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Abstract 

Understanding the processes taking place within a reaction network are of critical 

importance, particularly for new product development in the chemical processing industries. 

With more data from new and unknown processes being collected, an efficient method of 

converting this data into useful information explaining the underlying chemistry would be 

desirable. Traditionally the method of identification of reaction kinetics was carried out 

manually using the integral and differential methods. However, when multiple and/or 

complex reactions are taking place these methods do not compute accurate values. This work 

takes these manual methods and uses Mixed Integer Linear Programming (MILP) to 

automate the identification of the stoichiometric and kinetic models of a simulation of a 

simplified biodiesel production reaction network under a variety of different conditions, and 

an experimental dataset of the thermal decomposition of 𝛼-pinene. 

The stoichiometries of the biodiesel production reaction network were identified under a 

variety of noise (0-5%) and measurement levels (2-75) using MILP using only concentration 

measurements as inputs. The results indicate that there is a minimum required number of 

measurements – 25 measurements for this experimental data, for the algorithm to identify 

stoichiometries. The quality of results also decreases once the amount of noise increases over 

approximately 2.5%, although it is still possible to find the stoichiometries above that point. 

The identification of chemical reaction kinetics of the biodiesel production reaction network 

is also achieved using MILP at a varying noise levels (0-5%) and number of measurement 

levels (2-75). It has shown that kinetic structures can be identified with only concentration 

measurements as inputs. As with the stoichiometric identification algorithm, the kinetics 

identification requires a minimum of 10 measurements to find an accurate model, but the 

algorithm is most effective when there is at least 30 measurements for this experimental 

dataset. Similarly once the noise level exceeds approximately 2.5%, the algorithm struggles 

to reliably identify kinetic models. 
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1. Chapter 1 Introduction 

1.1 Project background 

Understanding the processes taking place within a reaction network are of critical importance, 

particularly for new product development in the chemical processing industries. Generally, the 

development of new products involves several steps of experimentation, discovering 

production mechanistic routes, and confirmation. This is an important step in the production of 

any product as it will determine the efficiency – with respect to economics and resource 

management, and with a sustainable, environmentally aware approach too (Blau et al., 2000). 

Being able to identify the chemical processes taking place quickly and accurately is an 

important step along the road to development. This experimental procedure would typically 

involve the creation of large quantities of data. With more data from new and unknown 

processes being collected, an efficient method of converting this data into useful information 

explaining the underlying chemistry would be desirable. Traditionally the method of 

identification of reaction kinetics was carried out manually using the integral and differential 

methods. However, when multiple and/or complex reactions are taking place, these methods 

do not compute accurate values. Machine learning and optimisation techniques have been and 

are being used in an attempt to take advantage of this large quantity of data to identify chemical 

reactions and reaction networks. This work adds to the body of knowledge by implementing 

Mixed Integer Linear Programming (MILP) – a well-established optimisation technique that 

has been implemented successfully on many of the well-known benchmark test problems, to 

the identification of chemical reaction networks. 

 

1.2 Aims and Objectives 

The aims of this thesis are to develop an automatic method of identifying chemical reaction 

networks from concentration data using a mixed integer linear programming (MILP) approach. 

This includes the objectives: 

1. The identification of stoichiometric models of chemical reaction networks (CRNs), 

2. Identification of chemical reaction kinetics – including the kinetic structure and the 

kinetic coefficients of CRNs. 

1.3 Outline of thesis 

Chapter 1 - the literature review, starts with an overview of chemical reactions, stoichiometries 

and kinetics. This is followed with some basic reaction engineering to introduce the idea of a 



 2 

batch reactor. The literature review then continues to discuss the methods that have been 

attempted to automatically identify different elements of chemical reactions, and CRNs. 

Chapter 1 is the method results and discussion of an MILP approach to identify stoichiometric 

models under varying conditions, including the changing of the amount of noise and number 

of measurements used. 

Chapter 3 contains the method, results and discussion of an MILP approach to identify 

chemical kinetic structures and parameters. As with chapter 1, a variety of different conditions 

is considered, including noise levels and number of measurements.  

Finally, Chapter 5 is the conclusions which summarises the results and conclusions of this 

thesis and discusses potential future work to follow on from this work. 
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2 Chapter 2 Literature review 

2.1 Overview 

In this chapter an introduction to chemical reactions is presented. Including reaction 

stoichiometries, reaction kinetics and kinetic parameters. This is followed by a review of the 

methods that have been attempted in the identification of each of these fields. The benefits and 

limitations of each of these methods is discussed throughout. 

 

2.1  Introduction 

Chemical reactions are a core component of the production of pharmaceuticals, high value 

products and new product development, among other fields. To perform these reactions 

efficiently and safely, the modelling of chemical reactions and the relevant processes is 

essential. These models need to be accurate and precise to be used to predict the change in the 

quantity of any component in a reaction network. A variety of optimisation techniques have 

been applied to try to identify CRN stoichiometries, and kinetics. Throughout this chapter some 

of the most well-known techniques are evaluated and compared. 

 

2.2 Chemical Reactions 

Reaction kinetics  is the study of the dynamics of the change in chemical species (Aris and 

Mah, 1963). The study of Chemical reaction kinetics as we know it today started in the 

nineteenth century and was focused on empirical measurements of rates of chemical change of 

reactants into products(Hoff, 1884). Hoff (1884) summarised the overall reaction and is the 

first example of what we would today call a stoichiometric expression. However, in many cases 

this description of reactions is a simplified summary of what can be taking place, reaction 

mechanics and/or elementary reactions are often complex, and in some cases, the intermediates 

species can be difficult to detect without specific, sensitive sensors. Descriptions of reactions 

can come in a variety of forms, the two forms of interest in this work are stoichiometric 

descriptions and kinetic descriptions.  

 

2.2.1 Stoichiometric Models 

A Stoichiometric description often appears in the following form (Equation 2-1): 

𝜈1𝑥1 + 𝜈2𝑥2 → 𝜈3𝑥3 Equation 2-1 
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where 𝜈𝑖 is the stoichiometric coefficient associated with chemical species 𝑥𝑖. In this example 

𝑥1 and 𝑥2 are both being consumed by the reaction to produce 𝑥3. Traditionally The reactants 

of the reaction are on the left-hand side and the products are on the right-hand side with the 

coefficient values representing the proportion of each species relative to one another. However 

stoichiometric descriptions of reactions can be summarised in vector form (Equation 2-2). 

Similarly, there is a standard form to make the coefficients of the reactants negative, and the 

coefficients of the products are positive (Equation 2-2): 

 

[−𝜈1 −𝜈2 𝜈3] Equation 2-2 

To illustrate multiple reactions, the Van de Vusse CRN (Equation 2-3) and its stoichiometric 

matrix (Ν) (Equation 2-4) are show below: 

Ν = [
−1 1 0 0
0 −1 1 0

−2 0 0 1
] 

Equation 2-4 

 

The form shown in Equation 2-4 is the method of displaying the stoichiometry which 

will be used throughout this work. Where each column represents each species, and each row 

represents each individual, or elementary reaction of a reaction network. From this we can 

show that the stoichiometric matrix Ν is of dimensions with 𝑟 reactions, and 𝑐 components 

(Ν𝑟 × Ν𝑐). 

2.2.2 Reaction Kinetics  

Reaction kinetics are a mathematical method for describing the change in quantity of a 

component within a reaction. The rate of reaction can be influenced by concentration, 

temperature, pressure, the presence of a catalyst, the physical state of the components, and 

light. In many instances, the effect these variables can be non-impactful on the rate of reaction, 

for example, the Haber process requires an iron catalyst for the operating temperatures and 

pressures to be viable, the rate of reaction is also heavily impacted by the temperature and 

pressure of the reactants.  

The rate of reaction of component 𝑖, (𝑟𝑖) is the number of moles of 𝑖 reacting (being 

consumed by the reaction or being produced by the reaction) per unit time, per unit volume 

𝑥1 → 𝑥2 

𝑥2 → 𝑥3 

2𝑥1 → 𝑥4 
 

Equation 2-3a 

Equation 2-3b 

Equation 2-3c 
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(𝑚𝑜𝑙. 𝑑𝑚−3. 𝑠−1). Equation 2-5 shows an example of a first order reaction with the rate 

reaction is determined by the concentration of component 𝑗. The dimensions of the rate constant 

𝑘 depends on the order of the reaction, in the case of a first order reaction, the rate constant has 

units of 𝑠−1.  

𝑟𝑖 = 𝑘. [𝐶𝑗]
𝑛

 Equation 2-5 

 
Reactions can be of zero order, first or second order, pseudo-first order, fractional 

orders, negative orders, or (rarely) ternary orders. It is also worth noting that it is possible to 

have an effective order of reaction that is different to the true order of reaction, this would 

typically occur when one component is in large excess so that the change in concentration of 

that component is negligible and therefore not impactful on the order of reaction.  

The rate constant of a reaction is typically described using the Arrhenius equation 

shown in Equation 2-6. The Arrhenius equation identifies the rate constant based upon the 

temperature (𝑇) – in Kelvin, the universal gas constant (𝑹), the activation energy of the reaction 

(𝑬𝒂), and the pre-exponential factor (𝐴).  

 

𝑘 = 𝐴. exp (−
𝑬𝒂

𝑹𝑇
) 

Equation 2-6 

 

The pre-exponential factor is associated with the frequency that the energised reactants 

convert into products, and the frequency of collisions of reactants. The activation energy of the 

reaction is associated with the energy requirements to achieve a transitional state that will lead 

to the reaction taking place (Ravi et al., 2017). The activation energy of a reaction can be 

modified with the use of a catalyst, providing an alternate pathway for the chemical reaction to 

take place. Typically, the addition of a catalyst will reduce the activation energy for the reaction 

to take place – increases the overall value of 𝑘 and therefore the rate of reaction. 

 

2.3 Reactor Engineering – Batch Reactor 

According to the law of conservation of mass, the mass balance of any reactor is described by  

Equation 2-7.  

Accumulation = 
Moles 

in 
− 

Moles 

out 
+ 

Production 

or 

Consumption 

(Reactions) 

Equation 

2-7 
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In the case of a batch reactor there is no inlet and no outlet, the reactants are all within 

the reactor at the start of the reaction i.e. Moles in = Moles out = 0. Therefore, the rate of 

change of amount of any component in a reactor is the accumulation of that component, and 

the amount of it reacting or being produced by a reaction. This is under the assumptions that 

the reactor is well-mixed and at constant density. Therefore, this simplifies the rate of change 

in the concentration of a component to be a function of only the reactions that component is 

taking part in (Equation 2-8). 

𝑑[𝐶]

𝑑𝑡
= 𝑟𝐶 

Equation 2-8 

 

This work is focused on the cases studies (biodiesel production) of batch reactors. 

 

2.3.1 Chemical Reaction Networks 

A Chemical Reaction Network (CRN) is a set of reactions that are connected. In some CRNs 

the product of the first reaction is the reactant of another reaction- shown in Table 3-3.This can 

make the identification of the CRNs more difficult- particularly when trying to identify the 

kinetics that describe the CRN. This is a consequence of the coupling between the reactions 

(Fogler, 1999).  

There are a variety of computational methods that have been attempted when trying to 

identify models that accurately describe reaction networks. Methods of identification of 

reaction networks are discussed in Section 2.4. 

 

2.4 Identification of Reactions 

The identification of chemical reactions continues to be of interest to both industry and 

academia. Aris and Mah (1963) is a central piece of research in this field as the authors 

developed a framework for identification of stoichiometric coefficients without any prior 

knowledge about the composition of the reacting species. Using measurements of the extent of 

reaction they identified the number of independent reactions taking place by identifying the 

rank of the extents matrix. This method was extended by using the atomic matrix of the species 

to identify the stoichiometric coefficients. This method was limited in its application however 

as when noise is introduced into the measurements, the identified rank of the extents matrix 

becomes less reliable. This method has been built upon using multiple computational methods 

including target factor analysis (TFA), Linear Regression, and Mixed Integer Linear 

Programming (MILP). 
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2.4.1 Target Factor Analysis 

Target Factor Analysis (and its variants) is an accepted form of stoichiometric identification 

which has been applied in a variety of ways to identify stoichiometries(Brendel et al., 2006, 

Prinz and Bonvin, 1994, Amrhein et al., 1999, Maria, 2004).  TFA was first used to identify 

CRNs by Bonvin and Rippin (1990), they used a combination of Singular Value 

Decomposition (SVD) and Factor Analysis to identify stoichiometric coefficients. SVD is used 

to identify the number of independent reactions. Following this, a hypothesised stoichiometry, 

or target stoichiometry can be generated from a priori information or from deductive reasoning 

and target testing. This method is an improvement on the method developed by Aris and Mah 

(1963), as it does not require the atomic matrix of the species involved. However, it does still 

require a hypothesised stoichiometric model – this could be problematic if no expert is present 

to hypothesise a stoichiometric model. When the data matrix contains measurement noise, SVD 

can still be unreliable at identifying the correct rank of the data matrix. A methodological 

improvement was developed by Fotopoulos et al. (1994). This included a structured approach 

to the target testing stage without requiring more a prioi information about the reaction being 

identified. It defined a set of postulated stoichiometries that must include a certain number of 

reactants and products. 

 Prinz and Bonvin (1994) used incremental target factor analysis to determine and 

identify chemical species from their absorbance spectra, which could in turn be used to identify 

the extent of reaction and consequentially the reaction stoichiometries. The incremental 

approach proved to be a benefit when dealing with noisy data as is commonly collected. They 

did apply their method as part of an online monitoring system to infer concentration 

measurements which would otherwise be impossible to measure directly. 

 

 Amrhein et al. (1999) advanced the TFA techniques further by applying the methods to 

both reactions and mass transfer problems without explicit knowledge of the rate expressions 

of each of them. The approach also operates with considerable measurement noise present 

successfully and with high statistical confidence in their results. The limitation on this method 

is the set of proposed, possible candidate kinetic structures is relatively small and would require 

considerable expert knowledge to identify these structures.  
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 Brendel et al. (2006) adapted the strategy used by the previous authors to so that the 

model structures did not need to be postulated. Unfortunately, the method is still sensitive to 

measurement noise which can result in partially identified solutions.  

2.4.2 Tendency Models 

Tendency models have been used both in conjunction with and as an alternative to TFA. 

Tendency models utilise the principles of the extent of reaction being related to concentration 

measurements through the appropriate stoichiometric matrix and a least squares algorithm 

(Filippi et al., 1986). Tendency models are an effective way of approximating models when 

fundamental understanding is not possible. However, the process-model mismatch is more 

likely to occur as the number of reactions being identified increases and/or when the number 

of reactions taking place is unknown (Fotopoulos et al., 1995). Fotopoulos (1998) used 

tendency models to approximate a state-based model of a reaction network which was used as 

part of a Kalman filter to control a jacketed batch reactor. 

2.4.3 Mixed Integer Linear Programming 

Mixed Integer Linear Programming (MILP) is an optimisation technique that searches 

for the optimal point within a set on constraints. MILP is a well-established technique that has 

been shown to be effective for a variety of standard optimisation problems including the 

travelling salesman problem (Radmanesh et al., 2016), in which MILP is used to find the 

shortest and/or fastest route a salesman should take across a map (or country). This shows the 

efficacy of MILP for solving complex problems which are NP-hard (non-deterministic 

polynomial-time) a term from the field of computer science to denote how difficult it is to both 

find a solution, and the difficulty of checking that solution – an NP-hard problem is difficult to 

identify a solution, but easy to check the solution. MILP is a well-established technique that 

has been used throughout all engineering industries and beyond (Richards and How, 2002, 

Lauinger et al., 2016). Floudas and Lin (2005) provide a summary of MILP being applied 

throughout the chemical processing industries, focusing primarily on scheduling problems 

considering both discrete and continuous time models. A variety of techniques and 

modifications to the standard MILP technique have been developed over the years to improve 

upon the original method created by George Dantzig in 1947, including computational 

advancements, expansions of the branch and bound method (Benichou et al., 1971, Lima and 

Grossmann, 2011, Floudas and Lin, 2005, Lubin et al., 2018). 

 Willis and Stosch (2016) applied this method to generate both stoichiometric and 

kinetic models of CRNs. Stoichiometric matrices were identified by generating all possibilities, 
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then removing the infeasible reactions by applying the law of conservation of mass. i.e. all of 

the atomic components that appear in the reactants must appear in the products. Willis and 

Stosch (2016) used the example of a Van de Vusse reaction network, shown in Equation 2-9. 

 

2𝑥1 → 𝑥2 Equation 2-9a 

𝑥1 → 𝑥3 Equation 2-9b 

𝑥3 → 𝑥4 Equation 2-9c 

From the stoichiometric model of the Van de Vusse model, it can be deduced that 𝑥2 

must have twice the atomic mass of 𝑥1 and 𝑥1 has the same atomic mass as 𝑥3. Therefore, using 

this logic, 𝑥3 → 𝑥2 is an infeasible solution, but 2𝑥3 → 𝑥2 is a feasible solution. 

 Willis and Stosch (2016) combined this with an integer cut technique to identify 

multiple solutions within the same search space. It therefore becomes possible to find entire 

stoichiometric networks that describe a CRN. This method requires the molecular makeup of 

all of the species taking place in the CRN to guarantee correct solutions, however as shown in 

the example of Equation 2-9 simply using the total atomic mass could provide partial 

information to reduce the search-space to a smaller . Langary and Nikoloski (2019) improved 

upon this method by using SVD to reduce the size of the reaction invariant subspace. They also 

implemented the MILP method at steady state rather than in a batch or semi-batch form that 

other methods have used. 

2.5 Identification of Reaction Kinetics 

The automatic identification of Chemical Reaction Kinetics continues to be of great 

interest to industry and academia, and a variety of methods that have been implemented to find 

kinetic parameters. There are a variety of methods that utilise the principles of reaction kinetics 

along with statistical and optimisation techniques, the three main methodologies are discussed 

here: Linear Regression, Genetic Algorithms, and Mixed Integer Linear programming. 

