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Abstract

Over many years, a variety of different computer models purposed to encapsulate

the essential differences between silence and speech have been investigated; but

that notwithstanding, research into a different audio model may provide fresh

insight. So, inspired by the unsurpassed human capability to differentiate between

silence and speech under virtually any conditions, a dynamic psychoacoustics

model, with a temporal resolution of an order of magnitude greater than that of

the typical Mel Frequency Cepstral Coefficients model, and which implemented

simultaneous masking around the most powerful harmonic in each of 24 Bark

frequency bands, was evaluated within a two stage binary speech/silence

non-linear classification system. The first classification stage (deterministic) was

purposed to provide training data for the second stage (heuristic) — which was

implemented using a Deep Neural Network (DNN).

It is authoritatively asserted in the Literature — in a context of speech processing

and DNNs — that performance improvements experienced with a ‘standard’

speech corpus do not always generalise. Accordingly, six new test-cases were

recorded; and as this corpus implicitly included frequency normalisation it was

feasible to assess whether the solution generalised, and it was found that all of the

test-cases could be successfully processed by any of the six trained DNNs. In other

tests, the performance of the two stage silence/speech classifier was found to

exceed that of the silence/speech classifiers discussed in the Literature Review; but

it was interesting to note that the Split Sample Technique for neural net training

did not always identify the optimal trained network — and to correct this, an

additional step in the training process was devised and tested.

Overall, the results conclusively demonstrate that the combination of the dynamic

psychoacoustics model with the two stage binary speech/silence non-linear

classification system provides a viable alternative to existing methods of detecting

silence in speech.
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Chapter 1: Introduction

1.1 Motivation

The realisation of an effective automated process for the Recognition of Silence

in Recorded Speech is difficult because a great deal of recorded speech — and the

silence therein — is noisy; and algorithms for the analysis of clean speech do not

function well with noisy speech (Smaragdis [2013]).

In latter years, the problem of recognising silence in speech has largely been

ignored by the research community, because a process which implicitly identifies

silence exists in the form of Automatic Speech Recognition (ASR)

Forced-Alignment (Huang et al. [2001], Viterbi [2006]) — which is the process of

aligning speech with its phonetic transcript. But forced-alignment does not

provide the ideal solution: firstly because a great deal rests upon the quality of the

implementation and the accuracy and availability of the speech models, and

secondly because it has been demonstrated (Brognaux and Drugman [2016]) that

prior knowledge of silence pauses can be used to improve forced-alignment. This,

together with the results of a search of the Literature, give credence to the belief

that the problem of detecting silence in speech has not been solved. So in this

work alternative methods for recognising silence in recorded speech are explored;

specifically methods with no dependency upon complex speech processing

techniques, and with no requirement for a specialised knowledge base.

From the Literature (Atal and Rabiner [1976], Deekshitha et al. [2015]) it is

clear that the most difficult aspect of recognising silence in speech is discriminating

between unvoiced speech — those speech sounds such as fricatives and sibilants,

where the vocal chords are inactive — and the noise during silence. This is an

interesting problem in itself, because a solution may pave the way for an

1



alternative method for recognizing other speech features.

1.2 The Detection of Silence in Recorded Speech

Silence in recorded speech comprises noise of various types, including periodic

and aperiodic noise, transient bursts, electrical interference, white noise (for

example from the air impeller of a cooling fan), breathing sounds, involuntary

vocal effects such as non-silent releases (for example, from the relaxation of the

vocal tract at the end of a block of continuous speech), the rustling of paper, the

sounds of machines — the list goes on. The effect of this ‘noise’ is that it is

difficult to automatically separate speech from silence. This problem is illustrated

in Figure 1.1, where a short spike and an inhalation fricative are evident during

the silence. This noise may trigger a speech/silence discriminator that uses a

simple threshold and be erroneously marked as speech.

Figure 1.1: The Noise in Silence

The separation of silence from speech may be a necessary, or a useful first step

in several automatic processes, including:
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• Automatic Speech Recognition (ASR) and Transcription — for the

automatic insertion of punctuation.

• To improve the ‘silence’ model for the Forced-Alignment of speech with its

phonetic transcript.

• Indexing Speech Recordings

• Lossless data compression : Silence removal for compact storage.

• Speech analysis.

Silence and speech are not linearly separable on the basis of energy alone;

because the zero sound level — which it may be thought corresponds to silence —

seldom obtains, because of noise. So some means of characterising speech is

necessary, such that audio which does not have the characteristics of speech can be

classified as silence. Speech has the Markov Property (pg307: Oxford Dictionary of

Computing [2008]), which is where the next state is often a known stochastic

function of the current state; whereas the noise during silence does not conform to

any rule. Automatic Speech Recognition (see Section 2.2), which often makes use

of the Markov Property in the form of Hidden Markov Models (HMM), may be

thought to be the obvious candidate for characterising speech; but it is probable

that modelling speech as we perceive it — psychoacoustics processing — is the

better choice, because we have a far greater capability for recognising both speech,

and silence pauses in speech, than the best ASR system.

1.3 Psychoacoustics

Psychoacoustics (Chapter 15, Gold et al. [2011]) is the science of how we

perceive sound. Empirical work by Fletcher and Munson [1933], Stevens et al.

[1937], Stevens and Volkmann [1940] and Zwicker et al. [1957], among others,

showed that our response to auditory stimulus is largely logarithmic. That is, we

perceive logarithmic increases in sound magnitude as linear increases in volume

3



(Fletcher and Munson [1933]), and for frequencies higher than around 500 Hz to 1

kHz, we perceive logarithmic changes in the frequency of a tone as linear changes

in pitch (Stevens et al. [1937], Stevens and Volkmann [1940], Zwicker et al. [1957]).

Empirical work by Egan and Hake [1950] and later by Zwicker et al. [1957]

(building on work by Fletcher and Munson [1937] and Fletcher [1940])

demonstrated the effect of Masking(Jeffress [1970]). Simultaneous Masking is the

psychoacoustics effect where frequencies in the audible spectrum are not perceived

because of the response of the human auditory system to nearby stronger

frequencies (Egan and Hake [1950]). Forward temporal masking is where a softer

sound may not be perceived if it follows a louder sound of a similar frequency; and

backward temporal masking is where a softer sound may not be perceived if it is

followed by a louder sound of similar frequency (Pg 92, Johnson [2012]). It was

shown by Zwicker et al. [1957] that beyond a certain bandwidth around the

masking tone (the Critical Band), the effect of masking ceases; and that critical

bandwidth increases with increase of frequency. Moore and Glasberg [1983] refer

to a useful conceptual description of critical bandwidth by Scharf [1970] who

described the critical band as, “that bandwidth at which subjective responses rather

abruptly change”. In 1961 Zwicker proposed the Bark auditory frequency scale; a

scale that spans the audio frequency spectrum with 24 critical bands. (According

to Zwicker the name “Bark” was chosen in memory of Barkhausen, who may have

defined the unit for the sound level.) Earlier an alternative auditory frequency

scale, the Mel scale was empirically derived by Stevens and Volkmann [1940], who

set the datum for the Mel scale to 1 kHz, and assigned this a value of 1000 Mel.

Although the units for the Mel and Bark scales are very different, the characteristic

shape of the scales are similar (see Figures 3.1 and 3.2 in Section 3 herein).

In perceiving speech, we naturally achieve the separation of silence and speech,

and my aim is to evolve an automated system that mimics human perception — a

psychoacoustics model of sound — in its capability to reject (or ignore) the noise

during silence for the recognition of silence in speech.
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1.4 Hypotheses

Because of the random nature of noise, the parts of a recording that are most

consistent are the speech parts; and to recognise silence in a recording, it is also

important to recognise certain attributes of speech — but only to the extent

necessary for the essential differences between the silence pauses and the speech to

be captured. This will not necessarily involve the complexity of Automatic Speech

Recognition (ASR), because the ultimate aim is only to have knowledge of the

temporal location of the speech, not to decode it. One ‘model’ for capturing the

differences between speech and silence is the psychoacoustics model of speech

perception (Fastl and Zwicker [2007]) – a model based upon the modalities of

human hearing. The human capability for identifying pauses in speech is

unsurpassed; and though the human capability for speech perception is not

understood, we have practical knowledge of these modalities. For example, both

Krasner [1980] and Schroeder et al. [1979] employed psychoacoustics techniques to

reduce the audible noise introduced during speech encoding, and psychoacoustics

processing is specified for the MP3 lossy speech compression format (Brandenburg

[1999], MP3-Standard [1995]).

First hypothesis : An audio model based upon an interpretation of the

psychoacoustics model of hearing will include sufficient information to

facilitate the recognition of silence in speech.

The consequence of using a model to represent both the speech and the silence is

that the discrimination between speech and silence becomes a pattern recognition

problem (Atal and Rabiner [1976]). Accordingly to test the first hypothesis it will

be necessary to embed the speech model in an evaluation system which includes a

supervised pattern recognition process. So, an automated process for generating

the training data will also be required for the evaluation system; and preferably

this method will be deterministic rather than statistical.

Second hypothesis: A deterministic speech/silence binary classifier can
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provide enough information to facilitate the generation of accurate

speech and silence training data, such that the errors in classification by

the deterministic classifier can be eliminated by a subsequent supervised

classification process which uses a psychoacoustics audio model.

The system to test these hypotheses comprises three main components: a

deterministic speech/silence classifier, a speech model based upon the

psychoacoustic modalities of speech perception, and a pattern classifier. An

overview of the complete system follows.

1.5 A Two Stage Binary Speech/Silence Classifier

Figure 1.2 is an overview of the test system. The key components are, a

deterministic speech/silence classifier (the DetermClassifier), a speech model based

upon the psychoacoustic modalities of speech perception (the LogFBdynamic), and a

pattern classifier (the DNN Classifier).

Figure 1.2: Two Stage Binary Speech/Silence Classifier
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Operation

• Firstly, the DetermClassifier (Section 4.5) makes the Initial Speech/Silence

Binary Classification and then stores the locations of all of the detected

silence pauses in the Silence/Speech Data Gating Flags Store.

• Secondly:

– the LogFBdynamic (Section 4.6) converts the complete audio into model

slices of 1ms duration.

– the Gating Switch uses both the Data Gating Flags that were generated

by the DetermClassifier and the Gating Rules (Section 4.7), to classify

some of the model slices as silence training data or speech training data.

This data is then stored in the Training Data Store for use by the

DNN Classifier.

• Thirdly, the DNN Classifier (Section 4.8) is then trained from the Training

Data Store, in as many epochs as necessary.

• Fourthly, the now trained DNN Classifier makes the Final Binary

Classification of the data in the Encoded Speech Store; and a set of

Speech/Silence Flags is generated.

• Finally, all of the temporal locations in the digitised speech that are flagged

as silence, are set to zero.

1.6 Limitations

1.6.1 English Language Dependency

Although this work is predicated on the belief that all speech and silence is

separable using a non-linear heuristic classification process that is trained from the

results of a linear deterministic preliminary classification process, it has only been

tested with the English Language. In fact a dependency exists within the processes
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of the DetermClassifier, that the format of the text of the recording must comply

with the punctuation rules prescribed for the English Language. The dependency

is simply that the approximate number of silence pauses within each block of the

text of the recording is derived from the punctuation therein. This number is then

used as the notional ‘set-point’ for the control loop which optimises the

silence/speech threshold for the DetermClassifier. As discussed in Chapter 5, this

method of establishing the set-point is not entirely satisfactory, and it is

postulated that a more accurate set point may result, by empirically establishing a

mean pause rate as a function of word rate. By removing the dependency on

English Language punctuation in such a way, the change would also remove the

need for any knowledge of the text of the recording; and the performance of the

classifier could then be evaluated for any language.

1.6.2 Statistical Significance Versus Inference by Induction

There is no suggestion that the results herein are of statistical significance —

and this for two reasons. Firstly, it would be necessary to process a vast amount of

different voice recordings to achieve any measure of statistical significance; and

secondly the detailed analysis required is a labour intensive process, such that the

manual accumulation of sufficient ‘evidence’ is not feasible. That said, inferences,

by induction, may be drawn from this work. Here the specific meaning of

induction is that defined in the Oxford Dictionary of Computing [2008] to be

where, “A general but not necessarily true conclusion is drawn from a set of

particular instances”.

1.7 Contribution

The filter-bank that is used within the LogFBdynamic psychoacoustics speech

model differs from the conventional form of the filter-bank (Figure 3.5) in three
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respects. Firstly, the most powerful harmonic in each of the Bark bands is

selected, secondly a form of simultaneous masking is imposed around those

harmonics, and thirdly the filters do not overlap.

The LogFBdynamic psychoacoustics speech model itself, differs from the Mel

Frequency Cepstral Coefficients model of speech in yet another respect, and that

is, the model slice duration is decoupled from the Discrete Fourier Transform

window duration, such that any duration for the model slice is possible; thereby

facilitating — in this case — a speech model with a temporal resolution that is at

least an order of magnitude greater than that of the typical MFCC model.

The test results support the hypotheses, that:

• the LogFBdynamic psychoacoustics speech model is effective in capturing the

essential differences between speech and silence.

• a deterministic classifier can provide enough information to facilitate the

generation of accurate speech and silence training data.

An interesting result is that higher levels of noise during ‘silence’ directly

degrade the performance of the DetermClassifier whereas for the DNN Classifier

there was no indication of any correlation between the noise levels and the

absolute performance of the classifier.

The outcome of the split sample DNN training was a set of trained DNN

Classifiers, which the testing confirmed to be valid for the subclass of speech and

silence as defined in the DNN Training and Validation data sets. A peculiarity of

the test corpus — where all of the test-cases are spoken by the same individual —

is that the test-corpus implicitly emulates frequency normalisation. So it was

feasible to assess the extent to which the solution generalised, and it was found

that any of the six trained DNNs operated satisfactorily with any of the test-cases.

This suggests the possibility, that with addition of explicit frequency normalisation

— some variation of the Vocoder perhaps (i.e. a speech ‘analysis-synthesis’ system

Gold et al. [2011]) — the solution might generalise to the class of speech and

silence.
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Though all of the trained DNNs obtained using the split sample technique were

fit for purpose, the technique did not always identify the optimal trained DNN.

That is, for the backpropagation training method used, the only significant

independent variables in the system were the random initialisations of the weights

for the DNNs, and it was found that a measure of quality of the trained DNN

performance varied as a function of this initialisation. Specifically, the dispersion

of the distribution for multiple training instances with the same training,

validation and test data sets (but different weight initialisations) varied

significantly from test-case to test-case — this variation possibly a function of the

quality (accuracy) of the training data. So, to obtain the optimal trained DNN

when using the split sample technique, an additional training step of establishing

the distribution of variation in classification performance according to some

appropriate quality measure, as a function of DNN weight initialisation, and then

selecting the trained DNN from the centre of the distribution (where the density of

trained solutions is at its greatest), is recommended.

A similar experiment to that described in the previous paragraph, but purposed

to establish the variation in a measure of the quality of performance of the trained

network as a function of the depth of the network, showed that the performance of

a network with 6 hidden layers to be only marginally better than the performance

of a network with 1 hidden layer.

The most difficult voiced/unvoiced/silence classification issue identified in the

Literature is between unvoiced speech and silence; and this manifested itself during

testing particularly in respect of discriminating between low energy unvoiced

fricatives and inhalation fricatives during silence. The LogFBdynamic model may

provide a platform, if enhanced as described in Section 6.3, for investigating this

issue further.

The technique of using two classification stages (Qi et al. [2004]) was extensively

reworked, and it may be that it can equally be applied to other features of speech

— sibilants for example — that can be initially identified, using a deterministic

(rules based) method.
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1.8 Document Outline

Chapter 2: The “Technical Background”, provides an outline of the broad

subject areas that are referenced in this work. The descriptions provided only

convey the essence of the subjects — to do full justice to each of the areas would

require volumes of material. That said, the information provided is intended to

provide a coherent context for the material in the Literature Review.

Chapter 3: The “Literature Review”, is broadly in three parts. The first is

concerned primarily with techniques for identifying silence in speech such as

voiced-unvoiced-silence detection, voice activity detection, and speech

segmentation, and also touches on pattern matching. The second part is concerned

with the modalities of human hearing from two viewpoints: the psychoacoustic

and the neurological; and the third part draws the narrative of the first two parts

together thereby providing the rationale for the remainder of this work.

Chapter 4: The “Research Method”, provides a description of and the rationale

for the choice of test material, the algorithm for the DetermClassifier, the detail of

the LogFBdynamic speech model, and the detail of the ANN speech/silence binary

classifier (which uses a third party Artificial Neural Network).

Chapter 5: The “Results and Analysis”, describes the performance assessment

criteria and provides the results of the tests for both the DetermClassifier, and the

DNN Classifier. The performance of the two classifiers are recorded as:

• Silence Deletions, where a silence pause that is perceived by the listener goes

undetected by the automated speech/silence classification process.

• Silence Insertions, where silence is detected by the automated speech/silence

classifier that is not perceived by the listener.

• Silence start and endpoints.

• Classification errors.
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Additionally, Chapter 5 provides the results of tests intended to establish firstly,

the degree of consistency of the Artificial Neural Network training process; and

secondly, to determine the extent to which the solution generalises.

Chapter 5 also provides a consideration of the difficulties in pinpointing the

temporal location of perceived silence pauses, and on the validity of estimating the

number of silence pauses from the punctuation in the text, plus a discussion of the

test corpus. The classification performance of the DetermClassifier and the

DNN Classifier are separately considered, as are the short-comings of both

classifiers. A consideration of the results of an experiment on speech recorded

using the MP3 lossy compression format (detailed in Appendix C) is also provided;

and Chapter 5 ends with a brief discussion of this work in the context of the work

of others.

Chapter 6: “The Conclusions”, provides a short précis of the ideas which led to

the hypotheses, and an assessment of the extent to which the aims of this work

have been achieved. Chapter 6 also includes speculation on how the work so far

can be taken forward.
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Chapter 2: Technical Background

This chapter provides background material on the Ear and Psychoacoustics,

Automatic Speech Recognition, Speech Models, the Discrete Fourier and Cosine

Transforms, the Artificial Neural Network and other pattern recognition

techniques; and is purposed to providing a context for the Literature Review.

Mathematical expressions are generally not included in Chapter 2, and this for

two reasons. Firstly, they are concerned primarily with implementation rather

than concept; and secondly, often they are immediately available on the Internet,

or failing that, from the references cited. One exception to this is the section on

the Discrete Fourier Transforms; where the specific forms for the equations are

integral to the description of the DFT algorithm that is used throughout this work.

The ‘Glossary’ provides additional background material and also includes a list

of abbreviations and acronyms. It is located immediately before the Bibliography.

2.1 The Ear and Psychoacoustics

The ear comprises the auditory canal which funnels sound to the eardrum, three

ossicles (tiny bones), the malleus, the incus and the stapes, which transmit the

sound at the eardrum to the flexible membrane which covers the oval window of

the cochlea, and the cochlea which is the biological transducer that converts the

sound pressure wave at the oval window into nerve impulses (Crouch [1981]).

The cochlea is a coiled tube of bone that is closed at one end, having a notional

tube length of around 32mm (Koch et al. [2017]), which varies from person to

person; and which is divided for almost its entire length by the basilar membrane
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which is integral with the organ of corti. The cochlea is fluid filled such that the

vibrations at the oval window — the result of the motion of the malleus, the incus

and the stapes — causes waves within the fluid which move the basilar membrane;

and these movements are detected at the organ of corti, where they are converted

into nerve impulses that are transmitted by the auditory nerve bundle to the brain

(Gold et al. [2011]).

The basilar membrane is relatively narrow and stiff near the oval window and

becomes progressively less narrow and less stiff along its length, and when the

sound pressure wave modulates the fluid within the cochlea, the higher frequencies

cause motion in the basilar membrane and stimulation of the organ of corti

receptors nearer the oval window, whereas the lower frequencies penetrate further

into the cochlea and cause motion where the basilar membrane is less thin and less

stiff (Gold et al. [2011]). So the motion of the basilar membrane — and hence the

organ of corti receptors — at any given position is thought to be a function of

frequency, and accordingly it is generally believed that the cochlea performs some

form of spectral analysis — a belief that is supported to an extent by scans of

auditory ‘processing’ in the brain which show that different frequencies appear to

be tonotopic (processed in different parts of the brain). These beliefs have resulted

in the adoption of the filter-bank — a set of bandpass filters which span the

audible range (see Figure 3.5) — as the often preferred method for modelling short

segments of speech (of 10ms or so).

The sensitivity of the auditory system to loudness changes is generally thought

to be considerably greater than the passive mechanisms described in the previous

paragraphs can sustain, and it is commonly believed that there must exist within

the auditory system a source of gain — whether due to resonance, amplification

(positive feedback) or some other mechanism. It may be conjectured that the

masking effect discussed in Section 1.3 is the result of this gain, insofar as

frequencies near the boosted frequency will be perceived to be quieter by

comparison. Whatever the cause, masking is a measurable psychoacoustic effect

(see Chapter 3 and Appendix B).
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The filter-bank in various forms has been, and remains, an important analytical

instrument in the field of speech processing; yet our knowledge on the human

processing of speech is very limited. The description of the cochlea provided above

is very much a simplification of what is a completely inaccessible biological

structure, and which itself is merely one component in the complex auditory

processing system. Additionally, the human system of speech perception is further

complicated in other ways. For example, the auditory channel does not always have

primacy when decoding speech; and it can be demonstrated that speech sounds as

perceived can be changed by contrary visual stimulus. McGurk and MacDonald

[1976]/McGurk and MacDonald [1978] found that the perception of a consonant

can be changed if the listener is simultaneously viewing the facial movements for a

different consonant (the visual sense dominates). It can also be demonstrated that

our capacity to understand speech that has been distorted so that it retains certain

auditory clues but is otherwise indecipherable, can be increased if we are prompted

in advance with the undistorted version (demonstrations of both of these effects

can be found on-line). For the former of these, higher cognitive functions are

modifying the perception of speech in the mind; and for the latter the mind is

re-interpreting speech in the light of prior knowledge.

It is only possible to ascertain from the biology of the auditory channel a

simplistic view of the actual mechanisms of speech perception, and from brain

scans the locations of intense neural activity which correspond to the type of

stimulus; but with psychoacoustics — the testing of our perception of auditory

stimulus in a controlled environment — we can at least understand and measure to

an extent what we consciously perceive to be true.

2.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the process of generating a model of

speech from the digitised waveform and comparing the model with a

pre-determined set of models with the aim of translating the speech into text. A

key characteristic of speech is that it has the form — when viewed as a time series
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— of a Hidden Markov Model (HMM); comprising a sequential set of discrete

states with the Markov property, where the next state is a stochastic function of

the current state only (Ghahramani [2001]).

The Markov Property: A simple analogy for the Markov property is described in

Mlodinow [2009] which is the ‘Random Walk’, or the ‘Drunkard’s Walk’. The

essential point of the analogy is that the route to the current position is not of

significance; and yet — randomness not withstanding — the options for the next

step are a limited function only of the current position. How this might apply to

speech processing is shown in Figure 2.1. Assume that the waveform is sliced into

20ms sections as indicated by the vertical bars, and the magnitude spectrum for

each of the slices is generated using the DFT. By normalising the spectrum, and

then comparing the frequencies in the spectrum with a library of spectra for the

different speech sounds, it is possible to classify the sound and identify the specific

phoneme. It can be seen from Figure 2.1 that the rate of changes of the waveform

when referenced to the 20ms slices is slow (for some slices quite possibly zero), and

this means that two or more slices are likely to result in very similar spectra. This

is an example of the Markov property in that a significant probability exists that

the sound identified for a speech slice will be the same as for the previous slice.

Also certain combinations of different speech sounds are more likely than others, so

if the spectrum for a following sound is different to the current sound, the

probability of what follows is still a function of the current slice.

The Hidden Markov Model: The state of an HMM is hidden and is manifested

only through a sequence of observable events, so it can only be compared with

other state templates in a probabilistic way, by using the observable sequence of

events. So the probability of recognising speech is firstly a function of the

probability that the model generates the sequence, and secondly a function of the

degree by which the hidden process/state of the model can be associated with the

observable process/state of the template (section 8.2 Huang et al. [2001]). That is,

HMM ASR is a “doubly stochastic” process (Section 2.3. Virtanen et al. [2013]);

and to identify the hidden state of the process, it is necessary to find the best

match for the observable effect in the set of observable state templates, and adopt
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Figure 2.1: The Markov Property

The waveform should be sliced such that each slice is shorter than the speech phonemes (‘the smallest
significant unit of sound in a language’ — Chambers [1999]) so that a DFT of the slice can accurately
model individual speech sounds. Because the slice is shorter than the phonemes, there is a significant
probability that a speech sound will be followed by a similar speech sound. Also because not all
combinations of speech sounds are equally common, the probability of what follows a speech sound (if not
the same) is a function of that sound. These are both examples of the Markov property, which is where the
probability for the next state is a function of the current state only.

that in lieu of the hidden state. Identifying the states from a library of templates

is the basis of HMM ASR.

Posterior Probabilities For ASR, finding the next state would involve matching

the HMM with a potentially large set of templates each with its own probability;

but with knowledge of the current state, the probabilities for the next state could

be modified according to Bayes’ Decision Rule (section 4.1 Huang et al. [2001]).

Intuitively, these posterior probabilities can be seen to be more accurate because of

the Markov condition that the next state is a function of the current state.
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2.3 Models of Speech

2.3.1 Linear Predictive Coding

The Linear Predictive Coding (LPC) model (Section 21.2 of Gold et al. [2011])

is an all pole (resonance) model of speech, which assumes that speech is produced

from a simple concatenation of tubes each of the same length, but having different

cross sectional areas, and as a consequence different resonant frequencies. With the

gains for each of these ‘resonators’ made variable, then 6 sections would be enough

to span speech of 5 kHz bandwidth to represent the five formants and the

variations in the driving waveform that constitute a vowel. The difference between

the model and the original signal is the ‘prediction error’, and when the gain terms

(coefficients) are chosen to minimise this, then the prediction error can be

considered to be an approximation of the excitation function.

The purpose in creating the Linear Prediction Envelope is to de-emphasise the

harmonic representation of the speech whilst capturing the formants. See Figure

3.19, pg 76, in Johnson [2012], which is a comparison of the FFT Spectrum, with

its corresponding LPC Spectrum. This shows that the LPC identifies the formant

peaks of the vowel, and does not suffer from aliasing as may occur with the DFT,

where every peak in the spectrum is at an integer multiple of the reciprocal of the

DFT window duration. Johnson goes on to outline the shortcomings of LPC

analysis, and these include a lack of sensitivity to anti-formants which results in

poor performance with nasals, laterals, and some fricatives. Conversely Moore

(Bristow [1986] pg 133) states that LPC is, “Particularly good”, for identifying the

spectral peaks of vowels.
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2.3.2 Mel Frequency Cepstrum Coefficients

The Mel Frequency Cepstrum Coefficients (MFCC) speech model is purposed to

provide a better representation of the, “Perceptually relevant” features of the

short-term speech spectra (Davis and Mermelstein [1980]); and was for many years

of importance in the field of ASR, though in recent years interest in the model has

declined in favour of often simpler models (Xiong et al. [2016]) — perhaps

simplified to the point of using the raw speech data (Sainath et al. [2015]) — for

ASR with Deep Neural Networks.

To create the MFCC, the audio spectrum is divided into equally spaced (in Mel)

overlapping bands, and separately a set of filters which overlay these bands is

constructed ( see Figure 3.5). The harmonics in each of the bands are scaled by

the corresponding filter, and then the log-energy for each of the bands is calculated

(White and Neely [1976]). Finally the discrete cosine transform (DCT) of the

scaled log-energies results in the Mel Frequency Cepstral Coefficients.

Conventionally (Jurafsky and Martin [2009]) the term MFCC is taken to mean the

first 12 of these coefficients plus the energy in the period, plus a further 13

corresponding velocity terms, plus a further 13 acceleration terms resulting in 39

MFCC features.

2.4 The Analysis of Speech In the Frequency Domain

2.4.1 The Discrete Fourier Transform

Any non-sinusoidal periodic waveform can be specified as the sum of a series of

sine terms and cosine terms plus a constant term. This, the Trigonometric Fourier

Series, is defined by the equations: 2.1 to 2.5 below (pg 102–109 Ivison [1978], pg

910–921 Gullberg [1997])
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f(t) =
a0
2

+ a1cosωt+ a2cos2ωt+ ...ancosnωt +

b1sinωt+ b2sin2ωt+ ...bnsinnωt
(2.1)

where ω = 2πfreq is the angular frequency expressed in radians per second.

