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Abstract

Differential equations provide an important mathematical framework for modelling the

behaviour of quantities that evolve in continuous time and space, often within a com-

plex system or process. Many physical phenomena, including fundamental laws such as

Newton’s laws of motion, are formulated as differential equations. However, most useful

differential equations lack a closed form solution expressible in terms of established func-

tions, and so in practice numerical methods are required to obtain a discrete approximation

to quantities of interest.

Classical numerical methods approximate quantities of interest by taking a finite num-

ber of evaluations from some known and computationally tractable quantity, such as the

gradient field, and use these within an algorithm to construct an approximation. This is

similar to statistics, where a finite number of observations of some unknown, underlying

process are used to infer the process itself. In this view, numerical algorithms can be inter-

preted as estimators, and statistical considerations can be brought to bear. Going further,

on can consider probabilistic numerical methods, which output a probability distribution

over the quantity of interest. In recent years, this idea has emerged into a new field of

research, called Probabilistic Numerics.

In the first part of this thesis, an exact Bayesian probabilistic numerical method for or-

dinary differential equations (ODEs) is presented. The method is a synthesis of classical Lie

group theory, to exploit underlying symmetries in the gradient field, and non-parametric

regression in a transformed solution space for the ODE. The procedure is presented in

detail for first and second order ODEs and relies on a certain strong technical condition

– existence of a solvable Lie algebra – being satisfied. Numerical illustrations are pro-

vided for nonlinear first and second order ODEs. However, the ability to perform exact

Bayesian inference comes at a high price, because the class of ODEs that admit a solvable

Lie algebra is limited.

In the second part of this thesis, an approximate Bayesian probabilistic numerical

method for nonlinear partial differential equations (PDEs) is presented. A Bayesian treat-

ment of nonlinear PDEs does not yet exist, as the case of nonlinear PDEs poses substantial

challenges from an inferential perspective, most notably due to the absence of explicit con-

ditioning formula. This thesis extends earlier work on linear PDEs to a general class of

initial value problems specified by nonlinear PDEs. Numerical experiments are conducted

on a range of examples, and indicate the proposed method is able to provide meaning-

ful probabilistic uncertainty quantification for the unknown solution of the PDE, while



controlling the number of times the right-hand-side of the PDE is evaluated. This is prac-

tically useful in situations where evaluation of the right-hand-side of the PDE is associated

with a high computational cost.

The nascent field of Probabilistic Numerics is receiving increased attention, but fun-

damental questions remain regarding aims and scope of the field. The contributions of

this thesis, while limited to proofs of concept, are helpful in clarifying a role for Bayesian

statistics in the probabilistic solution of differential equations. The thesis concludes with

a discussion, which is broadly supportive of taking a Bayesian approach to differential

equations, whilst highlighting where exact Bayesian inference may not be achievable and

suggesting approximation strategies in that context.
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Chapter 1

Introduction

Differential Equations are mathematical equations which model the relationship between

physical quantities of interest and their rates of change with respect to independent vari-

ables, such as time. Since the development of calculus by Newton and Leibniz in the

17th century, differential equations have become ubiquitous in many scientific fields and

disciplines, including physics, engineering, biology, economics and finance. Prominent ex-

amples include: Newton’s second law of motion, which famously states that the rate of

change of momentum p of a body over time is equal to the net force F applied on the

body:

F =
dp

dt

Schrodinger’s Equation in quantum mechanics:

iℏ
∂Ψ

∂t
= ĤΨ

This equation describes the relationship between the wave function Ψ, the Hamiltonian

operator Ĥ, which is also typically a differential operator on spatial variables. The logistic

growth equation, used to model population growth in biology:

dN

dt
= rN

(
1− N

K

)
The Black-Scholes equation (for a European call or put on an underlying stock paying no

dividends):

1



Chapter 1. Introduction

∂V

∂t
=

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V is the price of the option as a function of stock price S and time t, r is the risk-free

interest rate, and σ the volatility of the stock. While differential equations are able to

provide the framework in which many physical phenomena or abstract quantities are mod-

elled, they also bring forward new challenges. In particular, most differential equations do

not have a closed form solution and therefore cannot be solved by hand symbolically. To

combat this, mathematicians have developed numerical methods, algorithms that rely on

numerical approximation as opposed to symbolic manipulation, in order to solve differ-

ential equations. Some of the major achievements in this area include the Runge–Kutta

method and the Galerkin method. Classical numerical methods for differential equations

produce an approximation to the solution of the differential equation whose error (called

numerical error) is uncertain in general.

Suppose we have some unknown quantity of interest y†, which could for example be

the unknown solution to a differential equation. A numerical task Q can be formulated as

the approximation of a quantity of interest

Q : Y → Q,

subject to a finite computational budget. The true underlying state y† ∈ Y is typically

high- or infinite-dimensional, so that only limited information

A : Y → A (1.1)

is provided and exact computation of Q(y†) is prohibited. For example, numerical in-

tegration aims to approximate an integral Q(y†) =
∫
y†(t)dt given the values A(y†) =

{(xi, y†(xi))}ni=1 of the integrand y† on a finite number of abscissa {xi}ni=1. Similarly, a

numerical approximation to the solution Q(y†) = y† of a differential equation dy/dx =

f(x, y(x)), y(x0) = y0, will typically be based on a finite number of evaluations of f , the

gradient field. In this viewpoint a numerical method corresponds to a map b : A → Q,

as depicted in Figure 1.1a, where b(a) represents an approximation to the solution of the

differential equation based on the information a ∈ A.

The increasing ambition and complexity of contemporary applications is such that the

computational budget can be extremely small compared to the precision that is required

at the level of the quantity of interest. As such, in many important problems it is not

possible to reduce the numerical error to a negligible level. Fields acutely associated

with this challenge include climate forecasting (Wedi, 2014), computational cardiology

2



Chapter 1. Introduction

(Chabiniok et al., 2016) and molecular dynamics (Perilla et al., 2015). In the presence

of non-negligible numerical error, it can often be unclear how scientific interpretation of

the output of computation can proceed. For example, a posteriori analysis of traditional

numerical methods can be used to establish hard upper bounds on the numerical error,

but these bounds typically depend on an unknown global constant. In the case of ODEs,

this may be the maximum value of a norm ∥f∥ of the gradient field (see e.g. Estep, 1995).

If ∥f∥ were known, it would be possible to provide a hard bound on numerical error.

However, in the typical numerical context where f is a black box, it may only be known

is that ∥f∥ < ∞. One could attempt to approximate ∥f∥ with cubature, but that itself

requires a numerical cubature method whose error is required to obey a known bound. In

general, therefore, there are no hard error bounds without global information on the task

at hand being a priori provided (Larkin, 1974).

1.1 Probabilistic Numerical Methods

Probability theory provides a natural language in which uncertainty can be expressed and,

since the solution of a differential equation is unknown, it is interesting to ask whether

probability theory can be applied to quantify numerical uncertainty associated with it.

This perspective, in which numerical tasks are cast as problems of statistical inference, is

pursued in the nascent field of probabilistic numerics. The field of probabilistic numer-

ics dates back to Larkin (1972) and a modern perspective is provided in Hennig et al.

(2015); Oates & Sullivan (2019). Under the abstract framework just described, numerical

methods can be interpreted as point estimators in a statistical context, where the state

y† can be thought of as a latent variable in a statistical model, and the ‘data’ consist

of information A(y†) that does not fully determine the quantity of interest Q(y†) but is

indirectly related to it. Hennig et al. (2015) provide an accessible introduction and survey

of the field. In particular, they illustrated how PNM can be used to quantify uncertainty

due to discretisation in important scientific problems, such as astronomical imaging.

Let the notation ΣY denote a σ-algebra on the space Y and let PY denote the set of

probability measures on (Y, ΣY). A probabilistic numerical method (PNM) is a procedure

which takes as input a ‘belief’ distribution µ ∈ PY , representing epistemic uncertainty with

respect to the true (but unknown) value y†, along with a finite amount of information,

A(y†) ∈ A. The output is a distribution B(µ,A(y†)) ∈ PQ on (Q, ΣQ), representing

epistemic uncertainty with respect to the quantity of interest Q(y†) after the information

A(y†) have been processed. For example, a PNM for an ordinary differential equation

(ODE) takes an initial belief distribution defined on the solution space of the differential

equation, together with information arising from a finite number of evaluations of the

gradient field, plus the initial condition of the ODE, to produce a distribution over either

3



Chapter 1. Introduction

Y A

Q
Q

A

b

(a)

PY A

PQ

Q#

µa←[a

B(µ,a)←[a

(b)

Figure 1.1: Diagrams for a numerical method. (a) The traditional viewpoint of a numerical method
is equivalent to a map b from a finite-dimensional information space A to the space of the quantity
of interestQ. (b) The probabilistic viewpoint treats approximation of Q(y†) in a statistical context,
described by a map B(µ, ·) from A to the space of probability distributions on Q. The probabilistic
numerical method (A,B) is Bayesian if and only if (b) is a commutative diagram.

the solution space of the ODE, or perhaps some derived quantity of interest. In this thesis,

the measurability of A and Q will be assumed.

Despite computational advances in this emergent field, until recently there had not

been an attempt to establish rigorous statistical foundations for PNM. In Cockayne et al.

(2019) the authors argued that Bayesian principles can be adopted. In brief, this frame-

work requires that the input belief distribution µ carries the semantics of a Bayesian

agent’s prior belief, and that the output of a PNM agrees with the inferences drawn when

the agent is rational. To be more precise recall that, in this thesis, information is provided

in a deterministic1 manner through (1.1) and thus Bayesian inference corresponds to con-

ditioning of µ on the level sets of A. Let Q# : PY → PQ denote the push-forward map

associated to Q. i.e. Q#(µ)(S) = µ(Q−1(S)) for all S ∈ ΣQ. Let {µa}a∈A ⊂ PY denote

the disintegration, assumed to exist2, of µ ∈ PY along the map A.

Definition 1. A probabilistic numerical method (A,B) with A : Y → A and B : PY×A →
PQ for a quantity of interest Q : Y → Q is Bayesian if and only if B(µ, a) = Q#(µ

a) for

all µ ∈ PY and all a ∈ A.

This definition is intuitive; the output of the PNM should coincide with the marginal

distribution for Q(y†) according to the disintegration element µa ∈ PY , based on the

information a ∈ A that was provided. The definition is equivalent to the statement that

Figure 1.1b is a commutative diagram. In Cockayne et al. (2019) the map A was termed

an information operator and the map B was termed a belief update operator ; we adhere to

these definitions in our work. The Bayesian approach to PNM confers several important

benefits:

1It is of course possible to perform Bayesian inference in the noisy-data context, but for the ODEs
considered in this thesis we assume that one can obtain noiseless evaluations of the gradient field.

2The reader unfamiliar with the concept of a disintegration can treat µa as a technical notion of the
‘conditional distribution of y given A(y) = a’ when reading this work. The disintegration theorem, Thm.
1 of Chang & Pollard (1997), guarantees existence and uniqueness up to a A#µ-null set under the weak
requirement that Y is a metric space, ΣY is the Borel σ-algebra, µ is Radon, ΣA is countable generated
and ΣA contains all singletons {a} for a ∈ A.
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• The input µ and output B(µ, a) belief distributions can be interpreted, respectively,

as a prior and (marginal) posterior.3 As such, they automatically inherit the stronger

formal semantics and philosophical foundations that underpin the Bayesian frame-

work and, in this sense, are well-understood (see e.g. Gelman & Shalizi, 2013).

• The definition of Bayesian PNM is operational. Thus, if we are presented with a prior

µ and information a then there is a unique Bayesian PNM and it is constructively

defined.

• The modern perspective on uncertainty quantification is to consider all relevant

sources of uncertainty, such as discretisation error, parameter uncertainty, uncer-

tainty due to measurement error and uncertainty due to model mis-specification.

The different types of uncertainty are then integrated into inferences and predictions.

The class of Bayesian PNM is closed under composition, such that uncertainty due to

different sources of discretisation can be jointly modelled and rigorously propagated.

Nevertheless, the strict definition of Bayesian PNM limits scope to design convenient

computational algorithms and indeed several proposed PNM are not Bayesian, including

all previously proposed PNMs on differential equations. An in depth discussion of the

existing PNM methods on differential equations is presented in chapter 3. The challenge

is two-fold; for a Bayesian PNM, the elicitation of an appropriate prior distribution µ and

the exact computation of its disintegration {µa}a∈A must both be addressed.

This thesis is concerned with the development of novel PNMs for differential equations

and will be structured in five parts. In Part II, Chapter 2, an informal introduction of

the main mathematical tools used in the thesis, Ordinary Differential Equations, Partial

Differential Equations and Gaussian Processes, will be presented. In Chapter 3 a high-

level overview of existing PN methods for differential equations will be presented, and we

will argue a strictly Bayesian PNM for the the numerical solution of an ODE does not yet

exist.

In Part III, a novel Bayesian PNM for ODEs is proposed as a proof-of-concept. The

proposed Bayesian PNM utilises classical Lie group methods to exploit underlying symme-

tries in the gradient field, and non-parametric regression in a transformed solution space

for the ODE. The procedure is presented in detail for first and second order ODEs and

relies on a certain strong technical condition – existence of a solvable Lie algebra – being

satisfied. The procedure is applied on example first and second order ODEs and numerical

results are presented. An overview of classical Lie group methods used in the proposed

Bayesian PNM is also provided.

3Indeed, if the set Ya = {y ∈ Y : A(y) = a} is not measure zero under µ, then µa is the conditional
distribution defined by restricting µ to the subset Ya; µa(y) = 1[y ∈ Ya]µ(y)/µ(Ya). The theory of
disintegrations generalises the conditional distribution µa to cases where Ya is a null set.
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In Part IV, we present the first approximate Bayesian PNM for the numerical solution

of nonlinear PDEs. The proposed method extends earlier work on linear PDEs to a

general class of initial value problems specified by nonlinear PDEs. The proposed method

can be viewed as exact Bayesian inference under an approximate likelihood, which is

based on discretisation of the nonlinear differential operator. Experimental results are

presented for example PDEs and performance is contrasted with the Crank–Nicholson

scheme, a classical finite difference method under limited evaluations of the right-hand-side

of the PDE, motivated by problems for which evaluation of the right-hand-side, initial or

boundary conditions of the PDE is associated with a high computational cost. Theoretical

analysis of the sample path properties of Matérn processes, which are used to determine

a suitable prior model for the solution of the PDE, are also presented.

In the final chapter of the thesis, we will reflect upon the contributions this thesis has

made to probabilistic numerics as well as the numerical solution of differential equations,

and suggest potential future research directions.
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Chapter 2

Background

The purpose of this chapter is to provide an introduction to the three main mathematical

topics examined in the thesis: ordinary differential equations, partial differential equa-

tions and stochastic processes, with a particular emphasis on Gaussian Processes. Since

the methods developed in this thesis are probabilistic solvers of differential equations,

stochastic processes are the natural mathematical objects of choice for the solution of a

probabilistic numerical method. The discussions in this section are intended to be infor-

mal and accessible, and in later sections we will introduce more in depth concepts and

theorems when required.

2.1 Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation involving a state variable y :

Γ → R
m, where Γ is a closed interval in R, and its derivatives with respect to a single

variable x ∈ Γ . The order of a differential equation is the highest number of times y is

differentiated. An explicit, 1st order ODE can be written in the form:

dy

dx
= f(x,y(x)) (2.1)

The term f(x,y(x)) is often referred to as the gradient field of the differential equation.

A function y† : Γ → R
m that satisfies 2.1 is known as a solution of 2.1. In general the

existence of a solution is not guaranteed, and when a solution exists it’s not necessarily

unique. Fortunately, it turns out for ODEs, the existence and uniqueness of a solution is

well understood:

Theorem 2.1 (Picard-Lindelöf existence theorem). Let y0 ∈ Rm, R > 0, a < b, x0 ∈ [a, b].

Let BR(y0) denote the closed m-sphere of radius R around y0, i.e.:

7
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BR(y0) = {y ∈ Rm : ∥y − y0∥2 ≤ R}

Let f : [a, b]×BR(y0) → R
m be a continuous function that satisfies Lipschitz continuity in

the second variable, meaning:

∥f(x,y)− f(x, z)∥2 ≤ L∥y − z∥2

for some fixed constant L > 0 and all x ∈ [a, b], y, z ∈ BR(y0). Then there exists an ϵ > 0

and an unique differentiable function y† : [x0 − ϵ, x0 + ϵ] ∩ [a, b] → R
m such that:

dy†

dx
= f(x,y†(x))

and y†(x0) = y0

Proof. The proof is omitted as this is a well known result, which for example can be found

in (Hartman, 1982).

Picard-Lindelöf guarantees both existence and uniqueness of a solution (at least locally)

under relatively mild smoothness conditions imposed on the gradient field, and the addition

of an initial or boundary condition. Without a specified initial or boundary condition,

an ODE may have an infinite number of solutions that can be parameterised in terms

of constants of integration, known as a general solution. When an initial or boundary

condition is specified and a unique solution existed, it is referred to as a particular solution.

Of course, an ODE could include more than just the first derivative, in which case an

explicit, nth order ODE can be written in the form:

dny

dxn
= f

(
x,y(x),

dy

dx
, . . . ,

dn−1y

dxn−1

)
(2.2)

Note setting ỹ = [y, dydx ,
d2y
dx2 , . . . ,

dn−1y
dxn−1 ]

⊤, we can reformulate the problem in terms of ỹ:

d

dx
ỹ =

d

dx


y
dy
dx
...

dn−1y
dxn−1

 =


dy
dx
d2y
dx2

...

f(x,y(x), dydx , . . . ,
dn−1y
dxn−1 )

 (2.3)

which is of the form 2.1. This means Theorem 3 can be applied to higher order ODEs

as well. An important classification of ODEs is linearity. An ODE 2.1 is linear if the

8
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dependent variable y and its derivatives appears only linearly. A first order linear ODE

can be written in the form:

dy

dx
= A(x)y(x) + b(x) (2.4)

where A(x) is some known m × m matrix of functions of x, and b : Γ ∈ R → R
m also

a known function. Equation 2.4 is called homogeneous if b(x) ≡ 0. In general it’s much

easier to obtain closed form solutions of linear ODEs than nonlinear ones. For example,

it’s well known that the general 2nd order homogeneous ODE with constant coefficients:

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (2.5)

has general solution

y = a1exp(λ1x) + a2exp(λ2x)

where λ1 and λ2 are the roots of the polynomial ax2 + bx + c = 0, and a1, a2 are any

constants.

2.1.1 Numerical Solution of ODEs

However, closed form solutions of ODEs are rarely obtainable. Even just replacing the

constant coefficients in 2.5 with arbitrary functions of x while still retaining linearity,

causes a closed form solution to not be available in general. So often in practice it is

necessary to resort to numerical solutions. The idea of a numerical method in solving a

differential equation is to find an approximation to the true solution {y0,y1, . . . ,yn−1}
on a discrete set of values of {x0, x1, . . . , xn−1} in the ODE’s domain. Many numerical

methods for ODEs can be motivated by the simple observation that:

y(xi+1) = y(xi) +

∫ xi+1

xi

f(x,y(x))dx

The integral
∫ xi+1

xi
f(x,y(x))dx generally cannot be directly evaluated due to the depen-

dence of f on y (as the true solution is unknown), so many numerical methods attempt

to approximate
∫ xi+1

xi
f(x,y(x))dx in some way.

Perhaps the simplest approximation of
∫ xi+1

xi
f(x,y(x))dx is to use a vector of rectangles

of width xi+1−xi and heights f(xi,y(xi)). This approximation gives rise to the well known

Euler’s method, which also assumes the widths xi+1 − xi = h are constant:

9



Chapter 2. Background

yi+1 = yi + hf(xi,yi)

The Euler Method is typically initiated by (x0,y0),y0 = y(x0) as the true solution is

known at the initial condition. The Euler Method is also an explicit method since yi+1 is

expressed explicitly in terms of yj for j < i+ 1.

The accuracy of a numerical method is typically assessed via two metrics. The first is

known as the local truncation error τn, which measures the error against the true solution

in one iteration of the numerical method. For the Euler method this is equal to:

τi = y(xi)− y(xi−1)− hf(xi−1,y(xi−1))

The global truncation error instead measures the accumulation of local truncation error

over all of the iterations, which is simply equal to ei = y(xi) − yi. A numerical method

is convergent if the ei tends to 0 as h tends to 0, and is a order q method if |ei| = O(hq).

The Euler method can be shown to be a first order method, i.e. q = 1 (Theorem 1.1,

(Iserles, 2008)), which may not perform well unless h is very small. For this reason the

Euler method is not typically used.

A more popular and widely used higher order method is the Runge-Kutta method. This

is a family of higher order methods, which takes a weighted average of a number of gradient

values between xi−1 and xi. The Euler’s method is a special case of Runge-Kutta. The

most well known version of Runge-Kutta is the explicit, 4th order Runge-Kutta method

(Chapter 8.5 of (Conte & De Boor, 1980)):

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f(xi,yi),k2 = f

(
xi +

h

2
,yi +

hk1

2

)
k3 = f

(
xi +

h

2
,yi +

hk2

2

)
,k4 = f (xi + h,yi + hk3)

The Runge-Kutta method throws away all the information before yi when calculating

yi+1. A class of methods that improves computational efficiency by using information

from previous time steps are known as linear multistep methods, the most well known of

which is perhaps the Adam-Bashforth Method (Chapter 2, (Iserles, 2008)). For example,

the second order Adam-Bashforth method is as follows:

yi+2 = yi+1 +
h

2
(3f(xi+1,yi+1)− f(xi,yi))

Another perhaps more obvious improvement to Euler’s method would be to use the area

10
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of a trapezium h
2 (f(xi+1,y(xi+1)) + f(xi,y(xi))) instead of a rectangle, to approximate∫ xi+1

xi
f(x,y(x))dx, leading to:

yi+1 = yi +
h

2
(f(xi+1,yi+1) + f(xi,yi))

It can be shown the trapezoidal rule is a second order method (Chapter 1.3, (Iserles,

2008)). Notice however the presence of yi+1 on both sides of the equation. This means

that the trapezoidal rule is an implict method, and requires a nonlinear equation to be

solved in order to compute it. Implicit numerical methods are more difficult to use but

are often more numerically stable than explicit methods (see for example Chapter 4 of

(Iserles, 2008) for a more detailed discussion), and implicit analogues of Runge-Kutta and

linear multistep methods (known as ‘Adam-Moulton methods’) also exist.

2.2 Partial Differential Equations

A partial differential equation (PDE) is a natural generalisation of an ordinary differential

equation, where a state variable u : Γ → R
m, Γ ⊂ R

d, can now depend on its partial

derivatives with respect to multiple variables (slight abuse of notation here, as Γ was

previously one dimensional and used for the domain of ODEs). In general, proving the

existence and uniqueness of solution for PDEs is difficult. Currently there isn’t a Picard-

Lindelöf existence theorem equivalent for PDEs. In fact, one of the most famous unsolved

problems in mathematics and physics as well as one of the seven Millennium Prize Prob-

lems stated by the Clay Mathematics Institute, is to prove or give a counter-example of

the following statement:

In three space dimensions and time, given an initial velocity field, there exists a vector

velocity and a scalar pressure field, which are both smooth and globally defined, that solve

the Navier-Stokes equations.

For a more precise problem description we refer the reader to (Fefferman, 2000). The

Navier-Stokes equations are highly significant as they are the equations of motion for

Newtonian fluids, and can be derived from the conservation of mass and momentum. The

equations can take different forms depending on the physical assumptions. In the case of

an incompressible (meaning constant fluid density) fluid, which is also the case specified

in the Millennium Prize problem, the equations are:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f(x, t)

where u denotes the 3-dimensional fluid velocity field, p the scalar pressure field, f(x, t)

the external volumetric force (such as gravity) and ν a constant representing kinematic

viscosity. The fact that it’s not clear whether a specific PDE like the Navier-Stokes
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equation has a well defined solution indicates that it’s much harder to prove the existence

and uniqueness of solutions of PDEs in general.

To understand why this might be the case, rather than viewing a PDE as an equation

with one dependent variable and its derivative with respect to a finite number of indepen-

dent variables, it can be instead viewed as an ODE with an infinite number of dependent

variables. Consider for example the following simple PDE:

∂u(t, x)

∂t
= x (2.6)

This PDE can be viewed as an ODE in ux(t) = u(t, x), and ux viewed as an infinite

dimensional ‘vector’ as x can take an uncountably infinite number of values. This is

reflected by the fact that the general solution to this example is u(t, x) = xt+ c(x) for any

arbitrary function c(x), implying that there’s an infinite degree of freedom for the choice

of the initial condition.

This view of PDEs as infinite dimensional ODEs suggests establishing a general theory

for the existence and uniqueness of solutions of PDEs is likely to be much more difficult.

Indeed, we already know Picard-Lindelöf only guarantees existence and uniqueness for

solutions of finite dimensional ODEs. Instead, the existence and uniqueness of solutions

of PDEs are typically established on a case by case basis depending on the equation.

Clearly, it would be desirable to have an unique solution (given sufficient initial and

boundary conditions) that is smooth enough so that all the derivatives which appear in

the PDE exist and are continuous. This is known as a classical or strong solution of the

PDE, and is analogous to the solution of ODEs. However, in practice it is difficult to

find solutions that are this smooth directly, or it may be that no strong solutions exist

at all. Instead, the typical strategy in PDE theory is to first search for a weak solution,

which does not impose smoothness requirements as strong as a classical solution. This

often makes it easier to establish the existence and uniqueness of a (weak) solution, and

then examine afterwards whether or not this weak solution is also smooth enough to be

a strong solution (Chapter 1.3, (Evans, 1998)). So essentially, the strategy is to consider

the existence and smoothness of the solution separately.