 

2.5.1 Regression 

Regression is a statistical method for identifying a linear model to find a line of best fit 

through to give the best approximation of a dependant variable using one or several 

independent variables.  Regression methods are used in economics, the social sciences, 

throughout the sciences and engineering disciplines, and many more that are not listed for the 
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sake of brevity. It has been used in so many fields as it is easy to apply to all sorts of data and 

can be easily interpreted without significant training.  

There are a variety of methods that use linear regression and its variants (non-linear 

regression, multivariate linear regression, etc) in the chemical engineering field, but this review 

will focus on the application of regression techniques to identify kinetic parameters (Burnham 

et al., 2008, Opfermann, 2000). The nature of reaction kinetics means that the problem has a 

large search space. This means that the domain of potential solutions is large with many 

independent variables that could predict the dependent variable. This large search space can 

often result in false positive solutions being identified. This is particularly problematic for 

regression methods as a large search space often results in finding local optima, rather than a 

global optimum. Cai et al. (2009) have developed a method of improving linear regression with 

large numbers of dependent variables by separating the dependant variables into groups, and 

through random regrouping, the identified models can converge onto a true model. Whilst this 

is an interesting method, it is less applicable to the goals of identifying reaction networks which 

tend to have sparse solutions. A sparse solution is a solution that has few non-zero terms. There 

have been a variety of methods developed to generate sparse solutions, i.e. minimise the 

cardinality, including the L-norms and Least Absolute Shrinkage and Selection Operator 

(LASSO). Yang et al. (2020) have developed an efficient method of applying the L1-

regularlisation to large scale dynamic systems, and use a chemical reaction network as an 

example. 

 

2.5.2 Genetic Algorithms 

Genetic Algorithms (GAs) apply the principles of biological evolution and survival of 

the fittest to find the optimal solution to a problem. This is generally done by randomly creating 

a set of possible solutions (a generation), evaluating their success and/or failure, taking a subset 

of the best solutions, and mutating these solutions by making minor modifications to them and 

generating more random solutions which are like the previous successful solutions (create a 

new generation, based on the success of the previous generation). This cycle is repeated until 

a solution either hits an acceptable threshold, or a set number of generations have passed. 

Genetic algorithms are highly effective at finding optimal solutions, but they tend to be 

computationally expensive and slow to identify accurate solutions. 
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There are a variety of sub-categories that use GAs and therefore will be considered 

under the umbrella term of GA, including: differential evolution, Symbolic regression, and 

Simulated Annealing.  

GAs and their variants have been used for a wide variety of classic optimisation 

problems such as identifying the optimal playstyle for the prisoners dilemma (Mitchell, 1995), 

identifying the shortest route for the travelling salesman problem (Potvin, 1996) and identifying 

optimal solutions to the knapsack problem – an optimisation problem for maximising the value 

of a bag while being constrained by the weight (Hristakeva and Shrestha, 2004). Each of these 

problems show that genetic algorithms and its variants can be applied to a variety of problems 

in a broad selection of fields. In computer science, genetic algorithms are considered suitable 

for solving NP-hard problems- problems where finding the solution is difficult, but testing the 

solution is easy. 

A genetic algorithm typically has a ‘generation’ or the population of possible solutions, 

and each individual within that generation has a series of properties – a chromosome made up 

of individual genes (binary variable(s)), associated with it. These chromosomes and individual 

genes can be set up by the user, or automatically generated if the algorithm is given the ability 

to do so. Koza developed the idea and translated the binary structure into a tree diagram (Koza, 

1992); this is also known as symbolic regression where the individual genes could refer to 

independent variables, operators (addition, subtraction, multiplication, etc), or constants. This 

has been used in a variety of fields including the identification of physical fluid flow models 

(Neumann et al., 2019). 

Genetic algorithms have been used to identify stoichiometric and kinetic structures 

under multiple frameworks (Hii et al., 2014, McKay et al., 1997). Whilst these methods are 

capable of being very powerful, the ability to identify complex systems can take a long time to 

converge on optimal solutions. GAs also tend to overfit to data, and several methods have been 

investigated to overcome overfitting and reduce the chances of identifying local minima 

(Langdon, 2011, Gonçalves and Silva, 2013). 

 

2.5.3 Mixed Integer Linear Programming 

Mixed Integer Linear Programming (MILP) and its variants (Mixed Integer Quadratic 

programming, Integer Linear Programming, etc) has been used for a variety of problems 

including the travelling salesman problem, scheduling problems and other classic optimisation 

problems. Within the chemical industry the primary use of MILP has been used for process 
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scheduling and process synthesis (Raman and Grossmann, 1991, Grossmann and Santibanez, 

1980, Maia and Galvão, 2009, Floudas and Lin, 2005). Outside of the scheduling problems, 

MILP has been used by Patsiatzis et al. (2004) to identify optimal plant layouts with the primary 

concern being safety, when implemented this isn’t dissimilar from a scheduling problem, 

however with different dimensions of interest. 

 There has been a growing number of articles and proceedings that use MILP to optimise 

the operational efficiency of a plant of some kind (Haikarainen, 2013). Adamson et al. (2017) 

followed suit with this approach and applied MILP to a steady state cryogenic air separation 

unit and compressor plant to optimise the operation of the entire system and improving the 

efficiency by reducing the power consumption by up to 5%. Laing et al. (2020) also applied 

MILP to a large system of a gas distribution and wastewater treatment works plant, to develop 

a more robust and efficient method of operating the plant. This has shown that MILP has a 

place in operations, in doing so these authors typically would follow principles laid out in 

scheduling problems in a different format so that MILP can be applied to their respective 

operational problems. 

 Logic and systemic modelling are closely related to the production routing of chemical 

processes, Raman and Grossmann (1991) combined the ideas of propositional logic, with MILP 

and chemical processes. This method used qualitative data rather than quantitative datasets to 

provide representations of knowledge that can be used to generate control strategies. Willis and 

Stosch (2016), used MILP to identify a subset of all possible kinetic structures, which was 

reduced by applying the law of conservation of mass to the system.  By identifying multiple 

solutions to the same search space it allows entire reaction networks to be identified. The 

methodology creates multiple models that are compared using the Akaike or Bayesian 

information criterion. The work in this thesis is built upon the work on Willis and Stosch 

(2016). 

 

2.2 Conclusion 

This chapter has discussed the fundamentals of chemical reactions and the difficulty that 

is often found in the identification of those models. The difficulties in the identification of 

CRNs are typically due to the confounding of measurements caused by the highly coupled 

nature of kinetics of CRNs. Each of the techniques applied to these processes have their 

limitations, for example: TFA, whilst the most well-established method for identifying CRNs, 

has its performance heavily influenced by measurement noise, which is near-inevitable for a 
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real process. Genetic Algorithms can be an effective method of identification of any of the 

chemical reactions, however time it takes for the genetic algorithm to find the solution can be 

unfeasible. MILP appears to be able to compensate for some of the flaws in each of the methods 

discussed and the research of MILP in the identification of chemical reaction networks is 

relatively sparse. 
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3 Chapter 3 Stoichiometric method results and analysis 

3.1 Methodology 

This methodology has the goal of being able to identify all the reaction stoichiometries. 

This is done in two stages: 

1. Use the concentration profiles to identify reaction invariants, 

2. Use the identified invariants to identify stoichiometries. 

There are a variety of additional, optional variables that can be included or manipulated in 

the method to improve its efficacy. A flowchart with a low-resolution overview of the method 

is shown in Figure 3.1. 

Starting with the concentration measurements of a reaction or set of reactions, the 

concentration profiles of each component are converted into the change in moles for each 

component at each time point. The algorithm automatically then generates a set of constraints 

to make the MILP method effective. These constraints are grouped into 5 categories: 

3.1.1 Data constraints 

The data constraints show where the feasible invariants lie within the search space. 

There is a slack variable associated with the data constraints to allow for measurement noise to 

be considered. 

 

𝚫𝒎𝒐𝒍𝒆𝒔. 𝑰 − 𝜀 ≤ 𝑡𝑜𝑙 
 

Equation 3-1a 

 
− 𝜟𝒎𝒐𝒍𝒆𝒔. 𝑰 − 𝜀 ≤ 𝑡𝑜𝑙 

 

 

Equation 3-1b 

Where 𝜀 is a slack variable that allows for a small amount of error to occur and 𝑡𝑜𝑙 is a 

tolerance of acceptable error in the identified invariant. This is a small value close to zero. 

The optimisation is set up in this form so that by minimising the magnitude of 𝜀 

Therefore, for the equations to hold true for all time points the coefficient associated with 

𝚫𝒎𝒐𝒍𝒆𝒔, must be approximately equal to zero (within a tolerance threshold) – An Invariant. 

An optional addition to this data set is a to integrate the 𝚫𝒎𝒐𝒍𝒆𝒔 data and use that data 

as an additional set of constraints. The integrated change in moles acts as a transformation of 

the data that minimises the effect of the noise on the system. This is particularly useful for 

systems with a higher percentage of noise and could replace the change in moles term. The 
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inequalities created from the rate of change in moles becomes the core of the MILP algorithm. 

From this point forward, the inputs will be concatenated to the bottom of the matrix labelled 

𝑨. 

3.1.2 Slack variable 

The slack variable has been briefly discussed within the data constraints section. Slack 

variables are non-negative and are used to make the two inequality constraints a single equality 

constraint. The slack variable also acts like an error term that is minimised to allow the 

coefficients associated with the data to identify an invariant within the tolerance. The tolerance 

within this method is associated with the ‘Big-M’ method, the 𝑀 is a large value which is an 

order of magnitude larger than the expected error – In this case it is set to a value of 10. 

𝐼 − 𝜀 ≤ (𝑀 + 𝑡𝑜𝑙) 
 

Equation 3-2a 

 
𝜀 ≤ 𝑡𝑜𝑙 

 

Equation 3-2b 

Equation 3-2a is an inequality designed to allow for negative terms to be identified as 

acceptable invariant values, and Equation 3-2b states that the acceptable error must be of 

magnitude less than the accepted tolerance. 
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Figure 3.1 - Flow sheet of the identification of stoichiometries from concentration measurements via reaction invariants using MILP. Where the 

rounded cornered blocks are either data input or minor manipulations of the data, and the sharp cornered blocks are operations performed on the 

data. The dashed line separates the two parts of the algorithm with the upper-half  being the algorithm for the identification of reaction invariants, 

and the lower half being the utilisation of the invariants to identify stoichiometries.
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3.1.3 Binary constraints 

There are 3 sets of binary variables (𝝈) for each component to be added to the 𝑨 matrix. 

The first 𝝈𝟏 is activated when the 𝑨 matrix is non-positive, these are identified by two 

inequality constraints. The second binary variable (𝝈𝟐) is activated when 𝑨 is non-negative, 

and the third set of binary variables (𝝈𝟎) that is activated when the associated 𝑨 is zero. The 

first and second set of binary variables are described through two inequality constraints 

(Equation 3-3a-d). The third set of binary variables is described through Equation 3-3e. From 

these two sets of binary variables the number of zero terms within the vector 𝑨 can be identified 

within the linear programming algorithm as another variable- 𝝈𝟎. The final variable (∑𝜎) that 

counts the number of active 𝝈𝟎 terms. With the sum of the number of zero terms within a 

solution, this number can be minimised or maximised as needed by the algorithm, for this 

particular setup the goal is to make the solutions as sparse as possible therefore by maximising 

the number of zero terms in the solution and simultaneously minimising the data-model error, 

this increases the likelihood of finding an accurate invariant. 

𝑥. 𝐼 + 𝑈𝐵𝜎1 ≤ 𝑈𝐵 
 

Equation 3-3a 

−𝑥. 𝐼 + (𝐿𝐵 + 𝑡𝑜𝑙)𝜎1 ≤ 𝑡𝑜𝑙 

 

Equation 3-3b 

−𝑥. 𝐼 − 𝐿𝐵𝜎2 ≤ −𝐿𝐵 

 

Equation 3-3c 

𝑥. 𝐼 + (𝐿𝐵 + 𝑡𝑜𝑙)𝜎2 ≤ −𝑡𝑜𝑙 

 

Equation 3-3d 

−𝜎1 − 𝜎2 + 𝜎0 = −1 

 

Equation 3-3e 

∑ −𝜎0 

𝑁𝑐

𝑐=1

+ ∑𝜎 = 0 

 

Equation 3-3f 

3.1.4 Integer constraints 

The identified Invariants must be an integer between within an upper and lower 

boundary. This boundary is a variable that can be varied at the user’s discretion, the maximum 

magnitude of each value of the invariant is set to 5, the invariants are anticipated to be values 

of magnitude between 0 and 3. The binary variables are also constrained to be integers (either 

0, or 1).  
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3.1.5 Cost function 

The cost function is what is being minimised under the constraints set up previously. 

The goal is to find a point where the error term (slack variable) is zero, and the solution is as 

sparse as possible (maximum number of zero terms whilst still having minimum error).  

J =   min (𝑗1𝜀 + 𝑗2∑𝜎) Equation 3-4 

In Equation 3-4 there is a cost to the errors in the model, and a cost to the number of 

zero terms used.  The coefficient associated with ∑𝜎 can be manipulated by the user at their 

discretion, but for the purposes of this method, having both the errors and the number of zero 

terms have the same weight within the cost function. The error should always be minimised, 

however depending on the purposes, the desired number of zero terms could change – This can 

be done by changing the coefficient before the ∑𝜎 term.  

3.1.6 Integer Cut 

To find multiple invariants the algorithm must discover minima within the search space 

multiple times and find different solutions. To prevent the algorithm for repeatedly identifying 

the same minimum point the integer cut is used. The integer cut is an additional constraint that 

is added to the algorithm after a solution has been found so that when searching for an 

alternative minimum point the solution that has already been identified is considered a sub-

optimal option. 

The new constraint can be described by a set of conditional statements stated in Table 

3-1. From this another line of the 𝑨 matrix. The associated 𝑩 with this new constraint is 

calculated using Equation 3-5.  

Table 3-1 - Conditions to generate the new constraint using the integer cut method. If one of 

the binary variables is 1, then the corresponding constraint value is 1, etc. 

Identified Invariant 

Value 

Constraint Value 

𝝈 =  𝟏 𝜎 = 1 

𝝈 = 𝟎 𝜎 = −1 

Non-binary variable 0 

 

𝐵𝑛𝑒𝑤 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

− (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) − 1 

Equation 3-5 
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With this constraint the optimisation can now be run on repeat until a termination 

condition is met. These conditions are: 

• A limit to the maximum number of invariants identified, or 

• The optimiser fails to find an invariant. 

Once the invariants have been identified, they can be used to identify stoichiometries. 

The integer cut is also applied in the same manner in the stoichiometric algorithm (Section 

3.1.9). 

3.1.7 Identifying stoichiometries 

The identification of stoichiometries is done using reaction invariants. As shown in 

Figure 3.1, there are optional, additional invariants that can be included. Additional information 

can include the atomic matrix, and/or any a priori information already known about the system. 

For example, knowledge that one of the components is a reactant or product, can be 

implemented as an additional invariant. Once these invariants are collected, they need to be 

converted into a form that is conducive to identifying stoichiometries – much like was done 

with the measurements for identifying invariants. The reaction invariants can be identified if 

and only if Equation 3-6a is true (Waller and Makila, 1981). 

To identify stoichiometries,  

𝑰. 𝑺 = 𝟎 
 

Equation 3-6a 

As with the identification of invariants algorithm, the identification of stoichiometries 

needs to be done in inequality form, as shown in Equation 3-6b & c. 

𝑰. 𝑺 − 𝜺 ≤ 𝟎 

 
 

Equation 3-6b 

−𝑰. 𝑺 − 𝜺 ≤ 𝟎 

 

Equation 3-6c 

This has some similar constraints to the invariants identification function including 

slack variables, binary variables, and other additional, optional constraints include the a priori 

information that can be included. There is more a priori knowledge that can be implemented in 

this method depending on what is known about the reaction network. For example, if a 

component is known to be a reactant, and cannot be an intermediate, nor a product, then a 

constraint stating that the stoichiometric coefficient of the component must either have a 

negative or zero term. This is not a reaction invariant, however within the context of this 

algorithm, this constraint can be treated in the same way as an invariant. 
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In Equation 3-6b & c there is an error term (𝜀) this – as with the invariants algorithm, acts as 

both a slack variable, and an error term. As with the Invariants Identification Algorithm there 

are binary variables that are used to manipulate the number of zero terms when identifying 

stoichiometries.  

 

𝐼. 𝑆 + 𝑈𝐵𝜎1 ≤ 𝑈𝐵 
 

Equation 3-7a 

−𝐼. 𝑆 + (𝐿𝐵 + 𝑡𝑜𝑙)𝜎1 ≤ 𝑡𝑜𝑙 

 

Equation 3-7b 

−𝐼. 𝑆 − 𝐿𝐵𝜎2 ≤ −𝐿𝐵 

 

Equation 3-7c 

𝐼. 𝑆 + (𝐿𝐵 + 𝑡𝑜𝑙)𝜎2 ≤ −𝑡𝑜𝑙 

 

Equation 3-7d 

−𝜎1 − 𝜎2 + 𝜎0 = −1 

 

Equation 3-7e 

∑ −𝜎0 

𝑁𝑐

𝑐=1

+ ∑𝜎 = 0 

 

Equation 3-7f 

Equation 3-7 operates in the same way as previously described in Section 3.1.3: 

Equation 3-7a & b identify non-positive values within the identified stoichiometries and 

activates 𝜎1. Equation 3-7c & d identify non-negative identified stoichiometric values to 

activate 𝜎2. Equation 3-7e & f are both used to identify and count the number of stoichiometric 

coefficients that have a value of zero, and to count the zero terms. 