The coefficients ai and bi are given by

ai =
1

π

2π∫
0

f(t).cosiωt.d(ωt) (2.2)

bi =
1

π

2π∫
0

f(t).siniωt.d(ωt) (2.3)

Equation 2.1 can be written as:

f(t) =
a0
2

+ c1cos(ωt− φ1) + c2cos(2ωt− φ2) + ...+ cncos(nωt− φn) (2.4)

where the magnitude (ci) and phase (φi) of the harmonics are calculated from

Equation 2.1 as follows:

ci = (a2i + b2i )
1
2 and φi = tan−1

(
bi
ai

)
(2.5)

The Algorithm for the Calculation of Magnitude and Phase

It can be seen from the first terms of the sine and cosine expansions in Equation

2.1, that the fundamental frequency is the reciprocal of the period (the DFT

window duration), and thereafter that the harmonics are integer multiples of the

fundamental frequency.

According to Ivison [1978], and in accordance with Shannon’s sampling theorem

(Shannon [1949]), the highest harmonic, n that can be generated to an acceptable

degree of accuracy is a function of the number of samples in the period such that:
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n ≤ number of samples
2

− 1

Calculation of Coefficients : (Ivison [1978], Gullberg [1997]) The coefficients ai

and bi of equation 2.1 are calculated as follows:

Where X = the number of samples in the period; and the symbol “:=” means

“becomes equal to”:

The coefficients for the fundamental a 0 and b 0:

angular increment := 2πrad
X

for i in (1 to X)

loop

{

θArray(i) := angular increment * i

yArray(i) := sample magnitude at angular increment

ycosθArray(i) :=yArray(i).(cos(θArray(i)))

ysinθArray(i) :=yArray(i).(sin(θArray(i)))

}

a0 :=

2∗

(
X∑
i=1

ycosθArray(i)

)
X

b0 :=

2∗

(
X∑
i=1

ysinθArray(i)

)
X

The coefficients for the nth Harmonic:

angular increment := 2πrad
X

for i in (1 to X)

loop

{

nθArray(i) := n.(angular increment * i)

yArray(i) := sample magnitude at angular increment

ycosnθArray(i) :=yArray(i).(cos(nθArray(i)))

ysinnθArray(i) :=yArray(i).(sin(nθArray(i)))
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}

an :=

2∗

(
X∑
i=1

ycosnθArray(i)

)
X

bn :=

2∗

(
X∑
i=1

ysinnθArray(i)

)
X

The magnitude and the phase for the fundamental and the harmonics are then

calculated by substituting for an and bn in the equations at 2.5.

Waveform Reconstruction

The Discrete Fourier Transform is a reversible process in that the speech

waveform can be constructed from the magnitude and phase spectra (see equation

2.1).

In the following pseudo-code, H1 to H2 is the range of harmonics in the

reconstruction, X = the number of samples during the Fourier window; and the

symbol “:=” means “becomes equal to”. The Local Scaler Array is populated with

one of:

• unity for speech reconstruction.

• the conventional auditory filter — illustrated in Figure 4.3A.

• a scaling regime for simultaneous masking — illustrated in Figure 4.3B .

Result Array(1 to X) := 0.0)

for i in (H1 to H2) loop

{

for x in (1 to X) loop

{

Result Array(x) := Result Array(x) +

Local Scaler Arr(i).( an(i).cos(nθArray(i)(x))

+ bn(i).sin(nθArray(i)(x) )

}

} return Result Array(1 to X)
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The DFT and Spectral Estimation

In a work on analysing sibilant fricatives, Reidy [2015] uses the term, “Spectral

estimator” for the process of using the DFT to convert what he terms random

data in the waveform into a multivariate statistic (spectral estimate). Putting the

question of the composition of sibilant fricatives aside, there is still an issue with

the DFT where although the terms of the Fourier expansion correctly define the

waveform, the resultant spectrum is a function of the DFT window duration. That

is, the DFT translates all frequencies in the waveform into combinations of

multiples of the DFT fundamental frequency, and this results in a smearing of the

original frequencies. So to an extent, for all frequencies the DFT can be regarded

as providing only a spectral equivalence of the waveform.

The Hamming Window

Speech is not a true non-sinusoidal periodic waveform, and accordingly when a

rectangular window of some duration is chosen as the period for the DFT, the first

sample of the window will not be the same as the first sample of the next period.

Such a discontinuity would result in additional harmonics in the spectra that are

not a function of the required speech content. The Hamming Window (see Figure

2.2) is often used in place of the rectangular window to reduce this effect, and its

use in ASR is formalised in the European Telecommunications Standards Institute

standard on, “Speech Processing, Transmission and Quality Aspects

(STQ); Distributed speech recognition; Advanced front-end feature

extraction algorithm; Compression algorithms” ETSI-ES-202-050 [2007].

When reconstruction of the speech is required, the Hamming window may not

be the most convenient choice (see Figure 2.3). An alternative method is to use a

30ms rectangular window, stepping 10ms, and to use only the 10ms at the centre

of the window for waveform reconstruction. With this method, speech waveforms

can be reconstructed by summing the terms of the Fourier Series; and there is

found to be little difference between the reconstructed speech and the original

speech. (The techniques for speech reconstruction are far from new. In 1979, Boll

described a system purposed for the spectral subtraction of noise components of
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Figure 2.2: The Hamming Window

It can be seen that the waveform when scaled by the Hamming Window will adhere more closely to the
non-sinusoidal periodic waveform necessary for the DFT, and the generation of harmonics due to the
discontinuities at the start and end of the Fourier Period will be reduced. It is evident from Figure 5.20
parts (c) and (d) in Huang et al. [2001] that attenuation of the Hamming window is almost constant across
the frequency range of interest. The graph is constructed using Equation 9.11 — Jurafsky and Martin
[2009].

Figure 2.3: Waveform Reconstruction and the Hamming Window

If the waveform when scaled by the Hamming Window is reconstructed using only the central portion of
the window, then this will result in an amplitude modulation of the speech – although this effect can be
reversed by scaling the reconstructed waveform for the appropriate duration with the phase inversion of the
amplitude modulation.

digitised speech.)
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2.4.2 The Discrete Cosine Transform

The Discrete Cosine Series is a ‘half range expansion’ (Wylie and Barrett [1982])

in the frequency domain comprising of a constant plus the cosine series. Equation

2.1, the Trigonometric Fourier Series, reduces to:

f(t) =
a0
2

+ a1cosωt+ a2cos2ωt+ ...ancosnωt (2.6)

Rationale: From Equation 2.1 for the Trigonometric Fourier Series it can be

seen that each element of both the sine and cosine series is an integer multiple of

the fundamental frequency and from the Magnitude and Phase equations (2.5)

that the phase is embodied at each harmonic in the ratio of the coefficients. This

means that all of the sine terms in the series have the same phase (coincident

zero-crossing points); and the same as true for the cosine terms — though all of

the cosine terms are shifted in phase by π
2

rad.

Figure 2.4 shows that the cosine function (A) has even symmetry about ti in that

the magnitude at time ti − tx = ti + tx for any time duration tx within the range

DFT Period
2

, whereas the sine waveform (B) has odd symmetry about ti in that the

magnitude at time ti − tx = −(ti − tx) for any tx within the range DFT Period
2

. This

means that the Fourier Transform of any even functions may only comprise a

constant term (which may be zero) plus cosine terms. All of the sine terms must

equal zero, because if any sine terms remain following the transform then were the

waveform to be reconstituted from the harmonics, it would include odd symmetry.

The converse of this is also true, specifically the Fourier Transform of any odd

functions may only comprise a constant term (which may be zero) plus sine terms.

All of the cosine terms must equal zero, because if any cosine terms remain

following the transform then were the waveform to be reconstituted from the

harmonics, it would include even symmetry.
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Figure 2.4: An Illustration of A: Odd Symmetry, and B: Even Symmetry

It can be seen that the cosine function (A) has even symmetry about ti in that the magnitude at time
ti − tx = ti + tx for any time duration tx within the range DFT Period

2 , whereas the sine waveform (B)
has odd symmetry about ti in that the magnitude at time ti − tx = −(ti − tx) for any tx within the range
DFT Period

2 . This means that the Fourier Transform of any even functions may only comprise a constant
term (which may be zero) plus cosine terms. All sine terms must equal 0, otherwise the function would
contain odd symmetry, and would therefore not be an even function.

2.5 Pattern Recognition

2.5.1 The Artificial Neural Network

The Artificial Neural Network (Priddy and Keller [2005], da Silva et al. [2017])

is a so-called ‘intelligent’ system where the ANN ‘learns’ through experience, and

can acquire a set of responses during training which can be more generally applied
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to different stimuli of a similar type.

The first modern expression of the Artificial Neural Network was by Rosenblatt

[1958] who coined the term ‘Perceptron’ when expanding on the work of

McCulloch and Pitts [1990] (a reprint of the 1943 original paper). Rosenblatt in

addressing the questions of how information is remembered, and what the

influence of stored information on behaviour and recognition is, wrote that (and

this forms the basis of the model of the Artificial Neurone):

“...there is never any simple mapping of the stimulus into

memory, according to some code which would permit its later

reconstruction. Whatever information is retained must

somehow be stored as a preference for a particular response;

i.e., the information is contained in connections or associations

rather than topographic representations.” – Rosenblatt [1958]

In Figure 2.5, ‘The Model of an Artificial Neurone ’, Rosenblatt’s associations

are represented by the weights on each of the inputs. Figure 2.5 also shows the

Bias Input, and the Activation Function. The Bias Input is necessary for those

artificial neurones which comprise the internal layers of an ANN because if all of

the inputs to the neurone are zero, then none of the inputs can be meaningfully

weighted and the output state would equal zero. With the bias input node fixed at

1.0, this ensures that at least one of the nodes can be meaningfully weighted

during training. The Activation Function (i.e. the transfer function) dictates the

configuration and performance capabilities of the ANN, and may be, for example,

a step function, a linear ramp, or a non-linear Sigmoidal or Gaussian function.

The Single Layer Perceptron uses either a step or linear ramp activation

function, and its capability as a pattern recognition device is limited to linearly

separable data. Later the use of a non-linear activation function, with

Backpropagation training (da Silva et al. [2017] citing Rumelhart et al. [1986])

facilitated — for example — network configurations such as the Multi-Layer

Perceptron (MLP) and the Radial Basis Function Network (RBFN); which
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Figure 2.5: Model of an Artificial Neurone.

This illustration is based upon Figure 1.4 of Priddy and Keller [2005], and Figure 1.4 of da Silva et al.
[2017]; and the Neurone implements the following feed-forward equation:

Output = (

n∑
i=0

(Xi.Wi) ).(activationfunction) (2.7)

extended the capability of the ANN as a pattern recognition device to include

non-linearly separable data.

The MLP is configured with an input layer, one or more hidden layers, and an

output layer; and is trained using a Supervised Training technique — which is

where the training data is a representative subset of the full data set, and consists

of the input data together with the required classification results. The RBFN is

configured with an input layer, one hidden layer, and an output layer; and is

trained using a Supervised Training technique for the output layer only, whereas

the hidden layer — which uses a Gaussian activation function — is firstly trained

using an unsupervised self organizing mapping technique.

An Artificial Neural Network (see Figure 2.6) comprises one or more Neurones

arranged in one of various architectures including: Single Layer Feed-Forward,

Multiple Layer Feed-Forward, Recurrent, and Mesh (da Silva et al. [2017]). The

Single Layer Feed-forward architecture facilitates the classification of linearly
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Figure 2.6: Artificial Neural Network with Two Hidden Layers

This is a schematic of a Multiple Layer Feed-Forward Deep Neural Network. Here the stimulus can only
propagate from the input layer forward through the hidden layers to the output layer of neurons. i.e. There
is no feedback mechanism—as would be the case with a recurrent neural network.
The input layer may have minimal functionality serving only to route the input data to each of the layers in
the first hidden layer, or may include additional functionality — for example to rescale the input data to the
operational range of the Neural network. The remainder of the neurones in the network each implement
Equation 2.7.
For any given application, the configuration of the input layer, and output layer for an ANN are dictated by
the system requirements; but it is less clear what might be the optimal number of hidden layers, and what
might be the optimal number of neurons in those layers. Priddy and Keller [2005] state that ANN learning
is a function of mapping so for best performance the minimum number of hidden layers which can support
the functionality should be chosen; and suggest that the optimal number of neurons in the hidden layers
can be determined from the validation-set error (i.e by trial and error). They state that the size of the
training set must increase if the number of hidden neurons is increased—simply because more weights
require more training.

separable data, The Multiple Layer Feed-forward architecture facilitates the

classification of non-linearly separable data, the Recurrent architecture imposes

some history (memory) by incorporating the previous result in the current data,

and the Mesh architecture simulates neural topography — tonotopy for example

— by arranging the Artificial Neurons so that particular regions of the neural

network are made responsive to particular ranges of the data. The methods of

training include variations of: Supervised, Unsupervised, Reinforcement, Off-line

and On-line(da Silva et al. [2017]). For Supervised Training the training data set

includes the desired outcome, for Unsupervised Training the training data set does

not include the desired outcome and the Neural Network organises itself to

recognise subsets amongst the training data, for Reinforcement Learning the actual
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response is compared continuously with the desired response and if satisfactory the

weights are gradually changed to ‘reward’ this behaviour, for Off-line learning the

full training set (1 epoch) is processed before the weights are adjusted, and for

On-line learning, the weights are adjusted for each training sample.

Forward Propagation

Forward propagation is a feed-forward process and is used with a trained

Artificial Neural Network to classify fresh data into one of the trained groups; and

is also an essential component in supervised training, where it is used to generate

the outputs for all of the neurones in the network.

The process uses Equation 2.7 (from Figure 2.5) to generate the outputs for each

of the neurones which constitute the hidden layers and the output layer; starting

with all of the neurones in the first hidden layer and propagating the neurone

outputs from the first hidden layer to the inputs of the next hidden layer, and so

on, through to the output.

Backpropagation

Backpropagation is a systematic process used for the supervised training of

Artificial Neural Networks.

If the essential condition for backpropagation that the activation functions be

differentiable is met, and knowing the output state of all of the neurones within

the ANN in response to a training data item; then the network error — the

difference between the actual and the required outputs of the network — can be

apportioned to the individual neurones in the network, and the weights adjusted to

reduce these errors, as follows.

For each training example, the forward propagation process is applied and the

outputs for all of the neurones which constitute the network are stored. From

Figure 2.6 it will be seen that if the outputs for all of the neurones are known

then, ipso facto, the inputs for all of the neurones are known.
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Adjusting the Output Layer Weights: The error across the output neurone

referenced to input channel i is a function of the weight at input i and is denoted

∆E = dE
dWi

, where W is the weight matrix for the neurone; and the change that is

to be applied to the weight at input i is given by

∆Wi = −η. dE
dWi

(2.8)

where η is the learning rate (usually between 0 and 1.0), and the minus sign

ensures that the error correction is applied so as to reduce the error gradient (i.e.

Gradient Descent).

To solve Equation 2.8, the term dE
dWi

must be simplified, and this is achieved using

the chain rule for the differentiation of functions such that

∆E =
dE

dWi

=
∂E

∂Yi
.
∂Yi
∂Ii

.
∂Ii
∂Wi

(2.9)

and these terms equate to

∂E

∂Yi
= the quantity at input i of the output neurone (2.10)

∂Yi
∂Ii

= the first order derivative of the activation function (2.11)

∂Ii
∂Wi

= −(required output− actual output) (2.12)

Adjusting the Second Hidden Layer Weights: When adjusting the weights

for the second hidden layer, Equation 2.8 is again used, except that for all of the

neurones in the second hidden layer, the ‘required output’ used in Equation 2.12 is

not known, and must be calculated. That is, the error attributed to the output

neurone is backpropagated to the second hidden layer, and this is used to calculate

the required outputs for that layer.

Adjusting the First Hidden Layer Weights: This is a similar process to that

used to adjust the second layer hidden weights, except that in this case, the error

attributed to the output neurone plus that attributed to the second hidden layer

neurones is backpropagated to the first hidden layer, and this is used to calculate

the required outputs for that layer.
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The process described only results in weight corrections for a single instance of

the many training data items which constitute the training data set, and must be

repeated for the entire epoch — that is for all of the items in the training set.

Accordingly, the final weight corrections can only be known after completion of the

entire epoch; whether or not Off-line or On-line Training is used. Upon completion

of each epoch, a measure of performance of the network — often the differences

between the required output and the achieved output expressed as the Mean

Squared Error (MSE) — is compared with the training target (the maximum

acceptable MSE), and if the target has not been achieved then another training

epoch is implemented. In practice, often many training epochs will be required.

Resilient Propagation (RPROP): Backpropagation as previously described

may require tweaking of the learning rate to obtain a satisfactory outcome; and

furthermore may be slow to converge to a solution requiring possibly many

hundreds of training epochs. Resilient Propagation (RPROP) by Reidmiller and

Braun [1993], is an example of an improved off-line backpropagation algorithm

which eliminates the learning rate parameter, and which also significantly

ameliorates the problem of slow convergence by replacing the weight corrections

obtained during training, with weight corrections that are increased progressively

epoch by epoch until the sign of any of the errors changes — which indicates to the

algorithm that the particular weight correction is too large and must be reversed.

2.5.2 Other Pattern Recognition Techniques

The intention in this work is to mimic, insofar as that is possible, human

interface methodologies; and in that the Artificial Neural Network originated from

the field of neuroscience, it fulfills that criterion. However, at least two other

distinct methodologies for pattern recognition (both statistical) exist; the first is

the Support Vector Machine (grounded in Co-ordinate Geometry), and the second

is the Random Forest (grounded in Binary Decision Trees). A brief introduction to

both of these methodologies follows.
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Support Vector Machine: (Cortes and Vapnik [1995]) (Section 8.4 Gold et al.

[2011]) (James et al. [2013]) The Support Vector Machine (SVM) is a learning

machine, where two sets of data that are not linearly separable can be made

linearly separable using a transformation into an immensely high dimensional

space. Conceptually, the support vector machine operates by mapping the

independent variable(s) of a time varying function (for the case of speech

processing) using one or more non-linear functions, thereby creating a

multi-dimensional feature space that is modulated by the original data; and then

finding the optimal hyperplane for separating the two data sets in the extended

feature space.

The term, “Support Vector”, is commonly used in connection with three

different classifiers: the Maximal Margin Classifier and the Support Vector

Classifier — both considered in Figure 2.7, plus the Support Vector Machine. The

maximal margin classifier is suitable for the classification of linear separable

classes, the support vector classifier (a soft margin classifier) is suitable for mostly

linearly separable data but will tolerate some observations on the wrong side of the

hyperplane, and the support vector machine is suitable for the classification of

data that is not linearly separable.

The separating hyperplane has one dimension less than the number of

co-ordinates of the data space, thus the hyperplane for a two dimensional classifier

is a line, and for a three dimensional classifier a plane surface.

For the Maximal Margin Classifier — shown in Figure 2.7 — it may be seen that

an infinite number of hyperplanes exist which would separate the classes (i.e. lie

within the shaded areas), but that geometrically, a unique maximal margin

hyperplane exists; and that is the hyperplane which is furthest from the training

data instances and so yields the maximum margin. It can also be seen that only

three separate data instances — the support vectors — are required to define the

margins and the maximal margin hyperplane. The other training data instances

have no effect.

The Support Vector Classifier is similar to the maximal margin classifier except

that the former will tolerate some data instances on the wrong side of the margins
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Figure 2.7: The Maximal Margin Classifier and the Support Vector Classifier

Maximal Margin Classifier: The illustration shows two linearly separable classes of training data
instances — Class A indicated by diamonds, Class B by squares. Geometrically, three support vectors
(arrowed) are required to delineate the maximal margins (shaded), and the maximal margin hyperplane
(arrowed).
Support Vector Classifier: It can be seen that if support vector 2 (for example) is allowed to be within the
margin, (i.e. effectively removed from the calculation of the maximal margin hyperplane), then a different,
and wider separation of the classes (shown in dashed lines) is obtained; providing perhaps a better
classifier at the cost of what may be an acceptable level of mis-classification.

and even the wrong side of the hyperplane. For the Support Vector Classifier, the

support vectors are the training data instances that lie on the margin boundary, or

the wrong side of the margin boundary for their class. The other training data

instances have no effect.

The Support Vector Machine, unlike the Maximal Margin Classifier and the

Support Vector Classifier, is non-linear classifier and operates conceptually by

creating a multi-dimensioned feature space with the concomitant multi-dimensional

hyperplane; and this is achieved by modulating the training data instance set

using a kernel, which is the non-linear mathematical function that spawns the

multi-dimensions, and which must be selected to accommodate the specific nature

of the classification problem. Although virtually impossible to visualise, this can

be realised using the inner product of the training data instance pairs rather than
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the actual instances themselves; and it can be shown mathematically, that the

inner product of the training data instances that are not support vectors is zero.

That the solution lies with the evaluation of the inner products of the training data

instance pairs rather than in the multi-dimensional feature space simplifies what

otherwise would be a complex and possibly intractable computational problem. i.e.

Consider the level of complexity of three dimensional geometry compared with the

complexity of two dimensional geometry, and then scale the complexity up to

n-dimensional geometry — where n is a vast number and may be infinite.

An interesting point — in the context of statistical learning — is made by James

et al. that since the SVM was introduced that,

“Deep connections between SVMs and other more classical

statistical methods have emerged,” — James et al. [2013]

and they also state — without citing their sources —that when the classes

significantly overlap then the more classical statistical methods are often the

preferred solution, but when the classes don’t significantly overlap then SVMs tend

to be better. If true, this is relevant because the extent to which the classes of

noise during silence and speech overlap (i.e. inhabit each other’s state space)

cannot be quantified for the general case.

Random Forests: (Ho [1995])(James et al. [2013]): Random Forests are purposed

to reduce the effects of the inherent limits on complexity for individual decision

trees; and consist of many binary decision trees where each tree is built using

randomly selected subsets of the feature vector. Each tree provides its own

generalised classification, and when combined with other trees these classifications

complement each other resulting in a monotonic improvement in overall

classification performance.

A binary decision tree is ‘grown’ from the training data using the technique of

recursive binary splitting; which is where the feature space initially forms a single

area, and then this is split into two areas which correspond to two branches of the

tree, and then the now two feature sub-spaces are each again split forming two

more branches per split and 4 feature sub-spaces, and so on. The quality of each

split is defined to be the extent to which any training observation which activates
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that branch of the tree belongs to the most commonly occurring class of training

observations for that feature sub-space; and is quantified as the Classification

Error, the Gini Index or the Entropy. These are all measures of statistical

dispersion, and the smaller the number, the better the quality of the split.

The binary decision tree exhibits high variance, in that if the training set is

divided into two parts, and a tree is grown for both parts, the solutions are likely

to be dissimilar. High variance is a problem for any classifier, and this can be

reduced for decision tree classifiers, by employing the technique of Bootstrap

Aggregating (more commonly known as Bagging) — which may involve many

hundreds (or even thousands) of individual trees.

The concept that underpins bagging is that if many training sets were available

for the ‘population’, then many different decision-trees could be grown and the

results of the classifications averaged; and this would reduce the variance of the

classifier proportionally to the number of trees (i.e. the aggregating). In practice,

many training sets are not available, and so must be synthesised from the available

training data by repeatedly selecting samples from the master training data set

and combining these in different ways to form many dissimilar training sets (i.e the

bootstrapping).

Although bagging is purposed to solving the problem of high variance with

binary decision-tree classifiers, it does so at the cost of introducing the potential

for significant correlation. The correlation can occur because the technique of

recursive binary splitting is a greedy technique which means the at each level of

growing the tree, the best split is made for that node — whether or not a different

split might result in a better tree at some later step. So if one of the features in

the training data set is particularly strong, with other similar features moderately

strong, then many of the bagged trees will use the strong feature in the top-split —

and so will be similar and will generate correlated results; thereby re-introducing

high-variance because the averaging of correlated results is effectively the

averaging of similar results which provides no great reduction in variance.

Unlike Bagging, the decision trees which constitute a Random Forest are

de-correlated; and this is achieved by using only a newly chosen random subset of
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the features vector (typically the square-root of the total number of features which

constitute the feature vector) at each of the splits as each tree is grown. The

results of this are that the strong feature and moderately strong features may not

even be part of the feature subset — hence a reduced potential for correlation

between the decision trees and for the concomitant high variance.
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Chapter 3: Literature Review

3.1 Introduction

There are two primary research areas involved with the topic of this thesis, and

they are the detection of silence in speech and the perceptual modelling of speech.

These are both purposed to deriving a model of the sound which can best capture

the differences between silence and speech.

3.2 Detection of Silence in Speech

Atal and Rabiner [1976] rationalised that any single feature of speech will not

provide enough information to support a voiced-unvoiced-silence classification, but

that combining several features of the speech may provide a route to a more robust

classification model. They chose 5 speech features: Short Term Energy,

Zero-Crossing Rate, Auto-Correlation Coefficient, Linear Predictive Coding (LPC)

First Coefficient, and Energy in the Prediction Error, but then state that a

different set of parameters might provide better discrimination between the

silence/unvoiced/voiced classes. With their model of speech, and employing a

separate training set and test set with an unvoiced signal-to-noise ratio of 14 dB,

and a voiced signal-to-noise ratio of 34 dB, the authors were able to detect 85.54 %

of 94 Silences, 85.37 % of 82 unvoiced segments and 98.94 % of 375 voiced

segments. Atal and Rabiner rated the effectiveness of their chosen parameters in

minimising the classification errors for unvoiced/silence discrimination and found

Energy to be the most effective, then Zero Crossing Rate, then Autocorrelation

Coefficient, Energy in the Prediction Error and lastly the LPC First Predictor

39



Coefficient. This shows that the LPC derived parameters are least effective for

unvoiced/silence classification. The total of 239 errors in unvoiced/silence

discrimination was considerably larger than both the voiced/unvoiced error total of

91 and the voiced/silence error total of 117. These results reveal an inherent truth,

and that is that the detection of voiced speech is considerably easier than the

discrimination between unvoiced speech and silence. To give the results some

context, with silence and unvoiced detection rates of ∼85.4%, near 1 in 7 silences

or unvoiced segments will not be recognized, whereas with a voiced segments

detection rate of 98.94% only 1 in 94 voiced segments will not be recognized.

So although Atal and Rabiner provide a sound rationale for a pattern recognition

approach, they also raise an important question: what is the best set of features

for representing speech?

Ghiselli-Crippa and El-Jaroudi [1991] chose Atal and Rabiner’s parameter set

for their work to develop an ANN alternative fast training algorithm for

voiced/unvoiced/silence classification. They used two training strategies: for the

first they excluded the transitional frames between speech and silence — those

frames difficult to tag as either speech or silence — from their manually derived

training data set, and for the second the complete training data set was used

whether transitional or not. For the former they achieved detection rates between

93.46 and 95.76%, and for the latter detection rates of between 95.31 to 96.63%.

Although the authors provide no information on noise, this work is of interest

firstly because it provides an early indication of the capabilities of the two layer

artificial neural network, and secondly because the results of the classification

improve when the training data includes the transitional frames.

Chen [1976] on the subject of achieving the optimal subset of features wrote

that a full search of possible features — though “usually impossible”, will provide

the best feature subset. Sarma and Venugopal [1978] applied this to Atal and

Rabiner’s feature set, and by testing all possible combinations found that the

optimal subset of features included only the Energy, the Zero-Crossing Rate and

the Auto-Correlation Coefficient. Interestingly the LPC first coefficient is excluded

from the best features subset, and this is not surprising as the LPC model is a
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primitive model of speech production. Linear Predictive Coding is described by

Johnson [2012] as follows:

“ ...Physically sensible, if oversimplified, model of speech

involving a sound source (vocal fold vibration) and a filter of

several resonances”

— Johnson [2012]

It is interesting to compare Atal and Rabiner’s parameter set with that chosen

by Mondal and Barman [2015]. Mondal and Barman use six features:

pre-emphasised energy ratio between consecutive frames, average zero crossing

rate, short term energy, spectrum tilt, low to full band energy and spectral

centroid. Mondal and Barman chose not to include in their parameter set the

LPCs speech representation (a justifiable decision given the limitations of the LPC

model), nor the Mel Frequency Cepstral Coefficients speech representation (which

was not known about at the time of Atal and Rabiner’s work). Although the work

of Mondal and Barman post dates Atal and Rabiner’s work by 39 years there is

little evidence that the problem of voiced-unvoiced-silence detection is solved, and

because Mondal and Barman manually selected a silence threshold knowing the

background conditions their work does not address the question of fully automated

voiced-unvoiced-silence detection.

