x) = Y. gz and h(z) = > hya*. If ¢+ J = h+ J, then

DY YSTU

that is,

hS]

XP:Mif)< ) qyg)wkewj) =

k=1 )\el“m’d

(Y e+,

k=1 )\EFm,d

or equivalently,

Z zp: q/(\k)a:’\xajek +J = Z zp: hgk)xkxgj ex +J,

/\erm,d k=1 /\eFm’d k=1

which is equivalent to

5 Z o+ J = % Z haa + J,

AET . YIS
that is,
r9q+J =29h+ J,
and hence
zj(g—h) e T
as required. 0

Lemma 3.2.19. Let M,,, j = 1,...,d, be as in Definition 8.2.17. Then M, (¢+7J) = 2% q+J
forallj=1,...,d.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

Proof. Forall j =1,....,d,

P k k
= m,d
< (k). Ae
= qy T e +J
k=1 €T, 4
) e,
= X Y rate+J
/\eFmd k=1
=15 Y gt +J
VST
=2%q+J
=x;q+J
as required. [

Lemma 3.2.20. Let M,,;, j =1,...,d, be as in Definition 5.2.17. Then M, M,, = M., M,,
forall j,0=1,...,d.

Proof. We need to show that for every ¢, f € CP[q,..., x4,
(My; My, (q+ T), f + T) = (M, Moy (a + T), [+ T),
that is, (z52%(q¢+ J), f+ T) = (2% (¢ + J), f + T). We have

(@9a(q+ 7). f+T) =g+ T), f+T)
= f*M(00)(w;10)
= f*M(00)(x5q)
= (zexi(q+ T), f+T)
= (=2 (q+ T), [+ T).

Thus My, M,, = M., M,, for all j,£=1,...,d. O

Lemma 3.2.21. Let M,;, j = 1,...,d, be as in Definition 3.2.17. Then M, is self-adjoint
forallj=1,...,d.

Proof. We need to show that

< Zp: Ma(:f) ( Z qf\k)erk + j) : zp: Z fA(Z):EAeg + j>
k=1

AET 4 (=1 \eT, 4
p p
_ <Z T Be, j,ZM;?( T O+ J>>
k=1 AeT . =1 AET a

that is,
My (q+T), f+T)=(a+ T, My;(f +T))-
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

We have
p p
< M’f)( Z q/(\k)erk—i—j),Z Z fA(e)x’\ez+\7>
k=1 A€y 4 0=1 X\l 4
p p
- < ST Mo+ 7.3 > et + j> (3.14)
k=1 AET,, 4 (=1 A€l 4
and

<Z q/\a:ek—i—jZM (Z “):&e4+\7)>

k= =1 el a
_ <Z Z q(k>xxek+j’zp: 3 f§z>xx+ej€€+j>. (3.15)
k=1 AET,, 4 (=1 AT, 4
Equation (3.14) is equal to ,
> FM(00)(ajq),

k=1

—

where f € (CP)% and (z;q) € (C?)$ and equation (3.15) is equal to

> (@f) M(o0)d,

k=1

— _— — %

where (z;f) € (CP)s and ¢ € (CP). Tt remains to show that f*M(co)(z;q) = (z;f) M(00)q.
We have

f*M(o0)(z;q) = f* 001(A ; Sy+a(259))eng
€ m,d
=/ C01< Z S’y+)\+€qu)yeNg
NS
= (z;f) M(c0)q
and the proof is now complete. O

Next, we shall use spectral theory involving the preceding multiplication operators. First,
we denote by P the set of the orthogonal projections on CPlxy,...,24]/J as in the next

definition.

Definition 3.2.22. Let H be a complex Hilbert space. A bounded linear map @ : H — H is
called an orthogonal projection if ) is self-adjoint and Q* = Q.
We also define P to be the set of the orthogonal projections on CP[xy, ..., z4]/T.

Remark 3.2.23. M,; is self-adjoint for all j = 1,...,d and so by the spectral theorem for
bounded self-adjoint operators on a Hilbert space (see, e.g., [71, Theorem 5.1]), there exists a
unique spectral measure E; : B(o(E;)) — P, o(E;) C B(R?), such that

J

Mx.(q—i—j):/ vdE;(z)(¢q+J) for j=1,....d
o (Ej)
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

E; is unique, in the sense that if Fj : B(R) — P is another spectral measure such that
ij(q+j):/ xdF;(z)(q+ J) for j=1,...,d,
o(Ej)

then we have
Ei(ano(E)) = Fj(a) for € B(R), j=1,...,d.

By [71, Lemma 4.3], E;(a)E;(B) = E;(a N ) for a, 5 € B(o(E;)), which implies that
Ej(@) Ex(B) = Eu(B)E;(a) for a € B(o(Ey), # € Bo(Ey), j.k=1,....d.

Since M, is self-adjoint and pairwise commute, that is, M, M, = M, M, for all
j,k=1,...,d (see Lemma 3.2.20), we have that for all Borel sets a, 8 € B(R?),

M, ()M, (B) = My, (B)M,,(a) for j,k=1,...,d.

Thus, by [71, Theorem 4.10], there exists a unique spectral measure £ on the Borel algebra
B(Q2) of the product space Q2 = o(E;) X --- x o(FEy) such that

Elog X -+ xaq) = Ep (on) -+ By (o) for o € B(Y), j=1,...,d.

Remark 3.2.24 (71, Theorem 5.23]). For M,;,j=1,...,d, commuting self-adjoint operators
on the quotient space CP[xy, ..., z4]/J, there exists a joint spectral measure E : B(R?) — P
such that for every ¢, f € CP,

<M;/11M;§(q+j)7f+j>:/ l‘?ll‘gdd<E<CL’1’7[L'd>(q—|—j)7f—}-j>, j:177d

Rd

Definition 3.2.25 (|71, Definition 5.3]). The support of the spectral measure F is called the
joint spectrum of M, ..., M,, and is denoted by o(M,) = 0(M,,, ..., M,,).

Lemma 3.2.26. Ifr = rank M (00) = dim(CP[zy, ..., 24]/T) < oo, then
cardo(M,) <,

where o(M,) is as defined in Definition 3.2.25.

Proof. Since M,, j =1,...,d are self-adjoint operators on the finite dimensional Hilbert space
CPlxy, ..., x4/ T, we have o(M,,) C R with

cardo(M,,) < dim(CPxy,...,2q4]/T) =1 < 0.

J

We next fix a basis D of CP[zy,...,x4/J and let A; € C™" be the matrix representation of

M, with respect to D. Then since M, are commuting self-adjoint operators we get
Ar=A; for j=1,...,d.
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

By [47, Theorem 2.5.5], there exists unitary U € C™*" such that
A = Udiag(yfj), L VONU for j=1,....d

and diag(u%j), e yﬁj)) e C™" with ij), ...,¥ the eigenvalues of A;. Therefore

from which we derive card o(M,) < r. O

The following proposition is a significant tool in our construction, since it proves the exis-
tence of a representing measure 71" for a given H,-valued multisequence S () .= (S'y)weNg which

gives rise to an infinite moment matrix with finite rank.

Proposition 3.2.27. Let S := (Sy)veng be a given Hy-valued multisequence with corre-
sponding moment matriz M(oco) = 0. Suppose r := rank M (00) < co. Then S has a repre-

senting measure T'.

Proof. First we show

U*S'YU:<M;11...M;§(U+j)>v+j>:/ .’L‘iﬂ"'.’L';lmd<E($1,...,xd)(’l}—i-j),v—l—j), (316)

R4

that is,

v*Syv = (M- M v+ T),v+T) = / Dd(E(zy,...,xq)(v+ T), v+ T) (3.17)

R4

for all v € CP and v € N¢. For all v € CP, we have

(M Mo+ D)0+ T) = afv + 0+ )
O*

M (c0)(27v)
= 0" col(S5.410)5eny

_ *
= v*S,v

Therefore, we have obtained the left hand side of the equation (3.16). The right hand side is
implied by Remark 3.2.24. Indeed we have

([ ottt B a0+ ) @+ D) = [ @ dlBlan o+ T+ )
— (M M+ T) 0+ ),

for v € N¢ and equation (3.17) holds.
Let v*T(a)v := (E(a)(v + J),v + J) for every a € B(R?). We rewrite equation (3.17) as

VS0 = 0L M+ D)ot ) = [ ST

Rd
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3.2. Existence of a representing measure for an infinite moment matrix with finite rank

and let T, () := v*T(a)v, where a € B(R?). Notice that T, () = 0. We need to show
v Sw = / 27dT, ,(x) for v € Ng.
R4

Fix o € B(R?) and define

Tyo(a) = i@w(a) Ty (@) + iToin(@) — iTyin())  for v,w € CP. (3.18)

We observe

4/ 2dT,, () :/ x7dTw+U(x)—/ 2VdT ()
R¢ Rd

Rd
+z'/ VAT i0() —z'/ 2V dTy— iy ()
R4 Rd

= (w4 v)*Sy(w+v) — (w —v)" Sy (w —v)
+i(w 4 iv)*Sy (w + ) — i(w — w)*S, (w — iv)

= 4v* S w
for all v € N¢ and v, w € CP. Thus
v S w = / 27dT,, ,(z) for v,w € CP and ~y € N{. (3.19)
Rd

Let B(w,v) : CP x CP — C be given by B(w,v) := T, ,(a) where o € B(R?) is fixed. Using

assumption (A1) we have

*
v*Iv

v*U

Tyo(@) < Tyo(RY) = v*Sp,v = v*[,v < max v*v = [|v]]?,

by the Rayleigh-Ritz Theorem (see, e.g., [47, Theorem 4.2.2]), where max 2% v % 0,,, is the

v*v

maximum eigenvalue of the matrix [,. For all w,v € CP, formula (3.18) yields

Bw, v)| = |Twp(@)|
< %(Hw + 0|2 = |Jw = v|]* + i|Jw + w]]* = i||w — w||2)‘

i(Hsz +[0l* + 2Re((w, v)) = ([wl[* + [Jo[]* = 2Re((w, v)))

+i(l[w]? + [Jol* = 2iRe((w, v))) — i(l[w|[* +[[v]* + 2iRe(<w,v>))> ‘

= [2Re({w, v))]
< 2f[wl] ]v]],

by the Cauchy-Schwarz inequality. Hence /3 is a bounded sesquilinear form. For every v € C?,
the linear functional L, : C» — C given by L,(w) = B(w,v) is such that

| Lo (w)| = |5 (w, v)| < [[B] [|wl] [[]]
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3.3. Necessary conditions for the existence of a representing measure

By the Riesz Representation Theorem for Hilbert spaces (see, e.g., [63, Theorem 4, Section
6.3]), there exists a unique ¢ € CP such that

L,(w) = {p,v) for all v € CP.
Let T : B(R?) — H, be given by
VT (a)w = B(w,v) = Ty(a) for w,v e CP,
for which T'(a)w = ¢, a € B(R?). Since
wT(a)w =Ty w(a) =2 0 forw € C7,

we have T'(a) = 0 for a € B(R?). Therefore, formula (3.19) implies
S, = / 27dT(x) for v € N4
R4

and so, S™ has a representing measure 7. O

3.3 Necessary conditions for the existence of a repre-

senting measure

Throughout the section a series of lemmas are shown on the variety of the moment matrix and
its connection with the support of the representing measure. We study necessary conditions for
a solution to the matrix-valued moment problem and our aim is to state and prove the main

result of this chapter (see Theorem 3.3.15). We show that if M (oc0) = 0 and rank M (oc0) < oo,

then the associated H,-valued multisequence has a representing measure 7" with ) rank Q, =
a=1

rank M (oo) and supp T = V(Z), where Z C CP*P[zy, ..., x| is the right ideal associated with
This in turn yields to an analogous result (see Corollary 3.3.16) where a truncated H,-
valued multisequence has a unique representing measure 7" and is later being used in the proof

of the flat extension theorem for matricial moments (see Theorem 4.0.2).

