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Abstract

The field of quantum computing is rapidly evolving and concentrates increasing attention
from both academia and industry. With predictions of commercial quantum computing
around the corner, this thesis approaches some of the major challenges of the field: the
efficiency of quantum circuits, the study of quantum noise and benchmarking the behaviour
of Noisy Intermediate-Scale Quantum (NISQ) devices. The first part of the thesis examines
two circuit approaches for quantum walks: one consisting of controlled inversions and
the other replacing them with rotations. The rotational approach nullifies the large
amount of ancilla qubits required by the inverters implementation. The theoretical results
concentrate around the comparison of the two architectures in terms of structure, benefits
and detriments, as well as computational resources. It is proven that the inverters approach
requires exponentially fewer gates than the rotations but almost half the number of qubits
in the system. Experiments on a quantum computer show that small quantum walks
evolve closer to the expectations, whereas larger circuits are severely affected by noise.

The second major part of the thesis is concentrated around quantum noise, an effect
that dominates every aspect of near-term quantum computers. The research is concerned
with the modelling of noise in NISQ devices. The focus is on three error groups that
represent the main sources of noise during a computation and each source is modelled via
a quantum channel. A noise model that combines all three noise channels is engineered
and used to simulate the evolution of the quantum computer using a set of calibrated error
rates. Various experiments show that the new model provides a better approximation of
the quantum computer’s behaviour than when compared to other noise models. Following
this, a genetic algorithm optimises the parameters used by the new noise model, bringing
its behaviour even closer to the quantum computer. A comparison between the pre- and
post-optimisation parameters reveals how certain operations can be more or less erroneous
than the hardware-calibrated parameters show.

Finally, this thesis presents a framework that utilises quantum algorithms, the above
noise model and an ideal simulator to benchmark quantum computers. The benchmark
metrics highlight the difference between the quantum computer evolution and the simulated
noisy and ideal evolutions. This framework is then used for benchmarking three IBMQ
devices. The use of diverse algorithms as benchmarks stresses the computers in different
ways, highlighting their behaviour for different circuits. The complexity of each quantum
circuit affects the efficiency of a quantum computer, with increasing circuit size resulting
to worse performance. The results show that the proposed benchmarks provide sufficient
and well-rounded information regarding the performance of each quantum computer.
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Chapter 1

Introduction

1.1 Background on Quantum Mechanics and Quan-
tum Computing

Quantum computing is a primarily interdisciplinary scientific area of research that combines
quantum physics and computing. It exploits fundamental properties of quantum reality
and quantum states, such as superposition and entanglement, in order to perform highly
complex computations in an efficient manner. The devices that perform such computations
are called quantum computers. The prime argument in favour of quantum computation is
the ability to massively speed-up classical applications and solve computational problems
that are currently infeasible.

The field of quantum computing was, in its essence, established in 1980 when Paul
Benioff proposed a quantum mechanical model of the well-known Turing machine [1]. The
first indication of the potential of such a machine that follows microrealistic behaviour
was suggested by Richard Feynman and Yuri Manin [2]. In the following years, quantum
computing was firmly established as an independent scientific area of research with major
landmark theoretical applications, like Shor’s algorithm for quantum factoring [3], Grover’s
algorithm for quantum search [4] and many more.

Today, quantum computing attracts major attention from both academia and industry.
It is currently predicted that the first commercial quantum computers will become available
(IBMQ roadmap1) within the next five years.

1.1.1 Quantum Mechanical Principles for Quantum Computation

As a starting point, this section offers an introduction to the basic principles of quantum
mechanics and, by extension, quantum computation that are widely studied and utilised
throughout the entirety of the present thesis.

1https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/

https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/


2 Introduction

The Principle of Superposition

One of the most fundamental properties within quantum mechanics and quantum infor-
mation and computation is the principle of quantum superposition, which states that, if
|x⟩ and |y⟩ are two states of a quantum system, then any arbitrary (superposed) state of
the form α |x⟩ + β |y⟩ is also a possible state of the quantum system, where α, β ∈ C and
|α|2 + |β|2 = 1.

Intuitively, according to the superposition principle, any two (or more) quantum states
(that also need to be renormalised) can be added together resulting to another valid
quantum state, much like waves in classical physics. Conversely, every quantum state can
be represented as a sum of two or more other distinct quantum states. Mathematically,
this property is reflected as a property of the solutions to Schrödinger’s equation: since
the Schrödinger equation is linear, any linear combination of its solutions can also be a
solution.

The Principle of Entanglement

The second fundamental principle of quantum mechanics is quantum entanglement. In
physics this phenomenon occurs when a group of particles is generated, interact, or share
spatial proximity in a way such that the quantum state of each particle of the group
cannot be described independently of the state of the others. Additionally, according to
the entanglement principle, no matter how far apart those particles are located, their
quantum states will maintain this special relationship. Measurements of the properties of
entangled particles can, under certain conditions, be found to be perfectly correlated.

Intuitively, quantum entanglement entails that a state which adheres to this property
cannot be written as a product of its component states. For reasons that are still not clear,
entangled states play an undeniably fundamental role in quantum computation, differen-
tiating it massively from classical computation and providing enormous computational
power. A simple example of an entangled state bearing the above characteristics is the
two-qubit state

|ψ⟩ = 1√
2

(|00⟩ + |11⟩).

In this case, the state |ψ⟩ cannot be given as the product of two single-qubit states. It is,
therefore, impossible to separate the states of each single qubit from the global (two-qubit
composite) state. In other words, if the composite two-qubit system is in this entangled
state, it is impossible to attribute to either single-qubit system a definite pure state.

1.1.2 Quantum Hamiltonians and Hamiltonian Simulation

In quantum mechanics, the Hamiltonian of a system is a Hermitian operator that cor-
responds to the total energy of that system. The spectrum of a Hamiltonian, or in
other words, the (energy) eigenvalues of the operator, corresponds to the set of possible
observable outcomes that can be obtained when measuring the energy of the system. The
Hamiltonian contains the operators associated with the kinetic and potential energies.
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Considering a particle in one dimension as a quantum system, its Hamiltonian can be
written as

Ĥ = T̂ + V̂ ,

where T̂ is the kinetic energy and V̂ the potential energy operators of the system.
The Hamiltonian of a quantum system is used to describe the evolution of said system

in time via the time-dependent Schrödinger equation as

iℏd|ψ⟩
dt = Ĥ |ψ⟩ , (1.1)

where ℏ = h/2π and h is Planck’s constant, i is the imaginary number (i.e., i2 = −1), |ψ⟩
is an arbitrary quantum state and t is the time parameter. Defining the quantum evolution
via Schrödinger’s equation is widely used in quantum computing, especially when the
evolution occurs in continuous-time, as it is the case for the continuous-time quantum
walk that this thesis is concerned with extensively. The quantum state of a system with
an initial state |ψ0⟩ can be found at arbitrary time t by solving Schrödinger’s equation as

|ψ(t)⟩ = e−iĤt/ℏ |ψ0⟩ . (1.2)

The above formulation of the Hamiltonian and its role within Schrödinger’s equation
holds when the quantum system in question is fully isolated from its environment. In
reality though, a fully isolated system is extremely hard to achieve, a fact that holds true
within quantum computing (giving rise to the noise, discussed further in Chapter 2) and
whose effects in the field sit at the heart of the thesis. Considering a quantum system that
interacts with its environment (i.e., not fully isolated), after some time it will reach an
equilibrium state (i.e., either the ground state or an exited state), also referred to as a
Gibbs state. This state can be determined by a Hamiltonian encompassing the sum of all
possible energies, Ei, in the quantum system as

ĤG =
∑

i

Ei |ψi⟩ ⟨ψi| ,

where |ψ⟩ is a quantum state and i ∈ N represents the energy dimensionality of the
quantum system, and it is finite or countable.

Assuming a system with n interacting, d-dimensional particles (d finite), the Hamilto-
nian representing the energy of the entire quantum system can be defined as a sum of the
form

Ĥ =
n∑

j=1
Ĥj. (1.3)

Intuitively, the above equation describes the Hamiltonian, Ĥ, as the sum of all the
Hamiltonians, Ĥj, associated with n groups of locally interacting particles within the
system. Thus, the Hamiltonians Ĥj are called local Hamiltonians and each one of them
acts on a group of at most k = O(1) particles (k-local Hamiltonian). Here, the notation
O(g(n)) is a mathematical notation that describes the limiting behavior of a function when
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the argument tends towards a particular value or infinity. In computational complexity
terms, it defines the rate of change of the execution efficiency of an algorithm (i.e., usually
the time or steps needed) given a function g on the problem (input) size n.

The Hamiltonian Simulation Problem

One of the most prominent fields in quantum computation and quantum information is
Hamiltonian simulation. It essentially attempts to discover efficient ways to decompose
the Hamiltonian of a quantum evolution into a sequence of quantum gates that are easily
implementable (or, at least, simpler than the Hamiltonian itself) on a quantum computer,
associated with a specified error margin. This target comprises what is known as the
Hamiltonian simulation problem (HSP). Definition 1.1 provides a more concrete description
of the HSP.

Definition 1.1 (Hamiltonian simulation problem (HSP)). Given the Hamiltonian, Ĥ,
of a quantum system, a time, t, and an error tolerance, ϵ, find a quantum circuit that
performs the unitary operation e−iĤt on an unknown quantum state with error at most ϵ.

Bounding the solutions to the HSP at a threshold ϵ essentially defines an acceptable
approximation between an analogue Hamiltonian evolution and the digital circuit that
simulates it. Consequently, the error ϵ also defines the complexity of the Hamiltonian
simulation algorithms that aim to solve the HSP.

There is a large number of applications where an efficient solution to the Hamiltonian
simulation problem would prove invaluable. Various examples include, but are not limited
to: (i) quantum simulations within quantum physics, quantum chemistry, material sciences,
medicine, and more; (ii) adiabatic optimisation (iii) quantum algorithms, especially in
continuous-time, i.e., continuous-time quantum walks, solving linear equations, and more.

Lie-product Formula for Hamiltonian Decomposition

An efficient and well studied approach to the HSP is to simulate a decomposition of the
Hamiltonian of a quantum system to a sum of terms. Consider a Hamiltonian Ĥ that can
be decomposed into a sum of m terms of the form

Ĥ =
m∑

j=1
Ĥj.

This equation is the same as equation (1.3) for the local Hamiltonians, giving an easy and
intuitive guide to how such a sum of terms could be comprised through a local Hamiltonian
decomposition.

Following the decomposition of the Hamiltonian, the next step is to combine the
individual simulations of the decomposed terms such that they comprise the total simulated
system. One way to do this, and the one preferred throughout this thesis, is achieved by
using the Lie-product formula (also known as the Trotter product formula [5, 6]):

e−iĤt = e−i(Ĥ1+···+Ĥm)t = lim
r→∞

(
e−iĤ1t/re−iĤ2t/r . . . e−iĤmt/r

)r
,
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for arbitrary time, t. In this equation, r represents the number of times that the product
needs to be repeated, or in computational terms, the number of iterations of the product
that are needed to get the initial e−iĤt. Taking an infinite number of iterations of the
decomposition to achieve exact equality between the Hamiltonian exponential and its
decomposition is computationally infeasible. Hence, the efforts are focused in approximating
the initial Hamiltonian and the above equation is rewritten as:

e−iĤt = e−i(Ĥ1+···+Ĥm)t ≈
(
e−iĤ1t/re−iĤ2t/r . . . e−iĤmt/r

)r
. (1.4)

Similarly with the limit, as r tends to infinity, the decomposition gets arbitrarily closer
to the Hamiltonian exponential, or otherwise, the error of the simulation tends towards
zero. The next step is to identify a sufficiently large r so that the approximation is
adequately close to the original Hamiltonian exponential. To ensure the error is bounded
on a satisfactory low value, ϵ, it has been proven by [7] that it suffices to take

r =
(∥∥∥Ĥ∥∥∥

2
t
)2
/ϵ

iterations of the product, where
∥∥∥Ĥ∥∥∥

2
is the 2-norm of the Hamiltonian.

1.1.3 Quantum Machine Learning

Quantum machine learning is an interdisciplinary field of quantum information that lies at
the intersection of machine learning, statistics and quantum physics. It utilises the power
of quantum computing to provide immense computational speed-ups over classical machine
learning algorithms. In more technical terms, quantum machine learning techniques
utilise algorithms that exhibit proven quantum advantage in order to engineer machine
learning routines that are more efficient than their classical analogues when running on a
quantum computer. This includes hybrid methods that involve both classical and quantum
processing, where computationally difficult subroutines are outsourced to a quantum
device.

Quantum machine learning is attracting significant attention from both academia and
industry as a result of the explosion of the field of quantum computing within the recent
years. Researchers and quantum computing providers are beginning to view quantum
machine learning techniques as a major source of quantum computational advantage. The
reason for that is the significant speedups offered by quantised algorithms used in machine
learning.

• Quantum walks: offering quadratic speedup over classical random walks [8] and
exponential speedups via certain black-box applications [9]. This algorithm is
essential to the field of quantum machine learning, acting as the base upon which
a huge number of machine learning applications is built (i.e. Markov chain Monte
Carlo methods [10], structured or unstructured search [11, 12] and many more)
[13, 14].



6 Introduction

• Quantum metropolis sampling: the quantised version of one of the most used machine
learning techniques out there with significant quantum advantage (quadratic or
exponential, coming from quantum walks) [15, 16].

• Quantum linear algebra: offering exponential speedups over classical linear algebra
techniques used within machine learning (i.e. solving linear equations, working with
higher-dimensional matrices, and much more) [17].

• Quantum search: either based on Grover’s algorithm [4] or on quantum walks [12, 11],
searching databases mapped to quantum mechanical states is proven to be, at least,
quadratically faster than in the classical case (exponential techniques based on
black-box isolation need an ideal quantum environment; thus, they are often taken
as purely theoretical).

• Quantum deep learning: the birth of a number of machine learning and deep learning
platforms, like TensorFlow Quantum2, has given a huge leap to deep learning
applications and large amounts of funding poured into them by both academia and
industry.

1.2 Quantum Algorithms
This section introduces the four quantum algorithms that will be used within the thesis:
(i) discrete-time quantum walks (DTQW or simply QW), (ii) continuous-time quantum
walks (CTQW) (iii) quantum phase estimation (QPE), and (iv) quantum search (QS)
or otherwise, Grover’s algorithm. It is noteworthy here that Markov chain Monte Carlo
methods are usually applied over a continuous space. Within this thesis, both DTQW
and CTQW are considered to occur only in discrete space.

1.2.1 One-dimensional Discrete-time Quantum Walks

This thesis often uses a discrete-time quantum walk (DTQW) on a finite cycle with N

states and an arbitrary number of steps [18]. An example of such a cycle for N = 8
states is shown in Figure 1.1. For simplicity during the remainder of the manuscript, a
quantum walk (either discrete or continuous) is assumed to occur on a one-dimensional
graph. In this construct, the evolution of the walker is guided by a balanced quantum
coin in superposition. The fact that the quantum coin is balanced means that the walker
takes every path on the graph with the same probability. Imagine a quantum particle that
moves freely between adjacent discrete points on a line, then at each time step, a balanced
quantum coin is flipped and the quantum state undergoes a unitary transformation,
otherwise called “shift”. Then the particle progresses according to the state of the quantum
coin, thus evolving the walk. Figure 1.2 shows the dynamics of the quantum system during
a step of the quantum walk.

2For more on TensorFlow Quantum: https://www.tensorflow.org/quantum.

https://www.tensorflow.org/quantum
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Fig. 1.1 A cycle graph with 8 states (or nodes), or otherwise, an 8-cycle.

Fig. 1.2 Dynamics of the balanced quantum walk. (a) The walk begins at time t. (b) The
flip of the quantum coin, where the particle is in equal superposition to go left or right.
(c) The particle moves to generate the superposed state at time t+ 1.

This process can be described by the repeated application of a unitary evolution
operator, Uqw. This operator acts on a Hilbert space HC ⊗ HS, where HC is associated
with a quantum coin and HS with the state space (positions, nodes on the graph) of the
walk. In order to describe the quantum walk define the unitary operator, Uqw, as

Uqw = S · (C ⊗ I) (1.5)

where S is the shift operator describing the walker’s propagation, C is the quantum coin
operator that guides the quantum evolution and I is the identity. The quantum coin is
implemented via the Hadamard operator with well-known matrix representation

C = H = 1√
2

1 1
1 −1

 . (1.6)

This type of quantum coin is often called a Hadamard coin, and the quantum walk that
uses a Hadamard coin is often referred to as Hadamard quantum walk.
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Considering a walker that moves on a one-dimensional line or graph, after each flip
of the coin, the said walker can either increase or decrease its position by a step of 1.
This is defined by the shift operator S and can be described via increment and decrement
functions, as demonstrated by [19]. The mathematical description of the shift operator is

S = S− ⊗ |0⟩ ⟨0| + S+ ⊗ |1⟩ ⟨1| , (1.7)

where S+ : |x⟩ → |x+ 1⟩ moves the walker one step to the right, increasing its position,
and S− : |x⟩ → |x− 1⟩ to the left, decreasing its position. On a cycle graph with N

possible states (i.e., N nodes on the graph) the walker moves from position |0⟩ to |N − 1⟩
upon decrement on the former state, with the opposite being true upon increment on the
latter.

After describing the dynamics and defining the quantum walk as a unitary quantum
evolution, it is essential to discuss the three intrinsic characteristics that lead to the
massive differentiation between discrete-time and space quantum walks and their classical
counterpart: (i) asymmetry, (ii) modularity and (iii) quadratic efficiency.

Asymmetry in Discrete-time and Space Quantum Walks

One important characteristic of a discrete-time quantum walk on a one-dimensional line
or graph that uses a balanced Hadamard quantum coin is its asymmetry [20]. In general,
the asymmetry is the result of the Hadamard coin introducing bias in the path selection.
After the evolution of the walker’s position, the probability of each state to be measured
may not be the same. The reason for this phenomenon is quantum interference, which can
be either constructive or destructive. This can affect the quantum walk for more than
one iteration of the shift operator, S. Precisely, the leftwards path (S−) interferes more
destructively, whereas the rightwards (S+) path undergoes more constructive interference.

Interference in quantum mechanics occurs mainly due to the mathematical properties
of the amplitudes. To be more precise, the amplitudes are complex numbers and can, thus,
be positive or negative. When the wave function (partially) collapses the probabilities can
be calculated as the modulus squared of the amplitudes in the superposition. For example,
encountering a superposition in the general form α |0⟩ + β |1⟩, where α, β ∈ C are the
amplitudes, then the probabilities in the classical world are |α|2 and |β|2, where of course
|α|2 + |β|2 = 1. Thus, it is easy to deduce that any negative or complex amplitude vanishes
in the classical world (i.e., post-measurement) and the probabilities remain real numbers
in [0, 1]. On the other hand, pre-measurement, while the laws of quantum mechanics are
in control, negative amplitudes can potentially interfere with the qubit phase during the
evolution of the quantum walk.

In order to enforce symmetry in quantum walks there exist two potential and relatively
easy solutions. The first is an initialisation trick, where the particle starts in a balanced
superposition of the form 1√

2(|0⟩ + i |1⟩). The second solution makes use of a different coin
operator instead of the Hadamard coin, C. In this case the coin operator, say Csym, will
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Fig. 1.3 Asymmetry in quantum walks on an infinite one-dimensional line. The walker
evolves for 120 coin-flips and is initialised on state |0⟩.

not bias the coin towards a certain base vector and can be constructed as

Csym = 1√
2

1 i
i 1

 .
Figure 1.3 provides a visual representation of the asymmetry of a quantum walk

evolution on an infinite, one-dimensional line. The walker is initialised on state |0⟩ and is
allowed to evolve for 120 steps.

Modular Behaviour of Discrete-time and Space Quantum Walks

A very important property that arises from the dynamics and behaviour of a discrete-time
quantum walk is the modularity property [21].

Definition 1.2 (Modularity property). The modularity property (or modular behaviour)
of a quantum walk expresses the relationship between the parity of the number of coin-flips
of the quantum walk, the initial position of the walker and the measured states.

According to the modularity property, as defined in Definition 1.2, if the walker is
initialised on an even numbered position (including the |0⟩ state) then, after an odd (even)
number of steps the position of the particle will be a superposition of odd (even) states.
Alternatively, if the walker is initialised on an odd position, after an odd (even) number of
steps the particle will exist in a superposition of even (odd) states.

The modular behaviour of the quantum walk is best depicted through an example.
Consider a quantum walk on a one-dimensional line where the walker is initialised on the
even state |2⟩. Letting the walker evolve for an odd number of steps (for example, one
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Fig. 1.4 The evolution of a quantum walk on a cycle graph with eight states. Due to the
modular behaviour of the process, only specific nodes (highlighted) in every time step will
appear with some probability.

coin-flip) will result in a superposition of odd states (for example, a superposition of the
states |3⟩ and |1⟩). On the other hand, letting the walker evolve for an even number of
steps (i.e., two coin-flips) means the resulting state will be a superposition of even states
(i.e., states |0⟩, |2⟩ and |4⟩). Another example of the modular behaviour for a quantum
walk on a cycle with eight possible states and a different starting state (|0⟩) is shown in
Figure 1.4.

The modular behaviour is maintained strictly under the ideal evolution of the quantum
walk, but is violated under the influence of noise. One more detail that makes this property
very interesting is the fact that the level of violation of the modularity of the measured
states reflects the level of noise that affects the quantum evolution. To be more specific,
within the output distribution, the higher the probability of the states that should not
appear according to the modularity property, the noisier the quantum evolution.

Quantum Advantage

The final characteristic of the discrete-time quantum walk that needs mentioning here is
the quantum advantage compared to the classical random walk. It has been proven that
quantum Markov chains, and by extension quantum walks, show near-quadratic increase in
the variance with respect to time as opposed to their classical analogues [8]. Theoretically,
the variance, σ2

qw, as a function of the coin flips (or number of steps), t, can be calculated
as [22]

σ2
qw =

√
2 − 1
2 t2 ≈ 0.2 × t2. (1.8)

Surprisingly, at the date of this thesis and to the best of the author’s knowledge, there
is no documentation of a complete and easy to read analytical proof of equation (1.8).
Thus, such a step-by-step proof is put together from the literature and provided in Section
3.1. Furthermore, this quadratic tendency of the quantum walk’s propagation can be
verified by computing the simulated quantum walk variance, with result as depicted in
Figure 1.5.
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Fig. 1.5 Variance of the quantum walk as a function of the coin flips. Here the simulation
variance (solid line) is the one computed on a N = 256-states cycle via simulations
(for more information, refer to Section 3.2.3). The theoretical variance (dotted line) is
calculated from equation (1.8).

1.2.2 One-dimensional Continuous-time Quantum Walks

Continuous-time quantum walks (CTQW) are a very interesting construct that share
dynamics with the discrete-time quantum walk, but exhibit very different behaviour. They
were first introduced by Farhi and Gutmann in [23]. Consider an undirected graph G(V,E),
where V is the set of its vertices and E the set of its edges. In classical mechanics, a
diffusion equation can be used which essentially, considering a vertex j, describes a process
which leaks probability to, or receives probability from, neighbouring vertices. The number
of neighbouring nodes equals the degree of the node j, or deg(j). This diffusion operation
can be expressed as

d
dtpj(t) =

∑
k∈V

Lj,kpk(t) (1.9)

where t is an arbitrary continuous time parameter, pj is a function that describes the
probabilistic exchange between node j and its neighbouring nodes and L is symmetric and
Hermitian and is called the Laplacian of G, given by

Lj,k =


− deg(j) j = k

1 (j, k) ∈ E

0 otherwise

Thus, since L is a Hemitian matrix, it can play the role of a Hamiltonian in Schrödinger’s
equation as

i d
dt |ψ(t)⟩ = L |ψ(t)⟩ (1.10)
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where, for simplicity it can be assumed that ℏ = 1 and |ψ(t)⟩ is the state of the system at
arbitrary time t. For more comprehensive information on the Laplacian, see Appendix A.

Equation (1.10) represents the quantised version of a continuous-time random walk.
As evident from the above analysis, the CTQW does not need a quantum coin to drive
the evolution, unlike a discrete-time quantum walk. A further analysis of the Hamiltonian
of a continuous-time quantum walk can be found in Appendix B.

Continuous-time Quantum Walks on General Graphs

This part describes how a CTQW evolves on a general undirected graph. Instead of a
complex Hamiltonian it is simpler to work with an adjacency matrix, A, which can be
quite easily defined as

Aj,k =

1 if (j, k) ∈ E

0 if (j, k) /∈ E
(1.11)

where j, k ∈ V .The adjacency matrix A is also Hermitian and thus it can form the
Hamiltonian for the evolution of the quantum state. Denoting j and k as positions on the
graph, Schrödinger’s equation defines the evolution of the CTQW on the graph as

i d
dt ⟨j|ψ(t)⟩ =

∑
j,k

⟨j|H|k⟩ ⟨k|ψ(t)⟩ , (1.12)

where ⟨j|ψ(t)⟩ is the amplitude of the quantum state being on vertex j at time t, ℏ = 1
for simplicity and |ψ(t)⟩ is the quantum state vector within a position Hilbert space, HS.
The Hamiltonian of the CTQW can be constructed via the adjacency matrix, A, from
equation (1.11) as H = γA where γ is the hopping rate per edge per unit time (i.e., the
probability to traverse from a node to its neighbour).

It is noteworthy here that for the position Hilbert space, HS, the same notation is used
as for the DTQW case. In general, the size of the Hilbert space for the CTQW is not the
same as for the DTQW due to the lack of quantum coin. More specifically, for the DTQW
the Hilbert space is of the form HS ⊗ HC , where HC is the coin space, whereas for the
CTQW the Hilbert space is simply HS, as seen above.

For the experiments within this thesis, the graphs are considered to be of a fixed degree.
Continuous-time quantum walks, similarly to the discrete-time quantum walks, “seemingly”
traverse all possible paths of the graph in superposition. Considering a Hamiltonian of the
form H = γ(A− dI) for graphs of a fixed degree d, equation (1.12) can be solved in the
same manner as Schrödinger’s equation as [24]

|ψ(t)⟩ = e−iγ(A−dI)t |ψ(0)⟩ ,

where |ψ(0)⟩ is the initial quantum state (i.e., at t = 0). Since A commutes with the
identity, I, the previous equation can be written as |ψ(t)⟩ = e−iγAteiγdIt |ψ(0)⟩. The factor
eiγdIt is a global phase irrelevant to the result that makes no difference to observable
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Fig. 1.6 Continuous-time (dots) versus discrete-time (crosses) quantum walk on a line after
40 and 55 steps respectively. The initial state of the quantum walk is (− |1⟩ + i |1⟩)/

√
2 in

order for the DTQW to be symmetric.

quantities and thus can be omitted, resulting in equation

|ψ(t)⟩ = e−iγAt |ψ(0)⟩ (1.13)

for graphs of a fixed degree.
It is easy to spot the similarity between the evolution operator for the CTQW deriving

from equation (1.13) and the one for the DTQW, defined in equation (1.5). Specifically,

|ψ(t)⟩ = U t |ψ(0)⟩ ,

where U = S · C in the discrete-time case and U = e−iγA in the continuous-time. This
construction of an evolution unitary via exponentiation of the form e−iγAt, where H = γA,
is very common and is also used within this thesis for the implementation of continuous-time
quantum walks, as shown in Section 6.2.4.

Continuous-time Quantum Walks on the Line

It is very easy to describe a continuous-time quantum walk on a one-dimensional line by
using Bessel functions (see Appendix A). The solution of equation (1.12) in this case will
take the form

|ψ(t)⟩ =
+∞∑

x=−∞
(−i)xJx(t) |x⟩ , (1.14)

where Jx is the Bessel function of order x ∈ Z and |ψ(t)⟩ is the state of the system at time
t. An example of a continuous-time quantum walk on a line, as well as a discrete-time
quantum walk for comparison, can be seen in Figure 1.6.

As can be seen from the above figure, an important characteristic of CTQW is that they
do not exhibit modular behaviour. In other words, during the continuous-time quantum
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evolution the walker will always appear on all positions, regardless of their parity. This
case does not stand for discrete-time, where the parity of the possible positions of a walker
is dependent on the parity of the initial state and the number of coin-flips of the walk.

Additionally, much like discrete-time, continuous-time quantum walks show quadratic
spread compared to classical random walks. For the CTQW starting at the origin, for
asymptotically large times T , the variance, σ, can be found as [25, 23]

σ2(T ) = T 2

γ
. (1.15)

The continuous-time quantum walk on the line is always symmetric if the hopping rate
γ is the same for both directions of the line. This is also an important difference with
discrete-time quantum walks, where the coin induces bias on the direction, unless special
choices are made for the initial state of the quantum walk, or a special operator is used as
the quantum coin.

Continuous-time Quantum Walks on an N-cycle

In this case, the adjacency matrix A is a circulant matrix, i.e., a square matrix in which
each row vector is rotated one element to the right relative to the preceding row vector.
The eigenvalues of A can be expressed as λx = 2 cos (2πx/N) and the corresponding
eigenvectors |bx⟩, with ⟨y|bx⟩ = 1√

N
e−2πixy/N for x = 0, . . . , N − 1. Taking as initial state

|ψ(0)⟩ = |0⟩, |ψ(t)⟩ can be solved by decomposing |0⟩ in terms of the eigenvectors |bx⟩,
giving

|ψt⟩ = 1√
N

N−1∑
x=0

e−itλx |bx⟩ . (1.16)

The Hamiltonian for a continuous-time quantum walk on an N -cycle (used for the
experiments in Chapter 6) can be formulated as H = γA = 1

d
A, where d = 2 is the

degree of every node in the graph (every node has exactly two neighbours). Thus, it is
easy to derive that H = 1

2A, making the construction of the evolution unitary e−iHt very
straightforward.

As in the discrete-time case, the probability distribution of a CTQW on a cycle, P (x, t),
does not mix asymptotically and is known to have exact instantaneous mixing only for
N = 3 and N = 4, as shown by [26]. The time-averaged probability distribution for the
continuous-time quantum walk for large time interval T can be defined as

P (x, T ) = 1
T

∫ T

0
P (x, t)dt,

where P (x, t) = |⟨x|ψ(t)⟩|2 for arbitrary state x. This does indeed mix asymptotically,
just as in the DTQW case, with a non-uniform limiting distribution. Finally, due to the
lack of modular behaviour on the continuous-time case, the properties of CTQW on an
N -cycle are not dependent on whether the cycle has an odd or even number of nodes,
something that is not the case on the discrete-time quantum walk.
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Continuous-time vs Discrete-time Quantum Walks

Up to this point, the dynamics of continuous-time quantum walk on some constructs of
interest have been discussed. It is safe to conclude that the two quantum walks exhibit
different behaviour, with the main points of comparison shown below.

• A CTQW evolves under a Hamiltonian defined with respect to the line/graph that
the walk traverses. This difference is reflected on the evolution operator of a CTQW,
e−iHt, as compared to a DTQW, (S · C)t.

• CTQWs do not utilise a quantum coin. This leads to a Hilbert space of a different
size than DTQWs. More specifically, the CTQW uses a position Hilbert space HS,
whereas a DTQW uses a position and coin Hilbert space, HS ⊗ HC .

• CTQWs are symmetric, provided that the hopping rate γ is the same for every
direction on the line or graph. In contradiction, DTQWs exhibit directional bias
introduced by the quantum coin. This bias can be eliminated by using a specific
coin operator, or by initialising the walk on a specific state.

• CTQWs do not exhibit modular behaviour, as this was defined in Definition 1.2.
All states appear after measurement when a continuous-time quantum walk evolves
for time t. This is a substantial difference between discrete- and continuous-time
quantum walks, where in the former, there is a strict relation between the parity of
the observable states, the parity of the initial state and the number of coin flips.

• Both CTQWs and DTQWs exhibit quadratic speedup of the variance. A walker
undergoing quantum walk will spread quadratically faster than in the case of a
classical random walk both in continuous and discrete time [27, 28].

Finally, differences aside, it is indisputable that continuous- and discrete-time share
a deep connection. This can be further realised through the work of Childs [29], which
shows a way of simulating continuous-time quantum walks by using discrete-time quantum
walks.

1.2.3 Quantum Search

Within this research, quantum search, also known as Grover’s algorithm, refers to a
quantum algorithm for unstructured search that finds with high probability a unique,
marked item within a simple dataset. Suppose a search on an unstructured array of N
items. A classical algorithm needs, at the worst case, O(N) operations to perform the
search, whereas Grover’s quantum search requires O(

√
N) operations [4], speeding up the

task quadratically.
Let x denote the items within the array and w the marked item (i.e., the item the

routine is searching for). Also let f be a function such that f(x) = 1 if and only if x = w

and f(x) = 0 otherwise. The quantum states can be encoded as x ∈ {0, 1}n, where N = 2n,
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thus being able to be represented as qubits in the quantum computer. Define the oracle
Uf acting on a quantum state, |x⟩, as

Uf |x⟩ → (−1)f(x) |x⟩ .

Thus, the oracle does nothing to the unmarked quantum states and negates the phase of
the marked state |w⟩ as Uf |w⟩ = (−1)f(w) |w⟩ = (−1)1 |w⟩ = − |w⟩. Geometrically, this
unitary matrix corresponds to a reflection about the origin for the marked item in an
N = 2n dimensional vector space.

The algorithm initialises the computation in the state |0⊗n⟩. Without looking into the
array there is no indication as to where the marked item is. This can be expressed by
putting all the qubits in a uniform superposition (i.e., a Hadamard operation, H⊗n) as
|s⟩ = H⊗n |0⊗n⟩ = 1√

N

∑N−1
x=0 |x⟩, where N = 2n. Following this, the balanced superposition

of states means that, upon measurement, all the items in the array have an equal probability
of appearing.

The algorithm then uses a trick known as amplitude amplification, a process that
essentially increases the amplitude (and thus, the probability) of a quantum state (in this
case, the marked item). The amplitude amplification consists of an iteration (also known
as the Grover operator) with the following steps.

1. Apply the oracle Uf which marks the required element in the array, leading to

Uf |s⟩ .

Geometrically, this leads to a reflection of the |s⟩ state about the x-axis.

2. Superpose the quantum states in the state register using Hadamard transform, H⊗n.

3. Perform a conditional phase shift on the quantum register, with every computational
basis state except |0⟩ receiving a phase shift of −1. This step is expressed by a
reflection on the state space described by the unitary Us = 2 |s⟩ ⟨s| − I, also called
the Grover diffusion operator, which can easily be proven. The state is now

UsUf |s⟩ .

This transformation rotates the initial state |s⟩ closer to the marked element.

4. Superpose the quantum states in the state register using Hadamard transform, H⊗n.

At the end of this routine the amplitude of the marked state will have been amplified.
After

√
N repetitions of the amplitude amplification, the probability of the marked state

to be measured is arbitrarily close to 1. Grover’s algorithm utilises the above routine, as
can be seen in Algorithm 1.
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Algorithm 1: Quantum search algorithm
1 Initialisation. Apply Hadamard transform to the state register, H⊗n, putting all

states in a balanced superposition.
2 Marking the state. Apply the oracle Uf on the state register.
3 Superposing. Apply Hadamard transform, H⊗n, to the state register.
4 Reflecting. Apply the reflection operator Us

5 Superposing. Apply Hadamard transform, H⊗n, to the state register.
6 Iterating. Repeat

√
N times from Step 2.

7 Measure. Measure the output to retrieve the marked item with probability close
to 1.

1.2.4 Quantum Phase Estimation

Quantum phase estimation (QPE) is one of the most important subroutines in quantum
computation. It serves as a central building block for many quantum algorithms, most
notably Shor’s algorithm for quantum factoring. The objective of the algorithm is the
following: given a unitary operator U , estimate the phase θ in the representation U |ψ⟩ =
e2πiθ |ψ⟩. Here |ψ⟩ is an eigenvector and e2πiθ is the corresponding eigenvalue. Since U
is unitary, all of its eigenvalues have modulus 1. In order to implement the QPE, the
quantum system needs to be amassed by two registers: one that contains the state of |ψ⟩,
which is named the state register, and one in which the phase θ will be encoded with n

qubits as 2nθ, here called the phase register. The process of quantum phase estimation
can be described is as follows.

1. Setup: initialise the state register with the state |ψ⟩. The additional set of n qubits
that form the phase register are set in state |0⊗n⟩. After initialisation, the global
state of the system will be:

|ψ0⟩ = |0⟩⊗n |ψ⟩

2. Superposition: an n-bit Hadamard gate is applied on the phase register, leading
the global state to:

|ψ1⟩ = 1
2n/2 (|0⟩ + |1⟩)⊗n |ψ⟩

3. Controlled Unitary Operations: consider a controlled unitary UC that applies
the unitary operator U on the target register (i.e., the phase register) only if its
corresponding control qubit is |1⟩. Since U is a unitary operator with eigenvector
|ψ⟩ such that U |ψ⟩ = e2πiθ |ψ⟩, it follows that:

U2j |ψ⟩ = U2j−1U |ψ⟩ = U2j−1e2πiθ |ψ⟩ = · · · = e2πi2jθ |ψ⟩ .
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Applying all the n-controlled operations U2j

C with 0 ≤ j ≤ n − 1, and using the
relation |0⟩ ⊗ |ψ⟩ + |1⟩ ⊗ e2πiθ |ψ⟩ =

(
|0⟩ + e2πiθ |1⟩

)
⊗ |ψ⟩, leads to the global state:

|ψ2⟩ = 1
2n/2

(
|0⟩ + e2πiθ2n−1 |1⟩

)
⊗ · · · ⊗

(
|0⟩ + e2πiθ21 |1⟩

)
⊗
(
|0⟩ + e2πiθ20 |1⟩

)
⊗ |ψ⟩

= 1
2n/2

2n−1∑
k=0

e2πiθk |k⟩ ⊗ |ψ⟩

where k denotes the integer representation of n-bit binary numbers.

