The novel method for parameter

estimation for large bio-systems

:#7 Newcastle
University

Paulius Rasiukas

A thesis submitted for a degree of Doctor of Philosophy

Submitted to the School of Engineering, Newcastle university

December 2020

-Page left blank intentionally-

Abstract

In this thesis we propose a new method for the parameter identification of large-scale
models. The proposed state substitution method can be applied to parametric, non-
parametric or hybrid models, but in this work, we will focus on the parametric models,
to show methods capabilities of identifying all parameter values. The method aims to
decouple the whole system into separate sub-systems, whose parameters can be
identified separately, therefore decomposing the solution space. By decreasing the
solution space in this manner, traditional parameter identification techniques can be
used to identify the parameters of each sub-model. The solved sub-systems are
subsequently combined for re-optimisation using a global solver (in this work global
search), which ensures statistical optimality of the parameter values.

The proposed decoupling method uses state substitution approach, i.e.: measured
values (which contain process noise) are used to create a spline, which replaces
coupled components in each ODE sub-system. This makes it possible to integrate
each of the sub-systems separately, because the sub-systems are only dependant on
the unknown model parameters. In addition, dividing the problem into smaller sections,
reduces computational time significantly compared to current simultaneous solution

methods.

The proposed state substitution method is compared with two state-of-art approaches.
The derivative method and the integral method. Both state-of-art methods and the
proposed state substitution method are used to identify parameters for four different
cases studies, where they performance is compared. Cases studies increase in
complexity allowing comparison of how each method handles different levels of
complexity. First three cases studies use simulated data sets, and fourth one uses real
measured data. First case study is an artificial benchmark problem, whereas case

studies two, three and four are bio-system models, with increasing complexity.

This thesis also proposes ways of evaluating complexity of the system, so systems
complexity can be relatively compared to other systems. This allows to assess each
systems’ relative complexity, an ensure that correct parameter identification method is
chosen for the parameter identification. Complexity evaluation is quantified with three
different methods, Principal component analysis visualization, self-organizing map

analysis and sorted minimization.

-Page left blank intentionally-

Acknowledgments

I would like to thank both of my supervisors Mark Willis and Chris O’Malley, for helping
me through the whole project, especially during write-up period.

Also, would like to thank my wife for supporting me emotionally throughout this project.

-Page left blank intentionally-

Content

1.

INEFOAUCTION ...t e e e e e e e e e 1
O S N {1 0 ST PP PERPPP PPN 2
1.2, ODBJECHIVES ... 3
LILEIatUIE FEVIEW.....cceiiiiiiiii i 4
2.1, INErOTUCTION ..ot 5
2.2. Gradient based OptiMISALION...........cceviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 9
2.2.1. ODBJECtIVE TUNCLIONuuiiiiiiiiiiiiiiiiiiii e 9
2.2.2. Optimality of numerical optimisation algorithms...............cccccuvviviviinnnnns 11
2.2.3. Parameter ChanQeuuuuiiiii i 13
2.3, GIODAI SOIVET ...t 16
P S YU 11 0 0 =1 YO 22
Kinetic model calibration: State of the art methodscccccoiiiiiiiiiine 23
3.1. Integral @QPPrOACKi i —————————— 23
3.2. Derivative approachcoooviiiiiiiii e 23
3.3. Integral method Modificationsccooeiiiiiiiiii e 25
3.3.1. Sampling of the SEarch SPaCEuuuiiiiiiiiiiiiiiiiiiiias 25
R S Tox =T [T N 26
3.3.3. Modified integral method StruCture.................eeueeeiiiiiiiiiiiiiiiiiiiiiiiieaes 26
3.4. Derivative estimation method modificationsccccccvvviiiiiiiiiiiiiiiiiiinennne. 27
X A o L= o) o 110 1142 1o o TN 27
3.4.2. Modified derivative estimation method Structure..............cccccvvvvvveennnnnnns 27
3.5. Benchmark problem ... 28
3.5.1. Generating benchmark dataccccooieriiiiiii 29
3.5.2. ODbJeCtiVe fUNCLIONcciiiiii e 29
3.6. Effects of the modifiCations ... 30
3.6.1. SAMPIING SPACEcovviiiiiiii e 30
G T Tox =Y =1 o 11 Vo P 31

3.6.3. ReE-0OPUMIZALION ...cceeviiiiiiee e e e e eeeenes 32

G T S 1 U1 01 0 = Y PP 33
4. Problem VISUAIZAtIONooiiiiiiiiiii ettt 34
o I o To [F o1 1 (o] o TP PRPTPR PPN 35
4.1.1. Analysis of the error plane............c.cooovvviiiiiiii e 36
4.1.1.1. Number of local OptiMa.......ccceeeeeiiiiiiiiiiie e 36
4.1.1.2. Impact of the parameters.........cccovvvviiiiiiii e 36
4.1.1.3. Sensitivity of the parameterscccccuvveeiiiiiiiiiiiiiis 36

4.2, EXAMPIE SYSIEMS. ... 37
4.3. Utilizing PCA to visualize the model ... 38
4.3.1. Example of applying PCA for visualizationcccccccevvvveiiiiiiiiiiinnnnnnnn. 40
4.4. Convexity WiIth PCA ... 41
4.5, Self-0rganizing MapPccoooe i 41
4.5.1. Example of SOM appliCationcoeeviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 43
4.6. Performance optimum vs parameter OptimumMccoovvviiiiiiiieeeeeeeeeiiiinnn, 44
YU 01 0 = U PR 46
5. MEENOAS .. 48
5.1. State Substitution Method..............ccccoiiiiiiiii e 49
5.2. Bipartite graph and structure hierarchy...........cccccccciieiiiiiiiiiiccee e, 53
5.2.1. Parameter IMPACT.........cciiieeiiiiieiiiii e e e e e e e e e e e e e eaenens 54

5.3, DaAta gENEIALIONuuuiiiiiiiiiiiiiiiiiiiiiit e 58
5.4. ApPProxXimation SPIINEuuuuuumeiiiiiiiiiiiiii e 59
5.5, SUD-SYSIEM SOIVETuuiiiiiiiiiiiiiii bbb 60
5.6, GlODAI SOIVET......uuiiiiiiiiii e 62
5.7, SUMMEIY ..ttt ettt e e e e e et et e a bt e e e e e e e e eesnbn e e e e e e eeennnns 64
6. ReSUlts and diSCUSSIONcciiiiiiiiiiiiiiiiiiiieeeeeeeee e 65
6.1. Case study 1 — Polynomial model...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieens 65
6.1.1. CompIlexity @NalYSISoiiiiiiiiiieiiiii e 65

0.1.1.1. PCA VISUANIZATION ... 67

6.1.1.2. Sorted MiNIMIZAtION..........cccviiiiiiieee e 68
6.1.1.3. SOM ANAIYSIScceiieiiiiii e 69
6.1.2. Method COMPATISONcccviiiiiiiee e e e e e 75
6.1.2.1. Experiment 1 0.1h sampling and 5% random noise......................... 76
6.1.2.2. Experiment 2 0.1h sampling and 10% random noise....................... 79
6.1.2.3. Experiment 3 0.3h sampling and 5% random noise......................... 83
6.1.2.4. Experiment 4 0.3h sampling and 10% random noise 87
6.1.2.5. Experiment 5 0.3h sampling and 20% random noise....................... 90
6.1.3. Summary of results for polynomial model..............ccccuviviiiiiiiiiiiiiiiiiiinns 93
6.2. Case study 2 — Monod KINELICSccoevviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 96
6.2.1. COMPIEXILY NAIYSISuuuiiiiiiiiiiiiiiiiiiiiii i 96
6.2.1.1. PCAVISUALIZALIONccooieeeeeeeeeeeeeeeeeeeeee e 96
6.2.1.2. Sorted MiNIMIZAtION.........coooiiiieeeeeeee e 97
5.2.1.1. SOM ANAIYSISccceiiiiiiiiiiie e 98
6.2.2. Model NIErarChycoooveiiiiiii e 103
6.2.3. Method COMPANISONovviiiiiei e 104
6.2.3.1. Experiment 1 0.1h sampling and 5% random noise...................... 105
6.2.3.2. Experiment 2 0.1h sampling and 10% random noise..................... 110
6.2.3.3. Experiment 3 0.3h sampling and 5% random noise....................... 113
6.2.3.4. Experiment 4 0.3h sampling and 10% random noise..................... 116
6.2.3.5. Experiment 5 0.3h sampling and 20% random noise..................... 118
6.2.3.6. The summary of results for the Monod modelccoevvveeenn. 121
6.3. Case study 3 — CHO cell culture model..........cccooeveiiiiiiiiiiiiiie e, 124
6.3.1. COMPIEXItY NAIYSISuuuuiiiiiiiiiiiiiiiiiiiiiii b 125
6.3.1.1. PCAVISUALIZAIONcooiieeeeeeeeeeeeeeeeeeee e 125
6.3.1.2. Sorted MiNIMIZAtION.........cooeiiiiiieeeeeeeeee 127
6.3.1.3. SOM @NaAIYSISuuuiiiiiiiiii i 128

6.3.2. Model hierarChy ... 134

6.3.3. MethOod COMPATISON........uuiiieeeeeieiieiie e e 138
6.3.3.1. Experiment 1 0.1h sampling and 5% random noise 140
6.3.3.2. Experiment 2 0.3h sampling and 5% random noise 151
6.3.3.3. Experiment 3 0.1h sampling and 10% random noise 154
6.3.3.4. Experiment 4 0.3h sampling and 10% random noise 158
6.3.3.5. Experiment 5 0.3h sampling and 20% random noise 162
6.3.4. The summary of results for the CHO cell culture model...................... 166
6.4. Case study 4 - Ethanol production with Zymomonas mobilis model.......... 169
6.4.1. Complexity analySISccoooiieiiiiiee e 170
6.4.1.1. PCAVISUAlIZALION.........coeviiiiiiiiiiii e 170
6.4.1.2. Sorted MiNIMIZAtioN ... 171
6.4.1.3. SOM @NAIYSIScooiiiiiiiiiiiiiii 171
6.4.2. Model hiErarChy ... 177
6.4.3. MethOod COMPATISON.........uiiiieeeeieeeiece e 180
6.4.4. The summary of results for the Zymomonas mobilis model................. 188
CONCIUSIONS ...ttt ettt e e e e ettt e e e e e e e r e e e e e e e e e nann 190
7.1, CompleXity @analySiS........coouuiiiiiiiiii e 190
7.2. Proposed state substitution method.................ccoooiiiiiii 192
FULUIE WOTK....ceeieee et 193

Y 0] 01T 8o | RN 194

10, REFEIENCES... .o 201

viii

Figures

Figure 2.1 General structure of the parameter identification problem structure........... 6
Figure 2.2 Flowchart of gradient based optimiSationeeeeemeiiimieiimiiiiiiiiinnnns 9
Figure 2.3 Objective function with single parameter value and gradient value versus
(0= 1= 1 1< =T PP 13

Figure 3.1 Example of Latin hyper cube sampling in 2d space, with X denoting each

sample and red square places that are unavailable to following samples. 26
Figure 3.2 The integral method flOWChartuuuiiiiiiiiiiiie 27
Figure 3.3 The derivative method flowchartccovviiiiii e, 28
Figure 3.4 Typical data set of benchmark problem, without the noise....................... 29

Figure 3.5 Comparison on biomass concentration model predictions, of different
sampling methods with benchmarking problem...........cccccoo 31

Figure 3.6 Comparison on biomass concentration model predictions with 10%

screening and WItNOULiiii i 32
Figure 3.7 Comparison of model performance pre- and post-re-optimization 33
Figure 4.1 Error plot of the system (equation 4.1)uuuuuuimmeimimiiiiiiiiiiiiiieeneanene 35
Figure 4.2 Example of unit vector additionc.ccooviiiiiiiiiiii e, 39
Figure 4.3 Error plot of Monod model first two principal components (PC's) 40

Figure 4.4 Left 2d SOM of Monod model (equation 4.2), colour coded based of model
error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.
Right 2d SOM with same colour code as left, but also showing relative distance in n-
dimensional plane represented as colour bar..............ccccceeviiieiiiiiiiiiii e, 43
Figure 4.5 From top left: 1) n-dimensional plane represented in 2d SOM with relative
distances as colour bar. 2) Umax parameter variation within n-dimensional plane,
parameter values denoted in colour bar. 3) Ks parameter variation within n-dimensional
plane, parameter values denoted in colour bar. 4) g parameter variation within n-
dimensional plane, parameter values denoted in colour bar.cccooooeviiiiiiinnnnnnn. 44
Figure 5.1 Example of an uneven Samplingeeueeeeeeiiiiiiiiiiiieiii. 50
Figure 5.2 Search space visualization of the example system (equation 5.1) which has
{018 g oF=T =T a 0= (T £ PP 51

Figure 5.3 Decoupled search space of the exampled system (equation 5.1) into three

separate sub-systems (EQUALION 5.4)coouviiiiiiiiiiiie 52
Figure 5.4 Bipartite chart of the example system (equation 5.1)eeevvvvvnennnnne 54
Figure 5.5 Hierarchy of decoupled ODE’s for Monod modelccccvvviiiiniinnnnnnne 54

iX

Figure 5.6 Positive cross-correlation between each parameter map and overall error

Figure 6.1 PCA error plot for Polynomial model (6.1), with colour coded points for
convexity, where blue points are convex, red points are non-convex and green points
are failed integrations. Black x marks global optimum solution........................ccceee. 67
Figure 6.2 Polynomial model (6.1) thousand samples sorted optimization, where blue
is all samples and red are convex samples only (As this model is 100% convex all
samples and convex SAMPIES IS SAME).ccevvviuiiiiii e e e e e e eaanns 68
Figure 6.3 a) 2d SOM of Polynomial model (1), colour coded based of model error,
where green (L) is low error, blue (M) is medium error, and red (H) is high error. b) 2d
SOM with same colour code as a), but also showing relative distance in n-dimensional

plane represented as colour bar and separation of different colour within each cluster.

Figure 6.4 From top left: 1) n-dimensional plane represented in 2d SOM with relative
distances as colour bar. 2) - 21) x1 to x20 parameters with their respective variation
within n-dimensional plane, parameter values denoted in colour bar. 72

Figure 6.5 Positive cross-correlation between each parameter map and overall error

Figure 6.7 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.1h sampling and 5% random noise for
L gTCTo RS U =0 e = - U 79
Figure 6.8 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.1h sampling and 10% noise for measured

Figure 6.9 Performance results for Derivate estimation, Latin hyper cube and proposed
state substitution methods, with 0.3h sampling and 5% noise for measured data. ... 87
Figure 6.10 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 10% noise for measured

Figure 6.11 Performance results for Derivate estimation, Latin hyper cube and

proposed state substitution methods, with 0.3h sampling and 20% noise for measured

AL, oo 93
Figure 6.12 Summary of performance results for all three methods for polynomial
0 T0 T [PR 95

Figure 6.13 PCA error plot for Monod model (6.2), with colour coded points for
convexity, where blue points are convex, red points are non-convex and green points
are failed integrations. Black x marks global optimum solution.cccceevvvvinnnnnn. 97
Figure 6.14 Monod model (6.2) thousand samples sorted optimization, where blue is
all samples and red are convex samples ONly.uiiiiiiieeiiieeeei e, 98
Figure 6.15 Left 2d SOM of Monod model (6.2), colour coded based of model error,
where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right
2d SOM with same colour code as left, but also showing relative distance in n-
dimensional plane represented as colour bar and number of individual members of
BACK ClUSTET . .o 100
Figure 6.16 U-matrix represents N-dimensional plane as 2d SOM with relative
distances as colour bar, followed by each component n-dimensional plane of its value
distribution represented as COIOUr Darccocooiiiiiiiiiiiii e 101
Figure 6.17 a) Positive cross-correlation between each parameter map and overall

error map. b) Negative cross-correlation between each parameter map and overall

ST (] =T o P 102
Figure 6.18 Bipartite chart of the Monod model (6.2)cccooeeeeiiiiiiiiiiiii e, 103
Figure 6.19 Hierarchy of the Monod model (6.2)oovvviviiiiiiieeeiiiee e, 104

Figure 6.20 Performance results for Derivate estimation, Latin hyper cube and
proposed state substitution methods, with 0.1h sampling and 5% random noise for
EaLST YU L= To [0 = - 109
Figure 6.21 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.1h sampling and 10% random noise for
g TeFo RS U (=T0 o = - USSR 112
Figure 6.22 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 5% random noise for
g TeFo RS U (=T0 o = - USSR 115
Figure 6.23 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 10% random noise for

LTI D[] o - L r- VTR 118
Xi

Figure 6.24 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 20% random noise for
TCTo RS =10 o F= L= VS 120

Figure 6.25 Summary of performance results for all three methods for Monod kinetics

Figure 6.26 Four reaction of CHO culture modelcccooooeiiiiiiiiiiiiie e, 125
Figure 6.27 PCA error plot for CHO cell culture model (6.3), with colour coded points
for convexity, where blue points are convex, red points are non-convex and green
points are failed integrations. Black x marks global optimum solution. 126
Figure 6.28 PCA error plot for CHO cell culture model (6.3), with colour coded points
for convexity, where blue points are convex and red points are non-convex. Black x
marks global optimum SOIULION. ... 127
Figure 6.29 CHO cell culture model (6.3) thousand samples sorted optimization, where
blue circles is all samples and red circles are convex samples only....................... 128
Figure 6.30 Left 2d SOM of CHO cell culture model (6.3), colour coded based of model
error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.
Right 2d SOM with same colour code as left, but also showing relative distance in n-
dimensional plane represented as colour bar and number of individual members of
L2 o] o (U] = 131
Figure 6.31 U-matrix represents N-dimensional plane as 2d SOM with relative
distances as colour bar, followed by each component n-dimensional plane of its value
distribution represented as ColOUr bar...............ccoiiiii i 132
Figure 6.32 a) Positive cross-correlation between each parameter map and overall

error map. b) Negative cross-correlation between each parameter map and overall

L0 14 =Y o PP 133
Figure 6.33 Hierarchy of the CHO cell culture model (6.3)ovveeeeeieeeiiiiiiiiinnnn. 135
Figure 6.34 Bipartite chart of the CHO cell culture model (6.3)........ccccceevvvvvvirnnnnnnn. 136
Figure 6.35 Bar graph of connections of CHO culture bipartite chart..................... 137

Figure 6.36 Performance results for Derivate estimation with 0.1h sampling and 5%
random noise for measured data.ccooee i 144
Figure 6.37 Performance results for Latin hyper cube method with 0.1h sampling and
5% random noise for measured data.uuuiiiiieieiiiiiiie e 147
Figure 6.38 Performance results for the proposed state substitution method with 0.1h

sampling and 5% random noise for measured data..............ccoevviiiiiiiiiiii i 150

Xii

Figure 6.39 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 5% random noise for
QLT T U L =To [0 F= - U 154
Figure 6.40 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.1h sampling and 10% random noise for
QLT T U L= To [0 F= - U 158
Figure 6.41 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 10% random noise for
aTCT= RS U [(=To o F= - VSRR 162
Figure 6.42 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, with 0.3h sampling and 20% random noise for
aTCF= RS U (=To e = = USSR 166
Figure 6.43 Summary of performance results for all three methods for CHO cell culture

Figure 6.44 PCA error plot for Zymomonas mobilis model (6.4), with colour coded
points for convexity, where blue points are convex, red points are non-convex and
green points are failed integrations. Black x marks global optimum solution........... 170
Figure 6.45 Zymomonas mobilis model (6.4) thousand samples sorted optimization,
where blue circles are all SAMPIES........coivi i 171
Figure 6.46 Left 2d SOM of Zymomonas mobilis model (6.4), colour coded based of
model error, where green (L) is low error, blue (M) is medium error, and red (H) is high
error. Right 2d SOM with same colour code as left, but also showing relative distance
in n-dimensional plane represented as colour bar and number of individual members
(o) == o o T o] 111 = 174
Figure 6.47 U-matrix represents N-dimensional plane as 2d SOM with relative
distances as colour bar, followed by each component n-dimensional plane of its value
distribution represented as COIOUr Dar.cccccoiiiiiiiiiiiii e 175
Figure 6.48 a) Positive cross-correlation between each parameter map and overall
error map. b) Negative cross-correlation between each parameter map and overall

(ST (0 1 0= o P 176
Figure 6.49 Hierarchy of the Zymomonas mobilis model (6.4)c..ccoeevvvviiiiinnnnnn. 177
Figure 6.50 Bipartite chart of the Zymomonas mobilis model (6.4)cccccuvvvenee 178
Figure 6.51 Bar graph of connections of Zymomonas mobilis bipartite chart.......... 179

Xiii

Figure 6.52 Performance results for Derivate estimation, Latin hyper cube, and
proposed state substitution methods, for 10 different experimentally collected data
ST I PP 187

Figure 6.53 Summary of performance results for all three methods for Zymomonas

MODINIS MOUELo e e e e e e e e aeens 189
Tables
Table 2-1 Damping factors to be evaluated after each iteration................cccceevvnnnnnn. 15

Table 3-1 Performance comparison of different sampling methods with benchmarking
1 (0] o] = o 30
Table 3-2 Identified parameter values using different sampling techniques.............. 30
Table 3-3 Comparison of accuracy and computational time, with 10% screening and
11771 L0 PP 31
Table 3-4 Identified parameter values using 10% screening and without it 31
Table 3-5 Comparison of model accuracy pre- and post-re-optimization for the
derivative METNOMueiiii et e e e e e e e e e e e e e eeaeee 32
Table 3-6 Comparison of the identified parameter values pre- and post-re-optimization
for the derivative MEthoduuiiiiiiiiiiii b raenes 32
Table 4-1 Example of two variables being heavily correlatedccooevvviinnnnnnn. 38

Table 5-1 Table of positive and negative mean matching factor of each parameter for

0V] 1 PP 55
Table 5-2 Options used for 0de45 SOIVETccoieeiiiiiiiice e 58
Table 5-3 Options table for sub-set solver Isgnonlin..............ccccvviiiiieen, 60

Table 6-1 Table of positive and negative mean matching factor of each parameter for

ST A1 L=T0 0 (100) N 70
Table 6-2 Summary of modelling conditions for system (6.1)ccccccvvviiiiiiinnnnnnns 75
Table 6-3 Parameter search space for system (6.1)cccooeeeeviiiiiiiiiiinieeeeeeeeeeinn, 75
Table 6-4 Computational time of all three method for experiment 1. 76

Table 6-5 Squared error values of each method and each data set for experiment 1

.. 76
Table 6-6 Summary of identified parameter values for each method for experiment 1
.. 77
Table 6-7 Computational time of all three method for experiment 2ccc.eeeee 80

Table 6-8 Squared error values of each method and each data set for experiment 2

Table 6-9 Summary of identified parameter values for each method for experiment 2

Table 6-10 Computational time of all three method for experiment 3. 83

Table 6-11 Squared error values of each method and each data set for experiment 3

.. 84
Table 6-12 Summary of identified parameter values for each method for experiment 3.
.. 85
Table 6-13 Computational time of all three method for experiment 4.ccc....... 87

Table 6-14 Squared error values of each method and each data set for experiment 4

.. 87
Table 6-15 Summary of identified parameter values for each method for experiment 4.
.. 88
Table 6-16 Computational time of all three method for experiment 4cccccce.... 90

Table 6-17 Squared error values of each method and each data set for experiment 4

.. 91
Table 6-18 Summary of identified parameter values for each method for experiment 4.
.. 91
Table 6-19 Table of positive and negative mean matching factor of each parameter for
3V (] 1 T (7072 T 99
Table 6-20 Summary of modelling conditions for the system (6.2)..........cccccevveeeene. 105
Table 6-21 Parameter search space for the system (6.2)ccoevvvvviviiiiiiiiiiinnnnnnnn. 105
Table 6-22 Computational time of all three method for experiment 1...................... 105

Table 6-23 Squared error values of each method and each data set for experiment 1

.. 106
Table 6-24 Summary of identified parameter values for each method for experiment 1
.. 106
Table 6-25 Computational time of all three method for experiment 2....................... 110

Table 6-26 Squared error values of each method and each data set for experiment 2

.. 110
Table 6-27 Summary of identified parameter values for each method for experiment
.. 111
Table 6-28 Computational time of all three method for experiment 3............ccc....... 113

Table 6-29 Squared error values of each method and each data set for experiment 3

XV

Table 6-30 Summary of identified parameter values for each method for experiment 3

Table 6-31 Computational time of all three method for experiment 4 116

Table 6-32 Squared error values of each method and each data set for experiment 4

.. 116
Table 6-33 Summary of identified parameter values for each method for experiment 4
.. 116
Table 6-34 Computational time of all three method for experiment 5 118

Table 6-35 Squared error values of each method and each data set for experiment 5

.. 119
Table 6-36 Summary of identified parameter values for each method for experiment 5
.. 119
Table 6-37 Table of positive and negative mean matching factor of each parameter for
RS (=T 1T (S0) O SUPPPPN 130
Table 6-38 Summary of modelling conditions for the system (5.3)ceeeeeeees 138
Table 6-39 Parameter search space for the system (6.2)uevveiiiiiiiniiiniinnnnnns 139
Table 6-40 Computational time of all three methods for experiment 1.................... 140

Table 6-41 Squared error values of each method and each data set for experiment 1

.. 140
Table 6-42 Summary of identified parameter values for each method for experiment 1
.. 141
Table 6-43 Computational time of all three method for experiment 2 151

Table 6-44 Squared error values of each method and each data set for experiment 2

.. 151
Table 6-45 Summary of identified parameter values for each method for experiment 2
.. 152
Table 6-46 Computational time of all three method for experiment 3 154

Table 6-47 Squared error values of each method and each data set for experiment 3

.. 155
Table 6-48 Summary of identified parameter values for each method for experiment 3
.. 156
Table 6-49 Computational time of all three method for experiment 4 158

Table 6-50 Squared error values of each method and each data set for experiment 4

XVi

Table 6-51 Summary of identified parameter values for each method for experiment 4

Table 6-52 Computational time of all three method for experiment5...................... 162

Table 6-53 Squared error values of each method and each data set for experiment 5

.. 163
Table 6-54 Summary of identified parameter values for each method for experiment 5
.. 164
Table 6-55 Table of positive and negative mean matching factor of each parameter for
S A1 (=] 1 T (20 RS 173
Table 6-56 Computational time of all three methods............ccccceeeiii i, 180
Table 6-57 Squared error values for each method and each data set..................... 181
Table 6-58 Summary of identified parameter values for each method 182

XVii

1. Introduction

To be able to understand behaviour of any system, we perform experiments and record
measurements, which then need to be interpreted to create knowledge about the
system. Across fields, research has produced and produces knowledge in different
types and forms and at varying levels of detail and scale, leaving a segregated and
distributed vast of knowledge sources. Condensing knowledge into underlining
controlling mechanics allows us to construct model of the systems, which can predict
behaviour of these systems. In addition, the evolution in analytic techniques has
tremendously increased the number of quantities that can be measured, particularly in
the life science. The rise of the “system” research fields, which seek to combine
knowledge into an integrated and coherent whole, was a consequent development that
could be observed over the last decades, e.g., process system engineering, systems
biology, or systems medicine. In all those “systems” fields methods are developed and
sought that can help to integrate the different knowledge sources to faithfully describe
the system (Wellstead 2008; Wolkenhauer 2014; Zhao 2012). These models consist
of states that we can measure and of the parameters that influence this system. Within
each individual system only the states vary with time, and all parameters are constant.
However, if same model would be applied to similar system, which has same
underlining mechanics, but different set-up this will lead to different parameter values,
which are unique to the system in question. Development of such parametric models
IS very time consuming, as it involves performing large number of experiments, and
vast amount of data to be condensed into underlining equations of the model. Which
is why it is not reasonably possible to create unique model for every system, and
generic model are used to predict behaviour of the similar systems. To be able to use
generic models, parameters of the system need to be identified, such that it represents

the system accurately.

As an alternative to parametric models that are time consuming to make, non-
parametric models, which derivate their predictions of the system directly from data.
Although this approach is less time consuming and can provide model that are
accurate for specific application, they do not create any underlining understanding
about how system behaves. It is simply a data driven analysis connecting, input
variables to output variables. Also, non - parametric model accuracy is highly
dependent on accuracy of the data used to create them, and these models are not

transferable between similar systems.

1

Another alternative is to use a hybrid model, which are combination of parametric
model and non-parametric model. This type of models allows us to use parametric
parts of the model which we have knowledge off and use non-parametric parts of the
model where we do not have enough knowledge about underlining mechanics of the
system. Although hybrid model cuts of some of the parameters that need to be
identified, the parametric part can be still complex with large search space leading to

long computational time to identify the parameters.

This large amount of measured data leads to construction of larger and more accurate
models, that become more complex each day. This development cycle is hindered by
parameter identification step, as such large and complex models take extremely long
time to solve due to sheer size of the search space.

Any model that has a parametric part, will always require a parameter identification
step before it can be used, for system prediction purposes. If this parameter
identification step if very time consuming it effect the ability to improve the models and

use them for practical applications.

To be able to practically use these complex models, we require a method that would,
cut on time required to identify the parameter within the system. If a methodology would
exist that allowed to decouple the identification problems whenever possible, this
would decrease the search space for the identification algorithm. Then parameter
identification in large-scale complex systems would become solvable with current

parameter identification techniques.

1.1.Aims
Aim of this thesis is to introduce a novel parameter identification method, which would
allow to solve complex systems faster than current state of art methods. As this new
proposed state substitution method is only suited for solving large and complex
systems, it will perform worse than state of art methods when solving simpler systems.
Therefore, a secondary aim of this thesis is to construct a way of quantifying the
complexity of the system, which would help to decide what kind of parameter
identification strategy should be used to solve the system within reasonable time and

high accuracy.

1.2.0bjectives

Select state of art methods to be compared with the proposed state substitution
method (Chapters 2 and 3)

Construct complexity analysis (Chapter 4)

Construct novel parameter identification method (Chapter 5)

Compare the proposed state substitution method with state of art methods, with
multiple cases studies (Chapter 6)

Define boundaries where the proposed state substitution method performs
better and where it does not (Chapter 7)

2. Literature review

This literature review discusses the importance and need for accurate and fast
parameter identification techniques. Potential methods are separated into three
categories a) gradient-based algorithms b) stochastic algorithms c) other algorithms.
All categories are compared, and gradient based algorithms are selected as best
option due ease of use, which is are highly important criteria for industry. Selected
category of gradient based algorithms is explored in-depth. Gradient based algorithms
can be broken down into several steps: a) objective function construction b) optimality
conditions c) parameter changes. Each of these steps are discussed focusing the on
the most commonly used techniques within each step. Moreover, gradient based
algorithms can only optimise towards closest local minimum making them, not useful
on their own, for optimisation where cost function have multiple local minima. As cost
function defines a value of error between model and the measured data, by following
the gradient it is only possible to reach closest solution to starting location, which may
not be global solution. To reach the global minimum, amongst the multiple local
minima, a global solver should be used instead of a local optimiser. To see which of
the global solvers can be used as a state of art method, with local gradient-based
solver - five global solvers are explored. The five chosen solvers are all present in the
MATLAB optimization toolbox. For each global solver, the working principals are
explained, and then they are evaluated using four criteria: a) speed — based on
computational time b) complexity — based on how simple it is to use c) accuracy —
based of how accurate the final model is d) stability — based on how replicable the
results are. This is used to explain why global search optimization will be used for the
derivative method and multi-start optimization used for the iterative method in later
chapters. Furthermore, the literature review serves as basis, to explain why the
derivative and iterative approaches, were chosen as two state of art parameter
identification methods to be compared with the proposed new method of parameter

estimation.

2.1.Introduction
Parameter identification is a problem where a user tries to find parameters values for
provided generic model, to produce a model with accurate prediction capabilities for a
specific application. Model is considered accurate, when it matches already measured
data, and can make predictions of how system will develop in the future. Process of
solving parameter identification problem normally starts with having a generic model
consisting of first order ordinary differential equations. This generic model has
condensed knowledge of similar system behaviour, that are only differentiated by the
parameter values. Each of these equations may have multiple parameters, where
specific numerical values would produce best fit to current measurements, enabling a
user to use model for future predictions. Only over determined problems can be solved
analytically as they provide more equations than unknowns. Unfortunately, normally
these problems cannot be solved analytically because number of unknowns is larger
than number of equations. Such problems are under determined, making it impossible
to find a singular unique parameter values that satisfies the equation. For this reason,
parameter identification algorithms have been developed to tackle this kind of problem.
It tackles this problem iteratively, making each iteration more accurate than the

previous one.

The ability to identify the parameters of models of complex large-scale (bio) chemical
systems is critical in order to develop an understanding of a system as well as to use
the model as a basis for process control or process optimization. Applications of such
knowledge can be found in “Quality by design” approach, which is widely used by FDA
(Food and drugs administration). Such design philosophy creates better products but
requires firm knowledge about the system. (Riley and Li 2011; Yu and Woodcock 2015)
Established methods of parameter identification normally simultaneously solve the
entire set of nonlinear ordinary differential equations (ODES) that describe the system
to determine the model parameters. In order to solve them, ODEs are integrated, and
the optimisation problem is set based on the model prediction and measured data
difference, which then can be minimised. Figure 2.1, shows general structure of how
measured data is used to calculate parameter values for specific application, using

generic model.

ODE model

A

Model prediction

Measured data » Cost function

Parameter optimisation

Y

Parameter values

Figure 2.1 General structure of the parameter identification problem structure

Generic optimization methods can be separated into three categories: a) gradient
based algorithms b) stochastic search algorithms c) other algorithms (Chou and Voit
2009).

Gradient based algorithms seem like a natural choice as optimisation problem are
constructed in terms of cost functions that need to be minimised. This is achieved using
gradient based regression and it is included in all major software’s. Stochastic search
algorithms consist of methods that are used for global optimization. Such algorithms
as genetic algorithms, simulated annealing, and clustering methods. These methods
are fit for purpose of finding global optimum in highly non-linear systems but require
additional computational time to converge to a solution. Other algorithms consist of
approaches that try to reduce the parameter search space or reduce risk of method
getting stuck in local minima. These methods are hard to implement and are system
specific. Such algorithms consist of Alternating regression and geometric

programming.