Lemma 3.3.1. Let S := (S, ) er,,, be a given truncated H,-valued multisequence and M(n)

the corresponding moment matriz. If S has a representing measure T, then M(n) = 0.

Proof. For n = col(n)aer, ,, we have

n,d’

n*M(n)n = g C(z)"dT (x)¢(x) > 0,

where ((z) = Y. 2’ny. O
)\EFn}d
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3.3. Necessary conditions for the existence of a representing measure

Definition 3.3.2. Let T be a representing measure for S := (9,),er,, ,, Where S, € H, for
v €lgyqand P(x) = > 2 Py € CP*P[zy, ..., x24). We define

)\El—‘nﬁd
/ P(z)*dT(z) = Y PSP
Re A€, 4

Remark 3.3.3. In view of [51, Theorem 2], if S has a representing measure 7, then we can

always find a representing measure 1" for S of the form T = > Qudy@ with k < (2";d) p. Then

a=1

/R d P(z)*dT(z)P(z) := Y _ P(w')"Q.P(w).

The following lemma is very important for connecting the support of a representing measure

we may let

of an Hp-valued truncated multisequence and the variety of a moment matrix.

Lemma 3.3.4. Let S := (S,)yer,,, be a given truncated H,-valued multisequence with a

representing measure T. Suppose M (n) is the corresponding moment matriz. If
col( Z Sw_/\P/\) = col(Opxp)yeFmd»
Aern,d ’Yern,d

then
supp T C Z(det P(x)),

where P(x) = Y. a*Py € CE*Plxy,. .., z4).
)\an,d

Proof. If col < > 57+AP>\) = col(0pxp)yer, 4, then
’Yern d

)\an’d

col ( Z S,er)\P)\) col ( Z S,YJF,\P)\) = Opxp,
'YEFn,d 'YGFn,d

AeT, 4 Y

that is, Y.  PyS,4aPy = Opxp, which is equivalent to [p, P(x)*dT (x)P(x) = Opxp. Indeed

)‘776Fn,d

col(Py)jer, dc01< Z SWJF,\P) = Opxp
el a4

’YEFnd
and so
col(P)ier, ,M(n) col(Pser,, = Y PiSiaP,
)\,’YEFn,d
:/ P(x)*dT(z)P(z)
Rd
= Opxp-

Suppose to the contrary that
suppT € Z(det P(z)).
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3.3. Necessary conditions for the existence of a representing measure

Then there exists a point «(*) € supp T such that u(®) ¢ Z(det P(z)) and

B.(u) ={z eR?: ||z —u?|| <&} for € >0 small enough,

has the property T'(B:(u(®)) # 0y, and B:(u®) N Z(det P(x)) = (). We write

/Rd P(z)"dT(z)P(z) = /B - P(z)"dT (z)P(x) +/ P(z)*dT(z)P(x)

R4\ B (u(®)

and we note that both terms on the right hand side are positive semidefinite.
Let YV := T|m = T(0 N B.(u®)) for o € B(RY). Consider S := (S’W)Wepzn’d, where

S, :/ 27dY (z) for v €Tlona
R4

and note that Sy, = [p, dY (z) = YV(B:(u®)) # 0,x,. Applying [51, Theorem 2] we obtain a

representing measure for S of the form Y = >~ Qudy, with nonzero @, = 0, k < (2";51) p and
a=1
uV . u® € B (u®). But then
Opxp = / P(x)*dT(x)P(x) = / P(z)*dY (x)P(z)
Be (u(®) R4
- / P(a)*dY (2)P(x)
Rd
— Z P(u™)* Qo P(u(™),
a=1
by Remark 3.3.3. Since P(u®)*Q,P(u'®) = 0,4, fora=1,...x, we derive
Pu')*Q,P(u') = 0,y, for a=1,...k. (3.20)

But P(u'®) is invertible and therefore formula (3.20) implies Q, = 0,x, for a = 1,...x, a

contradiction. ]

The next example illustrates that the converse of Lemma 3.3.4 does not hold when p > 1.
Note that if p = 1, then the assertion in Lemma 3.3.4 is necessary and sufficient, see [16,

Proposition 3.1].

Example 3.3.5. Let S := (S,)yer,, be a truncated Hp-valued bisequence with Spo = Ia,

10 0 0
S = % (0 O) = S99, So1 = % (0 1) = Sp2 and S1; = 0Ogx9. Then S has a representing

1 10 00
T == 1000 + d(1,0) + o :
9 ( 20(0,0) (O O) (1,0) (0 1) (0,1))

o4

measure 1" given by



3.3. Necessary conditions for the existence of a representing measure

Choose the matrix-valued polynomial in C1**[z, y]

z 1
Pz, =
(z,y) (0 y)
01 10 0 0
= + Ty
0 0 0 0 0 1
and notice that det P(z,y) = xy and

det P(z,y)|suppr = 0.

We have

Soo 01 S1o 1 0o Sot 00
P(X,Y) =[S (0 0) + | Sa (O 0) + | Su (O 1) # col(02x2)yer, ., >
So1 St S02

which asserts that the converse of Lemma 3.3.4 does not hold.

We continue with results on the variety of a moment matrix and its connection with the

support of a representing measure 7.

Lemma 3.3.6. Suppose S := (S5, ) er,, , 5 a given truncated Hy-valued multisequence with a
representing measure T. Let M(n) be the corresponding moment matriz and let V(M (n)) be
the variety of M(n) (see Definition 3.1.21). Let P(x) = Y. a*Py € CEXP[xy, ..., zq). If

Ael‘nyd

col( Z SWHP,\) . :CO].(Opo)’yGFmd?
v n,d

Aan,d

then
suppT C V(M (n)).

Proof. By Lemma 3.3.4, for any P(z) € CP*P[xy, ..., x4] with

P(X) = col ( Z SerAP/\) = col(Opxp)rer, q»
'Yern,d

)\anyd

we have supp T C Z(det P(z)). Thus

m supp T C ﬂ Z(det P(x)),

P(X):COI(OPXP)’YEF"d P(X):COI(OPXP)’Y€Fnd
PeCh*Pxy,...,24] PeCE*Plxy,...,x4]
which implies that
suppT C V(M (n)). O
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3.3. Necessary conditions for the existence of a representing measure

Lemma 3.3.7. Let S := (S, ) er,, , be a given truncated H,-valued multisequence and let M(n)

be the corresponding moment matriz. If S has a representing measure T and w™

are given such that
suppT = {wW, ... w"},

then there exists P(x) € CE*Pxy, ..., x4] such that
Z(det P(x)) = {w®, ... w"}.

Moreover

COl( Z SA/JF)\P)\) . = COI(Opo)’YGFn,du
Y n,d

AET 4

and
V(M(n)) C suppT,

where V(M (n)) the variety of M(n) (see Definition 3.1.21).

Proof. If we let P(x) :=[]._, H] (@ — w(a))[pa then det P(x) = [[,_, H;'lzl(xj -
SO
det P(w HH (a) = 0.
a=1j=1
Thus

{w®, ... w®} C Z(det P(z)).

If we let P(z) =[] _, (2?1(%‘ — w](,a))2> I,, then det P(z) = [[_, (2?1(%‘ —

and hence

K d P
det P(w _H( (a) ) =0,

=1 ]:1
which yields
Z(det P(z)) € {wW, ... w™}.

Then by inclusions (3.21) and (3.22), we obtain

Z(det P(z)) = {w™W, ... w®}.

wj(-a) )P

L, w™® e RY

and

(3.22)

Hence Z(det P(z)) = {w™,... ,w®} = suppT, where T = > Qu6,. We will next show
a=1

that for both choices of P € CE*P[z4, ..., x,4], one obtains

col( Z Sw,\P,\) . :col(Opo)vern,d
Y n,d

Aan,d

and thus V(M (n)) C supp 7' For the choice of P(z) :=[]._, H] () a))[ € CP*Pxy, ..., x4,
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3.3. Necessary conditions for the existence of a representing measure

we have

col( Z SVJF,\P)\) = col(Opxp)yer, q-

)\EFn,d 'Yern,d

Consider P(X) € Cyy(n). We have Z(det P(x)) = supp T and we shall see P(X) = col(0pxp)er, -

We notice

AEFn,d

(z; — wg('a))[p

= col (fRd T (x) ] .

a=1j

8
l
~~__
2
m
—
3
IsH

= col ( Jga x”’gp(a:)dT(:C)) )

’YEFn,d

where p(z) = [[,_, H;.lzl(xj - w§a)) € Rlxy,...,z4). Since T = > Qudy, P(X) becomes

a=1

ol (é{w(“)}”sf?(w(“))@a) o = col ( f: {w®} f[ ﬁ (wj(.a) _ w](-a))Qa)

a=1 a=1j=1

- CO]‘(Opo)'YGFn,d

and hence P(X) = col(Opxp)er, ,- Since there exists matrix-valued polynomial P(x) such that
P(X) = col(Opxp)rer, , and Z(det P(x)) = supp T', we then have

ﬂ Z(det P(z)) C ﬂ supp 7,

P<X):C01(OPXP)’YEFnd P<X)ZCOI<OP><P)’Y€Fnd
PGC%XZ)[ml ,,,,, xd} PGC%XP[Il ..... xd}

a=1 j=1

which implies V(M (n)) C supp T. Next, for the choice of P(z) := [[" (Zd (z; —w(-a))2> L,

we will show that

Col( Z SWJF,\P,\) = col(Opxp)yer, q-

/\EFn,d ’YEFm(i

We have Z(det P(z)) = suppT and we consider P(X) € Ci,). We will show that for this
choice of P(x), P(X) = col(Opxp)rer, .- Notice that

Aan,d

P(X) :Col( > X””‘P,\>
"/Ern,d



3.3. Necessary conditions for the existence of a representing measure

where p(z) =[[_, Z;.l:l(xj - wj('a))2 € Rlzy,...,z4). Since T' = Z Qa0 , P(X) becomes

al(Sweranne) e SworfI(Ser-wr)e)

Y€l nd j=1

= COI(Opxp)wan,d

and so P(X) = col(Opxp)rer, .- We thus conclude that there exists a matrix-valued polynomial
P(z) such that P(X) = col(Opxp)ver, , and Z(det P(x)) = supp T and thus we obtain

ﬂ Z(det P(z)) C m supp 7,

P(X):COI(OPXP)'YEFnd P(X)_COI(Opo)'yEF v
PE(CZXP[{El ,,,,, (Ed] PG(CP p[xl ..... d]
which asserts
V(M(n)) C suppT. O

Lemma 3.3.8. Let S := (9,),er,, , be truncated Hy-valued multisequence and let M (n) be the

corresponding moment matriz. If T is a representing measure for S, then

rank M (n) < Z rank Q.