4. Inverse Fourier Transform: The quantum Fourier transform (QFT) maps an
n-qubit input state |x⟩ into an output as

QFT |x⟩ = 1
2n/2

(
|0⟩ + e

2πi
2 x |1⟩

)
⊗
(
|0⟩ + e

2πi
22 x|1⟩

)
⊗ . . .⊗(

|0⟩ + e
2πi

2n−1 x|1⟩
)

⊗
(
|0⟩ + e

2πi
2n x|1⟩

)
.

It is evident that the expression of the global state |ψ2⟩ is the result of applying
QFT on the global expression |ψ1⟩ of Step 2. Therefore, to recover the state |2nθ⟩,
an inverse Fourier transform (QFT−1) is applied on the phase register. Doing so, it
is found that

|ψ3⟩ = 1
2n/2

2n−1∑
k=0

e2πiθk|k⟩ ⊗ |ψ⟩ QFT−1
n−−−−→ 1

2n

2n−1∑
x=0

2n−1∑
k=0

e− 2πik
2n (x−2nθ)|x⟩ ⊗ |ψ⟩

5. Measurement: the above expression peaks near x = 2nθ. For the case when 2nθ

is an integer, measuring in the computational basis gives the phase in the phase
register with high probability, as the global state now is:

|ψ4⟩ = |2nθ⟩ ⊗ |ψ⟩.

For the case when 2nθ is not an integer, it can be shown that the above expression
still peaks near x = 2nθ with probability at least 4/π2 ≈ 40% [30].

Thus, similarly to Grover’s case, the above mathematical structure can be summarised
as the quantum phase estimation algorithm, shown in Algorithm 2.

1.3 Aim and Objectives
This thesis is concentrated around the study and modelling of quantum noise, as well as
building a framework that allows for the benchmarking of quantum computers while using
an implemented model. The objectives of the research can be identified as follows.

• Quantum walks have the potential to form the basis for many advanced quantum
algorithms that exhibit strong quantum advantage, like quantum Metropolis-Hastings,
quantum Markov chain Monte Carlo methods or quantum search. The work is
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Algorithm 2: Quantum phase estimation algorithm
1 Initialising. Initialise the quantum system. There exist two qubit registers, the

phase register initialised in state |0⟩⊗n, and the state register initialised in |ψ⟩.
2 Superposing. Apply Hadamard gates on the phase register.
3 Applying the unitary. Apply the controlled unitary operation as shown in the

third step of the mathematical analysis.
4 Inverse QFT. Apply inverse quantum Fourier transform in order to decode the

state of the phase register.
5 Measure. Measure the phase register in order to get an approximation of the

desired phase, θ.

concentrated around scalable implementations of quantum walks on near-term
quantum computers with the objective to produce an indication of the efficiency of
each approach considering the characteristics of the quantum computer.

• Currently, quantum noise is one of the main obstacles preventing the achievement
of universal quantum computation in practice. The study of quantum noise is of
great benefit to the field and has the potential to offer a better understanding
of the behaviour of qubits and machines. This research aims to produce such an
understanding through detailed study of the noise and, ultimately, produce a model
able to approximate the noisy evolution of a quantum computer as accurately as
possible.

• The final objective revolves around benchmarking quantum machines using scalable
and impactful applications. As quantum computers become bigger and better, they
will eventually be capable of running high-level applications and larger quantum
algorithms will become increasingly relevant. Thus, the goal is to create a concrete
methodology that allows the benchmarking of quantum computers within such a
scaling algorithmic environment.

Consequently, the overall goals of the work presented in this thesis can be summarised
as:

(i) modelling and simulating the noisy behaviour of near-term quantum computers and (ii)
benchmarking quantum computers in a scaling algorithmic environment.

1.4 Thesis Outline
The outline of the remainder of the present thesis is presented below. Each separate
chapter introduces a part of the work done during the PhD and is accompanied by a
discussion and conclusion on the findings, as well as potential future work.

• Chapter 2 builds a quantum mechanical and mathematical background for the
various types of quantum noise, as well as the quantum channels used throughout the
modelling of the noisy behaviour of quantum computers. Additionally, it provides
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an introduction to the NISQ era and the characteristics of the quantum computers
used for the experiments.

• Chapter 3 presents the work undertaken on the subject of discrete-time and -space
quantum walks and their circuit approaches, offering a detailed comparison regarding
the characteristics of their implementations.

• Chapter 4 details the development of a model that approximates the noisy evolution
of a quantum computer. The techniques and mathematical and quantum mechanical
foundations of the model are explained, as well as a large number of experiments
executed that showcase the performance of the noise model.

• Chapter 5 analyses a technique based on classical parameter optimisation that can
be used to increase the efficiency of the quantum noise model (presented on Chapter
4) and approximate the noise with much greater precision.

• Chapter 6 showcases a concrete framework for benchmarking near-term quantum
computers with high-level, scaling quantum algorithms with useful applications.
Furthermore, the results of intense benchmarking of various quantum computers are
presented.

• Chapter 7 offers a summary of the work done, conclusions and an evaluation of the
research aims and objectives set in Section 1.3.

1.5 List of Publications
Portions of the work laid out within this thesis have been documented in the following
publications.

• Konstantinos Georgopoulos, Clive Emary and Paolo Zuliani. “Comparison of
Quantum-walk Implementations on Noisy Intermediate-scale Quantum Comput-
ers”, Physical Review A 103, 022408, February 2021, DOI: https://doi.org/10.1103/
PhysRevA.103.022408. This published material occupies Chapter 3 (excluding
Sections 3.1 and 3.3).

• Konstantinos Georgopoulos, Clive Emary and Paolo Zuliani. “Modelling and Simu-
lating the Noisy Behaviour of Near-term Quantum Computers”, Physical Review A
104, 062432, December 2021, DOI: https://doi.org/10.1103/PhysRevA.104.062432.
The work published in this paper occupies Chapters 4 and 5.

• Konstantinos Georgopoulos, Clive Emary and Paolo Zuliani. “Quantum Computer
Benchmarking via Quantum Algorithms.”, arXiv:2112.09457 [quant-ph], e-print:
https://arxiv.org/abs/2112.09457. This work has been submitted for journal publi-
cation, and is presented in Chapter 6.
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Chapter 2

Quantum Noise and the NISQ Era

The theory and applications of the concepts introduced in Chapter 1 operate under
the assumption that the corresponding quantum system(s) are closed, i.e., they do not
exchange information in any form with their immediate environment. In reality, fully
isolated systems are exceedingly difficult to come across or create in nature. For that very
reason, the quantum computers that exist today and, more relevantly, the devices used to
carry out the experiments detailed in this thesis, are not perfectly isolated, i.e., they are
open. This means that information or energy is exchanged with the environment, which in
addition to hardware infidelities, introduces errors during the computation in the form of
quantum noise.

Currently and during the near-term future of the field of quantum computing, this
noise is expected to dominate most aspects of a computation. Furthermore, the longer the
evolution of a quantum computer the more noise it is subjected to, making interesting
computations very hard to carry out reliably and preventing the current machines from
achieving the goal of universal quantum computation. There are various techniques that
can be used in order to minimise errors or noise during a computation, or otherwise,
perform error correction. Nevertheless, the number of qubits necessary to error correct
quantum computations increases with the size of the computation. Hence, the limited
number of qubits within current quantum processors makes meaningful error correction
infeasible.

2.1 Theory of Quantum Noise
This chapter aims to introduce the main theoretical aspects and concepts of quantum
noise that are used throughout this research.

2.1.1 Pure and Mixed Quantum States

A quantum state is, in essence, a mathematical entity that provides a formal description of
the outcome of a possible measurement on a quantum system. Knowledge of the quantum
state, as well as how this state can evolve in time (via, for example, Schrödinger’s equation)
exhausts all that can be predicted for that quantum system. Assuming a system that has
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an arbitrary number of states, |ψi⟩, with respective probabilities, pi, where i ∈ N is an
index, an ensemble of quantum states can be defined as {pi, |ψi⟩}. Such ensembles express
pairs of quantum states along with their associated probabilities.

In quantum mechanics, a mixture of quantum states also represents another possible
quantum state. In general, a quantum state that cannot be written as a mixture of
other states is called a pure state. All other states are called mixed states. Mixed states
arise in quantum mechanics in two different situations, first when the preparation of the
system is not fully known, and thus one must deal with a statistical ensemble of possible
preparations, and second when one wants to describe a physical system which is entangled
with another, as its state can not be described by a pure state.

2.1.2 Trace and Partial Trace

The trace of an n× n square matrix, B = [bij]i,j, is defined to be the sum of the diagonal
elements of the matrix, bii, i.e.,

tr(B) =
n∑

i=1
bii.

In quantum mechanics, the trace operation can be shown to be a quantum operation, as
follows. Let HQ be an arbitrary input Hilbert space with an orthonormal basis |1⟩ . . . |d⟩
and HQ′ be a d-dimensional output Hilbert space, spanned by the state |0⊗d⟩. Define an
arbitrary quantum operation, E , acting on an arbitrary matrix ρ as

E(ρ) =
d∑

i=1
|0⟩ ⟨i|ρ|i⟩ ⟨0| .

It stands that E(ρ) = tr(ρ) |0⟩ ⟨0| so that, up to the unimportant |0⟩ ⟨0| multiplier, E is
identical to the trace function.

In the above equation, the matrix ρ is a special operator that represents a density
matrix or density operator. The density matrix is an alternative way to define the quantum
state of a physical system. A more formal definition is provided below.

Definition 2.1 (Density matrix). A density matrix, or density operator, is a positive
semi-definite Hermitian operator acting on the Hilbert space of a quantum system. Assume
an ensemble of quantum states {pi, |ψi⟩}, where i ∈ N is an index and |ψi⟩ is a quantum
state with associated probability pi, the density matrix of the quantum system can be defined
as

ρ =
∑

i

pi |ψi⟩ ⟨ψi| ,

where ∑i pi = 1.

The second useful term encountered within the manuscript is that of the partial trace.
Assuming two arbitrary state spaces HC and HD, and the composite space HC ⊗ HD, the
following definition is given.
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Definition 2.2 (Partial trace). The partial trace, trD, is a mapping from the density
matrix ρCD in the composite space HC ⊗ HD, onto the density matrix ρC in HC as

ρC ≡ trD(ρCD).

In other words, the partial trace can be used to “trace out” a system from a composite
system that it is a part of.

Most interestingly, it can be proven that the partial trace is also a quantum operation.
Suppose a joint system QR and the wish to trace out the system R. Let |j⟩ be a the basis
of R. A linear operator Ei : HQR 7→ HQ is defined as

Ei

∑
j

λj |qj⟩ |j⟩

 ≡ λi |qi⟩ ,

where λj are complex numbers and |qj⟩ are arbitrary states of the system Q. Define E to
be a quantum operation with operation elements {Ei} such that

E(ρ) =
∑

i

EiρE
†
i ,

which is known to represent a quantum operation from system QR to system Q. Notice
that

E(ρ⊗ |j⟩ ⟨j′|) = ρδj,j′ = trR(ρ⊗ |j⟩ ⟨j′|),

where ρ is an arbitrary Hermitian operator on the state space of Q, and |j⟩ and |j′⟩ are
members of the orthonormal basis for system R. By linearity of E and trR, it follows that
E = trR, i.e., the partial trace is a quantum operation.

2.1.3 Operator-sum Representation

An elegant way to represent various quantum operations that is very useful to the study
of quantum noise is the operator-sum representation. Assume a quantum system, A, in an
initial state expressed as a density matrix ρA, and environment E in an initial pure state
|0E⟩ ⟨0E|. A quantum operation, say E , that takes as input the system AE can be defined
as

E(ρA) = trE

(
U(ρA ⊗ |0E⟩ ⟨0E|)U †

)
, (2.1)

where U is an arbitrary unitary operator.
Assume now that the environment is also a quantum system with an orthonormal basis,

|k⟩. The partial trace trE over the environment, as expressed in equation (2.1), can be
evaluated as follows:

E(ρA) =
∑

k

⟨k|
(
U(ρA ⊗ |0E⟩ ⟨0E|)U †

)
|k⟩

=
∑

k

EkρAE
†
k,

(2.2)
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where Ek = ⟨k|U |0E⟩ is an operator on the state space of the principal system. Equation
(2.1) is known as the operator-sum representation of the quantum operator, E . The
operators {Ek} are known as the operation elements, or otherwise, Kraus operators.

The operation elements need to satisfy a constraint known as the completeness relation.
The completeness relation in the quantum case arises from the requirement that the trace
of the operation E(ρ) needs to be equal to one, i.e., the operations are trace-preserving

1 = tr(E(ρ)) = tr
(∑

k

EkρE
†
k

)
= tr

(∑
k

E†
kEkρ

)
.

This relationship is true for all ρ, and thus, as all quantum operations are trace-preserving,
it follows that ∑

k

E†
kEk = I. (2.3)

There are also non-trace-preserving operations, for which ∑k E
†
kEk ≤ I, but these describe

processes in which extra information about what occurred in the process is obtained by
measurement, something that this thesis is not concerned with.

The operator-sum representation is an important result as it gives an intrinsic way of
characterising the dynamics of the principal quantum system. It describes the dynamics
without having to explicitly consider properties of the environment; all the necessary
knowledge is contained into the operators Ek, which act on the principal system alone. This
simplifies calculations and often provides considerable theoretical insight. Furthermore,
many different environmental interactions may give rise to the same dynamics on the
principal system. If it is only the dynamics of the principal system which are of interest,
then it makes sense to choose a representation of the dynamics which does not include
unimportant information about other systems.

2.1.4 Decoherence in Quantum Systems

In quantum mechanics, particles (for example electrons) are described by a wavefunction,
a mathematical representation of the quantum state of a system. This mathematical entity
“lives” within a Hilbert space and its evolution is described by Schrödinger’s equation.
In physics, two wave sources are perfectly coherent if their frequency and waveform are
identical and their phase difference is constant, a property that is reflected within their
wavefunctions. As long as there exists a definite phase relation between different states,
the system is said to be coherent. A definite phase relationship is necessary to perform
quantum computing. Coherence is preserved under the laws of quantum physics, given a
fully isolated quantum system.

If a quantum system were perfectly isolated, it would maintain coherence indefinitely,
but it would be impossible to manipulate or investigate it. If it is not perfectly isolated,
for example during a measurement, coherence is shared with the environment and appears
to be lost with time: a process called quantum decoherence. Thus, in simple terms,
decoherence is the loss of quantum coherence due to interactions between a quantum
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system and its environment. As a result of this process, quantum behaviour is apparently
lost, just as energy appears to be lost by friction in classical mechanics.

In quantum information science, decoherence can be viewed as the loss of information
from a system into the environment (often modelled as a heat bath), since every system
is loosely coupled with the energetic state of its surroundings. During decoherence, if
the system is viewed in isolation, its dynamics are non-unitary and thus irreversible.
On the other hand, the combined system and environment evolves in unitary fashion
if it is a perfectly isolated system in turn. As with any coupling, entanglements are
generated between the system and environment. These have the effect of sharing quantum
information with, or transferring it to the surroundings.

Quantum decoherence has been used to understand the collapse of the wave function
in quantum mechanics. Decoherence does not actually generate this phenomenon but
only provides an explanation for apparent collapse, as the quantum nature of the system
“leaks” into the environment. That is, components of the wave function are decoupled
from a coherent system and acquire phases from their immediate surroundings. A total
superposition of the global or universal wavefunction still exists (and remains coherent at
the global level), but its ultimate fate remains an interpretational and philosophical issue.
Specifically, within the context of this thesis, the concept of decoherence does not attempt
to explain the measurement problem. Rather, it provides a mechanism for the transition of
the system to a mixture of states that seem to correspond to the states observers perceive.
Moreover, observations reveal that this mixture looks like a proper quantum ensemble
in a measurement situation, as measurements lead to the “realisation” of precisely one
state in the ensemble or quantum superposition. In other words, the stochastic nature of
a quantum superposition breaks down to an observable classical outcome under the effects
of decoherence.

There have been many theoretical and philosophical studies and arguments around the
nature of decoherence, what it means and how it affects the nature of reality. Some re-
searchers support decoherence as an absolute phenomenon inducing macroscopic (classical)
behaviour into an otherwise microscopic (quantum) reality by collapsing the superposed
states of quantum particles. Others believe that quantum reality never truly breaks down
and what observers experience as classical behaviour is the partial collapse of the wave-
function of a universe whose state is endlessly branching in an eternal cosmic bath, a view
dubbed as “the many-worlds interpretation of quantum mechanics”. In other words, while
within the observable universe decoherence drives the classical nature interior observers
experience, an outside view of the world bubble as the one truly isolated quantum system
would present the universe in a superposition of all its possible states, all the possible
histories happening at the same time and all the branches of reality merging into a single,
uncollapsed wavefunction, one that, of course, would be coherent while remaining fully
isolated. If the external observer “took a peek” into the bubble (or made a measurement
of the entire universe) then within their world history, the wavefunction of the universe
would (partially) collapse, and one of the superposed histories (not necessarily one within
which this thesis is written) would be laid bare, decohered for them to observe.
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Whichever point of view one supports, there is no denying that quantum decoherence
is the mechanism responsible for a visible, fully or partially collapsible universe, one in
which humans can live and (potentially) thrive.

2.1.5 Types of Quantum Noise

This section offers a general overview of the various types of quantum noise that occur
during a quantum computation. In a closed system, the probabilistic evolution of a qubit
state is deterministic. That is, if the starting state of the qubit and its Hamiltonian are
known, then it is possible to predict the probabilistic state of the qubit at any time in the
future. However, in open systems, the situation changes. The qubit now interacts with
uncontrolled degrees of freedom in its environment, which is referred to as fluctuations
or noise. In the presence of noise, as time progresses, the qubit state looks less and less
like the state that would have been predicted and, eventually, the state is lost. There are
many different sources of noise that affect quantum systems, and they can be broadly
categorised into two primary types: (i) systematic noise and (ii) stochastic noise.

Systematic Quantum Noise

Systematic noise arises from a process that is traceable to a fixed gate or measurement
error. For example, a quantum gate is applied to a qubit that is believed will impart
a 180◦ rotation. However, the gate is not tuned properly and, rather than rotating the
qubit 180◦, it slightly over-rotates or under-rotates the qubit by a fixed amount. The
underlying error is systematic, and it therefore leads to the same rotation error each time
it is applied. However, when such erroneous gates are used in practice in a variety of
control sequences, the observed results may appear to be influenced by random noise. This
is because the gate is generally not applied in the same way for each experiment: it could
be applied a different number of times, interspersed with different gates in different orders,
and therefore generally differs from experiment to experiment. However, once systematic
errors are identified, they can generally be corrected through proper calibration or the use
of improved hardware.

Stochastic Quantum Noise

The second type of noise is stochastic noise, arising from random fluctuations of parameters
that are coupled to the qubit [31]. For example, thermal noise of a resistor in the control
lines leading to the qubit will have voltage and current fluctuations with a noise power that
is proportional to both temperature and bandwidth. Or, the oscillator that provides the
carrier for a qubit control pulse may have amplitude or phase fluctuations. Additionally,
randomly fluctuating electric and magnetic fields in the local qubit environment can couple
to the qubit. This creates unknown and uncontrolled fluctuations of one or more qubit
parameters, which leads to qubit decoherence.
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Fig. 2.1 Longitudinal and transverse noise, otherwise called thermal decoherence and
dephasing respectively, represented on the Bloch sphere [32].

2.1.6 Thermal Decoherence

Decoherence is a mechanism encountered often in quantum mechanics which was introduced
in Section 2.1.4. Within the context of this chapter decoherence is considered as thermal
exchange between the quantum system and its immediate environment. It describes the
drive of the quantum system towards an equilibrium state (or otherwise called a Gibbs
state). This can happen in one of two ways: (i) either by spontaneous emission of a
quantum of energy (a photon), called thermal relaxation, which drives the qubit towards
the ground state (|0⟩), or (ii) by spontaneous absorption of a photon, called thermal
excitation, which takes the qubit to an excited state (for example, |1⟩).

The thermal decoherence rate, Γ1, describes depolarisation along the qubit quantisation
axis. Considering a Bloch sphere, a qubit with polarisation pq = 1 is entirely in the ground
state |0⟩ at the north pole, pq = −1 is entirely in the excited state |1⟩ at the south pole,
and pq = 0 is a completely depolarised mixed state at the center of the Bloch sphere. As
illustrated in Figure 2.1(b), longitudinal noise is caused by transverse noise, via the x-
or y-axis, with the intuition that off-diagonal elements of an interaction Hamiltonian are
needed to connect and drive transitions between states |0⟩ and |1⟩.

Decoherence occurs due to energy exchange with the environment, generally leading
to both an up transition rate Γ1↑ (thermal excitation), and a down transition rate Γ1↓

(thermal relaxation). Together, these form the thermal decoherence (or longitudinal noise)
rate Γ1 as

Γ1 = Γ1↑ + Γ1↓ = 1
T1
.

The parameter T1 is the decoherence time and it is the characteristic time scale over
which a qubit will decohere to an equilibrium state. For superconducting qubits, this
steady-state value is generally the ground state |0⟩, due to Boltzmann statistics and typical
operating conditions. This will be proven in later sections specifically for the quantum
computers that the engineered noise models simulate. The Boltzmann equilibrium statistics
leads to the detailed balance relationship Γ1↑ = e−ℏωq/kBΘ, where Θ is the temperature
and kB is Boltzmann’s constant, with an equilibrium qubit polarisation approaching
pq = tanh (ℏωq/2kBΘ). Typical qubits are designed at frequency ωq/2π ≈ 5 GHz and
are operated at dilution refrigerator temperatures Θ = 15 to 20 mK. In this limit, the
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up-rate Γ1↑ is exponentially suppressed by the Boltzmann factor e−ℏωq/kBΘ, and so only the
down-rate Γ1↓ contributes significantly, relaxing the population to the ground state. Thus,
qubits generally spontaneously lose energy to their cold environment, but the environment
rarely introduces a qubit excitation. As a result, the equilibrium polarisation approaches
unity [33]. In other words, the extremely low temperatures within the dilution refrigerator
induce thermal deexcitation with exponential probability in T1, whereas thermal excitation
occurs extremely rarely.

2.1.7 Dephasing

Finally, dephasing can be described as the absolute form of decoherence of a quantum
system occurring as perturbations (or loss of phase) of the qubits towards classical behaviour
during the evolution of the quantum system (or the quantum computation). In other
words, dephasing describes ways in which coherence decays over time, leading the system
to no longer exhibit quantum mechanical behaviour.

Dephasing in general can be broken down to two distinct mechanisms, pure dephasing
and (simple) dephasing. The pure dephasing rate ΓΦ describes decoherence in the x-y
plane of the Bloch sphere, as showcased in Figure 2.1(c). It is referred to as pure in
order to distinguish it from other phase breaking processes such as energy excitation or
relaxation, as well as the (simple) dephasing (also referred to as transverse noise).

The dephasing (or transverse noise) rate, Γ2, describes the loss of coherence of a
superposed state pointed along the x-axis on the equator of the Bloch sphere, as illustrated
in Figure 2.1(d). Decoherence is caused in part by longitudinal noise, which fluctuates
the qubit frequency and leads to pure dephasing ΓΦ (red). It is also caused by transverse
noise, which leads to energy relaxation of the excited-state component of the superposition
state at a rate Γ1 (blue). Such a relaxation event is also a phase-breaking process, because
once it occurs, the Bloch vector points to the north pole, |0⟩, and there is no longer any
knowledge of which direction the Bloch vector had been previously pointing along the
equator; the relative phase of the superposition state is lost.

Similarly to the thermal decoherence time, T1, the dephasing time T2 = 1/Γ2 defines
the time it takes for a qubit to lose its phase. Decoherence and dephasing times T1 and
T2, as well as pure dephasing time, TΦ = 1/ΓΦ, follow the well-known relationship

T2 = 2T1 + TΦ. (2.4)

In the remainder of the thesis, for the purposes of a simpler analysis, the pure dephasing,
TΦ, is considered as a time embedded in the dephasing time T2 of the quantum system.
Thus, equation (2.4) can be rewritten as

T2 = 2T1, (2.5)

a relationship that proves one of the most important in noise modelling.
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2.1.8 Quantum Channels

Perhaps the most important concept of modeling and simulating quantum noise is the
constructs called quantum channels. These represent the building blocks of most noise
models and are invaluable to the field. This section aims to introduce the most common
quantum channels and ones that will be used throughout this thesis.

In the general sense, the dynamics of a closed quantum system are unitary. In other
words, assuming the state of a quantum system is initially |ψ⟩ then, in a perfectly isolated
system, a unitary operator U can evolve that state perfectly and without error, denoted
through the operation U |ψ⟩. In terms of density matrices, the above operation is equivalent
to the map |ψ⟩ ⟨ψ| 7→ U |ψ⟩ ⟨ψ|U †. This translates to the fact that a quantum evolution
occurring within a closed system is reversible, i.e., it will not create or destroy quantum
information.

Another operation that is very useful and often occurs in the study of quantum noise
is the addition or, conversely, the removal of a part of a quantum system. In general,
adding a system can be done by using a tensor product which introduces the new part to
the initial system. Discarding a system can be done using the partial trace, as shown in
Definition 2.2. Mathematically, these two operations can be expressed as follows

• Adding a system: assuming a quantum system with density matrix, ρA, and a
second quantum system with density matrix ρB, the composite quantum system,
namely ρAB, can be expressed as ρAB 7→ ρA ⊗ ρB

• Discard a subsystem: assuming a composite system with density matrix ρAB,
then the subsystem with density matrix ρB can be removed (otherwise called, traced
out) from the composite system using a partial trace over the system B (trB) as
ρAB 7→ ρA = trB (ρAB) (see Section 2.1.2). Similarly, one can remove the subsystem
with density matrix ρA.

First of all, one important definition to assist with understanding quantum channels is
that of an isometry, as follows.

Definition 2.3 (Isometry). An isometry K is a map in L(CdA ,CdB ) for dB ≥ dA such
that K†K = IdA

. Assuming arbitrary operators O1, O2, L(O1, O2) is the space of all linear
operations mapping O1 7→ O2. Note for any state |ψ⟩, ∥|ψ⟩∥ = ∥K |ψ⟩∥, ∀ |ψ⟩ ∈ A.
Furthermore, KK† = IdB

iff dA = dB. In terms of density matrices, an isometry maps
ρ 7→ KρK†.

The benefit of using isometries, as defined above, is the fact they can be used to
combine the two operations of unitarity and adding a quantum system in order to create
a composite system as N (ρ) = KρK†, where K is an isometry, ρ is the density matrix
of the initial quantum system and N (ρ) is a quantum operation. On the other hand, a
part of the quantum system can be discarded using a partial trace N (ρAB) = trB(ρAB);
i.e., N here represents the partial trace operation. The above operations of isometry and
partial trace can also be combined to add and discard parts of a closed quantum system
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appropriately. For example, considering a quantum system A and a composite system B

together with its environment E as a closed system, an operation N can be defined with
the following effect:

N (ρ) = trE(KρK†). (2.6)

Here, an isometry K maps the system A on to the space B ⊗ E with density matrix
ρ, then the partial trace trE traces out the environment, E. It is noteworthy that all
these operations are not applicable in the presence of decoherence, which emphasises the
necessity of a closed quantum system.

The isometries, K, of the form introduced above can be also written as K = ∑
e Ke ⊗|e⟩,

where {|e⟩} is an orthonormal basis and Ke ∈ L(A,B). This allows equation (2.6) to be
written as (discarding the density matrix subscript BE for generalisation purposes):

N (ρ) = trE

[∑
e1,e2

Ke1ρK
†
e2 ⊗ |e1⟩ ⟨e2|

]
.

Evaluating the partial trace yields

N (ρ) =
∑

e

KeρK
†
e . (2.7)

Being linear, N acts on every density operator or quantum system.
A linear map of the form of equation (2.7) is called a quantum channel. Additionally,

the expressed form of equation (2.7) is commonly called the Kraus decomposition (see
Section 2.1.3), with Ke being the Kraus operators. Of course, K is still an isometry.
Additionally, Ke ∈ L(A,B) and thus the size of the Kraus operators is known. These
operators are blocks from a larger matrix, which is also an isometry. Thus, considering
the isometry condition from Definition 2.3, i.e K†K = I, one can express it as a condition
on all of the blocks as

I =
(∑

e1

K†
e1 ⊗ ⟨e1|

)(∑
e2

Ke2 ⊗ |e2⟩
)
.

This can also be written as ∑
e

K†
eKe = I

meaning that the Kraus operators obey the completeness condition. Here, e is finite or
countable, and the operators are also they are positive semidefinite.

This relation also works in reverse. If a set of Kraus operators {Ke} satisfies the Kraus
operator conditions, then the matrix K satisfies the isometry condition. That means the
construct is a quantum channel of the form (2.7), which can also be written in the form of
(2.6).

A quantum channel maps density operators to density operators; that is, it has the
following properties.

1. Linearity: N (αρ1 + βρ2) = αN (ρ1) + βN (ρ2).



2.1 Theory of Quantum Noise 31

2. Preserves Hermiticity: ρ = ρ† =⇒ N (ρ) = N (ρ†).

3. Preserves positivity: ρ ≥ 0 =⇒ N (ρ) ≥ 0.

4. Preserves trace: tr(N (ρ)) = tr(ρ).

Given a quantum channel, N , acting on a quantum system A with Kraus operators
{Ke}, one may introduce the auxiliary system B with Hilbert space dimensions matching
the number of Kraus operators. Thus, the main application of quantum channels in the
present research derives exactly from the above argument: by using quantum channels
and Kraus operators one can introduce noise in a quantum system as a stochastic unitary
evolution that interferes with the original closed system.

Finally it is noteworthy that some quantum channels are characterised as unital
channels, as shown by the following definition.

Definition 2.4 (Unital quantum channel). A quantum channel, N , is unital if it preserves
the identity operator, i.e., N (I) = I.

In other words, a quantum channel is unital if all trivial observables remain trivial after
applying the quantum channel. In general, if the Kraus operators of a channel, N , satisfy

∑
e

K†
eKe = I =

∑
e

KeK
†
e ,

then both the channel N and its dual N ∗ are unital channels.
The following sections introduce some of the most well-known quantum channels that

are used extensively throughout this thesis.

Depolarising Channel

The first channel of interest is the depolarising channel. This channel essentially models
a decohering qubit, and has particularly nice symmetry properties. The effects of the
depolarising channel can be described as follows: induce error in the system with probability
p or do nothing with probability 1 − p. Considering an orthonormal basis for a single qubit
{|0⟩ , |1⟩}, the depolarising channel can introduce three types of error in the system:

1. Bit-flip error:
|0⟩ 7→ |1⟩
|1⟩ 7→ |0⟩

or otherwise |ψ⟩ 7→ σbf |ψ⟩, where σbf = σx = X is the

Pauli-X operator.

2. Phase-flip error:
|0⟩ 7→ |0⟩
|1⟩ 7→ − |1⟩

or otherwise |ψ⟩ 7→ σpf |ψ⟩, where σpf = σz = Z is

the Pauli-Z operator.

3. Both the above:
|0⟩ 7→ i |1⟩
|1⟩ 7→ −i |0⟩

or otherwise |ψ⟩ 7→ σbpf |ψ⟩, where σbpf = σy = Y is

the Pauli-Y operator.
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Unitary representation. The depolarising channel can be realised as an isometry
mapping a quantum system A to a composite system AE, where E can represent, for
example, the immediate environment with orthonormal basis |k⟩ (like in Section 2.1.3).
The action can be written as the unitary

UA 7→AE = |ψ⟩A 7→
√

1 − p |ψ⟩A ⊗ |0⟩E +
√
p

3(σbf |ψ⟩A ⊗ |1⟩E

+ σpf |ψ⟩A ⊗ |2⟩E + σbpf |ψ⟩A ⊗ |3⟩E).
(2.8)

The environment evolves to one of the four mutually orthogonal states |k⟩, for k ∈ 0, . . . , 3.
It is noteworthy that here the states |k⟩ are not qubit states but they represent physical
states of the environment. For example, they could be realised as a ground and multiple
excited states of the environment viewed as a quantum system.

Operator-sum representation. The operator-sum representation (see Section 2.1.3),
or otherwise called Kraus decomposition, can be used as an alternative way to describe
a quantum channel. To obtain a Kraus decomposition of the depolarising channel the
partial trace over the environment is evaluated in the {|e⟩E} basis. Then

K0 =
√

1 − pI,K1 =
√
p

3σbf , K2 =
√
p

3σpf , K3 =
√
p

3σbpf ,

where, in essence, K0 describes the case where no error occurs, K1 is a bit-flip error, K2 is
a phase-flip error and K3 is a bit- and phase-flip error.

The next step is to check the normalisation condition. Using σ2
i = I the following is

derived ∑
e

K†
eKe =

(
(1 − p) + 3p3

)
I = I,

where e is finite or countable, thus showing that the operators follow the completeness
condition and are, indeed, Kraus operators.

An arbitrary initial density matrix, ρ, evolves through the quantum channel, N , as

N (ρ) = ρ 7→ ρ′ = (1 − p)ρ+ p

3(σbfρσbf + σpfρσpf + σbpfρσbpf) (2.9)

where the state exists in a superposition of the four possible final states of the composite
quantum system and environment.

Finally, a note about the reversibility of the quantum channel. Evidently, one can
reverse a uniform contraction of the Bloch sphere with a uniform expansion. But the
trouble is that the expansion of the Bloch sphere when the system is not closed, i.e., under
the effects of decoherence, is not a channel, because it is not a positive, unitary process.
This means that decoherence can shrink the sphere, but no physical process can expand it
again. In other words, a channel running backwards in time when the quantum system is
not closed is not a quantum channel.
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Phase-damping Channel

The next channel of interest is the phase-damping channel. As the name suggests, it models
the noise that affects the phase of a quantum system. This channel is quite interesting
because it reveals a very instructive picture of decoherence in realistic physical situations.

Unitary representation. An isometric representation of the phase-damping channel
applied on a quantum system A with an environment E can be given as

|0⟩A 7→
√

1 − p |0⟩A ⊗ |0⟩E + √
p| |0⟩A ⊗ |1⟩E ,

|1⟩A 7→
√

1 − p |1⟩A ⊗ |0⟩E + √
p| |1⟩A ⊗ |2⟩E .

(2.10)

In this case, unlike the depolarising channel, assuming a system A, there are no
transitions in the {|0⟩ , |1⟩} qubit basis. Instead, with probability p the environment
“scatters” off of the qubit, ending up in the state |1⟩E if A was in state |0⟩A and on state
|2⟩E if it was in state |1⟩A.

Operator-sum representation. Evaluating the partial trace over E in the basis
{|0⟩E , |1⟩E , |2⟩E} one can obtain the Kraus operators

K0 =
√

1 − pI, K1 = √
p

1 0
0 0

 , K2 = √
p

0 0
0 1

 .
It is very easy to confirm the operators satisfy completeness condition K2

0 +K2
1 +K2

2 = I.
According to [34] there is no need for three Kraus operators and the Kraus decomposition

can be done as
K1 =

√
p

2 (I + σpf), K2 =
√
p

2 (I − σpf). (2.11)

Hence, the channel can be expressed as

N (ρ) =
∑

e

KeρKe =
(

1 − p

2

)
ρ+ 1

2pσpfρσpf , (2.12)

with e finite or countable. Evidently, the channel can be simply described as a phase-flip,
σpf , happening with probability p/2 and nothing happening with probability 1 − p/2. The
initial density matrix ρ evolves through the quantum channel, N , to

N (ρ) =
 ρ00 (1 − p)ρ01

(1 − p)ρ10 ρ11


Decoherence. Preskill provides a very nice interpretation of the dephasing channel in
his lecture notes [34]. In essence, the phase-damping channel can be described as the
interaction between a classical (heavy/macrorealistic) particle with a background gas of
light (quantum/microrealistic) particles, i.e., photons. The quantum state of the particle
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can be described by a density matrix ρ obtained by tracing over degrees of freedom of the
photons.

The analysis of the dephasing channel indicates that if the photons are scattered
by the heavy particle at a rate Γ, then an exponential decay can be observed of the
off-diagonal terms in ρ, expressed as e−Γt, rendering them obsolete for t >> Γ−1. At that
point the quantum state is subjected to pure decoherence, completely losing the coherent
superposition of the position eigenstates of the particle.

As the classical particle is very heavy, its motion is affected very little by the scattered
photons due to its large inertia. Thus, there are two disparate time scales relative to its
dynamics. The first one is the damping time scale which is the time needed for a significant
amount of the particle’s momentum to be transferred into the photons. This is a long
time due to the large inertia of such a heavy particle, as explained before. The second
is the decoherence time scale. In this model the time scale for decoherence is of order
Γ, the time for a single photon to be scattered by the large particle, which is far shorter
than the damping time scale. Thus, it can be concluded that for a macroscopic object,
the decoherence is extremely fast.

The above viewpoint expresses in a nice way why the universe is full of decoherence.
A lot of philosophical or non-philosophical views can be explained or argued in this
manner, like the “multiverse”, why space is so decoherent or why is it so hard to maintain
quantum superposition in the classical scale. A coherent superposition of macroscopically
distinguishable states of a “heavy” classical object decoheres incredibly rapidly compared
to its damping rate. Of course, a much larger philosophical discussion can follow here
including macrorealism versus microrealism and what can be considered a macroscopic or
a quantum system or how damping time scales versus decoherence time scales can fit into
this discussion. Unfortunately, this falls outside the scope of this research.

Amplitude-damping Channel

The last quantum channel discussed is called the amplitude-damping channel. This can
be used to model the decay rate of an excited qubit due to fluctuations of its energy (for
example, thermal exchange).

Unitary representation. Assume the atomic ground state of a quantum system A is
|0⟩A and the excited state is |1⟩A. Also assume an environment, E, like for example an
electromagnetic field initially in its vacuum state, |0⟩E. If the initial state of the quantum
system is the excited state, |1⟩A, then, after some time, there is a probability pe that the
excited state has decayed to the ground state, |0⟩A, by photon emission. After this effect,
the environment will be in the state |1⟩E. This evolution can be described by a unitary
transformation according to

|0⟩A ⊗ |0⟩E 7→ |0⟩A ⊗ |0⟩E ,

|1⟩A ⊗ |0⟩E 7→
√

1 − pe |1⟩A ⊗ |0⟩E + pe |0⟩A ⊗ |1⟩E .
(2.13)
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Note that, if the qubit starts out in its ground state then no transition occurs between the
system A and the environment E as the qubit has no photon to emit.