Companies prefer to use easy to apply and fast algorithms for their kinetic analysis of
systems (Steijns 1997). This makes gradient based algorithms the preferred options,

as stochastic search algorithms, such as genetic algorithms (Y. Maki and Tominaga

2001), are slow and hard to implement (Kikuchi et al. 2003), and other methods that
don't fit within the first two groups like geometric programming are normally hard to
implement (Marin-Sanguino et al. 2007). For these reasons gradient based optimizers

are included in all major software packages (Chou and Voit 2009).

Most gradient based parameter identification techniques can be separated into integral
and derivative approaches. The derivative approach normally proceeds by estimating
derivatives to approximate the change per unit time for a set of ODEs (Froment and
Bischoff 1990; Holland and Rayford 1989). When approximating derivatives, you
develop a set of algebraic equations for each state, which normally can be solved
relatively fast because a numerical integrator is not used. However this method often
results in sub-optimal parameter values (Willis and Stosch 2016; Yeow et al. 2003).
This is caused by errors in measurements, which are amplified when estimating
derivatives which can lead to inaccurate parameter values. This means that problem

must be normalised, making it only suitable for rich data environments.

On the other hand, the integral approach can be used if a system can be written as a
scalar differential equation of higher order. When combined with a measured data set
an error model can be produced by creating a least squares cost function to estimate
the parameters simultaneously (Voss and Timmers 2004). This has been done for
several different approaches of the least square’s method (Aguirre and Billings 1995;
Breeden and Hubler 1990; Cremers and Hubler 1987; Crutchfield and McNamara
1987; Gouesbet 1991; Hegger 1998; Kadtke et al. 1993). These attempts achieved
varying degree of success, but they all suffer from same problems: a) poor noise
robustness — it has been shown that these approaches work well for small noise levels,
but lead to inaccurate parameter values when noise levels are increased (Timmer J
2000) b) different size errors in variables — if not taken into account lead to biased and
inaccurate parameter values (Voss and Timmers 2004) if non-sensitive variables are
part of ODE equation that has larger error impact than the other ODEs within the
system, optimizers would try to adjust those parameters in exchange for accuracy of
sensitive variables within ODEs with lower noise c) these methods are all parametric

and require full and accurate structure of the system.

Although, these techniques can work well, (taking into account points a, b and ¢
mentioned above) they can be relatively slow, because for larger systems the solution
space rapidly grows (Bardow and Marquardt 2004).

Both the integral and derivative methods can be improved by using multithreading,
adding assessment of noise, using scaling variances. (Raue et al. 2013).
Multithreading can be beneficial to any iterative algorithm as it can run multiple
integration loops in parallel, reducing total computational time. However, this require
that software and hardware would be compatible for such use. Assessment of noise
can help to improve algorithms accuracy, as noise can be minimized in post-
processing of the data. However, this requires having a prior knowledge of noise level,
cause, and behaviour. Scaling variances enables algorithm to consider smaller
variance of states which do not have high measured values. All these techniques
increase the performance of the method but do not alter the method itself. This work
will not focus on supportive algorithms that can improve performance of a method,
because these supportive algorithms can be applied to most of optimization techniques
regardless of a chosen method.

The method proposed in this work will be compared to one existing integral method
and one existing derivative method. It is generally agreed that the current best integral
method for identifying parameters is multi-start search with Latin hypercube sampling
providing the initial conditions (Degasperi et al. 2017; Raue et al. 2013). This provides
a best compromise between accuracy and computational time. As for the derivative
method, derivative estimation at each point will be applied and compared with
calculated derivatives, creating a network of simple algebraic equations that can be
optimised, for the parameter values (D.l. Kamenski and Dimitrov 1993). This method
is chosen for it's simple application and fast computational time, as these two criteria

are desired by industry (Steijns 1997).

The following literature review will describe different gradient-based optimization
algorithms that can be used with the integral and derivative approaches. The literature
review will also cover the advantages and disadvantages of the proposed state
substitution method in comparison with existing integral and derivative approaches.

2.2.Gradient based optimisation
Optimization algorithms are central to both the integral and derivative approaches, as
they are used to calculate the unknown model parameters. Although the derivative
and integral approaches use gradient based optimisation to find parameter numeric
values, they reach different results. This makes them easily comparable side by side,
as all differences in performance must come for their different approach strategies.
Gradient based optimizers can have many different forms including but not limited to:
a) non-linear regression (Nigel 1995) b) Levenberg-Marquardt algorithm (Simeone
2006) c) Newton flow optimization (Kutalik et al. 2007). Each of these variations have

the same general structure (See the flowchart figure 2.2).

Initial parameters Create the objective function

—» Compute the model error < Measured data

I

Check if optimality is reached Optimisation solution

Determinate direction of
parameter change

l

Change parameter values

Figure 2.2 Flowchart of gradient based optimisation

This iterative procedure is repeated until the optimality conditions are satisfied and a
satisfactory solution is obtained. Which is defined by some convergence criteria or
tolerance being specified

2.2.1. Objective function
When constructing the objective function, to represent the error between measured
data and model prediction. The most important thing is to be make sure that error
provided, represent the model’s validity the best. Most commonly this is represented
by the sum of Euclidean distances between, measured data and model predicted data.
Moreover, usually two different data sets are used for satisfactory identification,
because a single data set, can be fitted with arbitrary parameters to produce good fit,

without making the model useful for other predictions. This results in two objective
functions of each data set, to form the final error value. Individual objective functions
can be modified to best represent the system depending of the needs. Three most

common techniques are:

a) Weighting: If the system consists of several species or states that are
observed such as biomass, substrates, products, etc. That can be
described as individual ODE's, the weighting of each ODEs error can
improve the objective function representation of model performance. A
higher weighting factor should be allocated to states that are less
sensitive to parameter changes, this ensures that small changes created
by important parameters are more easily observed in overall objective
function. Unfortunately, there is no formal procedure to decide what
weighting values should be allocated to each state to obtain best results.
These values are usually derived from previous knowledge about the
system and experimentation with different setups. Equation 2.1 shows
example of cost function with weighting incorporated. | is for cost

function value, w; for weighting values for i state, X;; measured value of

i state at j time point,)?L-j model prediction value of i state at j time point.
n
]:WiZKXij—Xij)l 2.1
i=1

b) Normalization: If different state measurements are an order of
magnitude different, it is good idea to normalise, all measurement and
model predicted data, to avoid disproportional error representation. For
example, if biomass concentration measurements are in the range of 0
to 1, and substrate concentration measurements are in the range 0 to
100. Ten percent error in both of these measurements would be
maximum of 0.1 and 10. If the objective function is not normalised then
the same relative size mismatch in substrate will perceived by algorithm
as hundred times worse, then in biomass. To avoid this normalisation is
performed by dividing all measurements of each state with the maximum

value, of each measurement set. This "rescales" all measurements and

10

predicted data to the scale 0 to 1. Equation 2.2 shows example of cost

function with normalization incorporated. J is for cost function value, X;;
measured value of i state at j time point, X’ij model prediction value of i

state at j time point.

2.2

/= z ‘(max (XU)

c) Squaring: As a model of a system is normally not perfect, one hundred
percent accurate predictions are not possible, nevertheless for practical
applications one hundred percent accuracy is not needed and small
deviations are acceptable, if general trend is accurate. To promote
algorithm to avoid large error and ignore small ones, squaring of error
may be performed. This has an effect where a large error between the
measurement and model predictions, becomes even bigger and very
small errors gets even smaller. Equation 2.3 shows example of cost

function with squaring incorporated. J is for cost function value, X;;
measured value of i state at j time point,)?ij model prediction value of i

state at j time point.

n

J= Z(Xij — Xij)? 2.3

i=1

2.2.2. Optimality of numerical optimisation algorithms
Optimality refers to conditions chosen, that determinate if the current solution is
satisfactory or if optimization should continue. Optimality can consist of single or
multiple conditions. With multiple conditions, it usually enough to satisfy one of them.
Optimality conditions should be chosen to be strict enough to produce accurate
parameter values, but flexible enough to make it possible to reach the solution. The
best optimality conditions are very system specific and could vary a lot from application

to application. Four most common optimality conditions are:

a) Tolerance: Is a value, that is compared with objective function after each

iteration. If objective function is lower than, the tolerance value optimality is

11

12

b)

d)

reached. Increasing tolerance, makes optimization faster and easier in
exchange for lower accuracy of the model prediction. Equation 2.4 example of
tolerance optimality condition, where J is cost function value and ¢ is value of

tolerance.

lJ| < € 2.4

Step tolerance: Is a value, that is compared with a difference between the
current iteration objective function value and the previous one after each
iteration. If the difference between the current and previous iterations objective
function values is lower than the step tolerance value optimality is reached. Step
tolerance allows the optimization algorithm to reach its local minimum without
knowing the value of objective function at the minimum. This is most commonly
used optimality condition of numerical optimization algorithms. Equation 2.5
example of step tolerance optimality condition, where] is cost function value, n

current iteration number and ¢ is value of step tolerance.

Un-1—Jnl < € 2.5

The number of iterations: Is an optimality condition that stops, the optimization
algorithm after certain number of iterations. This optimality condition is usually
set to high number and is a safeguard, that prevents algorithm from getting stuck
in infinite loop. Equation 2.6 example of the number of iteration optimality
condition, where n is current number of iterations, and ¢ is value of the number

of iterations.

The time of iteration: Is an optimality condition that stops, optimization after
certain time has passed. Similarity to the number of iterations optimality
condition, it is used most of the time as safeguard against infinite loops. Itis also
useful for optimization with very wide search spaces, to ensure algorithm does

not spend too much time optimizing each set. Equation 2.7 example of the time

of iteration optimality condition, where nt is current length of the iteration, and ¢

is value of the time of iteration.

nt= ¢ 2.7

2.2.3. Parameter change
The core of gradient based optimization algorithms is how the algorithm within each
iteration decides to adjust the parameter values. This step determines how fast and
accurate the overall optimization algorithm will be. Parameter values are changed
based on the gradient of cost function with respect to each parameter. Within the
system as it represents if parameter value gets closer or further from a local minimum.
This can be easily visualized with a simple parabolic curve with a single parameter (fig
2.3). If we follow parameter value from -100 to O, we can see that function value
decreases, and the gradient value increases. Negative gradient means we are
approaching local optimum and positive gradient means we are moving away from the

local optimum; zero gradient is at a local optimum.

Function value versus parameter value

10000 T T

5000 ™ 1

Functicn value
ra

0
-100 -80 60 -40 -20] 20 40 &0 &0 100
Parameter value

200 Gradient value versus parameter value

GGradient value

_EDD -'------- 1 1 1 1 1 1 1 1 1
100 -80 -60 -40 -20 0 20 40 &0 80 100

Parameter value

Figure 2.3 Objective function with single parameter value and gradient value versus parameter

13

This simple visualization is improved upon in the actual implementation of gradient
based optimization algorithms in order to deal with multiple parameters and multiple
functions. The two most common algorithms are the Gauss-Newton algorithm and the
Levenberg-Marquardt algorithm. Both methods can be used to solve non-linear
optimization problems which is most common type of optimization problems.

The Gauss-Newton algorithm (GNA) is derivation of Newton—Raphson method, but
has the advantage of not needing second order derivatives of the system, which can
be hard to obtain (Mittelhammer 2000). The Gauss-Newton method can minimize the
summed squared error of multiple variables and functions at the same time. Starting
with the provided initial conditions x(0), the algorithm creates next iteration parameter
set by applying (Equation 2.8), Jr within the equation represents the first order partial
derivatives and is also known as the Jacobian matrix. If y (function) and x (parameters)
are column vectors the Jacobian matrix can be written as (Equation 2.9). In case
number of evaluated functions and number of estimated parameters are equal Gauss-
Newton method can be simplified (Equation 2.10). Although method works well with
one unique solution it can become unstable, while trying to optimize system with
multiple solutions, or multiple local minimums (Mascarenhas 2013). For this reason,

Gauss-Newton algorithm will not be used in this work.

x(t+1) = x(@®) — JrTjr) " rTy(x(®)

2.8
Jr)ij = %i(t)) 2.9
]
x(t+1) = x(@) — Jrly(x (D)
2.10

The Levenber-Marquardt algorithm(LMA) was first published in 1944 (Levenberg
1944). The LMA is an improvement to the GNA, by increasing robustness, but slightly
increasing computational time. The LMA modifies (Equation 2.8), by introducing a
damping factor A, and rearranging the equation to calculate a change in parameter
values instead of the new parameter values (Equation 2.11). The damping factor is
adjusted each iteration, based on the change in objective function value. If the change
in the objective function is sufficient the damping factor is reduced, which brings it
closer to the GNA, but if the change in objective function is not sufficient the damping
factor is increased bringing it closer to pure gradient descent.

14

x(t+1)—x(@) = —(JrTr + AD " YrTy(x(t)) 2.11

The strategy of adjusting the damping factor can be different, which will provide
different speeds of optimization and accuracy. A common way of adjusting the
damping factor within the LMA optimization is to set an initial damping factor value (Ao)
and velocity value (v). The velocity value must be higher than 1 (v > 1). After each
iteration multiple new damping factors are calculated (table 2.1). The objective function
is computed with each damping factor and the damping factor that produces the lowest
function value, is set as the new A. It should be noted that velocity value (v) stays the
same with each iteration. The absolute values of v and A are based on the scale of the

objective function.

Possible damping factors
A=Ao A = holv A=AV, j=1,23..

Table 2-1 Damping factors to be evaluated after each iteration

As mentioned before, this type of LMA will lead to more robust solutions in exchange
for a slight increase to computational time, when compared with GNA. To improve LMA
computational time Geodesic acceleration can be used. Instead of only adjusting
parameters, based on the first order derivatives, second order derivatives can be
incorporated to adjust the parameter change at each iteration. It only requires the
single directional second derivative, which does not add a large amount of
computational time, but improves convergence significantly (Mark K 2012). The
parameter change is then defined by velocity (first order) and acceleration (second
order) (Equation 2.12). The first order change is estimated as explained above while
the second order directional derivative (Equation 2.13) can be estimated using finite
difference approximation. By using finite difference approximation only one additional
function evaluation f(x+h®) needs to be done, as the Jr matrix and f(x) is already
computed in the previous step (Equation 2.14). This requires selecting an arbitrary step
(h) value. It was reported that a value of 0.1 works well for most cases (Mark K 2012).
Lastly, to accept this modified parameter change it must satisfy condition (Equation
2.15), if not it is rejected and the unmodified change of velocity (4x,) is selected. The
value of a can be selected to be anything below 1, but it is suggested to use 0.75 for
most cases and 0.1 for difficult problems (Mark K 2012).

15

1
Ax = Axq + Ax, = vét + zac?tz 2.12

Ax, = — % UrTir + D" YrTy(x()" 2.13
y(x(@®)" ~ z (f(x Thd) ~f0g]Ax1> 2.14
h h
2|Ax,|
2.15
|Ax.| —

Combined with improvements, LMA outperforms GNA in every aspect, which is why

LMA was chosen as the algorithm for gradient based optimization in this work.

2.3.Global solver

Gradient based optimization on its own can only find local minimum. If a problem has
multiple local minimums, only the closest local minimum to the initial conditions will be
found. To work around this issue a global solver strategy needs to be used. There are
many global solvers, but we will focus only on the ones MATLAB provides, as it is the
software used to develop the proposed new method and compare it to the state-of-the-
art methods. MATLAB offers five different global solvers (MATLAB documentation) a)
Pattern search (Charles Audet; J. E. Dennis 2002) b) Particle swarm (James Kenedy
1995) c) Genetic algorithm (Goldberg 1989) d) Surrogate optimization (Gutmann 2001)
e) Global search (Ugray 2007).

a) The pattern search algorithm works, by creating several separate groups
of potential solution around the initial point and evaluating the objective
function at each of these points. These groups are called pooling. For
example, if the objective function has two parameters, the pattern search
algorithm would create four new parameter sets and evaluate the change
of the objective function with parameters in all four cardinal directions.
The size of change for these parameters is called a mesh, which is
doubled on successful pooling and halved on unsuccessful pooling by
default. Pooling is considered to be successful when at least one of the
newly defined parameter sets produces a lower objective function value,
than the previous iteration. On successful pooling the parameter set with
lowest objective function value is considered to be the new initial point

for the next iteration, in case of unsuccessful pooling the initial point is
16

17

b)

not changed, only the mesh size is adjusted. Pattern search is robust to
discontinuities in the objective function, as such solutions would be
simply ignored. However, this approach does not guarantee that a global
optimum will be found, but may avoid some local minimums, in which
simple gradient-based approach would get stuck to. This method is
usually fast, but not extremely accurate. In one of the examples when it
is compared to genetic algorithm (Michael Wetter 2003), it is showed that
two out of three cases accuracy of the method was lower than GA. It is
stated that although pattern search is global optimiser it can be attracted
to a local minimum, which make it difficult to bypass discontinuities or

local minima, that are between starting position and global optimum.

The particle swarm algorithm works by searching a bounded parameter
space without needing to have an initial starting point. The algorithm
initializes an array of random parameters values known as 'particles’
within a bounded region. For each iteration the particle swarm algorithm,
generates a random velocity vector for each particle, then moves a
particle to a new location based on its own unique velocity vector and
estimates the objective function value at each of these locations. The
position with the lowest objective function is considered to be the new
position of that particle. After a new position is found a particles velocity
vector is adjusted based on certain criteria such as: previous velocity,
distance between previous and new location and distance between other
particles. This process is repeated for each particle. Particle swarm has
a high success rate of finding global minimum, as the number of
evaluated functions is significantly higher than e.g., pattern search. This
comes at a cost of increased computational time. Particle swarm is a
stochastic algorithm, which means it will not yield same results for every
optimisation run. Particle swarm can be applied as parameter
identification algorithm, but it is not popular option. Only 2.8% of
published paper until 2007 about particle swarm, were used for modelling
applications. (Poli et al. 2007). Although its popularity rise it does not

seem as go-to robust method for parameter optimisation currently.

18

c) A genetic algorithm is another stochastic method that is based on real

d)

life evolution. The method is initialized by a provided random or pre-
selected population of samples. Each of the samples are evaluated using
the objective function and are ranked based on their score. Lower
objective function values provide higher score. A certain percentage of
population with the best scores are selected to create the next iteration
population - to be 'parents’. From the parents next iteration population is
most commonly created in three ways. First a very small number of 'elite’
samples are selected to be part of next iteration population. ‘Elite’
samples are the ones with best score values. A common value for ‘elite’
is 1% of the selected 'parent’ samples. Second the rest of the 'parent’
population is randomly selected for one of the two method, which are
mutation and crossover. During mutation, a single random parent is
chosen, and its parameter values are randomly adjusted, this creates a
‘child’ for next iteration population. During crossover two random parents
are selected and by combining their parameter values a 'child’ for next
iteration is made. Crossover and mutation are repeated till a new
population reaches the size of the initial population. Once a new
population is ready, the same process is repeated. A genetic algorithm
has a near 100% probability to reach global minimum if given enough
time, however the sheer number of evaluations and iterations needed to
reach good solution increases computational time exponentially. Genetic
algorithms can be successfully applied to variety of problems from
energy usage optimisation (Leonori et al. 2020; Salata et al. 2020), to
optimising PID controllers (Abadlia et al. 2020). Each of these cases
does not go into detail of computational demand for these optimisations,
as this is not the focus of the study, but it is safe to assume computational
time is high, due to how genetic algorithm are executed. Furthermore,
application for genetic algorithm typically are the ones that value high

accuracy of optimisation and does not have time constraints.

Surrogate optimization operates with two main steps, construction of a
surrogate model and search for the minimum. During construction of the
surrogate model quasi-random parameter sets are created. If any initial

parameters are defined, they are used together with quasi-random

19

parameter sets. Each of the sets are evaluated using an objective
function to provide the value to each parameter set. After evaluation the
objective function values of each set are interpolated using (a / the) radial
basis function (Powell 1992) to create surrogate model of the objective
function. Then the incumbent point is found — which is the lowest
objective function value from given parameter sets. Once the surrogate
model is constructed and the incumbent point found the algorithm moves
to search for a minimum. Search starts around the incumbent point, by
using a set 'scale’ value and the algorithm determines the range of search
around the incumbent point. Within this range of search thousands of
pseudo-random vectors are created and applied to the incumbent point
to find an array of new sample points. Each sample points are evaluated
with the merit function, which is a combination of surrogate values and
distance values (Equation 2.16-18). Increasing weight (w) within the
merit function increases the rewards for the algorithm to search close to
incumbent point, where lowering weight (w) value encourages algorithm
to search further from incumbent point revealing new regions. The
parameter set with lowest merit function value is evaluated with the
objective function and the surrogate model is updated by adding newly
acquired value. If addition of a new value, changes the incumbent point,
search is considered successful. After multiple consecutive successful
searches, the scale of search is increased, similarly after multiple
consecutive unsuccessful searches the scale of search is decreased.
This ends a single iteration. By default, the stopping criteria for surrogate
optimization is the number of iterations which must be defined, prior to
start of optimization. This might lead to the algorithm not reaching the
global optimum due to insufficient number of iterations, or running much

longer than needed, after the global optimum is found.

fmerie(x) = wS(x) + (1 —w)D(x) 2.16
dmax - d(x)

D(x) = —max) 2.17
dmax - dmin

S(x) = M 218
Smax Smin

20

d(x) is distance between sampled points and s(x) is surrogate function value of
samples points. Surrogate optimisation while useful according to (Lu et al.
2020), can struggle to optimise parameters when possible parameter

boundaries are too large.

e) Global Search or multi start algorithms work similarly but have some
differences. Key differences are that global search rejects start points
that are unlikely to improve, current best local minimum, whereas the
multi start optimizes all start points. Multi start allows multiple local
solvers, whereas global search does not. Furthermore, multi start can run
in parallel. Global search starts with taking the provided initial conditions
and a running local optimization solver and if the initial start point cannot
converge to a solution the algorithm cannot continue. Once convergence
is reached the algorithm records, the start position, end position and
radius of estimated basin between those two positions. Furthermore, the
final objective function value is recorded to be used in a score function
later on. The score function consists of the objective function and a
multiple of the sum of the constraint violations, this way viable points
score function equal to their objective function value. After initial local
optimization the algorithm generates a trial point by using non
symmetrical scatter (Glover 1998). These trial points are potential
starting points for the next step. To obtain a stage 1 start points, a fraction
of trial points are selected to be evaluated for their score function. The
trial point with best score function is selected to be locally optimized, and
similar to initial start values, its start position, end position and radius of
estimated basin between those two positions is recorded. After stage 1
start point evaluation, the algorithm moves on to stage 2 evaluation,
where the rest of trial points, selected previously, are locally optimised if
they fit the following criteria: a) the selected position is not in any existing
basin b) the position score value is below a local solver threshold. If the
trial point satisfies these conditions, it is locally optimised, and the newly
created basin is added to the list together with adjusted threshold value.
This process is repeated till no trial points are left. All solutions create a
global solution vector, where all samples are ranked based on their

objective function value and lowest value is chosen as final solution.

In comparison multi start approach is simpler in comparison. At the start of the
algorithm, multi start generates randomly equally distributed parameter sets
within specified boundaries. The number of generated start points has to be
manually selected, and the algorithm use the provided start points first and will
generate any additional sets if needed. After having required number of starting
points each point is locally optimized and solutions are stored into a global
solution vector, which is ranked in descending order based on the objective
function. The best solution is selected which managed to achieve lowest
objective function. Both of these methods are commonly used in global

optimization as they are computationally efficient to reach desirable solution.

Each of these solvers can be used for global optimization, but all of them have their
own advantages and disadvantages. There are four main criteria we can look at when
selecting a global solver: a) speed b) complexity c) accuracy d) stability. Speed of the
solver is important as fast solvers can be adjusted multiple times, allowing the user to
experiment with parameter conditions, without losing valuable time. From the
previously discussed five global solvers the fastest one is pattern search, and slowest
is genetic algorithm (documentation;). Complexity of a solver can be important criteria
if the algorithm needs to be applied to a large number of different problems and set up
time and effort becomes significant. Setup complexity of all five global solvers is
generally similar, with the exception of particle swarm as it does not need initial
conditions and can be started with only the objective function. Accuracy is a criterion
that is important, when results of optimization need to be trustworthy. If an optimization
problem is only required to be solved for general knowledge and an exact result is not
important some of the accuracy can be exchanged to improve the other criteria. Based
on MATLAB benchmarks most accurate MATLAB global solver is a genetic algorithm
followed by global search and surrogate optimization (documentation;). The stability
of a solver is important for each optimization to be consistent and being robust to stiff
problems and problems with discontinuities. Purely stochastic algorithms like particle
swarm and genetic algorithm very rarely yield similar results between repeats, and an
algorithm like pattern search deal with discontinuities easily but will navigate away from

solution that yield incomplete solution as an answer.

As mentioned before industrial companies prefer fast algorithms that are easy to

implement (Steijns 1997), but we cannot neglect accuracy. Between methods that are

21

able to delivery robust and high accuracy results, we choose the one that have lowest
computational time. Computational time is important as it creates time saving, that can
be used performing experiments or improving model structure itself. This still leaves
us with at least two options that seem to fit the description, which are global search
and surrogate optimization. Both of these methods could be used, as a state of art
method for global optimization and would make good benchmark comparison to the
proposed state substitution method. However global search was selected to be the
global solver, because of the reports in literature of various multi start being one of the
best currently optimization techniques (Degasperi et al. 2017; Raue et al. 2013). Multi
start and global search are very similar, but have their differences as discussed before.
For this reason, both of these approaches will be used for comparison, global search

with derivative approach and multi-start with integral approach.

2.4.Summary
The literature review chapter looks at why parameter identification problem is important
and how it can be solved focusing on gradient based optimisation algorithms. Literature
reviews identify the need for faster parameter identification techniques for large
systems. This is primary gap that the proposed state substitution method for parameter
identification is trying to fill. Flowchart (fig 2.2) of gradient based optimisation algorithm
is defined, and key features are investigated in detail, such as the objective function
construction, the optimality conditions and the parameter change algorithms. It is noted
that local optimisation is not sufficient to obtain accurate parameter values in complex
systems. Therefore, five global solvers are investigated and compared, based on four
criteria speed, complexity, accuracy, and stability. From information about local and
global solver, two variations of gradient based optimisation are chosen to serve as
state of art methods, for comparison with the new proposed state substitution method

for parameter identification.

22

3. Kinetic model calibration: State of the art methods

This chapter will discuss, two state of the art methods that were chosen as a basis for
comparison with, the proposed state substitution method. The literature review helped
to establish that the integral and the derivative approaches are best choices. This
chapter will discuss the details of these two approaches. To make sure that both
approaches are best suited for the case studies that were selected, modifications are
made. Modifications, such as different sampling algorithms, screening or re-
optimization are required to cut down computational time, that does not contribute
towards more accurate identification of parameter values. This way the state of art
methods should perform at their best when compared to the proposed state
substitution method.

3.1.Integral approach
The integral method is a direct method that requires an algorithm to integrate the whole
model at each integration time step and to evaluate the error between model and
measured data. This leads to a slow working method which, spends up to 95% of its
time integrating model, and not optimizing the parameters. Furthermore if the model
equations are stiff, this increases computational time almost by 100% (Voit and
Almeida 2004). Nevertheless, the integral approach predicted model output is very
accurate as numerically integrating the model allows the optimisation algorithm to
capture all interactions between parameters and states of the model. In addition, the
integral method is robust to noisy data, and is easy to implement. The main drawback
of integral method is the long computational time, with most of that time being spent
integrating the model ODEs, it is important to focus on decreasing the amount of time
needed to integrate the model. To have a good state of art integral approach, for
accurate comparison, modifications were made to improve the integral approach
computational time without sacrificing the accuracy of the method. Multi-start was
chosen as the best global optimizer for this approach, as it only locally optimizes given
starting locations, and does not search for new start points. This is important as new
start points would increase the number of integrations required, thus increasing

computational time.

3.2.Derivative approach
The derivative approach tries to deal with the main drawback of integral approach the
long computational time associated with model integration. This is done by removing
the integration step completely and replacing it by set of algebraic equations that can
23

be optimized simultaneously or separately. In order to do this, slope estimation is
required, that would replace the derivative term in each ODE making it a single point
algebraic equation. Slope estimation can be done in various ways including: a) linear
interpolation b) splines (P.J. Green and Silverman 1994) c) Three point method (R.L.
Burden and Faires 1993) d) Hand fitting (Voit 1982) e) Artificial neural networks
(ANNSs) (Almeida 2002; J.S. Almeida 2003) f) Filters (Eilers 2003; M. Vilela 2007,
Whittaker 1923).

Slope estimation methods a, ¢, and d can work for low or noise free data, as noise
tends to get amplified when estimating slopes. As noise is inevitable in any real system
this leaves b, e, and f methods, which can deal with noise to certain levels by
performing smoothing of the data. ANNs are accurate at finding general trends and
fitting data with ‘universal functions', but they require a lot of data sets and
computational time to be trained. This adds additional complexity to the setup of the
method and computational time, which we try to reduce. Between splines and various
filters, splines where chosen as a better candidate for the derivative method due to
simpler use. Splining is done by fitting data with a polynomial (equation 3.1), or other
types of splines, to minimize the error between the spline and measured data. With a
spline state values can be approximated at any time point. Which allows to estimate
slopes (equation 3.2) at any time point to be replaced in the ODE to change it into
group of algebraic equations (equation 3.3). With slopes estimated the algebraic
equation can be optimised locally for each data point with non-linear least squares
method, creating vector of solutions x;, as noise can affect these solutions an average

of all solutions is taken to represent starting point for global optimisation.

C(x) = a; + azx+azx? + -+ a,x" ! 3.1

C(x,) — C(x dC dC
(t) (t+1) = & —,at tn 3.2
tn — thet dt dt

dc dc , ,
ar =A*xx = a = A * x;, where x; are parameter values at t time point 3.3
Where C(x) is polynomial of variables x, a are weights, and t is time.

24

3.3.Integral method modifications
Two modifications were done to general integral multi-start approach to improve its
accuracy and computational time. Sampling of the search space was changed to Latin-
hyper cube sampling as it provides benefit of each sample on average being closer to
the global solution. Screening was introduced to reduce the number of starting samples
that need to be optimised. This is important for complex systems especially as they
introduce discontinuities which cannot be optimised and there is no need to waste

computational time optimising them.

3.3.1. Sampling of the search space
In an attempt to ensure that global minimum is found using multi-start approach,
sampling of the search space for starting points, has to be done methodically, while
trying to minimize the number of starting points, but covering the whole search space.
The simplest solution for sampling the search space would be a factorial design, which
is commonly used for experimental setups, to capture the effects of each parameter
(Abdel Moamen et al. 2015; Bir6 et al. 2009). Unfortunately, this expands the number
of samples, exponentially with increasing number of parameters. Furthermore, unlike
experiments, model parameters can be very sensitive even to minor changes requiring
a lot of steps for each parameter. A better sampling technique for this application is
Latin-hyper cube sampling (McKay et al. 1979). The search space is split up into equal
size pockets, and each sample point is randomly put into one of these pockets, while
having straight line of sight with each coordinate end, without interfering with other
samples points line of sight (fig 3.1). This decreases the number of samples required,
to capture dynamics of the model, as each new sample provides unique setup, without
overlapping with other samples. The Latin-hypercube sampling requires
predetermined number of samples, which has to be manually selected. The number of
initial samples should increase with larger and more complex models and decrease

with simpler and smaller models.

25

Parameter Parameter

v
v

space space
First sample Second sample
Parameter Parameter
space > space >
Third sample Fourth sample

Figure 3.1 Example of Latin hyper cube sampling in 2d space, with X denoting each sample and red square places
that are unavailable to following samples.

3.3.2. Screening
The second modification to improve integral method, is screening of initial start points.
This is required because, we do not know if we have selected too many samples and
some of them can be redundant and for complex systems a lot of starting points
extremely far away from global optimum or cannot be integrated. Screening is
performed for all samples evaluating their objective function, then 10% of best starting
points are given to multi-start algorithm to optimize further. This screening process cuts
off a large amount of unnecessary time, without compromising accuracy of the overall
method. This type of screening works, because as parameter values get closer to
global optimum, error between prediction and the model decreases. This makes it safe
to assume that values that have initial low error values before optimization, will have

even lower final error value.

3.3.3. Modified integral method structure
When these modifications are implemented the incremental method approach flow
chart changes (fig 3.2). First the search space is sampled using Latin-hyper cube
sampling method for specific number of samples, second all samples are screened for
their objective function value and the best 10% passes to next stage, lastly multi-start

global optimiser locally optimises all provided starting samples and global solution is
26

reached. This modified version of integral approach should be most competitive versus

the proposed state substitution method.

Search space is sampled with the
Latin-hyper cube sampling
method

h 4

Samples are screened to
separate 10% best samples

h 4

Each sample is locally optimised

h 4

Global solution is chosen

Figure 3.2 The integral method flowchart

3.4.Derivative estimation method modifications
Only one modification was added to the derivative estimation method. Re-optimization
step is required to convert derivative estimation from local only into global optimisation

technique.

3.4.1. Re-optimization
Global optimisation is performed with global search, as it is similar to multi-start but
only requires single starting point input. This step is called re-optimization to ensure
that solution is globally optimum, as algebraic equation were only locally optimised.

Global search method is described in section 2.3.

3.4.2. Modified derivative estimation method structure
When re-optimization is implemented into the derivative method it structure becomes
as follows (fig 3.3). First measured data is splined and approximated with cubic spline.
Then slopes are estimated using splines and used to replace derivates in ODEs of the
model, to construct set of algebraic equations that are locally optimised at every data
point. Solution vector is averaged and supplied as starting point for global search
algorithm for re-optimization step. The final solution is produced by global search

algorithm.