There are integer constraints set to all variables, except for the error term. The upper 

and lower bounds for each variable are shown in Table 3-2. The stoichiometric coefficients (𝑺) 

can be expanded to a larger range if necessary, however the increased search space will affect 

the speed of the algorithm and stoichiometric coefficients are not typically larger than this 

value. The slack/error variable (𝜀) has an infinite upper boundary which appears to be 

excessive, however since this variable is being minimised, the upper limit is of less 

significance. The number of zero terms (∑𝜎) is constrained to be fewer than the number of 

components in the system. This means that there must always be a non-zero term within every 

identified stoichiometry. 
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Table 3-2 - Upper and Lower bounds of each of the elements of the MILP formulation where 

s is the bounds on the stoichiometric values, and 𝜎 are binary variables. 

𝑺𝒍𝒐𝒘𝒆𝒓 𝑺𝒖𝒑𝒑𝒆𝒓 𝜺𝒍𝒐𝒘𝒆𝒓 𝜺𝒖𝒑𝒑𝒆𝒓 𝝈𝒂𝒍𝒍,𝒍𝒐𝒘𝒆𝒓 𝝈𝒂𝒍𝒍,𝒖𝒑𝒑𝒆𝒓 ∑𝝈𝒍𝒐𝒘𝒆𝒓 ∑𝝈𝒖𝒑𝒑𝒆𝒓 

−𝟑 3 0 𝐼𝑛𝑓 0 1 0 𝑐 − 1 

 

3.1.8 Cost function 

The cost function of the stoichiometric identification function is identical to the cost 

function of the invariant identification algorithm, as follows: 

J =   min (𝑗1𝜀 + 𝑗2∑𝜎) Equation 3-8 

As before, there are two variables being optimised, the error within the algorithm, and 

the total number of zero terms. The coefficients 𝑗1& 𝑗2can be adjusted depending on the goals 

and complexity of the system. For all the experiments performed, both coefficients are set to a 

value of one, giving each of them an equal effect on the identified solutions. 

3.1.9 Integer cut 

An Integer Cut is implemented on the stoichiometric algorithm in the same method as 

way applied to the Invariants Identification Algorithm. The integer cut generates a constraint 

– based upon the identified stoichiometry, that can be added to the inequality constraints 

matrix. This additional constraint prevents the algorithm from identifying the same 

stoichiometry and therefore finding a variety of stoichiometric vectors that will (partially) 

describe the reaction network. A mathematical description of the integer cut is shown in Table 

3-1 and Equation 3-5.  

 

3.2 Results and discussions 

3.2.1 The use of atomic matrix 

There are two parts to the stoichiometric identification algorithm, the identification of reaction 

invariants, and the identification of reaction stoichiometries. The inputs to the stoichiometric 

identification algorithm are reaction invariants and any a priori information about the reaction 

network that can be added. If the atomic matrix of a reaction network is known, then the atomic 
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matrix can act as a set of reaction invariants. The atomic matrix of the biodiesel reaction 

network is known and can be used to identify stoichiometries shown in Table 3-3. 

Table 3-3 - Identified stoichiometries using only the atomic matrix. 

 TG MeOH DG BD MG GL 

𝝂𝟏 -2 -2 2 2 0 0 

𝝂𝟐 -2 0 2 0 2 -2 

𝝂𝟑 -1 -2 0 2 1 0 

𝝂𝟒 -1 0 2 0 -1 0 

𝝂𝟓 0 -1 -1 1 1 0 

𝝂𝟔 0 -1 0 1 -1 1 

𝝂𝟕 0 0 -1 0 2 -1 

𝝂𝟖 0 0 1 0 -2 1 

𝝂𝟗 0 2 0 -2 2 -2 

𝝂𝟏𝟎 0 2 1 -2 0 -1 

𝝂𝟏𝟏 0 2 2 -2 -2 0 

𝝂𝟏𝟐 1 -1 -2 1 0 1 

𝝂𝟏𝟑 1 0 -2 0 1 0 

𝝂𝟏𝟒 1 1 -1 -1 0 0 

𝝂𝟏𝟓 1 1 0 -1 -2 1 

𝝂𝟏𝟔 2 0 -2 0 -2 2 

 

This method identifies all the feasible stoichiometries based upon the atomic matrix, 

including the desired stoichiometries of the reaction network (identified stoichiometries 𝜈1, 𝜈5 

and 𝜈6). It can also be seen that the reverse reactions are also identified, this can be remedied 

by including some a priori information. Looking at Table 3-2 there are two components that 

are reactants that start at a high concentration and tend towards zero (TG and MeOH). There 

are also two intermediates (DG and MG) that can be identified by their concentrations start at 

zero, rise to a peak, and then tend towards zero again. Finally, two products (GL and BD) are 

identified by starting with a concentration of zero and tending towards a final concentration 

without falling. It is worth noting that this matrix could be simplified with Gaussian elimination 

to identify the row echelon form or Gauss-Jordan elimination for reduced row echelon form. 

When Table 3-3 is simplified, the reaction network is simplified to Table 3-4. 
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Table 3-4 – The row Echelon form identified via Gaussian Elimination to show the simplified 

version of the results shown in Table 3-3. 

 TG MeOH DG BD MG GL 

𝝂𝟏 -2 -2 2 2 0 0 

𝝂𝟐 0 2 0 -2 2 -2 

𝝂𝟑 0 0 2 0 -4 2 

 

Table 3-5 – The Reduced Row echelon form identified via Gauss-Jordan Elimination to show 

the simplified version of the results shown in Table 3-3. 

 TG MeOH DG BD MG GL 

𝝂𝟏 1 0 0 0 -3 2 

𝝂𝟐 0 1 0 -1 1 -1 

𝝂𝟑 0 0 1 0 -2 1 

 

When the results are simplified with Gaussian Elimination, or Gauss-Jordan 

Elimination, there are some results that are simplified. Table 3-4 shows the Row Echelon form 

which reduces the number of identified reactions to three, which is accurate, however 𝜈3 is not 

the simplest form of reaction 3 shown in Table 3-3The identified 𝜈3 is a combination of 

reactions 2 and 3. This indicates that the Row Echelon form of the identified stoichiometries 

provides some information, however it cannot confirm the exact reactions taking place. 

Similarly with the Reduced Row Echelon form – shown in Table 3-5, has a similar problem. 

The nature of Row Echelon, and Reduced Row Echelon form results in there must be zero 

terms beneath the diagonal of the matrix. This means that in the case of this example, the row 

echelon and reduced row echelon form of these results cannot include component 2 (MeOH) 

in all three of the reactions. When the order of the chemicals within the identified stoichiometric 

matrix are rearranged, Gaussian Elimination can simplify the identified reaction networks to 

the true stoichiometric matrix shown in Table 3-3Error! Reference source not found., the G

aussian Elimination of the re-arranged identified stoichiometries are shown in Table 3-6.  
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Table 3-6 – Gaussian Elimination performed on the rearranged identified stoichiometries. Note 

that in most of the tables, MeOH is in the second column, but in this instance MeOH is in the 

6th column. 

 TG DG BD MG GL MeOH 

𝝂𝟏 -1 1 1 0 0 -1 

𝝂𝟐 0 1 -1 -1 1 1 

𝝂𝟑 0 0 -1 1 -1 1 

 

The Reduced Row Echelon form of a reaction network defines that all values off the 

diagonal should be zero, this results in a simplification of the CRN that does not show 

stoichiometries as would normally be shown, but rather as combinations of the true 

stoichiometries. Therefore, from this point onwards the results are shown in full without 

simplification. It is acknowledged that the Row Echelon form of the results is likely to be the 

most simplified form of the CRN, but identification would either require a manual 

rearrangement of the columns or a priori knowledge about the reaction network. 

These insights to the reaction network can be included in the identification process as 

additional constraints. With these constraints the number of identified stoichiometries is 

reduced, removing all the inverse reactions and many of the other feasible reactions.  

Table 3-7 - Identified stoichiometries when using the atomic matrix, and a priori knowledge 

about the system. 

 TG MeOH DG BD MG GL 

𝝂𝟏 -1 -2 0 2 1 0 

𝝂𝟐 -1 -1 1 1 0 0 

𝝂𝟑 -1 0 2 0 -1 0 

𝝂𝟒 0 -2 -1 2 0 1 

𝝂𝟓 0 -1 -1 1 1 0 

𝝂𝟔 0 -1 0 1 -1 1 

𝝂𝟕 0 0 1 0 -2 1 

 

Table 3-7 shows that there are four identified stoichiometries that are feasible according to this 

identification method, these are discussed further in the next section. 
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3.2.2 Uncorrupted data 

The results generated are highly dependent on the data provided, therefore this set of results 

discuss a relatively simple problem for the stoichiometric identification algorithm, a system 

with 75 measurements and 0% artificial noise added to the data. The identified invariants are 

shown in Table 3-8, and the stoichiometries are identified in two ways, firstly without the 

atomic matrix, and then with the atomic matrix, summarised in Table 3-10 and  

Table 3-11. To interpret Table 3-8 it is useful to look for an understanding of what each of the 

identified invariants could be with respect to the chemicals and what is reacting. For example, 

𝐼9 shows that the sum of all the number of moles of material present throughout the reaction 

network is constant. This shows that the law of conservation of mass is being followed in this 

reaction – Since this reaction takes place in a batch reactor, this is expected. Although this will 

probably not be particularly useful for the identification of stoichiometries, it is an important 

observation about the data used. 𝐼9 also implies that all the components are part of this reaction 

network and none are non-reactive substances. Another invariant with easily interpretable 

information found is 𝐼11. By investigating  𝐼11 alongside the atomic matrix the number of 

carbon atoms is constant throughout the reaction network, and the total number of carbon atoms 

can be in any of the four locations identified in 𝑰𝟏𝟏. This invariant is easily explainable with 

the atomic matrix available, this also shows the fact that the atomic matrix is an efficient 

method of displaying invariants.  

Table 3-8 - Identified Invariants with 75 measurements and 0% artificial noise. 

 TG MeOH DG BD MG GL 

𝑰_𝟏 -2 -1 -2 -1 -2 -2 

𝑰_𝟐 -2 -1 -1 -2 0 1 

𝑰_𝟑 -2 2 -1 1 0 1 

𝑰_𝟒 -1 1 -1 1 -1 -1 

𝑰_𝟓 -1 2 0 1 1 2 

𝑰_𝟔 1 -2 0 -1 -1 -2 

𝑰_𝟕 1 -1 1 -1 1 1 

𝑰_𝟖 1 1 0 2 -1 -2 

𝑰_𝟗 1 1 1 1 1 1 

𝑰_𝟏𝟎 2 -2 1 -1 0 -1 
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𝑰_𝟏𝟏 1 0 1 0 1 1 

𝑰_𝟏𝟐 2 1 1 2 0 -1 

 

Another Invariant of interest that is easily interpretable when also considering the 

atomic matrix is 𝐼1. 𝐼1 is easier to interpret once 𝐼11 has already been identified as 𝐼11 is a 

factor/contained within 𝐼1. This means that there are invariants combinations of multiple 

invariants. Whilst in many cases the combination invariants could be ignored, the extraction of 

the basic invariants from the combination invariants holds no benefit to the stoichiometry 

identification algorithm. The information contained in one combination invariant is the same 

as the information within two basic invariants, repeating this information does not over-

constrain the algorithms. It is also observing that there are a pair of invariants that are 

proportionally identical: 𝐼2 and 𝐼12 provide the same information, as with the combination 

invariants this does not over-constrain the stoichiometric identification algorithm however, 

some of the Invariants have less obvious interpretations, 𝐼6 for example is difficult to interpret 

what the physical cause of the invariant is, it can however be graphically shown to be an 

invariant as shown in Figure 3.2. 

 

Figure 3.2 – Graphs showing the change in concentration of each of the individual components 

multiplied by the respective Invariant coefficient, and the sum of the change in concentration 

of the components multiplied by the respective Invariant. 
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It is likely that Invariant 6 is a combination of several basic invariants, however it can 

be difficult to separate the basic invariants from the combination invariants. By removing the 

known basic invariants from the combination invariants, it could uncover more basic 

invariants, however as stated previously, this offers no advantage over using the combination 

invariants as they are automatically identified. Table 3-9 also shows the effectiveness of the 

stoichiometric identification algorithm in and of itself. In theory the information within the 

atomic matrix is enough to generate accurate stoichiometries. 

Table 3-9 - Stoichiometric coefficients identified using only the atomic matrix. 

 TG MeOH DG BD MG GL 

𝝂𝟏 −1 −2 0 2 1 0 

𝝂𝟐 −1 −1 1 1 0 0 

𝝂𝟑 −1 0 2 0 −1 0 

𝝂𝟒 0 −2 −1 2 0 1 

𝝂𝟓 0 −1 −1 1 1 0 

𝝂𝟔 0 −1 0 1 −1 1 

𝝂𝟕 0 0 1 0 −2 1 

Comparing the stoichiometries of the reaction to the stoichiometries identified using this 

algorithm (Table 3-9) it is immediately obvious that there are more stoichiometries identified 

than exist within the reaction network. This is because the algorithm identifies combinations 

of correct stoichiometries alongside the correct stoichiometries. It can be seen that 𝜈2, 𝜈5, and 

𝜈6 are the correct stoichiometries, and that the other results are combinations of these. For 

example, 𝜈1 = 𝜈2 + 𝜈5. As expected, the combinations would be accurate within the same set 

of constraints as the true stoichiometries.  

Table 3-11 also uses the atomic matrix as and additional set of identified reaction invariants to 

identify the stoichiometries. 

Table 3-10 - Stoichiometric identified using only the invariants identified in Table 3-8 

 TG MeOH DG BD MG GL 

𝝂𝟏 −2 −2 2 2 0 0 

𝝂𝟐 −1 −2 0 2 1 0 

𝝂𝟑 −1 0 2 0 −1 0 
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𝝂𝟒 0 −2 −2 2 2 0 

𝝂𝟓 0 −2 −1 2 0 1 

𝝂𝟔 0 −1 0 1 −1 1 

𝝂𝟕 0 0 1 0 −2 1 

 

Table 3-11 - Stoichiometric coefficients identified using the invariants identified in Table 3-8 

and also the atomic matrix. 

 TG MeOH DG BD MG GL 

𝝂𝟏 −2 −2 2 2 0 0 

𝝂𝟐 −1 −2 0 2 1 0 

𝝂𝟑 −1 0 2 0 −1 0 

𝝂𝟒 0 −2 −2 2 2 0 

𝝂𝟓 0 −2 −1 2 0 1 

𝝂𝟔 0 −1 0 1 −1 1 

𝝂𝟕 0 0 1 0 −2 1 

 

The primary observation of Table 3-10 and  

Table 3-11 is that their results are identical. The only observable difference between these 

results and those in Table 3-9 is a proportional difference for some of the identified 

stoichiometries. i.e. 𝜈1 (Table 3-10) = 2 ∗ 𝜈2(Table 3-9). This also means that the results of all 

three tables contain the correct stoichiometries, and the same combination stoichiometries. This 

implies that the same information is contained within the identified invariants as is within the 

atomic matrix. This would indicate that the identified invariants can be used when there is no 

atomic matrix available. 

This simple example has shown the efficacy of this algorithm under simple conditions. 

The correct stoichiometries are found both with minimal information provided. The addition 

of this optional information removes some of the excess combination-stoichiometries and gives 

a smaller set of stoichiometries to be identified. The algorithm should now have a more difficult 

test, with less measurements, with artificially created noise corrupting the data. 
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3.2.3 Reduced measurements with noise 

To test the algorithms further, a more difficult scenario is considered – by decreasing 

the number of measurements used (from seventy-five) to twenty-five and increasing the 

amount of gaussian noise up to two percent. The identified invariants are shown in Table 3-12, 

with the identified stoichiometries with and without the atomic matrix shown in Table 3-13 

and Table 3-14 respectively. 

Table 3-12 – Identified Invariants when 25 measurements are used, and 2% artificial noise is 

added. 

 TG MeOH DG BD MG GL 

𝑰𝟏 1 1 1 1 1 1 

𝑰𝟐 2 1 1 2 0 -1 

𝑰𝟑 1 1 0 2 -1 -2 

𝑰𝟒 1 -2 1 -2 1 1 

𝑰𝟓 1 0 1 0 1 1 

𝑰𝟔 2 -2 1 -1 0 -1 

𝑰𝟕 -2 2 -1 1 0 1 

𝑰𝟖 -1 1 -1 1 -1 -1 

𝑰𝟗 0 1 0 1 0 0 

𝑰𝟏𝟎 -1 1 0 0 1 2 

 

By comparing the identified invariants when lower quality data is provided (Table 3-12) 

to when the data provided is higher quality (Table 3-8) it can be seen that seven of the invariants 

are the identical, there are therefore five invariants that were identified in Table 3-8, but do not 

appear in Table 3-12, and two are still present, but the sign has been inverted – as discussed in 

3.2.2 a proportional change to the invariants gives the same effective constraint. If the noise 

could be removed then the unidentified invariants are more likely to be identified, Figure 3.3 

shows an invariant that was not identified when noise was present but was shown to be an 

invariant when no noise was present in Table 3-8. This graph shows that there are some 

invariants that have not been identified when noise is present but are still exist as an invariant 

present within the system. 
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Figure 3.3 - Graphs of an invariant that was identified without any noise present but could not 

be identified in the more difficult scenario. The noise-free and the noisy invariant data are both 

shown. 

Within the algorithm there is a tolerance that allows invariants to be accepted, this 

tolerance is made two considerations: it must filter out non-invariants, and it must allow true 

invariants to be identified when noise is present. In the case of the invariant displayed in Figure 

3.3, the noise levels were particularly high at approximately five hours into the experiment and 

was not within the accepted tolerance levels. Fortunately, the information contained within this 

invariant can be accounted for within other invariants and the identified stoichiometries are 

correct and are the same both with and without the atomic matrix as shown in Table 3-13 and 

Table 3-14. 

Table 3-13 -Identified stoichiometries when only the invariants found in Table 3-12 are used. 