In the contrary case, the system is initially in the ground state, |0⟩A, and will sponta-
neously absorb a photon from its environment (if it has one) with probability pa, which
will lead the quantum system to be in the excited state, |1⟩A.

|0⟩A ⊗ |0⟩E 7→ |0⟩A ⊗ |0⟩E ,

|0⟩A ⊗ |1⟩E 7→
√

1 − pa |0⟩A ⊗ |1⟩E + pa |1⟩A ⊗ |1⟩0 .
(2.14)

As will be shown in later Chapters, within a superconducting quantum computer, sponta-
neous absorption occurs very rarely compared to excitation within the quantum computer
due to the low temperatures achieved by the dilution refrigerator. Hence, for simplicity
within this introduction, it is assumed that the composite quantum system AE is fully
isolated and the environment, E, has no photon for the system A to absorb. Nevertheless,
it is relatively easy to derive the relevant analysis.

Kraus operators representation. By evaluating the partial trace over the environment
E in the orthonormal basis {|0⟩E , |1⟩E}, one can find the Kraus operators

K0 =
1 0

0
√

1 − p

 , K1 =
0 √

p

0 0

 . (2.15)

It is again easy to verify the completeness condition: K†
0K0 +K†

1K1 = I. The operator K1

induces a quantum jump, i.e., the decay from the excited state |1⟩A to the ground state
|0⟩A with probability p. The operator K0 describes the state change when no jump occurs.
The density matrix evolves through the quantum channel, N , as

ρ 7→ N (ρ) = K0ρK
†
0 +K1ρK

†
1 =

 ρ00 (
√

1 − p) ρ01

(
√

1 − p) ρ10 (1 − p)ρ11

+
pρ00 0

0 0


=
 ρ00 + pρ11 (

√
1 − p) ρ01

(
√

1 − p) ρ10 (1 − p)ρ11

 .
(2.16)

Time dependence. Knowing the spontaneous decay rate per unit time, denoted Γ,
then the decay occurs with probability p = Γ∆t << 1 in a small time interval ∆t. The
density operator after time t = n∆t can be found by applying the channel n times in
succession. The ρ11 matrix element then decays as

ρ11 7→ (1 − p)nρ11,
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where (1 − p)n = (1 − Γt/n) → e−Γt is the exponential decay law. The off diagonal entries
decay by the factor (1 − p)n/2 = e−Γt/2. Hence

ρ(t) =
ρ00 + (1 − e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11.

 (2.17)

2.2 Noisy Intermediate-Scale Quantum Devices
Finally, this section offers a brief reference to the current state of the quantum computing
field within the so called Noisy Intermediate-Scale Quantum (NISQ) era, as well as a
presentation of the quantum devices used for the experiments throughout the research.

2.2.1 The NISQ Era

Currently, the field of quantum computing and quantum technology is in, what is called
within the wider quantum community, the NISQ era, an acronym attributed to Preskill
[35] and stands for Noisy Intermediate-Scale Quantum era. In this term, the “intermediate-
scale” refers to the size of quantum computers which are available at this stage of the field,
with the number of qubits in newer machines ranging from around 20 to a few hundred. A
50-qubit quantum computer represents a significant milestone, as it forms a relative border
on the size of quantum systems that can be simulated through brute force using the most
powerful existing digital supercomputers [36–38]. “Noisy” emphasises the imperfect control
over those qubits that arises either due to the effects of various forms of decoherence and
dephasing or due to infidelities of the hardware itself. The quantum noise places serious
limitations on what quantum devices can achieve in the near-term, thus rendering relevant
research invaluable.

The number of qubits has been often emphasised as a measure of how difficult it is
to perform simulations of a quantum computer on a classical device. Of course, this is
not the only factor of interest. A potentially more impactful aspect is the quality of the
qubits, and in particular, the accuracy with which quantum operations can be performed
on them. Currently, even with the best hardware for controlling trapped ions [39] or
superconducting circuits [40], the error rate per gate for two-qubit gates is around the
0.1% level. Furthermore, there is high uncertainty on whether such error rates can be
maintained in larger devices with many qubits. Naively, with these noisy devices it is
expected that a circuit containing more than about a thousand gates could not be executed
reliably — that is, a thousand fundamental two-qubit operations — because the noise
will overwhelm the result. Of course, in machines with higher levels of noise, this number
drops dramatically. Such limitations on circuit size impose a ceiling on the computational
power of NISQ technology and highlight the importance of studying the quantum noise
and methods to overcome the noise within quantum machines.

Eventually quantum technologies will progress towards universal quantum computing,
potentially using quantum error correction to scale up to larger circuits. Additionally,
quantum computers will get better as researchers learn how to deal with the noise and
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noisy qubits more effectively. It is, therefore, essential for the NISQ era and for the future
of the field to be able to characterise the quantum noise present within quantum machines,
as well as be able to benchmark the quality of a quantum machine, not only at the level of
a qubit but, as quantum computers become bigger and better, also at the level of quantum
circuits and algorithms.

2.2.2 The NISQ Computers

Within this thesis, a large amount of experiments is undertaken and used to strengthen
the theoretical results of the research. To carry out these experiments, four IBM quantum
computers are used: the IBMQx15 Melbourne, the IBMQx5 Bogota, the IBMQx5 Santiago
and the IBMQx7 Casablanca machines. It is noteworthy that the first quantum computer
(the 15-qubits Melbourne) was used during the earlier stages of the research, i.e., from
2018 and with the last experiments carried out in January of 2021, but was retired in the
Summer of 2021 and is no longer available.

Before delving further into presenting the aforementioned quantum computers, it is
important to introduce a way to describe and depict the basic characteristics of a quantum
processor. To this end, the term architectural graph is used, defined as follows.

Definition 2.5 (Architectural graph). The architectural graph of a quantum processing
unit (QPU) is the graph that depicts all the qubits and their connectivity within a QPU.
The qubits are represented as nodes on the graph, whereas the available connections as the
edges between the qubits (nodes).

In addition to the above, it is essential to discuss the quantum volume, as introduced
by Moll et al. [41]. This is an architecture-neutral figure of merit that characterises the
performance of a quantum computer. It depends on the number of physical qubits in the
machine, the number of qubits in the workspace, the depth and width of the circuit, as
well as the average effective error rates of the two-qubit gates implemented in the quantum
computer.

Definition 2.6 (Quantum volume [41]). The quantum volume, namely VQ, is a dimen-
sionless metric used to characterise the performance of a quantum computer and can be
calculated through the equation

VQ = max
n<N

min
[
n,

1
n× ϵeff(n)

]2
 (2.18)

where n is the size of the workspace necessary for the computation, N is the number of
qubits within the quantum computer and ϵeff(n) is the average effective two-qubit gate error
rates of the qubits that participate in the circuit, following the connectivity shown through
the architectural graph of the QPU.

Starting up, the Melbourne machine had an Albatross QPU with 15 qubits. The
connectivity of the qubits was provided by a total of 22 coplanar waveguide bus resonators,
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Fig. 2.2 Architectural graph of the IBMQx15 Melbourne computer.

(a) IBMQx5 Bogota and Santiago. (b) IBMQx7 Casablanca.

Fig. 2.3 Architectural graph of the (a) IBMQx5 Bogota and Santiago and (b) the IBMQx7
Casablanca quantum computers.

each connecting two qubits, following the architectural graph seen in the configuration
of Figure 2.2. This computer had a quantum volume (QV) of Vq = 8. Following up, the
Bogota and Santiago machines essentially have equivalent Falcon r4L quantum processors
with five qubits and four connections. The architectural graph is depicted on Figure 2.3(a).
Finally, the Casablanca computer possesses a Falcon r4H processor with seven qubits and
six connections, as shown by the architectural graph of Figure 2.3(b). All three machines
exhibit a quantum volume of Vq = 32.



Chapter 3

Discrete Time and Space Quantum
Walks and Implementations

A quantum walk is the quantum mechanical analogue of a classical random walk [42].
This construct differs greatly to its classical analogue in terms of dynamical evolution.
Whereas in a classical random walk the walker occupies definite states and the randomness
arises due to stochastic transitions between states, the random behaviour of a quantum
walk is governed by (i) quantum superpositions of quantised states, (ii) reversible unitary
evolution and (iii) collapse of the wavefunction due to measurements of the quantum state
at the end of the evolution.

During a quantum walk, the object which undergoes the evolution, here referred to as
a walker and considered to be, for all intents and purposes, a quantum particle, sees its
state evolved in a superposition. This gives the walker the ability to “seemingly” follow
all possible paths, propagating quadratically further than a walker that is subjected to a
classical random walk [8]. This quadratic increase in efficiency is proven mathematically
in Section 3.1 and is also shown experimentally through simulations. Unfortunately, due
to quantum noise, it is near impossible to demonstrate the speed-up offered by a quantum
walk on real devices.

Quantum walks have the potential to speed up classical algorithms that are based
on random walks [8, 43, 44]. There have been many systematic studies on this subject
area and many of them can lead to further in-depth analysis of more advanced quantum
algorithms, such as quantum Metropolis, quantum Markov chains or quantum Monte
Carlo methods [45, 46, 15, 8, 47]. An early work from [25] proves that, in the context of
quantum walks on graphs, the walker’s propagation in the quantum case is quadratically
faster than the classical random walk. The efficiency of quantum walks has been exploited
in various cases in order to construct quantum algorithms [48, 12] and speed up classical
methods [49, 50], sometimes even exponentially [9, 51]. Quantum walks have also been
realised in a number of physical systems, including photons [52–57], cold atoms [58, 59]
and trapped ions [60].

This chapter focuses mainly on discrete-time and -space quantum walks (DTQW),
as introduced in Section 1.2.1. As a starting point, a complete proof of the advantage
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provided from the quantisation of discrete-time random walks is shown. Following, two
main circuit approaches for implementing discrete-time quantum walks are analysed, along
with experiments and in-depth comparison. Finally, a novel work on various attempts to
further speed up or alter quantum walk techniques is shown in Section 3.3.

The work outlined in Section 3.2 has been published in Physical Review A in January
2021 [61].

3.1 Quadratic Efficiency of Discrete-time Quantum
Walks

This section showcases in a structured proof the quadratic advantage of quantum walks
over classical random walks using the variance as a basis for comparison. The variance of
a random walk essentially expresses the rate at which the walker propagates (or “spreads”)
through the graph. Hence, a larger variance means a faster or more efficient walk. The
proof provided below is a combination of two different parts, first the Fourier analysis of the
DTQW, as shown in [62], which introduces the tools that are then used for the derivation
of the variance, shown in [21]. These two parts are put together to construct a theoretical
approach for finding the variance of a quantum walk on an infinite, one-dimensional
line. An important characteristic of quantum walks is their asymmetry, compared to the
classical walk. This asymmetry derives from the effects of interference during the steps
of the walk. The interference, in turn, arises from the fact that the amplitudes of the
quantum states are complex numbers.

During a quantum walk, the walker has an extra degree of freedom that assists in their
motion, called chirality. The chirality can take two values, Left (|L⟩) or Right (|R⟩) and
describes the predisposition of the quantum walk to interference. Considering a particle
that undergoes quantum walk, it will exhibit different behaviour depending on its initial
spin (up |↑⟩ or down |↓⟩) or, equivalently, state (|0⟩ or |1⟩). In order to remove this
bias, the quantum walk is initialised in an equal superposition of the two states using a
Hadamard gate, H. Thus, depending on the initial state of the particle, the walk will be
initialised as

H|L⟩ = 1√
2

(|L⟩ + |R⟩)

H|R⟩ = 1√
2

(|L⟩ − |R⟩)

It is noteworthy here how the amplitudes depend on each initial state, i.e, for |↑⟩ (or |0⟩)
the superposition undergoes addition whereas for |↓⟩ (or |1⟩) subtraction. This difference
in the amplitudes of the initial state comprises the effects of chirality.

The two component statevector of the amplitudes of the particle being at point n at
time t is

Ψ(n, t) =
ψL(n, t)
ψR(n, t)

 , (3.1)



3.1 Quadratic Efficiency of Discrete-time Quantum Walks 41

with the upper component ψL(n, t) having chirality Left and the lower component ψR(n, t)
having chirality Right. The dynamics of the wave function Ψ are given by the transformation

Ψ(n, t+ 1) =
 0 0

1√
2 − 1√

2

Ψ(n− 1, t) +
 1√

2
1√
2

0 0

Ψ(n+ 1, t)

= M+Ψ(n− 1, t) +M−Ψ(n+ 1, t).

This transformation is unitary, since it is a composition of a unitary operator (namely H)
and a reversible move/step to the left or to the right. Assuming that the particle starts at
the origin with chirality left, the initial conditions are

Ψ(0, 0) =
1

0


which of course implies

Ψ(n, 0) =
0

0

 if n ̸= 0.

Fourier Analysis of the Discrete-time Quantum Walk

One of the better ways to map a continuous function to a discrete space is to use Fourier
Transforms (FT) [62]. The spatial FT Ψ̃(k, t) for k ∈ [−π, π] of the wave function Ψ(n, t)
over Z is given by

Ψ̃(k, t) =
∑

n

Ψ(n, t)eikn (3.2)

where Ψ(n, t) : Z 7→ C maps from the discrete space Z to the continuous space C and is a
complex valued function over the integers, with its FT being Ψ̃(k, t) : [−π, π] 7→ C.

From the dynamics of Ψ the following can be deduced about Ψ̃:

Ψ̃(k, t+ 1) =
∑

n

(M+Ψ(n− 1, t) +M−Ψ(n+ 1, t)) eikn

= eikM+
∑

n

Ψ(n− 1, t)eik(n−1) + e−ikM−
∑

n

Ψ(n+ 1, t)eik(n+1)

=
(
eikM+ + e−ikM−

)
Ψ̃(k, t)

where it is important to prove the following

Ψ̃(k − 1, t) =
∑

n

Ψ(n− 1, t)eik(n−1)

=
∑

n

Ψ(n− 1, t)eikne−ik

= e−ik ∑
n

Ψ(n− 1, t)eikn

= e−ikeik ∑
n

Ψ(n− 1, t)eik(n−1)

=
∑

n

Ψ(n− 1, t)eikn = Ψ̃(k, t)
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for the transition between the last two equalities. Thus

Ψ̃(k, t+ 1) = MkΨ̃(k, t) (3.3)

where
Mk = eikM+ + e−ikM−

= 1√
2

e−ik e−ik

eik −eik

 . (3.4)

Note that one can also write Mk = ΛkU
⊺, where Λk is a diagonal matrix and U⊺ is the

transpose of the unitary that acts on the chirality state (in the quantum walk case U = H,
i.e., the Hadamard operator). Thus, Mk is unitary and the recurrence in the Fourier space
is of the form

Ψ̃(k, t+ 1) = MkΨ̃(k, t) = M t
kΨ̃(k, 0). (3.5)

Additionally, M t
k can be calculated by diagonalising the matrix Mk, which is readily done

being a 2 × 2 matrix.
The next step is the eigendecomposition of Mk. If Mk has eigenvectors (|Φ1

k⟩ , |Φ2
k⟩)

and eigenvalues (λ1
k, λ

2
k), one can write

Mk = λ1
k |Φ1

k⟩ ⟨Φ1
k| + λ2

k |Φ2
k⟩ ⟨Φ2

k| ,

thus obtaining the evolution matrix as

M t
k =

(
λ1

k

)t
|Φ1

k⟩ ⟨Φ1
k| +

(
λ2

k

)t
|Φ2

k⟩ ⟨Φ2
k| . (3.6)

The eigenvalues of Mk can be found as λ1
k = e−iωk and λ2

k = ei(π+ωk), where ωk is the
angle in [−π/2, π/2] such that sinωk = sin k√

2 . The corresponding eigenvectors are:

Φ1
k = 1√

2N(k)

 e−ik

eiωk + e−ik


Φ2

k = 1√
2N(π − k)

 e−ik

−
√

2e−iωk + e−ik

 (3.7)

where N(k) = (1 + cos2 k) + cos k
√

1 + cos2 k.
Considering the evolution of the particle, starting with chirality Left and in the Fourier

basis Ψ̃(k, 0) = |0⟩ ∀k, the two components of the wave function of equation (3.1) at time
t are given by

ψ̃L(k, t) = 1
2

(
1 + cos k√

1 + cos2 k

)
e−iωkt + (−1)t

2

(
1 − cos k√

1 + cos2 k

)
eiωkt

ψ̃R(k, t) = ieik

2
√

1 + cos2 k

(
e−iωkt − (−1)teiωkt

)
.

(3.8)
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Inverting the FT allows returning to the real basis. This inversion is given by

Ψ(n, t) = 1
2π

∫ π

−π
Ψ̃(k, t)eikn dk (3.9)

Thus, the components of the wave function can now be described as:

ψL(n, t) = 1 + (−1)n+t

2

∫ π

−π

dk
2π

(
1 + cos k√

1 + cos2 k

)
e−i(ωkt+kn)

ψR(n, t) = 1 + (−1)n+t

2

∫ π

−π

dk
2π

eik
√

1 + cos2 k
e−i(ωkt+kn)

(3.10)

In order to account for chirality right or |↓⟩, the operator M t
k acting on the chirality

state |c⟩ = {↑, ↓}1 will now be written as

M t
k |c⟩ =

(
(λ1

k)t ⟨Φ1
k|c⟩

)
|Φ1

k⟩ +
(
(λ2

k)t ⟨Φ2
k|c⟩

)
|Φ2

k⟩ .

The basis in FT can be expressed as

|Ψc
n,t⟩ = U t|ψc

0⟩ = U t(|0⟩ ⊗ |c⟩) = 1
2π

∫ π

−π
Ψ̃(k, t) ⊗M t

k|c⟩dk

and consequently
|ψc

t ⟩ =
∑

n

|n⟩ ⊗
[
At

c(n)| ↑
〉

+Bt
c(n)| ↓⟩]

with the following equalities:

At
↑(n) = 1 + (−1)t+n

2
[
αt(n) + βt(n)

]
At

↓(n) = 1 + (−1)t+n

2
[
βt(n) − γt(n)

]
Bt

↑(n) = 1 + (−1)t+n

2
[
βt(n) + γt(n)

]
Bt

↓(n) = 1 + (−1)t+n

2
[
αt(n) − βt(n)

]
(3.11)

and
αt(n) =

∫ π

π

dk
2π ei(kn−tωk)

βt(n) =
∫ π

−π

dk
2π

cos k√
1 + cos2 k

ei(kn−tωk)

γt(n) =
∫ π

−π

dk
2π

sin k√
1 + cos2 k

ei(kn−tωk)

(3.12)

Derivation of the Variance

To find the variance of the walk, the initial state is generalised in a similar fashion to [21].
Thus, starting with initial state:

|ψ0⟩ = |0⟩ ⊗
[√
q |↑⟩ +

√
1 − qeiσ |↓⟩

]
(3.13)
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with q ∈ [0, 1] and σ ∈ R, the quantum state after t steps will be:

|ψt⟩ = U t |ψ0⟩ =
∑

n

|n⟩ ⊗


[√

qAt
↑(n) +

√
1 − qeiσAt

↓(n)
]

|↑⟩

+
[√

qBt
↑(n) +

√
1 − qwiσBt

↓(n)
]

|↓⟩


The above can be further simplified by considering the modular behaviour (see Definition
1.2) of the quantum walk. The probability for the walker to be at position n after t steps
can be calculated as:

pt(n) =
∣∣∣√qAt

↑(n) +
√

1 − qeiσAt
↓(n)

∣∣∣2 +
∣∣∣√qBt

↑(n) +
√

1 − qeiσBt
↓(n)

∣∣∣2 . (3.14)

The integral parts of the matrices An
↑ , A

n
↓ , B

n
↑ , B

n
↑ are mostly concentrated in the

interval [−t/
√

2, t/
√

2] and they quickly decrease beyond its bounding values. This can
be shown by the method of stationary phase, described in Appendix D. Doing the correct
approximations can lead to the probability pt(n) of equation (3.1) as an oscillation around
the function

P t(n) = 2t
π(t− n)

√
t2 − 2n2

where the vanishing part coming from the modularity property can be dropped.
The function P t(n) allows to approximately evaluate the averages of position n-

dependent functions in the t-th step of the quantum walk as

〈
f t(n)

〉
≃ 1

2

∫ t√
2

− t√
2

f t(n)P t(n) dn (3.15)

Thus, from equation (3.15) follows that

⟨n⟩ ≃ 1
2

∫ t√
2

t√
2

n
2t

π(t− n)
√
t2 − 2n2

dn = −t
√

2 − 1√
2

⟨n2⟩ ≃
∫ t√

2

− t√
2

n2 2t
π(t− n)

√
t2 − 2n2

dn = t2
√

2 − 1√
2

(3.16)

and finally, using equations (3.16), the variance of the quantum walk, σ2
qw , can be found

as

σ2
qw = ⟨n2⟩ − ⟨n⟩2 = t2

√
2 − 1√

2

2

− t2
√

2 − 1√
2

= t2

√
2 − 1√

2

1 −
√

2 − 1√
2

 ⇒

σ2
qw ≈ 0.207 × t2

(3.17)

This shows that the variance of the quantum walk is proportional to t2 (i.e., σ2
qw ∼ t2) or

otherwise the standard deviation is σqw ∼ t. Thus, the standard deviation of the quantum



3.2 Circuits and Circuit Approaches to Discrete-time Quantum Walks 45

walk grows near-linearly with time, quadratically faster than a classical random walk,
where σcw ∼

√
t.

3.2 Circuits and Circuit Approaches to Discrete-time
Quantum Walks

This section discusses two circuit approaches used to implement quantum walks both as
simulations and on real quantum computers. Additionally, it offers an analysis and com-
parison between the two implementations and the associated characteristics (as published
in [61]). The quantum walks considered in this section will be run on cycle graphs of size
N , or otherwise, N -cycles where for simplicity N is always taken as an exact power of
2. This means that there are N possible positions for the walker and the graph can be
encoded on the quantum processing unit using n = logN qubits. For all the experiments
during the next sections, the IBMQ Qiskit tools and quantum computers will be utilised
[63, 64]. More specifically, the experiments are executed on the IBMQ 15-qubit Melbourne
machine.

Due to the importance and plentiful research pouring into quantum walks and their use,
various implementations of this algorithm exist. Within the reviewed research the focus
is concentrated towards two approaches to implementing quantum walks. The first one
uses generalised inverter gates, i.e., CNOT gates controlled by more than one qubits. The
second implementation effectively replaces those operations with a sequence of rotation
and phase gates.

These two approaches offer distinct characteristics and opposite advantages and dis-
advantages. The generalised inverters approach is very efficient, in terms of necessary
resources and quantum volume. The rotational approach is less efficient in terms of gates
but more efficient in terms of qubits, while also being universally applicable, meaning that
it can be used to decompose arbitrary scaling unitary gates to a sequence of rotation and
phase operations. Hence, it is deemed worthwhile to subject the two implementations
through extensive analysis.

3.2.1 The Generalised Inverters Approach

The generalised inverters approach to implementing quantum walks is based on the work
of [19]. As mentioned above, generalised controlled operations are those whose effect on
a target qubit is controlled by more than one control qubit. In this case, the operation
in question will occur if and only if all the control qubits are in state |1⟩. A well known
example of a generalised operation, and one that is used extensively for this approach, is
the three-qubit Toffoli gate in which the target qubit will be inverted only if both the
control qubits are in state |1⟩. Direct implementations of the Toffoli gate do not currently
exist on quantum hardware, but they can be easily decomposed to well-known single- and
two-qubit operations [65, 66].
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(a) Circuit schematic. (b) High-level circuit implementation.

Fig. 3.1 (a) Implementation of one step for the quantum walk of a particle. (b) Quantum
circuits for increment and decrement operations. A filled control circle means that the
control qubits have to be in state |1⟩ in order for the operation to occur. An empty control
circle means they have to be in state |0⟩.

One step of the quantum walk, following equation (1.7), can be broken down to two
operations: (i) an increment operation (or function) that implements the increase of the
quantum state, i.e., S+, and (ii) a decrement function that implements the decrease of the
state of the walker, i.e., S−. These two functions can be executed in a superposition by
utilising the Hadamard coin, thus implementing the dynamics of a discrete-time quantum
walk.

The generalised CNOT gates can be used to construct quantum circuits that implement
the increment and decrement functions. As shown by [19], those two operations can be
realised with a single quantum circuit, but with opposite control logic. In other words,
one function will be controlled by |1⟩ (the increment is chosen here) whereas the other by
|0⟩ (decrement). Figure 3.1(a) shows the schematic of the circuit executing one iteration
of the quantum walk for a state space of arbitrary size. The general high-level circuit
implementation of the increment and decrement circuits is shown in Figure 3.1(b). The
realisation of the individual quantum circuits in Figure 3.1(b) for a small quantum walk
on a N = 8-cycle using elementary and Toffoli gates is shown in Figure 3.2(a-b).

Both the increment and decrement circuits of the last two figures look more compli-
cated than their respective schematic in Figure 3.1(b). The reason is the lack of direct
implementation of any generalised inverters other than the Toffoli gate on Qiskit. Any
inverter gate with more than two control qubits (i.e., bigger than the Toffoli gate) requires
intermediate computations stored in ancilla qubits. This leads to a significant increase
of the workspace (i.e., the number of qubits needed for the computation) that grows
with the size of the state space. Precisely, a generalised CNOT gate with nc control qubits
requires additional nc−1 ancilla qubits for the implementation (refer to Appendix C). For
example, considering the 15-qubit Melbourne machine (the biggest size of public machine
from IBMQ at the time of this research), one can implement a quantum walk on a cycle
with at most N = 27 = 128 states, i.e., a seven-qubit state space. In case of the larger
quantum walk on N = 28 = 256 states, i.e., with an eight-qubit state space (n = 8),
the largest generalised inverter gate will have eight (nc = 8) control qubits (including
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(a) Increment quantum circuit.

(b) Decrement quantum circuit.

Fig. 3.2 (a) Increment circuit. The three qubit qn, n = 0, 1, 2 register is the state space
of the quantum walk, the coin register coin0 represents the Hadamard coin. The ancilla
qubits used for the computation are anc0 and anc1. (b) Decrement circuit. Important
here is the need to invert all the control qubits (including the coin) at the start of the
computation and uncompute them at the end.

the coin), meaning it will need seven (nc − 1 = 7) ancilla qubits for the computation.
Thus, n+ (nc − 1) = 15 qubits for the state space and the ancilla, plus one qubit for the
Hadamard coin, gives 16 qubits, one more than the capacity of the quantum computer.

For the implementation of a quantum walk using this approach there is the need for a
qubit register with n = logN qubits, an ancilla register with logN − 1 qubits and one
additional qubit for the quantum coin. This means that the generalised CNOT approach
requires 2× logN qubits to be implemented. Proposition 3.1 expresses the gate complexity
of the quantum circuit in terms of gate requirements.

Proposition 3.1 (Inverters approach gate complexity). The number of gates that par-
ticipate in the generalised inverter implementation of the quantum walk circuit increases
polylogarithmically with the size of the state space, N , as O(log2 N).

Proof. For a state space N ≥ 8, any gate that needs more than two control qubits is
expanded to a network with ancilla qubits. The number of gates necessary for this
expansion can be expressed as 2∑log N

nc=3(2nc − 1), where nc is the number of control qubits
necessary for each operation. The additional gates needed will be the inverters with two
or fewer control qubits and the Hadamard gate. For a state space of N < 8 there will be
no operations with more than two control qubits and the number of gates will be simply
calculated by the inverters and the Hadamard gate.
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Thus, the number of gates for the generalised inverter implementation can be expressed
as

νc =

2∑log N
nc=3(2nc − 1) + 2 logN + 5, if N ≥ 8

2 logN + 5, if 2 ≤ N < 8
(3.18)

From the above equation one can see that the sum ∑log N
nc=3(2nc − 1) provides the dominant

growth rate. It is found that

log N∑
nc=3

(2nc − 1) =
log N∑
nc=1

(2nc − 1) −
2∑

nc=1
(2nc − 1)

= log2 N − 4,

as the sum ∑log N
nc=1(2nc − 1) = log2 N is the known sum of the first logN odd natural

numbers and ∑2
nc=1(2nc − 1) = 4. Thus, the number of gates increases with the size of the

state space, N , as O(log2 N).

Finally, it is noteworthy that the above proposition can be formulated in terms of
the number of qubits, n, necessary to represent the state space of the quantum walk, as
n = logN . With this in mind, the number of gates necessary to implement the circuit for
the generalised inverters approach increases quadraticaly with the number of qubits that
represent the state space of the quantum walk as O(n2) ≡ O(log2 N).

3.2.2 The Rotational Approach

The second approach to implementing quantum walks examined within this thesis uses a
set of rotation and phase operations [67, 68] to implement the increment and decrement
functions. These operations are more complex than the generalised inverters, but they
allow the implementation of a quantum walk without the need for an ancilla register,
thus lowering the vast increase in computational resources resulting from adding qubits
to the workspace. Referring back to the bounded size of the quantum walk, the 15-qubit
Melbourne machine used for the experiments is able to run a quantum walk with rotations
on a cycle with N = 214 = 16,384 positions, i.e., an n = 14-qubit state space (plus
one qubit for the Hadamard coin), a significant rise compared to the 128 states of the
generalised CNOT approach.

Another benefit of the rotational approach holds when simulating quantum walks on
classical machines. As the size of the state space increases exponentially with the number
of qubits, classical computers very quickly start struggling to cope with the size of the
workspace. The rotational implementation offers a way around this problem by lowering
the number of qubits necessary to implement the quantum walk. Finally, this approach
to implementing quantum circuits via rotations around the basis states is universally
applicable, i.e., it can be used to translate any arbitrary unitary operator to a sequence
of rotation and phase gates, offering the advantages and disadvantages discussed in this
section
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In order to engineer a quantum circuit that implements the rotational approach to
quantum walks, the two following lemmas are used, first introduced and proven by [67].

Lemma 3.1 (Unitary rotational decomposition [67]). For any unitary operator W there
exist operators Φ, A, B and C such that ABC = I and ΦAXBXC = W , where Φ is a
phase operator of the form Φ = eiδ × I with δ ∈ R, X is the Pauli-X and I the identity
matrix.

What one can learn from Lemma 3.1 is that any unitary operator and, for the case
examined here, a NOT gate, can be expressed as a sequence of operators ΦAXBXC. This
result acts as a stepping stone for generalising the deconstruction of a higher-dimensional
inverter gate. The existence of the operator Φ compensates for the fact that the NOT gate
is not a special SU(2) unitary, i.e., it does not have determinant 1. Thus, efforts can be
narrowed down to finding the appropriate Φ, A,B and C operators that suit specific needs
of the implementation [61].

The natural first step is to decompose the Toffoli gate, denoted Xcc, the simplest
generalised CNOT gate, that needs two control qubits. The first rotation gate needed can
be found through the unitary matrix Ry(θ) defined as

Ry(θ) =
cos θ/2 − sin θ/2

sin θ/2 cos θ/2

 . (3.19)

For the Toffoli case, it is required that θ = π/2, giving from equation (3.19) the operator

Ry(π/2) =
√

2
2 −

√
2

2√
2

2

√
2

2

 .
The next operation is expressed by the unitary operator Rz(ϕ), given as

Rz(ϕ) =
eiϕ/2 0

0 e−iϕ/2

 . (3.20)

Similarly to the rotation operators, assigning ϕ = π/2, results to the operator

Rz(π/2) =
√

2
2 −

√
2

2 i 0
0

√
2

2 +
√

2
2 i

 .
Finally, since the inverter gate is not a special unitary, there is the need for an additional

phase gate Φ(δ) defined as

Φ(δ) =
eiδ 0

0 eiδ

 , (3.21)

with δ = −π/2 identified for this case. Thus, the relevant operator is

Φ(−π/2) =
−i 0

0 −i

 .
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Fig. 3.3 Quantum circuit implementing a Toffoli gate (Xcc) using conditioned rotations.

Considering the above, the rotational decomposition of an inverter gate, X, can now
be written as

X ≡ Φ(π/2)Rz(π/2)Ry(π/2)XRy(−π/2)XRz(−π/2) (3.22)

where A = Rz(π/2)Ry(π/2), B = Ry(−π/2) and C = Rz(−π/2). This can be simply
proven mathematically, as shown below.

Proof. Decomposing a 2 × 2 inverter gate, X, to a sequence of rotation and phase gates of
the form presented in equation (3.22) is shown to be true via simple matrix operations.

X = Φ(π/2)Rz(π/2)Ry(π/2)σxRy(−π/2)Rz(0)σxRz(−π/2)

=
−i 0

0 −i

√
2

2 −
√

2
2 i 0

0
√

2
2 +

√
2

2 i

√
2

2 −
√

2
2√

2
2

√
2

2


×

0 1
1 0

 √
2

2

√
2

2
−

√
2

2

√
2

2

1 0
0 1

0 1
1 0

√
2

2 +
√

2
2 i 0

0
√

2
2 −

√
2

2 i


=
0 1

1 0


where the matrix expansions for θ, ϕ = −π/2 are easy to deduce from the relevant
equations.

By modifying the operators to accommodate for the right matrix dimensions, the
Toffoli gate can be decomposed to a sequence of controlled rotation, phase and NOT gates,
as shown in Figure 3.3.

The next step is to generalise this quantum circuit so that it can accommodate more
than two control qubits, i.e., create a generalised CNOT using rotations. In order to do
this, another lemma from [67] can be used. In this context, the need arises to introduce

the notation ∧n−1(U) as used by [67, 68]. For any unitary matrix U =
u00 u01

u10 u11

 and

m ∈ {0, 1, 2, . . . }, the (m+ 1)-bit (2m+1-dimensional) operator ∧m(U) is defined as

∧m(U)(|x1, . . . , xm, y⟩) =
 uy0 |x1, . . . xm, 0⟩ + uy1 |x1, . . . , xn, 1⟩ if ∧m

k=1 xk = 1
|x1, . . . , xm, y⟩ if ∧m

k=1 xk = 0

where ∧k denotes the AND operation of the relevant k values. Thus, the second lemma
necessary to define the rotational approach is as follows.
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Lemma 3.2 (Generalised unitary rotational decomposition [67]). For any unitary W , a
∧n−1(W ) gate can be simulated by a network of rotation and phase operators, as shown in
Figure 3.4, with Φ, A, B and C as in Lemma 3.1.

Fig. 3.4 Generalised rotational network that implements a unitary controlled by an arbitrary
number of control qubits.

Lemma 3.2 describes a way to expand any generalised unitary with an arbitrary number
m of control qubits to a network of controlled rotations and generalised CNOT gates of
the form ΦAXBXC. It is easy to see that, if W = X, one can iteratively expand each
one of the generalised CNOT gates to such a network. The expansion will stop when the
generalised inverter gates end up being regular Toffoli gates. After the transformation of
the initial approach to rotation operations, the 2 × 2 operator W applied to the target
qubit is the regular inverter

W = X =
0 1

1 0

 , (3.23)

with the dimensions of the matrix representation adjusted according to the dimensionality
of the workspace.

The above work derives a way to produce a quantum circuit that implements a
generalised CNOT gate with an arbitrary number of control qubits without depending on
the use of any ancilla qubits. This logic can be applied to any unitary operator [67, 68].

The next step is to integrate this implementation to the increment and decrement
circuits that constitute the quantum walk. The generalised CNOT gates are substituted with
a network of the form described in Lemma 3.2. Any CNOT or inverter X gates remain the
same, as do the Toffoli gates, due to well known and easily implementable decompositions,
as aforementioned. A visualisation of an increment quantum circuit on four qubits is
shown in Figure 3.5. The decrement circuit will follow similar logic with the difference that
all the control qubits have to be inverted at the start of the function. The two sub-circuits
implementing the increment and decrement functions can then be sequentially applied to
implement one step of the quantum walk, while controlled by the Hadamard coin.
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Fig. 3.5 Rotational implementation of an increment circuit for a three qubit state space
and one qubit coin.

Unlike the generalised inverter implementation, the rotational approach eliminates
the need for an ancilla register to carry out the quantum walk. Thus, it only requires
an n = logN qubit register to represent the state space and one additional qubit for the
quantum coin, i.e., logN + 1 qubits. The complexity of this approach in terms of quantum
gates is defined by the following proposition.

Proposition 3.2 (Rotational approach gate complexity). The number of gates that
participate in the rotational implementation of the quantum walk circuit increases linearly
with the size of the state space, N , as O(N).

Proof. For N ≥ 8 any operation with more than three control qubits will be expanded
according to the network of Lemma 3.2. It is evident that every inverter as in Figure 3.4
will need to be expanded to a rotational network until all gates need only two control
qubits. This leads to a number of ∑log N

j=3

[
10∑log N

nc=j (2nc−j)
]

gates before the last step as
well as ∑log N

j=3 (22−j+log N) gates on the last step of the expansion. For operations with two
or less control qubits, there is no need for rotations or expansions.

For N < 8 there will be no operations with more than two control qubits and the
circuit will not need a rotational approach.

The number of gates for the rotational implementation, νr, can be expressed as

νr =


∑log N

j=3

[
(22−j+log N) + 10∑log N

nc=j (2nc−j)
]

+ 2 logN + 5, if N ≥ 8
2 logN + 5, if 2 ≤ N < 8

(3.24)

Equation (3.24) shows that again the sum provides the dominant growth. In this case it
represents the well known sum of a geometric progression, where the largest growth would
be given by 2log N = N . Thus, the number of gates increases linearly with the size of the
state space, N , as O(N).

Thus, it is evident that, whereas the rotational approach offers a reduction to the
number of qubits necessary for the computation, with all the advantages this entails, it is
far less efficient in terms of necessary gates, as the number of gates needed in the quantum
circuit increases exponentially faster than in the generalised inverters case. This is also
visible when considering the complexity of the rotational circuit in terms of the number
of qubits, n = logN , necessary to represent the state space of the quantum walk. In
a similar fashion to the inverters circuit, the number of gates needed for the rotational
implementation increases with the number of qubits, n, as O(2n) ≡ O(N). As a reminder,
the complexity of the generalised inverters circuit is O(n2).
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Fig. 3.6 Comparison between the generalised inverter and rotational circuits complexity.
The size of the state space, N , is the number of states in the graph, or otherwise, the
number of states that can be represented by the qubits n as n = logN .

