
Fairness-Aware Data Preprocessing
for Classification Tasks

Carlos Vladimiro González Zelaya

Supervisors: Prof. Paolo Missier

Dr. Dennis Prangle

School of Computing
Newcastle University

This thesis is submitted for the degree of
Doctor of Philosophy

July 2022

I dedicate this thesis to the memory of my dad, as well as to my dearest mom and aunts:
your love and unconditional support were an essential part of my PhD.

Dedico esta tesis a la memoria de mi papá, así como a mis queridas mamá y tías:
su amor y apoyo incondicional fueron parte esencial de mi doctorado.

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis has
previously been submitted for any other degree or qualification at Newcastle University or
any other institution.

Carlos Vladimiro González Zelaya
July 2022

Publications

Significant portions of the work presented within this thesis have been documented in the
following papers:

Conference

• Salas, J. and González-Zelaya, V. (2020). Fair-MDAV: An algorithm for fair privacy
by microaggregation. In Modeling Decisions for Artificial Intelligence. MDAI 2020,
volume 12256. Springer

• González-Zelaya, V., Salas, J., Prangle, D., and Missier, P. (2021b). Optimising
Fairness Through Parametrised Data Sampling. In Proceedings of the 2021 EDBT
Conference

Workshop

• González-Zelaya, V., Missier, P., and Prangle, D. (2019). Parametrised Data Sam-
pling for Fairness Optimisation. Presented on the 2019 XAI Workshop at SIGKDD,
Anchorage, AK, USA

Submitted

• González-Zelaya, V., Salas, J., Megías, D., and Missier, P. (2021a). Fair Classification
with Privacy Guarantees. Submitted to the Data Mining and Knowledge Discovery
(DAMI) Journal

vii

Acknowledgements

I wish to extend my appreciation to my supervisors Prof. Paolo Missier and Dr. Dennis
Prangle for their help, comments and suggestions on the present work. Thanks to them,
this thesis has become more understandable, concise, deeper, and generally a better work.

I would also like to thank my examiners Dr. Jaume Bacardit and Prof. H. V. Jagadish for
their comments and corrections, as they greatly improved the quality of the final version of
this thesis.

My gratitude towards Universidad Panamericana, that generously sponsored my studies
in the UK. I would like to especially thank Dr. Héctor Xavier Ramírez Pérez, Dr. José
Alberto Ross Hernández, Dr. Marisol Velázquez Salazar, Alma Rosa Limas Álvarez, Diana
Alejandra Hernández García and Diana Aparicio González, who helped me a great deal
whenever a situation arose, both personally and professionally.

My sincere thanks to Prof. Paul Watson, Jennifer Wood and Andrew Turnbull for their
invaluable support and their continuous effort in improving our Centre in all regards.

I would like to thank everyone at the CDT in Cloud Computing for Big Data, for their
friendship and good vibes made this process an incredibly fun and enriching life experience.

Most importantly, my love and gratitude to Pil: sharing this adventure with you made it
better in every possible way.

Abstract

The prevalence of decision-making mechanisms in life-impacting decisions, ranging from
bank loans and college admissions to probation decisions, makes understanding and
controlling the fairness of algorithmically-generated decisions indispensable. This thesis
presents an introduction to algorithmic fairness, focusing on classification tasks. A survey
of state-of-the-art fairness-correcting methods is presented, emphasising data preprocessing
solutions.

The thesis’ research aim is to design, implement and evaluate data preprocessing
methods that correct unfair predictions in classification tasks. Three such methods are
presented, sharing the trait of being fairness-definition and classifier agnostic. For each of
these methods, experiments are performed on widely used benchmark datasets.

FAIRPIPES is a genetic-algorithm method which optimises for user-defined combina-
tions of multiple definitions of fairness and accuracy, providing flexibility in the fairness-
accuracy trade-off. FAIRPIPES heuristically searches through a large space of pipeline
configurations, achieving near-optimality efficiently and presenting the user with an esti-
mate of the best attainable fairness/accuracy trade-offs. The optimal pipelines are shown
to differ for different datasets, suggesting that no “universal best” pipeline exists and
confirming that FAIRPIPES fills a niche in the fairness-aware AutoML space.

PARDS is a parametrised data sampling method by which it is possible to optimise the
fairness ratios observed on a dataset, in a way that is agnostic to both the specific fairness
definitions, and the chosen classification model. Given a dataset with one binary protected
attribute and a binary label, PARDS’ approach involves correcting the positive rate for
both the favoured and unfavoured groups through resampling of the training set. PARDS
is shown to produce fairness-optimal predictions with a small loss in predictive power.

FAIR-MDAV is a fairness correcting preprocessing method with privacy guarantees. It
outperforms existing fairness correcting methods on its equalised odds/accuracy trade-off,
and is competitive on its demographic parity/accuracy trade-off as well. FAIR-MDAV is
modular, allowing for privacy guarantees to be set separately from fairness correction.

Table of Contents

List of Figures xvii

List of Tables xix

List of Acronyms xxi

List of Symbols xxiii

1 Introduction 1
Summary . 2
1.1 The COMPAS Controversy . 2
1.2 The Meaning of Fairness . 3
1.3 The Importance of Having Fair Algorithms 4
1.4 Research Aim and Objectives . 6
1.5 Thesis Outline and Contributions . 6

1.5.1 Key Insights . 8

2 Preliminaries 9
Summary . 10
2.1 Supervised Machine Learning . 10
2.2 Classification . 10
2.3 Performance Metrics . 12
2.4 Genetic Algorithms . 15
2.5 Data Preprocessing . 16

2.5.1 Feature Encoding . 17
2.5.2 Dealing with Missing Values . 18
2.5.3 Class Balancing . 19
2.5.4 Feature Scaling . 20
2.5.5 Feature Selection . 21

Table of Contents

2.6 Algorithmic Fairness . 21
2.6.1 Basic Definitions . 22
2.6.2 Group Fairness Definitions . 22
2.6.3 Benchmark Datasets . 25

3 Related Work 27
Summary . 28
3.1 Detecting Unfairness . 28
3.2 The Fairness/Accuracy Trade-Off . 29
3.3 Pipeline Optimisation . 29
3.4 Fairness Correction for Classification Tasks 31
3.5 Fairness-Aware Preprocessing . 33
3.6 Fairness and Privacy . 35
3.7 Fairness in Other ML Domains . 35

4 Genetic Pipeline Optimisation 37
Summary . 38
4.1 Introduction . 38

4.1.1 Fairness Differences . 39
4.1.2 Preprocessing Affects Fairness 40
4.1.3 Problem Formulation . 41

4.2 FAIRPIPES . 44
4.3 Experimental Evaluation . 46

4.3.1 Baseline Mapping of the Search Space 52
4.3.2 Single-Objective Optimisation 52
4.3.3 Multi-Objective Policies Optimisation 55

4.4 Performance Evaluation . 61
4.4.1 Pareto Front Estimation . 61
4.4.2 Distance to Best Estimation . 62
4.4.3 Comparison with Random Sampling 64

4.5 Conclusion . 65

5 Parametrised Data Sampling 67
Summary . 68
5.1 Introduction . 68

5.1.1 Fairness Ratios . 69
5.2 PARDS . 70

xiv

Table of Contents

5.2.1 Correction Parameter . 70
5.2.2 Parametrising Correction . 70
5.2.3 Sampling Strategies . 71
5.2.4 Finding the Optimal Amount of Sampling 72
5.2.5 Alternative Methods . 76

5.3 Theoretical Results . 77
5.3.1 Method Effectiveness . 77
5.3.2 PR Gain Estimation . 81
5.3.3 Multiple Protected Attributes . 81

5.4 Experimental Evaluation . 83
5.4.1 Separability . 83
5.4.2 Method Validation . 86
5.4.3 Comparison with Other Methods 88

5.5 Conclusion . 92

6 Fairness and Privacy 93
Summary . 94
6.1 Introduction . 94
6.2 Background and Definitions . 95
6.3 FAIR-MDAV . 97
6.4 Experiments . 102
6.5 Conclusion . 109

7 Conclusions 111
Summary . 112
7.1 Summary of Contributions . 112
7.2 Lessons Learnt . 113
7.3 Future Research Directions . 115

References 117

Appendix A Reproducibility 129
A.1 Software Requirements . 130
A.2 Data . 130
A.3 Scripts . 131

xv

List of Figures

2.1 ROC curve for a LR classifier. 14
2.2 Computing the proxy fairness of test set T 24

3.1 Fairness and performance metrics for a set of classifiers 30

4.1 Pipelines optimised for ACC, DPD fairness, and ACC + DPD 43
4.2 A FAIRPIPES run over Income . 47
4.3 Average running time per 100 instances for all four benchmark datasets. . 51
4.4 Average distance to best objective for different crossover rates 53
4.5 Average distance to best objective for different mutation rates 54
4.6 Evolution of all metrics as single objectives. 55
4.7 Comparison of metrics evolution . 57
4.8 Average DPD and ACC per generation for different objective coefficients 58
4.9 Proportion of orderings present for Pareto-efficient tuples 59
4.10 DPD/ACC trade-off for pipelines appearing in estimated Pareto fronts . . 60
4.11 Averaged Hausdorff distance from estimated to true Pareto front 62
4.12 Average B2B distance for different DPD/ACC coefficients 63

5.1 Intuition of the different sampling strategies to equalise positive ratios. . . 72
5.2 Correcting functions f+(d) and u+(d) applied to Income 73
5.3 Plot of GPyOpt’s approximation of DPR as function of d for Income . . . 75
5.4 Comparison of resampling and relabelling on Income 77
5.5 Effect of under or oversampling on the predictions of t ∈ T 79
5.6 The right difference of x ∈ FN must be positive 79
5.7 Expected vs actual gain in PR(T) . 82
5.8 Positive ratios for the different PAs’ unfavoured groups on Income 84
5.9 Correction effectiveness by separability 85
5.10 ACC and fairness ratios by correction level d for all three datasets 87
5.11 Fairness/accuracy trade-off for DPR, EOpR and PFR on Income 88

xvii

List of Figures

5.12 PFR by PA coefficient scatter plot for all three datasets 90

6.1 Micro-aggregates generated by FAIR-MDAV 99
6.2 EOD/ACC trade-off on Income across FAIR-MDAV parameters 103
6.3 Precision and recall vs EOD on Income 104
6.4 EOD/ACC trade-off on COMPAS and German 105
6.5 Precision and recall vs EOD on COMPAS 106

xviii

List of Tables

2.1 The confusion matrix of a binary classifier’s predictions. 13
2.2 Datasets used for this thesis’ experiments. 25

3.1 Comparison of preprocessors in FAIRPIPES with popular AutoML packages 32

4.1 Preprocessor options for the preliminary experiment. 40
4.2 Kruskal-Wallis 95% p-values for operator-choice affecting each metric . . 41
4.3 Size and average FAIRPIPES run time for the analysed datasets 50
4.4 Performance comparison between FAIRPIPES and random pipeline selection 64

5.1 Fairness and performance comparison using four sampling strategies . . . 89
5.2 Fairness and ACC comparison with related methods 91
5.3 EOD, ACC and balanced accuracy comparison with related methods . . . 91

6.1 Experimental parameter values. 102
6.2 Fairness and ACC comparison of FAIR-MDAV with related methods . . . 109
6.3 Fairness and ACC comparison of FAIR-MDAV with PFLR* 109

xix

List of Acronyms

AB AdaBoost 12
ACC Accuracy 13
AHD Averaged Hausdorff Distance 61
B2B Best To Best Distance 62
DP Demographic Parity 23
DPD Demographic Parity Difference 38
DPR Demographic Parity Ratio 69
DT Decision Tree 11
EO Equalised Odds 23
EOD Equalised Odds Difference 38
EOp Equality of Opportunity 23
EOpD Equality of Opportunity Difference 38
EOpR Equality of Opportunity Ratio 69
FN False Negatives 13
FP False Positives 13
FTU Fairness Through Unawareness 25
GDPR General Data Protection Regulation 4
GNB Gaussian Naive Bayes 90
LOO Leave One Out 12
LR Logistic Regression 11
ML Machine Learning 4
PA Protected Attribute 8
PF Proxy Fairness 23
PFR Proxy Fairness Ratio 69
PR Positive Ratio 22
SVM Support Vector Machine 11
TN True Negatives 13
TP True Positives 12
WoE Weight of Evidence 18

xxi

List of Symbols

F The favoured PA group
U The unfavoured PA group
Ŷ A classifier function
E The expected value of a random variable
P The probability of an event
R The set of real numbers
Dom The domain of a function

xxiii

Chapter 1

Introduction

I have a dream
that my four little children
will one day live in a nation
where they will not be judged
by the color of their skin
but by the content of their character.
I have a dream today.

Martin Luther King Jr.

Contents
Summary . 2
1.1 The COMPAS Controversy . 2
1.2 The Meaning of Fairness . 3
1.3 The Importance of Having Fair Algorithms 4
1.4 Research Aim and Objectives . 6
1.5 Thesis Outline and Contributions 6

1.5.1 Key Insights . 8

1

Introduction

Summary

This chapter begins by outlining the need to research algorithmic fairness—this thesis’
main topic—in Section 1.1 by presenting the archetypical case of COMPAS, a classifier
used in the United States to predict whether convicted defendants are likely to re-offend
after their release. Section 1.2 continues by discussing the meaning of fairness, first
from a human perspective followed by the necessity to formalise its definition in order
to quantify and improve it. In Section 1.3 the relevance of certifying and intervening
automated decision-making systems to ensure the fairness of their decisions is discussed.
Finally, Section 1.4 presents both our general and specific research goals, as well as the
contributions presented in this thesis.

1.1 The COMPAS Controversy

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) is a
decision-support tool developed by Northpointe (now Equivant) to assess the recidivating
(or re-offending) risk of convicted defendants in several jurisdictions of the United States in
the two years after their release. COMPAS’ predictions are based on 137 features obtained
from a defendant’s personal information and their criminal record [48].

COMPAS has faced significant criticism from academia following ProPublica’s 2016
article Machine Bias [4], where a dataset consisting of two years of COMPAS Scores
from Broward County in Florida, USA, consisting of 18,610 records between 2014 and
2015. In their analysis, Propublica found that, even though the error rates in recidivism-
prediction were similar for white and black defendants, the “direction” in which these
errors happened were not consistent for both groups, and hence COMPAS predictions were
discriminatory against black defendants. Specifically, they found that “black defendants
were often predicted to be at a higher risk of recidivism than they actually were,. . . (while)
white defendants were often predicted to be less risky than they were” [4].

In response to this, Northpointe presented their own analysis [41], where they pointed
out that COMPAS did not discriminate since “black defendants who were predicted to
recidivate . . . actually did recidivate at a higher rate than the white defendants . . . (while)
white defendants who were predicted not to recidivate actually did not recidivate at a higher
rate than the black defendants” [41, p. 20–21].

Surprisingly, both claims are true on the analysed dataset. The point of contention
is not the technical correctness of the analyses, but the fairness definition that was used:
while ProPublica refers to equalised odds, Northpointe uses a different definition, known

2

1.2 The Meaning of Fairness

as predictive parity. As discussed in Chapter 3, deciding which fairness definition to use
on a decision task is subjective, and will ultimately depend on the user’s world-views [55].

As an aftermath of the COMPAS controversy, in July 2016 the Supreme Court of
Wisconsin, USA determined to continue allowing judges to consider risk scores during
sentencing, but instructed the judges to warn about their “limitations and cautions” [95,
p. 22]. Aside from this decision, further arguments against the use of recidivism prediction
have been made by Dressel and Farid [43], who experimentally show that COMPAS is
neither more accurate nor less biased than inexpert-human decisions; furthermore, they
show that COMPAS’ accuracy may be achieved by a linear predictor dependant on just
two features.

1.2 The Meaning of Fairness

The COMPAS controversy is just an instance of a much larger problem, namely the lack of
a unique definition of fairness. While outside the scope of this thesis, it is worth mentioning
that this debate has existed in the social sciences for a long time, with notions of fairness
coming from as far back as Aristotle’s Nicomachean Ethics, where he defines fairness
as “involving equitable distributions and the correction of what is inequitable” [32, Book
V, Section 10]. While this definition lacks formality, in the sense that it is impossible to
quantify whether a given decision was fair or not based on it, its spirit is closely related to
the general aim of this thesis, presented in Section 1.4.

In the computer science community, in contrast, many formal definitions of fairness
have been proposed [101], but with no definitive agreement [55]. A decision rule that
satisfies one of the definitions may well prove to be very unfair for a different one [29].
For example, determining university admissions through gender quotas may achieve
demographic parity, but it makes the acceptance rates for good students of different
genders disparate.

A first divide in algorithmic fairness definitions appears in deciding whether fairness is
an individual or a collective issue: a family of definitions, known as individual fairness,
advocates for the principle of similar individuals being treated similarly. Group fairness, on
the other hand, advocates for a similar predictive behaviour across population subgroups,
even if this is achieved at the expense of individuals who might otherwise obtain a better
prediction. This division, in turn, results in two types of fairness correction solutions: in
the case of individual fairness, the first problem comes in defining an adequate distance
between individuals that determines whether two individuals should be considered similar

3

Introduction

or not. This problem is not shared by group fairness, where the interest is solely in
predictive outcomes; this thesis focuses on group fairness definitions.

Within group fairness, a second divide comes from different notions of equality. Specif-
ically, equality of outcomes strives for similar prediction distributions across population
subgroups, as there are historical and societal biases that need to be corrected through
affirmative action. On the other hand, equality of opportunity seeks to guarantee that
deserving individuals be correctly evaluated in the same proportion across population
subgroups. In general, it is not possible to determine whether one of these definitions
is necessarily better or fairer than another. Instead, each of these “encode some belief
about the world” [55]. Therefore, the works presented in this thesis are agnostic to most
group fairness definitions: they allow the user to decide which definition encodes their
world-view, or the spirit of the decision that is to be made.

1.3 The Importance of Having Fair Algorithms

The prevalence of decision-making mechanisms in life-impacting decisions, ranging from
bank loans and college admissions to probation decisions, makes understanding and
controlling the fairness of algorithmically-generated decisions indispensable, pushing
fairness to the forefront of machine learning (ML) research.

Among the multiple potential consequences of deploying an unfair algorithm, per-
petuating discriminatory decisions is one of the most problematic ones. Besides the
COMPAS case discussed in Section 1.1, a showcase of representative cases where auto-
mated decision-making mechanisms have been shown to be discriminatory is presented
next.

• The European Union’s General Data Protection Regulation (GDPR) establishes the
principles applicable to any data processing activity [160, Page 87]; this broad defi-
nition includes automated decision-making mechanisms. Article 5(1) of the GDPR
states that “personal data shall be processed lawfully, fairly and in a transparent
manner in relation to the data subject” [160, Page 88].

• In 2018 a Reuters article [37] showed that an Amazon automated recruiting tool
discriminated against submitted resumes including the word women’s, as in “member
of the women’s swimming team”. The reason for this behaviour was that the tool
was trained on a dataset of 10 years of previous applications, for which most of
the successful candidates were male, thus causing the model to associate the word
women’s with unsuccessful candidates. Amazon eventually disbanded the team

4

1.3 The Importance of Having Fair Algorithms

responsible for the tool, and claimed that “it was never used by their recruiters to
evaluate candidates”. However, this example shows how an existing societal bias,
namely the lack of women in the tech industry, can carry on as a consequence of an
unfair mechanism.

• Apple’s banking service, Apple Card, has been shown to assign disparate credit lines
for males and females, notoriously with Apple co-founder Steve Wozniak and his
wife, who share bank accounts and have credit cards with the same high limit, yet he
was granted a credit line ten times larger than his wife’s [70].

• Twitter’s image-cropping algorithm, which is used to show tweets on users feeds,
keeps white/female faces more often than black/male ones in the cropped image [86],
an issue they have acknowledged and are taking measures to correct [30].

• Google Translate, one of the most popular translation engine on the Web, has
a tendency to assign specific genders to professions when translating [92], and
although they have partially corrected this problem [99], for many instances it
persists, especially in the female case.

• Predictive policing trained on historical data has been shown to cause feedback loops
on which zones to patrol [71], i.e. frequently patrolling a zone makes a detention
likelier there, which in turn causes the zone to be frequently patrolled.

Regardless of the specific metric adopted to measure fairness, the principal—yet not
the only [78]—factor leading to unfair automated decisions is biased training data [36,
95], either due to historical disparities and discrimination [111] or to improper data
collection [103]. In this regard, the computing community is ideally positioned to help
fix this problem [147, 146]. The following section specifies this thesis’ research aim and
particular objectives.

5

Introduction

1.4 Research Aim and Objectives

This thesis’ general research aim is to design, implement and evaluate data preprocessing
methods that correct unfair predictions in classification tasks. In an attempt to fulfill this
general aim, the following specific objectives were selected:

1. To understand and formalise the concept of algorithmic fairness.

2. To determine whether the choice and order of the non-fairness-specific preprocessing
operators have an impact on the fairness of the predictions made by a classifier learnt
from the resulting data.

3. To estimate the trade-off between fairness and performance for classifiers, generating
a range of possible trade-offs from which to choose.

4. To design a fairness-definition and classifier agnostic preprocessing method to
optimise the specified fairness definition for a classifier without incurring a big
accuracy loss.

5. To analyse the connection between fairness and privacy in the classification context.
In particular, to design a method capable of correcting fairness while providing
privacy guarantees to the resulting dataset.

1.5 Thesis Outline and Contributions

This section presents an outline for the rest of the thesis and presents each chapter’s
contributions towards addressing Section 1.4’s specific objectives.

Chapter 2 presents definitions on classifiers, performance metrics and data preprocessing,
which are required in order to follow the rest of the thesis, followed by an introduction
to algorithmic fairness and the fairness definitions used throughout the thesis. This
chapter partly addresses research objective 1.

Chapter 3 presents the work related to Chapters 4, 5 and 6, including an explanation of
the fairness/accuracy trade-off phenomenon and a survey on the state-of-the-art in
fairness correction for classification tasks, with a focus on preprocessing methods.
This chapter completes the addressing of research objective 1.

6

1.5 Thesis Outline and Contributions

Chapter 4 analyses the effect of several data preprocessing operators over different fair-
ness definitions, addressing research objective 2. This is followed by the intro-
duction of FAIRPIPES, a genetic algorithm with mutation and cross-over operations
that optimises preprocessing pipelines through preprocessor-and-order selection
from sets of operator options. FAIRPIPES presents the user with an estimate of
the fairness/performance Pareto front for the selection of preprocessing operators,
addressing research objective 3.

Chapter 5 presents PARDS, a fairness-and-classifier agnostic fairness-correcting prepro-
cessing solution based on data resampling. In the simpler setting, instances in the
training set are divided into favoured (F) and unfavoured (U) with respect to a
binary attribute for which discrimination is to be prevented, e.g. the gender. The
groups are further divided by their class label as positive (+) and negative (−).
Each of the four resulting groups—F+, F−, U+ and U−—are then independently
resampled to balance F and U with respect to a particular fairness definition. After
describing PARDS, theoretical results on its effectiveness for the univariate case
are presented, and the method is benchmarked and compared with state-of-the-art
solutions, producing better fairness/accuracy trade-offs than most of them. This
chapter addresses research objective 4.

Chapter 6 borrows the fairlet concept from fair clustering and introduces FAIR-MDAV,
a fairness correction method that works through micro-aggregation, i.e. aggregating
most attributes of each n nearby-instances cluster through an aggregation function,
e.g. mean or mode, making n copies of this aggregate while keeping the original class
label and assigning the protected attribute values to each copy in accordance to its
distribution over the whole training set; FAIR-MDAV provides the user with privacy
guarantees, specifically k-anonymity and t-closeness. This addresses research
objective 5.

Chapter 7 presents a summary of the thesis’ contributions, final remarks and future
research directions.

Research Limitations

In Chapters 5 and 6, experiments were performed on three standard fairness-benchmark
datasets: Adult Income, COMPAS and German Credit; experiments were also performed
over the Titanic dataset in Chapter 4. All these datasets, described in Subsection 2.6.3,
were chosen due to their binary label, as this is a requirement of the employed fairness

7

Introduction

definitions and therefore of the presented fairness-correcting methods as well. Depending
on the problem at hand, the binary label limitation may be dealt with by grouping the
possible label values into two categories, usually referred to as the positive and the negative
outcomes.

A second limitation of the analysed fairness definitions and correcting methods is the
need for a single binary protected attribute (PA), i.e. the feature for which fairness is
measured and corrected. This restriction can be relaxed in both the number of PAs and
the number of possible values of each PA if necessary: an example of how to do this is
presented in Chapter 5.

1.5.1 Key Insights

The following are this thesis’ key insights and the chapters supporting them.

• The way in which data is preprocessed directly affects a classifier’s performance and
fairness; see Chapter 4.

• Fairness and performance metrics are in conflict with each other; see Chapters 3, 4, 5
and 6.

• It is possible to correct classification fairness through data preprocessing; see Chap-
ters 5 and 6.

• Different fairness definitions require specific amounts of correction. Enforcing a
particular fairness definition does not cause—and generally prevents—a different
definition from being satisfied; see Chapters 4, 5 and 6.

• Certain definitions of fairness and privacy are compatible with each other; see
Chapter 6.

8

Chapter 2

Preliminaries

Contents
Summary . 10
2.1 Supervised Machine Learning . 10
2.2 Classification . 10
2.3 Performance Metrics . 12
2.4 Genetic Algorithms . 15
2.5 Data Preprocessing . 16

2.5.1 Feature Encoding . 17
2.5.2 Dealing with Missing Values 18
2.5.3 Class Balancing . 19
2.5.4 Feature Scaling . 20
2.5.5 Feature Selection . 21

2.6 Algorithmic Fairness . 21
2.6.1 Basic Definitions . 22
2.6.2 Group Fairness Definitions . 22
2.6.3 Benchmark Datasets . 25

9

Preliminaries

Summary

This chapter describes standard background material which will be used throughout
the thesis, namely classifiers, performance metrics and data preprocessing. Section 2.2
describes basic notions of classifiers, as well as the standard notation this work adheres to.
Since most of this work is focused on binary classification problems, Section 2.3 presents
five standard binary classification performance metric definitions. Section 2.5 presents five
of the most common data preprocessing steps, with a showcase of options to perform each
of these steps. Finally, Section 2.6 presents the fairness definitions that are used throughout
the rest of the thesis.

2.1 Supervised Machine Learning

According to Goodfellow et al. [66], ML refers to the capability of artificial intelligence
systems “to acquire their own knowledge, by extracting patterns from raw data”; ML
methods may be divided into two categories: unsupervised and supervised.

Unsupervised learning refers to methods that look for relationships in data without
having a measured outcome, with the usual goal of finding clusters, components or
trajectories in the data structure [85]. Supervised methods, on the other hand, aim at
predicting a target outcome on instances of a data structure for which such target is
unknown. The nature of the target may be continuous, e.g. a real number, or discrete, e.g. a
category from a finite set of options. Supervised methods aimed at predicting a continuous
value are known as regression methods, while supervised methods aimed at predicting a
category are known as classification methods. This thesis is about the latter, and therefore
an introduction to ML classification methods now follows.

2.2 Classification

Classification is one of the most common supervised learning tasks, along with regression.
In classification, the purpose is to create a model that predicts a data instance’s class, i.e. a
particular category among a finite set of options. Some examples of class variables are a
person’s sex, a medical diagnosis among a set of possible diseases or whether a bank loan
will be paid or not.

10

2.2 Classification

Formally, a dataset D is a rectangular array

D =

X1 X2 · · · Xp Y

x11 x12 · · · x1p y1

x21 x22 · · · x2p y2
...

...
...

xn1 xn2 · · · xnp yn

where xi j represents the value of the j-th variable for the i-th observation, with i= 1,2, . . . ,n
and j = 1,2, . . . , p. D’s variables are divided in X = (X1,X2, . . . ,Xp), the feature variables,
which may be numerical (or quantitative) or categorical (or qualitative), and Y , the class
or target label, the categorical variable which is to be predicted. Each row in D will be an
instance or record [83].

In this context, a classifier may be defined as a function from the domain of the feature
variables to the domain of the class Ŷ : Dom(X)→ Dom(Y), i.e. Ŷ assigns a label to every
possible data instance. When Dom(Y) consists of only two labels it will be referred to as
binary classification; most of the classification tasks dealt with in this thesis are binary.

Since the goal of a classification task is usually to generate a classifier which produces
a set of predictions Ŷ (X) that is as similar to Y as possible, a set of performance metrics
which will allow us to quantify the predictive performance of a classifier is defined in
Subsection 2.3.