The definition of the weak solution depends on the form of the PDE. In some equations,

first a ‘weak form’ of the differential equation needs to be derived. For example, consider

the following second order PDE for u : Γ ∈ Rd → R:

−∇ · (a(x)∇u(x)) = f(x) x ∈ Γ (2.7)

u(x) = 0 x ∈ ∂Γ (2.8)

Note Poisson’s equation is a special case of this PDE with a(x) ≡ 1. The weak form of the
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PDE is obtained by multiplying the PDE by an arbitrary smooth function v of compact

support (i.e. v vanishes outside some compact set in Γ ), and then integrating both sides

(Example 12.8 of (Sullivan, 2015)):

−
∫
Γ
∇ · (a(x)∇u(x))v(x)dx =

∫
Γ
f(x)v(x)dx (2.9)

Using integration by parts, this becomes:

∫
Γ
a(x)∇u(x) · ∇v(x)dx =

∫
Γ
f(x)v(x)dx (2.10)

Equation 2.10 is the weak form of the PDE 2.8, and if u(x) satisfies 2.10 for any smooth

v of compact support, then it is a weak solution of the PDE 2.8. The weak form in

this case does not contain any second derivative terms, which is consistent with the idea

that the weak solution imposes less of a smoothness requirement than the strong/classical

solution. Weak solutions are usually defined in Sobolev spaces, which loosely speaking

are Lp normed vector space of functions smooth enough to possess weak derivatives up

to a given order. Sometimes it is possible to prove the weak solution is in fact smooth

enough to be a strong solution, via arguments such as the Sobolev embedding theorem,

which roughly speaking states Sobolev spaces which contains functions with (at least) a

sufficiently high order of weak derivatives also contains functions with (at least) a lower

order of classical or strong derivatives. This is typically the strategy in finding classical

solutions of PDEs. For a detailed overview of the theory of Sobolev spaces and inequalities,

we direct the reader to Chapters 5 of (Evans, 1998).

Evidently even establishing the existence of solutions of PDEs is much more difficult

than for ODEs, so perhaps it’s unsurprising that obtaining closed form solutions of PDEs

is in general even more difficult. So once again numerical methods are used to solve PDEs

in practice, outside a small number of examples where a closed form solution is available.

Classical numerical methods of PDEs are designed to approximate either the strong or

the weak solution. For the strong solution, the canonical numerical method is the finite

difference method, while the canonical numerical method for the weak solution is the finite

element method.

2.2.1 Finite Difference Methods

Finite difference methods approximates the PDE by replacing the derivative terms with

finite difference approximations. For example, consider the one dimensional heat equation

with Dirichlet boundary conditions on the unit interval:

13



Chapter 2. Background

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
(2.11)

u(t, 0) = u(t, 1) = 0 (2.12)

u(x, 0) = g(x) (2.13)

One way to discretise this PDE would be to fix evenly spaced time discretisation

[t0, t1, . . . , tn−1] and spatial discretisation [x1, x2, . . . , xm], with ∆t = ti+1 − ti, and ∆x =

xi+1 − xi, and update the numerical solution ui+1
j at time ti+1 and space xj by:

ui+1
j − uij
∆t

=
uij+1 − 2uij + uij−1

∆x2

This is known as the Forward Time, Centered Space (FTCS) method. It is an explicit

method, as the formula for ui+1
j is an explicit function of terms at time ti or earlier, and

is therefore easy to compute. It can also be shown the global truncation error is of order

O(∆t + ∆x2) (see Chapter 1 of (Thomas, 1998)), consistent with the first and second

order discretisation approximations used on the time and spatial derivatives, respectively.

However, this numerical scheme also requires r = ∆t/∆x2 ≤ 1/2 to be numerically stable

and convergent (see Example 2.2.2 of (Thomas, 1998)). These stability conditions are

often present in explicit schemes which may be difficult to achieve if the time and spatial

discretisations are restrained in some way, or if there is a forcing function in the PDE that

is expensive or difficult to evaluate.

The implicit version of the above scheme is the Backward Time, Centered Space

(BTCS) method, which evaluates the discretised spatial derivative at ti+1 instead of ti:

ui+1
j − uij
∆t

=
ui+1
j+1 − 2ui+1

j + ui+1
j−1

∆x2
(2.14)

This scheme has the same order of error as the explicit version, and is more difficult to

compute due to the presence of ti+1 terms on both sides of the equation, so an inverse prob-

lem needs to be solved to retrieve the numerical solution. However, the implicit method

carries the advantage of being unconditionally stable (i.e. stability does not depend on ∆t

or ∆x, see Chapter 2.1.0 of (Morton & Mayers, 2005)).

To solve 2.14, the equation is rearranged into:

−rui+1
j−1 + (1 + 2r)ui+1

j − rui+1
j+1 = uij

This equation can then be cast into matrix form and solved via matrix inversion:
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1 + 2r −r . . . . . . . . .

−r 1 + 2r −r . . . . . .
...

...
...

. . .
...

. . . . . . −r 1 + 2r −r

. . . . . . . . . −r 1 + 2r





ui+1
2

ui+1
3
...

ui+1
m−2
ui+1
m−1


=



ui2 + rui+1
1

ui3
...

uim−2
uim−1 + rui+1

m


Note ui+1

1 and ui+1
m are on the boundary and therefore already known via the boundary

condition.

One way to ‘combine’ FTCS and BTSC is to take the mean of the discretised spatial

derivative at time ti and ti+1 instead of one or the other, and can also be interpreted as

taking the spatial derivative at time ti+1/2. This gives another implicit scheme, known as

the Crank-Nicholson method :

ui+1
j − uij
∆t

=
1

2

(
uij+1 − 2uij + uij−1

∆x2
+
ui+1
j+1 − 2ui+1

j + ui+1
j−1

∆x2

)
(2.15)

This can be similarly rearranged into:

−rui+1
j−1 + (2 + 2r)ui+1

j − rui+1
j+1 = (2− 2r)uij + ruij−1 + ruij+1 (2.16)

and solved via matrix form:



2 + 2r −r . . . . . . . . .

−r 2 + 2r −r . . . . . .
...

...
...

. . .
...

. . . . . . −r 2 + 2r −r

. . . . . . . . . −r 2 + 2r





ui+1
2

ui+1
3
...

ui+1
m−2
ui+1
m−1


=



(2− 2r)ui2 + rui1 + rui3 + rui+1
1

(2− 2r)ui3 + rui2 + rui4
...

(2− 2r)uim−2 + ruim−3 + ruim−1
(2− 2r)uim−1 + ruim−2 + ruim + rui+1

m


The advantage of Crank-Nicholson over BTCS is that the error is of orderO(∆t2+∆x2)

(Chapter 2.10, (Morton & Mayers, 2005)) while remaining unconditionally stable (Chapter

2.1.0, (Morton & Mayers, 2005)) and not being much more difficult computationally to

solve.
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2.2.2 Finite Element Methods

In this thesis we will not be concerned with finite element methods as we are interested

in obtaining a strong probabilistic solution of the PDE, where the posterior samples are

smooth enough such that all the derivative terms in the PDE exist, almost surely. However,

we still give a brief introduction to finite element methods as they are widely used in

classical numerical analysis of PDEs.

Finite element methods utilise the weak form of the PDE instead (unlike finite dif-

ference methods which are based on the strong form of the PDE) to obtain a numerical

solution. One such popular method is known as the Galerkin method. Returning to the

example 2.10 and considering the one dimensional (i.e. ODE) case, the Galerkin method

assumes the solution takes the form:

u(x) =

m∑
j=1

λjΛj(x)

where the Λj(x) are some linearly independent basis functions (in some suitable Sobolev

Space), one popular choice for Λj(x) are triangle or tent functions around xj :

Λj(x) =

1− |x−xj

∆x | |x−xj

∆x | ≤ 1

0 otherwise

Furthermore, by assuming v(x) =
∑m

j=1 vjΛj(x) and plugging both expressions of u(x)

and v(x) into 2.10, it can be shown that:

Aλ = f

where Aij =
∫
Γ a(x)∇Λi(x) · Λj(x)dx, λj = λj , fi =

∫
Γ f(x)Λi(x)dx.

So λ can be obtained by inverting the matrix A.

2.3 Gaussian Processes

In order to develop probabilistic numerical methods of differential equations, it is necessary

to consider what it means for a function to be random. Stochastic processes are therefore

the ideal mathematical objects to work with. Let I be some measurable index set. A

stochastic process X : I ×Ω → R
m is a collection of Rm valued random variables defined

on a shared probability space (Ω,F ,P), where Ω is a sample space, F a σ-algebra, and

P a probability measure. If I is a subset of the real line, the stochastic process is often

interpreted as being indexed by time. If I is a subset of Rd, then X is sometimes also called

a random field. The expectation of X is defined by the Lebesgue integral E[X(z, ω)] :=∫
X(z, ω)dP(ω)
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For the rest of this section we assume m = 1 for simplicity. An important prop-

erty of stochastic processes is stationarity. A stochastic process X on I = R
d is strongly

stationary if FX(xz1 , . . . , xzn)) = FX(xz1+z, . . . , xzn+z)) for all z, z1, . . . , zn ∈ R
d, where

FX(xz1 , . . . , xzn)) is the joint distribution of X(z1), . . . , X(zn). One family of stochastic

processes that of particular interest in this thesis is Gaussian Processes. Gaussian Pro-

cesses are stochastic processes X : I × Ω → R with a continuous index set I such that

for every finite set of indices z1, z2, . . . , zk ∈ I, we have (X(z1, .), X(z2, .), . . . , X(zk, .)) is

a multivariate Gaussian random variable. The expectation and covariance (also known as

kernel function) of a Gaussian Process are intuitively defined as:

µ(z) = E [X(z, ω)]

Σ(z, z′) = E
[
(X(z, ω)− µ(z))(X(z′, ω)− µ(z′))

]
Gaussian Processes possess several desirable properties that are useful in a Bayesian updat-

ing framework, which it inherits from its finite dimensional analogue. First, like its finite

dimensional analogue, a Gaussian Process’s statistical properties are completely specified

by its mean and covariance functions (Chapter 2.2 of (Rasmussen & Williams, 2006)). Be-

cause of this Gaussian Processes are typically written using the notation X ∼ GP(µ,Σ).

Secondly, if two normal random variables are jointly normally distributed, then the condi-

tional distribution of one given the other is normally distributed as well. This property ex-

tends to Gaussian Processes (Chapter 2.2 of (Rasmussen &Williams, 2006)). For example,

consider X over test points z∗ = (z∗1 , z
∗
2 , . . . , z

∗
k1
) and training points z = (z1, z2, . . . , zk2),

then it has joint distribution:

[
X(z∗)

X(z)

]
∼ N

([
µ(z∗)

µ(z)

]
,

[
Σ(z∗, z∗) Σ(z∗, z)

Σ(z, z∗) Σ(z, z)

])

and conditional distribution:

X(z∗)|X(z) = a ∼ N (µ(z∗) +Σ(z∗, z)Σ(z, z)−1(a− µ(z)),

Σ(z∗, z∗)−Σ(z∗, z)Σ(z, z)−1Σ(z, z∗))

Thirdly, Gaussian Processes are closed under linear and affine maps. This property is very

useful in solving differential equations probabilistically because differentiation is a linear

map, so the derivative of a Gaussian Process is again a Gaussian Process (Chapter 9.4,

(Rasmussen & Williams, 2006)). For example:
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[
X(z∗)
∂X(z)
∂z1

]
∼ N

([
µ(z∗)
∂µ(z)
∂z1

]
,

[
Σ(z∗, z∗) ∂̄Σ(z∗,z)

∂z̄1
∂Σ(z,z∗)

∂z1

∂∂̄Σ(z,z)
∂z1∂z̄1

])

where ∂̄
∂z̄1

denotes differentiation with respect to the second variable. Therefore the con-

ditional distribution is similarly:

X(z∗)|∂X(z)

∂z1
= b ∼ N

(
µ(z∗) +

∂̄Σ(z∗, z)

∂z̄1

∂∂̄Σ(z, z)

∂z1∂z̄1

−1
(b− ∂µ(z)

∂z1
),

Σ(z∗, z∗)− ∂̄Σ(z∗, z)

∂z̄1

∂∂̄Σ(z, z)

∂z1∂z̄1

−1
∂Σ(z, z∗)

∂z1

)

Fourthly, a Gaussian Process X ∼ GP(µ,Σ) that is weakly stationary, meaning it satisfies

the following:

µ(z1) = µ(z1 + z2)

Σ(z1, z2) = Σ(z1 − z2, 0)

E(X(z1, ω)
2) <∞

for all z1, z2 ∈ R, is also strongly stationary. This is significant as weak stationarity is in

general weaker than strong stationarity, but much easier to verify.

There is a wide range of choices of the covariance function for Gaussian Processes, here

we give some of the most popular examples, for index set I ⊂ R. For stationary covariance

functions, higher dimensional generalisations can either be obtained by replacing |z − z′|
with the Euclidean norm ∥z− z′∥. Alternatively, a product of one dimensional covariance

functions (one for each dimension of I) can be used instead.

Definition 2 (Squared Exponential Covariance).

C(z, z′; ρ, σ) := σ2 exp

(
−(z − z′)2

2ρ2

)
(2.17)

is the Squared Exponential covariance model.

The hyperparameters are σ2, which is known as the amplitude parameter, and ρ, which

is known as the length-scale parameter. Both σ and ρ are strictly positive. The length-

scale parameter controls the rate of change of samples from the Gaussian Process, and

how far they can extrapolate away from fixed and known function values. The smaller

the length-scale, the more more quickly the sampled function can change. The amplitude
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parameter determines the amount of variation of samples from the Gaussian Process from

the mean, the larger the amplitude parameter, the greater the variation.

Definition 3 (Rational Quadratic Covariance).

C(z, z′; ρ, σ) := σ2
(
1 +

(z − z′)2

ρ2

)−1
(2.18)

is the rational quadratic covariance model.

The hyperparameters for the Rational Quadratic Covariance are analogous to the

hyperparameters for the Squared Exponential Covariance. It can be shown Gaussian Pro-

cesses with zero mean and Squared Exponential or Rational Quadratic kernels are infinitely

mean squared differentiable (Chapter 4.2 of (Rasmussen & Williams, 2006)), a concept we

will formally define in Chapter 4 of this thesis. Note mean squared differentiability of a

Gaussian Process is not the same as differentiability of sample paths generated from the

Gaussian Process, which is in general much more difficult to determine. There are also

other choice of covariance functions that are much less smooth, for example:

Definition 4 (Wiener Covariance).

C(z, z′) = σ2min(z − τ, z′ − τ) (2.19)

Here σ2 again describes the amplitude and τ is the starting point of the Brownian

motion, where it is initialised. The Wiener Process is also known as Brownian Motion,

and is highly significant in many areas of mathematics, including stochastic calculus and

martingales. It also has many applications outside of mathematics, such as in physics in

studying the diffusion of fluids. The Wiener Process is mean squared continuous but not

mean squared differentiable anywhere (see Appendix B of (Rasmussen & Williams, 2006)).

Definition 5 (Matérn Covariance). Let ν = p+ 1
2 where p ∈ N. The Matérn covariance

function is defined, for z, z′ ∈ R, as

Kν(z, z
′) = Kν(z − z′) = σ2 exp

(
−|z − z′|

ρ

)
p!

(2p)!

p∑
k=0

(2p− k)!

(p− k)!k!

(
2

ρ

)k

|z − z′|k. (2.20)

Again σ2 and ρ denote the amplitude and length-scale respectively. A Gaussian Process

with zero mean and the Matérn p + 1
2 kernel is p times mean squared differentiable (see

for example Section 2 of (Stein, 1999)).

This Background chapter laid out an accessible summary to the necessary mathe-

matical material required for the thesis. In the next chapter, we discuss the existing

probabilistic numerical methods for the solution of differential equations.
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Chapter 3

An Overview of the State of the

Art

The purpose of this chapter is to provide a high-level overview of existing PNMs for

differential equations. In particular, we highlight whether existing methods constitute

(approximate or exact) Bayesian PNM. Skilling (1992) introduced the first PNM (of any

flavour) for the numerical solution of ODEs. Two decades later, this problem is receiving

renewed critical attention as part of the active development of PNM. Nevertheless, the vast

majority of existing PN methods on differential equations only apply to ODEs, and PN

methods for PDEs are relatively limited, even for linear PDEs. To date, no (approximate

or exact) Bayesian PNM for the numerical solution of nonlinear PDEs has been proposed.

Notation: The notational convention used in this thesis is that the non-italicised y

denotes a generic function, whereas the italicised y denotes a scalar value taken by the

function y. The notation y† is reserved for the true solution to an ODE. We also in this

section only use the notation Y to refer to a Gaussian process, m and Σ to refer to the

mean and covariance of the Gaussian Process respectively. Throughout, the underlying

state space Y is taken to be a space occupied by the true solution of the ODE, i.e. y† ∈ Y.

Skilling (1992)

The first paper on this topic, of which we are aware, was Skilling (1992). This will serve

as a prototypical PNM for the numerical solution of an ODE. Originally described as

‘Bayesian’ by the author, we will argue that, at least in the strict sense of Definition 1, it

is not a Bayesian PNM. Consider a generic univariate first-order initial value problem

dy

dx
= f(x, y(x)), x ∈ [x0, xT ], y(x0) = y0. (3.1)
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Throughout this thesis all ODEs that we consider will be assumed to be well-defined and

admit a unique solution y† ∈ Y where Y is some pre-specified set, which is reasonable as

the assumptions in Theorem are typically satisfied. In this thesis the quantity of interest

Q(y†) will either be the solution curve y† itself or the value y†(xT ) of the solution at a

specific input (in this section it will be the former). The approach outlined in Skilling

(1992) allows for a general prior µ ∈ PY . The gradient field f is treated as a ‘black box’

oracle that can be queried at a fixed computational cost. Thus we are provided with

evaluations of the gradient field [f(x0, y0), . . . , f(xn, yn)]
⊤ ∈ R

n+1 for certain input pairs

{(xi, yi)}ni=0.

This approach of treating evaluations of the gradient field as ‘data’ will be seen to be

a common theme in existing PNM for ODEs and theoretical support for this framework

is rooted in the field of information-based complexity (Traub & Woźniakowski, 1992). Let

ai = f(xi, yi) and a
i = [a0, . . . , ai]. The selection of the input pairs (xi, yi) on which f is

evaluated is not constrained and several possibilities, of increasing complexity, were dis-

cussed in Skilling (1992). To fix ideas, the simplest such approach is to proceed iteratively

as follows:

(0.1) The first pair (x0, y0) is fully determined by the initial condition of the ODE.

(0.2) The oracle then provides one piece of information, a0 = f(x0, y0).

(0.3) The prior µ is updated according to a0, leading to a belief distribution µ0 which is

just the disintegration element µa
0
.

(1) A discrete time step x1 = x0+h, where h = xT−x0
n > 0, is performed and a particular

point estimate y1 =
∫
y(x1)dµ0(y) for the unknown true value y†(x1) is obtained.

This specifies the second pair (x1, y1).

The process continues similarly, such that at time step i− 1 we have a belief distribution

µi−1 = B(µ, ai−1) ∈ PY , where the general belief update operator B is yet to be defined,

and the following step is performed:

(i) Let xi = xi−1 + h and set yi =
∫
y(xi)dµi−1(y) .

The final output is a probability distribution µn = B(µ, an) ∈ PY . Now, strictly speaking,

the method just described is not a PNM in the concrete sense that we have defined.

Indeed, the final output µn is a deterministic function of the values an of the gradient

field that were obtained. However, in the absence of additional assumptions on the global

smoothness of the gradient field, the values of f(x, y) outside any open neighbourhood of

the true solution curve C = {(x, y) : y = y†(x), x ∈ [x0, xT ]} do not determine the solution

of the ODE and, conversely, the solution of the ODE provides no information about the

values of the gradient field outside any open neighbourhood of the true solution curve C.
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Thus it is not possible, in general, to write down an information operator A : Y → A that

reproduces the information an when applied to the solution curve y†(·) of the ODE.

The approach taken in Skilling (1992) was therefore to posit an approximate informa-

tion operator Â and a particular belief update operator B, which are now described.

The approximate information operator is motivated by the intuition that if y†(xi) is

well-approximated by yi at the abscissa xi then
dy†

dx (xi) should be well-approximated by

f(xi, yi). That is, the following approximate information operator Â was constructed:

Â(y) =

[
dy

dx
(x0), . . . ,

dy

dx
(xn)

]⊤
. (3.2)

Of course, Â(y†) ̸= an in general. To acknowledge the approximation error, Skilling (1992)

proposed to model the information with an approximate likelihood:

dµn
dµ0

(y) =

n∏
i=1

dµi
dµi−1

(y) (3.3)

dµi
dµi−1

(y) ∝ exp

(
− 1

2σ2

(
dy

dx
(xi)− f(xi, yi)

)2
)

(3.4)

Where dµi

dµi−1
(y) denotes the Radon-Nikodym derivative. This was referred to in Skilling

(1992) as simply a “likelihood” and, together with µ0 = µa
0
, the output µn is completely

specified. Here σ is a fixed positive constant, however in principle a non-diagonal covari-

ance matrix can also be considered. The negative consequences of basing inferences on an

approximate information operator Â are potentially twofold. First, recall that values of

the gradient field that are not contained on the true solution curve of the ODE do not,

in principle, determine the true solution curve y†. It is therefore unclear if these values

should be taken into account at all. Second, in the special case where the gradient field f

does not depend the second argument then the quantities dy
dx(xi) and f(xi, yi) are identi-

cal. From this perspective, µn represents inference under a mis-specified likelihood, since

information is treated as erroneous when it is in fact exact. The use of a mis-specified

likelihood violates the likelihood principle and implies violation of the Bayesian framework.

This confirms that the approach of Skilling (1992) cannot be Bayesian in the strict sense

of Definition 1. After Skilling (1992), several authors have proposed improvements to the

above method.

Schober et al. (2014, 2019); Teymur et al. (2016, 2018)

The approach of Schober et al. (2014) considered Eq. (3.4) in the σ ↓ 0 limit. In order

that exact conditioning can be performed in this limit, the input belief distribution µ was

restricted to be a k-times integrated Wiener measure on the solution space of the ODE.
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The tractability of the integrated Wiener measure leads to a closed-form characterisation

of the posterior and enables computation to be cast as a Kalman filter.

Schober et al. (2014) makes the observation that the sequential update formulae of

the mean of a Gaussian Process is similar to the sequential updating of Runge–Kutta

methods, in the sense that Runge–Kutta methods use a linear combination of gradient

field observations at previous time-steps in order to estimate the solution at the current

time-step. For example, Schober et al. (2014) notes that the first update of the Euler’s

method y0 + (x1 − x0)f(x0, y0), coincides with the update of a Gaussian Process prior

Y ∼ GP(m,Σ) conditioned on the observation [Y (x0),
dY (x0)

dx ]⊤ = [y0, f(x0, y0)]
⊤:

m0(x1) = m(x1) + [Σ(x1, x0), Σ∂̄x(x1, x0)]

[
Σ(x0, x0) Σ∂̄x(x0, x0)

Σ∂x(x0, x0) Σ∂x∂̄x(x0, x0)

][
y0

f(x0, y0)

]

if the prior mean m = 0 everywhere, and the covariance function K chosen to be the once

integrated Wiener process.

Furthermore, for k ∈ {1, 2} the authors prove that if the input pair (x1, y1) is taken

as y1 = m0(x1) =
∫
y(x1)dµ0(y), as indicated in Section 3, then the smoothing estimate

ŷ1 = m1(x1) =
∫
y(x1)dµ1(y), i.e. the posterior mean for y(x1) based on information a1,

coincides with the deterministic approximation to y†(x1) that would be provided by a k-

th order Runge-Kutta method. As such, theoretical guarantees such as local convergence

order are inherited. For k = 3 it was shown that the same conclusion can be made to hold,

provided that the input pair (x1, y1) is selected in a manner that is no longer obviously

related to µ0.

In all cases however, the identification with a classical Runge-Kutta method does not

extend beyond iteration n = 1. As a workaround, Schober et al. (2014) proposed the

method of ‘naive chaining’, which restarts the algorithm at every time step as if it’s a new

initial value problem, only taking the value of ŷi from the previous time step. However,

this carries the downside of not producing a global posterior distribution.

The approach of Schober et al. (2014) is not Bayesian in the sense of Definition 1,

which can again be deduced from dependence on values of the gradient field away from

the true solution curve, so that the likelihood principle is violated.

In a subsequent related work, Schober et al. (2019) showed for the once integrated

Wiener process prior, the mean after each step can be made to coincide with the trapezoidal

rule if it takes an additional evaluation of f at the end of each step. Furthermore, Schober

et al. (2019) showed for the twice integrated Wiener Process, the mean coincides with a

third-order Nordsieck method when the predictive distribution has reached steady state.

Similar to Schober et al. (2019), Teymur et al. (2016, 2018) constructed algorithms
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where the posterior distribution in one iteration matches the Adam–Bashforth and Adam–

Moulton linear multistep predictors, by using bespoke prior covariance functions con-

structed from Lagrange polynomials.

Kersting & Hennig (2016), Magnani et al. (2017)

The work of Kersting & Hennig (2016) attempted to elicit an appropriate non-zero covari-

ance matrix for use in Eq. (3.4), in order to encourage uncertainty estimates to be better

calibrated. Their proposal consisted of the approximate likelihood

dµi
dµi−1

(y) ∝ exp

−1

2

(
dy
dx(xi)−mi

σi

)2
 (3.5)

mi =

∫
f(xi, y(xi))dµi−1(y) (3.6)

σ2i =

∫
(f(xi, y(xi))−mi)

2 dµi−1(y). (3.7)

This can be viewed as the predictive marginal likelihood for the value f(xi, y(xi)) based

on µi−1. From a practical perspective, the approach is somewhat circular as the integrals

in Eq. (3.6) and (3.7) involve the black-box gradient field f and are therefore cannot

be computed. The authors suggested a number of ways that these quantities could be

numerically approximated1, which involve evaluating f(xi, yi) at one or more values yi

that must be specified. The overall approach again violates the likelihood principle and is

therefore not Bayesian in the sense of Definition 1.

Magnani et al. (2017) examines experimentally ODE filters that use an integrated

Ornstein–Uhlenbeck Process prior instead of an integrated Wiener process prior, and ar-

gues that an integrated Ornstein–Uhlenbeck process prior is better suited for trajectories

with bounded derivatives.

Chkrebtii et al. (2016), Chkrebtii & Campbell (2019)

In Chkrebtii et al. (2016) the authors constructed an approximate Bayesian PNM for

the solution of initial value problems specified by either a nonlinear ODE or a linear

PDE. Instead of using the mean of the current posterior as input to the gradient field

as in Kersting & Hennig (2016), the input pair (xi, yi) was selected by sampling yi from

the marginal distribution for y(xi) implied by µi−1. The approximate likelihood in this

1One such method is Bayesian quadrature, another PNM wherein the integrand f is modelled as un-
certain until it is evaluated. This raises separate philosophical challenges, as one must then ensure that
the statistical models used for y(·) and f(xi, ·) are logically consistent. In Kersting & Hennig (2016) these
functions were simply modelled as independent.
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approach was taken as follows:

dµi
dµi−1

(y) ∝ exp

−1

2

(
dy
dx(xi)− f(xi, yi)

σi

)2


mi =

∫
dy

dx
(xi)dµi−1(y)

σ2i =

∫ (
dy

dx
(xi)−mi

)2

dµi−1(y).