In a short paper by Molla et al. [2015], the authors classified unvoiced speech as

comprising both unvoiced speech and silence. So in the detection of what is

effectively voiced speech they achieved a classification accuracy of 98% at 30 dB

signal to noise ratio, which is not a significant improvement on Atal and Rabiners’s

results, and they do not address the problem of unvoiced/silence detection. A

similar approach is taken by Upadhyay and Pachori [2015] where the authors used

the same assumption that silence is unvoiced speech and achieved a similar order

of performance. Both of these papers indicate a more general trend where the

voiced-unvoiced-silence classification problem is reduced to one of voiced-unvoiced

classification. Another example of this is the work by Kumar et al. [2015], where

the authors segment the speech into voiced and unvoiced sections before their

classification process. From Rabiner and Atal’s work it is clear that the most
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difficult of the classification problems is that of separating silence and unvoiced

speech, and papers such as those by Molla et al., Upadhyay and Pachori, and

Kumar et al. don’t contribute to this specific problem.

Deng and O’Shaughnessy [2007], describe a system based upon two binary

classifiers, the first of which classifies each frame as either ‘Voiced’ or ‘Unvoiced

and Silence’, and the second which reclassifies the ‘Unvoiced and Silence’ frames as

either ‘Unvoiced’ or ‘Silence’. With this system the authors achieve a

voiced-unvoiced-silence classification accuracy of better than 91.15%; but the

authors conclude that more, “...Robust features...” are required if the potential for

their system is to be fully realized. Interestingly Deng and O’Shaughnessy provide

a list of corrections they impose post classification to deal with very short voiced

segments parenthesised by unvoiced segments, vice versa, and breath sounds,

which they reclassify as silence if they are sustained for more than 90ms before a

voiced segment is encountered. Deng and O’Shaughnessy used the ‘NTIMIT’

Telephone speech corpus (Fisher et al. [1993]) in their evaluation.

Burileanu et al. [2000], described a system which makes an initial

speech/not-speech decision based upon the ratio of the maximum energy

throughout the speech versus the energy of each 15ms slice of the speech, and

which refined that decision—using trends in the zero crossing rate—in the vicinity

of the potential silence to speech transitions previously detected. The authors

found that 98% of the endpoints automatically detected were within 15ms of

manually measured values. Although, as the authors note, this method of silence

detection is not robust to variations in noise, it is of interest because it develops

the idea of using the ratio of energies. Sahoo and Patra [2014] extended the work

of Burileanu et al. [2000] by using short term energy, zero crossing rate and the

‘statistical’ behaviour of the background noise. In their experiments on a system of

speaker identification using the MFCC speech model Sahoo and Patra concluded

that silence removal increased speaker identification rate by between 15 and 20%.

The authors described a method of detecting silence which may improve the noise

tolerance of the silence detection process; but because their aim was speaker

identification their purpose was to remove both the silence and the unvoiced

speech. Thus their basic aim was one of the detection of voiced speech; and Atal
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and Rabiner [1976] achieved an accuracy in this of better than 98% some 38 years

earlier.

In pursuit of identifying sentence boundaries to facilitate the insertion of breaks

into the stream of text output from an ASR process Anu and Karjigi [2014],

employ a different set of speech features. The features are, pause duration, rhyme

duration (where the speech slows towards the end of a sentence), and 4 pitch

measures taken at inter-word boundaries — specifically slope, mean, maximum

and minimum. With a Support Vector Machine (Cortes and Vapnik [1995])

trained as a ‘non-probabilistic binary linear classifier’, they achieved an accuracy

of 81.176 %. This level of accuracy is low in comparison with the results of

segmentation methods based upon the more deterministic features of speech; but

Anu and Karjigi’s approach may be of use in the sorting of already detected

silences into categories such as stops, pauses and sentences.

The work by Mondal and Barman [2015] (previously discussed), brings to mind

two other points. The first is on the technique of pre-emphasis, and the second —

following tangentially from the selection of the ‘low to full band energy’ parameter

— is on the optimal bandwidth for speech processing.

Pre-emphasis is a filtering technique and its use for ASR is formalised in

ETSI-ES-202-050 [2007]. In Section 5.4.3.2 and Figure 5.2.1 of Huang et al. [2001],

the authors describe a pre-emphasis filter as a First Order Finite Impulse

Response Filter configured as a high pass filter. So when might it be advantageous

to use pre-emphasis? Vergin and O’Shaughnessy [1995] describe pre-emphasis as a

technique for flattening the speech spectrum which will (inevitably) boost the

noise at higher frequencies as well as the speech. Ergo, pre-emphasis is a form of

distortion and although the technique has often been adopted for ASR, for the

recognition of silence in speech there is no particular advantage in using

pre-emphasis with either the DetermClassifier or the LogFBdynamic.

The technique of using the ratio of the energies across a broad spectrum can be

traced back to Hughes and Halle [1956], where the authors process speech with a

bandwidth up to 10 kHz; whereas Qi et al. [2004] sample the speech at 8 kHz,

which supports a bandwidth of only 4 kHz (Shannon [1949]). So what might be
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the optimal bandwidth for speech processing? The answer to this question at least

for the LogFBdynamic is just the maximum bandwidth available; and the reason for

this is that though transmission systems may require a reduction in speech

bandwidth to maximise communication channel throughput (presumably as with

Qi et al.), the discarded high frequency content contains useful information (as

shown by Hughes and Halle). So there is an advantage in using high bandwidth

speech when it is available, and when there is no penalty in so doing.

The parameters used by Qi et al., are those defined in the Recommendations in

G.729 [2012] on “Transmission Systems and Media, Digital Systems and

Networks” and 729E Annex B describes the recommendations for a Voice

Activity Detection System (VAD) which with the specified 8 kHz sampling rate

supports a maximum audio frequency of 4 kHz. G.729 [2012] specifies four

‘difference parameters’ which quantify the differences between adjacent short term

frames (10ms), and four ‘differential parameters’ which quantify the difference

between each parameter and its long term average. The difference parameters

include, the full band energy, the low band energy, the line-spectral frequencies

and the zero crossing rate. The differential parameters include the full band

energy, the low band energy, and the zero crossing rate, plus the spectral

distortion. With these parameters, Qi et al. achieved a voiced-unvoiced Vs silence

classification accuracy of 94.6%, and a voiced Vs unvoiced classification accuracy

of 98.2%. These results — obtained with manually labelled training data — are for

the Chinese Language and for bandwidth limited speech, and so are not entirely

comparable with those of Section 5 herein. Qi et al., having chosen a Support

Vector Machine as their pattern matching engine went on to identify potential

disadvantages with the ‘traditional’ neural network, and though they also provided

an empirical comparison of the SVM with the neural network, it cannot be

ascertained from their work whether the SVM provided a performance advantage.

Others though, have compared different pattern matching techniques for various

purposes. Manchanda et al. [2007] evaluated various pattern matching techniques

including Decision Trees, SVMs, Genetic Algorithms and Neural networks in the

context of data mining, and they found Random Forests to be marginally more

accurate than Multilayer Perceptrons (ANNs), and both of these to be more
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accurate than SVMs. Caruana and Niculescu-Mizil [2006] in a comparison of

learning algorithms, found both Random Forests and SVMs to be marginally more

accurate than ANNs; and Elizalde and Friedland [2013] in a comparison of three

audio speech detectors specifically for speech segmentation that were based upon

Gaussian Mixture Models (GMMs), the Support Vector Machine (SVM) and the

Artificial Neural Network (ANN), report that the ANN variant was faster and

more accurate than both the GMM and SVM variants.

Brognaux and Drugman [2016] used Voice Activity Detection to determine the

location of silence pauses with the aim of improving the silence ‘model’ used in a

Forced Alignment, and with this method they increased the accuracy of a system

purposed at determining phoneme boundaries. The VAD method used by

Brognaux and Drugman was based upon work by Sohn et al. [1999]. It is

interesting to observe that Brognaux and Drugman selected a Voice Activity

Detector that was developed around 16 years earlier; though why they chose this

particular VAD, is not stated. This work is of interest because it questions the

‘received wisdom’ that the problem of the segmentation of speech at word

boundaries has been solved with the technique of forced alignment. Rather the

accuracy of an HMM forced alignment can be improved if the algorithm is primed

with an accurate model of the silence; and to achieve that, the location and

duration of silence pauses must be known in advance.

The work of Sohn et al. [1999] also features in a comparison of three VAD

systems. The performance of VAD, is often evaluated using specific noise

categories, such as in-factory or in-car noise, white noise and babble noise. This is

because VAD is often used in real-time applications such as silence suppression for

speech communication from uncontrolled acoustic environments, where the three

noise categories may routinely be encountered. Using this evaluation technique,

and in a comparison of their own work on Voice Activity Detection, with two other

VAD systems, by You et al. [2012], and Sohn et al. [1999], Teng and Jia [2012]

found that for in-factory and white noise the performance of their system

expressed as a ratio of
P(detection)

P(falsealarm)
is greater than that achieved by both You et al.
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[2012] and Sohn et al. [1999], whereas for babble noise they found the converse to

be true. Brognaux and Drugman did not cite Teng and Jia’s evaluation of the

work of Sohn et al., but from the Receiver Operating Characteristics (ROC) — a

plot of Detection Probability Vs False Alarm Probability, published by Teng and

Jia, it would seem that for Babble Noise — which is probably the most applicable

noise category for Brognaux and Drugman’s work, the VAD design by Sohn et al.

is the better choice.

In an earlier work by Beritelli et al. [2002], the authors found that the

performance of the VADs degraded with increase of noise in the speech signal, and

were sensitive to the language spoken (for Italian, French, English and German).

This sensitivity to the magnitude and type of noise, and language, is an illustration

of the intrinsic difficulties of VAD; but VAD, Brognaux and Drugman’s atypical

use notwithstanding, is purposed towards real time communications and is subject

to different constraints. For example, in the evaluation of VAD by noise injection

of babble, white, and in-car/in-factory noise there is no specific accommodation of

transient noise, which is a real issue when processing pre-recorded speech.

In the work by Deekshitha et al. [2015] on speech segmentation, the authors

used short term energy, voicing information, most dominant frequency, and a

spectral flatness measure, as the input to a supervised Artificial Neural Network

(ANN) Classifier, and they achieved an average accuracy of 88%. In their aim of

segmenting the speech into broad phonetic classes, whist using an MFCC based

HMM model of the Malayalam language, they found an improvement in

classification for 5 of the broad phonetic classes. Deekshitha et al. used 75% of the

available data for training of the neural network, with the remaining 25% used for

testing. They state that it is not possible to differentiate between silence and

unvoiced speech, based upon the energy in the waveform — an assertion that is

worthy of further investigation.
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As well as silence pauses, speech can also include short periods of silence

associated with stops and unvoiced speech; i.e. silences that are not consciously

perceived by the listener. Such silences in speech can be painstakingly identified in

the speech waveform — but this places a limit on the quantity of speech that can

be investigated. Ananthapadmanabha et al. [2014] describe the stop as being a

silence or a, “Low level acoustic signal” followed by a, “burst or transient”. The

question is, can this silence or near silence be automatically detected, bearing in

mind that the silence associated with stops can be short — of the order of a few

milliseconds only.

For voiced/unvoiced/silence classification Qi and Hunt [1993] used a set of 13

cepstral coefficients (derived from 12 LPCs and the energy prediction error), the

zero crossing rate and a function of RMS energy as the input to an ANN

Voiced-Unvoiced-Silence classifier. With a signal to noise ratio of 30dB, Qi and

Hunt achieved a classification accuracy of between 90 and 95%. Interestingly they

compared the classification performance for just the 13 cepstral coefficients with

the cepstral coefficients plus the zero crossing rate and energy function and found

the latter two parameters made a significant contribution — particularly at lower

signal to noise ratios, to classification accuracy. This result corroborates earlier

results by Sarma and Venugopal [1978]), and also supports the view of Johnson

[2012] on the limitations of the LPC speech model.

Working with Neural Networks for speech endpoint detection, and with a

parameter set based upon the parameters defined by Rabiner and Sambur [1975],

Hussain et al. [2000] investigated two ANN topologies. They found that the

performance of a Multi-Layer Perceptron (MLP) network to be, “Slightly more

accurate” than an ADALINE (Adaptive Linear) network, in that the ADALINE

network showed a trend towards early endpoint detection. The authors state that

this was because the ADALINE network — a linear classifier — classified unvoiced

speech as noise. This is an encouraging result because it shows that the classes of

speech and silence are not entirely linearly separable, and that the MLP — a

non-linear classifier — does provide a better separation of the classes. Hussain

et al. [2000] also compared the performance of both networks with the classifier

defined by Rabiner and Sambur [1975], and found that the latter’s classifier was
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better at identifying speech endpoints; although for the endpoints detected, that

the MLP provided the most accurate estimation of location. They concluded their

work with the cautionary note that, “In short, further research should be

performed to improve and adopt the MLP technique for endpoint detection” (sic).

Toledano [2000], improved the identification of speech/silence boundaries for the

automatic segmentation of speech by replacing the fuzzy logic in his existing HMM

ASR fuzzy logic system with a 3 layer ANN and found an improvement in

performance. The speech model used by Toledano comprised parameters, based

upon mean energy, zero-crossing rate and mean frequency in two windows either

side of the point under consideration, and the differences between each of these

features in the two windows, and correlations between the two windows including

the mean spectrogram and the energy contour, plus the results of dip-detection on

the mean spectrogram. The model also included deltas between the point under

consideration and the adjacent time marks from the HMM ASR process. Although

the ANN based system performed better than the fuzzy logic system, the author

concluded that more work was needed; and noted that the test corpora was limited

to a single speaker. This work mostly confirms that for this case at least, a

multi-layer perceptron Artificial Neural Network is a better and more manageable

non-linear classifier than the fuzzy-logic system it replaced.

The work of Oprea and Şchiopu [2012], Palaz et al. [2015], and Wei and Yanpu

[2005], though not directly concerned with silence recognition in speech, is of

interest:-

For an isolated word recognition system, Oprea and Şchiopu [2012] adopted a

speech model based upon the Linear Prediction Cepstrum, and report a word

recognition rate of between 61% and 76% for Female Speakers, and between 53%

and 74% for Male Speakers. The authors do not address the question of why the

system performance is better for female speakers. The word recognition rates serve

only to provide a further indication of the limitations of the LPC model.
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In a departure from the techniques so far described, Palaz et al. [2015] used raw

speech as the input to a convolutional neural network (as described by LeCun and

Bengio [1995]) for learning linearly separable features for ASR, and report that

their system yielded, “similar or better performance” than Multi Layer Perceptron

(MLP) Systems using cepstral based features. This is of interest because it

illustrates that it is no longer necessary to work with reductionist models — such

as the MFCC model — when processing speech. That said, raw speech might not

be the optimal input because if the effects of masking are not taken into account,

then the raw data must include redundant information. (The inevitable conclusion

of this line of reasoning is that when the purpose is the identification of silence in

speech, the input to the ANN should be in accord with the psychoacoustics model

of speech.)

Wei and Yanpu [2005] used instantaneous spectral components with the greatest

signal to noise ratio for speech enhancement; although they took no cognizance of

masking or Bark bands. They found that by dynamically adjusting the

speech/silence threshold, and reconstructing the speech from those harmonics

above the threshold that the resulting speech was objectively and subjectively of,

“Surprising quality”. This work leverages to an extent upon work by Boll [1979] on

noise suppression in speech by harmonic subtraction. Boll dynamically obtained

the spectrum of the noise during periods of ‘silence’, and subtracted this from the

following speech — presuming that the noise during silence is additive noise which

is also present in the speech. With normal speech recordings the noise is

unpredictable and so Boll’s method may have only limited success; but the test

environment used by Boll included the noise of a helicopter — a periodic

non-sinusoidal noise that is particularly suitable for both Fourier analysis and the

spectral component selection method. Of particular interest here are the

techniques of spectral subtraction and waveform reconstruction.
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3.3 Psychoacoustics Models of Speech

From a mechanistic viewpoint, the production of speech is very well understood

and the operation of the human hearing transducer — the cochlea — is also to

some extent understood. What is not understood is how we process the acoustic

wave-front that we perceive as speech.

‘Fechner’s Law’ (Gustav Theodor Fechner 1801-1887) states that the perceived

effect is proportional to the logarithm of the physical stimulus; but Scheerer [1987]

in an introduction to Fechner’s work writes that Fechner, a psychologist, actually

limited the scope of the law to the mind-brain relation. Whatever Fechner meant,

Fletcher and Munson [1933], later confirmed that the human response to changes

in sound magnitude is approximately logarithmic; and Stevens et al. [1937] and

later Stevens and Volkmann [1940] in deriving the ‘Mel’ scale, found that the

human response to changes in frequency becomes increasingly logarithmic as the

frequency increases (Figure 3.1).

The Mel Auditory Scale: Stevens and Volkmann [1940] empirically derived the

Mel scale as follows. A ‘keyboard’ was set up, which enabled five frequencies

comprising fixed upper and fixed lower frequencies, two variable intermediate

frequencies, and a variable centre frequency; and the test subjects were then tasked

with adjusting separately the three variable frequencies using pitch bisections.

Firstly they were to adjust the centre frequency until they perceived it to be

midway between the fixed upper and fixed lower frequencies; and then they were

to repeat the process for both the intermediate frequency between the fixed upper

and the centre frequency and for the intermediate frequency between the fixed

lower and the centre frequency. With this method Stevens and Volkmann were

able to establish an approximation of the ‘law’ which relates perceived changes in

pitch, to actual changes in frequency. The authors arbitrarily set the datum that

1,000 Mel should equal 1,000 Hz, and thereafter the application of the law — later

to be expressed as a simple equation — resulted in the auditory Mel scale.
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Figure 3.1: Mel versus Frequency

An approximation of the relationship between Mel and Frequency graphed using Equ. (8.4) — Stern and
Morgan [2013]; attributed by Stern and Morgan to O’Shaughnessy [1999]. This graph is similar to Figure
2 — Stevens and Volkmann [1940]; which supersedes Stevens et al. [1937].

Figure 3.2: Bark versus Frequency

An approximation of the relationship between Bark and Frequency graphed from Equ. 6 — Traunmüller
[1990].

Figure 3.3: ERB Rate versus Frequency

An approximation of the relationship between ERB and Frequency graphed from Equ. (8.5) — Stern and
Morgan [2013]. The graph is similar to Figure 2 — Moore and Glasberg [1983].
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Critical Bands and the Bark Auditory Scale: Zwicker et al. [1957], with the aim

establishing that the loudness within a critical band is constant and independent

of the spacing of the tones, but increases when the spread of frequencies exceeds a

critical value, derived the following experiment. Four tones of equal intensity were

mixed, and the resulting ‘complex’ signal was played alternately with a pure tone

to the test subject. The duration of each of the test signals was about 1 second,

and they were separated in time by about half a second. The test Subject was

required to adjust the loudness level of the complex signal until it was perceived as

being equal to the loudness level of the pure tone; and finally the Subject was to

refine the accuracy of their adjustment by increasing and decreasing the loudness

of the complex signal about their best adjustment so far, to obtain their final

adjustment. Thereafter the test was repeated, but this time it was the loudness of

the pure tone that was varied. The authors repeated their procedure with different

frequency spacings of the tones which constituted the complex signal, about centre

frequencies of 500 Hz, 1kHz and 2kHz. The results obtained by Zwicker et al.

confirmed their hypothesis. In the same work Zwicker et al. related the work of

Fletcher [1940] who sought to determine ‘position coordinates’ on the basilar

membrane — that part of the ear which effects the spectrum analysis — to their

own work and that of three other researchers. On the subject of masking and the

critical band, Fletcher wrote,

“For this type of noise the critical band width in cycles is

numerically equal to the ratio of the intensity of the tone

masked to the average intensity per cycle of the noise

producing the masking. Regardless of where the band is

located we will see later that these critical widths always

correspond to a single element of length on the basilar

membrane, namely 1
2

mm”.

Zwicker et al. argued that the critical band defined by Fletcher is approximately

proportional to the four sets of results achieved by different researchers using

different techniques which involved Thresholds, Masking, Phase and — for their

own experiment described above — Loudness Summation. The authors used the

phrase ‘approximately proportional’ because the critical bandwidth derived in the

four experiments is about 2.5 times the width of the critical bandwidth derived,
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“From the assumptions made by Fletcher”. Assuming a notional length of the

basilar membrane of around 32 mm or so (Koch et al. [2017]), then this suggests

the number of critical bands is equal to 32.0
0.5×2.5

= 25.6 critical bands. That is, the

typical length of the basilar membrane divided by the product of Fletcher’s critical

bandwidth and Zwicker’s constant of proportionality. It must be observed that

Rask-Andersen et al. [2012] citing Hardy [1938] states that the organ of corti

length (and hence the basilar membrane) can vary by as much as 10 mm (also

Koch et al. [2017]); and according to Miller [2007], “there may be a small difference

in the lengths of male and female human cochleas even though statistical analyses

of the data are not decisive”. What is important here is not the length of the

typical basilar membrane or the absolute value of the constant of proportionality,

but that the proportionality exists. Zwicker et al. also observed from their results

and the results of the three other experiments that the critical band seemed to be

similar to other auditory measures such as the Mel scale insofar as the number of

Mels in the critical band is constant over most of the audible frequency range, and

discussed the possibility that both equal Mel frequency intervals and critical bands

may correspond to equal distance along the basilar membrane (the concept of

critical bands having equal distances along the basilar membrane as expressed

earlier by Fletcher). Zwicker [1961] then proposed the Bark scale as a useful

subdivision of the audible frequency range into critical bands as an approximation

of the manner in which the ear seems to carry out the subdivision process.

Although the Mel and Bark scales were derived by different empirical processes:

they have a similar characteristic ( see Figures 3.1 and 3.2 ). The experiments on

deriving the Bark scale are of particular relevance because of the implicit

description of masking and the ‘Critical Band’.

Equivalent Rectangular Bandwidth Moore and Glasberg [1983] discuss

experiments which culminate in yet another auditory scale, the Equivalent

Rectangular Bandwidth (ERB) Scale, which is an approximation of the auditory

filter, where the filters are approximated by rectangular passband filters. Figure

3.3 shows that the ERB scale has a similar characteristic to the Mel and the Bark

scales, except that the filter bandwidth continues to decrease as the frequency at

the centre of the ERB decreases below 500 Hz.

53



In summary, Zwicker et al. [1957] amongst others showed critical bandwidth to

be a function of frequency (at higher frequencies the critical bandwidth is greater),

and tabulated a non-overlapping fixed arrangement of ‘Bark bands’ which for

frequencies below approximately 500Hz to 1kHz are spaced at linear intervals and

for frequencies above this range at logarithmic frequency intervals (see Figure 3.2

and Appendix A — Bark Band Ada Specification). Zwicker [1961] wrote that the

critical bands are not fixed on the frequency scale, and also of a close correlation of

the bands with the mechanical structure of the cochlea. An analogy for this is

given by Scharf [1970], who describes a set of band-pass filters with variable centre

frequencies. Scharf, citing von Békésy [1970] goes on to speculate on whether

Lateral Inhibition (see Figure 3.4) is involved in the mechanisms of critical bands,

and suggests other processes may be involved.

Lateral Inhibition (Figure 3.4) is described by von Békésy [1970] in terms of

reaction to stimulus on the surface of the skin, where a point of stimulus (A in

Figure 3.4) causes a ring of inhibition to other stimulus around that point; but if

two stimuli are close together they will reinforce each other (if the stimuli are

inside the ring of inhibition). Von Békésy’s key points are that this results in

heightened sensation at the stimulus point, and that with multiple simultaneous

stimuli, the pattern of sensation may be different to the pattern of the stimuli.

Von Békésy also pointed out that the mechanics of the cochlea are complicated,

and this implies that the lateral inhibition model — though useful for Von

Békésy’s purpose of making an enlarged mechanical model of the cochlea using the

response of the surface of the skin to stimuli — is not an adequate psychoacoustics

model. That said, it is interesting that the idea of lateral inhibition in some form

or other can be used to describe operational modalities of speech, vision, and touch

(von Békésy [1970]).

The ‘Mexican Hat’ filter : In Figure 3.4 it will be seen that if the peak at A

is considered to be the centre frequency of a filter, with increasing frequency on

the x axis to the right of A and decreasing frequency on the x-axis to the left of A,
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then this describes the ‘Mexican Hat’ filter. Park and Lee [2003] used this filter

shape in preference to the triangular filters shown in Figure 3.5 to include Lateral

Inhibition in their filter-bank.

Figure 3.4: Lateral Inhibition and the ‘Mexican Hat’ Filter

This illustration is based upon Figure 19 (Page 325), of von Békésy [1970].
The Mexican Hat takes mathematical form as a type of Wavelet; specifically, the second derivative of a
Gaussian (Addison [2002]). The curve above was constructed using the formula for the Mexican Hat
Wavelet given on page 7 of Addison [2002].

The Cochlea Amplifier : Though evidence suggests that the processing of

sounds in the brain is tonotopic — where ascending bands of frequencies are

seemingly processed in adjacent locations in the brain (Moerel et al. [2012],

Langers et al. [2014], Langers [2014]), there seems to be no physiological evidence

of the Bark bands in the cochlea or neurological arrangement of the ear. That

said, it is generally accepted that the ear boosts the most powerful harmonics in

the spectrum though the mechanisms or processes for this are not understood

(Davis [1983], Ashmore and Kolston [1994], Rask-Andersen et al. [2012],

Fridberger et al. [2006], Dong and Olson [2013]).

Davis [1983] describes a model of cochlea mechanics, but states that the

mechanism for cochlea amplification is not understood. Ashmore and Kolston
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[1994] discusses how the motion of the basilar membrane (Crouch [1981]) is not

that which might be expected from a passive structure, and that the outer hair

cells in the organ of Corti (Crouch [1981], Rask-Andersen et al. [2012]) include

motor cells which can rapidly generate forces. Fridberger et al. [2006] discusses

how the sensitivity to sound can be increased by “1,000–fold” (sic) by the outer

hair cells, and Dong and Olson [2013] state that, “The cochlear amplifier has

inspired scientists since its discovery in the 1970s, and is still not well understood.”

Accepting then the reality of cochlea amplification and critical bands, the

amplification of the most powerful harmonic within each critical band must

coincide with the masking (both simultaneous and temporal) of other nearby

harmonics. The conventional log filter-bank does not emulate this functionality, yet

by using the most powerful harmonic in each of the critical bands, rather than the

notional centre Bark frequency, an improved (psychoacoustics) model of speech will

result - which will manifest itself in an acceptable speaker specific speech model.

The cochlea is the acoustic to neurological transducer and even though a wide

variation exists in shape and dimensions (Rask-Andersen et al. [2012]), each

cochlea is constant in its functionality (Fletcher [1940]). That the processing of

sound in the brain may be tonotopic Moerel et al. [2012] Langers et al. [2014]

Langers [2014] is suggestive that connections between the cochlea and the brain

might also be grouped into frequency bands; and if the positive feedback

mechanism does exist (Dong and Olson [2013]) then perhaps the masking is a side

effect of the feedback mechanism. That said, it is not obvious from the tonotopic

activity maps of the brain that the tonotopic relationship exists to the granularity

of the Bark bands. Nor is there evidence in the literature on the exact mechanisms

of cochlea amplification, which is not fully understood (Dong and Olson [2013]), or

of any neurological correlation between the cochlea and the Bark Band frequencies.

So, although there is no proof of a correlation between the tonotopic processing of

sound in the brain and the Bark acoustic scale, there is the suggestion that

assuming just such a correlation is not unreasonable; and it may be appropriate to

ask whether a model which conforms to the Bark scale and comprises the
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minimum number of critical bands, with dynamic masking arranged around the

most powerful harmonic in each band, and with the filter bandwidth limited to the

upper and lower cut-off frequencies in each band, can provide an accurate

representation of speech.

The Mel Frequency Cepstral Coefficients Model of Speech : Some of

the psychoacoustics effects previously described were incorporated into mainstream

ASR, following the work of Davis and Mermelstein [1980]. Building upon earlier

work by White and Neely [1976], Davis and Mermelstein devised the ‘Mel

Frequency Cepstral Coefficients’ (MFCC) speech representation which

incorporated log magnitudes and the log filter-bank (see Table 3.1 & Figure 3.5)

— both important characteristics of human hearing; thus providing an improved

model of speech. The MFCCs model was static with fixed log filter-bank centre

frequencies, presumably to facilitate generic speech templates, and accordingly

could not include dynamic masking. According to Jurafsky and Martin [2009] the

MFCCs separate the source from the filter. That is to say the shape of the vocal

tract — the filter, is considered to be more important for distinguishing between

different phones (phone: a single speech sound — Chambers [1999]) than

information about the glottal source (F0 for example); and this separation is

achieved by using only the first 12 Cepstral values. The Cepstral values are more a

model of speech production, than of speech perception, and it is necessary to add

the energy coefficient, to exploit the correlation between the energy and the phone

— for example voiced speech often has more energy than unvoiced speech. The

MFCC model is completed by adding the velocities and the accelerations for each

of the 13 features; thereby resulting in an MFCC model with 39 features.
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Column A tabulates equal Mel frequency intervals which are converted to Hertz in Column E using the
equation for Figure 3.1. Each set of three adjacent frequencies in Column E provides the lower cut-off, the
centre, and the upper cut-off frequencies for one of the 18 overlapping passband filters shown in Figure 3.5.