27

Data is approximated with cubic
splines

Slopes are estimated from
splines

Y

Derivatives are replaced with

slope estimate at each time
point

Algebraic equation set is locally
optimised

Y
Local optimisation solution is
used as starting point for global
optimisation

Figure 3.3 The derivative method flowchart

3.5.Benchmark problem
To study the effects of modifications, within each method, a benchmark problem was
optimised, with and without these modifications and compared to assess the impact of
each modification. The chosen benchmark problem is a simplified version of Monod
kinetics (equation 3.4). This system consists of two states biomass (x, g/L) and
substrate (S, g/L). This model also has three parameters Umax, Ks and ¢, which are the
maximum specific growth rate (h), half-velocity constant (g/L) and the substrate

consumption rate constant (g/h) respectively. Models’ outputs are rate of change in

. d ds
biomass d—: and substrate —

dx

a4

ds

Ez—q*u*x 3.4
S

= Unax * e 27g

%)

28

3.5.1. Generating benchmark data

To simulate data sets using this model, parameters values need to set to desired
constants and the model needs to be initialised with initial conditions for biomass (x)
and substrate (S). Data sets were generated using numerical integrator ode45 in-build
into MATLAB. Output of each ODE is added to existing value of the state producing
time-series data of biomass (x) and substrate (S). Data was generated at 10h* sample
rate, and white random noise with 10% magnitude was added after, data generation,
but before it being used in optimisation algorithm. The parameter values that were used
to generate data are Umax = 0.9, Ks = 0.3 and g = 4. These are considered true values
of the parameters and the parameter identification algorithm accuracy can be
evaluated based on how close identified parameter values are to real values. Typical
data set have low starting biomass concentration and high substrate concentration. As
time progress substrate is consumed exponentially and biomass growths exponentially
(fig 3.4).

Typical data set for benchmark problem
25 —_— - - - 100

20T

n
T

=]
Substrate concentration, g/L

Biomass concentration, g/L

n
T

Time, h

Figure 3.4 Typical data set of benchmark problem, without the noise

3.5.2. Objective function
Objective function for this benchmark model was constructed as a sum of two different

data sets errors. Where error was defined as squared difference between data sets of

29

generated noisy data, and model predictions (equation 3.5). X and Y and are generated

data sets, Xand Y are model predictions.

~\2 —~\2
J= X ~%) +(%-1) 35
3.6.Effects of the modifications
Each of the modifications for the state of art methods were done with intention to

increase accuracy or decrease computational time. This sub-section describes with
example how these modification effect state of art methods.

3.6.1. Sampling space
To test how much difference there are between the Latin hyper cube sampling
technique and factorial design both sampling techniques were compared while using
integral method. When exposed to the benchmarking problem, both methods were
able to identify a solution, but Latin hyper cube method was faster and produced more
accurate model (table 3.1). Benchmarking problem was convex and global solution can
be achieved from many different starting points. However, Latin-hyper cube sampling
provided with better overall parameter values (table 3.2). Also, the run time is
significantly different, the Latin hyper cube sampling method outperforms factorial
design by 15% in terms of computational time. As both methods had same number of
samples, faster computational time is achieved by having initial parameter values
(samples) on average closer to the global solution. This leads to optimiser having to
do less iterations to reach a solution. Visual comparison of the model, with each

identified sets of parameters is shown in figure 3.5.

Sampling method Squared error of the Runtime,s
model
Latin hyper cube 425.29 728.47
Factorial design 1439.79 862.33
Table 3-1 Performance comparison of different sampling methods with benchmarking problem
Parameter Real values Latin-hyper cube Factorial design
sampling sampling

Umax 0.9 0.898 0.875

Ks 0.3 0.083 0.248

q 4 3.987 3.992

Table 3-2 Identified parameter values using different sampling techniques.

30

Sampling effects on model prediction

25 T T T T
— ¥ —(Generrated data (noise free)
Latin hyper cube model
Factorial design model *
200 ¥

107r

Biomass concentration g/L

Time, h

Figure 3.5 Comparison on biomass concentration model predictions, of different sampling methods with
benchmarking problem

3.6.2. Screening
A benchmarking test was performed to check the effect of screening on accuracy and
computational time (table 3.3). By only optimizing 10% of best initial parameter values,
computational time can be reduced by 97%. At the same time accuracy does not
change significantly. Model performance can be observed at figure 3.6 and identified
parameter values at table 3.4.

Screening method Squared error of the Runtime,s
model

None 425.29 728.47
10% best 425.98 21.57

Table 3-3 Comparison of accuracy and computational time, with 10% screening and without
Parameter Real values 10% Screening No screening
Umax 0.9 0.904 0.898
Ks 0.3 0.248 0.083
q 4 3.951 3.987

Table 3-4 Identified parameter values using 10% screening and without it

31

Comparison of model prediction with and withouth screening
25 T T T T T

— ¥ —Generrated data (noise free)
10% Screening
Mo screening

Biomass concentration g/L

Time, h

Figure 3.6 Comparison on biomass concentration model predictions with 10% screening and without
3.6.3. Re-optimization

Benchmark test was performed to compare accuracy pre- and post-re-optimization to
assess the effect of re-optimization. It was found that re-optimization improved the
benchmark problem solution accuracy by 195% (table 3.5). This is also clear from
identified parameter values (table 3.6). Pre-optimization values are very susceptible to
noise in generated data, as slope estimation is very sensitive to noise. This re-
optimization step makes the method more robust to noise and makes model prediction
very accurate (fig 3.7). Also using global re-optimization step makes the derivative

method similar to integral method, so comparison between two is more direct.

Squared error of the model

Pre re-optimization 36606.03
Post re-optimization 422.66
Table 3-5 Comparison of model accuracy pre- and post-re-optimization for the derivative method
Parameter Real values Pre re- Post re-
optimisation optimisation
Umax 0.9 1.064 0.899
Ks 0.3 0.565 0.242
q 4 4.543 3.989

Table 3-6 Comparison of the identified parameter values pre- and post-re-optimization for the derivative method

32

Comparison of model prediction with and withouth screening

25 T T T T T
— ¥ —Generrated data (noise free)
Post re-optmisation
P —_— I *
Pre re-optmisation }
207 ¥
-) [
=) #
S i
T 15¢ F
3 +
E i +*
O / ¥
w0 ; ¥
m #*
E ra #*
i= #
s i
_.*-*-
51 #
4
- Mﬂ-
DW&*:HEHHL’H'*** e o L !
1 2 3 4 5 6
Time, h

Figure 3.7 Comparison of model performance pre- and post-re-optimization
3.7.Summary

Chapter focuses on the derivative and integral methods as core state of art
approaches. The integral method is improved with two modifications, Latin-hyper cube
sampling and screening. Latin-hyper cube sampling is chosen as a sampling technique
instead of factorial design or random distribution of samples, because it provides, on
average, samples that are closer to global optimum given same number of samples.
Screening is implemented to reduce number of samples needed to be optimized, as it
is showed with benchmark problem, that accuracy of the solution is increased, and
computational time is decreased significantly. For the derivative estimation method, it
is chosen to estimate slopes, by using splines, as they are robust to noise, easy to use
and does not require large amount of different data sets. Re-optimization step is
introduced to increase solution accuracy. Final flowchart of both methods is shown,
and these methods are used as comparison with the proposed state substitution

method later in the work.

33

4. Problem visualization
In this chapter, we will discuss how the “curse of dimensionality” affects parameter
identification and how it should be addressed. We will investigate a common problem
of not being able to visualize the cost function error plane if we have a high dimensional
problem, and what information we are losing because of it. Firstly, we will discuss what
techniques can be used to visualize high dimensional problem and how to extract the
same information, that we can normally extract from 3d visualization of cost function
error plots. The methods investigated will involve, principal component analysis (PCA)
visualization, self-organizing maps (SOM) and the used of sorted cost function
performance graphs. For each of the techniques a simple example is used to help
understanding how the technique works and what information it portrays. Secondly,
we will address the concept of “complex” problems and how visualization techniques
in conjunction with convexity criteria can allow the quantification and assessment of
“‘complexity”. Lastly, we will discuss how these techniques can be used to determinate
if state of art parameter identification methods, are capable of solving a given problem
within reasonable time, or if a different approach should be taken (e.g., proposed state

substitution method State-substitution).

34

4.1.Introduction

When solving parameter identification problems, it is very useful to be able to visualize
your solution space, as this provides insight about the model you are working with. By
observing solution space, you can verify if there are multiple optimum solutions, how
much impact each parameter has on the model and how sensitive those parameters
are. Simple way of visualizing the solution space of a model is to make an error plot.
An error plot is a graph, where all parameters of a system a varied and each parameter
combination is given a model performance value (error), when compared to the
measured data. From such an error plot we can find how many optimum solutions there
are by counting number of different valleys, that converge on a point called local
minimum. We can assess parameter impact on the system, by measuring difference
between maximum and minimum error values when only one parameter is varied.
Similarly, we can assess parameter sensitivity, by measuring rate change of error when
only one parameter is varied. To show example of how to use error plot consider
equation 4.1. This simple system has single output of y, and two parameters P1 and
P2. If we assume real parameter values are P1 = 1 and P2 = 2, then we can calculate
error between y = sin(1) — 2 and ym = sin(P1) — P2, where p1 and P2 is varied.

y = sin(P1) — P2 4.1
Because P1 and P2 values are not know, we vary these values and plot them on x and
y axes. Each combination of P1 and P2 has an error value on z axis. Error is calculated
as square difference between global optimum (P1 = 1, P2 = 2), and any given

parameter values. This construct error plot of equation 4.1 (fig. 4.1).

Error plane of 2 parameter system

100

Squared error value

Figure 4.1 Error plot of the system (equation 4.1)

35

4.1.1. Analysis of the error plane
There are multiple ways to analyse the error plane of the system. Most useful
observation can be broken down into a) number of local optima b) Impact of the

parameters c) sensitivity of the parameters.

4.1.1.1. Number of local optima
Red circle in error plot marks global optimum i.e. P1 = 1, P2 = 2. By observing this
error plot, we can tell that there two local optimum solution as we can see two separate
valleys, which are defined by P1 parameter. First valley between values (0,4) and
second valley between values of (4,10). This provides useful insight, telling us that if

we use gradient based solver, we should start in correct valley to reach global solution.

4.1.1.2. Impact of the parameters

When trying to assess the impact each parameter makes to the system, we measure
the maximum error value that can be reached by varying one parameter and keeping
others at optimal values. We can tell that parameter P2 is more impactful as it can
reach up to 70 on error axis while P2 is at optimal value. On other hand when varying
P2 with P1 being fixed at optimal value, we observe only small up increase in error up
to around 5. We can also observe that there a link of impact between parameters. As
value of P2 increases, impact of the P1 increases too, but it is still lower than impact
of P2.

4.1.1.3. Sensitivity of the parameters
When trying to assess the sensitivity of the parameter similar approach to impact
measuring take place, where we vary one parameter keeping other constant. We can
observe that P1 has more variation in error, than P2, making it more sensitive to
changes. Where P1 has two peaks, throughout the sampling range, P2 only has a
steady increase. With increasing values of P2 sensitivity of P1 is more pronounced,

but general trend is the same.

These insights from the error plot provides valuable information about parameters
itself, but also how to avoid local minimums and provides knowledge about the system.
Unfortunately, this is only possible for two parameter systems, and a higher dimension
problem, cannot be simply plotted, as there are not enough axes. Having a method to
visualize higher order problems would allow the extracting of this information from high

dimensional parameter identification problems.

36

4.2.Example systems
To facilitate explanation of the methods, which were used to visualize problems, and
assess the system complexity, two system will be used. First model is simplified
version of Monod kinetics (equation 4.2), this system consists of two states biomass
(X, g/L) and substrate (S, g/L). This model also has three parameters Umax, Ks and q,
which are maximum specific growth rate (h-1), half-velocity constant (g/L) and substrate

consumption rate constant (g/h) respectively. This model calculates rate of change in
biomass %and substrate %- Two simulate data sets using this model parameters
values need to set to desired constants and model needs to be initialised with initial
conditions for biomass (x) and substrate (S). Data sets were generated using

numerical integrator ode45 in-build into MATLAB. Output of each ODE is added to

existing value of the state producing time-series data of biomass (x) and substrate (S).

dx

E=u*x

ds

Ez—q*u*x 4.2
S

u:Umax*m

Second model is a simple polynomial (equation 4.3). It is a simple function that outputs
f(x) value based on input x values. It has twenty parameters (p1-p20). This model does

not require any simulations as it is simple one value input-output system.

fxX)=x*pl+x*p2+x*p3..x*p20 4.3

These two systems are selected as they differ in two criteria. First is complexity, Monod
kinetics are much more complex system then the polynomial model, because it
involves ODE, rate of change, multiple equations, and time series data. Second
criteria, which separates these systems is number of parameters, polynomial model
has twenty parameters whereas Monod kinetics model has only three.

37

4.3.Utilizing PCA to visualize the model
The main problem regular error plot visualization faces with higher order problems is
that there are not enough axes for each parameter. Even if we could plot higher
dimensional planes, it would be hard or even impossible for us to interpret results as
we are used to work in 3d space. Therefore, any potential solution should provide
visualization in 3d. One of the possible solutions is to reduce number of parameters
we need to plot converting model from n-parameter to 2-parameter model. We can
achieve this by using PCA (Principal component analysis) developed by (Pearson
1901), modern version explanation can be found (Rasmus Bro 2014). PCA is a
technique that is useful for the compression and classification of data. The purpose is
to reduce the dimensionality of a data set (sample) by finding a new set of variables,
smaller than the original set of variables, that nonetheless retains most of the sample's
information. PCA achieves this by combines variables to produce new ones, that hold
combined information about combines variables. For example, if we have two variables
that seems to correlate (table 4.1), we can combine them by fractional addition

(equation 4.4). Where F is new combined variable, wi is fraction factor and x; is

variables.
F = W1x1 + szz + + Wixj 44
Ethanol g/L Biomass g/L
Sample 1 90 60
Sample 2 45 120
Sample 3 0 180

Table 4-1 Example of two variables being heavily correlated

Only question is what fraction of each variable we should use to represent new
combined variable. In this example there is strong and uniform correlation between
variables, which would mean we should weight them evenly, but instead of weighting
vector being w = [0.5 0.5], we should consider making it take into account that new
combined variable represents two variables and not one, therefore it's magnitude
should be bigger than just and average of two variables. Similarity to vector addition,
adding two vectors of same size at 90° angle, would make combined vector larger in
magnitude (fig. 4.2). This can be applied when combining two variables as x and y axis

are at 90°. We can use unit vector and Pythagoras theorem to figure out what weighting

38

we should use for same magnitude samples (fig. 4.2). This works out to be w =
[0.7,0.7].

&

Variable 1

1

]

0.7|--======---

0.7)1 Variable f

Figure 4.2 Example of unit vector addition

With this we can define PCA as a function of data X, weighting vector w and PC which
is new variable representing whole system called scores (equation 4.5). This kind of
combination of variables can be performed for more then two variables at the time, but
it is quite rare that variables corelated so perfectly as in this example. Which is why we
can only try to select such weighting vector w, that combined new variable represents

most of the systems variability.

Xw = PC 4.5
So, problem becomes how to measure how much variability of the system variable PC
represent in comparison to variables X. We can do that by performing regression of all
X variables on PC, which will provide us with equation 4.6. Where r is regression

coefficients and E is matrix of residuals.

X=PCrT +E 4.6
Once we have our residual matrix, we can calculate how much variability is explained
by PC variable (equation 4.7). Now we can optimise our selection of weighting vector
w, by maximising variability expressed by PC.

IX11> = |E|I? 4.7

In most cases one principal component will not be able to represent system in it
entirety, this process can be repeated to generate second principal component, which

will have explain less variability of the full system, than first principal component (PC).
39

Nevertheless, combining multiple PCs we can represent system well with lower
number of variables, then system had initially. Using PCA we can create two principal
parameters with highest explained variability. This will allow to plot similar plot as
regular error plot. Downside to this method is that we will not be able to tell parameter
sensitives anymore as they will be combined.

4.3.1. Example of applying PCA for visualization

Plot (fig 4.3) reveal similar information to normal error plot, it shows global/local
optimums, and in this case, there is one clear “valley” around -1 of principal component
(PC) 2, within it a global optimum around 0 PC1 and -1 PC2. There two potentially
difficult areas while optimising this model. First the bottom of the main “valley”, for
gradient based optimiser may look like an optimum if its optimisation path is along PC2
axis. The Second problem there is lot of flat surface, where gradient based optimizer
can get stuck for the same reason. As these both problematic regions do not represent
clear local minimumes, it is subjective to judge how much of a difficulty they pose for the
optimizer. It would depend on optimiser settings, initial guess, and other optimizer
options.

PCA visualization of Monod kinetics

Squared error value

. < 5 § 0 4 2 3

Principal Component 1
Principal Component 2

Figure 4.3 Error plot of Monod model first two principal components (PC's)

40

4.4.Convexity with PCA
When problematic regions in error plot/PCA error plot are not well-defined additional
analysis is needed. In order to judge difficulty of optimization more objectively a
convexity criterion is applied to all sample’s points within the PCA error plot. Convexity
is a criterion, of how likely sample is to reach an optimum. To meet convexity criteria

equation below must be satisfied (Hass et al. 2018):

J@B(1)+(1-a)8 (2)<ad(® (1)) + (1 -a)d(® (2) 4.8
Where J is cost function, 8(1) first set of samples/parameters, 8(2) is second random
set of samples/parameters that satisfies relationship ||6 (2) -= 8 (1)]] =1 and a is a

random location on connecting line between these two sample parameters sets.

This criterion can be calculated for every sample point (or combination of parameters),
and then we can calculate percentage of samples, which are convex within sampling

space. Providing a percentage convexity of a system.

To analyse model (equation 4.2), more in-depth we join this connectivity criteria with,

PCA error plot to more information.

Figure 4.3 shows that flat areas are more problematic than “valley” for optimizers to
solve, nevertheless this system has 27% convexity. This means if initial conditions for
optimization algorithm are not within flat/red regions optimiser will solver problem with
relative easily. Example of colour coded PCA visualization can be found in figure 6.13.
Although, this method gives us good indication about complexity of system and
possibility of running into local minimum it does not show which of the parameters are

dominant.

4.5. Self-organizing map

Another way to visualize higher dimension problems are to use self-organizing map
(SOM). First SOM was published by Teuvo Kohonen in 1982 (T.Kohonen 1982). A self-
organizing map (SOM) is a type of artificial neural network (ANN) that is trained
using unsupervised learning to produce a low-dimensional (typically two-dimensional),
discretized representation of the input space of the training samples. Within SOM
algorithm each data point competes to be represented among their neighbours.
Winning node or sample is awarded, with higher change to be selected for next random
sample comparison. This allow maps to form shapes, such as square, rectangular,
hexagonal, toroid. Benefit for this technique that it will allow to have some insight of
individual parameter importance, by comparing each parameter map with error map
41

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Unsupervised_learning

and to confirm PCA visualization results. SOM algorithm can be summarized in

fallowing steps (T.Kohonen 1990):

1. Each node’s weights are randomly initialized.

2. A vector is chosen at random from the set of training data.

3. Every node is examined to calculate which one’s weights are most like the input
vector. This is done using Euclidean distance formula. The winning node with
lowest distance between input vector and its weight is commonly known as
the Best Matching Unit (BMU).

4. The neighbour nodes of the BMU have their weights recalculated to pull them
closer to the BMU node (equation 4.9). W is node weight, X is input vector,
0(u,v,s) is neighbourhood function, a(s) is learning rate function, s current
iteration step.

W(is+1)=W(s)+0(0,],s) xa(s) x (X —W(s)) 4.9
Both learning rate and neighbourhood functions can be defined in various ways, but
they should always be decreasing functions (Fausett 1994). Learning rate function
controls the size of the weight vector. Most common ways of using learning rate are
linear (equation 4.10), inverse of time (equation 4.11) and power series (equation 4.12)
(J. Vesanto 2000). N is total number of iterations.

a(s) = a(O)% 4.10
a(s, M) = a(0) (1-) 4.11
a(s,N) = a(0)eN 4.12

Neighbourhood function defines which nodes considered to be in the neighbourhood
of the BMU. Most commonly used function is Bubble (equation 4.13) (W. Natita 2016).
Nc is the index set of the neighbour nodes close to BMU node.
a(s), (i,j) € N,

0,(i,j) & N,
5. The winning weight is rewarded with becoming more like the sample vector. The

0(i,j,s) = { 4.13

neighbours also become more like the sample vector. The closer a node is to
the BMU, the more its weights get altered and the farther away the neighbour is
from the BMU, the less it learns.

6. Repeat step 2 for N iterations.

42

4.5.1. Example of SOM application
SOM can be difficult to analyse, but they are consistent with other visualization
techniques. First it should be noted is that green nodes seem to be scattered as it
would suggest there are multiple local minima, but by observing U-matrix we can see
that line that separates those green areas is very tiny in terms of distance. This means
it is a valley rather than multiple local minimums. This observation matches with
observation done with PCA visualization. This reassures that visualization techniques
are showing correct results. The biggest benefit that SOM provides, and that other
visualization techniques lack is variability of each parameter within n-dimensional
plane. For Monod model (equation 4.2) if we compare figure 4.5 colour coded figure
with figure 4.6 of each parameter figure we can see that pattern of U-matrix matches
Umax parameter pattern. Starting with high values on the right side with decreasing
values to the left and increasing again once past lowest valley point. This observation
shows connection between changes in Umax parameter and the model error, implying
high impact from the parameter. How to use SOM maps to assess parameter

importance will be discussed in further chapters.

Color code

Figure 4.4 Left 2d SOM of Monod model (equation 4.2), colour coded based of model error, where green (L) is low
error, blue (M) is medium error, and red (H) is high error. Right 2d SOM with same colour code as left, but also
showing relative distance in n-dimensional plane represented as colour bar.

43

U-mairix Umax
0793 256

0431

= 00683 = 0458

Ks qs
0.761 955

0497 © 502 ©

— 0234 — 0487

Figure 4.5 From top left: 1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) Umax

parameter variation within n-dimensional plane, parameter values denoted in colour bar. 3) Ks parameter variation

within n-dimensional plane, parameter values denoted in colour bar. 4) g parameter variation within n-dimensional
plane, parameter values denoted in colour bar.

4.6.Performance optimum vs parameter optimum
To ensure, that visualization techniques produce correct results, optimization of the
sample space was performed. Taking thousand samples from the sample space and
optimizing each of them individually. This is computationally very demanding, but it
helps to make sure that other techniques provide reliable results. Once all sample
points were optimized, their cost function values are sorting in acceding order and
plotted to show potential local minimums. Simple problems will tend to have large flat
regions because most of sample will converge to same cost function value. Where
complicated problems will have varied region indicating multiple local minimums. For
comparison two systems are observed, Monod kinetics (equation 4.2), and polynomial

(equation 4.3).

Figure 6.13 shows the results of the Monod model (equation 4.2). Model is performing
as expected, for single valley problem. The system has one flat area to indicate the

“valley” and drop down to show that is has one global minimum that is hard to reach.

44

With low tolerance even non-convex point can be optimized to reach optimum “valley”.
Optimizing just convex points provides advantage over optimizing all sample points as

only a fraction of samples needs to be optimized to achieve same trend.

On other hand polynomial model (equation 4.3) does not perform as you would expect
from model with 100% convexity (figure 6.2). It shows lots of local minimum before
reaching flat area of global minimum, but difference between worst and best
optimization is very small (10%° scale). This indicates that although there many

different local minimums it does not affect overall model error.

These two models show two different behaviours, one where cost function optimization
leads to correct parameter values, hence parameter optimum can be reached and
other where cost function optimization led to good model performance, but wrong
parameter values, hence performance optimum can be reached. Model with only
performance optimum, have one feature in common - their parameters are only
relatively sensitive to each other. This means that if parameter value difference is
relative same, performance of model will not suffer even when those values are far
away from correct values. For examples if take polynomial model, as it is additive
model all parameter values (p1, p2...) can be changed in position and it would not
affect overall model performance. Therefore, identifying these parameter values

correctly becomes impossible.

45

4.7.Summary
A key reason to search for different approach to parameter identification is when state
of art methods, struggle to produce accurate results or their computational demand is
too high. Both are encountered when model is complex. Unfortunately, complexity of
a model is not directly associated with model size or number of parameters. By
performing analysis of a model by using techniques described in this chapter it is
possible identify if model complexity is something that would be of concern and take
appropriate approach when identifying parameters. Firstly, convexity criteria
evaluation is a good start, as it is fast analysis and can immediately tell if model is not
complex. Because, parameters upper and lower limits will affect accuracy of any
identification algorithm, to obtain accurate convexity value, calculation should be
performed within same boundaries as identification algorithm. Performing PCA
visualization with marked convex points, would be next step. By observing PCA
visualization scatter plot there are several things to look for, first how many local
minimums can be observed, second are local minimums separated with convex or non-
convex regions. Multiple local minima make model more complex, but it is much worse
if they are separated with non-convex regions. This leads to problem, where
optimization algorithm not only will need to search for global minimum between all local
minimum, but also it will not converge at all when situated in non-convex region. When
dealing with models that have multiple local minima with non-convex regions in
between, models should be treated as medium complexity and parameter identification
algorithm set appropriately. This might involve modifying state of art approach to better
deal with specific model or use alternative methods. Lastly, if still not certain about
complexity of a model an optimization full sample space can be done, to observe if
model can be optimized only towards performance or also towards correct parameter
values. It is suggested to sample parameter space with Latin-hyper cube, as it will
make this computational demanding analysis more efficient. Once all optimized cost
function values are sorted, obtained graph can be analysed. Within this sorted
minimization graph each flat region represents local minimum, this should be same as
number local minimum observed in PCA visualization. If graph has a “curve” such as
figure 4.8, and difference between maximum and minimum cost function values is

large, this tell that system is complex and should be approached with caution.

46

This kind of approach is enough to quantify complexity of a model. Although overall
complexity may not be numerically quantified, this approach has enough quantitative

measurements to compare model to each other to determinate which is more complex.

47

5. Methods
In this chapter the working principles of the proposed state substitution method are
explained in detail, and any methods involved within the framework of the state
substitution method. First the key steps of the State Substitution method are explained,
which are approximation of data, decoupling of the ODE model, integration of sub-sets
of the model and parameter identification and re-optimization of the whole model
structure. Then any additional algorithms required for State Substitution to work are
explained, in addition to any supportive methods, which include the use of a bipartite
chart, sub-set solver, global solver, data generation and algorithm for establishing

hierarchy of sub-sets.

48

5.1. State Substitution method
The proposed state substitution method for parameter identification of the unknown
constants of models described by ODEs consists of four main steps a) approximation
of data b) decoupling of the system of nonlinear ODEs c) integration of the subsets of
nonlinear ODEs and parameter identification d) re-optimization of full ODE model. In
order to assist with the explanation of the method a simple example is used as a
demonstration throughout this chapter (equation 5.1). It is assumed that there is a set
of measured data, i.e. measurements of X, S and P. at various time points. The data
measurements do not have to be equally spaced and can have varying noise levels
(fig. 5.1). The aim is to use the data to estimate the unknown model parameters (Umax,
Ks, g and gs) such that predictions of the model would match measured data. As
discussed in chapter 2, most of the methods would numerically integrate the whole set
of coupled ODEs and using iterative optimisation algorithm would get the optimal

parameter values.

(Z-ux-px
dt
as UmnaxS
JEZ—QMX—D(S—Sf),WherGU,:m 5.1
dap
2 = q,X-DP

Where tis time (h), X is biomass concentration (g/L), S is substrate concentration (g/L),
P is product concentration (g/L), D is dilution factor, Sf is feed substrate concentration
(g/L), Umax is maximum specific growth rate (h'!) ,Ks is half-velocity constant (g/L), g

substrate consumption rate constant (g/h) and gp is product production rate constant
(g/h).

49

Example of an uneven data sampling

10
9 -I".I —+— Biomass
\ —#— Substrate
8 ".II\ Product
w T
= |1
™
= 6 \
[i8] \
—
5]
w5 &\
%" \\\\
S af
2 ™
3 e
2 i .
—— ¥
1 e
_———_____-*F____ i
o g . . .
0 0.5 1 15 2 25 3 3.5 4 4.5 5

Time, h

Figure 5.1 Example of an uneven sampling

a) Approximation of data

It is a required step to generate data sets from measured data that can be used to
decouple the system. As measurements do not consists of sample points at all possible
time points, we require to approximate it. Approximation can be done with various
methods such as polynomials, splines etc. as discussed in chapter 3. In this work
approximation of data is done with cubic spline, which is explained in detail in in section
5.5. For simpler explanation we will use polynomial as an approximation technique for
this example. With polynomial any measured data can be expressed as (equation 5.2),
where Y, is approximated data value at time t, an values are optimised to provided good
data fit of ¥, to measured data. Finalized approximated data set can produce a state
value at any time point. This is important for later step withing the method as decoupled

sub-systems get integrated state values need to be known sat every time point.

Y, = ag + ast + ayt? + - + a,t" 5.2

b) Decoupling of the system

During this step we replace any coupled states within subset, with polynomials
produced in step a). This allows to solve each subset individually, thus reducing the
solution space. If consider example system (equation 5.1), we need to create a
different polynomial for each state within the system (equation 5.3). These polynomials
50

then can replace coupled states within each ODE to effectively decouple the whole
system (equation 5.4). This allows the system to be solved as three sub-systems, thus

reducing the search space.

Xe = ag + art + apt? + - + au,t"
SAt = ﬁo + ﬁlt + thz + oo + ﬁntn 53
Py =y +yit +yot? 4 Ayt

dX UpaxS

_—= — %

dt K.+ S,
as UnaxS ~
— = X, —D(S-S 5.4
gt~ Ig 45X~ DPE=SN)

dP A
= = qpX; — DP

To visualise how decoupling reduces search space, we can start by visualized full

Xt - DXt

system with its four unknown parameters (Umax, Ks, g and gs). To draw a four-
dimensional search space in 3d we need to construct a tesseract. Tesseract is four-
dimensional equivalent of a cube, which is three-dimensional search space (fig. 5.2).
After the decoupling we have three separate search spaces that consist of a plane,

cube, and a straight line (fig. 5.3).

UlllﬂX

Figure 5.2 Search space visualization of the example system (equation 5.1) which has four parameters

51

Figure 5.3 Decoupled search space of the exampled system (equation 5.1) into three separate sub-systems (equation

5.4)

c) Integration of subsets and parameter identification

If a polynomial regression model replaces coupled states, each ODE can be integrated
separately, in this work Ode45 solver was used for that purpose. It should be noted
that choice integrator will affect results if your system is stiff, so dependent on your
system adequate solver should be used (Spyridon Dallas 2017). Whereas for
parameter identification each subset was solved using Isgnonlin. This solver was
chosen, because it is made for solving non-linear problems and performed squaring of
the error. Solving order is important as decoupled subsets can be solved individually,
but only a specific order gives best results. To come up with structure hierarchy,
bipartite chart is used to separate most influential states and parameters. Considering
influence of state and parameters, subsets are separated in different levels. Levels
must be solved in sequential matter, where everything within same level can be solved
simultaneously. Detail explanation of how model hierarchy is defined is explained in

section 5.3.
d) Re-optimization

Solving each individual ODE will only provide sub-optimal parameter values, because
we do not account for interactions between different ODEs. To ensure statically optimal
parameters values re-optimization should be done using a global solver (in this work a
genetic algorithm is used) and the sub-optimal parameter values as initial guesses.
This step makes the method robust to noise, as readjustment can be done for

parameters which are harder to identify from subsets only. To achieve the best results

52

each state should be weighted, according to hierarchy in cost function. Meaning top

level states have higher weightings and lowest level states have lowest.

5.2.Bipartite graph and structure hierarchy
To be able to decouple more complex systems, knowledge of the involved
parameter/state relationships and their influence on the system is required. One way
of observing these relationships is through the construction of a bipartite graph
(Bomhoff et al. 2010). A bipartite chart is constructed by plotting the connection
between the model state and other states and parameters within the model. Required
information can be extracted directly from the ODEs. This type of chart is required to
design the order in which ODE’s need to be solved, because after decoupling it can be
solved in number of ways. It can be adapted to any system. To understand how it works

an example is provided using an example system (equation 5.1).

By inspection of the ODEs (equation 5.1) we can construct a bipartite graph by putting
states of the model on the top of the graph and parameters/states of the model at the
bottom. A connection can then be drawn from the bottom to the top showing the
relationship between the state and parameter/state of the model. Dilution factor D and
substrate concertation Sf are not on a graph, because these values are known constant
values. The resulting graph is shown in figure (5.4).

States of the
model

Biomass
Product

States/Parameters
of the model

Biomass
H
w

53

Figure 5.4 Bipartite chart of the example system (equation 5.1)

By the assessing the structure of bipartite chart we can construct a decoupling
structure. Starting with the states with most connections to least. In this example we
can observe that the biomass(X) state affects all three states which means it's of
highest importance and should be solved first during decoupling. Furthermore,
parameters Umax and Ks estimates from the biomass(X) ODE can be used in further
calculation to ensure that they do not change, creating disturbance in X state model.
In addition to this it can be observed that state S and state P have no common
parameter connections, which means that they can be solved both at the same time
after solving for state X state ODE. To summarise the decoupled state ODE hierarchy
is constructed in two level, first one consisting of biomass state ODE and second level

consisting of substrate and product ODE. Full hierarchy is provided in Figure 5.5:

X Biomass

S Substrate q Js P Product

Figure 5.5 Hierarchy of decoupled ODE’s for Monod model

5.2.1. Parameter impact
Although bi-partite chart provides information about connections between the model
state and other model states and parameters, it does not provide how impactful those
parameters are for overall system. This is important as to achieve best result we want
to identify most impactful parameters from state of highest importance. In other words,
we need to solve for most sensitive parameters of the system first and then for the rest
in ascending order of sensitivity. To perform full sensitivity analysis of all the
parameters can be very hard for high dimensional system, with high number of
parameters. Nevertheless, a Self-organizing map can be used to perform parameter
impact correlation on overall system to determinate most impactful variables, which
effect overall system. SOM’s produce component maps and unified distance maps

(chapter 4), which we can colour, based on average error values of each cluster. We

54

colour the lowest error cluster as white and highest error cluster as black and
everything in between as a gradient. SOM produced component maps already are in
this format. This allows direct cross-correlation of component maps versus system
error map. Cross-correlation of maps is performed pixel by pixel to produce heat maps
of parameter impact. Cross correlation matching factor of 1 denotes perfect match and
0 a complete mismatch. These correlations are performed with a normal component
map and inverse component map, colour wise, as parameters can be positively or
negatively corelated. Average correlation factor can be calculated from these
heatmaps. Example system (equation 5.1) produced heatmaps can be seen in figures
5.6-5.7, and their correlation factors in table 1. Matching factor calculation are
performed five times and standard deviation is presented together with results. These
figures, together with table, show that most impactful parameter for this system is Umax,
followed by g then Ks and gs. This agrees with our bipartite chart observation that Umax

value should be identified from biomass state and level 1.