There are several families of classifiers, which vary in both the way they operate as
well as on the way the models are fitted to the data. Common classifiers range from logistic
regression (LR) [79], a binary classifier which is based on fitting the coefficients of a
logistic function, to decision trees (DTs) [130], which work through a set of nested if-else
statements, to margin-maximising methods such as support vector machines (SVMs) [67],
which aim at maximising the distance between instances and a separating hyperplane (the
margin) on a high-dimensional embedding of the data.

Although some of these models only work for binary classification in their simplest
form, e.g. LR and SVM, they can handle multi-class problems by considering several
binary classification problems, and then applying a combining rule on the set of decisions,
e.g. voting. Two approaches are commonly applied to do this:

1. Classifiers between each class and the union of all the other classes are trained. This
is called the one-versus-rest approach [150].

11

Preliminaries

2. Classifiers between every pair of classes are trained. This is known as a one-versus-
one or all-pairs approach [83].

It is also possible to combine multiple classifiers into an ensemble by bagging, i.e.
aggregating the predictions of classifiers learnt from different training-set samples through
majority voting, or by boosting, i.e. fitting a sequence of classifiers on repeatedly modified
versions of the data and then combining them through a weighted vote. The aim of these
ensemble methods is to obtain a more powerful prediction model, with a reduced variance
of the resulting classifier’s predictions [83]. Typical ensemble-method classifiers are
random forests [16] for bagging and AdaBoost (AB) [140] for boosting.

2.3 Performance Metrics

In order to quantify the quality of a classifier, several possible performance metrics may be
considered. It is a standard practice to separate the data into a training set, which will be
used to fit the model, and a test set, which is used to measure these metrics. Furthermore,
if the computational budget allows for it, performing k-fold cross-validation, i.e. splitting
the dataset into k evenly-sized subsets, or folds, treating each of them as test and the rest as
training to evaluate the performance metrics and finally averaging out the resulting metrics,
will result in more accurate performance estimates than a single split [119].

The selection of k ranges from 2 to the number of instances in the data (this particular
case is known as leave one out (LOO)), and it determines the relative sizes of the training
and test sets. Even though this value is arbitrary, the literature [83] suggests the values
of k = 5 or k = 10 (resulting in 80/20 or 90/10 train-test splits, respectively), which are
considerably less computationally-expensive, yet produce a smaller variance in test error
rates than LOO. The cross-validation folds may be sampled in different ways: this may
happen either consecutively, i.e. in the order of appearance of the instances in the dataset,
shuffling the instance-order before splitting the data, or through stratified random sampling;
this last case means that the sampling is done so that the class proportions for each fold are
roughly equal to the class proportions in the whole training set [13].

In a binary classification problem, i.e. one where there are only two possible outcomes
(negative and positive, codified as 0 and 1 respectively), and given a set of predictions
Ŷ (T) over test set T , it is possible to aggregate the instances of T into one of the following
four categories, and represent them in a confusion matrix, as shown in Table 2.1:

True positives (TP) Positive instances that are correctly classified as positive.

12

2.3 Performance Metrics

Table 2.1 The confusion matrix of a binary classifier’s predictions.

True Class

Predicted Class Positive Negative

Positive TP FP
Negative FN TN

True negatives (TN) Negative instances that are correctly classified as negative.

False positives (FP) Negative instances that are incorrectly classified as positive.

False negatives (FN) Positive instances that are incorrectly classified as negative.

Based on these four categories, the most common performance metrics in binary
classification are now defined, along with the advantages and disadvantages inherent to
each of them. All of these metrics range between 0 and 1, with higher values being better.

Accuracy (ACC) The ratio of correctly classified instances in the test set:

ACC =
|T P|+ |T N|
|T |

.

Precision The ratio of correctly classified positive instances over the total number of
instances classified as positive, i.e. how good a classifier is at avoiding false positives:

precision =
|T P|

|T P|+ |FP|
.

Recall The ratio of correctly classified positive instances over the total number of positive
instances, i.e. how good a classifier is at detecting positive instances:

recall =
|T P|

|T P|+ |FN|
.

F1 Score The harmonic mean of precision and recall:

F1 =
2 ·precision · recall
precision+ recall

.

13

Preliminaries

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Random
Logistic
Regression

Figure 2.1 The ROC curve for a LR classifier. The ROC AUC Score is the area below the
pink curve. The green line represents the ROC curve for random classifiers that assign a
positive label with probability p ∈ [0,1].

ROC AUC Score Area under the Receiver Operating Characteristic Curve (ROC AUC),
which plots |FP|/|T | on the x-axis and |T P|/|T | on the y-axis for different discrim-
ination thresholds, i.e. the value at which a classifier will change an instance’s
class. For example, in LR predictions are determined by evaluating a fitted logistic
function’s values on an instance and comparing this functional value with a preset
threshold, e.g. 0.5 to determine the instance’s class, and changing this threshold
value will result in different TP and FP values for the resulting classifier. A plot of
the ROC curve of LR classifiers with different classification thresholds is shown in
Figure 2.1.

It is possible to generalise these metrics to the multi-class case by first considering
each class i as “positive” and the combined rest of the classes as “negative”, evaluating
T Pi, FPi, T Ni and FNi and the corresponding metrics for each class, and finally averaging
out the resulting metrics.

14

2.4 Genetic Algorithms

2.4 Genetic Algorithms

This section is based on the genetic algorithm tutorial by Whitley [162]. Genetic algorithms
as a family of computational models, inspired by evolution, that may be used to search
through a potentially large search-space for a function’s optimal value. The original
genetic algorithm model was introduced in Holland [77] in 1975. As genetic algorithms
do not use gradient information, they may be used to optimise many different classes of
problems, ranging from robot path planning, image processing and gaming to scheduling
problems [100].

Informally, genetic algorithms operate on a population of individuals, whose relevant
information is encoded into chromosomes consisting of a set of values—known as genes—
for each relevant feature of the data. The population “evolves” across generations by
recursively applying recombination and transformation operators to the previous generation,
with the aim of gradually obtaining fitter individuals with respect to the objective function.

The Basic Genetic Algorithm

The basic genetic algorithm consists of the following steps:

1. Initialisation: Typically, a random population will be generated with chromosomes,
i.e. an ordered tuple of valid gene-values, where each gene represents a different
data feature.

2. Fitness or Evaluation: The objective function is evaluated on each chromosome
of the population; this evaluation will determine the fitness of the chromosomes,
i.e. how good they are in comparison to the other chromosomes with respect to the
objective function.

3. Selection: An intermediate population is built by copying chromosomes from the
current population—possibly more than once—where the probability of chromo-
somes being copied is proportional to their respective fitness, i.e. fitter chromosomes
are more likely to be copied.

4. Crossover: A fraction of the intermediate population chromosomes—determined
by a crossover rate parameter—are selected to be parents of new chromosomes
according to their fitness (where fitter chromosomes are more likely to be selected)
to form new offspring (or children) to replace them. Crossover is a recombination
operator that may happen in several ways. Two standard crossover operators are:

15

Preliminaries

Single-Point Crossover: A recombination point, i.e. a gene-index, is randomly
chosen. Offspring are then generated by swapping all the genes after the
recombination point for two parents. For example, consider chromosomes
abcde and 12345. If the recombination point were i= 3, the resulting offspring
would be chromosomes ab345 and 12cde.

Two-Point Crossover: A start and an end recombination points are randomly cho-
sen, and only the genes between those two points are swapped. If we think
again of chromosomes abcde and 12345 as parents, and assume that start = 2
and end = 4, the resulting offspring would be chromosomes a234e and 1bcd5.

5. Mutation: Each gene in the intermediate population may independently mutate
with a small probability, determined by a mutation rate parameter. This allows
for additional variability in the generated chromosomes, which in turn permits the
exploration of previously unknown regions in the search-space.

Steps 2–5 are repeated over the resulting populations until a stop-condition is met. This
could be, for example, finding a sufficiently fit individual, reaching a set number of
iterations or exhausting a computational budget. Each consecutive execution of steps
2–5 will be referred to as a generation of the genetic algorithm. FAIRPIPES, the pipeline
optimisation algorithm presented in Chapter 4, is inspired by the basic genetic algorithm,
although it has many particularities described in the aforementioned chapter.

2.5 Data Preprocessing

Data preprocessing will be defined as the set of steps that transform the raw input data into
its final form as a training set. Several catalogues and classifications have been proposed
for data preprocessing operators, e.g. ML Bazaar [145], Orange [40] and others [58].

Some of these steps are required by the classification framework, e.g. encoding
categorical variables and imputing missing data, while others may optionally be deployed,
e.g. class balancing, scaling and feature selection. These steps are generally selected and
combined into pipelines based on best practice considerations, with model performance,
e.g. one or more of the metrics discussed in Section 2.3 as the main objective [129].
Some of the most common preprocessing steps are now described, exemplifying different
ways in which each of these steps may be performed. It is important to note that all the
parameter-tuning decisions made for each preprocessor must come, i.e. be fitted, on the
training set alone.

16

2.5 Data Preprocessing

2.5.1 Feature Encoding

Data may come in different formats [58], such as discrete numerical, e.g. the number of
rooms in a house, continuous numerical, e.g. the surface area of the house and categorical,
e.g. the neighbourhood where the house is. Classifiers have distinct requirements regarding
the way they understand data. Therefore, a raw dataset will most of the time require
transforming the different variables into a format that may be processed by the classifier
of choice. The most common transformation is to convert a categorical variable into
numerical. There are several ways in which this may be achieved, each having its set of
pros and cons. Across this thesis, the following categorical encoding methods were used.
For all of them, the assumption will be that a categorical feature x with n possible values is
to be encoded.

One-Hot The original categorical feature x is dropped and n new zero-columns—one per
category—are created. For any instance, the column corresponding to the instance’s
x-value gets assigned the value 1, leaving the rest unmodified. This method is
highly interpretable and yields binary new features, both desirable qualities in a
dataset. However, this comes with the associated cost of a high dimensionality in the
resulting dataset, especially when x has many possible values, e.g. the nationality
of an instance. This in turn may greatly increase the volume of a dataset, as well
as the number of parameters to be learned by the classifier [143]. Another problem
with this method is that it provokes multicollinearity among the resulting one-hot
encoded features, as their sum will always equal 1, preventing certain linear models,
such as non-regularised LR, from working [49].

Ordinal Each value gets mapped to an integer in {0,1, . . . ,n− 1}. This simple en-
coding may work well when the categorical feature has an underlying order, e.g.
low/medium/high and it does not increase the dimensionality of the training set [53],
but may otherwise cause artificial trends to be detected by a classifier.

Target Each categorical value xi gets replaced with the posterior probability of a positive
classification given xi [117]. This method does not increase the dimensionality of a
dataset, but given that it correlates the categorical feature with the classification, the
resulting model may be prone to overfitting [105].

LOO A slight variation of Target encoding, where the current data instance is excluded
from the posterior calculations, to reduce the effect of outliers [113]. Like Target,
with LOO the dimensionality is not increased, but there is a risk of overfitting the
resulting model.

17

Preliminaries

Weight of Evidence Each categorical value xi gets replaced by its weight of evidence
(WoE): WoE(xi) = ln P(Y=1|x=xi)

P(Y=1|x ̸=xi)
[60]. Like Target and LOO, the dimensionality is

not increased, but there is a risk of overfitting, and the calculation may be undefined
when either the numerator or the denominator become zero.

Count Replaces each xi value with its number of occurrences in the training set [113].
Again, no dimensionality is added. However, there is the risk of confounding two
different x-values if their counts are the same.

2.5.2 Dealing with Missing Values

For most real-world datasets, there will be missing data for some instances of it. There are
many different reasons for this, ranging from problems in data collection, e.g. a sensor
did not register a particular observation, up to a feature not being applicable for a given
instance [96]. Missing values may occur in three different ways [120]:

Missing at Random (MAR) means that missing data in variable Xi depends on the value
of variable X j, with i ̸= j. For example, school grades obviously depend on whether
an individual actually attended school or not.

Missing Not at Random (MNAR) means that missing data in variable Xi depends on Xi

itself. For example, a sensor might not record temperatures below or above a certain
threshold.

Missing Completely at Random (MCAR) means that missing data occurrences are in-
dependent of all variables in the data. These could happen, for example, because
there was a human error while capturing the data.

Four standard ways to deal with missing data are:

1. Removing the features having missing values. This is the most drastic—and arguably
the worst—possible solution, as it may cause a big proportion of the data to disappear.

2. Removing the instances with missing values. This solution is not as drastic, as only
the problematic instances get deleted. However, if there are many missing values for
different features, the number of deleted instances may still not be insignificant.

3. Treating missing (or NA) as a special value, i.e. assigning missing values their
own category. This solution can work well on unordered categorical features, but
on ordinal features mapping a particular number to missing data, e.g. 0 can be
problematic [156].

18

2.5 Data Preprocessing

4. Imputing the missing values with existing or synthetic values extracted from the
dataset; Janssen et al. [84] argue this is usually preferable. There are many different
ways in which this solution can be implemented. The most common ones use a
statistical measure of the feature—e.g. mean, median or mode—either over the
whole dataset or over the instance’s corresponding class. It is also possible to apply
statistical learning methods such as MICE [157] or KNN [34] in order to produce
the imputed value, using the rest of the dataset’s features as predictors [104].

In the Fair-ML context, missing data may not be MCAR due to different reasons, such
as unfavoured individuals being reluctant to answer questions that could be used against
them, or data may be less complete for minority groups [51]. Therefore, missing data
correction methods, such as removing instances with missing values, could have a disparate
impact across population groups, making it an even less suitable preprocessing choice.

2.5.3 Class Balancing

Real-world datasets will often be imbalanced with respect to their class distribution [107],
i.e. some class values (or values of particularly important features) are substantially more
frequent than others. There are several possible reasons for this imbalance, ranging from
the actual class distribution—where some classes may appear less frequently than others,
e.g. people with a rare blood type—to improper data collection, e.g. an Internet survey
may underrepresent the poorer sectors of the population, since their access to the Web
may be more limited. In any case, class imbalance may produce the undesirable effect of
classifiers with low predictive performance for the minority classes by focusing solely on
correctly predicting the majority classes; in an extreme scenario with very few minority
instances, even the trivial classifier labelling every instance as members of the majority
class will have a great overall predictive performance.

In order to correct class imbalance, three possible solutions were considered:

1. To undersample the majority classes. This may be done by dropping instances
belonging to the majority class, either randomly or systematically [98]. The main
problem with this solution is that valuable data is discarded, which will have a
negative impact on the resulting classifier’s performance for the majority class.

2. To oversample the minority classes. Oversampling may be performed either by
randomly duplicating existing minority class instances or by generating synthetic
minority examples that approximate real minority instances [24].

19

Preliminaries

3. A combination of undersampling the majority classes and oversampling the minority
classes [158].

An alternative solution to class imbalance is cost-sensitive classification, in which
classes are given different misclassification costs, and the goal is to minimise the total
misclassification cost [75].

2.5.4 Feature Scaling

Classifiers based on distances or similarities, such as K Nearest Neighbours and Support
Vector Machines, are sensitive to the scale of feature values [144]. For example, a classifier
predicting whether individuals are healthy or not may assign a greater importance to the
person’s salary than to their weight, solely based on the different scales of both features.
For this reason, transforming the data so that all the features share a common scale is often
desirable. There are many different ways in which this can be achieved, and selecting
the optimal transformation will be data-and-problem specific. The following are the most
common scaling techniques [142]:

z-Score Scaler Also known as standard scaler, the z-score scaling of feature X is given
by:

z =
x−µ

s

where µ is the mean and s is the standard deviation of X . This centers X around 0,
and makes its values commensurable with the standard normal distribution.

MinMax Scales each feature X into the [0,1] range [124]. This transformation is given
by:

xMinMax =
x− xmin

xmax− xmin
.

MaxAbs Scaler Scales each feature X by its maximum absolute value, so that for each
feature the resulting values will be in the range [−1,1]. This transformation is given
by:

xMaxAbs =
x
|x|max

.

Quantile Transformer Transforms the features to follow a discrete uniform distribution
so that each quantile (a user-defined parameter specifying the number of bins in
which to accommodate the data) has the same number of instances, reducing the
effect of outliers on the resulting classifiers. However, the non-linear nature of this
transformation may distort correlations between features [142].

20

2.6 Algorithmic Fairness

Normaliser Scales each instance to have unit norm, i.e.

(
∑
i∈I

x2
i

) 1
2

= 1,

where I are the indices for all feature variables. Data normalisation is a common op-
eration for text classification [152]. Importantly, this method will convert categorical
features into continuous, with its new values being impossible to interpret.

2.5.5 Feature Selection

Feature selection refers to discarding unnecessary or redundant variables from data, in
order to reduce both the computational cost of training a classifier as well as the data noise
resultant from these redundancies [23]. There are many different criteria to select which
features should be discarded, yet they can can be grouped into three main categories: filters,
wrappers and embedded methods [154, 68].

Filters are algorithms that select variables without evaluating the metric of interest—e.g.
the accuracy—on feature subsets, but instead rely on auxiliary statistical metrics,
discarding the features that do not meet a predefined threshold, e.g. features with
very low variance.

Wrappers perform classifier evaluations on feature subsets, and preserve either a fixed
number—e.g. the k best—or a percentage of the total number of features.

Embedded Methods perform variable selection during the learning process, and are
usually classifier-specific.

The presented preprocessing operators, either in their original form or modified ad
hoc, are the base of the correction and optimisation algorithms presented in Chapters 4, 5
and 6. The following section introduces the basic algorithmic fairness notions used in the
subsequent chapters.

2.6 Algorithmic Fairness

There is a major division in fairness definitions, namely the one between group and
individual fairness. While the former refer to a statistical analysis of a classifier’s behaviour

21

Preliminaries

across data groups, e.g. gender or race, the latter strives for the ideal of “similar” individuals
receiving similar classifications [46]. The notion of individual fairness, although intuitively
easier to grasp, brings forward the hard follow-up problem of determining whether two
individuals are similar or not, i.e. of determining a fair metric for the data. Although
some research has been done with respect to individual fairness [170, 102, 87], most of
the existing work on fair classification—including the works presented in this thesis—has
to do with group fairness.

The basic group fairness definitions used are now presented, together with the reasoning
behind the focus on the choice of these metrics over other existing ones.

2.6.1 Basic Definitions

A binary classifier’s class label can be positive or negative referring to the desirable and
non-desirable outcome of a prediction, respectively. For example, in a classification task
deciding whether to grant a user a bank loan, the positive label would refer to getting the
loan, and the negative one to being rejected.

A dataset’s protected attribute (PA) refers to a variable that may be the object of
discrimination, due to historical bias or otherwise. Although both the number of PAs and
the number of groups in a PA may and sometimes will be greater than two, the following
definitions will assume a single binary PA, meaning there will only be two PA groups,
every instance in the dataset belonging to one of those.

The ratio of the number of positive instances divided by the total number of instances
in a specific group will be called the positive ratio (PR) of the group.

Among the two PA groups, the one having the highest PR will be referred to as the
favoured group F , while the other one will be referred to as the unfavoured group U . When
required, the positive and negative instances of F and U will be referred to as F+, F−, U+

and U−, respectively.

2.6.2 Group Fairness Definitions

This thesis’ analyses are based on four fairness definitions, formalised next: demographic
parity [46], equality of opportunity [72], equalised odds [72] and proxy fairness [94]. In
these definitions, the positive label is identified with Y = 1 and the negative label with
Y = 0.

22

2.6 Algorithmic Fairness

Definition 1 (Demographic Parity). A classifier satisfies demographic parity (DP) if the

probability of being classified as positive is the same across PA subgroups:

P(Ŷ = 1 | PA =U) = P(Ŷ = 1 | PA = F).

Definition 2 (Equality of Opportunity). A classifier satisfies equality of opportunity (EOp)

if the probability of being classified as positive for actual positives is the same across PA

subgroups:

P(Ŷ = 1 | PA =U , Y = 1) = P(Ŷ = 1 | PA = F , Y = 1).

Definition 3 (Equalised Odds). A classifier satisfies equalised odds (EO) if the probability

of being classified correctly is the same across PA subgroups:

P(Ŷ = y | PA =U , Y = y) = P(Ŷ = y | PA = F , Y = y), y ∈ {0,1}.

Definition 4 (Proxy Fairness). A classifier Ŷ satisfies proxy fairness (PF) if the interven-

tions do(PA = U) and do(PA = F) result in the same probability of being classified as

positive:

P(Ŷ = 1 | do(PA =U)) = P(Ŷ = 1 | do(PA = F)).

The do operator is defined as an intervention on the test set T . To evaluate PF, this
intervention is performed independently two times, assigning every individual in T the
PA-values U and F , resulting in TPA=U and TPA=F , respectively. The process is illustrated
in Figure 2.2.

These definitions, as well as others [101], have been proposed in the literature, and
they are sometimes in conflict with one another: a decision rule that satisfies one of the
definitions may well prove to be unfair for a different one [29]. For example, determining
university admissions through gender quotas may achieve DP, but it makes the acceptance
rates for good students of different genders disparate, i.e. EOp is not satisfied.

The reasons to focus the analyses on these particular metrics are four-fold:

1. These definitions align with the prevalent world-views of equality in the social
sciences [133]. DP aligns with equality of outcomes, an often referred to world-view

23

Preliminaries

T

PA = U intervention PA = F intervention

TPA=U TPA=F

Predictions for TPA=U Predictions for TPA=F

Compare the PRs for TPA=U and TPA=F

Figure 2.2 Computing the proxy fairness of test set T .

in the social equality literature [127]. According to this, aggregated differences in
skill or condition among individuals belonging to different population groups, e.g.
gender or race, are the consequence of historical and social injustices. Therefore,
in an ideal world the probabilities of every outcome should be the same across
groups [46]. In the United States labor law, the 80% rule [14] is presented as a
simple rule to determine whether a company’s hiring procedures have an adverse
impact on a PA subgroup. This rule specifies that the ratio of the hiring rates among
applicants belonging to different PA subgroups, e.g. PR(U)/PR(F) should be higher
than 0.8 [115]. An opposing social view of fairness is EOp [133], where individuals
deserving a positive outcome have the same probability of obtaining it, regardless
of their group adherence. This view, however, allows for the possibility of different
population groups performing differently with respect to the outcome of interest.
An even more severe restriction to this is EO, where, additionally to deserving
individuals, undeserving individuals share the same probability of a positive outcome
(not necessarily equal to the probability for the deserving individuals).

2. A more formal approach to the connection between fairness definitions and world-
views is presented in Friedler et al. [55], where world-views are defined as the set
of assumptions made about a construct—a metric space including all the features
that are relevant to a decision task, i.e. the data plus possibly additional beliefs.
Three notable world-views are introduced in this paper: what you see is what you
get (WYSIWYG), we are all equal (WAAE) and structural bias. WYSIWYG refers to
the assumption of the construct space being the same as the available data. WAAE,
on the other hand, assumes that all groups of individuals with respect to a protected
attribute should perform equally well with respect to the classification task. Finally,

24

2.6 Algorithmic Fairness

Table 2.2 Datasets used for this thesis’ experiments.

Dataset PA Favoured Positive Class Attributes Instances

Income Sex Male Over $50k income 14 48842
COMPAS Race White Will not recidivate 27 6907
German Sex Male Will repay loan 22 1000
Titanic Sex Female Survived 10 891

structural bias assumes that protected attribute groups may play a more relevant
role in the decision rule than they should. This calls for a modified decision rule to
correct this distortion, i.e. taking affirmative action (AA).

3. Proxy fairness is closely related to fairness through unawareness (FTU) through a
simple intervention: assign the same PA value to every instance in the test dataset,
once per possible PA-value, and compare the resulting classification PRs of these
modified test sets. If the PRs are the same, this means that the PA has no impact over
the obtained label, i.e. the classifier is “PA-blind”.

4. These definitions are easy to measure and intepret on real-world data and predictions:
in most cases all that needs to be done is to evaluate the positive ratios for the whole
test set as well as for the test set subgroups of interest, namely F+, F−, U+ and U−.

2.6.3 Benchmark Datasets

The experiments presented in Chapters 5 and 6 were performed on three datasets commonly
used in the ML fairness research literature: Adult Income (Income) [44], COMPAS [106]
and German Credit (German) [44]. The experiments in Chapter 4 were additionally
performed on the Titanic [21] dataset. A summary of the main features of each of these
datasets may be seen in Table 2.2.

Sections 2.2 and 2.3 introduced the basic ML concepts necessary to talk about algorithmic
fairness in classification tasks. Afterwards, in Section 2.6 the basic fairness definitions
employed in the subsequent chapters were presented. In Chapter 3, a survey of works
related to Chapters 4, 5 and 6 is presented.

25

Chapter 3

Related Work

Contents
Summary . 28
3.1 Detecting Unfairness . 28
3.2 The Fairness/Accuracy Trade-Off 29
3.3 Pipeline Optimisation . 29
3.4 Fairness Correction for Classification Tasks 31
3.5 Fairness-Aware Preprocessing . 33
3.6 Fairness and Privacy . 35
3.7 Fairness in Other ML Domains . 35

27

Related Work

Summary

This chapter seeks to provide context for the contributions presented in this thesis by
examining the relevant background material and related work in algorithmic fairness.
Existing tools to detect bias in data that may lead to unfairness are discussed in Section 3.1
and the main problem with enforcing a particular fairness definition, the fairness/accuracy
trade-off, is discussed in Section 3.2.

Existing AutoML solutions that perform automatic preprocessing pipeline optimisation
with performance as their objective are presented. These methods are related to the
FAIRPIPES algorithm, presented in Chapter 4. Afterwards, a discussion on the existing
fairness-correcting methods for classification tasks and focusing on preprocessing methods
is presented in Section 3.4, as these are related to the PARDS algorithm presented in
Chapter 5. Finally, papers dealing with the relation between fairness and privacy are
considered, as these are related to the FAIR-MDAV algorithm, presented in Chapter 6.

3.1 Detecting Unfairness

A first step towards algorithmic fairness is being able to detect whether a dataset is biased
regarding the PAs of interest. This may be detected directly from the training data for
many fairness definitions, e.g. DP, EOp or EO. Many unfairness detection tools are
available [169, 137, 9], with IBM’s AI Fairness 360 [10] being a popular open source
solution that is continuously being updated.

It is important to note that having a dataset satisfy a fairness definition does not
necessarily imply that the predictions of any classifier learnt from it will also be fair. In
Chapter 5 it is shown that the fairness of a dataset D and the fairness of predictions by
a classifier learnt from D are directly correlated, with different datasets and classifiers
requiring specific amounts of fairness correction in the dataset to achieve optimal predictive
fairness.

According to Mitchell et al. [118], there are two main sources of algorithmic unfairness:
statistical bias and societal bias. Statistical bias refers to a mismatch between the dataset
used to train a classifier and the true data relationship being modelled across the whole
population due to inadequate sampling [103]. Societal bias, on the other hand, represents
an additional layer to the fairness problem: the desire to model an ideal world in which
a particular fairness world-view [55] is satisfied, e.g. WAAE. In both cases, it may be
necessary to correct a learnt classifier to satisfy the desired fairness behaviour.

28

3.2 The Fairness/Accuracy Trade-Off

3.2 The Fairness/Accuracy Trade-Off

A common assumption in the algorithmic fairness literature is the existence of a trade-off
between the performance and the fairness of a classifier [116, 26, 172, 31]: the cost of
enforcing the latter is a penalty with respect to the former. This trade-off is particularly
severe in the case of DP correction over a biased dataset: in order to achieve similar positive
ratios across both PA groups, it becomes necessary to classify U− instances as positive or
F+ instances as negative, therefore diminishing the overall predictive performance of the
classifier. In the case of other fairness definitions, e.g. EOp and especially EO, however,
the trade-off is less dramatic—yet still existent—as these definitions are centered around
making correct classifications anyway.

Having two or more metrics in tension with each other, e.g. DP and ACC, means that
fairness correction may be thought of as a multi-objective optimisation problem. Given
a classification problem there must be a collection of optimal solutions consisting of
different levels of fairness and accuracy, ranging from optimal predictive performance
with a relatively poor level of fairness to the opposite: optimal fairness with a relatively
poor predictive performance. This set of solutions, for which no metric may be improved
without a negative impact on the other, is known as a Pareto front [121], consisting of
Pareto-optimal solutions. A set of classifiers and their Pareto front (taken from a Chapter 4
experiment) is shown in Figure 3.1.