A visual comparison between the increase in the number of gates necessary for the
implementation of both the inverters and rotational approaches as a function of the size of
the state space is given in Figure 3.6.

3.2.3 Results and Comparison of Quantum Walk Implementa-
tions

Following the analysis of the two approaches defined in Sections 3.2.1 and 3.2.2, this
section presents the experimental results acquired from running quantum walks with the
engineered quantum circuits, both as an ideal simulation (i.e., in the absence of noise) and
on the IBM quantum hardware, more specifically, the IBMQ 15-qubit Melbourne machine.

Throughout the experimental process, the quantum walk is initialised on state |0⟩⊗n,
where n = logN is the number of qubits representing the state space of the quantum walk
of size N . The state space of the quantum walk is taken to be N = 4 and N = 8. The
results of the simulations and experiments for both approaches on two and three qubit
states are given together (for better comparison) in Figures 3.7 and 3.8 respectively.

Experiments and Results on Noise-free Simulator

The Qiskit simulator [63] is used to implement the quantum circuits and execute the
noise-free simulations. The simulations are run on a MacBook Pro 2017 computer with a
2.3 GHz Intel Core i5 processor and 16 GB of memory.
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(a) One-step of the quantum walk. (b) Two-steps of the quantum walk.

(c) Three-steps of the quantum walk. (d) Four-steps of the quantum walk.

Fig. 3.7 Probability distributions of two-qubit quantum walks on the IBMQ Melbourne
computer (crossed bar) and on an ideal simulator (solid bar) for (a) one step, (b) two
steps, (c) three steps and (d) four steps, with generalised inverters approach. Experiments
with the rotational approach are not needed, as the circuits are identical. Errors calculated
with 95% confidence intervals are smaller than 10−3, hence are not displayed.

There are three important points to observe here: (i) the asymmetry of the resulting
probability distributions, (ii) the modular behaviour and (iii) the variance of the quantum
walk. Those represent properties of discrete-time quantum walks, as showcased in Section
1.2.1. First of all, the effects of the asymmetry can be seen as the imbalance in the ideal
probability distribution. A good example comes from examining the ideal distribution
resulting from three-steps of the quantum walk, as showcased in Figure 3.8(c) (black bar),
where state |7⟩ appears with higher probability than the rest of the states.

The second point involves the modularity of the quantum walk, as this property was
introduced in Definition 1.2. Having initialised the walker on state |0⟩ (considered an
even state) and evolving for an odd or even number of steps, it is predicted that the
measurement outcome will be an odd or even one respectively. Indeed that is the case,
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(a) One-step of the quantum walk. (b) Two-steps of the quantum walk.

(c) Three-steps of the quantum walk.

Fig. 3.8 Probability distributions of quantum walks on three qubits for (a) one step, (b)
two steps and (c) three steps using the IBMQ Melbourne machine for the generalised
inverter (crossed bar) and rotational (tiled bar) approach and an ideal simulator (solid bar),
on which both approaches are identical. Error bars are calculated with 95% confidence
intervals.

with the outcomes measured also satisfying that only N/2 states are observed. This stands
true for both approaches.

The final point refers to the variance of the quantum walk. It has been proven
that Markov chains show a quadratic increase in efficiency compared to their classical
analogues [8]. As also theoretically shown in Section 3.1, the variance, σ2

qw, as a function
of the coin flips, t, can be calculated from equation (3.17). By computing the simulated
quantum walk variance one can verify this quadratic tendency for both implementations,
as depicted in Figure 1.5, concluding that both the quantum circuits are likely to be
correct implementations of a quantum walk.

Finally, the simulation runtimes for different number of qubits on an 8-cycle for the two
approaches are presented in Figure 3.9. It is visible that the runtime of the quantum walk
circuit increases exponentially with the number of qubits. For the generalised inverters
approach, the classical machine is unable to simulate the circuit for n > 16 due to lack
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Fig. 3.9 The simulation runtimes for the generalised inverters (solid line) and rotational
(dashed line) implementations. For n > 18 the classical machine is unable to simulate the
generalised inverter implementation. Simulations are run for one step. The number of
qubits n only refers to the state space of the walk, i.e., does not include ancilla qubits or
the coin.

of memory. On the other hand, the rotational approach is able to simulate the quantum
walk for state spaces of up to 18 qubits.

Experiments and Results on the Quantum Computer

The results obtained by executing the experiments on the quantum processor are quite
different. Both the quantum walk experiments are executed on the IBMQ 15-qubit
Melbourne machine. Due to limitations on the number of iterations permitted on the
machine, the quantum walk is repeated 1,000 times in what constitutes a batch of trials.
Each batch of trials is repeated 100 times and the probability distributions are mustered
from the average results of the cumulative 100,000 repetitions of the experiment. The
resulting probability distributions for the three first steps of the quantum walk on a 4- or
8-cycle can be seen in Figure 3.7 and Figure 3.8 respectively. It is noteworthy that, since
for a quantum walk on a 4-cycle there are no inverters with more than two control qubits,
a rotational implementation is not needed.

As evident from the results, the empirical distributions differ greatly from the simula-
tions. None of the expected properties of a quantum walk are present. More specifically,
the process no longer exhibits modular behaviour as there exist measured states that
should not occur, especially on the walks with larger state space or number of steps. Unfor-
tunately, the resulting probability distributions are completely different to the theoretical
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Quantum Gate Symbol Execution Time (in ns)

Hadamard H th = 53.4
Inverter (NOT) X tx = 107

Controlled-inverter (CNOT) Xc tinv
cx = 722.5, trot

cx = 695.7
Toffoli (CCNOT) Xcc tccx = 3,665.9

Phase Rz trz = 1,445
Rotation Ry try = 1,605

Table 3.1 Execution time of the various quantum gates used to construct the quantum walk
circuits. As a controlled-inverter exhibits different execution time on each pair of qubits,
the execution time presented here is computed as the average of the execution times for all
the qubit pairs that participate in each circuit; tinv

cx corresponds to the generalised inverter
circuit and trot

cx to the rotational circuit.

ones, making it difficult to correctly calculate the variance in a comparable way to the
simulations. Thus, no remarks regarding the variance can be made with certainty.

Taking into account the nominal execution time of the different gates that participate
in the circuits, showcased in Table 3.1 as given by IBMQ, the overall runtime of the
quantum computations can be calculated. The quantum circuit for one step of the walk
on a three-qubits state space contains the following number of gates: one Hadamard,
two inverter gates, eight CNOT gates and 10 Toffoli gates. Additionally, as the execution
time of a CNOT depends on which qubit pair the gate is applied, one has to consider the
qubits that participate in the circuit according to the architecture of the QPU. Here, the
average execution time of all the relevant qubit pairs is found, as shown in Table 3.1.
For example, following the architectural graph of the IBMQx15 Melbourne computer, as
shown in Figure 2.2 and knowing that qubits 0 to 5 participate in the generalised inverter
circuit, the qubit pairs can be found as 0 − 1, 1 − 2, 2 − 3, 3 − 4 and 4 − 5. Thus, following
the aforementioned table, the execution time can be calculated as

tinv = th + 2 × tx + 8 × tinv
cx + 10 × tccx ≈ 42 µs.

Similarly, the execution time of the rotational circuit can be calculated after taking into
account the number of gates of each type that participate in the circuit, i.e., one Hadamard
for the quantum coin, 12 of each of the phase (Rz) and rotation gates, two inverters, six
controlled-inverters and 10 Toffoli gates. Additionally, since there are different pairs of
qubits in the rotational circuit, the average execution time of the controlled-inverter differs
from the generalised CNOT case. More specifically, the rotational approach utilises qubits 0
to 3, with qubit pairs 0 − 1, 1 − 2 and 2 − 3. Thus, following again Table 3.1 the execution
time is:

trot = th + 12 × trz + 12 × try + 2 × tx + 6 × trot
cx + 10 × tccx ≈ 76 µs.
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Fig. 3.10 Probability distributions of generalised inverter (crossed bar), rotational (tiled
bar) and ideal (solid bar) quantum walks on four qubits for one step. Error bars are
calculated with 95% confidence intervals.

For one and two steps of the walk on two qubits, the execution times are 10.5 and
21 µs respectively. It is important to mention here that these execution times are purely
for the operations themselves, meaning additional time factors are not taken into account,
like state preparation (if it occurs), measurement or buffer time between operations on the
same qubit. Since there is no major idle session for the quantum circuit, for the purpose
of this analysis these times account for a much smaller period of the execution time than
the gates themselves.

In general, shorter quantum walk circuits, for example one or two steps of a two-qubit
quantum walk, can generally provide results closer to the expectations, as shown in Figure
3.7(a-b). This is due to the low execution time of the quantum circuit, as calculated above,
compared to the average coherence time of the three qubits participating in the circuit,
calculated at 64.25 µs, and the smallest decoherence time among these qubits, i.e., 56 µs,
measured through IBMQ experience [64] on the date of the experiments. For more than
two steps the distribution starts to deviate from the expected (Figure 3.7(c-d)).

As shown in Figure 3.8(a-c), the effects of the noise remain intense for both approaches
on an 8-cycle. The average coherence of the qubits participating in the circuit is found
to be 58.6 µs for the six qubits in the inverters approach and 63.6 µs for the four qubits
of the rotational approach. Those coherence times were, again, provided through IBMQ
experience on the date of the experiments.

Finally, similar results are obtained on larger state spaces. One example is one step of
the walk on a four qubit state space, shown in Figure 3.10. Thus, it is safe to conclude
that, for one or two steps on a two qubits state space, the quantum walk behaves relatively
close to the expectation, whereas for more than three steps or for state spaces larger than



3.3 Quantum Walks in Superposition 59

three qubits, where the runtime of the circuit is longer and approaches the coherence time,
the effects of the noise are overwhelming.

Comparison via Quantum Volume

An elegant way to compare the two approaches also arises when using the quantum
volume, as introduced in Definition 2.6. This section tries to provide an insight on such
a comparison for the two approaches when executing a three-qubit quantum walk. In
this context, the quantum volume is considered with opposite logic: used as a value that
describes the expected resources necessary for a circuit to run on a quantum computer. In
other words, it attaches an additional metric that shows the required resources of each
quantum walk approach. For a meaningful comparison, it is required that both circuits
are run on the same quantum architecture, a condition met here as they are both executed
on the IBMQx15 Melbourne machine.

The quantum volume can be calculated via equation (2.18). It is important here that,
due to automatic circuit optimisation of the connectivity applied by the backend compiler
before execution on the quantum computer, additional qubits that store intermediate
quantum states have to be taken into account when calculating the quantum volume.
Subsequently, the size of the workspace for the generalised inverters approach is ninv = 8
and for the rotational nrot = 6. For the qubits that participate in the workspace of each
approach, the average effective error rates can be easily computed as the average of the
two-qubit error rates provided by the machine calibrations as ϵinv

eff = 2.74 × 10−2 and
ϵrot

eff = 3.10 × 10−2 for the inverters and rotational approach respectively, as of the day of
the experiment.

Substituting the above values in equation 2.18, the quantum volume for the generalised
inverters approach is computed as V inv

Q = 20.812 and for the rotational approach as
V rot

Q = 28.905. In a similar fashion, the quantum volume for a quantum walk of arbitrary
size can be calculated.

Thus, the safe conclusion is that the generalised inverters approach would require the
smaller quantum volume of the two implementations due to the much smaller circuit depth
and subsequently reduced execution time compared to the rotational approach, as well as
lower the cumulative effective error due to hardware infidelities.

3.3 Quantum Walks in Superposition
This section presents a different approach to executing discrete-time quantum walks. The
novel idea examined in this thesis is to construct a quantum circuit which essentially
executes two steps of the quantum walk in superposition. This construct, named quantum-
quantum walk (QQW), uses multiple quantum coins to progress the evolution of a discrete-
time quantum walk, or in other terms, a multidimensional quantum coin. In the simplest
case, one can use a two-dimensional coin, whereas in the general case a d-dimensional coin
is needed.
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In order to present the logic behind this construct it is easier to start by discussing
the hierarchy of a circuit using two quantum coins, i.e., a two-coin QQW, in the simplest
two-dimensional case. In order to distinguish between the two coins, one is named the
walk control coin (WCC), represented by the operator CW , and the other entanglement
control coin (ECC), as operator CE. The main element of this hierarchy, and the one that
differentiates the quantum-quantum walk from other algorithms, is the fact that the WCC
is controlled by a superposition induced by the ECC. In other words, the two coins are
entangled in a special way. Each coin is a map to a two-dimensional Hilbert space, H2

and both are balanced Hadamard coins, represented by the familiar Hadamard operator,
H. Essentially, post-entanglement, the individual coins act as a four-dimensional coin,
denoted Cqq, which is a map in H2 ⊗ H2. The quantum-quantum coin in turn is used like
a quantum switch to operate the increment and decrement functions of the quantum walk,
as they were defined in Section 3.2.1.

The four-dimensional quantum-quantum walk coin, Cqq, can be expressed as

Cqq = (X ⊗ I) ·Hc · (X ⊗ I) ·Hc · (H ⊗ I), (3.25)

where H is the Hadamard operator with matrix representation given in equation (1.6), X
is the Pauli-X matrix, or a simple inverter gate, and Hc is a four-dimensional controlled
Hadamard operator, defined as

Hc = 1√
2



√
2 0 0 0

0
√

2 0 0
0 0 1 1
0 0 1 −1

 .

Carrying out the matrix expression, the QQW coin can be expressed as the operator

Cqq = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

This operation, essentially, takes a two-qubit state and puts it into an equal superposition
of all its possible states, i.e Cqq |00⟩ = 1

4 (|00⟩ + |01⟩ + |10⟩ + |11⟩).
The next step is to define the increment and decrement functions for the QQW. As

discussed in Section 3.2.1, the operator that describes these two functions for a simple
Hadamard quantum walk can be expressed via equation (1.7). Following a similar logic,
in the case of the QQW and since the coin is four-dimensional, i.e., it takes up two qubits
within the quantum circuit, the new shift operator, namely Sqq, can be defined as

Sqq = S− ⊗ |00⟩ ⟨00| + S+ ⊗ |01⟩ ⟨01| + S− ⊗ |10⟩ ⟨10| + S+ ⊗ |11⟩ ⟨11| . (3.26)
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Fig. 3.11 Two-coin quantum-quantum walk circuit for 1 iteration (coin flip).

where S+ is the Increment function which increases the quantum state by 1 and S−

is the Decrement function, which decreases the quantum state by 1. In other words,
S+ : |x⟩ → |x+ 1⟩ and S− : |x⟩ → |x− 1⟩, the same as in the simple QW case.

Finally, the quantum-quantum walk operator can now be defined following the same
logic as the simple quantum walk operator of equation (1.5):

Uqq = Sqq · (Cqq ⊗ I). (3.27)

The quantum circuit schematic that describes the one step of the quantum-quantum walk
is shown in Figure 3.11.

Quantum State Vector

For more clarity, this paragraph offers an example of the evolution of an arbitrary quantum
state, |x⟩, undergoing one step of the quantum-quantum walk. Assume a cycle graph with
eight quantum states, needing n = 3 qubits to be represented, or otherwise, a three-qubit
quantum register. The quantum coin Cqq is four-dimensional, i.e., it needs a two-qubit
register and is initialised in state |00⟩. The evolution of a QQW, defined by Uqq, applied on
a quantum system initialised on an arbitrary quantum state |x⟩ |00⟩ will have the following
effect

Uqq |x⟩ |00⟩ = Sqq · (I ⊗ Cqq) |x⟩ |00⟩

= Sqq ·
[
|x⟩ ⊗ 1

4 (|00⟩ + |01⟩ + |10⟩ + |11⟩)
]

= 1
4Sqq |x⟩ |00⟩ + 1

4Sqq |x⟩ |01⟩ + 1
4Sqq |x⟩ |10⟩ + 1

4Sqq |x⟩ |11⟩

= 1
4 |x− 1⟩ |00⟩ + 1

4 |x+ 1⟩ |01⟩ + 1
4 |x+ 1⟩ |10⟩ + 1

4 |x+ 1⟩ |11⟩

It is visible that after one flip of the four-dimensional coin, the particle initialised in
a quantum state |x⟩ will have undergone a transformation where it gets increased and
decreased twice, seemingly at the same time. Intuitively, one can treat the quantum-
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quantum walk as two normal Hadamard quantum walks running in a superposition. For
each coin flip the walker will propagate twice, once for each of the increment/decrement
circuit pairs. The effects of this can be better shown on the variance of the quantum-
quantum walk, as discussed later.

Quantum-Quantum Walk Algorithm

Algorithm 3 better showcases the philosophy behind the QQW.

Algorithm 3: Quantum-quantum walk algorithm
1 Initialisation. Initialise the quantum registers. The state register will be

initialised in the preferred quantum state, i.e |x⟩. The coin register will be
initialised in the usual basis state |00⟩.

2 Coin flip. Flip the coin, or otherwise, apply the transformation Cqq as defined in
equation (3.25).

3 Evolution. Evolve the particle’s position according to the operator Sqq, as defined
in equation (3.26). This completes the current step of the quantum-quantum
walk, expressed by the operator Uqq |x⟩ |00⟩ = Sqq · (Cqq ⊗ I) |x⟩ |00⟩.

4 Iteration. If t coin flips have occurred, move to step 5. This concludes the
quantum-quantum walk. Otherwise, go to step 2.

5 Measurement. Measure the quantum states register.

Experimental Variance and Circuit Runtime

Figure 3.12 shows the variance of a quantum-quantum walk compared with the simple
quantum walk. It is visible from the showcased figure that the QQW shows an increase in
the variance, i.e., the walker propagates further than in the simple quantum walk. This is
an expected result as, for each coin-flip, the walker will evolve twice (i.e., go on double the
distance).

Even though the above figure shows increase in the speed of a quantum walk via the
QQW construct, the major downside is the execution time. In order to better realise the
execution runtime of the constructs presented in this section, three main times of interest
are defined: (i) the coin-flip time, tc, i.e., the time it takes for the coin-flip (Hadamard
gate) to be executed; (ii) the increment time, tinc, i.e., the time it takes for the increment
subcircuit to be implemented; and (iii) the decrement time, tdcr, with obvious definition.

Thus, it is easy to realise that the execution time of one step of the simple quantum
walk will be:

tqw = tc + tinc + tdcr.

On the other hand, the execution time for the quantum-quantum walk can be calculated
as

tqqw = 2 × (tc + tinc + tdcr) = 2 × tqw, (3.28)
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Fig. 3.12 Variance of the two- and three-coin quantum-quantum walk, as compared to the
variance of the simple Hadamard walk and the theoretical variance for 39 coin flips.

as there are two coin executions, two increment and two decrement functions in the same
step. This relationship between QW and QQW intuitively makes sense as two quantum
walk circuits are running in sequential superposition.

In conclusion, even though the quantum-quantum walk shows an increase in the
variance of the simple quantum walk, it also takes twice as long to run. In other words,
the advantage given by the variance when considering a four-dimensional coin disappears
when considering the execution time. This collapses the quantum-quantum walk down
to the same complexity as running two steps of a single Hadamard quantum walk, as
shown in equation (3.28). Thus, it is safe to conclude that, via the quantum-quantum
walk construct presented in this section, there can be no major advantage gained over the
simple quantum walk.

Finally, this implementation can be extended to accommodate larger number of
quantum walks running in superposition by adding more quantum coins that control each
one. The implementation follows a natural extension of the schematic of Figure 3.11. The
advantages and disadvantages are again the ones described above, i.e., an increase in the
variance negated by the increase in the size of the circuit (or runtime). Figure 3.12 also
shows the variance for a quantum-quantum walk controlled by three quantum coins.

3.4 Discussion
As mentioned in the introduction, quantum walks can form the base for many algorithms
providing clear advantage, as comprehensively shown in Section 3.1. With the increasing
attention that areas like quantum machine learning receive from within the field of quantum
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computing, it is easy to spot the many advantages offered by quantum walks and the
reasons why this process leads to alluring real-world applications. Thus, the value of
research on quantum walks is evident.

Following the theoretical presentation of a discrete-time quantum walk in Section 1.2.1,
two approaches are used to implement it: (i) the generalised inverters [19], and (ii) the
rotational approach. The experiments show that using generalised inverters keeps the
implementation simple and the circuit shallow but requires an ancilla register. The number
of ancilla qubits increases linearly with the number of control qubits quickly leading to
a large workspace, limiting the capabilities of the experiments. The rotational approach
deals with this limitation by rendering the ancilla register obsolete, allowing a much larger
state space for the quantum walks. The disadvantage of the rotational approach is the
larger complexity of the resulting circuit.

It is evident that the two implementations of quantum walks offer opposite advantages
and disadvantages. Implementing a quantum walk with generalised inverters shows smaller
execution time and requires exponentially less gates as a function of the size of the state
space, or in other words, smaller circuit depth. On the other hand, the rotational circuit
requires less qubits to be used in the workspace, as there is no need for an ancilla register,
but the circuit is much deeper than the former approach.

The dependency of the operations between the qubits within the architectures does not
allow for any gates to be run in parallel, restricting the width of the circuit at each time
step. Thus, the runtime of the quantum circuit quickly surpasses the coherence time of
the qubits, leading to immensely noisy distributions. For very small state spaces (i.e., two
qubits) the distributions form closer to the theory with lower level of noise. This does not
hold for walks with a three-qubit state space or larger. The execution time of the circuit
with relation to the coherence time of the qubits greatly affects the resulting distribution
of the quantum walk.

Due to the stochastic nature of the noise, it is very difficult to draw safe conclusions
from the comparison of the two approaches on the quantum computer. However, one can
point out that since the rotational circuit is deeper, the cumulative error due to hardware
infidelities will be more extensive. Additionally, since the computation also takes longer
in the case of the rotational circuit, the active qubits have a higher chance to decohere.
Thus, it is safe to claim that the rotational circuit will be the noisier of the two.

It is noteworthy that, considering the state of the art, no optimal implementation
of quantum walks currently exists. The generalised inverters approach proposed by [19]
constitutes an efficient circuit. Other implementations might exist that could perhaps
prove to be more efficient and could be the subject of further comparison. Moreover, the
analysis and results presented in this chapter involve quantum walks on a discrete space.
Similar experiments could be undertaken for continuous-time or space quantum walks as,
in the end, any algorithm and the corresponding quantum circuit will be decomposed in a
sequence of universal quantum gates, which can then be examined with the methodology
and analysis presented in this chapter. Nevertheless, some interesting analysis could arise
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from examining the behaviour of continuous-space and/or time quantum walks and their
characteristics when implemented on NISQ machines.

Due to large presence of noise in the quantum machine, no firm conclusions can be
drawn regarding today’s quantum hardware. This chapter presents a resource theory and
compares two different implementations of quantum walks. Therefore, considering the
limitations and hardware constraints of NISQ machines, this analysis can assist in the
realisation of quantum walks on near-term quantum computers in an efficient way. For
example, knowing the levels of noise within a quantum computer can help in choosing a
more suitable implementation for executing quantum walks. The research finds that the
generalised inverters approach exhibits less error if the decomposition of the generalised
gates is not excessively long, making it more suitable for noisier machines. On the other
hand, the rotational approach appears to be the only option when quantum walks, or their
simulations, are executed on a state space that is too large to be executed on a quantum
computer or be simulated on a classical machine.

Furthermore, the methodology followed in this chapter can be extended to compare
any number of implementations of arbitrary quantum algorithms, including circuits
implementing a quantum Hamiltonian. To understand this, it is important to remember
that any algorithm or Hamiltonian, in order to be implemented on a digital (discrete)
quantum computer, will be decomposed in a sequence of quantum gates that can be carried
out on said quantum computer. The above methodology can then be used to compare the
end circuits.

Finally, an alternative construction that evolves quantum walks in superposition
is presented. This implementation shows an increase in the variance for each step of
the superposed quantum walk with the disadvantage of a larger execution time. More
specifically, one step of the quantum-quantum walk takes twice as long as one step of a
simple quantum walk, an expected result as the circuit is twice the size. Thus, it is evident
that no advantages in the performance of a quantum walk can be gained by superposing
multiple steps with a higher dimensional quantum coin, at least not with the configuration
presented within this chapter.

3.5 Future Work
The work done in this chapter outlines a coherent way to compare circuit approaches to
quantum walks using an in-depth theoretical and experimental analysis, as well as the
quantum volume. This can constitute a framework for further analysis, either between
other approaches to executing quantum walks or for finding suitable quantum circuits,
considering available quantum computers. This research can be used or further developed
in the future in order to obtain valuable information about the efficiency of circuit
implementations when designing more complex algorithms that are based on quantum
walk circuits (like, for example, in quantum machine learning as discussed above).

Furthermore, alternative configurations of quantum walk circuits or clever designs that
could lead to additional speed-ups are also some open areas of research. The example work
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done here could lead to further research on superposed quantum walks, quantum-quantum
walks or constructs that achieve quantum circuits running in parallel. Alas, such research
falls outside of the scope of this thesis, and thus no additional research is pursued here.



Chapter 4

Quantum Noise Modelling and
Simulations

It has been proven that arbitrarily long quantum computation is possible given constraints
on the error rates and the error locality [69, 3, 70]. Quantum noise is one of the main
characteristics of near-term (i.e., NISQ) devices and, so far, there are no existing quantum
computers that can operate noise-free, regardless of technology or architecture. Thus,
considering that limiting the noise within a QPU is a necessary step towards the goal of
commercial and universal quantum computation, detailed studies and characterisation of
said noise in quantum systems is valuable.

One method for mitigating quantum noise is through quantum error correction [3, 70–
79], which relies on knowing what the most likely error sources are. It has been found
that error correcting methods optimised for specific noise in a system can dramatically
outperform generic ones [80, 81]. Thus, identifying, characterising and simulating the
noise in quantum computers is important and can lead to much more efficient calibration
and error correction, which are necessary for large-scale quantum computing [82].

The most common error model is a depolarising Pauli channel. Effectively, a Pauli
operator is chosen to be applied to operations that have a probability to produce an
erroneous result [73, 76, 83]. This unital channel (see Definition 2.4) is generally a
good approximation of most error processes that lead to a maximally mixed noisy state.
Alternative depolarising channels can use Clifford operations to effectively approximate
quantum errors [84].

A large portion of error also derives from non-unital interactions between the quantum
system and the environment. Noise of this type causes decoherence during the computation
in various forms. The most common one is thermal exchange, i.e., the exchange of thermal
energy between the quantum system (for example, the QPU) and its environment, which
plays a central role in the noise modelling within this thesis. The non-unital nature of
such quantum noise makes it difficult to simulate it with Pauli or Clifford operations,
leading to a more complicated approach. Other forms of decoherence, like electromagnetic
or gravitational, are not considered within this work. It is nevertheless believed that their
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study can also prove valuable to understanding the effects of noise within a quantum
machine.

This chapter provides the theoretical foundation and a detailed analysis of a new model
that can be used to approximate the noise during the evolution in a quantum computer.
First of all, a comprehensive presentation of the relevant sources of error in a quantum
computer is provided. Next, the thesis introduces a set of parameters that express the
levels of noise within the quantum computer and are used by the models during simulations.
Section 4.3 then offers an introduction, analysis and coherent review of the new model,
before showcasing the experiments with a real quantum computer in Section 4.4. Finally,
a discussion of the results and possible future extensions to the work is offered.

The work outlined in this chapter has been published in Physical Review A in December
2021 [85].

4.1 Sources of Noise within NISQ Machines
As described in Chapter 2, within the NISQ era, quantum noise is a central obstacle in
the progress of quantum computation, currently preventing the construction of large-scale
quantum computers and the execution of long quantum computations. Noise mainly
occurs either due to infidelities of the quantum hardware, or otherwise, faults of the
operations that take place during the computation (i.e., quantum gates, measurement
or state preparation devices), or due to unwanted interactions of the system with its
environment, a process that is commonly called decoherence (for more details on the
mechanism of decoherence see Section 2.1.4). There exist various forms of decoherence, for
example thermal which occurs, as mentioned above, due to the exchange of thermal energy
between the system and the environment, electromagnetic which is caused by interactions
of the qubits with an electromagnetic field, or gravitational decoherence [86–89]. The
latter form of decoherence is mostly theoretical and can occur due to time dilation caused
by quantum particles being in different locations of spacetime [90].

This thesis is mainly concerned with three sources of error: (i) hardware and control
infidelities, (ii) decoherence in the form of thermal exchange and (iii) dephasing of the
qubits within the QPU. The first source of error refers to noise that arises in the form
of hardware errors during the execution of a quantum circuit. They are often called
control infidelities as they appear during operations that attempt to control the quantum
computation. This type of noise affects operations that target a qubit (or pair of qubits)
aiming to control and/or perform various actions on the qubit(s). The thesis follows a
simple categorisation of the type of hardware infidelities according to which part of the
hardware they originiate from or which operation they affect:

• Initialisation errors. These are also known as state preparation errors and refer
to the failure of the control hardware to initialise a qubit (or a qubit register) on a
desired state.
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• Measurement errors. Also known as readout errors, they refer to the erroneous
measurement of the state of a qubit by the readout apparatus at the end of the
computation.

• Qubit operation (gate) errors. These are errors induced by infidelities of the
control operations that constitute a quantum gate. They can be further categorised
according to the type of gate to (i) single-qubit errors that correspond to gates
applied on a single qubit (for example Hadamard or Pauli-X), and (ii) two-qubit
errors, or errors that occur during the execution of two-qubit operations (like a
controlled-inverter, or CNOT).

The hardware infidelities are a form of coherent error, i.e., in theory, they do not
induce decoherence during the execution of the quantum circuit, but they simply make
undesired changes to the state of the qubit. They are purely systematic and represent
the most simple type of noise from a modelling perspective. Nevertheless, one might
connect hardware infidelities with the other noise groups. For example, one might argue
that decoherence also occurs due to hardware infidelities, as current technology fails to
isolate the quantum processor from the environment, or that electromagnetic noise also
identifies a part of its source to the electrical components of the machine (including gates).
That said, this thesis considers the infidelities of quantum hardware as a distinct source of
coherent noise due to simplicity and the advantages such a view offers on the efficiency of
modelling and simulating the noise in quantum computers.

The second form of error originates from interactions between the quantum system
(i.e., the QPU in this case) and its environment. Such interactions induce decoherence
during the evolution of the quantum circuit (a more comprehensive review of the idea of
decoherence is provided in Section 2.1.4). As aforementioned, this thesis focuses on the
exchange of thermal energy between QPU and environment as spontaneous emission or
absorption of photons. This exchange occurs with varying intensity as time progresses
during the quantum computation (more information on the thermal decoherence is given
in Section 2.1.6).

The last type of noise also represents a different form of decoherence, one that, over
time, drives the quantum system towards classical behaviour. This effect takes place as a
loss of phase of the qubit as time progresses during the evolution of the quantum circuit in
a similar manner to thermal decoherence. Dephasing is a more complex concept than the
thermal exchange induced decoherence from a theoretical perspective, but both share a
similar modelling approach, as will be shown in the following sections. Further information
on the dephasing of the qubits can be found in Section 2.1.7.

A more detailed analysis of the three sources of noise this thesis works with, as well as
their mathematical description, is provided in the following sections.
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Noise Source Type of Parameter Number of Parameters

Hardware Infidelities Error Rates r +m+ s

Thermal Decoherence Time T1 n

Dephasing Time T2 n

Table 4.1 Type and number of parameters for each of the three error groups; n is the
number of qubits in the system, m is the number of qubits that are measured, s is the
number of qubits that undergo state preparation and r is the number of distinct types of
gates implemented in the architecture, each considered once per qubit or pair of qubits.

4.2 Quantum Noise Parameters
In order to better present the main ideas of the quantum noise models engineered within
this chapter, it is important to first discuss an important functionality of the noise models.
For the simulations to work and provide an accurate approximation of the quantum
evolution, it is necessary to obtain an indication of the levels of noise within the quantum
computer during the execution of the circuit. To that end, the engineered models make use
of a set of quantum noise parameters. These parameters are usually given by experimental
calibration of the quantum computer. There are a few techniques used to calibrate the
error rates and decoherence times of quantum computers, like cross-entropy benchmarking
[91, 92], process tomography [93–95] or randomised benchmarking [96–103]. Randomised
benchmarking specifically is the most used and most prominent technique, with a few
recent alterations like cycle benchmarking [104] or dihedral benchmarking [105].

For the hardware and control infidelities, the noise parameters come in the form of
operation error rates: they represent the probability that an operation, be it a gate,
measurement or state preparation, when applied in the quantum circuit, produces an
erroneous outcome. Each individual type of gates implemented within the architecture
(Pauli gates, Clifford gates, CNOT, etc.) is associated with a specific error rate. Additionally,
each type of gate has different error rates for each qubit(s) that they are applied on.
Similarly, the state preparation and measurement noise parameters are a selection of error
rates that represent the probability that the preparation of the initial quantum state
or the outcome of a measurement will be erroneous. Each qubit in the system yields
different error rates when prepared or measured. Finally, for the thermal decoherence,
the parameters are represented by the thermal decoherence times per qubit q, i.e., T1(q)
and, similarly, the dephasing noise parameters are the times T2(q). As explained in the
previous section, decoherence and dephasing occur with varying intensity over time as the
computation progress. The T1 and T2 times essentially represent the time it takes for each
qubit within the QPU to decohere or dephase, respectively.

Table 4.1 shows the type of parameters with respect to each quantum noise channel, as
well as how many parameters are associated with each error source. Finally, it is important
to mention here that for the remainder of the chapter, it is assumed that the calibrated
quantum noise parameters remain invariable during the execution of the quantum circuit.
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4.3 The Unified Noise Model
This section aims to introduce and analyse a comprehensive model for approximating
the noisy evolution of a circuit within NISQ computers. The experiments are focused on
four of the IBMQ computers, but the engineered models can be applied on any quantum
computer. The framework for modelling the quantum noise is guided by the sources of
error identified in Section 4.1, which are subsequently categorised in three error groups:
(i) hardware infidelities in the form of depolarising Pauli noise, (ii) state preparation and
measurement (SPAM) errors and (iii) decoherence in the form of thermal relaxation and
dephasing. To avoid confusion, it is important to understand that there is no one-to-one
correspondence between these three error groups and the sources of error discussed in
Section 4.1. The two sets represent different categorisation of the noise: the sources of
noise show where the quantum noise comes from whereas the error groups arrange the
noise in a sensible way for modelling, as will be made clear later on.

Each error group is modelled independently from the other two. In order to form
a mathematical and mechanical foundation for the effect of each error group within its
respective model, this work uses quantum channels (more on quantum channels can be
found in Section 2.1.8). The quantum channels themselves do not represent a novel idea
but are well-known from the bibliography. The main contribution of this section is the
specific combination, or unification of the channels in one single model, as well as the
implementation, experiments and results. The three error groups, along with the respective
channels used for their modelling, are discussed in the following subsections.

4.3.1 Error Group 1: Modelling Hardware and Control Infideli-
ties

The first error group contains the errors that stem from hardware infidelities during
quantum operations (i.e., quantum gates). The channel used to model this error group is
known as a symmetric depolarising channel, a term which within this thesis will be used
interchangeably with the terms gate infidelities, or simply, depolarising channel. These
errors take the form of either a phase-flip (i.e., an inversion of the phase of the qubit during
the computation) or a bit-flip (i.e., an inversion of the state of the qubit), or both. The
corresponding quantum channel essentially simulates the bit-flip and phase-flip errors due
to gate infidelities within the circuit as a depolarising channel [30, 106–108]. It is assumed
that an error of this group occurs with probability p1, and the bit-flip and phase-flip
errors are defined through the Pauli-X and Z operations. In the case that both a bit-
and phase-flip happen, the operation is defined through Pauli-Y . All three types of Pauli
errors have the same probability of occurring. The depolarising channel can be represented
by the following operators (an introduction to Kraus operators and the operator-sum
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representation is provided in Section 2.1.3):

KD0 =
√

1 − p1I,

KD1 =
√
p1

3 X,

KD2 =
√
p1

3 Z,

KD3 =
√
p1

3 Y.

(4.1)

The effect of the depolarising channel on a quantum system can be expressed via the
operator-sum representation, as

ρ 7→ D(ρ) =
3∑

i=0
KDi

ρK†
Di

=(1 − 4p1
3

)
ρ00 − 2p1

3 ρ11
(
1 − 2p1

3

)
ρ01(

1 − 2p1
3

)
ρ10

(
1 − 4p1

3

)
ρ11 − 2p1

3 ρ00



where ρ =
ρ00 ρ01

ρ10 ρ11

 is the density matrix for a qubit. It is noteworthy that, as

KDi
= K†

Di
, one can do the relative replacement in the above representation.

4.3.2 Error Group 2: Modelling State Preparation and Measure-
ment Errors

The second error group contains the errors that occur during the measurement (otherwise
readout errors) at the end of the computation and the state preparation wherever it takes
place (at the start or any point during the computation). These two sources of noise
have been grouped together and are separate from the other hardware infidelities as their
effects are quite similar and simpler than the effects of gate infidelities on the quantum
computation.

The channel that models this error group is essentially a simple Pauli-X error. Thus,
the state preparation and measurement (SPAM) quantum channel for the measurement
errors can be defined via the following operators

KM0 =
√

1 − p2I,

KM1 = √
p2X

(4.2)

where p2 is the probability that the measurement is incorrect.
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The effect of the SPAM channel for measurement errors can be expressed through the
density matrix, ρ, as

ρ 7→ S(ρ) = KM0ρKM0 +KM1ρKM1 =(1 − p2)ρ00 − p2ρ11 (1 − p2)ρ01 − p2ρ10

(1 − p2)ρ10 − p2ρ01 (1 − p2)ρ11 − p2ρ00

 .
In the case that state preparation takes place in the computation, the error channel (i.e.,
ρ 7→ S ′(ρ)) is of similar form to the measurement case, with the qubit failing to be prepared
at the desired state, resulting in the inverted state by X with probability p′

2.