Table 3.1: Mel to Hertz Conversion.

Davis and Mermelstein [1980] limited the bandwidth of the speech in their

experiments by using a low pass filter at 5 kHz and a sampling rate of 10,000

samples per second, and when contrasting the MFCC representation with other

representations wrote,

“Specifically, MFCC allow better suppression of insignificant

spectral variation in the higher bands”. — Davis and

Mermelstein [1980]

The decision to limit the audio bandwidth during their experiments to 5

kHz—without pre-emphasis is interesting. White and Neely [1976] in their earlier

version of the filter-bank used 20 bandpass filters which in total spanned a

bandwidth of 100 Hz to 10 kHz; and it is known (Hughes and Halle [1956] and

others) that fricative consonants in normal speech have significant energy levels at
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Figure 3.5: The Filter-Bank (Frequencies in Hertz)

The Filter-Bank with 18 separate overlapping filters spanning a frequency range up to a maximum
frequency of 4,932 Hz. This is plotted from the frequencies calculated in Table 3.1 and shows less filters,
but in other respects is similar to Fig 1: “Filters for generating Mel-frequency cepstrum coefficients”
(Davis and Mermelstein [1980]).
In operation, the magnitude harmonics for the complete audio spectrum (as generated using the DFT) are
scaled by each of the triangular filter shown — resulting in 18 overlapping bands of scaled harmonics.

linear frequencies up to and beyond 8 kHz — that is up to and beyond Bark band

22.

Davis and Mermelstein also experimented with stepping their analysis frame of

25.6ms duration, by either 6.4ms or 12.8ms; and found the speech recognition rate

improved by an average of 1.7% with the shorter step.

Around the time Davis and Mermelstein published their work, Schroeder et al.

[1979] and Krasner [1980] published work which described how the speech

waveform includes more information than we perceive (because of auditory

masking); Krasner [1980] seeking to reduce the bit-rate necessary for the

transmission of speech of a given quality, and Schroeder et al. [1979] seeking to

make the encoding noise (quantisation noise) imperceptible for higher bit-rates,

and to reduce the encoding noise at lower bit-rates. A later encoding system which

removes information from the encoded audio which, because of the masking effect,

would not be perceived by the majority of listeners, is the MP3 Audio Lossy

Encoder (MP3-Standard [1995], Brandenburg [1999]).
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It is worth pausing to consider the accuracy of the Mel and Bark scales and the

MFCC model of speech representation. Stevens [1957] in an evaluation of

hysteresis in pitch (perceived frequency) — which is where the same pitch is

perceived to be higher for ascending equal pitch intervals, and lower for descending

equal pitch intervals — wrote, “All in all then, the evidence for hysteresis

in pitch bisections is ambiguous”. Greenwood [1997], in a re-evaluation of his

earlier work on hysteresis for S.S. Stevens suggests that the evidence was not

ambiguous; and more, stated that the Mel scale did not coincide with equal

distances on the cochlea whereas the ascending and descending measures did.

Greenwood’s view was supported by Thompson et al. [2012]. They not only

confirmed hysteresis, they also found that other effects contributed to the level of

hysteresis such as the size of the interval (e.g. 7 semitones versus 6 semitones), and

whether the tone increased or decreased in intensity across the two pitches.

Greenwood and later Thompson et al., showed that the Mel frequency scale is too

simple to represent the response of the ear.

Rudnicki et al. [2015] compared three more-contemporary models together with

the MFCC speech model in a Hidden Markov Model (HMM) Automatic Speech

Recognition (ASR) engine and found that two of the three models outperformed

the MFCC model (all at around 75 % recognition) by one or two percent.

Park and Lee [2003] described a log filter-bank model which accommodated both

simultaneous and temporal forward masking in the critical bands; and found the

performance to be better than that of the conventional MFCC filter-bank;

particularly under noisy conditions. To implement simultaneous masking, Park

and Lee used a ‘Mexican Hat’ convolution filter (See Figure 3.4) to reinforce the

dominant signal harmonics and to suppress the adjacent harmonics. Park and Lee

[2003] did not include in their schema dynamic tracking of the most powerful

harmonic in each of the critical bands. They found that simultaneous masking was

more effective in reducing classification errors, than temporal masking. (Johnson

[2012] writes on forward temporal masking that the effect is of little significance at

the sound pressure levels which occur in normal speech, and that the effect lasts

only of the order of 25ms or so; and comparatively, that backward temporal

masking is of even less significance .) Dai and Soon [2013] also used the ‘Mexican
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Hat’ filter — in this case a piecewise linear approximation — to integrate lateral

inhibition into an MFCC feature extraction front-end. They also integrated

temporal spectral averaging, forward masking and cepstral mean normalisation

into their model. Dai and Soon [2013] conclude that their algorithm improves the

speech recognition of an HMM system under noisy conditions.

Zhu and 0’Shaughnessy [2004] whilst seeking to improve the MFCC model for

ASR introduced an emulation of simultaneous dynamic masking by pre-processing

the frequency spectrum, before calculating the MFCCs. The authors selected a

triangular filter about each harmonic and where the magnitude of adjacent

harmonics was found to be lower than the instantaneous magnitude indicated by

the triangular filter then those harmonics were suppressed. For their masking

model, Zhu and O’Shaughnessy empirically derived the optimal upper and lower

slopes for the filter, and also experimented using a logarithmic asymmetrical

frequency representation of masking (using interpolation based upon 23 Mel Scale

triangular filters). The authors found that the latter of these two models provided

the greater improvement.

Montalvão and Araujo [2012] also introduced dynamic masking into an MFCC

model for speaker verification, describing their implementation, “as a sliding

window (instead of fixed windows) from which energy peaks are taken, and all

remaining spectral energy is discarded (masked) for each position of the sliding

window”. In a comparison of this system with their baseline MFCC model which

did not include the masking technique, the authors found that under strong noise

conditions, a performance improvement was obtained.

The Filter-bank and Deep Neural Networks : It is interesting to consider

the contribution to the log filter-bank debate from contemporary works on ANN

ASR. Xiong et al. [2016] use a mel filter-bank comprising 40 filters. Unfortunately

the authors do not provide a rationale for this choice, but does their choice imply

that the MFCCs 39 feature speech model is either inadequate, or unsuitable for

use with Deep Neural Networks? Contrast the work of Xiong et al. [2016] with

that of Sainath et al. [2015] who also used a log filter-bank comprising 40 filters for

comparative purposes, though they contend that for lower Word Error Rate
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(WER) when using statistical modelling, that the log filter-bank is not,

“guaranteed” to be the best option; and they suggest that using the raw speech

might be the better choice for ASR. The first of these papers described activities

to optimise a speech recognition system that used convolutional and recursive

neural networks; and the second described a speech recognition system that

learned from raw speech, and which used Convolutional Long Short-term Memory

Deep Neural Networks (CLDNN). As both of these papers were published by

companies, it is not known whether they were subjected to independent scrutiny.

Even so, that separate organisations use a similar log filter-bank arrangement

when working with Neural Networks is indicative of the current trend; which is one

of incorporating more of the detail of speech into the model.

3.4 Summary

Work in the field of psychoacoustics (summarised in Fastl and Zwicker [2007])

led to the development of the Mel Frequency Cepstral Coefficients (MFCC) speech

model (Davis and Mermelstein [1980]), which encapsulated some of the modalities

of hearing. At the heart of the MFCC model is the conventional logarithmic

filter-bank which is a set of passband filters (Figure 3.5) that are spaced at equal

Mel intervals. Potential disadvantages with the log filter-bank are threefold: the

filters overlap, are of fixed frequency, and the filter arrangement is not necessarily

compliant with those observed in psychoacoustics experiments (Zwicker et al.

[1957]).

The results of research into the theory and practice of the encoding of speech

based upon the psychoacoustics model (Schroeder et al. [1979]) (Krasner [1980])

also emerged around the same date, when both Schroeder et al. and Krasner

employed dynamic masking to remove noise from the speech. Their models were

purposed to include only those parts of the speech we perceive; whereas Davis and

Mermelstein’s model was purposed towards a generic decoding of speech. Both of

these approaches were of importance: in the fields of MP3 Audio Compression

62



(MP3-Standard [1995]) and Automatic Speech Recognition respectively. A

comparison of the models of Schroeder et al. and Krasner with that of Davis and

Mermelstein showed that the former’s models — insofar as they were dynamic and

included masking — incorporated more of the modalities of perception than did

Davis and Mermelstein’s.

Though Park and Lee [2003] improved the MFCC model by introducing

enhanced masking, and both Zhu and 0’Shaughnessy [2004] and Montalvão and

Araujo [2012] further improved the model by introducing dynamic tracking of the

spectral peaks, and masking around those peaks; in recent times the MFCC model

for ASR has lost favour. For example, researchers such as Xiong et al. [2016] and

Sainath et al. [2015] are working with ASR which uses Deep Neural Networks,

where the input to the DNN is either the raw speech data, or speech data that is

filtered through a 40 element Mel filter-bank.

It is possible to conclude from the research that the difficulty in recognising

silence in speech is mostly with differentiating between unvoiced speech and the

noise during silence, that speech and silence are not linearly separable and that the

recognition of silence in speech is a pattern recognition problem. Often the noise

during silence is not predictable and is not Markovian in nature. So the pattern

recognition technique must recognise the characteristics of speech, and then

anything in the audio without these characteristics, inevitably must be silence.

It is self evident that a dynamic model of speech which tracks the spectral peaks

is necessary to implement simultaneous masking. The reality of masking is proven,

and it is fair to question whether dispensing with masking and working with the

raw waveform is the best approach; as implicit in that approach is that there is

more valid information carried in the speech than we can perceive.

From the narrative in this review, a strategy has evolved for applying

psychoacoustics to the problem of the detection of silence in speech. This strategy

is further defined in the next section, and experiments to test the hypotheses are

described.
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Chapter 4: Research Method

Audacity® [2014] Version 2.0.6 audio recording and editing, open-source

software was used to generate the waveforms and spectra for this work.

4.1 Overview

Subsidiary questions resulting from the literature review are:

1. What is the best parameter set for articulating the differences between

silence and speech?

2. What is the most suitable window type and duration for the Discrete Fourier

Analysis?

3. Is it feasible to accommodate the phase component of the DFT as well as the

magnitude component in the speech model?

4. Is it possible to differentiate between silence and unvoiced speech based upon

the energy in the waveform?

One can conclude from the research on sound perception that considerable

evidence exists that shows the effects of masking and the ‘existence’ of critical

bands (also see Appendix B: “An Experiment with Simultaneous Masking”); and

my contention is that the fidelity of the log filter-bank as a device to model speech,

can be significantly improved by:
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(a) Substituting each of the log filter-bank filter centre frequencies with the

dynamically derived most powerful harmonic for each of the Bark bands, and

with simultaneous masking arranged around these harmonics;

(b) Returning the filtered Bark bands to the time domain using waveform

reconstruction;

(c) Dividing this Bark Band representation of speech into time slices.

The advantages of this include:

1. The dynamic tracking of the most powerful harmonics together with the

simulated masking about these harmonics will result in an accurate speech

model.

2. As the model is entirely in the time domain, any relationship between the

Fourier Transform window duration and the model time-slice duration is

completely eliminated. Thus it is possible to select any time-slice duration

for the speech model.

3. As each band in the model is individually reconstructed, then the model

includes both magnitude and phase information.

To automate the detection of silence in speech my approach is to use a

Deterministic Silence/Speech Binary Classifier (DetermClassifier) to

achieve an initial categorisation of the audio, and then to repeat the classification

using a DNN Classifier that is trained from the output of the DetermClassifier.

Of the various non-linear pattern classifiers available, the DNN was chosen because

it most complies with the human interface paradigm which underpins this work.

That is, whereas the Support Vector Machine is a development of co-ordinate

geometry (Cortes and Vapnik [1995]) and the Random Forest a development of

binary trees (Ho [1995]), the DNN is a development of neuroscience (McCulloch

and Pitts [1990](reprinted from 1943), and Rosenblatt [1958]).
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4.2 Test-Cases

The experiments will involve a detailed examination of two modes of operation:

• DetermClassifier automated silence detection versus the ground-truth.

• DNN Classifier automated silence detection versus the ground-truth.

The chosen texts were all read aloud by the same male individual and recorded

in monaural in a home environment using the internal microphone of a DP004

digital recorder (Tascam™ [2017]). The recordings were in the ‘lossless’ WAVE

Format at 44100 samples per second (sps); so ensuring more than sufficient

bandwidth for speech reproduction. In fact with this format the noise bandwidth

considerably exceeds the signal bandwidth; and though this is not desirable, it is

acceptable in this case because the audio is subsequently filtered using the

techniques identified herein. Each of the test-cases was recorded in a single take.

That is, any sections of speech with errors were immediately repeated, and were

removed, post recording, with the Audacity® [2014] audio editor.

The signal to noise ratios for the recordings (Table 4.1) were obtained by

measuring the RMS magnitude of the noise during silence, and the RMS

magnitude of the signal during the speech for 45 contiguous seconds of the audio

commencing after the first minute — using the silence and speech segments

identified by the DetermClassifier — and applying the equation (Ivison [1978] pg

70) :

Noise(dB) = 20log10
RMS Speech
RMS Silence

The test-cases were all of about 12 minutes duration, and these were sectioned

into Training, Validate, and Test Data Sets (Table 4.2) to support Split Sample

Testing (Section 7.3.1 of Priddy and Keller [2005]). For each test-case the Training

Data Set was used only for supervised training, the Validate Data Set was used to

assess when training was complete (to prevent over-fitting); and the Test Data Set

was used to assess the quality of the trained DNN Classifier. Here results were

recorded for the Test Data Sets only; but in practice all of the original speech data
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— comprising the Training, Test and Validate Data Sets concatenated in the

correct order — may be processed by the trained neural net.

Test-Case Train S/N
Ratio

Validate
S/N Ratio

Test S/N
Ratio

Average
S/N Ratio

TC1 33.395 dB 32.18 dB 30.825 dB 32.133 dB
TC2 34.441 dB 31.4 dB 32.231 dB 32.691 dB
TC3 28.047 dB 29.042 dB 33.418 dB 30.169 dB
TC4 28.614 dB 30.823 dB 31.708 dB 30.224 dB
TC5 31.248 dB 35.372 dB 32.584 dB 33.068 dB
TC6 27.263 dB 32.762 dB 32.345 dB 30.790 dB

The signal to noise ratio was automatically calculated using the speech/silence classification data provided
by the DetermClassifier. Variation exists between the train, validate, and test data S/N ratios because the
data sets were processed separately by the DetermClassifier.

Table 4.1: Measured Signal to Noise Ratios for all Test-Cases

Test-Case Train Validate Test
TC1 Pt1–255.6 Pt3–325.47 Pt2–294.133
TC2 Pt2–262.741 Pt1–237.838 Pt3–259.488
TC3 Pt2–244.01 Pt3–227.373 Pt1–244.001
TC4 Pt1–255.646 Pt2–255.7 Pt3–240.764
TC5 Pt3–259.016 Pt2–244.336 Pt1–244.009
TC6 Pt3–262.582 Pt1–166.4 Pt2–243.501

The texts and the audio were divided into three approximately equal parts and then the parts were assigned
to be one of Training, Validate or Test data.
The number following the speech part identifier is the duration of that part in seconds. (The ordering of the
parts as training data, validation data and test data was varied to negate the effect of any systematic variation
in the speech as the recording progressed.)

Table 4.2: Partitioning of the Test-Cases into the Training, Validation and Test Data Sets

4.3 The Ground-Truth

The ground-truth — information obtained by direct observation that is used to

validate or confirm information that is obtained indirectly — that was used in the

evaluation of the temporal accuracy of both the DetermClassifier and the

DNN Classifier, was established as follows.
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Whilst listening to the test-cases, the locations of all perceived pauses were

marked in a copy of the text. Subsequently the pauses were located in the

waveforms, and from the waveforms the location of, and the duration for each of

the silence pauses was measured to a resolution of 1mS, and manually recorded.

The resultant datasets formed the ground-truth against which the computed

results were later to be assessed; and a short form of the ground-truth — the pause

counts for the six test-cases — is provided in Table 4.3, below.

The silence pauses, were found to be of two types: unfilled silence pauses with a

recognisable period of silence (whether contaminated with significant amounts of

noise, or not), and filled silence pauses with no recognisable period of silence.

According to Green [1988], filled pauses are , “Nonlinguistic vocalisations”, such as

uhm, ah and er; but perhaps this definition is too narrow, because a pause can be

suggested — and so perceived — simply by a change in speech cadence. For

example in the phrase, “There was no recognisable period of silence”, a pause can

be suggested just by dwelling on the vowel in ‘no’.

Table 4.3: Ground-Truth — Silence Pause Totals.

Assessment Method

For all tests, the computed silence pauses were inserted into the filtered speech

waveforms by overwriting the identified silence locations with true zero. Then the

accuracy of the resulting silence pause starts and ends were manually measured to

a granularity of 1ms, compared with the ground-truth, and the differences were

allocated to the appropriate error band; with each error band spanning 20ms.

This is a similar order of accuracy to that discussed in the work of Wesenick and

Kipp [1996], where the authors found for around three separate manual, broad

phonetic segmentations of 64 sentences by 10 speakers in the German Language,

that 96% were within 20ms, 99% within 32ms and 100% within 64ms.
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4.4 The Programming Language

The DetermClassifier, the LogFBdynamic Speech Model, plus the Control Program

for the outsourced ANN Software were all programmed in Ada using the GNAT

Programming Studio© (©AdaCore). Ada 95 was selected because the author of

this thesis has considerable experience of programming in Ada, and knows that

Ada 95 has excellent number-crunching and serial file I/O capabilities — both of

which are necessary to expedite this work. (An accessible introduction to Ada 95

is provided in Ben-Ari [1998]; and Ada 95 is defined by the Language Reference

Manual: ISO/IEC-8652:1995, which is available from several sources on the

Internet.)

Perhaps a criticism of the selection of Ada might be that it is not a particularly

popular language, and for the more popular languages there may exist a greater

variety of object libraries in the public domain. Another basis for criticism might

be that the specification for Ada 95 is, as the name suggests, over 22 years old.

The first of these points can be answered by recognising that a suitable ANN

library written in C/C++ is available, as are the required Ada bindings; and the

second by observing that Ada 95 is effectively a subset of Ada 2012. In fact, with a

simple compiler switch, the Ada 2012 compiler could have been selected at the

outset; but it would still remain the case that to implement the algorithms for this

work, only a subset of Ada 95 is required.

Ada is often the language of choice for real-time high-integrity and safety critical

embedded (cross-compiled) applications; but none of these attributes are

particularly useful for this work. However the underpinning of these features by

strict types, strong type checking and good programming practice ensures that

virtually all coding errors are detected at compile time; and run-time errors can be

virtually eliminated. Additionally exception handlers can be implemented within

the source code — a useful capability when handling file I/O. (It seems to the

author of this work that the separation of compilation errors and run-time errors is

a useful decomposition of the problem of debugging; but that is not a universal

view. In fact it is claimed on the website of one modern interpreted language, that
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the cycle of code/execute/debug is better.)

As implicitly suggested in the previous paragraphs, the choice of Ada as the

primary programming language contributed to the software verification philosophy.

Other than that the correct performance of the software system was verified using

closed loop testing; where at various stages audio files were reconstructed and

compared with the original recordings. For example, for the DetermClassifier voiced

and unvoiced speech files were built, and for the LogFBdynamic model speech files

were built for each of the Bark bands. The Filtered speech files (see Table 4.4)

although purposed to removing noise due to air turbulence around the microphone

and other low frequency noise, also served to verify correct operation of the DFT;

and the insertion of the silence detected by the two classifiers into the Filtered

speech files, in addition to providing a means for evaluating the performance of the

classifiers, also provided a final verification of correct system operation.

4.5 The DetermClassifier

For this work the three classification subsets of voiced speech, unvoiced speech

and silence are upheld.

• Voiced speech is that part of intelligible speech that is produced by the

vibration of the vocal chords (See Table 4.4).

• Unvoiced speech are those parts of intelligible speech that are not time

co-incident with the sound produced by vibration of the vocal chords. For

example, the unvoiced stops /p/, /t/ and /k/, the fricative /f/ and the

sibilant fricatives /s/ and /sh/ (See Table 4.4).

• Silence comprises all parts of the audio recording that do not contribute to

the intelligible speech. i.e. Silence is everything but vowels, semi-vowels and

consonants.
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4.5.1 Rationale

It may be thought that to distinguish silence from speech, it would only be

necessary to classify silence as being that part of the audio with an energy level

that is below some threshold. This is not the case because different recordings

with different background noise conditions would require different thresholds, and

bursts of noise, interference spikes and noisy releases would in any case inevitably

exceed the background noise threshold. However, even though not all speech is

linearly separable from silence, significant quantities of speech and silence can be

separated with a simple energy threshold; and the purpose of the DetermClassifier

is to automate the detection of the optimum silence/speech threshold — for any

given recording.

It is the nature of speech that the energy in the lower frequency voiced parts of

the speech may be several times greater than the energy of the higher frequency

unvoiced parts of the speech (Atal and Rabiner [1976]). Accordingly the signal to

noise ratio for the higher frequency components of the speech is significantly lower

than the overall signal to noise ratio and the situation is worsened for weakly

spoken consonants. So, the separation of the speech waveform into voiced and

unvoiced speech is a useful decomposition of the problem of deterministic

speech/silence classification, but according to Deekshitha et al. [2015] the

discrimination between unvoiced speech and silence is not possible. Taking Atal

and Rabiner’s view (and implicitly testing the observation by Deekshitha et al.),

the separation of the speech into voiced and unvoiced components can be achieved

using a standard filtering technique: the Discrete Fourier Series (Section 2.4.1

herein, and Section 12.2: of Ivison [1978]). The short term energy waveform can be

transformed into a harmonic series, harmonics deleted from the series as necessary,

and the remaining harmonics summed to reconstruct the now filtered waveform (a

method successfully used to subtract noise from speech by Boll [1979]). With this

arrangement the search for the optimum unvoiced-speech/silence threshold is not

influenced by the lower frequency voiced component of the speech and its

attendant noise, and the search for the optimum voiced-speech/silence threshold is

not influenced by the higher frequency unvoiced component of the speech and its
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attendant noise.

The advantage of using a deterministic system for locating silence in speech is

that the likelihood that identified silence pauses will exist will be very high; but a

disadvantage is that there is not likely to be sufficient information in the speech

waveform to sustain classification of all silence pauses. It is the purpose of the

DetermClassifier to provide an initial speech/silence binary classification of recorded

speech so that accurate training data can be prepared for the DNN Classifier. As

training data is always some subset of all of the data, it is not necessary that all

silences are identified; rather that those silences that are identified actually exist.

With a system which ultimately employs a fixed speech silence threshold

(however derived), inevitably the noise during silence will occasionally result in

periods during silence which are categorised as potential speech. If the short term

power for this potential speech is compared with the short term power of a known

segment of speech then the ratio of the two (Burileanu et al. [2000]) can be viewed

as a probability that the potential speech is speech; and if this is repeated for all

such potential speech bursts, an ordered table of probabilities can be built, and

some criteria can be adopted for deciding which are speech and which are silence.

4.5.2 Detailed Description

1. The speech waveform was filtered using the trigonometric Discrete Fourier

Transform and waveform reconstruction technique (see Section 2.4) with a

Rectangular Window of 30ms. This window was shuffled in 10ms steps

through the audio data, and the filtered speech waveforms were

reconstructed — using the 10ms of the data that was at the centre of the

window — by summing the harmonics (as listed in Table 4.4). The outcome

of this process was three audio data sets: Voiced, Unvoiced and Filtered.

The fundamental and first few harmonics were omitted from the

reconstructed Voiced and Filtered data sets; the intention being to remove

any non speech-sounds such as 50 or 60 Hz electrical supply noise (hum), and
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the noise of low frequency turbulence around the microphone. The lowest

fundamental frequency f0 for the Voiced and Filtered speech of 167.045 Hz,

is a little higher than the lowest voicing frequency of 124 Hz for men; as

found by Petersen and Barney [1952].

The selection for the ‘Silence Pause Duration: High Probability Pauses‘ was based upon work by
Goldman-Eisler [1961] and Green [1988], and for the ‘Silence Pause Duration: Other Pauses’ was
arbitrarily defined. The Fourier Window Duration was set to 30ms to provide an acceptably fine
granularity for the harmonics; and the harmonic ranges for the voiced and unvoiced data sets were
empirically chosen, by listening to reconstructed voiced and unvoiced speech for a variety of speakers.

Table 4.4: Constants For All Test-Cases

2. A preliminary value for the background noise threshold for the Voiced data

set was then automatically determined by shuffling through the data in steps

of 125ms, and recording as the threshold the maximum value of the n blocks

of 250ms of contiguous samples which had the lowest overall signal

magnitude—where n was the number of expected pauses as automatically

derived from the punctuation in the text.

3. This process was repeated for the Unvoiced data set and then the samples of

each data set were compared with their corresponding preliminary noise

thresholds as follows. For each data set, when the signal magnitude of the

average of 1ms of contiguous samples was below the threshold then that

block of samples was designated as potential silence; otherwise it was

designated as potential speech. This process resulted in boolean Is-Voiced

and Is-Unvoiced data sets.

4. Using logical ‘or’, the Is-Voiced and Is-Unvoiced data sets were combined and

this resulted in a preliminary Is-Speech/Is-Silence data set. The duration of

all silence-pauses identified in this set was measured, those greater than
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250ms were tagged as silence-pauses, and those greater than 125ms and less

than 250ms were individually allocated a probability—proportional to pause

duration—of being a silence-pause. (Goldman-Eisler [1961] defines the

minimum duration for a pause to be around 250ms, and tags pauses of

shorter duration than this as articulatory pauses, whereas Green [1988]

defines the durations of pauses due to cognitive processing (i.e. not

articulatory pauses) to be of the order of 250 to 300ms or more.)

5. Separately a data set which was the magnitude of segments of 10ms duration

of the Filtered speech data-set expressed as a probability of silence was

constructed; and when this data was combined with data derived in the

previous steps, the result was a list of potential pauses.

6. From this list of potential pauses a list of the locations of all possible clauses

was generated (‘clause’ is here used in the very limited sense of meaning a

contiguous block of speech with no internal pauses), and this was used to

gate the Filtered data set into a set of potential clauses. The maximum of

the short term (1
3
ms) magnitudes for each potential clause was calculated as

was the maximum of the short term magnitudes for all voiced clauses (the

clause prototype); and for each clause the ratio of these quantities (Burileanu

et al. [2000]) was expressed as a probability where 1.0 indicated the certainty

of speech.

7. A clause count as automatically obtained from the punctuation in the text

was compared with the clause count derived during the previous steps.

When the former was found to be greater than the latter, then the voiced

and unvoiced preliminary noise thresholds were proportionally scaled up, and

the automatic detection of potential clauses from the speech waveform was

repeated — until either the clause count automatically detected from the

speech waveform was found to be equal to or greater than the clause count

obtained from the text (Figure 4.1) — or a limit was reached. This limit, the

maximum value of the scaling multiplier, was empirically fixed at 9.0.

Multiplying the voiced and unvoiced preliminary noise thresholds by more

than 9.0 was found to result in erroneously high silence/speech thresholds.
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Figure 4.1: The Convergence of the Loop at Each Iteration.

8. The data set of probable clauses that was generated using the optimised

noise thresholds was iteratively scanned—at each iteration with an increased

probability threshold level; and for each threshold the clause count was

recorded as the number of clauses with a probability greater than the

threshold. When this data was plotted as a function of the incremental

threshold, a characteristic curve resulted (Figure 4.2). The separation

between the real clauses and the phony clauses could be identified from the

data set where both the greatest change in threshold resulted in no change to

the clause count, and the clause count was equal or near to the expected

number of clauses. A threshold level in this range was adopted, and all

potential clauses above this threshold were accepted as real clauses whereas

those below the threshold were categorised as silence.