Parameters Positive Matching Negative Matching
Factor Factor

Umax 0.81+£0.03 0.50 £ 0.00

Ks 0.65+0.02 0.63+0.03

q 0.68 £ 0.03 0.60 £ 0.02

s 0.63+0.01 0.61 +£0.01

Table 5-1 Table of positive and negative mean matching factor of each parameter for system

55

56

Pixels

Pixels

Umax

Pixels

400 400 -
350 [360
300 300
250 250
n,n
200 [£ 200t
o
150 160
100 100
50 | 50
0 1 1 Il Il J 0
50 100 150 200 250 300 50
Pixels
qs
400 400
350 [350
300 - 300 -
250 250
o
200 | £ 200t
o
150 [150 -
100 100
50 50
o I I . . | o .
50 100 150 200 250 300 50 100

Pixels

Figure 5.6 Positive cross-correlation between each parameter map and overall error map.

Pixels

57

Pixels

Pixels

Umax

400 -

300

200 -

100 -

Pixels

gs
400 -

300

200

100

50 100 150 200 250
Pixels

Figure 5.7 Negative cross-correlation between each parameter map and overall error map.

Pixels

Pixels

400

350

300

250

200

150

100

400

350

300

250

200

150

100

Pixels

Pixels

5.3.Data generation
For case studies which use simulated data sets, data is generated by solving ODE
system given initial conditions. The Ode45 solver in MATLAB is used for this task as
it is solver that is most fit for the task based on (Spyridon Dallas 2017). The options
for solver are provided in Table 4.2, with values provided for example system (equation
5.1):

Option Description Value

Nonnegative The scalar or vector selects which solution 1:3 (Covers
components must be nonnegative. all states)
RelTol Relative tolerance. This tolerance measures the 1l1e-13
error relative to the magnitude of each solution
component.
AbsTol Absolute tolerance. This tolerance is a threshold 1e-13
below which the value of the solution becomes

unimportant.

Table 5-2 Options used for ode45 solver

The Sampling time was varied between 0.1h and 0.3h. The Lower bound was selected
by calculating time constants of system responses using simple method described by
(Niemann and Miklos 2014) and taking 1/10 of fastest response time constant , to
ensure no process dynamics are lost. Whereas the upper bound was found by trial
and error at the point where the method still worked, but performance is not
satisfactory.

After initial data generation is finished, desired amount of random white noise is added
to noise free values to create ‘measured’ values. In this work all data was exposed to

5% or 20% random white noise. General structure of noise addition is provided below:

Measured values = Noise free data *(1 + ((b-a)*Random number + a)) 5.5

Where a is upper percentage bound, b is lower percentage bound and random number
stand for randomly generated number between 0 and 1. For example for 5% noise a
= 0.05, and b =-0.05.

58

5.4. Approximation spline
In this work cubic spline was used to approximate measurement data sets. Splining
data allows us to supply ode solver with required data points for integration.
Furthermore, when done correctly, splining of data cancels out some of the system
noise, without losing any crucial information. If approximation is done to high level
information about system kinetics is lost due to smoothing it out, if it is done to low
level noise is dominant instead of system dynamics. Therefore, it is important to
optimise your approximation method to not lose process dynamics from measurement
data. The chosen smoothing spline function in MATLAB was csaps. It's a cubic
smoothing spline of given data X, y. It allows you to specify a smoothing parameter p,
which controls the smoothness level. When p is 0 csaps fit least squares straight line
to given data, on other hand when p is 1 fitted function is the "natural' or variational

cubic spline interpolant. This smoothing spline minimizes the function provided:

p Y WOIVG.D) ~ O+ =p) [A0 D2 Pde 5.6
j=1

Where w(j) is weighting vector, y(:,j) is provided data matrix, f(x(j)) is newly replaced
value matrix, j is length of time vector(or length of x axis points), D?(t) is second

derivative of function f.

Value of p was chosen to be 0.95 as during initial testing of error sensitivity to

smoothing parameter revealed it to be optimum value in most cases.

59

5.5.Sub-system solver
The solver that was chosen to solve decoupled sub-systems was Isgnonlin. This solver
is non-linear least square solver and incorporated error squaring into algorithm, for
these two reasons it was best fit solver as a sub-system solver. The options for solver

are provided in Table 4.3, with values provided for example system (equation 5.1):

Option Description Value

DiffMaxChange The scalar value, of maximum change for finite- 0.1
difference gradients

TolFun Function tolerance, this is value is threshold which 1e-8
algorithm stop if objective function value reaches it.

TolX Step function tolerance, this is value is threshold which 1e-8
algorithm stop if change in objective function is lower
than the threshold.

MaxFunEval Maximum number of function evaluation allowed before 10000
termination of the algorithm

MaxIter Maximum number of iterations allowed before 2000
termination of the algorithm

Jacobian Specifies if algorithm should use finite difference ‘on

Jacobians or user defined ones

Table 5-3 Options table for sub-set solver Isgnonlin

Initial parameter points where supplied as 0.5 for each subsystem, as its reasonable
initial conditions for most cases, being positive and close to 0. It should be noted initial
parameter guess have no effect on solution, as long it is within solution bonds. The
lower bounds where specified as 0 and upper bounds as double the real parameter
value rounded up to closest integer. Each subset was supplied with enough different
data sets so all parameters within sub-system would be observable. For the example
system (equation 5.1) two different data sets where required across all three
subsystems. To increase solver accuracy and speed Jacobian matrix was defined for
each of the sub-systems. Structure of Jacobian matrix is showed in equation 5.7:

d dx, _df df dx
—_— —_— — %

5.7

60

Where x; is state which is integrated, f is function which is integrated, p; is parameter,

which is integrated, and t is time.

This Jacobian matrix provides solver trust-region function removing need of evaluating
function of each parameter, consequently it allows solver to reach optimal solution
faster. Cost function consisted of difference between measured values of the state
and predicted values of the state. For each unique data set used by the solver one
cost function was created. In a case of multiple cost function, total error was
calculating by adding all cost functions with equal weightings. Jacobian matrix is
collection of parameter sensitivities over time, this allows to estimate all parameter
change with single function. To obtain the Jacobian matrix function for the example
system (equation 5.1), we start with defining unknown parameter vector (equation 5.8)
and ODE function vector (equation 5.9). Then we can replace corresponding terms

within Jacobian matrix function (equation 5.7), to obtain general form (equation 5.10).

d[X,S,P]

Letting S([X,S,P] D). t) = = ® 15 be sensitivities of states (X,S,P), for the model
]

parameter pj we get sensitivity ODEs, which then are used as first order derivatives in
objective function during optimisation. It should be noted that sensitivity initial
conditions are always S([X, S, P],?aj,O) = 0. Example of final Jacobian matrix for all

states and Umax parameter is provided in (equation 5.11).

ﬁj = [Umax Ksq qs] 5.8
UmaxS X DX
K.+s °
HORVAGHAGEAGINES _q megx _D(S—Sf) 5.9
q,X — DP
dX (07 rdfi(t) dfi(t) dfi®)1[aX®1 [dfi (@)
dp; dX(t) dS(t) dP(t)|| dp; dp
ddS@)|_[df(®) dfi@®) df:@)|[[dS®) N df>(t) £ 10
dt| dp; | |dx(@) dS@) dP(t)|| dp; dp; '
dr(t)| [dfs(®) dfs(t) dfs(O)||dP(t)| [dfs(t)
| dp; | ldx(@®) ds@) a1l dp; | | dp; |

61

S(X, UmaxJ t)
E S(S: Umax: t)
S(P; Umaxr t)

_UmaxS . UmaxS . UmaxSX 0

K. +S Ki+S (K;+5)? S(X, Uppax, t)

= UmaxS UmaxSX UmaxX S(S; Umax; t)

—q q 2~ 4 - 0 5.11
K.,+S T(Ks+95) K;+5S S(P, Upgx, t)

dp 0 —-D

SX

K+S
+ SX

K. +s
0

5.6.Global solver

Global solver chosen for the proposed state substitution method is Global search as

discussed in section 2.4. Global search algorithm requires only couple of the inputs a)

Objective function b) Initial parameter values c) Parameter value boundaries d) Select

local solver e) Any additional solver options (optional). For the proposed state

substitution method global search was used during re-optimisation step for all four

case studies.

62

a)

b)

d)

Objective function was constructed for all cases studies as a sum of weighted
least-squared problem. First, all state values were normalised, to avoid over-
representation of high values states in total error of the objective function. Then
each of the of the model state values were subtracted from the measured state
values and squared. Weighting was assigned based on the level of in the
hierarchy model, where first level is assigned highest weight value.

Initial parameter values for the global search were values that were optimised,
by the decoupling approach.

Parameter value boundaries were defined as = 20% of the initial parameter
values. This is an arbitrary decision, but it aims to keep global solver search
space close to initial start point. This encourages the global solver to make
precise search around the starting point

Local solver was selected to be ‘fmincon’. This is default solver and the most

robust one.

e) Only single additional solver option was added, which was maximum number
of function evaluations, which was set to 3200. By default, this value is
100*Number of parameters. This option value was changed to high static value,
to ensure detailed search with low parameter amount, and to stop algorithm

from optimising increasingly small amounts for larger number of parameters.

It should be noted that if parameter value search space grows too large or is unknown
global search algorithm cannot be used for re-optimisation. It makes algorithm not
capable of optimising parameter values anymore as, search space is too large. If that
is the case global search should be swapped for genetic algorithms (GA).

Furthermore, changes to default (GA) algorithm should be made as described below.

The population size should be chosen based on work done by Stanley Gotshall
(Gotshall and Rylander 2002). His experiments showed effect of population size for 3
distinctive problems keeping other variables same. The results show that optimal
population size for 3 parameters would be 85. This would produce lowest amount of

incorrect solution while keeping number of generations at minimum.

There are several crossover functions that serves different purposes. Intermediate
crossover function should be chosen because, initial population provided is already
close to global minimum, which means creating child within the hypercube defined by

placing the parents at opposite vertices would provide solution close to initial guess.

Mutation function should be chosen based such that it generates direction of mutation
based of successful and unsuccessful generation. In addition, mutation should be kept

within upper and lower constrains. Both characteristics are desired for re-optimization.

Elite count should be set to 50% of population size. This specific number is chosen for
two reasons. First it is same values used in (Gotshall and Rylander) when selecting
population size and second as initial population is already close to global minimum it

is desired to keep most of population to stop it from migrating too far.

Function tolerance should be lowered form default value of 1e-6 to le-3, because
during testing it was observed that GA reach place where cost function is almost flat
in all direction making optimization take longer that it should without any significant

improvement.

63

Most of options were to limit GA search around initial points instead of allowing it full
range search, thus increasing efficiency and speed of algorithm. Initial population
should be generated by creating random vectors of parameters with the standard

deviation of 1 and mean of values that were produced by the decoupling step.

5.7.Summary
Chapter describes all algorithms used in the proposed state substitution method for
parameter identification required for methods set-up and its execution. The set-up
requires the user to determinate most optimal model hierarchy after decoupling, which
is achieved with help of two methods, Bi-partite chart and the parameter impact
correlation using SOM. Bi-partite chart provides a straightforward answer, which of the
systems states affect most of the other states. This helps while setting up the
hierarchy, as states with most impact should be higher solved first. Similarity the
parameters that affect most of the systems states should be solved first and passed
on to lower levels of hierarchy. Parameter impact correlation allows to calculate, which
of the parameters have most effect on overall prediction error. Prioritizing these
parameters to be solved first, increases accuracy of the state substitution method.
Execution of the proposed state substitution method for parameter identification can
be broken down into following steps: data generation (if needed), data approximation,
local decoupled optimisation, global re-optimization. For testing of the validity and
accuracy of the proposed state substitution method data of the system was generated
with artificial levels of random white noise. Data approximation was performed by cubic
spline, with smoothing parameter of 0.95. Local optimisation was performed by
nonlinear least squared algorithm and global optimization was performed with genetic

algorithm.

64

6. Results and discussion
This chapter presents results collected from four case studies and analyses their

complexity. Three out of four models are based on simulated data, and one is based
on experimental data. Case studies was selected to represent different levels of
complexity. Complexity was evaluated based on methods described in chapter 4. Each
case study consists of four sub sections: a description of system, complexity analysis,
method comparison and summary of the results. The description of the systems
explains why the system was chosen and what are the key features of this system.
The complexity analysis provides details of system complexity, so it can be compared
relatively to other cases studies. The method comparison shows results of the system
performance while varying noise levels and sampling time of the system. The
proposed State-Substitution method is compared with the derivative estimation
method and Latin hyper-cube sampled multi start method. The accuracy of each
method and computational time is compared and discussed- The method comparison
sub section also provides a list of the difference between identified parameters and

theoretical (real) values for comparison of parameter identification accuracy.

6.1.Case study 1 — Polynomial model
This system was created as a benchmark problem, to show that the complexity of a

system is not directly linked to a large number of parameters, rather, it is related to the
amount of coupling within system. For this reason, a low complexity polynomial is
created, consisting of twenty parameters and only one differential equation, meaning
there is no coupling effects. This also means that the proposed state substitution
method will not work as intended, because there no way to utilise the decoupling
technique on a single ODE system. The proposed state substitution method will be
applied to identify parameters of this system for completion and comparison with other
methods (Derivative estimation, Multi-Start). Equation 6.1 shows the polynomial

system.

dx
E=P1X+P2x+P3x+‘“+P20x (6.1)

6.1.1. Complexity analysis
To compare complexities of different systems several criteria are considered. First, a

PCA visualization plot of the first principal component scores versus model error will
be used to provide an overall impression of the systems error plane and will show if a

global minimum is clearly visible. By marking the PCA visualization plot with

65

convex/non-convex points we see where problematic regions are and get the
convexity number in terms of a percentage. Second, each of the PCA visualization
points, have scores that relate to certain set of parameters, we can optimize each of
these sets and sort them out from highest final error to lowest. This will show how
many local minima we can expect and how well they are defined. This will also help
us to determine if the system can be optimised towards performance only or for
parameter values too. Separating systems into these two groups is crucial, so in the
event where a model provides accurate predictions, we know how confident of the
parameter values we can be. Third, we will look at SOM analysis, we will mark the
unified distance matrix plot with colours based on the dominant error value within each
cluster. This will allow to visualise multiple minimum (if they exist). In addition, SOM
component plots can help identify parameters that influence the system most. If any
individual parameter SOM patterns agree with SOM patterns of overall error, we can
infer that the system is dominated by that parameter. Complexity analysis will be
performed for each case study so direct comparison of relative complexity can be

made.

66

6.1.1.1. PCA visualization
The PCA visualization graph is constructed by decomposing the array of parameter

values. These values are obtained by using the Latin hyper cube sampling technique
to provide ten thousand samples. For each parameter set, the first two principal
component scores are obtained. Then these scores are plotted against squared error
of the difference between models with theoretical values and sample values. Looking
at the figure 6.1 it shows us that it is largely flat in PCA2 axis (scores of second
principal component) and has a slight curve in PCAL axis (scores of first principal
component). This makes a downward slope towards global optimal solution. Looking
at graphs we can also see that all plotted points are marked blue, meaning this system
is 100% convex, or in other words no matter where the initial parameters values are
(within analysed boundaries) a gradient based optimisation algorithm will always tend
towards the global optimum. The downward slope also means all solution are more
sensitive with respect to PCA1 than PCAZ2, this is expected as during PCA analysis
PCAL1 will always hold most variability followed by PCA2, then PCA3 and so on. For
this system both PCA1 and PCA2 explain 5% variability of the system for a total of
10%. Simple surface structure of this error plot and 100% convexity suggests that this

is low complexity problem to optimize.

102
10!

10°

Squared error value

Figure 6.1 PCA error plot for Polynomial model (6.1), with colour coded points for convexity, where blue points are
convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution.

67

6.1.1.2. Sorted minimization
Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. As mentioned before in
chapter 4.7, for a system with 100% convexity, you would expect a horizontal straight
line as all the points should converge to the global optimum, but that is not the case.
This is because this polynomial system, is only solvable for performance optimum not
parameter optimum. Looking at the difference between ‘worst’ and ‘best’ optimisation
provides more clarity in what is happening. With ‘worst’ squared error being in a range
of 1012 and ‘best’ squared error being 10-18. For all practical application both squared
error values are same as zero. Meaning although there is a difference, and there are
plenty of different local minimum within that gap, the difference between these local
minimums is negligible. The reason why this system behaves like this is to do with its
structure. Parameters values are interchangeable, meaning if any two parameter
values would be swapped places no change in overall function (6.1) would occur. It
becomes very clear if we simplify this system to two parameter system such as 10 = x
+y. The combination of pairs of x + y values which can sum to ten is infinite. Each of
those pair would satisfy system performance criteria i.e. the solution outcome is
correct, but the actual values can vary. This shows us that this polynomial model can
be easily solved to perform well, but it is true parameter values, cannot be identified.

2 Polynomial
0 F

.ID-'IS L

Squared error
S
B
T

—

=
L
=i
1L

-

o
L
[==]
T

0 100 200 300 400 500 600 700 800 800 1000
Sample, N

—

=
L
=]

Figure 6.2 Polynomial model (6.1) thousand samples sorted optimization, where blue is all samples and red are
convex samples only (As this model is 100% convex all samples and convex samples is same).

68

6.1.1.3. SOM analysis
As with the PCA visualization, the Latin Hyper cube sampling technique was used to

obtain an array of parameters. Each sampled array of parameters is treated as a
sample and they are sorted and coloured by the error between the modelled solution
and the true solution. Errors are classified into high medium low and the most
abundant solutions in a particular space are the dominant colour on the map. Within
analysed boundaries, error values above 50% of maximum error where considered to
be high error values(red). Error values between 50% and 5% of maximum error where
considered to be medium error values(blue), and error values below 5% of maximum
error where considered to be low error values(green). The same colour coding is

consistent within all SOM analysis in this thesis.

Looking at figure 6.3 results of SOM, supports previous conclusions that system is
easily solvable, but has multiple local minima. All high error values are concentrated
in the centre, creating one big local minimum around it. Lowest error clusters are
scattered showing you can reach similar performance with completely different set of
parameters. Looking at figure 3b, each hex has multiple colours, these colours
represent values that were assigned to that clusters, bigger the colour more of it was
within that hex. Grey hexes around it provides value of relative distance between each
cluster of coloured hexes. This further supports the multiple minima conclusion,
scattered around the plane. It should be noted that none of the green values are found

in the middle cluster of high error values.

Although from the structure of the polynomial we know that none of the parameters
are dominant, it is not always obvious with more complicated systems. To be able to
see if how strongly parameters effect the system, we can utilise the SOM component
maps and colour coded SOM. We cross correlate the patterns of component maps to
overall error map to see how well they match. Matching component map and overall
error map implies there is a dominant connection between the parameter and the
system. Although correlation does not mean causation, with large enough sample size
it is very unlikely to run into false positives. Furthermore cross-correlation need to be
done twice, as parameters can be positively or negatively correlated. Therefore, a

second cross-correlation is done to inverse error map.

Figures 6.5 - 6.6 shows how well component maps match up versus total error maps.

Positive values mean higher degree of matching, and lower values mean lower. Cross

69

correlation factor of 1, represents perfect match and O represent mismatch. As
expected, none of the parameters seems to be more dominant than others. These
figures allow to see how well, parameter changes match overall error changes in the
system and to represent a quantifiable measurement of how dominant the parameter

an overall matching factor was calculated (Table 6.1).

Parameter Positive Matching Negative Matching
Factor Factor
x1 0.66 £ 0.03 0.62 + 0.04
X2 0.69 +0.02 0.60 + 0.03
x3 0.66 + 0.02 0.63 +0.03
x4 0.68 £ 0.02 0.60 + 0.05
x5 0.72 £0.03 0.59 + 0.04
X6 0.71+0.02 0.58 + 0.04
X7 0.68 + 0.05 0.63 +0.03
X8 0.68 + 0.04 0.62 + 0.03
X9 0.69 + 0.01 0.59 + 0.06
x10 0.68 + 0.05 0.60 + 0.04
x11 0.68 + 0.03 0.62 +0.03
x12 0.67 £ 0.05 0.64 + 0.05
x13 0.72 £ 0.04 0.57£0.01
x14 0.67 £ 0.03 0.62 +0.02
x15 0.70 £ 0.05 0.60 +0.05
x16 0.71+£0.03 0.59 + 0.02
x17 0.69 £ 0.05 0.60 + 0.04
x18 0.67 £ 0.03 0.63 +0.03
x19 0.73+0.02 0.58 +0.01
x20 0.68 £ 0.04 0.62 £ 0.04

Table 6-1 Table of positive and negative mean matching factor of each parameter for system (6.1)

We also can look at biggest difference between matching factors in table 6.1. Those
are 0.068 and 0.065, respectively. This shows there is very little difference in influence

between parameters confirming that none of the parameters are dominant.

70

Color code

008 Q @ & & O 7

SOM 10-Oct-2019

0.662

0.487

0.312

Figure 6.3 a) 2d SOM of Polynomial model (1), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. b) 2d SOM with

71

same colour code as a), but also showing relative distance in n-dimensional plane represented as colour bar and separation of different colour within each cluster.

SOM 10-Oct-2019

Figure 6.4 From top left:

72

U-matrix

0.662 1.58 1.56 1.45 141
0.487 ! 103 © ! 0997 © ! 0962 © 1.01
0312 0.492 0.435 0.469 0612
1.44 1.44 1.52 1.52 1.62
0935 © !0974 © !0989 © ! 101 © 1.01
0.429 0.509 0.453 0.504 0.404
15 1.52 1.55 1.46 1.53
0951 © ! 104 © ! 102 © ! 102 © 1.01
0.402 0.551 0.494 0.57 0.491
1.57 1.51 1.49 1.54 1.56
0994 © !0988 © ! 0979 © ! 101 © 1.02
0415 0.463 0.473 0473 0.481

0975 ©

0.448

1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) - 21) x1 to x20 parameters with their respective variation within n-
dimensional plane, parameter values denoted in colour bar.

73

Pixels

Pixels

Pixels

Pixels

x2

400
w 7] w
o] o
= = =
a a a
00 200 300 400 100 200 300 400
Pixels Pixels Pixels Pixels
x6 x7 x8 x9
400
Baad
300
@ : o @ @
% 200 x % %
T I - T T T
Rl
- L
ol
100 200 300 400 100 200 300 400 100 200 300 400
Pixels Pixels Pixels Pixels
x11 x13
£ 2 £
= 2 2 200
o o o |
-
o
100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400
Pixels Pixels Pixels Pixels
x16 x20
o)
]
=
a

400

200

Pixels

0
100 200 300 400
Pixels

Figure 6.5 Positive cross-correlation between each parameter map and overall error map.

Pixels

74

Pixels

Pixels

w
o
k1
e
‘.t
300 500 500 300 400
Pixels Pixels Pixels
x7 x8 x9
400
300
L] L] n
= = = 200
[[o
100
o
500 100 200 300 400 500 500 100 200 300 400 500
Pixels Pixels
o o
T T
x x
o o
500 500 100 200 300 400 500 500 300
Pixels Pixels
n
o
=
o
500 500 100 200 300 400 500 500
Pixels

Figure 6.6 Negative cross-correlation between each parameter map and overall error map.

6.1.2. Method comparison
To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper
cube sampled multi start method. Two main criteria will be compared, model
performance accuracy and the computational time between each of the methods.
Although the proposed state substitution method aims to reduce computational time,
model performance accuracy is also very important and cannot be completely
neglected. Each method will be assessed with different random noise levels and
sampling times. For each method three different state initial conditions are compared,
first two (Pink and Blue) are set same for all methods and are conditions that were
provided for the optimisation algorithm and third initial condition (Black) is randomised
between first two initial conditions and was never seen by algorithm before. This allows
to check method accuracy with unseen data sets, which are within same boundary

conditions. Modelling conditions and parameter search space are summarised in

tables below:

Experiment Sampling Noise Initial Initial Initial

number Rate level conditions conditions conditions
Pink Blue Black

1 0.1h 5% 0,0,0 30, 30, 30 16.9, 7.1, 14.9

2 0.1h 10% 0,0,0 30, 30, 30 15.4, 15.6, 24.4

3 0.3h 5% 0,0,0 30, 30, 30 23.1, 20.6, 4.9

4 0.3h 10% 0,0,0 30, 30, 30 26.6, 18.0, 18.9

5 0.3h 20% 0,0,0 30, 30, 30 22.5,18.1,27.0

Table 6-2 Summary of modelling conditions for system (6.1)
Parameters Lower bound Upper bound
x1, x2, x3.... x20 0 2

Table 6-3 Parameter search space for system (6.1)

75

6.1.2.1. Experiment 1 0.1h sampling and 5% random noise
While comparing the accuracy of the model, we do not see much of a difference

between each method. Furthermore, the sampling rate is high and noise level is low,
allowing multiple approaches to perform accurately (Fig 6.7), without getting stuck in
local minima. This result is expected. Since accuracy of model predictions are high
(table 6.4) and very similar between different methods, then we should investigate

computational time as the next important criteria.

Method Computational time, s
Derivative estimation 223
Latin hyper cube multi-start 93

Proposed state substitution method 181

Table 6-4 Computational time of all three method for experiment 1.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 2.61E-05 3.38E-05 3.20E-05

Latin hyper cube multi-start 2.39E-04 3.08E-04 3.00E-04

Proposed state substitution 1.19E-04 1.55E-04 1.46E-04

method

Table 6-5 Squared error values of each method and each data set for experiment 1

When comparing computational times, it is easy to see that multi-start method is much
faster, than the other two methods (table 6.3). As the system is 100% convex it works
in the favour of the multi-start method as computational time is very sensitive to the
convexity of the problem. Starting position needs to be in right valley to able to optimise
towards global optimum. This leads to requiring a smaller size of Latin hyper cube,

thus reducing computation time.

The multi-start method is faster than Derivative estimation method, because with a low
complexity problem it does not require a large number samples to be able to optimise
towards the correct solution, and screening for best starting points reduces the number
of optimizations that need to be done. Where the Derivative estimation method solves
the lower complexity algebraic equations, but the absolute number of equations

significantly increases the computation time.

76

It is also faster than the proposed state substitution method, as it cannot take
advantage of decoupling of the system as there is only one ODE. In principle the
method still works, but it does additional steps that do not have any benefit for such a
lower complexity system, but still required significant computational time to be
calculated. It is also important to compare parameter values, that were identified with

theoretical values. Table summarizing parameter values can be seen below:

Parameter Theoretical Derivative Latin hyper Proposed
value cube

x1 0.81 0.11 0.39 0.73
X2 0.91 0.68 0.92 1.28
X3 0.13 0.62 0.41 0.23
x4 0.91 0.65 0.11 0.9
x5 0.63 0.97 1.85 1.51
X6 0.1 0.05 0.56 0.75
X7 0.28 0.41 0.43 0.21
x8 0.55 0.52 0.37 0.66
x9 0.96 0.65 0.06 0.6
x10 0.96 1.72 0.42 0.92
x11 0.16 0.86 1.73 1.16
x12 0.97 1.97 0.55 0

x13 0.96 0 0.39 1.12
x14 0.49 1.23 0.84 0.15
x15 0.8 0.12 1.45 0.64
x16 0.14 0.04 0.45 0.46
x17 0.42 1.8 1.32 0.41
x18 0.92 0 0.11 0.38
x19 0.79 0.15 0.11 0.44
x20 0.96 0.25 0.46 0.34

Table 6-6 Summary of identified parameter values for each method for experiment 1

Comparing parameter values, we observe the hypothesised behaviour, based on
sorted minimization in chapter 5.1.1.2. No exact parameter values match due to the

infinite number of combinations that produce same result.

77

Function value

Function value

Derivative Estimation for Polynomial model

30 T .

— # — MNoise free seen data 1
o Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
5 — ¥ — Moise free unseen data 3
Model Predictions data 3

DH_*"*'*HTF L L L L
0 0.5 1 1.5 2 2.5 3
Time, h
Latin Hyper Cube for Polynomial model
:]'D i T T T T

— # — Moise free seen data 1

10T Model predictions data 1
— ¥ — Moise free seen data 2

Model predictions data 2
5+ — ¥ — Moise free unseen data 3 |4
Model Predictions data 3

1] 0.5 1 1.5 2 2.5 3
Time, h

Proposed method for Polynomial model

30

R

281

[
(==}
T

Function value
e
(]

— # — MNoise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
5 — ¥ — Moise free unseen data 3 |
Model Predictions data 3

b
]
T

0 0.5 1 1.5 2 25 3
Time, h

Figure 6.7 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.1h sampling and 5% random noise for measured data.

6.1.2.2. Experiment 2 0.1h sampling and 10% random noise
Even with increased noise from 5% to 10%, from previous setup, accuracy of model

does not suffer in any of the methods. This is for the same reasons as explained in
chapter 6.1.2.1. Problem is not complex enough to affect accuracy of the methods. It
should be noted that total squared error (SSE) decreased, for the proposed and the
Latin hyper cube methods, and increased for the derivative estimation method. This
changed is due to methods ability to cope with noise. Although these changes are

observable, they are not significant on a model scale (figure 6.8).

79

Method Computational time, s

Derivative estimation 243
Latin hyper cube multi-start 107

Proposed state substitution method 180

Table 6-7 Computational time of all three method for experiment 2

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 2.28E-04 2.98E-04 2.72E-04

Latin hyper cube multi-start 1.19E-05 1.55E-05 1.46E-05

Proposed state substitution 1.10E-06 1.43E-06 1.35E-06

method

Table 6-8 Squared error values of each method and each data set for experiment 2

When comparing computational times there are some differences with previous setup.
Firstly, all methods computational time increased. This is due to larger magnitude
noise, therefore increasing uncertainty of method, as error surface becomes more
disturbed. This makes each integration for each method harder. Table summarizing

parameter values can be seen below:

80

Parameter Theoretical Derivative Latin hyper Proposed

value cube
x1 0.81 0.76 0.15 0.65
X2 0.91 0.24 1.24 0.71
x3 0.13 1.83 0.76 0.69
x4 0.91 0.69 0.25 0.55
x5 0.63 0.04 0.31 0.61
X6 0.1 1.29 0.03 0.74
X7 0.28 0.03 0.23 0.67
X8 0.55 0.03 1.09 0.56
x9 0.96 0.33 0.25 0.77
x10 0.96 1.05 0.95 0.55
x11 0.16 0.62 0.62 0.59
x12 0.97 0.31 1.16 0.72
x13 0.96 0.05 0.84 0.55
x14 0.49 0.31 1.81 0.57
x15 0.8 0.13 1.05 0.57
x16 0.14 0.13 0.08 0.55
x17 0.42 1.76 1.16 0.69
x18 0.92 1.04 0.65 0.73
x19 0.79 0.8 0.13 0.59
x20 0.96 1.4 0.11 0.71

Table 6-9 Summary of identified parameter values for each method for experiment 2

As before we see parameter values that are completely different than in previous

setup, but still producing good performance models, due to nature of the system.

81

82

Function value

Function value

Derivative Estimation for Polynomial model

3'} T T T T T
28T 1
2070 T
15 T
— # — Muoise free seen data 1
107 Model predictions data 1
— ¥ —Moise free seen data 2
Maodel predictions data 2
5t — ¥ —Moise free unseen data 3 |4
,.2(* Model Predictions data 3
e
A
DH_*"* i i i i i
0 0.5 1 1.5 2 2.5 3
Time, h
Latin Hyper Cube for Polynomial model
3'] T T T T T
’.f
2871 1
207 1
15 1
— ¥ —Moise free seen data 1
or Model predictions data 1
— ¥ —Moise free seen data 2
Model predictions data 2
5t — ¥ —Moise free unseen data 3 |4
Maodel Predictions data 3
e
4
DH_:*-"*' i i i i
0 0.5 1 1.5 2 2.5 3
Time, h

Proposed method for Polynomial model
3'} T T T T T

256

]
o}

Function value
[
n

— ¥ —MNoise free seen data 1

-k
]
T

Model predictions data 1
— ¥ —Maoise free seen data 2

Maodel predictions data 2
5+ — ¥ —Moise free unseen data 3
Model Predictions data 3

A
A
0 H_*"*' i i i i i
0 0.5 1 1.5 2 2.5 3

Time, h

Figure 6.8 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.1h sampling and 10% noise for measured data.

6.1.2.3. Experiment 3 0.3h sampling and 5% random noise
Increasing sampling time from 0.1h to 0.3h, seem to effect derivate estimation method

and proposed state substitution method in this case, while Latin hyper cube method
performs at the same accuracy. Lower number of sample points provide less
information for each method to optimise correctly towards solution. Still even with
some inaccuracies all methods can find solution that produces acceptable
performance. The Latin hyper cube method seems to outperform other methods in

terms of accuracy (table 6.10).

Method Computational time, s
Derivative estimation 190
Latin hyper cube multi-start 98

Proposed state substitution method 140

Table 6-10 Computational time of all three method for experiment 3.