In Chapter 4 a genetic-algorithm based solution that explicitly assigns relative im-
portances to a combination of fairness and performance objectives is presented, and in
chapters 5 and 6, fairness correction solutions that indirectly control the fairness/accuracy
trade-off through a continuous correction parameter are presented as well.

3.3 Pipeline Optimisation

This section presents work related to the FAIRPIPES algorithm briefly described in Sec-
tion 1.5 and presented in detail in Chapter 4. FAIRPIPES is a genetic algorithm aimed
at optimising data preprocessing pipelines, both through the selection of specific pre-
processing operators as well as by applying the resulting operators in the best possible
order.

Fairness-aware preprocessing is usually attained by applying fairness-specific methods,
like the ones that will be described in Section 3.4. However, these are not always readily
available, and they may cause undesired side-effects such as loss of accuracy, since they
involve the introduction of synthetic data into the original dataset, e.g. by synthetic

29

Related Work

0:2 0:4 0:6 0:8 1:0

Demographic Parity Score

0:175

0:200

0:225

0:250

0:275

0:300

0:325

0:350

1
−

A
cc

ur
ac

y
S

co
re

Pareto Front

Figure 3.1 Fairness (DP) and performance (1 − ACC) metrics for a set C of classifiers
used on the Adult Income dataset (gray scatter points). The fairness/accuracy trade-off may
be observed on the Pareto front (shown in orange), as better ACC scores (lower points) are
further to the right (worse DP score).

30

3.4 Fairness Correction for Classification Tasks

oversampling [25]. It is important to note that FAIRPIPES does not directly compete with
these fairness-correcting methods. Instead, FAIRPIPES can easily be adapted to work on
top of existing preprocessing methods, incorporating them to its pipeline search-space.

Evolutionary computation search, the approach used by FAIRPIPES, has been used
before to optimise specific data preprocessing tasks, e.g. for feature selection [149, 5,
123, 153, 136] and data correction [3], as well as to build full preprocessing pipelines, e.g.
TPOT [122], which is commented on next.

Automating the process of tuning and training classifiers is an active research topic.
Notable examples are TPOT [122], ML Bazaar [145], H2O AutoML [108], and auto-
sklearn [52]. These tools take different approaches for their optimisations: TPOT, one of
the most popular AutoML solutions, is the closest in spirit to FAIRPIPES, as they are both
based on evolutionary computation; while TPOT uses genetic programming, FAIRPIPES

is a genetic algorithm. In contrast, ML Bazaar and auto-sklearn are based on Bayesian
optimisation. H2O AutoML is based on stacked ensembles, where a meta-learner is trained
to find the optimal combination of the base learners, combined with random search. While
some of these methods do some preprocessing optimisation, for none of them it is the
main component of their optimisation, as they are mostly focused on model selection and
hyperparameter tuning. Table 3.1 compares the preprocessor options offered by FAIRPIPES

and the aforementioned packages.

3.4 Fairness Correction for Classification Tasks

A classifier’s predictive fairness may be adjusted by the combination of one or more of
the following approaches: wrangling multiple data sources adequately into a training
dataset [112], preprocessing the training data, in-processing the learning algorithm [1, 22,
168, 167, 170] or post-processing a classifier’s predictions [72]. The works presented in
this thesis’ subsequent chapters adhere to the preprocessing approach, since it presents two
distinct advantages over in-processing and post-processing correction:

• Preprocessing methods are classifier-agnostic, i.e. they will work regardless of the
chosen classifier. In contrast, most in-processing approaches consist of a modifi-
cation over an existing classifier, e.g. fairness-aware LR and SVM [167] or Naive
Bayes [19], or by adding a fairness regularisation term, a strategy that would only
apply to certain classifiers such as LR [91].

• The introduced corrections are transparent and auditable by the user: it is possible to
quantify and report the changes introduced into data.

31

Related Work
Ta

bl
e

3.
1

C
om

pa
ri

so
n

of
pr

ep
ro

ce
ss

or
s

of
fe

re
d

by
FA

IR
P

IP
E

S
w

ith
po

pu
la

rA
ut

oM
L

pa
ck

ag
es

.

Pa
ck

ag
e

E
nc

od
er

s
Im

pu
te

rs
Sc

al
er

s
Sa

m
pl

er
s

Fe
at

ur
e

Se
le

ct
or

s

FA
IR

P
IP

E
S

O
ne

-H
ot

,
L

O
O

,
Ta

rg
et

,
C

ou
nt

,
W

oE
,

O
rd

in
al

M
ea

n,
M

ed
ia

n,
M

os
tF

re
qu

en
t

N
on

e,
M

in
M

ax
,

M
ax

A
bs

,
Q

ua
nt

ile
,

N
or

m
al

is
er

N
on

e,
O

ve
r,

U
nd

er

N
on

e,
K

-B
es

t

T
PO

T
0.

9
O

ne
-H

ot
M

ed
ia

n

N
on

e,
M

in
M

ax
,

M
ax

A
bs

,
R

ob
us

t,
St

an
da

rd

N
on

e

N
on

e,
R

FE
,

Se
le

ct
Fr

om
M

od
el

,
Se

le
ct

Fw
eS

el
ec

tF
w

e,
Se

le
ct

Pe
rc

en
til

e,
V

ar
ia

nc
eT

hr
es

ho
ld

M
L

B
az

aa
r0

.3
.2

C
at

eg
or

ic
al

,
L

ab
el

,
O

ne
H

ot
M

ea
n

N
on

e,
M

in
M

ax
,

M
ax

A
bs

,
R

ob
us

t

N
on

e
N

on
e,

E
xt

ra
Tr

ee
s,

L
as

so

au
to

-s
kl

ea
rn

0.
14

.7
O

ne
-H

ot
M

ea
n,

M
os

tF
re

qu
en

t
N

on
e,

N
or

m
al

is
er

N
on

e

N
on

e,
Po

ly
no

m
ia

l,
PC

A
,

E
xt

ra
Tr

ee
s

H
2O

3.
32

.1
.7

Ta
rg

et
M

ea
n,

M
ed

ia
n,

M
os

tF
re

qu
en

t
N

on
e

N
on

e,
O

ve
r,

U
nd

er
N

on
e

32

3.5 Fairness-Aware Preprocessing

Therefore, the following section focuses on preprocessing correction.

3.5 Fairness-Aware Preprocessing

The works discussed in this section are closely related to PARDS, the data resampling
algorithm briefly described in Section 1.5 and presented in detail in Chapter 5. Fairness-
aware preprocessing is defined by Friedler et al. [56] as a set of techniques that modify
the input data so that any classifier trained on such data will be fair.

According to Kamiran and Calders [90], there are four main ways in which to make
appropriate adjustments to data in order to enforce fairness: suppressing certain features,
e.g. FTU [57], massaging variable values [27, 50, 20], reweighing features [97, 81], and
resampling data instances [132, 89, 138, 25]. Further elaboration and examples of each of
these four preprocessing strategies now follows.

Feature Suppression Feature suppression is closely related to FTU. This technique
relies on the idea of making the PAs “invisible” to a classifier. This is the simplest possible
intervention, as all that is needed is to remove the relevant variables from the training set.
The problem with this approach is that often other variables may be strongly correlated
with the PAs, and hence the discriminatory behaviour of a classifier will persist even
without considering the PA in the model. Even more aggravating is the fact that some
fairness definitions, such as DP, require an affirmative action to improve the classifications
of the unfavoured group’s instances, and removing the PA makes this sort of correction
unfeasible.

Massaging Variable Values This method consists in modifying the class labels for
specific instances in the data, e.g. moving instances from F+ to F− and from U− to U+, in
order to modify the behaviour of the learnt classifier. It is generally a good idea to change
the labels of instances located near the decision boundary [90]; in order to detect these
instances, a ranker that sorts the instances according to their probability of belonging to
the positive class may be used [90].

Reweighing Instances Instead of modifying class labels, another solution is to assign
different weights to specific instances in the training set, so that the regularisation term
penalises wrong classifications differently for each of the PA-label subgroups [18].

33

Related Work

Data Resampling Data resampling is less invasive in nature than FTU or massaging,
since the original data is preserved and only the frequency with which the instances are
represented is modified. In contrast, FTU disposes of large amounts of data without a
guarantee on the effect of said intervention and massaging effectively creates synthetic
data, which does not necessarily reflect the ground truth. Preferential Sampling (PS) [89]
resamples the F /U and positive/negative combinations separately in order to equalise F’s
and U’s PRs. In Chapter 5 it is empirically shown that the optimal fairness correction
depends on the selected sampling method, classifier and fairness definition. Therefore,
equalising the positive ratios across protected attribute groups is not necessarily the best
approach. SMOTEBoost [25] over-samples the minority group through synthetic data
based on real data instances, with a focus on improved minority predictions and indirectly
improving fairness. Since it over-samples with synthetic data, it may either be considered
a massaging or a resampling method. SMOTEBoost has a correcting parameter k which
modulates the amount of correction introduced into the dataset. Other related methods
include Capuchin [138], a causal-fairness non-parametric resampling method and Feldman
et al. [50], a massaging method where parameter λ is used to create linear interpolations
of the original dataset and a repaired copy to find the optimal combination.

Dealing with Multiple PAs

While most of the work presented in Chapters 4, 5 and 6—and indeed, most of the existing
work on fair classification—is focused on the single binary PA classification problem, it is
possible to generalise this to a multi-class PA, multiple binary PAs and even multiple multi-
class PAs. In Chapter 5 one way to deal with the third, more general, situation is proposed,
by generating a combined PA out of many multi-class PAs by comparing the positive ratio
for each instance’s PA values against the overall dataset’s positive ratio and aggregating the
resulting differences. Although in practice this approach works well for real-world datasets,
it is theoretically prone to fail on fairness gerrymandering situations [93]. These situations
happen when the intersection of two unfavoured PA groups becomes favoured, i.e. the PR
of the intersection is greater than the dataset’s. Although it is hard to present an example
of this phenomenon, the problem has been addressed and shown to be computationally
hard by several authors [93, 76, 171, 1].

34

3.6 Fairness and Privacy

3.6 Fairness and Privacy

This section presents work related to the FAIR-MDAV algorithm, briefly described in
Section 1.5 and presented in detail in Chapter 6. Certain fairness goals, e.g. EO, share
a common target with privacy: to represent data in such a way that it is informative of
the task output, but uninformative of the sensitive information [131]. Privacy strives to
protect information from disclosure, while fairness seeks to prevent certain classification
behaviours related to the PA [38]. Ekstrand et al. [47] argue in favour of integrating fairness
research to socio-technical systems that provide privacy protection. A k-anonymisation
method was used in Hajian et al. [69] to protect frequent patterns with fairness. However,
most of the work connecting privacy and fairness has to do with differential privacy, a
technique based on introducing a controlled amount—determined by a parameter ε—of
noise to a dataset in order to prevent determining an individual instance’s presence in the
dataset [45].

Differential privacy may have disparate impact for the PA subgroups in both perfor-
mance and fairness. Bagdasaryan et al. [8], Pujol et al. [128] show that the reduction in
accuracy incurred by deep differential private models disproportionately impacts underrep-
resented PA groups, with differential privacy amplifying the model’s bias towards the most
popular groups. Cummings et al. [35] show that if DP is satisfied by an ε-differentially
private algorithm, this is caused by trivial-accuracy classifiers, i.e. a classifier that predicts
every instance with the same label—positive or negative, whichever label occurs more
frequently. However, ε-differentially private LR models with near-DP fairness differences
are presented by Xu et al. [164].

Foulds et al. [54] define a multi-attribute fairness metric, differential fairness, inspired
by the use of ε in differential privacy, and extend the notion of the 80% rule [14], defined
in Subsection 2.6.1: in order to satisfy ε-differential fairness, the quotient of any two
PA subgroups’ PR should be greater than e−ε and smaller than eε . Jagielski et al. [82]
introduce private EO, a post-processing method which is differentially private with respect
to the PA and achieves EO fairness, at the cost of low accuracy. Finally, Dwork et al. [46]
discuss conditions upon which a particular fairness definition implies privacy, and how
differential privacy may be related to such fairness definition.

3.7 Fairness in Other ML Domains

Although this thesis’ research focuses on fair classification, other domains of ML have
their own fairness paradigms and definitions. Two specific domains are briefly mentioned

35

Related Work

here: fair regression problems, which aim at predicting continuous values such as fairly
assigning a line of credit to bank clients, and fair clustering problems, i.e. dealing with
making each cluster demographically representative of the population.

Counterfactual Fairness A specific type of individual fairness that has been researched
extensively is counterfactual fairness [101, 27, 59, 163], which is based on expert-created
causal models that explain the relationship between the variables of a dataset. A classifier is
said to satisfy counterfactual fairness if modifying the PAs with every possible set of values
does not affect the prediction probabilities for every data instance. The main problem with
this approach is that given a dataset, there are multiple possible causal models for it [125],
and different models may present different fairness behaviours.

Fair Regression Fair regression, where the quantity to predict is a continuous variable,
has not been studied as much as fair classification. In the regression case, two fairness
definitions are used: statistical parity, the continuous analogue to DP, which requires
the prediction to be statistically independent of the PA, and bounded group loss, which
requires that the prediction error with respect to to each PA remains below a pre-determined
level [2]. While the regression problem was not analysed, given the similarity of the fairness
definitions in both domains, in the future it would be interesting to analyse whether this
thesis’ approaches to fairness correction could be modified to work in the regression case.

Fair Clustering The main concern regarding fair clustering is to give each PA group
approximately the same proportion in every generated cluster [28]. This is achieved
by decomposing the data into fairlets, small data subsets that have similar PA group
proportions as the whole data, and then clustering these fairlets into the most efficient
configuration possible, according to the chosen clustering algorithm, e.g. k-means or
k-medians. Finding the fairlets of a dataset, though, is computationally expensive. While
the algorithm provided in the original paper can find them in quadratic time, an improved
algorithm by Backurs et al. [7] can find them in nearly linear time. The solution to fairness
and privacy presented in Chapter 6 borrows concepts from fair clustering.

36

Chapter 4

Genetic Pipeline Optimisation

Contents
Summary . 38
4.1 Introduction . 38

4.1.1 Fairness Differences . 39
4.1.2 Preprocessing Affects Fairness 40
4.1.3 Problem Formulation . 41

4.2 FAIRPIPES . 44
4.3 Experimental Evaluation . 46

4.3.1 Baseline Mapping of the Search Space 52
4.3.2 Single-Objective Optimisation 52
4.3.3 Multi-Objective Policies Optimisation 55

4.4 Performance Evaluation . 61
4.4.1 Pareto Front Estimation . 61
4.4.2 Distance to Best Estimation 62
4.4.3 Comparison with Random Sampling 64

4.5 Conclusion . 65

37

Genetic Pipeline Optimisation

Summary

Improving the fairness of classifiers by manipulating the preprocessing stages of the learn-
ing pipelines is an active area of research, closely related to AutoML. Yet most approaches
optimise for one specific fairness metric, and neglect to account for the contrasting require-
ment of preserving the model’s predictive performance (ACC). In contrast, FAIRPIPES is
proposed: a genetic optimisation algorithm which optimises for user-defined combinations
of fairness and ACC and for multiple definitions of fairness, providing flexibility in the
fairness/accuracy trade-off. FAIRPIPES heuristically searches through a large space of
pipeline configurations, achieving near-optimality efficiently and presenting the user with
an estimate of the solutions’ Pareto front. Given one binary protected attribute and a binary
classification problem, FAIRPIPES evolves an initial population of seed pipelines through
multiple crossover and mutation iterations. The approach was evaluated experimentally
using three fairness metrics: demographic parity difference (DPD), equality of opportunity
difference (EOpD) and equalised odds difference (EOD), and five types of preprocessors:
encoders, imputers, scalers, resamplers and feature selectors, each provided with multiple
specific methods, resulting in a large search space of 3,240 pipelines. When tested on three
well-established benchmark datasets: Income, COMPAS, German and Titanic, FAIRPIPES

achieves near-optimality across a range of combinations for the fairness/accuracy optimi-
sation objectives, while exploring about 6% of the search space. The optimal pipelines
were observed to differ for different datasets, suggesting that no “universal best” pipeline
exists and confirming that FAIRPIPES fills a niche in the fairness-aware AutoML space.

4.1 Introduction

The focus of this chapter is on the data preprocessing steps that are deployed to transform
the raw input data into its final form as a training set, and on their effect on the fairness
and predictive performance of the resulting model. Having two objectives which may
be in opposition with each other indicates that finding the adequate pipeline should be
treated as a multi-objective optimisation problem. This means that the optimal solution
will not be unique, but a range of such solutions will exist, each of these presenting a
different fairness/performance trade-off, as discussed in Section 3.2; the choice among
these solutions will then be decided by the user’s preferences or by external factors, such
as legal regulations.

As a motivating example, consider a company having presence in three different
countries, each of them having different regulations with respect to anti-discrimatory hiring

38

4.1 Introduction

policies. Country A requires that the hiring proportion for males and females is 1, i.e. the
same number of males and females are hired. Country B, on the other hand, requires the
difference between male and female hiring numbers to be less than 10%. Finally, country C
has no anti-discriminatory hiring regulations at all. If the company wants to use a classifier
to select the applications to hire which has the best possible accuracy while still complying
with each country’s regulations, the accuracy will be different across countries. Figure 4.1
presents such a case, where three different optimal classifiers—resulting from different
preprocessing pipelines—can be used to satisfy the countries’ different fairness constraints.
Having access to this set of optimal solutions will let the company know the expected
predictive performance of the classifiers in the three countries, as well as on any other
place where the company decides to establish itself.

Several catalogues and classifications have been proposed for data preprocessing
operators, e.g. by ML Bazaar [145], Orange [40] and others [58]. A summary of the
most common preprocessing steps is given in Table 3.1, where the operators are grouped
into five categories: encoders, imputers, scalers, samplers, and feature selectors; the top
row lists the strategies considered in this chapter. These are compared with the operators
used in related work, as discussed in Section 3.3. Some of these steps are required by
the classification framework, e.g. encoding categorical variables and imputing missing
data, while others may optionally be deployed to improve model performance, e.g. class
balancing, scaling and feature selection. These steps are generally selected and combined
into pipelines based on best practice considerations, with model performance as the main
objective [129]. While the effect of preprocessing on classification performance has been
analysed for individual operators [33, 155, 62], the effect of such preprocessing on the
fairness of the resulting classifier is studied here.

4.1.1 Fairness Differences

For this work, fairness definitions were rewritten in their “differences” form, as follows:

DPD(Ŷ) := |P(Ŷ = 1 | PA = F)−P(Ŷ = 1 | PA =U)|,
EOpD(Ŷ) := |P(Ŷ = 1 | PA = F ,Y = 1)−P(Ŷ = 1 | PA =U ,Y = 1)|,
EOD(Ŷ) := ∑

y∈{0,1}
|P(Ŷ = 1 | PA = F ,Y = y)−P(Ŷ = 1 | PA =U ,Y = y)|.

For all three differences, small values indicate a “fairer” model.

39

Genetic Pipeline Optimisation

Table 4.1 Preprocessor options for the preliminary experiment.

Preprocessor Options

Encoder One-Hot, Ordinal, Target, LOO, WoE, Count
Imputer Mean, Median, Most Frequent
Sampler None, Random Undersampling, Random Oversampling
Scaler None, MaxAbs, MinMax, Normaliser, Quantile
Feature Selector None, K-Best

4.1.2 Preprocessing Affects Fairness

Pipelines that are not fairness-aware by design risk aggravating the fairness issues that
are naturally present in the input data. If this is true, it motivates the need to address
the problem of automatically configuring pipelines that are optimal with respect to a
user-defined trade-off between fairness and ACC, for one of the fairness definitions given
above.

The hypothesis that fairness levels are affected by the choice of data preprocessing
steps, as well as by their relative ordering in the pipelines was experimentally tested by
evaluating the effect of 20 different preprocessors (that is, single-operator pipelines) on
ACC and on each of the three fairness definitions given above. Each experiment involved
learning a binary classifier—LR was used due to its fast training times, but the method
is classifier agnostic—from the well-known Income dataset, after preprocessing the raw
data using a single preprocessor chosen from the options presented in Table 4.1. The
scikit-learn [126] implementations were used for imputing, scaling and feature selection,
while Category Encoders [113] was used for encoding, and imbalanced-learn [109] for
sampling. Model ACC was estimated using 4-fold CV train/test splits, repeated 128 times
from unique random seeds for robustness.

Kruskal-Wallis H tests were performed to determine whether specific preprocessing
operator choices affect the analysed metrics. The tests, reported in Table 4.2, show that
for most preprocessor family/metric pairs the null hypothesis that the choice of a specific
operator in a preprocessor family does not affect the resulting measure may be rejected
with 95% confidence, with the notable exception of imputation, for which the resulting
p-values were not low enough, but still close to the 0.05 threshold for DPD and EOD.
These results confirm that the choice of (most) specific operators affects not only the ACC,
but also the fairness of the model trained on data that has been preprocessed using that
operator.

40

4.1 Introduction

Table 4.2 Kruskal-Wallis 95% p-values for operator-choice affecting each metric on
Income; significant values are highlighted.

Task DPD EOpD EOD ACC

Encoding < .001 < .001 < .001 < .001
Imputation .081 .151 .055 .939
Sampling < .001 .055 < .001 < .001
Feature Scaling < .001 < .001 < .001 < .001
Feature Selection .051 .004 .001 < .001

4.1.3 Problem Formulation

While an analysis similar to the one just presented has been seen before in the literature,
cf. [165], FAIRPIPES’ goal is to automatically generate fairness-aware pipelines, where the
data scientist has control over the trade-off between fairness and ACC. This is formulated
as a multi-objective optimisation problem, as follows: given a universe of configurable
data processing operators (as in Table 4.1) and a target performance-fairness objective (for
some choice of fairness definition), find an optimal sequence of configured operators, i.e.
an optimal pipeline, with respect to the target.

For any decision problem involving two or more optimisation objectives, a point in
the solution space (i.e., a specific configured pipeline) is said to be Pareto-efficient (or
Pareto-optimal) if none of the individual objectives can be improved without worsening
at least one of the other objectives. The set of all Pareto-efficient solutions is called the
Pareto front [166]. In the case of fairness and performance pipeline optimisation, the aim
is to compute the Pareto front consisting of all the pipelines such that both fairness and
performance cannot improve at the same time.

A naive approach to addressing the problem is to consider each possible pipeline as an
ordered combination of operators, learn a classifier for each of those, and calculate both
its ACC and its fairness (note that this is a vector of values, one for each of the fairness
metrics). This is a combinatorial problem, however. For example, there are 3,240 such
pipelines in the experimental testbed, resulting from five operator families with varying
number of options: six encoders, three imputers, five scalers, three resamplers, two feature
selectors and six possible orderings. To address this complexity, a heuristic approach
was taken. In Section 4.2 FAIRPIPES, a genetic algorithm that aims to optimise for both
ACC and fairness, while also allowing for user-specified policies where these objectives
can optionally be combined, is proposed. Given a choice of fairness metric, FAIRPIPES

approximates the set of fairness/accuracy Pareto-efficient pipelines for that metric.

41

Genetic Pipeline Optimisation

Contributions This chapter’s contributions can be summarised as follows.

• Empirical evidence is presented on the effect of different data preprocessing operators
over the fairness of the resulting classifier (Section 4.1.2).

• FAIRPIPES, a genetic algorithm producing fairness-aware preprocessing pipelines
that are optimised for any combination of fairness and ACC, for three different
exemplar definitions of fairness, is introduced. FAIRPIPES presents the data sci-
entist with an estimate of the pipeline space’s Pareto front, providing them with
performance–fairness trade-offs.

• Preprocessing pipelines are encoded as individuals by turning the preprocessor
options and the order of execution into a set of genes, which may mutate or be
inherited by an individual’s descendants across generations.

• FAIRPIPES is based on the standard genetic algorithm framework and, therefore, is
applicable to any existing fairness measure and others that may become prominent
in the future.

• Since FAIRPIPES relies on a given set of preprocessing operators, it is less invasive
than dedicated preprocessing-fairness-correction methods, which consist of modify-
ing the training data in a more invasive fashion, e.g. by resampling or relabelling the
data. Therefore, FAIRPIPES may be used in situations where regulations prevent the
modification of training data for automated-decision systems.

• An extensive experimental evaluation of the approach is presented, using four
benchmark datasets: Income, COMPAS, German and Titanic, and a universe of
3,240 pipeline configurations. Using this testbed, it is shown that pipelines that are
measurably close to the Pareto front for the chosen multi-objectives are discovered
by exploring about 6% of the search space.

The experimental results, presented in Section 4.3, show that (i) fairness and perfor-
mance stand in contrast with each other, as expected [90], and (ii) FAIRPIPES converges
on pipelines that optimise for different objectives. In the experimental setting, evaluating
the performance of 200 out of 3,240 possible pipelines—roughly 6% of them—led to
estimated Pareto fronts with the average instance in the estimate less than 0.04 DPD/ACC
units away from a true Pareto instance.

This is illustrated in the scatterplot of Figure 4.1, where pipelines are shown in the
Fairness (DPD)/ACC space. Please note that 1−ACC is used for consistency, so that

42

4.1 Introduction

0:0 0:1 0:2 0:3 0:4 0:5

Demographic Parity Score

0:15

0:20

0:25

0:30

0:35

0:40

1
−
A
cc
ur
ac
y
S
co
re

Kind of Pipeline
Ordinary
BestACC
BestACC+DPD
BestDPD

Figure 4.1 The three best pipelines optimised for ACC, DPD fairness, and the linear
combination ACC + DPD all lie on the Pareto front, on the bottom left. Other non-optimal
(Ordinary) pipelines are shown for comparison.

43

Genetic Pipeline Optimisation

lower values are better for both fairness and ACC in this and every othe plot in the chapter.
The “Ordinary” pipeline points in the plot are obtained by evaluating fairness and ACC on
a selection of pipelines in the search space. As may be seen, only a few of those are on or
close to the Pareto front in the bottom left corner. The three important points denoted Best
ACC, Best DPD, and Best ACC + DPD represent the optimal Pareto front pipelines with
respect to ACC only, DPD only, and for the sum ACC + DPD.

4.2 FAIRPIPES

FAIRPIPES performs a genetic-algorithm search [162] over the space of all preprocessing
pipelines. In our experimental setting, pipelines are characterised by six genes, the first
five representing a choice for each of the preprocessor options presented in Table 4.1, with
the sixth one representing the order in which the operators are applied over the data; this
preprocessor set was selected as a representative sample of they typical data preprocessing
pipeline, but by no means is FAIRPIPES restricted to these, as it may easily be extended
with any preprocessor that adheres to scikit-learn’s fit-transform paradigm.

FAIRPIPES has four tunable parameters:

• Generations (n_gen): number of FAIRPIPES iterations.

• Population size (n): number of pipelines per generation.

• Crossover rate (c): proportion of crossed-over pipelines in the next generation.

• Mutation rate (m): probability of a gene mutation.

FAIRPIPES can optimise for two families of objectives, or policies:

Change of Objective Taking advantage of the iterative nature of the genetic algorithm,
users are allowed to control the trajectory leading from an initial set of seed pipelines,
to a close approximation of the Pareto front. For instance, they may decide to
optimise only for ACC for the first, say, ten generations, and then switch objective
to DPD (or the other way around, or indeed one can specify different objectives for
different phases of the iteration process). This makes it possible to reach specific
areas in the Pareto front. For instance, a “ACC-then-DPD” policy with a 50% switch-
over has experimentally shown to produce the effect of achieving high ACC and then
converging towards a solution which has some level of fairness; in genetic-algorithm
terminology, this is a particular case of a dynamic optimisation problem [15].

44

4.2 FAIRPIPES

Linear Combination One can define linear combinations of fairness and performance
metrics, e.g. 3×DPD+7×ACC, to convert the fairness/accuracy multi-objective
problem into a single-objective problem. Note that pure objective metrics are a
particular case of these linear combinations, e.g. DPD = 1×DPD+0×ACC.

The FAIRPIPES algorithm is now presented using the example in Figure 4.2, with
reference to the corresponding methods in Algorithms 4.1, 4.2 and 4.3.

Step (a) — Initialisation: To initialise the process, FAIRPIPES generates n random pipelines
by choosing one option per gene for each pipeline (GenPipes in Algorithm 4.1).