4.3.3 Error Group 3: Modelling Thermal Decoherence and De-
phasing

The third error group models the interaction between the physical qubits and the environ-
ment. There are two types of noise within this error group: (i) the thermal decoherence
that occurs over time in the form of excitation/relaxation, or otherwise, the emission or
absorption of a photon by the quantum system (here the QPU), and (ii) the dephasing of
the qubits over time.

Thermal decoherence, as examined in Section 2.1.6 is a non-unital (i.e., irreversible)
process that describes the thermalisation of the qubit spins towards an equilibrium state
at the temperature of their environment. This process involves the exchange of energy
between the QPU and the environment, which drives the qubits either towards the ground
state, |0⟩ (relaxation or de-excitation or reset to |0⟩, which corresponds to photon emission)
or the excited state, |1⟩ (excitation or reset to |1⟩, which corresponds to photon absorption).

On the other hand, dephasing, as introduced in Section 2.1.7, refers to the ways in
which the coherence of the qubits within the QPU decays over time during the execution
of the quantum circuit. This mechanism, which can also be characterised as the absolute
form of decoherence, describes the transition of the quantum system towards classical
behaviour.

In order to engineer a quantum channel that models these two processes, one needs to
take into account:

• the average execution time of each type of quantum gates g implemented, denoted
Tg;

• the time it takes for each qubit q to relax and dephase, commonly denoted T1(q)
and T2(q) respectively, with q ∈ [0, n− 1], where n represents the number of qubits
in the quantum computer.

In other words, T1(q) describes an evolution towards equilibrium as a perturbation orthog-
onal to the quantisation axis (x, y-component of the Bloch vector) and T2(q) describes
a slow perturbation along the quantisation axis (z-component of the Bloch vector), or
otherwise, the behaviour of the off diagonal elements over time for each qubit. These
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two times follow a well-known relation expressed as T2(q) ≤ 2T1(q). For the purposes of
creating a program that replicates the above behaviour, there already exists a function
implementing this error group as a quantum channel within Qiskit1 and further details of
said implementation can also be found in [109].

Considering the thermal decoherence and dephasing times T1(q) and T2(q), as well as
the (known) gate execution times Tg, the probability for each qubit q to decohere and
dephase after a gate of type g is applied to it can be defined as pT1(q) = e−Tg/T1(q) and
pT2(q) = e−Tg/T2(q) respectively. Then, the probability for a qubit to reset to an equilibrium
state can be defined as

preset(q) = 1 − pT1(q). (4.3)

Taking into account the thermal decoherence transition picture as described earlier
(excitation and de-excitation), there is a specific way to express the tendency of the
quantum system to reach each of the two equilibrium states (i.e., the ground or the excited
state). This is defined in the form of a weight that dictates towards which of the two
equilibrium states (|0⟩ or |1⟩) this noise (or reset error) drives each qubit, q, and can be
calculated as [109, 110]

we(q) = 1
1 + e2hfq/kBΘ , (4.4)

where Θ is the QPU temperature, h is Planck’s constant, kB is Boltzmann’s constant and
fq is the frequency of the qubit. In essence, the qubit frequency is the difference in energy
between the ground and excited states. This frequency is crucial from a qubit engineering
perspective, for creating pulses which enact particular quantum operations on the qubit –
a topic that falls outside the context of this thesis.

Important here is that the model assumes that the decoherence and dephasing noise
occurs for each qubit in the system independently. Thus, for better presentation of the
equations hence forth, it is preferred to selectively omit the presence of the qubit identifier,
q (i.e., preset instead of preset(q), etc.). Thus, knowing the time parameters T1, T2 and
Tg, the weight we as in equation (4.4) and the probability of a reset to an equilibrium
state preset as in equation (4.3), the following forms of noise can be identified for the case
T2 ≤ T1:

• Dephasing: a phase-flip which occurs with probability pZ = (1−preset)(1−pT2p
−1
T1 )/2.

• Reset to |0⟩: this represents thermal relaxation (photon emission), or a jump to
the ground state |0⟩, and occurs with probability preset0 = (1 − we)preset.

• Reset to |1⟩: this represents a thermal excitation (photon absorption), or a jump
to the excited state |1⟩, and occurs with probability preset1 = wepreset.

• Identity: this signifies that no noise occurs and nothing happens to the state,
or in quantum mechanical terms, the identity, I, is applied with probability pI =
1 − pZ − preset0 − preset1 .

1Thermal relaxation and dephasing channel in Qiskit: https://qiskit.org/documentation/stubs/
qiskit.providers.aer.noise.thermal_relaxation_error.html

https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html
https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html
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The operators for this case follow simply from the forms of noise described above as

KI = √
pII,

KZ = √
pZZ,

Kreset0 = √
preset0 |0⟩ ⟨0| ,

Kreset1 = √
preset1 |1⟩ ⟨1| .

(4.5)

and the operator-sum representation describing the quantum channel can be expressed as

ρ 7→ N (ρ) =
∑

k∈{I,Z,reset0,reset1}
KkρK

†
k.

This far, the temperature, Θ, of the QPU has been taken into consideration as in
equation (4.4). In general, according to IBMQ, the mixing chamber within which the
QPU resides at the lowest part of the dilution refrigerator brings the quantum processor
and associated components down to a temperature of Θ ≈ 15 mK. Thus, knowing the
temperature one can calculate the weight we from the aforementioned equation. As an
example, considering the average frequency of the qubits within the IBMQx15 Melbourne
machine calculated at f q ≈ 4.9801 × 109Hz as of the time of the experiments, the average
weight can be calculated from equation (4.4) as we ≈ 1.44532 × 10−14. Thus, an excitation
occurring with probability preset1 = we(1 − pT1) can be easily considered a rare event and,
subsequently, can be omitted from the model, a proof that reiterates the theoretical point
in Section 2.1.6. Therefore, it can be effectively assumed that the reset error takes the
form of only reset to the ground state, |0⟩, or in other words, that the device temperature
is Θ = 0. For simplicity in the following analysis, thermal decoherence will be referred to
simply as (thermal) relaxation.

Considering the above, the quantum channel can now be simplified by disregarding
spontaneous excitation. If T2 ≤ T1 for every qubit, then the relaxation and dephasing
noise can be expressed as a mixed reset and unital quantum channel [109]. Assuming a
device temperature Θ = 0, the following forms of noise can be identified:

• Dephasing: a phase-flip which occurs with probability pZ = (1−preset)(1−pT2p
−1
T1 )/2.

• Identity: the identity, I, occurs with probability pI = 1 − pZ − preset.

• Reset to |0⟩: a jump to the ground state occurring with probability preset = 1 − pT1 .

Having omitted the thermal excitation, the remaining relaxation and dephasing channel
can be represented with the following operators:

KI = √
pII,

KZ = √
pZZ,

Kreset = √
preset |0⟩ ⟨0| .

(4.6)
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Thus the effect of the relaxation channel when T2(q) ≤ T1(q) can be expressed via its
operator-sum representation as

ρ 7→ N (ρ) =
∑

k∈{I,Z,reset}
KkρK

†
k =

2pIρ00−2pZρ00−ipresetρ01
2

2pIρ01+2pZρ01+presetρ01
2

2pIρ10+2pZρ10+presetρ01
2

2pIρ11−2pZρ11+ipresetρ01
2

 .
If 2T1 ≥ T2 > T1 the Qiskit model implementation uses a Choi-matrix representation

[111, 112]. In general, a Choi matrix is defined as

C =
∑
i,j

|i⟩ ⟨j| ⊗ E (|i⟩ ⟨j|) ,

with E(·) an arbitrary quantum channel. For a single-qubit case it stands that i, j ∈ {0, 1}.
The Choi matrix for the thermal relaxation and dephasing model can be written as [109]

C =


1 0 0 pT2

0 0 0 0
0 0 preset 0
pT2 0 0 1 − preset

 (4.7)

with the various probabilities as defined above. The evolution of the density matrix ρ with
respect to the Choi matrix C can be described as

ρ 7→ N (ρ) = tr1
[
C(ρT ⊗ I)

]
,

where tr1 is the trace over the main system in which the density matrix ρ resides.
The transition from Choi-matrix to operator-sum representation can be realised via

the spectral theorem as
C =

r∑
j=1

|vj⟩ ⟨vj|

for vectors v1, . . . , vr and r = rank(C). It is then a matter of deducing the Kraus operators
to be K1, . . . , Kr such that vec(Kj) = vj, for j ∈ {1, . . . , r}, where vec(·) represents the
vectorisation function for a matrix, i.e., a linear transformation which converts the matrix
into a column vector. If the Choi matrix is Hermitian, then, given an isomorphism Φ from
Cn2 to Cn×n with column-major order mapping, i.e., Φ(x)i,j = (xi+n(j−1)), i, j = 1 . . . n
and x ∈ Cn2 , the Kraus operators can be expressed as

Kλ =
√
λΦ(vλ),

where λ are the eigenvalues and vλ the eigenvectors of C.
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If the Choi matrix is not Hermitian, or if its eigenvalues are negative, then singular
value decomposition (SVD) is applied. Let the SVD of the Choi matrix be

C = UΣV †,

where Σ = diag(σ1, . . . , σn), σi ≥ 0, U = (u1| . . . |un) the left singular vectors and
V = (v1| . . . |vn) the right singular vectors. This leads to two sets of Kraus operators, one
for the left and one for the right map, which can be expressed as

K l
i = √

σiΦ(ui)
Kr

i = √
σiΦ(vi).

If the left and right Kraus operators are not equal, i.e. ui ̸= vi for some i ∈ {1, 2, . . . , n},
then they do not represent a completely positive trace preserving map, triggering an error
in the thermal relaxation model.

As a final remark, it is noteworthy that, in general, the thermal decoherence (or
relaxation, if simplified as presented above) and dephasing model does not account for
the overall effects of decoherence and dephasing during idle times of the qubits in the
execution. The main reason is that these effects are attributed mainly to electromagnetic
interference and cross-talk between the qubits. What the present model accounts for is
only thermal decoherence and dephasing on idle qubits over the duration of the execution
on the quantum computer. More specifically, as the execution time of every quantum gate
is known (i.e., Tg) and used as a parameter within the model itself, it is relatively easy to
compute the total execution time of the quantum circuit after every operation takes place.
Thus, when the probability of decoherence or dephasing of a qubit is calculated by the
channel following the analysis presented in this section, the time elapsed from the start
of the execution and up to the current point in the circuit is taken into account by the
implemented function.

4.3.4 Unifying the Quantum Channels

After the above detailed expression of the individual quantum channels that model each
source of noise, the next step is to define a noise model that combines these quantum
channels in a single construct. This new model is dubbed the unified noise model (UNM),
as, aiming to approximate the noise within the quantum computer as closely as possible,
it combines (or unifies) the three distinct and independent error groups. This model is,
therefore, able to simulate the evolution of a quantum system within a NISQ machine
while considering all the aforementioned sources of error. Furthermore, as shown by the
experiments outlined in Section 4.4, the unified model is able to recreate the behaviour of
a quantum computer better than other state-of-the-art models.

The main characteristic of the UNM is its architecture awareness. The model is
implemented with the ability to take into account the connectivity of the qubits within
the architectural graph of the computer, as well as the specific properties of the qubits



78 Quantum Noise Modelling and Simulations

(i.e., decoherence time) and the gates (i.e., execution time, error rates) that participate
in the system in the form of noise parameters, as defined in Section 4.2. In other words,
one can encode within the UNM essential knowledge about the position of the qubits in
relation to each other and the levels of noise during the execution of a quantum circuit.

Constructing the Depolarising Model

The logic followed to construct the depolarising model defined earlier in this chapter is pretty
straightforward. In general, a circuit executed directly on a quantum computer includes
either single- or two-qubit gates. Larger constructs like, for example, the three-qubit Toffoli
gate, might be supported within Qiskit, but are implemented as a decomposition of the
larger gate to smaller, single- or two-qubit gates. Considering this, a depolarising model
that can be applied to any sort of gate within the circuit can be constructed according to
the following rules:

1. Single-qubit errors occur after a single-qubit gate in compliance with the single-qubit
error rates calibrated at the time of the experiment on the real quantum computer.
In other words, after every single-qubit gate the depolarising channel is applied and
induces an error according to the rules of error group 1.

2. Two-qubit errors occur after a two-qubit gate according to the two-qubit error rates,
calibrated along with the single-qubit error rates. Like for the single-qubit gates, after
a two-qubit gate is applied the depolarising channel follows, introducing quantum
noise according to the rules of error group 1, but extended to a 4 × 4 operator
dimensionality. Here, in the context of an architecture-aware model, the knowledge
of the qubit connectivity within the QPU is encoded within the model. This means
that the model “knows” which qubits form pairs, as well as the error rates between
the pairs.

Constructing the SPAM Model

This model is essentially a simplified version of the depolarising model. Essentially, if a
state preparation occurs at any point during the computation, it is followed by the SPAM
channel modelling state preparation errors. Likewise, the SPAM channel is applied before
the measurement, modelling the readout errors. The likelihood of each respective error is
defined by the respective error rates per qubit, calibrated at the time of the experiment.

It is important to emphasise a bit further on the main idea behind separating the
state preparation and measurement operations from the rest of the quantum circuit. On
IBMQ, the state of a qubit (or, in more general terms, a qubit register) is prepared by
injecting the standard initial state |0⟩ to the qubit (or |0⊗n⟩ for all the n-qubits in the
register). Of course, arbitrary quantum computations might start with a different initial
state, which would require alternative operations for its preparation. As a simple example,
consider a quantum walk on four qubits initialised on state |0110⟩ = |6⟩. Thus, it appears
to be a logical decision within the framework for modelling adopted during this research,



4.3 The Unified Noise Model 79

that the operations preparing the qubits (or quantum registers) should not be part of
the main body of the quantum circuit that executes the algorithm. Similarly, the reason
for choosing measurement as a separate quantum operation is self-explanatory. Finally,
grouping the two operations together in the same quantum channel, and equivalently, the
same model, comes naturally, as is evident from the above, both processes are described
and modelled in the same way.

Constructing the Relaxation and Dephasing Model

Following the above trend of architecture awareness, it is essential for the relaxation and
dephasing times to be considered for each individual qubit that participates in the circuit.
The thermal relaxation and dephasing model can be constructed according to the following
rules:

1. Incorporate a function that introduces thermal relaxation to each of the qubits in
the quantum system. This is implemented after each gate is applied and occurs
according to the relaxation time of each qubit in the system, as well as the duration
of each type of quantum gate within the system and the overall duration of the
computation up to this point.

2. Incorporate a function that introduces dephasing in the quantum circuit in a similar
manner as the thermal relaxation.

Constructing the Unified Noise Model

Now that there is a clear framework that allows the creation of the individual noise
models from their respective quantum channels, the unified quantum noise model can
be constructed as the combination of the three individual noise models. The application
of every quantum channel is independent and their combination is simply computed by
composing the error operators with the circuit gates. In the simplest case of an one-qubit
system, assuming an arbitrary number t of unitary, single-qubit quantum gates Ut, and
an initial quantum state ρ0, the effect of the unified noise model on the evolution can be
expressed as

V = M · S ·
∏

t

(
N · D · Ut

)
· N · S ′ · P (ρ0) (4.8)

where Ut(ρ) = UtρU
†
t , D, S, S ′ and N are the depolarising, measurement, state preparation,

and relaxation and dephasing channels respectively, M is a measurement superoperator
and P is a state preparation superoperator. This definition can be readily expanded to
account for higher dimensional operators (e.g., for two-qubit operations) on larger quantum
circuits. Figure 4.1 visualises the unified quantum noise model for the single-qubit case.

Finally, it is noteworthy how the model treats single- and two-qubit gates differently
when the depolarising and relaxation and dephasing channels are applied. After each gate
in the circuit, the two channels occur independently of each other and can be combined by
composition. Figure 4.2 visualises the effect of the channels on each type of gate. More
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Fig. 4.1 The unified quantum noise model on a single-qubit circuit. The SPAM model
is applied at the start, after the state preparation (if that occurs) and at the end before
the measurement. The depolarising channel (DC) is applied after every gate during the
evolution of the circuit. The relaxation and dephasing channel (TRC) is applied after
every gate and after the depolarising channel.

(a) Single-qubit gate. (b) Two-qubit gate.

Fig. 4.2 (a) Application of depolarising (DC) and relaxation and dephasing (TRC) channels
on a single-qubit gate. (b) Application of the two channels on a two-qubit gate; |ctrl⟩ and
|tgt⟩ are control and target qubits; the channels are applied independently on each qubit
and I is the identity, which is considered a virtual gate with zero execution time.

specifically, in the two-qubit gate, it can be observed that only the target qubit is affected
by the depolarising channel. This happens as, within the depolarising part of the UNM,
the part of the operation that has a chance to go wrong is the “state change”. In other
words, the control qubit acts just as a driver of the quantum gate, and thus it is assumed
that the gate has no effect on its state, either willingly or through the effects of noise.

4.4 Simulating the Noisy Behaviour of NISQ Ma-
chines

This section showcases the various experiments and results from the simulation of the
noise within some of the IBMQ quantum computers. An introduction to the machines
themselves and the architecture of their QPUs can be found in Section 2.2.2. The unified
quantum noise model and associated methods are implemented using Python and the
circuits are simulated using the IBMQ Qiskit simulators [63]. Of course, this does not
induce any difficulties in applying the model in different architectures that use QASM
or QASM-type implementation for the low level quantum circuits. In other words, the
noise model is not limited to modelling the IBMQ computers. Its architecture awareness
and low-level circuit approach allows for it to be easily attached on any QASM-based
implementation. The code is available on GitHub [113].
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Preliminary Methods

Before moving on to showcasing the experiments, it is necessary to discuss some preliminary
methods that assist in the experimental process and interpreting the results. First of all,
the discrete-time and space quantum walk has been chosen as a method to carry out the
experiments on the quantum computer, as introduced in Section 1.2.1. There are two
main reasons that led to this choice: (i) the predictable behaviour of this algorithm that
derives from the modularity property (see Definition 1.2), and (ii) the susceptibility of
the quantum walk to noise and the fact that the effects of the noise are easily visible
through the violation of the modularity property. For the implementation of the quantum
walk circuit, the gate-efficient approach that uses generalised inverters is utilised, as was
analysed in Section 3.2.1. The number of gates in the aforementioned quantum circuit
increases with the size of the circuit, N , as O(log2 N), proven through equation (3.18).

Moreover, in order to carry out a quantitative analysis of the noisy behaviour of the
quantum machine and test the performance of the models (UNM or other models it is
compared to), it is necessary to use a metric that is able to compare the results of the
simulated noisy evolution and the execution on the quantum computer. For this purpose,
the Hellinger distance is used, defined as follows [114].

Definition 4.1 (Hellinger distance). For probability distributions P = (p1, . . . , pk), Q =
(q1, . . . , qk) and k finite or countable, the Hellinger distance between them is defined as

h(P,Q) = 1√
2

√√√√ k∑
i=1

(√pi − √
qi)2. (4.9)

The Hellinger distance is a metric satisfying the triangle inequality. It takes values
between 0 and 1 (i.e. h(P,Q) ∈ [0, 1]) with 0 meaning that the two distributions are
equal. On the other hand, a Hellinger distance of 1 would indicate the maximum possible
distance between the two distributions, which could occur when, for example, they have
disjoint support. In other words, the maximum Hellinger distance can be achieved when
P assigns probability zero to every set to which Q assigns a positive probability, and vice
versa. Additionally, the Hellinger distance is easy to compute, easy to read and it does
not depend on the probability distributions having the same support. The last property
is particularly useful since in many ideal output distributions of quantum circuits the
probability mass is concentrated on a few states.

The Hellinger distance is derived from a family of statistical distances called the
f -divergence that can calculate the distance between probability distributions. Other
metrics do exist that could be used in this context, for example the Kullback–Leibler
divergence or the total variation distance. Nevertheless, the Hellinger distance is the one
preferred as the metric of the distance between two probability distributions for the rest
of this thesis.

Finally, as described in Section 4.2, there is a number of parameters corresponding to
each of the error groups simulated. In order for the architecture-awareness of the UNM to
work, it is necessary to take into account the individual error rates and decoherence times
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1-qubit Gate Errors 2-qubit Gate Errors Measurement Errors T1 (µs) T2 (µs)
11.68 × 10−4 3.17 × 10−2 7.61 × 10−2 56.15 56.01

Table 4.2 Average noise parameters for all the qubits of the IBMQx15 Melbourne machine
used on the date of the experiments. 1qb Errors are the single-qubit gate errors, 2qb Errors
the two-qubit gate errors, Meas. Errors the readout errors and T1 and T2 the average
relaxation and dephasing times of all 15 qubits.

for each qubit participating in the quantum circuit, as well as for each pair of qubits. In
other words, it is essential for the UNM to “know” the connectivity of the qubits within
the QPU. Thus, the architectural graph (see Definition 2.5) of each QPU is given to the
UNM at the start of the simulation. Furthermore, the error parameters that describe the
error rates, as well as the decoherence and dephasing times, are provided to the UNM
prior to the simulation. Table 4.2 shows the average for each category of error rates used
during the modelling of the quantum noise, calculated on the date of the experiments.

Experimental Methodology

Having made a well-informed decision on the preliminary methods and metrics necessary
for the following analysis, this section presents the experimental methodology. For both
the experiments and the simulations trying to approximate their evolution, it is deemed
that only one step of the quantum walk (i.e., one coin-flip) will be implemented, as the
previous work done in Section 3.2.3 (published [61]) makes it clear that this duration
is satisfactory both for errors to take place and for the behaviour of the quantum walk
to evolve in a predictable manner (i.e., see Figure 3.8). In general, the quantum walks
are initialised on the state |0⊗n⟩, where n = logN is the number of qubits necessary to
represent the size of the state space, N , of the walk. It is evident that, since the state of the
system is initialised on |0⟩, there will be no need for state preparation. This simplifies the
experimental methodology and lowers the complexity of the models for the experiments.

The experimental methodology consists of 100,000 runs of the quantum walk, with the
configurations described above, on the quantum computer and as a simulation. At the
time of the experiments, the IBMQ systems had a reduced capacity on the number of
circuit iterations within the machines (capped at 8,000). Thus, the circuit runs are broken
down to 20 batches of 5,000 iterations each. The end result is simply the cumulative
distribution arising from the individual results of each batch of iterations.

In order to better identify the performance of the UNM, an experimental evaluation
follows of four additional noise models, with the simulations treated in the same way, i.e.,
try to approximate the same quantum walk experiment, with the same initial configuration
and duration as the UNM. A brief introduction of the four models is shown below:

• QiskitCM. This is the most complex of the four noise models as it implements
a simple combination of three sources of noise: a depolarising error modelling the
gate/control and measurement infidelities and a thermal relaxation and dephasing
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error modelling decoherence and dephasing. The QiskitCM model is implemented
within Qiskit2.

• DSPAM. A simpler version of the UNM that includes the depolarising model for
the gate infidelities and the SPAM model for the measurement and state preparation
errors. In other words, it is the UNM without thermal relaxation and dephasing.

• TRM. The opposite of the DSPAM model, the TRM is a standalone thermal
relaxation and dephasing noise model implemented within Qiskit that follows the
main principles of Error Group 3 (Section 4.3.3). This model is also implemented
within Qiskit.

• SDM. A simple depolarising model that is not architecture-aware, i.e., it does
not take into account the qubit connectivity within the QPU. This model is also
implemented within Qiskit, along with TRM and QiskitCM.

The QiskitCM model is clearly the more complex of the IBMQ noise simulators and
shares similarities with the UNM on the way it computes the error. On the other hand,
this model does not take into account the noise parameters for each qubit separately, but
calculates and utilises their averages, a fact that is reflected through a larger deviation
from the quantum computer distribution than the UNM (see Table 5.4). The DSPAM
and TRM models are, essentially, a separate and simple implementation of Error Groups 1
and 2, respectively. Finally, the SDM model is just a simple depolarising model that is
completely architecture-unaware, i.e., it does not take into account the connectivity of the
qubits within the QPU, but instead, computes the noise through a simple probabilistic
application of Pauli errors during the computation.

The result of simulating the noisy evolution of the quantum walk within the Melbourne
computer using the UNM is then compared with the outcome of simulating the noise using
each of the other noise models. A more detailed analysis of this process and the results
are presented in the following section.

Experiments and Results

A number of experiments has been carried out using four of the IBMQ machines: the
5-qubit Bogota, 5-qubit Santiago, 7-qubit Casablanca and 15-qubit Melbourne computers
(more information in Section 2.2.2). The Melbourne machine, with an architectural
graph shown in Figure 2.2, is the largest publicly available quantum computer from
IBMQ, showing a quantum volume of VQ = 8. Unfortunately, this computer has been
decommissioned as of August 2021. The former three computers, with architectures shown
in Figure 2.3, are dedicated machines part of the IBMQ Researcher program. They are
using the Falcon r4 QPU and exhibit a quantum volume VQ = 32 [64, 41]. The evolution
of the quantum circuit is also simulated using the UNM according to the characteristics of
each quantum computer.

2More concrete description in Qiskit documentation: https://qiskit.org/documentation/apidoc/
aer_noise.html

https://qiskit.org/documentation/apidoc/aer_noise.html
https://qiskit.org/documentation/apidoc/aer_noise.html
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(a) IBMQx5 Bogota. (b) IBMQx5 Santiago.

(c) IBMQx7 Casablanca. (d) IBMQx15 Melbourne.

Fig. 4.3 Comparison of the probability distributions between the UNM simulations and
the various quantum computers for a quantum walk on two qubits (i.e., n = 2).

After running the quantum walk experiments on the four quantum computers, the
UNM is used to simulate the evolution within each machine. Figure 4.3 showcases the
performance of the UNM when simulating the noise of each IBMQ computer. The executed
circuit implements a two-qubit quantum walk (i.e., with a state space N = 4) in order
to accommodate the restricted number of qubits on the smaller quantum computers.
Table 4.3 showcases the Hellinger distances between the probability distributions resulting
from each quantum computer and the corresponding UNM simulations. Evidently, all
simulated evolutions are quite close to the quantum computers, with the Bogota machine
exhibiting the smallest Hellinger distance, followed closely by Melbourne (0.025 and 0.033
respectively). The Santiago and Casablanca machines showcase a larger divergence from
the simulated evolution via the UNM.

From this point forward, the experiments are focused on evaluating the performance of
the UNM in comparison with the four noise models introduced above: QiskitCM, DSPAM,
TRM and SDM. Due to the limited size of the architectures of the smaller computers (i.e., 5
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Machine Hellinger Distance Runtime (sec)

IBMQx5 Bogota 0.025 240.7
IBMQx5 Santiago 0.054 234.2

IBMQx7 Casablanca 0.076 254.5
IBMQx15 Melbourne 0.033 262.3

Table 4.3 Hellinger distances between the various quantum computers used in the experi-
ments and the UNM. Runtime is the execution time for 100,000 iterations of the quantum
walk circuit on the corresponding quantum machine

No. States No. Qubits UNM QiskitCM DSPAM TRM SDM Ideal Uniform

4 2 0.033 0.040 0.049 0.229 0.126 0.264 0.218
8 3 0.127 0.152 0.224 0.438 0.280 0.771 0.186
16 4 0.224 0.262 0.369 0.476 0.329 0.834 0.150
32 5 0.393 0.421 0.482 0.505 0.467 0.862 0.434
64 6 0.457 0.509 0.525 0.587 0.576 0.891 0.579

Table 4.4 Hellinger distance between the probability distributions of the quantum computer
and the various noise models, as well as the ideal and uniform distributions. For ease
of presentation, the acronyms are ascribed as UNM: unified noise model; QiskitCM: the
Qiskit composite model; DSPAM: depolarising and SPAM; TRM: relaxation and dephasing
model; SDM: simple depolarising model; Ideal: the theoretical distribution from an ideal
(noise-free) quantum walk; Uniform: uniform distribution, for the maximum-entropy guess.

and 7 qubits), increasing the size of the state space of the walk causes the quantum circuits
to quickly become larger than the computers can accommodate. Thus, for the sake of a
more comprehensive experimental review, the following analysis focuses on experiments
carried out on the 15-qubits Melbourne machine. The interest here lies in quantifying
how close the evolution of each of the five noise models is to the quantum computer. This
comparison will offer a comparative idea of the performance of the UNM in approximating
the noise. For this purpose, after a number of experiments with increasing state space
are executed, the Hellinger distance (HD) is computed between the distribution of each
simulated noise model and the quantum computer.

As a reminder, the smaller the Hellinger distance between a noise model and the
computer, the better the approximation of its behaviour and, hence, the more accurate
is the model. In terms of a visual comparison, the better model is the one producing a
distribution that is closer to the resulting distribution of the computer. The experimental
results are visualised in Figure 4.4(a) which shows that, on a two-qubit system, the UNM
provides a better approximation of the quantum computer’s distribution than the other
noise models. A numerical comparison of this result using the computed Hellinger distances
is shown in Table 4.4, providing a clearer indication of the model performance.

The subsequent experiment repeats the above methodology for a quantum walk on
three qubits. The respective results are shown in Figure 4.4(b). Again, the results showcase
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(a) Two-qubits quantum walk. (b) Three-qubits quantum walk.

Fig. 4.4 Comparison between the probability distributions of a quantum walk on (a) a
two-qubit system and (b) a three-qubit system, simulated with the UNM (light-coloured
vertically lined bar), QiskitCM (dark-coloured crossed bar), TRM (tiled bar), DSPAM
(dark-coloured vertically lined bar), SDM (solid bar) and run on the actual quantum
computer (light-coloured crossed bar). The quantum walk propagates for one coin-flip;
error bars with 95% confidence intervals are shown for the three-qubit system; for the
two-qubit system they are smaller than 10−3, hence are not displayed.

the superiority of the UNM to the rest, with the smallest HD of 0.12749 from the computer.
This value, and indeed the distances of all the models from the computer, are much higher
than the corresponding figures for the smaller, two-qubits quantum walk. This is an
indication that, in general, the models perform worse in approximating the noisy evolution
of bigger quantum circuits. This is an expected result as, for longer circuits, there will
be an increase in the errors and decoherence within the computer as there are a lot more
operations and measurements that can produce an error and the execution time of the
circuit is much longer, creating much higher chances of decoherence and dephasing. Such
results bear deeper meaning and reflect the performance of the quantum computers, a
topic that this thesis addresses in Chapter 6.

Providing a figure for a visual comparison on experiments on a quantum walk with a
state space larger than three qubits has little information value, as the bar plots become
very messy due to the volume of information (for example, there are 16 states on a 4-qubits
state space and the simulations are done using five noise models – i.e., 80 bars in the
plot). Thus, additional results from further experiments are only numerically shown in
Table 4.4. It is clearly visible that the distance from the quantum computer’s distribution
is increasing with the number of qubits in the system, an expected result as explained
above. This is true for all the models. Nevertheless, it is easy to realise that, according
the Hellinger distances, the UNM is the best out of all the models, followed closely by
QiskitCM.

As a final remark, it becomes apparent by the experimental results that the quantum
computer, for quantum walks of size bigger than N = 8, produces probability distributions
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that are closer to the uniform distribution due to excessive noise. Such results can often
be viewed as “garbage” with no real meaning as the evolution has simply become too
distorted to bear any resemblance to the original algorithm. Nevertheless, these results
are driven by the effects and intensity of the noise within the QPU, an indivisible part
of what the NISQ era means for quantum computers, and thus, the results are deemed
worthy to be included in this analysis.

A number of experiments using the UNM in the context of benchmarking have been
carried out in Chapter 6. The results further showcase the effectiveness of the new model
at approximating the behaviour of the respective quantum computers, sometimes with
even higher accuracy. For better presentation, the relevant probability distributions are
showcased in Appendix E. The code implementing the experiments can be found on Github
[113].

4.5 Placing the Unified Noise Model in the State-of-
the-art

The UNM is a model trying to offer an alternative approach to noise modelling and
simulating in an era where such research is a priority for many fields. Thus, it is important
to present a review of the contributions of this thesis in these terms, as well as place
the UNM within the vast fields of quantum error correction (QEC) and benchmarking
quantum operations.

4.5.1 Unified Noise Model vs Gate Set Tomography

One of the prominent protocols for characterising quantum operations is gate set tomog-
raphy (GST) [115]. GST has been used in a large number of experiments [116–122] and
implemented in open-source software [123, 124]. The basic aim of GST is to characterise
quantum operations performed by hardware and allow one to estimate the performance
of a system with a relatively small number of qubits. Additionally, it reconstructs or
estimates not a single logic operation, but an entire set of logic operations (hence, gate
set).

The characteristics of GST give rise to a meaningful comparison to the UNM. As is
evident by the above sections, the unified noise model aims to reconstruct (or simulate) the
entire quantum evolution of a circuit, from the starting point to measurement. It follows
the quantum circuit execution at runtime and simulates the effects of noise on three levels,
gate infidelities, state preparation and measurement and decoherence and dephasing of
the qubits. On the other hand, the GST is aimed to predictive characterisation of the
quantum gates of the circuit within the QPU, i.e., how the logic operations affect the
qubits they act upon. The quantum gates need to be specified before the GST reconstructs
the gate-driven evolution.

Furthermore, as mentioned earlier, the GST protocol works well with small quantum
systems [124, 125], i.e., with a smaller number of qubits. On the other hand, the UNM aims
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to approximate the noisy evolution within a QPU irrespective of the size of the quantum
system. Thus, whereas GST works well for two- or three-qubit systems, the UNM is
designed to scale with the size of the quantum circuit and the number of qubits. Of course,
there is an upper bound on the scaling capabilities of the UNM tied to the increasing
difficulty of classical machines to simulate increasing number of qubits. Nevertheless,
within the NISQ era, most of the computers that the UNM will be used on are relatively
small (for example, within this thesis, the biggest available quantum computer is 15 qubits
and can easily be simulated on a standard laptop).

Finally, one characteristic of the GST protocol is that it is calibration-free [125]. When
GST reconstructs a model of a quantum system, it does not depend on any prior description
of the measurements used or the states that can be prepared. The UNM, as is evident from
the analysis above, depends on a set of quantum noise parameters, which reflect the levels
of noise within the QPU during the execution of the quantum circuit. Thus, calibration of
these noise parameters (or error rates) is essential for the success of the unified noise model,
a reason that leads to the development of the noise parameter optimisation technique
showcased in the following Chapter. Of course, such calibrations in no way limit the
capabilities of the model or the runtime of the simulations as the noise parameters are
readily available from the QPU providers (in this case, IBMQ).

4.5.2 Markovian vs Non-Markovian Noise

In a recent study [126], the authors simulate the relaxation of stationary states at different
frequencies and on different quantum computers in order to study the spectroscopic
behaviour of their noise. In other words, they aim to study the absorption or emission of
light or other radiation that leads to decoherence during the computation. The study of
non-Markovian quantum system dynamics attempts to provide a solution to fundamental
problems on how to define and quantify memory effects in the quantum domain or how to
exploit and develop applications based on them. Further studies examine its use in order
to find the ultimate limits for controlling open system dynamics. Hence, the simulations
of the non-Markovian noise effects are based on the concept of quantum memory, i.e., the
idea that the time evolution of the conditional probability of the environmental noise is
governed by a generalized master equation depending on the environmental memory effect
[127].

The results find that the noise follows non-Markovian behaviour. They also suggest
that quantum computers can be modelled as non-Markovian noise baths and analysed
through simulations, thus providing interesting potential applications on error-mitigation.
Within this thesis, the unified noise model describes the noisy evolution of the quantum
circuit through a probability space of possible states resulting from the effects of the noise
during the computation. In other words, a highly Markovian approach is employed to
simulate the noise and decoherence for all three quantum channels. As is evident by the
results, this memoryless approach produces a satisfactory performance, especially on small
quantum systems.
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4.5.3 Noise Modelling in Quantum Error Correction

One of the most prominent fields in the development of quantum computing is quantum
error correction (QEC). Seeing how the noise is the major crippling part of near-term
quantum computers and the prime obstacle of universal quantum computing, research
around error correction aims to fight noise by, as the name suggests, correcting errors that
appear during the evolution of the quantum circuit. Within QEC, as is expected, there
is a large amount of literature and research along the lines of error analysis with NISQ
systems. Furthermore, modelling the noise appears to be an essential part of successful
error correction. This leads to the aforementioned evidence that a more accurate noise
model is valuable for the field of QEC.

Similarly to the research presented in this thesis, noise within a quantum computer is
categorised in coherent systematic gate errors, environmental decoherence and models of
loss, leakage, measurement and initialisation errors [128, 129]. Systematic noise contains
any errors caused by faults of the quantum gates themselves, much like the gate infidelities
within the UNM. Environmental decoherence tries to highlight how QEC relates to
environmental effects. An elegant model for characterising decoherence on open quantum
systems is the Lindblad formalism [130, 30, 131], accompanied by several assumptions
that may not hold in some cases [132–135]. Particularly in superconducting systems where
cross-talk and fluctuating charges can cause decoherence, the need arises for more specific
decoherence models. One way to construct such models is via more general mappings
[129], or alternatively, a combination of models like the UNM presented in this work.

A recent paper [136] discusses a structure for QEC which relies, amongst others,
on evaluating noise modelling techniques or combinations of them. According to the
authors, such models have the potential to provide a much more accurate and efficient
approximation of the noise within quantum computer, a result which would benefit QEC.
The UNM is a perfect fit for such an approach, as by default, it combines the major sources
of error that play a significant role in quantum error mitigation.

Finally, it is evident that more complex or expanded quantum channels have the ability
to better recreate the quantum noise before any type of QEC is applied [137]. Hence, future
incorporation of further types of systematic noise, like Clifford errors, or environmental
decoherence, like electromagnetic noise, to the UNM, can lead to an even more accurate
model for quantum noise.

4.6 Discussion
This chapter introduced a new model for simulating the noisy behaviour of quantum
computers, named unified noise model (UNM). The UNM combines three quantum
channels that model three main error groups: (i) gate infidelities, (ii) state preparation
and measurement (SPAM) errors and (iii) thermal decoherence and dephasing of the
physical qubits. Each noise source adheres to different aspects of the hardware and of the
interaction between the system and its environment and incorporates some of the most
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prominent sources of noise during a computation. The noise model is architecture-aware,
meaning that it takes into account the connectivity of the qubits and the individual
characteristics and levels of noise (i.e., noise parameters) of each qubit within the QPU.