83

Method Sq. Error Sq. Error Sq. Error

(Blue) (Pink) (Black)
Derivative estimation 3.23E-04 4.24E-04 4.16E-04
Latin hyper cube multi-start 3.42E-07 4.44E-07 4.11E-07
Proposed state substitution 1.04E-04 1.34E-04 1.23E-04

method

Table 6-11 Squared error values of each method and each data set for experiment 3

When comparing computational time, we can see that the overall trend stays the same
of multi-start method being best followed by proposed and derivate estimation
methods. Furthermore, all computational times dropped compared to experiments 1
and 2. That is because with decreased sampling frequency, there is less data to
compute, making methods faster to arrive at a solution, at the cost of accuracy. The
Multi-start method seems to be unaffected by this, keeping its computational time
relatively similar, but at the same time it does not suffer any accuracy penalties either.

Table summarising parameter values can be seen below:

84

Parameter Theoretical Derivative Latin hyper Proposed
value cube

x1 0.81 0.02 0.08 0.61
X2 0.91 0.5 1.49 0.98
x3 0.13 0.49 0.62 0.63
x4 0.91 0.37 0.41 1.39
x5 0.63 1.89 0.08 0

X6 0.1 0.19 0.76 1.11
X7 0.28 1.91 1.76 1.09
X8 0.55 0.18 0.01 0.45
x9 0.96 0.48 0.84 0.7
x10 0.96 0.21 0.9 0.59
x11 0.16 0.11 0.74 0.7
x12 0.97 1.28 0.49 0.58
x13 0.96 0.16 0.1 0.81
x14 0.49 0.33 0.04 0.8
x15 0.8 1.16 0.88 0.65
x16 0.14 0.9 1.24 0.4
x17 0.42 0.24 0.79 0.49
x18 0.92 0.39 0.67 0.27
x19 0.79 0.9 0.66 0.08
x20 0.96 1.24 1.84 0.35

85

Table 6-12 Summary of identified parameter values for each method for experiment 3.

86

Function value

Function value

Derivative Estimation for Polynomial model

30

10

— ¥ —MNoise free seen data 1
Model predictions data 1
— ¥ —Maoise free seen data 2
Maodel predictions data 2
— ¥ —Moise free unseen data 3
Model Predictions data 3

1.5 2 2.5

Time, h

30

Latin Hyper Cube for Polynomial model

— % — MNoise free seen data 1

101 Model predictions data 1 |]
— ¥ —Moise free seen data 2

Model predictions data 2
5t / — ¥ —Moise free unseen data 3 |4

- Model Fredictions data 3

T
04 —
1] 0.5 1 1.5 2 2.5
Time, h

Proposed method for Polynomial model

30

256

]
o}

[ub]
=
™
=
515
13
= 7
u:: — ¥ —MNoise free seen data 1
or Model predictions data 1
— ¥ —Moise free seen data 2
Maodel predictions data 2
5 o — ¥ —Moise free unseen data 3 |4
f,_,f*" Model Predictions data 3
» A
04— —4 . . .
1] 0.5 1 1.5 2 2.5 3
Time, h

Figure 6.9 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,
with 0.3h sampling and 5% noise for measured data.

6.1.2.4.

Experiment 4 0.3h sampling and 10% random noise

With increased noise from 5% to 10%, all methods seem to suffer in accuracy. Errors

are small and all methods produce acceptable performance of a model. All methods

seem to perform on similar accuracy levels.

Method

Computational time, s

Derivate estimation
Latin hyper cube multi-start

Proposed state substitution method

204
99
176

Table 6-13 Computational time of all three method for experiment 4.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 1.34E-04 1.73E-04 1.61E-04

Latin hyper cube multi-start 1.27E-04 1.65E-04 1.55E-04

Proposed state substitution 2.39E-04 3.13E-04 2.84E-04

method

Table 6-14 Squared error values of each method and each data set for experiment 4

87

We can also see that methods accuracy degrade more than with experiment 3, from
their computational time all methods, with exception of Latin hyper cube model, have
significant increase in computational time. Table summarizing parameter values can

be seen below:

Parameter Theoretical Derivate Latin hyper Proposed
value cube
x1 0.81 1.76 0.07 0.61
X2 0.91 1.25 1.08 0.79
x3 0.13 0.21 1.69 1.04
x4 0.91 0.18 0.53 0.55
x5 0.63 0.25 0.48 0.5
X6 0.1 0.63 0.9 0.67
X7 0.28 0.13 1.25 0.43
X8 0.55 0.59 1.41 0.56
x9 0.96 0.21 0.4 0.61
x10 0.96 1.35 0.14 0.89
x11 0.16 0.35 1.3 0.46
x12 0.97 0.12 0.03 0.87
x13 0.96 1.24 0.47 0.66
x14 0.49 0.44 0.52 0.78
x15 0.8 1.29 0.92 0.62
x16 0.14 0.39 0.56 0.63
x17 0.42 1 0.24 0.48
x18 0.92 0.15 0.25 0.3
x19 0.79 0.18 0.2 0.92
x20 0.96 1 0.31 0.57

Table 6-15 Summary of identified parameter values for each method for experiment 4.

As before we see parameter value that are completely different than in previous
experiments, but still producing good performance models, due to nature of the

system.

88

89

Function value

Function value

Derivative Estimation for Polynomial model

30

10

— # — Noise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

1.5 2 2.5

Time, h

30

10

Latin Hyper Cube for Polynomial model

— # — Moise free seen data 1

Model predictions data 1

— #% — Moise free seen data 2
Model predictions data 2

— ¥ —Moise free unseen data 3
Model Predictions data 3

]
o ¥

Proposed method for Polynomial model

30

256

[
=

Function value
e
(]

— # — MNoise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2

Model predictions data 2
5 — ¥ — Moise free unseen data 3 |
Model Predictions data 3

b
]
T

0% . . .
0 0.5 1 1.5 2 25 3
Time, h

Figure 6.10 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 10% noise for measured data.

6.1.2.5. Experiment 5 0.3h sampling and 20% random noise
At noise levels of 20% we start to see Further degradation in the performance of the

methods. From figure 6.11, we can say that the derivate method and the proposed
state substitution method have worst accuracies and the Latin hyper cube method
having better accuracy. At 20% noise level a lot of parameter influence on system is
hidden by large noise. Reason why methods can still be accurate, at least for the first
half of the model, is because system is so forgiving with parameter selection. Making

it very simple problem to identify to perform well.

Method Computational time, s
Derivate estimation 256
Latin hyper cube multi-start 141

Proposed state substitution method 236

Table 6-16 Computational time of all three method for experiment 4

90

Method Sq. Error Sq. Error Sq. Error

(Blue) (Pink) (Black)
Derivative estimation 1.60E-03 2.13E-03 1.93E-03
Latin hyper cube multi-start 3.51E-04 4.62E-04 4.31E-04
Proposed state substitution 3.40E-03 4.25E-03 3.92E-03

method

Table 6-17 Squared error values of each method and each data set for experiment 4

Computational time follows same trend as before. Increase in noise level increase
computational time across all methods, keeping them in same order from fastest to

slowest. Table summarizing parameter values can be seen below:

Parameter Theoretical Derivate Latin hyper Proposed
value cube
x1 0.81 0.78 0.77 0.61
X2 0.91 0.63 0.28 0.7
x3 0.13 1.06 0.17 0.9
x4 0.91 0.53 0.68 0.16
x5 0.63 1.29 0.16 1.45
X6 0.1 0.41 1.55 0.7
X7 0.28 0.37 0.97 0.7
X8 0.55 0.98 0.31 0.03
x9 0.96 0.77 0.18 0.11
x10 0.96 0.7 0.15 0.96
x11 0.16 0.73 0.38 0.63
x12 0.97 0.83 0.22 0.68
x13 0.96 0.18 1.57 0.81
x14 0.49 0.53 0.14 0.6
x15 0.8 0.48 1.01 0.18
x16 0.14 0.31 0.58 0.62
x17 0.42 1 0.52 0.84
x18 0.92 0.19 0.83 0.73
x19 0.79 0.49 1.38 0.5
x20 0.96 1.07 0.84 0.61

Table 6-18 Summary of identified parameter values for each method for experiment 4.

91

As before we see parameter value that are completely different than in previous
experiments, but still producing good performance models, due to nature of the

system.

Derivative Estimation for Polynomial model

30 T :
[ab]
=
[in]
=
c
=]
=
c
LE — # — MNoise free seen data 1
wr Model predictions data 1
P “|— % —Moise free seen data 2
Model predictions data 2
5 — # —Muoise free unseen data 3 |4
P Model Predictions data 3
¥
04 — ; ; ; ;
0 0.5 1 1.5 2 2.5 3
Time, h
Latin Hyper Cube for Polynomial model
10 T T T T T
[ub]
3
@
=
c
=]
]
=
LE — % — Nopise free seen data 1
or Model predictions data 1
— ¥ —Moise free seen data 2
Model predictions data 2
5F — # —Muoise free unseen data 3 |4
f,_,f*" Model Predictions data 3
) A
04— 4 : : : .
0 0.5 1 1.5 2 2.5 3

Time, h

92

Proposed method for Polynomial model

30

28T

e
(==}

— # — Moise free seen data 1

Function value
e
(]

=
=

I Model predictions data 1 |]
— ¥ — Moise free seen data 2
Model predictions data 2
5t — ¥ — Moise free unseen data 3 |

Model Predictions data 3

0.5 1 1.5 2 25 3
Time, h

Figure 6.11 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,
with 0.3h sampling and 20% noise for measured data.

6.1.3. Summary of results for polynomial model
This case study serves as a benchmark model, to show that complexity is not

proportional with the number of parameters. It is showed that even with large number
of parameters (Twenty), every method was able to provide highly accurate solution.
This case study also shows how noise effect each method, although complexity is low
increasing noise does decrease accuracy of the solution, for each of the models. With
this low complexity model, this case study allows to assess viability of the complexity
analysis tools. Each of the complexity analysis tools, provide different way to visualise
complexity of the system, and together form a way to quantify the complexity of the
model. This complexity measurement is not absolute, but rather a relative way to
measure complexity. It allows to compare complexity of two different models, but not
set a classification of the system complexity. The final decision of system complexity
classification (Low, Medium, High) is up to users’ interpretation. Using system, with
known complexity based on prior knowledge is a good way to help establish what kind
of results you should expect from this complexity analysis based on their complexity
class. Using these methods complexity was assessed to be low for the polynomial

model, because of several reasons. First, it consists of single ODE, which means there

93

no coupling interactions between different ODE’s, making it easier to identify
parameters, as they are all affected only by only one ODE. PCA visualization confirms
this by forming a single uniform valley, that drops towards the global optimum. In
addition to this convexity of this system is 100%, meaning it does not have problematic
regions, that would stop system from converging. These results already suggesting
this system has low complexity as it is simple to solve and has one global performance
optimum. Sorted minimization reveals that system’s parameters are not possible to
identify. This is expected as explained in chapter 6.1.1.2, structure of the model makes
exact parameter value unidentifiable, because all parameter values are
interchangeable. Model still can be optimised to perform well when compared to
measured data. This also suggest that individual values of the parameters are not
sensitive, for the same reason. SOM analysis confirms this by showing that system
has multiple local minimums, but they all produce same level of performance. SOM
analysis also provides supporting evidence of the parameters being not sensitive as
cross-correlating SOM parameter maps with the overall model error SOM map is not
able to identify any dominant variables. When comparing results of different parameter
identification algorithms, for this system the Latin hyper-cube method is the most
accurate method, in all five experimental setups. Accuracy of other two methods is
comparability close for the first four experimental setups, but difference between the
Latin hyper cube method increases when noise level reaches 20% mark. Accuracy
levels for all methods were consistent between seen data (Pink and Blue) and unseen
data (Black). Computational time is significantly different within all five experimental
setups, with the Latin hyper cube method having lowest computational time, followed
by other two methods. This is mainly due to small search space and simple model
error hyperplane. This makes required number of samples to be low, therefore
reducing computational time as well. This benchmark also shows that the proposed
state substitution method is not suitable single ODE system, because decoupling
cannot be used. This makes the proposed state substitution method perform worse
than it would on a more complex system, when comparing with state of art methods.
Although performance of identified model is satisfactory, all identified parameters
values are not consistent. ldentified parameter values are not consistent nor with
theoretical values nor with other methods identified values. This reinforce the fact that
parameter values are non-sensitive and unidentifiable, but good accuracy of the model

can be still reached.

94

<1074 Experiment 1 <107 Experiment 2 w10 Experiment 3
3 F T — T T T T T

0 —.. m 1 [.
o 02 o® o8 od e oo
“‘(\9‘\0 o o e,{(\ of o G\‘g\ ot o e‘{(\
=)
W@ e ,.\\“NQ <@ W® o o o e
Oeﬁ\q‘b 2 Q‘OQ ‘?QOQ Oe'i\ RS Q R
<1074 Experiment 4 Experiment 5 300 Computational time for each experiment
31 i I Experiment 1
4t 250 I Experiment 2
M g [IExperiment 3
w2t . = 200t Il Experiment 4
g 2 31 © [Experiment 5
- u 5 150
3 5| 2
@ 1 @ 2100
o
£
" S 50
0 0 .. m 0
s 0@ 00° P 0@ o0° P 0® o°
W 5 © W 5 @ o 5 &
o @ S @ 5 e
=) \4 I} = \% O S \)
e @ o P e e N @ e e N @
o g o o™ g °e o™ ° o€

Figure 6.12 Summary of performance results for all three methods for polynomial model

95

6.2.Case study 2 — Monod kinetics
Monod kinetics are widely used for modelling bio-systems growth, while being

relatively simple model. This makes Monod kinetics a good benchmark problem to
evaluate the proposed new method. Monod kinetics also allows to observe how
accurate complexity analysis is on coupled ODE system, as a lot of knowledge is
known about Monod kinetics, to compare results. Monod kinetics in its simplest form,
which is used for this case study, consists of two ODE’s and three parameters. Both
ODE’s are coupled, and three parameters vary in sensitivity. Where maximum specific
growth rate (Umax) and substrate consumption rate (q) values has large effects on
model accuracy and half velocity constant (Ks) value, has low effects on model
accuracy. Making half velocity constant hard to precisely identify. Equation 6.2 shows

the system. Data was generated as described in section 5.4.

dX Umax=+S

—_— = — %

dt Ks+ S
ds Umax * S (6.2)
—_—— — B —
dt 1 Ks+S

6.2.1. Complexity analysis
Complexity analysis will be performed in three steps as mentioned in section 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,
sorted minimization and SOM analysis. The aim of this analysis is to compare relative
complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system.

6.2.1.1. PCA visualization
Figure 6.12 shows different structure, than the one described in section 6.1.1.1.

Visualization of error plane shows as much more clearly defined global minimum and
has non-convex regions that were not present in polynomial case study. Similar to first
case study five thousand sample points, were used in PCA visualization of Monod
model. These points were calculated as described in section 6.1.1.1. We can see that
global optimum is well defined by sharp valley in middle of graph, but it might not be
as easy to find because we can observe other two feature in this graph. A valley within
which global optimum sits, and a flat area surrounding that valley. As we would expect
those flat areas are non-convex, as starting in them gives an optimizer almost no

indication where the minimum is. Secondly, this system also has failed integration

96

points, which means we cannot assess their convexity, due to solver limitations. For
each convex point three different values need to be evaluated (Section 4.5), failure to
evaluate any of those three conditions gives failed integration/green dot. This graph
suggests that the system can be difficult to optimize if the initial conditions fall within
flat/red dot regions. This is also represented by overall convexity of 27%. Overall, we
can conclude that the system is not a trivial problem to optimize but should not a pose
big challenge if initial conditions are chosen correctly. That said, it can be tricky to get
to true global optimum as it is hiding within a secondary valley that can be mistaken
as the global optimum. Figure 6.12 is very good representation of the search space
as PCAL1 explains 90.9% variability of the system and PCA2 8.2% for a total of 99.1%

variability.

PCA visualization of Monod kinetics

1012

Non - convex
Convex +
Failed integration g £ .

1010

108

Squared error value

Principal Component 1

Principal Component 2

Figure 6.13 PCA error plot for Monod model (6.2), with colour coded points for convexity, where blue points are
convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution.

6.2.1.2. Sorted minimization
Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. Optimization of these

thousand samples, makes majority of samples to converge to same value, hence a

97

flat line for figure 6.13. There is a drop down at last 200 samples but change in overall
error is negligible. Still those last couple of point indicate they are approaching true
global optimum, and not a valley around it which gives good performance. We can
also see from figure 6.13 that even points that started at non-convex regions can
convergence close to global optimum within this system. In addition, we can see that
identifying convex points is beneficial as they hold same information as the full
spectrum but require less points to be optimized. We can be sure that parameters

values can be identified accurately, and minimization shows one dominant optimum

(flat line).
Monod
0%
O All samples
O Convex only samples
5
t L
« f
=)
S 100p
s B
w L1
q
q
_1D1'1 1 1 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 TO0 800 OO0 1000

Sample, N

Figure 6.14 Monod model (6.2) thousand samples sorted optimization, where blue is all samples and red are convex
samples only.

5.2.1.1. SOM analysis
Looking at figure 6.14 results of SOM, would suggests that there are multiple local

minimums as lowest error green hexes(L) are not connected. With careful observation
we can see green low error hexes(L) form two lines one closer to red hexes and
second further away, also between these two lines distances are much smaller than
anywhere else. Inspecting the U-matrix in figure 6.14 reveal that, this SOM has two
places where the distance between hexes reaches very low values. One of those low
distances lines are in the middle of red high error(H) hexes and second is in between
green low error(L) hexes. This observation allows to see true general trend of high

value on the left getting lower and lower while going to the right and finally increasing

98

to blue medium error value(M) on the right edge again. This agrees with what we saw

in a PCA visualization earlier, a valley of close to global optimum solutions.

We know that with the Monod system parameter Umax is dominant and only at very
low substrate values Ks become dominant parameter. To see if our SOM parameter
analysis can find that we will cross correlate SOM error map with parameters maps to
see which of them match best. If our cross-correlation method is correct it should show
biggest matching between Umax and error fallowed by q and Ks. As before cross-

correlation of maps are performed for positive and negative correlation.

Figures 6.16-6.17 shows how well component maps match up versus total error maps.
Positive values mean higher degree of matching, and lower values mean lower. Cross
correlation factor of 1, represents perfect match and O represent mismatch. As
expected, none of the parameters seems to be more dominant than others. These
figures allow to see how well, parameter changes match overall error changes in the
system and to represent a quantifiable measurement of how dominant the parameter

an overall matching factor was calculated (Table 6.18).

Parameters Positive Matching Negative Matching
Factor Factor

Umax 0.82+0.01 0.47 £0.00

Ks 0.61 +£0.01 0.59 £ 0.01

q 0.66 = 0.00 0.65+0.01

Table 6-19 Table of positive and negative mean matching factor of each parameter for system (6.2)

We can observe that there is significant difference between matching factors as
maximum difference between matching factors are 0.16 and 0.18, respectively.
Furthermore, Umax shows the highest level of agreement with overall error map as
expected. This provides additional confirmation that Umax is most dominant variable.
This allows us to have more confidence when arranging order in which ODE are

solved, for proposed state substitution method.

99

Color code U-matrix
0.793

0431

— 0.0683

Figure 6.15 Left 2d SOM of Monod model (6.2), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right 2d SOM
with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

100

U-matrix Umax

0.783 256
0431 l AS |
0.458

0.0683

Ks

qs
0761
a A“g | ' AS.Q |
0234 0.487

855

Figure 6.16 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution
represented as colour bar

101

Umax Ks

a) b)
09
09
]
= 0.8
08 o
07
07
H o6
Y
Hos
Hos
Ho4
H o4
0.3
03
2
=
o 0.2
02
0.1
0.1

0
100 150 200
Pixels

Figure 6.17 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

102

6.2.2. Model hierarchy
The Monod model (6.2) consists of two coupled ODE’s, which when applied to the

proposed state substitution methods’ decoupling algorithm leaves two independent
sub-sets that can be solved in any order. Yet a specific solution hierarchy will lead to
better results, because of the different levels of sensitivity from the parameters. In
order to figure out the model hierarchy we need to look at the bi-partite chart (figure
6.18). This reveals that both states have same level of importance and could be solved
simultaneously, but from (figure 6.16 and table 6.18), we can see that the parameter
Umax, has highest correlation with model error, hence highest sensitivity. This leads
to need for one of the sub-sets to be solved first to acquire the Umax value for best
overall results. Although X(Biomass) and S(Substrate) sub-sets could be chosen, X
sub-set is chosen, because it only has one other parameter associated with it (Ks).
This means that the optimization algorithm will be more aware of Umax effects to the
sub-set as it has less variables to optimize. This makes a two-level model hierarchy,
with Umax value being passed on from level one to level two (figure 6.19).

Figure 6.18 Bipartite chart of the Monod model (6.2)

103

X Biomass

Level 1

S Substrate

Level 2

Figure 6.19 Hierarchy of the Monod model (6.2)

6.2.3. Method Comparison
To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper
cube sampled multi start method. Two main criteria will be compared, model
performance accuracy and the computational time between each of the methods.
Although the proposed state substitution method aims to reduce computational time,
model performance accuracy is also very important and cannot be completely
neglected. Each method will be assessed with different random noise levels and
sampling times. For each method three different state initial conditions are compared,
first two (Pink and Blue) are set same for all methods and are conditions that were
provided for the optimisation algorithm and third initial condition (Black) is randomised
between first two initial conditions and was never seen by algorithm before. This allows
to check method accuracy with unseen data sets, which are within same boundary
conditions. Only biomass data set will be presented for model performance, as
biomass dictates accuracy of substrate model. This will allow to avoid unnecessary
graphs while still presenting enough evidence about model performance. However, for
completeness first experiment will show predictions for all states. Modelling conditions

and parameter search space are summarised in tables below.

104

Experiment Sampling Noise Initial Initial Initial

number Rate level conditions conditions conditions
Pink Blue Black

1 0.1h 5% 0.1,0.1,0.1 0.5,05,05 0.54,057,0.14

2 0.1h 10% 0.1,0.1,0.1 0.5,05,05 0.17,0.14, 0.15

3 0.3h 5% 0.1,0.1,0.1 05,0505 0.31,0.47,0.12

4 0.3h 10% 0.1,0.1,0.1 05,0505 0.470.15,0.35

5 0.3h 20% 0.1,0.1,0.1 0.5,05,0.5 0.21,0.45,0.18

Table 6-20 Summary of modelling conditions for the system (6.2)

Parameters Lower bound Upper bound

Umax 0 3

Ks 0 1

q 0 10

Table 6-21 Parameter search space for the system (6.2)

6.2.3.1. Experiment 1 0.1h sampling and 5% random noise
When we look at computational times (table 6.20) we can see that proposed state

substitution method already produce significant improvements, in comparison to
previous case study (6.1). That is, because Monod model (6.2) has coupled states
and proposed state substitution method decouples them to reduce search space, in
order to reduce computational time. When comparing proposed state substitution
method with Derivative estimation and Latin hyper cube method we get 107% and

38% improvements in computational time, respectively.

Method Computational time, s
Derivative estimation 425
Latin hyper cube multi-start 190

Proposed state substitution method 129

Table 6-22 Computational time of all three method for experiment 1

In terms of accuracy of model predictions, Latin hyper cube and proposed state
substitution methods seemed to be of similar accuracy, with Latin hyper cube method
being slightly better in certain cases. Whereas derivative estimation method falls short

of accuracy in comparison (table 6.21).

105

Method Sq. Error Sq. Error Sq. Error

(Blue) (Pink) (Black)
Derivative estimation 7.18E-03 6.50E-05 4.01E-03
Latin hyper cube multi-start 4.00E-05 1.18E-04 6.75E-05
Proposed state substitution 2.38E-04 1.79E-04 1.48E-04

method

Table 6-23 Squared error values of each method and each data set for experiment 1

In can be noted that if we compare computational times to same experimental setup
of polynomial model (6.1) (table 6.3). We will see that due to increased complexity of
the system Derivative estimation and Latin hyper cube methods both roughly doubled
their computational times, where proposed state substitution method decreased it.
Both methods have positive correlation between complexity of a system and
computational time, whereas because proposed state substitution method is using
decoupling techniques, it will struggle with low complexity systems, but will outperform

other methods when dealing with high complexity systems.

When looking at identified parameters values, we observe that as predicted from SOM
analysis most important variable is Umax, as all methods identified this parameter
accurately. Ks parameter is not very sensitive, because Latin hyper cube and
proposed state substitution method are very close in accuracy, but Ks values is
different by 24% and Derivative method has 100% change and still able to keep
relatively accurate model prediction, although not as accurate as other two methods.
Which is why it is most likely that g parameter is responsible for that accuracy change,
as itis change from theoretical value seem to match with change in Sq. Error, between

methods.
Parameter Theoretical Derivative Latin hyper Proposed
value cube
Umax 0.9 0.90 0.90 0.90
Ks 0.3 0.60 0.30 0.23
q 4 4.06 4.00 4.01

Table 6-24 Summary of identified parameter values for each method for experiment 1

106

Derivative Estimation for Monod model

30 ' ' ' ' B & A G
— 4 — Moise free seen data 1
25T Model predictions data 1]
— ¥ —Moise free seen data 2
Maodel predictions data 2 ¥

20 H— # — Moise free unseen data 3 -F
= Maodel Predictions data 3 _*'1
[s)] ,
5 ¥
15 1
g s S T T T T TS T T s ST S ST
= F
@ i,

10 Tk, 1

A7
oK
5]
D .é"-lw'i“!"!! IR i T T N e i i N
1] 1 2 3 4 5 6
Time, h

Derivative Estimation for Monod model
100 : ; :

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Madel predictions data 2 | |

80

nor — ¥ —Moise free unseen data 3
= 0 Madel Predictions data 3 | |
o *

k] 3

T 504k tﬁ;
1]

S *
&N 40

L

30+ 3‘
20 Jﬁ

*

10°1 1
D — e LT bbb didiadsdu iy
0 1 2 3 4 5 6

107

108

Biomass g/L

35

30

3
=

=&
tn

10

100

Substrate g/L

00 T

80

70

60

50

40

30

20

10

Latin Hyper Cube for Monod mnl:le _

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Maodel predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

1 2 3 B 5 G

Latin Hyper Cube for Monod model

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2 | |
— ¥ — Moise free unseen data 3
Model Predictions data 3

1]

Proposed method for Monod model

95 . : . .
— # — Moise free seen data 1 +
a0 b Madel predictions data 1
— ¥ — Moise free seen data 2 ?F
Maodel predictions data 2 '#'
— # — Moise free unseen data 3 .f.
% 15 Maodel Predictions data 3 +
3
7]
©
E
(=]
o 10
5
03
Proposed method for Monod model
100 T T T
90 1 — # — Moise free seen data 1 1
80 Model predictions data 1 | |
— % —Moise free seen data 2
0 Model predictions data 2 | |
— % —Moise free unseen data 3
= 6o Model Predictions data 3 | |
& *
2 X
g s %
4 A
g 40T *
30
20T
101
D i, BT B e
0 1 2 3 4 5 6
Time, h

Figure 6.20 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,
with 0.1h sampling and 5% random noise for measured data.

109

6.2.3.2. Experiment 2 0.1h sampling and 10% random noise
As expected with increased noise from 5% to 10% computational time of all methods

should increase. Pattern of computational time stay the same as in experiment 1.
Proposed state substitution method is still fastest by 107% and 34% compared to

Derivative estimation and Latin hyper cube method, respectively.

Method Computational time, s
Derivative estimation 455
Latin hyper cube multi-start 193

Proposed state substitution method 137

Table 6-25 Computational time of all three method for experiment 2

Accuracy still high of all method with Derivative estimation method providing lowest
accuracy and Latin hyper cube and proposed state substitution method providing
slightly better accuracy. All methods suffer loss in accuracy in comparison with
experiment 1, due to increased noise level. When comparing squared Errors of
experiment 2 to experiment 1, we see that experiment 2 squared error are more
uniform than experiment 1. This is caused by increased error levels, making
measurements on average further from real data. This creates sort of limiting band

how low error of the model can be pushed.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 2.17E-02 1.92E-03 1.29E-02

Latin hyper cube multi-start 2.09E-03 1.25E-03 1.15E-03

Proposed state substitution 4.58E-03 3.16E-03 2.93E-03

method

Table 6-26 Squared error values of each method and each data set for experiment 2

When looking at identified parameter values, we observe that Umax is still identified
correctly by all method. This allows all methods to provide decent model prediction,
because as mention before Umax is most sensitive and most impactful parameter in
this system. With increased noise we see more variation in Ks and q parameters as
their effect on system are slowly being hidden by noise. Ks parameter identified values
vary more than q parameter, indicating that q parameters has more influence over the

system than Ks.

110

Parameter Theoretical Derivative Latin hyper Proposed
value cube

Umax 0.9 0.90 0.90 0.90

Ks 0.3 0.57 0.22 0.34

q 4 4.12 4.04 3.95

111

Table 6-27 Summary of identified parameter values for each method for experiment

Biomass, g/L

20

=
tn

==
-

Derivative Estimation for Monod model

25 T T

— ¥ — Moise free seen data 1
Model predictions data 1
— % —Moise free seen data 2

Model predictions data 2
— % — Moise free unseen data 3
Model Predictions data 3

Latin Hyper Cube for Monod model

25
— # — Moise free seen data 1 &
20| Model predictions data 1 i
— ¥ — Moise free seen data 2 i
Maodel predictions data 2 ?{
— ¥ — Moise free unseen data 3 'F
| Madel Predictions data 3 !
= 16
@ | e e e
7]
©
E
(=]
o 10
5
03
0 1 2 3 4 5 6
Time, h
Proposed method for Polynomial model
25 T T T T T
— # — Muoise free seen data 1 F o+
P Madel predictions data 1 J]
— ¥ — Moise free seen data 2 -f
Maodel predictions data 2 ¥
— # — Moise free unseen data 3 o,
% 15 Model Predictions data 3 'YI"
o
o
(]
E
[=]
q 10
5
0¥

Figure 6.21 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.1h sampling and 10% random noise for measured data.

112

6.2.3.3. Experiment 3 0.3h sampling and 5% random noise
First thing we can observe in computational time that seemed to not fallow the pattern

of previous experimental setups that, although higher sampling rate should result in
more complex problem to identify, all the computational times have decreased. That
is because with increased sampling time, there is less data points per same time span.
Which reduce amount of calculation that required to be done by any method. Other
than that same pattern persists of proposed state substitution method being fastest,
followed by Latin hyper cube and Derivative estimation methods. Proposed state

substitution method is 102% and 33% faster than other two methods, respectively.

Method Computational time, s
Derivative estimation 377
Latin hyper cube multi-start 172

Proposed state substitution method 123

Table 6-28 Computational time of all three method for experiment 3

Accuracy overall fallows same pattern, with Latin hyper cube being most accurate,
proposed state substitution method being just as accurate, but not in all three data
sets, and derivative estimation method having worst accuracy. All methods are still
capable to producing models that fallow general trend accurately. It should be noted
that Squared error values of experiments with different sampling rates, cannot be

directly compared as different number of samples affect total error value.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 3.64E-03 3.05E-04 2.72E-03

Latin hyper cube multi-start 6.86E-05 2.84E-05 4.74E-05

Proposed state substitution 5.31E-04 1.15E-05 7.74E-05

method

Table 6-29 Squared error values of each method and each data set for experiment 3

Umax is still being accurately identified by all methods, where q and Ks varies between
methods. As in previous cases all difference in accuracy comes from difference in
these less important variables, and as Latin hyper cube and proposed state
substitution method have similar values of Ks and g, which leads to their accuracies
being very similar too. This case all proves that g parameter has more important than

Ks, as proposed state substitution method has better estimate of Ks parameter, but

113

worse estimated in g parameter, which leads to Latin hyper cube being just a slightly
more accurate than proposed state substitution method.

Parameter Theoretical Derivative Latin hyper Proposed
value cube

Umax 0.9 0.90 0.90 0.90

Ks 0.3 0.43 0.22 0.29

q 4 4.08 3.99 3.97

Table 6-30 Summary of identified parameter values for each method for experiment 3

Derivative Estimation for Monod model

25
— 4 — Moise free seen data 1 ¥
00 | Model predictions data 1 |
— % —Moise free seen data 2 fl'r
Model predictions data 2 Jr
— % —Moise free unseen data 3
= 15 Maodel Predictions data 3
o
]
i
(]
E
o
m 10
5
D i
1] 1 2 3 4 5 6
Time, h

114

256

20

Biomass g/L
&

=
=

256

20

Biomass, g/L
=

=
=

Figure 6.22 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

115

Latin Hyper Cube for Monod model

— # — Moise free seen data 1 +
Model predictions data 1 J
— ¥ — Moise free seen data 2
Madel predictions data 2 /
— ¥ — Moise free unseen data 3

Model Predictions data 3

Proposed method for Monod model

— # — Moise free seen data 1

Model predictions data 1
— ¥ —Moise free seen data 2
Maodel predictions data 2

— ¥ —Muoise free unseen data 3 +
Maodel Predictions data 3 /

Time, h

with 0.3h sampling and 5% random noise for measured data.

6.2.3.4. Experiment 4 0.3h sampling and 10% random noise
When noise is increased, we come back to regular pattern of all computational times

increasing. Latin hyper cube seemed to be least affected by this change, but it is still
slower then proposed state substitution method. Proposed state substitution method
is 91% and 14% faster than Derivative estimation and Latin hyper cube methods,

respectively.

Method

Computational time, s

Derivative estimation
Latin hyper cube multi-start

Proposed state substitution method

410
177

154

Table 6-31 Computational time of all three method for experiment 4
In terms of accuracy all methods start to be very similar although proposed state
substitution method and Latin hyper cube method does seem to provide more accurate

results then Derivative estimation in certain cases.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 5.10E-03 2.16E-03 4.54E-03

Latin hyper cube multi-start 1.37E-03 1.29E-05 8.02E-04

Proposed state substitution 4.66E-03 2.27E-05 4.06E-03

method

Table 6-32 Squared error values of each method and each data set for experiment 4

Identify parameter values are roughly same, just Ks values starts to vary even more.
Umax parameter value also starts to be more difficult to identify. All these fluctuation
in estimated parameter values is direct affect from increased noise, which slowly starts

to hide parameter effects on the system.