Step (b) consists of two parts:

Evaluation: n copies of the raw dataset are separately processed through each of these
pipelines, with the resulting processed datasets train/test split, binary classifiers, e.g. LR,
are learnt from each of the training sets and the objective metrics are evaluated on the
corresponding test sets (GetMetrics in Algorithm 4.2). This evaluation will be the main
criterion that the algorithm aims to optimise.

Selection: The pipelines are ranked and sorted with respect to the objective. The
best-ranking pipeline becomes the elite, i.e. it will survive for the following generation
unmodified. The elite is kept in order to guarantee that the next generation will be at least
as good as the current one with respect to its best individual. Rank in Algorithm 4.1 then
assigns the i-th pipeline a probability of becoming “parent” of a pair of next generation
“children” pipelines

Pparent(i) =
n+1− i

n

∑
k=1

k
for i ∈ {1, . . .n},

and a probability for the non-elites of “surviving” for the next generation of

Psurvive(i) =
n+1− i

n−1

∑
k=1

k

for i ∈ {2, . . .n}.

This probabilistic approach was taken to add a randomness element to parent-selection,
allowing the method to explore pipelines which might otherwise never be noticed.

Algorithm 4.3 consists of steps (c), (d), (e), (f) and (g).

45

Genetic Pipeline Optimisation

Steps (c) and (d) — Crossover: are repeated ⌊c ·n⌋/2 times. Each time two parents are
chosen without replacement with probability Pparent(). One of the six genes, randomly
selected, is swapped (“crossed over”) between the two parents, and the resulting pipelines
are appended to the next_gen list. The main reason for swapping over just one gene is to
reduce the variability between parents and children, given that there are only six genes
to modify. In standard genetic-algorithm terminology, this is a two-point crossover with
consecutive crossover points.

Step (e) — Selection: n−⌊c ·n⌋−1 different non-elite pipelines are chosen with proba-
bility Psurvive() and appended to next_gen. This second part of the selection process again
makes use of probabilities to allow for a small chance of additional exploration, at the
expense of exploitation [11].

Step (f) — Mutation: Each gene of every next_gen pipeline may mutate with probability
m into a different random option of the same kind, e.g. an encoder may mutate into another
encoder, but not into an imputer. This allows for a small probability of more than one gene
in any given pipeline.

Step (g) — Selection: The elite pipeline is appended to next_gen unmodified, completing
the next generation. The elite is added at the end to prevent it from mutating.

This process is repeated from step (b) n_gen times, using the previous generation’s
next_gen instead of a random pipeline list to continue after the first generation. Throughout
the experiments, n_gen = 20 is set, as the number of pipelines to evaluate this way
represents a substantial gain in computing time compared to an exhaustive search, while
still providing good Pareto-optimal estimates.

4.3 Experimental Evaluation

The evaluation of the FAIRPIPES algorithm aims to show that close approximation to the
Pareto front is achieved across a range of multi-objective optimisation policies, while
exploring only a fraction of the entire search space.

As a baseline for the computational cost of using FAIRPIPES, running an exhaustive
search on Income, i.e. evaluating all 3,240 pipelines over the dataset takes an aver-
age of 25 minutes on a Microsoft Azure d64as_v4 VM with 64 vCPUs and 256 GB of
RAM. In comparison, an average FAIRPIPES run evaluates 200 pipelines (20 ten-pipeline
generations)—roughly 6% of the search space—in less than 1.5 minutes under the same

46

4.3 Experimental Evaluation

Gene Tag Values

Encoder enc one-hot, ordinal, target, LOO, WoE, count
Imputer imp mean, median, most frequent
Sampler samp none, under, over
Scaler scale none, maxabs, minmax, norm, quantile
Feature Selector sel none, k-best
Order (samp, scale, sel), (samp, sel, scale), . . .

Preprocessors and Ordering

id Random Pipelines

1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel
2 ordinal_enc, mean_imp, under_samp, k-best_sel, norm_scale
3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp
4 count_enc, mean_imp, over_samp, no_sel, norm_scale

(a) Generate n random pipelines

id Sorted Pipelines Objective Pparent Psurvive

3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp 0.276 4/10 1
4 count_enc, mean_imp, over_samp, no_sel, norm_scale 0.406 3/10 3/6
1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel 0.689 2/10 2/6
2 ordinal_enc, mean_imp, under_samp, k-best_sel, norm_scale 0.783 1/10 1/6

(b) Preprocess data, learn classifiers and sort pipelines by objective metric; top one becomes the elite [id 3]

id Parent Pipelines

3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp
4 count_enc, mean_imp, over_samp, no_sel, norm_scale

(c) Choose parents with Pparent [ids 3, 4]

id Crossover Pipelines

5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp
6 count_enc, mean_imp, no_samp, no_sel, norm_scale

(d) Choose a gene with uniform probability [Sampler]
and crossover the parents’ gene-values [ids 3, 4→ 5, 6]

id Mutable Pipelines

5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp
6 count_enc, mean_imp, no_samp, no_sel, norm_scale
1 one-hot_enc, mean_imp, under_samp, norm_scale, k-best_sel

(e) Append a non-elite pipeline with Psurvive [id 1]

id Mutated Pipelines

5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp
6 count_enc, mean_imp, no_samp, no_sel, norm_scale
7 one-hot_enc, mean_imp, k-best_sel, under_samp, norm_scale

(f) Each gene may mutate
with P(mutate) = m [Order in id 1→ 7]

id First Generation Pipelines Objective

5 one-hot_enc, median_imp, k-best_sel, norm_scale, over_samp 0.458
6 count_enc, mean_imp, no_samp, no_sel, norm_scale 0.232
7 one-hot_enc, mean_imp, k-best_sel, under_samp, norm_scale 0.520
3 one-hot_enc, median_imp, k-best_sel, norm_scale, no_samp 0.276

(g) Append the non-mutated elite [id 3]

For subsequent generations,
repeat from (b)

Figure 4.2 A FAIRPIPES run over Income, with population size n = 4, crossover rate
c = 0.5, mutation rate m = 0.4 and objective DPD+(1−ACC).

47

Genetic Pipeline Optimisation

Algorithm 4.1: The FAIRPIPES algorithm.
input : D: dataset to process, with binary PA-and-label, pp_options: dict of preprocessors and

task order,
n_gens: number of generations to run,
pop_size: number of pipelines per generation,
clf: classifier,
policy: optimisation strategy to follow,
co_rate: crossover rate,
mut_rate: mutation rate

output :pareto_front: Estimated front for the pp_options space

/* Generate pipe_pop, a pipeline list of size pop_size. The pipelines are
built by randomly choosing an element of each of pp_options: encoder,
imputer, feat_selector, sampler, scaler and permutation */

1 pipe_pop← GenPipes(pp_options,pop_size);
2 all_metrics← empty_df; // Empty data frame to store pipeline metrics
3 for i← 1 to n_gens do
4 processed_dsets←{pipeline(D) | pipeline ∈ pipe_pop};
5 metrics_df← GetMetrics(processed_dsets,clf); // Algorithm 4.2
6 ranked← Rank(pipe_pop,metrics_df,policy);
7 pipe_pop← GetNextGen(ranked,co_rate,mut_rate); // Algorithm 4.3
8 all_metrics← Append(all_metrics,metrics_df);
9 end

10 pareto_front← GetPareto(all_metrics); // Locate non-dominated pipelines.

Algorithm 4.2: GetMetrics method.
input : processed_dsets: list of preprocessed datasets,

clf: classifier,
k: number of cross-validation folds

output :metrics_df: data frame of fairness and ACC metrics

1 metrics_df← empty_df;
2 foreach D in processed_dsets do
3 trains, tests← KFoldSplit(D,k);
4 metrics_list← empty_list;
5 for i← 1 to k do
6 clf← Fit(clf, trains[i]);
7 preds← Predict(clf, tests[i]);
8 metrics_fold← GetFairnessPerformance(preds);
9 metrics_list← Append(metrics_list,metrics_fold);

10 end
11 metrics_average← Average(metrics_list);
12 metrics_df← Append(metrics_df,metrics_average);
13 end

48

4.3 Experimental Evaluation

Algorithm 4.3: GetNextGen method.
input : ranked: ordered list of pipelines,

co_rate: proportion of crossovers in next_gen,
mut_rate: probability of a gene mutation

output :next_gen: pipeline list of length |ranked|
1 elite← ranked[1]; // the best-ranked pipeline
2 next_gen← empty_list; // stores next generation
3 n_child← Round_to_Integer(co_rate∗ |ranked|); // round to nearest integer
4 while |next_gen|< n_child do
5 {p1, p2}← Parents(ranked); // select p1, p2 with rank-dependant probability
6 {c1,c2}← Crossover(p1, p2); // select gene and swap values for p1, p2

/* prevents duplicate pipelines */
7 if c1 and c2 not in next_gen then
8 next_gen← Append(next_gen,c1);
9 next_gen← Append(next_gen,c2);

10 end
11 end

/* −1 kept for elite space */
12 while |next_gen|< |ranked|−1 do
13 s← Survive(ranked\{elite}); // select s with rank-dependant probability

/* prevents duplicate pipelines */
14 if s not in next_gen then
15 next_gen← Append(next_gen,s);
16 end
17 end
18 foreach pipe in next_gen do
19 foreach gene in pipe do
20 gene← Mutate(gene,mut_rate); // modify gene with probability mut_rate
21 end
22 end
23 next_gen← Append(next_gen,elite); // elite is kept for next generation

49

Genetic Pipeline Optimisation

Table 4.3 Size and average FAIRPIPES run time for the analysed datasets.

Dataset Attributes Instances Avg FAIRPIPES Run (s) Per 100 Datum (s)

Income 14 32561 2472.12 ± 2462.97 0.5424
COMPAS 27 11038 539.93 ± 246.94 0.1812
German 22 1000 93.07 ± 23.43 0.4230
Titanic 10 891 44.48 ± 12.29 0.4992

configuration. A comparison of the average FAIRPIPES run time using a single Azure
vCPU (no parallelisation) with 220 replicates per dataset over the four analysed datasets
with default parameter values is presented in Table 4.3. As may be seen, the run times are
dependant on the dataset’s number of attributes and instances, but when these times are
normalised per 100 datum, the run times are similar across datasets.

A more detailed analysis of the run time for all four datasets is presented in Figure 4.3,
where the average values for 20 replicate runs per dataset and DPD importance (the
quotient between the DPD and ACC coefficients in the objective linear combination). On
Income and Titanic, smaller DPD importances caused longer FAIRPIPES run times, while
for COMPAS and German the coefficients for DPD and ACC did not majorly affect the
FAIRPIPES’ average run times.

To analyse the effectiveness of FAIRPIPES, it is first shown to be effective at optimising
either DPD or ACC, separately. Afterwards, the way in which DPD/ACC trade-offs are
achieved incrementally through the generations is presented, using any of the objective
policies described earlier.

All experiments are conducted over the space of pipelines obtained from all possible
combinations of the preprocessors listed in Table 4.1, consisting of 3,240 data points.
Although the most typically used preprocessors have been included, FAIRPIPES can be
further extended to include additional tasks, as long as they comply with the fit/transform
interface used by sci-kit learn. The pipelines always start by selecting an encoder followed
by an imputer, as these steps are required for the rest of the preprocessing operators to
work, and are completed by some ordering of the sampler, scaler and feature selector
families.

This choice of experiment scale makes it tractable to compute the actual position of
each data point relative to the real Pareto front (see here below), while providing sufficient
evidence for the effectiveness and efficiency of the method. Please note that the space
increases exponentially as the number of available operators is increased.

50

4.3 Experimental Evaluation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0:2

0:4

0:6

0:8

1:0

1:2

1:4

1:6

T
im

e
pe

r
10

0
D

at
um

(S
ec

on
ds

)

Dataset
Income

COMPAS

German

Titanic

DPD Importance

Figure 4.3 Average running time per 100 instances for all four benchmark datasets.

51

Genetic Pipeline Optimisation

4.3.1 Baseline Mapping of the Search Space

First, the ACC and the fairness vector for the entire collection of pipelines in the search
space was computed. This gives us the true Pareto front as a baseline to quantify the fidelity
of the approximate solutions, as well as a computational effort baseline for exhaustive
search. This mapping exercise was repeated for each of four benchmark datasets, Income,
COMPAS, German and Titanic, described in Subsection 2.6.3. LR was used throughout as
the reference binary classifier, owing to their fast training and ease of interpretability. Each
training instance included 4-fold cross validation with a fixed random seed. Note however
that FAIRPIPES is agnostic to the choice of classifier, as it is a preprocessing method.

The default crossover and mutation rates were selected based on recommended values
in the literature [74] and were further fine-tuned by running FAIRPIPES 128 replicates,
optimising for the objective value DPD + ACC. Figures 4.4 and 4.5 show the distance to
the best possible objective value through 20 generations for the four benchmark datasets.
To estimate the best defaults for the crossover and mutation rates, crossover was fixed
while estimating mutation and vice-versa.

As may be seen in Figure 4.4, higher crossover rates yield a faster convergence towards
the optimum objective value. The crossover rate values 0.6 and 0.8 had almost identical
performances, and 0.6 was chosen as FAIRPIPES’s default crossover rate.

When tuning the default mutation rate, higher mutation rates yielded a faster conver-
gence to the optimum objective value, as may be seen in Figure 4.5, but the gains become
negligible for values higher than the chosen default mutation rate of 0.4.

Fairness and ACC metrics were collected for each pipeline in the space and for each
dataset, replicating each training session 64 times using different random seeds for ro-
bustness. The default parameters for FAIRPIPES were used in all the experiments: 0.6
crossover rate, 0.4 mutation rate, populations of 10 individuals, 20 generations per run,
and 1-elitism, i.e. the best pipeline is kept unmodified from one generation to the next.

4.3.2 Single-Objective Optimisation

Setting each of the available target metrics as objectives, i.e., (DPD, EOpD and EOD) as
well as to ACC, their values (averaged over all replicates as outlined above) were tracked
over 20 generations of genetic evolution using FAIRPIPES. The plots in Figure 4.6, for
each of the four datasets, show how each of the curves reaches a plateau, indicating that
the empirical selection of 20 ten-pipeline generations is adequate to achieve stable results.
To recap, in each plot lower metric values, including ACC (reported as 1−ACC) are better.
In each plot, FAIRPIPES optimises for the metric on the y-axis, which are expected to be

52

4.3 Experimental Evaluation

0 4 8 12 16 20
Generation

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

 to
 B

es
t

COMPAS

0 4 8 12 16 20
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Income

0 4 8 12 16 20
Generation

0.10

0.15

0.20

0.25

0.30

0.35

German

0 4 8 12 16 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Titanic

Cross-Over
Ratio

0.0
0.2
0.4
0.6
0.8

Figure 4.4 Average distance to best objective value per generation for different crossover
rates across the four benchmark datasets. The results were averaged from 64 replicates,
optimising for the objective value DPD + ACC.

53

Genetic Pipeline Optimisation

0 4 8 12 16 20
Generation

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

 to
 B

es
t

COMPAS

0 4 8 12 16 20
Generation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Income

0 4 8 12 16 20
Generation

0.05

0.10

0.15

0.20

0.25

0.30

0.35

German

0 4 8 12 16 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Titanic

Mutation
Ratio

0.0
0.1
0.2
0.3
0.4
0.5

Figure 4.5 Average distance to best objective value per generation for different mutation
rates across the four benchmark datasets. The results were averaged from 64 replicates,
optimising for the objective value DPD + ACC.

54

4.3 Experimental Evaluation

0.12

0.16

0.20

0.24

1
−
A
cc
ur
ac
y
S
co
re

COMPAS

0.26

0.27

0.28

0.30

German

0.16

0.18

0.20

0.21

0.22

Income

0.18

0.21

0.24

0.27

0.30

Titanic

0.06

0.09

0.12

0.15

0.18

D
em

og
ra
ph
ic
P
ar
ity

S
co
re

0.15

0.30

0.45

0.60

0.06

0.12

0.18

0.24

0.30

0.30

0.45

0.60

0.75

0.05

0.15

0.25

0.35

0.45

E
qu
al
ity

of
O
pp
or
tu
ni
ty
S
co
re

0.03

0.06

0.09

0.12

0.15

0.15

0.30

0.45

0.60

0.75

0.48

0.56

0.64

0.72

0 5 10 15 20

Generation

0.10

0.20

0.30

0.40

E
qu
al
is
ed

O
dd
s
S
co
re

0 5 10 15 20

Generation

0.15

0.30

0.45

0.60

0 5 10 15 20

Generation

0.30

0.45

0.60

0.75

0 5 10 15 20

Generation

0.80

1.00

1.20

1.40

Objective
ACC

DPD

EO

EqOdds

Figure 4.6 Evolution of all metrics as single objectives.

the lowest of the curves, while the other metrics are plotted for reference, and are not
optimised for.

Indeed, some of the metrics run in the opposite direction, e.g. DPD on COMPAS and
Income, EOpD on German, and ACC on Titanic. This behaviour seems to be dataset-
specific, indicating that it would be difficult to identify general patterns for these metrics,
without in fact running FAIRPIPES every time.

4.3.3 Multi-Objective Policies Optimisation

According to Justesen [88], “multi-objective problems are problems with two or more,
usually conflicting, objectives. The main difference from single-objective optimization is
that a multi-objective problem does not have one single optimal solution, but instead has a
set of optimal solutions, where each represents a trade-off between objectives”.

The two types of policy presented in Section 4.2 were considered:

1. Optimise for DPD for the first i generations and then change to ACC for the remaining
20− i generations, with i in {0,4,8,12,16,20}, producing six results for each benchmark
dataset.

55

Genetic Pipeline Optimisation

2. Optimise for a linear combination

kDPD + kACC with (kDPD, kACC) ∈ {(0,20),(4,16), . . . ,(20,0)}.

In both cases, (0,20) and (20,0) purely optimise for ACC and DPD, respectively.
While both policy approaches are not true multi-objective optimisation (where the

result is an approximation of the solution-space’s Pareto front), the explored pipelines’
Pareto front resulting from both policies is close to the ground-truth Pareto, and the policies
are particularly good at finding the best pipeline with respect to the user-selected fair-
ness/accuracy trade-off, as shown in Section 4.4. An alternative to both policy-approaches
would have been to use an actual multi-optimisation algorithm, such as NSGA-2 [39].

Figure 4.7 shows the evolution of average DPD and ACC through the generations, with
the change of objective policy plotted on the left and the linear combination policy on
the right, using Income. On the left, the changes of policy points are obvious, and they
generally lead to very different endpoints for both ACC and DPD. These policies seem
suitable for controlling the desired DPD/ACC trade-off.

Comparing each of the trajectories on the right with the corresponding ones on the
left, it may be observed that the endpoints are fairly similar, however the curves on the
right avoid the “spikes” that are apparent on the left. These spikes occur at the generation
on which the policies change their objective, and before the spikes different objectives
are indistinguishable from each other. Given this disadvantage of the change-of-objective
policies and the similarity in the end-results between both approaches, the rest of the
experiments focus exclusively on linear-combination policies, measuring the evolution of
DPD/ACC across generations for different policies in Section 4.3.3 and the fidelity of the
resulting estimates in Section 4.4.1.

DPD/ACC Evolution

Figure 4.8 shows a different perspective on how FAIRPIPES converges on its solutions,
namely by presenting, for each of the benchmark datasets, how the solutions approach
optimality (bottom left corner in the DPD/ACC space) for different linear combinations
of the objective. Gradually varying the DPD and ACC coefficients (see legend) results
in ordered and predictable paths: the higher DPD (correspondingly, the lower the ACC)
coefficients result in fairer but less accurate averages across every generation on all datasets.
Interestingly, for all datasets except Titanic, the initial random pipelines lie on the top right
of the space, indicating poor fairness as well as poor ACC. However, the plots clearly show

56

4.3 Experimental Evaluation

0:16

0:17

0:18

0:19

0:20

0:21

0:22

0:23

1
−

A
cc

ur
ac

y
S

co
re

Experiment: Change of Objective Experiment: Linear Combinations

0 4 8 12 16 20
Generation

0:05

0:10

0:15

0:20

0:25

0:30

D
em

og
ra

ph
ic

P
ar

ity
S

co
re

0 4 8 12 16 20
Generation

Coefficients
0, 20

4, 16

8, 12

12, 8

16, 4

20, 0

DPD, ACC

Figure 4.7 Comparison of metrics evolution on the change of objective and the linear
combinations policies.

57

Genetic Pipeline Optimisation

0:06 0:08 0:10 0:12 0:14 0:16

0:10

0:12

0:14

0:16

0:18

0:20

0:22

0:24

0:26

1
−

A
cc

ur
ac

y
S

co
re

COMPAS

0:10 0:12 0:14 0:16 0:18 0:20 0:22

0:25

0:26

0:27

0:28

0:29

0:30

German

0:05 0:10 0:15 0:20 0:25 0:30

Demographic Parity Score

0:16

0:17

0:18

0:19

0:20

0:21

0:22

1
−

A
cc

ur
ac

y
S

co
re

Income

0:3 0:4 0:5 0:6 0:7 0:8

Demographic Parity Score

0:18

0:20

0:22

0:24

0:26

0:28

Titanic

Coefficients
0, 20

4, 16

8, 12

12, 8

16, 4

20, 0

Generation
4

8

12

16

20

DPD, ACC

Figure 4.8 Average DPD and ACC per generation for different objective coefficients.

how FAIRPIPES achieves a combination of both, with the objectives not initially in contrast
with one another. The extreme case of Titanic is peculiar, showing that DPD and ACC are
in fact opposing objectives, i.e. the trajectories end in the top left/bottom right corners.
This can be explained by considering the actual meaning and history of the dataset, as
when sex is used as PA and survival as outcome, DPD and ACC are mutually exclusive:
the “fairer” a model gets (both sexes have a similar death-rate), the less accurate it will
become, as in reality most men died and most women lived.

Importance of processor ordering

Even though no specific preprocessing order was found to be best, once a specific set of
operators is selected their order seems to matter. This is shown in Figure 4.9, where the
pipelines belonging to at least one Pareto-estimate from the 128 replicates of the linear-
combinations experiment are grouped by their preprocessing tuples (encoder, imputer,
scaler, sampler and selector), regardless of the operators order. The number of different
order-permutations present in the estimates for each of these unordered tuples is then
counted. As may be seen, for each dataset, roughly 70% of the unordered tuples have one

58

4.3 Experimental Evaluation

0% 25% 50% 75% 100%

Titanic

Income

German

COMPAS

29.5

25.7

21.0

24.0

65.2

74.3

78.4

69.7

Number of
Permutations 1 2 3 4 5 6

Figure 4.9 Proportions of the number of orderings present in any linear-combination
experiment replicate for every Pareto-efficient unordered tuple.

ordering present in the estimated Pareto fronts, with most of the remaining tuples having
two orderings. Specifically, for German and Income no tuple had more than two orderings
present in their Pareto estimates, and only a small fraction of the COMPAS and Titanic
tuples had more than two orderings present. This indicates that for good pipelines the task
order is important, as otherwise more permutations would be expected.

No universally good solutions

Looking at Figure 4.10, it may be observed that the best pipelines are dataset-specific, i.e.
given a dataset there will be better-performing preprocessor combinations, yet these are
not the same across datasets, even when just a single preprocessor is considered.

The plot focuses on the encoders in the analysed pipelines. In general, different
encoders achieve different DPD/ACC trade-offs. What is interesting, however, is that this
is not uniform across the datasets. On German, for example, instances of Target produce
the best DPD, while instances of WoE produce the best ACC, albeit with a poor DPD. In
contrast, on Titanic it is Count instances that produce the best DPD, while instances of
One-Hot produce the best ACC. Similarly, while some LOO produces relatively good DPD

59

Genetic Pipeline Optimisation

0:0 0:1 0:2 0:3 0:4

0:10

0:15

0:20

0:25

0:30

0:35

1
−

A
cc

ur
ac

y
S

co
re

COMPAS

0:000 0:025 0:050 0:075 0:100 0:125 0:150

0:24

0:25

0:26

0:27

0:28

0:29

0:30

German

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40

Demographic Parity Score

0:15

0:20

0:25

0:30

0:35

0:40

1
−

A
cc

ur
ac

y
S

co
re

Income

0:2 0:4 0:6 0:8

Demographic Parity Score

0:175

0:200

0:225

0:250

0:275

0:300

0:325

0:350

Titanic

Encoder
WoE
LOO
Target
Ordinal
Count
One-Hot

Figure 4.10 DPD/ACC trade-off for pipelines appearing in estimated Pareto fronts for
different encoders. The patterns are not consistent across datasets.

60

4.4 Performance Evaluation

values on German, this is not true on any of the other datasets. These observations are still
true for the other preprocessor families (not shown due to space constraints).

It may be concluded that, while no single pipeline can be found that is uniformly
optimal across datasets, FAIRPIPES is able to converge to near-optimal solutions for any of
the benchmark datasets, without any prior knowledge of them.

4.4 Performance Evaluation

Finally, the convergence performance of FAIRPIPES was examined and compared against
random pipeline searches consisting of the same number of explored pipelines. Two
performance metrics were used: AHD, a global similarity measure which, in this chapter’s
setting, measures the similarity of the estimated and the true Pareto fronts, and B2B, a
local similarity which compares the best pipeline found by FAIRPIPES against the best
pipeline overall with respect to the specified linear-combination objective.

4.4.1 Pareto Front Estimation

Having established that solution trajectories end with trade-offs that attempt to optimise
simultaneously fairness and ACC, next the quality of the solutions in terms of distance
from the actual Pareto fronts was quantified, computed as described in Section 4.3.1 above.
To measure the similarity of FAIRPIPES’s estimated Pareto front with the true Pareto front,
averaged Hausdorff distance (AHD), a common performance measure in evolutionary
multi-objective optimisation [141, 6] was used. AHD is a useful metric to estimate the
quality of the Pareto estimate’s coverage, i.e. it is a global metric; it is defined as

AHD(X ,Y) :=
1
2

(
1
|X | ∑x∈X

min
y∈Y

d(x,y)+
1
|Y | ∑y∈Y

min
x∈X

d(x,y)

)
,

where d(x,y) is the Euclidean distance between x and y. For this chapter’s comparisons,
the estimated Pareto fronts are given the role of X and the true Pareto fronts are given the
role of Y .

Figure 4.11 shows the mean AHD across replicates between the solutions generated
by FAIRPIPES through the generations for the Income dataset, and the Pareto front, again
across a range of linear combinations of the objectives. For each dataset, the estimates
at the end of the generation process lie within 0.04 units of the true Pareto front, with
estimates for German and Income achieving even better results. Interestingly, assigning a

61

Genetic Pipeline Optimisation

0 4 8 12 16 20
Generation

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
ed

 H
au

sd
or

ff
Di

st
an

ce

COMPAS

0 4 8 12 16 20
Generation

0.02

0.04

0.06

0.08

0.10

0.12

Income

0 4 8 12 16 20
Generation

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

German

0 4 8 12 16 20
Generation

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Titanic

DPD, ACC
Coefficients

0, 20
4, 16
8, 12
12, 8
16, 4
20, 0

Figure 4.11 Averaged Hausdorff distance from estimated to true Pareto front across
generations for different DPD/ACC linear combinations in Income.

positive coefficient to both ACC and DPD causes the average instance in the estimates to
be closer to the Pareto front than estimates resulting from a pure-ACC policy.

4.4.2 Distance to Best Estimation

To evaluate the local estimation performance of FAIRPIPES, it is necessary to measure how
close the best found pipeline is to the best possible pipeline given a user-selected objective
value. This measure, denoted best to best distance (B2B), was evaluated for different DPD
and ACC linear combinations as follows:

B2B(X ,Y) := min
x∈X

[kDPDDPD(x)+ kACCACC(x)]−min
y∈Y

[kDPDDPD(y)+ kACCACC(y)] ,

where the estimated Pareto fronts are given the role of X and the true Pareto fronts are given
the role of Y . These were measured and averaged over 128 replicates, and the resulting
values are shown across 20 generations in Figure 4.12. For three of the benchmark datasets
(COMPAS, Income and Titanic), the optimal pipeline was found within 20 generations.

62

4.4 Performance Evaluation

0 4 8 12 16 20
Generation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

an
ce

 to
 B

es
t

COMPAS

0 4 8 12 16 20
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Income

0 4 8 12 16 20
Generation

0.0

0.2

0.4

0.6

0.8

German

0 4 8 12 16 20
Generation

0.0

0.5

1.0

1.5

2.0

Titanic

DPD, ACC
Coefficients

0, 20
4, 16
8, 12
12, 8
16, 4
20, 0

Figure 4.12 Average B2B distance from 128 replicates across 20 generations for different
DPD/ACC coefficients for every benchmark dataset.