Compared to Eq. (3.5), (3.6) and (3.7), this approach does not rely on integrals over the

unknown gradient field. However, the approach also relies on the approximate information

operator in Eq. (3.2) and is thus not Bayesian according to Definition 1.

Chkrebtii et al. (2016) also presented a nonlinear PDE (Navier–Stokes), but a pseudo-

spectral projection in Fourier space was applied at the outset to transform the PDE into

a system of first order ODEs - an approach that exploited the specific form of that PDE.

In a later work, Chkrebtii & Campbell (2019) generalises the method of Chkrebtii

et al. (2016) by allowing for adaptive time stepping. The adaptive timesteps are chosen

sequentially by an information theoretic approach, where the value of the next timestep is

chosen to be the value which maximises a Monte Carlo estimate of the Kullback–Leibler

entropy.

Conrad et al. (2017); Abdulle & Garegnani (2018)

The approaches proposed in Conrad et al. (2017); Abdulle & Garegnani (2018) are not

motivated in the Bayesian framework, but instead seek to introduce a stochastic pertur-

bation into a classical numerical method. Both methods focus on the quantity of interest

Q(y†) = y†(xT ). In the simple context of Eq. (3.1), the method of Conrad et al. (2017)

augments the explicit Euler method with a stochastic perturbation:

yi = yi−1 + hf(xi−1, yi−1) + h2ϵi, xi = xi−1 + h, i = 1, . . . , n

The distribution of the sequence (ϵi)
n
i=1 must be specified. In the simplest case where the

ϵi are modelled as independent, say with ϵi ∼ ρ, the canonical flow map Φi : R→ R of the

explicit Euler method, defined as Φi(z) = z + hf(xi, z), is replaced by the probabilistic

counterpart Ψi : PR → PR given by

Ψi(ν)(dz) =

∫
ρ

(
dz − Φi(z̃)

h2

)
ν(dz̃)

through which stochasticity can be propagated. The output of the method of Conrad

et al. (2017) is then B = Ψn ◦ · · · ◦ Ψ1δ(y0), where δ(z) denotes an atomic distribution on
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z ∈ R. For the case where each ρi has zero mean, it can be shown that the mean of B

equals Φn ◦ · · · ◦ Φ1(y0), which is exactly the deterministic approximation produced with

the explicit Euler method.

This framework can be practically problematic, since ϵi is charged with modelling

the extrapolation error and such errors are not easily modelled as independent random

variables – Section 2.8 of Higham (2002) is devoted to this point. Thus, if for example

f(x, y) = y, the true linearisation error at step i is exi − exi−1 so that the ‘true’ sequence

(ϵi)
n
i=1 in this case is monotonic and exponentially unbounded. The challenge of designing

a stochastic model for the sequence (ϵi)
n
i=1 that reflects the highly structured nature of the

error remains unresolved. On the other hand, the mathematical properties of this method

are now well-understood (Lie et al., 2018, 2019). The proposal of Abdulle & Garegnani

(2018) was to instead consider randomisation of the inputs {xi}Ti=0 in the context of a

classical numerical method, also outside of the Bayesian framework.

Cockayne et al. (2016)

Linear elliptic PDEs were considered in Cockayne et al. (2016), where a Gaussian Process

prior was defined on the unknown solution, and the conjugacy of Gaussian measures under

linear operators was used to construct an exactly Bayesian PNM. However, the method is

limited to the case of linear elliptic PDEs without time dependence.

Cockayne et al. (2019); Tronarp et al. (2019); Kersting et al. (2018)

The survey just presented begs the question of whether a Bayesian PNM for ODEs can

exist at all. A first step toward this goal was taken in Cockayne et al. (2019), where it was

argued that an information operator can be constructed if the vector field f is brought to

the left-hand-side in Eq. (3.1). Specifically, they proposed the information operator

Ã(y) =

[
dy

dx
(x0)− f(x0, y(x0)), . . . ,

dy

dx
(xn)− f(xn, y(xn))

]⊤
for which the ‘data’ are trivial; ãn = 0. It was rigorously established that the approximate

likelihood

dµi,σ
dµi−1,σ

(y) = exp

(
− 1

2σ2

(
dy

dx
(xi)− f(xi, y(xi))

)2
)

leads to an exact Bayesian PNM in the limit: µn,σ
F→ µã

n
as σ ↓ 0 for Ã#µ-almost all

ãn ∈ R
n+1. Here

F→ denotes convergence in an integral probability metric defined by

a suitable set F of test functions (see Sec. 4 of Cockayne et al., 2019). However, the

dependence of the information operator Ã on f means that this cannot be used as the

26



Chapter 3. An Overview of the State of the Art

basis for a practical method. Indeed, unless f depends linearly on its second argument

and conjugacy properties of the prior can be exploited, the posterior cannot easily be

characterised. Approximate techniques from nonlinear filtering were proposed to address

this challenge in Tronarp et al. (2019). Tronarp et al. (2019) demonstrated how nonlinear

filtering techniques can be used to obtain low-cost approximations to the solution of ODEs.

In particular, Tronarp et al. (2019) treats the IVP 3.1 as a nonlinear Bayesian filtering

problem, by conditioning a Gaussian Process prior Y ∼ GP(µ,Σ) sequentially on the

observation that dY i

dx (xi) − f(xi, Y
i(xi)) = 0, where Y i is the prior after i updates. This

is generally intractable but approximation techniques in nonlinear Bayesian filtering can

be utilised. For example, by Taylor expanding Y i around its predictive mean in the

observation dY i

dx (xi)− f(xi, Y
i(xi)) = 0, Tronarp et al. (2019) shows that the zeroth order

Taylor approximation is precisely the update scheme in Schober et al. (2019), and the first

order Taylor approximation corresponds to the extended Kalman Filter. In a later paper,

Tronarp et al. (2021) provides theoretical convergence rates of the maximum a posteriori

estimator (MAP) of Y i. Similarly, Kersting et al. (2018) also provides local and global

convergence rates for ODE filters, but for the filtering mean instead of the MAP.

Bosch et al. (2020); Krämer & Hennig (2020)

Bosch et al. (2020) extends the work of Tronarp et al. (2021) by considering an integrated

Wiener Process prior with time dependent covariance for the approximate likelihood:

dµi,σ
dµi−1,σ

(y) = exp

(
− 1

2σ2i

(
dy

dx
(xi)− f(xi, y(xi))

)2
)

and using a local quasi-maximum likelihood to calibrate σ2i . Also, Bosch et al. (2020)

considers the residual Y i−y†(xi) for local error control. Under the assumption the residual

is unbiased, Bosch et al. (2020) uses the standard deviations of the residual, i.e. the

diagonal of the approximate likelihood 3 to adaptively select step sizes to be as large

as possible while keeping the standard deviations under a certain tolerance, in order to

increase computational efficiency.

Using the same approximate likelihood, Krämer & Hennig (2020) suggests strategies

for improving stability, particularly in the case of small step-sizes and using higher order

Taylor approximations to dY i

dx (xi)−f(xi, Y i(xi)) = 0 in the sense of Tronarp et al. (2019).

Strategies include using accurate initialisation of the prior mean, a coordinate change that

makes numerical stability independent of step size, and square root implementation of the

Kalman Filter to avoid negative eigenvalues.
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Lie et al. (2018); Matsuda & Miyatake (2021)

These papers do not attempt to solve an ODE probabilistically but instead aim to solve

a Bayesian inverse problem to infer an unknown parameter in an ODE model. In general,

the likelihood function is intractable when the ODE cannot be analytically solved. This

leads to approximate likelihoods, based on numerical methods, being used instead. Lie

et al. (2018) shows that the posterior distributions of probabilistic ODE solvers such as

Schober et al. (2014) and Conrad et al. (2017) can be used to construct approximate

likelihoods for solving inverse problems in the ODE context. Matsuda & Miyatake (2021)

instead introduce latent Gaussian random variables to model the discrepancy between the

numerical and the true solution of the ODE. Estimates of both the latent variables and

parameter are then jointly obtained via maximum (approximate) likelihood. However,

the variance of the discretisation error is assumed to monotonically increase with time,

which may not be an appropriate assumption if both the true solution and the numerical

solution converges to a stationary state as time increases.

This completes our overview of existing PNMs for differential equations. We’ve seen

that the only Bayesian PNM which currently exist are for linear PDEs and linear elliptic

PDE, and all other published methods are either approximate Bayesian PNMs or non

Bayesian. This thesis will aim to develop exact Bayesian PNMs for certain classes of

nonlinear ODEs in chapter 4, and an approximate Bayesian PNM for nonlinear PDEs in

chapter 5.
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Chapter 4

Exact Bayesian Inference for

Ordinary Differential Equations?

The literature review in the previous chapter suggests that no Bayesian PNM has yet

been proposed outside of very specific, linear differential equations, and also that such an

endeavour may be fundamentally difficult. Indeed, a theme that has emerged with existing

PNM for ODEs, which can be traced back to Skilling (1992), is the use of approximate

and subjective forms for the likelihood. The complex, implicit relationship between the

latent ODE solution y† and the data f(xi, yi) arising from the gradient field appears to

preclude use of an exact likelihood. Of course, violation of the likelihood principle is

not traditionally a concern in the design of a numerical method, yet if the strictly richer

output that comes with a Bayesian PNM is desired, then clearly adherence to the likelihood

principle is important. It is therefore natural to ask the question, “under what conditions

can exact Bayesian inference for ODEs be made?”.

This chapter of the thesis presents a proof-of-concept PNM for the numerical solution

of a (limited) class of ODEs that is both (a) Bayesian in the sense of Definition 1 and (b)

can in principle be implemented. The method being proposed is indicated in Figure 4.1

and its main properties are as follows:

• The classical theory of Lie groups is exploited, for the first time in the context of

PNM, to understand when an ODE of the form in Eq. (3.1) can be transformed into

an ODE whose gradient field is a function of the independent state variable only,

reducing the ODE to an integral.

• For ODEs that admit a solvable Lie algebra, our proposal can be shown to simultane-

ously perform exact Bayesian inference on both the original and the Lie-transformed

ODE. Crucially, as we explain later, to identify a Lie algebra only high-level a priori

information about the ODE is required. The case of first- and second-order ODEs

is presented in detail, but the method itself is general.
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dy

dx
= f(x, y(x))

ds

dr
= g(r)

Lie transform; (x, y) 7→ (r, s)

(Lie transform)−1; (r, s) 7→ (x, y)

Exact
Bayesian
PNM

?

Figure 4.1: Schematic of our proposed approach. An nth order ODE that admits a solvable
Lie algebra can be transformed into n integrals, to which exact Bayesian probabilistic numerical
methods can be applied. The posterior measure on the transformed space is then pushed back
through the inverse transformation onto the original domain of interest.

• In general the specification of prior belief can be difficult. The prior distributions

that we construct are guaranteed to respect aspects of the structure of the ODE. As

such, our priors are, to some extent, automatically adapted to the ODE at hand as

opposed to being arbitrarily posited.

• In addition to the benefits conferred in the Bayesian framework, detailed in Section

1.1 and in Cockayne et al. (2019), the method being proposed can be computationally

realised. On the other hand, there is a cost in terms of the run-time of the method

that is substantially larger than existing, non-Bayesian approaches (especially clas-

sical numerical methods). As such, we consider this work to be a proof-of-concept

rather than an applicable Bayesian PNM.

The remainder of the chapter is structured as follows: Section 4.1 is dedicated to a

succinct review of Lie group methods for ODEs. In Section 5.2, Lie group methods are

exploited to construct priors over the solution space of the ODE whenever a solvable Lie

algebra is admitted and exact Bayesian inference is performed on a transformed version of

the original ODE which takes the form of an integral. Numerical experiments are reported

in Section 4.3. Finally, some conclusions and recommendations for future research are

drawn in Section 4.4.

4.1 Overview of Lie group methods

This section provides a succinct overview of classical Lie group methods, introduced in

the 19th century by Sophus Lie in the differential equation context (Hawkins, 2012). Lie

developed the fundamental notion of a Lie group of transformations, which roughly cor-

respond to maps that take one solution of the ODE to another. This provided a formal
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generalisation of certain algebraic techniques, such as dimensional analysis and transfor-

mations based on spatial symmetries, that can sometimes be employed to algebraically

reduce the order of an ODE.

This section proceeds as follows: First, in Section 4.1.1 we introduce a one-parameter

Lie group of transformations and then, in Section 4.1.2, we explain what it means for a

curve or a surface to be transformation-invariant. In Secion 4.1.3 we recall consequences

of Lie’s theory in the ODE context. Last, in Section 4.1.4 the generalisation to multi-

parameter Lie groups is indicated. Our development is heavily influenced by Bluman &

Anco (2002) and we refer the reader to their book when required.

4.1.1 One-Parameter Lie Groups of Transformations

The purpose of this section is to recall essential definitions, together with the first fun-

damental theorem of Lie, which relates a Lie group of transformations to its infinitesimal

generator. In what follows we consider a fixed domain D ⊂ R
d and denote a generic state

variable as x = (x1, . . . , xd) ∈ D.

Definition 6 (One-Parameter Group of Transformations). A one-parameter group of

transformations on D is a map X : D × S → D, defined on D × S for some set S ⊂ R,

together with a bivariate map ϕ : S × S → S, such that the following hold:

(1) For each ϵ ∈ S, the transformation X(·, ϵ) is a bijection on D.

(2) (S, ϕ) forms a group with law of composition ϕ.

(3) If ϵ0 is the identity element in (S, ϕ), then X(·, ϵ0) is the identity map on D.

(4) For all x ∈ D, ϵ, δ ∈ S, if x∗ = X(x, ϵ), x∗∗ = X(x∗, δ), then x∗∗ = X(x∗, ϕ(ϵ, δ)).

In what follows we continue to use the shorthand notation x∗ = X(x, ϵ). The notion of

a Lie group additionally includes smoothness assumptions on the maps that constitute a

group of transformations. Recall that a real-valued function is analytic if it can be locally

expressed as a convergent power series.

Definition 7 (One-Parameter Lie Group of Transformations). Let X, together with ϕ,

form a one-parameter group of transformations on D. Then we say that X, together with

ϕ, form a one-parameter Lie group of transformations on D if, in addition, the following

hold:

(5) S is a (possibly unbounded) interval in R.

(6) For each ϵ ∈ S, X(·, ϵ) is infinitely differentiable in D.

(7) For each x ∈ D, X(x, ·) is an analytic function on S.

31



Chapter 4. Exact Bayesian Inference for Ordinary Differential Equations?

(8) ϕ is analytic in S × S.

Without the loss of generality it will be assumed, through re-parametrisation if required,

that S contains the origin and ϵ = 0 is the identity element in (S, ϕ). The definition is

illustrated through three examples:

Example 1 (Translation in the x-Axis). The one-parameter transformation x∗1 = x1 + ϵ,

x∗2 = x2 for ϵ ∈ R forms a Lie group of transformations on D = R
2 with group composition

law ϕ(ϵ, δ) = ϵ+ δ.

Example 2 (Rotation Group). The one-parameter transformation x∗1 = x1 cos(ϵ) −
x2 sin(ϵ), x

∗
2 = x1 sin(ϵ) + x2 cos(ϵ) for ϵ ∈ R again forms a Lie group of transformations

on D = R
2 with group composition law ϕ(ϵ, δ) = ϵ+ δ.

Example 3 (Cyclic group Cp). Let D = {1, 2, 3, . . . , p}. Let S = Z. For n ∈ D and

m ∈ S, let X(n,m) = n +m (mod p). Then X, together with ϕ(a, b) = a + b, defines a

one parameter group of transformations on D, but is not a Lie group of transformations

since (5) is violated.

The first fundamental theorem of Lie establishes that a Lie group of transformations

can be characterised by its infinitesimal generator, defined next:

Definition 8 (Infinitesimal Transformation). Let X be a one-parameter Lie group of

transformations. Then the transformation x∗ = x+ ϵξ(x),

ξ(x) =
∂X(x, ϵ)

∂ϵ

∣∣∣∣
ϵ=0

,

is called the infinitesimal transformation associated to X and the map ξ is called an

infinitesimal.

Definition 9 (Infinitesimal Generator). The infinitesimal generator of a one-parameter

Lie group of transformations X is defined to be the operator X = ξ · ∇ where ξ is the

infinitesimal associated to X and ∇ = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

) is the gradient.

Example 4 (Ex. 1, continued). For Ex. 1, we have

ξ(x) =

(
dx∗1
dϵ

∣∣∣∣
ϵ=0

,
dx∗2
dϵ

∣∣∣∣
ϵ=0

)
= (1, 0)

so the infinitesimal generator for translation in the x-axis is X = ∂
∂x1

.

Example 5 (Ex. 2, continued). Similarly, the infinitesimal generator for the rotation

group is X = −x2 ∂
∂x1

+ x1
∂

∂x2
.
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The first fundamental theorem of Lie provides a constructive route to obtain the infinites-

imal generator from the transformation itself:

Theorem 4.1 (First Fundamental Theorem of Lie; see pages 39-40 of Bluman & Anco

(2002)). A one parameter Lie group of transformations X is characterised by the initial

value problem:

dx∗

dτ
= ξ(x∗), x∗ = x when τ = 0, (4.1)

where τ(ϵ) is a parametrisation of ϵ which satisfies τ(0) = 0 and, for ϵ ̸= 0,

τ(ϵ) =

∫ ϵ

0

∂ϕ(a, b)

∂b

∣∣∣
(a,b)=(δ−1,δ)

dδ.

Here δ−1 denotes the group inverse element for δ.

Since Eq. (4.1) is translation-invariant in τ , it follows that without loss of generality we

can assume a parametrisation τ(ϵ) such that the group action becomes ϕ(τ1, τ2) = τ1 + τ2

and, in particular, τ−1 = −τ . In the remainder of the chapter, for convenience we assume

that all Lie groups are parametrised such that the group action is ϕ(ϵ1, ϵ2) = ϵ1 + ϵ2.

The next result can be viewed as a converse to Theorem 4.1, as it shows how to obtain

the transformation from the infinitesimal generator.

Theorem 4.2. A one parameter Lie group of transformations with infinitesimal generator

X is equivalent to x∗ = eϵXx, where eϵX =
∑∞

k=0
1
k!ϵ

kXkx.

Proof of Theorem 4.2. From Taylor’s theorem we have that

x∗ = X(x, ϵ)

=

∞∑
k=0

ϵk

k!

∂kX(x, ϵ)

∂ϵk

∣∣∣∣
ϵ=0

For any differentiable function F we have that

dF (x∗)

dϵ
=

d∑
i=1

∂F (x∗)

∂x∗i

dx∗i
dϵ

=
d∑

i=1

ξi
∂F (x∗)

∂x∗i
= XF (x∗)

and similarly

dkF (x∗)

dϵk
= XkF (x∗).
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Thus

∂kX(x, ϵ)

∂ϵk

∣∣∣∣
ϵ=0

= Xkx

so that the stated result is recovered.

The following is immediate from the proof of Theorem 4.2:

Corollary 4.1. If F is infinitely differentiable, then F (x∗) = eϵXF (x).

4.1.2 Invariance Under Transformation

In this section we explain what it means for a curve or a surface to be invariant under a

Lie group of transformations and how this notion relates to the infinitesimal generator.

Definition 10 (Invariant Function). A function F : D → R is said to be invariant under

a one parameter Lie group of transformations x∗ = X(x, ϵ) if F (x∗) = F (x) for all x ∈ D

and ϵ ∈ S.

Based on the results in Section 4.1.1, one might expect that invariance to a transformation

can be expressed in terms of the infinitesimal generator of the transformation. This is

indeed the case:

Theorem 4.3. A differentiable function F : D 7→ R is invariant under a one parameter

Lie group of transformations with infinitesimal generator X if and only if XF (x) = 0 for

all x ∈ D.

Proof of Theorem 4.3. The result is established as follows:

F invariant ⇔ F (x∗) = 0 whenever F (x) = 0

⇔ eϵXF (x) = 0 whenever F (x) = 0 (Cor. 4.1)

⇔ F (x) + ϵXF (x) +O(ϵ2) = 0 whenever F (x) = 0 (Taylor)

⇔ XF (x) = 0 whenever F (x) = 0

where the last line follows since the coefficient of the O(ϵ) term in the Taylor expansion

must vanish. This completes the proof.

Theorem 4.4. For a function F : D 7→ R and a one parameter Lie group of transforma-

tions x∗ = X(x, ϵ), the relation F (x∗) = F (x) + ϵ holds for all x ∈ D and ϵ ∈ S if and

only if XF (x) = 1 for all x ∈ D.

Proof of Theorem 4.4. From Cor. 4.1, we have that F (x∗) = F (x)+ ϵXF (x)+O(ϵ2). The

result follows from inspection of the ϵ coefficient.
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The following definition is fundamental to the method proposed in Section 5.2:

Definition 11 (Canonical Coordinates). Consider a coordinate system r = (r1(x), . . . , rn(x))

on D. Then any one parameter Lie group of transformations x∗ = X(x, ϵ) induces a trans-

formation of the coordinates r∗i = ri(x
∗). The coordinate system r is called canonical for

the transformation if r∗1 = r1, . . . , r
∗
n−1 = rn−1 and r∗n = rn + ϵ.

Example 6 (Ex. 2, continued). For the rotation group in Ex. 2, we have canonical

coordinates r1(x1, x2) =
√
x21 + x22 , r2(x1, x2) = arctan(x2/x1).

In canonical coordinates, a one parameter Lie group of transformations can be viewed as

a straight-forward translation in the rn-axis. The existence of canonical coordinates is

established in Thm. 2.3.5-2 of Bluman & Anco (2002). Note that Thms. 4.3 and 4.4

imply that Xr∗i = 0 for i = 1, 2, ..., n− 1, Xr∗n = 1.

Definition 12 (Invariant Surface). For a function F : D → R, a surface defined by

F (x) = 0 is said to be invariant under a one parameter Lie group of transformation

x∗ = X(x, ϵ) if and only if F (x∗) = 0 whenever F (x) = 0 for all x ∈ D and ϵ ∈ S.

The invariance of a surface, as for a function, can be cast in terms of an infinitesimal

generator:

Corollary 4.2. A surface F (x) = 0 is invariant under a one parameter Lie group of

transformations with infinitesimal generator X if and only if XF (x) = 0 whenever F (x) =

0.

4.1.3 Symmetry Methods for ODEs

The aim of this section is to relate Lie transformations to ODEs for which these trans-

formations are admitted. These techniques form the basis for our proposed method in

Section 5.2.

For an ODE of the form in Eq. (3.1), one can consider the action of a transformation

on the coordinates (x, y); i.e. a special case of the above framework where the generic

coordinates x1 and x2 are respectively the independent (x) and dependent (y) variables of

the ODE. It is clear that such a transformation also implies some kind of transformation of

the derivatives ym := dmy
dxm . Indeed, consider a one-parameter Lie group of transformations

(x∗, y∗) = (X(x, y; ϵ), Y (x, y; ϵ)). Then we have from the chain rule that y∗m := dmy∗

d(x∗)m is

a function of x, y, y1, . . . , ym and we denote y∗m = Ym(x, y, y1, . . . , ym; ϵ). As an explicit

example:

y∗1 =
dy∗

dx∗
=

∂Y (x,y;ϵ)
∂x + y1

∂Y (x,y;ϵ)
∂y

∂X(x,y;ϵ)
∂x + y1

∂X(x,y;ϵ)
∂y

=: Y1(x, y, y1; ϵ)
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In general:

y∗m =

∂y∗m−1

∂x + y1
∂y∗m−1

∂y + y2
∂y∗m−1

∂y1
+ ...+ ym

∂y∗m−1

∂ym−1

∂X(x,y;ϵ)
∂x + y1

∂X(x,y;ϵ)
∂y

=: Ym(x, y, y1, . . . , ym; ϵ)

In this sense a transformation defined on (x, y) can be naturally extended to a transfor-

mation on (x, y, y1, y2, . . . ) as required.

Definition 13 (Admitted Transformation). An mth order ODE F (x, y, y1, . . . , ym) = 0 is

said to admit a one parameter Lie group of transformations (x∗, y∗) = (X(x, y; ϵ), Y (x, y; ϵ))

if the surface F defined by the ODE is invariant under the Lie group of transformations,

i.e. if F (x∗, y∗, y∗1, . . . , y
∗
m) = 0 whenever F (x, y, y1, . . . , ym) = 0.

Example 7. Clearly any ODE of the form dy
dx = F (x) admits the transformation (x∗, y∗) =

(x, y + ϵ).

Our next task is to understand how the infinitesimal generator of a transformation can

be extended to act on derivatives ym.

Definition 14 (Extended Infinitesimal Transformation). The mth extended infinitesimals

of a one parameter Lie group of transformations (x∗, y∗) = (X(x, y; ϵ), Y (x, y; ϵ)) are

defined as the functions ξ, η, η(1), . . . , η(m) for which the following equations hold:

x∗ = X(x, y; ϵ) = x+ ϵξ(x, y) +O(ϵ2)

y∗ = Y (x, y; ϵ) = y + ϵη(x, y) +O(ϵ2)

y∗1 = Y1(x, y, y1; ϵ) = y1 + ϵη(1)(x, y, y1) +O(ϵ2)

...

y∗m = Ym(x, y, y1, . . . , ym; ϵ) = ym + ϵη(m)(x, y, y1, y2, . . . , ym) +O(ϵ2)

It can be shown straightforwardly via induction that

η(m)(x, y, y1, y2, . . . , ym) =
dmη

dxm
−

m∑
k=0

m!

(m− k)!k!
ym−k−1

dkξ

dxk
(4.2)

where d
dx denotes the full derivative with respect to x, i.e. d

dx = ∂
∂x+y1

∂
∂y+

∑m+1
k=2 yk

∂
∂yk−1

.

It follows that η(m) is a polynomial in y1, y2, . . . , ym with coefficients linear combinations

of ξ, η and their partial derivatives up to the mth order.

Definition 15 (Extended Infinitesimal Generator). The mth extended infinitesimal gen-
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erator is defined as

X(m) = ξm(x, y, y1, . . . , ym) · ∇

= ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η(1)(x, y)

∂

∂y1
+ · · ·+ η(m)(x, y, y1, . . . , ym)

∂

∂ym

where ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂y1

, . . . , ∂
∂ym

) is the extended gradient.