Proof. 1f supp T is infinite, then rank M(n) < > rank @, holds trivially. If supp 7 is finite,
a=1

that is, 7" is of the form T'= ) Q40 , then

a=1

M(n)=VTRYV,

where V := VP*P(w® . w®; A) € CP**P with A C N and card A = » and

@ 0
R=Qo-eQ=| -~ |eccvw
0 Qr
Hence
rank M(n) < min(rank V7 rank RV)

< min(rank V7? rank R, rank V)

< min(rank V, rank R)

< rank R

= ¥ rankQ,

and the proof is complete. O
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3.3. Necessary conditions for the existence of a representing measure

Proposition 3.3.9. Let S := (Sy)yeng be a given Hy-valued multisequence with a represent-

ing measure T which has ) rank @, < oo and M(oco) be the corresponding moment matriz.

a=1
Then

r :=rank M (o0) = Zrank Qa-

a=1

Proof. By Theorem 1.4.26, there exists A C N¢ such that card A = x and V (w®, ... w®);A)

is invertible. If S(>) has a representing measure 7' = Y Q40,,(, then
a=1
rank M (oc0) < rank M (oo0) < Z rank @, (3.23)
a=1

where M (00) is a principal submatrix of M (co) with block rows and block columns indexed
by A. Notice that since V(w™, ..., w®™);A) is invertible, by Remark 3.1.27 we deduce that
Vo= Vexe(wM L w); A) € CXRP s invertible. Moreover, since V' € R™**P | M, (00) can
be written as

My(o0) = VIRV = V*RYV,
where

Q1 0
Ri:Ql@"'@Qn: ECHPXHP.
0 Qr
By Sylvester’s law of inertia (see, e.g., [48, Theorem 4.5.8]), we have iy (My(c0)) = iy (R),

where 7, indicates the number of positive eigenvalues. So rank M, (oo) = rank R. However

rank R = ) rank Q,. By inequality (3.23),

a=1

K

Zrank Qo < rank M(o0) < Zrank Qa,
a=1

a=1
which implies
Z rank (), = rank M (o0) = . O

a=1

Lemma 3.3.10. Suppose S := (S,)yer,, , 15 a truncated H,-valued multisequence with a repre-

senting measure T. Let M(n) be the corresponding moment matriz and V(M (n)) be the variety
of M(n) (see Definition 3.1.21). Then

rank M (n) < card V(M (n)).
Proof. Lemma 3.3.8 asserts that rank M(n) < > rank @, and by Lemma 3.3.6,
a=1

supp T C V(M (n)),
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3.3. Necessary conditions for the existence of a representing measure

which implies ) rank @, < card V(M (n)). Hence

a=1

rank M (n) < card V(M (n)). O

In analogy to Lemma 3.3.7, we proceed to Lemmas 3.3.11 and 3.3.12 for P € CP*P[xy, ..., xg4].

Lemma 3.3.11. Let S := (Sy)yeng be a given Hy,-valued multisequence. If S has a
representing measure T and w™, ... w" € R are given, then there exists P € CP*Pxy, ..., xq)
such that

Z(det P(z)) = {w®, ... w®}.

Moreover, P € T and
V(Z) CsuppT

where I is as in Definition 3.1.14 and V(I) the variety of T (see Definition 3.1.22).

Proof. Let the matrix-valued polynomial P(z) := [[,_, H;l:l(xj - wj(-a))lp € CP*Plxy, ..., xq).
Then det P(z) = [],_, H;l:l(xj — w!Y? and so

J

det P(w'®) H H (@) (a) = 0.
a=1j=1
Thus {w®,...,w*} C Z(det P(x)). To show the other inclusion, choose the matrix-valued

polynomial P(z) := [['_, (Zc.l (z; — wﬁa))z) I, € CP*P[xy, ... ,x4). Then we shall obtain

J=1

p
det P(z) = [["_, <zj1(xj - w§a>)2> and so

K d P
det P(w'@) = H ( (wj(a) — wj(-a))Q) =0,
j=1

a=1

which implies that Z(det P(x)) C {w®, ... w™}. Thus
Z(det P(z)) = {w®, ... w®}.

Let supp? = {w®,...,w™} where T = Z Qa0 - In the following, we shall see that for

both choices of the matrix-valued polynomlal P € CP*P[xy,...,x4], one obtains P € 7 and
this in turn yields the inclusion V(Z) C supp 7. Consider first the matrix-valued polynomial
P(z):=11_, H;l:l(mj - w](-a))fp such that P(X) € Cay()- We have

Z(det P(z)) =suppT

and we shall show that P(X) = col(Opxp)eng-
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3.3. Necessary conditions for the existence of a representing measure

Notice that

P(X)=col| > X"AP = col ( Ja ﬂdT(m)P(m))
Al g ~eNd yENY

0

(x; §“’>Ip>
yeNd

= col (fw a:‘”’go(x)dT(x)) :

d
YENG

:ja.

— ol ( frerat() 1

a=1j

I
—

where ¢(z) =[]._; H?Zl( ]( ) € Rlxy,...,z4). Since T' = > Q) , P(X) becomes

o (S teppwne) = (S0 [T 00 - ua)

a=1j=1

= COI(Opo)fyeNg

and hence P € 7.
Since there exists P € Z such that Z(det P(x)) = supp T,

V(Z ﬂ Z(det P(x ﬂ supp T’

pPel Pel

and thus V(Z) C supp7. We continue on showing that for the choice of the matrix-valued
polynomial P(z) := []_, Z?Zl(xj — w](-a))2 I,, one obtains that P € Z as well. Consider

P(X) € Cur(oo). We have Z(det P(z)) = supp T and we shall see P(X) = col(0pxp),ena. Indeed

P(X) :c01< > X'”’\P,\>
~ENE

( f;x VAT (2) Pl ))VENg
— col (fRd 27dT(z) aljl (]il(:p] — w](a))Z) Ip) en

where ¢(z) =[[_, ijl(xj — wj(-a))2 € Rlzy,...,x4). Since T =Y Qo0 , P(X) becomes

a=1

ol ( i{w(“)}”gﬁ(w(“))Qa) — col (é{w(a)}v ﬁ (jé(w](a) _ w](u))Q) Qa) .

= COI(Opxp)yeNg
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3.3. Necessary conditions for the existence of a representing measure

and so P € Z. Since there exists P € Z such that Z(det P(z)) = supp T, we again obtain
V(Z) Csupp T

as desired. []

Lemma 3.3.12. Let T be a representing measure for S := (Sy)yeng, where Sy € My, v € Nd
and w, ... w® € R? be such that

suppT = {wW, ... w"}.
If there exists P € CP*P|xy, ... x4 with P € I, then
suppT C V(I),

where T is as in Definition 3.1.14 and V(Z) the variety of T (see Definition 3.1.22).

Proof. By Lemma 3.3.11, if we choose P(z) := [[,_, H;.lzl(xj —wj(-a))lp € CP*P[xy,. .., x4], then
P €7 and
{fw®, .. w"} C Z(det P(z)),

that is,
supp T C Z(det P(z)).
Therefore
ﬂ suppT C m Z(det P(z))
PeT PeT
and so
suppT C V(Z). O

In the next lemma we treat the multiplication operators of Definition 3.2.17 to provide a

connection between the joint spectrum of M, , ..., M,, and a representing measure 7.

Lemma 3.3.13. If T is a representing measure for S = (Sw)veNgv where S, € H,, v € NI,
then
suppT C o(M,),

where o(M,) is as in Definition 3.2.25.

Proof. Since M,;, j = 1,...,d, are commuting self-adjoint operators on CP[zy,...,z4]/J, by
Remark 3.2.24, there exists a joint spectral measure E : B(R?) — P such that for every
q,f€CP,

<M;11...M;d(q—|—j),f—|—j>:/ ot d(E(xy, .. xd) g+ T fHT), j=1,....d

d R

Moreover
v*T(a)v = (E(a)(v+ TJ),v+ J) for every a € B(R?).
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3.3. Necessary conditions for the existence of a representing measure

If @ Csupp 7, then T'(cr) # 0,yx,. Thus, there exists v € CP such that v*T'(a))v > 0. Hence
(E(a)(v+T),v+T) >0

and so E(a) # 0,xp. O

The next lemma describes the block column relations of an infinite moment matrix in terms

of the variety of a right ideal built from matrix-valued polynomials.

Lemma 3.3.14. Let S := (Sy)yeng be a given Hy-valued multisequence with a representing
measure T. Let M(oo) be the corresponding moment matriz with r := rank M (oco). If there
exists P € CP*P[xy, ..., x4] such that P € T then

cardV(Z) =,
where Z is as in Definition 3.1.14 and V(Z) the variety of I (see Definition 3.1.22).
Proof. By Lemma 3.3.11, there exists P € Z with V(Z) C supp T such that
Z(det P(z)) =supp T
and by Lemma 3.3.13, supp T C o(M,). Then
suppT = Z(det P(x)) C o(M,)
and thus

() Z(det P(z)) C o(M,),

Pel

which is equivalent to V(Z) C o(M,). Therefore
card V(Z) < card o(M,) < dim(CP[xy, ..., x4/ T) = 1.

Moreover, by Remark 3.3.6, suppT C V(Z) and so Y rank @, < card V(Z). Then Proposition
a=1
3.3.9 implies card V(Z) > r. Finally

cardV(Z) = r. O

We next state and prove the main theorem of this chapter. We shall see that if M (o0) = 0
with rank M (co) < oo, then the associated H,-valued multisequence has a unique representing
measure 7' and one can extract information on the support of the representing measure in

terms of the variety of the right ideal associated with M (00).

Theorem 3.3.15. Let S(>) .= (Sw)qug be a given Hy,-valued multisequence. If S gives rise

to M(oc0) = 0 and r := rank M (c0) < oo, then S has a unique representing measure T. In
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3.3. Necessary conditions for the existence of a representing measure

this case,
suppT = V(2),

where L 1s as in Definition 3.1.14, and moreover,
cardV(Z) = r.

Proof. By Proposition 3.2.27, if S gives rise to M (c0) = 0 and 7 := rank M (co) < oo, then
S(>) has a representing measure 7. Moreover, by Lemma 3.3.12, we have supp T C V(Z) and
by Lemma 3.3.11, V(Z) C supp T Thus

suppT = V(Z).

Next, Proposition 3.3.9 yields > rank (), = r = rank M (00). Since ) rank @, = r < oo, the

a=1 a=1

measure 7" is of the form T = >~ Q,0,,@, with

a=1

wle

K

> rankQ, =7 and Qi,...,Q. = 0.

a=1

To prove T’ is unique, suppose T is another representing measure for S . By Remark 3.3.6,
we have suppf C V(Z) and by Remark 3.3.11, V(Z) C supp T. As before suppf =V(Z), and

moreover, »  rank CNQb =r < 00, by Proposition 3.3.9. So T is of the form T = > @béﬁ,(b) with
b=1 b=1

K

Zrank@b =r and @1,...762” > 0.

b=1
Since suppT = V(Z) = suppT, we have {w@}_, = {@w®}5 . Thus k = & and w@ =
w® = @@ for all @ = 1,...,x. By Theorem 1.4.26, there exists A = {A\¥) ... A®} C Nd
such that card A = x and V(w®,... w™;A) is invertible. Remark 3.1.27 implies then that
Ve (| w™; A) is invertible. The positive semidefinite matrices Q1,. .., Q. € CP*P are

computed by the Vandermonde equation
COl(QG)SZI = Vpxp<w(l)’ s 7w(l€); A)_l CO](S)\))\E/b

where @)1,...,Q,. = 0. Moreover, the positive semidefinite matrices @1, e ,@K e CP*P are

computed by the Vandermonde equation
COI(@CL)::l = VPXP(w(1)7 v 7w(ﬂ); A)il COI(S)\))\GAa

where Q1,...,Q, = 0. Hence col(Qn)fi_, = col(@a)gzl and (Q.)h_, = (@a)gzl which asserts
that the positive semidefinite matrices )1, . .., Q. are uniquely determined for alla =1, ... k.