9. An Audio file was created where the Filtered speech was modified by setting

all of the samples during the algorithmically determined silence pauses to

zero, then the temporal location of all of the pauses in the audio waveform

was measured to a resolution of 1ms, and finally this data was compared

with the location of the perceived pauses as defined in the ground-truth

(Section 4.3).
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Figure 4.2: Number Of Clauses as a Function of Pthreshold

4.6 The LogFBdynamic Speech Model

Appendix A provides relevant parts of the Bark Band Ada Specification.

4.6.1 Rationale

The question, “What is the best parameter set for articulating the differences

between silence and speech?” was posed following the literature review, and one

answer to this might be ‘a psychoacoustics model of speech’. This is because the

listener has no difficulty in discriminating between speech and often high levels of

background noise; and my aim is to mimic this human capability to an extent.

A second question was, “What is the most suitable window type and duration for

the Discrete Fourier Analysis?”. Because the quality of waveform reconstruction is

important in this work, a rectangular window, without pre-emphasis is particularly

suitable. Using pre-emphasis, and/or some variant of the Inverse Cosine window

such as the Hamming Window, would introduce distortion — and this to no

advantage. The second part of the question involved the resolution of the DFT
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and the consequent harmonic spacing, and a window with a duration of 30ms was

selected. The reason for this is the harmonics are spaced at 33.33rec Hz, and so

even the lowest frequency Bark band will have a span of three harmonics; thus

leaving scope for the selection of the most powerful harmonic in the band, thereby

facilitating masking.

A third question was, “Is it feasible to accommodate the phase component of the

DFT as well as the magnitude component in the speech model?”. The answer to

this is ‘yes’, and this will be achieved with the LogFBdynamic Model by creating a

set of audio files — one for each of the Bark bands, where each file is the

summation of the harmonics for that band — scaled according to the

simultaneous-masking regime.

A question so far not considered, is what might be the optimum duration for the

model slices? The LogFBdynamic speech model is built by slicing the set of Bark

band audio files into short equal slices and calculating the RMS magnitude for the

elements which constitute each slice. The model data, the result of this process, is

a set of 21 numbers. That is, one number per Bark band per slice (assuming that

Bark bands 1, 23 and 24 are omitted because they span frequencies that are not

within the spectrum of normal speech). As the model is in the time domain, it is

not constrained by DFT windowing; and a shorter time-slice than the ∼ 10ms

often selected for speech processing is feasible. So a duration for each slice of

∼ 1ms was chosen, because the greater temporal resolution would result in an

improved representation in the model of short term events — such as transient

noise. That said, it is still necessary to model the rate of change for the lower

frequencies. The lowest frequency in Bark band 2 is 133.33rec Hz (i.e. a period of

7.5ms); and to accommodate this, 6 terms comprising the energy of the

reconstructed waveform for the three 1ms slices before and the three 1ms slices

after the slice of interest are added to the 21 Bark band energies, resulting in a

model with 27 terms, a durational span of ∼ 7ms, and a fine resolution of ∼ 1ms.

With the duration of each of the consecutive segments of the speech model set

to 1ms, then this would limit the upper frequency limit of the model only insofar

as changes to the RMS energies in any of the Bark bands would be accessed at
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1ms intervals.

4.6.2 Detailed Description

Equation 4.1, and Figure 4.3-A illustrate the conventional scaling technique for

each of the triangular Bark band filters which constitute the Log Filter-bank

(Figure 3.5), and Equation 4.2 and Figure 4.3-B show the scaling technique for

each of the filters for the LogFBdynamic. The conventional auditory filter

arrangement (Figure 4.3-A) does not support dynamic tracking of the most

powerful harmonic in each of the Bark bands, nor does it implement any form of

simultaneous masking; whereas the filter arrangement of Figure 4.3-B — by

imposing a progressively increasing attenuation of the harmonics to and from the

most powerful harmonic in the Bark band — implements both dynamic tracking

and a form of simultaneous masking. Note that this method of implementing

masking is something of a simplification, because the masking effect has been

shown by Egan and Hake [1950], as being asymmetrical about the masker, masking

more of the lower frequencies for lower test signal levels and more of the higher

frequencies at higher test signal levels.

Yf =

Hp∑
n=PBFL

(
n− PBFL

Hp − PBFL
)LogXn +

PBFU∑
n=Hp

(1− n−Hp

PBFU −Hp

)LogXn (4.1)

Yf =

Hp∑
n=PBFL

(1− n− PBFL

Hp − PBFL
)LogXn +

PBFU∑
n=Hp

(
n−Hp

PBFU −Hp

)LogXn + LogXHp

(4.2)

In Equations 4.1 and 4.2, Yf is the energy in the band, Hp is either the most

powerful or the central harmonic of the passband filter PBF ; PBFL is the

passband lower harmonic limit, PBFU the upper harmonic limit and Xn is the

magnitude of the nth harmonic. (For waveform reconstruction, the Log operator is

replaced by 1.)
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Figure 4.3: Simultaneous Masking Strategy

A: The conventional auditory filter arrangement similar to that used for MFCCs (Figure 3.5).

B: An arrangement which imposes simultaneous masking. This arrangement has some similarities with
that used by Zhu and 0’Shaughnessy [2004], but differs in that the slopes of the filter used by Zhu and
O’Shaughnessy are the independent variables, whereas here the slopes of the filter are variables dependent
upon only the location of the centre (or most powerful) harmonic in each of the Bark bands, and the fixed
Band upper and lower cut-off frequencies.

One possible disadvantage with the regime of Figure 4.3-B is that whereas the

most powerful harmonic is depicted as being coincident with the central harmonic

of the Bark band, in fact — because of dynamic tracking — it may exist anywhere

within the band; and as the Bark lower and upper cut-off frequencies are fixed,

then the masking — as implemented using Equation 4.2 — will as a result often be

asymmetrical. Conversely, the advantage of the regime shown in Figure 4.3-B, is

that the Bark band upper and lower cut-off frequencies are fixed from the outset,

thereby eliminating the need for any ‘tuning’ of the cut-off frequencies. This

approach factors on the point made in Chapter 3:

“...And it may be appropriate to ask whether a model

which conforms to the Bark scale and comprises the minimum

number of critical bands, with dynamic masking arranged

around the most powerful harmonic in each band, and with
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the filter bandwidth limited to the upper and lower cut-off

frequencies in each band, can provide an accurate

representation of speech”

The LogFBdynamic Model is generated as follows:

1. The speech waveform is translated into the frequency domain using the

trigonometric discrete Fourier Transform.

2. The harmonics which constitute each of the Bark bands (See Appendix A)

are searched and the most powerful harmonic in each of the Bark bands is

identified.

3. The magnitude of the harmonics within each of the Bark bands are scaled

about the most powerful harmonic, and then summed (to implement

simultaneous masking) in accord with Equation 4.2.

4. The result of scaling and summing the harmonics for each of the Bark bands

is 24 audio files — one for each of the Bark bands; and the RMS magnitude

over 1ms is calculated and normalised to between 0.0, and 1.0, for each of

the bark bands. The result of this is an array of numbers 24 by the length of

the recording in milliseconds; corresponding to a model slice width of 1ms.

5. From the Filtered speech waveform, the RMS energies for the three 1ms

time-slices immediately before the slice of interest are calculated, as are the

RMS energies for the three 1ms time-slices immediately following the slice of

interest. These 6 dy
dt

terms are similarly normalised, and then concatenated

with the magnitudes for Bark bands 2 to 22, resulting in a speech model

with 27 terms.

The LogFBdynamic Model comprises data in the range of 0 to 215, which when

normalised to the range of 0.0 to 0.1 — as required for the ANN — necessitates a

resolution of 0.0000305176. When the finalised model data is stored (File Type B,
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Appendix D), each number is truncated by allocating 7 digits for the fractional

part.

Because silence magnitudes are near 0, then to the data elements (already

normalized to between 0 and 1.0), 0.5 is added to all values below 0.5, and 0.5 is

subtracted from all values above 0.5. This places the model data with most

relevance (silence), in the middle of the ANN dynamic range. This technique was

validated, where it was found that the DNN Classifier when trained with modified

data identified more silence than when trained with unmodified data; and further

that for two of three training cycles, the number of training epochs before

auto-termination at the onset of over-training was reduced.

4.7 ANN Training Data Selection

The ANN is trained using supervised training, where each training input must

have an associated fully specified output condition. So the training data must

comprise the model data plus a flag to indicate whether the ANN output for that

particular data instance is to be silence or speech. A list of the temporal locations

in the speech recordings of all of the detected silence pauses with a duration of

250ms or more, is output by the DetermClassifier, and this is used for the

generation of the silence/speech flags.

Figure 4.4 is a short section of the waveform for TC1, and shows the speech and

silence training data gating rules, where — for illustrative purposes only — the

location of the silence as detected by the DetermClassifier is represented as true

zero. The speech training data blocks have a duration of 500 ms, and the silence

training blocks a duration that is the lesser of the detected duration of the silence

pause or 500ms. The choice of two speech segments per silence segment is to

ensure that both the speech end-points and onsets are represented in the training

data, as these can have very different characteristics: speech onsets can be very

abrupt whereas for end-points, the speech often just dwindles away to nothing.
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Figure 4.4: Speech and Silence Training Data Gating Rules.

4.8 The DNN Classifier

This work was expedited by using the open source Fast Artificial Neural

Network (FANN) C library (© Nissen [2003] as released under the LGPL

License [Free Software Foundation, 1999],) , together with the FANNAda

Bindings (© Andreasen [2015]). For training, the FANN© C library was

configured to use its internal version of the Resilient Propagation (RPROP)

back-propagation algorithm (Reidmiller and Braun [1993]). The FANN© Library

was chosen because in addition to providing all of the ANN functionality required,

it is open source — and so may be modified — should that prove necessary.

To train and evaluate the ANN Classifier, the Split Sample Technique (Priddy

and Keller [2005] — Section 7.3.1) was adopted as follows. Each data set was split

into three sections, the training data set (TrnDS), the validation data set (ValDS),

and the test data set (TstDS). The ANN was then trained using the TrnDS, and

at intervals of 5 epochs was validated using the ValDS. If the reported Mean

Square Error (MSE) — a distance measure of the difference between the requested

result and the achieved result — was found to be lower than previous, then the

ANN was stored and the 5 epoch training cycle repeated; if the MSE from the

validation test was found to be increasing for two successive validation cycles, then
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that indicated the onset of over-fitting and the training was ended. Following

training the performance of the binary classifier was evaluated using the TstDS.

4.8.1 Configuration

The implication of the hypotheses (Section 1.4) is that the performance of the

systems described herein is more a function of the quality of the audio model and

the selection of the training data, than the configuration of the artificial neural

network; and the outcome of the exploratory work for the, ‘Experiments with MP3

Compressed Speech’ ( Appendix C), was that the performance of a three layer

MLP, with 27 Input Neurons, 54 Hidden Neurons and 1 Output Neuron, and with

a Sigmoid Activation, was sufficient to support the testing of the hypotheses.

Following the completion of the ‘Experiments with MP3 Compressed Speech’

(chronologically the first part of this work), and due to a growing awareness from

several sources, of the importance of the Deep Neural Network for ASR, the

decision was taken that various potential network configurations should be further

assessed to better inform the choice of final network configuration — before

commencing the experiments for the main body of this work.

There was no similar imperative to consider changing the sigmoid activation

function, the RPROP training algorithm, or the Train/Validate/Test technique;

plus the experience with ‘Experiments with MP3 Compressed Speech’ showed

these to be an excellent combination — and fit for purpose. When such a situation

obtains, where the potential for performance improvement is slight, it becomes

difficult to assess whether an alternative configuration would provide an improved

— or just a different — classification performance. For example, from the results

for the assessment of network topologies herein, it was possible to identify the

topology which resulted in the least accurate classification, but almost impossible

to identify the topology which provided the most accurate classification.
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The results of the assessment of various network configurations — using the

data set for TC1-N from the ‘Experiments with MP3 Compressed Speech’ and the

training data selection rules as shown in Figure C.1 — are shown in Table 4.5.

Table 4.5: The NN Classifier: Results of the Assessment of Potential Configurations

With the exception of Configuration 1 (1 hidden layer of 81 neurones), the

results for the various configurations were found to be generally satisfactory; and

Configuration 5 (2 hidden layers each of 27 neurones) was adopted for the work

herein, because the informal testing showed it to be marginally better than

Configuration 2 (1 hidden layer of 27 neurones), at cleanly identifying sibilants.

(Configuration 2 occasionally confused small sections of the sibilants — of the

order of a few milliseconds duration — with silence.)

Although the performance of the various configurations was found — to a small

extent, and for the same training data — to vary, the assessment was most

effective at identifying the poor performing networks, and less successful in

identifying the optimal network configuration. In Section 4.9, on the consistency of

the DNN training process, the issue of identifying the optimal network

configuration is again addressed.

In summary, the DNN is comprised 27 input neurons, 2 hidden layers of 27

neurons with the sigmoid activation function (range 0.0–1.0), and 1 output neuron;

and is trained using the Resilient Propagation (RPROP) back-propagation
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algorithm (Reidmiller and Braun [1993]). The silence example span, and clause

example span are both set to a maximum of 500 milliseconds.

4.8.2 Test Method

Performance:

1. The test-cases were processed using the DetermClassifier as described in

Section 4.5, and the locations of the silence pauses in the Training,

Validation, and Test data sets were automatically recorded.

2. For each of the test-cases...

(a) a speech model was created as described in Section 4.7, and for the

TrnDS, the model data was partitioned into known speech and known

silence, using the locations of silence pauses identified during the

DetermClassification.

(b) The DNN was trained using the TrnDS created in the previous step,

and at intervals of 5 epochs the ‘fit’ of the DNN was checked using the

ValDS. At the onset of over-fitting the training process was ended.

During the training process, a new DNN was stored only when the MSE

from the validate process was found to be less than that of the previous

DNN. The reason for this was to ensure that only the best trained DNN

was stored, rather than the last trained DNN.

(c) The TstDS in its entirety was processed through the DNN Classifier,

and the locations of all silence slices were recorded.

(d) The original speech waveform was gated such that the locations of the

automatically detected silence slices were set to zero. From the resulting

audio file the location of all such pauses was measured to a resolution of

1ms.

(e) The silences indicated by the DetermClassifier and the silences indicated

by the DNN Classifier, were compared with the ground-truth (see

Section 4.3).
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4.9 Consistency of the DNN Training Process:

4.9.1 Variation as a f (Initialisation)

Whereas the result of the pattern recognition process using the trained DNN is

deterministic, this is not the case for the DNN training process, which involves

both a random initialisation of the weights for each of the artificial neurones and a

training heuristic. So to test the extent to which different instances of training

introduces variation in the resultant DNNs, each of the test-cases was trained 100

times with the same training, validation and test data sets. The dependent

variables in this test were the durations of detected speech and silence (the sum of

which is a constant), and the former of these was recorded. The original speech

waveform was gated such that the locations of the automatically detected silence

slices were set to zero, and samples of the audio files were qualitatively evaluated.

4.9.2 Variation as a f (Depth of Neural Network)

The evaluation of the various configurations for the Neural Network, described

in Section 4.8.1, was useful for identifying those network configurations that were

least effective, but was less useful in identifying the configuration that would be

most effective. However, when evaluating the consistency of the training process, it

was necessary to consider various configurations for the Neural Network — to

establish the extent to which network topology influenced the performance of the

classifier. So, to further evaluate the performance of various configurations for the

Neural Network, the method described in the previous section (Section 4.9.1)

which comprised 100 training/execution cycles (with a fixed training, validation

and test data set) was again used; but this time for only one of the test-cases, and

for network configurations 2, 5, and 7 from Table 4.5, plus an additional network

configured with 27 input neurones, six layers of hidden neurones (each comprising
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27 neurones) and one output neurone. For this test the dependent variables were

again the computed durations of the speech and silence; and the testing was

extended by comparing the significant errors in classification for each of the

configurations — for an audio sample with a speech duration around the mean for

the test and with the detected silence slices set to zero — with the significant

errors in classification as previously recorded for the chosen test-case.

4.10 Generalisability of the Solution:

The test-cases were all recorded under similar conditions — though on different

days and at different times — and in the same voice, and therefore it is reasonable

to expect that the neural nets for each of the test-cases should be similar to each

other, such that any of the neural nets will provide a satisfactory classification for

any of the test-cases. This was investigated as follows:

For each of the test-cases, and for each of the trained DNNs...

1. The TstDS in its entirety was processed through the DNN Classifier, and the

detected durations of both the silence and the speech were recorded.

2. The original speech waveform was gated such that the locations of the

automatically detected silence slices were set to zero, and the audio files were

qualitatively evaluated.
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Chapter 5: Results and Analysis

5.1 Selection of Test Material

An unwritten convention exists amongst part of the ASR research community

that publicly available textual and audible test material should be used; and there

are two reasons for this. Firstly a common test corpus provides the capacity for

comparing the results of new processing techniques with research results already

reported, and secondly with a common test corpus, it should be feasible to validate

the work of other researchers by repeating their work.

My choice is to ignore this convention and in this instance to work with new

recordings. There are three reasons for this. Firstly the investigation of a new

model should start with test material that has as few practical constraints on the

bandwidth or recording quality of the speech as is feasible. Secondly only with full

control of the recording environment is it possible to repeat recordings, or to

extend the corpus in a controlled manner, should that be necessary. Thirdly, it is

not always the case that performance of speech processes with a particular speech

corpora is representative of the performance of those processes on other recorded

speech. In the paper, ‘Deep Neural Networks for Acoustic Modelling in Speech

Recognition [The shared views of four research groups]’ the authors write that:

“Experience has shown that performance improvements on TIMIT do

not necessarily translate into performance improvements on large

vocabulary tasks with less controlled recording conditions and much

more training data. Nevertheless...”. — Hinton et al. [2012]

In the earlier stages of the development of the ANN Classifier, a corpus which

comprised eight MP3 Speech Samples was used. The report on this work has been
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relegated to an appendix, because without a full analysis of the speech samples

which constitute the MP3 speech corpus, it is not possible to know the extent of

the psychoacoustics encoding, and as a consequence to baseline the results. Even

so, the results are of interest, and are discussed in Section 5.7.

5.2 Text Analysis

At step 2 of the algorithm for the DetermClassifier, for each test-case the notional

number of silence pauses therein is computed by scanning through the text, and

identifying and counting the punctuation marks. Table 5.1 provides a comparison

for each test-case of this number with the silence pause counts defined in the

ground-truth.

Note the difference between TC1, and TC2 to TC6. One reason for this may be that the Test Data Set for
the former comprises a reading of a narrative combined with conversational elements; whereas for the
latter, just narratives.

Table 5.1: The DetermClassifier: Silence Pause Totals, as Derived from the Punctuation
Marks in the Text

The results suggest that estimating the number of silence pauses from the

punctuation in a script can yield different results depending upon the type of

script. Specifically — and for a very small sample set — the method yields an

underestimate of the silence pauses total from the punctuation in the script for the

readings of the narratives (TC2 to TC6), and an overestimate for the reading of a

90



narrative with conversational elements. The ramifications of this are that as the

set-point (the computed pause count given in Table 5.1) for Step 7 of the

algorithm for the DetermClassifier for TC1 is incorrectly high, then the control loop

must drive the silence/speech threshold artificially high — by increasing the

speech/silence threshold multiplier to the level given in Table 5.2 — to achieve the

demanded pause count. The effect of this can be observed in the results (Table

5.3) where for TC1 the DetermClassifier identifies all of the Silence Pauses and

several other silence insertions, whereas for the other test-cases the DetermClassifier

identifies most, but not all of the silence pauses. This effect could be mitigated

either by adopting a more complex algorithm for relating punctuation patterns to

silence pauses, or by obtaining a statistical distribution of the relationship between

word rate and pause rate for a broad range of samples in order to ascertain the

most probable pause count (pauses per minute); and then using this in lieu of the

pause count calculated from the punctuation in the text.

For each of the test-cases, the multipliers of the initial speech/silence thresholds necessary to obtain loop
closure are shown. The initial silence/speech thresholds are a function of the noise levels during silence
(Step 2 of the DetermClassifier Algorithm), and since TC1 has the highest levels of noise during silence
(Table 5.8), and the highest threshold multiplier (a function of the punctuation count), then the inevitable
result is an incorrectly high silence/speech threshold.

Table 5.2: Extract From the Instrumentation Logs for Step 7 of the DetermClassifier Al-
gorithm

5.3 The DetermClassifier

A basic measure of the performance of the DetermClassifier was obtained by

comparing the Silence Pause counts with the ground truth; and the results of this

comparison are considered in Section 5.3.1. Thereafter, in Section 5.3.2 the
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consolidated results of a detailed comparison of the accuracy of the DetermClassifier

versus the ground-truth are considered; and in Section 5.3.3 classification failures

are dealt with in detail. Note that the source data for the ground-truth, and for

the classification results are not reproduced herein.

5.3.1 Basic Performance

Table 5.3 compares the Silence Pause counts as obtained using the

DetermClassifier, with the those defined in the ground-truth; and also identifies the

totals for the Silence Insertions and Deletions.

The DetermClassifier is configured to identify only the unfilled silence pauses, and

it can be seen from table 5.3, that for TC1 all of the unfilled silence pauses were

detected, and for the other 5 test-case the detection rate was between 87 and 97%.

So, for this particular measure, the overall classification performance must be

considered to be poor; but as the purpose of the DetermClassifier is to identify

training data for the DNN Classifier, then other measures of performance are also

important. Those measures are, the timings for the silence/speech and

speech/silence transitions, and the extent to which the silence pauses and the

speech segments are clean. That is, it is not essential that the DetermClassifier

identifies all pauses; but that for those pauses identified that the identification is

accurate so that the DNN Training data is corrupted with as few bad training

samples as is possible.

Only for TC1 were any silences other than those identified in the ground-truth

detected. Such silence ‘insertions’ may be associated with Filled Silence Pauses, or

be momentary periods of silence such as those occurring at stops. Examination of

the detailed pause duration data (not reproduced herein) shows that the silence

pauses identified in the ground-truth have a duration in the range of 0.051 to 4.518

seconds whereas the inserted pauses have a duration of 0.058 to 0.269 seconds; and

because the two ranges overlap, it is not possible to classify the shorter pauses as
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The DetermClassifier is configured to automatically identify only those pauses which include a period of
recognisable silence in the waveform — i.e. the ‘Unfilled Silence Pauses’ in the ground-truth.
‘Silence Insertions’ are short periods of silence that may be coincident with the Filled Silence Pauses, or
may result naturally as part of the articulation of the unvoiced stops, /p/, /t/, and /k/.

Table 5.3: The DetermClassifier: Silence Pause Detection, Insertion and Deletion Totals

either perceived or inserted, on the basis of duration alone.

5.3.2 Detailed Performance Analysis

Table 5.4 shows the result of a comparison of the accuracy of the detected

silence pause start times for the DetermClassifier, with the ground-truth; and Table

5.5 shows the result of a comparison of the accuracy of the detected silence pause

end times for the DetermClassifier, also with the ground-truth. A negative error

indicates early detection of the indicated event, and a positive error late detection.

For each of the test-cases, the number of indicated events within the specified error

bands are shown.

The data from Table 5.4 and 5.5 is also reproduced in the form of histograms of

the temporal location of the computed silence pause starts/ends versus the

ground-truth, in Figures 5.1 and 5.2. It is evident that for test-cases 2 to 6

inclusive, that although the silence pause start and end errors conform to a sort of

distribution there is more than a scattering of outliers — particularly so for the

silence pause start errors. The distributions for the test-cases is far from the ideal,
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which would be all errors within ±20ms of zero; and so the DetermClassifier must

be considered to be a high variance classifier, and this is confirmed by the sample

standard deviations for the test-cases given in Figure 5.3.

Table 5.4: The DetermClassifier: Silence Pause Start Error
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Table 5.5: The DetermClassifier: Silence Pause End Error

Within the set of results, test-case 1 is anomalous in that the silence pause start

and end errors conform more to the normal distribution, and there are no extreme

outliers; and further, TC1 is the only test-case for which silence insertions were

detected. Accordingly, for the TC1 data set, the DetermClassifier must be

considered to be a low variance classifier and this is confirmed by the sample

standard deviations for the test-cases given in Figure 5.3. However, the significant

errors in the classification of speech as silence that were observed for TC1 (see

Table 5.6), were not present in the classifications for TC2 to TC6, where all errors

were in the classification of silence as speech. Accordingly for the TC1 data set

only, the DetermClassifier must also be considered to be a low accuracy classifier.
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Figure 5.1: Histograms showing the Temporal Locations of All Computed Silence Pause
Starts Vs the Ground-Truth, for the DetermClassifier:

The x-axis shows the temporal variation in the computed silence pause starts versus the ground-truth as
allocated to 20ms bins, and the y-axis shows the number of instances of speech to silence transitions
within each bin. The temporal locations of the speech to silence transitions from the ground-truth are all
represented by the centre 0 co-ordinate on the x-axis.

5.3.3 Classification Failures

Classification failures are of three types. The first type are the errors that are

perceptible with careful listening, when the Filtered Speech is compared with the

Gated Speech (which is the filtered speech with all detected silence set to zero);

the second type are the errors where noise during perceived silence pauses is

incorrectly classified as speech , and the third type are when a substantial audible
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Figure 5.2: Histograms showing the Temporal Locations of All Computed Silence Pause
Ends Vs the Ground-Truth, for the DetermClassifier:

The x-axis shows the temporal variation in the computed silence pause ends versus the ground-truth as
allocated to 20ms bins, and the y-axis shows the number of instances of speech to silence transitions
within each bin. The temporal locations of the speech to silence transitions from the ground-truth are all
represented by the centre 0 co-ordinate on the x-axis.

non-speech event occurs during a silence pause.

To assess the effect of the first type of classification failure (where the effect of

the error would be perceived by a listener), the location of all detected silence

pauses were set to zero in a copy of the filtered speech waveform; and thereafter

the two speech samples (the original filtered speech and the now gated speech)

were compared. To add a degree of rigour to what is effectively a subjective

process, all silence termination errors that were less than 20ms late were ignored,
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Figure 5.3: The Mean of, and SD for, the Errors about a Datum for the DetermClassifier

Figures ‘A’ above provide the Arithmetic Means of the silence pause errors for all test-cases, and Figures
‘B’ provide the sample Standard Deviations for all of the test-cases. For all Figures, the datum at ‘0’
represents the ground-truth.

and for those more than 20ms late, short sections of the two samples were

compared by being replayed alternately (when necessary). Table 5.6 provides

details of the significant errors in classification.

TC1 was the only test-case of the six for which the first type of classification

failures occurred; 14 of the 15 errors (see Table 5.6) taking the form of silence

insertion at speech onset, and resulting in the clipping of speech. The remaining

classification failure, the virtual deletion of the ‘f’ in ‘before’ (Entry 14 in Table

5.6), is scarcely perceptible.

The effect of the second type of classification failure (where the algorithm has

failed to identify silence pauses, wholly or partially, because of noise during the

silence is illustrated in Figures 5.4 and 5.5 — where the DetermClassifier has failed

to identify the full extent of the silence pauses because of inhalation frication

during the pause. This type of classification failure accounts for the majority of

the outliers indicated in Figure 5.1 and Figure 5.2.
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Table 5.6: The DetermClassifier: TC1 Errors in Classification

A third form of classification error is when a substantial audible non-speech

event occurs during a silence pause. Figure 5.6 illustrates one such example — the

loud rustling of paper.

Figure 5.4: The DetermClassifier: Late Silence Pause Start Detection

Taken from TC2, this is the waveform with the temporal location of the silence pause as detected by the
DetermClassifier set to true zero. The DetermClassifier has failed to reject as noise the inhalation fricative
which immediately precedes the detected silence pause. As the detected silence pause is shorter than
250ms, it will not be used for the generation of the silence or speech training data for the DNN.

The purpose of the initial classification is to establish a method for reliably

identifying periods of speech and periods of silence so that the LogFBdynamic model
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Figure 5.5: The DetermClassifier: Early Silence Pause End Detection

Taken from TC2, this is the waveform with the temporal location of the silence pause as detected by the
DetermClassifier set to true zero. The DetermClassifier has failed to reject as noise the inhalation fricative
which immediately follows the detected silence pause. As the detected silence pause is shorter than
250ms, it will not be used for the generation of the silence or speech training data for the DNN.