63

Genetic Pipeline Optimisation

Table 4.4 Performance comparison between FAIRPIPES after 20 generations and a random
pipeline sample without replacement of the same size (210 pipelines). For both metrics,
lower values are better.

FAIRPIPES Random Sample Two-Sample t-Test

Metric Dataset Mean SD Mean SD t-value p-value

AHD

COMPAS 0.0049 0.0050 0.0050 0.0048 −0.1666 .867
German 0.0053 0.0032 0.0059 0.0019 −2.3357 .019
Income 0.0030 0.0019 0.0032 0.0015 −0.8856 .376
Titanic 0.0048 0.0038 0.0042 0.0023 1.8093 .071

B2B

COMPAS 0.0021 0.0132 0.0032 0.0154 −1.9686 .049
German 0.0699 0.1319 0.1070 0.1513 −6.9388 < .001
Income 0.0063 0.0204 0.0099 0.0210 −4.6448 < .001
Titanic 0.0121 0.0596 0.0270 0.0977 −4.8908 < .001

4.4.3 Comparison with Random Sampling

To the best of the author’s knowledge, there are no other existing pipeline-optimisation
solutions that include fairness as an objective, either for single or for multi-objective opti-
misation. Therefore, as a baseline to compare FAIRPIPES’s performance, the two defined
similarity metrics were measured on random pipeline selections with a size equivalent
to 20 FAIRPIPES generations, i.e. 210 pipelines. Eleven representative DPD/ACC linear
combinations were used as objective values: (0,10),(1,9), . . . ,(10,0), and the resulting
metrics were averaged out for AHD and B2B. Each of these measurements was replicated
and averaged 128 times for every benchmark dataset, and a two-sample t-test was per-
formed using SciPy’s ttest_ind [159] to test for the null hypothesis that two independent
samples—the FAIRPIPES and the random sample metric values—have the same expected
value.

As may be seen in Table 4.4, FAIRPIPES outperformed random sampling in most cases
for AHD, albeit not significantly. According to the performed t-test, the difference in
performances was significant for every benchmark dataset in the case of B2B, where the
average distance with FAIRPIPES was between 34% and 55% smaller than with random
sampling. This indicates that FAIRPIPES did not only estimate the DPD / ACC Pareto
front adequately, but estimated the optimal pipeline for the specified objective much better
than random search did. The computing-time difference between running FAIRPIPES and
performing the equivalent random search is negligible, as FAIRPIPES’s genetic selection
mechanism takes virtually no time to be computed.

64

4.5 Conclusion

4.5 Conclusion

This chapter presented FAIRPIPES, a genetic-algorithm approach for the discovery of data
preprocessing pipelines that are near-Pareto-optimal with respect to both the fairness and
performance of binary classifiers learnt from the data.

FAIRPIPES can optimise user-defined objective metrics defined through both linear
combinations of fairness and ACC (for a variety of metrics), as well as through policies
where the objective changes across the progress of the generations, presenting its users
with estimates of the pipeline space’s Pareto front, allowing them to select an adequate fair-
ness/performance trade-off. Besides an adequate estimation of the Pareto front, FAIRPIPES

significantly improved the estimation of the best pipeline for a given objective metric over
an equivalent random pipeline search with an insignificant increase in computing time.

In further work, additional preprocessing operators may be introduced, as well as other
types of classifiers, and higher-dimensional Pareto fronts may be explored, e.g. optimising
for several fairness and performance metrics at once.

65

Chapter 5

Parametrised Data Sampling

This chapter is based on González-Zelaya et al. [65], presented at the 2021 Extending
Database Technology Conference (EDBT), which is a substantial extension of González-
Zelaya et al. [63], presented at the 2019 KDD XAI Workshop.

Contents
Summary . 68
5.1 Introduction . 68

5.1.1 Fairness Ratios . 69
5.2 PARDS . 70

5.2.1 Correction Parameter . 70
5.2.2 Parametrising Correction . 70
5.2.3 Sampling Strategies . 71
5.2.4 Finding the Optimal Amount of Sampling 72
5.2.5 Alternative Methods . 76

5.3 Theoretical Results . 77
5.3.1 Method Effectiveness . 77
5.3.2 PR Gain Estimation . 81
5.3.3 Multiple Protected Attributes 81

5.4 Experimental Evaluation . 83
5.4.1 Separability . 83
5.4.2 Method Validation . 86
5.4.3 Comparison with Other Methods 88

5.5 Conclusion . 92

67

Parametrised Data Sampling

Summary

Improving machine learning models’ fairness is an active research topic, with most ap-
proaches focusing on specific definitions of fairness. In contrast, PARDS is a parametrised
data sampling method which can optimise the fairness ratios observed on a test set’s
predictions, in a way that is agnostic to both the specific fairness definitions and the
chosen classifier. Given a training set with one binary protected attribute and a binary
label, PARDS’ approach involves correcting the positive rate for both the favoured and
unfavoured groups through resampling of the training set. Experimental evidence showing
that the amount of resampling can be optimised to achieve target fairness ratios for a
specific training set and fairness definition is presented, while preserving most of the
model’s ACC. Conditions for the method to be viable are discussed, and then the method
is extended to include multiple protected attributes. In the experiments three different
sampling strategies were used, and results for three commonly used definitions of fairness,
and three public benchmark datasets (Income, COMPAS and German) are presented.

5.1 Introduction

This chapter proposes PARDS, a fairness-definition and classifier agnostic resampling
method, which may be easily implemented on top of existing ML solutions and can satisfy
specific classifier requirements. PARDS is modulated through the continuous parameter d,
which determines the amount of resampling introduced into the training data, and has three
possible use cases: to find the optimal amount of correction for a specific fairness/classifier
combination; to control a classifier’s fairness/accuracy trade-off, and to align a classifier
with a specific world-view [55], e.g. WYSIWYG, WAAE or AA, as defined in Section 2.6.1.
Subsection 5.2.2 describes how parameter d can be mapped to align to these world-views.

Standard data preparation techniques may be used to correct the fairness behaviour
of a classifier [138]. PARDS is based on data resampling, which is well understood
and part of the typical data management pipeline [96]. Being a preprocessing operator,
PARDS may easily be added after data cleaning into existing database solutions. Like other
resampling techniques, PARDS can be computationally inexpensive and yield reduced
classifier learning times, as shown in Subsection 5.4.2. PARDS offers the versatility of
using both generic (random undersampling, random oversampling and SMOTE [24]) and
fairness-specific (preferential sampling [89]) methods.

A common resampling problem is the loss of predictive ACC caused by such interven-
tions [12]. In this chapter’s setting, such loss can also be controlled through parameter

68

5.1 Introduction

d, allowing for a decision in the amount of fairness/accuracy trade-off the user is willing
to accept. Furthermore, the experiments in Section 5.4 show that even at high correction
levels, the ACC loss for PARDS is relatively low.

Contributions PARDS, a parametrised fairness-correcting resampling method, is intro-
duced. PARDS is fairness-definition and classifier agnostic, and achieves close to optimal
fairness correction with a small loss in predictive performance. Extensive experiments
to benchmark the effectiveness of the method using the Income, COMPAS and German
datasets are presented, and the method’s implementation is available as a collection of
Jupyter Notebooks, linked and described in Appendix A.3.

This chapter’s additional contributions are four-fold:

1. A mathematical formulation of resampling-based fairness correction is provided,
through an analysis of conditions for its viability and effectiveness with respect to
the linear separability of the training set, with theoretical results and experimental
evidence on synthetic datasets.

2. The optimal fairness correction is estimated using Bayesian optimisation.

3. An initial investigation into extending the method to multiple protected attributes is
made.

4. PARDS is benchmarked and compared with several existing fairness-correction
methods.

5.1.1 Fairness Ratios

Slight variations of the fairness definitions presented in Chapter 3 now follow. A classifier’s
demographic parity ratio (DPR), equality of opportunity ratio (EOpR) and proxy fairness
ratio (PFR) are defined as:

Definition 5 (Fairness Ratios).

DPR :=
P(Ŷ = 1 | PA =U)

P(Ŷ = 1 | PA = F)
,

EOpR :=
P(Ŷ = 1 | PA =U , Y = 1)
P(Ŷ = 1 | PA = F , Y = 1)

,

PFR :=
P(Ŷ = 1 | do(PA =U))

P(Ŷ = 1 | do(PA = F))
.

69

Parametrised Data Sampling

For DPR and EOpR, we evaluate the ratio of the positive classification probabilities
for U and F . PFR is computed by intervening on the test set T twice, assigning every
individual in T the PA-values U and F , resulting in TPA=U and TPA=F , respectively, and
then evaluate the quotient of the intervened sets’ classification PRs; in all cases, the ratios
quantify how close the classifier comes to optimal fairness, with ratios closer to 1 indicating
a “fairer” model.

5.2 PARDS

The initial focus is on datasets with both binary protected attributes and labels. The plots
in this section result from applying PARDS to the Income dataset.

5.2.1 Correction Parameter

The disparity correction parameter d ∈ [−1,1] may be used for three different objectives:

• To enforce a particular world-view [55], as defined above.

• To modulate a classifier’s fairness/accuracy trade-off.

• To optimise a classifier with respect to a fairness definition.

This chapter’s main objective will be the third one, to estimate the d-value optimising
a classifier’s predictions with respect to a fairness definition. The method is summarised as
follows:

1. Define PR-correcting functions for F and U .

2. Select a sampling strategy to correct the training set.

3. Estimate the fairness-specific optimal d-value.

Details on each of these steps now follow.

5.2.2 Parametrising Correction

The first step is to define linear functions that will yield corrected PRs for both PA groups.
These functions, which we will call f+(d) and u+(d), should satisfy the constraints:
f+(1) = PR(F), f+(−1) = PR(U) and u+(d) = f+(−d).

70

5.2 PARDS

The equations for these two linear functions are

f+(d) = md +b, u+(d) =−md +b,

with coefficients

m =
PR(F)−PR(U)

2
, b =

PR(F)+PR(U)

2
.

Having defined f+(d) and u+(d), it may be seen that parameter d maps to the three
world-views introduced earlier, as follows:

• d = 1 is associated with the WYSIWYG world-view, with no effect on the training
set.

• d = 0 is associated with WAAE, making the PRs for both the favoured and the
unfavoured groups equal with the population PR.

• d =−1 is associated with AA, as it makes the PR of the favoured group equal with
the unfavoured group’s original PR and vice versa.

5.2.3 Sampling Strategies

In the second step, the resulting corrected ratios f+(d) and u+(d) are used to produce a
resampled training set {Û , F̂} satisfying these ratios. The required amount of resampling
for F and U will depend on d and the selected strategy.

PARDS can use one of four different sampling methods, modified to work on spe-
cific PA-label subgroups: random undersampling (Under), random oversampling (Over),
SMOTE [24] and preferential sampling (PS) [89]. Depending on the sampling method, the
following subgroups will be modified:

Under: Undersample F+ and U−.

Over: Oversample F− and U+.

SMOTE: Oversample F− and U+.

PS: Undersample F+ and U−, oversample F− and U+.

An intuition on these transformations may be visualised in Figure 5.1, where the area
of the squares represents the relative sizes of the four subgroups F+, F−, U+ and U−.

71

Parametrised Data Sampling

F+U+

U− F−

F+U+

U− F−

F+U+

U− F−

F+U+

U− F−

Raw Data Oversample Undersample Preferential

Figure 5.1 Intuition of the different sampling strategies to equalise F’s and U’s positive
ratios. The area of the squares indicates the size of the respective subgroups.

Let F∗ and U∗ be the resampled favoured and unfavoured groups, respectively. F∗
must satisfy

|F∗+|
|F∗+|+ |F∗−|

= f+(d),

which may be rewritten as
|F∗+|
|F∗−|

=
f+(d)

1− f+(d)
. (5.1)

The selected strategy will determine whether F+ or F− will be resampled to sat-
isfy (5.1). Using Under, for example, F∗+ results from undersampling F+, while
F∗−=F−. In contrast, using Over produces F∗− from oversampling F− while F∗+ =F+.
An analogous equation to (5.1) is used to resample U onto U∗.

After the training-set has been resampled, a classifier learnt from the corrected training-
set will display an improvement in fairness with respect to a classifier learnt from the
original data. An example of the produced PR-correcting functions and their effect over
Income is shown in Figure 5.2. Algorithm 5.1 specifies the full details of PARDS.

5.2.4 Finding the Optimal Amount of Sampling

Finally, the third step is to estimate the optimal correction for a specific fairness definition.
As classifiers usually display non-linear—and sometimes unexpected—behaviours, it is
not possible to deduce a closed-form solution to this optimisation problem. Hence, it
becomes necessary to numerically approximate a solution.

A naïve approach is to compare the resulting fairness ratios on a training-set split for
different values of d, and select the one producing the ratio closest to 1. As shown in
Section 5.4.2, it is easy to find d-values close to the optimal by trial and error, yet this
optimal d-value will usually be different for distinct fairness definitions.

72

5.2 PARDS

1.000.750.500.250.000.250.500.751.00
d

0.10

0.15

0.20

0.25

0.30

Po
sit

iv
e

Ra
tio

Correcting Function
Effect on Test Set

Favoured
Unfavoured

Figure 5.2 Correcting functions f+(d) and u+(d) applied to Income and their effect on the
test set. The d-axis is reversed, going from 1 (no correction) to −1 (maximum correction).
Note that the test-set PRs do not necessarily intersect at d = 0, as the attribute distributions
will be different in the resampled training set and in the test set.

73

Parametrised Data Sampling

Algorithm 5.1: The PARDS algorithm.
Data:
T: a training set with binary PA and binary label Y ,
d ∈ R: the correction parameter,
s ∈ {Under, Over, SMOTE}: the sampling method.
Result:
Tcorr: a d-corrected training set.
/* Get favoured F and unfavoured U datasets */

1 for i in {0, 1} do
2 T_i = T[PA == i] ;
3 TP_i = T[(Y == 1) and (PA == i)] ;
4 PR_i = size(TP_i) / size(T_i) ;
5 end
6 j = argmaxi∈{0,1}(PR_i) ;
7 F = T_j ;
8 U = T – F ;
/* Get positive rates for U, F and T */

9 for p in {U, F, T} do
10 PR_p = size(p[Y == 1]) / size(p) ;
11 end

/* Correcting polynomials */
12 m = (PR_F – PR_U) / 2 ;
13 b = (PR_F + PR_U) / 2 ;
14 fpr = m * d + b ;
15 upr = –m * d + b ;

/* Split F and U into Positive and Negative */
16 [fPos, fNeg] = [FY == 1, FY == 0] ;
17 [uPos, uNeg] = [UY == 1, UY == 0] ;

/* Under case */
18 if s == under then

/* Correct fPos and uNeg groups */
19 f_k = fpr / (1 – fpr) ;
20 u_k = (1 – upr) / upr ;
21 fPosSize = f_k * size(fNeg) ;
22 uNegSize = u_k * size(uPos) ;
23 fPos = undersample(fPos, size=fPosSize) ;
24 uNeg = undersample(uNeg, size=uNegSize) ;

/* Over and SMOTE cases */
25 else

/* Correct fNeg and uPos groups */
26 f_k = (1 - fpr) / fpr ;
27 u_k = upr / (1 - upr) ;
28 fNegSize = f_k * size(fPos) ;
29 uPosSize = u_k * size(uNeg) ;
30 fNeg = oversample(fNeg, size=fNegSize) ;
31 uPos = oversample(uPos, size=uPosSize) ;
32 end

/* Get all four groups back together */
33 Tcorr = concat(fPos, fNeg, uPos, uNeg) ;

74

5.2 PARDS

1.000.750.500.250.000.250.500.751.00
d

1

0

1

2

3

4

| 1
 -

 D
P

R
 |

Acquisition (arbitrary units)

Figure 5.3 Plot of GPyOpt’s approximation of DPR as function of d for Income. The
bottom red curve displays the resulting distribution for the optimal d-value.

A more systematic way to approximate the optimal value of d is to use Bayesian
optimisation [61]. This technique estimates the objective function on candidate values
obtained from previous function estimations. The main reasons for choosing Bayesian
over other optimisation methods are that every fairness ratio evaluation will be different
due to the randomness in the sampling process and that Bayesian optimisation is good
when estimating the objective function is expensive, e.g. this chapter’s setting, since large
datasets are used, and the final results are averaged over many estimations.

A simple fairness optimiser was implemented using the GPyOpt [151] package, with a
standard Gaussian process using d as the only parameter and the distances of the different
fairness ratios to 1 as objective functions, e.g. estimate the d-value yielding the fairest
DPR expectation, evaluated on a 90/10 split of the training set:

argmin
d
|1−E(DPR(d))| subject to −1≤ d ≤ 1.

An example run, used to approximate the optimal correction for DPR on Income
training-sets may be seen in Figure 5.3.

75

Parametrised Data Sampling

5.2.5 Alternative Methods

PARDS’ is not the only possible approach to fairness correction. Three other options are
briefly discussed here.

Independent Subgroup Resampling

An alternative to using d would be to control the amount of resampling introduced into
each of the four PA-label subgroups separately, either as an absolute number or as a
proportion of the corresponding subgroup. This might improve the predictive performance
of the corrected classifier, while still achieving optimal fairness. However, there are
two drawbacks to this approach: 1. Additional parameters in the system imply a loss
in interpretability about the introduced amount of applied correction, as the intuition
described above would be lost; 2. Having to optimise four independent parameters instead
of one necessarily implies an increased computational cost.

Data Relabelling

Instead of selectively resampling data, it is possible to selectively relabel data, i.e. system-
atically change the class label for selected datapoints [90]. This approach, although highly
effective in correcting fairness, displays a marginally worse performance than resampling
on both synthetic and real data. A comparison of relabelling and resampling, both using
PARDS to determine the desired PRs may be seen in Figure 5.4. Besides this, there is an
argument against using this method in the fact that it is highly invasive, since relabelling
implies altering the ground truth, while resampling is based on real data to train from.
However, relabelling may be an effective strategy when additional privacy constraints need
to be enforced [135].

Weighted PAs

Another possibility for fairness correction would be to assign weights to datapoints based
on their PA and label. For certain classifiers, this would indeed have an effect on fairness.
However, not all classifiers can incorporate weights during learning [9].

76

5.3 Theoretical Results

0.5 1.0 1.5 2.0 2.5 3.0
DPR

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85
Ac

cu
ra

cy
Strategy

Resample
Relabel

Figure 5.4 Comparison of resampling and relabelling on Income. The fairness/accuracy
trade-off is consistently worse for the latter.

5.3 Theoretical Results

PARDS’ fairness correction over linear classifiers works best on data with low linear
separability. Its correcting effect softens as data has greater linear separability, and stops
working altogether on linearly separable data, as will be shown for the single-predictive-
feature case next.

5.3.1 Method Effectiveness

Consider a training set D ⊂ X and test set T ⊂ X with binary labels Y (x) ∈ {+,−} for
x ∈ D. The positive and negative instances of D will be referred to as

D+ = {x ∈ D | Y (x) = +} and D− = {x ∈ D | Y (x) =−}, respectively.

The resulting dataset of resampling D with PARDS is referred to as D∗ ⊂ X . A classifier
Ŷ ’s false negative, false positive, true negative and true positive predictions with respect to
D are denoted FN, FP, T N and T P, respectively. When necessary, subscripts are added
for additional context.

77

Parametrised Data Sampling

Definition 6 (Linear Separability). Let D be a dataset with label Y and L be a linear

classifier. The linear separability of D with respect to L is defined as the maximum ACC

attainable on D by some Ŷ ∈L , i.e.

sL (D) := max
Ŷ∈L

|T NŶ |+ |T PŶ |
|D|

.

If sL (D) = 1, D will be said to be linearly separable.

For the rest of this section, Ŷ ∈L is assumed to be learnt from D and optimal, i.e.
its ACC on D is maximum. An intuition for the way PARDS works in a univariate
classification problem is presented, followed by the formalisation of this intuition.

The effects of PARDS’ resampling on fairness in the univariate case are exemplified
in Figure 5.5, where training elements x ∈ D are represented by circles and shown with
their true labels, while test element t ∈ T is represented by a square and shown with its
predicted label. In the univariate case, a linear classifier Ŷ ’s decision threshold will be the
value b ∈ R such that

Ŷ (x) =

+ if x≥ b,

− otherwise.

A useful observation is that for all x ∈ FN, there must be more elements of T N than
elements of FN between x and b. This is formalised in Definition 7 and Lemma 1, and
exemplified in Figure 5.6.

Definition 7 (Right Difference). Let x ∈ FN. x’s right false negatives rFN(x), right true

negatives rTN(x) and right difference ∆r(x) are defined as:

rFN(x) :=
{

x′ ∈ FN | x≤ x′ < b
}
,

rTN(x) :=
{

x′ ∈ T N | x≤ x′ < b
}
,

∆r(x) := |rTN(x)|− |rFN(x)|.

Lemma 1. Let Ŷ ∈L . Then ∆r(x)> 0 for all x ∈ FN.

78

5.3 Theoretical Results

X
+ − − + −

b

(a) In one dimension b is an optimal decision threshold.

X
+ + − + −

bb∗

(b) Undersampling left of b.

X
+ − − + −

b

(c) Undersampling right of b.

X
+++ − + −

bb∗

(d) Oversampling left of b.

X
+ − − ++−

b

(e) Oversampling right of b.

Figure 5.5 The effect of undersampling D− or oversampling D+ on the predictions of
t ∈ T (represented by the square). Labelled “−” in (a), resampling left of b, as shown
in (b) and (d), causes t to be labelled “+”; resampling right of b, as shown in (c) and (e),
has no effect on t’s predicted label.

X
b∗

x
+ − − + + − − + −

b

Figure 5.6 The right difference of x ∈ FN must be positive, i.e. there must be more
elements in rTN(x) (shown in pink, labelled “−”) than in rFN(x) (shown in green, labelled
“+”), as otherwise Ŷ ∗, associated with b∗ ≤ x, would predict Y more accurately than Ŷ ,
associated with b, assumed to be optimal.

79

Parametrised Data Sampling

Proof. Let x′ ∈ FN. If rFN(x′) ≥ rTN(x′), using x′ as the decision threshold would

produce fewer misclassifications over D than the original H, which was assumed to be

optimal.

Definition 8 (Induced Positive Ratio). The positive ratio of T induced by D is defined as:

PRD(T) :=
|{ t ∈ T | t ≥ b}|

|T |
.

The following theorem shows the extent to which undersampling D− ⊂ D can modify
the predicted label for t ∈ T as long as FN ̸=∅ (and hence sL (D)< 1).

Theorem 1. Let Ŷ ∈L . If FN ̸=∅, define

nD :=
1
|FN| ∑

x∈FN
∆r(x) and b∗ :=

1
|FN| ∑

x∈FN
x,

the average right difference and average value of x ∈ FN, respectively. Undersampling
|D−|
|T N|nD elements from D− will result in a corrected training set D∗ with an expected

increase in PRD∗(T) of

PRD∗(T)−PRD(T) =
|{ t ∈ T | b∗ ≤ t < b}|

|T |
. (5.2)

Proof. Let Ŷ ∈L learnt from D, and x ∈ D−. Removing x ∈ FP will not increase the

number of instances misclassified by H, and Ŷ will remain optimal with respect to D\{x}.

Thus, only undersampled x ∈ T N may prevent Ŷ from being optimal.

Since FN is not undersampled by PARDS, removing an average of nD elements from

T N will prevent Lemma 1’s condition from holding for some x∗ ∈ FN. As T N ⊂ D−, in

order to remove nD elements from T N, an average of |D
−|

|T N|nD need to be removed from D−.

Hence, Ŷ ∗ ∈L with decision threshold b∗ will exist. Any t ∈ T ∩ [b∗,b), labelled “−”

by Ŷ , will be labelled “+” by Ŷ ∗; this implies (5.2).

Analogous results to Theorem 1 show that oversampling D+ will increase PRD∗(T),
and undersampling D+ or oversampling D− will decrease PRD∗(T), as long as sL (D)< 1;

80

5.3 Theoretical Results

the proofs are similar to Theorem 1’s and hence omitted. These results show that un-
dersampling or oversampling the adequate subgroups will improve the expected DPR by
increasing PRD∗U (TU) and decreasing PRD∗F (TF), as long as D is not linearly separable.

5.3.2 PR Gain Estimation

The PR increase in Equation (5.2) may be estimated by the empirical distibution of D as
follows, assuming that D and T were drawn from the same distribution:

|{ t ∈ T | b∗ ≤ t < b}|
|T |

≈ |{x ∈ D | b∗ ≤ x < b}|
|D|

. (5.3)

To exemplify (5.3), the PR increase per undersampled instance was estimated on
training sets with different levels of separability. Figure 5.7 shows the theoretical estima-
tions along with the actual increases in PR. For this experiment, ten synthetic training
sets {D1, · · · ,D10} with one continuous variable were generated by sampling 500 “−”
class instances from N(0,1) and 500 “+” instances from {N(z0.5−0.05i,1) | i ∈ [1..10]},
respectively. For each Di, the decision boundary was bi = z0.5−0.05i, and sL (Di) = 0.1i.
Random undersamplings of every D−i were performed 100 times, averaging out both the
estimated and actual PR gains. As may be seen, the expected increase in PR diminishes
as the training sets have greater separability. In the extreme case of perfect separability,
PARDS stops working altogether. However, introducing random noise lets correction
become effective again, as explained in Subsection 5.4.1 and shown in Figure 5.9b.

5.3.3 Multiple Protected Attributes

PARDS has been generalised to multi-class PAs, as well as to multiple PA variables. In
some cases, this could be addressed by binning several PA labels into just two categories,
U and F . However, these arbitrary assignments would imply a loss of granularity in any
subsequent fairness analysis. As an alternative, considering a combined PA has been
chosen, which may be obtained for every datapoint p ∈ train as follows:

1. Evaluate PR(D) for the training set D.

2. Define a set of PAs: {PA1,PA2, . . . ,PAk}.

3. Evaluate
PRi(p) = PR(PAi(p))−PR(D)

81

Parametrised Data Sampling

0.2 0.4 0.6 0.8 1.0
Separability

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PR
 G

ai
n

pe
r R

es
am

pl
ed

 E
le

m
en

t Gain
Real
Estimated

Figure 5.7 Expected vs actual gain in PR(T) per undersampled instance for training sets
with different degrees of separability.

for i ∈ {1,2, . . . ,k}.

4. Aggregate the partial PRs to obtain a combined value

PR∗(p) =
k

∑
i=1

PRi(p).

5. Define the combined PA of p as

PA∗(p) =

F if PR∗(p)> 0,

U if PR∗(p)≤ 0.

This solution allows for a much more granular approach on determining a datapoint’s
relative “prosperity” with respect to every PA, as some PA attributes may prove to be more
determining of disparate treatment than others, and the effects of several PAs may cancel
each other out.

82

5.4 Experimental Evaluation

The performed experiments, carried out on Income, provide positive results, as de-
scribed next. Figure 5.8 compares the effects—for unfavoured groups of different PAs
(Gender, Nationality, Race and Age)—of applying disparity correction based on a single PA
(Gender) to doing it based on a combined PA aggregating Gender, Age, Race and Country
for Income. As can be seen, when correcting for Gender alone, the other unfavoured groups’
PR remains relatively constant or gets worse. Likewise, the overall PR shows a drop on its
PR as more correction is applied. When correcting for the combined PA, on the other hand,
all of the unfavoured PRs improve at a similar rate, whilst the overall PR remains relatively
constant across different correction levels. In short, this extension provides PARDS with
the capability to correct for multiple biases simultaneously, at the individual level with
similar optimal d-values across PAs. This method for combining several PAs into a single
combined one, though, is not unique, and could further be improved by adding weights to
the different PAs set as hyperparameters by experts.

5.4 Experimental Evaluation

This section reports the effectiveness of PARDS regarding separability in Subsection 5.4.1,
comparing sampling strategies and fairness definitions in Subsection 5.4.2 and benchmark-
ing PARDS with existing fairness-correcting methods, in Subsection 5.4.3.

5.4.1 Separability

To verify the effect of separability on PARDS’ effectiveness, 11 simple datasets were
created, consisting of one continuous feature f and one binary label l. These datasets were
created using the scikit-learn’s [142] make_classification function, with varying levels
of class separability s, ranging from 0 (completely mixed up) to 2 (over 95% probability
of complete separation). What this function does is sample feature values from normal
distributions centered at s and−s for the two classes, respectively. A PA was then randomly
added, ensuring a fixed 50/50 proportion of F vs U datapoints, with PRs of 0.9 and 0.1
for F and U , respectively.