Consequently, the representing measure 7' is unique and the proof is complete. O]
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3.3. Necessary conditions for the existence of a representing measure

In analogy to Theorem 3.3.15, we formulate the next corollary for a given truncated

H,p-valued multisequence S := (S, ) er,, 4-

Corollary 3.3.16. Let S := (S,)er,, , be a given truncated H,-valued multisequence. Suppose
there exist moments (Sy)yery, s \Tonq SUch that M(n+1) = 0 and

rank M (n) = rank M (n + 1).
Then (Sy)yeryn,sq has a unique representing measure T. In this case,
suppT =V(M(n+k)) for k=1,2,...,

where V(M (n + k)) denotes the variety of M(n + k) for P(z) € CP*Plxy,...,x4] such that

M (n + k) col(Py)er = col(Opxp)acr, pq for allk =1,2,..., and moreover,

n+k,d

cardV(M(n+k)) =r.

Proof. By Lemma 3.4.2, there exist moments (kSX,)VeI\]g\FQnJr2 , Which give rise to a unique se-

quence of extensions
M(n+k)=0 for k=2,3,...

and thus to M(co) = 0. Hence, by Proposition 3.2.27, (S,),cne has a representing measure
T and its uniqueness follows from Theorem 3.3.15. So if S gives rise to M(n + 1) > 0 and
r = rank M (n + 1) = rank M (n) < oo, then (.5,)
T. Moreover, Lemma 3.3.6 applied for P(z) € CPH[xq,. .., xq4) with

y€Tan40.q NAS @ unique representing measure

col ( Z S‘H/\PA) = cOl(Opxp)ver, i
’YEFn+l,d

Ael“n,d
yields
suppT CV(M(n+1)). (3.24)
Notice that since (S,)yer,,,,, has a representing measure T, for P(z) € CVA[xy,..., 24,
Lemma 3.3.7 asserts
V(M(n+1)) CsuppT, (3.25)

By inclusions (3.24) and (3.25),
suppT = V(M (n +1)).

We need to show suppT = V(M(n + k)) forall & = 1,2,... We apply Lemma 3.3.12 for
P(x) € CP*P[xy,. .., x4] such that M(n + k) col(Px)aer,.\q = €Ol(Opxp)rer, .- Then

suppT CV(M(n+k)) for k=1,2,... (3.26)
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3.3. Necessary conditions for the existence of a representing measure

Next, since (5,),eng has a representing measure T, (S, )yer,, o, has a representing measure

T for all k=1,2,..., and thus, Lemma 3.3.11 applied for P(z) € CP*P[zy, ..., x4 implies
V(M(n+k)) CsuppT for k=1,2,... (3.27)

We shall derive suppT = V(M (n + k)) for all & = 1,2,..., by inclusions (3.26) and (3.27).
Furthermore, since 7' is a representing measure for (Sv)weN(# then T is a representing measure
for (S5)yers onq and Lemma 3.3.14 implies card V(M (n + k)) = r for all k = 1,2, ... Hence

> rank @, = r < oo and the measure T is of the form 7' = > Q,0,, with

a=1 a=1

K

Zrank@a:r and Q1,...,Q. = 0. O]

a=1

We next present an algebraic result involving an ideal (see Definition 3.1.14) associated to

an infinite positive moment matrix.

Proposition 3.3.17. If M(oc0) = 0 and T C CP*P[xq, ..., x4] is the associated right ideal (see
Definition 3.1.14), then T is real radical.

Proof. We need to show that > r_ PW{P@W}* € T= P@ €T foralla=1,...,x. Let

R(a) := col ([1()?)?))\:(0 0) > COI(OPXP)VGFnH,d\’Y:(O ~~~~~ 0)

.....

and

P .= col (P/{a))/\ern,d ® col(Opxp)yer,sra\lng fOr a=1,... k.

Since S {R@}*M(n + 1)P® = Opxp, We may write
a=1

Z col ( Z Sw,\Pia)) col ({PA(Q)}*)/\ern L= Opxp
a=1 Y€l 41,4 ’

/\eFWi

and so

Sl ( X SnrHEHY) =0,
a=1 'Yern+1,d

PY=

We then have

Z tr (COI ( Z 57+AP§Q){P>(\a)}*>) - tr<op><P)7€Fn,d>
a=1 VGFn,d

Ael—‘n,(i

which by properties of the trace is equivalent to

Ztr (col ( Z {Pia)}*S%L)\P/Ea))) = t1(Opxp)yer, a»
a=1 'YEFn,d

)\El—‘md
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that is, i
Ztr (col ( Z {P)fa)}*svﬂpf\a))) =0
a=1 AET, 4 V€L R4
and thus .
Z col ({Pia)}*);ern,d col ( Z Sw,\PA(a)) = 0pxp-
a=1 AT, 4 V€4
Hence .
D APOYMm)P = 0,
a=1
which implies P € Z for alla = 1,. ..,k as desired. O

3.4 Positive extensions of truncated moment matrices

In this section, we investigate positive extensions of truncated moment matrices based on a
truncated H,-valued multisequence. Both results provided in the following are important for
obtaining the flat extension theorem for matricial moments stated and proved in Chapter 4.

The next lemma will be referred to as the extension lemma.

Lemma 3.4.1. Let S := (S,)yer,,, be a given truncated Hy-valued multisequence and let
M (n) be the corresponding moment matriz. If M(n) = 0 has an extension M(n+ 1) such that
M(n+1) = 0 and rank M (n + 1) = rank M (n), then there exist (S,) ena\r,, , such that

M(n+k)>=0
and
rank M(n+ k) =rankM(n+k—1) for k=2,3,...
Proof. See Lemma A.0.1 for a proof. O
Lemma 3.4.2. Let S := (S,)er,,, be a given truncated Hy-valued multisequence and let

M(n) = 0 be the corresponding moment matriz. Suppose that M (n) has a positive extension
M(n + 1) with
rank M (n + 1) = rank M (n).

Then there exists a unique sequence of extensions
Mn+k)=0

with
rank M(n+ k) =rankM(n+k—1) for k=23,...

Proof. See Lemma A.0.2 for a proof. m
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Chapter 4

The flat extension theorem for

matricial moments

In this chapter we will formulate and prove a flat extension theorem for matricial moments.
We shall see that a given truncated #H,-valued multisequence S := (S,),er,, , has a minimal
representing measure (see Definition 1.4.38) if and only if the corresponding moment matrix
M (n) has a flat extension M (n+ 1). In this case, one can find a minimal representing measure
such that the support of the minimal representing measure is the variety of the moment matrix
M(n+1).

The definition that follows is an adaptation of the notion of flatness introduced by Curto

and Fialkow in [16] to our matricial setting.

Definition 4.0.1. Let S := (S,)4er,,, be a given truncated H,-valued multisequence and
M (n) = 0 be the corresponding moment matrix. Then M (n) has a flat extension if there exist
(Sy)reTonso.a\Tan.qa» Where S, € H, for v € T'gppaq \ T'ong such that M(n +1) = 0 and

rank M (n) = rank M (n + 1).

Theorem 4.0.2 (flat extension theorem for matricial moments). Let S := (5,) er,,, be a
gwen truncated H,-valued multisequence, M(n) = 0 be the corresponding moment matriz and

r:=rank M(n). S has a representing measure

T=2 Qubyw
a=1

with

K

Zrank Qu=Tr

a=1

if and only if the matriz M (n) admits an extension M(n + 1) = 0 such that

rank M (n) = rank M (n + 1).
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Moreover,
supp "= V(M (n + 1)),

and there exists A = {\V ... AV C N¢ with card A = k such that the multivariable Van-
dermonde matriz VP*P(w® .. w®; A) € CP**P js invertible. Then the positive semidefinite

matrices Q1, . ..,Q. € CP*P are given by the Vandermonde equation
col(Qq)_, = VPP(wW . w™: A)7! col(Sy)rea-
Proof. Suppose the matrix M(n) > 0 admits an extension M (n + 1) > 0 such that
rank M (n + 1) = rank M (n) = r.
By Corollary 3.3.16, (S, )yery,,., has a unique representing measure 7" such that
suppT =V(M(n+1)) and cardV(M(n+1))=r,

that is,

K

Z rank Q, = 7.

a=1

Consequently, T" is of the form
T=2 Qulyw
a=1

with > rank @, = r.

a=1

K
Conversely, suppose that S has a representing measure T'= Y 40,y With
a=1

K

Z rank Q, = 7.

a=1

Consider the matrix M (n + 1) built from the moments (S, ) er,, » s\rs,q- 1 1S @ representing

measure for M(n + 1) and so, by Lemma 3.3.8 we obtain

rank M (n +1) < Zrank Q, = rank M (n).

a=1

The extension lemma (see Lemma 3.4.1) asserts that M(n+1) is a flat extension of M(n). O
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Chapter 5

The bivariate quadratic matrix-valued

moment problem

In this chapter we will study the bivariate quadratic matrix-valued moment problem. Given
a truncated H,-valued bisequence S := (S5;)yery, = (S0, S10,S01, S20, 11, S02), we wish to
determine when S has a minimal representing measure. For p = 1, Curto and Fialkow [16]
showed that every S = (5,)yer,, with Spo > 0 and M(1) = 0 has a minimal representing
measure.

Notice that a direct analogue of Curto and Fialkow’s result on the bivariate quadratic
moment problem does not hold when p > 2 (see Example 1.4.40). However, we shall see that
if M(1) is positive semidefinite and certain block column relations hold, then S = (5;)+er, ..
Soo = 0, has a minimal representing measure.

In the following we shall make use of the assumption (A1) of Remark 1.4.39, that is, Sy, = I,
for d = 2.

The next theorem illustrates necessary and sufficient conditions for a given quadratic
‘H,-valued bisequence to have a minimal representing measure. We observe that the positivity
and flatness conditions are essential to obtain a minimal solution to the bivariate quadratic

matrix-valued moment problem.