Figure 5.6: The DetermClassifier: Erroneous Detection of ‘Speech’

Taken from TC3, this shows the final block of text, “My anxiety was to gain real knowledge of the earth.”
followed by a silence pause, and then the loud rustling of paper. The DetermClassifier has failed to reject
this as noise because of the energy in the noise.

data segments can be attributed as either speech or as silence DNN training data

(as shown in Figure 4.4). From Figures 5.4 and 5.5, it can be seen that under

certain conditions the detected silence pauses do not provide a satisfactory

classification, and to mitigate this, only Silence Pauses that are longer than 250ms

are used in the generation of the DNN training Data (Table 5.7).
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For each of the test-cases, the percentage of Detected Silence Pauses with a duration of greater than
250ms is shown. Silence pauses with a duration of less than 250ms are not used in the creation of the
silence and speech supervised training data (see Figure 4.4).

Table 5.7: The DetermClassifier: Detected Silence Pauses >= 250ms

It has previously been shown that the type of speech sample — whether

narrative or conversational — can affect the accuracy of the estimate of the

number of silence pauses from the punctuation in the text; and it can be seen from

Table 5.8 that TC1 had the highest noise level during silence of the 6 test-cases.

Within bounds though, the noise level during silence does not dominate the final

speech silence threshold, because it is multiplied-up by the control loop at Step 7

of the DetermClassifier algorithm (see Table 5.2), until the pause count computed

by the DetermClassifier is equal to or greater than the pause count computed from

the punctuation in the text.

For each of the test-cases, the RMS magnitudes measured for the signal to noise ratio calculation are
shown. The DetermClassifier automatically selects the optimum speech/silence threshold for the noise
level which prevails throughout the speech sample. Despite being recorded in the same environment with
the same recording equipment — though at a different date and time — it can be seen that the ‘Noise
Level, during Silence Pauses’ for TC1 is higher than for the other test-cases.

Table 5.8: Empirically Derived Silence and Speech RMS Magnitudes for Signal to Noise
Ratio Calculation.

It is seemingly anomalous that for the test-case with the lowest signal to noise

ratio and highest noise level during silence that all perceived pauses and 22 silence
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insertions are identified; but because both the amplitude of speech and the rate of

change of amplitude of speech are modulated, then inevitably any increase in the

silence/speech threshold will result in the detection of more silence. Thus

increased noise during ‘silence’ in the speech signal may result in an apparent

improvement to the level of silence identification, but also a reduction in the

temporal accuracy of the DetermClassifier.

5.3.4 Summary

For the six test-cases, the DetermClassifier correctly identified 87% or more of the

perceived silence pauses (Table 5.3). That up to 13% of pauses were not identified

was largely due to the presence of inhalation fricatives during the silences resulting

in periods of actual silence during the pauses that were too short to be recognised

by the DetermClassifier.

The question, “Is it possible to differentiate between silence and unvoiced speech

based upon the energy in the waveform?”, was posed at the start of Section 4.

With a silence pause detection rate of at least 87%, the answer to this question is

that it is possible so to do, at least to a useful extent. That is, whilst the

DetermClassifier would not be satisfactory as a speech/silence classifier it may be

good enough to generate the supervised training data required for the

DNN Classifier. i.e. The sampling method used to build the silence and the speech

training data for the DNN Classifier requires knowledge of known silence pauses,

not all silence pauses. This is because the sampling process is active only in and

around the location of the known silence pauses (as described in Figure 4.4).

In listening tests, the speech reproduction of the filtered speech samples with

detected silences reset to zero was found to be acceptable. For TC2–TC6 inclusive,

most of the significant errors in classification involve either the late detection of

the start of a silence pause or the early detection of the end of a silence pause and

these have no effect on the quality of the speech. For TC1, which was the only

test-case with speech erroneously classified as silence, there was at times just a
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hint of the choppy speech onsets that were experienced with some early examples

of mobile phones.

An inadequacy in the method of obtaining the set point for the DetermClassifier

control loop was evident from the results, where the silence start and end error

distributions for TC1 were significantly different to those of TC2 to TC6. Whether

this will impact on the final classification will be evaluated in the following section.

The effect of the classification failures discussed in the Section 5.3.3 must result

in some corruption of the training data where silence may be incorrectly classified

as speech and vice versa. If the corrupted training data is only some tiny

percentage of the total training data, then it should not present a problem,

because the DNN Classifier is configured to prevent over-fitting. That is, the

effects of the bad classification data may be swamped by the weight of the correct

classification data. (Over-fitting is where a classifier is trained to the point at

which every nuance of the training data is accommodated; and may result in an

excellent classification performance on the training data set and a poor

classification performance on other data of the same class (da Silva et al. [2017])).

The DetermClassifier, within the context of this work, is purposed only to provide

speech and silence training data for the DNN Classifier, and the extent to which it

is successful in achieving this will be evaluated in the following section.

5.4 The DNN Classifier

Following the rationale given in Section 4.8.1, the configuration for the

DNN Classifier was fixed with an input layer of 27 neurones, 2 hidden layers —

each of 27 neurones, and a single output neurone.

As with the DetermClassifier , a basic measure of the performance of the

DNN Classifier was obtained by comparing the Silence Pause counts with the
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ground-truth; and the results of this comparison are considered in Section 5.4.1.

Thereafter, in Section 5.4.2 the consolidated results of a detailed comparison of the

accuracy of the DNN Classifier versus the ground-truth are considered; and in

Section 5.4.3 classification failures are dealt with in detail. Note that the source

data for the ground-truth, and the raw classification results are not reproduced

herein.

5.4.1 Basic Performance

Table 5.9 shows the Silence Pause counts from the ground-truth Vs the Silence

Pause counts from the computed results for the DNN Classifier. Note that in

Table 5.9 — Silence Insertions, a single count is used to represent what may be a

cluster of short silence bursts in the same location.

For all test-cases 100% of the unfilled silence pauses as specified in the

ground-truth were detected, and for 4 of the 6 test-cases some of the filled silence

pauses were detected — though for some of these the indicated pauses were only a

few milliseconds in length.

‘Silence Insertions’ are short periods of silence that may not be coincident with the Unfilled Silence
Pauses. For example such as may occur at the ‘Filled Silence Pauses’ or at unvoiced stops, such as /p/, /t/,
and /k/.

Table 5.9: The DNN Classifier: Silence Pause Detection, Insertion and Deletion Totals
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5.4.2 Detailed Performance Analysis

Table 5.10 shows the result of a comparison of the accuracy of the detected

silence pause start times for the DNN Classifier, with the ground-truth; and Table

5.11 shows the result of a comparison of the accuracy of the detected silence pause

end times for the DNN Classifier, also with the ground-truth. A negative error

indicates early detection of the silence pause, and a positive error late detection.

For clarity, the results are also provided as histograms (Figures 5.7 and 5.8 ). In

addition, the Arithmetic Means, and Sample Standard Deviations for the

distributions are shown in Figure 5.9.

A degree of systematic behaviour by the DNN Classifier is evident for the

distributions for the silence pause start and end errors shown in Figures 5.7 and

5.8, where the results are clustered with few outliers. It is evident that the main

errors in detecting the silence pause starts are associated with early detection, and

for silence pause ends are associated with late detection. That is, the

DNN Classifier is overestimating the duration of most of the silence pauses; but it

is also evident that for all test-cases, that the distribution of the silence pause start

and end errors is approximately normal. The errors in classification summarised in

Table 5.13 are for the main part the result of this temporal inaccuracy.

From Figure 4.4, ‘Speech and Silence Selection for Supervised Training’ it may

be expected that the ratio between the speech training data and the silence

training data is of the order of 2 to 1, and Table 5.12, ‘Duration of the Speech and

Silence Training Data’ indicates that the ratios are slightly greater than this —

because a percentage of the silence pauses are shorter than 500ms.

Figure 5.10 shows an area of detected silence in TC4, and this illustrates a

disadvantage with the DNN Classifier — where it becomes necessary to investigate

short fragments of the waveform to assess whether they are speech or silence. This

problem was addressed for the DetermClassifier, where short fragments were

compared with a clause prototype and either accepted as being speech, or rejected
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∗The True Average is the average of the raw data, not of the binned data.

Table 5.10: Silence Pause Start Error for the DNN Classifier.

∗The True Average is the average of the raw data, not of the binned data.

Table 5.11: Silence Pause End Error for the DNN Classifier.

as noise. However, that technique — ultimately based upon a ratio of powers —

has been shown to be less than satisfactory; so an improved method must be

adopted to correctly apportion these fragments following the speech/silence
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Figure 5.7: Histograms showing the Temporal Locations of All Computed Silence Pause
Starts Vs the Ground-Truth, for the DNN Classifier:

The x-axis shows the temporal variation in the computed silence pause starts versus the ground-truth as
allocated to 20ms bins, and the y-axis shows the number of instances of speech to silence transitions
within each bin. The temporal locations of the speech to silence transitions from the ground-truth are all
represented by the centre ‘0’ co-ordinate on the x-axis.

classification process. (As mentioned previously, Deng and O’Shaughnessy [2007]

describe a different method for dealing with such fragments.)

For all of the test-cases, many silences additional to those perceived by the

listener as silence pauses, were detected by the DNN Classifier, and these

insertions are consistently located in regions where one might expect to find them

— for example at stops. On closer inspection a proportion of the insertions can be
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Figure 5.8: Histograms showing the Temporal Locations of All Computed Silence Pause
Ends Vs the Ground-Truth, for the DNN Classifier:

The x-axis shows the temporal variation in the computed silence pause ends versus the ground-truth as
allocated to 20ms bins, and the y-axis shows the number of instances of speech to silence transitions
within each bin. The temporal locations of the speech to silence transitions from the ground-truth are all
represented by the centre ‘0’ co-ordinate on the x-axis.

seen to be positioned marginally earlier than might be expected (by up to

∼ 20ms); though exactly why is not yet understood. It should be noted that

despite the large number of insertions, silence is not detected for many of those

speech elements which might be expected to have a brief moment of associated

silence, and this is indicative of a natural variation in articulation. Examination of

the pause duration data shows that the perceived pauses often had a much greater

duration than the insertions — though not exclusively so. That is, the probability

that a silence pause is a perceived pause declines — though not linearly — as the
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The 500ms before each silence pause and the 500ms after each silence pause are designated as speech
training data resulting in 1 second of speech training data per pause; whereas either the first 500ms of each
silence pause, or the length of the entire pause if it is shorter than 500ms, is designated as silence training
data. Notionally then, the number of auto detected silence pauses with a duration greater than 250ms
should equal the total duration of the speech training data; and the total duration of the Silence training
data should be half that of the speech training data. That the latter of these statements is not entirely
correct is indicative that some of the silence pauses used for DNN training were shorter than 500ms.

Table 5.12: Duration of the Speech and Silence Training Data

Figure 5.9: The Mean of, and SD for, the Errors about a Datum for the DNN Classifier.

Figures ‘A’ provide the Arithmetic Means of the silence pause errors for all test-cases, and Figures ‘B’
provide the sample Standard Deviations for all of the test-cases. The results for the DNN Classifier are
indicated by the solid bars; and the datum at ‘0’ represents the ground-truth. For comparative purposes, the
results for the DetermClassifier are also shown — as indicated by the patterned bars.
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Figure 5.10: Fragmentation for the DNN Classifier.

Taken from TC4, this shows the end of one block of text, the residue of an inhalation fricative and the start
of the next block of text. It will be seen that several short silences are detected at the end of the first block
— and this causes the classification issue of deciding where the first block should end. Any automated
system must also be capable of assessing whether the inhalation fricative is silence, or speech.

duration of the pause reduces, such that it is not possible to make a highly

accurate automatic classification of the very short pauses as either perceived or

inserted, on the basis of duration alone.

From Figure 5.9, it can be seen that the start and end errors for TC1 for the

DNN Classifier do not exhibit the anomalous results obtained for TC1 for the

DetermClassifier — the classification performance for TC1 is joint third for the

silence pause start errors, and second for the silence pause end errors, i.e. for TC1,

the degraded accuracy of the DetermClassifier did not propagate into the

DNN Classifier. This is confirmed to an extent by the data in Table 5.13, where

the Perceived Classification Error Totals for the DNN Classifier for TC1 are the

lowest of all test-cases (although not all of the test-cases present an equal

opportunity for classification errors).

In listening tests, the reproduction of the filtered speech samples with detected

silences reset to zero — the gated speech — was acceptable; i.e. despite the

significant errors in classification (Table 5.13), there is none of the ‘choppy’ speech

onsets and endpoints that were experienced in the early days with some types of
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mobile phones. And although the start of silences is often detected earlier than

may be expected, the effect of this is not audible in the gated speech.

5.4.3 Classification Failures

One form of classification failure is where the effect of the error would be

perceived by a listener, and these were assessed as described in Section 5.3.3.

Another form of error is where silence pauses, are wholly or partially not

recognised as such, because of noise during the silence. Figure 5.11 shows where

the DNN Classifier has failed to identify the full extent of a silence pause because

of inhalation frication during the pause.

A third form of classification error is when a substantial audible non-speech

event occurs during a silence pause. Figure 5.12 shows the same ‘rustling paper’

event that was used to illustrate a non-audible speech event for the DetermClassifier.

It should be noted that this is an extreme example, and is not typical of the silence

pauses identified by the DNN Classifier — which for the most part are clean.

The classification errors for the DNN Classifier are collated in Table 5.13 — a

total of forty three for the six test-cases, and the detail of the errors is provided in

Tables 5.14 to 5.19 and Figures 5.13 to 5.24. Twenty two of these classification

errors involved the unvoiced fricative ‘f’, and eight the unvoiced fricative ‘h’. It

may be that these fricatives were confused in the classification process with

inhalation fricatives — some of which were partially classified as speech as can be

seen in Figure 5.10. It is also relevant that by no means all instances of ‘f’ and ‘h’

were classified incorrectly, the more powerful examples being less susceptible to

misclassification. Of the remainder of the classification errors, for ‘g’ and ‘th’ the

situation is similar to that for ‘f’ and ‘h’, whereas the five vowel/consonant, the

two ‘s’ and the two ‘sh’ failures, and the ‘m’ and ‘w’ failures indicate speech like

events during silence which are similar to events which must also be present to a
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very limited extent in speech. There was a suggestion in Section 4.6, that the

bandwidth of the model could be reduced from 21 to 19 Bark bands, but fricatives

and sibilants have a high-frequency component, and since the classification of /s/

and /f/ is already less than perfect it is not clear what effect (if any) the reduction

of bandwidth would have on the detection of these consonants.

The ‘Vowel Consonant’ errors comprise short silence insertions in, ‘ar’, ‘gl’ and ‘igh’ for TC1, and in ‘i’
for TC3 and TC4. The ‘and’ that is deleted is scarcely audible in the original speech file.

Table 5.13: Perceived Classification Error Totals for the DNN Classifier.

Figure 5.11: Failure of Silence Detection for the DNN Classifier.

An inhalation fricative during the silence between two blocks of text has erroneously been classified by the
DNN Classifier as ‘speech’ (From TC4).

The waveforms for a selection of the errors are shown in Figures 5.14 to 5.24.

The errors are represented in the waveforms by setting the signal magnitude to

true zero; and these are highlighted by a bar that is drawn parallel to and time
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Figure 5.12: Erroneous Detection of ‘Speech’ for the DNN Classifier.

Taken from TC3, this shows the final block of text, “My anxiety was to gain real knowledge of the earth.”
followed by a ‘silence pause’, and then the loud rustling of paper. This is not typical of the silence pauses
throughout the recording — which for the most part are free of incorrectly classified noise.

co-incident with the erroneous silence insertions. The start of those of the errors

which occurred at speech onset, was obtained by a visual inspection of the filtered

waveform.

TC1 Classification Errors:

Table 5.14: TC1 Errors in Classification for the DNN Classifier.
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Figure 5.13: TC1 Classification Error 1 — During ‘ar’ in ‘scarce’

Figure 5.14: TC1 Classification Error 4 — During ‘igh’ in ‘sight’

TC2 Classification Errors:

Table 5.15: TC2 Errors in Classification for the DNN Classifier.
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Figure 5.15: TC2 Classification Error 2 — During ‘f’ in ‘first’

Figure 5.16: TC2 Classification Error 5 — During ‘g’ in ‘green’

TC3 Classification Errors:

Table 5.16: TC3 Errors in Classification for the DNN Classifier.
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Figure 5.17: TC3 Classification Error 1 — During ‘f’ in ‘fatherless’

Figure 5.18: TC3 Classification Error 10 — During ‘i’ in ‘in’

TC4 Classification Errors:

Table 5.17: TC4 Errors in Classification for the DNN Classifier.
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Figure 5.19: TC4 Classification Error 1 — During ‘i’ in ‘it’

Figure 5.20: TC4 Classification Error 4 — During ‘f’ in ‘face’

TC5 Classification Errors:

Table 5.18: TC5 Errors in Classification for the DNN Classifier.
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Figure 5.21: TC5 Classification Error 2 — During ‘s’ in ‘son’

Figure 5.22: TC5 Classification Error 7 — During ‘s’ in ‘smiling’

TC6 Classification Errors:

Table 5.19: TC6 Errors in Classification for the DNN Classifier.

118



Figure 5.23: TC6 Classification Error 1 — During ‘m’ in ‘custom’

Figure 5.24: TC6 Classification Error 7 — During ‘f’ in ‘first’

Figure 5.25 shows the summation of the durations for the classification errors for

the 6 test-cases expressed as a percentage of the duration of the test data sets

(Table 4.2) as derived from the data provided in Tables 5.14 through 5.19, and also

shows the summation of the durations for the classification errors for the

DetermClassifier, for test-case TC1 as derived from the data in Table 5.6, again

expressed as a percentage of the duration of the test data set. It is evident that

the percentage of speech incorrectly classified by the DNN Classifier as silence is

substantially less for TC1 than for the other test-cases; and this despite the

relatively poor DNN training data for TC1 that was obtained with the

DetermClassifier. A possible cause of this is that TC1 was provided with

approximately 1.8 times as much training data as the other test-cases (see Table

5.12), and this, together with the result in Figure 5.25, suggests that for training
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data, bulk may be more important than detailed accuracy. That is, if enough of

the training data is accurate, then this will swamp the effects of the inaccurate

training data; because of the resistance to over-fitting (a feature of the split sample

training technique). However this is conjecture, and further empirical work is

required to establish exactly why the test-case with the most inaccurate training

data seemingly provides the better final classification.

Figure 5.25: Speech Incorrectly Classified as Silence for the DNN Classifier.

The black bars indicate the percentage of speech incorrectly classified as silence by the DNN Classifier for
each of the test-cases. This data is derived from the temporal durations of the errors given in Tables 5.14
through 5.19. Also indicated (by the patterned bar) is the percentage of speech incorrectly classified as
silence for TC1 for the DetermClassifier — as derived from the temporal durations of the errors given in
Table 5.6.
Unexpectedly, for TC1, the test-case with the lowest quality classification of all the test-cases for the
DetermClassifier, the amount of speech incorrectly classified as silence by the DNN Classifier is the
lowest for all of the test-cases.

5.4.4 Summary

That the results show that the DNN Classifier located 100% of the unfilled

silence pauses identified in the ground-truth implicitly supports the first

hypothesis and directly supports the second.
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The DNN Classifier showed no particular sensitivity to corrupt training data;

and this was largely due to the training data selection strategy which was

purposed to select training data only at known good speech/silence and

silence/speech transitions.

As noted in Section 5.3.4, the performance of the DetermClassifier could be

improved, but the results for the DNN Classifier show that in its present form the

DetermClassifier is capable of providing an acceptable quality of training data; and

that the two stage binary speech/silence classification system of Figure 1.2, is

feasible.

The silence start and end error distributions for the DetermClassifier for TC1

were significantly different to those for TC2 to TC6, but this had no discernible

effect on the operation of the DNN Classifier. A legitimate question which follows

from this is that since the operation of the DNN Classifier was not compromised

by the poor results from the DetermClassifier for TC1 (these the result of an

erroneously high auto-selection of the speech/silence linear separation threshold),

then is the complexity of the DetermClassifier justified?

Of the classification failures for the DNN classifier where short segments of

speech were incorrectly classified as silence, 79% were located in unvoiced speech

sounds, and the remaining 21% were in voiced speech sounds. This confirms that

even for the DNN Classifier that the detection of voiced speech is considerably

easier, than the discrimination between unvoiced speech and silence.

Overall, the two stage binary speech/silence classification system might be

described as a virtually faultless, low variation, low-granularity filled silence-pause

detector, with medium accuracy temporal registration of the silence pause starts

and ends, and with a tendency to slightly over-estimate pause durations.
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5.5 Consistency of the DNN Training Process:

The Train/Validate/Test technique is purposed to find the optimal network, and

the results of the testing designed to ascertain the extent to which the particular

implementation of the Train/Validate/Test process as used for this work is

successful in this, is considered in Section 5.5.1: ‘Variation as a f (Initialisation)’.

Following that, in Section 5.5.2: ‘Variation as a f (Depth of Neural Network)’, is a

consideration of the results of an investigation purposed to establishing whether

any correlation exists between the depth of the ANN/DNN and the classification

performance.

Because the network is trained using a heuristic algorithm, and the training

setup includes the initialisation of the weights for all of the artificial neurones with

a different bounded random number; then no two trained networks will be the

same. Accordingly, there will inevitably be differences in the classification process,

and if a network is repeatedly trained and tested with the same training data, then

a distribution of the classification results must form. The ‘Optimally Trained

Neural Network’ (hereafter the ‘optimal neural network’) is here defined to be any

network which provides a result similar to those other networks which provide

results where the density of results in the distribution of the classification results is

at a maximum (i.e. the most likely solution). If the optimal neural network does

not subsequently provide a satisfactory classification, then the problem lies with

the quality of the training data; and improvements to that would result in a

different — and improved — optimal neural network.

5.5.1 Variation as a f (Initialisation)

To establish a measure of the consistency of the DNN training process, for each

test-case, a combined DNN ‘Training/Execute’ Classification cycle (hereafter, the

train/exec. cycle) was repeated 100 times — with a fixed Training, Validation and
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Test Data Set. Figure 5.26 illustrates the resultant variability in the classification,

as a set of histograms, one for each test-case; where the result of each of the tests

is the detected duration of the speech, and each of the histogram bins gives the

number of durations which fall within each 200ms band. Each histogram is a

record of all 100 durations, and all of the histograms are to the same relative,

though not absolute, scale. TC5 is the test-case with the least variation

(14 ∗ 200ms = 2.8 Seconds), and TC1 is the test-case with the greatest variation

(42 ∗ 200ms = 8.4 Seconds).

Figure 5.26: Variability introduced into Classification by the DNN Classifier

A histogram for each of the 6 test-cases is shown, where each bin on the x-axis represents 200ms and
where the number on the y-axis is the number of train/exec. cycles which result in a speech duration which
falls within each bin. The red drop down bars indicate the positions in the distributions of the train/exec.
cycles that were used for the detailed performance evaluation in Section 5.3, ‘The DetermClassifier’, and
Section 5.4, ‘The DNN Classifier’; and the turquoise dashed drop down bars on the graphs for TC1 and
TC4 indicate the positions in the distributions of the training/execution cycles that were used for the
quantitative assessment of the performance of outlier trained DNNs.
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Figure 5.26 has been annotated with the mean values, and the sample Standard

Deviations (σ); and also indicates the positions with red drop-down lines in the

distributions for the six test-cases used for the detailed performance evaluation in

Section 5.3, ‘The DetermClassifier’, and Section 5.4, ‘The DNN Classifier’, and with

turquoise dashed drop-down lines for the two test-cases (TC1 and TC4) used for

the quantitative assessment of the effect on the performance of the classifier of

using a non-optimal DNN. It is interesting that for the detailed analysis, the only

test-case which came close to using the optimum Neural Network was TC4, and

that for four of the test-cases, TC1, TC4, TC5, and TC6, the performance of the

Neural Network was within one SSD of the mean, and that for the remaining two

test-cases, TC2 and TC3 the performance of the Neural Network was within two

SSD of the mean.

The histograms shown in Figure 5.26 are also a clear representation of the

density of the results — integrated over 200ms intervals. Were the distributions

Gaussian, then the mode of the distribution (the most commonly occurring

results) would be a valid indication of central tendency, but it can be seen that the

data for TC1 is bimodal, and it is necessary to refer to the mean of the

distribution to identify the significant mode of the data. Figure 5.26 shows that for

TC1, that the mean of the distribution is a good indication of central tendency.

Figure 5.27 shows the Cumulative Sample Standard Deviation for two data

series for up to 100 train/exec. cycles, for each of the test-cases. The two data

series per test-case consist of the same data set, but ordered differently; and it can

be seen that the number of train/exec. cycles required before the standard

deviation achieves some measure of consistency varies considerably between the

test-cases, as does the final standard deviation. At worst, up to 60 train/exec.

cycles may be necessary before the standard deviation (and by implication the

distribution) becomes fully representative of the population — allowing that is, a

variability in the standard deviation of up to 200ms. Such a variability is

negligible when considered in the context of the number of silences — the

ground-truth — in the Test Data sets. For example, from Figure 5.1 it can be seen

that the test-case with the least number of silences is TC4 with 86 unfilled silence

pauses; and assuming an equal distribution throughout, a variation of 200ms
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Figure 5.27: Cumulative Standard Deviation — for up to 100 Train/Exec. Cycles.

The x-axis indicates the number of train/exec. cycles used for each of the sample standard deviation
calculations, and the y-axis the standard deviation in milliseconds for that particular number of cycles. The
two data series for each graph are the same data set, but ordered differently.

would result in a change to each silence duration of less than 2.5ms.

Table 5.20 provides the totals for the training/execution cycles which fall within

each Standard Deviation; and since there were 100 training/execution runs, these

numbers are also percentages, and if divided by 100, probabilities. Also shown is

the percentage of training/execution cycles which may be expected to fall within

each Standard Deviation, were the distributions to comply with the Gaussian

Norm. Whilst the distributions cannot be said to be typically Gaussian, there is

sufficient clustering of the results within 1 SSD around the mean, to suggest that
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the optimum Neural Network may be one which provides a result which is within a

few hundred milliseconds of the mean for the distribution. The results in Section

5.4 for TC5 — which it can be seen from Figure 5.26 used the preferred/optimal

DNN — give no indication of over-fitting (which is where the neural network will

operate well with the training data, but less well with new instances of the same

class); and a similar situation obtained for TC4 which used a DNN which was near

to optimal.

Table 5.20: The Results of 100 Train/Exec. Cycles as a Function of Sample Standard
Deviation

It can be seen by comparing the data on the RMS speech magnitudes given in

Table 5.8, with the standard deviations in Figure 5.27, that they largely correlate.

That is, the greater the RMS speech magnitude, the greater the standard

deviation. The exception to this is TC1 and TC3 where the RMS speech

magnitude for TC1 is marginally higher than that for TC3 whereas for TC1 the

standard deviation is lower than for TC3 by approximately 100ms. Other than

that, the correlation suggests, that the operation of the classifier may be some

function of the magnitude of the source signal. Conversely, there is no indication of

a correlation between the noise during silences and the standard deviations or

between the Signal to Noise ratios and the standard deviations. Whether or not

the magnitude of the standard deviation is a function of the magnitude of the

source signal remains to be seen, but Figure 5.26 shows that the variation in the

range of the distributions is such that any individual training cycle may return a

less than optimal DNN. So it would seem advantageous to include in the classifier

sufficient training runs with the same training, validation and test data, to obtain

the distribution — and then to select the optimal DNN as one from where the
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density of the results is at its greatest.

TC1 and TC4 were selected for a quantitative assessment of the effect on the

performance of the speech/silence classifier of using a non-optimal DNN. TC1 was

chosen because the distribution of the results was found to be less Gaussian with a

higher standard deviation, and TC4 because the distribution of the results was

found to be more Gaussian with a lower standard deviation. Two trained DNNs —

one each side of the mean — were selected for both TC1 and TC4 (see Figure

5.26), each with a classification performance of within 1σ and 2σ of the mean of

the distribution. To implement the assessment, the auto-detected silence pauses

for each of the networks were inserted in the Filtered speech by forcing the

corresponding signal magnitude to true zero, and the first minute of the resultant

audio for the two test-cases was compared with the results previously obtained for

the performance evaluation ( see Section 5.4: ‘The DNN Classifier’).

TC1 189016ms: In the first minute of the audio, there were 32 separate

instances of the erroneous detection of silence in fricatives amounting to 452ms.

The silence pause starts were typically slightly delayed amounting to 275ms over

28 pauses, and the silence pause ends were typically slightly earlier, amounting to

−71ms over 28 pauses. There were also 4 additional insertions — each of a few

milliseconds — between words, and 3 additional insertions at unvoiced stops. None

of the silence pauses were erroneously classified as speech.