The following corollaries are central to the actual computation of the admitted Lie groups

of an ODE.

Corollary 4.3. A differentiable function F : Dm → R where Dm is the phase space

containing elements of the form (x, y, y1, . . . , ym), is invariant under a one parameter

Lie group of transformations with an extended infinitesimal generator X(m) if and only if

X(m)F (x, y, y1, . . . , ym) = 0 for all (x, y, y1, . . . , ym) ∈ Dm.

Corollary 4.4 (Infinitesimal Criterion for Symmetries Admitted by an ODE). A one pa-

rameter Lie group of transformations is admitted by themth order ODE F (x, y, y1, .., ym) =

0 if and only if its extended infinitesimal generator X(m) satisfies X(m)F (x, y, y1, . . . , ym) =

0 whenever F (x, y, y1, . . . , ym) = 0.

4.1.4 Multi-Parameter Lie Groups and Lie Algebras

To leverage the full power of Lie symmetry methods for ODEs of order m ≥ 2, we need to

consider multiple Lie symmetries which are collectively described by a Lie algebra. Fortu-

nately, the notion of a multi-parameter Lie group of transformations is a natural generalisa-

tion from the one parameter case. Thus, this last section of background material concerns

the generalisation of the definitions in Section 4.1.1 to the case of a multi-parameter Lie

group. The associated Lie algebra will also be defined.

Definition 16 (Multi-Parameter Lie Group of Transformations). The set of transfor-

mations x∗ = X(x, ϵ) where x∗i = Xi(x, ϵ) and ϵ = (ϵ1, ϵ2, . . . , ϵr) ∈ S ⊂ R
r is called

a r-parameter Lie group of transformations if it satisfies the same axioms as in the one

parameter case, but with law of composition ϕ(ϵ, δ) = (ϕ1(ϵ, δ), . . . , ϕr(ϵ, δ)), and (without

loss of generality) ϵ = (0, 0, ..., 0) as the group identity element.

Definition 17 (Infinitesimal Matrix). The appropriate generalisation for the infinitesimal

transformation is the infinitesimal matrix Ξ = [ξij ], whose entries are defined as ξij(x) =
∂Xj(x,ϵ)

∂ϵi

∣∣∣
ϵ=0

.

Definition 18 (Infinitesimal Generator). An r-parameter Lie group of transformations is

associated with r infinitesimal generators, Xi, defined as Xi = Xi(x) =
∑d

j=1 ξij(x)
∂

∂xj
.
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The first fundamental theorem of Lie can be generalised to the multi-parameter case.

In particular, it can be shown that an r-parameter Lie group of transformations is charac-

terised by the set of its r infinitesimal generators. The generalisation is straight-forward

and so, for brevity, we refer the reader to pages 39-40 of Bluman & Anco (2002).

Next we explain how the collection of infinitesimal generators forms a Lie algebra.

This relies on the basic facts that the set D of differential operators on D is a vector space

over R (i.e. λX + µY ∈ D for all X,Y ∈ D and λ, µ ∈ R) and that differential operators

can be composed (i.e. XY ∈ D for all X,Y ∈ D).

Definition 19 (Commutator). The commutator of two infinitesimal generators Xi and

Xj is defined as [Xi,Xj ] = XiXj −XjXi.

Theorem 4.5 (Second Fundamental Theorem of Lie; see page 78 of Bluman & Anco

(2002)). Consider an r-parameter Lie group of transformations and let L denote the linear

span of the infinitesimal generators X1, . . . ,Xr in D. Let [·, ·] : L × L → D denote the

unique bilinear operator that agrees with Def. (19) on the set of infinitesimal generators.

i.e.  r∑
i=1

λiXi,
r∑

j=1

µjXj

 =
r∑

i=1

r∑
j=1

λiµj(XiXj −XjXi). (4.3)

Then [·, ·] maps into L. i.e. the right hand side of Eq. (4.3) belongs to L for all λ, µ ∈ Rr.

Example 8. Consider the two parameter group of transformations on D = R
2 given by

(x∗, y∗) = (x+xϵ+x2δ, y+yϵ+y2δ). The infinitesimal generators corresponding to δ and

ϵ, respectively, are X1 = x2 ∂
∂x + y2 ∂

∂y , X2 = x ∂
∂x + y ∂

∂y . It can be directly verified that

[X1,X2] = −X1.

The space L, defined in Thm. 4.5, satisfies the properties of an r-dimensional Lie

algebra L, defined next:

Definition 20 (Lie Algebra). An r-dimensional vector space L over R together with a

bilinear operator [·, ·] : L × L → L is called an r-dimensional Lie algebra if the following

hold:

(1) Alternativity: [X,X] = 0 for all X ∈ L

(2) Jacobi Identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0 for all X,Y,Z ∈ L

In general, for the methods presented in Section 5.2 to be applied, existence of an n-

parameter Lie group of transformations is not in itself sufficient; we require the existence

of an n-dimensional solvable Lie sub-algebra, defined next:
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Definition 21 (Normal Lie Sub-algebra). Consider a Lie sub-algebra J of a Lie algebra

L with bilinear operator [·, ·], i.e. a subset J ⊂ L such that, when equipped with the

restriction of [·, ·] to J × J , is itself a Lie algebra and, in particular, [X,Y] ∈ J for all

X,Y ∈ J . Then J is said to be normal if, in addition, [X,Y] ∈ J for all X ∈ J ,Y ∈ L.

Definition 22 (Solvable Lie Algebra). An r-dimensional Lie algebra L is called solvable

if there exists a chain of sub-algebras L1 ⊂ L2 ⊂ ... ⊂ Lq−1 ⊂ Lr =: L such that Li−1 is a

normal sub-algebra of Li for i = 2, 3, ..., r.

For low-order ODEs, the existence requirement for an admitted Lie group of trans-

formations is more restrictive than the requirement that the associated Lie algebra is

solveable. Indeed, we have the following result:

Theorem 4.6. All two-dimensional Lie Algebras are solvable.

Proof of Theorem 4.6. Suppose L is a two dimensional Lie Algebra generated by linearly

independent infinitesimal generators X1 and X2. Let Y = [X1,X2] = aX1 + bX2 and let

J be the one dimensional subalgebra generated by Y. Suppose Z = cX1 + dX2 is some

element of L, then

[Y,Z] = [Y, cX1 + dX2]

= c[Y,X1] + d[Y,X2]

= cb[X2,X1] + da[X1,X2]

= (ad− bc)Y ∈ J

So J ⊂ L is normal, thus L is solvable, as claimed.

This completes our review of background material. The exact Bayesian PNM developed

in Section 5.2 for an nth order ODE require the existence of an admitted n-parameter Lie

group of transformations with a solvable Lie algebra. In practice we therefore require some

high-level information on the gradient field f , in order to establish which transformations

of the ODE may be admitted. In addition, the requirement of a solvable Lie algebra

also limits the class of ODEs for which our exact Bayesian methods can be employed.

Nevertheless, this class of ODEs is sufficiently broad to have merited extensive theoretical

research (Bluman & Anco, 2002) and the development of software (Baumann, 2013).

4.2 Methods

In this section our novel Bayesian PNM is presented. The method relies on high-level in-

formation about the gradient field f and, in Section 4.2.1, we discuss how such information

can be exploited to identify any Lie transformations that are admitted by the ODE. In the
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case of a first order ODE, any non-trivial transformation is sufficient for our method and

an explicit information operator is provided for this case, together with recommendations

for prior construction, in Section 4.2.2. Together, the prior and the information operator

uniquely determine a Bayesian PNM, as explained in Section 1.1. In the general case of

an mth order ODE, we require that an m-dimensional solvable Lie algebra is admitted

by the ODE. The special case m = 2 is treated in detail, with an explicit information

operator and guidance for prior construction provided in Section 4.2.3. In Section A.1 of

the Appendix the selection of input pairs (xi, yi) to the gradient field is discussed.

4.2.1 From an ODE to its Admitted Transformations

For the methods proposed in this chapter, transformations admitted by the ODE, together

with their infinitesimal generators, must first be obtained. The algorithm for obtaining

infinitesimal generators follows as a consequence of Cor. 4.4. Indeed, suppose we have

a mth order ODE of the form ym − f(x, y, y1, . . . , ym−1) = 0. Then, by Cor. 4.4, a

transformation with infinitesimal generator X is admitted by the ODE if and only if:

X(m)(ym − f(x, y, y1, . . . , ym−1)) = 0 whenever ym = f(x, y, y1, . . . , ym−1). (4.4)

In infinitesimal notation, Eq. (4.4) is equivalent to

η(m)(x, y, y1, . . . , ym−1, ym) = ξ
∂f

∂x
+ η

∂f

∂y
+

m−1∑
k=1

η(k)
∂f

∂yk
. (4.5)

The direct solution of Eq. (4.5) recovers any transformations that are admitted.

In the common scenario where f(x, y, y1, . . . , ym−1) is a polynomial in y1, y2, . . . , ym−1,

the algorithm just described, for identification of admitted transformations, can be fully

automated (c.f. Baumann, 2013). Indeed, from Def. 14 it follows that the extended

infinitesimals η(k) for k ∈ 1, 2, 3, . . . ,m are polynomial in y1, y2, . . . , yk. Thus, by substi-

tuting ym = f(x, y, y1, . . . , ym−1), Eq. (4.4) too must be a polynomial in y1, y2, . . . , ym−1.

Moreover, the coefficients of this polynomial must vanish because (4.4) holds for arbitrary

values of x, y, y1, . . . , ym−1. This argument, of setting coefficients to zero, leads to a sys-

tem of linear partial differential equations (overdetermined when m ≥ 2) for ξ(x, y) and

η(x, y), which can be exactly solved to retrieve all the infinitesimal generators of the ODE.

The same strategy can often be applied beyond the polynomial case and explicit worked

examples of this procedure are now provided:

Example 9 (First Order ODE). Consider the class of all first order ODEs of the form
dy
dx = f(x, y(x)), f(x, y) = F

( y
x

)
. From Eq. (4.2), we have η(1) = ηx + (ηy − ξx)y1 −

ξy(y1)
2 so Eq. (4.5) becomes ηx + (ηy − ξx)f − ξy(f)

2 = ξ ∂f∂x + η ∂f
∂y and thus ηx + (ηy −
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ξx)F
( y
x

)
− ξyF

( y
x

)2
= −ξF ′

( y
x

) y
x2 + ηF ′

( y
x

)
1
x . For this equation to hold for general F ,

the coefficients of F , F 2 and F ′ must vanish: ηx = 0, ηy − ξx = 0, ξy = 0, −ξ y
x2 + η 1

x = 0.

This is now a linear system of partial differential equations in (ξ, η) which is easily solved;

namely ξ = x, η = y. The associated infinitesimal generator is X = x ∂
∂x + y ∂

∂y .

Example 10 (Second Order ODE). The infinitesimal generators for the second order

ODE

(x− y(x))
d2y

dx2
+ 2

dy

dx

(
dy

dx
+ 1

)
+

(
dy

dx

)3/2

= 0 (4.6)

are derived in 13 of the Appendix.

4.2.2 The Case of a First Order ODE

In this section we present our approach for a first order ODE. This allows some of the

more technical details associated to the general case to be omitted, due to the fact that

any one-dimensional Lie algebra is trivial. The main result that will allow us to construct

an exact Bayesian PNM is as follows:

Theorem 4.7 (Reduction of a First Order ODE to an Integral). If a first order ODE

dy

dx
= f(x, y(x)) (4.7)

admits a one parameter Lie group of transformations, then there exists coordinates r(x, y),

s(x, y) such that

ds

dr
= G(r) (4.8)

for some explicit function G(r).

Proof of Theorem 4.7. Let the infinitesimal generator associated with the Lie group of

transformations be denoted X. From the remarks after Def. 11, we can obtain canonical

coordinates by solving the pair of first order partial differential equations Xr = 0, Xs = 1.

By the chain rule we have

ds

dr
=

sx + syy
′

rx + ryy′
=: G(r, s)

From the definition of canonical coordinates, the Lie group of transformations is r∗ = r,

s∗ = s+ ϵ in the transformed coordinate system, so

ds∗

dr∗
= G(r∗, s∗) =⇒

ds

dr
= G(r, s+ ϵ)
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for all ϵ, which implies G(r, s) = G(r) and thus Eq. (4.7) becomes

ds

dr
= G(r)

as claimed.

Note that the transformed ODE in Eq. (4.8) is nothing more than an integral, for which

exact Bayesian PNM have already been developed (e.g. Briol et al., 2019; Karvonen et al.,

2018). At a high level, as indicated in Fig. 4.1, our proposed Bayesian PNM performs

inference for the solution s(r) of Eq. (4.8) and then transforms the resultant posterior back

into the original (x, y)-coordinate system. Our PNM is therefore based on the information

operator

A(y) = [G(r0), . . . , G(rn)]
⊤ ∈ A = R

n+1 (4.9)

which corresponds indirectly to n+1 evaluations of the original gradient field f at certain

input pairs (xi, yi). The selection of the inputs ri is discussed in Section A.1 of the

Appendix.

The transformation of a first order ODE is clearly illustrated in the following:

Example 11 (Ex. 9, continued). Consider the first order ODE dy
dx = f(x, y(x)), f(x, y) =

F
( y
x

)
. Recall from Ex. 9 that this ODE admits the one parameter Lie group of trans-

formations x∗ = αx, y∗ = αy for α ∈ R and the associated infinitesimal generator is

X = x ∂
∂x +y

∂
∂y . Solving the pair of partial differential equations Xr = 0,Xs = 1 yields the

canonical coordinates s = log y, r = y
x . The transformed ODE is then ds

dr = F (r)
−r2+rF (r)

=:

G(r). Thus an evaluation G(r) corresponds to an evaluation of f(x, y) at an input (x, y)

such that r = y
x .

Two important points must now be addressed: First, the approach just described

cannot be Bayesian unless it corresponds to a well-defined prior distribution µ ∈ PY in

the original coordinate system Y. This precludes standard (e.g. Gaussian process) priors

in general, as such priors assign mass to functions in (r, s)-space that do not correspond to

well-defined functions in (x, y)-space (see Fig. 4.2). Second, any prior that is used ought

to be consistent with the Lie group of transformations that the ODE is known to admit.

To address each of these important points, we propose two general principles for prior

construction in this work. The first principle is the implicit prior principle. This ensures

that a prior specified in the transformed coordinates (r, s) can be safely transformed into

a well-defined distribution on Y. For such an implicit prior to be well-defined we need to

understand when a function in (r, s) space maps to a well-defined function in the original

(x, y) domain of interest. Let S denote the image of Y under the canonical coordinate
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(x, y) (r, s)

Lie transform

(Lie transform)−1

Figure 4.2: Illustration of the implicit prior principle: A prior elicited for the function s(r) in
the transformed coordinate system (r, s) must be supported on functions s(r) that correspond to
well-defined functions y(x) in the original coordinate system (x, y). Thus the situation depicted
would not be allowed.

transformation.

Principle 1 (Implicit Prior). A distribution ν ∈ PS on the transformed solution space

S corresponds to a well-defined implicit prior µ ∈ PY provided that x(r, s(r)) is strictly

monotone as a function of r.

Example 12 (Ex. 11, continued). For the ODE in Ex. 11, with canonical coordinates

s = log y, r = y
x , if x ∈ [x0, xT ] = [1, xT ] and y ∈ (0,∞), then the region in the (r, s) plane

corresponding to [1, xT ]× (0,∞) in the (x, y) plane is (0,∞)× R. Now,

dx(r, s(r))

dr
=

∂x

∂r
+
∂x

∂s

ds(r)

dr
=

rs′(r) exp(s(r))− exp(s(r))

r2
.

Thus dx
dr > 0 if and only if s′(r) > 1

r and the domain restriction x ∈ [x0, xT ] requires

that we respect the constraint log(r) ≤ s(r) ≤ log(r) + log(xT ) for all r > 0. The set S
must therefore consists of differentiable functions s defined on r ∈ (0,∞) and satisfying

log(r) ≤ s(r) ≤ log(r) + log(xT ).

Now we turn to the second important point, namely that the prior ought to encode

knowledge about any Lie transformations that are known to be admitted by the ODE. In

working on the transformed space S, it become clear how to construct a prior measure

in which this knowledge is encoded. Our second principle for prior specification states

that equal prior weight should be afforded to all curves that are identical up to a Lie

transformation:

Principle 2 (Invariant Prior). A distribution ν ∈ PS on the transformed solution space

S is said to be invariant provided that ν(S) = ν(S + ϵ) where the elements of S + ϵ are

the elements of S after a vertical translation; i.e. s(·) 7→ s(·) + ϵ and both S, S + ϵ ∈ ΣS .
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Our recommendation is that, when possible, both the implicit prior principle and the

invariant prior principle should be enforced. However, in practice it seems difficult to

satisfy both principles and our empirical results in Section 4.3 are based on implicit priors

that are not invariant.

4.2.3 The Case of a Second Order ODE

In this section we present our approach for a second order ODE. The study of second order

ODEs is particularly important, since Newtonian mechanics is based on ODEs of second

order. The presentation is again simplified relative to the general case of an mth order

ODE, this time by virtue of the fact that any two dimensional Lie algebra is guaranteed

to be solveable (Thm. 4.6). The main result that will allow us to construct an exact

Bayesian PNM is as follows:

Theorem 4.8 (Reduction of a Second Order ODE to Two Integrals). If a second order

ODE

d2y

dx2
= f

(
x, y(x),

dy

dx

)
(4.10)

admits a two parameter Lie group of transformations, then there exists coordinates r(x, y),

s(x, y) such that

ds

dr
= G(r) (4.11)

for some implicitly defined function G. The function G is explicitly related to the solution

of a second equation of the form

ds̃

dr̃
= H(r̃) (4.12)

for some explicit function H(r̃).

Proof of Theorem 4.8. Let the infinitesimal generators associated with the Lie group of

transformations be denoted X1 and X2. Recall from Thm. 4.6 that any two dimensional

Lie algebra is solvable. Thus, without loss of generality we may assume

[X1,X2] = λX1 (4.13)

for some λ ∈ R. The infinitesimal generators X1 and X2 each correspond to a one parameter

Lie group of transformations, denoted x∗ = X1(x, ϵ1) and x† = X2(x, ϵ2). Let v(x, y),

w(x, y, y1) be invariant functions of X1 and its extension X
(1)
1 , respectively, so v(x∗, y∗) =

v(x, y) and w(x∗, y∗, y∗1) = w(x, y, y1), where w has a non-trivial dependence on its third
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argument. It follows from the definition of invariance that

dw∗

dv∗
=

dw

dv
,

which is equivalent to

X
(1)
1

dw

dv
= 0 (4.14)

by Cor. 4.3. Now because Eq. (4.14) is a homogeneous partial differential equation,

the general solution dw
dv can be expressed as a function of the two solutions v(x, y) and

w(x, y, y1). Therefore

dw

dv
= Z(v, w) (4.15)

for some undetermined function Z.

Since Eq. (4.10) admits X2, and Eq. (4.15) is the same ODE when expressed in terms

of x, y, y1, it must be the case that

X
(2)
2

(
dw

dv
− Z(v, w)

)
= 0 whenever

dw

dv
= Z(v, w).

Then from Cor. 4.4 it follows that X
(1)
2 is admitted by the first order ODE in Eq. (4.15).

Thus we are now faced with a first order ODE that admits a one parameter Lie group of

transformations, as in Thm. 4.7.

Now, from Eq. (4.13), we have X1X2v = X2X1v+λX1v = 0. Thus X2v is an invariant of

X1 and so X2v = h(v) for some function h. Similarly X
(1)
1 X

(1)
2 v = X

(1)
2 X

(1)
1 v+ λX

(1)
1 v = 0,

so that X
(1)
2 w = g(v, w), for some function g. This implies X

(1)
2 = h(v) ∂

∂v + g(v, w) ∂
∂w .

Proceeding as in Thm. 4.7, denote the canonical coordinates of X
(1)
2 = h(v) ∂

∂v +

g(v, w) ∂
∂w by r̃(v, w), s̃(v, w) such that X

(1)
2 r̃ = 0, X

(1)
2 s̃ = 1. In canonical coordinates,

Eq. (4.15) becomes:

ds̃

dr̃
= H(r̃) (4.16)

This is again an integral, with solution

s̃(r̃) =

∫ r̃

H(t)dt+ C. (4.17)

We can rewrite Eq. (4.17) in terms of v, w to obtain an equation of the form

I(v, w) = 0 (4.18)
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which satisfies X
(1)
1 (I(v, w)) = 0 whenever I(v, w) = 0, since recall v, w are invariants of

X
(1)
1 . For the final step, we recall that v = v(x, y) and w = w(x, y, y1), so that Eq. (4.18)

represents a first order ODE in y, which admits X1. Thus we can apply Thm. 4.7 a

second time to obtain canonical coordinates r(x, y), s(x, y) for X1. In these coordinates,

Eq. (4.18) reduces into the form

ds

dr
= G(r)

where G is implicitly defined.

Note that the ODE in Eq. (4.10) is reduced to two integrals, namely Eq. (4.11) and

Eq. (4.12). At a high level, our proposed Bayesian PNM performs inference for the solution

s(r) of Eq. (4.11) and then transforms the resultant posterior back into the original (x, y)-

coordinate system. However, because G in Eq. (4.11) depends on the solution s̃(r̃) of

Eq. (4.12), we must also estimate s̃(r̃) and for this we need to evaluate H. Our PNM is

therefore based on the information operator

A(y) = [G(r0), . . . , G(rn), H(r̃0), . . . ,H(r̃n)]
⊤ ∈ A = R

2(n+1)

which corresponds indirectly to 2(n + 1) evaluations of f , the original gradient field.

The extension of our approach to a general mth order ODE proceeds analogously, with

A = R
m(n+1). The use of Thm. 4.8 is illustrated in Example 14 in the Appendix.

The two principles of prior construction that we advocated in the case of a first order

ODE apply equally to the case of a second- and higher-order ODE. It therefore remains

only to discuss the selection of the specific inputs ri (and r̃i in the case of a second order

ODE) that are used to define the information operator A. This discussion is again reserved

for Section A.1 of the Appendix.

4.3 Numerical Illustration

In this section the proposed Bayesian PNM is empirically illustrated. Recall that we are

not advocating these methods for practical use, rather they are to serve as a proof-of-

concept for demonstrating that exact Bayesian inference can in principle be performed

for ODEs, albeit at considerable effort; a non-trivial finding that helps to shape ongoing

research and discussion in this nascent field.

The case of a first order ODE is considered in Section 4.3.1 and the second order case

is contained in Section 4.3.2. In both cases, scope is limited to verifying the correctness of

the procedures, as well as indicating how conjugate prior distributions can be constructed.

Code to reproduce the numerical results in this section can be found at
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https://github.com/jwang727/Thesiscode. Examples were implemented in Matlab.

4.3.1 A First Order ODE

This section illustrates the empirical performance of the proposed method for a first order

ODE.

ODE: To limit scope we consider first order ODEs of the form

dy

dx
= F

(
y(x)

x

)
, x ∈ [1, xT ], y(1) = y0. (4.19)

Note that admitted transformation and associated canonical coordinates for this class of

ODE have already been derived in Ex. 9, Ex. 11 and Ex. 12.

Prior: In constructing a prior µ ∈ PY we refer to the implicit prior principle in Sec.

4.2.2. Indeed, recall from Ex. 11 that the ODE in Eq. (4.19) can be transformed into an

ODE of the form

ds

dr
= G(r), r ∈ (0,∞), s(y0) = log(y0).

Then our approach constructs a distribution ν ∈ PS where, from Ex. 12, S is the set of

differentiable functions s defined on r ∈ (0,∞) and satisfying

log(r) ≤ s(r) ≤ log(r) + log(xT ). (4.20)

To ensure monotonicity in the implicit prior principle, we take dx
dr > 0, which translates

into the requirement that

ds

dr
>

1

r
. (4.21)

If Eq. (4.21) holds, then ν induces a well-defined distribution µ ∈ PY . Note that the

constraints in Eq. (4.20) and Eq. (4.21) preclude the direct use of standard prior models,

such as Gaussian processes. However, it is nevertheless possible to design priors that are

convenient for a given set of canonical coordinates. Indeed, for the canonical coordinates

r, s in our example, we can consider a prior of the form

s(r) = log(r) + log(xT )ζ(r)
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Figure 4.3: Experimental results, first order ODE: The black curves represent samples from the
posterior, whilst the exact solution is indicated in red. The blue curves represent a constraint on
the (r, s) domain that arises when the implicit prior principle is applied. The number n of gradient
evaluations is indicated. Top: results in the (r, s) domain. Bottom: results in the (x, y) domain.

where the function ζ : (0,∞) → R satisfies

ζ(y0) = 0, ζ(r) ≤ 1,
dζ

dr
> 0. (4.22)

For this experiment, the approach of López-Lopera et al. (2018) was used as a prior model

for the monotone, bounded function ζ; this requires that a number, N , of basis functions

is specified - for brevity we defer the detail to 4.3.3.

The prior just described incorporates the symmetric structure of the ODE, in the sense

that the independent variable r = y
x is the first canonical coordinate of the infinitesimal

generator of the Lie group of transformations of the original ODE in Eq. 11. In other

words, r is a variable fixed by the Lie group of transformations of the ODE (in this case

x∗ = αx, y∗ = αy, so r∗ = r). Because the prior is defined on functions s(r) of r, this

means the prior itself is also unchanged by the Lie group of transformations of the ODE,

so that the prior effectively incorporates the symmetric structure of the ODE.
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Results: To obtain empirical results we consider the ODE with F (r) = r−1 + r and

y0 = 1, xT = 5. The posterior distributions that were obtained as the number n of data

points was increased were sampled and plotted in the (r, s) and (x, y) planes in Fig. 4.3.

In each case a basis of size N = 2n was used. Observe that the implicit prior principle

ensures that all curves in the (x, y) plane are well-defined functions (i.e. there is at most

one y value for each x value). Observe also that the posterior mass appears to contract

to the true solution y† of the ODE as the number of evaluations n of the gradient field is

increased.

4.3.2 A Second Order ODE

This section illustrates the empirical performance of the proposed method for a second

order ODE.

ODE: Consider again the second order nonlinear ODE in Eqn. A.1 together with the

initial condition y(x0) = y0,
dy
dx(x0) = y′0.