Theorem 5.0.1. Let S := (5,)yer,, be a given truncated Hy,-valued bisequence and
1 X Y
1 Ip SlO S()l

M) = X| Sy Sy Sii | be the corresponding moment matriz. S has a minimal repre-

Y \ S Su So2
senting measure if and only if the following conditions hold:

(i) M(1) = 0.
(ii) There exist Sso, So1, S12, So3 € H, such that

SQO Sll 502
Ran 530 521 512 Q Ran M(l)
S21 Sl? SOS
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(hence, there exists W = (I/Vab)ib:1 € C3*3 such that M(1)W = B, where

Sao S Soz
B = 530 521 512 )
So1 Siz Sos

and moreover, the following matriz equations hold:

WSt + Wy S + W31 S12 = StuuWiy + So1Way + S12Way, (5.1)
Wi3S20 + Wa3S30 + WizSo = W51 + WopSa1 + Wi S (5.2)
and
Wi5S02 + Wy S1a + WisSos = SoaWia + S12Was + SosWia. (5.3)
Proof. Since
S0 S11 Soz
Ran 530 521 512 - Ran M(l),
So1 Sz Sos
there exists W = (Wab)z,bﬂ € C3>3 guch that
S0 St Soz
B:= |83 Su S| =MDLW.
So1 S12 Sos
Wi Wi Wis
Let W := ng W22 ng . Then
Wi Wsy Wis
Sao = Wii + S1oWa1 + So1Wsi, (5.4)
Sz0 = S10Wi1 + S20War + S11 Wi, (5.5)
So1 = So1 Wi + S11War + SpaWs1 (5.6)
= S10Whia + SaoWag + 511 Wig,
S11 = Wia + S10Wag + So1 Wag, (5.7)
S12 = So1Wia + S11Wag + SpaWso (5.8)
= S10Wis + SaoWaz + S11Was,
Soz = Wiz + S10Was + So1 W3 (5.9)
and
Soz = So1Wis + S11Wag + Sp2Wss. (5.10)
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Cn Cpp Ci3

Let C:=W*M(1)W = W*B and write C = | Cy; Oy Chs | . By formulas (5.6), (5.7) and
Cs1 O3 Csg

(5.8), we have

Cra = W7 S + W5 S + W5 Sie
= W (Wig + S10Wase + So1Was) + W3 (S10Wi2 + SogWas + S11Ws2)
+W§1 (501W12 + S111VV22 + SOQWgQ).

Since the matrix equation (5.1) holds, Ciy = Cf, = Cs;. Next, by formulas (5.6), (5.7) and
(5.8),

Cy = Wl*QSH + W2*2521 + W§2312
= Wi, (Wi 4+ S10Waz + So1Waa) + Woo (S10Whg + S0 Wae + S11Ws2)
+Wi(SonWha + S11Waa 4 SpaWsz)

and by formulas (5.4), (5.5) and (5.6),

Cs1 = Wi3590 + W33S30 + W335
= Wi5(Wi1 + S1oWar + So1War) + Wi (S10Wi1 + SaoWoar + S11Way)
+ W35 (So1 Wit + S1iWar + SoaWa1).

Since the matrix equation (5.2) holds, Cey = C31. Moreover, by formulas (5.8), (5.9) and (5.10),

Cys = Wi,Soa + Wi, Sia + Wiy Sos
= Wiy (Wis + S10Was + So1 W) + W35 (S10Wis + Sa0Was + 511 Wss)
+ W35 (So1 Wiz + S11Wasg + S Was).

Since the matrix equation (5.3) holds, Co3 = C3; = C3o. Thus, by Lemma 1.4.24,

M(2) := (A/‘g*l) g) =0

is a flat extension of M(1). By the flat extension theorem for matricial moments (see Theorem
4.0.2), there exists a minimal representing measure 7" for S.

Conversely, if S has a minimal representing measure, then by the flat extension theorem for

M) B
matricial moments (see Theorem 4.0.2), there exists a flat extension M(2) := B(* ) o
of M(1) such that rank M (1) = rank M(2). By Lemma 1.4.24, C = W*M(1)W for some
W € C3*3F such that

=0

Sao S Soz
B:= 153 Sau Sia :M(l)W
Sa1 Siz Sos
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Wi Wiy Wi
and consequently, Ran B C Ran M (1). Hence there exists W := | Wy, Wsy Was | satisfying

Wa1 Wi Wi
Si0 Sz1 S22
B =M(1)W. Since C = | S3; Sos Siz | = W*M(1)W, we have
S22 S13 Soa
Sz = WS+ WaySa1 + Wi Sha,
522 — Wl*SSQO + W2*3530 + W;?)Sgl
= W81 + WaSo1 + Wi Si9
and
513 - Wl*QS()Q + WQ*QSH + W?TQSO&
We derive the matrix equations (5.1), (5.2) and (5.3), respectively. O

The next corollary is a special case of Theorem 5.0.1 when M (1) > 0.

Corollary 5.0.2. Let S := (S,)yer,, € Hp be a given truncated H,-valued bisequence. Sup-
1 X Y
1 Ip SIO SOI

pose M(1) = X | Sio Soo Su | = 0 and write M(1)™" = (Pw), ,—;. S has a minimal

Y \So1 Su Soe
representing measure if and only if there exist S, S21, 512, S03 € H, such that the following

matriz equations have a solution:

(S20P13 + S30Pas + S21P33)S12 — S12(S20 P13 + Ss0 s + So1Ps3)" = Ry, (5.11)

(S20 P13 + S30Pag 4 Sa1Ps3)S03 — S030pxp = R (5.12)
and

(S11 P13 + S21Pag + S12P33)S03 — So3(S11 P13 + So1Pog + S12Ps3)" = Ry, (5.13)
where

Ry = S11P115%0 + S11P12S30 + S11P13S91 + S21 P55
+ S91P29.S30 4+ Sa1 Pa3So1 — Sa20P11511 — S30P15511
— So1P5511 — S20P12521 — S350 P22.S21 — S21P53591,

Ry = 511 P115S11 + S21 P5S11 4 S12P3511 + S11P12S21 + S91 P25
+ S12P53501 4+ S11Pi3S12 + S21 Pa3Si2 + S12P33512 — S20P11502
— S30P5S02 — So1 Pj5502 — S20P12512 — S30P22512 — S91Pa3S12
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and

R3 = SpaP11511 + S02P12521 + So2 P13 S12 + S12P551
+ S12P2S21 + S12%3512 — S11P11.S02 — S21P15502
— S12P3502 — S11P12S12 — 521 P22S12 — S12P53512.

Proof. Write
Py Pip Pig
M(l)_lz Pl Py Py
Pl3 Py Pss

Sa0 St Soz
and let W = M(1)"'B, where B := | S35 So; Si2 | - Then we get M(1)W = B. Write
So1 Si2 Sos
Wi Wiy Wi
W= | Wy Wiy Wsys | and notice that
Wi Wiy Wi

Wi = P11520 + P12S30 + P13Sa1,
War = P[3S50 + PaaS30 + Pa3So,
W31 = P{3590 + Py3530 + Ps3.521,
Wig = P11S1 + Pr2Sa1 + Pi3She,
Wag = PS11 + PaaSar + Pa3Sha,
Wy = Pl3S11 + Py3891 + P33Si9,
Wiz = P11So2 + P12512 + P13S03,
Was = P5502 + P22S12 + Pa3Sos

and
Wis = P[5S02 + Py3512 + P33503.

We fix the moments Ssg, So1 € H,. The matrix equation (5.1) in Theorem 5.0.1 then becomes

the Lyapunov equation, namely the matrix equation (5.11)
A1S12 — S1247 = Ry,
where Al = 520P13 + 530P23 + Sglpgg and

Ry = 511 P115%0 + S11P12S30 + S11P13S21 + Sa1 P55
+ 521 Po3S30 + 591 P3521 — Sa0P11.511 — S30P5511
— S01 P5511 — S20P12591 — S350 P22.521 — S21Py3591.
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We next fix the moments Sszg, So; and the matrix equation (5.2) in Theorem 5.0.1 yields the

following Sylvester equation, namely the matrix equation (5.12)
A2S503 — S030pxp = R,
where Ay = Sy Pi3 + S30Pas + So1 Pz = A and

Ry = 511 P11511 + S21 P5S11 4 S12P5511 + S11P12S21 + 591 P22591
+ S12P53501 4+ S11Pi3S12 + S21 PagSi2 + S12P33512 — S20P11502
— S30P5S02 — Sa1 P5502 — S20P12512 — S30P22512 — S91Pa3S1a.

Next, we fix the moments Si2,S9;. The matrix equation (5.3) in Theorem 5.0.1 yields the

following Lyapunov equation, namely the matrix equation (5.13)
A3S03 — SosA; = Rg,
where Az = 11 Pi3 + S21P3 + S12P33 and

R3 = Spa P11511 + So2P12521 + So2 P13S12 + S12P15511
+ S12P22591 + S12P23512 — S11P11.S02 — S21Pj5502
— S12P5S02 — S11P12S12 — S21 Pa2S12 — S12P53.5419.

Since there exist Ssg, Sa1, S12, 503 € H,, such that the above matrix equations have a solution,
Theorem 5.0.1 asserts that there exists a minimal representing measure T for S.

Conversely, if S has a minimal representing measure, then by Theorem 5.0.1, there ex-

Wll W12 W13 520 Sll 802
iStS W = W21 WQQ W23 SUCh that M(l)W = 530 821 512 = B and the matriX
Wi Wiy Wi Sa1 S12 So3

equations (5.1), (5.2) and (5.3) hold. Since M(1) = 0, we have W = M(1)~'B. The matrix
equations (5.11), (5.12) and (5.13) follow from the matrix equations (5.1), (5.2) and (5.3),
respectively. O

In the following theorem we obtain a minimal representing measure for a given truncated
‘H,-valued bisequence when the associated moment matrix has certain block column relations.
Moreover, we extract information on the support of the representing measure observing its
connection with the aforementioned block column relations. Theorem 5.0.3 can be thought of

as an analogue of [16, Proposition 6.2] for p > 1.

Theorem 5.0.3. Let S := (5,)qer,, be a given truncated H,-valued bisequence. Suppose
1 X Y

1 Ip SlO S[)l
M(l)z X 510 SQO 511 thndle‘q)andY:1~\IJf0r(I>,\Il€Cpo.
Y SOI Sll 502
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Then ® = S19 and W = Sy; and there exists a minimal (that is, > rank Q, = p) representing
a=1

measure T for S of the form
T=> Qulyw,
a=1

where 1 < k < p and
suppT = {w®, ..., w} C o(®) x o(V).

Proof. Since X =1-®and Y =1-V for &, ¥ € CP*P| we have

Sip=d = &, (5.14)
Sao = S1o® = P2, (5.15)
Spp =¥ = U, (5.16)

Spy = Sy ¥ = W2

and
Sll == SlO\II == @‘I’ (517)
Let
Sgg = Sloq) == 520, (518)
521 = S[)lq) == \I/(I), S12 = SlO\If = oY = Sll
and

Sgg = 501\11 = SOQ. (519)

Then S5y, S12 € H, and Sps3 € H,,. Moreover, S5, = ¢*U* = S}, = S1o = S1; and so Sy € H,,

and

512 = 511 = 521, (520)
that is,
OV = V. (5.21)
0 S0 St Soz
If we 1613 W = \Ij 0 5 then B = 530 S21 512 = M(l)W
0 v So1 Sz Sos

Notice that B = | So9 Si11 Sii |, by formulas (5.18), (5.19) and (5.20). Let

C = W*M(l)W =W*'B = \IJ*SQQ \IJ*SH \I/*Sll
S WSy USp
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Cn Ci Ci3
and write C' = | Oy Cyy Cas | - In order for C' to have the appropriate block Hankel struc-

Cs1 Cs Clsg
ture we need to show

\I]*SQO = CI)*SH and \IJ*SH = CD*SH.