TC1 193423ms: In the first minute of the audio, there were no instances of the

erroneous detection of silence in fricatives. The silence pause starts were typically

slightly delayed amounting to 194ms over 28 pauses, and the silence pause ends

were typically slightly earlier, amounting to −76ms over 28 pauses. None of the

silence pauses were erroneously classified as speech.

TC4 178750ms: In the first minute of the audio there were no instances of the

erroneous detection of silence in fricatives, and variations in the detected pause

starts and pause ends were not significant; but 430ms of silence was incorrectly

classified as speech, compared with the 535ms of silence that was incorrectly

classified as speech during the performance evaluation.
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TC4 181127ms: In the first minute of the audio there were no instances of the

erroneous detection of silence in fricatives, and variations in the detected pause

starts and pause ends were not significant, but 770ms of silence was incorrectly

classified as speech, compared with the 535ms of silence that was incorrectly

classified as speech during the performance evaluation, and there were 7 extra

silence insertions.

From the above, it can be seen that a degraded classification performance —

particularly evident in the results for TC1 189016ms and TC4 181127ms — can be

the outcome if a network is chosen which returns a result that is on the periphery

of the distribution. So again, it may be concluded that for the implementation of

the train/validate/test technique used for this work, an additional step of

establishing the distribution of results returned for multiple train/exec. cycles for

the same training, validate and test data set is desirable, although, from the data

in Table 5.20 it can be seen that the probability of any particular train/exec. cycle

returning a result out-with the mean ±1 Standard Deviation is relatively low.

5.5.2 Variation as a f (Depth of Neural Network)

The contention explored in the previous section was the performance of a DNN

is some function of the random initialisation of the weights within the network,

and that there exists an optimally trained DNN that can be selected from the

results of a set of train/exec. cycles, such that the optimally trained DNN is from

that part of the distribution where the density of results is at a maximum. The

results of limited testing suggest that this is the case, but don’t address the

associated question of whether a DNN with 2 Hidden Layers is the optimal

configuration. The preliminary informal testing purposed to identifying the

optimal ANN configuration (Section 4.8.1) was able to identify unsuitable ANN

configurations but was less successful at identifying the optimal configuration. To

investigate whether the DNN with 2 Hidden Layers is the optimal network, the
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experimental procedure that was used to establish ‘Variation as a f (Initialisation)’ was

repeated for test-case 3 only, with Artificial Neural Networks with 1, 4 and 6

hidden layers. Because the purpose of this work, was to investigate the link

between the depth of the neural network and its performance, the width of the

hidden layers was held constant at 27 artificial neurones — although clearly, many

different NN configurations exist.

Figure 5.28 shows a rescaled version of the histogram for TC3 for the DNN with

two hidden layers (as already discussed in Section 5.5.1 — ‘Variation as a

f (Initialisation)’), plus histograms for an ANN with 1 hidden layer, a DNN with 4

hidden layers and a DNN with six hidden layers. The same scaling is used for the

x-axis for all 4 histograms, so the histograms are directly comparable.

Figure 5.28: Variability in Classification as a f (Depth of Neural Network) for TC3.

A histogram for each of the 4 ANN configurations is shown, where each bin on the x-axis represents
200ms and where the number on the y-axis is the number of train/exec. cycles which result in a speech
duration which falls within each bin. The data, ‘TC3 – 2 Hidden Layers’, is a rescaled version of that
already shown in Figure 5.26 in Section 5.5.1: ‘Variation as a f (Initialisation)’.
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From Figure 5.28, it can be seen that the network with the distribution with the

lowest dispersion is the ANN with 1 hidden layer, that the distributions for the

DNNs with 2 and 4 hidden layers are very similar — though greater than those for

the network with 1 hidden layer, and the network with the greatest dispersion is

the DNN with 6 hidden layers. The Modes for the distributions for the three

DNNs indicate that for the ‘preferred solution’, that the duration of detected

speech increases as the depth of the network is increased.

Figure 5.29 shows the Cumulative Sample Standard Deviation for the 4

networks, derived as described in Section 5.5.1 — Variation as a f (Initialisation).

Figure 5.29: Cumulative Sample Standard Deviation as a f (Depth of Neural Network) for TC3.

The x-axis indicates the number of train/exec. cycles used for each of the sample standard deviation
calculations, and the y-axis the standard deviation in milliseconds for that particular number of cycles. The
two data series for each graph are the same data set, but ordered differently. Note that the graph for the
‘DNN with 2 Hidden Layers’ is a rescaled version of the graph for TC3 shown in Figure 5.27 in Section
5.5.1: ‘Variation as a f (Initialisation)’.

The standard deviation for 100 train/exec. cycles can be seen to be a function of

the depth of the network, increasing as the depth of the network is increased. In
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absolute terms the standard deviation varies from 1.183 seconds for the ANN with

1 hidden layer to 2.426 seconds for the DNN with 6 hidden layers; and for the

DNNs with 2 and 4 hidden layers, the Standard deviations are 1.493 and 1.584

respectively.

From Figure 5.28, it can be seen — with the exception of the network with 1

hidden layer — that the Modes of the Distributions are a good indicator of the

centre of the distributions. That said, there is sufficient variation in the centre of

the distributions to warrant an assessment of classification differences by the 4

networks. Accordingly, for each of the 4 networks, a train/exec. cycle was chosen

for detailed analysis from the distribution where the duration of the detected

speech was within the bin where the density of results was at (or near) a maximum.

The data for analysis comprised four files: ANN 1HidLyr 158385ms.wav,

DNN 2HidLyrs 158218ms.wav, DNN 4HidLyrs 158804ms.wav,

DNN 6HidLyrs 159667ms.wav — constructed as before, by inserting true zero into

the Filtered speech files at all auto-detected silence locations. The investigation

was in two parts: the first a detailed analysis of the first minute of the data files,

and the second an investigation — in response to the outcome of the analysis of

the first part — as to why the disparity in the durations of detected speech for the

different networks, as exemplified by the 1.449 seconds disparity between the

DNN 2HidLyrs 158218ms.wav and the DNN 6HidLyrs 159667ms.wav.

The detailed analysis of the first minute of the data sets versus the ground-truth

showed that the performance of the four networks to be similar. That is, there was

little difference between the silence starts and end points between the 4 networks,

with a consequential similar disparity between those measurements and the

ground-truth. The most significant difference between the 4 data sets was between

the number of Insertions — auto-detected silence without an analogue in the

ground-truth — where for the network with 1 hidden layer there were a total of 38

Insertions, the network with 2 hidden layers 39 Insertions, with 4 hidden layers 34

Insertions and with 6 hidden layers 30 Insertions. On the basis of Insertions alone,

it might seem that the network with 6 hidden layers provided a slight performance

improvement; but the results discussed so far don’t address the question of why
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the optimum network for the 6 layer network detects 1.449 seconds more speech

than the 2 layer network. To put this in context, the TC3 test data set has 99

unfilled silences (from the ground-truth) which — with an even distribution of the

additional 1.449 seconds of speech throughout the recording — would result in a

delta per pause of 1.449
99

= 11.3ms, or a variation per speech/silence and

silence/speech transition of 5.65ms.

A variation of the order of 5.6ms in the auto-detected location of speech

end-points and onsets is negligible, given the precision for this work as specified in

Section 5.3; provided that is, that the deltas are evenly distributed throughout. To

assess the distribution, the temporal duration of the locations for all of the speech

insertions in the silence pauses for the 2 layer DNN was compared with that for

the 6 layer DNN, and a significant disparity was measured. Overall, a difference of

approximately 600ms was identified for the speech insertions, 318ms of which was

associated with a loud noise event (the noisy rustling of paper) that followed the

speech. This reduces the deltas attributable to each silence/speech and

speech/silence transitions to a little less than 1.449−0.6
99∗2 ∼ 4.3ms, given that the 6

layer DNN will re-introduce a small amount of speech commensurate with the

reduced number of silence insertions.

There are two key points in the previous paragraphs. Firstly, although the 6

Layer DNN appears to provide a small performance advantage when detecting

silence, it provides a small disadvantage in that it also increases the amount of

speech (noise in fact) that is erroneously inserted in the detected silences (most

usually in bulking-up existing noise insertions). Secondly — the loud noise event

at the end of the TC3 test-data set aside — the time deltas between the speech

durations for the four networks that were chosen to be representative of their

aggregated density distributions are evenly spread throughout the recordings.

Although the activity of assessing the impact of the depth of the DNN on

classification performance has failed to reach a definitive conclusion, this is not an

entirely negative outcome. It is implicit to the hypotheses, which focus on the

speech model and the training data selection method, that these dictate the
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performance of the classifier, rather than the configuration of the ANN/DNN; and

the results of this section confirm this by showing that the performance of the

classifier is largely independent of its depth (within the bounds explored).

Aside: It must be observed that the noisy rustling of paper at the end of the

recording were not included in the calculation of the signal to noise ratios given in

Table 4.1, as the raw data for the calculations was derived using the 45 seconds of

the speech that followed after the first minute of the recording. That is, the signal

to noise ratios given in Table 4.1 are very much an approximation. However, the

rustling sounds did appear as a single ‘speech’ segment to the DetermClassifier and

as a consequence were a source of corruption to the ‘speech’ training data for the

DNN Classifier.

5.5.3 Summary

Note that the points below refer to the specific embodiments of the techniques

described in this work.

Variation as a f (Initialisation)

• The training and classification performance of the DNN is a function of the

initialisation — with bounded random values — of the neurone inputs

weights.

• If a DNN is subjected to multiple train/exec. cycles with the same

Training/Validation/Test data set, then the collected results form a

distribution with a clear central tendency.

• An optimally trained DNN exists — which lies in the vicinity of the mean of

the multiple train/exec. cycles results distribution.

• The Training/Validation/Test technique does not necessarily identify the

optimally trained DNN.
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• To ensure the best classification network, when training a DNN, the

optimally trained DNN should be selected from the vicinity of the mean of a

distribution of train/exec. results for the same Training/Validation/Test data

set.

• If a train/exec. cycle is used which lies on the periphery of the results

distribution, then the classification performance may be adversely affected,

and the risk of this being a problem increases as the dispersion of the results

distribution increases.

• If the optimally trained DNN in subsequent use fails to provide a satisfactory

classification, then the problem is with the quality of the training data.

• If the training data is changed then a new optimally trained DNN should be

identified.

• There is no particular correlation between the noise during silence or the

signal to noise ratios, and the magnitude of the standard deviation; but there

is a correlation between the RMS speech magnitude and the magnitude of

the sample standard deviation — which is worthy of further investigation.

Variation as a f (Depth of Neural Network)

• The Sample Standard Deviation increases in magnitude as the depth of the

network is increased.

• For the three DNNs, the mode of the distribution for multiple train/exec.

cycles with the same training/validation/test data set increases in absolute

value as the depth of network is increased.

• It becomes increasingly important to identify the optimally trained DNN

DNN as the depth of the network is increased because of the increased

dispersion.

• The speech/silence classification performance for the three DNNs and the

ANN is very similar; but an increasing amount of noise during silence is

classified as speech as the depth of the DNN is increased.
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• The results support the implication of the hypotheses that the classification

is more a function of the quality of the training data and the the audio

model, than the network configuration (within bounds).

5.6 Generalisability of the Solution:

Since the recordings which constitute the speech corpus were made in the same

environment, using the same equipment and are in the same voice, it can be

argued that the separate neural nets for each of the test-cases should be similar to

one another — and from this it may be inferred that any of the trained DNNs will

provide a satisfactory performance with all of the test-cases.

Table 5.21, shows the result of the classification into speech and silence for all of

the test data sets by each of the trained DNNs. The variation is the maximum

difference between the trained DNN for the particular test-case (highlighted in the

diagonal) and the other 5 DNNs. In absolute terms, the duration of the detected

speech varied from 1.683 seconds, for the neural network trained with the TC2

data set to 3.271 seconds, for the neural network trained with the TC3 data set. A

variation in duration of 1.683 seconds equates to ∼ 17ms per silence pause

(∼ 8.5ms per speech/silence and silence/speech transition), whereas 3.271 seconds

equates to ∼ 33ms per silence pause (∼ 16.5ms per speech/silence and

silence/speech transition). These figures assume that the variations in total speech

duration are evenly distributed throughout the test audio, and may be artificially

high because the effect of the bulking up of existing noise insertions during silence

pauses, as described in section 5.5.1, is ignored. Whatever, the worst case figure of

16.5ms per transition is within the error margin of 20ms as specified in Section

4.3, the ‘Ground-Truth’.

The standard deviation measures are included so that the extent to which the

measured speech durations are within the bounds of the distributions already

established for each of the test-cases shown in Figure 5.26 can be assessed. That
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there are 4 instances of absolute measured speech durations between 3σ and 4σ of

the mean for the distributions is indicative that the six trained DNNs do not all

provide the same classification performance.

The standard deviation measures provide an indication of the locations for the speech durations on the
distributions shown in Figure 5.26. Three of the test-cases, TC2, TC3 and TC4 include speech durations
with an absolute location between 3σ and 4σ of the mean for the distributions.

Table 5.21: Generalisability of the Trained DNNs

Magnitude normalisation of the model data is described in Section 4.7, and is

where the audio model data is scaled to be within the range of 0.0 to 1.0 before

DNN training or processing. This normalisation is an important contributory

factor to the consistency of the results across the test-cases shown in Table 5.21. A

second important contributory factor is the implicit frequency normalisation that

follows when all of the test-cases are in the same voice. Clearly, were different

voices to be used in the testing, then frequency normalisation would be required to

achieve similar results. (The basic assumptions which underpin this are that the
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essence of speech is constant for all, and that the normalised model as described

herein is capable of capturing this essence of speech.)

In summary, the results indicate that the six trained neural networks provide a

similar, though not identical, classification performance; and the magnitude of the

differences in detected speech durations — at < 16.5ms per speech/silence and

silence/speech transition — is within the margin of error specified for this work in

Section 4.3, the ‘Ground-Truth’.

5.7 Experiments using an MP3 Speech Corpus

During the development phase of this work, a test corpus comprising eight

extracts from ‘talking books’ by eight different individuals (four female and four

male) was used, and results with this corpus are described in Appendix C:

“Experiments with MP3 Compressed Speech”. The key differences between the

tests in Appendix C and the main tests are for the work in Appendix C that :-

• The recordings were in the MP3 Lossy Compression format, and so had

already been subjected to psychoacoustics processing.

• The ANN was configured with an input layer of 27 neurons, one hidden layer

with 54 neurons, and an output layer of 1 neuron.

• The rules for selecting the Artificial Neural Network Training data were

different (Figure 5.30).

The experiments on the MP3 corpus yielded some systematic results that were

similar to those of the main experiments. Specifically, whereas the DetermClassifier

identified only between 81.5% and 96.5% of the perceived unfilled pauses, the

ANN Classifier identified better than 98% of the pauses, and though the

performance of the DetermClassifier degraded as the noise level increased, this was

not the case for the ANN Classifier. Caution is necessary when correlating the

results of two unrelated speech corpora in this way, but common to both are that

the speech is intelligible, and that the post-recording processing system is similar.
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Figure 5.30: Alternative Rules for the Selection of the Speech and Silence Training Data

Part A shows the rules for the selection of training data for the MP3 tests, and Part B the rules for the
selection of training data used for the main part of this work. Counter intuitively the rules shown in Part B
seem to provide the better classification performance; though the evidence for this is tenuous. A similar
result was found many years earlier by Ghiselli-Crippa and El-Jaroudi [1991]. The rules for the selection
of training data for the MP3 tests are fully described in Appendix C.3, and the rules for the selection of the
training data used for the main part of this work in Section 4.7.

The most consistent failure mode of the DetermClassification process was the

deletion of weak consonants at the end of blocks of speech; and this is indicative of

a possible problem with comparing the RMS magnitude of a ‘prototype’ clause

with the RMS magnitude of short potential clauses. That is, the consonants at the

end of speech blocks can be preceded by an imperceptible silence or near silence,

and if the DetermClassifier recognises this as silence, then the consonant is ‘separate’

from the block of speech, is tested as a potential clause, and may be rejected. So it

is possible to explain how weak consonants can be deleted by the DetermClassifier.

The most common failure mode for the DNN Classifier was the detection of

silences during voiced speech. With knowledge of earlier work by Ghiselli-Crippa

and El-Jaroudi [1991] — who found that the performance of their system for

voiced/unvoiced/silence discrimination improved when they included the

transitional silence/speech data in their training set — it was surmised that these

failures were also possibly due to the training data strategy, where the ambiguous

data around the speech/silence decision point was excluded from the training data

set (Figure 5.30A). In a comparison of the test results of the main body of this

work — where the ambiguous data around the silence/speech decision points was

included in the training data (Figure 5.30B) — with the results of the experiment
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described in Appendix C, it was found that the incidence of erroneous silence

detection during voiced speech was substantially lower for the former than for the

latter; and this tends to support the findings by Ghiselli-Crippa and El-Jaroudi

[1991], that the ambiguous data at the speech/silence and silence/speech

transitions is better included in the training data set.

5.8 Discussion

This work differs with most other work in the field in three respects. The first is

the feature set (or speech model), the second is the two step classification process,

and the third is the intent — fully automated silence detection. One paper which

atypically addresses all of these is by Deng and O’Shaughnessy [2007], where the

authors achieved a voiced-unvoiced-silence detection accuracy that was greater

than 91.15 %, and a VAD accuracy that was greater than 97.45 %. Note that

Deng and O’Shaughnessy used unsupervised learning from the actual data being

classified, and so did not require a training data set.

Works by Wei and Yanpu [2005] and Ghiselli-Crippa and El-Jaroudi [1991] also

has some similarities with the work herein. Wei and Yanpu [2005], selected the

harmonics with the greatest signal to noise ratio from the noisy speech input, and

then regenerated the speech audio using only those harmonics. They took no

cognizance of Bark bands and masking, so their audio model is not the perceptual

model. Additionally they expressed their results in the form of improvements in

the signal to noise ratio, hence there is no basis for a comparison of results.

Ghiselli-Crippa and El-Jaroudi [1991] obtained with their tri-state ANN classifier,

an accuracy of between 95.31 to 96.63%. That said, the authors were concerned

particularly with the training algorithm, and manually built their training data.

Their best performance was with a training data set which included transitional

frames (those difficult to classify), and the results herein duplicate Ghiselli-Crippa

and El-Jaroudi’s findings, in this respect.
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Chapter 6: Conclusions

The purpose in this work was to research and develop methods for identifying

the silence pauses in pre-recorded continuous speech, and the early work involved

an investigation into a deterministic speech/silence classifier, the DetermClassifier.

The results of this investigation — presented in Chapter 5 — confirmed the

findings of other researchers that there is an issue with the discrimination between

unvoiced speech and silence. So, although the DetermClassifier correctly identified

typically more than 86% of the unfilled perceived silence pauses it did not compare

well with other speech/silence classifiers, except in one important respect: though

it would only detect a percentage of silence pauses, it did so with certainty; and

this was deemed enough to facilitate the generation of training data for a second

speech/silence classifier.

Reasoning that we as individuals are very capable speech/silence discriminators,

it was decided that the psychoacoustics model of speech provided the greatest

possibilities. So the LogFBdynamic speech model was devised, and in keeping with

the human perception paradigm, it was decided to use a Supervised Artificial

Neural Network as the second speech/silence classifier.

Whereas the DetermClassifier was perhaps more the result of development than

research, the LogFBdynamic evolved from a synthesis of ideas. Fletcher [1940]

described how the frequency response of the cochlea (the mechanical to

neurological transducer within the ear) is fixed, and Egan and Hake [1950]

confirmed that the masking effect tracks the instantaneously most powerful

harmonics. Although later Zwicker [1961] was a little ambiguous on whether the

critical bands might be statically bounded — and no evidence of such bounds has

so far been found — his formalisation of the idea of critical bands included the

Bark scale; and from this it may be supposed that the minimum number of critical

bands required to effectively span the audio spectrum is the number of Bark bands
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as defined by Zwicker. There is some empirical evidence that this might be the

case, in that the partitions for the perceptual model for the successful MP3

Decoder were selected to be, “Roughly equivalent to the critical bands of human

hearing” — Brandenburg [1999]. Accordingly two hypotheses were formed as

follows:

6.1 Hypotheses

• First Hypothesis: An audio model based upon an interpretation of the

psychoacoustics model of hearing will include sufficient information to

facilitate the recognition of silence in speech.

• Second Hypothesis: A deterministic speech/silence binary classifier can

provide enough information to facilitate the generation of accurate speech

and silence training data, such that the errors in classification by the

deterministic classifier can be eliminated by a subsequent supervised

classification process which uses a psychoacoustics audio model.

6.2 Contribution

The results (see Chapter 5) showed that the DNN Classifier — when trained

with data generated by the DetermClassifier — correctly identified the silence

pauses that the DetermClassifier had incorrectly classified as speech, and support

both hypotheses; as do the results presented in Appendix C.

The first contribution — and one that is central to this work — is the

LogFBdynamic speech representation. This model differs in key respects with

existing speech models in that it:

• was conceived as a unified dynamic model which could operate with a higher

temporal resolution than other unified models, such as the MFCCs family of
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speech models.

• used a variation of the log filter-bank which did not use overlapping filters.

• incorporated an approximation of simultaneous dynamic masking.

The second, and the lesser of the two contributions, was the refinement of a two

stage speech silence classifier so that it comprised a deterministic classification

followed by a supervised classification. In fact the deterministic classifier itself

included separate processes to identify voiced and unvoiced speech, so conceptually

— though not in the realisation — had some similarities with the work of Qi et al.

[2004]. A key characteristic of the DetermClassifier is that it can reliably detect a

high percentage of pauses; and this is of importance because certain knowledge of

the temporal locations of the silence pauses is essential when generating the

training data for any supervised pattern matching system. (It is self evident that

the time before and after known silence pauses is not silence, and this provides a

means of accurately selecting the training data.)

Not only did the combination of the DetermClassifier with the LogFBdynamic and

the DNN Classifier automatically identify the location of unfilled silence pauses, it

also identified the location of some of the filled silence pauses plus many brief

moments of silence associated with stop consonants. Unfortunately the silences

associated with the filled pauses are very short; and within the context of this

work there is no automated method for identifying whether a short silence is at a

stop consonant or at a filled pause. (The identification of stop consonants falls

within the area of automatic speech recognition, and the identification of filled

pauses is a research area in its own right; and neither of these falls within the

scope of this thesis.)

In consideration of the specific application areas identified in the introduction,

with some further work the speech/silence classifier might be suitable for data

compression, speech analysis, and creating the silence model for forced alignment,

but is less suitable for the ‘ASR automatic insertion of punctuation’ activity.

The LogFBdynamic speech model, although a departure from much of the work in

the Literature, performed well enough to justify its use for the recognition of
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silence in speech; so the research question on whether an alternative to the existing

methods of discriminating between speech and silence exists has been answered in

the affirmative.

6.3 Future Work

One future activity might be to change the LogFBdynamic model by

incorporating frequency normalisation as well as magnitude normalisation. The

purpose in this would be to investigate whether the model would then contain

enough of those elements of speech that are common to all speakers, to facilitate a

more general classification capability.

A second activity might be to research whether the noise immunity, and hence

performance of the system shown in Figure 1.2 could be improved by adding the

capability for the selection of the ‘optimal’ trained DNN.

A third activity might be to investigate whether the combination of the

DetermClassifier with the DNN Classifier would be suitable for the detection of

other ‘Robust Categorical Features’ of speech (Lea [1986]) — such as sibilants.

Ultimately this might support a technique for synchronising recorded speech with

text by using the detected silence to delineate phrases, and the robust categorical

features to identify specific words.
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Appendix A: Bark Band Ada Specification

This Ada specification defines the harmonics used in coding the Bark bands and

illustrates that with a 30ms DFT window the first 5 bands are constructed from

three harmonics each. Although this imposes a limit on the accuracy for the lower

Bark bands, there remains some scope for implementing masking.

The harmonic frequency is the harmonic number multiplied by 33.33rec Hz.

SAMPLES_IN_10mS : constant := 441;

SAMPLES_IN_30mS : constant := SAMPLES_IN_10mS * 3 ;

type Valid_Harmonics_Index_Type

is range 0..((SAMPLES_IN_30mS)/2 - 1); (Shannon [1949])

type AudioFeatureType is

(Bark_B1, Bark_B2, Bark_B3, Bark_B4,

Bark_B5, Bark_B6, Bark_B7, Bark_B8,

Bark_B9, Bark_B10, Bark_B11, Bark_B12,

Bark_B13, Bark_B14, Bark_B15, Bark_B16,

Bark_B17, Bark_B18, Bark_B19, Bark_B20,

Bark_B21, Bark_B22, Bark_B23, Bark_B24);

Harmonic_Rnge_Frst : Constant Valid_Harmonics_Index_Type := 1;

Harmonic_Rnge_Last : Constant Valid_Harmonics_Index_Type := 2;

type Valid_Harmonics_Range_Type

is array (Harmonic_Rnge_Frst..Harmonic_Rnge_Last)

of Valid_Harmonics_Index_Type;

type Valid_Harmonics_Range_Arr_Type

is array(AudioFeatureType)

of Valid_Harmonics_Range_Type;
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Valid_Harmonics_Range_Constants : Valid_Harmonics_Range_Arr_Type :=

(Bark_B1 =>(Harmonic_Rnge_Frst => 1, Harmonic_Rnge_Last => 3),

Bark_B2 =>(Harmonic_Rnge_Frst => 4, Harmonic_Rnge_Last => 6),

Bark_B3 =>(Harmonic_Rnge_Frst => 7, Harmonic_Rnge_Last => 9),

Bark_B4 =>(Harmonic_Rnge_Frst => 10, Harmonic_Rnge_Last => 12),

Bark_B5 =>(Harmonic_Rnge_Frst => 13, Harmonic_Rnge_Last => 15),

Bark_B6 =>(Harmonic_Rnge_Frst => 16, Harmonic_Rnge_Last => 19),

Bark_B7 =>(Harmonic_Rnge_Frst => 20, Harmonic_Rnge_Last => 23),

Bark_B8 =>(Harmonic_Rnge_Frst => 24, Harmonic_Rnge_Last => 27),

Bark_B9 =>(Harmonic_Rnge_Frst => 28, Harmonic_Rnge_Last => 32),

Bark_B10 =>(Harmonic_Rnge_Frst => 33, Harmonic_Rnge_Last => 38),

Bark_B11 =>(Harmonic_Rnge_Frst => 39, Harmonic_Rnge_Last => 44),

Bark_B12 =>(Harmonic_Rnge_Frst => 45, Harmonic_Rnge_Last => 52),

Bark_B13 =>(Harmonic_Rnge_Frst => 53, Harmonic_Rnge_Last => 60),

Bark_B14 =>(Harmonic_Rnge_Frst => 61, Harmonic_Rnge_Last => 70),

Bark_B15 =>(Harmonic_Rnge_Frst => 71, Harmonic_Rnge_Last => 81),

Bark_B16 =>(Harmonic_Rnge_Frst => 82, Harmonic_Rnge_Last => 95),

Bark_B17 =>(Harmonic_Rnge_Frst => 96, Harmonic_Rnge_Last => 111),

Bark_B18 =>(Harmonic_Rnge_Frst => 112,Harmonic_Rnge_Last => 132),

Bark_B19 =>(Harmonic_Rnge_Frst => 133,Harmonic_Rnge_Last => 159),

Bark_B20 =>(Harmonic_Rnge_Frst => 160,Harmonic_Rnge_Last => 192),

Bark_B21 =>(Harmonic_Rnge_Frst => 193,Harmonic_Rnge_Last => 231),

Bark_B22 =>(Harmonic_Rnge_Frst => 232,Harmonic_Rnge_Last => 285),

Bark_B23 =>(Harmonic_Rnge_Frst => 286,Harmonic_Rnge_Last => 360),

Bark_B24 =>(Harmonic_Rnge_Frst => 361,Harmonic_Rnge_Last => 465));
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Appendix B: An Experiment with Simultaneous Masking

Introduction

To investigate masking, Egan and Hake [1950] employed a rigorous approach

that was intended to substantiate the laws of perception; and though their results

clearly demonstrated simultaneous masking, they also showed the mechanisms of

perception to be variable. Rather than repeat Egan and Hake’s method of masking

a tone with a narrow band of noise, here a simplified method of measuring the

effect of a powerful pure tone on a nearby less powerful pure tone was evaluated.

The rationale for the test was that the level of masking at any particular

frequency would be similar to the level of the unmasked waveform (i.e unaffected

by the Masker) plus the amount of boost that must be provided to the masked

waveform to maintain the same datum — which is the level at which the

potentially masked waveform just ceases to be audible.