Prior: It is shown in Example 14 in the Appendix that Eq. A.1 can be reduced to a first

order ODE in (s, r) with − 1
x0

− r ≤ s ≤ − 1
xT

− r. The implicit prior principle in this case

requires that ds
dr > −1. Thus we are led to consider a parametrisation of the form

s(r) = − 1

x0
− r +

(
1

x0
− 1

xT

)
ζ(r)

where the function ζ again satisfies the conditions in Eq. (4.22). The approach of López-

Lopera et al. (2018) was therefore again used as a prior model.

For this example an additional level of analytic tractability is possible, as described

in detail in Example 14 in the Appendix. Thus we need only consider an information

operator of the form A(y) = [G(r0), . . . , G(rn)].

Results: The posterior distributions that were obtained are plotted in the (r, s) plane

and the (x, y) plane in Fig. 4.4. A basis of size N = 2n was used, with [y0, y
′
0] =

[−10, 1], [x0, xT ] = [5, 10]. Observe that the implicit prior principle ensures that all curves

in the (x, y) plane are well-defined functions (i.e. there is at most one y value for each x

value). The true solution appears to be smoother than the samples, even for 50 gradient

evaluations, which suggests that the prior was somewhat conservative in this context.

4.3.3 Computational Detail

Recall that for both the first order ODE example in Sec. 4.3.1 and the second order ODE

example in Sec. 4.3.2 we required a non-parametric prior over functions ζ which satisfy
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Figure 4.4: Experimental results, second order ODE: The black curves represent samples from the
posterior in the (r, s) plane (left) and (x, y) plane (right), whilst the exact solution is indicated
in red. The blue curves represent a constraint on the domain that arises when the implicit prior
principle is applied. The number of gradient evaluations was n = 50.

the constraints given in Eq. 4.22, namely that

ζ(r0) = 0, ζ(r) ≤ 1,
dζ

dr
≥ 0. (4.23)

Moreover, bearing in mind the posterior computation that is to follow, we require in

addition that the prior conveniently facilitates the conditioning calculations involved. It

is clear that standard non-parametric priors such as Gaussian processes do not satisfy

the boundedness or monotonicity constraints, whilst a nonlinear transformation of such a

process would fail to make conditioning on data straight-forward. In fact, the construction

of such flexible priors remains an active area of research.

To proceed, we adopted an approach recently proposed in López-Lopera et al. (2018).

In brief, the main idea is to construct an N -dimensional parametric distribution over

functions for which Eq. 4.23 is satisfied. This distribution, being finite-dimensional,

allows for the possibility of tractable conditioning operations, whilst the flexibility to take

N arbitrarily large provides a means of ensuring that the salient uncertainty is accurately

represented. More specifically, the function ζ is parametrised as

ζ(r) =
N∑
j=1

zjϕj(r) (4.24)

where the ϕj are basis functions

ϕj(r) =

1− | r−tjh | | r−tjh | ≤ 1

0 otherwise
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for equally spaced points tj with increment h, as recommended in López-Lopera et al.

(2018). A prior on ζ can be induced via a prior on the coefficients z1, . . . , zN , with N

taken to be substantially larger than the number n of datapoints on which the zi are to be

conditioned. The specific construction of a prior on the coefficients is required to encode

the constraints in Eq. 4.23 and to admit tractable conditioning; these issues are discussed

in the remainder.

First, we consider the boundedness and monotonicity constraints in Eq. 4.23. At the

level of the coefficients, it is straight-forward to check that this requires that the prior

support is restricted to the set

Z = {z ∈ RN : 0 < z1 ≤ z2 ≤ · · · ≤ zN ≤ 1}.

For convenience, we elected to use a prior that was obtained by restricting a standard

Gaussian measure N (0, I) on RN to the set Z.

Second, we consider how to condition on a dataset. Recall that information is provided

on the values of the gradient ζ ′(ri) = bi of the function ζ, evaluated at a finite number of

locations ri of the canonical coordinate r, together with the initial condition ζ(r0) = b0 .

Thus the information can be described by the linear system of constraints

Φz = b

where

Φ =


ϕ1(r0) . . . ϕN (r0)

ϕ′1(r1) . . . ϕ′N (r1)
...

...

ϕ′1(rn) . . . ϕ′N (rn)

 , b =


b0

b1
...

bn

 .
The posterior can therefore be characterised as the restriction of N (0, I) to the set Z ∩D
where D = {z ∈ RN : Φz = b}.

Finally, we discuss how posterior computation was performed. The key observation is

that an equivalent characterisation of the posterior is first to restrict N (0, I) to D and

then to further restrict to Z. This is advantageous since the linear nature of the data

implies that the restriction z|D of N (0, I) to D is again a Gaussian with a closed form,

denoted N (µ,Σ). It is important to note that Σ is singular (rank ρ = N − n− 1) and so

Σ = UΛ2U⊤, where U is an orthogonal matrix and Λ is a diagonal matrix with ρ non-zero

entries on the diagonal. Thus we can express z|D in the form

z = µ+ UΛz̃

where z̃ ∼ N (0, I) is a standard Gaussian on Rρ. LetM = UΛ and let mi = [mi,1, . . .mi,ρ]
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denote the ith row of M . Then we have the relation

z ∈ Z ⇐⇒ z̃ ∈ Z̃

where

Z̃ = {z̃ ∈ Rρ : 0 ≤ m1z̃ + µ1, 0 ≤ (mi+1 −mi)z̃ + (µi+1 − µi), 0 ≤ −mN z̃ + (1− µN )}

or equivalently

Z̃ = {z̃ ∈ Rρ : F z̃ + g ≥ 0}

for

F =



m1

m2 −m1

...

mN −mN−1

−mN


, g =



µ1

µ2 − µ1
...

µN − µN−1

1− µN


.

The computational task is thus reduced to sampling the restriction of the ρ-dimensional

standard Gaussian random variable z̃ to the (non-null) set Z̃. The development of compu-

tational methods to sample from such (potentially high-dimensional) distributions is itself

an active area of research, and for this work we employed the Hamiltonian Monte Carlo

method of Pakman & Paninski (2014), as recommended specifically for this purpose in

López-Lopera et al. (2018).

4.4 Discussion

This chapter presented a foundational perspective on PNM. It was first argued that there

did not exist a Bayesian PNM for the numerical solution of ODEs. Then, to address

this gap, a prototypical Bayesian PNM was developed. The Bayesian perspective that we

have put forward sheds light on foundational issues which will need to be addressed going

forward:

Foundation of PNM: As explained in chapter 1 existing PNM for ODEs each take

the underlying state space Y to be the solution space of the ODE. This appears to be

problematic, in the sense that a generic evaluation f(xi, yi) of the gradient field cannot

be cast as information A(y†) about the solution y† of the ODE unless the point (xi, yi)

lies exactly on the solution curve {(x, y†(x)) : x ∈ [x0, xT ]}. As a consequence, all existing

PNM of which we are aware violate the likelihood principle and are therefore not strictly

Bayesian, as discussed earlier in chapter 3. The assumption of a solvable Lie algebra, used
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in this work, can be seen as a mechanism to ensure the existence of an exact information

operator A, so that the likelihood principle can be obeyed. However, for a general ODE

it might be more natural to take the underlying state space to be a set F of permitted

gradient fields and the quantity of interest Q(f) to map a gradient field f to the solution of

the associated ODE. This would make the information operator A trivial but evaluation of

the push-forward Q#µ
a would require the exact solution operator of the ODE. However,

the reliance on access to an oracle solver Q makes this philosophically somewhat distinct

from PNM.

Limitations of Bayesian PNM: The proposed method was intended as a proof-of-

concept, not a practical numerical method. It is therefore useful to highlight the aspects

in which it is limited. First, when an mth order ODE admits an r-parameter Lie group of

transformations with r > m, there is an arbitrariness to the particular m-dimensional sub-

group of transformations that are selected. Second, the route to obtain transformations

admitted by the ODE demands that some aspects of the gradient field f are known, in

contrast to other work in which f is treated as a black-box. For instance, in Ex. 11

we used the fact that f can be expressed as f(x, y) = F ( yx), although knowledge of the

form of F was not required. Third, the class of ODEs for which a solvable Lie algebra is

admitted is relatively small. On the other hand, references such as Bluman & Anco (2002)

document important cases where our method could be applied. Fourth, the principles for

prior construction that we identified do not entail a unique prior and, as such, the question

of prior elicitation must still be addressed.

Outlook: The goal of providing rigorous and exact statistical uncertainty quantification

for the solution of an ODE is, we believe, important and will continue to be addressed.

Traditional numerical methods have benefitted from a century of research effort and, in

comparison, Bayesian PNM is an under-developed field. For example, the limited existing

work on PNM for ODEs, such as Skilling (1992); Schober et al. (2014); Chkrebtii et al.

(2016); Kersting & Hennig (2016); Schober et al. (2019); Kersting et al. (2018); Tronarp

et al. (2019), does not attempt to provide adaptive error control (though we note promising

ongoing research in that direction by Chkrebtii & Campbell, 2019). Nevertheless, the case

for developing Bayesian numerical methods - which shares some parallels with the case

for Bayesian statistics as opposed to other inferential paradigms - is clear, as argued in

Diaconis (1988) and Hennig et al. (2015). The insights we have provided in this chapter

serve to highlight the foundational issues pertinent to Bayesian PNM for ODEs. Indeed,

our proof-of-concept highlights that performing exact Bayesian inference for ODEs may

be extremely difficult. This in turn provides motivation for the continued development of

‘approximately Bayesian’ approaches to PNM, which in chapter 3 we surveyed in detail.
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Chapter 5

Approximate Bayesian Inference

for Partial Differential Equations

5.1 Introduction

In the previous chapter, an exact Bayesian PNM for the numerical solution of ODEs

was presented, for the case when the ODE can be reduced to quadrature by exploiting

its underlying symmetry through Lie group methods. However, the class of ODEs for

which a solvable Lie algebra is admitted is limited. This motivates the development of

approximate Bayesian PNMs, which aim to approximate the differential equation in such a

way that exact Bayesian inference can be performed, motivated in particular by challenging

numerical tasks for which numerical uncertainty cannot be neglected.

As discussed previously in chapter 3, the cases of (mostly approximate) PNMs for non-

linear ODEs and linear PDEs have each been studied. However, to date, no (approximate

or exact) Bayesian PNM for the numerical solution of nonlinear PDEs has been proposed.

This chapter therefore focuses on nonlinear partial differential equations, though the pro-

posed method is also applicable to linear PDEs as well as ODEs. Computationally, we

focus on PDEs whose governing equations must be evaluated pointwise at high computa-

tional cost.

This chapter presents the first (approximate) Bayesian PNM for numerical uncertainty

quantification in the setting of nonlinear PDEs. Our strategy is based on local linearisation

of the nonlinear differential operator, in order to perform conjugate Gaussian updating

in an approximate Bayesian framework. Broadly speaking, our approach is a natural

generalisation of the approach taken by Chkrebtii et al. (2016) for ODEs, but with local

linearisation to address the additional challenges posed by nonlinear PDEs. The aim is

to quantify numerical uncertainty with respect to the unknown solution of the PDE. An

important point is that we consider only PDEs for which evaluation of either the right-hand
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side or the initial or boundary conditions is associated with a high computational cost; we

do not aim to numerically solve PDEs for which a standard numerical method can readily

be employed to drive numerical error to a negligible level, nor do we aim to compete

with standard numerical methods in terms of CPU requirement. Such problems occur

in diverse application areas, such as modelling of ice sheets, carbon and nitrogen cycles

(Hurrell et al., 2013), species abundance and ecosystems (Fulton, 2010), each in response to

external forcing from a meteorological model, or in solving PDEs that themselves depend

on the solution of an auxiliary PDE, which occur both when operator splitting methods

are used (MacNamara & Strang, 2016) and when sensitivity equations, expressing the rate

of change of the solution of a PDE with respect to its parameters, are to be solved (Petzold

et al., 2006; Cockayne & Duncan, 2020). These applications provide strong motivation

for PNM, since typically it will not be possible to obtain an accurate approximation to

the solution of the PDE and the rich, probabilistic description of numerical uncertainty

provided by a PNM can be directly useful (e.g. Oates et al., 2019a).

The remainder of the chapter is structured as follows: In Section 5.2 the proposed

method is presented. The choice of prior is driven by the mathematical considerations

described in Section 5.3. A detailed experimental assessment is performed in Section 5.4.

Concluding remarks are contained in Section 5.5.

5.2 Methods

In Section 5.2.1 we present the general form of the nonlinear PDE that we aim to solve

using PNM. The use of finite differences for local linearisation is described in Section 5.2.2.

Then, in Section 5.2.3 we present our proposed approximate Bayesian PNM, discussing

how computations are performed and how the associated uncertainty is calibrated.

5.2.1 Set-Up and Notation

For a set S ⊆ R
d, let C0(S) denote the vector space of continuous functions c : S → R.

For two multi-indices α, β ∈ N
d
0, we write α ≤ β if αi ≤ βi for each i = 1, . . . , d. For

a multi-index β ∈ N
d
0, we let |β| = β1 + · · · + βd and let Cβ(S) ⊆ C0(S) denote those

functions c whose partial derivatives

∂αc := ∂α1
z1 . . . ∂

αd
zd
c(z) :=

∂|α|c(z)

∂zα1
1 . . . ∂zαd

d

, α ≤ β

exist and are continuous in S.

Let T ∈ (0,∞) and let Γ be an open and bounded set in Rd, whose boundary is denoted
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∂Γ . Let β ∈ Nd
0 be a multi-index and consider a differential operator

D : Cβ([0, T ]× Γ ) → C0([0, T ]× Γ )

and the associated initial value problem with Dirichlet boundary conditions

Du(t, x) = f(t, x), t ∈ [0, T ], x ∈ Γ

u(0, x) = g(x), x ∈ Γ

u(t, x) = h(t, x), t ∈ [0, T ], x ∈ ∂Γ

(5.1)

whose unique classical (i.e. strong) solution u ∈ Cβ([0, T ]× Γ ) is assumed to exist1. The

task considered in this chapter is to produce a probability distribution over functions that

(approximately) carries the semantics of Bayesian inference for u; i.e. we seek to develop an

(approximate) Bayesian PNM for the numerical solution of (5.1) (Cockayne et al., 2019).

In particular, we are motivated by the problems described in Section 5.1, for which evalu-

ation of f , g and h are associated with a high computational cost. Such problems provide

motivation for a careful quantification of uncertainty regarding the unknown solution u,

since typically it will not be possible to obtain a sufficient number of evaluations of f , g

and h in order for u to be precisely identified.

Why Not Emulation?

Given that the dominant computational cost is assumed to be evaluation of f , g and h, it

is natural to ask whether the uncertainty regarding these functions can be quantified using

a probabilistic model, such as an emulator (Kennedy & O’Hagan, 2001). This would in

principle provide a straight-forward Monte Carlo solution to the problem of quantifying

uncertainty in the solution u of (5.1), where first one simulates an instance of f , g and

h from the emulator and then applies a classical numerical method to solve (5.1) to high

numerical precision. The problem with this approach is that construction of a defensible

emulator is difficult; the functions f , g and h are coupled together by the nonlinear PDE in

(5.1) and, for example, it cannot simultaneously hold that each of f , g and h are Gaussian

processes. In fact, the challenge of ensuring that samples of f , g and h are consistent with

the existence of a solution to (5.1) poses a challenge that is comparable with solving the

PDE itself. This precludes a straight-forward emulation approach to (5.1) and motivates

our focus on PNM in the remainder, where uncertainty is quantified in the solution space

of (5.1).

1The existence of a strong solution is a nontrivial assumption, since several PDEs admit only a weak
solution; see Section 1.3.2 of Evans (1998) for definitions and background. A well-known class of classical
numerical methods that also presuppose the existence of a strong solution are the radial basis function
methods (Fornberg & Flyer, 2015). In Section 5.4.2 we consider, empirically, the performance of the
method developed in this chapter when applied to a PDE for which a strong solution does not exist.
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5.2.2 Finite Difference Approximation of Differential Operators

If D is linear then the differential equation in (5.1) is said to be linear and one or more

of the Bayesian PNM of Chkrebtii et al. (2016); Cockayne et al. (2016); Chkrebtii &

Campbell (2019) may be applied (assuming any associated method-specific requirements

are satisfied). If D is nonlinear then at most we can express D = P + Q, where P is

linear and Q is nonlinear (naturally such representations are non-unique in general). For

example, for Burgers’ equation

Du =
∂u

∂t
+ u

∂u

∂x
− ε

∂2u

∂x2
= 0

we have both P = ∂t−ε∂2x, Q = u∂x and also the trivial Q = D, P = 0. In this chapter we

aim, given a decomposition of D in terms of P and Q, to adaptively approximate Q by a

linear operator, in order that exact Gaussian conditioning formulae can be exploited. Al-

though we do not prescribe how to select P and Q, one should bear in mind that we aim to

construct a linear approximation of Q, meaning that a decomposition should be identified

that renders Q as close to linear as possible, to improve the quality of the approximation.

The effect of different selections for P and Q is investigated in Section 5.4.2.

To adaptively construct linear approximations to the nonlinear differential operator Q,

we propose to exploit traditional finite difference formulae (Strikwerda, 2004). Note that

our conceptualisation of these approximations as linear operators for Gaussian conditioning

is somewhat non-traditional. Define a time discretisation grid t = [t0, t1 . . . tn−1], where

0 = t0 < t1 < · · · < tn−1 ≤ T with the increment δ := ti − ti−1 fixed. For concreteness,

consider Burgers’ equation with P = ∂t − ε∂2x, Q = u∂x. The following discussion is

intended only to be informal. Suppose that the unknown solution u(ti−1, ·) at time ti−1

has been approximated to accuracy O(δ) by ui−1(·), as quantified by a norm ∥ · ∥ on

Cβ([0, T ]× Γ ). Then we could adaptively build a linear approximation to Q at time ti as

Qiu(ti, x) := ui−1(x)
∂u

∂x
(ti, x). (5.2)

This provides an approximation Di = P + Qi to the original differential operator D,

at time ti, with accuracy O(δ). To achieve higher order accuracy, we can use higher

order approximations of Q. For example, letting ∂u
∂t

∣∣
i−1 (x) denote an approximation to

∂u
∂t (ti−1, x), we could take

Qiu(ti, x) :=

[
ui−1(x) + δ

∂u

∂t

∣∣∣∣
i−1

(x)

]
∂u

∂x
(ti, x).

The only requirement that we impose on finite difference approximations is that Qi uses

(only) data that were gathered at earlier time points ti−1, ti−2, . . . , analogous to backward
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difference formulae. This is to ensure that the approximations Qi are well-defined before

they are used in our method, which is described next.

Henceforth we assume that an appropriate representation D = P +Q has been iden-

tified and an appropriate linear approximation to Q has been selected. The next section

describes how probabilistic inference for u can then proceed.

5.2.3 Proposed Approach

In this section we describe our proposed method. Recall that we assume there exists a

unique u ∈ Cβ([0, T ] × Γ ) for which (5.1) is satisfied. Since (5.1) represents an infinite

number of constraints, it is not generally possible to recover u exactly with a finite com-

putational budget. Our proposed method mirrors a general approach used to construct

Bayesian PNM (Cockayne et al., 2019), in that we consider conditioning on only a finite

number of the constraints in (5.1) and reporting the remaining uncertainty as our poste-

rior. The case of nonlinear PDEs presents an additional challenge in that a subset of the

constraints are nonlinear, and are therefore not amenable to exact Gaussian condition-

ing. To circumvent this issue, we condition on linear approximations to the constraints

following the ideas developed in Section 5.2.2.

Prior Distribution

The starting point of any Bayesian analysis is the elicitation of a suitable prior distribution.

In our case, it would be desirable to elicit a prior that is supported on Cβ([0, T ]×Γ ), since
we a priori know that the solution u to (5.1) has this level of regularity. Our approach

is rooted in Gaussian conditioning and thus the regularity of Gaussian process sample

paths must be analysed. This analysis is somewhat technical and we therefore defer the

discussion of prior elicitation to Section 5.3.

For the remainder of this section we assume that a suitable Gaussian process prior

U ∼ GP(µ,Σ) has been elicited. Here µ : [0, T ] × Γ → R, µ(t, x) := E[U(t, x)] is the

mean function and Σ : ([0, T ] × Γ ) × ([0, T ] × Γ ) → R, Σ((t, x), (t′, x′)) := E[(U(t, x) −
µ(t, x))(U(t′, x′)− µ(t′, x′))] is the covariance function; see Rasmussen & Williams (2006)

for background. The random variable notation U serves to distinguish the true solution u

of (5.1) from our probabilistic model for it. The specific choices of µ and Σ discussed in

Section 5.3 have sufficient regularity for the subsequent derivations in this section to be

well-defined.

Initialisation

At the outset we fix a time discretisation t = [t0, t1 . . . tn−1], where 0 = t0 < t1 < · · · <
tn−1 ≤ T , and a spatial discretisation x = [x1, x2, . . . , xm] ∈ (Γ ∪ ∂Γ )m where the xi are
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required to be distinct. It will sometimes be convenient to interpret x as a set {x1, . . . , xn};
for instance we will write x \ ∂Γ to denote {x1, . . . , xn} \ ∂Γ .

Our first task is to condition on (or assimilate) a finite number of constraints that

encode the initial condition u(0, x) = g(x), x ∈ Γ . For this purpose we use the spatial

discretisation x, and condition on the data U(0, x) = g(x) at each x ∈ x \ ∂Γ . (For

example, if Γ = [0, 1] and 0 = x1 < x2 < · · · < xm−1 < xm = 1, then we condition

on U(0, xi) = g(xi) for i = 2, . . . ,m − 1. The two boundary locations x1, xm ∈ ∂Γ

are excluded since these constraints are assimilated as part of the boundary condition,

which will shortly be discussed.) To perform conditioning, we use the following vectorised

shorthand:

vi := (ti,x) := [(ti, x1), (ti, x2), . . . , (ti, xm)]⊤ ∈ ([0, T ]× Γ )m

U(vi) := [U(ti, x1), . . . , U(ti, xm)]⊤ ∈ Rm×1

g(vi) := [g(x1), . . . , g(xm)]⊤ ∈ Rm×1

Σ((t, x),vi) := [Σ((t, x), (ti, x1)), . . . , Σ((t, x), (ti, xm))] ∈ R1×m

Σ(vi, (t, x)) := Σ((t, x),vi)
⊤ ∈ Rm×1

Σ(vi,vj) :=


Σ((ti, x1), (tj , x1)) . . . Σ((ti, x1), (tj , xm))

...
...

Σ((ti, xm), (tj , x1)) . . . Σ((ti, xm), (tj , xm))

 ∈ Rm×m

Then let a0 := (t0,x \ ∂Γ )⊤ denote the locations in [0, T ]× Γ where the initial condition

is to be assimilated. At a0 we have the initial data y0 := g(a0). These initial data

are assimilated into the Gaussian process model according to the standard conditioning

formulae (eq. 2.19; Rasmussen & Williams, 2006)

U0 := (U |U(a0) = y0) ∼ GP(µ0, Σ0)

µ0(r) := µ(r) +Σ(r,a0)Σ(a0,a0)
−1(g(a0)− µ(a0))

Σ0(r, s) := Σ(r, s)−Σ(r,a0)Σ(a0,a0)
−1Σ(a0, s)

where r, s ∈ [0, T ]× Γ .

Time Stepping

Having assimilated the initial data, we now turn to the remaining constraints in (5.1).

Following traditional time-stepping algorithms, we propose to proceed iteratively, begin-

ning at time t0 and then advancing to t1, t2, and ultimately to tn−1. At each iteration i

we aim to condition on a finite number of constraints that encode the boundary condition

u(ti, x) = h(ti, x), x ∈ ∂Γ , and the differential equation itself Du(ti, x) = f(ti, x), x ∈ Γ .
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For this purpose we again use the spatial discretisation x, and condition on the boundary

data U(ti, x) = h(ti, x) at each x ∈ x∩∂Γ and the differential data DU(ti, x) = f(ti, x) at

each x ∈ x. Since D is nonlinear, there are no explicit formulae that can be used in general

to assimilate the differential data, so instead we propose to condition on the approximate

constraints DiU(ti, x) = f(ti, x), x ∈ x where Di = P +Qi is an adaptively defined linear

approximation to D, which will be problem-specific and chosen in line with the principles

outlined in Section 5.2.2.

For a univariate function such as µ and a linear operator L, we denote µL(r) = (Lµ)(r).

For a bivariate function such as Σ, we denote ΣL(r, s) = LrΣ(r, s), where Lr denotes the

action of L on the r argument. In addition, we denote ΣL̄(r, s) = LsΣ(r, s) and we allow

subscripts to be concatenated, such as ΣL,L′ = (ΣL)L′ for another linear operator L′.

Fix i ∈ {0, 1, . . . , n−1}. Let bi = (ti,x∩∂Γ ) denote the locations in [0, T ]×∂Γ where

the boundary conditions at time ti are to be assimilated. At bi we have boundary data

h(bi). Correspondingly, we have differential data f(vi) and we concatenate all data at

time i into a single vector yi := [h(bi)
⊤, f(vi)

⊤]⊤, so that yi represents all the information

on which (approximate) conditioning is to be performed. Upon assimilating these data we

obtain

U i+1 := (U i|[U(bi), DiU(vi)] = yi) ∼ GP(µi+1, Σi+1)

µi+1(r) := µi(r) + [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

[
h(bi)− µi(bi)

f(vi)− µiDi
(vi)

]

Σi+1(r, s) := Σi(r, r′)− [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

[
Σi(bi, s)

Σi
Di
(vi, s)

]

Ai :=

[
Σi(bi, bi) Σi

D̄i
(bi,vi)

Σi
Di
(vi, bi) Σi

DiD̄i
(vi,vi)

]

The result of performing n time steps of the algorithm just described is a Gaussian pro-

cess GP(µn, Σn), to which we associate the semantics of an (approximate) posterior in a

Bayesian PNM for the solution of (5.1).

The Bayesian interpretation of GP(µn, Σn) is reasonable since this distribution arises

from the conditioning of the prior GP(µ,Σ) on a finite number of constraints that are

(approximately) satisfied by the solution u of (5.1). This is clarified in the following

statement:

Lemma 5.1. The stochastic process Un obtained above is identical to the distribution
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obtained when U ∼ GP(µ,K) is conditioned on the dataset
U(a0)

[U(b0), D0U(v0)]
⊤

...

[U(bn−1), Dn−1U(vn−1)]
⊤

 =


y0

y1

...

yn

 .

Proof. This follows immediately from the self-consistency property of Bayesian inference

(invariance to the order in which data are conditioned), but for completeness we demon-

strate their algebraic equivalence in Appendix B.1.