 TG MeOH DG BD MG GL 

𝝂𝟏 -2 -2 2 2 0 0 

𝝂𝟐 -1 -2 0 2 1 0 

𝝂𝟑 -1 0 2 0 -1 0 

𝝂𝟒 0 -2 -1 2 0 1 

𝝂𝟓 0 -2 0 2 -2 2 

𝝂𝟔 0 -1 -1 1 1 0 
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𝝂𝟕 0 0 1 0 -2 1 

 

Table 3-14 - Identified stoichiometries when the invariants found in Table 3-12 and the atomic 

matrix are used together. 

 TG MeOH DG BD MG GL 

𝝂𝟏 -1 -2 0 2 1 0 

𝝂𝟐 -1 -1 1 1 0 0 

𝝂𝟑 -1 0 2 0 -1 0 

𝝂𝟒 0 -2 -1 2 0 1 

𝝂𝟓 0 -1 -1 1 1 0 

𝝂𝟔 0 -1 0 1 -1 1 

𝝂𝟕 0 0 1 0 -2 1 

 

The identified stoichiometries are unaffected by the addition of the atomic matrix, this 

implies that all the identified invariants are correct as a false invariant would make it impossible 

to find the stoichiometries even with the atomic matrix.  

This set of results has also shown that this method is still effective in identifying 

stoichiometries when noise is present, and fewer datapoints are used. However, to fully 

understand how noise and the number of measurements affects the efficacy of this algorithm, 

a more thorough study of these effects should be done. 

3.2.4 Varying noise and measurements 

The artificial noise present in this example is normally distributed pseudo-randomly 

generated within MATLAB and therefore the noise used is different each repeat, therefore 

resulting in different identified invariants. It is therefore necessary to perform a Monte Carlo 

simulation, repeating the algorithm multiple times to see the effect the noise has over a large 

sample size.  To illustrate the point a variety of conditions were simulated for 50 iterations. 

The different conditions are expressed over an x-y plane where the x-axis shows the different 

noise levels, and the y-axis shows the different number of time intervals are used. In Figure 3.4 

the z-axis shows the percentage of the time that the that the algorithm is successful in 

identifying the entire stoichiometric matrix. Figure 3.5 shows the same data without the z-axis, 

and instead identifies the percentage of the repeats that identify all the reactions through a 

colour gradient. 
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Figure 3.4 - 3D plot showing the percentage of the time that the Stoichiometric Identification 

Algorithm finds the entire stoichiometric network without using the atomic matrix under 

different conditions. Fifty repeats at each condition. 

Figure 3.4 shows that the noise level appears to have a stronger influence than the 

number of time intervals. When the noise is zero percent the stoichiometries are all found 

regardless of the number of time intervals used until the number of measurements decreases 

below five at which point it is inferred that there is not enough data provided for there to be 

any information gleamed about the system. Similarly, when the noise levels are below 1.5%, 

the algorithm seems to have a near-100% success rate in identifying the entire reaction 

network’s stoichiometry. However, it deteriorates as the noise increases to a near-0% chance 

of identifying the entire reaction network at the noise increases to 5%. However, in Figure 3.5 

there appears to be a synergy between the number of data points and the amount of noise – 

when the number of datapoints is between 5 and 30, the noise can be higher, and still achieve 

a high probability of finding the entire reaction network.  
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Figure 3.5 -Plot showing the percentage of the time that the Stoichiometric 

Identification Algorithm finds the entire stoichiometric network without using the atomic 

matrix under different conditions. Fifty repeats at each condition. This is the same graph as 

Figure 3.4. Instead of the z-axis the percentage is shown through colour instead of height. There 

also appears to be some anomalous readings when zero noise is present, upon repeating the 

experiment at these conditions, a more expected high percentage chance of identifying the 

correct stoichiometries. The author can only speculate as to why these anomalous readings 

occurred, when the results were initially collected. It is seen below (Figure 3.8) that the 

collected results identified had some of the correct stoichiometries, but not all three 

stoichiometries. 

In a range of 5 to 30 time intervals the percentage of the time correct stoichiometries 

are found is significantly improved. This appears to be a region where the lack of measurements 

compensates for the noise levels. This can be explained by the effect of noise being less 

impactful when the measurements have a larger space between them. 

The lack of successful identified stoichiometries at high noise levels and large numbers 

of measurements is likely because there are more points where the noise can exceed the 

tolerance of the algorithm for finding correct invariants. This is confirmed by the number of 

identified invariants being low, when the noise is high, and invariants that are identified are 

less likely to be identified as the corruption caused by the noise exceeds the acceptable 

tolerance.  
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This does provide an optimal operating region when considering a real system. The 

level of noise in real measurements cannot be controlled very tightly. However, the number of 

observations can be controlled, therefore when operating with a real system the number of 

measurements should ideally be between ten and thirty or the maximum number possible which 

can then be reduced to a more suitable number with even spacing. 

 

It is worth comparing when the atomic matrix is not used (Figure 3.4) and when the 

atomic matrix is used (Figure 3.6). It has already been shown that if only the atomic matrix is 

used then the correct stoichiometries are found.  Therefore, if stoichiometries are not identified 

in both figures it implies that false positive invariants have been selected and used in the 

stoichiometric identification algorithm. A solution to this would be to tighten the tolerance on 

the invariants identification algorithm, however this will reduce the chances of finding any 

invariants that can be identified at larger noise percentages. Figure 3.5 and Figure 3.7 can also 

be compared in a similar way. 

 

Figure 3.6 - 3D plot showing the percentage of the time that the Stoichiometric Identification 

Algorithm finds the entire stoichiometric network when using both the identified invariants 

and the atomic matrix under different conditions. 

Figure 3.6 appears to be similar to Figure 3.4, with strong gradient with respect to the 

noise level, and a much weaker gradient with respect to the time intervals axis. However, the 

influence of the time intervals appears to be slightly stronger where the atomic matrix is used. 
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This is seen more clearly in Figure 3.7, where the 10-30 time intervals region appears to be 

larger, and extends deeper into the higher noise levels.  

Using this information it can be inferred that the identified invariants are more likely to 

be accurate when the number of time intervals used is within the lower (10-30 range) and the 

noise levels are higher. However, these invariants are not providing enough information to 

identify correct stoichiometries and by including the atomic matrix the probability of finding 

correct stoichiometries increases in this region. 

 

Figure 3.7 - Plot showing the percentage of the time that the Stoichiometric Identification 

Algorithm finds the entire stoichiometric network using the atomic matrix under different 

conditions. Fifty repeats at each condition. This is the same graph as Figure 3.6. Instead of the 

z-axis the colour bar shows the different percentages rather than the height. 

It is also worth noting in Figure 3.7 that when there are five measurements, there is a 

very low percentage chance of identifying all of the stoichiometries. This shows that the 

invariants identified when five measurements are used are all incorrect, and this conflicts with 

the atomic matrix. However, when the number of measurements is reduced to 3, there is a 

higher chance of identifying the stoichiometries. This is explained when investigating the 

number of invariants identified. The algorithm fails to identify any invariants when there are 

three measurements. 

Under all conditions the chance of finding partial stoichiometric models of the 

algorithm are relatively stable (Figure 3.8), however the atomic matrix appears to remove 
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almost all possibility of finding a partial solution. The only way for there to be partially correct 

solutions when using the atomic matrix is for there to be a false invariant that makes it 

impossible to identify one of the reactions but does not influence the other identified reactions. 

This does not appear to account for the anomalous results. It is suspected that there may have 

been some human error during the conditions with anomalous results. As stated above, upon 

re-running these conditions at a later date, an expected result occurs.  

 

Figure 3.8 - Partially correct solutions at different conditions. 

3.2.5 The effect of tolerance  

By manipulating the tolerance on the invariant identification algorithm, the identified 

invariants change. By decreasing the tolerance the random noise will increase individual 

measured points to be outside of the acceptable tolerance (see Figure 3.3). By increasing the 

tolerance more invariants will be found as the effect of noise will be negated, however there is 

the possibility of allowing false positives being accepted. To show the effect of how the 

tolerance influences the identified invariants, the system considered is repeated thirty times at 

2% artificial noise added, and 25 measurements used. Previous results show that this was 

relatively good condition with 80-90% success rate when tolerance set to a value of 1, shown 

in Figure 3.4 & Figure 3.6. Figure 3.9 shows the change in the number of identified invariants 

with respect to the tolerance.  
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Figure 3.9 – The average number of identified invariants when varying the tolerance for 

acceptable invariants 

The tolerance appears to have a considerable effect on the number of identified 

invariants. Once the tolerance gets below approximately 0.2 the average number of invariants 

identified reduces to 1.5. Additionally, the invariants identified tend not to contain useful 

information. For example, one of the repeats at a tolerance of 0.2, identifies only 1 invariant, a 

vector of zeros. For a tolerance range between 0.2 and 1.8, the average number of invariants 

appears to have a shallow decline in the number of invariants identified. This decrease in the 

average number of identified invariants is explained as the tolerance increases, the number of 

false positives that are identified increases. These false positives are then removed 

automatically by the algorithm on the grounds of them appears to have a trend that is not based 

around zero. Once the tolerance is increased above the value of approximately 1.8 the number 

of identified invariants tends towards zero. To explain this the identified invariants are 

considered. The only invariant that appears in all the repeats at this condition is a vector of 

ones. This is probably because of the two stages of invariant generation – Identification, and 

selection. To be selected, the invariants identified must have errors with a near-zero mean and 

the errors should have a line of best fit with a near-zero gradient and near-zero intercept: 

 

−0.1 ≤ 𝐸𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅ ≤  0.1 
 

Equation 3-9 
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−0.01 ≤ 𝑓̇ ≤ 0.01  

−0.05 < 𝑓(0) < 0.05  

This secondary condition to the acceptance is preventing the identification of more 

acceptable invariants could prevent the identification of acceptable invariants, however this 

would unlikely if the noise is gaussian. It is also worth considering the number of identified 

stoichiometries, and their accuracy. 

 

Figure 3.10 – Average number of stoichiometries identified vs the amount of tolerance for 30 

samples both with and without the atomic matrix & the percentage of the time the identified 

stoichiometries contained all of the correct stoichiometries. Figure 3.10 shows the number of 

identified stoichiometries, and the percentage of the time that the identified stoichiometries 

contain all the correct stoichiometries both with and without the atomic matrix used. When not 

using the atomic matrix and at a tolerance of less than 0.2 there are many stoichiometries 

identified with none of them being correct. When considering that the only invariant being 

provided to the stoichiometric identification algorithm is a vector of zeros, the reasoning for 

this becomes clear. This hypothesis is further bolstered by adding the atomic matrix identifying 

all the stoichiometries, with the same results as when only the atomic matrix is used. At a 

tolerance of 0.2 the identified invariants appear to be reliable and numerous as they result in 

reliably identified stoichiometries without the atomic matrix. This infers that when the 

tolerance is very strict, the identified invariants are more likely to be accurate and therefore the 
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stoichiometries are very accurate. However, when the tolerance is increased, the number of 

accepted invariants appears to decrease, therefore the percentage chance of finding all the 

correct stoichiometries also decreases. The number of stoichiometries identified remains 

approximately constant as the number of invariants decreases between tolerance 0.2-1.8. This 

suggests that the reduction in the number of identified invariants does not reduce the amount 

of information within the invariants provided.  

When the tolerance increases above 1.8, the number of identified invariants has once 

again decreased to zero, by comparing the two graphs in Figure 3.10  it can be seen that the 

lack on invariants when the tolerance is 1.8 means that without the atomic matrix it becomes 

impossible to find accurate stoichiometries.  

This data would infer that when the system has 2% noise, the optimal tolerance value 

would be near to 0.2. However, by changing the amount of noise, the optimal tolerance value 

also changes. When considering this, it is also worth considering how the tolerance affects the 

invariants identified as well as the identified stoichiometries. 

 

Figure 3.11 - Surface plot showing the relationship between noise within the data used, the 

tolerance that the algorithm considers acceptable and the average number of invariants that the 

algorithm identifies. The colour bar is a visual aid to assist in the identification of number of 

invariants identified. 

Figure 3.11 shows that when the tolerance is below a threshold of approximately 0.2, 

the tolerance becomes too strict for the algorithm to be able to identify reaction invariants even 
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with low noise levels. However, the number of identified invariants appears to be relatively 

stable with respect to tolerance for each noise level. There does appear to be a slight increase 

in the number of invariants as the noise level decreases which implies that there are some 

invariants that are difficult to identify unless the noise level is low regardless of the tolerance. 

By considering the number of identified invariants alongside the number of stoichiometries 

identified the accuracy of the invariants can be inferred, as if there are inaccuracies in the 

invariants it may result in internal inconsistencies and therefore that there are no feasible 

stoichiometries. 

 

Figure 3.12 - The average number of Identified stoichiometries using the identified invariants 

under different conditions. Note: the zeros on the x-y plane have rotated so the surface can be 

seen more easily. The colour bar is a visual aid to assist in identifying the number of identified 

stoichiometries. 

When the tolerance is very strict, there were no identified invariants, this means that 

when the atomic matrix is not used, there are very few constraints on the stoichiometric 

identification algorithm, and therefore the algorithm continues to identify stoichiometries 

indefinitely (in this case the algorithm was stopped if more than 30 potential stoichiometries 

were identified) and when the atomic matrix is used, the number of identified stoichiometries 

plateaus at seven identified stoichiometries. Excluding where the tolerance is zero the 

stoichiometries identified with and without the atomic matrix appear to be similar. The number 
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of identified stoichiometries does not however provide information of the accuracy of the 

identified stoichiometries. 

 

Figure 3.13 - With 50 samples what is the percentage of the time that the stoichiometry 

algorithm identifies all of the correct stoichiometries under different tolerance and noise levels. 

The colour bar is a visual aid to help identify the percentage of accurate stoichiometries. Note: 

the x-y plane is rotated compared to previous images. 

The similarities in the two graphs implies two things. That the identified invariants 

provide the same information as the atomic matrix when the correct solutions are identified, 

and that false positive identified invariants are preventing the identification of stoichiometries 

when the atomic matrix is present.  

3.2.6 Identification of stoichiometries from observed measurements 

This reaction network was first analysed by Fuguitt and Hawkins (1945), (Fuguitt and 

Hawkins, 1947) the reaction conditions and normalised yields are summarised and shown in  

Table 3-15. 

Table 3-15 - Dataset from (Fuguitt and Hawkins, 1945) with the inferred yields on each 

individual component. * refers to data that was originally reported, but not observed. The data 

is split into the observed yields (Left half of the table), and the inferred observations from the 
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dataset (Right half of the table). The entire dataset generated by Fuguitt and Hawkins (1947) 

is not shown, only the data that is used within the algorithm. 

Feed Temperature 

(°C) 

Time 

(mins) 

A A+B A+B+C E A B B+C D E 

A 189.5 1230 88.3 * 96.2 2.2 88.3 0 7.9 1.6 2.2 

A 189.5 1230 88.2 * 95.7 1.3 88.2 0 7.5 3 1.3 

A 189.5 3060 76.4 * 92.7 2.8 76.4 0 16.3 4.5 2.8 

A 189.5 4920 64.8 * 88.9 5.8 64.8 0 24.1 5.3 5.8 

A 189.5 7800 50.3 * 84.7 9.3 50.3 0 34.4 6 9.3 

A 189.5 10680 37.5 * 82 12 37.5 0 44.5 6 12 

A 189.5 15030 25.9 * 77.1 17 25.9 0 51.2 5.9 17 

A 189.5 22620 14 * 73.9 21 14 0 59.9 5.1 21 

A 189.5 36420 4.5 7.4 70.5 25.7 4.5 2.9 63.1 3.8 25.7 

 

The method proposed in this work will only work using isothermal, complete time 

series data sets. This means that not all the data in the table can be used and it will need to be 

parsed into separate subsections. Whilst the concentration measurements are not present, the 

yields can be considered concentrations if the initial ‘concentration’ of the reactants is 100% 

and all other components are of initial ‘concentration’ 0%.  
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Figure 3.14 - plot of the change in normalised yields of the alpha-pinene reaction network 

A priori information about the chemical reaction network can also be inferred from the 

concentration profiles (Figure 3.14). Component A is the initial reactant, B, C & E appear to 

be final products that do not react further, and component D is likely to be an intermediate 

component since the concentration appears to drop slightly towards the end of the time period 

being measured (this is also shown in  

Table 3-15). The method has a single dataset to find invariants and one invariant is 

found (Table 3-16): 

Table 3-16 - Identified Invariants from the α-pinene reaction network 

 A B C D E 

𝑰𝟏 2 2 2 2 1 

 

The only a priori information provided is that A must be a reactant, there are no other 

constraints on what can be identified. This gives a bit more freedom for the algorithm to search 
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so more reactions can be found. This does mean that many of the reactions that are found, and 

their reverse reaction are feasible, and can be eliminated after the algorithm has been 

completed.  

Table 3-17 - Identified Stoichiometries using the identified invariants. 

 A B C D E 

𝒓𝟏 −3 0 3 0 0 

𝒓𝟐 0 −3 3 0 0 

𝒓𝟑 0 −1 2 0 −2 

𝒓𝟒 0 0 −1 1 0 

𝒓𝟓 0 0 0 0 0 

𝒓𝟔 0 0 1 0 −2 

𝒓𝟕 0 0 2 −1 −2 

𝒓𝟖 0 0 3 −3 0 

 

There is some a priori information known about the process that was not included in 

the algorithm. For example, it was determined that component E is only ever a product, 

however this constraint was not implemented and the identified stoichiometries only include 

component E as a reactant. Due to the constraint not being implemented, reverse of the 

identified reactions are also feasible. This gives more feasible reactions and removes some of 

the infeasible reactions. By using the known a priori knowledge and knowing that the reverse 

of some of these reactions is feasible reveals the following set of possible reactions: 

Table 3-18 - Feasible stoichiometries that are identified and fulfil all the a priori knowledge 

 A B C D E 

𝒓𝟏 −1 0 1 0 0 

𝒓𝟐 0 1 0 −1 0 

𝒓𝟑 0 0 1 −1 0 

 

Table 3-18 shows that not all the stoichiometries have been identified, however all the 

identified stoichiometries are accurate. Whilst this is a partial solution and there are some 

solutions that would be feasible but have not been identified. For example, Component D is 

not restricted and could be a product or a reactant, yet it only appeared as a reactant. This could 
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be because component D is always at a relatively low concentration throughout the reaction 

run time and that there are some confounding variables due that are too complex to be 

considered by the algorithm in this form, with the data provided.  