Parameter Theoretical Derivative Latin hyper Proposed
value cube

Umax 0.9 0.89 0.90 0.91

Ks 0.3 0.31 0.51 0.79

q 4 4.10 4.05 4.09

Table 6-33 Summary of identified parameter values for each method for experiment 4

116

Derivative Estimation for Monod model

25 T T T T T
— # — Noise free seen data 1 4
Madel predictions data 1 N
207|— % —Noise fr data 2 /]
Oise ree Seen da _*_ _*__*__*_*_,.._*
Madel predictions data 2 r
— ¥ — Moise free unseen data 3 .#
| Madel Predictions data 3 /
= 16
)
]
]
E
=]
o 10
5
o}
Latin Hyper Cube for Monod model
25 T T T T T
— # — Nopise free seen data 1 4+
o0 b Madel predictions data 1 /
— # — Maise free seen data 2 /
Model predictions data 2 [
— ¥ — Moise free unseen data 3 .*.
= Madel Predictions data 3 |
15T P
e
7]
o
E
=]
o 10
5
0

117

Proposed method for Monod model

25
— # —MNoise free seen data 1 4
20| Model predicticns data 1 f
— ¥ —Noise free seen data 2 '
Model predictions data 2 /
— #* —Noise free unseen dala 3 #
= 15 Medel Predictions data 3
[] |'I
@
wl
)
£
5]
o 10T
5|

Figure 6.23 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 10% random noise for measured data.

6.2.3.5. Experiment 5 0.3h sampling and 20% random noise
With increased noise from 10% to 20% computational time of all methods increased.

Proposed state substitution method continues to be fastest. Proposed state
substitution methods computational time is lower by 96% and 23%, when compared

with Derivative estimation and Latin hyper cube methods, respectively.

Method Computational time, s
Derivative estimation 413
Latin hyper cube multi-start 183

Proposed state substitution method 145

Table 6-34 Computational time of all three method for experiment 5

Noise also effected accuracy of all methods. Overall accuracy seems to be same but
depending on specific initial condition different methods produce more accurate

results. All methods are still capable to fallowing correct general trend of the system.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)
Derivative estimation 4.88E-03 8.15E-04 5.19E-03

118

Latin hyper cube multi-start 6.64E-05 1.67E-03 5.28E-05
Proposed state substitution 4.94E-03 2.16E-04 1.09E-02

method

Table 6-35 Squared error values of each method and each data set for experiment 5

We can see that Derivative estimation method and Latin hyper cube method cannot
identify Ks anymore, but this does not seem to have big impact on their model

performances. Proposed state substitution method can identify Ks, but it is way off.

Parameter Theoretical Derivative Latin hyper Proposed
value cube

Umax 0.9 0.90 0.89 0.91

Ks 0.3 0.00 0.00 0.80

q 4 3.92 4.01 4.09

Table 6-36 Summary of identified parameter values for each method for experiment 5

Derivative Estimation for Monod model

25
— # — Noise free seen data 1 #*
20| Madel predictions data 1 /|
— % —Moise free seen data 2 ;-'I'
Model predictions data 2 }
— % —Moise free unseen data 3 ;¢.
= Model Predictions data 3 ;
15T 1
5
i
m
E
(=]
o 10
5

119

Latin Hyper Cube for Monod model

25
— # — Moise free seen data 1 *
20 | Model predictions data 1
— #% —MNoise free seen data 2 '
Maodel predictions data 2
— % —Moise free unseen data 3 -#‘
I Maodel Predictions data 3 /
15T 1
o
7]
]
E
(=]
o 10
5
0!
Proposed method for Monod model
25 . . . : .
— ¥ — Moise free seen data 1 ;H"
20 Model predictions data 1 Jl.'_
— % —Moise free seen data 2 .-"
Model predictions data 2 /
— % —Moise free unseen data 3 .:*_
I Maodel Predictions data 3 Fi
15T [T
&
73]
(]
E
(=]
o 10
5
0¥

Figure 6.24 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 20% random noise for measured data.

120

6.2.3.6. The summary of results for the Monod model
This case study is great example of small system that contains complexity, which

comes from different ODE interaction. The Monod system only has three parameters,
but its complexity is higher than the polynomial system that was discussed in section
6.1. As Monod kinetics is widely used, this system as studied extensively and well
understood. This allows us to test complexity analysis tools, which can determinate
dominant variables, as it is known that only one variable out of three is highly dominant
(Umax). Using complexity analysis tools, complexity of this system was determined to
be medium/low for the following reasons. First the Monod system consist of two ODEs
that are strongly coupled, meaning changes in one of the are strongly reflected into
other. This makes optimisation of the parameters more difficult, as parameters cannot
be optimised one by one anymore and have to be optimised at the same time. PCA
visualization reveal non-convex regions, which makes gradient-based optimisation
methods, stop before converging into a solution. In addition, global optimum solution
is surrounded by secondary valley, which can be interpreted as a local minimum.
These complications are reflected in convexity measurement, which is 27%. This
means that starting values of parameters heavily influence on the final result, as only
roughly third of starting points will converge towards the solution. Sorted minimization
shows that optimised model can reach accurate performance and accurate parameter
values. The SOM analysis shows agreement with PCA visualization results, revealing
a global optimum, surrounded by a secondary valley of local minimum. SOM analysis
of parameter maps, shows that Umax is indeed most dominant variable, followed by
g and Ks. Although SOM parameter analysis suggest that variable q is just slightly
more dominant than Ks, identified values suggest that Ks is extremally non sensitive
value, as it changes most between different experiments and methods but does not
seem to impact the overall error of the model significantly. That being said, looking at
the structure of ODEs (equation 6.1), we can see that variable Ks, impact increases
as substrate concentration (S) decreases. Very small amount of data exists around
low substrate values as it immediately tends to zero stopping the growth of biomass.
This makes it hard to observe effect of Ks variable, but SOM parameter analysis is
able to pick up that importance. When comparing results of different parameter
identification algorithms, for this system the proposed state substitution method has
lowest computational time across all five experiments. As there two heavily coupled

ODEs the proposed state substitution method can fully utilize its decoupling technique

121

to decrease the search space making it more efficient than other methods. Latin hyper
cube method is the most accurate method, but not by significant margin when
compared to the proposed state substitution method and derivative estimation method.
Accuracy levels for all methods were consistent between seen data (Pink and Blue)
and unseen data (Black). Identified parameter values, seem to be consistent in all five
experimental setups, apart from Ks parameter. For the first three experimental setups
Ks value was identifiable but had large error when compared to the theorical value,
but during the experiment four and five it is not identifiable anymore. This is due to as
discussed before, not being able to observe the impact Ks value has, and with
increased noise levels making this observation because impossible for the algorithm.
This case study is like a proof of concept for the proposed state substitution method.
As complexity is not high and the system is well understood, it allows good comparison
with other state of art methods. Due to ability to heavily decrease the search space,
the proposed state substitution method outperforms other methods in terms of speed,

but accuracy of the method could be better.

122

g «1073 Experiment 1
6 L
S
oyl
o
%]
2 L
0 —_ —
. @ O
& o o5°
A et
.qee’s 0 We 536
S 2% o
(\\1 N\ Q‘
06
6 X 1073 Experiment 4
S
L
o
%)
@ O
C})“O G\e\\g\o
W =
R [s)
N v
06

123

Experiment 2

0.025

0.02

0.011

0.008 1

Sq. Error

0.004

0.002

%107

Experiment 3

Sq. Error
%]

00 Computational time for each experiment

l-r—|

@)
\S) 6,{(\0

oF

Q‘OQ

Y
o
[=]

300

Figure 6.25 Summary of performance results for all three methods for Monod kinetics model

I Experiment 1
I Experiment 2
[lExperiment 3
-Experiment 4
[Experiment 5

6.3.Case study 3 — CHO cell culture model
CCO Culture kinetics was selected as case study 3, for several factors. First it has

increased complexity in model, consisting of two competing substrates, two by-
products, biomass, and an antibody product. Secondly in comparison to case study 2,
it has much deeper coupling, consisting of six ODE’s and sixteen parameters. First
five ODEs are coupled between each other similarly to Monod kinetics in case study
2. There are four reactions happening within this model. Biomass growth with by-
product production, biomass death, biomass sustain, and production of antibodies. All
these reactions happen simultaneously (figure 6.25). Another unique characteristic of
this model is that has several parameter ratios, which can mean both parameter values
can only be identified if, one of them is known beforehand. This increase difficulty of
obtaining values for all parameters. Model was obtained from (Saraiva et al. 2015).
Equation 6.3 shows the system, later in the thesis parameters of this system will be

preplaced by o0l - 016 encoding for easier reading.

124

Biomass
Glucose + Glutamine ——— Biomass + Lactate + Ammonia

Biomass (alive) — Biomass(dead)
Glucose + Biomass — Biomass

Biomass — Biomass + Antibodies

Figure 6.26 Four reaction of CHO culture model

Biomass(Xv) [1 -1 0 01
Glucose(Glc) —1/Yxv/61c 0 -1 0lrf1
4d | Lactate(Lac) | _ | Yiacsaie/Yavssie 0 Viacsgic O||f2
dt | Glutamine(Gln) —~1/Yxv/6mn 0 0 0f|f3
Ammonla(Amm) YAmm/Gln/YXv/Gln 0 0 0 f4
| Antibodies(MAD) | 0 0 0 14
fi = uXv,i=14
Glc Gin (5.3)
U1 = Hmax
(kgie + Glo) (kg + Gln)
N 1 1 ka,Gin
2 @max (.umax - kd,LacLaC) (.umax - kd,AmmAmm) (kd,Gln + Gln)
B Glc
s = Mate (km,Glc + GlC)
54 ul
Uy =P +a k, +ul

6.3.1. Complexity analysis
Complexity analysis will be performed in three steps as mentioned in section 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,
sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative
complexity with other cases studies within this work, and to find problems gradient-
based algorithms might run into trying to optimize this system.

6.3.1.1. PCA visualization
As this model has sixteen parameters, and high level of complexity it is required to use

large number of samples for PCA visualization so first two principal components would
be able to represent whole system. For this number of sample points is increased to
fifty thousand. Sampling was performed same way as in section 6.1.1.1. First, we can
observe large number of failed integration points (figure 6.26), this suggests that there

is a lot of discontinuity in the system, leading to gradient search getting stuck very

125

often. To have clearer picture of the error plane of the system failed integration points
are removed (figure 6.27). There seem to be no clear valley leading towards global
optimum, but there are number of valleys in different places. This means there are
local optimums that are in separate valleys from global optimum. Another feature that
can be observed is a denser plane of convex and non-convex points around error
value of 40%. This is probably, plane of separation, where majority of local minimums
start to diverge. For that reason, low amount points can be observed above this plane,
and very high number of points reside on the plane. This signifies a first barrier for
optimization algorithm to pass, in order to reach any optimal solution. Combining all
these obstacles, system achieves overall convexity of 7%, around three times lower
than Monod model (6.2). Overall, it can be concluded that system is of a high
complexity level, and involved multiple obstacles, towards global optimum. We can be
certain that this representation of search space is accurate as both PC1 and PC2
explains 48.4% each, for a total of 96.8% variability.

105\ PCA visualization of CHO cell culture mode|

Squared error value of the model

* Non-Convex
* Convex
0.01 Failed integration
0 x ‘ # Global optimum
-0.01 K ™ K R K K 5,
PC2 -B -7 B -5 -4 -3 -2 -1 o]
PC1 %1073

Figure 6.27 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue
points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum
solution.

126

105\ PCA visualization of CHO cell culture model

Squared error value of the mode!

MNon-Canvex
0.01 " * . * Convex
. # Global optimum
0 ®)
20.01) w K N N N
PCz2 -8 -7 -6 -5 -4 -3 -2 -1 0
PC1 x10°3

Figure 6.28 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue
points are convex and red points are non-convex. Black x marks global optimum solution.

6.3.1.2. Sorted minimization
Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. When optimizing thousand
samples for this system, it shows a lot of different local minimums. Although it would
seem, that more than half samples converge to same value (samples from 1000 to
around 450), they do not. This is just high error value of 10° that is assigned to failed
integrations. Which means over a half of starting positions cannot be optimized at all.
This agrees with PCA visualization results which show large amount of failed
integration implying there are a lot of discontinuities in this model. This makes model
extremely problematic to most optimization techniques. Only about hundred initial
points can reach decent error values, of below 10 which is about 10% of starting
points. Points that start in non-convex regions, get to the low error values much faster,
as expected. This emphasises how crucial it is to have your starting condition in
convex regions for fast and optimal results, when using gradient based optimization
algorithms. This sorted optimization graph (figure 6.28), also provides us with

information that although the systems parameters are hard to identify, they can be

127

identified correctly, as difference between lowest and highest error points is clearly
visible. Still, your result accuracy will be heavily dependent on your starting points.

CHO cell culture model
1010 1

2 All samples

2 Convex only samples

Squared error

=10 1 1 1 1 1 1 1 1 1 |
10
0 100 200 300 400 200 G600 00 800 200 1000

Sample, N

Figure 6.29 CHO cell culture model (6.3) thousand samples sorted optimization, where blue circles is all samples and
red circles are convex samples only

6.3.1.3. SOM analysis
Looking at figure 6.29 results of SOM, shows couple of local minimums scattered

around the plane, but if we look at the U-matrix there are much more not as
pronounced local minimums scatter all around the place. This is like what we saw in
PCA visualization earlier of lots of local minimums scattered all around the plane and
several deeper valleys of local minimums which are more distinctive. Although there
is a general valley towards the middle, some of the smaller local minimums are even
scattered in high error zones. This kind of layout makes gradient-based algorithm
easily stuck in wrong local minimums, which there are plenty of. Looking at individual
component map hints to couple things, only parameters 011 and 015 have continuous
patterns, where all other are chaotic. Continuous patterns were observed with Monod
model (6.2), where there was clear dominant variable and identifiable parameters.
Whereas chaotic nature of these maps where observed in Polynomial model (6.1),
where there was no dominant parameter and parameter values where not identifiable
due to nature of the model. This could be due to several factors: a) chaotic component

maps are due to large amount of discontinuity in model b) only parameters 011 and

128

015 are dominant c) large number of parameters leads to chaotic component maps,
during the training of SOM.

To see if we can answer why most component maps have no continuous patterns to
them, we need to look at importance of factor and how well they match with overall
error map. Figures 6.31-6.32 shows how well component maps match up versus total
error maps. Positive values mean higher degree of matching, and lower values mean
lower. Cross correlation factor of 1, represents perfect match and O represent prefect
mismatch. Cross correlation maps seem to indicate some parameters are more
dominant than others, but not by large amount. This is confirmed by matching factors.
Most dominant parameter is 01, that said it is by small margin. It can only be dominant
variable because of its low variability. This would imply that with larger number of
variables matching factors become more similar making it hard to distinguish dominant
variables from the rest. Maximum difference between matching factors is 0.05 and
0.03, respectively (table 6.35). This is a very small difference, but it has low variability

in comparison with Polynomial model (6.1).

129

Parameters Encoded Positive Matching Negative Matching
parameters Factor Factor

Hinax ol 0.68 + 0.01 0.64 + 0.02
Kcie 02 0.63 +0.01 0.66 + 0.01
kein 03 0.66 + 0.03 0.63 +0.02
I max 04 0.65 + 0.02 0.63 +0.02
karac 05 0.66 + 0.03 0.63 +0.03
ka amm 06 0.65 + 0.02 0.65 +0.02
Kagin o7 0.65+0.01 0.64 +0.01
Y xv/6lc 08 0.64 + 0.01 0.66 + 0.01
Y Lac/Gic 09 0.65 + 0.02 0.63 +0.02
mg. 010 0.65 +0.04 0.65 +0.03
Ko G1c 011 0.65 + 0.01 0.64 + 0.02
Y xv/6in 012 0.65 + 0.02 0.65 + 0.01
Y pmm/Gle 013 0.65 + 0.01 0.64 + 0.02
B 0l4 0.63 £ 0.02 0.66 + 0.03
a 015 0.61+0.01 0.66 + 0.03
k, 016 0.64 £ 0.02 0.65+0.01

Table 6-37 Table of positive and negative mean matching factor of each parameter for system (6.3)

130

Color code U-matrix

C 0 8 0 QO *U800B0 00 090
0.0 0 O eloRedoBodo @ ¢ 0le 0
9 e.0 © O O00VOL00S ¢ o Ole @
eielie @ el oBOBOROBO @ ei0i0 ©
0 Q0 e O o0000B0Be 0 ® el0 O
e 00c Q cleBOD-P0Be Q@ -0 0
0 0s ¢ @ cledolONe '® ¢ O 0 O
¢ 0@ © o O0VelO®le O © O o O
o 0hciie @ o0 -9080H 0o @ onole
o 80 O e 000BoRONe Q o eie O
00 0 ¢ ¢ @QIONENO ¢+ O O O ®
¢ 000 © 01 00e000OY0 O ¢ O @ O
0 00le 0 QO 200000000 © & 0 @ O
o sle O ¢ S000OCNONe Q & ¢ 0 O
@ 0o ®ie O 0000+0000 ¢ O 0 e 0
®® 0 8 0 00000000 Q ¢+ @O o

0263

Figure 6.30 Left 2d SOM of CHO cell culture model (6.3), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right
2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

131

U-matrix

- 0517 11 1.01 0.302 0.0905
Aom 108 © 1 © 03 o 009 w©
0.0201 1.08 0.995 0299 0.0894

o7
0.01 0.0603 0.0201 0.11 1.82
AOM © 006 o n ! 002 o 0109 © 18 =
0.00995 0.0597 0.0199 0.108 179
ol1

172 198 0.382 0.855 361
A 17 © ¢ 19 o 038 © 085 © 351 ©
168 18.3 0378 0.845 34
268 0.0201
! 257 © 002 o

246 0.0199

Figure 6.31 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution
represented as colour bar.

132

a) b)

09

o7

- 0.4

0.2

0.1

Figure 6.32 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

133

6.3.2. Model hierarchy
The CHO cell culture model consists of six coupled ODE’s, which when applied

proposed state substitution methods’ decoupling algorithm leave six independent sub-
sets that can be solved in any order. Yet specific solution hierarchy will lead to better
results, because of the different levels of sensitivity from the parameters. To figure out
best hierarchy of the model we need to use additional tools like bi-partite chart (figure
6.34) and SOM analysis of parameter importance (figures 6.32-31, table 6.35). When
combined these tools reveal which order of solving individual subsets will lead best
results. Bi-partite chart of the CHO cell culture model shows that there are three most
important states biomass, glucose, and glutamine. This separates six subsets into two
levels of biomass, glucose, glutamine and lactate, ammonia, antibodies. SOM
component analysis was only able to confirm that 01 parameter is most dominant one,
this means we would need to solve for 01 first to pass it on for best results. Parameter
0l can be calculated from any of the six subsets, but it is best to use biomass to
calculate o1, because 01 is specific growth rate of biomass. This would separate
model hierarchy into three levels, by raising biomass one level above both substrates.
Lastly there is a problem of parameter ratios, we need to make sure that where
parameter ratios appear one of the ratio components is already known. Ratios within
CHO cell culture model are as follows: a) 01/08 b) 01/012 c) 09/08 d) 013/012. Luckily
with three level approach this is not a problem as o1 is solver in level one, then 08 and
012 can be solved in level two, finally with 08 and 012 known we can solve for 09 and

013 in level 3.

134

04,05,06,07

X1 Biomass

X3 Lactate X5 Ammonia

09,010,011 0l3 014,015,016

Level 3

Figure 6.33 Hierarchy of the CHO cell culture model (6.3)

135

E

ST

4

7/
774
"Q,
7
/1

S
4 \
17
7
/)

02 o3 ol0 oll 0l2 0l3 ol4 0l5 ol6

Figure 6.34 Bipartite chart of the CHO cell culture model (6.3)

136

137

CHO cell culture bi-partite chart connection count

A+l ? ey

MNumber of connections
(%) E=% o

o8]

0

i e
AR

1)
A

P 0T AT @ A e® . " " i+ n o i© e \C
‘6.5){03 o \,aéeoxa"“ ‘i EF vt ST NG o L e e B WO @ ©F (@

1;&“(0 o e g

Figure 6.35 Bar graph of connections of CHO culture bipartite chart

6.3.3. Method comparison
To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper
cube sampled multi start method. Two main criteria will be compared, model
performance accuracy and the computational time between each of the methods.
Although the proposed state substitution method aims to reduce computational time,
model performance accuracy is also very important and cannot be completely
neglected. Each method will be assessed with different random noise levels and
sampling times. For each method three different state initial conditions are compared,
first two (Pink and Blue) are set same for all methods and are conditions that were
provided for the optimisation algorithm and third initial condition (Black) is different
from the first two initial conditions and was never seen by algorithm before. This allows
to check method accuracy with unseen data sets, which are within same boundary
conditions. Only biomass data set will be presented for model performance, as
biomass dictates accuracy for the rest of the states. This will allow to avoid
unnecessary graphs while still presenting enough evidence about model performance.
However, for completeness first experiment will show predictions for all states

Modelling conditions and parameter search spaces are summarised in tables below.

Experiment Sampling Noise Initial Initial Initial
number Rate level conditions conditions conditions
Pink Blue Black
1 0.1h 5% 0.3,0.3,0.3 0.3,0.3,0.3 0.2,0.2,0.2
2 0.1h 10% 0.3,0.3,0.3 0.3,0.3,03 0.2,0.2,0.2
3 0.3h 5% 0.3,0.3,0.3 0.3,0.3,0.3 0.2,0.2,0.2
4 0.3h 10% 0.3,0.3,0.3 0.3,0.3,03 0.2,0.2,0.2
5 0.3h 20% 0.3,0.3,0.3 0.3,0.3,0.3 0.2,0.2,0.2

138

Table 6-38 Summary of modelling conditions for the system (5.3)

Parameters Lower bound Upper bound

kg 0 2

ﬂd,max 0 0.5

kd,Amm 0 0.5

YXv/Glc 0 0.5

mec 0 5

YXv/Gln 0 1

B 0 10
k, 0 0.5

Table 6-39 Parameter search space for the system (6.2)

H

39

6.3.3.1. Experiment 1 0.1h sampling and 5% random noise
When we compare computational times (table 6.37) we can see that although the

proposed state substitution method is slower than the derivative estimation method it
is faster than the Latin hyper cube method. The proposed state substitution method is
faster by 49% compared to the Latin hyper cube method and slower by 32% than the

Derivative estimation method.

Method Computational time, s
Derivative estimation 1371s
Latin hyper cube multi-start 3109s

Proposed state substitution method 1887s

Table 6-40 Computational time of all three methods for experiment 1

Although the proposed state substitution method is slower than the Derivative
estimation method it is considerably more accurate, when predicting all three data
sets. The Latin hyper cube method seems to be able to predict general trend right, but
its accuracy is not as good as in previous case studies. This is most likely is caused
by CHO cell culture model having a lot of discontinuities in error plane. Main advantage
of the Latin hyper cube method is that is has large number of starting positions, but
when discontinuities separate whole error plane into small pieces, getting good

starting location becomes difficult and unreliable.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 9.66E-03 2.21E-02 3.53E-03

Latin hyper cube multi-start 1.24E-02 7.91E-03 1.32E-02

Proposed state substitution 1.76E-02 2.22E-04 5.33E-04

method

Table 6-41 Squared error values of each method and each data set for experiment 1

As complexity analysis suggested this model (5.3) is considerably harder to optimize
than previous two cases studies, and it is confirmed by much higher computational
time in all three methods. Due to increased complexity proposed state substitution
method outperforms Latin hyper cube method in terms of speed and accuracy.
Nevertheless, it must sacrifice some of its speed to maintain accuracy making it solver

than the Derivative estimation method. This leads to think that for initial optimization

140

the Derivative estimation method could be better choice provided noise levels and

sampling time is low.

When comparing identified parameter values, we observe that parameter values that
are closest to their theoretical values are 01, 05, 08, 09, 012, 013 and 015. Out of all
these variables only ol was picked up to be dominant variable in SOM component
analysis, confirming that with large number of variables it is very hard to pick all
dominant variables using this technique. On other hand we can see that parameters
010 and 011 have very large variation across all methods implying they have very low

impact over the system.

Parameter Theoretical Derivative Latin hyper Proposed
value cube

Wonax 1.09 1.04 1.12 1.01
keic 1.00 0.79 0.91 0.56
kein 0.30 0.11 0.27 0.18
K max 0.09 0.00 0.11 0.02
kg Lac 0.01 0.03 0.01 0.02
Ky amm 0.06 0.19 0.00 0.09
kqgin 0.02 0.50 0.50 0.01
Yxv/Glc 0.11 0.10 0.12 0.11
Y Lac/Glc 1.80 1.74 1.83 1.81
Mgy, 1.70 2.17 0.79 3.27
K cic 19.00 33.10 1.94 46.75
Yxv/Gin 0.38 0.37 0.41 0.37
Y amm/Gle 0.85 0.87 0.82 0.86
B 3.50 6.76 2.87 2.67
a 25.70 21.03 25.73 27.56
k” 0.02 0.00 0.01 0.00

Table 6-42 Summary of identified parameter values for each method for experiment 1

141

142

Biomass g/L

Glucose g/L

Derivative estimation for CHO cell culture model

2. 5 T T T T T T T
= =k #—#—#—-#—*—L
2t L |
- 4 $¥$$¥--______
2 A
'y
1T 4 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
05t Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Derivatice estimation for CHO culture model
25*** T T T T T T T
ok
ztﬁ* — # — Moise free seen data 1
%0 % Madel predictions data 1 | |
¥ — ¥ — Moise free seen data 2
&, Model predictions data 2
Y — # —Nuoise free unseen data 3
15 Madel Predictions data 3 | |
107 -*-*_* T
i i o Y
T
5t i
S T o . T IR
0 ‘*M
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h

143

40

35

Lactate g/L
—= [[Lad
n —_ n —_

=
=

Glutamine g/L
Lad

[g]

Derivatice estimation for CHO culture model

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Time, h

Derivatice estimation for CHO culture model

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Derivatice estimation for CHO culture model

§
!
%

L
tn
T

(%]
T

Ammonia gL
[
o8] 4y

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Madel predictions data 2 | |
— ¥ — Moise free unseen data 3
Madel Predictions data 3 | |

1.5

0.5
0 . , . .
1] 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Derivatice estimation for CHO culture model
100 : . .
******H
90 r A
s tE
80 - e l
4T
To0r *-*-allef*"*' 4
=
o 60 1
]
o
] 501 1
=
-.:% 40 — # — Moise free seen data 1
30 Maodel predictions data 1 | |
— #% — Moise free seen data 2
20 Madel predictions data 2 | |
— ¥ —Moise free unseen data 3
10 Madel Predictions data 3 | |
0 . , . .
1] 0.5 1 1.5 2 2.5 3 3.5 4

Time, h

Figure 6.36 Performance results for Derivate estimation with 0.1h sampling and 5% random noise for measured
data.

144

145

Biomass g/L

Glucose g/L

Latin hyper cube for CHO cell culture model

2.5 : :
=& H#—#—#—#—#—L
i
2 4 Pk 1
1 '*‘*'" , ¥ """-.--
y e **"H-—*H ¥
15 /3 . e,
¥
s
1 4 — % —Noise free seen data 1
f_.f' Model predictions data 1
1 — # —Moise free seen data 2
05t = Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Latin Hyper Cube for CHO culture model
25 . . : : , . .
— 4 — Moise free seen data 1
20 Model predictions data 1 | |
— % —Moise free seen data 2
Model predictions data 2
— % —Moise free unseen data 3
15t Model Predictions data 3 | |
10} X |
yﬁm*w
5 -
0 . . .
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h

146

Latin Hyper Cube for CHO culture model

40

Lactate g/L
—= [[Lad
n —_ n —_

=
=

Glutamine g/L
Lad

[g]

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Time, h

Latin Hyper Cube for CHO culture model

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Latin Hyper Cube for CHO culture model

oY
T

L
tn
T

(%]
T

Ammonia gL
[
o8] 4y

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2

Madel predictions data 2 | |
— ¥ — Moise free unseen data 3
Madel Predictions data 3 | |

1.5

Time, h

Latin Hyper Cube for CHO culture model

100
90 11— # — Moise free seen data 1
a0 | Model predictions data 1
— % —Moise free seen data 2 4
I Madel predictions data 2 el
norn_ #* — Moise free unseen data 3 * *
= Maodel Predictions data 3
oh 60 i
0]
o
9 50 i
=
=]
= 40
30 i
20 |
10 |
o . .
1] 0.5 1 1.5 2 2.5 3 3.5 4

Time, h

Figure 6.37 Performance results for Latin hyper cube method with 0.1h sampling and 5% random noise for
measured data.

147

2.5

Proposed method for CHO cell culture model

tn
T

Biomass git

=

#WHH—*H#—H&HL

*"’l"‘*v‘*'#*._* **‘-*m
e

— # —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2
Model predictions data 2 | |
— # —Moise free unseen data 3
Model Predictions data 3

Time, h

Proposed method for CHO culture model

25 "‘%*

20

b
tn
T

Glucose g/L

— % — Noise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3 | |

148

0.5

149

Proposed method for CHO culture model

40

Lactate g/L
—= [[Lad
n —_ n —_

=
=

Glutamine g/L
Lad

[g]

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Time, h

Proposed method for CHO culture model

— # — Moise free seen data 1
Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
— ¥ — Moise free unseen data 3
Model Predictions data 3

Proposed method for CHO culture model

5
asl P A R
4t L 1
35+t S ——

(%]
T
i

Ammonia gL
[
n

4
27 ' — % — Moise free seen data 1
15k Model predictions data 1 | |
' i — # — Maoise free seen data 2
1t Madel predictions data 2 | |
— ¥ —Moise free unseen data 3
0.5 Model Predictions data 3 | |
| i
1] 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Proposed method for CHO culture model
120 T T T T : . .

— 4 — Moise free seen data 1
100 7T Model predictions data 1
— ¥ — Moise free seen data 2
Model predictions data 2
a0 H— # —Moise free unseen data 3
Model Predictions data 3

60

Antibodies g/L

40

20

Time, h

Figure 6.38 Performance results for the proposed state substitution method with 0.1h sampling and 5% random noise
for measured data.

150

6.3.3.2. Experiment 2 0.3h sampling and 5% random noise
Surprisingly, the Derivative estimation method is slowest out of three methods in this

experimental setup. It is slower than proposed state substitution method by 98%, and
slower than the Latin hyper cube method by 32%. This is most likely cause, by method
being at its critical point, where it can still predict general trend of the model, but it is
close to its capability limit, if this is the case it should be expected that with increased
noise the Derivative estimation method should stop being able to predict the model.
On the other hand, proposed state substitution method is faster than the Latin hyper
cube method by 72%.

Method Computational time, s
Derivative estimation 4180s
Latin hyper cube multi-start 3021s

Proposed state substitution method 1426s

Table 6-43 Computational time of all three method for experiment 2

When comparing sq. Error for each method (table 6.41) it looks like accuracy is similar,
between the proposed and the Latin hyper cube methods, and the Derivative
estimation method falls short. It is expected because of two factors: a) increased
sampling time, has large negative impact on methods performance b) as discussed
before it looks like method is at its critical point. Other two methods seem to deal just
fine with this experimental setup, implying they are more effected by noise levels, than

sampling time.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 4.41E-03 4.08E-02 4.03E-02

Latin hyper cube multi-start 3.70E-05 8.01E-04 6.44E-04

Proposed state substitution 4.20E-05 1.03E-03 1.19E-03

method

Table 6-44 Squared error values of each method and each data set for experiment 2

Computational time decreased for all methods except the Derivative estimation
method. This is due to increased sampling time, which in turn decreases amount of
data required to process. When comparing identified parameter values, parameters
01, 05, 08, 09, 012, 013 and 015 are still consistence between all three methods and

parameter 010 and 011 vary a lot.

151

Parameter Theoretical Derivative Latin hyper Proposed

value cube
Monax 1.09 1.09 1.09 1.15
ki 1.00 0.62 1.06 1.37
Kein 0.30 0.38 0.26 0.39
K max 0.09 0.04 0.03 0.02
kg Lac 0.01 0.00 0.02 0.03
kg amm 0.06 0.00 0.01 0.00
ka Gin 0.02 0.50 0.50 0.00
Y xv/G1c 0.11 0.11 0.11 0.11
Y Lac/Glc 1.80 1.79 1.78 1.82
me, 1.70 4.76 2.41 0.78
K gic 19.00 50.00 37.16 0.91
Yxv/Gin 0.38 0.37 0.38 0.38
Y smm/Gle 0.85 0.82 0.84 0.85
B 3.50 3.76 3.97 3.40
a 25.70 25.15 24.39 25.00
ku 0.02 0.02 0.01 0.02

Table 6-45 Summary of identified parameter values for each method for experiment 2

152

153

Derivative estimation for CHO cell culture model

2.5 : , , : . : , ‘L
2 -
*
e
.*. -
= 15 bty
o o
7]
2]
o
E
=]
o 1 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
0.5 Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Latin Hyper Cube for CHO cell culture model
25 . . : , . : , ‘L
2r m
= L
= 1.5 3
73]
1]
o
E
=]
o 1 — ¥ —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2
0.5 Model predictions data 2 |
' — # —Moise free unseen data 3

Model Predictions data 3

Proposed method for CHO cell culture model

2.5
2 L
e Tl
. i
/ **H,;,H Fk
= 15} : Fp
o {5 .
[av) .r"'"
= 4
o A
o 1 Y. . — * —MNoise free seen data 1
i Model predictions data 1
— ¥ —MNopise free seen data 2
05t Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 . . . , . .
0 0.5 1 1.5 2 2.5 3 3.5 4

Time, h

Figure 6.39 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 5% random noise for measured data.

6.3.3.3. Experiment 3 0.1h sampling and 10% random noise
Similarly, as in experiment 1 when we compare computational times (table 6.43) we

can see that although the proposed state substitution method is slower than the
derivative estimation method it is faster than the Latin hyper cube method. The
proposed state substitution method is faster by 12% compared to the Latin hyper cube
method and slower by 86% than the Derivative estimation method.