Remark 1 (Computational Complexity). The computational cost of our algorithm is not

competitive with that of a standard numerical method.2 However, we are motivated by

problems for which f , g and h are associated with a high computational cost, for which

the auxiliary computation required to provide probabilistic uncertainty quantification is

inconsequential. Thus we merely remark that the iterative algorithm we presented is gated

by the inversion of the matrix Ai at the i
th time step, the size of which is O(m), indepen-

dent of i, and therefore the complexity of predicting the final state u(T, ·) of the PDE by

performing n iterations of the above algorithm is O(nm3). For comparison, direct Gaus-

sian conditioning on the information in Lemma 5.1 would incur a higher computational

cost of O(n3m3), but would provide the joint distribution over the solution u(t, ·) at all

times t ∈ [0, T ]. Although we do not pursue it in this chapter, in the latter case the

grid structure present in t and x could be exploited to mitigate the O(n3m3) cost; for

example, a compactly supported covariance model Σ would reduce the cost by a constant

factor (Gneiting, 2002), or if the preconditions of Schäfer et al. (2021) are satisfied then

their approach would reduce the cost to O(nm log(nm) logd+1(nm/ϵ)) at the expense of

introducing an error of O(ϵ). See also the recent work of de Roos et al. (2021).

Remark 2. The posterior mean µi+1 can be interpreted as a particular instance of a radial

basis method (Fornberg & Flyer, 2015), as a consequence of the representer theorem for

kernel interpolants (Schölkopf et al., 2001). For brevity we do not explore this connection

further, but we note that a similar connection was explored in detail in Cockayne et al.

(2016).

2Technically, the computational complexity of our algorithm the same as that of a traditional numerical
method that performs forward Euler increments in the temporal component and symmetric collocation in
the spatial component (Fasshauer, 1999; Cockayne et al., 2016). However such methods are rarely used,
with one factor for this being the computational cost.
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Calibration of Uncertainty

The principal advantage of PNM over classical numerical methods is that they provide

probabilistic quantification of uncertainty, in our case expressed in the Bayesian frame-

work, which can be integrated along with other sources of uncertainty to facilitate infer-

ences and decision-making in a real-world context. In order for our posterior distribution

to faithfully reflect the scale of uncertainty about the solution of (5.1), we must allow

the hyper-parameters of the prior model to adapt to the dataset. However, we do not

wish to sacrifice the sequential nature of our algorithm and thus we seek an approach to

hyper-parameter estimation that operates in real-time as the algorithm is performed.

To achieve this we focus on a covariance model Σ(·, ·;σ) with a scalar hyper-parameter

denoted σ > 0, which is assumed to satisfy Σ(·, ·;σ) = σ2Σ(·, ·; 1). Such a σ is sometimes

called a scale or amplitude hyper-parameter of the covariance model. From Lemma 5.1

it follows that σ directly controls the spread of the posterior and it is therefore essential

that σ is estimated from data in order that the uncertainty reported by the posterior

can be meaningful. To estimate σ, we propose to maximise the predictive likelihood of

the “differential data” f(vi), given the information collected up to iteration i − 1, for

i ∈ {0, . . . , n− 1}, which can be considered as an empirical Bayes approach based on just

those factors in the likelihood that correspond to the differential data. The reasons for

focussing on the differential data (as opposed to also including the initial and boundary

data) are twofold; first, the differential data constitutes the vast majority of the dataset,

and second, this simplifies the computational implementation, described next.

At iteration i, the predictive likelihood for UDi(vi) is N (µiDi
(vi), Σ

i
DiD̄i

(vi,vi;σ)), and

the observed differential data are f(vi). Thus we select σ to maximise the full predictive

likelihood of the differential data

n−1∏
i=0

N (f(vi);µ
i
Di
(vi), Σ

i
DiD̄i

(vi,vi;σ)). (5.3)

Crucially, the linear operators Di that we constructed do not directly depend on σ, and it

is a standard property of Gaussian conditioning that Σi
DiD̄i

(vi,vi;σ) = σ2Σi
DiD̄i

(vi,vi; 1).

These facts permit a simple closed form expression for the maximiser σ̂ of (5.3), namely

σ̂2 =
1

n

n−1∑
i=0

∥∥∥(Σi
DiD̄i

(vi,vi); 1)
− 1

2 (f(vi)− µiDi
(vi))

∥∥∥2 (5.4)

where M−1/2 denotes an inverse matrix square root; (M1/2)2 = M . Furthermore, it is

clear from (5.4) that in practice one can simply run our proposed algorithm with the prior

covariance model Σ(·, ·; 1) and then report the posterior covariance σ̂2Σi+1(·, ·; 1), so that

hyper-parameter estimation is performed in real-time without sacrificing the sequential
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nature of the algorithm.

Closed form expressions such as (5.4) are not typically available for other hyper-

parameters that may be included in the covariance model, and we therefore assume in

the sequel that any other hyper-parameters have been expert-elicited. This limits the

applicability of our method to situations where some prior expert insight can be provided.

However, we note that data-driven estimation of the amplitude parameter σ is able to

compensate to a degree for mis-specification of other parameters in the covariance model.

Relation to Earlier Work

Here we summarise how the method just proposed relates to existing literature on Bayesian

PNM and beyond.

The sequential updating procedure that we have proposed is similar to that of Chkrebtii

et al. (2016) in the special case of a linear PDE. It is not identical in these circumstances

though, for two reasons: First, Chkrebtii et al. (2016) incorporated the initial condition

u(0, x) = g(x), x ∈ Γ , into the prior model, whereas we explicitly conditioned on initial

data g(a0) during the initialisation step of the method. This direct encoding of the initial

condition in Chkrebtii et al. (2016) relies on g being analytically tractable in order that

a suitable prior can be derived by hand. Our treatment of g as a black-box function

from which initial data are provided is therefore more general. Second, in Chkrebtii et al.

(2016) the authors advocated the use of an explicit measurement error model, whereas

our conditioning formula assume that the differential data yi are exact measurements of

U , as clarified in Lemma 5.1. For linear PDEs this assumption is correct, but it is an

approximation in the case a nonlinear PDE. Our decision not to employ a measurement

error model here is due to the fact that the scale of the measurement error cannot eas-

ily be estimated in an online manner as part of a sequential algorithm, without further

approximations being introduced.

To limit scope, the adaptive selection of the ti or xj was not considered, but we refer the

reader to Chkrebtii & Campbell (2019) for an example of how this can be achieved using

Bayesian PNM. Note, however, that adaptive selection of a time grid may be problematic

when evaluation of either f or h is associated with a high computational cost, since

the possibility of taking many small time steps relinquishes control of the computational

budget. For this reason, non-adaptive methods may be preferred in this context, since the

run-time of the PNM can be provided up-front.

The choice of linearisation Qi was left as an input to the proposed method, with some

guidelines (only) provided in Section 5.2.2. This can be contrasted with recent work for

ODEs in Tronarp et al. (2019, 2021); Bosch et al. (2020), where first order Taylor series

were used to automatically linearise a nonlinear gradient field. It would be possible to

also consider the use of Taylor series methods for nonlinear PDEs. However, their use
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assumes that the gradient field is analytically tractable and can be differentiated, while

for the method developed in this chapter, we are motivated by situations in which f is a

black-box that can (only) be point-wise evaluated. The use of linearisations in PNM was

also explored Chen et al. (2021), in the maximum a posteriori estimation context.

The combination of local linearisation and Gaussian process conditioning was also stud-

ied by Raissi et al. (2018), who considered initial value problems specified by PDEs, where

the initial condition was random and the goal was to approximate the implied distribution

over the solution space of the PDE. The authors observed that if the initial condition was

a Gaussian process, then approximate conjugate Gaussian computation is possible when

a finite difference approximation to the differential operator was employed. This provided

a one-pass, cost-efficient alternative to the Monte Carlo approach of repeatedly sampling

an initial condition and then applying a classical numerical method. Our work bears a

superficial similarity to Raissi et al. (2018) and related work on physics-informed Gaussian

process regression (e.g. Wheeler et al., 2014; Wang & Berger, 2016; Jidling et al., 2017;

Chen et al., 2020), in that finite difference approximations enable approximate Gaussian

conditioning to be performed. However, these authors are addressing a fundamentally dif-

ferent problem to that addressed in this chapter; we aim to quantify numerical uncertainty

for a single (i.e. non-random) PDE. Accordingly, we emphasise issues that are critical to

the performance of PNM, such as explicitly assessing the error of point estimation and

quality of the credible sets provided by our PNM (Section 5.4).

5.3 Prior Construction

This section is dedicated to studying the sample path properties of Gaussian Processes

with the Matérn covariance function, motivated by attempting to construct a prior whose

samples are elements of elements of Cβ([0, T ] × Γ ), the set in which a solution to (5.1)

is sought. First, in Section 5.3.1 we introduce the technical notions of sample continuity

and sample differentiability, clarifying what properties of the prior are required to hold.

These sample-path properties are distinct from mean-square properties, the latter being

more commonly studied. Then, in Section 5.3.2 for the univariate case, we formally prove

that a Gaussian Process with the Matérn covariance function have sample paths with the

required degree of smoothness. For the multivariate case, we speculate that the required

properties holds for a particular Matérn tensor product, which we then advocate as a

default choice for our PNM.

5.3.1 Mathematical Properties for the Prior

The strong solution of (5.1) is assumed to be an element of Cβ([0, T ] × Γ ), therefore

it is logical to construct a prior distribution whose samples also belong to this set. In
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particular, if the true solution has βi derivatives in the variable zi (for instance because

the PDE features a term ∂βi
zi u, where we have set z = (t, x)), it would be appropriate to

construct a prior (and hence a posterior) whose samples also have βi derivatives in the

variable zi. In the following, we prove a prior with this property for the univariate case,

and speculate how the same can be achieved in the multivariate case.

To make this discussion precise, we make explicit a probability space (Ω,F ,P) and

recall the fundamental definitions of sample continuity and sample differentiability for a

random field X : I × Ω → R defined on an open, pathwise-connected set I ⊆ R
d (i.e. I is

an interval when d = 1):

Definition 23 (Sample Continuity). X is said to be sample continuous if, for P-almost

all ω ∈ Ω, the sample path X(·, ω) is continuous (everywhere) in I.

Definition 24 (Sample Differentiability). Let v1, . . . , vp ∈ Rd be a sequence of directions

and v = (v1, . . . , vp). Then X is said to be sample partial differentiable in the sequence of

directions v if for P-almost all ω ∈ Ω, the following limit exists for all z ∈ I

DpX(z, v, ω) = lim
h1→0

. . . lim
hp→0

∆pX(z, v, h, ω)∏p
i=1 hi

<∞

where

∆pX(z, v, h, ω) :=
∑

r∈{0,1}p
(−1)p−

∑p
i=1 riX

(
z +

p∑
i=1

rihiv
i, ω

)
.

The limits above are taken sequentially from left to right. In the discussions that follow, we

take vi ∈ {e1, e2, . . . , ed}, the standard Cartesian unit basis vectors of Rd, in which case the

usual partial derivatives are retrieved, and we use the shorthand DpX(z, v, ω) = ∂αX(z, ω)

to denote sample partial derivatives, where α = (α1, . . . , αp), |α| = p, and αi denotes the

number of times the variable zi is differentiated.

A similar property, which is more easily studied than sample continuity (resp. sample

differentiability), is mean-square continuity (resp. mean-square differentiability). This

property is recalled next, since we will make use of mean-square properties en route to

establishing sample path properties in Section 5.3.2.

Definition 25 (Mean-Square Continuity). X is said to be mean-square continuous at

z ∈ I if

E
[
X(z, ω)2

]
<∞, lim

z′→z
E
[
(X(z′, ω)−X(z, ω))2

]
= 0.

Definition 26 (Mean-Square Differentiability). Let v1, . . . , vp ∈ R
d be a sequence of

directions and v = (v1, . . . , vp). Then X is said to be mean-square partial differentiable at

z ∈ I in the sequence of directions v if there exists a finite random field ω 7→ Dp
msX(z, v, ω)
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such that

lim
h1→0

. . . lim
hp→0

E

[(
∆pX(z, v, h, ω)∏p

i=1 hi
−Dp

msX(z, v, ω)

)2
]
= 0

is well-defined.

For a mean-square differentiable Gaussian processes X, with mean function µ ∈ Cα(I)

and covariance function Σ ∈ C(α,α)(I × I), one has

∂αmsX ∼ GP(∂αµ, ∂α∂̄αΣ)

where we use the shorthand Dp
msX(z, v, ω) = ∂αmsX(z, ω) to denote mean-square partial

derivatives, where again the vi are unit vectors parallel to the coordinate axes, |α| = p, and

αi denotes the number of times the variable zi is differentiated.
3 See Stein (1999, Section

2.6). If X is mean-square continuous (resp. mean-square differentiable for all α ≤ β) at all

z ∈ I, then we say simply that X is mean-square continuous (resp. order β mean-square

differentiable ). In contrast to sample path properties, mean-square properties are often

straight-forward to establish. In particular, if X is weakly stationary with autocovariance

function Σ(z) = Σ(z, 0), then

E
[
(X(z, ω)−X(z′, ω))2

]
= 2(Σ(0)−Σ(z − z′)), (5.5)

meaning that X is mean-square continuous whenever its autocovariance function Σ is

continuous at 0 (Stein, 1999, Section 2.4).

5.3.2 Matérn Covariance Function

Surprisingly, we are unable to find explicit results in the literature for the sample path

properties of commonly used covariance models; this is likely due to the comparative tech-

nical difficulty in establishing sample path properties compared to mean-square properties.

In this section, we furnish a gap in the literature by rigorously establishing the sample dif-

ferentiability properties of Gaussian processes defined by the Matérn covariance function,

in the univariate case.

Definition 27 (Matérn Covariance). Let ν = p+ 1
2 where p ∈ N. The Matérn covariance

function is defined, for z, z′ ∈ R, as

Kν(z, z
′) = Kν(z − z′) = σ2 exp

(
−|z − z′|

ρ

)
p!

(2p)!

p∑
k=0

(2p− k)!

(p− k)!k!

(
2

ρ

)k

|z − z′|k. (5.6)

3The shorthand notation surpresses the order in which derivatives are taken, and can therefore only be
applied in situations where partial derivatives are continuous, to ensure that their order can be interchanged
without affecting the result. In the following, the notation ∂α

msX is used only for Gaussian processes with
∂α∂̄αΣ ∈ C(I × I).
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Proposition 5.1 (Mean-Square Differentiability of Univariate Matérn). Let I ⊆ R be

an open set and let µ ∈ Cp(I). Then any process X ∼ GP(µ,Kν), with Kν as in (5.6)

with ν = p+ 1
2 , is order p mean-square differentiable. Furthermore, ∂pmsX is mean-square

continuous.

Proof of Proposition 5.1. The assumed regularity of µ, being an element of Cp(I), implies

that X and X−µ have identical differentiability properties up to order p, and we therefore

assume µ = 0 for simplicity in the remainder.

The mean square differentiability of the Matérn covariance function has been well-

documented. In particular, because of the stationarity of the Matérn covariance function,

X is order p mean-square differentiable if and only if K
(p,p)
ν (0, 0) = (−1)pK

(2p)
ν (0) exists

and is finite, and the Matérn covariance function with parameter ν is 2p times differentiable

if and only if ν > p; see Section 2 of Stein (1999). This establishes existence of the mean-

square derivative ∂
(p)
msX.

It remains to prove that ∂
(p)
msX is mean-square continuous. From the discussion in

(5.5), ∂
(p)
msX is mean-square continuous if and only if its autocovariance function, K

(2p)
ν , is

continuous at 0. Let h = z − z′ and Kν(h) = f(h)g(h) where

f(h) = σ2 exp

(
−|h|
ρ

)
p!

(2p)!
, g(h) =

p∑
k=0

(2p− k)!

(p− k)!k!

(
2

ρ

)k

|h|k

so that, by Leibniz’s generalised product rule, for m ∈ N0,

K(m)
ν (h) =

m∑
n=0

(
m

n

)
f (m−n)(h)g(n)(h).

One can verify that, for n ∈ {0, 1, . . . ,m},

f (m−n)(h) =

{
(−1)m−n

ρm−n σ2 exp(−h
ρ )

p!
(2p)! h > 0

1
ρm−nσ

2 exp(−−hρ ) p!
(2p)! h < 0

g(n)(h) =


∑p−n

k=0
(2p−n−k)!
(p−n−k)!k!(

2
ρ)

n+khk h > 0, n ≤ p

(−1)n
∑p−n

k=0
(2p−n−k)!
(p−n−k)!k!(

2
ρ)

n+k(−h)k h < 0, n ≤ p

0 h ̸= 0, n > p

from which it follows that

67



Chapter 5. Approximate Bayesian Inference for Partial Differential Equations

lim
h↓0

K(2p)
ν (h) =

p!

(2p)!
σ2

p∑
n=0

(
2p

n

)
(2p− n)!

(p− n)!

(−1)2p−n

ρ2p−n

(
2

ρ

)n

=
σ2

ρ2p

p∑
n=0

(
p

n

)
(−1)2p−n2n = (−1)p

σ2

ρ2p
(2− 1)p = (−1)p

σ2

ρ2p

and an analogous calculation shows

lim
h↑0

K(2p)
ν (h) = (−1)p

σ2

ρ2p
.

Finally, we must check that the value K
(2p)
ν (0) agrees with the two limits just derived.

K
(2p−1)
ν (h) is continuously differentiable, so K

(2p−1)
ν (0) = 0 because it is an odd function

(as it is an odd derivative of an even function Kν). Thus we have that

K(2p)
ν (0) = lim

h→0

K
(2p−1)
ν (h)−K

(2p−1)
ν (0)

h
= lim

h→0

K
(2p−1)
ν (h)

h

= lim
h→0

p!

(2p)!
σ2 exp

(
−|h|
ρ

) p−1∑
n=0

(
2p− 1

n

)
(2p− n− 1)!

(p− n− 1)!

(−1)2p−1−n

ρ2p−1−n

(
2

ρ

)n+1

+O(h)

= (−1)pσ2
p−1∑
n=0

(
p− 1

n

)
(−1)p−1−n2n

ρ2p
= (−1)p

σ2

ρ2p
(2− 1)p−1 = (−1)p

σ2

ρ2p

as required.

Following a general approach outlined in Potthoff (2010), and focussing initially on

the univariate case, our first step toward establishing sample differentiability is to es-

tablish sample continuity of the mean-square derivatives. Recall that, for two stochastic

processes X, X̃ on a domain I, we say X̃ is a modification of X if, for every z ∈ I,

P(X(z, ω) = X̃(z, ω)) = 1. A modification of a stochastic process does not change its

mean square properties, but sample path properties need not be invariant to modifica-

tion.4 For Gaussian processes, which are characterised up to modifications by their finite

dimensional distributions, it is standard practice to work with continuous modifications

when they exist (see for example Dudley, 1967; Marcus & Shepp, 1972).

Proposition 5.2. Let X be as in Proposition 5.1. Then ∂imsX has a modification that is

sample continuous for all 0 ≤ i ≤ p.

4To build intuition into the role of modifications, let X : [0, 1]×Ω → R be a sample continuous stochastic
process and consider the process X̃(z, ω) := X(z, ω) + 1[z = Z(ω)] where Z ∼ U(0, 1), independent of X.
Then X̃ is a modification of X whose finite dimensional distributions (and hence mean square properties)
are identical to those of X, but X̃ is almost surely not sample continuous. In such circumstances it is
convenient (and standard practice) to work with the sample continuous process, X, as opposed to X̃.
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As in the proof of Proposition 5.1, the assumed regularity of µ, being an element of

Cp(I), implies that X and X−µ have identical differentiability properties up to pth order,

and we may therefore assume µ = 0.

Our main tool is the Kolmogorov continuity theorem (see for example Kunita (1997),

Section 1.4):

Theorem 5.1 (Kolmogorov’s Continuity Theorem). Let I ⊆ R
d be an open set, and let

z be a dense subset of I. Let X : I × Ω → R be a random field. If there exists constants

α, β, C > 0 such that

E
[
|X(z, ω)−X(z′, ω)|α

]
≤ C∥z − z′∥d+β

for all z, z′ ∈ z, then there exists a modification of X that is sample continuous.

Lemma 5.2. Let I ⊆ R
d be an open set and suppose that a positive definite function

Σ : I × I → R satisfies

Σ(z, z) +Σ(z′, z′)− 2Σ(z, z′) ≤ C∥z − z′∥γ

for some γ,C ∈ (0,∞) and all z, z′ ∈ I. Let X ∼ GP(0, Σ). Then there exists a modifi-

cation of X that is sample continuous.

Proof of Lemma 5.2. Notice that

Σ(z, z) +Σ(z′, z′)− 2Σ(z, z′) = E[(X(z, ω)−X(z′, ω))2],

so if γ > d then the required result follows from Kolmogorov’s continuity theorem (The-

orem 5.1, with α = 2). If not, then we can consider higher order moments via Isserlis’s

theorem: For n ∈ N,

E[(X(z, ω)−X(z′, ω))2n] =
(2n)!

2nn!
(E[(X(z, ω)−X(z′, ω))2])n

and thus, with any n > d/γ, we have

E[(X(z, ω)−X(z′, ω))2n] ≤ (2n)!

2nn!
Cn∥z − z′∥γn ≤ C̃∥z − z′∥d+β

with C̃ = (2n)!
2nn!C

n and β = γn− d. The result then follows from Kolmogorov’s continuity

theorem (Theorem 5.1, with α = 2n).

Proof of Proposition 5.2. Our aim is to show that ∂
(i)
msX satisfies the preconditions of

Lemma 5.2. This process has covariance function K
(i,i)
ν (z, z′) = (−1)iK

(2i)
ν (z − z′). From
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stationarity we have, with h = z − z′,

K(2i)
ν (z, z) +K(2i)

ν (z′, z′)− 2K(2i)
ν (z, z′) = 2K(2i)

ν (0)− 2K(2i)
ν (h).

From similar calculations to those performed in the proof of Proposition 5.1, we have

that for all 0 ≤ i ≤ p,

−2K(2i)
ν (h) =

2σ2p!

(2p)!
exp

(
−|h|
ρ

)min(2i,p)∑
n=0

p−n∑
k=0

(
2i

n

)
(2p− n− k)!

(p− n− k)!k!

(−1)2i−n+1

ρ2i−n

(
2

ρ

)n+k

|h|k

= exp

(
−|h|
ρ

) p∑
k=0

ak|h|k

for some real coefficients ak. Therefore:

|2K(2i)
ν (0)− 2K(2i)

ν (h)| =
∣∣∣∣∣a0 − a0 exp

(
−|h|
ρ

)
− exp

(
−|h|
ρ

) p∑
k=1

ak|h|k
∣∣∣∣∣

≤
∣∣∣∣a0 − a0 exp

(
−|h|
ρ

)∣∣∣∣+
∣∣∣∣∣exp

(
−|h|
ρ

) p∑
k=1

ak|h|k
∣∣∣∣∣ (5.7)

This final term can be upper bounded by an expression of the form C|h|γ for sufficiently

large C > 0 and γ = 1. Indeed, as h → 0 the behaviour of (5.7) is O(|h|). As |h| → ∞
the exponential term dominates and (5.7) decays to a0. In the region 0 < |h| < ∞, (5.7)

is smooth. Thus we can use Lemma 5.2 to conclude that ∂
(i)
msX has a modification that is

sample continuous.

The second step is to leverage a fundamental result on the sample path properties of

stochastic processes.

Theorem 5.2 (Criterion for Sample Differentiability; Theorem 3.2 of Potthoff (2010)). Let

I ⊆ R
d be an open, pathwise connected set, and consider a random field X : I×Ω → R such

that E[X(z, ω)2] < ∞ for all z ∈ I. Suppose X is first order mean-square differentiable,

with mean-square partial derivatives D1
msX(·, ek, ω), 1 ≤ k ≤ d, themselves being mean-

square continuous and having modifications that are sample continuous. Then X has a

modification X̃ that is first order sample partial differentiable, with partial derivatives

D1X̃(·, ek, ω), 1 ≤ k ≤ d, themselves being sample continuous and satisfying, almost

surely, D1X̃(·, ek, ω) = D1
msX(·, ek, ω), 1 ≤ k ≤ d.

Since continuity of partial derivatives implies differentiability, the conclusion of Theo-

rem 5.2 implies that X is first order sample differentiable. In particular, the existence of

continuous mean square partial derivatives, and sample continuous modifications of those
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mean square partial derivatives is sufficient to imply the existence of a modification with

continuous sample partial derivatives.

Iterative application of Theorem 5.2 to higher order derivatives provides the following.

Corollary 5.1. Fix p ∈ N. Let I ⊆ R
d be an open, pathwise connected set and consider

X ∼ GP(µ,Σ) with µ ∈ Cp(I) and Σ ∈ C(p,p)(I × I), so that X has mean-square partial

derivatives ∂βmsX, β ∈ N
d
0, |β| ≤ p. Suppose ∂βmsX is mean-square continuous and sample

continuous for all |β| ≤ p. Then X has continuous sample partial derivatives ∂βX, and

they satisfy ∂βX = ∂βmsX almost surely, for all |β| ≤ p.

For p = 1 the result is immediate from Theorem 5.2, so in what follows we concentrate

on p > 1.

The main technical challenge of this proof is to deal with modifications, which arise with

each application of Theorem 5.2. Recall that two stochastic processes X and X̃ are said to

be indistinguishable if P(X(z, ω) = X̃(z, ω) ∀z ∈ I) = 1. If X and X̃ are modifications of

each other and each is sample continuous, then X and X̃ are indistinguishable (Jeanblanc

et al., 2009, Section 1.1).

Proof of Corollary 5.1. We first present a proof for d = 1, to improve transparency of the

argument, then we present the argument for the general case d ≥ 1. Note that, since we

are considering Gaussian processes, the requirement for a second moment in Theorem 5.2

is automatically satisfied.

For each 0 ≤ i < p, it is assumed that ∂imsX has mean square derivative ∂i+1
ms X that

is mean square continuous and sample continuous. Theorem 5.2 therefore implies that

each ∂imsX has a modification, denoted ψi, that is sample continuously differentiable, and

satisfying ∂ψi = ∂i+1
ms X almost surely. Since ψi and ∂

i
msX are sample continuous they are

indistinguishable; i.e. almost surely ψi = ∂imsX. It follows that, for each 0 ≤ i < p, we

have almost surely that ∂iψ0 = ∂i−1(∂ψ0) = ∂i−1ψ1 = · · · = ψi, while for i = p we have

that ∂pψ0 = ∂ψp−1 = ∂pmsX.