Throughout the experimental methodology, the performance of the UNM is compared
with the evaluated efficiency of four other models. The analysis shows that the UNM offers
more accurate approximations of an IBM quantum computer’s evolution and significant
improvements in the accuracy of the noise simulations. Furthermore, the UNM is not
limited to only modelling IBMQ computers. Its architecture awareness and low-level
circuit approach allows for it to be easily attached on any QASM-based implementation.

Noise is one of the main challenges preventing universal and scalable quantum compu-
tation. This work has shown that unifying noise sources on a single model results in a
better approximation of the noisy evolution of a quantum computer. Finally, this approach
to noise modelling can assist with the understanding of noise within quantum computers
and consequently be utilised during the design or testing of error correcting methods
or calibration techniques and attempts to minimise the noise in near-term quantum
computers.

Surprisingly, there are only a few works addressing the topic of modelling noise in
quantum computers [138–140]. Notably in [141], the authors also attempt to generate a
composite model for noisy quantum circuits by dividing the quantum circuit to subcircuits,
according to desired characteristics. This decomposition allows for iterative adjustment of
the models through minimisation of the total variation distance between simulation and
experimental results, until sufficient accuracy is obtained. Thus, the work done in this
chapter represents a valuable addition to the field of quantum computation.

In conclusion, having shown the importance of being able to understand and model the
noise within a quantum computer, it is apparent that the work presented in this chapter
is invaluable and with a wide application space.

4.7 Future Work
Whereas the UNM excels at simulating the noisy behaviour of near-term quantum com-
puters compared to other state-of-the-art noise models, the elevated Hellinger distance
between the UNM and quantum computer distributions shows that there might still be
elements missing from the model. One factor is that further known and/or potential
sources of noise are not taken into account, for example electromagnetic or gravitational
decoherence. Additionally, it is known that the calibrated noise parameters fluctuate,
potentially with significant effects on the results, even throughout the duration of the
experiments.

The above points, as well as the deviation of the HD is an additional indicator of the
lack of understanding of quantum noise within the field. In the remainder of this thesis, a
chapter is dedicated to engineering a way that brings the simulated noisy evolution of the
UNM and the real evolution within a quantum computer much closer.
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Following the above, some clear future additions to the UNM could include the consid-
eration of further sources of error. One example is the incorporation of electromagnetic
decoherence as an important noise factor. It is believed that this source of decoherence
will make up for a large portion of the deviation between the UNM and the quantum
computer distributions. Finally, further errors from the Clifford group [84] could be taken
into account as an additional interpretation of gate infidelities during the evolution of the
quantum system.





Chapter 5

Quantum Noise Parameters
Optimisation

The previous chapter presented the unified noise model (UNM) which combines some
of the major sources of noise during a quantum computation in order to simulate the
noisy evolution of NISQ systems. The sources of error modelled within the UNM derive
from operation errors during the circuit execution, decoherence (of the thermal form) and
dephasing of the physical qubits. As discussed in the same chapter, a crucial role for
the efficiency and functionality of the UNM is played by the noise parameters. These
parameters represent numerically the various error rates and decoherence and dephasing
times that result from calibrations of the actual quantum computer whose behaviour is
being modelled (more information in Section 4.2). In other words, they reflect the levels
of noise within the quantum computer during the execution of a circuit.

The parameters used for the experiments implemented in Chapter 4 are calibrated near
the time of the execution of the circuit on the quantum computer using benchmarking
techniques. As evident from the results of Chapter 2, the approximated evolutions resulting
from the noisy simulations of the UNM deviate from the actual evolution of the quantum
computer. Motivated by said deviation, this chapter showcases and implements a novel
methodology that can be used to optimise a subset of the calibrated noise parameters
that take part in the modelling and simulating of a circuit’s evolution. The techniques
used for this purpose are classical optimisation routines, and more specifically, genetic
algorithms [142]. The simulations that utilise the optimised parameters resulting from
this process (“post-optimisation noise parameters” or “optimised noise parameters”) show
a significant increase in the efficacy of the simulated evolution that can reach up to 84%
in small systems.

The first section presents a comprehensive method that uses a classical genetic algo-
rithm routine in order to optimise the noise parameters used by the UNM. Following the
establishment of the framework, the various experiments and results from new simulations
with the optimised parameters are presented, showcasing the effectiveness of the optimisa-
tion method and the increase in efficiency of the UNM. Finally, the findings of the work
outlined in this chapter are discussed and future additions are also presented.
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The work outlined in this chapter has been jointly published with Chapter 4 in Physical
Review A in December 2021 [85].

5.1 Genetic Algorithms for Quantum Parameter Op-
timisation

As aforementioned, the noise parameters used at the time of the noisy simulations of the
unified noise model are calibrated from the quantum computer itself during the execution
of the quantum circuits whose noisy evolution is examined. This can be done using various
techniques, as showcased in Section 4.2. Of course, putting fluctuations of the noise
parameters over time aside, these techniques are not always accurate themselves, and
errors on the resulting calibrated parameters can be expected. This section discusses the
classical methodology that allows to optimise the hardware-calibrated noise parameters for
the UNM and mimic the evolution of the quantum computer much more closely, rectifying
the deviations between the UNM evolution and the real quantum computer.

Notably, such an optimisation procedure is possible for the UNM as the structure and
implementation of the model itself is independent from real-time execution of the circuit,
thus allowing the altered parameters to be fed to the model before a simulation. This is
not possible when using other models implemented in the Qiskit provider API, like for
example the QiskitCM model, as such methods automatically draw the hardware-calibrated
parameters from the quantum computer itself and then construct the model offering no
user control over the procedure. To avoid confusion, it is noteworthy that this is not a
mathematical or mechanical discrepancy of the model design itself, but rather a limitation
of Qiskit at the time of the creation of the UNM.

As shown in Chapter 4, there is a large number of noise parameters associated with
each of the error groups within the UNM, and their number grows with the size of the
state space of the implemented quantum process. For example, a quantum walk on a two
qubit state space (using the generalised-inverter approach for the implemented circuit)
will only use three qubits in the QPU, whereas a three qubit quantum walk, accounting for
the necessary ancilla, will need six qubits. Within the scope of this thesis the parameters
considered are the ones that correspond to the control and operation error rates, i.e.,
the gate, measurement and state preparation errors that occur during the execution of
the circuit. The size of this set of parameters (i.e., the number of parameters) can be
calculated as r+m+ s, where m is the number of qubits in the system that are measured,
s the number of qubits that undergo state preparation and r the number of different types
of gates that participate in the circuit. More information on the types and numbers of
parameters can be found in Table 4.1.

The parameters optimised correspond to the ones used within error groups 1 and
2 (shown in Sections 4.3.1 and 4.3.2 respectively). Importantly, the decoherence and
dephasing parameters used within the model corresponding to error group 3, i.e., the
decoherence and dephasing times T1(q) and T2(q) of each qubit q, are excluded from the
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optimisation routine. This decision is taken for two main reasons. First of all, in order
for the simulation to be remotely close to the quantum computer evolution, these time
parameters have to be considered individually per qubit q in the system. This means
that, with the increasing number of qubits necessary for the workspace, the number of
parameters for optimisation grows very fast, rendering the routines exceedingly taxing
on the classical computer. Secondly, the relaxation and dephasing of the qubits are
parameters tied with the physical implementation of the qubits themselves within each
quantum computer. Thus, an optimisation of those parameters would produce better
results when implemented on a qubit engineering modelling level that takes into account
further environmental and/or physical factors, for example, cross-talk between the qubits
or the effects of active qubits to idle qubits, conditions that are not taken into account by
the UNM.

Furthermore, as shown from the results, optimising the operation error rates produces
an improved approximation of the quantum computer evolution, especially on small
systems. On the other hand, including the decoherence parameters in the optimisation
does not offer enough of an advantage to justify the increased complexity of the routine (see
Section 5.2). Of course, there is nothing preventing the optimisation of the relaxation and
dephasing parameters in the future and specifically on larger quantum system, especially
if a sufficiently large classical system is available to accommodate the increased complexity
and runtime of the genetic algorithm.

For the additional experiments with the optimised parameters, the same quantum walk
circuits are used as in Chapter 4. Of course, any quantum circuit of arbitrary quantum
algorithms can be easily simulated and optimised with the implemented methods (both
the UNM and the optimisation routines). The quantum walk implementation is the
generalised-inverters circuit (Section 3.2.1) which includes Hadamard, NOT and CNOT gates.
Important here is that every gate will be considered for the parameter count only once
per qubit or pair of qubits, no matter how many times it is used in the circuit. The
reason for this follows from the assumption that the noise parameters remain static during
the execution of the quantum circuit (see Section 4.2). Thus, the number of parameters
that need optimising in the case of the quantum walk circuit is (1 + rc + rt) + m + s,
where m is the number of qubits measured, s the number of state preparations, rc is the
number of inverter gates, rt the number of CNOT gates and +1 for the Hadamard gate.
It is noteworthy that, due to tiny differences in the error rates of single-qubit gates, the
differentiation between Hadamard and inverter gates can be omitted without needing to
optimise both types. Thus, the number of parameters can be calculated as rs + rt +m+ s,
with rs being the single-qubit gates in the circuit.

In order to obtain a set of better parameters, the methodology is based on genetic
algorithms (GA) [142]. This method relies on iterative generations of new parameters,
followed by simulations using said new parameters and comparison of the simulated
results with the original distribution of the quantum computer. In each iteration, the best
parameters of the current batch are chosen as those which bring the simulated evolution
closer to the quantum computer, and are consequently preferred and reused in the next
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iteration. In order to keep the execution time small and the results presentable, a quantum
walk with a small state space of N = 4 and a three-qubit system for its execution is used
for the analysis. In the circuit, the third qubit is necessary for the quantum coin. The coin
is never measured, meaning the results of its error rate optimisation will not be directly
visible, but will nonetheless affect the overall computation. The following sections offer a
concrete presentation of the optimisation methods.

5.1.1 Preparing the optimisation Routine

It is instructive to first offer a more detailed view of the methodology used to achieve
the aims. Genetic algorithms (GA) are evolutionary algorithms in which random changes
are applied to a current set of parameters in order to get a new, optimised set that
performs better on a certain task. The current set of parameters is called a solution. These
random changes are applied recursively until the best (set of) solution(s) is obtained. It is
important to present here a brief introduction to the language and terminology associated
with the study of GAs and that will be used during this chapter.

• Parameter: a single variable in the system of interest; in the context of this study, a
parameter is a single error rate, i.e., a single-qubit or two-qubit error rate.

• Solution: otherwise called an individual, this is a set of parameters that assemble the
items that are of optimisation interest; for the studied case, a solution contains all
the error rates, single-qubit plus two-qubit plus measurement plus state preparation
(rs + rt +m+ s).

• Fitness value: a metric that encompasses the performance of a solution or set of
solutions on the initial task, i.e., the simulation of the noisy evolution through the
UNM.

• Generation: the current set of parameters for which there is sufficient information
regarding their performance and fitness values.

• Population: the number of solutions within the current generation.

• Chromosome: a distinct, individual encoded item within a set of solutions, or in
other words, a solution that bears a specific encoding; a chromosome encodes within
itself all the parameters that are of optimisation interest. The process used to encode
a solution and create a chromosome is discussed later in this section.

• Gene: an individual characteristic of interest (i.e., a singular error rate) encoded
within a chromosome; in other words, a gene is the encoded form of a parameter.

Each chromosome is accompanied by a fitness value which shows how good this
chromosome or solution and, in extent, the genes or parameters associated with it are
for their intended purpose. The fitness value is the result of a fitness function and it is
a measure of the performance of the solution when executing the task that it has been
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Fig. 5.1 General flow of a genetic algorithm. The initialisation process contains preparation
steps like parameter encoding or producing the initial population. The reproduction step
summarises various key processes, like crossover and mutation.

optimised for, i.e., during the UNM simulation. Following the evaluation and assignment
of the fitness value, the best individual of a population is selected according to their fitness,
in order to generate what is called a mating pool, where the higher quality individual has
a higher probability to be selected. Thus, as time goes on, selecting the best candidates
and eliminating the bad will lead to an optimal or acceptable solution.

The general flow of a GA routine is shown in Figure 5.1. The process is initialised
by encoding the initial population in a suitable format. The next step is to evaluate the
performance of the initial population, which will be the initial metric or, in a sense, the
fitness value to which every solution in the new generation will be compared in order
for a better individual to be picked. When the initial fitness is computed, the current
generation will “reproduce” using processes that will be examined below, and from the
resulting individuals, the new population will be selected.

Parameters Encoding

The first part of the GA routine refers to selecting a suitable way to represent and encode
the parameters during the optimisation, also called parameter encoding. This is a process
of great importance for the efficiency and success of the algorithm. The result of the
parameter encoding is a chromosome which holds the desired characteristic and all the
information about the parameters that are necessary for the optimisation routine. One of
the better ways to encode the parameters, as well as provide convenience for the future
steps of the algorithm (for example, during the reproduction process), is to use binary
representation for the genes of the individual.

For the specific needs of the quantum noise parameter optimisation implemented
within this thesis, the chromosome is encoded as a binary string that contains the binary



98 Quantum Noise Parameters Optimisation

Fig. 5.2 The format of the encoded error rates, or genes, that constitute the chromosome.
All the rates are translated into their binary representation and have the same length d,
which is the number of bits needed to represent the largest error rate. The number of
state preparation, single-qubit gate, two-qubit gate and measurement error rates is s, rs,
rt and m respectively.

representation of all the error rates. These are, essentially, probabilities of an error
occurring, i.e., numbers between 0 and 1. Each parameter within a solution is encoded to
reflect the binary form of an error rate (creating the encoded gene) and is then appended
to the chromosome until all the binary encoded genes are added. The genes within the
chromosome appear sequentially in a specific order, which is crucially kept the same
throughout the entire process: first are the state preparation error rates (if any), followed
by the single-qubit error rates (if any), then the two-qubit error rates (if any) and finally
the measurement error rates. Knowledge of the sequence of genes within the chromosome
is necessary for the next steps of the algorithm, i.e., the fitness evaluation, as will be made
clear later on. A visual representation of the parameter encoding process is shown in
Figure 5.2.

As mentioned before, all the parameters represent probabilities and they are real
numbers between 0 and 1. This means that their binary representation could very quickly
become troublesome to work with, as real numbers can potentially be hard to visualise
and manipulate in binary compared to integers. In order to deal with this problem, all the
error rates are multiplied by a sufficiently large scalar, which remains the same for the
entire procedure. Thus, the parameters become integers which are much easier to work
with. The most commonly used scalars, depending on the magnitude of the smallest error
rate, are 105, 106 or 107. Wherever the parameters need to be decoded during the genetic
algorithm routine (for example during the fitness evaluation or when returned at the end
of the optimisation routine), they are divided by the relevant scalar and, thus, return to
their original decimal form.

As a brief example, consider the set of parameters whose average is presented in Table
4.2 – these are the average noise parameters during the execution of the noise experiments
in Chapter 4. Here, the smallest single-qubit error rate (which are usually the operations
that occur with the lowest probability) was 9.82 × 10−4. Thus, in order for this number
to become an integer, the scalar chosen is 106: 9.82 × 10−4 × 106 = 982. Multiplying
all the error rates (not including T1 and T2) with this scalar will result to all of them
being integers, similarly as the above. When the need arises for the parameters to be
decoded, they are all divided by 106, thus returning to their original form. Alternative
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approaches to solve this issue could be used, like for example in the form of an inversion
of the parameter instead of multiplication with a scalar.

Finally, for convenience during the decoding of the parameters, all the genes are forced
to have the same length, namely d, i.e., they are all encoded using the same number of
bits. This is achieved by enforcing all genes to adopt the length of the largest value within
the set. This transformation also means that the length of the chromosome is equivalent
to the number of bits of the biggest binary representation multiplied by the number of
parameters for optimisation, i.e., (s + rs + rt + m) × d, where s, rs, rt and m are the
number of state preparation, single-qubit gate, two-qubit gate and measurement error
rates respectively.

Initial Population

The next step of the optimisation process is to create the initial population, which is the
first population provided as input to the genetic algorithm. The initial population contains
the hardware-calibrated operation error rates, measured at the time of the experiment,
encoded as a binary chromosome in the way discussed above. The size of the population,
np, corresponds to how many individuals (or chromosomes) the population contains and
it may vary between experiments. It is also noteworthy that the usual practice is for
the population size to stay the same during the evolution of the genetic algorithm that
optimises the parameters for a quantum circuit of a static size. Thus, in the end, the best
set of parameters will be picked out of a pool of size equal to the initial population size.

Alongside the chromosome containing the calibrated parameters, the population will
have an additional np − 1 chromosomes generated via the addition of small random values
to the calibrated parameters. The role of these “ancilla” chromosomes is to simply fill
in the initial population set and, after evaluation, provide an indicative fitness for those
randomly generated parameters that will aid in the next steps of the GA. If these randomly
changed initial chromosomes prove to be better than the hardware-calibrated parameters,
they have a higher chance of being chosen by the GA in the following steps. It is crucial
for these random values to be of the same magnitude of the respective error rates they
will affect, otherwise they might change the error rates dramatically. For example, for
the single-qubit error rate discussed above (9.82 × 10−4), the random number could be
generated through a stochastic process with mean 5 × 10−5. On the other hand, for the
two qubit error rate it would be a process with mean 5 × 10−3.

Finally, there is the option to set the range of values within which the algorithm will
look for new parameters. This is not a necessary utility, but it helps with execution time
if there are indications of an approximate range within which the parameters might be
optimised. Another issue that this option resolves is, in the case of a physical system,
there might be physical boundaries on the parameter values. For example, one equation
that helps pick the range for the parameters is

P = c

2b − 1 (Pmax − Pmin) + Pmin
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where c is the decimal representation of the binary string encoding of the chromosome
(initial population) and b is the number of bits in the chromosome.

Fitness Evaluation

Perhaps the most crucial operation within the GA routine is the fitness evaluation. This
process essentially provides a meaningful comparison for the efficiency of the evaluated
individual in relation with the previous best candidate. It assigns a value to the chromosome,
also called the fitness value, according to its efficiency for executing the task at hand. This
value acts as a metric according to which the best, optimised individual is chosen in each
iteration of the GA and also at the end of the optimisation.

The fitness value is usually computed via a fitness function, which matches the needs of
the optimisation routine. For the evaluation process within this work, the fitness value is
chosen to be the Hellinger distance, as defined in Definition 4.1 and computed by equation
(4.9). This metric is calculated between the experimental distribution resulting from the
quantum computer experiments (i.e., the evolution whose approximation the GA attempts
to optimise) and the distribution resulting from noisy simulations of the UNM using as
noise parameters those encoded within the individual that is currently under evaluation.
The HD is computed for every individual in each population generated in every iteration
of the GA. This means that a number of simulations of the UNM that equals the size of
the population need to be run in every fitness evaluation during the optimisation routine,
making this process the most taxing part of the GA.

For the present research, it is desirable that the noisy simulation distribution is as
close to the quantum computer distribution as possible. In other words, the aim of the
optimisation routine is to chose an individual that minimises the (Hellinger) distance
between simulated and real evolution. This choice is reflected within the fitness evaluation
by implementing the process so that the individual with the smallest Hellinger distance
is picked in every iteration. Thus, during the course of the GA, successive selections of
individuals baring the minimum fitness value (following a set of rules discussed in later
sections) leads to the reduction of the distance between simulation and experiments, or in
other words, to a better approximation of the quantum evolution within the machine.

Selection

Following the evaluation of the fitness of each chromosome/individual and the assignment of
a fitness value as discussed above, the selection process refers to choosing which individuals
(i.e., sets of error rates) will be used to generate the new population. Those individuals
(also called parents) are selected from the current population pool based on their fitness
value as assigned to them during the evaluation process. For this case (i.e., for the fitness
value representing the Hellinger distance) the smaller the fitness value, the higher the
probability of the individual being selected. This process ensures that the most suitable
candidates are used to produce the next population.
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There is a number of methods that can help pick the best suited parents during the
selection procedure, such as roulette wheel, rank selection, tournament selection and more
[142], each exhibiting different characteristics. The present work uses a version of the
tournament selection method, called k-tournament selection, which randomly selects k
individuals from the current population, with 1 < k < np, and then selects the best out of
these k individuals to become a parent. The same process is then repeated for selecting
the next parent, and so on. The advantage of the tournament selection for the purposes of
this research is the fact that it excels at choosing parents for minimising fitness values,
making it also extremely popular in the GA literature. Additionally, it is efficient to code.

Recombination

Following selection of the parents, the final step of the GA corresponds to creating the
new population for the optimisation routine, or otherwise, creating the individuals that
amass the next generation of the GA. This new population will then be fed into the next
iteration of the routine for fitness evaluation, and so on, following the processes described
above. Ideally, every new generation will contain some chromosomes that perform better
than the previous generation.

The main objective of the recombination step is to utilise the parents selected as the
best fitted for reproduction in order to create the individuals of the new population. At
this point, any individual produced from the recombination process is commonly called a
child. During the recombination there are two important processes that take place: (i)
the crossover and (ii) the mutation of the child. The crossover process generates a new
individual by transferring part of the parent’s chromosome to the child. The selection of
transferable part occurs randomly whereas the size of the transferable part can be chosen
as a percentage of the parent’s chromosome. The mutation process refers to random
changes occurring to the new individual. For the binary encoded chromosomes used during
this chapter, the mutation method is essentially a simple bit-flip. For each new child, there
is a chance that one or more bits of its binary representation are randomly selected and
changed.

Each of the methods of crossover and mutation occur with specific probability during
the optimisation routine. There have been several studies for optimising the selection
of crossover and mutation probabilities [143–145]. For the algorithm implemented in
this thesis the probability of crossover is pco = 0.6 and mutation pmt = 0.05. A figure
showcasing the effect of these two operations is shown in Figure 5.3.

5.1.2 The Algorithm

Finally, all the steps described up to this point comprise the genetic algorithm that is used
for the optimisation of the quantum noise parameters. A more concrete description of the
routine is given in Algorithm 4.
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Fig. 5.3 The process of crossover and mutation. During crossover, part of each chromosome
c1 and c2 is passed to the children with probability pco = 0.6. In the mutation, a random
bit-flip occurs with probability pmt = 0.05.

Algorithm 4: Genetic algorithm for quantum noise parameter optimisation
1 Initialisation and parameter encoding. Input the pre-optimisation

(hardware-calibrated) parameters and encode them to a binary string. Generate
random chromosomes to match the population size. Define a number of
generations, i.e., a number of iterations for the optimisation routine.

2 while the predefined number of generations is not met do
3 Define the current population. Create the current population, either from

the initial or a new generation.
4 Evaluate fitness. Run simulations to compute the probability distribution of

the evolution produced by each individual within the current population. The
fitness value will be the Hellinger distance between the simulation output
distribution and the quantum computer output distribution.

5 Selection. Choose the best individual (i.e., set of error rates) from the
population to reproduce using tournament selection.

6 Recombination. Use crossover with probability pco = 0.6 to produce the
chromosomes (individuals) that will result from the mating of the current
population.

7 Mutation. Inflict mutations with probability pmt = 0.05 by bit-flip operations
on the new chromosomes.

8 Result and evaluation. The final generation comprise the optimised population.
This population is then evaluated and the best individual is picked. This
individual is then decoded and its genes correspond to the new, optimised set of
noise parameters.
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5.2 Experiments and Results
This section describes in detail the experiments carried out using the optimisation routine
laid out in the previous section, as well as the relevant results. In order to obtain an
optimised set of noise parameters for the simulation of the quantum walk using the unified
noise model, the GA optimisation routine of Algorithm 4 is used. The algorithm is set
up, initialised and executed as described in Section 5.1. This method relies on iterative
generations of new parameters, simulations using said new parameters and comparison of
the simulated results with the quantum computer’s distribution. In each iteration, the
parameters that bring the simulated evolution closer to the quantum computer are kept.

In order for the execution time of the optimisation routine to remain relatively small
and the results to be presentable, this section analyses in detail the results of two quantum
walks with a small state space of N = 4 (two-qubit quantum walk) and N = 8 (three-qubit
quantum walk) and a three-qubit and six-qubit system for their execution respectively.
The quantum circuits use the generalised inverters approach of Section 3.2.1 for their
implementation, same as the experiments of Chapter 4. For the two-qubit quantum walk,
the quantum circuit requires three qubits as one is also necessary for the quantum coin
(and logN = 2 qubits for the state space). For the three-qubit quantum walk, the need
arises for a two-qubit ancilla register, driving the size of the system to six qubits overall.
The coin itself is never measured, meaning the results of the optimisation of the coin’s
error rates will not be directly visible through the measured states, but will nevertheless
affect the overall computation. Results of larger quantum walk optimisations are given
numerically in Table 5.1.

Before moving on to the analysis of the results, it is important here that, due to circuit
optimisation methods implemented within Qiskit at the time of the experiments, the
two-qubit quantum walk circuit utilised an additional qubit within the quantum computer
in order to reduce the size of the circuit. Thus, the experiments and results showcase
below follow this template where a four-qubit system is used for the two-qubit quantum
walk.

For the optimisation routine, the genetic algorithm is allowed to run first for 50
generations (i.e., 50 repetitions). Considering the two-qubit quantum walk, the number of
parameters that undergo optimisation is 9, calculated as follows: rs = 4 single-qubit gate
error rates, one for each of the four qubits in the system, rt = 3 two-qubit gates according
to the architecture of the computer, one for each pair of connected qubits, and m = 2
measurements at the end of the computation. The computation starts at state |0⊗(log N)⟩,
and thus there is no need to account for state preparation of the qubits (i.e., s = 0). The
population is chosen to be of size 8, i.e., there are eight individuals (chromosomes or
encoded sets of noise parameters) within each generation and is kept static throughout the
optimisation routine for the two-qubit quantum walk. The genetic algorithm results show
that the Hellinger distance of the distributions between the post-optimisation simulation
of the noise during the evolution of the quantum circuit and the noise within the real
quantum computer has decreased from ∼ 0.033 to ∼ 0.005, an approximately 84.85%
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Fig. 5.4 Probability distribution of pre- and post-optimisation (crossed and vertically
lined bars respectively) for a two-qubit quantum walk after a single optimisation routine
compared with the quantum computer distribution (tiled bar). The GA is run for 50
generations and the optimised set produces a distribution that is 84.85% closer to the
quantum computer result.

improvement. Figure 5.4 shows a visual implementation of the approximation improvement
that results from the parameter optimisation after 50 generations of the GA.

The same experimental template is used for the three-qubit quantum walk experiments.
For consistency, the optimisation routine is also run for 50 generations of the genetic
algorithm but with a different population size of 12 individuals. The larger population
size is used to account for the increased number of error rates deriving from the larger
system used by the three-qubit quantum walk. In this case, the number of parameters
required for optimisation is increased to 14, calculated as follows: rs = 6 single-qubit
rates, rt = 5 two-qubit rates, m = 3 qubits measured – the state space of the quantum
walk – and s = 0 as the walk is initialised on |0⟩. The increased complexity of the
optimisation due to the larger number of parameters is shown through the runtime of the
optimisation routine on the classical computer, with the optimisation of the two-qubit
quantum walk needing approximately 6, 500 seconds for its execution, whereas the three-
qubit routine requires 9, 500 seconds. The results after a single optimisation routine (i.e.,
50 generations) are shown in Figure 5.5. The HD between the post-optimisation simulation
of the quantum circuit and the quantum computer has decreased from ∼ 0.127 to ∼ 0.054,
an approximately 57% improvement.

In addition to the above, a number of experiments are run on quantum walks of various
sizes, with the results following a similar trend. Table 5.1(a) presents the averaged results
from three optimisation routines, i.e., three runs of the genetic algorithm routine for 50
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Fig. 5.5 Probability distribution of pre- and post-optimisation (crossed and vertically
lined bars respectively) for a three-qubit quantum walk after a single optimisation routine
compared with the quantum computer distribution (tiled bar). The GA is run for 50
generations and the optimised set produces a distribution that is 57.48% closer to the
quantum computer’s.

generations each. Due to the need of ancillary qubits in the computation, the number
of parameters that need optimisation becomes large quickly. This means that the GA
routine becomes slower with every qubit added in the state-space register.

It is noteworthy that the efficiency of the parameters post-optimisation declines with
the size of the state space. In other words, the larger the number of parameters required for
optimisation, the smaller the increase in efficiency of the approximated evolution. The main
reason for that is the fact that the number of generations of the genetic algorithm remain
static to 50 iterations, for comparison and readability purposes. Further experiments
show that an increased number of generations of the GA during the experiments provide
further improvement on the approximation of the quantum computer’s distribution, even
on quantum walks with larger state spaces. Table 5.1(b) outlines the optimisation results
for 100 generations of the genetic algorithm.

5.2.1 Noise Parameter Analysis

One byproduct of the work carried out on parameter optimisation is the ability to conduct
further analysis and draw various conclusions on the nature and accuracy of the hardware-
calibrated noise parameters. The comparison between the hardware-calibrated parameters
and the optimised parameters provides unique evidence on what the computer’s error
rates look like in the simulated world, thus allowing further conclusions on the infidelities
of the quantum hardware. Here follows a comparison of the model parameters pre- and
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State Space Workspace HD (Pre) HD (Post) % Distance Runtime (×103 sec)
4 4 0.033 0.005 ± 0.001 84.85 ↓ 6.5
8 6 0.127 0.054 ± 0.003 57.48 ↓ 9.5
16 8 0.224 0.152 ± 0.006 32.14 ↓ 12.1
32 10 0.393 0.301 ± 0.025 23.41 ↓ 46.7
64 12 0.457 0.377 ± 0.016 17.51 ↓ 93.5

(a) optimisation with 50 generations.

State Space Workspace HD (Pre) HD (Post) % Distance Runtime (×103 sec)
4 4 0.033 0.003 ± 0.001 88.26 ↓ 8.2
8 6 0.127 0.035 ± 0.004 72.44 ↓ 11.3
16 8 0.224 0.121 ± 0.013 45.98 ↓ 26.4
32 10 0.393 0.246 ± 0.014 37.40 ↓ 87.9
64 12 0.457 0.336 ± 0.029 26.48 ↓ 178.9

(b) optimisation with 100 generations.
Table 5.1 Results averaged from three optimisation routines of quantum noise parameters
with our UNM model. Each routine is run for (a) 50 and (b) 100 generations of the genetic
algorithm. HD (Pre) and HD (Post) are the HD between the probability distributions of
the quantum computer and the simulator pre-optimisation and post-optimisation (along
with standard deviation, ± s.d., rounded up to three decimal points) respectively; ↑ or ↓
mean increase or decrease in the distance between the distributions. The size of workspace
is the number of qubits necessary for the computation (i.e. ancilla included). The runtime
showcased is the average of the three optimisation routines.

post-optimisation for the simplest two-qubit quantum walk. The choice of the smallest
system is purely for readability, as it has the smallest number of parameters optimised,
but the exact same analysis can be carried out for a system of any size.

Table 5.2 shows the relevant noise parameters for the N = 4 state space quantum
walk pre- and post-optimisation, after a single optimisation routine (50 generations of the
genetic algorithm). Overall, it is evident from the parameters that the UNM operates
closer to the computer for different error rates than the ones provided by the computer’s
calibrations. More specifically, comparing the parameters pre- and post-optimisation from
Table 5.2, single-qubit operations and measurements on qubits 0 and 1 of the IBM quantum
computer are noisier than the calibrations claim (i.e., their error rates are higher), with
the opposite being true for qubits 2 and 3 and the two-qubit operations on all qubit pairs.
Such results can be useful as they can potentially showcase an expectation of machine
calibration outcomes or give an alternative read of the noisy reality within the quantum
computer.

The same analysis applied to the larger systems shows that our model performs closer
to the computer when single-qubit operations and measurements are, in their majority,
noisier than calibrated, whereas two-qubit operations tend to be less noisy. There are
different factors that cause this. First of all, the length of the experiment. For larger
experiments, where the computation is much longer than the times T1 and T2, it is very
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Opt. Sq(0) Sq(1) Sq(2) Sq(3) Tq(0, 1) Tq(1, 2) Tq(2, 3) M(0) M(1)
Pre- 0.000631 0.000550 0.000550 0.000496 0.015850 0.011410 0.021430 0.036700 0.080900
Post- 0.000685 0.000725 0.000406 0.000479 0.010435 0.010074 0.013219 0.038924 0.090734
Table 5.2 Pre- and post-optimisation noise parameters for an N = 4 state space system;
Sq(q) are the single-qubit gate error rates, including Hadamard and NOT gates, Tq(q, q′)
are the two-qubit gate error rates and M(q) are the measurement error rates for each
qubit q or pair of qubits (q, q′), according to the architecture of the quantum computer.

difficult to get a concrete conclusion through such an analysis. As shown above, for
smaller computations (and not necessarily quantum walks), the above methodology could
provide a very good picture of whether the quantum computer calibrations overestimate
or underestimate each of the error rates. Secondly, the above findings are the averaged
results of three optimisation routines. This means that the claim of this analysis could
still be an artefact of the randomness embedded within the parameter optimisation
technique. Further optimisation runs for the same experiment could revoke this ambiguity.
Unfortunately this endeavour could prove increasingly time consuming, especially for
longer computations with a much larger number of noise parameters. Nevertheless, the
current thesis remains satisfied with the improvement in precision when approximating
the noise of NISQ computers using parameters optimised with the presented techniques.

5.2.2 Parameter optimisation Including the Decoherence and
Dephasing Parameters

As a final remark to the study of noise parameter optimisation, the following analysis
is presented in order to further support the decision to not include the relaxation and
dephasing time parameters in the optimisation routine. It is clear from the above discussion
that the number of parameters that need to be optimised increases with the size of the
state space of the experiment, or in other words, with the number of qubits in the relevant
register. This increase leads to much higher execution times for the GA routine, as
showcased in Table 5.1. Including the decoherence and dephasing parameters in the
optimisation would result to an even larger number of parameters, i.e., an additional
2×sw, where sw is the size of workspace (ancilla and coin included) necessary to implement
a quantum walk on a state space of size N = 2n. Table 5.3 showcases the number of
parameters for optimisation with respect to the number of qubits necessary to represent
the state space of a discrete-time quantum walk.

As expected, the increasing number of parameters in the optimisation routine leads on
an increase on the runtime of the genetic algorithm (see Table 5.1, Runtime column). The
execution time of the optimisation quickly becomes relatively large for a quantum walk
on n = 6 qubits (93.5 × 103s for 50 generations and 178.9 × 103s for 100 generations on
a Macbook Pro 2017). Thus, it is logical to predict that, including the decoherence and
dephasing parameters for optimisation will lead to an even larger execution time.
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No. Qubits (n) No. Param No. Param with Decoherence
2 9 17
3 14 26
4 25 41
5 34 54
6 38 62

Table 5.3 Comparison of the increase in the number of parameters necessary for optimisation
with respect to the number of qubits (No. Qubits) in the state space register. No.
Param. shows the number of parameters when the decoherence noise is not included for
optimisation.

State Space Workspace HD (Pre) HD (Post) % Distance Runtime (×10−3 sec)
4 4 0.033 0.0048 85.48 ↓ 8.1
8 6 0.127 0.045 64.57 ↓ 11.9

Table 5.4 Results showcasing the efficiency of the UNM when the decoherence and dephasing
parameters are also optimised for 100 generations of the genetic algorithm. HD (Pre) and
HD (Post) are the HD between the probability distributions of the quantum computer
and the simulator pre-optimisation and post-optimisation (along with standard deviation,
± s.d., rounded up to three decimal points) respectively; ↑ or ↓ mean increase or decrease
in the distance between the distributions. The size of workspace is the number of qubits
necessary for the computation (i.e. ancilla included). The runtime showcased is the average
of the three optimisation routines.

In order to examine the effects of including the decoherence and dephasing parameters
T1(q) and T2(q) in the optimisation routine, a number of experiments were conducted
using the methodology in question. As mentioned above, these parameters need to be
considered per qubit in the system, including the ancilla and coin qubits. Considering the
two optimisation routines analysed in Section 5.2, for a state space of N = 4 the number of
parameters that need optimising are 17, calculated as follows: 9 parameters that represent
the hardware infidelities and SPAM errors, as shown in Section 5.2, plus 8 relaxation and
dephasing times T1(q) and T2(q), one for each of the four qubits in the workspace (i.e.,
2 × 4). For N = 8 the number of parameters is 26: 14 for the hardware and SPAM errors
plus 12 relaxation and dephasing times, one for each of the six qubits in the workspace
(i.e., 2 × 6). Table 5.4 shows the results of a GA parameter optimisation routine with 50
generations.

A comparison of the results showcased in Tables 5.4 and 5.1(b) can lead to some very
interesting conclusions. As is evident from the percentage of decrease in the distance
between the distributions of the simulated quantum walk and the evolution of the quantum
computer, the optimisation performs better in both cases when the decoherence parameters
T1(q) and T2(q) are excluded from the optimisation. There are a couple of reasons for
this, the most important of which is the fact that with more parameters to optimise, less
space of the potential optimal parameters is searched. Secondly, the thermal relaxation
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and dephasing model requires T2(q) ≤ 2T1(q), which means that this condition needs to
be enforced within the parameter optimisation, something that will, again, limit the space
within which the GA can look for the optimal parameters.

Thus, the decision not to include the relaxation and dephasing parameters in the
optimisation is justified by the above findings. Table 5.4 shows that the two-qubit
quantum walk post-optimisation offers a similar increase in efficiency for half the generations
(i.e., 50) as when also optimising the decoherence parameters for 100 generations (i.e.,
84.85% vs 85.48% respectively). For the three-qubit quantum walk and the same number
of generations the optimisation without the decoherence parameters approximates the
quantum computer better than when the decoherence rates are optimised (i.e., 72.44% vs
64.57% respectively).