Method Computational time, s
Derivative estimation 1933s
Latin hyper cube multi-start 5482s

Proposed state substitution method 4848s

Table 6-46 Computational time of all three method for experiment 3

When comparing sq. Error for each method (table 6.44) it looks like accuracy is similar,
but when comparing performances (figure 6.37), proposed state substitution method
predicts trends of model much more accurately. The proposed state substitution
method ability to break down complex problem into smaller sub-sets to solve initially
seems to lead much better results accuracy wise when it comes to high complexity

models. Although general trend is still predicted by the Derivative estimation and the

154

Latin hyper cube methods, they accuracy seem to deteriorate heavily with increased
noise. Furthermore, most inaccuracy seem to appear in unseen data (Black) for all
three methods and in glucose limiting data set (Pink) for the Derivative estimation and

Latin hyper cube methods.

Method Sq. Error Sq. Error Sq. Error
(Blue) (Pink) (Black)

Derivative estimation 2.78E-03 6.93E-02 1.66E-02

Latin hyper cube multi-start 1.14E-02 8.92E-02 3.69E-02

Proposed state substitution 2.65E-03 9.89E-03 1.68E-02

method

Table 6-47 Squared error values of each method and each data set for experiment 3

Computational time increased for all methods as expected due to increase in noise
level, therefore increase in uncertainty optimization algorithm must deal with. When
comparing identified parameter values, parameters o1, 05, 08, 09, 012, 013 and 015
are still consistence between all three methods and parameter 010 and 011 vary by

large amount.

155

Parameter Theoretical Derivative Latin hyper Proposed

value cube
Monax 1.09 1.14 1.07 1.07
ki 1.00 1.30 0.89 0.86
Kein 0.30 0.30 0.26 0.25
K max 0.09 0.10 0.14 0.11
kg Lac 0.01 0.00 0.00 0.00
kg amm 0.06 0.00 0.00 0.06
ka Gin 0.02 0.50 0.00 0.00
Y xv/G1c 0.11 0.11 0.11 0.11
Y Lac/Glc 1.80 1.81 1.81 1.81
mg, 1.70 1.80 2.82 3.79
K gic 19.00 29.67 34.37 50.00
Yxv/Gin 0.38 0.41 0.38 0.38
Y smm/Gle 0.85 0.86 0.85 0.84
B 3.50 4.12 4.04 4.00
a 25.70 25.23 24.54 24.58
ku 0.02 0.05 0.01 0.01

Table 6-48 Summary of identified parameter values for each method for experiment 3

156

157

Biomass g/L

Biomass g/L

2.5

0.5

2.5

=A
tn

0.5

Derivative estimation for CHO cell culture model

=A
tn

— # —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2
Model predictions data 2 | |
— # —Moise free unseen data 3
Model Predictions data 3

Time, h

Latin Hyper Cube for CHO cell culture model

— # —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2

Model predictions data 2 |
— # —Moise free unseen data 3
Model Predictions data 3

0.5 1 1.5 2 2.5 3 3.5 4

Proposed method for CHO cell culture model

2.5
2 L
- I
= 1.5
7]
2]
[4%]
E
=]
o 1 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
05t Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time, h

Figure 6.40 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.1h sampling and 10% random noise for measured data.

6.3.3.4. Experiment 4 0.3h sampling and 10% random noise
Computational time (table 6.46) comes back to trend from experiment 1 with the

Derivative estimation method being fastest followed by the proposed and Latin hyper
cube methods. This type of trend was expected, if the Derivative estimation method is
pushed beyond its capability limits. Which mean it should not be able to predict model
accurately anymore. This makes the proposed state substitution method slower than
the Derivative method by 47% and faster than the Latin hyper cube method by 84%.

Method Computational time, s
Derivative estimation 1466s
Latin hyper cube multi-start 5778s

Proposed state substitution method 2371s

Table 6-49 Computational time of all three method for experiment 4

Just by looking at Sq. Error (table 6.47), we see that the Derivative estimation method
indeed falls behind other two methods in terms of accuracy. The difference can be

seen clearly in performance graphs (figure 6.38).

158

Method Sq. Error Sq. Error Sq. Error

(Blue) (Pink) (Black)
Derivative estimation 5.22E-01 6.67E-02 2.60E-02
Latin hyper cube multi-start 1.02E-02 3.65E-03 6.84E-03
Proposed state substitution 4.05E-03 2.35E-03 9.20E-03

method

Table 6-50 Squared error values of each method and each data set for experiment 4

As the Derivative estimation method cannot predict trends of the model anymore,
parameters identified by it hold no value, but are displayed for comparison. Coupled
of the values that seem to be correctly identified allows it to keep accuracy at early
parts of the model. When comparing other two methods identified parameter values,
parameters 0l, 05, 08, 09, 012, 013 and 015 are still consistent between and

parameter 010 and o011 vary a lot as before.

159

Parameter Theoretical Derivative Latin hyper Proposed

value cube
Minax 1.09 1.15 1.14 1.00
ki 1.00 1.07 1.05 0.53
Kein 0.30 0.00 0.34 0.10
K max 0.09 0.00 0.00 0.01
kg Lac 0.01 0.03 0.03 0.02
kg amm 0.06 0.05 0.10 0.17
kacin 0.02 0.42 0.21 0.07
Y xv/G1c 0.11 0.14 0.12 0.12
Y Lac/Glc 1.80 1.85 1.80 1.93
me, 1.70 1.32 1.22 0.85
K gic 19.00 0.45 10.71 0.13
Yxv/Gin 0.38 0.40 0.40 0.39
Y smm/Gle 0.85 0.76 0.85 0.83
B 3.50 9.89 4.09 1.06
a 25.70 17.03 25.54 25.37
ku 0.02 0.00 0.05 0.00

Table 6-51 Summary of identified parameter values for each method for experiment 4

160

Derivative estimation for CHO cell culture model

25 . , , : . : ,
& H ke —F —— %
2 -
= L
= 1.5
7]
2]
o
E
=]
o 1 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
0.5 Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 0.5 1 1.5 2 2.5 3 3.5 4
Time, h
Latin Hyper Cube for CHO cell culture model
25 T T T T T T T
— e —p— —k
2 - -
"1*.
=l L -:-*"_'-':-- g
a 1.5 o
73]
1]
o
E
=]
o 1 — ¥ —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2
0.5 Model predictions data 2 |
' — # —Moise free unseen data 3

Model Predictions data 3

161

Proposed method for CHO cell culture model

2.5
H— ok — e e e
2 - -
1*_
= L]
= 1.5 %
7]
2]
[4%]
E
=]
o 1 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
0.5 Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0 . . . : . .
0 0.5 1 1.5 'I'm% h 2.5 3 3.5 4

Figure 6.41 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 10% random noise for measured data.

6.3.3.5. Experiment 5 0.3h sampling and 20% random noise
In worst case scenario experiment 5, the Latin hyper cube and the proposed state

substitution method seems to approach their critical points, similar as the Derivative
estimation method did in experimental setup 2. The proposed state substitution
method is still faster than the Latin hyper cube method by 38%. Decrease in gap of

computational time between these two methods shows that both methods approach

critical point.
Method Computational time, s
Derivative estimation 1411s
Latin hyper cube multi-start 11053s

Proposed state substitution method 7492s

Table 6-52 Computational time of all three method for experiment 5

Although the proposed state substitution method can keep the accuracy to certain
degree, the Latin hyper cube model struggle to keep accuracy high even more. Both

methods suffer in performance due to high noise levels (figure 6.39).

162

Method Sq. Error Sq. Error Sq. Error

(Blue) (Pink) (Black)
Derivative estimation 2.30E+00 2.39E-01 2.15E-01
Latin hyper cube multi-start 9.14E-02 1.82E-01 9.05E-02
Proposed state substitution 4.46E-02 1.19E-03 4.93E-02

method

Table 6-53 Squared error values of each method and each data set for experiment 5
Identification of parameters is very difficult at this point and only most dominant
variables can be identified. When comparing other two methods identified parameter
values, parameters 01, 05, 08, 09, 012, 013 and 015 are still consistent as they were
for all five experimental. This suggests that these seven variables are most dominant

within this system.

163

Parameter Theoretical Derivative Latin hyper Proposed

value cube
Minax 1.09 1.08 1.17 1.09
ki 1.00 0.79 1.65 1.08
Kein 0.30 0.27 0.33 0.31
K max 0.09 0.05 0.18 0.09
kg Lac 0.01 0.00 0.00 0.01
kg amm 0.06 0.15 0.02 0.07
kacin 0.02 0.24 0.20 0.02
Y xv/G1c 0.11 0.11 0.11 0.10
Y Lac/Glc 1.80 1.80 1.81 1.76
mg, 1.70 2.25 0.60 0.72
K gic 19.00 29.14 0.51 3.23
Yxv/Gin 0.38 0.39 0.40 0.38
Y smm/Gle 0.85 0.84 0.90 0.86
B 3.50 4.30 5.92 3.79
a 25.70 24.81 25.00 25.75
ku 0.02 0.02 0.11 0.02

Table 6-54 Summary of identified parameter values for each method for experiment 5

164

165

Biomass g/L

Biomass g/L

2.5

1.5

0.5

Derivative estimation for CHO cell culture model

— # —Moise free seen data 1
Model predictions data 1 |1
— # —Moise free seen data 2

Model predictions data 2
— # —Moise free unseen data 3
Model Predictions data 3

Time, h

2.5

=tk
tn
T

0.5

Latin Hyper Cube for CHO cell culture model

— # —Moise free seen data 1
Model predicticns data 1
— # —Moise free seen data 2

Model predictions data 2 |
— # —Moise free unseen data 3
Model Predictions data 3

Proposed method for CHO cell culture model

2.5
* — ok —F ——
2 L
~#
- e
= 15 ~t
7]
2]
[4%]
E
=]
o 1 — # —MNoise free seen data 1
Model predicticns data 1
— # — Mopise free seen data 2
05t Model predictions data 2 | |
' — # —Moise free unseen data 3
Model Predictions data 3
0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time, h

Figure 6.42 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
with 0.3h sampling and 20% random noise for measured data.

6.3.4. The summary of results for the CHO cell culture model
This case study represents the starting complexity of a model the proposed state

substitution method is aimed at. It is a system with a moderate number of parameters
(sixteen), but complex enough to take significant amount of time to identify parameters
using state of art methods. Using complexity analysis tools, complexity of this system
was determined to be high for the following reasons. The system describes complex
behaviour consisting of four simultaneous reactions, involving two competing
substrates and inhibiting by-product. Six ODEs that consist within the system, create
a closely coupled network, between first five ODEs. PCA visualization shows multiple
local minim that are surrounded by discontinuities. This makes the system especially
tricky to optimise with gradient-based algorithms as they can get stuck if they reach
boundary of discontinuity. PCA visualization also reveals the in the systems error
hyperplane there is a flat boundary level, which separates all the local minima from
the rest of the hyperplane. This already indicate high complexity which is also
confirmed by the convexity measurement which is 7%. When performing sorted
minimisation, it shows that model can achieve good performance and accurate

parameter values if algorithm can get pas majority of the local minima. Sorted

166

minimization also reveals that more than half of the samples, are not possible to
integrate, due to discontinuity boundary. The SOM analysis are in agreement with PCA
visualization showing multiple local minima scattered around the whole plane. The
analysis of parameter SOM maps unfortunately is only able to show one dominant
variable 01, where it was expected to see at least 01, 02 and 03. Also, the difference
between matching factors of dominant variable and the rest are significantly smaller
when compared to Monod model SOM analysis. This indicates that increasing number
of variables makes this analysis type of analysis less accurate. This most likely is due
to fact that large number of parameters make each of them carry less total variance of
the system, which in term makes it harder for them to be dominant variable. When
comparing results of the different parameter identification algorithms, for this system
the derivative estimation method has the lowest computational time, but it also has the
lowest accuracy. The derivative estimation method is failing to identify general trend
in experiments 4 and 5. The proposed state substitution method is slower than the
derivative estimation, but significantly faster than the multi-start method. The proposed
state substitution methods accuracy is on par with multi-start accuracy and even
slightly better in some cases. | would seem that noise has bigger effect of model
performance, than sampling time for all of the methods. Parameter identification
reveals that parameter 010 and 011 are extremally not sensitive as their mismatch
affect is not seen on the model performance. High complexity of the system allows the
proposed state substitution method to utilize its decoupling strategy to keep high
accuracy but decrease computational time. All methods have lowest accuracy with

unseen data.

167

168

Experiment 1

1072
5 _
L
g 107
10
0\-\0 o)‘oe «\06
I o2 <
N o *
S e(‘\\l'a 2 o©
0 Experiment 4
10
5 107
|
3
1072
IIH in
0\-_\00 O)be «\06
e = €
e o 4 e,d
) a‘i‘“e A0 0‘;,05
Oe(\\l A\ ?‘

Experiment 2

107
107° N
. (= o
\.‘\«\@\\0 o C)jo 6«\
L] ° . ‘(NQ &
) 'a“\l ‘a\\f\ o
oe’(\\l A\ Q‘
1 Experiment 5
10
0
10
S
w 4o
=3
W
1072
107 N
. @
.‘:(\'3:\\0“ of 0)‘0 e«\()
@ > AN N 0
5 X
06(‘\\;'0 B Q‘O

107"

Sq. Error

1072

12000

S
-
o
o
o
o

8000

6000

4000

Computational time,

2000

Experiment 3

Computational time for each experiment

I Experiment 1
-Experiment 2
[JExperiment 3
-Experiment 4
-Experiment 5

Figure 6.43 Summary of performance results for all three methods for CHO cell culture model

6.4.Case study 4 - Ethanol production with Zymomonas mobilis model
All three cases so far focused on benchmarking developed tools and proposed state

substitution method with increasing difficulty and used simulated data which was
generated with different noise levels and sampling times to mimic possible scenarios
of real data collection. To fully explore benefits and capabilities of this new proposed
state substitution method we need to test it against real collected data. This model
published by (Hodge and Karim, 2002), and later improved by (Diaz and Willis, 2019).
This provides this model a unique environment, where there is plenty of real data
based on reactions in this model as it was published long time ago. At the same time,
it was shown that model is not perfect and can be improved significantly, meaning
there is model — process mismatch making parameter identification more difficult and
more realistic. Ten different measured data sets were collected for this case study. All
three method will be compared within all ten data sets. Sampling times are determined
by data collected and noise levels are unknown. Model has two competing substrates
glucose and xylose which produce ethanol and allow biomass to grow. Although it has
less ODEs the case study 3, it has increased number of parameters to twenty-six.

Equation 6.4 shows full mathematical model.

dx dsi1 as2 dpP
—=7rl14+7r2 —= —1r3 —= —1r4 —=1r3%xYP S1+1r4+xYP_S2
dt dt dt dt
u_maxl *S1
rl=X=x K1z | * f5(52 + S1) = f6(P)
Klx + 51+ 52 *Tox

u_max2 xS2
r2 =X * Kox | * f7(52 + S1) * f8(P)

K2x+52+51*m

6.4
qg_pmax1 * S1

r3=X=x
K1>

* £1(S2 + S1) = f2(P)

q_pmax2 * S2

rd =X x 7 |* £3(S2 + S1) = f4(P)

K2+SZ+Sl*m

: a;*j*+b;xj+1, f;(j) = 0] . :
fiG) = {l J 0 ;thferwisf(’) }l=1,2 ..8;j €{P,S1+ 52}

169

6.4.1. Complexity analysis
Complexity analysis will be performed in three steps as mentioned in cshapter 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,
sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative
complexity with other cases studies within this work, and to find problems gradient-
based algorithms might run into trying to optimize this system.

6.4.1.1. PCA visualization
PCA visualization of this system model, shows very similar results to case study 3, but

there are some key differences too. It has similar shape - non-convex points scattered
everywhere with couple of convex points mixed in, with no obvious global optimum
valley. This leads to believe there is multiple local optimums within the system. In
contract to case study 3, Zymomonas mobilis model, does not have overwhelming
number of failed integrations, which mean error plane is smooth, also it lacks flat plane
barrier. Without these two obstacles, optimization algorithm should have easier time
reach optimum solutions. That being said, overall convexity of the system is 2%. This
complexity is also reflected, by decreases variability explained by PCA visualization.
PC1 explains 48.9% of variability and PC2 explain 31.0% variability for a total of
79.9%.

PCA visualization of Zymomonas mobilis model

P

i

©

b=

£

o 1074 .

= 3

= 3]

b N

© N

3 -

™

= N

5

%— 10{}‘: l.,l-._

= 3 W

] N : SN EA

© N ' YRR R TN R L N

o N o PRl a_'_‘ o Mon-Conevs

=g . R et » x5 sms *+ Convex

[¥3] - -, - s . . .
E L P Failed integration

LR e ~ ® Global optimum

-0.02

0.02 0014 0013 0.0138

0.0145 0.0144 00142

PC2 PCA

Figure 6.44 PCA error plot for Zymomonas mobilis model (6.4), with colour coded points for convexity, where blue
points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum
solution.

170

6.4.1.2. Sorted minimization
Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. suspected from PCA
visualization, sorted minimization method reveal multiple local minimums, eventually
most of them settle for one global solution. This global solution although has lowest
error value, it is still high error value. This implies actual parameter values after
identification might not be, real parameter value, just optimal for performance. This is
mostly cause due to fact we are using real collected data, and there is model — process
mismatch. This makes it hard to drive overall error value very low. Nevertheless, this
sorted minimization of Zymomonas mobilis model, suggest that it should not be too
difficult to achieve optimal performance with the quality of data provided, but it might
prove problematic to determinate actual parameter values.

«10% Sorted minimization of Zymomonas mobilis model
5.1416 T T

| 2 All S:arnples|l

51415

51414

51413 |

5142

Sguared error value

51411 1

5141

5. .-I 409 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 G600 700 800 800 1000

Sample, N

Figure 6.45 Zymomonas mobilis model (6.4) thousand samples sorted optimization, where blue circles are all samples.

6.4.1.3. SOM analysis
SOM analysis seem to provide similar picture as PCA visualization, that there are large

number of local optimums scattered across the plane. It might not be clear of with
colour coded hexes only, but U-matrix makes it clear that there is a lot of local
minimums (figure 6.42). If we would compare to SOM analysis of case study 3, there
is one major difference. In SOM analysis of the CHO cell culture model (6.3), local
minimums where uniformly spread, whereas in SOM map of the Zymomonas mobilis

model, local minimums are clustered. We can see four clusters of low error regions

171

separated with high error region in the middle of U-matrix. These clusters represent
valleys of local minimum, which we could not observe in PCA visualization. This shows
that with large number of variables it is much harder for PCA visualization to capture
2d representation of higher dimensional plane, whereas SOM map, can still do a good

job.

To observe if any of the parameters are dominant, we perform cross-correlation of
errors map with component maps. Figures 6.44-45 shows how well component maps
match up versus total error maps. Positive values mean higher degree of matching,
and lower values mean lower. Cross correlation factor of 1, represents perfect match
and 0 represent prefect mismatch. Although large number of parameters should hinder
SOM parameter analysis to determinate dominant variables, it is able to pick two
dominant variables out of twenty-six, u_max1 most dominant variable negatively with
matching factor of 0.73 and K1x most dominant variable positively with matching factor
of 0.75. Maximum difference between matching factors is 0.18 and 0.20 respectively

to positive and negative matching factors.

172

Parameters Positive Matching Factor Negative Matching Factor
u_maxl 0.57 £0.02 0.73 £0.02
u_max2 0.64 £ 0.03 0.61+0.04

K1x 0.75+0.01 0.54 +0.03
K2x 0.61 £0.02 0.66 £ 0.03
q_pmax1 0.64 + 0.05 0.64 +0.04
g_pmax2 0.67 £0.03 0.56+0.03
K1 0.65 +£0.02 0.64 £ 0.02
K2 0.62 £0.02 0.65+0.01
YP_S1 0.66 £ 0.03 0.63 +0.04
YP_S2 0.63+0.04 0.65 +£0.02
a(l) 0.65 + 0.04 0.60 + 0.06
a(2) 0.64 +0.02 0.64 +0.03
a(3) 0.63 +0.02 0.64 + 0.04
a(4) 0.68 +0.03 0.63 +0.03
a(5) 0.64 + 0.06 0.62 +0.07
a(6) 0.62 +0.02 0.65 +0.01
a(7) 0.64 +0.02 0.62 +0.01
a(8) 0.63 +0.03 0.61 +0.06
b(1) 0.65 +0.02 0.65 +0.03
b(2) 0.64 +0.02 0.62 +0.06
b(3) 0.64 +0.03 0.63 +0.02
b(4) 0.63 +0.06 0.60 + 0.05
b(5) 0.61 +0.03 0.67 +0.03
b(6) 0.62 +0.02 0.65 + 0.04
b(7) 0.66 + 0.03 0.62 +0.03
b(8) 0.65 + 0.04 0.65 +0.03

173

Table 6-55 Table of positive and negative mean matching factor of each parameter for system (6.4)

Color code U-matrix
0.192

0.127

— 0.0623

Figure 6.46 Left 2d SOM of Zymomonas mobilis model (6.4), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.
Right 2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

174

U-matrix u_max1 u_max2 K1x
0.192 .

0.373 0.0906 1438 599 1.95
0.127 037 © ! 142 o 58 © 194 ©
0.0623 0.367 136 561 193
K2
6.93 0.262 18 0.503 0.443 -4.830.06
671 © 026 © ' !113 ° L Bos o 044 © -4.85006 ©
6.49 0.259 109 o - 0.497 0.438 -4.880-06
a(4) a(5)
-1.19e.05 -1.32005 -0.00014 -3.15e-05 -0.000465 -2.54005
12605 © -1.3305 © ' !oooom ° . !un—os o -0.000468 © 255605 ©
-1.21e05 -1.34005 -0.000142 -3.19005 -0.000471 -2.560-05
b(1) b(2)
-3.88005 0.000936 -0.00576 0.00172 -0.00449 0.000237
39005 © 000093 © . !Aowsa ° 000171 © -0.00451 © 0.000236 ©
-3.920.05 0.000924 . -0.00583 0.0017 -0.00454 0.000235
b(6)
-0.00247 0.000166 -0.0143
-0.00249 © 0.000165 © 00144 ©
-0.0025 0.000164 -0.0145

Figure 6.47 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution
represented as colour bar.

175

a)

0 0 [} 0
100 200 300 100 200 300 100 200 300 100 200 300
Pixels Pixels Pixels Pixels Pixels Pixels

YP_1 YP 2
K1 K2 5 5 3(1 3(2
400))

0 0 o 0
100 200 300 100 200 300 100 200 300 100 200 100 200 300 100 200 300
Pixels Pixels Pixels Pixels Pixels Pixels
1 2 3 4
200 b{1) 400 b{2) 400 b(3) 400 b(4)
] ¥
)
2000
[+
- % |
0 0 0 0 0
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
Pixels Pixels Pixels Pixels Pixels Pixels

b(7) b(8)

04

0.8

07

08

04

0.2

b)

. [0 il A A At &
ot ol 0 0 ol gt
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
Pixels Pixels Pixels Pixels Pixels Pixels

YP.1 YP. .2
K1 K2 s s 1 2

L
£
a
e B R R
i i 0 0
100 200 300 100 200 300 100 200 300 100 200
Pixels Pixels Pixels Pixels doe
3 4] 5 6
T T Ve e)
)
Bow 200 08
a
s e W ak 1 o i.,$]
0 i 0 0 0 0
100 200 300 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300
Pixels Pixels Pixels Picels Pixels Piels 04
1 2 3 4] 5 6
b{}mlﬂi_ .bt.'t”m b‘.'}m me ?H
: | E m
£
: VA
s] ! . | B S
ot 0 0 0 0 0
100 200 300 100 200 100 200 300 100 200 300 0.2
Pixels Pixels Pixels Pixels Pixels Pixels

bie)
ey

0.1

Figure 6.48 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

176

6.4.2. Model hierarchy
The Zymomonas mobilis model consist of four coupled ODE’s, which when decoupled

with proposed state substitution method leave four independent sub-sets that can be
solved in any order. Specific order of solution will yield best results, therefore model
hierarchy needs to be established, based on importance on each sub-set and how
many dominant variables it has. To figure out best hierarchy of the model we need to
use additional tools like bi-partite chart (figure 6.47) and SOM analysis of parameter
importance (figures 6.44-6.45, table 6.52). When combined these tools reveal which
order of solving individual subsets will lead best results. Bi-partite chart reveals that
although all four states of model have heavy coupling, parameters can be separated
into groups that do not mix. Only exception to that is ethanol, as it has same
parameters as both substrates, as it directly dependant on them. This makes model
hierarchy simple two-level hierarchy with ethanol state being only state in second level.
Unfortunately, there are two ratios in this model, but because they only exist in ratio

form and never separate, it is not possible to solve for their exact values.

u_max1, u_max2, K1x,
K2x, a5,b5, a6,bs, a7,
b7, a8, b8.

q_pmaxl, K1, K2,
al,bl, a2, b2.

q_pmax2, K1, K2,
a3,b3, a4,b4.

X Biomass

S Glucose S2 Xylose

Level 1

Level 2

Figure 6.49 Hierarchy of the Zymomonas mobilis model (6.4)

177

loueyy3

3s02n|9)

ssewolg

A

N

-

..qn A.qm Amn Amm AND ANm AHD Auﬂm
TS dA ‘TS dA ‘D1 ‘T ‘gxewd b ‘Txewd b

‘79 ‘ze ‘T9 ‘TR ‘O ‘T) ‘Txewd b

‘79 ‘ve ‘€q ‘€. ‘2 ‘TY ‘Txewd b

'8q ‘ge ‘/q /B
‘9q ‘e ‘gq ‘Ge ‘XY ‘XTY ‘ZXew N ‘Txew n

joueyly

3s0JAX

asoan|9

ssewolg

Figure 6.50 Bipartite chart of the Zymomonas mobilis model (6.4)

178

Zymomonas mobilis bi-partite chart connection count
4 T T T T T T T I I I I I I I

3.5

[

2.5

MNumber of connections
M2

1.5

0.5

]
] L . S S L S S ATt S L I T T T o T R T A T A T o N A A R
@'3'% F & S @@@ﬁ- @'?’+ * @_ﬁ‘o,ﬂ% EA U P P S A A A U
& o T8 2 e oF of

Figure 6.51 Bar graph of connections of Zymomonas mobilis bipartite chart

179

6.4.3. Method comparison
To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper
cube sampled multi start method. Two main criteria will be compared, model
performance accuracy and the computational time between each of the methods.
Although the proposed state substitution method aims to reduce computational time,
model performance accuracy is also very important and cannot be completely
neglected. In contrast to the first three case studies, we no longer have simulated data,
S0 we cannot vary noise or sampling time to see its effects on methods. Instead after
parameter identification each of their model prediction will be compared with measured
data, for each of the ten different data sets. Although measured data can be unreliable
and might have larger noise or error involved methods performance will be compared
as in how close its prediction is to measured data. As before only biomass data will be
presented for model performance as biomass dictates accuracy for the rest of the
states. This will allow to avoid unnecessary graphs while still presenting enough

evidence about model performance.

When comparing computational time (table 6.53) we see that the proposed state
substitution method is fastest among all three methods. It is faster by 56% compared

to the Latin hyper cube method, and 44% faster than the Derivative estimation method.

Method Computational time, s
Derivative estimation 7019s
Latin hyper cube multi-start 7948s

Proposed state substitution method 4478

Table 6-56 Computational time of all three methods

As discussed before to compare performance of model prediction of each of the
methods, squared error value was calculated for each method versus experimental
data. The Derivative estimation method and Latin hyper cube method, has same error
values because their identified parameters were identical, meaning they both reached
same local minimum. This is most likely caused, because SOM analysis revealed
clusters of local minimums, and one of the clusters was larger than the other. This
mean that starting locations of the Latin hyper cube method, are much more likely to
start in this large cluster and if this cluster does not hold global optimum, it becomes
nearly impossible to reach. On other hand the Derivative estimation method uses

global search global solver for optimization. Starting position for this global optimizer

180

is determined by optimizing derivative estimates at each time point and taking average
of all solutions. Although global search after reaching solution look for other solutions,
it starts its search around primary solution. If this cluster is local minimum is large
enough, global search will never look outside of its boundaries. Both methods in
comparison to the proposed state substitution method did worse, managing to get
three out of ten data sets to lower squared error value than the proposed state
substitution method (table 6.54). Furthermore, the proposed state substitution method
in data sets 7 and 9, managed to capture correct trend of experimental data, where in
comparison other two methods failed to even predict general trend.

Comparing identified parameter values (table 6.55), shows large gap within the
proposed state substitution method and other two methods. This makes it difficult to
say with confidence that identified parameter values are correct parameter values, as

sorted minimisation suggests, even once global optimum is reached total error value

is still high.
Data set number Derivative Latin hyper cube Proposed state
estimation substitution

method
1 2.33E+00 2.33E+00 2.49E+01
2 2.22E+00 2.22E+00 7.75E-01
3 1.05E+00 1.05E+00 7.33E-01
4 5.43E-01 5.43E-01 1.06E+00
5 8.25E+00 8.25E+00 1.92E+00
6 3.35E+00 3.35E+00 2.72E-01
7 5.01E+00 5.01E+00 1.68E+00
8 1.37E+00 1.37E+00 1.76E+01
9 9.66E+00 9.66E+00 9.75E-01
10 3.39E+00 3.39E+00 4.53E-01

Table 6-57 Squared error values for each method and each data set

181

Parameters Derivative Latin hyper cube Proposed state

estimation substitution method
u_maxl 0.389 0.389 0.047
u_max2 0.095 0.095 0.45
K1x 13.772 13.772 0.409
K2x 6.08 6.08 0.121
q_pmax1 2.037 2.037 2.02
g_pmax2 6.375 6.375 12.53
K1 0.247 0.247 0.294
K2 11.886 11.886 1.697
YP_S1 0.502 0.502 0.806
YP_S2 0.462 0.462 0.349
a(1) 0 0 0
a(2) 0 0 -0.001
a(3) 0 0 0
a(4) 0 0 -0.002
a(5) 0 0 0
a(6) 0 0 0
a(?) 0 0 0
a(8) 0 0 -0.005
b(1) 0.001 0.001 -0.004
b(2) -0.006 -0.006 0.025
b(3) 0.002 0.002 -0.007
b(4) -0.004 -0.004 0.1
b(5) 0 0 0.023
b(6) -0.002 -0.002 0.007
b(7) 0 0 0.013
b(8) -0.014 -0.014 0.05

Table 6-58 Summary of identified parameter values for each method

182

Dataset 1

25F

+
*

7 Latin hyper cube
Derivative estimation
Proposed method

— — — — Experimental data

05

Viable biomass concentration 10%cell/L
(8]

0_1‘. = 1 1 1
0 5 10 15 20 25 30
Time h
Dataset 2
2.5 T T T T T T T T
=
E 2 L 12} (2} (o] —
[#2]
o
= ¥ Latin hyper cube
.g Derivative estimation
g 15 Proposed method .
5 — — — — Experimental data
O
[
o)
o
2 1 :
©
e
e
2
Q
E 05 .
=
Ow‘ — 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Time h

183

Viable biomass concentration 10%cell/L

Viable biomass concentration 10%cell/L

184

Dataset 3

181

16 r

¥ Latin hyper cube

0.8 Derivative estimation .
Proposed method
06 — — — — Experimental data -
04 7
0.2 .
Ov’ S . 1 1
0 10 20 30 40 50
Time h
Dataset 4
25 T T T T T
2r D . S W . S S—_ i
15+ .
¥ Latin hyper cube
1+ Derivative estimation .
Proposed method
— — — — Experimental data
05r 7
0—‘ 1 1
0 40 50 60

Time h

Viable biomass concentration 10%cell/L

Viable biomass concentration 10%cell/L

185

1.8

16 r

08

06

-
i
b
b
A
b o

4

Latin hyper cube
Derivative estimation
Proposed method

— — — — Experimental data

0{ 1 1 1 1 1
10 20 30 40 50 60 70 80 90
Time h
Dataset 6
1 2 T T T T T
1t f Fe—f—F— - F—ir
¥ Latin hyper cube
0.8 r Derivative estimation i
Proposed method
— — — — Experimental data
60

Time h

Viable biomass concentration 10%cell/L

Viable biomass concentration 10%cell/L

186

1.2

Dataset 7

0.8

0.6

04

7 Latin hyper cube
Derivative estimation
Proposed method

— — — — Experimental data

0.2 .
0 S . . st A S
0 10 15
Time h
Dataset 8
35 T T T T T
3 i
2.5 .
2 i
15 i
1 i
7 Latin hyper cube
0.5 Derivative estimation -
Proposed method
— — — — Experimental data
0';’, — s | |
0 5 10 15 20 25 30
Time h

Dataset 9

1 5 T T T T .
=
D
]
[=3]
=
§ 1 -
S
c
Q
4]
&
5] ¥ Latin hyper cube
@ Derivative estimation
®
€ 05+ Propo§ed method i
ie; — — — — Experimental data
re)
Q£
o
&
=
e N o " " A A b
0“l :r.r"r'ﬁ'.‘k'n'-\a'm ﬁ“—ﬁ'—'ﬁ'—"ﬁu L] L2l A A
0 5 10 15 20 25
Time h

Dataset 10
1 4 T T T T

P N g
R

+
*
+
+
*
*

e e
2 =

¥ Latin hyper cube
Derivative estimation
Proposed method

— — — — Experimental data

Viable biomass concentration 10%cell/L

40 50 60 70 80
Time h

Figure 6.52 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,
for 10 different experimentally collected data sets.