The case d ≥ 1 is analogous with more notation is involved; though, since we assumed

Σ ∈ C(p,p)(I × I) we may employ the shorthand notation ∂βmsX for all |β| ≤ p (since the

order of derivatives can be freely interchanged). For each 0 ≤ i < p and |β| = i, it is

assumed that ∂βmsX has mean square partial derivatives ∂β+γ
ms X, |γ| = 1, that are mean

square continuous and sample continuous. Theorem 5.2 therefore implies that each ∂βmsX

has a modification, denoted ψβ, that is sample continuously differentiable, and satisfying

∂γψβ = ∂β+γ
ms X almost surely for all |γ| = 1. Since ψβ and ∂βmsX are sample continuous

they are indistinguishable; i.e. almost surely ψβ = ∂βmsX. It follows that, for each 0 ≤ i < p

and |β| = i, we have almost surely that ∂βψ0 = ψβ, while for and |β| = p we have that

∂βψ0 = ∂βmsX.
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This provides a strategy to establish sample properties of Matérn processes, such as the

following:

Corollary 5.2 (Sample Differentiability of Univariate Matérn). Let I ⊆ R be an open

interval and let X ∼ GP(µ,Kν), with µ ∈ Cp(I) and Kν as in (5.6). Then there exists a

modification X̃ of X such that P(X̃ ∈ Cp(I)) = 1.

Proof. By Proposition 5.1, X is order p mean-square differentiable and ∂imsX is mean-

square continuous for 0 ≤ i ≤ p. By Proposition 5.2, we may work with a modification X̃

of X such that ∂imsX̃(= ∂imsX) is sample continuous for each 0 ≤ i ≤ p. One can directly

verify that Kν ∈ C(p,p)(I × I); see the calculations in Proposition 5.1. The result then

follows from Corollary 5.1.

Corollary 5.2 is stronger than existing results in the literature, the most relevant of which

is Scheuerer (2010, Theorem 5), who showed that samples from GP(µ,Kν+ϵ) are Cp(I)

for any ϵ > 0.

Finally, we conjecture a multivariate version of the previous result, which intuitively

allow for different smoothness in the different variables, which is necessary to properly

capture the regularity of solutions to PDEs.

Conjecture 5.1 (Sample Differentiability of Matérn Tensor Product). Let I = (a1, b1)×
· · · × (ad, bd) be a bounded hyper-rectangle in Rd. Fix β ∈ N

d
0. Let µ ∈ Cβ(I) be bounded

in I, and consider a covariance function Σ : I × I → R of the form

Σ(z, z′) =
d∏

i=1

Kνi(zi − z′i)

where z = (z1, z2, . . . , zd), z
′ = (z′1, z

′
2, . . . , z

′
d) and νi = βi +

1
2 for each i = 1, . . . , d.

Then a Gaussian process of the form X ∼ GP(µ,Σ) has a modification X̃ that satisfies

P(X̃ ∈ Cβ(I)) = 1.

We do not provide a proof to this result. However, we note that the Matérn Ten-

sor Product process possess continuous (in the mean square sense) mean square partial

derivatives of the desired orders by construction, and those mean squared partial deriva-

tives also possess continuous modifications by Kolmogorov’s continuity theorem, which

is straightforward to verify using the univariate calculations performed in the proofs of

Proposition 5.2. These two conditions were sufficient to imply the existence of a modi-

fication with continuous sample partial derivatives via Theorem 5.2, in the case of first

order partial derivatives. So we speculate with a suitable analogue of Theorem 5.2, one

can similarly show the samples of the Matérn Tensor Product almost surely lies in Cβ(I).

While we do not offer a proof for Conjecture 5.1, we hope that the theoretical analysis in
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this section motivates our use of the Matérn Tensor Product ‘in spirit’ as prior choice for

our proposed probabilistic numerical method for PDEs.

5.4 Experimental Assessment

In this section, proof-of-concept numerical studies of three different initial value problems

are presented. The first and simplest case is a homogeneous Burger’s equation, a PDE

with one nonlinear term and a solution that is known to be smooth. The second case is a

porous medium equation, with two nonlinear terms appearing in the PDE and a solution

that is known to be piecewise smooth, so that a classical solution does not exist and our

modelling assumptions are violated. The third case returns to Burger’s equation but now

with forcing, to simulate a scenario where the right hand side f is a black box function

that may be evaluated at a high computational cost. All three experiments are synthetic,

in the sense that the functions f , g and h, which in our motivating task are considered

to be black boxes associated with a high computational cost, are in actual fact simple

analytic expressions, enabling a thorough empirical assessment to be performed.

In order to assess the empirical performance of our algorithm, two distinct performance

measures were employed. The first of these aims to assess the accuracy of the posterior

mean, which is analogous to how classical numerical methods are assessed. For this purpose

the L∞ error was considered:

E∞ := sup
t∈[0,T ],x∈Γ

|µn(t, x)− u(t, x)| (5.8)

In practice the value of (5.8) is approximated by taking the maximum over the grid t× x

on which the data y0, . . . ,yn−1 were obtained. Accuracy that is comparable to a classical

numerical method is of course desirable, but it is not our goal to compete with classical

numerical methods in terms of L∞ error. The second statistic that we consider assesses

whether the distributional output from our PNM is calibrated, in the sense that the scale

of the Gaussian posterior is comparable with the difference between the posterior mean

µn and the true solution u of (5.1):

Z := sup
t∈[0,T ],x∈Γ

|µn(t, x)− u(t, x)|
σ̂Σn(t, x)1/2

(5.9)

This performance measure will be called a Z-score, in analogy with traditional terminology

from statistics. For the purpose of this exploratory work, values of Z that are orders

of magnitude smaller than 1 are interpreted as indicating that the distributional output

from the PNM is under-confident, while values that are orders of magnitude greater than 1

indicate that the PNM is over-confident. A PNM that is neither under nor over confident is
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said to be calibrated (precise definitions of the term “calibrated” can be found in Karvonen

et al., 2020; Cockayne et al., 2021, but the results we present are straight-forward to

interpret using the informal approach just described). Our goal in this work is to develop

an approximately Bayesian PNM for nonlinear PDEs that is both accurate and calibrated.

Again, in practice the supremum in (5.9) is approximated by the maximum over the t×x

grid.

For all experiments below, we consider uniform temporal and spatial grids of respective

sizes n = 2i+1, m = 2j +1, where i, j ∈ {2, 3, 4, 5, 6, 7}. This ensures that the grid points

at which data are obtained are strictly nested as either the temporal exponent i or the

spatial exponent j are increased. The prior mean µ(t, x) = 0 for all t ∈ [0, T ], x ∈ Γ , will

be used throughout.

Code to reproduce the numerical results in this section can be found at

https://github.com/jwang727/Thesiscode. Examples were implemented in Python.

5.4.1 Homogeneous Burger’s Equation

Our first example is the homogeneous Burger’s equation

∂u

∂t
+ u

∂u

∂x
− α

∂2u

∂x2
= 0, t ∈ [0, T ], x ∈ [0, L]

with initial and boundary conditions

u(0, x) = 2α
( aksin(kx)

b+ acos(kx)

)
, x ∈ [0, L]

u(t, 0) = u(t, 2π) = 0, t ∈ [0, T ]

and, for our experiments, α = 0.02, a = 1, b = 2, k = 1, T = 30 and L = 2π. These initial

and boundary conditions were chosen because they permit a closed-form solution

u(t, x) = 2α
( akexp(−αk2t)sin(kx)
b+ aexp(−αk2t)cos(kx)

)
(5.10)

that can be used as a ground truth for our assessment.

To linearise the differential operator Burger’s equation we consider approximations of

the form in (5.2), i.e.

Qiu(ti, x) := ui−1(x)
∂u

∂x
(ti, x)

where ui−1(x) was taken equal to the predictive mean µi−1(ti, x) arising from the Gaussian

process approximation U i−1.
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Default Prior: Burger’s equation has a first order temporal derivative term and a sec-

ond order spatial derivative term, so following the discussion in Section 5.3 we consider as

a default a Gaussian process prior with covariance function Σ that is a product between

a Matérn 3/2 kernel K3/2(t, t
′) for the temporal component, and a Matérn 5/2 kernel

K5/2(x, x
′) for the spatial component:

Σ((t, x), (t′, x′)) = K3/2(t, t
′; ρ1, σ1)K5/2(x, x

′; ρ2, σ2) (5.11)

The notation in (5.11) makes explicit the dependence on the amplitude hyper-parameters

σ1, σ2 and the length-scale hyper-parameters ρ1, ρ2; note that only the product σ := σ1σ2 of

the two amplitide parameters is required to be specified. For the experiments below σ was

estimated as per (5.4), while the length-scale parameters were fixed at values ρ1 = 6/
√
3,

ρ2 = 3/
√
5 (not optimised; these were selected based on a post-hoc visual check of the

credible sets in Figure 5.1). Typical output from our PNM equipped with the default

prior is presented in Figure 5.1.

An Alternative Prior: The Matérn covariance models assume only the minimal amount

of smoothness required for the PDE to be well-defined. However, in this assessment the

ground truth u is available (5.10) and is seen to be infinitely differentiable in (0, T ]×[0, 2π].

It is therefore interesting to explore whether a prior that encodes additional smoothness

can improve on the default prior in (5.11). A prototypical example of such a prior is

Σ((t, x), (t′, x′)) = C(t, t′; ρ3, σ3)C(x, x
′; ρ4, σ4)

where

C(z, z′; ρ, σ) := σ

(
1 +

(z − z′)2

ρ2

)−1
is the rational quadratic covariance model. For the experiments below σ was estimated as

per (5.4), while the length-scale parameters were fixed at values ρ3 =
√
3, ρ4 =

√
3.

Results: The error E∞ was computed at 36 combinations of temporal and spatial grid

sizes (n,m) and results for the default prior are displayed in the top row of Figure 5.2. It

can be seen that the error E∞ is mostly determined, in this example, by the finite length n

of the temporal grid rather than the length m of the spatial grid. The slope of the curves

in Figure 5.2 is consistent with a convergence rate of O(n−1) for the error E∞ when spatial

discretisation is neglected. The Z-scores associated with the default prior (bottom row of

Figure 5.2) appear to be bounded as (n,m) are increased, tending toward 0 but taking

values of order 1 for all regimes, except for the smallest value (m = 5) of the spatial grid.

This provides evidence that our proposed PNM, equipped with the default prior, is either
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Figure 5.1: Homogeneous Burger’s equation: For each point (t, x) in the domain we plot: the
analytic solution u(t, x) (blue), the posterior mean µn(t, x) (red) from the proposed probabilistic
numerical method, and 0.025 and 0.975 quantiles of the posterior distribution at each point (or-
ange). Here the default prior was used, with a spatial grid of size m = 65 and a temporal grid of
size n = 65.

calibrated or slightly under-confident but, crucially from a statistical perspective, it is not

over-confident.

Equivalent results for the alternative covariance model are presented for the error E∞

in the top row of Figure 5.3 and for the Z-score in the bottom row of Figure 5.3. Here the

error E∞ is again gated by the size n of the temporal grid and decreases at a faster rate

compared to when the default prior was used. The Z-scores associated with the alternative

covariance model are larger for small values of N and M , but also taking values of order 1

for large values of N and M , while remaining slightly larger than the default prior. This

suggests the rational quadratic covariance model could be preferable for the homogeneous

Burger’s equation as it achieves lower error while being only slightly more overconfident

for large values of N and M , perhaps because the rational quadratic covariance model

reflects the true smoothness of the solution better than the Matérn model.
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Figure 5.2: Homogeneous Burger’s equation, default prior: For each pair (n,m) of temporal (n)
and spatial (m) grid sizes considered, we plot: (top left) the error E∞ for fixed m and varying
n; (top right) the error E∞ for fixed n and varying m; (bottom left) the Z-score for fixed m and
varying n; (bottom right) the Z-score for fixed n and varying m.

5.4.2 Porous Medium Equation

Our second example is the porous medium equation

∂u

∂t
− ∂2(uk)

∂x2
= 0, t ∈ [t0, t0 + T ], x ∈ [−L/2, L/2], (5.12)

which is more challenging compared to Burger’s equation because the solution is only piece-

wise smooth, meaning that a strong solution does not exist and our modelling assumptions

are violated. Furthermore, there are two distinct nonlinearities in the differential operator,

allowing us to explore the impact of the choice of linearisation on the performance of the

PNM. For our experiment we fix k = 2, so that the porous medium equation becomes

∂u

∂t
− 2

(
∂u

∂x

)2

− 2u
∂2u

∂x2
= 0, t ∈ [t0, t0 + T ], x ∈ [−L/2, L/2],
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Figure 5.3: Homogeneous Burger’s equation, alternative prior: For each pair (n,m) of temporal
(n) and spatial (m) grid sizes considered, we plot: (top left) the error E∞ for fixed m and varying
n; (top right) the error E∞ for fixed n and varying m; (bottom left) the Z-score for fixed m and
varying n; (bottom right) the Z-score for fixed n and varying m.

and we consider the initial and boundary conditions

u(t0, x) = t
−1/3
0 max(0, 1− x2/(12t

2/3
0 )), x ∈ [−L/2, L/2]

u(t,−L/2) = u(t, L/2) = 0, t ∈ [t0, t0 + T ]

with t0 = 2, T = 8, L/2 = 10. These initial and boundary conditions were chosen because

they permit a (unique) closed-form solution, due to Barenblatt (1952):

u(t, x) = max

(
0,

1

t1/3

(
1− 1

12

x2

t2/3

))
The solution is therefore only piecewise smooth, with discontinuous first derivatives at

x2 = 12t2/3, which are inside of the domain [−L/2, L/2] for all t ∈ [t0, t0 + T ].

Prior: Henceforth we consider the default prior advocated in Section 5.3 and Sec-

tion 5.4.1, with amplitude σ estimated using maximum likelihood and length-scale pa-
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rameters fixed at values ρ1 = 1/
√
3, ρ2 = 2/

√
5 (not optimised; based on a simple post-hoc

visual check).

Choice of Linearisation: The differential operator here contains the nonlinear compo-

nent Qu = (∂xu)
2 + u∂2xu that must be linearised. The first term (∂xu)

2 is the product of

two identical terms, so we linearise it by fixing one of the ∂xu to suitable constant values

adaptively based on quantities that have been pre-computed. The second term u∂2xu can

be linearised in at least two distinct ways, fixing either u or ∂2xu to suitable constant values

adaptively based on quantities that have been pre-computed. Thus we consider the two

linearisations

Q
(1)
i u(ti, x) :=

∂µi−1

∂x
(ti, x)

∂u

∂x
(ti, x) + µi−1(ti, x)

∂2u

∂x2
(ti, x)

Q
(2)
i u(ti, x) :=

∂µi−1

∂x
(ti, x)

∂u

∂x
(ti, x) + u(ti, x)

∂2µi−1

∂x2
(ti, x)

where we recall that µi−1(ti, x) is the predictive mean arising from the Gaussian process

approximation U i−1. Through simulation we aim to discover which (if either) linearisation

is more appropriate for use in our PNM.

Conservation of Mass: In addition to admitting multiple linearisations, we consider

the porous medium equation because when k > 1 it exhibits a conservation law, which

is typical of many nonlinear PDEs that are physically-motivated. Specifically, integrating

(5.12) with respect to x gives

d

dt

∫ L/2

−L/2
u(t, x) dx− ∂(uk)

∂x

∣∣∣L/2
−L/2

= 0

and, from the fact that u = 0 for all x2 ≥ 12t2/3, it follows that ∂x(u
k) = kuk−1∂xu = 0 for

all x2 ≥ 12t2/3 and thus
∫ L/2
−L/2 u(t, x)dx is t-invariant. A desirable property of a numerial

method is that it respects conservations law of this kind; as exemplified by the finite volume

methods (LeVeque, 2002) and symplectic integrators (Sanz-Serna, 1992). Interestingly, it

is quite straight-forward to enforce this conservation law in our PNM by adding additional

linear constraints to the system in Lemma 5.1. Namely, we add the linear constaints∫ L/2

−L/2
u(ti, x)dx =

∫ L/2

−L/2
u(t0, x)dx = 4(3

1
2 − 3−

1
2 )

at each point i ∈ {1, . . . , n− 1} on the temporal grid. The performance of our PNM both

with and without conservation of mass will be considered.
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Figure 5.4: Porous medium equation, with linearisation Q(1): For each pair (n,m) of temporal (n)
and spatial (m) grid sizes considered, we plot: (top left) the error E∞ for fixed m and varying
n; (top right) the error E∞ for fixed n and varying m; (bottom left) the Z-score for fixed m and
varying n; (bottom right) the Z-score for fixed n and varying m.
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Figure 5.5: Porous medium equation, with linearisation Q(2): For each pair (n,m) of temporal (n)
and spatial (m) grid sizes considered, we plot: (left) the Z-score for fixed m and varying n; (right)
the Z-score for fixed n and varying m.
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Figure 5.6: Porous medium equation, with mass conserved: For each pair (n,m) of temporal (n)
and spatial (m) grid sizes considered, we plot: (top left) the error E∞ for fixed m and varying
n; (top right) the error E∞ for fixed n and varying m; (bottom left) the Z-score for fixed m and
varying n; (bottom right) the Z-score for fixed n and varying m.

Results: Empirical results based on the linearisationQ(1) (without conservation of mass)

are contained in Figure 5.4. In this case (and in contrast to our results for Burger’s

equation in Section 5.4.1), the error E∞ is seen to be gated by the smaller of the finite

length n of the temporal grid and the length m of the spatial grid. The Z-score values

appear to be of order 1 as (n,m) are simultaneously increased, but are higher than for

Burger’s equation, which may reflect the fact that the solution to the porous medium

equation is only piecewise smooth. For increasing n with m fixed the PNM appears to

become over-confident, while for increasing m with n fixed the PNM appears to become

under-confident; a conservative choice would therefore be to take m ≥ n.

Next we compared the performance of the linearisation Q(1) with the linearisation

Q(2). The error E∞ associated to Q(2) (not shown) was larger than the error of Q(1), and

the Z-scores for Q(2) are displayed in Figure 5.5. Our objective is to quantify numerical

uncertainty, so it is essential that output from the PNM is calibrated. Unfortunately, it can

be seen that the Z-scores associated with Q(2) are unsatisfactory; for large m the scores
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are two orders of magnitude larger than 1, indicating that the PNM is over-confident. The

failure of Q(2) to provide calibrated output is likely due to the fact that approximation

of the second order derivative term ∂2xu is more challenging compared to approximation

of the solution u, since ∂2x is less regular than u and since our initial and boundary data

relate directly to u itself.

Finally we considered inclusion of the conservation law into the PNM. For this purpose

we used the best-performing linearisation Q(1). The errors E∞ and Z-scores are shown

in Figure 5.6 and can be compared to the equivalent results without the conservation law

applied, in Figure 5.4. It can be seen that the error E∞ is lower when the conservation

law is applied, and moreover the Z-scores are slightly reduced, remaining order 1. These

results agree with the intuition that incorporating additional physical constraints, when

they are known, can have a positive impact on the performance of our PNM.

5.4.3 Forced Burger’s Equation

Our final experiment concerns a nonlinear PDE whose right hand side f is considered to

be a black box, associated with a substantial computational cost. To avoid confounding

due to the choice of differential operator, we consider again the differential operator from

Burger’s equation

∂u

∂t
+ u

∂u

∂x
− α

∂2u

∂x2
= f(t, x), t ∈ [0, T ], x ∈ [0, L], (5.13)

for which the behaviour of our PNM was studied in Section 5.4.1 (in the case f = 0). The

initial and boundary conditions are

u(0, x) = 0, x ∈ [0, L]

u(t, 0) = u(t, L) = 0, t ∈ [0, T ]

and we set α = 1, T = 30, L = 1. The aims of this experiment are two-fold: Our first

aim is to evaluate the performance of our PNM when the function f is non-trivial (e.g.

involving oscillatory behaviour), to understand whether the output from our PNM remains

calibrated or not. Recall that our experiments are synthetic, meaning that the black box

f is in actual fact an analytic expression, in this case

f(t, x) := 10 sin(6πx) cos(πt/10) + 2 |sin(3πx) cos(πt/10)| ,

enabling a thorough assessment to be performed. This forcing term is deliberately chosen

to have some non-smoothness (from the absolute value function) and oscillatory behaviour,

as might be encountered in output from a complex computer model. Our second aim is

to compare the accuracy of our PNM against a classical numerical method whose compu-
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tational budget (as quantified by the number of times f is evaluated) is identical to our

PNM.

The solution to (5.13) does not admit a closed form, so for our ground truth we

used a numerical solution computed using the MATLAB function pdepe, which implements

Skeel & Berzins (1990) based on a uniform spatial grid of size 512 and an adaptively

selected temporal grid. Our PNM was implemented with the same linearisation used in

Section 5.4.1.

Prior: Again we consider the default prior advocated in Section 5.3 and Section 5.4.1,

with amplitude σ estimated using maximum likelihood and length-scale parameters fixed

at values ρ1 = 0.5/
√
3, ρ2 = 0.5/

√
5 (not optimised; based on a simple post-hoc visual

check).

Crank–Nicolson Benchmark: In this scenario, where the black box function f is as-

sociated with a high computational cost, non-adaptive numerical methods are preferred,

to control the total computational cost. As discussed in Section 2.2 of Chapter 2, from a

classical perspective, the finite difference methods are natural candidates for the numer-

ical solution of (5.13). Finite difference methods are classified into explicit and implicit

schemes. Explicit schemes are much easier to solve but typically require certain conditions

to be met for numerical stability (Thomas, 1998, Table 5.3.1). For example, for the 2D

heat equation, it is required that ∆t/(α∆x2) +∆t/(α∆y2) ≤ 1/2, where α is the diffusiv-

ity constant, ∆t the time resolution, and ∆x,∆y the spatial resolutions (Thomas, 1998,

page 158). Such conditions, which require the spatial resolution to be much finer than

the time resolution, may be difficult to establish when f is a black box or when manual

selection of the solution grid is not possible. Implicit methods in general are more difficult

to solve, but stability is often guaranteed. For example, for the same 2D heat equation

problem, the Crank–Nicolson scheme (a second order, implicit method) is unconditionally

stable (Thomas, 1998, page 159). For these reasons, we considered the Crank–Nicolson

finite difference method (Crank & Nicolson, 1947) as a classical numerical method that is

well-suited to the task at hand. In the implementation of Crank-Nicolson on the inhomo-

geneous Burger’s equation, the nonlinear term is approximated via the use of lag nonlinear

terms (Thomas, 1998, page 140), as follows:
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ui+1
j − uij
∆t

=− 1

4∆x
[uij(u

i+1
j+1 − ui+1

j−1) + ui+1
j (uij+1 − uij−1)] (5.14)

+
α

2

(
uij+1 − 2uij + uij−1

∆x2
+
ui+1
j+1 − 2ui+1

j + ui+1
j−1

∆x2

)
+

1

2
(f((i+ 1)∆t, j∆x) + f(i∆t, j∆x))

This can be rearranged into:

−(r + puij)u
i+1
j−1 + (2r + 1 + puij+1 − puij−1)u

i+1
j + (−r + puij)u

i+1
j+1 (5.15)

= ruij+1 + (1− 2r)uij + ruij−1 +
∆t

2
(f((i+ 1)∆t, j∆x) + f(i∆t, j∆x))

where r = α∆t
2∆x2 , p =

∆t
4∆x , and can be solved via matrix form:


2r+1+pui

3−pui
1 −r+pui

2 ... ... ...

−(r+pui
3) (2r+1+pui

4−pui
2) −r+pui

3 ... ...

...
...

...
. . .

...
... ... −(r+pui

m−2) (2r+1+pui
m−1−pui

m−3) −r+pui
m−2

... ... ... −(r+pui
m−1) 2r+1+pui

m−pui
m−2




ui+1
2

ui+1
3

...
ui+1
m−2

ui+1
m−1

 =


(r+pui

2)u
i+1
1 +rui

3+(1−2r)ui
2+rui

1+
∆t
2
(f((i+1)∆t,2∆x)+f(i∆t,2∆x))

rui
4+(1−2r)ui

3+rui
2+

∆t
2
(f((i+1)∆t,3∆x)+f(i∆t,3∆x))

...
rui

m−1+(1−2r)ui
m−2+rui

m−3+
∆t
2
(f((i+1)∆t,(m−2)∆x)+f(i∆t,(m−2)∆x))

−(−r+pui
m−1)u

i+1
m +rui

m+(1−2r)ui
m−1+rui

m−2+
∆t
2
(f((i+1)∆t,(m−1)∆x)+f(i∆t,(m−1)∆x))


The same regular temporal grid t and regular spatial grid x were employed in both

Crank–Nicolson and our PNM, so that the computational costs for both methods (as

quantified in terms of the number of evaluations of f) are identical.

Results: The error E∞ and Z-scores for our PNM are displayed in Figure 5.7. The

error E∞ is seen to be gated by the size m of the spatial grid and decreases as (n,m)

are simultaneously increased. The Z-score values appear to be of order 1 as (n,m) are

simultaneously increased, but for increasing n with m fixed the PNM appears to become

over-confident; a conservative choice would be to take m ≥ n, which is also what we

concluded from the porous medium equation. These results suggest the output from

our PNM is reasonably well-calibrated. Finally, we considered the accuracy of our PNM

compared to the Crank–Nicolson benchmark. The error E∞ for Crank–Nicolson is jointly
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Figure 5.7: Forced Burger’s equation: For each pair (n,m) of temporal (n) and spatial (m) grid
sizes considered, we plot: (top left) the error E∞ for fixed m and varying n for our PNM; (top
right) the error E∞ for fixed n and varying m for our PNM; (middle left) the error E∞ for fixed
m and varying n, Crank–Nicolson method; (middle right) the error E∞ for fixed n and varying m,
Crank–Nicolson method; (bottom left) the Z-score for fixed m and varying n; (bottom right) the
Z-score for fixed n and varying m.

displayed in Figure 5.7, below the error plots for our PNM, and interestingly, it is generally

larger than the error obtained with our PNM. This provides reassurance that our PNM is

as accurate as could reasonably be expected.
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5.5 Conclusion

In this chapter, we presented the first approximate probabilistic numerical method for

nonlinear partial differential equations. Our method extends that of Chkrebtii et al. (2016)

by linearising the nonlinear differential operator. The proposed method also addressed an

important and under-studied problem in numerical analysis; the numerical solution of a

PDE under severe restrictions on evaluation of the initial, boundary and/or forcing terms

f , g and h in (5.1). Such restrictions occur when f , g and/or h are associated with

a computational cost, such as being output from a computationally intensive computer

model (Fulton, 2010; Hurrell et al., 2013) or arising as the solution to an auxiliary PDE

(MacNamara & Strang, 2016; Cockayne & Duncan, 2020). In many such cases it is not

possible to obtain an accurate approximation of the solution of the PDE, and at best

one can hope to describe trajectories that are compatible with the limited information

available on the PDE. To provide a principled resolution, we cast the numerical solution

of a nonlinear PDE as an inference problem within the Bayesian framework and proposed

a probabilistic numerical method (PNM) to infer the unknown solution of the PDE. This

approach enables formal quantification of numerical uncertainty, in such settings where

the solution of the PDE cannot be easily approximated.
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Conclusion

In this final chapter, we will examine and reflect upon the contributions made in the thesis

as well as potential future research directions.