5.3 Discussion
This chapter enhances the quantum noise modelling approach implemented in Chapter 4.
The unified noise model uses a number of hardware-calibrated noise parameters in order to
simulate the noisy quantum evolution within the computer. In order to further improve the
efficiency of the UNM, this chapter implements a classical optimisation routine relying on a
genetic algorithm in order to produce a set of parameters that provide better approximation
of the evolution within the quantum computer. A large number of experiments have shown
that the noise parameters post-optimisation offer a better approximation of the quantum
computer behaviour.

The novelty of the presented work is twofold: first, the idea and framework for such a
technique, has not been carried out before and secondly, the unified noise model allows
for such an optimisation (unlike other models (for example the IBMQ models compared
with the UNM in Chapter 2). Further improvements in the accuracy of the optimised
parameters could be obtained by adjusting the characteristics of the genetic algorithm, like
implementing a larger number of iterations during the optimisation, or even experimenting
with other optimisation techniques.

The one downside of the proposed methodology is the execution time of the GA
routine when optimising the parameters of larger quantum systems. It is expected that
a larger number of parameters would mean a lengthier optimisation process. Even so,
the main source of the spikes observed in execution times is the fact that, during the
fitness evaluation of the noise parameters, the GA needs to run a noisy simulation using
the UNM. This is the only way to receive an indication of the performance of the noise
parameters. For larger quantum walks, or indeed any scaling algorithm that could benefit
from this technique, it is well-known that classical computers will struggle exponentially
during simulations.

Finally, a very interesting extension to this work could be provided by employing a
quantum genetic algorithm (QGA) in order to increase the efficiency of the optimisation
routine. There have been a few studies regarding the efficiency of such a construct [146–
148]. It is expected that, within the NISQ era, such optimisation routines would be very
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lengthy when run on a quantum computer. Thus, as it also becomes evident from the
results presented in this thesis, the employment of a QGA to optimise the calibrated error
rates lies far from the capabilities of near-term quantum computers due to the intense
levels of noise. Nevertheless, when larger and more fault-tolerant machines or better
error-correction techniques are available, the idea of QGA for noise parameter optimisation
represents a real possibility.

5.4 Future Work
Further improvements in the accuracy of the optimised parameters could be obtained in
the future by potential adjustments of the characteristics of the genetic algorithm. Such
adjustments could include, for example, more iterations of the optimisation routine (i.e., a
larger number of generations), allowing the genetic algorithm to explore and evaluate a
larger space of potential error rates.

Programmatically, the GA methods could benefit from research around ways to lower
the runtime of the optimisation, especially on large systems where the number of parameters
increases dramatically. This thesis does not attempt to optimise the execution time of the
routine, but it only attempts to present a novel methodology for such an achievement.



Chapter 6

Program Benchmarking Near-term
Quantum Computers

This far, it is evident that quantum noise is a challenging obstacle. This thesis has
worked extensively with noise modelling, engineering a model to better approximate a
real quantum evolution and extensively discussing quantum walks, both in the context of
circuit characteristics and as a tool for experimenting with the effects of noise. Based upon
the produced knowledge, the last of the target topics set out in Chapter 1 is researched
here: designing a framework for benchmarking quantum computers.

The outline of this chapter is as follows. Section 6.1 offers an introduction to the basic
ideas and challenges of program benchmarks, as well as their novel use within quantum
computing. Moving on, the necessary preliminary methods for the research are presented
before the framework and benchmark metrics are introduced in Section 6.3. The proposed
methodology is then used for a number of experiments, which showcase its utility by
benchmarking three IBMQ computers. Finally, the chapter concludes with a discussion of
the findings and an outline of potential future work.

The research presented in the chapter has been submitted for publication and the
e-print can also be viewed on arXiv [149].

6.1 Program Benchmarking Quantum Machines
The process of benchmarking quantum computers aims to determine the performance of
a quantum computing system under an appropriate, pre-determined set of metrics. In
recent years, the increasing industrial and academic attention towards the field of quantum
computing has generated great advances, both in terms of hardware (i.e., number of
qubits, higher resilience and quantum volume, etc.) and software engineering. Quantum
computers are constantly getting bigger and better. Within the Noisy Intermediate-Scale
Quantum (NISQ) era [35], benchmarking the capabilities and performance of quantum
computers when executing quantum programs is of even greater importance, especially for
assessing key capabilities, like scalability or resilience to noise.
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An intuitive approach to benchmarking quantum systems is establishing a set of
quantum programs and measuring the performance of a quantum computer when executing
each one. Such a procedure, also called program benchmarking, gains more merit in a
scaling environment, thus satisfying a desirable characteristic of novel benchmarks as bigger
quantum computers are built. There are various advantages to program benchmarking
quantum computers, such as benchmarking the limits and behaviour of a quantum machine
within a scaling, computationally intensive environment and particularly testing the system
when performing a task (for example, a high-level quantum algorithm) that has potential
applications in the “real-world”.

Various companies appear to favor such an approach to examine the capabilities of
their quantum systems. IonQ for example have tested their quantum computer using
the Bernstein-Vazirani [150] and the Hidden Shift [151, 152] algorithms. The metric
for performance was the likelihood of measuring the correct output [153]. On the other
hand, Google has focused on the problem of quantum sampling for benchmarking their
quantum systems. The relevant experiments have achieved results that, according to Google,
demonstrate quantum supremacy [154]. In the latter case, while the chosen application was
not particularly useful in a “real-world” scenario, its use in the implemented benchmarks
excels at demonstrating the computing power of the system. Thus, a logical question
arises, highlighting the difficulty of creating quantum program benchmarks:

Which benchmarks are more insightful for characterising the performance of quantum
devices?

Within the current state of the field, there is a large number of competing quantum
technologies, like superconducting [155], trapped-ions [156], silicon CMOS [157], photonics
[158], and more. It is likely that a variety of quantum technologies will still exist post-NISQ
era, either in a similar or alternative format, with each approach to quantum hardware
being significantly different from the next. In benchmarking terms, the existence of
different competing quantum technologies pose a major challenge. The technologies have
different topologies and use different approaches for engineering the qubits, which in turn
means that each qubit technology exhibits different characteristics and behaviour, and
thus have unique strengths and weaknesses. As a simple example, the connectivity of an
ion-trap computer provides a large advantage on some benchmarks over a superconducting
quantum computer [159].

It is clear that quantum systems can behave differently on different benchmarks, which
introduces another issue, that of invested interests. More specifically, invested interests
characterises a situation when one uses benchmarks that are expected to perform well
on a current system of interest [160]. While impressive considering the complexity of
their technology, current quantum computers are very small compared to the computers
expected to exist in the coming years, as the field expands and develops. Hence, current
benchmarks are also very small and relatively simple compared to truly useful programs
that future quantum machines are expected to execute. While running smaller versions of
real-world applications introduces error, and is accepted in classical benchmarking, this is
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exacerbated for quantum computers. Entirely new issues may be introduced when scaling
up and it is difficult to say whether performances measured today are good indicators
of future performance. For example, consider the IonQ computer [153] which has all 11
qubits fully-connected. This configuration is possible at this scale, but this might not be
true for a system with hundreds or thousands of qubits, i.e., due to limiting factors like
massive cross-talk or excessive complexity of the hardware connectivity. Alternatively,
such a system may require multiple fully-connected groups of qubits and communication
among said groups will need to be realised, engineered and orchestrated differently [161].
This introduces additional complexity which is not found in today’s small-scale quantum
benchmarks.

Thus, considering the remarks made above, the question posed earlier can be refined
as follows:

Which quantum processes would be useful for program benchmarking quantum computers
in the future?

Famous algorithms such as quantum Markov chains [162], Shor’s [163], Grover’s [4] and
quantum chemistry [159, 164, 165] are some obvious examples. Even if, for the most part,
these algorithms will remain out of reach for near-term quantum computers (i.e., within
the NISQ era) either due to excessive noise during the computation or limited number of
qubits in the QPU, there is much to be gained from analysing their scalability and reaction
to noise. Currently, classical-quantum hybrid algorithms [166–170] are popular due to
their innate ability to make use of the limited resources of NISQ computers. Another
example of an algorithm that holds great potential for benchmarking is quantum walks,
due to their susceptibility to noise and clear quadratic advantage over classical random
walks (see Chapter 3).

Inspired from the above conundrums, this chapter revolves around the use of high-level
quantum algorithms to benchmark three of the newer IBM superconducting quantum
computers, also introduced in Section 2.2.2: the IBMQx5 Bogota and Santiago and the
IBMQx7 Casablanca machines, with architectures shown in Figures 2.3(a) and 2.3(b)
respectively. The choice of quantum algorithms is crucial, as it is essential for them to be
(i) scalable, in order to be able to face the challenge of the growing number of qubits in
quantum computers, (ii) predictable in a way that allows one to clearly recognise its noisy
behaviour, and (iii) demonstrate clear quantum advantage. With these criteria in mind,
this thesis focuses on five quantum algorithms: (i) discrete-time quantum walks [171],
(ii) continuous-time quantum walks [23], (iii) a circuit simulating the continuous-time
quantum walk by decomposing its Hamiltonian to a sequence of Pauli gates, (iv) quantum
phase estimation [172] and (v) Grover’s algorithm for quantum search [4]. As mentioned
above, using programs in order to benchmark computers is not an original idea. The
contributions of this chapter are mainly identified around the novelty of the proposed
framework, the experiments, results and the analysis that follows, as well as the algorithms
used for benchmarking. Finally, it is noteworthy that using a continuous-time quantum
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Parameter Error Type No. Parameters
pr Gate error rates r

pm State preparation error rates m

ps Measurement error rates s

T1 Thermal relaxation times n

T2 Dephasing times n

Table 6.1 The noise parameters and number of noise parameters for each type of error
within the UNM; n is the number of qubits in the system, m is the number of qubits that
are measured, s is the number of state preparations that occur and r is the number of
distinct types of gates implemented in the architecture, each considered once per qubit or
pair of qubits.

algorithm and its Hamiltonian decomposition for benchmarking a (digital) quantum
computer represents a novel attempt in the field.

6.2 Preliminary Methods
Before moving to identifying the benchmark framework and experiments, it is essential to
present some preliminary methods that will play a central role in the research. To this
end, this section offers a reference to the quantum algorithms and how they satisfy the
criteria for program benchmarks, their respective circuits, the benchmark metrics, i.e., the
indicators that encapsulate the performance of a quantum computer.

6.2.1 Unified Noise Model and Architecture Awareness

Aiming for a more comprehensive presentation of the present chapter, the noise model
used to approximate the noisy behaviour of quantum computers is presented. This is
the unified noise model (UNM), as it was engineered in Chapter 4. The UNM combines
three sources of error: (i) hardware infidelities in the form of gate, state preparation and
measurement errors, (ii) decoherence in the form of thermal relaxation and (iii) dephasing
of the qubits. The experiments in Chapter 4 show that the UNM performs very well at
approximating the behaviour of the IBMQ 15-qubit Melbourne computer and better than
other state of the art noise models at the time.

The main characteristic of the UNM that makes it ideal for this work is its architecture
awareness: the architectural graph that encompasses all the information regarding the
connectivity of the qubits within the quantum processing unit (QPU) gets encoded within
the noise model itself. Additionally, the UNM uses a number of noise parameters calibrated
from the machine itself, as discussed in Section 4.2. These are parameters that express the
error rates of the gates, state preparations and measurements as well as the time it takes
for the qubits within the QPU to decohere and dephase (also presnted here in Table 6.1 for
convenience). Each noise parameter is unique and corresponds to each qubit individually
or pair of qubits.
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6.2.2 The Quantum Algorithms

One of the major decisions related to the program benchmark framework is the pro-
grams/algorithms used to carry out the benchmarking process. As discussed above, it
is essential for these algorithms to fit within the trend of the quantum computing field.
Thus, there are three major criteria for rendering an algorithm “suitable” for a program
benchmarking application, defined as follows:

Definition 6.1 (Criteria for algorithm selection). There are three characteristics identified
as necessary for an algorithm to be used within the proposed program benchmarking
framework.

1. Scalability. The algorithm should be able to scale up (or down) and run on
increasingly larger quantum systems. This characteristic is essential for choosing
an algorithm that can run on variable QPUs but also carry over the benchmarking
framework on future quantum computers.

2. Predictability. The algorithm should produce a result that is easily predictable.
An important addition to predictability is noise susceptibility: the algorithm should
provide a result whose distortion under the effects of noise is easily distinguishable
from the ideal evolution.

3. Quantum advantage. The algorithm should provide a computational speed-up over
its classical counterpart or, in other words, represent a possibly relevant real-world
application.

As discussed earlier, in order to showcase the program benchmarking framework, this
thesis identifies five algorithms of interest: (i) discrete-time quantum walks (DTQW),
(ii) continuous-time quantum walks (CTQW), (iii) Pauli decomposition of the CTQW
Hamiltonian (PD) (iv) quantum phase estimation (QPE) and (v) quantum search (QS).
These algorithms, or the relevant theory, were introduced in Chapter 1, DTQW in Section
1.2.1, CTQW in Section 1.2.2, the Hamiltonian simulation theory in 1.1.2, quantum phase
estimation in Section 1.2.4 and Grover’s algorithm for quantum search in Section 1.2.3
respectively. The sections below explain in more detail the reasons the selected algorithms
are suitable for program benchmarking.

Discrete-time Quantum Walks

Quantum walks (DTQW) are the quantum mechanical analogue of a classical random walk
on a graph or a lattice [171, 61, 173]. They are considered for this research as they exhibit
intrinsic properties that render their evolution easily predictable and highly susceptible
to noise [61, 174], making them an ideal candidate for benchmarking a quantum device.
A more comprehensive review of discrete-time quantum walks is given in Chapter 3 and
Section 1.2.1.

First of all, a discrete-time quantum walk exhibits modular behaviour, a property
defined in Definition 1.2. This characteristic describes the modular relationship between
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the parity of the number of coin-flips of the walk, the initial state and the current position
of the walker. The interest in the context of benchmarking lies in the fact that this
modular behaviour gets violated in a noisy environment, as clearly shown by the results of
the experimental procedure in Section 3.2.3, satisfying Criterion 2 of predictability from
Definition 6.1. Secondly, quantum walks propagate quadratically further than classical
random walks [171, 8] (also proven in Section 3.1), thus showing clear quantum advantage
over their classical counterparts and covering Criterion 3 in the above definition. Finally,
quantum walks are a highly scalable process. The size of the state-space of a quantum walk
(i.e., the number of states that the walk traverses, represented by the number of qubits in
the relevant register) can easily increase to match the size of the quantum computer that
is of benchmarking interest. This satisfies Criterion 1.

Continuous-time Quantum Walks

Continuous-time quantum walks (CTQW) were first introduced by Fahri and Gutman in
[23]. This algorithm, much like the DTQW, has an easily predictable quantum evolution
that is highly susceptible to quantum noise, satisfying Criterion 2, but exhibit very different
characteristics to the discrete case, thus justifying its selection in addition to DTQW. First
of all, the CTQW evolution is determined by a Hamiltonian, H, instead of a coin-flip and
is driven by a unitary of the form e−iHt. Unlike the DTQW, continuous-time quantum
walks do not exhibit modular behaviour. Although, like DTQWs they feature a quadratic
increase in the walker’s propagation [27, 28], satisfying Criterion 3 for quantum advantage.

Finally, CTQWs are an easily scalable process as adding qubits to circuit can scale up
the size of the state-space (Criterion 1). As far as the current thesis is aware, this is the
first work that uses a continuous-time quantum algorithm to benchmark the performance
of a digital quantum computer.

Pauli Decomposition of CTQW Hamiltonian

This process is not an algorithm itself, but it is essentially an alternative approach to the
continuous-time quantum walk algorithm presented in the previous paragraph. In the field
of quantum computing, the decomposition of quantum Hamiltonians to a set of universal
gates is a well-studied area of research [175–179]. Within this thesis, the interest lies in
decomposing the Hamiltonian of the CTQW using the well-known set of Pauli matrices as
the universal gate set. This leads to an alternative way to implement the CTQW and use
it for the benchmarking process. A more in-depth analysis of the essential elements of this
process is presented in the following Section 6.2.3.

This procedure, often called Hamiltonian simulation as introduced in Section 1.1.2,
adheres to the criteria for a good benchmarking program indirectly via the algorithm it
decomposes. In other words, since the CTQW is suitable for benchmarking, so is the
circuit that implements the decomposition of the CTQW Hamiltonian. Furthermore,
it provides added value to this research since one can evaluate the performance of the
quantum computer when executing the Hamiltonian simulation of a quantum process (i.e.,
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CTQW), as well as provide the tools for a meaningful comparison of the decomposition
with the original algorithm.

Quantum Phase Estimation

The quantum phase estimation (QPE) algorithm is a well-known process used to estimate
the phase (or eigenvalue) of an eigenvector of a unitary operator. More precisely, given an
arbitrary quantum operator U and a quantum state |ψ⟩ such that U |ψ⟩ = e2iπθ |ψ⟩, the
algorithm estimates the value of θ, given an approximation error [180, 172, 181]. A more
comprehensive review of this topic is given in Section 1.2.4.

This thesis aims to exploit three characteristics of the QPE that make it interesting
for program benchmarking. First of all, it is a scalable algorithm as increasing the number
of qubits in the system results in a better accuracy of the estimated phase (Criterion
1). Furthermore, the result of the QPE is easily predictable and highly susceptible to
quantum noise (Criterion 2). Finally, QPE offers clear quantum advantage, achieving
an exponential speed-up over known classical methods, rendering the algorithm one of
the most important subroutines in quantum computing and serving as the building block
of major quantum algorithms, like Shor’s [163] or the HHL algorithm [182]. The latter
characteristic strongly satisfies Criterion 3.

Quantum Search

The last program utilised in the program benchmarking is Grover’s algorithm [4], which
describes a process of searching for a specific item within a database. Within this thesis,
quantum search (QS) is used to look for a specific number s within a set of numbers
S = {0, . . . , 2n−1}, where n is the number of qubits within the quantum system that
participate in the computation.

Quantum search represents an ideal algorithm for benchmarking quantum computers.
The algorithm can scale up to search for an item within a larger database simply by
adding qubits to the relevant quantum register, satisfying Criterion 1. The result is
easily predictable, as it is simply the item (or number, in this case) sought, as well as
susceptible to noise (Criterion 2). Additionally, QS can speed up an unstructured search
problem quadratically, thus making it a very appealing application for quantum computers.
Finally, Grover’s algorithm can serve as a general trick or subroutine to obtain quadratic
runtime improvements for a variety of other algorithms through what is called amplitude
amplification [183] (Criterion 3).

6.2.3 Pauli Decomposition of Continuous-time Quantum Walk
Hamiltonians

One of the most challenging subjects in the field of quantum computing is the so-called
Hamiltonian simulation problem (HSP). The HSP, as introduced in Definition 1.1, encapsu-
lates the attempts to implement a quantum Hamiltonian as quantum circuit. That circuit
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will use a sequence of (most likely) universal gates, like for example, a set of operations
that can be executed on a target quantum computer, or that can be easily decomposed to
a set of gates implemented within the said quantum computer. One such set can be formed
using the well-known Pauli operators. A more extended review of quantum Hamiltonians
and the HSP is provided in Section 1.1.2.

In general, consider an arbitrary quantum system with Hamiltonian, H, of size N ×N ,
where N = 2n and n is the number of qubits in the system, and the set of Pauli operators
S = {σI , σx, σy, σz} with well-known matrix representation. The Hamiltonian, H, can be
decomposed into a sequence of Pauli operators of the set S as follows

H =
∑

i1,...,iN ∈{I,x,y,z}
αi1,...,iN

(σi1 ⊗ · · · ⊗ σiN
) , (6.1)

where the scalar α can be calculated as

αi1,...,iN
= 1
N

tr [(σi1 ⊗ · · · ⊗ σiN
) ·H] .

This is called the Pauli decomposition (PD) of the Hamiltonian driving the evolution of
the quantum system. Intuitively, equation (6.1) results to taking the sum of all tensor
products that arise from computing every possible combination of the Pauli operators (i.e.,
the operators of set S).

Within this thesis, the Hamiltonian decomposition is utilised to engineer a circuit
implementing a CTQW on an N -cycle. The CTQW Hamiltonian can be defined as
Hqw = γA = 1

d
A = 1

2A, where γ = 1/d is the hopping rate between the two adjacent nodes
in the cycle with node degree d = 2 and A is the adjacency (circulant) matrix, defined for
a continuous-time quantum walk of arbitrary size as in equation (1.11).

The next step is to construct the unitary evolution operator that corresponds to the
Hamiltonian of the quantum system. This can be done by exponentiating the Hamiltonian
as e−iHt, where H is a sum of terms that follows the Pauli decomposition of the Hamiltonian,
i.e., a sum of the form of equation (6.1). It is important here to consider two things.
First of all, during the matrix exponentiation, a decomposition of the form e−i(H1+H2)t =
e−iH1te−iH2t, where H1 and H2 are Hermitian operators, is possible iff H1 and H2 commute,
i.e., H1H2 −H2H1 = 0. This rule is naturally expanded for more than two matrices on
the exponent.

Secondly, in the case that not all matrices in the exponent commute, the unitary
operator resulting from the Hamiltonian exponentiation needs to be decomposed using
the Lie-product formula [175] as, introduced in equation (1.4), which is also written here
for convenience:

e−i(H1+H2+... )t ≈
(
e−iH1t/re−iH2t/r . . .

)r
(6.2)

where, for this case, H = ∑
j Hj is the Pauli decomposition of the Hamiltonian to a sequence

of Hermitian terms. Equation (6.2) suggests that one can approximate the left-hand-side
exponent of the Pauli decomposition of the Hamiltonian, e−i(

∑
j

Hj)t, with r repetitions of
the right-hand-side product formula

(
e−iH1t/re−iH2t/r . . .

)
. This approximation exhibits
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a bounded error depending on r [175, 177]. To ensure that the Pauli Hamiltonian
decomposition exhibits error at most ϵ, the bound r can be taken as [175]

r = (||H||2t)2/ϵ,

where ||H||2 is the norm of the Hamiltonian H and t is the continuous-time duration of
the quantum evolution.

6.2.4 The Quantum Computers and Circuits

Within this chapter the interest lies in benchmarking three of the IBMQ computers, the
IBMQx5 Bogota, IBMQx5 Santiago and the IBMQx7 Casablanca machines. A more
detailed review of the above quantum computers is provided in Section 2.2.2. All three of
them exhibit a quantum volume VQ = 32 [64, 41].

Quantum Computer Architectures

As introduced in Definition 2.5, the architecture of a quantum computer is conveniently
described by its architectural graph, i.e., a schematic that shows the locality and connec-
tivity of all the qubits within the QPU. It is essential for the benchmarking procedure
carried out within this research to be architecturally aware, or in other words, to have
knowledge and take into account the connectivity of the qubits within the QPU. This is
also reflected on choosing the UNM, an architecture-aware noise model [85]. Figure 2.3
shows the qubit connectivity of the quantum computers benchmarked in this chapter.

Quantum Circuits and Characteristics

For the implementation of the discrete-time quantum walk, this chapter once again makes
use of the gate efficient approach that is based on generalised-inverter gates, as shown
in Chapter 3. The QPE circuit is based on the work done in [184] and heavily relies on
quantum Fourier transform (and its inverse) [185] to estimate the relevant eigenvalue. For
the QS circuit, this thesis makes use of two approaches to the implementation, one with
ancilla qubits (QSa) and one without (QSn) [186].

For the continuous-time quantum walk, the Hamiltonian is automatically implemented
by the Qiskit API when submitted for execution on the quantum computer, thus eliminating
the need for a circuit design. This circuit will, once again, be an automatic decomposition
of the Hamiltonian to the set of gates executable on IBMQ backends, but it will not be
done using the Pauli decomposition. On the other hand, the PD of the Hamiltonian can
be easily implemented on the quantum computers as it already maps the continuous-time
Hamiltonian to a discrete basis gate set decomposition.

It is instructive here to identify four quantum circuit characteristics that are of interest
for benchmarking:

• the number of quantum gates that participate in each circuit;
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• the number of active qubits, or otherwise, the subset of qubits (could, of course, be
all of them) of the quantum computer that are utilised by the quantum circuit (also
called workspace);

• the depth of the circuit, i.e., the longest path between the start of the circuit and a
measurement gate; for consistency, all the measurements are enforced to be at the
end of the circuit, past the last quantum gate applied; and

• the runtime of the circuit on the quantum computer.

Table 6.2 shows those characteristics of the quantum circuits that implement each quantum
algorithm.

6.2.5 Benchmark Indicators: Hellinger Distance

Finally, it is important to find an appropriate metric that will act as the indicator of the
performance of a quantum computer. For this work, the end results of the benchmarking
process will be in the form of a comparison of the quantum computer output distribution
with the distributions resulting from the unified noise model simulations of each machine
and the ideal evolution. Such a comparison allows a full picture of the behaviour of a
quantum computer as opposed to the expected one, giving clear indications of the levels
of noise through the difference between the two results.

It is therefore natural to choose a metric that reflects this difference, and one that has
been used extensively within this thesis: the Hellinger distance. As defined in Definition
4.1, the Hellinger distance offers a concise, efficient and comprehensible way to quantify the
distance between two distributions without the need for them to have the same support,
while at the same time offering a good way to compare the results.

6.3 Framework for Program Benchmarks of Quantum
Machines

This section introduces the novel methodology used to benchmark quantum computers
using high-level quantum algorithms.

6.3.1 The Benchmark Metrics

Following the selection of the Hellinger distance as the metric for comparison between the
experimental results, it is necessary to construct a framework within which this metric will
give clear and instructive information. First of all, there is the need for a more sensible
representation of the benchmark indicators that are based on the HD. To achieve a more
memorable notation, in the following analysis the symbol q denotes the quantum computer,
i the ideal evolution and n the noisy simulation. For example, the subscript q|n denotes
a value that corresponds to the difference between the quantum computer evolution (q)
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Machine No. Gates Size of Workspace Depth QC Runtime ± s.d. (ms)
Bogota 47 3 35 2.41 ± 0.03

Santiago 47 3 35 2.34 ± 0.02
Casablanca 47 3 35 2.54 ± 0.05

(a) Discrete-time quantum walk circuit characteristics.

Machine No. Gates Size of Workspace Depth QC Runtime ± s.d. (ms)
Bogota 19 2 13 2.34 ± 0.04

Santiago 19 2 13 3.01 ± 0.07
Casablanca 19 2 13 2.62 ± 0.01

(b) Continuous-time quantum walk circuit characteristics.

Machine No. Gates Size of Workspace Depth QC Runtime ± s.d. (ms)
Bogota 243 2 183 2.42 ± 0.04

Santiago 243 2 183 2.28 ± 0.06
Casablanca 243 2 183 3.76 ± 0.04

(c) Pauli decomposition of CTQW circuit characteristics.

Machine No. Gates Size of Workspace Depth QC Runtime ± s.d. (ms)
Bogota 93 4 66 2.54 ± 0.01

Santiago 97 4 72 2.26 ± 0.03
Casablanca 100 4 75 2.68 ± 0.06

(d) Quantum phase estimation circuit characteristics.

Machine No. Gates Size of Workspace Depth QC Runtime ± s.d. (ms)
Bogota 497 4 358 2.70 ± 0.08

Santiago 479 4 343 2.56 ± 0.04
Casablanca (a) 788 6 503 2.81 ± 0.04
Casablanca (na) 465 4 336 2.74 ± 0.03

(e) Quantum search circuit characteristics.
Table 6.2 Quantum circuit characteristics for the five quantum circuits. No. gates and
size of workspace are the number of gates and active qubits in the circuit respectively;
depth of the circuit is the longest path between the start of the circuit and a measurement
gate; QC runtime is the approximate average execution time of the circuit on the quantum
computer along with standard deviation (s.d.). For the QS circuit, Casablanca (a) is the
circuit with ancilla, and (na) the circuit without ancilla qubits.

and the noisy evolution (n). Three distances of interest are defined, or otherwise, three
benchmark metrics, as follows.

Definition 6.2 (alpha benchmark). The Hellinger distance between the probability dis-
tribution of the quantum computer evolution, Q, and the ideal distribution, D, namely
hid(Q,D), is the alpha benchmark, with notation αq|i:

αq|i ≡ h(Q,D). (6.3)
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Definition 6.3 (beta benchmark). The Hellinger distance between the probability distri-
bution of the quantum computer evolution, Q, and the distribution resulting from the noisy
simulations, N , namely hnm(Q,N), is the beta benchmark, with notation βq|n:

βq|n ≡ h(Q,N). (6.4)

Definition 6.4 (gamma benchmark). The Hellinger distance between the distribution
resulting from the noisy simulations, N , and the ideal distribution, D, namely hsm(N,D),
is the gamma benchmark, with notation γn|i:

γn|i ≡ h(N,D). (6.5)

As mentioned in Section 6.2.5, the Hellinger distance satisfies the triangle inequality.
Hence, since the benchmarks established in the above definitions describe the pairwise
Hellinger distances between three probability distributions (the quantum computer, Q, the
simulated evolution, N , and the ideal evolution, D), it is possible to derive a relationship
between αq|i, βq|n and γn|i through the Lemma below (whose proof follows simply from
the triangle inequality for a metric).

Lemma 6.1 (benchmarks triangle inequality). Given probability distributions Q, N and
D, as established in the benchmark definitions, the pairwise Hellinger distances between
those distributions, i.e., h(Q,D), h(Q,N) and h(N,D) follow the triangle inequality:

h(Q,D) ≤ h(Q,N) + h(N,D).

Thus, the relevant benchmarks will also follow the triangle inequality as:

αq|i ≤ βq|n + γn|i (6.6)

The above Lemma effectively means that, according to the benchmark definitions, the
deviation of the quantum computer evolution from the ideal (αq|i) will never be greater
than the sum of the expected (i.e., simulated) evolution derived by the levels of noise within
the machine and the distance between the simulated and ideal distributions (βq|n + γn|i).
In other words, defining the benchmark metrics using the Hellinger distance makes it
possible to quantify the confidence on the estimated level of noise during the execution of
the quantum circuit.

6.3.2 The Framework

Each of the definitions in Section 6.3.1 play an essential role in understanding the bench-
marked behaviour of a quantum computer, as will be explained later in this section. For
a better understanding, it is instructive to first describe the process which yields those
benchmarks. Thus, the following sequence of six steps defines the framework for program
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benchmarking quantum computers. Figure 6.1 offers a simple visual representation of the
framework.

Definition 6.5 (Framework for program benchmarking). Program benchmark the efficiency
of an arbitrary quantum computer as follows.

Step 1 Select benchmark method(s). The selection of quantum algorithms that will
be used for benchmarking should adhere to the three criteria described in Section
6.2.2: (i) scalability, (ii) predictability and noise susceptibility and (iii) quantum
advantage.

Step 2 Quantum noise model and simulator. Select or implement a noise model
that approximates the noisy evolution within the quantum machine and a simulator
that can execute the noise model.

Step 3 Run experiments. Design and execute a suitable number of experiments of the
benchmark method(s) (selected on Step 1) on the quantum computer. This step also
includes calibrating the noise parameters that encapsulate the level of noise within
the quantum computer at the time of the experiments.

Step 4 Simulate the noisy evolution. Use the noise model in order to simulate the
noisy evolution of the quantum computer. Use the calibrated noise parameters to
indicate the levels of noise on the time of the experiment, as described in Step 3.
Due to constant fluctuations of the noise parameters, this step is necessary in order
to provide a more accurate representation of these parameters, and in extent, the
intensity of noise at the time of the execution of the experiment/algorithm.

Step 5 Simulate the ideal evolution. This can be done either through simple noise-free
simulations or by calculating the probabilities through the quantum statevector.

Step 6 Calculate the benchmarks. The final benchmark metrics αq|i, βq|n and γn|i

are the Hellinger distances between the quantum computer, the UNM and the ideal
evolution in the setting described in Definitions 6.2, 6.3 and 6.4.

Following the benchmarking framework one can extract meaningful results from a series
of comparisons between the benchmark metrics, αq|i, βq|n and γn|i. The βq|n benchmark
essentially showcases how closely the noise model simulates the behaviour of the quantum
computer. The αq|i benchmark shows how far the behaviour of the quantum computer
falls from the noise-free case thus giving an estimate of the overall computer performance
under the effects of noise. The comparison between the βq|n and αq|i benchmarks can
highlight valuable information: if βq|n < αq|i the noise levels in the quantum computer are
closer to the estimated ones from the noise simulations; on the opposite case the computer
operates closer to the ideal evolution. In the latter case the quantum computer behaves
more efficiently with lower level of noise than expected, thus giving us more confidence
regarding the computational result.
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Fig. 6.1 Framework for program benchmarking quantum machines in six steps.

The γn|i benchmark, even though it can be used as an estimate of the noise levels in
the quantum computer, does not give any relevant information on its own. The value
comes when considering the γn|i benchmark together with the αq|i benchmark. First of
all, the closer the values of αq|i and γn|i are, the smaller the value of βq|n (if βq|n = 0 then
αq|i = γn|i and vice versa). Additionally, if αq|i > γn|i, then the noise model, and hence
the noise parameters, underestimate the levels of noise during the quantum computer
evolution, with the opposite being true if αq|i < γn|i. Moreover, the absolute difference
|αq|i − γn|i| can quantify this noise over- or underestimation. Precisely, the smaller the
absolute difference the smaller the error in estimation. This information is useful to the
benchmarking process as it further highlights whether the machine is more or less noisy
than estimated while also showing the efficiency of the machine calibration techniques.

Finally, further interesting remarks can be made using the triangle inequality from
Lemma 6.1. From equation (6.6) follows that βq|n ≥ αq|i − γn|i. Furthermore, as can be
realised from the above analysis, a comparison between αq|i and γn|i can show whether
the calibrated noise parameters over- or underestimate the level of noise during the
evolution on the quantum computer, and the absolute difference |αq|i − γn|i| can give an
indication of the scale of the error in estimation. Importantly, the above inequality does
not hold for absolute values when subtraction takes place (i.e., for an inequality of the
form |βq|n| ≥ |αq|i − γn|i| when γn|i > αq|i). Considering this, one can interpret the triangle
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inequality as a measure of the confidence on the calibrated parameters encapsulating a
picture of the noise that is accurate enough to provide a good estimation of the quantum
evolution, expressed as follows:

• If βq|n ≥ |αq|i − γn|i|, then the over- or underestimation of the noise is small enough
to provide estimates of the quantum evolution with high confidence.

• If βq|n < |αq|i − γn|i|, then the calibrated parameters generate low confidence on the
levels of noise.

6.4 Experiments and Results
Following the presentation of a comprehensive framework for generating the benchmarks
for a quantum computer, this section showcases the process of benchmarking the three
IBMQ machines mentioned above (Bogota, Santiago, Casablanca).

6.4.1 Experimental Setup

Regarding the experimental setup for the benchmarking experiments, the quantum circuits
that implement the chosen quantum algorithms are executed. In the case of the DTQW,
just one step of the algorithm (i.e., one coin-flip) is run on a workspace (i.e., number
of active qubits used by the circuit) of three qubits, or in other words, a state space of
N = 4 (needing n = 2 qubits for its representation) and one qubit for the coin. The
walk is initialised on state |0⟩, as the previous work done in Chapter 3 shows that this
configuration is satisfactory for errors to take place and the behaviour of the quantum
walk to evolve in a predictable manner.

For the CTQW and its PD, the experiments are carried out on a small two-qubit
state-space, i.e., four different states, similar to the discrete case. The main reason for
this choice is that the Pauli decomposition gets excessively large for a quantum walk on a
three-qubit space or larger, something that hinders the runtime of the experiments, while
the results are not in any way more instructive. The algorithms are implemented for a
continuous (arbitrary unit) QPU time of t = 3.

Next, the QPE routine is tailored to estimate a phase of θ = 2π/3 using a workspace of
four qubits. The theoretical probability of success can be estimated at 0.688. Finally, the QS
implementation performs an unstructured search for the decimal element |s⟩ = |10⟩ within
a four qubits state-space, with easily deductible binary representation: |10⟩dec = |1010⟩bin.
The chosen number s will be searched within a four-bit dataset containing numbers |0⟩ to
|15⟩. The QS algorithm is run for three iterations and shows a theoretical probability of
success estimated at 0.96. Table 6.3 shows more comprehensively the initial configuration
for each benchmarking algorithm.

Each algorithm is run independently 100,000 times on the three chosen quantum
computers. Noisy simulations are then executed using the UNM and the noise-free
simulations via the ideal simulator on [63], thus reproducing the noisy and the ideal
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Algorithm No. Qubits So. Workspace Duration Probability of Success
DTQW 2 3 1 (coin-flip) psucc = 0.5 in states |1⟩ and |3⟩
CTQW 2 2 t = 3 p|2⟩ = 0.99, p|1⟩ = p|3⟩ = 0.005

PD 2 2 t = 3 p|2⟩ = 0.99, p|1⟩ = p|3⟩ = 0.005
QPE 3 4 1 (iteration) psucc = 0.688 in state |3⟩
QSa 4 6 3 (iterations) psucc = 0.96 in state |10⟩
QSn 4 4 3 (iterations) psucc = 0.96 in state |10⟩

Table 6.3 The initial configuration for the quantum walk (DTQW), continuous-time
quantum walk (CTQW) and its Pauli decomposition (PD), quantum phase estimation
(QPE) and quantum search algorithms with ancilla (QSa) and without ancilla (QSn) for
the benchmarking experiments. No. qubits is the number of qubits in the state space, So.
workspace is the number of active qubits utilised by the circuit, iterations is the number
of repetitions of the quantum circuit and the probability of success is the theoretical
probability of the algorithm to give us the correct (or expected) result.

quantum evolutions respectively. After the experiments and simulations are concluded,
the benchmarks αq|i, βq|n and γn|i are computed, as defined in Section 6.3.

A visual representation of the comparison between the distributions resulting from
the quantum computer executions and the ideal simulations for each quantum algorithm
are shown in Figure 6.2. Each individual graph in the figure portrays the probability
distributions for the execution of one of the quantum algorithms used for benchmarking. It
also includes the probability distribution of the ideal evolution of the respective quantum
algorithm. A further comparison between the quantum computer and the individual UNM
distributions for each machine is given in Appendix E.