187

6.4.4. The summary of results for the Zymomonas mobilis model
This case study is chosen to illustrate the practical application of the proposed state

substitution method. It has twenty-six parameters making it not a light optimisation
problem. It has model-process mismatch, as (Grisales Diaz and Willis 2019) were able
to improve the model that it is used in this study. This is important as in practical
applications model-process mismatch happens all the time and it is important that
optimization algorithm can accommodate this mismatch. Using complexity analysis
methods, complexity of this system was determined to be medium/high for the following
reasons. System consist of four ODESs, with coupled interactions between states, but
there is very little interaction between variables. Only ethanol state parameters are
coupled with other states. PCA visualization shows multiple local minima, similarly to
case study 3. This system does not have so many discontinuities as case study 3, but
its overall convexity of the system is only 2%. Sorted minimization shows that model
has one dominant global optimum, but its overall error value is high. This leads to
suspect that identified parameter values are not ‘true’ values of the system, however
they are statically most optimal values for highest model accuracy. Reason for such
high error value at global optimum, lies with the fact that this model is not truly correct
representation of the bio-system in question. This process-model mismatch is the
cause of high error, but statically accurate parameter values. SOM analysis reveals
multiple minima that are clustered into four clusters. Thus, making local minima have
large separation. It should be noted that if gradient based algorithm gets into one of
these clusters it will be stuck there. SOM parameter analysis also reveal two dominant
variables u_max1 and K1x. It seems reasonable that these variables are dominant as
from bio-system perspective, specific growth rate and substrate consumption rate are
very highly linked with biomass growth. When comparing results of different parameter
identification algorithms, we can see that multi-start method and Derivative estimation
method both identified same solution. This is most likely due to fact they both ended
up in the same cluster of local minima, whereas the proposed state substitution method
ended up in different one. The proposed state substitution method almost twice as fast
as other two methods, also the proposed state substitution method had better accuracy
in seven out of ten data sets, when compared too other methods. In addition, for data
sets 7 and 9, state of art methods failed to identify general trend, whereas the proposed

state substitution method succeeded.

188

Performance comparison between methods

25 \ I [I] I
I Derivative estimation

20 -Latin hyper cube |
[IProposed method

15 -

10 —
O "N | e . E

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Data set 6 Data set 7 Data set 8 Data set 9 Data set 10

Computational time comparison between methods

8000

[=2]
[=]
o
[=]

S
o
o
o

2000

Computational time, s

Derivative estimation Latin hyper cube Proposed method

Figure 6.53 Summary of performance results for all three methods for Zymomonas mobilis model

189

7. Conclusions
During this research two algorithms were developed. Firstly, the proposed new method

for parameter identification, and secondly complexity analysis algorithms. This chapter
will cover, what was learned and achieved by developing and applying complexity
analysis and new proposed state substitution method for the parameter identification
of the four different case studies. We will look at each of the algorithm separately

stating their strengths and weaknesses.

7.1.Complexity analysis
Complexity analysis consists of three different approaches, that should provide overall

picture of the system complexity and some quantifiable measure of the systems
complexity. This complexity analysis allows to compare the systems complexity
relatively to other systems complexity but does not provide an absolute benchmark
value of the complexity. Analysis algorithms are a) PCA visualization b) Sorted
minimization c) SOM analysis.

a) PCA visualization is very effective for systems with smaller number of
parameters, providing good insight on location of all local minimums. Combining
it with convexity calculation, makes observations easier to interpret, due to
distinction of convex and non-convex regions. This method can allow users to
avoid local minimums, by selecting starting position, which when locally
optimized tends towards global optimum. With increasing number of parameters
PCA visualization loses its benefits, as PCA visualization uses only two first
principal components to visualise error plane of the system. With increasing
complexity and number of parameters, first two principal components no longer
contain enough variability of overall system to be able to depict error plane
accurately. Overall convexity percentage provides quantifiable measurement of
complexity and is an accurate tool to compare complexity of different systems.
It should be noted that very low convexity percentage systems (0-5%) are

harder to compare between.

b) Sorted minimization is useful for identifying expected number of local minimums
in the system, within constrained boundaries. In addition, sorted minimization
determinates if the systems parameters are identifiable or just systems
performance can be optimized. This helps to make objective decision about the

optimization provided optimal parameter. Are these parameters real values or
190

just statically optimal arbitrary values that makes model perform at its best.
Although sorted minimization provides valuable information, it is most
computationally demanding algorithm used for complexity analysis in this work.
For systems, that has extremely large search spaces, this analysis can take
even up to several days. For this reason, sorted minimization should only be

performed if analysis is not time constrained.

SOM analysis provides similar visualization of error plane of the system as PCA
visualization, but it is more robust when dealing with large number of parameters
within the system. In terms of visualization, it is harder to interpret results of
SOM than PCA visualization. Key observation that can be derived from SOM
analysis, is parameter dominance. Positive and negative matching factor of
each parameter provides insight into how dominant each parameter is in
comparison with others. While algorithm resolution decrease with systems
containing large number of parameters it is still able to pinpoint most dominant
variable. This is important for use of proposed state substitution method as this
information will help to set up best model hierarchy which will lead to best

results.

All of three analysis methods should be used with caution as interpretation of results

might lead to different conclusions. Nevertheless, each of these methods provide

valuable information that can be used to understand level of complexity within the

system and compared this complexity between different systems. These methods

might also, allow to establish what makes the system complex and how to mitigate

complication introduced by these complexities.

191

7.2.Proposed state substitution method
Proposed state substitution method was compared with two state of art methods -

derivate and integral methods. Comparison was done using four case studies, with
increasing complexity. In terms of computational time, proposed state substitution
method performed worse than both state of art methods when optimizing simple
system with single ODE (Case study 1). However, its advantages become increasingly
more apparent as complexity of the systems rose. Where state of art performance was
linearly decreasing with increasing complexity of the systems as expected, the
proposed state substitution method not only performed better, but also gap between
the state of art methods and the proposed state substitution method was increasing.
In terms of robustness to noise, integral method and the proposed state substitution
method were able to deal with higher level of noise, where the derivate method would
fall short. In terms of accuracy the derivative method had worse average accuracy,
throughout all case studies. The proposed state substitution method and the integral
method, where able to keep similar accuracy levels in all four case studies. This would
suggest that best course of action, when dealing with unknown system, is to perform
complexity analysis first, then if system has high complexity use the proposed state
substitution method approach instead of the state of art methods. This should lead to
lower computational times, and same levels of accuracy. It should be noted that this
computational time save, would be especially impactful, during model development
where multiple different variations of model need to be tested to check which one

produces best results.

192

8. Future work
This chapter will focus on limitations of this work and areas which can be expanded or

improved. Chapter will cover both complexity analysis and proposed new method as

independent methods.

Complexity analysis, main use is to assess the systems complexity. While discussed
methods allows to do it, only overall convexity value and number of local minima can
be used as numerical comparison, leaving other features to be interpreted by the user.
This makes it not universal when used by different users as their assessment of
topology of the SOMs and PCA visualization will vary. To make complexity analysis
techniques useful in broader spectrum, there is a need for uniform framework of these
type of analysis to allow uniform benchmarking process. Furthermore, methods used
to evaluate systems complexity, where only tested on four case studies mentioned in
this work, which is too small of a sample size to make general conclusions about
methods usage to benchmark any problems. However, this work highlight possible
uses in industry to identify systems that do require additional attention and might
require to deviate from state of art methods to produce fast and accurate model
capable of prediction. Excluding sorted minimisation, other techniques are fast and
easy to implement, making them good for initial exploration of system complexity and

helps to choose appropriate methodology for further analysis.

The proposed state substitution method seems to achieve significant reduction in
computational time, when applied to complex systems, but case studies provided
where full parametric models. While this shows that method is able to identify all
parameters that are identifiable, it says nothing about its ability to work on hybrid
models. While in theory there should be no change in methodology as long as non-
parametric part can be evaluated by objective function this was not tested and cannot
be stated to work. In addition, similarly the proposed state substitution method was
extensively tested with four case studies described in this work. Even though these
case studies cover large variability of the problems, it does not cover all types of
problems. Furthermore, this work did not investigate optimizing algorithms that are part
of the proposed state substitution method, such as ODE integrators. Nevertheless, this
new approach allows to make exploration of model structure faster and more efficient.
By reducing computational time of parameter identification, it allows researchers and
industry to explore check more model structures within save time frame or introduce

more complex model without sacrificing additional time required to identify them.

193

9. Appendix
Example code for case study 3. It should be noted not all functions are given and

provided code will not work, if directly copied to the MATLAB environment. This is to

give high-level overview of methodologies used in this work:

Derivative estimation main script example:

clear all
close all
profile on % turning profiler on to measure computational time

global par

global p

global w

w = [200,50,1,50,1,1]; % weight values for states manually inputted
sample = 0.1; % Sampling interval of generated data

noise = 0.1; % Noise level of the generated data

timeS = 0.001; % Sampling interval of the spline

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for
selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)) .*rand(length(x0(:,1)),1)+x0(:,2));
Generating random staring point of unseen data

o

o)

[yOn,y02n,y0,y02,t1l] = DataGen (x0,sample,noise,t, fnc,OPTS,o0de); % Generating
data, with (yOn) noise and without (y0) noise
[yO3n,y03,~] = DataGen (x02,sample,noise, t, fnc,OPTS, ode) ;
% Cubic spline opproximatation
for i = 1l:length(yOn(1,:))
yyl(i,:) = csaps(tl,yOn(:,1));
yy2(i,:) csaps (tl,y02n(:,1));
end

% Sampling of the spline with smaller interval

for ii = 1l:length(yOn(1,:))
fx1(ii,:) = fnval(yyl(ii,:),0:timeS:tl(end));
2(ii,:) = fnval(yy2(ii,:),0:timeS:tl (end));
end

o)

% Derivative calculation of time series
for iii = 1l:length(yOn(1,:))
dx1(iii,:) = diff(fx1(iii,:))/timeS;
dx2 (iii,) diff (fx2(iii, :))/timeS;
end

opts —
optimoptions (@fmincon, "'Algorithm', 'sgp', 'Display', 'iter', '"MaxFunEvals', 6400
); % Solver settings

o)

% Optimisation of all estimated derivatives
for j = 1:(tl(end)/timeS)

194

[x(3,:),fval(3)] =
fmincon (@ (p) DerivMonod (p,yyl,yy2,dx1(:,]),dx2(:,]),timeS*7j),zeros (1, length (
p))+0.5,[1,[1,[1,[1,a,b,[]1,0pts);

end

Q

par = mean(x); % taking mean of the estimated parameter vector

Problem = @ (par)MinError (par,fnc,x0,tl,y0n,ode,OPTS,y02n,tl); S%$Setting up
objective function for the global search
opts

optimoptions (@fmincon, 'Algorithm', 'sgp', 'Display', 'iter', "MaxFunEvals', 3200
); % setting parameters for global search

problem = createOptimProblem('fmincon', 'objective',Problem, 'x0"',par, ...
'1b',a, 'ub',b, 'options',opts);

gs = GlobalSearch('Display', 'iter'");

ms = MultiStart('Display','iter', '"MaxTime',60); % initializing global search

[xf, f,flag, table, residGS] = run(gs,problem); % Running global search

PPP = profile('info');

RunTime —
PPP.FunctionTable (structfind (PPP.FunctionTable, 'FunctionName', 'DerivativeEs
t')).TotalTime; $ Checking computational time

[}

profile off % Stopping profiler

Multi-start script example:

clear all
close all
profile on % Turning profiler on to measure computational time

global w

global p

w = [200,50,1,50,1,1]1; % weight values for states manually inputed

sample = 0.1; $ Sampling interval of generated data

noise = 0.1; % Noise level of the generated data

Name = 'case study 3';

[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)) .*rand(length(x0(:,1)),1)+x0(:,2));
Generating random staring point of unseen data

oe

Q

[yOn,y02n,y0,y02,tl] = DataGen (x0,sample,noise, t, fnc,O0PTS,o0de); % Generating
data, with (yOn) and without (y0) noise
[yO3n,y03,~] = DataGen (x02,sample,noise, t, fnc,OPTS, ode) ;

pop = 20; % Population of the Latin hyper cube samples
N = length(par0); % Number of Variables

Q

Best = pop*l; % Number of best initial cases after screening

o°

1b = a; Setting lower parameter boundries
ub = b; % Setting upper parameter boundries
X = lhsdesign(pop,N, 'criterion', 'correlation');

D = bsxfun (@plus, 1b,bsxfun (@times, X, (ub-1b))); % Initial conditions for latin
hyper cube

% Performing intial screening

for 3 = l:pop
E = MinError(D(j,1:N), fnc,x0,tl,y0On,ode,OPTS,y02n,tl);
D(j,N+1) = E;

end

% Selecting fraction of best case initial conditions
D = sortrows (D,N+1);

D = D(l:round(Best/pop*size(D,1)),1:N+1);
fLow = le+10;

% initialing multi-start
for i = 1l:size(D,1)
disp ({'Run Number:',i});
opts = optimoptions (@fmincon, 'Algorithm', 'sgp', 'Display', 'iter");
problem =
createOptimProblem (' fmincon', 'objective', @ (parl)MinErrorW (parl, fnc,x0,tl,y0
n,ode,OPTS,y02n,w,tl), ...
'x0'",D(i,1:N), "1b",1b, 'ub',ub, 'options', opts);

ms = MultiStart('Display','iter', '"MaxTime', 60);
[xf,f] = run(ms,problem,1);

if £ < fLow % updating parameter values, if error is lowest compared to other
runs
Par = xf;
flow = £;
end
end

PPP = profile('info');

RunTime -
PPP.FunctionTable (structfind (PPP.FunctionTable, 'FunctionName', 'Latin')) .Tot

o)

alTime; % Checking computational time

o)

profile off % Stopping profiler

State substation Method main script example:

clear all
close all
profile on % Turning profiler on to measure computational time

global w
global p

w = [200,50,1,50,1,1]1; % weight values for states manually inputed

sample = 0.1; % Sampling interval of generated data

noise = 0.1; % Noise level of the generated data

Name = 'case study 3';

[fnc, x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;

196

oo

x02(:,1) = ((x0(:,1)-x0(:,2)) .*rand(length(x0(:,1)),1)+x0(:,2));
Generating random staring point of unseen data

[yOn,y02n,y0,vy02,tl] = DataGen (x0,sample,noise, t,fnc,O0PTS,ode); % Generating
data, with (yOn) and without (y0) noise
[yO3n,y03,~] = DataGen (x02,sample,noise, t, fnc,OPTS, ode) ;

options = optimset('Display', 'iter', 'MaxIter',6200,...
'LargeScale', 'on', "Jacobian', 'on', 'DiffMaxChange’', ...
0.1, 'DerivativeCheck', 'off', '"MaxfunEvals', 200, ...
'"TolFun',1le-10, 'TolX',1le-10);

% local solver options

% Each state is solved individually based on hierarchy model

p0 = [0.5,0.5,0.5,0.001,0.001,0.001,0.0011;

[pl, resnorml, residl,exitflagl, outputl, lambdal, jacobianl] =
lsgnonlin (@Parametersl,p0, ...
[(0,0,0,0,0,0,01,02,2,1,0.5,0.5,0.5,0.5],0ptions);

par = pl;

0O = [0.5,0.5,0.3,0.5,0.51;

[p2, resnorm2,resid2,exitflag2, output2, lambda2, jacobian2] =
lsgnonlin (@Parameters2,p0, ...

[0,0,0,0,01,12,1,0.5,5,50],0ptions);

par(8) = p2(3);

p0 = [0.5,0.5,0.471;

[p4, resnormé, resid4,exitflagd,output4d, lambda4, jacobian4] =
lsgnonlin (@Parameters4,p0, ...

[0,0,0],[2,1,1],0ptions);

par(2) = mean([pl(2),p2(1),p4(1)]);
par (3) = mean([pl(3),p2(2),p4(2)]);
par (12) = p4(3);

p0 = [0.5,0.5,0.5];

[p3, resnorm3, resid3,exitflag3, output3, lambda3, jacobian3] =
lsgnonlin (@Parameters3,p0, ...

[0,0,01,15,5,50],o0ptions);

par (9) = p3(1);

par(10) = mean([p2(4),p3(2)1);
par(ll) = mean([p2(5),p3(3)1);
p0 = [0.5];

[p5, resnorm5, resid5,exitflagb, outputb, lambda5, jacobian5] =
lsgnonlin (@Parameters5,p0, ...

[0],[1],options);

par (13) = p5(1);

p0 = [0.5,0.5,0.5]1;

[p6, resnormb, resid6,exitflag6, output6, lambda6, jacobian6] =
lsgnonlin (@Parameters6,p0, ...

[0,0,01,110,50,0.5],0ptions);

par ([14,15,16]) = p6([1,2,3]);

w = [200,50,1,50,1,1]1; % weigths for state
fnc = @(b)problem(b); % Setting up objective function for the global solver
1b = a; %

a etting lower parameter boundries
ub = b; %

S
Setting upper parameter boundries

197

opts =
optimoptions (@fmincon, "'Algorithm', 'sgp', 'Display', 'iter', '"MaxFunEvals', 3200
); % Global solver options
problem = createOptimProblem('fmincon', 'objective', fnc, 'x0',par, ...

'"1b',1b, 'ub',ub'options', opts);
gs = GlobalSearch('Display', 'iter");
ms = MultiStart('Display','iter', '"MaxTime', 60);

[xf,f,flag,table, residGS] = run(gs,problem) ; Running global search

PPP = profile('info'");

RunTime =
PPP.FunctionTable (structfind (PPP.FunctionTable, 'FunctionName', 'Latin')) .Tot
alTime; % Checking computational time

o)

profile off % Stopping profiler

PCA visualization algorithm main script example:

clear all
close all

global w
global p

w = [200,50,1,50,1,1]; % weight values for states manually inputted
sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data

o)

pop = 5000; % Population of the samples

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for
selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2));
Generating random staring point of unseen data

o°

o)

[yOn,vy02n,y0,y02,tl] = DataGen (x0, sample,noise,t, fnc,O0PTS,ode); $ Generating
data, with (yOn) and without (y0) noise
[y03n,vy03,~] = DataGen (x02,sample,noise, t, fnc,OPTS, ode) ;

[Answer, ACP, y0, Sample, CC,Error,Cluster,NoC, y02] =
Convex (x0,tl,par,a,b, fnc,pop,noise,ode,OPTS,t2) ;% function that calculates
convexivity of #pop triple samples in percentage

[coff,score] = pca(Sample',2); % Calculating scores of the first two principal
components.

SOM main script example:

clear all
close all

global w
global p

[

w = [200,50,1,50,1,1]; % weight values for states manually inputed

198

sample = 0.1; % Sampling interval of generated data

noise = 0.1; % Noise level of the generated data
Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)) .*rand(length(x0(:,1)),1)+x0(:,2));
Generating random staring point of unseen data

o

Q

[yOn,y02n,y0,vy02,tl] = DataGen (x0,sample,noise, t,fnc,OPTS,ode); % Generating
data, with (yOn) and without (y0) noise
[yO3n,y03,~] = DataGen (x02,sample,noise, t, fnc,OPTS, ode) ;

Q

pop = 5000; % population size of the latin hyper cube sampling
N = length(par); % Variables

1b = a;
ub = b;
XX = lhsdesign(pop,N, 'criterion', 'correlation');

D = bsxfun (@plus, lb,bsxfun(@times, XX, (ub-1b))) ;
w = [200,50,1,50,1,1]1; % weigths for state

for i = 1l:1length(D)

Error (i) = MinErrorW(D(i,:), fnc,x0,t,vy0,0de,OPTS,y02,w,t); % optimizing
initial samples points
end

% Removing all failed integration samples and sorting from best to worst
E = Error (Error<2e+10);

Esort = sort (E);

% Labelling based samples based on error value
EE(l:length(E))= {'H'};

EE (E<Esort (round(0.5*1length(E))))= {'M'};
EE (E<Esort (round (0.05*length(E))))= {'L'};

SomData =
som_data_ struct(D(Error<2e+10, :), 'name', 'SOMdata', "labels',EE', 'comp names'
, Names) ;

Map = som make (SomData, 'algorithm', 'batch','shape','cyl'); % defaults batch
traininf used (faster than sequential training)

Map = som_autolabel (Map, SomData, 'vote'); %vote = most hits dictates class!

x1=find (ismember (SomData.labels, 'H')==1
x2=find (ismember (SomData.labels, 'M')==1);
1

x3=find (ismember (SomData.labels, 'L') ==

hl = som hits(Map,SomData.data(xl,:));

h2 = som hits(Map,SomData.data(x2,:));
h3 = som hits(Map,SomData.data(x3,:));

cl=ismember (Map.labels, "H'") *1; %Class 1 (Application for iris
Accepted)

c2=ismember (Map.labels, 'M") *2; $Class 2 (Application for iris
Rejected)

c3=ismember (Map.labels, 'L") *3; $Class 3 Empty

c4=ismember (Map.labels, '") *4;

classes=cl+c2+c3+c4;

199

[

col mat=zeros ([length(classes),3]); % Initialise Matrix of colors to be
associated with each node

for count=l:length(classes)
if ismember (classes (count),1l)==1
col mat (count,:)= [1,0,0];
elseif ismember (classes (count),?2)==1 $This section finds and
replaces with the correct colors
col mat (count, :)=[0,0,1];
elseif ismember (classes (count), 3)==1 %$This section finds and
replaces with the correct colors
col mat (count,:)=[0,1,0];
elseif ismember (classes (count),4)==
col mat (count, :)=[0,0,0];
end
end

C=som_clustercolor (Map,classes,col mat); % coloring based most voted
clusters

for i = 1l:length(Map.codebook)
Errorl (i) =
MinErrorW (Map.codebook (i, :), fnc,x0,t,vy0,ode, OPTS,y02,w, t) ; % Calculating
error of the mean cluster parameter values

end
Errorl(2,:) = l:length(Errorl);
Errorl = sortrows (Errorl',1);

o)

CG = gray(length (Errorl)); % Creating grayscale vector based on the amount
of samples

RCG(Errorl(:,2),:) = CG; % assigning correct grayscale values to each
error value

[Like,LikeI,Diff] = Pmatch (Map,RCG); % Comparing SOM error plane with
parameter error plane in grayscale

200

10. References

Abadlia, Issam, et al. (2020), 'Adaptive fuzzy control with an optimization by using
genetic algorithms for grid connected a hybrid photovoltaic—hydrogen
generation system’, International Journal of Hydrogen Energy, 45 (43), 22589-
99.

Abdel Moamen, O. A., et al. (2015), 'Factorial design analysis for optimizing the
removal of cesium and strontium ions on synthetic nano-sized zeolite', Journal
of the Taiwan Institute of Chemical Engineers, 55, 133-44.

Aguirre, L.A and Billings, S.A (1995), 'Retrieving dynamical invariants from chatotic
data using NARMAX models', Int. J. Bifurcation and Chaos, 5, 449 - 74.
Almeida, Jonas S (2002), 'Predictive non-linear modeling of complex data by atrtificial

neural networks'’, Current Opinion in Biotechnology, 13.

Anonymous 'ODE45 solver options',
<https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument d0e7
08771>, accessed 2017/05/11.

Bardow, Andrew and Marquardt, Wolfgang (2004), 'Incremental and simultaneous
identification of reaction kinetics: methods and comparison’, Chemical
Engineering Science, 59, 2373-684.

Birg, E., et al. (2009), 'Three-step experimental design to determine the effect of
process parameters on the size of chitosan microspheres', Chemical
Engineering and Processing: Process Intensification, 48 (3), 771-79.

Bomhoff, Matthijs, Kern, Walter, and Still, Georg (2010), 'On bounded block
decomposition problems for under-specified systems of equations',
Memorandum 1930.

Breeden, J.L and Hubler, A. (1990), 'Reconstructing equations of motion from
experimental data with unobserved variables', Phys. Rev., A42, 5817 - 26.

Charles Audet; J. E. Dennis, Jr. (2002), '‘Analysis of generalized pattern searches’,
Society for Industrial and Applied Mathematics, 13, 889-903.

Chou, I. C. and Voit, E. O. (2009), 'Recent developments in parameter estimation and
structure identification of biochemical and genomic systems', Math Biosci, 219
(2), 57-83.

Cremers, J. and Hubler, A. (1987), 'construction of differental equations from
experimental data’', Z. Naturforsch, 42a, 797 - 802.

Crutchfield, J. P. and McNamara, B.S. (1987), 'Equations of motion from data series’,
Compl. Syst., 1, 417 - 51.

D.l. Kamenski and Dimitrov, S.D. (1993), 'Parameter estimation in differential
equations by applications of rational functions', Computers & Chemical
Engineering, 17, 643-51.

Degasperi, A., Fey, D., and Kholodenko, B. N. (2017), 'Performance of objective
functions and optimisation procedures for parameter estimation in system
biology models', NPJ Syst Biol Appl, 3, 20.

documentation;, MATLAB (2020), 'Matlab global solver comparison’,
<https://www.mathworks.com/help/gads/example-comparing-several-
solvers.html>, accessed 30/05/2020.

Eilers, P.H.C. (2003), 'A perfect smoother', Analytical Chemistry, 75, 3631-36.

Fausett, L. (1994), Fundamental of Neural Networks: Architectures, Algorithms, and
Applications.

Froment, G.F. and Bischoff, K.B. (1990), Chemical reaction analysis and design. (New
York: Wiley).

Glover, F (1998), 'A template for scatter search and path relinking', Artificial Evolution
13-54.

201

https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument_d0e708771
https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument_d0e708771
https://www.mathworks.com/help/gads/example-comparing-several-solvers.html
https://www.mathworks.com/help/gads/example-comparing-several-solvers.html

Goldberg, David E (1989), Genetic Algorithms in Search, Optimization & Machine
Learning.

Gotshall, Stanley and Rylander, Bart (2002), 'Optimal population size and the genetic
algorithm’, 2nd WSEAS International Conference of Soft Computing,
Optimization, Simulation and Manufacturing Systems.

Gouesbet, G (1991), 'Reconstruction of the vestor fields of continuous dynamical
systems from scalar time series', Phys. Rev., A43, 5321 - 31.

Grisales Diaz, Victor Hugo and Willis, Mark J. (2019), 'Ethanol production using
Zymomonas mobilis: Development of a kinetic model describing glucose and
xylose co-fermentation’, Biomass and Bioenergy, 123, 41-50.

Gutmann, H.-M. (2001), 'A Radial Basis Function Method for Global Optimization’,
Journal of Global Optimization, 19, 201-27.

Hass, Helge, et al. (2018), 'Benchmark Problems for Dynamic Modeling of Intracellular
Processes', Bioinformatics.

Hegger, R. et al. (1998), 'Dynamical properties of a ferroelectric capacitor observed
through nonlinear time series analysis', Chaos, 8, 727 - 36.

Holland, D.H. and Rayford, G.A. (1989), Fundamentals of chemical reaction
enginerring (New Jersey: Prentice-Hall).

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. 'SOM Toolbox for Matlab
5. Laboratory of Computer and Information Science (CIS),
<http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf>, accessed.

J.S. Almeida, E.O. Voit (2003), 'Neural-network-based parameter estimation in S-
system models of biological networks', Genome Informatics, 14.

James Kenedy, Russell Ebehart (1995), 'Particle swarm optimization', IEEE, 1942-48.

Kadtke, J., Brush, J., and Holzfuss, J. (1993), 'Global dynamical equations and
Lyapunov exponents from noisy chaotic time series’, Int. J. Bifurcation and
Chaos, 3 (607 - 616).

Kikuchi, S., et al. (2003), 'Dynamic modeling of genetic networks using genetic
algorithm and S-system’, Bioinformatics, 19 (5), 643-50.

Kutalik, Z., Tucker, W., and Moulton, V. (2007), 'S-system parameter estimation for
noisy metabolic profiles using newton-flow analysis', IET Syst Biol, 1 (3), 174-
80.

Leonori, Stefano, et al. (2020), 'Optimization strategies for Microgrid energy
management systems by Genetic Algorithms', Applied Soft Computing, 86.

Levenberg, Kenneth (1944), 'A Method for the Solution of Certain Non-Linear Problems
in Least Squares', Quarterly of Applied Mathematics, 2.

Lu, Jiawel, et al. (2020), 'Surrogate modeling-based multi-objective optimization for the
integrated distillation processes', Chemical Engineering and Processing -
Process Intensification.

M. Vilela, C.C. Borges, S. Vinga, A.T. Vasconcelos, H. Santos, E.O. Voit, J.S. Almeida
(2007), '‘Automated smoother for the numerical decoupling of dynamics models’,
BMC Bioinform., 8.

Marin-Sanguino, A., et al. (2007), ‘Optimization of biotechnological systems through
geometric programming’, Theor Biol Med Model, 4, 38.

Mark K, Transtruma; James P, Sethnaa (2012), 'Improvements to the Levenberg-
Marquardt algorithm for nonlinear least-squares minimization', Journal of
Computational Physics.

Mascarenhas (2013), 'The divergence of the BFGS and Gauss Newton Methods',
Mathematical Programming, 147, 253-76.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979), 'Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code', Technometrics, 21 (2), 239-45.

202

http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf

Michael Wetter, and Jonathan Wright (2003), 'Comparison of a generalized pattern
search’, Eighth International IBPSA Conference, 1401-08.

Mittelhammer, Ron C.; Miller, Douglas J.; Judge, George G. (2000), Econometric
Foundations. 197-98.

Niemann, Henrik and Miklos, Robert (2014), 'A Simple Method for Estimation of
Parameters in First order Systems', Journal of Physics: Conference Series, 570
(1).

Nigel, Meade; Towhidul, Islam (1995), 'Prediction Intervals for Growth Curve
Forecasts', Journal of Forecasting, 14, 413-30.

P.J. Green and Silverman, B.W. (1994), Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach.

Pearson, Karl. (1901), 'On lines and planes of closest fit to systems of points in space’,
Philosophical Magazine, 2, 559-72.

Poli, Riccardo, Kennedy, James, and Blackwell, Tim (2007), 'Particle swarm
optimization', Swarm Intelligence, 1 (1), 33-57.

Powell, M. J. D (1992), 'The Theory of Radial Basis Function Approximation °,
Advances in Numerical Analysis, 2, 105-210.

R.L. Burden and Faires, J.D. (1993), Numerical Analysis.

Rasmus Bro, Age K, Smilde (2014), 'Principal component analysis', Analytical
Methods, 6, 2812-31.

Raue, A., et al. (2013), 'Lessons learned from quantitative dynamical modeling in
systems biology', PLoS One, 8 (9), e74335.

Riley, B. S. and Li, X. (2011), 'Quality by design and process analytical technology for
sterile products--where are we now?', AAPS PharmSciTech, 12 (1), 114-8.

Salata, Ferdinando, et al. (2020), 'Effects of local conditions on the multi-variable and
multi-objective energy optimization of residential buildings using genetic
algorithms', Applied Energy, 260.

Saraiva, ., Vande Wouwer, A., and Hantson, A. L. (2015), 'Parameter identification of
a dynamic model of CHO cell cultures: an experimental case study’, Bioprocess
Biosyst Eng, 38 (11), 2231-48.

Simeone, Marino; Eberhard O. Voit (2006), 'An automated procedure for the extraction
of metabolic network information from time series data’, Journal of
Bioinformatics and Computational Biology, 4.

Spyridon Dallas, Konstantinos Machairas, Evangelos Papadopoulos (2017), 'A
Comparison of ODE Solvers for Dynamical Systems with Impacts’, J. Comput.
Nonlinear, 12 (6), 8.

Steijns, A.N.R Bos; L. Lefferts; G.B. Marin; M.H.G.H (1997), 'Kinetic research on
heterogeneously catalysed processes: A questionnaire on the state-of-the-art
in industry’, Applied catalysis, 160, 185-90.

T.Kohonen (1982), 'Self-organized formation of topologically correct feature maps',
Biological Cybernetics, 43, 59-63.

--- (1990), 'The self-organizing map', Proceedings of the IEEE, 78, 1464-80.

Timmer J, et al. (2000), 'Parameter estiamtion in nonlinear stochastic differential
equations', Chaos solid. Fract., 11, 2571 -78.

Ugray, Zsolt, Leon Lasdon, John C. Plummer, Fred Glover, James Kelly, and Rafael
Marti. (2007), 'Scatter Search and Local NLP Solvers: A Multistart Framework
for Global Optimization’, INFORMS Journal on Computing, 19, 328-40.

Voit, E. O. (1982), 'Power-law approach to modeling biological-systems', Journal of
fermentation technology, 60, 233-41.

Voit, E. O. and Almeida, J. (2004), 'Decoupling dynamical systems for pathway
identification from metabolic profiles’, Bioinformatics, 20 (11), 1670-81.

203

Voss, Henning U. and Timmers, Jens (2004), 'Nonlinear dynamical system
identification from uncertain and indirect measurements’, International Journal
of Bifurcation and Chaos, 14 (6), 1905-33.

W. Natita, W. Wiboonsak, and S. Dusadee (2016), 'Appropriate Learning Rate and
Neighborhood Function of Self-organizing Map (SOM) for Specific Humidity
Pattern Classification over Southern Thailand', International Journal of Modeling
and Optimization, 6 (1), 61-65.

Wellstead, P., et al. (2008), 'The rdle of control and system theory in systems biology",
Annual Reviews in Control, 32, 33-37.

Whittaker, E. T. (1923), 'On a New Method of Graduation', Proc. Edinburgh Math. Soc.

Willis, Mark J. and Stosch, Moritz von (2016), 'Inference of chemical reaction networks
using mixed integer linear programming’, Computers & Chemical Engineering,
90, 31-43.

Wolkenhauer, O., et al. (2014), 'Enabling multiscale modeling in systems medicine’,
Genome Medicine, 6.

Y. Maki and Tominaga, D. (2001), 'Development of a system for the inference of large
scale genetic networks', Pacific Symposium on Biocomputing, 6, 446-58.
Yeow, Y. Leong, et al. (2003), 'A new method of processing the time-concentration

data of reaction kinetics', Chemical Engineering Science, 58 (16), 3601-10.

Yu, L. X. and Woodcock, J. (2015), 'FDA pharmaceutical quality oversight', Int J Pharm,
491 (1-2), 2-7.

Zhao, Y., C. Jiang, and A. Yang (2012), 'Towards computer-aided multiscale
modelling: An overarching methodology and support of conceptual modelling’,
Computers & Chemical Engineering, 36, 10-21.

204