As may be seen in Figure 5.9a, the greater the separability that data has, the less
effective PARDS becomes (represented by a near-flat DPR curve as a function of d),
verifying the results of Section 5.3. However, adding random noise to a linearly separable
dataset (effectively rendering it inseparable again) restores the effectiveness of PARDS. To
test this, a linearly separable dataset with s = 2 was created, and noise gradually introduced
through parameter n taking values from 0 to 1, the proportion of randomly-assigned labels.

83

Parametrised Data Sampling

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Po
sit

iv
e

Ra
tio

(a) Single PA: Gender

1.000.750.500.250.000.250.500.751.00
d

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Po
sit

iv
e

Ra
tio

(b) Multiple PAs: Gender, Age, Race, Country

PA Subgroup
Female
Under 35
Non-White
Non-US
All

Figure 5.8 Positive ratios for the different PAs’ unfavoured groups on Income, correcting
for (a) one PA and (b) multiple PAs.

84

5.4 Experimental Evaluation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
D

e
m

o
g

ra
p

h
ic

 P
a
ri

ty
 R

a
ti

o
Class Separation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(a) Method Effectiveness by Class Separation

1.000.750.500.250.000.250.500.751.00

d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
e
m

o
g

ra
p

h
ic

 P
a
ri

ty
 R

a
ti

o

Label Noise
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Method Effectiveness by Label Noise in Perfectly Separable Data

Figure 5.9 Correction effectiveness by separability. (a): On close-to-linearly separable
data, the method becomes highly inefficient, or even stops working at all. (b): Introducing
random noise into a separable dataset lets correction become effective again.

85

Parametrised Data Sampling

As shown in Figure 5.9b, this intervention can render fairness correction effective again,
even with a small amount of added noise.

5.4.2 Method Validation

PARDS was tested on three benchmark datasets, described in Subsection 2.6.3: Income,
COMPAS and German. For every dataset, the following experiment was performed 50
times, and then averaged the results for robustness:

1. Random train/test split the data with 90/10 proportion.

2. For each sampling method get 11 training sets corresponding to d ∈ {1,0.8, . . . ,−1}.

3. For each of these training sets, fit a classifier.

4. Get predictions for T , TPA=U and TPA=F for every model.

5. Compute metrics for ACC, DPR, EOpR and PFR, as well as the model coefficients.

An analysis of the resulting fairness metrics, and a comparison of these results with PS
now follows.

Results

As expected, disparity correction has an effect on a classifier’s PR. Figure 5.2 shows a
particular instance of this, using Under as the correcting method on Income. As may be
seen, at the optimal d-value—the point at which the curves cross over—both the F and U
groups achieve the same PR, which is also the population PR.

Figure 5.10 shows the resulting metrics for ACC, DPR, EOpR and PFR for all three
analysed datasets. It is worth noting that both the German—and to a lesser extent COM-
PAS—datasets have a relatively smaller number of instances, explaining why the trends
for those datasets are not as smooth as Income’s. In all three datasets, ACC decreased
monotonically with correction increases, as may be seen in the top row of Figure 5.10.
However, the drop in ACC resulting from increased correction is not particularly severe,
with less than a 4% ACC drop on all the sampling strategies for every dataset even at
the highest correction level. Whether this trade-off is beneficial or not will ultimately be
application-specific.

For the analysed fairness ratios, correction had a stronger effect when using PS at the
same d-value. This is partly explained by PS resampling all four population subgroups

86

5.4 Experimental Evaluation

0.79

0.80

0.81

0.82

0.83

0.84

0.85

A
cc
u
ra
cy

Income

0.63

0.64

0.65

0.66

0.67

0.68

COMPAS

0.73

0.74

0.75

0.76

German

0.5

1.0

1.5

2.0

2.5

D
P
R

0.8

1.0

1.2

1.4

1.6

1.8

0.8

0.9

1.0

1.1

1.2

1.0

1.5

2.0

2.5

3.0

E
O
R

1.0

1.2

1.4

1.6

0.90

0.95

1.00

1.05

1.10

1.15

1.00.50.00.51.0
d

1

2

3

4

5

P
FR

1.00.50.00.51.0
d

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

1.00.50.00.51.0
d

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Strategy
Under

Over

SMOTE

Preferential

Fair

Figure 5.10 ACC and fairness ratios by correction level d for all three datasets.

at once, while the other three methods only resample two of said groups. This stronger
effect of PS has both a negative consequence, though: the higher variability in fairness
ratios due to the change in the value of d, i.e. optimising for a specific fairness ratio may
magnify another ratio’s unfairness. For every dataset, all the sampling methods achieved
optimal DPR, EOpR and PFR, using different d-values. As may be observed in Figure 5.10,
achieving DPR required greater correction than EOpR, which in turn required greater
correction than PFR. For Under, Over and SMOTE, it took d-values close to −1 to achieve
optimal DPR.

Table 5.1 shows diverse performance metrics for PARDS using the different sampling
strategies to correct γsr on Income. The presented means and confidence intervals (CIs)
result from 100 independent train/test splits, then using each sampling strategy with
the optimal d-value for each estimated through Bayesian optimisation performed on the
training set. As may be seen, there is a big difference in computing time across strategies,
with SMOTE being over 10 times slower than Under. On the other hand, SMOTE produced
the best scores for most performance metrics. Optimal fairness correction was achieved
within the CIs for all methods, with roughly the same ACC-loss trade-off. Interestingly,

87

Parametrised Data Sampling

0.4 0.6 0.8 1.0 1.2
DPR

0.825

0.830

0.835

0.840

0.845

0.850
Ac

cu
ra

cy

0.8 1.0 1.2 1.4 1.6 1.8 2.0
EOR

0.75 1.00 1.25 1.50 1.75 2.00 2.25
PFR

Strategy
Under
Over
SMOTE
PS

Fair

Figure 5.11 Fairness/accuracy trade-off for DPR, EOpR and PFR on Income.

running Under before training the classifier was 35% faster than just training the classifier
over the full dataset. This would provide an additional advantage for Under-corrected
training sets when learning models from large-scale datasets.

PA Coefficients

Scatter plots of PFR vs the PA coefficient of the 132 produced LR classifier-fits—obtained
from fitting eleven d-values using four correcting strategies for three datasets—revealed
an interesting relationship between these two quantities: the fit regression line for each
dataset’s scatter passes through point (1,0), as may be seen in Figure 5.12. This happens
because the coefficient for a feature being 0 means that the feature is completely irrelevant
for the classifier (and its predictions). Hence the interventions do(PA =U) and do(PA =

F) will have no effect on the resulting classifier. In other words, a LR classifier with PA
coefficient 0 will satisfy PFR; on the other hand, such a relationship was not found for
DPR and EOpR with respect to the PA coefficient.

5.4.3 Comparison with Other Methods

An intrinsic advantage of PARDS is that it can optimise a classifier with respect to different
group fairness definitions. Three definitions: γsr [22], discrimination (disc) [90] and
EOD [81] were used for the comparisons. They are defined as follows:

disc := PR(F)−PR(U), (5.4)

γsr :=
min
a∈PA

P(Ŷ = 1 | PA = a)

max
a∈PA

P(Ŷ = 1 | PA = a)
, (5.5)

EOD := |δFPR|+ |δFNR| , (5.6)

88

5.4 Experimental Evaluation

Ta
bl

e
5.

1
Fa

ir
ne

ss
an

d
pe

rf
or

m
an

ce
m

et
ri

cs
co

m
pa

ri
so

n
us

in
g

th
e

fo
ur

sa
m

pl
in

g
st

ra
te

gi
es

on
In

co
m

e,
op

tim
is

in
g

L
R

m
od

el
s

fo
rγ

sr
w

ith
95

%
C

Is
.T

he
be

st
sc

or
e

fo
re

ac
h

m
et

ri
c

is
hi

gh
lig

ht
ed

.

N
o

C
or

re
ct

io
n

U
nd

er
O

ve
r

SM
O

TE
P

S

E
st

im
at

ed
O

pt
im

al
d

−0
.5

77
0

−0
.6

08
3

−0
.8

24
6

0.
17

84
Ti

m
e

(s
/it

er
at

io
n)

1.
32

4
±

0.
01

8
0.

85
7

±
0.

01
4

1.
95

2
±

0.
03

0
10

.9
74

±
0.

08
5

1.
23

7
±

0.
01

6
D

is
cr

im
in

at
io

n
0.

17
8

±
0.

00
3

−0
.0

01
±

0.
00

2
0.

0
±

0.
00

3
0.

00
6

±
0.

00
3

−0
.0

03
±

0.
00

3
γ

sr
0.

29
5

±
0.

00
7

1.
00

8
±

0.
01

8
1.

00
5

±
0.

01
9

0.
96

6
±

0.
01

8
1.

02
3

±
0.

01
8

A
C

C
0.

85
±

0.
00

1
0.

83
2

±
0.

00
1

0.
83

1
±

0.
00

1
0.

83
3

±
0.

00
1

0.
83

1
±

0.
00

1
B

al
an

ce
d

A
cc

ur
ac

y
0.

76
1

±
0.

00
2

0.
69

5
±

0.
00

2
0.

69
2

±
0.

00
2

0.
71

7
±

0.
00

2
0.

71
2

±
0.

00
2

Pr
ec

is
io

n
0.

73
7

±
0.

00
3

0.
77

±
0.

00
4

0.
77

±
0.

00
4

0.
72

7
±

0.
00

4
0.

72
6

±
0.

00
4

R
ec

al
l

0.
59

±
0.

00
3

0.
43

±
0.

00
4

0.
42

5
±

0.
00

3
0.

49
3

±
0.

00
3

0.
48

2
±

0.
00

3
F-

Sc
or

e
0.

65
5

±
0.

00
3

0.
55

2
±

0.
00

3
0.

54
7

±
0.

00
3

0.
58

7
±

0.
00

3
0.

58
±

0.
00

3
R

O
C

A
U

C
0.

76
1

±
0.

00
2

0.
69

5
±

0.
00

2
0.

69
2

±
0.

00
2

0.
71

7
±

0.
00

2
0.

71
2

±
0.

00
2

89

Parametrised Data Sampling

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
PA Coefficient

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

PF
R

Dataset
COMPAS
Credit
Income

Figure 5.12 PFR by PA coefficient scatter plot for all three datasets, with quadratic
regression curves.

where δFPR and δFNR represent the difference of U’s and F’s false positive and false
negative rates, respectively.

Tables 5.2 and 5.3 compare PARDS with a variety of preprocessing [25, 81, 89, 97,
20, 138], inprocessing [1, 22, 168, 167, 170] and postprocessing [72] fairness-correcting
methods.

Since four different classifiers were used on the papers to compare with—AB, DT,
gaussian naive bayes (GNB) and LR—PARDS’ results are presented using all three of
them. Classifiers were optimised to compare with the state-of-the-art methods, hence three
of the presented methods are optimised for DPR and two are optimised for EOD, as defined
in Equation (5.6).

Metrics were evaluated using the same classifiers as the ones used in the papers we
compare with. The objective functions to optimise were |1−DPR| and |1−EOD| for DPR
and EOD, respectively, with 0 being the best value the objective function may take in both
cases.

For every tested d-value the resulting DPR of 50 random 90/10 train/test splits were
averaged, finding optimal d-values of {0.8338, -0.1803, -1.1528, -0.6083} for AB, DT,
GNB and LR, respectively. All of the classifiers were trained using the default scikit-learn
hyper-parameter values; using these parameter values, PARDS was run 10 times, averaging

90

5.4 Experimental Evaluation

Table 5.2 Fairness metrics and ACC comparison of the DPR-optimised PARDS with related
fairness-correcting methods. The best result for each metric is highlighted.

Algorithm Classifier disc γsr ACC

No Correction LR 0.18 0.30 0.85
PARDS (Over) LR 0.00 1.00 0.83
PARDS (PS) GNB 0.00 0.98 0.82
PARDS (PS) DT 0.01 0.97 0.84
Kamiran and Calders [89] DT 0.03 — 0.84
Zemel et al. [170] LR 0.20 — 0.68
Calmon et al. [20] LR 0.03 — 0.79
Zafar et al. [168] GNB — 0.87 0.77
Hardt et al. [72] GNB — 0.85 0.81
Zafar et al. [167] GNB — 0.42 0.84
Agarwal et al. [1] GNB — 0.72 0.79
Celis et al. [22] GNB — 0.95 0.77

Table 5.3 EOD, ACC and balanced accuracy comparison of the EOD-optimised PARDS
with related fairness-correcting methods. The best result for each metric is highlighted.

Algorithm Classifier EOD ACC

No Correction AB 0.18 0.86
PARDS (PS) AB 0.08 0.86
PARDS (PS) LR 0.09 0.83
Krasanakis et al. [97] LR 0.05 0.82
Iosifidis and Ntoutsi [81] AB 0.08 0.83
Chawla et al. [25] AB 0.47 0.81

the resulting metrics. The fairness and ACC metrics for the compared methods refer to the
best reported values in [89, 170, 22, 81, 138]. Likewise, for methods evaluated on more
than one classifier, the best one is presented.

The PARDS EOD-optimised AB classifier produced the best overall ACC (86%), while
showing an EOD value within 3% of the best performing method [97]. Regarding the
PARDS DPR optimised classifiers, although LR performed the best overall, both PARDS’
DT and GNB performed better than the other methods’ DTs and GNBs, respectively.
Interestingly, PARDS’ LR produced the fairest classifiers with respect to definitions (5.5)
and (5.4), even though they were actually optimised for DPR. While the ACC of DPR-
optimised PARDS LR was not the best (83%), it came within 1% of the best performing
classifiers (PARDS’ DT, Kamiran and Calders [89] and Zafar et al. [167], with an ACC of
84%).

91

Parametrised Data Sampling

5.5 Conclusion

This chapter presented PARDS, a parametrised fairness optimisation method agnostic
to both fairness definitions and classifiers. Correcting through training set resampling,
it has been shown that PARDS produces fairness-optimal predictions with a small loss
in predictive power. When compared with the existing methods, in most cases PARDS
produces the best fairness performance.

In future work further improvements could me made on the data resampling methods,
in order to optimise for different fairness definitions at once. Although PARDS shows a
relatively low impact on prediction performance and its main objective is to estimate the
optimal amount of correction with respect to fairness, considering predictive performance
as well would be interesting, either in the form of a restriction—e.g. a maximum loss in
ACC or a minimum level of fairness—or by setting an acceptable trade-off rate between
both metrics.

92

Chapter 6

Fairness and Privacy

This chapter is based on González-Zelaya et al. [64], submitted to the Special Issue on
Bias and Fairness in AI of the Data Mining and Knowledge Discovery (DAMI) journal,
which is an extension of Salas and González-Zelaya [135].

Contents
Summary . 94
6.1 Introduction . 94
6.2 Background and Definitions . 95
6.3 FAIR-MDAV . 97
6.4 Experiments . 102
6.5 Conclusion . 109

93

Fairness and Privacy

Summary

Protecting the privacy of personal data and enforcing fairness in automated decisions
are fundamental requirements for responsible ML. Both may be achieved through data
preprocessing, and share a common target: that data should remain useful for a task, while
becoming uninformative of sensitive information; this chapter resides at the intersection of
both areas. The intrinsic connection between privacy and fairness implies that modifications
performed to guarantee one of these goals may have an effect on the other, e.g. hiding a
sensitive attribute from a classifier may prevent a decision rule from using such attributes as
part of its decision criteria. Experimental evidence is presented on the effect of differential
privacy, t-closeness and k-anonymity over fairness. A second experiment shows how
the two goals are compatible, and may be simultaneously achieved with a small loss in
predictive performance by using the presented FAIR-MDAV algorithm. FAIR-MDAV’s
results are competitive with both state-of-the-art fairness correcting algorithms and hybrid
privacy-fairness methods.

6.1 Introduction

Protecting the privacy of personal data and enforcing fairness in automated decisions are
fundamental requirements for responsible ML. Both ideals share a common element: the
need to hide or protect certain attributes of the available data. Who the data are being
hidden from and the reason for hiding them represents the essential difference between
these two disciplines. While privacy seeks to protect the sensitive attributes from being
collected (or inferred) by a third-party, fairness strives to prevent the decision mechanism
from learning potentially discriminatory biases with respect to these attributes. In the
most elementary kind of fairness, a classifier is denied access to the attribute for which
discrimination is to be prevented. However, this does not guarantee that the learnt decision
rule will be discrimination-free, as the bias may not only lie in the removed attributes, but
on other features correlated with them as well.

This chapter is related to different areas of responsible ML, such as fair clustering, fair
classification and privacy-preserving data mining, as described in Section 6.2.

Contributions This chapter introduces FAIR-MDAV, a fairness correction method
for classification tasks with t-closeness and k-anonymity guarantees. FAIR-MDAV is a
modular system allowing for both privacy and fairness to be enhanced either separately or

94

6.2 Background and Definitions

all at once without any compromises, that may be adjusted through a protection parameter
and a correction parameter.

Benchmark experiments are performed over three commonly used benchmarks for
algorithmic fairness and privacy: Income, COMPAS and German, measuring several perfor-
mance metrics as well as three fairness metrics. FAIR-MDAV is competitive in enforcing
demographic parity, and outperforms state-of-the-art EOD methods at its fairness/accuracy
trade-off.

While FAIR-MDAV is not an unsupervised learning method, it makes use of the MDAV
clustering algorithm [42], and it also borrows the notion of fairlet from fair clustering [28].

6.2 Background and Definitions

The scope of this chapter lies between the research areas of algorithmic fairness and data
privacy. A list of privacy definitions is presented to clarify the similarities and differences
between both areas. This chapter will focus on the DPD and EOD fairness definitions. We
use the difference version of these fairness definitions presented in Subsection 4.1.1; note
again that a smaller fairness difference represents a fairer classifier.

The fairlet concept, borrowed from fair clustering, is defined as follows:

Definition 9 (Fairlet). Given a dataset D with binary PA taking values F and U , an (m,n)-

fairlet of D is defined as a subset of D with m instances such that PA =U and n instances

such that PA = F .

In the clustering context [28, 7], fairlets are used to obtain fair clusters, i.e. clusters
in which the PA distribution is similar to the whole dataset. In FAIR-MDAV’s case, the
purpose of fairlets is to correct fairness locally and to anonymise the data.

Privacy

Removing all of the identifiers from a dataset, such as social security numbers or names
and surnames does not necessarily protect individuals from re-identification, as they may
still be associated with unique combinations of attribute values revealed by a data mining
process.

Two of the main models for privacy-preserving data mining are k-anonymity (and its
enhancements, e.g. t-closeness) and differential privacy. The differences and interactions
between these two models are discussed in Salas and Domingo-Ferrer [134].

95

Fairness and Privacy

The confidential or sensitive attributes (SAs) are attributes that contain sensitive
information about an individual, e.g. salary, medical condition or religious beliefs. Quasi-
identifiers (QIs) are attributes such that a unique combination of their values may be used
to single out an individual for their re-identification, e.g. gender, date of birth and postal
code [148]. In this chapter’s setting, the data features are split into SAs and QIs, with the
SAs consisting of the PA and the label.

To prevent re-identification, k-anonymity is defined in Samarati [139], Sweeney [148]
as follows.

Definition 10 (k-Anonymity). A dataset is k-anonymous if each instance is indistinguish-

able from at least other k−1 instances within the dataset with respect to its QIs.

One way to produce a k-anonymous dataset D is through micro-aggregation, i.e. by
combinining the QIs of instances from size-k-groups through an aggregation function, e.g.
their mean or median values, resulting in a group of k instances with identical QIs. These
groups will be referred to as D’s k-groups.

Privacy by k-anonymity guarantees that the probability of associating an individual with
their record is lower than 1/k, i.e. an adversary knowing some of their characteristics will
not be able to distinguish their record among a group of k similar records. The distribution
of the SAs in a k-group, however, may be used to infer the SA-values of an individual,
even if complete re-identification is not possible. For example, if all the SA-values in a
k-group are the same, an adversary may use their knowledge of the QIs of an instance to
associate it with a k-group and thus learn the SA-value from the k-group. To prevent this
problem, an additional constraint known as t-closeness [110] may be introduced. In the
k-anonymity context, t-closeness is defined as follows:

Definition 11 (t-Closeness). Given a k-anonymous dataset D, a k-group belonging to D is

said to have t-closeness if the similarity between the distributions of an SA in the k-group

and in D is smaller than a threshold t. A dataset D is said to have t-closeness if all of its

k-groups have t-closeness.

The idea behind t-closeness is that, by making the distribution of the SAs in the k-
groups similar to the distribution of the SAs in the dataset, it will not be possible to infer
an instance’s SAs, even if the instance’s k-group is known. In FAIR-MDAV’s case, the
distribution’s similarity is measured by comparing the proportion of U and F PAs in the
k-groups, as well as on D; this is consistent with the definition of fairlet (Definition 9).

96

6.3 FAIR-MDAV

Differential privacy [45], on the other hand, is a widely used post-processing approach
for privacy protection, where noise is added to queries, e.g. a classifier’s predictions, to
hide an instance’s SA values.

6.3 FAIR-MDAV

The FAIR-MDAV algorithm (Algorithm 6.1) consists of three methods:

1. Given a desired cluster size k, MakeFairlets (Algorithm 6.2) clusters the training
set D into G, a collection of (m,n)-fairlets such that the fairlet’s elements are close to
each other, where m/n approximates the U/F proportion of D as closely as possible
subject to m+n = k. Clusters are formed in the following way: Let r̄ be D’s “average
record”, i.e.

r̄ :=
1
|D| ∑r∈D

r.

MakeFairlets first locates e∗, the furthest element in D from r̄, i.e.

e∗ = argmax
e∈D

d(e, r̄),

where d is the Euclidean distance. Letting

Di := {e ∈ D\{e∗} | PA(e) = i} for i ∈ {0,1},

Fe∗ ,Ue∗ ⊂ D is defined for the PA(e∗) = 0 case as follows1:

Fe∗ := argmin
A∈[D1]m

∑
a∈A

d(a,e∗), (6.1)

Ue∗ := argmin
A∈[D0]n−1

∑
a∈A

d(a,e∗). (6.2)

In the PA(e∗) = 1 case, replace m with m−1 and n−1 with n in Equations 6.1 and
6.2, respectively. Then, g := {e∗}∪Fe∗ ∪Ue∗ will be an (m,n)-fairlet where Fe∗ and
Ue∗ are the nearest favoured and unfavoured neighbours of e∗, respectively. Fairlet
g is appended to G (D’s fairlet partition), the elements of g are removed from D and

1Notation: [A]k = {B⊂ A | |B|= k}, i.e. the set of all k-element subsets of A.

97

Fairness and Privacy

MakeFairlets iterates over the remaining records in D until no more fairlets can
be formed, discarding the remaining records.

2. Micro-aggregate (Algorithm 6.3) replaces the original records’ feature values
with the corresponding aggregated feature values of the fairlet they belong to, e.g.
with the mean values. The only exceptions to this are the PA and the label, for which
the original values are kept.

3. CorrectFairness (Algorithm 6.4) locally corrects the fairness of each fairlet by re-
labelling its records depending on their PA values so that PR(U)≥ τ ·PR(F), where
τ modulates the amount of correction introduced to the data. Fairness correction may
occur by relabelling negative unfavoured instances as positive (positive correction),
or by relabelling positive favoured instances as negative (negative correction).

Algorithm 6.1: FAIR-MDAV algorithm.
input :D: dataset to process, with binary PA-and-label,

nu: number of unfavoured records per fairlet,
nf: number of favoured records per fairlet,
ma: boolean whether entries are micro-aggregated or not,
tau: float, the level of fairness correction,
nc: boolean whether negative correction is performed.

1 G← MakeFairlets(D,nu,nf); // Algorithm 6.2
2 G_micro← G; // No micro-aggregation if ma is False
3 if ma is True then
4 G_micro← Micro-aggregate(G); // Algorithm 6.3
5 end
6 D_corrected← CorrectFairness(D,G_micro, tau,nc); // Algorithm 6.4
7 return D_corrected

Simplified Example

Figure 6.1 exemplifies FAIR-MDAV being applied to a 7-entry minimal dataset consisting
of one continuous feature (X) and binary PA and Y -label. In this particular example,
FAIR-MDAV micro-aggregates the data into (2,1)-fairlets in the following way:

1. The average value of X is 8, and the record with the farthest X-value from 8 is A.

2. Since A has PA = 1, to complete a (2,1)-fairlet two records must be added: one with
PA = 0 and one with PA = 1. The valid records closest to A are B and D. Hence, the
first fairlet will be {A,B,D}, coloured orange in Figure 6.1.

98

6.3 FAIR-MDAV

Example Data
id X PA Y

A 1 1 1
B 2 0 0
C 3 0 1
D 11 1 0
E 12 1 0
F 13 1 1
G 14 1 1

(2,1)-Fairlets
id X Xma PA Y PC NC

A 1 4.67 1 1 1 0
B 2 4.67 0 0 1 0
C 3 9.33 0 1 1 1
D 11 4.67 1 0 0 0
E 12 9.33 1 0 0 0
F 13 9.33 1 1 1 1
G Dropped

Figure 6.1 Micro-aggregates generated by FAIR-MDAV, coloured in orange and purple,
with micro-aggregated features (Xma) and Y -labels corrected positively (PC) and negatively
(NC).

3. After removing these three records, the process is repeated. The second fairlet
becomes {C,E,F}, coloured purple.

4. Since three records are required to build a (2,1)-fairlet and only one element remains,
it is dropped (G).

5. Once the fairlets are grouped, the PA may be positively (PC) or negatively (NC)
corrected. For the orange fairlet, the uncorrected PRs are 0 for its unfavoured
elements and 0.5 for its favoured elements. When applying PC, record B’s Y -label
changes from 0 to 1, increasing the unfavoured records’ PR from 0 to 1. Conversely,
when applying NC, records A and C are relabelled from 1 to 0, which changes the
favoured records’ PR from 1 to 0. On the other hand, the purple fairlet needs no
correction, as the unfavoured PR is already greater than the favoured PR.

Assuming τ = 1, the PC and NC columns display the positive and negative fairness
correction relabellings, respectively, which are performed fairlet-wise. For PC, entries with
PA = 0 and Y = 0 get relabelled as 1, as long as the proportion of PA = 1 with Y = 1 is
higher than the proportion of PA = 0 with Y = 1. For NC, it is PA = 1 with Y = 1 entries
that get relabelled to 0 as long as the same condition holds.

99

Fairness and Privacy

Algorithm 6.2: MakeFairlets method
input :D, nu, nf

1 G←{};
2 while |{x ∈ D | pa(x) = 0}| ≥ nu and |{x ∈ D | pa(x) = 1}| ≥ nf do
3 x_mean← Mean({x ∈ D});
4 x_r← argmaxx∈D(distance(x,x_mean));

/* Get nu, nf nearest records to x_r with pa = 0, pa = 1 */
5 g_u← GetNearestU(x_r,nu);
6 g_f← GetNearestF(x_r,nf);
7 g← Append(g_u,g_f);
8 D← Drop(D,g);
9 G← Append(G,g);

10 end
11 return G

Algorithm 6.3: Micro-aggregate method
input :G
/* Replace all the records in a fairlet by their mean value */

1 G_micro←{};
2 for g in G do
3 g_mean←{};
4 x_mean← Mean({x ∈ g});
5 foreach x in g do
6 Append(g_mean,x_mean);
7 end
8 Append(G_micro,g_mean);
9 end

10 return G_micro

100

6.3 FAIR-MDAV

Algorithm 6.4: CorrectFairness method
input :G
/* Calculate the positive ratio for the favoured and unfavoured

groups, replacing as many unfavoured negatives with favoured
positives as needed, dependant on tau */

1 for g in G do
2 fpr← PositiveRatio(g,1);
3 upr← PositiveRatio(g,0);
4 U_0←{x in g | pa(x) = 0 and y(x) = 0};
5 F_1←{x in g | pa(x) = 1 and y(x) = 1};
6 if nc is False then
7 while upr < tau∗ fpr and |U_0|> 0 do
8 y(x) = 1 for x in U_0
9 end

10 end
11 else
12 while upr < tau∗ fpr and |F_1|> 0 do
13 y(x) = 0 for x in F_1
14 end
15 end
16 end
17 D_corrected← Concatenate({g in G});
18 return D_corrected

101

Fairness and Privacy

Table 6.1 Experimental parameter values.