By formulas (5.14), (5.15) and (5.21),
U*Syy = U'P* = UP* = VPP = U,
By formulas (5.16), (5.17) and (5.21), we have
P*Spy = 'OV = P2V = POV = YD = U* Sy

as desired. Furthermore, we have Cy = C3; = U*Sy;. Thus Cy = ¥*S1; € H,. However
Cs1 = Oy forces C13 = Uy = Csy. Hence

M(2):= (]W;’}) f’) =0

is a flat extension of M (1) by Lemma 1.4.24. By the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure 7" for S of the form

T = Z Qa0 (@)
a=1

such that suppT = V(M (2)), where

irank Q. = card V(M (2)) = rank M(1) = p.

a=1

Since X =1-® and Y =1V, the matrix-valued polynomials
P (z,y) =21, —® and Py(z,y)=yl,— ¥

are such that P;(X,Y) = P,(X,Y) = col(Opxp)yer,, € Cria)-
Lemma 3.3.6 implies that

suppT' = V(M(2)) C Z(det(Pi(z,y))) () Z(det(Px(z,y)))
= {(x,y) € R?*: det(zI, — ®) =0}
N{(r.) € B - det(yl, — W) = 0)
=0o(P) x a(WV).

Thus
suppT = {wV, ..., w®} C V(M (2)) = o(®) x o(¥)
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and

T=3 Qubyw
a=1

K
is a representing measure for S with > rank @, = p. Since 1 < rank @, < p, we must have
a=1

1<k <p. ]

The following example showcases Theorem 5.0.3 for an explicit truncated Ho-valued bise-

quence.

Example 5.0.4. Let S := (S,),er,, be a truncated Hy-valued bisequence given by

1 X v 1 01 000

. L S So 01 0O0O0T1
M(1)= X[ S Sx Su|= b0 =0

v \Su Sy S 000 O0O0©O

0 00O0O0©O

01 0O0O0T1

and suppose X =1-®dand Y =1-V for & = Sy and ¥ = Sy;. The matrix-valued polynomials
Pi(z,y) =zl — ® and Py(z,y) = yl, — ¥ are such that

Pl(Xv Y) = PQ(X’ Y) = C01(02X2)76F1,2 S CM(l)

and we have det(Py(z,y)) = z(z — 1) and det(Py(x,y)) = y(y — 1). By Theorem 5.0.3, M(1)

has a flat extension of the form

1 X Y X? Xy y?

1 I2 SlO SOI 520 Sll SO2

X SlO 520 Sll SZO Sll Sll

M(2) = <M(1) B>: Y [ S Su Se Su Su So
B* C X2 520 SZO Sll 540 531 S22

XY Sll Sll Sll S31 S22 513

Y2 SO2 Sll 502 522 513 SO4

K
and there exists a minimal representing measure 7' = > Q,0,,(, where 1 < x < 2 and
a=1

suppT C o(P) x o(¥)
= Z(det(Pi(z,y))) N Z(det(Pa(,y)))
= {(07 O)a (17 0)7 (07 1)7 (1’ 1)}

We note that M(2) is also described by the block column relation X + Y = 1 and so the
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matrix-valued polynomial Py(z,y) = Iy — I, — yI, is such that
Py(X,)Y)=P(X,)Y)=PR((X,)Y) = col(ngz)vepl’2 € Cu2).
Then det(Ps(z,y)) = (1 — = — )? and hence V(M (2)) C {(1,0), (0,1)}. We will show
V(M(2)) ={(1,0),(0,1)}.
Indeed, if V(M(2)) # {(1,0), (0, 1)}, then since 1 < 1 < 2,
V(M(2)) ={(1,0)} or V(M(2)) = {(0,1)}.

If V(M(2)) = {(1,0)}, then
T = Q1410

is a representing measure for S, where rank ); = 2. But then rank ); = rank Syy = 2, a
contradiction. Similarly, if V(M (2)) = {(0,1)}, then

T = Q1d0,)

is a representing measure for S, where rank (); = 2. However rank (); = rank Sy; = 2, a

contradiction. Hence k # 1 and

V(M(2)) = {(1,0), (0, 1)}.

We will now compute a representing measure for S. Remark 3.1.27 for A = {(0,0), (1,0)} C N2

asserts that the multivariable Vandermonde matrix

VE(1,0), (0, 1):4) =

o R O
_ O = O
o o o
o o = o

is invertible. By the flat extension theorem for matricial moments (see Theorem 4.0.2), the

positive semidefinite matrices Q1, Q2 € C**? are given by the Vandermonde equation

col(Qq)2_, = V**2((1,0), (0,1); A)~ " col(Sy)aea- (5.22)
We have
00 1 0
00 0
V22((1,0),(0,1);A) " =
(Lo, = T
01 0 -1
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and thus by equation (5.22),

o= (y0) @) 1)

2
where rank @); = rank @2 = 1. Hence T" = > Q.0 is a representing measure for S with

a=1
rank ()1 + rank QY5 = 2.

Next, we shall see that every truncated H,-valued bisequence S := (5, )+er,, With a certain

description has a minimal representing measure and we will describe its support.

Theorem 5.0.5. Let S := (S,)yer,, be a given truncated H,-valued bisequence with moments

S10 = So1 = S11 = S20 = Opxp. Suppose

Then S has a minimal representing measure T with

suppT C {(z,y) € R*: y* € 0(S02)}.

0 0 Sp
Proof. Let S3y = S91 = S12 = So3 = Opxp. Then W= 10 0 0 | will satisfy
00 O
0 0 Sp 00 0
B:=M1LW=10 0 0 and C:=W'M1)W=1]0 0 0
00 0 0 0 S

M(1) B

B C
flat extension theorem for matricial moments (see Theorem 4.0.2), there exists a minimal
representing measure T for S with supp T = V(M (2)). Let PO (z,y) = y2I,— Spa € CP*?[z, ]

and notice that

Lemma 1.4.24 asserts that M(2) := ( = 0 is a flat extension of M(1). By the

V(M(2)) < Z(det(P*O(z,y)))
= {(z,y) € R? : det(y*I, — Sp2) = 0}

Since P(2)(y,0) is not invertible, there exists n € CP \ {0} such that y?>n = Spen. Thus
y2 € O'(SOQ) and
suppT' = V(M(2)) € {(v,y) € R : y* € 0(Son) }- O
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Definition 5.0.6. Let P(x) = . 2P, € C5*?[x,y] and consider the matrix J € C%*%,
AEan

Suppose the map ¥(z,y) : R? — (CP*P CP*?) is given by U(x,y) = (¥y(x,y), Ys(x,y)) with
Uy (x,y) = Joo + Jiox + Jory and  Vs(z,y) = Koo + Kior + Koy
for some Jyg, J10, Jo1, Koo, K10, Ko1 € CP*P. J is defined as a transformation matrix given by
JP = By + U, Pyg + Wo Py + U2 Pog + W, Wy Pyy + U350, Py,
If J is invertible, then we may view J~! as the matrix given by
J7P = P + W Prg + W5 Py + (U712 Pog + U705 Py + U505 Py,

where
U (2,y) = Joo + Jioz + Juy  and Uy (z,y) = Koo + Koz + Kory

for some j007 j10> jou ROOa f(m, f((n € Crp,

In the next theorem we derive a minimal representing measure for a given truncated
‘H,-valued bisequence when the associated moment matrix has a certain block column relation.

Theorem 5.0.7 can be considered as an analogue of [16, Proposition 6.3] for p > 1.

Theorem 5.0.7. Let S := (5, )qer,, be a given truncated H,-valued bisequence and suppose

1 X Y
1 [p SlO 501
Ip SIO
M1)= X[ S S Su | =0, = 0
S0 S20
Y \Soi1 St So2

andY =1-Wiy+ X - Wy for Wi, Wy € CP*P. Then the following statements hold:
(i) There exist Joo, Jro, Jo1, Koo, K10, Ko1 € CP*P such that J (as in Definition 5.0.6) is invert-

I, 0 0
Ju J ’
ible, and if we write J = ( M 12> , where Ji; € C3¥*3P then J;M(1)Jy =10 0 0 |,
12 Joo ~
0 0 Spo

where 5102 = SQU — 5120 € Hp.
(ii) Let J be as in (i). Let S = (S’v)vepl2 be a truncated H,-valued bisequence given by Sio =

I, 0 0
§01 =S5, = Opxp = ggo, and let M(l) =10 0 0 | bethe corresponding moment matrix. If
0 0 Sp

- ~ ~ M) B
M(2) is a flat extension of M (1) such that J=*M(2)J ™" is of the form M(2) := B(*) C’> :

for some choice of (Sy)yero\rop with Sy € Hy for v € Toy \ T'ao, then S has a minimal

representing measure.
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Proof. (i) Let J € C®*® be the transformation matrix given in Definition 5.0.6 where

Joo = —S10(S20 — 5120)_1(5'10501 —511) — Sot,
Jio = (S20 — 5120)_1(510501 —51), Jor = I,
Koo = —S10, K10 = Ip and Ko = Opo-

7 I, joo f(oo
J is invertible and we write J = [ ~"" 7" ,where J;; € CP*% Then J;' =0 J K|,
Jiz Ja - -
0 Ju Ko
where Jog = Sho, Jio = Opxps Jo1 = Ip7 Koy = So1, Ko = Ip7 and Ko = —(520—550)_1(510501 -
I, 0 0
Si)and JEM(1)Jyu=]0 0 0 |, where Sy = Sy — S3 € H,.
0 0 Sy

(ii) Let J be as in (i). Since M(2) is a flat extension of M (1) and

JTM(2)J7 = M(2) = <Ag*1) g) ,

we have that M(2) > 0 and
2p = rank M (1) < rank M (2) = rank M (2) = rank M (1) = 2p.

Thus M(2) is a flat extension of M(1) and so by the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure 7" for S. O

Definition 5.0.8. ([40, p. 405]) If A, B € C"*", then the set of all matrices of the form
A —AB, A € C is a pencil. The generalised eigenvalues of A — AB are elements of the set
o(A, B) defined by

0(A,B):={A € C:det(A— AB) =0}.

In the next theorem we shall see that every truncated #,-valued bisequence S := (S, ) er,.,

with M (1) > 0 being block diagonal has a minimal representing measure.