6.1 Discussion and Reflection

As discussed in chapter 3, no exact Bayesian PNM had yet been previously proposed in

the sense of 1 outside of very specific, linear differential equations. To address this gap,

in chapter 4 we presented a proof-of-concept PNM for the numerical solution of ODEs.

However, the method is restricted to ODEs which admits a solvable Lie algebra, which

is a relatively small class of ODEs. Furthermore, despite the transformed ODE in the

canonical coordinates system is of the form where the gradient field no longer depends

on the solution, a linear Gaussian Process model could not be deployed as the Implicit

Prior Principle 1 is needed to ensure sample solutions in the canonical coordinates space

transformed back to well defined functions in the original ODE space. Our proof-of-concept

therefore indicates that exact Bayesian inference for ODEs may be extremely difficult.

This in turn provided further motivation for the continued development of ’approximate

Bayesian’ PNMs for the solution of differential equations, which encompasses the majority

of the work discussed in chapter 3.

In chapter 5 therefore, we presented the first approximate probabilistic numerical

method for nonlinear partial differential equations. Our method provides formal sta-

tistical uncertainty quantification for nonlinear PDEs, which is desirable when the initial,

boundary or RHS of the PDE are associated with a high computational cost, where it is

not possible to obtain an accurate approximation of the solution of the PDE. Our con-

tribution extends an active line of research into the development of PNM for a range of

challenging numerical tasks (see the survey in Hennig et al., 2015). A common feature

of these tasks is that their difficulty justifies the use of sophisticated statistical machin-
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ery, such as Gaussian processes, that themselves may be associated with a computational

cost. The PNM developed in chapter 5 has a complexity O(nm3) to approximate the final

state of the PDE, or O(n3m3) to approximate the full solution trajectory of the PDE.

This renders our PNM computationally intensive – potentially orders of magnitude slower

than a classical numerical method – but such increase in cost can be justified when the

demands of evaluating f , g and h (the right hand side of the PDE as well as the initial and

boundary conditions) exceed those of running the PNM (for example, when evaluation of

f requires simulation from a climate model Fulton, 2010; Hurrell et al., 2013). In some

ways the increased computational cost is unsurprising however, as we are computing not

just point estimates of the solution at nm points, but also the posterior covariance on

those points as well, which is a matrix of size (nm, nm). The theoretical results developed

on the sample path properties of Matérn processes enables the construction of a prior with

a pre specified degree of smoothness in the univariate case.

6.2 Future work

Further work will be required to establish our approach as a general purpose numerical tool

for nonlinear PDEs: First, the non-unique partitioning of the differential operator D into

linear and nonlinear components, P and Q, together with the non-unique linearisation of

Q, necessitates some expert input. This is analogous to the selection of a suitable numerical

method in the classical setting, but the classical literature has benefitted from decades of

research and extensive practical guidance is now available in that context. Here we took a

first step to automation by proposing a Matérn tensor product covariance model Σ, along

with presenting a closed-form maximum likelihood estimator for the amplitude of Σ. The

user is left to provide suitable length-scale parameter(s), which is roughly analogous to

requiring the user to specify a mesh density in a finite element method (an accepted

reality in that context). Second, an extensive empirical assessment will be required to

systematically assess the performance of the method; our focus in the present chapter was

methodology and theory, providing only an experimental proof-of-concept. In particular,

it will be important to assess diagnostics for failure of the method; it seems plausible that

statistically-motivated diagnostics, such as held-out predictive likelihood, could be used

to indicate the quality of the output from the PNM. Thirdly, when applying the PNM

on a more realistic example, where the right hand side function f and the initial and

boundary conditions g and h are associated with a high computational cost, additional

difficulties may arise. One possible difficulty could be if the dimension of the spatial

variables d were to significantly increase. Assuming we discretise each spatial coordinate

equally with m points, the covariance matrix would then have dimensions (nmd, nmd).

This potentially makes computing the full posterior distribution very expensive using the
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algorithm outlined in Section 5.2.3 for even d = 3, without compromising by reducing m,

though this may still be dwarfed by the cost of evaluating f , g or h. To mitigate this,

one could use a Markovian approximation for the matrix Ai, so only a tridiagonal matrix

needs to be inverted at each iteration. However, this obviously means the true posterior

is not obtained. In general, approximate Gaussian Process methods rely on using some

smaller dimension projection of the likelihood to reduce the computational cost (see e.g.

Quiñonero-Candela & Rasmussen (2005). Another direction could be to use a Variational

Bayes approach, where a distribution that is much easier to compute, and is in some

sense close to the true posterior is used instead (e.g. in terms of the Kullback-Leibler

divergence).

Finally, we acknowledge that the problem we considered in (5.1) represents only one

class of nonlinear PDEs and further work will be required to develop PNM for other classes

of PDEs, such as boundary value problems and PDEs defined on more general domains.

6.3 Concluding remarks

While the field of probabilistic numerics is still emerging, it is quickly gaining traction and

attention, evident from the recent publications in the area. In this thesis we have made

novel contributions to PNMs of differential equations by presenting a proof-of-concept

exact Bayesian PNM for ODEs, as well as a more practical approximate Bayesian PNM

for nonlinear PDEs. While the methods presented are not yet competitive in terms of

speed with classical numerical methods in general, which have had hundreds of years of

development, we hope that continued research in the field of probabilistic numerics will

enable probabilistic numerics to gain increasing practical prominence in science as well as

theoretical value in mathematics and statistics.
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Appendix A

Appendices for Chapter 4

This appendix section contains some additional theoretical results and discussions relevant

to chapters 4 and 5 that are not included in the main part of the thesis.

Example 13 (Deriving the Infinitesimal Generators for the Second Order ODE in Eq. 10).

Consider the second order nonlinear ODE

(x− y(x))
d2y

dx2
+ 2

dy

dx

(
dy

dx
+ 1

)
+

(
dy

dx

)3/2

= 0. (A.1)

Using Corollary 4.4, we have:(
ξ
∂

∂x
+ η

∂

∂y
+ η(1)

∂

∂y1
+ η(2)

∂

∂y2

)(
y2 +

2y1(y1 + 1) + y
3/2
1

x− y

)
= 0

which implies

−ξ 2y1(y1 + 1) + y
3/2
1

(x− y)2
+ η

2y1(y1 + 1) + y
3/2
1

(x− y)2
+ η(1)

(
4y1 + 2 + 3

2y
1/2
1

x− y

)
+ η(2) = 0

Recall

η(1) = ηx + (ηy − ξx)y1 + ξyy
2
1

and

η(2) = ηxx + (2ηxy − ξxx)y1 + (ηyy − 2ξxy)y
2
1 − ξyyy

3
1 + (ηy − 2ξx)y2 − 2ξyy1y2

Also notice we can replace y2 via the original differential equation, i.e.

y2 = −2y1(y1 + 1) + y
3/2
1

x− y
.
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Substituting for η(1), η(2) and y2 via the above expressions, multiplying both sides by

(x− y)2 and rearranging the terms as powers of y1 yields the rather long equation:

(2xηx − 2yηx + x2ηxx − 2xyηxx + y2ηxx)

+y1

 −2ξ + 2η + 4xηx − 4yηx + 2xηy − 2yηy − 2xξx + 2yξx

+2x2ηxy − 2xyηxy + 2y2ηxy − x2ξxx + 2xyξxx

−y2ξxx − 2xηy + 4xξx + 2yηy − 4yξx



+y21

 −2ξ + 2η + 4xηy − 4yηy − 4xξx + 4yξx + 2xξy − 2yξy

+x2ηyy − 2xyηyy + y2ηyy − 2x2ξxy + 4xyξxy

−2y2ξxy − 2xηy + 4xξx + 2yηy − 4yξx + 4xξy − 4yξy


+y31(4xξy − 4yξy − x2ξyy + 2xyξyy − y2ξyy + 4xξy − 4yξy)

+y
1/2
1

(
3

2
xηx −

3

2
yηx

)
+y

3/2
1

(
−ξ + η +

3

2
xηy −

3

2
yηy −

3

2
xξx +

3

2
yξx − xηy + 2xξx + yηy − 2yξx

)
+y

5/2
1

(
3

2
xξy −

3

2
yξy + 2xξy − 2yξy

)
= 0

This expression on the left hand side must vanish, so comparing the coefficients of powers

of y1 gives the determining equations:

2xηx − 2yηx + x2ηxx − 2xyηxx + y2ηxx = 0 (A.2)

−2ξ + 2η + 4xηx − 4yηx + 2xηy − 2yηy − 2xξx + 2yξx

+2x2ηxy − 2xyηxy + 2y2ηxy − x2ξxx + 2xyξxx

−y2ξxx − 2xηy + 4xξx + 2yηy − 4yξx = 0

−2ξ + 2η + 4xηy − 4yηy − 4xξx + 4yξx + 2xξy − 2yξy + x2ηyy

−2xyηyy + y2ηyy − 2x2ξxy + 4xyξxy − 2y2ξxy

−2xηy + 4xξx + 2yηy − 4yξx + 4xξy − 4yξy = 0

4xξy − 4yξy − x2ξyy + 2xyξyy − y2ξyy + 4xξy − 4yξy = 0 (A.3)

3

2
xηx −

3

2
yηx = 0 (A.4)

−ξ + η +
3

2
xηy −

3

2
yηy −

3

2
xξx +

3

2
yξx − xηy + 2xξx + yηy − 2yξx = 0

3

2
xξy −

3

2
yξy + 2xξy − 2yξy = 0 (A.5)

It is immediately obvious from (A.4) that ηx = 0 and from (A.5) that ξy = 0. Consequently
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(A.2) and (A.3) vanishes. The remaining determining equations simplify to:

−2ξ + 2η + 2xξx − 2yξx − x2ξxx + 2xyξxx − y2ξxx = 0 (A.6)

−2ξ + 2η + 2xηy − 2yηy + x2ηyy − 2xyηyy + y2ηyy = 0 (A.7)

−ξ + η +
1

2
xηy −

1

2
yηy +

1

2
xξx −

1

2
yξx = 0 (A.8)

These remaining partial differential equations in ξ(x, y) and η(x, y) are linear, and recall

η(x, y) is independent of x and ξ(x, y) is independent of y respectively. To solve these

partial differential equations we can therefore express ξ(x) =
∑∞

n=0 anx
n and η(y) =∑∞

m=0 bmy
m. Consequently (A.6) becomes:

−2

∞∑
n=0

anx
n + 2

∞∑
m=0

bmy
m + 2

∞∑
n=1

nanx
n − 2y

∞∑
n=1

nanx
n−1

−
∞∑
n=2

n(n− 1)anx
n + 2y

∞∑
n=2

n(n− 1)anx
n−1 − y2

∞∑
n=2

n(n− 1)anx
n−2 = 0

Comparing the constant term implies b0 = a0. Comparing the terms containing y implies:

2b1 − 2
∞∑
n=1

nanx
n−1 + 2

∞∑
n=2

n(n− 1)anx
n−1 = 0

Comparing coefficients of xn gives b1 = a1, n = n(n− 1) or an = 0 for n ≥ 2. Of course,

n = n(n − 1) has solution n = 2 for n ≥ 2, so an = 0 for n ≥ 3. Comparing the terms

containing y2 implies b2 = a2. Notice (A.7) is symmetric with (A.6) in the sense that

swapping ξ with η and x with y in (A.6) gives (A.7). So by symmetry (A.7) gives b0 = a0,

b1 = a1, b2 = a2 and bn = 0 for n ≥ 3. (A.8) gives no additional solutions. Therefore, the

example ODE admits a three parameter Lie group of transformations with infinitesimals:

ξ = a0 + a1x+ a2x
2

η = a0 + a1y + a2y
2

where a2, a1 and a0 are arbitrary constants. The infinitesimal generators corresponding

to a2, a1 and a0 are respectively

X1 = x2
∂

∂x
+ y2

∂

∂y
(A.9)

X2 = x
∂

∂x
+ y

∂

∂y

X3 =
∂

∂x
+

∂

∂y
, (A.10)
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which generate a three dimensional Lie algebra.

Example 14 (Ex. 13, continued). Recall from Ex. 13 that the second order nonlinear

ODE in Eq. (A.1) admits a three parameter Lie group of transformations with infinitesimal

generators X1, X2, X3 defined in Eqs. (A.9)-(A.10). These generators can be verified to

satisfy [X1,X2] = −X1, [X1,X3] = −X2, [X2,X3] = −X3. The pairs X1,X2 and X2,X3

form a two dimensional (and therefore solvable by Thm. 4.6) Lie sub-algebra and can be

used as the basis for our method. For the derivations below we proceed with arbitrary

choice X1, X2.

Following the proof of Thm. 4.8, first we seek a solution v = v(x, y) to the first order

linear PDE X1v = 0. i.e. we must solve

x2
∂v

∂x
+ y2

∂v

∂y
= 0

This has general solution v = f( 1y − 1
x) for some arbitrary function f , and we pick a

particular solution v(x, y) = 1
y − 1

x . Next we seek a solution w = w(x, y, y1) to the first

order linear PDE X
(1)
1 w = 0. i.e. we must solve

x2
∂w

∂x
+ y2

∂w

∂y
+ 2(y − x)y1

∂w

∂y1
= 0.

Again, we pick a particular solution w(x, y, y1) = y1(
x
y )

2. In accordance with Eq. (4.15),

we can re-write the original ODE (A.1) in terms of the coordinates v and w to obtain

dw

dv
=


w3/2 + 2w(w + 1)

v(w − 1)
, for x

y ≥ 0

− w3/2 + 2w(w + 1)

v(w − 1)
, for x

y < 0

(A.11)

Next we express X
(1)
2 in terms of v and w find its canonical coordinates r̃(v, w), s̃(v, w).

To this end, we have X
(1)
2 = x ∂

∂x +y
∂
∂y = −v ∂

∂v , which has canonical coordinates r̃(v, w) =

w, s̃(v, w) = − log(v). Re-writing Eq. (A.11) in terms of r̃, s̃ leads to the analogue of

Eq. (4.16):

ds̃

dr̃
=

1− r̃

±r̃3/2 + 2r̃(r̃ + 1)
=: H(r̃) (A.12)

This example exhibits the convenient feature that Eq. (A.12) can be directly integrated to

give s̃(r̃) = − log(2r̃±
√
r̃+2)+ log(r̃)/2+C, which can be re-written in terms of x, y, y1
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to give

log

(
1

y
− 1

x

)
= log

2

√
y1
x2

y2
± 1 +

2√
y1

x2

y2

− C (A.13)

for some integration constant C.

The final step, to remove the y1 independence, requires canonical coordinates for X1.

These can be selected as r(x, y) = 1
y − 1

x , s(x, y) = − 1
y . Then Eq. (A.13) becomes

r ∓ exp(−C)
2 exp(−C) =

(
ds
dr

1 + ds
dr

)1/2

+

(
1 + ds

dr
ds
dr

)1/2

which is equivalent to Eq. (4.11) for some function G.

A.1 Design of the Training Set

The performance of the proposed Bayesian PNM is not our main focus in this work, as

we consider the method to be (only) a proof-of-concept. However, for completeness we

acknowledge that performance will depend on the locations at which the gradient field is

evaluated; the so-called training set. In this section we discuss how these inputs could

be optimally selected. To simplify the presentation, we focus on the case of a first order

ODE, as in Eq. (4.7), where the inputs r0, . . . , rn must be selected.

The design of a PNM can be viewed as an instance of statistical experimental design

(Chaloner & Verdinelli, 1995). In Sec. 3 of Cockayne et al. (2019) a connection between

PNM and decision-theoretic experimental design was exposed. Such methods require that

a loss function L : Q×Q → R is provided, where L(q, q†) quantifies the loss when q is used

as an estimate for the true quantity of interest q†. Further detail was provided in Oates

et al. (2019b). To avoid repetition, in the remainder we focus instead on approximate

experimental design, where a loss function is not explicitly needed.

Recall that the output of a PNM is the distribution µn = B(µ, an) ∈ PQ. Then one

can specify a functional ℓ : PQ → R and compute

τ(r0, . . . , rn) =

∫
ℓ(B(µ,A(y; r0, . . . , rn)))dµ(y) (A.14)

where A(·; r0, . . . , rn) is the information operator in Eq. (4.9) with the dependence on

r0, . . . , rn made explicit. For the choice ℓ(ν) = log det(CovQ̃∼ν [Q̃]), a configuration

(r0, . . . , rn) for which τ(r0, . . . , rn) is minimised is said to be D-optimal. The functional

ℓ plays the role of an approximation to posterior expected loss, and other choices for

ℓ lead to other approximate notions of optimal experimental design. For instance, an
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A-optimal design was used for the Bayesian solution of a partial differential equation in

Cockayne et al. (2016). For further background on experimental design we refer the reader

to Chaloner & Verdinelli (1995).

Importantly, Eq. (A.14) does not depend on the information A(y†) and can therefore

be evaluated prior to the experiment being performed. However, in general the numerical

approximation of Eq. (A.14), and the task of finding a minimal configuration, is practi-

cally difficult. The reader is referred to Overstall et al. (2019) for further discussion of

experimental design in the PNM context.
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Appendices for Chapter 5

B.1 Proof of Lemma 5.1

Proof of Lemma 5.1. Our starting point is the stochastic process defined in Lemma 5.1,

and from this we aim to derive the iterative formulation in the main text. The derivation

requires several items of notation to be introduced. First, let

Li+1(r) :=



Σ(r,a0)

Σ(r, b0)

ΣD̄0
(r,v0)
...

Σ(r, bi)

ΣD̄i
(r,vi)



⊤

, Ri+1(r′) :=



Σ(a0, r
′)

Σ(b0, r
′)

ΣD0(v0, r
′)

...

Σ(bi, r
′)

ΣDi(vi, r
′)


, Fi+1 :=



g(a0)− µ(a0)

h(b0)− µ(b0)

f(v0)− µD0(v0)
...

h(bi)− µ(bi)

f(vi)− µDi(vi)


and

Mi+1 :=



Σ(a0,a0) Σ(a0, b0) ΣD̄0
(a0,v0) . . . Σ(a0, bi) ΣD̄i

(a0,vi)

Σ(b0,a0) Σ(b0, b0) ΣD̄0
(b0,v0) . . . Σ(b0, bi) ΣD̄i

(b0,vi)

ΣD0(v0,a0) ΣD0(v0, b0) ΣD0D̄0
(v0,v0) . . . ΣDi(v0, bi) ΣDiD̄i

(v0,vi)
...

...
... . . .

...
...

Σ(bi,a0) Σ(bi, b0) ΣD̄i
(bi,v0) . . . Σ(bi, bi) ΣD̄i

(bi,vi)

ΣDi(vi,a0) ΣDi(vi, b0) ΣDiD̄i
(vi,v0) . . . ΣDi(vi, bi) ΣDiD̄i

(vi,vi)


.

The mean and covariance of U i+1, as defined in Lemma 5.1, are equal to

µi+1(r) = µ(r) + Li+1(r)(Mi+1)
−1Fi+1

Σi+1(r, r′) = Σ(r, r′)− Li+1(r)(Mi+1)
−1Ri+1(r′)
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Similarly, introduce the notation

Li+1
Di

(r) :=



ΣDi(r,a0)

ΣDi(r, b0)

ΣDiD̄0
(r,v0)
...

ΣDi(r, bi)

ΣDiD̄i
(r,vi)



⊤

, Ri+1
Di

(r′) :=



ΣD̄i
(a0, r

′)

ΣD̄i
(b0, r

′)

ΣD0D̄i
(v0, r

′)
...

ΣD̄i
(bi, r

′)

ΣDiD̄i
(vi, r

′)


,

so that the application of Di to µ
i+1 and Σi+1 may be expressed as

µi+1
Di

(r) = µDi(r) + Li+1
Di

(r)(Mi+1)
−1Fi+1

Σi+1
Di

(r, r′) = ΣDi(r, r
′)− Li+1

Di
(r)(Mi+1)

−1Ri+1(r′)

Σi+1
D̄i

(r, r′) = ΣD̄i
(r, r′)− Li+1(r)(Mi+1)

−1Ri+1
Di

(r′)

Σi+1
DiD̄i

(r, r′) = ΣDiD̄i
(r, r′)− Li+1

Di
(r)(Mi+1)

−1Ri+1
Di

(r′)

Notice that we have a recursive partitioning of Mi+1 into blocks of the form

Mi+1 =

[
Mi βi

γi δi

]

where

βi :=
[
Ri(bi) Ri

Di
(vi)

]
, γi :=

[
Li(bi)

Li
Di
(vi)

]
, δi :=

[
Σ(bi, bi) ΣD̄i

(bi,vi)

ΣDi(vi, bi) ΣDiD̄i
(vi,vi)

]
.

Thus we may use the block matrix inversion formula to deduce that

M−1i+1 =

[
M−1i (I + βi(δi − γiM

−1
i βi)

−1γiM
−1
i ) −M−1i βi(δi − γiM

−1
i βi)

−1

−(δi − γiM
−1
i βi)

−1γiM
−1
i (δi − γiM

−1
i βi)

−1

]

Setting Ai := δi − γiM
−1
i βi, we observe that

Ai =

[
Σi(bi, bi) Σi

D̄i
(bi,vi)

Σi
Di
(vi, bi) Σi

DiD̄i
(vi,vi)

]
,

so our definition of Ai coincides with that in the main text, and enables us to simplify

M−1i+1 into

M−1i+1 =

[
M−1i (I + βiA

−1
i γiM

−1
i ) −M−1i βiA

−1
i

−A−1i γiM
−1
i A−1i

]
.
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Therefore we have that

µi+1(r) = µ(r) + Li+1(r)(Mi+1)
−1Fi+1

= µ(r) + Li(r)M−1i Fi + Li(r)M−1i βiA
−1
i γiM

−1
i Fi − [Σ(r, bi), ΣD̄i

(r,vi)]A
−1
i γiM

−1
i Fi

− Li(r)M−1i βiA
−1
i

[
h(bi)− µ(bi)

f(vi)− µDi(vi)

]
+ [Σ(r, bi), ΣD̄i

(r,vi)]A
−1
i

[
h(bi)− µ(bi)

f(vi)− µDi(vi)

]
= µi(r) + {Li(r)M−1i βi − [Σ(r, bi), ΣD̄i

(r,vi)]}A−1i γiM
−1
i Fi

+ {[Σ(r, bi), ΣD̄i
(r,vi)]− Li(r)M−1i βi}A−1i

[
h(bi)− µ(bi)

f(vi)− µDi(vi)

]

which can be simplified by noting that

Li(r)M−1i βi − [Σ(r, bi), ΣD̄i
(r,vi)] = Li(r)M−1i

[
Ri(bi) Ri

Di
(vi)

]
− [Σ(r, bi), ΣD̄i

(r,vi)]

= [−Σi(r, bi),−Σi
D̄i
(r,vi)]

γiM
−1
i Fi =

[
Li(bi)

Li
Di
(vi)

]
M−1i Fi =

[
µi(bi)− µ(bi)

µiDi
(vi)− µDi(vi)

]

to produce the iterative formulation for the mean in the main text:

µi+1(r) = µi(r) + [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

([
h(bi)− µ(bi)

f(vi)− µDi(vi)

]
−
[

µi(bi)− µ(bi)

µiDi
(vi)− µDi(vi)

])

= µi(r) + [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

[
h(bi)− µi(bi)

f(vi)− µiDi
(vi)

]

For the covariance we have

Σi+1(r, r′) = Σ(r, r′)− Li+1(r)(Mi+1)
−1Ri+1(r′)

= Σ(r, r′)− Li(r)M−1i Ri(r′)− Li(r)M−1i βiA
−1
i γiM

−1
i Ri(r′)

+ [Σ(r, bi), ΣD̄i
(r,vi)]A

−1
i γiM

−1
i Ri(r′)

+ Li(r)M−1i βiA
−1
i

[
Σ(bi, r

′)

ΣDi(vi, r
′)

]
− [Σ(r, bi), ΣD̄i

(r,vi)]A
−1
i

[
Σ(bi, r

′)

ΣDi(vi, r
′)

]
= Σi(r, r′)− {Li(r)M−1i βi − [Σ(r, bi), ΣD̄i

(r,vi)]}A−1i γiM
−1
i Ri(r′)

− {[Σ(r, bi), ΣD̄i
(r,vi)]− Li(r)M−1i βi}A−1i

[
Σ(bi, r

′)

ΣDi(vi, r
′)

]
.
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This can be simplified by noting that

Li(r)M−1i βi − [Σ(r, bi), ΣD̄i
(r,vi)] = Li(r)M−1i

[
Ri(bi) Ri

Di
(vi)

]
− [Σ(r, bi), ΣD̄i

(r,vi)]

= [−Σi(r, bi),−Σi
D̄i
(r,vi)]

γiM
−1
i Ri(r′) =

[
Li(bi)

Li
Di
(vi)

]
M−1i Ri(r′) =

[
−Σi(bi, r

′) +Σ(bi, r
′)

−Σi
Di
(vi, r

′) +ΣDi(vi, r
′)

]

to obtain

Σi+1(r, r′) = Σi(r, r′)− [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

([
Σi(bi, r

′)−Σ(bi, r
′)

Σi
Di
(vi, r

′)−ΣDi(vi, r
′)

]
+

[
Σ(bi, r

′)

ΣDi(vi, r
′)

])

= Σi(r, r′)− [Σi(r, bi), Σ
i
D̄i
(r,vi)]A

−1
i

[
Σi(bi, r

′)

Σi
Di
(vi, r

′)

]
,

identical to the iterative formulation in the main text.
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