

The novel method for parameter

estimation for large bio-systems

Paulius Rasiukas

A thesis submitted for a degree of Doctor of Philosophy

Submitted to the School of Engineering, Newcastle university

December 2020

-Page left blank intentionally-

i

Abstract

In this thesis we propose a new method for the parameter identification of large-scale

models. The proposed state substitution method can be applied to parametric, non-

parametric or hybrid models, but in this work, we will focus on the parametric models,

to show methods capabilities of identifying all parameter values. The method aims to

decouple the whole system into separate sub-systems, whose parameters can be

identified separately, therefore decomposing the solution space. By decreasing the

solution space in this manner, traditional parameter identification techniques can be

used to identify the parameters of each sub-model. The solved sub-systems are

subsequently combined for re-optimisation using a global solver (in this work global

search), which ensures statistical optimality of the parameter values.

The proposed decoupling method uses state substitution approach, i.e.: measured

values (which contain process noise) are used to create a spline, which replaces

coupled components in each ODE sub-system. This makes it possible to integrate

each of the sub-systems separately, because the sub-systems are only dependant on

the unknown model parameters. In addition, dividing the problem into smaller sections,

reduces computational time significantly compared to current simultaneous solution

methods.

The proposed state substitution method is compared with two state-of-art approaches.

The derivative method and the integral method. Both state-of-art methods and the

proposed state substitution method are used to identify parameters for four different

cases studies, where they performance is compared. Cases studies increase in

complexity allowing comparison of how each method handles different levels of

complexity. First three cases studies use simulated data sets, and fourth one uses real

measured data. First case study is an artificial benchmark problem, whereas case

studies two, three and four are bio-system models, with increasing complexity.

This thesis also proposes ways of evaluating complexity of the system, so systems

complexity can be relatively compared to other systems. This allows to assess each

systems’ relative complexity, an ensure that correct parameter identification method is

chosen for the parameter identification. Complexity evaluation is quantified with three

different methods, Principal component analysis visualization, self-organizing map

analysis and sorted minimization.

ii

-Page left blank intentionally-

iii

Acknowledgments

I would like to thank both of my supervisors Mark Willis and Chris O’Malley, for helping

me through the whole project, especially during write-up period.

Also, would like to thank my wife for supporting me emotionally throughout this project.