Theorem 5.0.9. Let S := (S,) er,, be a given truncated H,-valued bisequence with moments
1 X Y

1/, 0 0
S0 = So1 = S11 = Opxp. Suppose M(1) = X| 0 Sy 0 = 0. Then S has a minimal
Y \O 0 So

representing measure T with
suppT = {(x,0) : € 0(S55 So2, —S02)} U {(1,y) : ¥* € 0(Sp2 + S5 So2)},

where o(Syg Soz, —So2) is the set of generalised eigenvalues of {S5q Soz, —So2. }
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SQO 0 SOZ SQQ 0 S[)Q
P?“OOf. Let B = 530 521 S12 . We haVe W = M(l)_lB = SQI]IS:‘}O 52701;5'21 Si)lSlQ

521 512 503 5@1521 S()Elsw S(;21S03
Cii Cip Cis
We then let C':= W*M(1)W = W*B and we write | Cy; Ca Chs
O3 Cso Csg

Notice that

Cio = 53052_01521 + 52150_21521,
Ci3 = 520502 + 5305%1512 + 5215621503,
Cy = 52152701521 + 5125(;21512

and
Coz = 52152_01512 + 51250_21503‘
Let So1 := 0pxp and Sp3 := 0pxp. Then Cio = 0,y = Caz3 € H,, and
022 = 013 (523)
if and only if
51250_21512 = SQ()SOQ + 53052_01512. (524)

We assume 2 is invertible and we solve equation (5.24) for S3p. We obtain
Ss0 = (S1250 S12 — 520502) 513 Sa0-

Hence

Ssp = 5125(;21520 — 520802513 S92

Let S1a := Sp2 = 0 and Ssg := Sa9 — S5,. Then S3p € H,, and equation (5.23) holds. Hence,
M) B
B* C

sion theorem for matricial moments (see Theorem 4.0.2), there exists a minimal representing

by Lemma 1.4.24 M(2) := ( = 0 is a flat extension of M (1). By the flat exten-

measure 1" for S. We now write

Soo 0 Soz
B=1|S55 0 S
0 502 0
and W becomes
Sao 0 So2
W=M1)"B=|1,-S50 0 Sy'Se
0 I, 0
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We let the following matrix-valued polynomials in CP*P[x, y:

PO (2,y) = 4?1, — oy — (I, ~ Si).
PO (3, y) = zyl, — yl,

and
PO (z,y) = y’I, — Spz — (S5 So2)-

Let 2y = Z(det(P2%(z,y))), Z11 = Z(det(PYY(z,y))) and Zyy = Z(det(P?(z,y))).
Then
supp T’ = Zy m 21 ﬂ Zpa.

We observe that (z,y) € Zy if and only if P> (x,y) is singular, i.e., there exists a nonzero
vector £ € CP\ {0} such that

{a?1, — Sy — x(I, — Sx) }¢ = 0,

that is,
z(x — 1) = —(x — 1)S¢. (5.25)

We have Z1; = {(1,y) : y € R} U{(2,0) : € R} and, in view of equation (5.25), we get
211N 290 ={(x,0) : —x € 0(520)} U{(1,y) : y € R}.
Notice that P2 (x,y) is singular if and only if
y*€ = (So2 + Sag So2w)& for €& e CP\ {0}. (5.26)
By equations (5.25) and (5.26) we see that

le N ZQO N Zog = {(.ﬁK, O) . 5 e C? \ {O} such that xSi)1502f = _SO2£}
U{(1,y): &€ CP\ {0} such that y*¢ = (Spz + Ssg So2)€},

that is,
le N Z20 N ZO2 = {(;U, 0) X e O'(S;OISOQ, —SOQ>} U {(1, y) : y2 € 0'(502 + Si)lSOQ)}’

where 0(5’2_015”02, —So2) is the set of generalised eigenvalues of {52_01 Soz, —So2- } O
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Remark 5.0.10. We note that the set {(z,0) : x € 0(Sy So2, —Sn2)} describing the support
of the representing measure in Theorem 5.0.9 is finite. Notice that both 52_01502 and —Sps
are invertible and thus the upper triangular matrices appearing in the respective Generalised
Schur Decomposition are invertible. Hence the set of generalised eigenvalues of { Sy Soz2, —So2}
(S50 So2, —Sp2) is finite. We refer the reader to [40, Theorem 7.7.1] for further details.

In the next theorem we shall see that every truncated H,-valued bisequence S := (S, ) er,.,
with M (1) > 0 satisfying a certain matrix transformation has a minimal representing measure.
We note that if p = 1, then Theorem 5.0.11 can be viewed as an analogue of [16, Proposition

6.5, albeit M (1) > 0 is sufficient to prove that there exists a minimal representing measure.

Theorem 5.0.11. Let S := (S5) er,, be a given truncated Hy,-valued bisequence and suppose
1 X Y

1 Ip SlO S(]l
M(].) - X SlO SQO Sll b 0

Y \So1 Sut Soz
(i) There exist Joy, J10, Jo1, Koo, K10, Ko1 € CP*P such that J (as in Definition 5.0.6) is invert-

I, 0 0
. . . Jll JIQ 3px3 % P
ible, and if we write J = , where Jy; € CP*°P then J{M(1)Jy =0 I, 0
12 J22
0 0 I,
(i) Let J be as in (i). Let S = (SV)%FQ’2 be a truncated H,-valued bisequence given by
I, 0 0
SHO = §01 = 511 = Opxp and let M(l) = |0 I, 0| bethe corresponding moment matriz. If
0 0 I,

- ~ ~ M) B
M(2) is a flat extension of M (1) such that J=*M(2)J ! is of the form M(2) := B(*) C’> :

for some choice of (Sy)yero\ro, with Sy € H, for v € Toy \ T'ao, then S has a minimal

representing measure.

Proof. (i) Suppose © = Sy — S%. © = 0, by a Schur complement argument applied to
M(1) = 0. Let

Q = — (510801 — S11)*(S20 — S75) " (S10S01 — S11) + So2 — Sy
and J € C3P*3P be as in Definition 5.0.6 with

Joo = —S10(S20 — 5120)_1(510501 — S11) — So,
Jio = (S20 — S59) " (S10501 — S11), T = I,
ICOO = —Slo,lcl() = [p and ]C()l = 0p><p~

Then J is invertible and if we write J = I Jio , where Jy; € C?*%_ then Jp; is

T2 T2
invertible and the (2,2) block of J;5M(1)J11 = 0 is given by €2, and hence Q > 0. Next we let

J € C%*% be the transformation matrix given in Definition 5.0.6 where
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Joo = {—S10(Sa0 — S%)) " (S10S01 — S11) — Sor }Q 2,
Jio = (Sa20 — Sfo)_l(SloSm — 511)9—1/27 Joi1 = Q—1/27
Koo = —51007"%, K19 = 07" and Ko = 0pxp-

Jll J12

Then J is invertible and we write J =
Jiz Joo

) , where Ji; € C?*>*%_ We then have J;;' =

I, Joo Koo
0 Ji K|, where Jog = Sig, Jio = Opsp, Jor = OY2 Koy = So1, K19 = QY2 Ky =
0 Jo Ko

Ip 0
—O712(S15S01 — S11) and J M (1).J,, = I, 0
O [p

(ii) Let J be as in (i) . Since M(2) is a ﬂat extension of M(1) and

JTM(2)J 7 = M(2) = <Ag3) Jé) :

we have that M(2) = 0 and
3p = rank M (1) < rank M (2) = rank M (2) = rank M (1) = 3p.

Hence M(2) is a flat extension of M (1) and so by the flat extension theorem for matricial

moments (see Theorem 4.0.2), there exists a minimal representing measure 7" for S. O
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Appendix A

Proof of the extension lemma

The goal of this Appendix is to provide proofs for Lemma 3.4.1 and Lemma 3.4.2, which deal

with extensions of moment matrices based on matricial moments.

Lemma A.0.1 (extension lemma). Let S := (S, ) er,,, be a given truncated H,-valued mul-
tisequence and let M(n) be the corresponding moment matriz. If M(n) = 0 has an extension
M(n+1) such that M (n+1) = 0 and rank M (n+1) = rank M(n), then there exist (S,) end\r,, ,
such that

M(n+k)>=0

and

rank M (n + k) =rank M(n+k —1) for k=2,3,...

Proof. We first consider the case when d = 2, while the general case d > 2 can be proved

similarly. We have
M(n) >0 and rank M (n)=rank M(n —1).

We wish to choose moments (S,),enz\r,, , such that M(n + 1) = 0 and
rank M (n + 1) = rank M (n).
There exist matrix-valued polynomials in CE*P[x, y]

PO (a,y) =o'l — ) alyt PR,
(J,k)Eln_1,2

with ((l, b) S Fn,2
P(n,O) (ZL', y) _ anlp . Z xjyklgj(l:b,O)

(Jk)ETn1,2
and
POV y) =y l,— > alyPR"
(G k)ETn—1,2
such that
PeI(X,Y) = PMO(X,Y) = PO (X,Y) = col(Opxp)rer, - (A1)
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Let the new moments in M (n + 1) be defined by
X" = (zP™O)(X,Y) and Y™ = (yPOM)(X,Y).
Write X" € Chyny1) as

X = (zP™9)(X,Y)

= col (Sn-i—l-l—c,d)
(¢,d)€ln+1,2

= col ( > Sc+j+1,d+kP](I?’0))
(

j,k‘)EFn,Lg (C,d)el—‘n+1,2

and Y"1 € Cyyini) as

Yy = (yPOM)(X,Y)

= col (Sc,d+n+1>
(c,d)an+1,2

= col ( > Sctjdtk+1 Pj(l(c) m))
(5:k)

eln_1,2 (e, d)e€T 1,2

We shall proceed by following certain steps to check that there exists a rank preserving exten-

sion M(n + 1). We write
M(n+1)= (M(n) B) ,

B C
where
M(TL) c C(CardFn72)p><(cardrn72)p7
Be C(CardFnyg)px(card(Fn_‘_Lz\Fn,z))p
and

C c C(card Trnt1,2\'n,2)px (card(Fn+1,2\Fn72))p.

Step 1: We need to show that

Snilted = Z Sc+j+1,d+kpj(1?’0) (A.2)

(J,k)ETn—1,2

for all (n+ 1+ ¢, d) € 'y, 2, that is, (¢, d) € I',_1 2. Similarly, we must prove

Seaini1 = O Serjaresr Py (A.3)

(jyk)er‘nflj

for all (C, d+n+ 1) S an,g, that iS, (C, d) S Fn_LQ.
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We have X" = P™0)(XY) € Ch(n), which is equivalent to

ol <8n+e,m> = col ( Z S”j’m*kpj(’?m)
(¢,m)ely 2 (j,k)

Eanl,Z (E’m)ern,Q

Thus Syiem = > S£+j,m+kp.j-(:70) for all (¢,m) € I';, 5. Let £ = ¢+ 1 and m = d. We then
(J,k)Eln_1,2
have (¢,m) € I',,» and so the equation (A.2) holds for all (¢,d) € I',,_1 2. Similarly, since

Y™ = PO(X,Y) € Crrmy,

that is,
col <Se,m+n> = col ( > Seﬂ,m%P},S’"’) ,
(é,m)anQ (j,/i‘)Eanl,Q (Z,m)EFmg
we obtain Sy 4y = > Sg+jﬁm+kPj(,S’") for all (¢,m) € I';, 5. Let { = c and m = d + 1.