6.4.2 Results

After the algorithms have been setup as described above and the experiments and simulators
have been executed on the quantum computer and relevant simulators, the results of the
experimental procedure are shown on Table 6.4, categorised for each machine of interest.
A further visualisation of the results is given in Figure 6.3.

It is important at this point to emphasise an advantage of the structure presented for
program benchmarking quantum computers. The use of the Hellinger distance to define
the three benchmarks (αq|i, βq|n and γn|i) allows the comparison of the performance of
different quantum algorithms on the same basis, i.e., a dimensionless quantity. In other
words, through the proposed framework, apart from measuring the efficiency of a quantum
processor, additional information can be gathered while also comparing the efficiency
of different circuit implementations for the selected algorithms. This is done here for
the two approaches on implementing the CTQW on a gate-based computer, one that is
done through the IBMQ API and one that uses the Pauli decomposition of the CTQW
Hamiltonian (see Section 6.2.3).
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(a) DTQW distributions. (b) CTQW distributions.

(c) PD distributions. (d) QPE distributions.

(e) QS distributions.

Fig. 6.2 Comparison of the probability distributions for each of the algorithms when
executed on the quantum machines and when simulated in a noise-free environment.
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Fig. 6.3 Visualisation of the three benchmarks, αq|i, βq|n and γn|i for each of the three
quantum computers (mapped to the left-hand side y-axis) when executing the five quantum
algorithms. Note: the subscripts q represents the quantum computer distribution, n the
UNM simulation and i the ideal simulation.

Discrete-time Quantum Walk Benchmarking

The DTQW implementation produces a circuit with a relatively small depth and number
of gates. The βq|n benchmark measures how close each quantum computer operates to
the expected noise levels (indicated by the noise parameters and simulated by the UNM).
Thus, in the small circuit case of the DTQW, the Bogota machine operates much closer to
the expected evolution than the other computers with the smallest βq|n.

The αq|i and γn|i benchmarks lead to a coherent picture of the overall performance
of the quantum computers. In the DTQW case, the αq|i benchmark is relatively small
compared to the larger algorithms. This means that the quantum computers are not as
erroneous as in the larger circuit cases, an expected result. A comparison between the αq|i

and γn|i benchmarks shows that αq|i < γn|i for all the machines, indicating that the the
calibrated parameters overestimate the levels of noise during the evolution of the circuit.
Finally, βq|n ≥ |αq|i − γq|i| for all quantum computers, which implies high confidence for
the noise level estimates.

Continuous-time Quantum Walk Benchmarking

The CTQW circuit is the smallest circuit used for benchmarking, which implies that the
machine evolution will be reasonably close to the ideal case for this circuit. Evidently,
the αq|i benchmark is by far the smallest for the CTQW algorithm on all three machines.
As αq|i < γn|i for the Bogota and Santiago machines, the noise parameters overestimate
the noise for those two computers, whereas they slightly underestimate the noise for the
Casablanca computer.
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Machine αq|i βq|n γn|i |αq|i − γn|i| QC Runtime (sec) Sim. Runtime (sec)
Bogota 0.287 0.025 0.291 0.004 240.7 3,331.5

Santiago 0.321 0.054 0.362 0.041 234.2 3,119.3
Casablanca 0.269 0.076 0.331 0.062 254.5 4,626.6

(a) Quantum walk algorithm on two qubits.

Machine αq|i βq|n γn|i |αq|i − γn|i| QC Runtime (sec) Sim. Runtime (sec)
Bogota 0.139 0.096 0.234 0.095 234.4 3,026.9

Santiago 0.154 0.035 0.184 0.030 301.7 2,905.7
Casablanca 0.247 0.044 0.239 0.008 262.1 3,035.2

(b) Continuous-time quantum walk algorithm on two qubits.

Machine αq|i βq|n γn|i |αq|i − γn|i| QC Runtime (sec) Sim. Runtime (sec)
Bogota 0.436 0.041 0.467 0.031 242.7 11,764.9

Santiago 0.514 0.084 0.465 0.049 228.5 11,618.6
Casablanca 0.577 0.039 0.612 0.035 376.4 12,861.3

(c) Pauli decomposition of the CTQW algorithm on two qubits.

Machine αq|i βq|n γn|i |αq|i − γn|i| QC Runtime (sec) Sim. Runtime (sec)
Bogota 0.469 0.177 0.351 0.118 254.2 6,287.1

Santiago 0.488 0.144 0.369 0.119 226.8 6,304.2
Casablanca 0.524 0.267 0.351 0.173 268.3 7,741.1

(d) Quantum phase estimation algorithm on three qubits.

Machine αq|i βq|n γn|i |αq|i − γn|i| QC Runtime (sec) Sim. Runtime (sec)
Bogota 0.754 0.014 0.752 0.002 270.4 22,834.3

Santiago 0.751 0.051 0.738 0.013 256.7 21,923.2
Casablanca (a) 0.760 0.040 0.752 0.008 280.1 36,425.7
Casablanca (na) 0.763 0.061 0.738 0.025 274.1 22,889.9

(e) Quantum search algorithm on four qubits.
Table 6.4 Results from benchmarking the three machines for each of the algorithms. The
benchmark indicators αq|i, βq|n and γn|i are the HD between the quantum computer and
the UNM, the quantum computer and the ideal distribution and the UNM and the ideal
distribution respectively. QC runtime is the cumulative execution time in seconds for
100,000 iterations of each algorithm on the respective machine; Sim. runtime is the time
it takes to simulate for 100,000 iterations the behaviour of each machine when executing
the algorithms.

For the CTQW, the Santiago machine operates closer to the expected levels of noise
according to its error rates, with the smallest βq|n. Similarly to the DTQW, the benchmarks
point to confidence in the calibrated noise as βq|n ≥ |αq|i − γq|i|.
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Pauli Decomposition Benchmarking

Unlike the CTQW circuit, its Pauli decomposition is a large and quite deep circuit, which
means that one should expect a very noisy evolution. The small βq|n values show that the
quantum computers operate relatively close to expectations.

As shown by the large values of αq|i for all quantum computers, the PD circuit is quite
error-prone compared to the two previous cases of the quantum walk. Thus, an important
conclusion that can be safely drawn is that, for a two-qubit continuous-time quantum
walk, the Pauli decomposition of its Hamiltonian leads to a more complex and noisier
circuit than the decomposition to base gates done automatically through the IBMQ API.

The γn|i benchmarks show that the parameters overestimate the noise of the Bogota
and Casablanca machines and underestimate the noise within the Santiago computer.
Furthermore, βq|n ≥ |αq|i−γq|i| points to high-confidence on the noise estimates. This result
is important as, through the benchmarks, there is evidence produced on the performance
of two different techniques for implementing the same algorithm.

Quantum Phase Estimation Benchmarking

Moving on, the QPE circuit is slightly more complex than the DTQW circuit. An overall
bigger βq|n benchmark on every machine indicates that the QPE circuit execution deviates
slightly more from the expected evolution compared to the other algorithms. This could
be the result of random fluctuations of the calibrated parameters.

Following the αq|i benchmark, one can extract similar results for the quantum computers
as the PD circuit benchmarks, finding that the larger values indicate that the quantum
computer performance is hindered by the size of the circuit. Interestingly, it is evident
that αq|i > γn|i for all the quantum computers, showcasing that the calibrated parameters
underestimate the noise and one can expect noisier results from all the quantum computers
for computations of similar size. There is high-confidence of the calibrated parameters as
βq|n ≥ |αq|i − γq|i| for all experiments.

Quantum Search Benchmarking

Finally, the quantum search circuit represents the largest implemented algorithm and
thus, it is expected that it will also be the noisiest. Following the above methodology, it
is found that the βq|n benchmark shows the smallest values for each machine, indicating
that the quantum computers operated close to the predicted evolutions. The αq|i and
γn|i benchmarks are quite close, increasing the confidence on the estimated noise levels.
Nevertheless, it is safe to conclude that the machines in the case of the QS exhibit intense
levels of noise, as the αq|i benchmarks are very large.

A quick comparison between the αq|i and γn|i shows that the calibrated parameters
offer a very good picture of the noise within the quantum computer in this experiment.
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Analysis

A comparison of the αq|i and γn|i benchmarks shows that when executing the DTQW and
CTQW circuits, the machines are less error-prone than implied by the UNM simulations
(and in extent, the associated calibrated noise parameters) with the opposite being true
for the PD, QS and QPE. Thus, it is concluded that the machines are better at executing
small circuits, an expected result. Additionally, a larger numerical difference between
αq|i and γn|i indicates a more efficient computer behaviour. For example, Casablanca is
the most efficient in terms of noise for the DTQW case as αq|i < γn|i with the biggest
difference. Similarly, in the QS case the Casablanca machine is the least efficient with
αq|i > γn|i. Here, as there are two different implementations of the QS algorithm, it also
is possible to compare them with each other. The benchmarks show that the QS circuit
with ancilla is closer to the expected evolution by the UNM, shown by βq|n, and to the
ideal evolution, shown by αq|i, although not by much, shown by αq|i versus γn|i.

The results from the above analysis are crucial as they can lead towards the selection
of a machine appropriate to specific circuit needs. Additionally, a comparison between
the continuous-time quantum walk circuit and its Pauli decomposition is provided. This
fact is clearly reflected in the benchmarks, as the values of αq|i are much lower for the
CTQW circuit, while both circuits operate within expectations (small βq|n values) and
are not massively over- or underestimated by their noise parameters (small |αq|i − γn|i|).
Thus, it is concluded that, for the two-qubit case, a Pauli decomposition of the CTQW
Hamiltonian leads to a less efficient circuit.

Overall, the general benchmarking results can be concentrated as follows. In the
smallest circuits (i.e., CTQW and DTQW case) the βq|n benchmarks show how close the
computers operate to the expected levels of noise. The Casablanca machine shows the
best αq|i benchmark, i.e., it is the closest to the ideal evolution, closely followed by Bogota
and with Santiago being the furthest away. The UNM and the calibrated parameters
always overestimate the noise in this case as αq|i < γn|i, thus showing that all the quantum
computers exhibit relatively low levels of noise when executing small circuits. In the
slightly deeper circuit of the QPE, the Bogota machine outperforms the others, followed by
Santiago and Casablanca. In this case though the βq|n benchmark indicates slightly bigger
deviation from the expected level of noise which is biggest on the Casablanca machine. The
UNM and calibrated parameters always underestimate the noise in the quantum computer
as αq|i > γn|i, meaning that the quantum computers are more error-prone. Lastly, in
the largest QS and PD circuits, the benchmarks indicate that all the machines operate
close to the noise model with low βq|n benchmarks and exhibit very low performance as
the αq|i benchmarks are large, getting close to 1 for the QS. The noise model slightly
underestimates the noise, but in this case of very deep circuits, the benchmarks show that
the machines will not produce any meaningful results, an expected outcome.
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6.5 Discussion
This thesis has presented an approach to benchmarking quantum computers using scaling,
high-level quantum algorithms considered as attractive “real-world” problems. To this end,
three benchmark metrics are defined, each highlighting different aspects of the machine’s
efficiency either as a standalone or through comparisons between them. Each benchmark
metric describes the difference between two quantum evolutions and together they follow
the triangle inequality.

In order to better present the main characteristics of the benchmarks, the discussion can
be streamlined as a comparison with the widely used metric of quantum volume [41], which
quantifies the expected size of a circuit that can be reliably run on a quantum computer.
In contrast, the program benchmarks showcase the performance of the quantum computer
when running a specific circuit itself. This approach has advantages and disadvantages over
architecture-neutral benchmarks. First of all, the benchmark metrics showcase the exact
performance of a QPU when running the quantum circuit. Additionally, they highlight
the difference with an expected evolution and an ideal evolution, a result that better
identifies the weaknesses of the machine in a more structural and comprehensive manner.
More specifically, the metrics allow one to realise the manner and intensity by which the
computer deviates from the expected evolutions. Finally, as mentioned in Section 2.2.2, all
three machines utilised for the experimental procedure possess the same QPU technology
and exhibit the same quantum volume of 32. On the other hand, this benchmarking
methodology exhibits different metrics and results for each quantum computer. Thus, the
proposed metrics capture the performance of each QPU more thoroughly and provide a
more detailed representation of their performance.

In terms of disadvantages, the proposed program benchmarking process is slower
compared to the calculation of the quantum volume. This is an expected outcome as it is
necessary to run a number of experiments on the quantum computer as well as the noisy
and ideal simulations. Moreover, the flip-side of the architecture-specific nature of the
benchmark metrics dictates that each computer will exhibit different benchmarks when
executing different algorithms.

In conclusion, the proposed architecture-specific program benchmarks showcase the
performance of a quantum computer in a “real-world” environment, highlighting their
efficiency when running a specific algorithm, as well as carry out meaningful comparisons
between related circuits (e.g., the CTQW vs the Pauli decomposition of its Hamiltonian).
On the other hand, architecture-neutral benchmarks like the quantum volume are more
generic and excel at showcasing the limitations of QPUs when running arbitrary quantum
circuits.

This work has shown that using quantum algorithms to benchmark quantum computers
in a well-structured environment can stress different aspects and very informatively highlight
the performance of a quantum computer. Additionally, scaling quantum algorithms, when
applied through the proposed benchmark framework, excel as methods for benchmarking
near-term quantum computers. Finally, the resulting benchmark metrics represent an
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excellent indicator of the efficiency of the benchmarked machines when executing the
quantum circuits.

Finally, this is the first work that uses a continuous-time quantum algorithm to
benchmark the performance of a digital quantum machine. The results show that, for
small state spaces of the continuous-time quantum walk, the Pauli decomposition does not
produce an efficient circuit. This result is expected as the complexity of a Hamiltonian
operating on two qubits is very small.

6.6 Future Work
A first and obvious extension to the work outlined in this chapter is the implementation
of more algorithms as benchmark methods in the proposed framework. There is a large
number of applications with appealing “real-world” traits that are perfectly suitable for
such an endeavour, i.e., quantum machine learning, linear algebra, chemistry, and more. For
example, interesting programs that could be used for future benchmarks include, but are not
limited to, the variational quantum eigensolver (VQE), quantum approximate optimisation
algorithms (QAOA), quantum annealing, and more. Furthermore, as showcased within the
above discussion, the framework can be used to further compare approaches to quantum
simulation, like two different decompositions of the CTQW (the Pauli and the automatic
decomposition from the IBMQ backend). Thus, another topic for future work is to use the
framework, or perhaps even further tailor it, to benchmark decompositions, simulations,
simulators or circuit approaches to various quantum algorithms.

As it has been mentioned multiple times this far, the quantum computing field has
in store bigger and better quantum computers. Therefore, an exciting prospect in the
future of program benchmarking is experimenting with larger, newer quantum machines.
Unfortunately, this work massively depends on simulations of the quantum evolution,
which excels at showcasing the performance of the current computers but will, inevitably,
struggle with larger QPUs. In other words, the proposed framework currently has an
upper bound on what machines it is able to benchmark. A very interesting topic for future
research would be to find ways to overcome this bound, for example, benchmark localised
areas of the QPU or by running parallel quantum circuits on two different groups of qubits
of the QPU, which then would lead to two separate but manageable quantum simulations.

Nevertheless, keeping in mind that the proposed methodology for program benchmark-
ing quantum computers adheres to the current and near-term quantum computers that
are more likely to be used for early commercial use and, evidently, excels at what it tries
to achieve. It is the belief of this thesis that future benchmarks of potentially massive
quantum computers will need alternative techniques altogether, that do not depend on
classical simulations.

Finally, a prominent area of research in the field of quantum computing is the verification
of quantum programs. In contrast with the framework developed in this chapter, formal
verification aims to validate implementation of quantum algorithms. Considering the
difficulty of implementing such complex routines in NISQ machines, research towards



134 Program Benchmarking Near-term Quantum Computers

creating an arsenal of verification frameworks for quantum programs could lead to very
beneficial results. An introduction to formal verification of quantum programs can be
found in [187].



Chapter 7

Conclusions

7.1 Summary
Quantum computing is one of the fastest developing fields of research in the past couple
of decades, concentrating increasing attention from both academia and industry. The
large amounts of funding and research pouring into designing, building and improving
quantum computers, as well as their applications, has brought forward advancements in
the field that were once considered decades away [35, 188–190]. Nevertheless, some serious
obstacles remain on the road towards universal quantum computation, chief amongst
which is quantum noise. Hence, in order for quantum computers to fulfill their promises in
creating a new technological era, it is essential to engineer ways that deal with obstacles
like the quantum noise.

Considering the above, the present thesis identifies its contributions towards this
end: obtaining further knowledge on the noise by modelling and simulating the noisy
evolution within a quantum computer, additionally, creating a framework that allows the
benchmarking of quantum computers in a scaling, algorithmic environment that caters
for “real-world” applications. The research also concentrates around implementation
characteristics of quantum walks, which are proven to be the perfect tool to assist in the
study of noise and benchmarking.

7.2 Evaluation of Research Aims and Results
This thesis presents the work on modelling and simulating noise within quantum computers,
as well as methods for program benchmarking near-term devices. The contributions have
been established and proven theoretically, and also applied in numerous experiments both
in a simulated environment and on real quantum computers.

The first research objective was focused on quantum walks. Within the field of
quantum computing and beyond, this process is of great value and research interest, as it
offers the means to design high-level quantum algorithms that exhibit strong quantum
advantage. Considering the importance of quantum walks, Chapter 3 delves into an
in-depth study of two well-established implementations and the corresponding circuit
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characteristics. Following a comprehensive proof of the quadratic quantum advantage
shown by a quantum walk, the chapter presents a comprehensive theoretical analysis of
the implementations, proving the complexity, benefits and detriments of each approach
when executed on a real quantum computer. The experiments also showcase the effects
of noise during the execution of each circuit on an IBMQ computer, further supporting
the theoretical results. The above analysis also constitutes a proposed methodology for
comparing the efficiency and performance of alternative implementations of arbitrary
quantum circuits, an invaluable contribution within the NISQ era and beyond.

Moving on, the thesis turns its attention to one of the major contribution in quantum
noise modelling. The objective in this area has been identified as closely approximating the
behaviour of real quantum computers. To this end, the work in Chapter 4 concentrates on
three separate and major sources of noise during a computation: (i) hardware infidelities,
(ii) decoherence in the form of thermal energy exchange between the QPU and the
environment and (iii) dephasing of the physical qubits. The thesis proposes an approach
that combines the aforementioned three sources in a single model, named the unified
noise model (UNM). The main characteristic of this model is that it is architecture-
aware, i.e., it encodes knowledge of the qubit connectivity within the QPU and the
levels of noise during the computation via utilising a set of quantum noise parameters.
Chapter 4 offers the theoretical description of the UNM and a comprehensive review of its
characteristics. Following, the simulation and experimental results show that the UNM
excels at approximating the noisy evolution of an IBMQ computer, doing so considerably
better than other state-of-the-art noise models (also implemented in IBMQ Qiskit [63]).

The experiments done in Chapter 4 show that even though the UNM creates better
approximations of the noisy evolution during a quantum circuit execution, deviations
still persist from the quantum computer experiments. This can be attributed to multiple
factors, for example, the fact that the UNM does not take into account electromagnetic
noise or cross-talk between the qubits, or due to estimation errors of the calibrated noise
parameters. This thesis tries to tackle these deviations by concentrating on optimising
the noise parameters used during the simulation of the UNM. Chapter 5 showcases the
optimisation process, which is essentially a classical genetic algorithm optimisation routine
tailored to estimate a set of noise parameters that perform better at approximating the
evolution of the quantum computer than the hardware-calibrated ones, when used by
the UNM. The results are very encouraging, with the post-optimisation simulations of
the UNM showing up to 84% increase in the efficiency of the model for small quantum
systems.

Finally, Chapter 6 concentrates on the last major contribution of the thesis, bench-
marking quantum computers in a high-level and scaling environment. The approach
followed by the present work is directed at using scaling quantum algorithms in order
to engineer a methodology for program benchmarking quantum machines. After outlining
the determining factors and challenges of program benchmarks, the chapter introduces
the basic ideas for the proposed methodology. Three criteria are identified for selecting a
“program” for the program benchmarks: (i) scalability, (ii) predictable evolution that is
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susceptible to noise and (iii) appealing real-world applications, i.e., quantum advantage.
Following this, the proposed framework for program benchmarking quantum computers
is outlined, using three novel benchmarks, αq|i, βq|n and γn|i. The experiments use the
unified noise model for simulations and five quantum algorithms to benchmark three of
the IBMQ publicly available computers. The results show that the proposed framework
and benchmarks paint a finer picture of the performance of the quantum machines with
respect to other approaches (eg., the quantum volume). Even though this framework is
valuable within the NISQ era, its use beyond the near-term is limited by the inability of
classical computers to simulate larger QPUs.

7.3 Thesis Conclusion
It is evident that the present thesis tries to work with some of the issues that generate a
significant amount of discussion in the field of quantum computing. For the field of quantum
machine learning, quantum walks and their implementations are crucial for designing and
executing larger and more complex machine learning algorithms. Furthermore, one can
argue that it is evident that quantum walks (both discrete- and continuous-time) can
also prove very useful processes in the study of quantum noise and also as programs for
benchmarking quantum computers.

As stated multiple times in this manuscript, quantum noise is one of the main challenges
preventing universal and scalable quantum computation. Studying the theoretical and
experimental results on unifying noise sources on a single model, it is safe to conclude that
such an endeavour has been proven to produce a good approximation of the noisy circuit
evolution. Additionally, hardware-calibrated noise parameters often produce simulations
that deviate from the actual noise within the quantum computer. The proposed model is
able to showcase this weakness, to present an insight on what the noise parameters look
like within the simulated world and to assist on limiting the gap between calibrated and
simulated noise parameters. The proposed approach to noise modelling can assist with
the understanding of noise within quantum computers and consequently be utilised during
the design or testing of error correcting methods or calibration techniques and attempts
to minimise the noise in near-term quantum computers.

Finally, the work on program benchmarking, the proposed framework and the sub-
sequent experiments can lead to the conclusion that indeed benchmarks produced using
scaling, high-level algorithms have the ability to provide instructive and concrete indica-
tions on the performance of quantum computers. The arguments are mainly drawn by
experimenting on three IBMQ computers, but nothing prevents the proposed method-
ology from being applied on any other quantum computer designed using any quantum
technology, making the framework universal.
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7.4 Future Work
Every chapter within this thesis asserts a number of propositions for future work. Current
trends in the field indicate that quantum machines will get bigger and better, but researchers
still have to deal with the excessive amounts of noise, especially in long computations.
Thus, future work in the subject of characterising quantum circuit performance and
efficiency in a similar way to that presented in Chapter 3 is of great value. This is not
only limited to alternative implementations of quantum walks, but for the comparison of
circuit implementations of any algorithm.

It is evident that, with more qubits being added to quantum computers, simulating
the noisy evolution of quantum circuits will get progressively harder. This is a limitation
not only of the unified noise model proposed in this thesis, but of any attempt to model.
Nevertheless, with noise-free universal quantum computing still being an elusive target,
noise analysis is still crucial. It is theorised in Chapter 4 that the gaps between the
approximated and real quantum evolution can be partially filled by taking into account
additional sources of noise, like electromagnetic decoherence, cross-talk between the qubits
or Clifford errors. Thus, incorporating these sources in the UNM would constitute valuable
future work.

Finally, in the context of program benchmarks, obtaining a comprehensive characteri-
sation of the performance of a quantum computer gets increasingly important as quantum
computers get increasingly bigger. Using the proposed framework of Chapter 6 in the fu-
ture, one could gather information regarding the efficiency of a quantum computer or even
evaluate how well a quantum computer is suited to executing an arbitrary computation.
On the other hand, the proposed methodology depends on simulating the evolution of the
quantum circuit, a process that gets increasingly taxing for larger QPUs. Further research
could focus on clever ways to evaluate the program benchmarks, with some indicated
examples outlined in Section 6.6. Furthermore, this thesis uses superconducting quantum
computers made by IBM, primarily due to the fact that they are publicly available. It
would be very interesting to compare the results from the experiments carried out on
IBMQ computers with the same experiments implemented on superconducting machines
manufactured by other companies, such as Rigetti or Google, or other technologies, such
as trapped ions or photonic platforms.
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Appendix A

Laplacians and Bessel Functions

A.1 The Bessel Functions
The Bessel functions are canonical solutions y(x) of Bessel’s differential equation

x2 d2y

dx2 + x
dy
dx +

(
x2 − α2

)
y = 0

for an arbitrary complex number α, which is the order of the Bessel function. Here, we
will only present the Bessel functions that are relevant to us, i.e the Bessel functions of
the first kind, Jα, and the modified Bessel functions of the first kind, Iα.

Bessel functions of the first kind. Bessel functions of the first kind, denoted as Jα(x),
are solutions of Bessel’s differential equation that are finite at the origin (x = 0) for integer
or positive α and diverge as x approaches zero for negative non-integer α. It is possible to
define the function by its series expansion around x = 0, which can be found by applying
the Frobenius method to Bessel’s equation as

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(
x

2

)2m+α

,

where Γ(z) is the gamma function, a shifted generalisation of the factorial function to
non-integer values.

The Bessel function of the first kind is an entire function if α is an integer, otherwise it
is a multivalued function with singularity at zero. For non-integer α, the functions Jα(x)
and J−α(x) are linearly independent, and are therefore the two solutions of the differential
equation. On the other hand, for integer order α, the following relationship is valid (the
gamma function has simple poles at each of the non-positive integers)

J−n(x) = (−1)nJn(x).

This means that the two solutions are no longer linearly independent. In this case, the
second linearly independent solution is then found to be the Bessel function of the second
kind, which we will not analyse here.
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Another definition of the Bessel function, for integer values of n, is possible using an
integral representation as

Jn(x) = 1
π

∫ π

0
cos(nτ − x sin τ)dτ

or alternatively
Jn(x) = 1

2π

∫ π

−π
ei(x sin τ−nτ)dτ.

Modified Bessel functions of the first kind. The Bessel functions are valid even
for complex arguments x, and an important special case is that of a purely imaginary
argument. In this case, the solutions to the Bessel equation are called the modified Bessel
functions (or occasionally the hyperbolic Bessel functions) of the first (and second kind,
which we will not delve into here) and are defined as

Iα(x) = i−αJα(ix) =
∞∑

m=0

1
m!Γ(m+ α + 1)

(
x

2

)2m+α

.

This is used when α is not an integer; when it is an integer, then the limit is used. These
are chosen to be real-valued for real and positive arguments x. The series expansion for
Iα(x) is thus similar to that for Jα(x), but without the alternating (−1)m factor.

Additionally, we can express the first kind Bessel functions in terms of the modified
Bessel functions of the first kind as

Jα(iz) = e
αiπ

2 Iα(z).

A.2 The Laplace Transform
In mathematics and signal processing, the Laplace transform is an integral transform that
converts a function of a real variable t (often time) to a function of a complex variable s
(complex frequency). The Laplace transform of a time-dependent function P (t), denoted
as P̂ (s) = L{P (t)}, is defined as

L{P (t)} =
∫ ∞

0
e−stP (t)dt.

The basic properties of the Laplace transform that are worth mentioning here can be
revised as follows.

• Linearity: L{aP (t) + bQ(t)} = aP̂ (s) + bQ̂(s)

• Derivative: L{P ′(t)} = sP̂ (s) − P (0)

• Shifting: L{eatP (t)} = P̂ (s− a)
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The relevant inverse Laplace transform involving the Bessel functions are (for ν > −1)

P̂ (s) = (s−
√
s2 − a2)ν

√
s2 − a2

⇐⇒ P (t) = aνIν(at)

P̂ (s) = (
√
s2 + a2 − s)ν

√
s2 + a2

⇐⇒ P (t) = aνJν(at)





Appendix B

Analysis of the Continuous-time
Quantum Walk Hamiltonian

In order to better understand and analyse the Hamiltonian of the continuous-time quantum
walk, we need to start by the classical case. In the continuous-time random walk (CTRW),
the transition probability from node y to node x in time t can be denoted by px,y(t).
Therefore, the initial condition is ⟨x|y⟩ = px,y(0) = δx,y, where the Kronecker δ can be

defined as δx,y =

1 x = y

0 otherwise
.

The transition rates per unit time are the elements of a transfer matrix T , where
Tx,y = ⟨x|T |y⟩. Assuming a Markovian process, the following equation can be shown to
hold [191]

d
dtpx,y(t) =

∑
l

Tx,lpl,y(t). (B.1)

This equation essentially defines continuous-time random walks in the classical setting.
If we let the transition rates γ between all nodes to be equal, then we can define

the transfer matrix through the adjacency matrix A as T = −γA. The formal solution
of equation (B.1) is px,y(t) = ⟨x|eT t|y⟩ = ⟨x|e−γAt|y⟩. Denoting the eigenstates of the
adjacency matrix A by en, we can get the solution

px,y(t) =
∑

n

e−λnγt ⟨x|en⟩ ⟨en|y⟩ , (B.2)

where λn are the eigenvalues of the adjacency matrix, corresponding to eigenvectors en.
Since the eigenvalues are positive (λn > 0 for n > 1 and λ1 = 0), the long-time

limit follows directly. For t >> 1 in the sum of equation (B.2) all exponential terms but
one decay rapidly to zero, with the one for λ1 = 0 being the only one surviving with
corresponding eigenstate |e1⟩ = 1

N

∑
l |l⟩. Therefore, the long-time limit of all transition

probabilities is limt→∞ px,y(t) = 1/N . This means that every CTRW whose transfer matrix
follows directly from the adjacency matrix will eventually decay at long times to the
equipartition value 1/N [192].
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We can now move on to the continuous-time quantum walk and the quantum mechanical
dynamics. Assume that the states |y⟩ span the Hilbert space HS and they are orthonormal
and complete, i.e ⟨x|y⟩ = δx,y, with ∑ |y⟩ ⟨y| = ⊮. The dynamics then are governed by a
specific Hamiltonian H, analogous to the theory mentioned in the previous section, such
that Scrhödinger’s equation for the amplitudes reads

i d
dtψx,y(t) =

∑
y

Hx,yψx,y(t) ⇐⇒ i d
dt ⟨x|ψ(t)⟩ =

∑
y

⟨x|H|y⟩ ⟨y|ψ(t)⟩ , (B.3)

where ψx,y(t) being the amplitude of the quantum state |ψx,y(t)⟩ at time t and the
equivalency standing for obvious reasons. The transition probabilities are now πx,y(t) =
|ψx,y(t)|2.

We identify that H = −T = γA. Let the eigenvalues of H be ℓn and the corresponding
eigenvectors fn. The quantum mechanical transition probabilities can now be defined as

πx,y(t) = |
∑

n

e−iℓnt ⟨x|fn⟩ ⟨fn|y⟩|2

Unlike the classical case, in the quantum case there is no unique long-time limit of
πx,y(t) due to the unitary nature of the quantum evolution. In order to compare the
long-time evolution of the CTRW we can use the long-time average [25]

χx,y ≡ lim
T →∞

1
T

∫ T

0
πx,y(t)dt

=
∑
m,n

δℓn,ℓm ⟨x|fn⟩ ⟨fn|y⟩ ⟨y|fm⟩ ⟨fm|x⟩ ,

where δℓn,ℓm follows the rules for Kronecker δ. The long-time average χx,y still depends on
the initial and final nodes x and y.



Appendix C

Generalised Inverter Gate for
Arbitrary Control Qubits

In many circumstances, we need to control an inversion with an arbitrary number of
nc > 2 control qubits. A solution can be given by introducing intermediate computations,
with their results stored in an ancilla register of size nc − 1 [30]. A visualisation of this
solution for a generalised CNOT gate with nc control qubits is shown in Figure C.1. This
decomposition of the generalised CNOT gate can be further simplified to use just regular
CNOT operations.

Fig. C.1 Generalised Toffoli gate with n control qubits (q0 to qn), n − 1 ancilla qubits
(anc0 to ancn−1) and one target qubit (tgt).





Appendix D

Method of Stationary Phase

D.1 Method
The method of mathematical analysis called method of stationary phase can be used
in mathematical physics to estimate the integrals derived in equation (3.12). Consider
integrals of type

I(t) =
∫ b

a
g(k)eitϕ(k) dk

where t > 0 is an arbitrary parameter, g(k) is a function (otherwise called amplitude in
mathematical physics) and ϕ(k) is a real-valued function (i.e., phase in mathematical
physics). The endpoints of integration, i.e., places where the derivatives of g(k) fail to be
continuous and places where the derivatives of ϕ(k) vanish, are called critical points. An
intuitive critical point could be, for example, k = a, where ϕ′(a) = 0 but ϕ′′(a) ̸= 0. Such
a critical point is also called a stationary point as it represents a point where the phase
function has a minimum or a maximum and is, thus, stationary. The interest here lies on
the behaviour of the integral at points where the oscillations of the phase are small, i.e.,
near the stationary points of the function ϕ(k).

There are three possibilities that need to be considered, one where the stationary point
is on the lower endpoint of integration, i.e., k = a, one at the higher, k = b, and one on an
arbitrary interior point, k = c. The stationary phase formula can be written as

Ix(t) ∼ g(x)eitϕ(x)+i sgn(ϕ′′(x))π/4
√

2π
t|ϕ′′(x)| , (D.1)

where x ∈ {a, b, c} are the various stationary points, as described above.

D.2 Approximation of Hadamard Walk Evolution
The integrals from equation (3.12) can be transformed to suit equation (D.1), first by
setting n = λt, when these integrals obtain the form

I(t;λ) = 1
2π

∫ π

−π
g(k)eiϕ(k;λ)tdk (D.2)
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where ϕ(k;λ) = kλ − ωk and g(k) is either an even or an odd function. In this slightly
generalised case there are no stationary points for λ > 1/

√
2 or λ < −1/

√
2 and I(t;λ) by

getting with λ further from zero decreases exponentially fast. For λ ∈ (−1/
√

2, 1/
√

2) the
stationary points ±kλ ∈ [0;π] are found, where

cos kλ = λ√
1 − λ2

and
∂2ϕ

∂k2 (±kλ;λ) = ±
(
1 − λ2

)√
1 − 2λ2

(
= −ω′′

kλ

)
Under these conditions and by dividing the integration range [−π; π] in equation (D.2)

into four subintervals by points 0 and ±kλ follows

I(t;λ) = 2g (kλ)√
2πt

∣∣∣ω′′
kλ

∣∣∣
 cos

[
tϕ (kλ;λ) + π

4

]
, for g even

isin
[
tϕ (kλ;λ) + π

4

]
, for g odd

Finally, for equations (3.12) the following are obtained

αt(λt) ∼ 2√
2πt

∣∣∣ω′′
kλ

∣∣∣ cos
[
tϕ (kλ;λ) + π

4

]
,

βt(λt) ∼ 2λ√
2πt

∣∣∣ω′′
kλ

∣∣∣ cos
[
tϕ (kλ;λ) + π

4

]
,

γt(λt) ∼ −2
√

1 − 2λ2√
2πt

∣∣∣ω′′
kλ

∣∣∣ sin
[
tϕ (kλ;λ) + π

4

]
.

Now, the probability of being in position n = λt after t steps is

P t(λt) ∼ 2(1 + λ)
πt (1 − λ2)

√
1 − 2λ2

[1 + λ
√

2 cos θ]

where θ = 2tϕ (kλ;λ) + π
2 + µ and tanµ =

√
1−2λ2

1+2λ
.



Appendix E

Comparison of Probability
Distributions of the Benchmark
Experiments

Furthermore, in the context of the additional experiments carried out for the benchmark
methodology in Chapter 6, this section presents a series of figures that showcase the
difference between the probability distributions of each quantum computer (i.e., the
IBMQx5 Bogota, IBMQx5 Santiago and IBMQx7 Casablanca machines) and the unified
noise model (UNM). Each Figure includes a set of plots that represent each algorithm used
for benchmarking, i.e., for the discrete-time quantum walk (Figure E.1), the continuous-
time quantum walk (Figure E.2), the Pauli decomposition of the continuous-time quantum
walk Hamiltonian (Figure E.3), the quantum phase estimation algorithm (Figure E.4) and
the quantum search algorithm (Figure E.5). Finally, each figure contains a plot of the
probability distributions resulting from the UNM simulations and the ideal evolution for
each quantum algorithm, thus including every meaningful comparison that derives from
the proposed benchmarks in Chapter 6.
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(a) (b)

(c) (d)

Fig. E.1 Comparison between the probability distributions of the discrete-time quantum
walk execution on each quantum machine: (a) the IBMQ 5-qubit Bogota, (b) IBMQ
5-qubit Santiago and (c) IBMQ 7-qubit Casablanca machines; (d) comparison between
the UNM simulations for each machine and the ideal distribution.
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(a) (b)

(c) (d)

Fig. E.2 Comparison between the probability distributions of the continuous-time quantum
walk execution on each quantum machine: (a) the IBMQ 5-qubit Bogota, (b) IBMQ
5-qubit Santiago and (c) IBMQ 7-qubit Casablanca machines; (d) comparison between
the UNM simulations for each machine and the ideal distribution.
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(a) (b)

(c) (d)

Fig. E.3 Comparison between the probability distributions of the Pauli decomposition of
the continuous-time quantum walk execution on each quantum machine: (a) the IBMQ
5-qubit Bogota, (b) IBMQ 5-qubit Santiago and (c) IBMQ 7-qubit Casablanca machines;
(d) comparison between the UNM simulations for each machine and the ideal distribution.
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(a) (b)

(c) (d)

Fig. E.4 Comparison between the probability distributions of the quantum phase estimation
execution on each quantum machine: (a) the IBMQ 5-qubit Bogota, (b) IBMQ 5-qubit
Santiago and (c) IBMQ 7-qubit Casablanca machines; (d) comparison between the UNM
simulations for each machine and the ideal distribution.
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(a) (b)

(c) (d)

(e)

Fig. E.5 Comparison between the probability distributions of the quantum search execution
on each quantum machine: (a) the IBMQ 5-qubit Bogota, (b) IBMQ 5-qubit Santiago and
(c) IBMQ 7-qubit Casablanca machines; (d) comparison between the UNM simulations for
each machine and the ideal distribution.
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