Parameter Values Description

u ⌊10i · |U ||D| +0.5⌋ for i ∈ 1 . . .10 (u, f)-fairlet size [f = 10i−u]
k 10i for i ∈ 1 . . .10 k-group size
ε 101−i/2 for i ∈ 0 . . .8 Differential privacy
τ 0.1i for i ∈ 0 . . .10 Fairness correction level
ma True, False Micro-aggregation
nc True, False Negative correction

6.4 Experiments

Experiments were performed over three datasets commonly used as benchmarks in both
the privacy and fairness literature: Income, COMPAS and German, described in Subsec-
tion 2.6.3. Given the instance-size difference between these datasets, patterns are clearer
on Income and noisier on the German analyses.

A selection of fairness and performance metrics were evaluated exhaustively across the
parameter values presented in Table 6.1. For each parameter combination, five-fold cross
validation (CV) train-test splits were performed, applying FAIR-MDAV to the training
sets and followed by training LR classifiers from the modified training sets. Fairness
and performance metrics were evaluated over the corresponding test sets. The resulting
metrics were averaged across CV splits using the same parameters. scikit-learn’s [142] LR
implementation was used to learn the corresponding classifiers.

Fairness/Accuracy Trade-Off

The modularity of FAIR-MDAV makes the privacy and the fairness correction components
independent of each other. It is nonetheless interesting to analyse the impact of choosing
certain parameter values on the effectiveness of the correction. Figure 6.2 presents a scatter
plot of EOD vs ACC—averaged across the CV folds on the test set—for every experiment
performed.

Regarding fairness, better EOD scores were achieved with negative correction than
with positive correction. Although micro-aggregation caused “fairer” classifiers to be
learnt, this occurred at the cost of an increase in ACC loss. A detailed description of
Figure 6.2 follows, which shows the effects of fairness correction across the parameter
values presented in 6.4 for the Income dataset. Analogous plots to Figures 6.2 and 6.3

102

6.4 Experiments

0.1

0.2

0.3

0.4

0.5

0.6

Eq
ua

lis
ed

 O
dd

s
Positive Correction | Not Microaggregated Positive Correction | Microaggregated

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Accuracy Loss

0.1

0.2

0.3

0.4

0.5

0.6

Eq
ua

lis
ed

 O
dd

s

Negative Correction | Not Microaggregated

0.02 0.04 0.06 0.08 0.10
Accuracy Loss

Negative Correction | Microaggregated
Cluster Type

Fairlets
k-Groups

Cluster Size
10
20
30
40
50
60
70
80
90
100

 Value
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 6.2 EOD/ACC trade-off on Income across FAIR-MDAV parameters. For both axes
lower is better.

for COMPAS and German—displaying similar behaviours—are presented in Figures 6.4
and 6.5, respectively.

Fairness Correction Without Micro-Aggregation

As may be observed in the left-side of Figure 6.2, when data is not micro-aggregated
fairness correction and ACC loss are strongly correlated, i.e. higher τ values not only
lead to improved outcomes for the unfavoured group, but also cause the performance of
the learnt classifiers to drop. The “fairest” non-micro-aggregated classifiers produced
an ACC higher than 84%, with much less correction being required for it than in the
micro-aggregated case. Depending on the correction and cluster types, τ values between

103

Fairness and Privacy

0.10

0.15

0.20

0.25

0.30

Eq
ua

lis
ed

 O
dd

s

Positive Correction | Precision Positive Correction | Recall

0.65 0.70 0.75 0.80 0.85
Score

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Eq
ua

lis
ed

 O
dd

s

Negative Correction | Precision

0.2 0.3 0.4 0.5 0.6
Score

Negative Correction | Recall
Fairlet Size

10
20
30
40
50
60
70
80
90
100

 Value
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 6.3 Precision and recall vs EOD for non-micro-aggregated positive and negative
correction experiments on Income.

104

6.4 Experiments

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Eq

ua
lis

ed
 O

dd
s

Positive Correction | Not Microaggregated Positive Correction | Microaggregated

0.00 0.02 0.04 0.06 0.08
Accuracy Loss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Eq
ua

lis
ed

 O
dd

s

Negative Correction | Not Microaggregated

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Accuracy Loss

Negative Correction | Microaggregated
Cluster Type

Fairlets
k-Groups

Cluster Size
10
20
30
40
50
60
70
80
90
100

 Value
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

COMPAS

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
q

u
a
lis

e
d

 O
d

d
s

Positive Correction | Not Microaggregated Positive Correction | Microaggregated

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Accuracy Loss

0.10

0.15

0.20

0.25

0.30

0.35

E
q

u
a
lis

e
d

 O
d

d
s

Negative Correction | Not Microaggregated

0.05 0.10 0.15 0.20 0.25
Accuracy Loss

Negative Correction | Microaggregated
Cluster Type

Fairlets

k-Groups

Cluster Size

10

20

30

40

50

60

70

80

90

100

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

German

Figure 6.4 EOD/ACC trade-off on COMPAS and German across FAIR-MDAV parameters.
For both axes lower is better.

105

Fairness and Privacy

0.10

0.15

0.20

0.25

0.30

0.35

Eq
ua

lis
ed

 O
dd

s

Positive Correction | Precision Positive Correction | Recall

0.58 0.60 0.62 0.64 0.66 0.68 0.70
Score

0.1

0.2

0.3

0.4

0.5

Eq
ua

lis
ed

 O
dd

s

Negative Correction | Precision

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Score

Negative Correction | Recall
Fairlet Size

10
20
30
40
50
60
70
80
90
100

 Value
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

COMPAS

0.10

0.15

0.20

0.25

0.30

E
q

u
a
lis

e
d

 O
d

d
s

Positive Correction | Precision Positive Correction | Recall

0.75 0.76 0.77 0.78 0.79 0.80 0.81
Score

0.15

0.20

0.25

0.30

E
q

u
a
lis

e
d

 O
d

d
s

Negative Correction | Precision

0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92
Score

Negative Correction | Recall

Fairlet Size

10

20

30

40

50

60

70

80

90

100

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

German

Figure 6.5 Precision and recall vs EOD for non-micro-aggregated positive and negative
correction experiments on COMPAS and German.

106

6.4 Experiments

0.6 and 0.8 produced optimal EOD. Larger τ values lead to a fairness over-correction, i.e.
the unfavoured group’s PRs become much better than the favoured group’s, and hence
unfairness happens, only in a reversed way, i.e. the favoured group becomes unfavoured
and vice versa.

The left-side plots of Figure 6.2 also show that the cluster-type used to enforce fairness
has an effect on the correction amount: lower τ-values are required to achieve an equivalent
amount of benefit for U in fairlets than in k-groups. This is only natural, since FAIR-
MDAV’s fairness correction only has an effect on heterogenous-PA groups, i.e. where
members of both PA groups are present (see Figure 6.1). In contrast with the micro-
aggregated case, on the non-micro-aggregated datasets the effect of the cluster sizes is
small to non-existent on both fairness and ACC.

Finally, the effect of τ with negative fairness correction is stronger than with positive
correction for both cluster types. However, negative correction also causes an increased
drop in ACC for the same τ-value. The author believes that, besides the experimental
results shown, negative correction is harder to ethically justify, since it implies punishing
members of the favoured group without an obvious gain to the unfavoured group, i.e.
fairness is achieved with a lessened amount of overall well-being.

Fairness Correction With Micro-Aggregation

The right-side plots of Figure 6.2 showcase the effect of τ correction over micro-aggregated
Income datasets. The sparsity in ACC loss is mostly explained by micro-aggregation, with
cluster-size being the dominant factor that determines it: on both micro-aggregated plots,
the larger the cluster, the more ACC will be lost with respect to the original dataset.
Fairness correction, on the other hand, has a slight impact on ACC loss (much less severe
than in the non-micro-aggregated experiments case), while having a large, descending
impact on EOD. An interesting difference with the non-micro-aggregated case is that, on
the micro-aggregated datasets, setting τ = 1 actually achieves the best possible fairness
for every cluster size and type. The best EOD scores achieved by any micro-aggregated
dataset have an ACC loss of roughly 8%, while the best EOD scores were achieved on
the non-micro-aggregated datasets with an ACC loss of roughly 1%. However, in the
micro-aggregated case this fairness loss also includes the k-anonymity and t-closeness
privacy guarantees provided by design through FAIR-MDAV.

107

Fairness and Privacy

Precision and Recall

Figure 6.3 shows the resulting precision and recall across the micro-aggregated experiments
on Income. As may be seen, fairness correction impacts precision and recall in opposite
directions, and it does so differently for positive and negative correction: while for positive
correction higher τ-values cause worse precision and better recall scores, for negative
correction higher τ-values imply better precision but worse recall.

The precision/recall trade-off is a well-known phenomenon [17], but in FAIR-MDAV’s
case it follows from the way it corrects fairness: positive correction relabels negative
records as positive, relaxing the constraints upon which a data instance would be classified
as positive. This, in turn, causes the learnt classifier to predict fewer false negatives
(improving recall) at the cost of labelling more false positives (worsening precision). With
negative correction the effect is precisely the opposite: the constraints for being classified
as positive are stronger, hence there will be fewer false positives (better precision) but
more false negatives (worse recall). Since classification tasks may find one performance
metric to be more relevant than the other (e.g. for fraud detection the false negative rate,
i.e. recall, should be as small as possible), the choice of positive vs negative correction can
aid in improving the relevant performance metric, as a bonus to correcting fairness.

Comparison with Existing Fairness Methods

FAIR-MDAV is compared with the following algorithms: preferential sampling (PREF)
[90], learning fair representations (LFR) [170], adaptive sensitive reweighting (ASR) [97],
ADAFAIR [81], SMOTEBOOST [25] and parametrised correction (PARDS) [65]. The
fairness and ACC metrics for these methods refer to the best reported values in Kamiran
and Calders [90], Zemel et al. [170], Iosifidis and Ntoutsi [81], González-Zelaya et al. [65].
Likewise, for methods evaluated on more than one classifier, the best one is presented.

Table 6.2 compares DPD, EOD and ACC scores on Income for FAIR-MDAV when
used purely for fairness correction against state-of-the-art methods. FAIR-MDAV achieves
slightly worse DPD scores than PARDS. When compared to PREF, FAIR-MDAV achieves
a better DPD score, however it does so at a higher cost in ACC.

When compared with EOD-optimising methods, FAIR-MDAV achieved the best score
with a big loss in ACC. However, for an EOD score of 0.05, the same as the second best
EOD-optimising method (ASR), FAIR-MDAV’s ACC is 2% better than ASR, and just 1%
below PARDS, which achieved a much worse EOD.

Table 6.3 presents the best DPD and EOD for FAIR-MDAV in the k-anonymity and
t-closeness cases, and these are compared with PFLR* [164]. When only k-anonymity is

108

6.5 Conclusion

Table 6.2 Fairness metrics and ACC comparison of FAIR-MDAV with related fairness-
correcting methods over Income. The top half compares with DPD-correcting methods,
while the bottom half compares with EOD-correcting methods. The compared metrics were
obtained by training different classifiers, namely LR, decision trees (DT) and AdaBoost
(AB). The best result for each metric is highlighted.

Method Classifier DPD EOD ACC

FAIR-MDAV LR 0.01 — 0.80
LFR [170] LR 0.20 — 0.68
PARDS [65] LR 0.00 — 0.83
PREF [90] DT 0.03 — 0.84

FAIR-MDAV (t-close) LR — 0.03 0.79
FAIR-MDAV (same EOD as ASR) LR — 0.05 0.85
ASR [97] LR — 0.05 0.82
ADAFAIR [81] AB — 0.08 0.83
PARDS [65] AB — 0.08 0.86
SMOTEBOOST [25] AB — 0.47 0.81

guaranteed, the same parameter value (k = 100) yields the best score for both DPD and
EOD. In the t-closeness case, t = 0.05 (k = 10) produced a better ACC and the same DPD
as PFLR* (with ε = 10). The best EOD resulted from FAIR-MDAV with t = 0.19 (k = 20).
PFLR* with ε = 0.1 presents the overall best DPD, at the cost of higher ACC loss.

Table 6.3 Fairness and ACC comparison of FAIR-MDAV with PFLR* [164].

Algorithm Privacy DPD EOD ACC

FAIR-MDAV (k-anon. both) k = 100 0.05 0.04 0.78
FAIR-MDAV (t-close, DPD) t = 0.05 (k = 10) 0.02 0.11 0.79
FAIR-MDAV (t-close, EOD) t = 0.19 (k = 20) 0.04 0.03 0.79
PFLR* ε = 0.1 0.00 — 0.75
PFLR* ε = 1 0.01 — 0.76
PFLR* ε = 10 0.02 — 0.76

6.5 Conclusion

FAIR-MDAV is a fairness-correcting preprocessing method with privacy guarantees.
It outperforms existing fairness-correcting methods on its EOD/ACC trade-off, and is
competitive on its DPD/ACC trade-off as well. FAIR-MDAV is modular, allowing for

109

Fairness and Privacy

privacy guarantees to be set separately from fairness correction. It is also definition-
agnostic for group-fairness definitions. The effects of privacy over fairness were shown by
comparing three algorithms with different privacy guarantees (t-closeness, k-anonymity
and ε-differential privacy) as well as the interactions resulting from the different method
parameters.

In the future, FAIR-MDAV could be extended to work on multi-class PA and label,
different distance definitions could be tried on the method’s clustering phase, and FAIR-
MDAV’s effect on individual fairness could be analysed.

110

Chapter 7

Conclusions

Contents
Summary . 112
7.1 Summary of Contributions . 112
7.2 Lessons Learnt . 113
7.3 Future Research Directions . 115

111

Conclusions

Summary

Algorithmic fairness is an active area of research in both the industry and in academia.
Besides being enforced by regulations such as the GDPR, fairness is actively pursued by
society. Along the continued debate between different fairness definitions, regulations
make implementing fair mechanisms a necessity for anyone interested in automated
decision-making solutions. This thesis has presented an overview of algorithmic fairness
with a focus on fairness correction for classification tasks through data preprocessing.
Three different fairness-correcting algorithms, PARDS, FAIRPIPES and FAIR-MDAV,
were presented, with differentiating specifications that make each of them suitable for
specific scenarios. Regardless of their differences, all three algorithms share their fairness-
definition and classifier agnosticism, providing them with the flexibility to be integrated
into existing ML solutions, and adhering to different fairness world-views.

7.1 Summary of Contributions

This thesis’ research aim was to design, implement and evaluate data preprocessing
methods that correct unfair predictions in classification tasks. This general aim was
divided into five specific objectives. In this section, each of these objectives is elaborated
upon with the intent of discussing how the thesis addressed them.

The first research objective was to understand and formalise the concept of algo-
rithmic fairness. After the real-world examples presented in Chapter 1 that motivate its
study, Chapters 2 and 3 present material aimed specifically at this objective. Chapter 2
presented essential notions of classifiers, performance metrics as well as a compendium of
popular preprocessing operators. Chapter 3 formalised the notion of algorithmic fairness,
presenting the group fairness definitions used throughout the thesis, elaborated on the fair-
ness/accuracy trade-off, and presented related work on fairness correction for classification
tasks. These three chapters serve not only as background to position and understand the
subsequent chapters, but could also work as an introduction to algorithmic fairness for
anyone interested in the topic.

The second objective was to determine whether the choice and order of the non-
fairness-specific preprocessing operators have an impact on the fairness of the predic-
tions made by a classifier learnt from the resulting data. This objective was addressed
in Chapter 4, where it was found that both the choice of preprocessing operator for a
specific task, as well as the order in which a set of these tasks is applied to the data have an
impact on both fairness and performance metrics. This finding is exploited by FAIRPIPES

112

7.2 Lessons Learnt

to find near-optimal preprocessing pipelines with respect to either fairness, accuracy, or a
linear combination of both metrics through a genetic-algorithm search.

The third objective was to estimate the trade-off between fairness and performance
for classifiers, generating a range of possible trade-offs from which to choose. This
objective was also addressed in Chapter 4, where the genetic-algorithm search performed
by FAIRPIPES presents the user with an approximation of the preprocessing-pipeline
space’s Pareto front, allowing them to select a trade-off adequate to their needs. The
Pareto front estimation was shown to be close to the ground-truth Pareto front and obtained
efficiently, by evaluating roughly 6% of the possible preprocessing pipelines.

The fourth objective was to design a fairness-definition and classifier agnostic
preprocessing method to optimise the specified fairness definition for a classifier
without incurring a big accuracy loss. Making PARDS, FAIRPIPES and FAIR-MDAV
agnostic to a particular fairness definition allows these methods to be useful for use-cases
that adhere to the user’s world-view. Classifier agnosticism is an inherent advantage of
using the preprocessing approach to fairness correction which gives them the flexibility
of being incorporated into existing ML solutions. PARDS, presented in Chapter 5, is the
method that achieves the best fairness/accuracy trade-off out of the three, bench-marking
better scores than state-of-the-art solutions.

The fifth and final objective was to analyse the connection between fairness and
privacy in the classification context and design a method capable of correcting fairness
while providing privacy guarantees for the resulting dataset. In Chapter 6, a direct
effect between privacy and fairness was found empirically on the three tested datasets—
Income, COMPAS and German—where higher levels of privacy produced better EOD for
the resulting classifiers, albeit with a loss in the classifier’s accuracy. The change in both of
these quantities, accuracy loss and fairness gain depends on the choice of privacy guarantee.
The second half of this objective was addressed by the design and implementation of FAIR-
MDAV, a micro-aggregation method that achieves k-anonymity by design and performs a
local fairness correction over each of the resulting micro-aggregates.

7.2 Lessons Learnt

The following list presents this thesis’ key insights:

• There are many different fairness definitions, and it is usually impossible to enforce
more than one of them at the same time. While a family of definitions focuses
on individuals, a second one, known as group fairness, focuses on similar clas-

113

Conclusions

sifier behaviours across PA groups; the fairness-correcting methods presented in
Chapters 4, 5 and 6 work on group fairness definitions.

• Among group fairness definitions, some focus on similarity across the PAs’ predicted
outcomes, e.g. demographic parity, while others focus on similarity across the PAs’
predictive performance, e.g. equality of opportunity and equalised odds; these
definitions align with different world-views regarding fairness. Fairness definitions
and further discussion of their differences are presented in Chapter 3.

• There is a trade-off between fairness and performance whenever a classifier is learnt
from biased data. However, these trade-offs will vary across different fairness
definitions. In Chapters 4 and 5, demographic parity presented the highest accuracy-
loss cost among the tested fairness definitions.

• The choice of preprocessing pipelines was found to impact the fairness of classifiers
learnt from the preprocessed data. Optimal choices for preprocessing operators,
however, are data-dependant. Therefore, a heuristic approach to estimate the optimal
pipeline is necessary. FAIRPIPES, presented in Chapter 4, is a genetic-algorithm
approach that presents the user with a near-optimal estimation of the preprocessing-
pipeline space’s fairness/accuracy Pareto front.

• One of the main sources of unfairness is training data. The reasons behind it may
be both societal, e.g. data reflecting a historical discrimination against a PA-group,
or technical, e.g. data were not collected adequately. Therefore, correcting the
data by preprocessing it before training a classifier from it is a sound approach.
Metaphorically, correcting the data may be thought of as sampling from a fairer
world, in order to correct the real one: PARDS and FAIR-MDAV, presented in
Chapters 5 and 6 are preprocessing fairness-correcting mechanisms that operate like
this. Further discussion of the source of unfairness may be found in Chapter 3.

• Fairness and privacy share a common element: the need to hide or protect certain
attributes of the available data. Who the data are hidden from and the reason for
hiding them forms the essential difference between these two disciplines: while
privacy seeks to protect the attributes from being collected (or inferred) by a third-
party, fairness strives to prevent the classifier from learning potentially discriminatory
biases with respect to these attributes. This common element makes it possible to
fix both issues simultaneously. FAIR-MDAV, presented in Chapter 6, is a fairness-
correcting mechanism that guarantees k-anonymity, a particular privacy definition,
for the corrected data.

114

7.3 Future Research Directions

7.3 Future Research Directions

In the foreseeable future, the need for fair decision-making processes will continue to exist,
and will probably become even more ubiquitous. The conclusions of Chapters 4, 5 and 6
present specific suggestions for future research with respect to PARDS, FAIRPIPES and
FAIR-MDAV, respectively. The following is a list of interesting ideas on which future
research could be done.

Multiple PA Optimisation Although a partial solution was presented in Chapter 5, opti-
mising fairness for multiple PAs at once requires further research. Regarding the
presented solution, which consists in evaluating a linear combination of each in-
stance’s PRs with respect to every PA, finding a criterion to add weight to this linear
combination might enhance the resulting correction. Another problem which the
proposed solution does not address is fairness gerrymandering [93], an infrequent
case in which the combination of two or more unfavoured PAs might become a
favoured subgroup.

Fairness as a Dynamic System To iterate fairness correction across time and explore
different paths towards “fair in n years” scenarios. It may also be possible to
progressively migrate across different fairness definitions, i.e. once a particular
kind of fairness is achieved, strive for another kind of fairness without losing the
one already attained. Specifically, we may think of periods of time, say a year,
on which a certain decision, e.g. become eligible for credit, must be made and
which will become the ‘ground truth’ for the following period, i.e. given an original
training set T0, a classifier Ŷ 0 may be learnt, which would assign new labels to the
training set, obtaining a new training set T1 with (possibly) modified labels. T1 in
turn would become the training set to learn Ŷ 1 and so on. In this sense, the ground
truth would be continuously evolving in a similar fashion to a Markov process, but
using a classifier instead of a set of equations. The resulting dynamic system could
be analysed to look for convergence into a fixed state or ‘unfairness loops’ (where a
fair state evolves into an unfair state and vice versa). In this setting, it may well be
the case that adopting a more gradual fairness correction approach converges to a fair
state, while extreme corrections may cause the mentioned unfairness loops, in which
the favoured and unfavoured (e.g. male and female) groups would continuously
swap roles.

An AI for AI Approach to Fairness To let the decision-making system self-regulate, by
changing the optimisation problem depending on its current state, e.g. when the

115

Conclusions

system satisfies demographic parity, focus on equality of opportunity instead, or
once fairness is sufficient, focus on the performance instead.

Support Individual Fairness or Causality Definitions To investigate whether individ-
ual or causal fairness can be enforced through data preprocessing. If so, to design
and implement the necessary correcting algorithms, and explore the compatibility of
these definitions with group-fairness ones.

116

References

[1] Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., and Wallach, H. (2018). A
reductions approach to fair classification. arXiv preprint arXiv:1803.02453.

[2] Agarwal, A., Dudík, M., and Wu, Z. S. (2019). Fair regression: Quantitative definitions
and reduction-based algorithms. In International Conference on Machine Learning,
pages 120–129. PMLR.

[3] Andersson, F. O., Kaiser, R., and Jacobsson, S. P. (2004). Data preprocessing by
wavelets and genetic algorithms for enhanced multivariate analysis of lc peptide map-
ping. Journal of pharmaceutical and biomedical analysis, 34(3):531–541.

[4] Angwin, J., Larson, J., Mattu, S., and Kirchner, L. (2016). Machine bias. ProPublica,
May, 23(2016):139–159.

[5] Asadollahi, T., Dadfarnia, S., Shabani, A. M. H., Ghasemi, J. B., and Sarkhosh, M.
(2011). QSAR models for CXCR2 receptor antagonists based on the genetic algorithm
for data preprocessing prior to application of the PLS linear regression method and
design of the new compounds using in silico virtual screening. Molecules, 16(3):1928–
1955.

[6] Aydin, O. U., Taha, A. A., Hilbert, A., Khalil, A. A., Galinovic, I., Fiebach, J. B.,
Frey, D., and Madai, V. I. (2021). On the usage of average hausdorff distance for
segmentation performance assessment: hidden error when used for ranking. European
Radiology Experimental, 5(1):1–7.

[7] Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., and Wagner, T. (2019).
Scalable fair clustering. In International Conference on Machine Learning, pages
405–413.

[8] Bagdasaryan, E., Poursaeed, O., and Shmatikov, V. (2019). Differential privacy has
disparate impact on model accuracy. In Advances in Neural Information Processing
Systems, pages 15479–15488.

[9] Bantilan, N. (2018). Themis-ml: A fairness-aware machine learning interface for
end-to-end discrimination discovery and mitigation. Journal of Technology in Human
Services, 36(1):15–30.

[10] Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., Lohia, P.,
Martino, J., Mehta, S., Mojsilović, A., et al. (2019). AI Fairness 360: An extensible
toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research and
Development, 63(4/5):4–1.

117

References

[11] Berger-Tal, O., Nathan, J., Meron, E., and Saltz, D. (2014). The exploration-
exploitation dilemma: a multidisciplinary framework. PloS one, 9(4):e95693.

[12] Berk, R., Heidari, H., Jabbari, S., Kearns, M., and Roth, A. (2018). Fairness in
criminal justice risk assessments: The state of the art. Sociological Methods & Research,
page 0049124118782533.

[13] Berrar, D. (2019). Cross-validation.

[14] Biddle, D. (2017). Adverse impact and test validation: A practitioner’s guide to valid
and defensible employment testing. Routledge.

[15] Branke, J., Kaußler, T., Smidt, C., and Schmeck, H. (2000). A multi-population
approach to dynamic optimization problems. In Evolutionary design and manufacture,
pages 299–307. Springer.

[16] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[17] Buckland, M. and Gey, F. (1994). The relationship between recall and precision.
Journal of the American society for information science, 45(1):12–19.

[18] Calders, T., Kamiran, F., and Pechenizkiy, M. (2009). Building classifiers with
independency constraints. In 2009 IEEE International Conference on Data Mining
Workshops, pages 13–18. IEEE.

[19] Calders, T. and Verwer, S. (2010). Three naive bayes approaches for discrimination-
free classification. Data mining and knowledge discovery, 21(2):277–292.

[20] Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy, K., and Varshney, K. R.
(2017). Optimized pre-processing for discrimination prevention. Advances in Neural
Information Processing Systems, 30:3992–4001.

[21] Cason, T. E. (1999). Titanic Dataset. https://biostat.app.vumc.org/wiki/
Main/DataSets. [Online; accessed 25-May-2021].

[22] Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K. (2019). Classification with
fairness constraints: A meta-algorithm with provable guarantees. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pages 319–328.

[23] Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1):16–28.

[24] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357.

[25] Chawla, N. V., Lazarevic, A., Hall, L. O., and Bowyer, K. W. (2003). SMOTEBoost:
Improving prediction of the minority class in boosting. In European conference on
principles of data mining and knowledge discovery, pages 107–119. Springer.

[26] Chen, I., Johansson, F. D., and Sontag, D. (2018). Why is my classifier discrimina-
tory? arXiv preprint arXiv:1805.12002.

118

https://biostat.app.vumc.org/wiki/Main/DataSets
https://biostat.app.vumc.org/wiki/Main/DataSets

References

[27] Chiappa, S. (2019). Path-specific counterfactual fairness. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33-01, pages 7801–7808.

[28] Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii, S. (2018). Fair clustering
through fairlets. arXiv preprint arXiv:1802.05733.

[29] Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 5(2):153–163.

[30] Chowdhury, R. (2021). Sharing learnings about our image cropping al-
gorithm. https://blog.twitter.com/engineering/en_us/topics/insights/
2021/sharing-learnings-about-our-image-cropping-algorithm.

[31] Cooper, A. F., Abrams, E., and NA, N. (2021). Emergent unfairness in algorithmic
fairness-accuracy trade-off research. In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, pages 46–54.

[32] Crisp, R. (2014). Aristotle: Nicomachean Ethics. Cambridge University Press.

[33] Crone, S. F., Lessmann, S., and Stahlbock, R. (2006). The impact of preprocessing
on data mining: An evaluation of classifier sensitivity in direct marketing. European
Journal of Operational Research, 173(3):781–800.

[34] Crookston, N. L. and Finley, A. O. (2008). yaimpute: an r package for knn imputation.
Journal of Statistical Software. 23 (10). 16 p.

[35] Cummings, R., Gupta, V., Kimpara, D., and Morgenstern, J. (2019). On the compati-
bility of privacy and fairness. In Adjunct Publication of the 27th Conference on User
Modeling, Adaptation and Personalization, pages 309–315.

[36] Danks, D. and London, A. J. (2017). Algorithmic bias in autonomous systems. In
IJCAI, volume 17, pages 4691–4697.