(j,k)EFn—1,2
Then (¢,m) € I, » and thus the equation (A.3) holds for all (¢,d) € I',,_1 2. Notice that the

moments

col <Sc+n+1,d> = col ( Z Sc+j+1,d+kpj(:’0))
(C,d)EFHJrLQ\Fn,Q (C,d)

(G,k)ETn_1.2 €lnt1,2\n 2

are already defined. We wish to show that for all (¢,d) € T, o,

,0
Sn+1+c,d = Z Sc+j+1,d+kPj(]ZL ) S Hpa

(J,k)ETn—1,2

which are new moments. For this, consider M as the submatrix of M (n+1) with block columns
indexed by {(j+c+1,d+k): (j,k) € I',_12} and block rows indexed by (j, k) € I',,_1 2. Notice
that M is Hermitian. We have

> Sc—i—j—i—l,d—l—k_Pj(I:L’O) = col (Sc+j+1,d+k) col (133(;?’0))
JETn—1,2 (J,k)eTn_1,2

(j7k)er’n—1,2 (],k

( p](gm) M col ( pj(gm)
(J,k)eTn—1,2 (j,k)Ep—1,2

= COl (37(270)) COl (Sc+j+17d+k>
(J,k)Eln_1,2 (4,k)ETn—1,2

_ (n,0)*
= ng Setjt1,dik

Similarly, we shall note that

col (Sc,n+1+d) = col ( Z Sc+j’d+k+1]3]§£7n))
(¢,d)€ln11,2\'n 2

(G,k)ETn_1.2 (6,d)€Tn+1,2\T'n 2
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are already defined and we need to show that the new moments

._ (0,m)
Semsied = Y Sepjack Py € Hy
(4,k)Eln_1,2

for all (¢,d) € I';, 5. As before

0,n 0,n
> Sc—i—j,d—&-k-i—lpj(k )= col <Sc+j,d+k:+1> col (P](k )>
(jvk)ernfl,Q (j,k)GFn,1,2 (j,k)EFn,LQ

0,n 0,n
= col (Pj(k )) M col (P](,c ))
(J,k)Eln_1,2 (J,k)ETn-1,2

= col (Pj(lgm)) col (Sc+j,d+l<:+1)
(jvk)ernfl,Z (j7k')an71,2

— (0,n)*
= Py Seyjarke

Step 2: In this step, we need to show

XY = (2P")(X,Y) € Crrnry
for all @ + b = n with a # n and b # 0, and moreover,

X2y = (yPOD)(X,Y) € Chrary

for all @ + b = n with a # 0 and b # n, where X%"'Y? and X%Y**! are block columns of the
B block.
We first consider the case when (c,d) € I',, ». We have

X*Hy? = col (Sa+1+c,b+d>

(C,d)el—‘n7172

and

(xP™9)(X,Y) = col ( Z Sc+j+1,d+kpj(;’0)) :
(C,d)EFn,LQ

(4,k)ETn-1,2

By condition (A.1), X" = P"9(X,Y) € Chyny, that is,

col (Sn%m) = col < Z S€+j,m+k-F)j'(: ’0)>
(¢,m)ery, 2 (5,k)

€lp_1.2 (f,m)EFnQ

and thus S,1p.m = > SgHmMPj(,?’O) for all (¢,m) € I'po. If welet £ =c+ 1 and m =d,
(4,k)ETn—1,2
then (a +1+c¢,b+d) € I'yp0.
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Similarly, we have

XY = col (Sa+c,b+d+1)

(C,d)EFn,1’2

and
(yPO")(X,Y) = col ( Z Sc+j,d+k+1pj(,f’")) :
(C d)EFn 1.2

(j,k')ern7172

Furthermore, by condition (A.1), Y™ = PO™(XY) € Chr(n), that is,

col (Se,n+m) = col ( Z Se+j,m+kpj(£’n))
(E,m)el‘n,z - (Z,m)EFmQ

(7,k)E 1,2

and hence

0,n
Sé,n+m = Z S€+j,m+kPj(k )

(4,k)Eln—1,2

for all (¢,m) € I';, 5. If we let £ = cand m = d+ 1, then (a+ ¢, b+ d+1) € 'y, 5. We continue
with the case when (¢,d) € I'y112 \ I'n2. We have defined

col (SnJr@Jrl,m) = col ( Z S€+j+1 m+kp TLO)) .
(4,m)elpn41,2\n 2 (j,k)ET (£,m)€l 41,2\, 2

We have to show

col <Sa+c+1,b+d> = col ( Z Sc+j+1,d+kpj(:’0))
(¢,d)E€lpy1,2\n 2 (j,k)er

(c,d)elny1,2\I'n,2

For { = ¢ and m = d, we obtain (a + ¢+ 1,b+ d) € 'y, 122. We have also defined

_ (0,n)
col (Sé,m+n+1) = col ( E Setjmtn+1 P :
(4m)eln11,2\'n 2 (,k)ETn_1.2 (ym)elnt1,2\I'n,2

As before, we need to prove

col (Sa+c,b+d+1> = col ( Z Schj d+k+1p(
(C d)GFn+1 Q\Fn 2

0, n))
(jk)ETn_1.2 (e, d)€Tl 41,2\ 2

For / = ¢ and m = d, we derive (a4 c¢,b+d+1) € I'yy105.

Step 3: Let the following moment of the C block S,41 41 = > Sit, ;HHHP(” 0 We
(J:k)ETn—1,2
must show
0,n
Sn+1,n+1 = Z Sj+n+1,k+1pj~(k )~
(j,k)EFn—1,2

Consider the submatrix M of M(n + 1) as described in Step 1.
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We compute

> Sj+n+1,k+1lD](,S’”) = col <Sj+n+1,k+1> col (Pj(lgjn))
(J,k)ETn—1,2

(j,k)GFn,LQ (j,k)an,LZ
_ (0,
= col <ng

n)> M col (P].(]S’"))
(J,k)eTn_1,2 (J,k)ETn—1,2

= col <‘Pj(0,n)> col (Sj—l—l,k—i—n—i—l)
(J,k)eln_1,2 (J,k)Eln—1,2

. Qx
- Sn—l—l,n—i—l

by the definition of S,1¢,, in Step 2 for £ =1 and m =n + 1.

Step 4: In the final step of this proof, we shall consider the case when d > 2. If M(n) = 0

and rank M (n) = rank M (n — 1), then we must choose moments (S,),eng\r,, , Such that
M(n+1) >0 and rank M(n+ 1) =rank M(n).
There exist matrix-valued polynomials of the form

P(z)=a"I,— >  2*Py € CY[xy,... x4

Aan,d

with |y| > 0 such that
P(X) = COI<OPXP)’Y€F7L,d'

Application of Steps 1-3 (for d > 2) will yield the existence of moments (S,),ena\r,, , Such that

M(n+k)=0
and
rank M (n + k) =rank M(n+k—1) for k=23,...
as desired. u
Lemma A.0.2. Let S := (9,)yer,,, be a given truncated H,-valued multisequence and let

M(n) = 0 be the corresponding moment matriz. Suppose that M(n) has a positive extension
M(n+ 1) with
rank M (n + 1) = rank M(n).

Then there exists a unique sequence of extensions
M(n+k)>=0
with

rank M (n + k) =rank M(n+k —1) for k=2,3,...
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Proof. Suppose there exists a choice of moments (Sv)yeNg\anH, , Which gives rise to a sequence
of extensions M(n + k) = 0 for all £k = 2,3,... and thus to M(o0) = 0. Consider a matrix-
valued polynomial P € CP*P[xy, ..., x4] and let Z be the right ideal associated with M (co) (see
Definition 3.1.14 for the precise definition of Z). Suppose there exists another choice of moments
(gv)weNg\F2n+2,d which gives rise to M(oo) > 0 and is such that 5’7 = S, for all v € I'y;42,4.
Let Z be the right ideal associated with M (co). Since M (n) has a positive extension M (n+ 1)
with
rank M (n + 1) = rank M (n),

there exist matrix-valued polynomials of the form

PO (z) = 27T, + Z x’\PA(V) € CP*Plxy, ..., x4)
/\GFn,d

with v € I'y11.4 \ ['q such that PO(X) = col(Opo);{eNg € Cu(so)- Thus for ¢; € Ng,

Ol (S(u+1)e;+7) sepg = — Ol > S P for j=1,....d. (A.4)

A€Tna FeNd

We need to show first that
{P(W)}’Yern-&-l,d\rn,d g I

Since 5’7 =S, for all v € I'y;42.4, we have

S(n+1)aj+a = 5(n+1)aj+a for ¥ € T'yyra-

By equation (A.4),

3 _ 3 ()
col <S(n+1)gj+§> i = —col E Sty Py
Y€l n41,4 \eT
ol Y€ n41,4

and
M(n 4+ 1) col(P)ser,,,, = M(n + 1) col(P\)ser

= COI(OPXP)’YGFTLH@'

(A.5)

To show {PD}, e C Z, we need to prove

7L+1,d\F7L,d

M(n—Fk){COl(P)EW))/\EFnH,d EBCOKOPXP)’VGFnM,d\FnH,d} = COI(OPXP)WGFan,d for k=23,... (A'6)

Write

M(n+k) = (M(Zj b g) -0,

where
M(n + 1) c C(card L p1,q)px (card Dng1,a)p

Y
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B E (C(Card Fn+1,d)p><(Card(rn+k,d\rn+1,d))p

and
C e C(card i k,a\Lnt1,a)px (card(lntk,a\L'nt1,4))P

Since M(n + k) = 0, by Lemma 1.4.24, there exists W € C(cardTnira)px(card(Tnir.a\lni1.0))P guch
that
Mn+1)W =B and C>=W*M(n+1)W.

Then

y ™) Col P( ))/\anHd
M(n + k){col(Py " )aer,sra ® cOl(Opxp)ier, o a\Tns1af = B* ) :
col(Py")rer, 1.4

. TL—|—1 COl P ))\ern+17d
)))\ern+1,d

COI po)van+1 d
1) col(Py)aer, 4.4

= col( po)’YEFnJrk d

for all k =2,3,..., by equation (A.5). Thus, equation (A.6) holds as desired and so

{P(ﬁ/) }’Yern+1,d\rn d g :Z’-

This in turn will yield 25 PO € 7. Indeed

M (o00) (xaf col(P)EV)),\epnyd> = col Z S,\'+ej+/\P>(\a)

)\an,d )\/ENg

But since PO € 7,

M (00) col(P{)xer,, = c0l(0psp)sene,

that is,

col Z Sxpz P = col(Opxp)send;
)\Gl—‘n,d ’~Y€Ng

Fory=XN+¢;, j=1,....,4,

G () _
col E Sxite;4a Py = Col(Opxp)XeNg
Ael“n,d )\/ENg

and so

M (o0) <:z:€j Col(P,\(W))Aern,d) = COl(Opo)aeNg-
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Since 251 PO € 7, we have

col (S(mz)eﬁa);yernﬂ = —col Z Sxtqte; P)@ for j=1,...,d.
A&l'n.a €T 4
Moreover
col (gn . ) = —col Syysp.. PO AT
(n+2)es+3 F€41,d\'n,a )\;d MIEETA ( )

:YEFn-Fl,d\Fn,d

and

col (S(n+2)€j+g/> o = —col Z g)\_i_f\H_gj P)E’Y) (A8)
’YeNo\Fn-kl,d el
e FENA\ 11,4

for all j =1,...,d. In view of equation (A.4),

S(n+2)aj+ﬁ = S(n+2)5j+§ for ’3/ € Fn+1,d \ Fn,d and j = 1, Ce ,d.

Hence g;\ =55 for \ e Lontsa. We next rewrite the equations (A.7) and (A.8) as

col <Sn . ) — —col Syinne PO
(n+2)e;+5 €T n.a\Ti1.a Z AA+e; L)

el -
mod Y€l n42,a\Tns1,a

and

col (S(n+2)ej+~7> = —col Z S/\+~7+aj P,EV)

FENI\Tn42,4
FENI\T 42,4

forall j=1,...,d. Thus
g(n+2)aj+ﬁ = Stnt2)e,45 for ¥ € Tnjog\Thy1a and j=1,...,d.
Hence S 5 = S5 for all \e I'954+4,4. Continuing inductively we conclude that
S5 = S5 for A e Ng,
from which we derive uniqueness for the sequence of extensions
M(n+k)>=0

with
rank M(n+ k) =rank M(n+k—1) for k=23,... O
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