A flaw of this example is that it is an isomerisation reaction network. This means that 

the number of invariants within the reaction network are very limited, upon looking at the 

atomic matrix of the components within the alpha-pinene reaction network the rank of the 

matrix is one and from that we can infer that there is only one invariant within this reaction 

network. This could be translated as meaning that there is a very small amount of information 

about the system that can be identified using this method.  

A consideration that may be affecting the results is that the data provided is not truly time 

series data, it is instead yield data from multiple experiments. This could lead to a variety of 

errors in the data used which are difficult to quantify,  

3.3 Conclusions 

This method has been shown to be effective in identifying reaction invariants and 

reaction stoichiometries for chemical reaction networks with some reliability. There are some 

procedures that can be followed that have been shown to improve the effectiveness of the 

algorithm. Using Datasets that have minimal noise levels to the data and using between 10 and 

30 data points provides most reliability of results.  

A variable that should be considered when setting up the algorithm is the scale of the 

data being used, and the acceptable tolerance. It may be prudent to normalise the data or treat 

the data appropriately.  

With the alpha-pinene example it has been shown that this algorithm has flaws if the 

data is not formulated appropriately and/or this reaction type is inappropriate for this method.  
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4 Chapter 4 Kinetic structure identification 

4.1 Overview 

This chapter has the goal of automatically identifying reaction kinetic models using 

MILP. As with the Stoichiometric identification chapter, this will be using the simulation of 

the biodiesel production from triglyceride reaction network. This is because the effect of the 

quantity, and quality of the data used is being investigated and a simulated environment is 

ideal.  

The methodology of this chapter shows the general approaches which are common for 

the entire method.  

The results first show the proof of concept, and that the method can be effective. This 

is followed by comparing different differential and integral approximation techniques. These 

results are compared at a low-resolution level, to reduce the number of approximation 

techniques.  

The reduced number of techniques are then tested more thoroughly against datasets 

with artificial gaussian noise added to the measurements to emulate real system noise. This 

section also shows the efficacy of the method for real measurement data that would have either 

measurement or system noise corrupting the measurements. 

The efficacy of the approaches being considered are evaluated when the number of 

measurements is reduced. Taking measurements is labour expensive (and potentially 

financially expensive) and ideally the minimum number of measurements would be used.  

Finally the efficacy of the approaches being considered are compared using a central composite 

design to show the combined effect of the two confounding variables (noise and number of 

measurements). 

4.2 Background 

The methodology applies the theory of chemical kinetics. In its generalized form of the 

rate law, or rate equation is typically written as follows: 

𝑑𝑪

𝑑𝑡
= 𝒌 ∏ 𝑪𝒊

𝒎𝒊

𝑖

 
Equation 4-1 

Where the change in concentration of a component within a reaction network is a 

function of the molar concentration of a component. When appropriate measurements are 

available, approximation of the differential term can be solved a variety of ways including the 

standard Euler method, the Taylor series approximation for example. The Molar Concentration 
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term (𝑪) can be identified with some assumptions: That the order of the reaction is zero, one 

or two- where [𝐶1]2 and [𝐶1]. [𝐶2] are both considered to be second order reaction, all 

possibilities of this can be approximated from the measured concentrations. The rate constants 

(𝒌) should be sparse, therefore the number of concentration combinations that are contributing 

to the equation will also be sparse. This leaves the rate constants to be the unknown that the 

linear programming technique is designed to identify. Assuming that the system is operating at 

constant pressure and temperature, these should be constant, and an accurate approximation of 

the system being identified. Alternatively, the integral of this equation can be solved: 

Δ𝑪 = 𝒌 ∫ 𝑪𝒊
𝒎𝒊

𝒕𝟐

𝒕𝟏

𝑑𝑡 

Equation 4-2 

There the change in molar concentration (Δ𝑪) is the change over a time period. The 

integral is to be approximated numerically from the combination of viable reactions considered 

(zero, first and second order possibilities). This can be done in a variety of ways, including the 

trapezium rule or numerical integration using Simpsons rule. As with the differential approach, 

the integral approach requires the 𝒌 vector to be sparse, and for the reaction to be taking place 

in isothermal and isobaric conditions. 

4.3 Method 

Figure 4.1 shows a flowchart overview of how the algorithm operates. A set of written 

instructions of how to generate the algorithm as if it were being used on the measurements 

from a real reactor is below. 

1. Collect Data. 

The amount of data required varies throughout the results section of this algorithm and 

therefore multiple runs may be required to generate sufficient data. If this data is graphically 

displayed, some a priori information should be identifiable which can be used if the user 

desires. An example of this a priori information would be identifying which components within 

the reaction is a reactant, a product, or an intermediate product. The collected data should be 

separated into training, testing and validation sets. 

2. Transform the Data. 

All the possible kinetic structures and the relevant approximation need to be identified. The 

approximation of the differential or integral can be done by one of several approaches discussed 

in the results. The different approaches are considered and evaluated in 4.5. 

3. Set up MILP algorithm. 
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This transformed data was then configured into the MILP form and the suitable binary and 

slack variables should be included. As discussed in section 3.1.2 a slack variable is introduced 

to act as an error term and binary variables are introduced to constraint the kinetic structure to 

be both sparse and can be used to manipulate the number of reactants and products within a 

reaction. These inequality constraints are shown below for a differential approach, the only 

change for an integral approach would be that Equation 4-3a & b modified to be in integral 

form: 

 

−
𝑑[𝐶]

𝑑𝑡
+ [𝐶] − 𝜀 ≤ 𝑡𝑜𝑙 

Equation 4-3a 

𝑑[𝐶]

𝑑𝑡
− [𝐶] − 𝜀 ≤ 𝑡𝑜𝑙 

Equation 4-3b 

[𝐶𝑖] + (𝑈𝐵 ∗ 𝑡𝑜𝑙)𝜎1,𝑖 ≤ 𝑈𝐵 − 𝑡𝑜𝑙 Equation 4-3c 

−[𝐶𝑖] − 𝑈𝐵𝜎1,𝑖 ≤ 0 Equation 4-3d 

−[𝐶𝑖] − (𝐿𝐵 + 𝑡𝑜𝑙)𝜎2,𝑖 ≤ −(𝐿𝐵 + 𝑡𝑜𝑙) Equation 4-3e 

[𝐶𝑖] + (𝐿𝐵 + 𝑡𝑜𝑙)𝜎2, 𝑖 ≤ 0 Equation 4-3f 

−∑𝜎1 − ∑𝜎2 + ∑𝜎 = 0 Equation 4-3g 

∑𝜎 ≤ 𝑁𝑐 Equation 4-3h 

−∑𝜎 ≤ 1 Equation 4-3i 

Other optional constraints identified from the a priori information can be added as a set of 

constraints. The cost function is based upon minimising two terms, the ∑𝜎 and 𝜀.  There are 

integer constraints set up for all the binary variables (all 𝜎 and the ∑𝜎 terms).  

4. Run the MILP. 

The MILP was run multiple times and collecting the results after each run.  There were 

repeats at the same condition and repeats at a selection of the coefficients of the cost function 

to put emphasis on the minimisation of one term over another. 

5. Test and Filter Identified Models. 

Using the test dataset, the identified models are simulated through a stepwise 

approximation of the differential, and evaluating the model using the Akaike Information 

Criterion (AIC). The top 5 models are then simulated using Matlab’s ode45 function and the 

quality of the model is again evaluated using AIC. The filtering process includes the removal 
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of some the superfluous terms and averaging the coefficients within one reaction to have a 

single kinetic coefficient value. 

6. Validate Model. 

The remaining models were validated against the validation data set, in a similar form to 

the testing step and evaluating using the AIC to reduce to a final model.
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Figure 4.1 - Flow chart overview of the identification of kinetic models, where the hard cornered bubbles refer to operations performed on the 

data, and the round cornered bubbles refer to data, or results. The dashed line separates the processes into the training, testing and validation steps 

of the algorithm.
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4.4 Results and discussion 

There are two approaches being considered when identifying the kinetic structure: the 

differential form, or the integral form. It has been identified prior to starting this investigation 

that components 1 and 2 are the reactants, and the other components are either intermediates 

or products. By setting up the algorithm under the conditions shown in Table 4-1, and the two 

approaches are compared to the generated model in Table 4-2. 

Table 4-1 - Operating conditions for the results shown in Table 4-2. 

Condition Values 

Training Dataset Initial Conditions - [1,3,0,0,0,0] 

Testing Dataset Initial Conditions – [3,4,0,0,0,0] 

Validation Dataset Initial Conditions – [2,2,0,0,0,0] 

Data points per Dataset (evenly spread) 75 

Gaussian Noise Added 0% 

Differential Approximation Method Forward Euler Method 

Integral Approximation Method Trapezium Rule 

 

It is anticipated that these results are unlikely to be accurate, this is because the training 

data is a single dataset as it leaves the possibility of overfitting the model to the training data.  

Both the differential and integral approaches identified a similar model. The results show that 

the first reaction was found for both methods, however the sequential reactions were less likely 

to be found accurately with the third reaction unable to be found. This can be explained by 

looking at the training data. The initial conditions for training have triglyceride (TG) and 

Methanol (MeOH) as the highest values. It therefore follows that the reaction involving TG 

and MeOH is identified, but the sequential reactions have been more difficult to identify for 

the algorithm. Since the change in concentration of the Monoglyceride (MG) and Glycol (GL) 

were relatively low at all time points there was less information within the data about these 

components. It appeared that using no model has a small enough error for the algorithm to 

consider it a reasonably accurate model (see Figure 4.2). 
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Table 4-2 - Results of the conditions shown in Table 4-1 where the generated model is 

compared the two approaches being considered.  

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Integral 

Approach 

Generated 

Model 

Differential 

Approach 

Integral 

Approach 

Generated 

Model 

Differential 

Approach 

Integral 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.367 −0.407 0 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.367 −0.407 −0.5 0 0 −0.2 0 0 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.367 0.407 −0.5 −0.242 −0.302 0 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.367 0.407 0.5 0 0.302 0.2 0 0 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0 0.5 0.242 0.302 −0.2 0 0 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0 0 0.2 0 0 

 

These results demonstrate that a single training dataset provided a good approximation 

of the first reaction. By including further datasets, which included data on the second and/or 

third reactions the algorithm demonstrates the potential to find all reactions to higher accuracy.
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Figure 4.2 - The Change in Concentration of all components, with validation data, and the differential and integral approaches' models. 
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Increasing the amount of training data means running separate simulations of the 

reaction network under different initial conditions. The possible inputs (initial conditions and 

subsequent data) are categorised in Table 4-3. 

Table 4-3 - Variations of all possible initial conditions. Where High, Medium and Low could 

be in any possible position within the vector. 

Position: 1 2 3 4 5 6 

Initial 

Condition 

High Zero Zero Zero Zero Zero 

Initial 

Condition: 

High Low Zero Zero Zero Zero 

Initial 

Condition: 

Medium Medium Zero Zero Zero Zero 

 

 

Rather than implementing numerical values, the initial conditions can be three levels: 

High, Medium and Low. Where a high value is large relative to the low value- for example, an 

order of magnitude larger, and the ‘medium’ level refers to two values that are equivalent. 

These possible conditions are in all possible positions (Component number) of each of these 

levels. This results in sixty-six initial conditions. Increasing the amount of training data to 

include sixty-six datasets with 75 measurements results are shown in Table 4-4. 

These results (Table 4-4) are a significant improvement on the results with a single 

training set (Table 4-2). All the relevant reactions have been identified in for all the differential 

equations. The concentration profiles of the differential equations are shown in Figure 4.3 From 

the concentration profiles it the models for MG and GL have the least accurate model. 

However, it is worth noting that these are identified as the third reaction in a sequence, therefore 

due to error accumulation from the first two reaction models the graphical results will always 

be less accurate for the third reaction than the for the first reaction in the sequence. 
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Table 4-4 - Models Identified using the differential and integral approaches. Sixty-six datasets 

were used to generate these models. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Integral 

Approach 

Generated 

Model 

Differential 

Approach 

Integral 

Approach 

Generated 

Model 

Differential 

Approach 

Integral 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.253 −0.374 0 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.253 −0.374 −0.5 −0.277 −0.392 −0.2 −0.116 −0.14 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.253 0.374 −0.5 −0.277 −0.392 0 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.253 0.374 0.5 0.277 0.392 0.2 0.116 0.14 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0 0.5 0.277 0.392 −0.2 −0.116 −0.14 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0 0 0.2 0.116 0.14 
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Figure 4.3 - Concentration Profiles of the validation data and the Differential and Integral Identified models. Sixty-six sets of training data were used to generate these 

models. 
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Comparing the identified models to the original (Generated) model (Table 4-4), 

numerically the integral approach is providing more accurate values than the differential 

approach from the same training data. This shows that both approaches are converging towards 

the same point with different levels of precision. 

4.5 Differential Approximation Methods 

The differential and integral need to be approximated from measurements. There are a 

variety of methods of approximating the differential and integral terms. For the previous 

examples, the Forward Euler method (differential) and the trapezium rule (Integral) have 

approximated the respective differential and integral terms. Several methods will be considered 

including: the Euler method, Taylor Series, and Differentiated Spline approaches for 

differential approximation, and the trapezium rule, Simpsons rule and Integrated Spline 

approximations for the integral approximations. 

4.5.1 Euler Method 

The Euler Method has three subcategories that can all provide accurate approximations 

depending on the function being approximated. The Forward Euler method is the standard 

formulation of the Euler method; however, the Backward Euler method and Central Euler 

methods are also variants that can be more useful under certain circumstances (Chapra, 2015). 

The Euler method uses the current point and an adjacent point to create a straight line. The 

approximations of the differential and integral are calculated from time series data, with initial 

conditions [1,5,0,0,0,0] with 75 measurements of each component across the reaction period 

of 7.5 hours, shown in Figure 4.4. The three Euler methods considered can be described by 

Equation 4-4. Part a shows the Forward Euler method, b the Backward Euler Method, and c 

the Central Euler method. For all three of these equations, the measurements are represented 

by 𝑦 and the respective time point is represented by 𝑥, for the current measurement 𝑛. 

 

𝑑𝑦

𝑑𝑥𝑛
≅

𝑦𝑛+1 − 𝑦𝑛

𝑥𝑛+1 − 𝑥𝑛
 

Equation 4-4a 

𝑑𝑦

𝑑𝑥𝑛
≅

𝑦𝑛 − 𝑦𝑛−1

𝑥𝑛 − 𝑥𝑛−1
 

Equation 4-4b 

𝑑𝑦

𝑑𝑥𝑛
≅

𝑦𝑛+1 − 𝑦𝑛 − 𝑦𝑛−1

𝑥𝑛+1 − 𝑥𝑛−1
 

Equation 4-4c 
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Figure 4.4 - Concentration profile (clean measurements) of the data being used to approximate 

the differential and integral via different methods. 
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3.1.9.1 Forward Euler Method 

The forward Euler method has already shown to be effective in the previous examples (See 

section 4.4). The Forward Euler method calculates the curve using the current datapoint and 

the adjacent future timeseries datapoint to generate the approximation of the differential. The 

approximation of the differential is plotted in Figure 4.5, the identified model is displayed in 

 

 

 

 

Table 4-5 and a comparison of the model identified to the validation dataset is displayed in 

Figure 4.6. 

 

Figure 4.5 - Approximation of the differential using the Forward Euler Method. 
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Table 4-5 – The Model identified using the forward Euler method to identify the differential. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.253 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.253 −0.5 −0.277 −0.2 −0.116 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.253 −0.5 −0.277 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.253 0.5 0.277 0.2 0.116 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0.277 −0.2 −0.116 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0.116 
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Figure 4.6 - Plotted Model identified using the Forward Euler Method approximation of the differential. 
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The approximation found all of reactions for each reacting component, although the 

identified rate constant coefficients were smaller in magnitude than the correct values in all 

cases. The accumulated errors from the first two reactions result in in the models of the third 

reaction appearing to have a large effect on the MG and GL concentration profiles, but the 

models appear to follow the trend of the data. This shows that the Forward Euler method has a 

valid approximation of the differential for the purposes of this method. 

3.1.9.2 Backward Euler Method 

The Backwards Euler method uses the current datapoint and the adjacent past timeseries 

datapoint to calculate an approximation of the differential. This means that the differential 

cannot be identified at the first measurement as there is no measurement of the concentration 

prior to beginning the reaction. The differential therefore has one less useable datapoint at the 

beginning of the reaction. Figure 4.7 - Backward Euler Method for approximating the 

differential term. Figure 4.7 shows an approximation of the differential calculated using the 

backwards Euler method and  

Table 4-6 shows the kinetic model that is identified from this approximation. 

 

Figure 4.7 - Backward Euler Method for approximating the differential term. 
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Table 4-6 - Identified model when using the backward Euler method 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 0 −0.5 −0.128 −0.2 0 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0 −0.5 0 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0 0.5 0.128 0.2 0 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0 −0.2 0 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0 

 

The identified structure is dissimilar to the generated model ( 

Table 4-6), but the approximated differential (Figure 4.7) is very similar to the 

differential identified by the Forward Euler method (Figure 4.5).  The difference between the 

approximations of the two methods is at the first datapoint where the backwards Euler method 

cannot approximate the differential. During the first few datapoints there are large changes in 

the concentration. Since no change in concentration can be observed using this approximation 

method this measurement is a conflicting datapoint to the rest of the dataset. Conversely, the 

final datapoints contained very small changes in concentration – these small changes can be 

appropriate to a variety of models and are therefore less useful in identifying the correct model. 