Method

The experiment used a masker sine-wave of 570 Hz (Bark band 6 centre

frequency) of magnitude of ∼ -5.0 dB and a (potentially masked) sine-wave which

was variable in magnitude in steps of between -20 and -52 dB. (The reference level

of 0dB was arbitrarily chosen to be 2ˆ13.) The masker/masked sine waves

comprised approximately six seconds of the masker, with the potentially masked

waveform added into the middle two seconds. Thus should the lesser of the two

tones not be masked, then a transition and change in the sound would be

perceived in the middle of the test.

The experiment was mechanised by having multiple copies of the masker/masked

waveform, and then listening to them in order of -20dB down to -52dB to the level
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at which the potentially masked waveform was no longer perceptible, and

recording the level above this. This entire process was repeated for all potential

masked frequencies in steps of 10 Hz between 360 Hz and 840 Hz.

Results

Figure B.1 shows the extent for which it was necessary to boost each of the

frequencies such that they were each just perceptible.

Figure B.1: Simultaneous Masking About 570 Hz Centre Frequency.

The boost required to frequencies about a Bark band centre frequency of 570 Hz (the masker), with
concomitant Bark band limits of 510 Hz and 630 Hz indicated by the red vertical bars. That there is a step
change in the amount of boost that must be applied at 510 Hz and 650 Hz (6 dB and -3.8 dB respectively)
provides some evidence of the Bark (critical) band. Note though that the overall masking effect extends
well beyond 510 Hz to 630 Hz.
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Limitations of the Experiment

With this test, when the potentially masked sine-waves were nearer than about

15 Hz to the masker frequency then a beat frequency was clearly audible. So the

test cannot be used to ascertain the effects of masking when the frequency of the

potentially masked tones is near to that of the masker.

The correctness of the test frequencies was verified with a spectrum analysis of

the mixed frequency part of the test audio (see Table B.1), but otherwise the test

system was not calibrated, nor was an independent method of measuring the

sound level used. So the results are ad hoc, and can only be used to add a measure

of support to the work of others.

The performance of the frequency generator was verified by using the Audacity® [2014] Spectrum
Analyser automatic peak tracker on the second greatest peak in the spectrum, using an FFT window size of
4096 samples.(It was not possible to discriminate the spectral peaks at frequencies of 560Hz and 580Hz
from the masker peak of 570Hz.)

Table B.1: Masking Test Frequencies as Verified by Spectrum Analysis

Discussion

The psychoacoustic effect of simultaneous masking is clearly observed in the

results, where the magnitude of the potentially masked frequency must be

increased if it is to be just barely audible, as the frequency of the potentially

masked waveform is stepped nearer to that of the masker.
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When the potentially masked frequency is within a few Hz of the masker a beat

frequency is audible, and thus it is not possible to estimate the level of masking.

However although the potentially masked frequency may or may not be masked,

the beat frequency is perceived by the subject and so the potentially masked

frequency still maintains a presence in the perceived audio.

It is not always possible to know whether the combination of the masker with

the just perceptible masked frequency is correct. i.e. Perceiving whether or not the

masker carries a second frequency is far less difficult than perceiving the actual

nature of the second frequency.

That there was a step change in the amount of boost required at the lower and

near the upper Bark band limits of 510 Hz and 630 Hz (510 Hz and 650 Hz as

measured) provides some evidence of the Bark (critical) band; but the full extent

of the upper frequency masking encompasses half of band 6 plus most of band 7,

whereas the lower masking encompasses half of band 6 plus most of band 5.

In conclusion then, the psychoacoustic effect of masking can be demonstrated to

an extent using just two pure tones, but it is not possible with this method of

forming a total picture of just what is going on. The results of Egan and Hake

[1950] (Figure 1) show the extent of masking is not only a function of frequency

but is also a function of magnitude, and since these are both linearly variable then

there must exist an infinite number of masking scenarios — even with just two

tones.

150



Appendix C: Experiments with MP3 Compressed Speech

C.1 Introduction

This work differs from that presented in the main body of the thesis in several

key respects:

• The speech corpus was encoded in the MP3 Lossy Compression Audio

Format. A requirement of the relevant standard (MP3-Standard [1995]) is

that MP3 encoded audio is capable of being correctly decoded by the

Standardised Decoder; and although the Standard provides descriptions of

suitable psychoacoustics models there is no requirement to use these models.

This means that the configuration of the psychoacoustics models for any

given MP3 audio source is unknown. The LogFBdynamic implements a greatly

simplified psychoacoustics model, and though it seems intuitively correct

that it is merely duplicating part of the MP3 psychoacoustics processing, the

extent to which the processes conflict is unknown.

• A different paradigm was used for selecting the speech and silence training

data.

• A 3 layer supervised ANN was used as the final speech/silence binary

classifier.

• Natural logarithms were used throughout for generating the log energies

(except for the Signal to Noise ratio calculations).
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C.2 Selection Of Corpus

The test corpus comprised 8 extracts from ‘talking’ books; and these were read

by four adult females and four adult males. The eight extracts — each with a

different signal to noise ratio — were all of about 15 minutes duration, and were

sectioned into train, validate and test data sets, to support split sample testing.

(Table C.1)

Test-Case ∼Noise
Level

Train Validate Test

TC1-N (F) 37.6 dB Pt1 305.931 Pt3 342.234 Pt2 285.261
TC2-C (M) 37.9 dB Pt1 303.725 Pt2 296.489 Pt3 304.596
TC3-J (M) 43.6 dB Pt2 300.566 Pt3 312.322 Pt1 299.401
TC4-L (M) 41.6 dB Pt1 301.355 Pt2 299.473 Pt3 306.693
TC5-D (F) 34.8 dB Pt3 313.737 Pt1 301.024 Pt2 300.892
TC6-T (M) 35.6 dB Pt3 334.680 Pt1 301.209 Pt2 300.888
TC7-W (F) 58.1 dB Pt1 301.662 Pt3 435.211 Pt2 306.383
TC8-JE (F) 25.2 dB Pt3 320.457 Pt2 303.489 Pt1 297.339

The texts and the audio were divided into three approximately equal parts and then the parts were assigned
to be one of Training, Validate or Test data.
The number following the speech part identifier is the duration of that part in seconds. (The ordering of the
parts as training data, validation data and test data was varied to negate the effect of any systematic variation
in the speech as the recording progressed.)

Table C.1: Partitioning of the Test-Cases into the Training, Validation and Test Data Sets

Format of the Speech Files

To ensure that the software processing would not artificially limit the bandwidth

or otherwise compromise the quality of the recordings, the DetermClassifier, the

LogFBdynamic and the ANN Classifier were coded to accept only recordings in the

44100 sps, 16 bit signed, uncompressed WAVE Format. To accommodate this, all

of the MP3 speech recordings were re-sampled to the WAVE Format (without

recourse to the acoustic domain), using a DP004 digital recorder (Tascam™ [2017]).

This method was used in preference to using some proprietary conversion utility

because it eliminated any direct digital to digital conversion with attendant

potential for aliasing or corruption of the recording.
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C.3 ANN Training Data Preparation

There are areas of ambiguity around the start and end of all silences identified

by the DetermClassifier. and Figure C.1 identifies this ambiguous data — which is

excluded from the training data set — and the speech and silence training data.

The ambiguous data blocks are each arbitrarily allocated a duration of 90ms, and

the speech training data blocks each a duration of 500ms. The duration of the

silence training blocks are equal to the durations measured by the Non-Statistical

Silence/Speech Classifier minus the duration of one ambiguous data block. The

ambiguous data is not used for training.

The purpose of this approach is to reduce to some extent the conflict which will

arise when silence like data appears in the speech training data and vice versa.

Figure C.1: Speech and Silence Qualifiers for Supervised Training.
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C.3.1 Configuration

The ANN was configured with 27 input neurons, 1 hidden layer of 54 neurons

with the sigmoid activation function (range 0.0–1.0), and 1 output neuron; and

trained using the Resilient Propagation (RPROP) back-propagation algorithm

(Reidmiller and Braun [1993]). The configuration of the input layer was dictated

by the number of terms in the speech model, and of the output layer by the

requirement for an unambiguous speech/silence binary decision. For the hidden

layer five potential configurations were tested; and the configuration that was

adopted — 1 hidden layer of 54 neurones — provided the most consistent

classification results (i.e. duration of detected silence) for 4 complete

training/execution cycles with the TC1-N data-set. The other configurations

tested comprised, 1 hidden layer of 13 neurones, 1 hidden layer of 27 neurones, 1

hidden layer of 81 neurones, and 2 hidden layers each of 27 neurones.

The speech endpoint ambiguity span and the speech onset ambiguity span were

both fixed at 90 milliseconds, and the silence example span, and clause example

span were both set to a maximum of 500 milliseconds.

C.3.2 Test Method

With the exception of how the speech and silence training data was defined, and

excluding the generalisability and consistency tests, the test method was as

described in Section 4.8.2.
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C.4 Results

C.4.1 The DetermClassifier

There were no instances of false clause starts for any of the test-cases. That is,

all instances of early clause onsets culminated in speech segments. Thus all of the

silence pauses for all test-cases — when set to true zero on the speech recordings

— were free of noise.

Where a test-case is marked to be non-viable as a speech recording, this means

that part of a word, or many trailing consonants are missing, such that a listener

would notice the errors.

Auto-Detected Silence Pauses Vs Perceived Silence Pauses: Insertions and Deletions;

For the DetermClassifier:

Table C.2 compares the Silence Pause total from the DetermClassifier with the

Perceived Silence Pauses, and also identifies the total of extra silence detections:

that is silences that are not perceived as such by the listener such as those

occurring at stops.

Test-Case Perceived
Pauses
(Ground-
Truth)

Auto
Detected
Silence
Pauses

Filled
Silence
Pauses

Silence Pause
Deletions

Silence Pause
Insertions

TC1-N 110 101 2 7 (6.36%) 14
TC2-C 143 137 4 2 (3.5%) 24
TC3-J 120 105 1 14 (11.67%) 34
TC4-L 90 68 0 22 (24.5%) 2
TC5-D 118 106 0 12 (9.3%) 22
TC6-T 99 81 0 18 (19.2%) 44
TC7-W 114 107 0 7 (5.2%) 15
TC8-JE 106 96 0 10 (9.5%) 48

Table C.2: Silence Insertions and Deletions for the DetermClassifier
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Auto Detected Silence Pauses Vs Perceived Silence Pauses: Pauses Start and End

temporal Accuracy; For the DetermClassifier

Table C.3: Silence Pause Start and End Measurement Accuracy: DetermClassifier.

Table C.3 is the result of a comparison of the silence pause start and end times

as detected by the DetermClassifier with those of the perceived silence pauses.

Classification Failures for the DetermClassifier:

The failures of classification for each of the test-cases are described below, and

the failure data is collated in Table C.4.

1. TC1-N:

Trailing Consonant Deletions : 1 – /t/

2. TC2-C:

Trailing Consonant Deletions : 10 – /t/, /t/, /k/, /k/, /k/, /t/, /s/, /k/,

/ge/, /ge/.

3. TC3-J:

Trailing Consonant Deletions : 6 – /d/, /p/, /k/ (i.e. /c/ in arithmetic), /t/,

/d/, /t/.
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‘Ting’ missing at the end of the phrase, ‘To be kept waiting.’

‘Ter missing at the end of the phrase, ‘A glass of water.’

4. TC4-L:

—

5. TC5-D:

Trailing Consonant Deletions : /ts/, /ps/, /t/, /tch/, /ps/.

6. TC6-T:

Trailing Consonant Deletions : 1 – /p/.

‘And saying there was the sort of man’ missing at the end of the recording.

7. TC7-W:

—

8. TC8-JE:

Trailing Consonant Deletions : /tt/, /s/, /ce/, /k/, /s/, /sa/, /s/, /s/, /ce/,

/x/, /ch/.

‘Night’ missing at the end of the phrase, ‘Early that night.’

‘It’ missing mid phrase in , ‘Liked it better.’

‘Ted’ missing at the end of the phrase, ‘Where I knew she was not wanted.’

‘Nts he’ missing mid phrase in , ‘What presents he brought her.’

‘Sake’ missing at the end of the phrase, ‘Parting keepsake.’

‘Piece’ missing at the end of the phrase, ‘two on the mantelpiece.’

Test-Case Deleted
Consonants

Deleted
Syllables or
Words

Deleted
Clauses

Viable?

TC1-N (F) 1 0 0 Yes
TC2-C (M) 10 0 0 Yes
TC3-J (M) 6 2 0 No
TC4-L (M) 0 0 0 Yes
TC5-D (F) 5 0 0 No
TC6-T (M) 1 0 1 No
TC7-W (F) 0 0 0 Yes
TC8-JE (F) 11 6 0 No

Table C.4: Errors for the DetermClassifier.
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C.4.2 ANN Classifier

Auto-Detected Silence Pauses Vs Perceived Silence Pauses: Insertions and Deletions.

For the ANN Classifier

Table C.5 shows the Perceived Silence Pauses Vs the Silence Pauses

automatically detected by the Supervised ANN Classifier. Note that in Table C.5

— Silence Insertions, a single count is used to represent what may be a cluster of

short silence bursts in the same location.

Test-Case Perceived
Pauses
(Ground-
Truth)

Auto
Detected
Silence
Pauses

Filled
Silence
Pauses

Silence Pause
Deletions

Silence Pause
Insertions

TC1-N (F) 110 107 2 1 (0.91%) 253
TC2-C (M) 143 138 4 1 (0.7%) 148
TC3-J (M) 120 119 1 0 196
TC4-L (M) 90 89 0 1 (1.11%) 214
TC5-D (F) 118 118 0 0 490
TC6-T (M) 99 99 0 0 276
TC7-W (F) 114 112 0 2 (1.75%) 224
TC8-JE (F) 106 106 0 0 540

Table C.5: Silence Insertions and Deletions for the ANN Classifier

Auto-Detected Silence Pauses Vs Perceived Silence Pauses: Pauses Start and End

temporal Accuracy. For the ANN Classifier:

Table C.6 indicates a measure of the accuracy of the silence-pause starts (speech

endpoint detection) and silence pause ends (speech onset detection) for the

Supervised ANN Classifier.

Tables C.4 and C.7 are the results of a qualitative assessment of the speech.

Classification Failures for the ANN Classifier

For the Supervised ANN Binary Classifier (Table C.7) although there was only

one deleted consonant, for TC1-N, TC2-C, and TC4-L there were a few degraded

trailing /s/ consonants, and particularly for TC6-T and TC8-J there was

uncertainty in the location of silence associated with the fricative consonant /f/.
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Table C.6: Silence Pause Start and End Measurement Accuracy for the ANN Classifier.

Additionally, for all test-cases, there were a few erroneous silence insertions in

what was clearly speech. These silence insertions, most with a duration of less

than 5 mS — and some as short as 1 mS — are audible. There were also inaudible

silence insertions in the lower energy sections of dwindling weak unstressed sounds

at the end of clauses.

1. TC1-N:

16ms burst of silence insertions in the word ‘He’.

16ms silence insertion in the word ‘Easy’.

8ms silence insertion in the word ‘Dear’.

1ms silence insertion in the word ‘Beg’.

1ms silence insertion in the word ‘Afternoon’.

2. TC2-C:

1ms silence insertion in the words ‘I have’.

1ms silence insertion in the word ‘Afternoon’.

13ms burst of silence insertions in the words ‘A happy’.

3. TC3-J:

1ms silence insertion in the word ‘Harry’.

4. TC4-L:

1ms and 2ms silence insertions in the word ‘No other’.
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5. TC5-D:

28ms burst of silence insertions in the word ‘That’.

6. TC6-T:

None.

7. TC7-W:

12ms silence insertion in the words ‘Get’.

23ms burst of silence insertions in the word ‘Were’.

1ms silence insertion in the word ‘If’.

8. TC8-JE:

None.

Test-Case Deleted
Consonants

Deleted
Clauses

Viable?

TC7-W (F) 0 0 Yes
TC3-J (M) 0 0 Yes
TC4-L (M) 1 0 Yes
TC2-C (M) 0 0 Yes
TC1-N (F) 0 0 Yes
TC6-T (M) 0 0 Yes
TC5-D (F) 0 0 Yes
TC8-JE (F) 0 0 Yes

Table C.7: Errors for the ANN Classifier

C.5 Conclusion

Against all measures, the performance of the ANN Classifier exceeded that of

the DetermClassifier; and in absolute terms, the ANN Classifier correctly identified

better than 98% of the silence pauses for all eight test-cases. However, the original

source for the audio recordings have available many thousands of different works,

read by several thousand individuals; and so with only eight recordings read by

eight individuals the results are not statistically significant. What is of significance

is that of the two part classification process, it is the DetermClassifier which suffers

increasing error with increasing noise, whereas the DetermClassifier/ANN Classifier
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exhibits no particular sensitivity to noise. That is, for the latter case, there seems

to be no correlation between the classification accuracy and the signal to noise

ratio of the original source. Further to this the performance of both classifiers

exhibits no dependency upon the gender of the speaker.
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Appendix D: The CD ROM

The test-case directory and file structure is as shown in Table D.1; and for each of

the test-cases the following information is included.

File Type A: Original Audio Source

File Type B: The Audio Model Data

File Type C: The text of the Original Audio Source

File Type D: Filtered Audio with the locations of the silence pauses as detected

by the DetermClassifier overwritten with zero.

File Type E: The trained DNN.

File Type F: The Original Audio Source after it has been decomposed into

harmonics, and reconstructed less the first few harmonics. (As defined in Table

4.4.)

File Type G: Filtered Audio with the locations of the silence pauses as detected

by the DNN Classifier overwritten with zero.

Note that *.dat and *.net files are readable text files.

The result of the DetermClassifier is demonstrated in File Type D.

The outcome of the process is File Type E, the trained DNN, and the efficacy of

the trained DNN as a classifier is demonstrated in File Type G.
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Table D.1: CD File Structure
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Appendix E: The Development Environment

Primary Development Environment:

ASUS™ N55S Laptop (ASUSTek Computer Inc) with an Intel® Core™ i7-2670QM

CPU @ 2.20GHz (Intel Corporation), running the Windows™ 7 Home

Premium/Service Pack 1, 64 bit Operating System (Microsoft Corporation).

Alternative Development Environment:

Viglen™ Desktop (XMA Ltd.) with an Intel® Core™ i7-3770S CPU @ 3.40GHz

(Intel Corporation), running the Windows™ 7 Enterprise, 64 bit Operating System

(Microsoft Corporation).

Support/Backup Development Environment:

ASUS™ Desktop (ASUSTek Computer Inc) with an Intel® Core™ i7-3770S CPU @

3.10GHz x 8 (Intel Corporation), running the CentOS™ 7 (Red Hat Inc.) 64 bit

operating System.

Archive:

Standalone Seagate 3.63 TB HDD (Seagate Technology LLC) using the NTFS File

System (Microsoft Corporation).

Thesis Preparation:

This document was prepared using LaTeX release MikTex Version 2.9

(https://miktex.org © 2018 Christian Schenk) with TexStudio Version 2.12.4 (©

van der Zander et al. http://www.texstudio.org/), with many tables and graphs

imported from Microsoft Office 2013 (Microsoft Corporation), and Figure 3.5

imported from GNUPlot Version 5.0 patchlevel 3 (© 1986-1993, 1998, 2004,

2007-2016, Thomas Williams, Colin Kelley and many others.

http://www.gnuplot.info)
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Glossary

Abbreviations and Acronyms :

ANN Artificial Neural Network
ASR Automatic Speech Recognition
CD Compact Disk
CSSD Cumulative Sample Standard Deviation
dB Decibel
DCT Discrete Cosine Transfer
DFT Discrete Fourier Transfer
DNN Deep Neural Network
FFT Fast Fourier Transform
ERB Equivalent Rectangular Bandwidth
F0 Fundamental Frequency (of Voiced speech)
HMM Hidden Markov Model
LPC(C) Linear Predictive Coding (Coefficients)
MFC(C) Mel Frequency Cepstrum (Coefficients)
MLP Multi Layer Perceptron
MSE Mean Squared Error
PDF Probability Density Function
RBFN Radial Basis Function Network
ROM Read Only Memory
RCF Robust Categorical Features
RMS Root (of the) Mean (of the) Squared
RPROP Residual Propagation
S/N Signal to Noise (Ratio)
SPS/sps Samples Per Second
SSD Sample Standard Deviation
SVM Support Vector Machine
TC Test-Case
VAD Voice Activity Detection

Acoustic Frequency Scale (Johnson [2012]) : A linear scale for measuring measured

frequency in cycles per second in SI units of Hertz (Hz)

Aperiodic (Chambers [1999]) : No periodicity; decaying to rest without oscillation.
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Auditory Frequency Scale (Johnson [2012]) : Any non linear scale for representing

frequency that is based upon the empirically derived frequency response of the

human auditory physiology. e.g. The Bark and Mel frequency scales.

Autocorrelation coefficient : In the Oxford Dictionary of Computing [2008] Pg.

114, correlation is defined to be the degree to which two random variables are

associated. Autocorrelation refers to the specific case where the correlation is

between one variable and a later version of itself. According to Huang et al. [2001]

Pg. 324, autocorrelation is commonly used in the estimation of pitch.

Baseline : “...a standard of comparison” — Chambers [1999].

Bayesian Classifier (Mlodinow [2009])(Virtanen et al. [2013]) : Based upon the

presumption that with full cognizance of the circumstances that surround a

problem, the most probable solution identified will be the correct solution. In

probability theory, when new information about a problem becomes available, then

that information can be used to reduce the sample space (by limiting the

possibilities), and update probabilities. This is used in speech processing where as

each entity is identified, then the probabilities of what might follow are adjusted,

in accord with the rules of the juxtaposition of elements in speech - the language

model (also known as a finite-state or context free grammar, or a statistical

N-gram model).

Cepstrum : “The spectrum of the log of the spectrum.” — Jurafsky and Martin

[2009].

Corpus (corpora) : “... a body of literature, writings, etc; the main part of

anything...” —Chambers [1999].

Deterministic (Pg 142, Oxford Dictionary of Computing [2008]) : An algorithm,

the output of which is determined by the initial state and the inputs.

Diphthong (Chambers [1999]) : Two vowels pronounced as a single syllable (e.g. as

in the word ‘out’).
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Dynamic : “Capable of changing or being changed...” — Oxford Dictionary of

Computing [2008].

Excitation Function (pg 25: Gold et al. [2011]) : Speech may be viewed as the

sound which results when the sound produced by the vibration of the vocal chords

(the Excitation Function) is modified by the configurable resonances and

obstructions in the vocal tract.

Fricative (Johnson [2012]): Turbulent aperiodic sound which is the result of airflow

through constrictions in the vocal tract.

Fuzzy Logic (Pg 214 Oxford Dictionary of Computing [2008]) : Rather than

constraining logic to the states of TRUE or FALSE, Fuzzy Logic provides a

multi-valued logic where the logic can indicate the degree of truth.

Forced Alignment: See Viterbi.

Formant : Formants are resonances in the vocal tract. According to Johnson

[2012] (pg 142) vowels may be distinguished from one another by comparing the

frequencies of the first and second of the formants.

Generalise : “...to comprehend as a particular case within a wider concept,

proposition, definition etc...” — Chambers [1999].

Glottal Source: (Pg. 255, Jurafsky and Martin [2009]). The vocal folds.

Heuristic: (Chambers [1999]) “consisting of guided trial and error”; “depending on

assumptions based on past experience”.

Monotonic: “(of a function or sequence) having the property of either never

increasing or never decreasing (math)” — Chambers [1999].
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MP3 Lossy Audio Compression Format (Brandenburg [1999]): MP3 is the short

form for the Moving Pictures Experts Group MPEG 1/2 Layer 3 lossy audio

compression format (MP3-Standard [1995]). Lossy compression, is where

information that is not perceived by the listener because of the psychoacoustics

effect of masking, is removed from the audio. The intention with MP3 is to

compress the audio to the maximum whilst preserving the sound quality. The

psychoacoustics model — referred to by Brandenburg [1999], and in

MP3-Standard [1995] as the perceptual model — uses a filter-bank and generates

masking thresholds for each of the MP3 encoder partitions. These partitions are

approximately the same as the critical bands which span the audible frequency

range. The MP3-Standard [1995] describes two perceptual models, but these are

not prescriptive and the designer of an MP3 encoder is free to implement any

perceptual model, though Brandenburg [1999] writes, “A lot of experience and

knowledge is necessary to implement good quality MPEG audio

encoders.”.

Neurological (Oxford Dictionary of Computing [2008]) : Of the function and

structure of the brain.

Normalisation ( Oxford Dictionary of Computing [2008]) : The reorganisation of

data so that it conforms to a higher normal form.

NTIMIT : “...to provide a telephone bandwidth adjunct to TIMIT.” — Fisher

et al. [1993]

Paradigm : “A model or example of the environment” — Oxford Dictionary of

Computing [2008]; “a conceptual framework within which scientific theories are

constructed” — Chambers [1999].

Periodic : “...recurring regularly in the same order...” — Chambers [1999].

Pitch : “...the degree of acuteness of a sound that makes it a high or a low, etc,

note...” — Chambers [1999]
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Real-Time System (Oxford Dictionary of Computing [2008]) : “Any system where

the time at when the output is produced is significant.”

Sibilants (pg 155, Johnson [2012]) : The unvoiced fricative sounds, /s/ and /sh/.

Spectral Distortion (G.729 [2012]) : is a measure of the difference between the Line

Spectral Frequencies (as derived from the LPC coefficients) for the current frame

and the running average for the background noise.

Temporal (Chambers [1999]) : “relating to time”

TIMIT : “The TIMIT corpus of read speech is designed to provide speech data for

acoustic-phonetic studies and for the development and evaluation of automatic

speech recognition systems.” — Garofolo et al. [1993]

Tonotopic (Chambers [1999]) : According to the dictionary, one of the definitions

for tone is , “Rise or fall in pitch”, and the medical definition for topical is,

“Affecting only part of the body”. Hence tonotopical.

Gold et al. [2011] attribute the use of ‘tonotopic’ — for having bundles of nerves

that are sensitive to different frequencies — to H. von Helmholtz [1862]. That is

the concept of frequencies within separate bands being processed together gives

rise to the idea of the cochlea as a filter-bank.

Of the two definitions, the first perhaps better reflects the current usage of the

word, because the spatial arrangement of sound processing in the brain — where

different frequency bands stimulate different parts of the brain — may be labeled

as tonotopic (Moerel et al. [2012], Langers [2014]).

Transducer : “A device that transfers power from one system to another in the

same or in a different form.” — Chambers [1999].

Transient (Chambers [1999]) : A short term burst or spike of energy in a waveform.

Viterbi : Whilst progressing through a sequence of Hidden Markov Models, the

judgment on whether the ASR activity is correct is made by summing the
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probabilities of the individual states on the various paths, and the path with the

highest probability is accepted to be the correct solution. It can be seen that there

will be many paths, and to test these paths will involve many identical repeated

calculations. This is an optimal path problem and can be solved by dynamic

programming — using the Viterbi algorithm (Section 8.2.2 Huang et al. [2001]).

For Forced Alignment, the correct observable state/process templates are known in

advance and they are concatenated so that the Viterbi algorithm has only the

correct model from the outset and thus only one path to evaluate. Transitions at

phoneme boundaries in the model are timestamped and these can be used to

synchronise the speech with the phonetic transcript.

White Noise (pg 556, Oxford Dictionary of Computing [2008]) : Continuous in

time, and magnitude, with uniform energy levels over equal frequency intervals.

Zero Crossing Rate (pg 81, Lea [1986]): Low frequency voiced sounds such as

vowels have a much lower rate of zero crossings than high frequency unvoiced

sounds, and so in low noise conditions it is possible to obtain an indication of the

instantaneous frequency of voiced speech, and to discriminate between voiced

speech and fricatives on the basis of number of zero crossings as a function of time.

Wavelet Transform(Pg 7, Addison [2002]): The Mexican Hat (Figure 3.4) is one

example of a wavelet, and is defined as the second derivative of a Gaussian. The

result of the convolving of a wavelet with a Continuous Time Varying function

(CTV function) is a measure of the degree to which the frequencies in the wavelet

exist in the CTV function. That is, each wavelet operates as a passband filter

where the bandwidth of the filter is a function of the temporal duration of the

wavelet. So if the process of convolving the wavelet with the CTV function is

repeated for a set of wavelets each with a progressively shorter time span, then this

will result in a data-set which indicates to what extent each particular band of

frequencies exist in the CTV function. That is, the Wavelet Transform provides an

alternative to the Discrete Fourier Transform for obtaining the frequency spectrum

of a CTV function.
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