[37] Dastin, J. (2018). Amazon scraps secret AI recruiting tool that
showed bias against women. https://www.reuters.com/article/
us-amazon-com-jobs-automation-insight-idUSKCN1MK08G.

[38] Datta, A., Sen, S., and Tschantz, M. C. (2018). Correspondences between pri-
vacy and nondiscrimination: why they should be studied together. arXiv preprint
arXiv:1808.01735.

[39] Deb, K. (2002). A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: Nsga-2. IEEE Trans. Evol. Comput., 6(2):182–197.

[40] Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina,
M., Polajnar, M., Toplak, M., Starič, A., et al. (2013). Orange: data mining toolbox in
python. the Journal of machine Learning research, 14(1):2349–2353.

[41] Dieterich, W., Mendoza, C., and Brennan, T. (2016). Compas risk scales: Demon-
strating accuracy equity and predictive parity. Northpointe Inc.

119

https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm
https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

References

[42] Domingo-Ferrer, J. and Torra, V. (2005). Ordinal, continuous and heterogeneous
k-anonymity through microaggregation. Data Mining and Knowledge Discovery,
11(2):195–212.

[43] Dressel, J. and Farid, H. (2018). The accuracy, fairness, and limits of predicting
recidivism. Science advances, 4(1):eaao5580.

[44] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[45] Dwork, C. (2006). Differential privacy. In International Colloquium on Automata,
Languages, and Programming, pages 1–12. Springer.

[46] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, page 214–226, New York, NY, USA. Association for
Computing Machinery.

[47] Ekstrand, M. D., Joshaghani, R., and Mehrpouyan, H. (2018). Privacy for all:
Ensuring fair and equitable privacy protections. In Friedler, S. A. and Wilson, C., editors,
Proceedings of the 1st Conference on Fairness, Accountability and Transparency,
volume 81 of Proceedings of Machine Learning Research, pages 35–47, New York, NY,
USA. PMLR.

[48] Equivant (2019). Practitioner’s guide to COMPAS Core. [Online; accessed 06-10-
2021].

[49] Farrar, D. E. and Glauber, R. R. (1967). Multicollinearity in regression analysis: the
problem revisited. The Review of Economic and Statistics, pages 92–107.

[50] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian,
S. (2015). Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages
259–268.

[51] Fernando, M.-P., César, F., David, N., and José, H.-O. (2021). Missing the missing
values: The ugly duckling of fairness in machine learning. International Journal of
Intelligent Systems, 36(7):3217–3258.

[52] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F.
(2019). Auto-sklearn: efficient and robust automated machine learning. In Automated
Machine Learning, pages 113–134. Springer, Cham.

[53] Fitkov-Norris, E., Vahid, S., and Hand, C. (2012). Evaluating the impact of categorical
data encoding and scaling on neural network classification performance: the case
of repeat consumption of identical cultural goods. In International Conference on
Engineering Applications of Neural Networks, pages 343–352. Springer.

[54] Foulds, J. R., Islam, R., Keya, K. N., and Pan, S. (2020). An intersectional definition
of fairness. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),
pages 1918–1921. IEEE.

120

References

[55] Friedler, S. A., Scheidegger, C., and Venkatasubramanian, S. (2021). The (im)
possibility of fairness: different value systems require different mechanisms for fair
decision making. Communications of the ACM, 64(4):136–143.

[56] Friedler, S. A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton,
E. P., and Roth, D. (2019). A comparative study of fairness-enhancing interventions in
machine learning. In Proceedings of the Conference on Fairness, Accountability, and
Transparency, pages 329–338. ACM.

[57] Gajane, P. and Pechenizkiy, M. (2017). On formalizing fairness in prediction with
machine learning. arXiv preprint arXiv:1710.03184.

[58] García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., and Herrera, F. (2016).
Big data preprocessing: methods and prospects. Big Data Analytics, 1(1):9. ISBN:
2058-6345.

[59] Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E. H., and Beutel, A. (2019). Coun-
terfactual fairness in text classification through robustness. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pages 219–226.

[60] Gold, J. I. and Shadlen, M. N. (2002). Banburismus and the brain: decoding the
relationship between sensory stimuli, decisions, and reward. Neuron, 36(2):299–308.

[61] González, J., Osborne, M., and Lawrence, N. D. (2016). Glasses: Relieving the
myopia of bayesian optimisation. Journal of Machine Learning Research.

[62] González-Zelaya, V. (2019). Towards explaining the effects of data preprocessing
on machine learning. 2019 IEEE 35th International Conference on Data Engineering
(ICDE).

[63] González-Zelaya, V., Missier, P., and Prangle, D. (2019). Parametrised Data Sampling
for Fairness Optimisation. Presented on the 2019 XAI Workshop at SIGKDD, Anchorage,
AK, USA.

[64] González-Zelaya, V., Salas, J., Megías, D., and Missier, P. (2021a). Fair Classification
with Privacy Guarantees. Submitted to the Data Mining and Knowledge Discovery
(DAMI) Journal.

[65] González-Zelaya, V., Salas, J., Prangle, D., and Missier, P. (2021b). Optimising
Fairness Through Parametrised Data Sampling. In Proceedings of the 2021 EDBT
Conference.

[66] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[67] Gunn, S. R. et al. (1998). Support vector machines for classification and regression.
ISIS technical report, 14(1):5–16.

[68] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182.

[69] Hajian, S., Domingo-Ferrer, J., Monreale, A., Pedreschi, D., and Giannotti, F. (2015).
Discrimination- and privacy-aware patterns. Data Min. Knowl. Discov., 29(6):1733–
1782.

121

References

[70] Hamilton, I. A. (2019). Apple cofounder Steve Wozniak says Apple Card
offered his wife a lower credit limit. https://www.businessinsider.com/
apple-card-sexism-steve-wozniak-2019-11.

[71] Hao, K. (2019). Police across the US are training crime-predicting AIs
on falsified data. https://www.technologyreview.com/2019/02/13/137444/
predictive-policing-algorithms-ai-crime-dirty-data/.

[72] Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised
learning. In Advances in neural information processing systems, pages 3315–3323.

[73] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., et al. (2020). Array programming
with numpy. Nature, 585(7825):357–362.

[74] Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A., and
Prasath, V. (2019). Choosing mutation and crossover ratios for genetic algorithms—a
review with a new dynamic approach. Information, 10(12):390.

[75] He, H. and Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and
applications. Wiley-IEEE Press.

[76] Hébert-Johnson, Ú., Kim, M., Reingold, O., and Rothblum, G. (2018). Multical-
ibration: Calibration for the (computationally-identifiable) masses. In International
Conference on Machine Learning, pages 1939–1948.

[77] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT press.

[78] Hooker, S. (2021). Moving beyond “algorithmic bias is a data problem”. Patterns,
2(4):100241.

[79] Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic
regression, volume 398. John Wiley & Sons.

[80] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science
& engineering, 9(03):90–95.

[81] Iosifidis, V. and Ntoutsi, E. (2019). Adafair: Cumulative fairness adaptive boosting. In
Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, pages 781–790.

[82] Jagielski, M., Kearns, M. A., Sharifi-Malvajerdi, S., Mao, J., Oprea, A., Roth, A.,
and Ullman, J. (2019). Differentially private fair learning. In International Conference
on Machine Learning, pages 3000–3008. PMLR.

[83] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to
statistical learning, volume 112. Springer.

[84] Janssen, K. J., Donders, A. R. T., Harrell Jr, F. E., Vergouwe, Y., Chen, Q., Grobbee,
D. E., and Moons, K. G. (2010). Missing covariate data in medical research: to impute
is better than to ignore. Journal of clinical epidemiology, 63(7):721–727.

122

https://www.businessinsider.com/apple-card-sexism-steve-wozniak-2019-11
https://www.businessinsider.com/apple-card-sexism-steve-wozniak-2019-11
https://www.technologyreview.com/2019/02/13/137444/predictive-policing-algorithms-ai-crime-dirty-data/
https://www.technologyreview.com/2019/02/13/137444/predictive-policing-algorithms-ai-crime-dirty-data/

References

[85] Jiang, T., Gradus, J. L., and Rosellini, A. J. (2020). Supervised machine learning: a
brief primer. Behavior Therapy, 51(5):675–687.

[86] Johnson, K. (2021). Twitter’s Photo Crop Algorithm Fa-
vors White Faces and Women. https://www.wired.com/story/
twitter-photo-crop-algorithm-favors-white-faces-women/.

[87] Jung, C., Kearns, M., Neel, S., Roth, A., Stapleton, L., and Wu, Z. S. (2019). Eliciting
and enforcing subjective individual fairness. arXiv e-prints, pages arXiv–1905.

[88] Justesen, P. D. (2009). Multi-objective optimization using evolutionary algorithms.
University of Aarhus, Department of Computer Science, Denmark, 33.

[89] Kamiran, F. and Calders, T. (2010). Classification with no discrimination by prefer-
ential sampling. In Proc. 19th Machine Learning Conf. Belgium and The Netherlands,
pages 1–6. Citeseer.

[90] Kamiran, F. and Calders, T. (2012). Data preprocessing techniques for classification
without discrimination. Knowledge and Information Systems, 33(1):1–33.

[91] Kamishima, T., Akaho, S., Asoh, H., and Sakuma, J. (2012). Fairness-aware classifier
with prejudice remover regularizer. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 35–50. Springer.

[92] Kayser-Bril, N. (2020). Female historians and male nurses do not exist,
Google Translate tells its European users. https://algorithmwatch.org/en/
google-translate-gender-bias/.

[93] Kearns, M., Neel, S., Roth, A., and Wu, Z. S. (2018). Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International Conference on
Machine Learning, pages 2564–2572.

[94] Kilbertus, N., Carulla, M. R., Parascandolo, G., Hardt, M., Janzing, D., and Schölkopf,
B. (2017). Avoiding discrimination through causal reasoning. In Advances in Neural
Information Processing Systems, pages 656–666.

[95] Kirkpatrick, K. (2017). It’s not the algorithm, it’s the data. Communications of the
ACM, 60(2):21–23.

[96] Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Data preprocessing for
supervised leaning. International Journal of Computer Science, 1(2):111–117.

[97] Krasanakis, E., Spyromitros-Xioufis, E., Papadopoulos, S., and Kompatsiaris, Y.
(2018). Adaptive sensitive reweighting to mitigate bias in fairness-aware classification.
In Proceedings of the 2018 World Wide Web Conference, pages 853–862.

[98] Kubat, M., Matwin, S., et al. (1997). Addressing the curse of imbalanced training
sets: one-sided selection. In Icml, volume 97, pages 179–186. Citeseer.

[99] Kuczmarski, J. (2018). Reducing gender bias in Google Translate. https://blog.
google/products/translate/reducing-gender-bias-google-translate/.

123

https://www.wired.com/story/twitter-photo-crop-algorithm-favors-white-faces-women/
https://www.wired.com/story/twitter-photo-crop-algorithm-favors-white-faces-women/
https://algorithmwatch.org/en/google-translate-gender-bias/
https://algorithmwatch.org/en/google-translate-gender-bias/
https://blog.google/products/translate/reducing-gender-bias-google-translate/
https://blog.google/products/translate/reducing-gender-bias-google-translate/

References

[100] Kumar, M., Husain, M., Upreti, N., and Gupta, D. (2010). Genetic algorithm:
Review and application. Available at SSRN 3529843.

[101] Kusner, M., Loftus, J., Russell, C., and Silva, R. (2017). Counterfactual fairness. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 4069–4079.

[102] Lahoti, P., Gummadi, K. P., and Weikum, G. (2019). ifair: Learning individually fair
data representations for algorithmic decision making. In 2019 ieee 35th international
conference on data engineering (icde), pages 1334–1345. IEEE.

[103] Lakkaraju, H., Kleinberg, J., Leskovec, J., Ludwig, J., and Mullainathan, S. (2017).
The selective labels problem: Evaluating algorithmic predictions in the presence of
unobservables. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 275–284.

[104] Lakshminarayan, K., Harp, S. A., and Samad, T. (1999). Imputation of missing data
in industrial databases. Applied intelligence, 11(3):259–275.

[105] Larionov, M. (2020). Sampling techniques in bayesian target encoding. arXiv
preprint arXiv:2006.01317.

[106] Larson, J., Mattu, S., Kirchner, L., and Angwin, J. (2016). How we analyzed the
compas recidivism algorithm. ProPublica (5 2016), 9.

[107] Laurikkala, J. (2001). Improving identification of difficult small classes by balancing
class distribution. In Conference on Artificial Intelligence in Medicine in Europe, pages
63–66. Springer.

[108] LeDell, E. and Poirier, S. (2020). H2o automl: Scalable automatic machine learning.
In 7th ICML workshop on automated machine learning.

[109] Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. The Journal of
Machine Learning Research, 18(1):559–563.

[110] Li, N., Li, T., and Venkatasubramanian, S. (2007). t-closeness: Privacy beyond
k-anonymity and l-diversity. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 106–115.

[111] Madras, D., Creager, E., Pitassi, T., and Zemel, R. (2019). Fairness through causal
awareness: Learning causal latent-variable models for biased data. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, pages 349–358.

[112] Mazilu, L., Konstantinou, N., Paton, N. W., and Fernandes, A. A. (2021). Data
wrangling for fair classification. In EDBT/ICDT Workshops.

[113] McGinnis, W. D., Siu, C., Andre, S., and Huang, H. (2018). Category encoders: a
scikit-learn-contrib package of transformers for encoding categorical data. Journal of
Open Source Software, 3(21):501.

124

References

[114] McKinney, W. et al. (2011). pandas: a foundational python library for data analysis
and statistics. Python for high performance and scientific computing, 14(9):1–9.

[115] Meier, P., Sacks, J., and Zabell, S. L. (1984). What happened in hazelwood:
Statistics, employment discrimination, and the 80% rule. American Bar Foundation
Research Journal, 9(1):139–186.

[116] Menon, A. K. and Williamson, R. C. (2018). The cost of fairness in binary classifi-
cation. In Conference on Fairness, Accountability and Transparency, pages 107–118.
PMLR.

[117] Micci-Barreca, D. (2001). A preprocessing scheme for high-cardinality categori-
cal attributes in classification and prediction problems. ACM SIGKDD Explorations
Newsletter, 3(1):27–32.

[118] Mitchell, S., Potash, E., Barocas, S., D’Amour, A., and Lum, K. (2021). Algorithmic
fairness: Choices, assumptions, and definitions. Annual Review of Statistics and Its
Application, 8:141–163.

[119] Moore, A. W. (2001). Cross-validation for detecting and preventing overfitting.
School of Computer Science Carneigie Mellon University.

[120] Nakagawa, S. and Freckleton, R. P. (2008). Missing inaction: the dangers of
ignoring missing data. Trends in ecology & evolution, 23(11):592–596.

[121] Ngatchou, P., Zarei, A., and El-Sharkawi, A. (2005). Pareto multi objective opti-
mization. In Proceedings of the 13th International Conference on, Intelligent Systems
Application to Power Systems, pages 84–91. IEEE.

[122] Olson, R. S. and Moore, J. H. (2016). Tpot: A tree-based pipeline optimization tool
for automating machine learning. In Workshop on automatic machine learning, pages
66–74. PMLR.

[123] Oreski, S., Oreski, D., and Oreski, G. (2012). Hybrid system with genetic algorithm
and artificial neural networks and its application to retail credit risk assessment. Expert
systems with applications, 39(16):12605–12617.

[124] Patro, S. and Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv
preprint arXiv:1503.06462.

[125] Pearl, J. (2009). Causality. Cambridge university press.

[126] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

[127] Phillips, A. (2004). Defending equality of outcome. Journal of political philosophy,
12(1):1–19.

[128] Pujol, D., McKenna, R., Kuppam, S., Hay, M., Machanavajjhala, A., and Miklau, G.
(2020). Fair decision making using privacy-protected data. In Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency, FAT* ’20, page 189–199,
New York, NY, USA. Association for Computing Machinery.

125

References

[129] Pyle, D. (1999). Data preparation for data mining. morgan kaufmann.

[130] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

[131] Rodríguez-Gálvez, B., Thobaben, R., and Skoglund, M. (2020). A variational
approach to privacy and fairness. arXiv, pages arXiv–2006.

[132] Rubin, D. B. (1973). The use of matched sampling and regression adjustment to
remove bias in observational studies. Biometrics, pages 185–203.

[133] Saito, K. (2013). Social preferences under risk: Equality of opportunity versus
equality of outcome. American Economic Review, 103(7):3084–3101.

[134] Salas, J. and Domingo-Ferrer, J. (2018). Some basics on privacy techniques,
anonymization and their big data challenges. Mathematics in Computer Science,
12(3):263–274.

[135] Salas, J. and González-Zelaya, V. (2020). Fair-MDAV: An algorithm for fair privacy
by microaggregation. In Modeling Decisions for Artificial Intelligence. MDAI 2020,
volume 12256. Springer.

[136] Salazar, R., Neutatz, F., and Abedjan, Z. (2021). Automated feature engineering
for algorithmic fairness. PROCEEDINGS OF THE VLDB ENDOWMENT, 14(9):1694–
1702.

[137] Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa,
K. T., and Ghani, R. (2018). Aequitas: A bias and fairness audit toolkit. arXiv preprint
arXiv:1811.05577.

[138] Salimi, B., Rodriguez, L., Howe, B., and Suciu, D. (2019). Interventional fairness:
Causal database repair for algorithmic fairness. In Proceedings of the 2019 International
Conference on Management of Data, pages 793–810.

[139] Samarati, P. (2001). Protecting respondents identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1010–1027.

[140] Schapire, R. E. (2013). Explaining adaboost. In Empirical inference, pages 37–52.
Springer.

[141] Schutze, O., Esquivel, X., Lara, A., and Coello, C. A. C. (2012). Using the
averaged hausdorff distance as a performance measure in evolutionary multiobjective
optimization. IEEE Transactions on Evolutionary Computation, 16(4):504–522.

[142] Sci-kit Learn Developers (2019). scikit-learn: machine learning in python.

[143] Seger, C. (2018). An investigation of categorical variable encoding techniques in
machine learning: binary versus one-hot and feature hashing.

[144] Singh, D. and Singh, B. (2020). Investigating the impact of data normalization on
classification performance. Applied Soft Computing, 97:105524.

126

References

[145] Smith, M. J., Sala, C., Kanter, J. M., and Veeramachaneni, K. (2020). The machine
learning bazaar: Harnessing the ml ecosystem for effective system development. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, pages 785–800.

[146] Stoyanovich, J., Howe, B., and Jagadish, H. (2020). Responsible data management.
Proceedings of the VLDB Endowment, 13(12):3474–3488.

[147] Stoyanovich, J., Howe, B., Jagadish, H., and Miklau, G. (2018). Panel: a debate on
data and algorithmic ethics. Proceedings of the VLDB Endowment, 11(12):2165–2167.

[148] Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570.

[149] Tan, F., Fu, X., Zhang, Y., and Bourgeois, A. G. (2008). A genetic algorithm-based
method for feature subset selection. Soft Computing, 12(2):111–120.

[150] Tax, D. M. and Duin, R. P. (2002). Using two-class classifiers for multiclass
classification. In Object recognition supported by user interaction for service robots,
volume 2, pages 124–127. IEEE.

[151] The GPyOpt authors (2016). GPyOpt: A Bayesian Optimization framework in
Python. http://github.com/SheffieldML/GPyOpt.

[152] Toman, M., Tesar, R., and Jezek, K. (2006). Influence of word normalization on
text classification. Proceedings of InSciT, 4:354–358.

[153] Tsai, C.-F., Eberle, W., and Chu, C.-Y. (2013). Genetic algorithms in feature and
instance selection. Knowledge-Based Systems, 39:240–247.

[154] Tsamardinos, I. and Aliferis, C. F. (2003). Towards principled feature selection:
Relevancy, filters and wrappers. In International Workshop on Artificial Intelligence
and Statistics, pages 300–307. PMLR.

[155] Uysal, A. K. and Gunal, S. (2014). The impact of preprocessing on text classification.
Information Processing & Management, 50(1):104–112.

[156] Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.

[157] Van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation
by chained equations in r. Journal of statistical software, 45(1):1–67.

[158] Vijayakumar, M. and Prabhakar, E. (2018). A hybrid combined under-over sampling
method for class imbalanced datasets. International Journal of Research and Advanced
Development (IJRAD), 2(05):27–33.

[159] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–
272.

127

http://github.com/SheffieldML/GPyOpt

References

[160] Voigt, P. and Von dem Bussche, A. (2017). The EU General Data Protection Regu-
lation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International Publishing,
10:3152676.

[161] Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open
Source Software, 6(60):3021.

[162] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2):65–
85.

[163] Wu, Y., Zhang, L., and Wu, X. (2019). Counterfactual fairness: Unidentifica-
tion, bound and algorithm. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence.

[164] Xu, D., Yuan, S., and Wu, X. (2019). Achieving differential privacy and fairness in
logistic regression. In Companion Proceedings of The 2019 World Wide Web Conference,
WWW ’19, page 594–599, New York, NY, USA. Association for Computing Machinery.

[165] Yang, K., Huang, B., Stoyanovich, J., and Schelter, S. (2020). Fairness-aware
instrumentation of preprocessing pipelines for machine learning. In Workshop on
Human-In-the-Loop Data Analytics (HILDA’20).

[166] Yoo, S. and Harman, M. (2007). Pareto efficient multi-objective test case selection.
In Proceedings of the 2007 international symposium on Software testing and analysis,
pages 140–150.

[167] Zafar, M. B., Valera, I., Gomez Rodriguez, M., and Gummadi, K. P. (2017). Fairness
beyond disparate treatment & disparate impact: Learning classification without disparate
mistreatment. In Proceedings of the 26th international conference on world wide web,
pages 1171–1180.

[168] Zafar, M. B., Valera, I., Rodriguez, M. G., and Gummadi, K. P. (2015). Fairness
constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259.

[169] Zehlike, M., Castillo, C., Bonchi, F., Hajian, S., and Megahed, M. (2017). Fair-
ness measures: Datasets and software for detecting algorithmic discrimination. URL
http://fairness-measures. org.

[170] Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C. (2013). Learning fair
representations. In International Conference on Machine Learning, pages 325–333.

[171] Zhang, Z. and Neill, D. B. (2016). Identifying significant predictive bias in classifiers.
arXiv preprint arXiv:1611.08292.

[172] Zhao, H. and Gordon, G. (2019). Inherent tradeoffs in learning fair representations.
Advances in neural information processing systems, 32:15675–15685.

128

Appendix A

Reproducibility

Contents
A.1 Software Requirements . 130
A.2 Data . 130
A.3 Scripts . 131

129

Reproducibility

A.1 Software Requirements

Our algorithms were written and run in Jupyter Lab 2.2.6 using a Python 3.8.5 kernel on
an Ubuntu Linux 20.04 system. The following packages are required to use our notebooks:

pandas 1.1.3 Data analysis and manipulation through data frames [114].

NumPy 1.19.2 Scientific computing [73].

scikit-learn 0.24.1 Predictive data analysis [126].

imbalanced-learn 0.8.0 Tools for classification with imbalanced classes [109].

GPyOpt 1.2.6 Gaussian process optimisation [151].

Matplotlib 3.3.2 Highly customisable visualisations [80].

Seaborn 0.11.0 Simplified plotting on top of Matplotlib [161].

A.2 Data

We have performed our analyses on four benchmark datasets: Adult Income, COMPAS,
German Credit and Titanic. The original CSV files may be obtained from the following
URLs, as well as from our repository:

Adult Income
https://archive.ics.uci.edu/ml/datasets/census+income

COMPAS
https://github.com/propublica/compas-analysis

German Credit
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

Titanic
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html

130

https://archive.ics.uci.edu/ml/datasets/census+income
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html

A.3 Scripts

A.3 Scripts

FAIRPIPES

This repository includes two Jupyter Notebooks, as well as all of the analysed unprocessed
datasets. It may be found at

https://github.com/vladoxNCL/fairPipes

The relevant notebooks in this repository are:

Gen_Alg.ipynb The main genetic algorithm. It may be easily modified to support addi-
tional binary classification datasets with a binary PA.

Plots.ipynb This script contains functions to find the estimated Pareto front of a particular
FAIRPIPES run, compare it with the ground truth Pareto front if the necessary data is
available, and generate a collection of plots for both fairness and performance.

PARDS

The repository includes both of the scripts used for our analyses, as well as all of the
datasets in both their original and cleaned-up versions. It may be found at

https://github.com/vladoxNCL/fairCorrect

The two notebooks in this repository are:

data_cleanup.ipynb Helper notebook, used to convert the original data files into a clean
and one-hot encoded version, suitable for data analysis.

Fairness-Multi.ipynb The main notebook. In the first half, the correction algorithms are
coded. The user needs to specify the name of the desired dataset the scripts will be
run over in the second code block, by setting the dset variable to the appropriate
string value (Income by default). The second half generates most of the figures in
the paper. Some of the generated plots are dataset-specific, hence the dset variable
should be set according to the dataset to be analysed. For both scripts, all the savefile
commands have been commented out, as the savepath needs to be specified by the
user.

131

https://github.com/vladoxNCL/fairPipes
https://github.com/vladoxNCL/fairCorrect

Reproducibility

FAIR-MDAV

This repository includes three Jupyter Notebooks, as well as all of the analysed datasets. It
may be found at

https://github.com/vladoxNCL/fairMDAVplus

The relevant notebooks in this repository are:

fMDAV.ipynb The main Fair-MDAV algorithm script. Will load, microaggregate and
correct the fairness of a list of datasets.

Metrics.ipynb Auxiliary script to generate the metrics of our analyses.

Plots.ipynb Auxiliary script to generate plots.

132

https://github.com/vladoxNCL/fairMDAVplus

	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	Summary
	1.1 The COMPAS Controversy
	1.2 The Meaning of Fairness
	1.3 The Importance of Having Fair Algorithms
	1.4 Research Aim and Objectives
	1.5 Thesis Outline and Contributions
	1.5.1 Key Insights

	2 Preliminaries
	Summary
	2.1 Supervised Machine Learning
	2.2 Classification
	2.3 Performance Metrics
	2.4 Genetic Algorithms
	2.5 Data Preprocessing
	2.5.1 Feature Encoding
	2.5.2 Dealing with Missing Values
	2.5.3 Class Balancing
	2.5.4 Feature Scaling
	2.5.5 Feature Selection

	2.6 Algorithmic Fairness
	2.6.1 Basic Definitions
	2.6.2 Group Fairness Definitions
	2.6.3 Benchmark Datasets

	3 Related Work
	Summary
	3.1 Detecting Unfairness
	3.2 The Fairness/Accuracy Trade-Off
	3.3 Pipeline Optimisation
	3.4 Fairness Correction for Classification Tasks
	3.5 Fairness-Aware Preprocessing
	3.6 Fairness and Privacy
	3.7 Fairness in Other ML Domains

	4 Genetic Pipeline Optimisation
	Summary
	4.1 Introduction
	4.1.1 Fairness Differences
	4.1.2 Preprocessing Affects Fairness
	4.1.3 Problem Formulation

	4.2 Fairpipes
	4.3 Experimental Evaluation
	4.3.1 Baseline Mapping of the Search Space
	4.3.2 Single-Objective Optimisation
	4.3.3 Multi-Objective Policies Optimisation

	4.4 Performance Evaluation
	4.4.1 Pareto Front Estimation
	4.4.2 Distance to Best Estimation
	4.4.3 Comparison with Random Sampling

	4.5 Conclusion

	5 Parametrised Data Sampling
	Summary
	5.1 Introduction
	5.1.1 Fairness Ratios

	5.2 ParDS
	5.2.1 Correction Parameter
	5.2.2 Parametrising Correction
	5.2.3 Sampling Strategies
	5.2.4 Finding the Optimal Amount of Sampling
	5.2.5 Alternative Methods

	5.3 Theoretical Results
	5.3.1 Method Effectiveness
	5.3.2 PR Gain Estimation
	5.3.3 Multiple Protected Attributes

	5.4 Experimental Evaluation
	5.4.1 Separability
	5.4.2 Method Validation
	5.4.3 Comparison with Other Methods

	5.5 Conclusion

	6 Fairness and Privacy
	Summary
	6.1 Introduction
	6.2 Background and Definitions
	6.3 Fair-MDAV
	6.4 Experiments
	6.5 Conclusion

	7 Conclusions
	Summary
	7.1 Summary of Contributions
	7.2 Lessons Learnt
	7.3 Future Research Directions

	References
	Appendix A Reproducibility
	A.1 Software Requirements
	A.2 Data
	A.3 Scripts