The identified models are not shown graphically because the model has significant and large 

errors. 

The Backward Euler method cannot be used as it cannot extract the information from 

some of the important datapoints at the start of process.  
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3.1.9.3 Central Euler Method 

The Central Euler Method identifies the gradient at a point by using the adjacent past 

timeseries datapoint, and the adjacent future timeseries datapoint to create the tangent. It would 

follow that the Central Euler method would have some similar problems to the Backward Euler 

method as it uses the adjacent past datapoint and the adjacent future datapoint to identify the 

gradient. To combat this, the first datapoint is calculated by the Forward Euler method, and the 

sequential approximations use the central Euler method. The approximation of the differential 

is shown in Figure 4.8Figure 4.8, the model identified is shown in Table 4-7. 

The differential of this model again appears to be accurate, and like the forward Euler 

method. There was a breakpoint (a vertex) where the method switches between the forward 

Euler method and the Central Euler method – This discontinuity could provide some problems 

evidenced by the backwards Euler method where the first few points contain significant 

information. 

This method worked successfully in its prediction of the differential. However, the first, 

and most vital datapoint must be calculated with the Forward Euler method. When compared 

to the Forward Euler method, the first two reactions have comparable coefficient values, 

however the magnitude of the coefficient for the third reaction has a more significant difference 

between the models. Overall, the Central Euler method does not improve the quality of the 

models significantly enough for it to be consider over the Forward Euler method. 
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Figure 4.8 - Approximation of the Differential using the Central Euler method. 

Table 4-7 - The Identified models using Central Euler Method to approximate the differential. 

 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.277 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.277 −0.5 −0.274 −0.2 −0.085 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.277 −0.5 −0.274 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.277 0.5 0.274 0.2 0.085 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0.274 −0.2 −0.085 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0.085 
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Figure 4.9 - Plotted Model identified using the Central Euler Method approximation of the differential.
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4.5.2 Taylor Series 

The Taylor series uses the (already identified) Forward Euler method to identify a 

second order differential so that the first order differential can be identified with more accuracy. 

The differential model is shown in Figure 4.10, the identified model is shown in Table 4-8, and 

the concentration profile of the model is shown in Figure 4.11. The Taylor series expansion is 

computed by MATLAB, but the forward Taylor series expansion is shown in Equation 4-5. 

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)Δ𝑥 +
𝑓′′(𝑥𝑖)

2!
(Δ𝑥)2 + ⋯ 

Equation 4-5 

 

 

 

Figure 4.10 - Differential approximation using the Taylor series approximation. 
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Table 4-8 - Identified model using the Taylor series method. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.282 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.282 −0.5 −0.330 −0.2 −0.128 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.282 −0.5 −0.330 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.282 0.5 0.330 0.2 0.128 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0.282 0.5 0.330 −0.2 −0.128 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0.128 
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Figure 4.11 - Graphical representation of results using the Taylor series method. 
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The Taylor series approximation provided a good quality model with accurate 

numerical solutions. The numerical values of the model are like the forward Euler method, but 

slightly closer to the true values. This improvement is explained by the second order differential 

accounting for some of the error in the differential that could not be considered by the forward 

Euler method. 

4.5.3 Differentiated Spline 

The differentiated spline is a generated partial polynomial of the data provided. This is 

analytically differentiated using Matlab’s fnder function to generate a differentiated partial 

polynomial which can be evaluated at each time point. The approximation of the differential is 

shown in Figure 4.12, with the identified models shown in Table 4-9 and the concentration 

profile of the model is displayed in Figure 4.13. 

 

Figure 4.12 -The approximation of the differential using Differentiated Spline approach. 
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Table 4-9 - The Identified model found using the differentiated Spline approach. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.399 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.399 −0.5 −0.396 −0.2 −0.132 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.399 −0.5 −0.396 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.399 0.5 0.396 0.2 0.132 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0.396 −0.2 −0.132 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0.132 
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Figure 4.13 - The concentration profile of the model identified using the differentiated Spline approach compared to the validation data set. 
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The identified model with the differentiated spline method is the most accurate model 

of the differentiated methods, this can be seen in Figure 4.13 with the model having the smallest 

error between the validation and the model of the four differential approximations considered.  

4.5.4 Differential approximation conclusions 

Splining has been shown to provide the best models identified.  The Backward Euler 

method generated the worst identified models. Of the remaining models, the Forward Euler, 

Central Euler, and Taylor series are all dependent upon the Forward Euler method. Therefore, 

the Differentiated spline approach, and the Forward Euler method will both be considered when 

noise is present in the measurements. 

4.6 Integral approximation techniques 

4.6.1 Trapezium rule 

This method has been shown to be effective already in Figure 4.2 and Table 4-4. The 

trapezium rule uses two measurement points to estimate the area under a curve with a 

trapezium. The approximation of the integral is shown in Figure 4.14, the identified model is 

shown in Table 4-10 and the concentration profile of the identified model is in Figure 4.14. 

The trapezium rule can be calculated from Equation 4-6, where 𝑎 and 𝑏, refers to the limits of 

the integration. 

∫ 𝑓. 𝑑𝑥 ≅
Δ𝑥

2
∑(𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)) 

𝑛

𝑖=1

  
Equation 4-6 
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Figure 4.14 - Approximation of the integral term when using the trapezium rule. 

Table 4-10 - The model identified when using the trapezium rule to approximate the integral 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.397 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.397 −0.5 −0.394 −0.2 −0.132 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0.397 −0.5 −0.394 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.397 0.5 0.394 0.2 0.132 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0.394 −0.2 −0.132 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0.132 
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Figure 4.15 - Concentration profile of the model generated using the trapezium rule to approximate the integral. 
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The trapezium rule generates an accurate model – the only method that has a superior 

model so far is the differentiated spline. 

4.6.2 Rectangle rule (Riemann Sum) 

The Rectangle rule uses a similar principle to the trapezium rule but generates a rectangle to 

approximate the area underneath the curve. This is generally considered to be an inferior 

integral approximation than the trapezium rule. The approximation of the integral is shown in 

Figure 4.16, the identified model is shown in  

Table 4-11, and the concentration profile of the model is shown in Figure 4.17. The Reiman 

Sum can be calculated using Equation 4-7 (Chapra, 2015): 

∫ 𝑓(𝑥). 𝑑𝑥 = ∑ 𝑓(𝑥𝑖) ∗ Δ𝑥

𝑛

𝑖=1

  
Equation 4-7 

 

 

Figure 4.16 - Approximation of the Integral using the rectangle rule. 
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Table 4-11 - The model identified when using the rectangle rule to approximate the integral. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Differential 

Approach  

Generated 

Model 

Differential 

Approach 

Generated 

Model 

Differential 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 0 −0.5 −0.4995 −0.2 0 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0 −0.5 0 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0 0.5 0.4995 0.2 0 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0 −0.2 0 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0 
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Figure 4.17 - The Concentration profile of the model identified with the Rectangle rule approximating the integral. 
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The rectangle rule fails to identify a model. The approximation of the integral Figure 

4.16 appears to be like other approximations, however the approximations are sufficiently 

different for it to become impossible to identify a model. 

4.6.3 Simpsons rule 

There are several variations of Simpsons rule, for this approximation, Simpson’s 3/8ths 

rule was applied as it is an advancement on the trapezium rule being a cubic version of the 

Newton-Coates formulae for approximating an integral. The approximation of the integral is 

shown in Figure 4.18,and the identified model is shown in Table 4-12. The two main Simpson’s 

Rules, Simpson’s 1/3 rule (Equation 4-8a) and Simpson’s 3/8ths rule (Equation 4-8b) are 

shown below. 

𝐴 =
Δ𝑥

3
[𝑓(𝑥0) + 𝑓(𝑥𝑛) + 4(𝑓(𝑥1) + 𝑓(𝑥3) + ⋯ ) + 2(𝑓(𝑥2 + 𝑓(𝑥4)

+ ⋯ )] 

Equation 4-8a 

𝐴 =
3Δ𝑥

8
[𝑓(𝑥0) + 𝑓(𝑥𝑛) + 3(𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥4) + 𝑓(𝑥5) + ⋯ )

+ (𝑓(𝑥3) + 𝑓(𝑥6) + ⋯ )] 

Equation 4-8b 

 

Figure 4.18 Approximation of the integral using Simpson's 3/8ths rule. 
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Table 4-12 - The model generated using the Simpson's 3/8ths rule to approximate the integral. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Integral 

Approach  

Generated 

Model 

Integral 

Approach 

Generated 

Model 

Integral 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 0 −0.5 −0.4995 −0.2 0 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0 −0.5 0 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0 0.5 0.4995 0.2 0 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0 −0.2 0 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0 

 

The approximation of the integral fails as the form of the Simpson’s 3/8ths rule requires 

a minimum of three datapoints to generate a cubic approximation of the datapoints. This results 

in the first measurement being unable to generate a value for the approximation of the integral. 

The first datapoint has been shown in other approximation measurements to be of great 

importance in the identification of the model. This has resulted in the algorithm being unable 

to identify a kinetic model to describe the system. Approximation of the integral by the 

Simpson’s rule cannot be considered any further. 

4.6.4 Integrating Splines 

As with differentiating the splines, piecewise polynomial splines are identified from the 

data, and can be analytically integrated by Matlab using the fnint function. The approximation 

of the integral is shown in Figure 4.19, the identified model is shown in Table 4-13, and the 

concentration profile of the model is displayed in Figure 4.20. 
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Figure 4.19 - Approximation of the Integral by analytically integrating a spline-generated 

piecewise polynomial. 

Table 4-13 - Model Identified using the integrated spline approach. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑫𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝑮]. [𝑴𝒆𝑶𝑯] 

 Generated 

Model 

Integral 

Approach  

Generated 

Model 

Integral 

Approach 

Generated 

Model 

Integral 

Approach 

𝒅[𝑻𝑮]

𝒅𝒕
 

−0.4 −0.573 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]

𝒅𝒕
 

−0.4 −0.573 −0.5 −0.712 −0.2 −0.165 

𝒅[𝑫𝑮]

𝒅𝒕
 

0.4 0 −0.5 −0.712 0 0 

𝒅[𝑩𝑫]

𝒅𝒕
 

0.4 0.573 0.5 0.712 0.2 0.165 

𝒅[𝑴𝑮]

𝒅𝒕
 

0 0 0.5 0.712 −0.2 0 

𝒅[𝑮𝑳]

𝒅𝒕
 

0 0 0 0 0.2 0 
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Figure 4.20 - The concentration profile of the model identified using the integrated spline approximation of the integral.
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The identified approximation of the integral through analytically integrated splines 

(Figure 4.19) has similar problems to several of the differential approximation methods. The 

first datapoint cannot find the correct value, instead all values appear to have an integral value 

of one at time zero. Considering the errors in the identified integral, the model identified (Table 

4-13) appears to be like the model used, however, components 3 and 6, (DG and GL) have not 

identified important terms. The importance of these terms is shown more obviously in Figure 

4.19 where the importance of DG as an intermediate is shown. The partially correct 

identification of the change in concentration of DG resulted in there being no MG produced 

according to the model.   

4.6.5 Integral approximation conclusions 

The different integral approximation methods were less effective than the different 

methods of approximating the differential. The trapezium rule and the differentiated spline 

method gave the most accurate approximations and the best models. Since the splining method 

is an analytical technique, one of the numerical techniques will also be used as a comparison. 

The Forward Euler method is taken forward as the best numerical differentiation approach.  

The most surprising result was that the integrated spline method gave such poor results 

when compared to the trapezium rule. It was anticipated that the integrated spline would 

provide superior approximations of the integral as with the differentiated spline. The 

importance of the approximation of the first datapoint for both integral and differential 

approaches appeared to be the limiting factor in many of the attempted approximation methods.  

Therefore because of these results, only three approximations will be considered when 

noise is added to the system: The Forward Euler method, the differentiated spline, and the 

trapezium rule. 

4.6.6 Introduction of noise to the system 

To test the algorithm more thoroughly, the effect of noise of the algorithm’s efficacy 

should be considered. Three approaches are being tested – The Forward Euler approach, a 

differentiated spline approach, and the trapezium rule approach. The system being modelled is 

once again the biodiesel production reaction network with 2% artificially added gaussian noise 

and continuing to use 75 measurements of the concentrations. The addition of noise also 

includes an element of randomness to the solutions found by the algorithm. Therefore, to 

produce statistically significant result there should be a minimum of 30 repeats. The goal is to 

show that when noise is present, the algorithm can still identify accurate models with precision 

with all three of the approaches being considered. 
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4.6.7 Differential approach with noise – Forward Euler 

The thirty identified models at 2% gaussian noise with seventy-five measurements are 

shown in Figure 4.21. Of the 30 models that are identified, five of the models have all the 

reactions and terms in the correct positions. 26% of the models contain an error in the first 

reaction, 16% of the models contain an error in the second reaction and 83% of the models 

contain an error in the third reaction, and 10% of the models have identified incorrect, extra 

reactions that are known to be incorrect. 
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Figure 4.21 - 30 models Identified (lines) using the Forward Euler method and an example set of training data (crosses) where the training data has 75 

measurements, and 2% artificial gaussian noise added. 
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Most of the models identified (Figure 4.21) appear to have similar shape to the data, 

however there are some models identified that appear to be incorrect, for example there is at 

least one model where the change in concentration of monoglyceride does not change.  

Unfortunately, none of the models can be instantly disregarded since the model of each 

component is strongly coupled with the other models- errors in the model of one component 

can have a significant impact on the model on other components.  

Table 4-14 displays the percentage of the time that each possible rate constant has the 

correct sign. Note that many of the rate constants have a value of zero and are identified as 

such in all the thirty repeats. The change in concentration of TG has the correct kinetic structure 

identified in all the repeats. All the other kinetic descriptions of the change in concentration of 

the components have at least one error that has appeared.  

Table 4-14 - Showing the percentage of the time each possible order is correctly 

identified (many of the possible orders are correctly identified as having a coefficient of zero) 

for the 30 models identified at 75 measurements and 2% noise. The errors have been 

highlighted to make them easier to identify. 

 Change in concentration over time 
 

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 100 100 100 100 100 100 

′𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝒆𝑶𝑯′ 100 90 90 86.66 100 100 

′𝑻𝑮𝑫𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 100 96.66 100 96.66 100 100 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 100 100 90 93.33 96.66 100 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 100 63.33 100 36.66 50 70 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 100 100 100 100 100 100 
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′𝑫𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑫𝑮′ 100 100 96.66 100 96.66 100 

′𝑫𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑫𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑴𝑮′ 100 100 100 100 100 100 

′𝑩𝑫𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝑮′ 100 96.66 100 100 96.66 100 

′𝑴𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑴𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳𝑮𝑳′ 100 100 100 100 100 100 

 

There are seven positions where errors that appear only once (value of 96.66%) in the 

30 repeats at this condition. Six of these seven appearances are of superfluous terms that should 

not be appearing within the model, and therefore are appearing in pairs – the [𝑀𝑒𝑂𝐻]. [𝑀𝑒𝑂𝐻] 

row is a reaction where [𝑀𝑒𝑂𝐻] is being converted into [𝐵𝐷]. Table 4-15 shows an example 

of all the types of error that can occur. Reaction one, (column [𝑇𝐺]. [𝑀𝑒𝑂𝐻]) has two terms in 

the correct places, and two terms missing. The identified superfluous term ([𝑀𝑒𝑂𝐻]2) has a 

relatively small coefficient, therefore having a smaller impact on the overall model and there 

are two identified reactions that are incomplete. These false positives partially explain the 

reaction network, however the mechanism it identifies is not accurate. 

All the other errors in the observed model occur when a value was expected to be in a 

position and was not present. The most common error is the change in biodiesel, associated 

with reaction 3 (the reaction associated with [𝑀𝑒𝑂𝐻]. [𝑀𝐺]). This can be explained in two 

parts: 

1. The rate constant of this reaction is the smallest of the three in this reaction network, 

and therefore has the smallest impact of the accuracy of the model identified. 

2. It is the third reaction in a sequence, therefore by the time the concentration of 𝑀𝐺 is 

not high enough for the reaction to take place at an easily observable rate. 
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Table 4-15 – An example of one of the identified models using 75 measurements and 2% noise. 

There are several errors that occur in this model that can be compared to the generated model 

also shown. 

 [𝑻𝑮]. [𝑴𝒆𝑶𝑯] [𝑴𝒆𝑶𝑯]𝟐 [𝑴𝒆𝑶𝑯]. [𝑫𝑮] [𝑴𝒆𝑶𝑯]. [𝑴𝑮] 

 Generate

d Model 

Identified 

Model 

Generate

d Model 

Identified 

Model 

Generate

d Model 

Identified 

Model 

Generate

d Model 

Identified 

Model 

𝒅[𝑻𝑮]
/𝒅𝒕  

−0.4 −0.17 0 0 0 0 0 0 

𝒅[𝑴𝒆𝑶𝑯]
/𝒅𝒕 

−0.4 0 0 −0.08 −0.5 −0.31 −0.2 0 

𝒅[𝑫𝑮]
/𝒅𝒕 

0.4 0.17 0 0 −0.5 −0.31 0 0 

𝒅[𝑩𝑫]
/𝒅𝒕 

0.4 0 0 0.08 0.5 0.31 0.2 0 

𝒅[𝑴𝑮]
/𝒅𝒕 

0 0 0 0 0.5 0.31 −0.2 −0.06 

𝒅[𝑮𝑳]
/𝒅𝒕 

0 0 0 0 0 0 0.2 0.06 

 

For the other reactions (associated with [𝑇𝐺]. [𝑀𝑒𝑂𝐻] and [𝑀𝑒𝑂𝐻]. [𝐷𝐺]) the lowest 

chance of the position being correct is 86.66% although it is not uncommon for there to be one 

of the errors in each identified model set, most of the identified model is correct. Table 4-14 

shows that each of the positions have the correct sign, not the magnitude of the coefficient, the 

average value of the coefficient is shown in . 

Table 4-16. . 

Table 4-16 is a transposed version of the model that has been shown typically 

throughout this work to two decimal places. It shows that the average value of the coefficients 

tends to be underestimated. This could be partially due to the occurrences of missing terms that 

would lower the average value of the coefficient in that position, this is shown through the row 

associated with reaction 1 ([[𝑇𝐺]. [𝑀𝑒𝑂𝐻]) where Table 4-14 showed that the coefficient 

associated with 
𝑑[𝑇𝐺]

𝑑𝑡
 was correct 100% percent of the time, and the other values were a lower 

percentage of being correct, and the average magnitude of the coefficients decreased as the 

percentage success of finding a value of the coefficient. 
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Table 4-16 - The average coefficient value of the thirty identified models with 2% noise, and 

75 measurements when using the forward Euler method to identify models. 

 Change in concentration over time 
 

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 0 0 0 0 0 0 

′𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝒆𝑶𝑯′ −0.35 −0.33 0.31 0.31 0 0 

′𝑻𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 0 −0.34 −0.31 0.32 0.33 0 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 0 −0.07 0 0.05 −0.05 0.07 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 0 0 0 0 0 0 

′𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑫𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑴𝑮′ 0 0 0 0 0 0 

′𝑩𝑫𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑮𝑳′ 0 0 0 0 0 0 
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′𝑮𝑳𝑮𝑳′ 0 0 0 0 0 0 

 

Another observation of the average coefficient values is that the terms that were 

determined to be superfluous errors that appeared only once have an average coefficient value 

of zero (to two decimal places). This confirms the observation from Error! Reference source n

ot found. that the coefficient values of the superfluous terms are typically of a small magnitude. 

Overall, this indicates that the Forward Euler method is still effective with 2% noise added to 

the system measurements.  

 

4.6.8 Differential Approach with Noise – Splining Method 

The Splining Method uses Matlab’s partial polynomial splining method (Matlab’s 

spline function) to generate a model of the data, this can then be analytically differentiated 

(Matlab’s fndr function) and evaluated (Matlab’s ppval function). Thirty repeats with different 

artificial noise were conducted and the identified models are shown in Figure 4.22. 
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Figure 4.22 - Change in concentration of each of the components with 2% noise level and 75 measurements using differentiating Spline method. The crosses 

show an example of some of the measurements and the lines are the thirty generated models (30 datasets) when the algorithm splines the data and analytically 

differentiates the model identified. 
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Figure 4.22 shows that most of the models have accurate representations of the data, 

with a small number of the outlier models which do not follow the trend. As with the Forward 

Euler method, there does appear to be at least one model that does not provide a change in 

concentration for components 𝑀𝐺 and 𝐺𝐿. The error in these components does not mean that 

the entire network model should be disregarded, however the model that describes the change 

in concentration of those individual components can be disregarded. Looking at the identified 

models, there is one instance of an error in the change in concentration of 𝑇𝐺 and 𝐷𝐺 (shown 

in Table 4-17 at as a single percentage at 96.67%), two instances of errors in the change in 

concentration of 𝑀𝑒𝑂𝐻 (indicated by an error percentage of 96.67%) and several errors that 

can occur in the change in concentration of 𝑀𝐺, 𝐵𝐷 and 𝐺𝐿.  

Table 4-17 - Percentage of times that each position is correct, with thirty repeats at 2% 

noise, with 75 measurements, the models were identified using the differentiated spline 

approach. Once again, the positions where errors have occurred in at least one instance have 

been highlighted. 

 Change in concentration over time 
 

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 100 100 100 100 100 100 

′𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝒆𝑶𝑯′ 100 100 100 100 100 100 

′𝑻𝑮𝑫𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 96.67 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 100 96.67 96.67 83.33 93.33 96.67 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 100 100 100 100 100 100 

′𝑫𝑮′ 100 100 100 100 100 100 
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′𝑫𝑮𝑫𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑫𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑴𝑮′ 100 100 100 100 100 100 

′𝑩𝑫𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝑮′ 100 100 100 100 100 100 

′𝑴𝑮𝑴𝑮′ 100 100 100 100 96.67 96.67 

′𝑴𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳𝑮𝑳′ 100 100 100 100 100 100 

 

The most likely errors are associated with the third reaction ([𝑀𝑒𝑂𝐻]. [𝑀𝐺]), however 

the likelihood of these errors occurring appears to be lower than with the forward Euler method. 

Only one position has a percentage value lower than 90% (where 
𝑑𝐵𝐷

𝑑𝑡
 is affected by the third 

reaction [𝑀𝑒𝑂𝐻]. [𝑀𝐺]). This is explained in the same way as it was for the Forward Euler 

method: the third reaction ([𝑀𝑒𝑂𝐻]. [𝑀𝐺]) has the least influence on the change in 

concentration of 𝐵𝐷 due to the rate constant (the associated coefficient) being the smallest and 

the concentrations of 𝑀𝐺 and 𝑀𝑒𝑂𝐻 being low throughout the reaction network.  

The differentiation of splines method does however have no errors in the first reaction 

([𝑇𝐺]. [𝑀𝑒𝑂𝐻]) and one observed error in the second reaction ([𝑀𝑒𝑂𝐻]. [𝐷𝐺]). The single 

error in the second reaction occurs where one model has an additional term identified 

associated with the change in concentration of 𝑇𝐺.  

 

 

 

 

 



 92 

Table 4-18 - The average coefficient value of the identified models using the differentiated 

spline approach at 2% noise and 75 measurements. 

 Change in concentration over time  

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 0 0 0 0 0 0 

′𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝒆𝑶𝑯′ −0.39 −0.39 0.39 0.39 0 0 

′𝑻𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 0.01 −0.4 −0.4 0.4 0.4 0 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 0 −0.13 0 0.12 −0.12 0.13 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 0 0 0 0 0 0 

′𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑫𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑴𝑮′ 0 0 0 0 0 0 

′𝑩𝑫𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑮𝑳′ 0 0 0 0 0 0 

′𝑮𝑳𝑮𝑳′ 0 0 0 0 0 0 
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The average coefficient values (rate constant) for each position are shown in Table 

4-18. The superfluous term in the second reaction (where 
𝑑[𝑇𝐺]

𝑑𝑡
 and [𝑀𝑒𝑂𝐻]. [𝐷𝐺] intersect) 

has a small value, shows that the superfluous terms tend towards zero when averaged over 

many repeats. The values of each reaction are significantly closer to the generated model’s 

values, when compared against the values generated when using the Forward Euler method (. 

Table 4-16). This further suggests that differentiating splines provides more accurate 

identified models than the Forward Euler method and the errors appear less frequently (under 

these conditions) suggesting the accuracy and reliability is superior using differentiated splines. 

4.6.9 Integral approach with noise – Trapezium rule 

The Integral approaches integrate the differential equation to provide an alternative 

method of identifying the kinetic structure and rate constants associated with the structure. The 

results are all displayed in the same form as with the differential approaches to keep the form 

of the results consistent. The change in molar concentration- Δ𝐶, of each component can be 

calculated trivially at each time point, the integration of the structures is done using the 

trapezium rule.  Table 4-19 show the percentage of the time that the models identified a value 

with the correct sign (and therefore an approximately correct value). Figure 4.23 shows the 

thirty models identified when 75 measurements are used with 2% artificial noise is added.  
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Table 4-19 - The percentage of the thirty repeats that each position has the correct sign when 

there at 75 measurements and 2% artificial noise added to the system. 

 Change in concentration over time 
 

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 100 100 100 100 100 100 

′𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑻𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝒆𝑶𝑯′ 96.67 46.67 96.67 56.67 100 100 

′𝑻𝑮𝑫𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑻𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑻𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 100 96.67 100 96.67 100 100 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 100 93.33 96.67 93.33 70 100 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 100 100 100 100 100 100 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 100 26.67 100 16.67 33.33 46.67 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 100 100 100 100 100 100 

′𝑫𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑫𝑮′ 96.67 100 100 100 96.67 100 

′𝑫𝑮𝑩𝑫′ 100 100 100 100 100 100 

′𝑫𝑮𝑴𝑮′ 100 100 100 100 100 100 

′𝑫𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑩𝑫′ 100 100 100 100 100 100 

′𝑩𝑫𝑴𝑮′ 100 100 100 100 100 100 

′𝑩𝑫𝑮𝑳′ 100 100 100 100 100 100 

′𝑴𝑮′ 100 100 100 100 100 100 

′𝑴𝑮𝑴𝑮′ 100 100 96.67 100 100 96.67 

′𝑴𝑮𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳′ 100 100 100 100 100 100 

′𝑮𝑳𝑮𝑳′ 100 100 100 100 100 100 
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Figure 4.23 - Change in concentration of each of the components with 2% noise level and 75 measurements using Trapezium rule. The crosses show an example of 

some of the measurements and the lines are the thirty generated models (30 datasets) when the algorithm splines the data and analytically differentiates the model 

identified. 
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Table 4-20 - The average coefficient value identified over thirty repeats using 75 measurements 

at 2% noise. 

 Change in concentration over time 
 

𝒅𝑻𝑮

𝒅𝒕
  

𝒅𝑴𝒆𝑶𝑯

𝒅𝒕
 

𝒅𝑫𝑮

𝒅𝒕
 

𝒅𝑩𝑫

𝒅𝒕
 

𝒅𝑴𝑮

𝒅𝒕
 

𝒅𝑮𝑳

𝒅𝒕
 

[] 0 0 0 0 0 0 

′𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑻𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝒆𝑶𝑯′ −0.31 −0.18 0.31 0.19 0 0 

′𝑻𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑻𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑻𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝒆𝑶𝑯′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑫𝑮′ 0 −0.4 −0.42 0.4 0.3 0 

′𝑴𝒆𝑶𝑯𝑩𝑫′ 0 0 0 0 0 0 

′𝑴𝒆𝑶𝑯𝑴𝑮′ 0 −0.03 0 0.02 −0.03 0.04 

′𝑴𝒆𝑶𝑯𝑮𝑳′ 0 0 0 0 0 0 

′𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑫𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑩𝑫′ 0 0 0 0 0 0 

′𝑫𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑫𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑩𝑫′ 0 0 0 0 0 0 

′𝑩𝑫𝑴𝑮′ 0 0 0 0 0 0 

′𝑩𝑫𝑮𝑳′ 0 0 0 0 0 0 

′𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑴𝑮′ 0 0 0 0 0 0 

′𝑴𝑮𝑮𝑳′ 0 0 0 0 0 0 

′𝑮𝑳′ 0 0 0 0 0 0 

′𝑮𝑳𝑮𝑳′ 0 0 0 0 0 0 
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The graphs of the models identified with the trapezium rule (Figure 4.23) appear to give 

a similar set of results when the two differential methods under these conditions (Figure 4.21 

and Figure 4.22). There is at least one instance of no model being identified for the entire 

reaction network- shown by there being no change in concentration. Table 4-19 also suggests 

that there is a considerable number of errors that occur regularly within the identified models, 

including several superfluous terms that are incorrect – rows [𝑀𝑒𝑂𝐻]. [𝑀𝑒𝑂𝐻], [𝐷𝐺]. [𝐷𝐺] 

and [𝑀𝐺]. [𝑀𝐺]. The average coefficient terms (shown in Table 4-20) do have values in the 

correct positions. However, the average value for the rate constant in reactions 1 & 3 are smaller 

than expected. This shows the most common error that occurs at this condition – an unexpected 

value of zero, therefore lowering the average rate constant value. 

The commonplace of these errors would suggest that the trapezium rule is not effective 

in the identification of kinetic parameters when noise is present, however noise was not the 

most influential variable when using the trapezium rule – the number of measurements used 

has a stronger influence on the efficacy of this method. 

4.7 Effect of the number of measurements  

When working with a real system, taking a measurement can be expensive – either in 

terms of physical and computational labour, or the measurements require specialised 

equipment with a monetary cost associated with it, therefore it would be ideal to minimise the 

number of measurements taken wherever possible. However, there is intuitively a minimum 

number of measurements required to provide enough information (within the data) to identify 

the reaction networks. It would therefore logically follow that there is an optimal number of 

measurements used to identify the reaction network depending on the amount of noise present 

in the measurements. 

4.7.1 Forward Euler Method 

An example of the effect of the number of measurements is shown in Figure 4.24. The 

immediate observations from Figure 4.24 are that at 1% measurement noise there is a minimum 

requirement of 10 measurements for there to be a possibility of identifying the models, although 

the chances of identifying models increases significantly when 20 measurements are used. 

When the number of measurements is less than or equal to twenty, there only model that can 

be identified is a null model with zero values in all positions. This is interpreted as there not 

being enough data provided for the algorithm. This identifies a flaw in using the Forward Euler 

method – and the other Euler variants, that cannot be compensated for: the space between the 

measurements is large, therefore causing the approximation of the differential being less 
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accurate. This inaccuracy in the approximation of the differential results in the algorithm 

disqualifying the correct models from being possible solutions. 

Increasing the number of measurements from 20 up to 75 appears to increase the 

precision of the coefficient values and therefore creating more accurate models. Whilst a more 

precise coefficient value is important, the precision should be weighed against the cost of 

collecting the required data.  

The Forward Euler method uses the adjacent measurements to calculate the change in 

concentration, this makes the number of measurements a core variable to be considered. If the 

distance between measurements becomes too large, then the approximation of the differential 

becomes less accurate therefore making the approximation useless. Although not shown in 

Figure 4.24, it logically follows that when the distance between measurements is small (lots of 

measurements), then effect of the data corruption caused by noise will be more significant. In 

Section 4.8, the effect of both variables changing simultaneously will be examined. 

4.7.2 Differentiation of Spline 

Splining data does not have the same restrictions of the Euler approximations as it does 

not directly identify the differential from the data, instead there is an intermediate step of 

converting the data into a piecewise polynomial which in turn is differentiated analytically.  

Figure 4.25 shows the models identified using different numbers of measurements at 1% noise. 

As with the Forward Euler Method, there are no models identified once the number of 

measurements decreases below 10. However, when there are 10 measurements present the 

differentiated spline method has a higher chance of identifying a model- shown by more lines 

being present. 

When there are 20 or more measurements used, the accuracy of the models is superior 

to the Forward Euler method at all scenarios. The accuracy of the identified models does not 

improve significantly from 20 measurements, up to 75 measurements. The effect of noise and 

the number of measurements used are invariably interconnected, these two variables are 

considered together in section 4.8.
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Figure 4.24 - Graphs showing the thirty identified models with the effect of the number of measurements on the quality of models identified using the 

Forward Euler Method with 1% artificial noise. Crosses are (example) measurements, the lines are the different models identfied. Red is Triglyceride (TG), 

Green is Methanol (MeOH), Magenta is Diglyceride (DG), Blue is Biodiesel (BD), Yellow is  MonoGlyceride (MG), and Black is glycol (GL). 



 100 

Figure 4.25 - Graphs showing the thirty identified models with the effect of the number of measurements on the quality of models identified using the 

Differentiating Spline method with 1% artificial noise. Crosses are (example) measurements, the lines are the different models identfied. Red is Triglyceride 

(TG), Green is Methanol (MeOH), Magenta is Diglyceride (DG), Blue is Biodiesel (BD), Yellow is  MonoGlyceride (MG), and Black is glycol (GL). 
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Figure 4.26 - Graphs showing the thirty identified models with the effect of the number of measurements on the quality of models identified using the Trapezium 

Rule with 1% artificial noise. Crosses are (example) measurements, the lines are the different models identfied. Red is Triglyceride (TG), Green is Methanol 

(MeOH), Magenta is Diglyceride (DG), Blue is Biodiesel (BD), Yellow is  MonoGlyceride (MG), and Black is glycol (GL). 
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4.7.3 Trapezium rule 

The effect of the number of measurements on the efficacy of the trapezium rule – 

integral approach, to the identification on models is shown in Figure 4.26. As with the other 

methods, when the number of measurements decreases below 10 measurements, there are no 

accurate models.  

When 10 measurements are used there is a possibility of finding the reaction network, 

however there is also a reasonably chance of there being a model of zeros identified instead. 

Once the number of measurements increases to twenty or higher, the models appear to be an 

accurate depiction of the data with an exception observed at both 75 and 30 measurements. The 

models appear to have high precision as there is a smaller spread throughout the different 

models identified. This precision is explained through integrating the data rather than 

differentiating. The noise is the reason for the variation within the models at any one condition, 

this means that the integration of the data will reduce the impact of the noise on the algorithm.  

The integration appears to be more stable than the Forward Euler method with respect 

to the number of measurements, however there is a point where the approximation of the 

integral becomes so inaccurate (due to large spaces between measurements) that the algorithm 

cannot find any model that is considered acceptable by the algorithm. 

Of the three methods considered, the Forward Euler method appears to require the most 

data to give accurate models, and it has the most difficulty with fewer measurements. The 

Trapezium Rule has significantly more precision in the identified models and appears to 

transition from precise models to not finding models around the 10 measurements level. In 

comparison, the differentiated splines appear to have the highest reliability in the identification 

of models, but still cannot find models with less than 10 measurements.  The analysis of this 

data, and the data from section 4.6.6 has shown that the number of measurements used, and the 

level of noise are coupled together with respect to the efficacy of each of the methods. The next 

section provides more analysis of the different conditions being considered and the efficacy of 

the models at each condition. 

4.8 Comparing different conditions 

To consider as many scenarios as possible a central composite design of the possible 

scenarios is used with thirty repeats at each condition to establish a degree of statistical 

confidence in the results. There are two factors that are being considered, the amount of noise 

present, and the number of measurements being used to identify the model. There are six levels 

of noise being considered:  
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• 0% 

• 1% 

• 2% 

• 3% 

• 5% 

There are five levels of the number of measurements being used: 

• 75 measurements, 

• 30 measurements, 

• 20 measurements, 

• 10 measurements, 

• 5 measurements and, 

• 2 measurements. 

These levels were determined using the central composite rule where there is a focus on the 

anticipated ‘centre’ of the data, with an extreme on either side of that centre. This uses 

considerably less computational time than a full factorial design which would have required 

considerably more levels for both variables being considered. The anticipated centre for the 

noise levels is 2%, with the extremes being 0% noise (the minimum amount of noise) and 5% 

noise – where the corruption makes it difficult to identify kinetic models using MILP. The 

results have been separated by the three different methodologies – Forward Euler, 

Differentiated Spline & the Trapezium Rule, into Table 4-21,  

Table 4-22 & Table 4-23.  The values shown in  Table 4-21,  

Table 4-22 and Table 4-23 are the average coefficient of the non-zero terms in the identified 

models, and the asterisk identifies where the method did not find the correct model for all of 

the repeats at that condition, it is worth noting that this method of displaying the results does 

not account for the likelihood of finding the value shown. There are some cases where there is 

a single instance of an error in the identification of a reaction and there are cases where there 

were a small number of models identified (lots of models with no active terms). For example 

– At 1% noise & 20 measurements, using the Forward Euler method, there are 2 errors that do 

not result in inaccurate results, and several errors that do not cause significant errors to the 

models shown in Figure 4.27. 
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Figure 4.27 - plot of the 30 models identified at conditions 1%, 20 measurements, the crosses 

show an example set of measurement data and each line shows a model identified. 

Figure 4.27 shows most of the models are following the trend of the measurement data, 

except for the errors described previously causing zero change in concentration. There are two 

error types that appear in the rest of the identified reaction networks: An error in the production 

of 𝑀𝐺 (reaction two not including 𝑀𝐺) which occurs four times, & an error associated with 

reaction three. This error in reaction three occurred 24 times and did not include 𝑀𝐺 in the 

reaction. This explains why the monoglyceride in Figure 4.27 is overestimated in most of the 

identified models.  The results are very consistent at this condition and the errors occur rarely 

(2 instances of the failure to identify a model), or the minor errors in the models identified 

appear to be consistent (24/30 models have the same error), this indicates that the methodology 

has an acceptable level of precision with some inaccuracy in the identified models at these 

conditions. 
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Table 4-21 - All conditions, Forward Euler, average coefficient of the non-zero terms identified over 30 models. An asterisk identifies where an 

error occurred at least once within the 30 repeats. 

Forward Euler 

Method 

Noise 

Measurements 0% 1% 2% 3% 5% 

75 𝑟1 = 0.25𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.27𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.37𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻]  

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗  

𝑟1 = 0.35𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.34𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.29𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.31𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.09𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.43𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.24𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻]* 

 

30 𝑟1 = 0.22𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.21𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.07𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.25𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.27𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.29𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.26[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.09[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.3𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.28[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.29𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻]* 

𝑟2 = 0.26[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.09[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

20 No Model Identified 𝑟1 = 0.24𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.23[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.08[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.25𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.24[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.08[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.23𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.23[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.09[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.24𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.23[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.09[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

10 No Model Identified 𝑟1 = 0.10𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ No Model Identified No Model Identified No Model Identified 

5 No Model Identified No Model Identified No Model Identified No Model Identified No Model Identified 

2 No Model Identified No Model Identified No Model Identified No Model Identified No Model Identified 
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Table 4-22- All conditions, differentiated Spline method, average coefficient of the non-zero terms identified over 30 models. An asterisk identifies 

where an error occurred at least once within the 30 repeats. 

Differentiated 

Spline 

Noise 

Measurements 0% 1% 2% 3% 5% 

75 𝑟1 = 0.39𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.40𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.40𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.40𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.39𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.40𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.32𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.39𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.11𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.30𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.35𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

30 𝑟1 = 0.39𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.37𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.38𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.37𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.39[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.39[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.13[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.37𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.37[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.33[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.37[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.11[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

20 𝑟1 = 0.38𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.37[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35[𝐷𝐺][𝑀𝑒𝑂𝐻]* 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.36𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.36[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.35[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.34[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.34[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.14[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

10 𝑟1 = 0.39𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.37𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.10𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.22𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.28[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.09[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.26𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.29[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.28𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.28[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.26𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.28[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

 

5 No Model Identified No Model Identified 𝑟1 = 0.11𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.05[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.11𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ No Model Identified 

2 No Model Identified No Model Identified No Model Identified No Model Identified No Model Identified 
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Table 4-23 - All conditions, Trapezium rule, average coefficient of the non-zero terms identified over 30 models. An asterisk identifies where an 

error occurred at least once within the 30 repeats. 

Trapezium rule Noise 

Measurements 0% 1% 2% 3% 5% 

75 𝑟1 = 0.40𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.39𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.38[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.40𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻]  

𝑟3 = 0.14𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗  

𝑟1 = 0.32𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.43𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.11[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.24𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.34𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.26𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.40𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

30 𝑟1 = 0.38𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.31𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.38𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.37𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.13𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.38[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.37[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.14[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.33𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.32[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.32[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.39[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.14[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

20 𝑟1 = 0.36𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12𝜈[𝑀𝐺][𝑀𝑒𝑂𝐻] 

𝑟1 = 0.35[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.12[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.35[𝑇𝐺][𝑀𝑒𝑂𝐻] 

𝑟2 = 0.35[𝐷𝐺][𝑀𝑒𝑂𝐻] 

𝑟3 = 0.11[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.32[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.30[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.32[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.33[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

10 No Model Identified 𝑟1 = 0.29𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.30[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.29𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.30[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.10[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.21𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.22[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟3 = 0.06[𝑀𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.22𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.28[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

 

5 No Model Identified No Model Identified No Model Identified 𝑟1 = 0.11𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟2 = 0.13𝜈[𝐷𝐺][𝑀𝑒𝑂𝐻] ∗ 

𝑟1 = 0.12𝜈[𝑇𝐺][𝑀𝑒𝑂𝐻] ∗ 

2 No Model Identified No Model Identified No Model Identified No Model Identified No Model Identified 
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4.9 Discussion  

The trends of the results are similar for all three methods, with the magnitude of the 

effects of noise and the number of measurements being slightly different for each approach. 

Looking at the Forward Euler Method, Table 4-21 confirms the conclusion of section 4.7 

that less than 10 measurements are not sufficient data for the algorithm to identify a model. 

Similarly, there is a point where the noise level becomes too high for an accurate model to be 

identified, shown by the condition where 75 measurements with 5% noise cannot identify the 

third reaction at all. It is also worth noting that this appears to be of a problem at different 

measurement levels indicating that the large noise has less of an influence when the number of 

measurements is reduced. This is explained as the noise being less impactful on the 

approximation of the differential when the distance between measurements is larger.  

The Forward Euler method has been the least accurate of the three being considered 

however, Table 4-21 would indicate that this method has an acceptable range of conditions of 

operation. As discussed in the previous subsection, the values provided in Table 4-21 only 

counts the non-zero terms from the 30 repeats. Therefore, if only one of the repeats identifies 

the correct model structure and an accurate coefficient, and the others do not identify a model 

at all, then the average coefficient would appear to be accurate i.e. the precision of the 

methodology is not considered in Table 4-21.  

As the amount of noise is increased, the precision of the models decreases, with more 

occurrences of missing terms and empty models being identified. By increasing the noise from 

zero to five percent at 75 measurements, the occurrence of errors in the identification of reaction 

1 increases from 0 incidents (0% noise) to there being a single instance of an accurate 

approximation of reaction 1 at 5% noise. The trend follows a similar pattern for all the other 

two reactions, with reaction three being the most affected to the point of failing to identify any 

models once the noise increases to 5%. When the number of measurements is decreased, the 

affect of noise appears to be translated towards higher noise levels i.e. an optimal number of 

measurements (likely between 20 and 30 measurements) will be able to identify accurate 

models with more than 5% noise.  

The Forward Euler method is most likely to have superfluous terms identified as part of 

the reaction network, these superfluous terms tend to have small coefficient values and therefore 

have a small impact on the change in concentration of any individual component. Most of the 

superfluous terms that appear when using the Forward Euler approach are using kinetic terms 

that are similar to the correct kinetic terms, for example, one of the repeats underestimates the 

coefficient associated with [𝐷𝐺][𝑀𝑒𝑂𝐻] and also includes the additional term [𝐷𝐺] or 

sometimes [𝐷𝐺]2. The superfluous terms appear to be more common with higher number of 
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measurements. The frequency of superfluous terms increases as the number of measurements 

increases with the amount of noise being less impactful than the number of measurements, but 

the conditions that have the highest likelihood of finding a superfluous time is when both the 

number of measurements and noise is highest with eight of the repeats containing a superfluous 

term. 

The Differentiated Spline approach has some similar errors occurring to the Forward Euler 

Method approach, i.e. once the number of measurements reduces below 10 measurements, there 

are no models identified. This is explained as there being too little information within the 

datapoints for the algorithm to identify. Using the differentiated spline does identify models at 

10 measurements, however these models are difficult to identify and only a small number of 

the repeats generated models. As discussed previously, the values identified in  

Table 4-22 are the average of the non-zero terms. This approach at low measurements tends to 

find either a model with most (or all) of the values in the correct positions or does not find any 

model to describe the data which is a benefit that does not occur within the Forward Euler 

approach. For example, for the condition 2% noise, and 10 measurement, five of the repeats 

generate a model that has reactions one and two with values in the correct positions and reaction 

three having a partially correct model. The other twenty-five repeats have no model identified 

at all. Superfluous terms are not common with the Differentiated Spline Approach, with them 

only occurring at lower noise levels & fewer measurements. The errors that occur do not appear 

to have any correlation at any specific condition with no repeating errors. 

The Trapezium Rule approach (Table 4-23) has very similar results to the differentiated spline 

method ( 

Table 4-22, and Table 4-23), with the number of measurements having a minimum value to be 

effective of ten measurements, but the results at ten measurements are less likely to occur with 

many of the repeats not generating a model at all. The interesting difference between the 

Trapezium Rule approach and the Differentiated Spline approach is the stability of the 

coefficients throughout the different conditions. As the number of measurements decreases to 

20 the average values do not change considerably, the results appear to have high precision with 

respect to the number of measurements. This is also apparent with the change in noise with the 

coefficients being the closest to the correct values of the three methods. This precision is likely 

due to the effects of the noise being reduced by the integration i.e. the noise will have a smaller 
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affect on the area under the graph. This shows a benefit of the integral approaches over the 

differential approaches.  

The number of measurements does appear to have a greater impact on the quality of result 

over the Differentiated Spline approach, this is likely due to the approximation of the integral 

becoming less accurate when the gap between measurements is too large.  The number of 

superfluous terms increases as the number of measurements decreases. There are a variety of 

superfluous terms that occur and occur semi-regularly, these additional terms do not appear to 

have significant negative impact on the change in concentration of each of the components 

where these errors occur. One set of errors that appears more than once at 20 measurements, 

3% noise changes the model to be (written in differential equation form): 

𝑑[𝑇𝐺]

𝑑𝑡
=  0,  

𝑑[𝑀𝑒𝑂𝐻]

𝑑𝑡
=  −0.4[𝑇𝐺]2, 

𝑑[𝐷𝐺]

𝑑𝑡
=  −0.14[𝐷𝐺][𝑀𝑒𝑂𝐻], 

𝑑[𝐵𝐷]

𝑑𝑡
= 0.4[𝑇𝐺]2, 

𝑑[𝑀𝐺]

𝑑𝑡
= 0.14[𝐷𝐺][𝑀𝑒𝑂𝐻], 

𝑑[𝐺𝐿]

𝑑𝑡
= 0, 

This example of a model with superfluous terms shows that the models with superfluous 

terms can be a failure to identify a large portion of the reaction network, and the model that is 

found is a poor representation of the true model. This example model appears 5 times at this 

condition. The only other error that appears at that condition is a correct model with two 

additional reactions where the coefficient is a small number and has a small impact on the 

change in concentration of that component. 

4.10 Conclusions 

Overall, the different approaches have shown that there is a minimum amount of data 

required to generate an accurate model, and all the approaches appear to agree that between 

twenty and thirty measurements are sufficient for this reaction network. Twenty to thirty 

measurements appear to contain enough information about the concentration change of the 

components whilst not being corrupted by noise. Of the three approaches, the Differentiated 

Spline has the highest likelihood of identifying the correct structure, being the most likely to 

find a correct model at more challenging conditions and tends to produce models with the 
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fewest superfluous terms. However, the precision of the integral approach does provide a 

benefit over the spline method if the coefficient of the relevant kinetic structure cannot be 

identified by different methods. 
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5 Chapter 5 Conclusions 

5.1 Discussion 

The stoichiometric algorithm has several limitations that were shown when the method 

was tested against a standard dataset of the thermal decomposition of 𝛼-pinene. The lack of 

reaction invariants in the 𝛼-pinene reaction network showed a limitation of the algorithm in 

finding the stoichiometries that this method is dependent on reaction invariants to identify 

stoichiometries. This can be partially remedied with a priori information as limitations can be 

placed on the identification of stoichiometries algorithm. Attempting this method on a larger 

reaction network, with more chemical components should be considered to test the limitations 

of the algorithm. The two CRNs this algorithm was applied to have five and six reactive species. 

The identification of kinetic parameters was shown to be effective with several variations 

on the differential and integral approaches. The limitations of this approach were tested with 

respect to noise and the number of measurements being used in the identification process. 

However, a limitation that was not considered would be to use fewer datasets to identify the 

kinetic structure of the CRN. The datasets provided to the MILP include some datasets with no 

reaction taking place, whether this is necessary as a demonstration of the reaction not taking 

place has not been evaluated. 

Both algorithms shown in this work operate on isothermal batch reactors and the reactions 

were irreversible, both assumptions may not be true in a real reaction network. For example, in 

an exothermic reaction whilst the temperature can be controlled tightly with suitable equipment, 

the assumptions that the algorithms are built upon are no longer valid and therefore the 

algorithms may fail to identify the relevant reaction properties.  

If the reaction is reversible there are a variety of problems that could occur in the identification 

of the CRN. This has not been considered in the scope of this work, but applying this method 

to a reversible reaction would be an interesting application.  

5.2 Conclusions 

This thesis has shown that an MILP approach to the identification of chemical reaction 

networks stoichiometries and kinetics is possible with no a priori knowledge of the system in 

question.  

Whilst a priori information is not essential for the identification of stoichiometries, it both 

can be used and is recommended to be used it to further reduce the number of feasible solutions 

to the stoichiometric problem. It was discovered from the 𝛼-pinene reaction network that there 

is a group of reaction networks that have very few invariants, and that this approach to the 

identification of stoichiometric modelling is not appropriate for this type of reaction network. 
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Similarly, the identification of kinetic models can be completed from concentration 

measurements only i.e. no a priori information, and is shown to be possible at 5% noise. The 

importance of the first few measurements in the identification process was discovered from the 

different approximation methods being considered.  

The differentiated spline gave the best models among the differential approaches, with 

fewer errors in the identified models and the highest precision in the model coefficients of all 

the differential approximation methods.  

The trapezium rule was the most reliable of the integral approximation techniques. Noise 

levels has a smaller impact on the integral approaches since the measurement errors have a 

smaller impact on the area under the graph.  

These two methods are comparable with similar results at all conditions. However, since this is 

an offline approach to model identification there is no limit on the number of approaches that 

could be applied. 

 

5.3 Future work 

A logical progression of this work would be to identify bio-chemical kinetic models.  

The identification of chemical kinetics can be modified to also consider the growth mechanics 

of microorganisms. There are several approximations of the biological processes depending on 

how the microorganism is behaving. For this study the Monod, Haldane, AND and OR models 

of are being considered as possible structures for the biological kinetics. The growth rates of 

each of these models is shown in Equation 5-1: 

Monod Model 
𝜇 =

𝜇𝑚𝑎𝑥[𝑆]

[𝑆] + 𝐾𝑠
 

Equation 5-1a 

Haldane Model 
𝜇 =

𝜇𝑚𝑎𝑥[𝑆]

[𝑆] + 𝐾𝑠 + (
1

75
[𝑆]2)

 
Equation 5-1b 

AND Model 
𝜇 =

𝜇𝑚𝑎𝑥,1[𝑆1]

[𝑆1] + 𝐾𝑠1
∗

𝜇𝑚𝑎𝑥,2[𝑆2]

[𝑆2] + 𝐾𝑠2
 

Equation 5-1c 

OR Model 
𝜇 =

𝜇𝑚𝑎𝑥,1[𝑆1]

[𝑆1] + 𝐾𝑠1

+
𝜇𝑚𝑎𝑥,2[𝑆2]

[𝑆2] + 𝐾𝑠2
 

Equation 5-1d 

 

Each of these growth rates (𝜇) need to be combined with the differential equation before 

it can be identified. With an accurate growth rate model, the rate of change in concentration of 

biomass is the current concentration of biomass multiplied by the growth rate. 



 114 

Another possible avenue of further research would be to consider non-isothermal batch 

reactors, this would change the problem to a non-linear problem which could be solved using 

Mixed Integer Non-Linear Programming (MINLP). Within the Chemical Engineering space, 

MINLP has been used for design of plant layout (Ye et al., 2018). Attempts have been made to 

optimise multicomponent distillation operations, with some success. However due to the 

complexity of the problem, it has proven difficult with MINLP (Tumbalam Gooty et al., 2019). 

A review of MINLP’s uses in process systems engineering is summarised by Trespalacios and 

Grossmann (2014). This limited literature review shows that there is an interest in process 

industries to implement optimisation techniques such as MINLP in further work. Typically an 

MINLP formulation would appear very similar to the generic MILP formulation shown below 

in Equation 5-2 where either the constraints (shown as equality and inequality constraints in 

terms of 𝑨 and 𝒃), or the cost function 𝐽 (or both) would be non-linear depending on the type 

of non-linear optimisation taking place. 

  

𝐽 = min(𝑪𝒙) 

Subject to: 

𝑨𝒆𝒒𝒙 = 𝒃𝒆𝒒 

𝑨𝒙 ≤ 𝒃 

 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 

Equation 5-2 
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6 Appendices 

6.1 Appendix 1. Matlab code for Identification of Stoichiometries 
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6.2 Appendix 2. Matlab code for Identification of Kinetics 
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