iv

-Page left blank intentionally-

v

Content

1. Introduction .. 1

1.1. Aims ... 2

1.2. Objectives .. 3

2. Literature review ... 4

2.1. Introduction .. 5

2.2. Gradient based optimisation ... 9

2.2.1. Objective function .. 9

2.2.2. Optimality of numerical optimisation algorithms 11

2.2.3. Parameter change ... 13

2.3. Global solver .. 16

2.4. Summary .. 22

3. Kinetic model calibration: State of the art methods .. 23

3.1. Integral approach ... 23

3.2. Derivative approach ... 23

3.3. Integral method modifications .. 25

3.3.1. Sampling of the search space ... 25

3.3.2. Screening .. 26

3.3.3. Modified integral method structure ... 26

3.4. Derivative estimation method modifications ... 27

3.4.1. Re-optimization .. 27

3.4.2. Modified derivative estimation method structure 27

3.5. Benchmark problem ... 28

3.5.1. Generating benchmark data .. 29

3.5.2. Objective function .. 29

3.6. Effects of the modifications .. 30

3.6.1. Sampling space ... 30

3.6.2. Screening .. 31

vi

3.6.3. Re-optimization ... 32

3.7. Summary ... 33

4. Problem visualization ... 34

4.1. Introduction .. 35

4.1.1. Analysis of the error plane... 36

4.1.1.1. Number of local optima ... 36

4.1.1.2. Impact of the parameters .. 36

4.1.1.3. Sensitivity of the parameters .. 36

4.2. Example systems ... 37

4.3. Utilizing PCA to visualize the model .. 38

4.3.1. Example of applying PCA for visualization .. 40

4.4. Convexity with PCA ... 41

4.5. Self-organizing map ... 41

4.5.1. Example of SOM application ... 43

4.6. Performance optimum vs parameter optimum ... 44

4.7. Summary ... 46

5. Methods ... 48

5.1. State Substitution method .. 49

5.2. Bipartite graph and structure hierarchy .. 53

5.2.1. Parameter impact .. 54

5.3. Data generation ... 58

5.4. Approximation spline ... 59

5.5. Sub-system solver ... 60

5.6. Global solver .. 62

5.7. Summary ... 64

6. Results and discussion .. 65

6.1. Case study 1 – Polynomial model.. 65

6.1.1. Complexity analysis .. 65

vii

6.1.1.1. PCA visualization .. 67

6.1.1.2. Sorted minimization ... 68

6.1.1.3. SOM analysis .. 69

6.1.2. Method comparison ... 75

6.1.2.1. Experiment 1 0.1h sampling and 5% random noise 76

6.1.2.2. Experiment 2 0.1h sampling and 10% random noise 79

6.1.2.3. Experiment 3 0.3h sampling and 5% random noise 83

6.1.2.4. Experiment 4 0.3h sampling and 10% random noise 87

6.1.2.5. Experiment 5 0.3h sampling and 20% random noise 90

6.1.3. Summary of results for polynomial model .. 93

6.2. Case study 2 – Monod kinetics .. 96

6.2.1. Complexity analysis ... 96

6.2.1.1. PCA visualization .. 96

6.2.1.2. Sorted minimization ... 97

5.2.1.1. SOM analysis .. 98

6.2.2. Model hierarchy ... 103

6.2.3. Method Comparison .. 104

6.2.3.1. Experiment 1 0.1h sampling and 5% random noise 105

6.2.3.2. Experiment 2 0.1h sampling and 10% random noise 110

6.2.3.3. Experiment 3 0.3h sampling and 5% random noise 113

6.2.3.4. Experiment 4 0.3h sampling and 10% random noise 116

6.2.3.5. Experiment 5 0.3h sampling and 20% random noise 118

6.2.3.6. The summary of results for the Monod model 121

6.3. Case study 3 – CHO cell culture model .. 124

6.3.1. Complexity analysis ... 125

6.3.1.1. PCA visualization .. 125

6.3.1.2. Sorted minimization ... 127

6.3.1.3. SOM analysis .. 128

viii

6.3.2. Model hierarchy ... 134

6.3.3. Method comparison ... 138

6.3.3.1. Experiment 1 0.1h sampling and 5% random noise 140

6.3.3.2. Experiment 2 0.3h sampling and 5% random noise 151

6.3.3.3. Experiment 3 0.1h sampling and 10% random noise 154

6.3.3.4. Experiment 4 0.3h sampling and 10% random noise 158

6.3.3.5. Experiment 5 0.3h sampling and 20% random noise 162

6.3.4. The summary of results for the CHO cell culture model 166

6.4. Case study 4 - Ethanol production with Zymomonas mobilis model 169

6.4.1. Complexity analysis .. 170

6.4.1.1. PCA visualization .. 170

6.4.1.2. Sorted minimization .. 171

6.4.1.3. SOM analysis ... 171

6.4.2. Model hierarchy ... 177

6.4.3. Method comparison ... 180

6.4.4. The summary of results for the Zymomonas mobilis model 188

7. Conclusions ... 190

7.1. Complexity analysis ... 190

7.2. Proposed state substitution method ... 192

8. Future work .. 193

9. Appendix .. 194

10. References ... 201

ix

Figures

Figure 2.1 General structure of the parameter identification problem structure 6

Figure 2.2 Flowchart of gradient based optimisation ... 9

Figure 2.3 Objective function with single parameter value and gradient value versus

parameter .. 13

Figure 3.1 Example of Latin hyper cube sampling in 2d space, with X denoting each

sample and red square places that are unavailable to following samples. 26

Figure 3.2 The integral method flowchart .. 27

Figure 3.3 The derivative method flowchart .. 28

Figure 3.4 Typical data set of benchmark problem, without the noise 29

Figure 3.5 Comparison on biomass concentration model predictions, of different

sampling methods with benchmarking problem ... 31

Figure 3.6 Comparison on biomass concentration model predictions with 10%

screening and without ... 32

Figure 3.7 Comparison of model performance pre- and post-re-optimization 33

Figure 4.1 Error plot of the system (equation 4.1) ... 35

Figure 4.2 Example of unit vector addition .. 39

Figure 4.3 Error plot of Monod model first two principal components (PC's) 40

Figure 4.4 Left 2d SOM of Monod model (equation 4.2), colour coded based of model

error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.

Right 2d SOM with same colour code as left, but also showing relative distance in n-

dimensional plane represented as colour bar. ... 43

Figure 4.5 From top left: 1) n-dimensional plane represented in 2d SOM with relative

distances as colour bar. 2) Umax parameter variation within n-dimensional plane,

parameter values denoted in colour bar. 3) Ks parameter variation within n-dimensional

plane, parameter values denoted in colour bar. 4) q parameter variation within n-

dimensional plane, parameter values denoted in colour bar. 44

Figure 5.1 Example of an uneven sampling .. 50

Figure 5.2 Search space visualization of the example system (equation 5.1) which has

four parameters ... 51

Figure 5.3 Decoupled search space of the exampled system (equation 5.1) into three

separate sub-systems (equation 5.4) .. 52

Figure 5.4 Bipartite chart of the example system (equation 5.1) 54

Figure 5.5 Hierarchy of decoupled ODE’s for Monod model 54

x

Figure 5.6 Positive cross-correlation between each parameter map and overall error

map. .. 56

Figure 5.7 Negative cross-correlation between each parameter map and overall error

map. .. 57

Figure 6.1 PCA error plot for Polynomial model (6.1), with colour coded points for

convexity, where blue points are convex, red points are non-convex and green points

are failed integrations. Black x marks global optimum solution. 67

Figure 6.2 Polynomial model (6.1) thousand samples sorted optimization, where blue

is all samples and red are convex samples only (As this model is 100% convex all

samples and convex samples is same). ... 68

Figure 6.3 a) 2d SOM of Polynomial model (1), colour coded based of model error,

where green (L) is low error, blue (M) is medium error, and red (H) is high error. b) 2d

SOM with same colour code as a), but also showing relative distance in n-dimensional

plane represented as colour bar and separation of different colour within each cluster.

 .. 71

Figure 6.4 From top left: 1) n-dimensional plane represented in 2d SOM with relative

distances as colour bar. 2) - 21) x1 to x20 parameters with their respective variation

within n-dimensional plane, parameter values denoted in colour bar. 72

Figure 6.5 Positive cross-correlation between each parameter map and overall error

map. .. 73

Figure 6.6 Negative cross-correlation between each parameter map and overall error

map. .. 74

Figure 6.7 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.1h sampling and 5% random noise for

measured data. ... 79

Figure 6.8 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.1h sampling and 10% noise for measured

data. .. 83

Figure 6.9 Performance results for Derivate estimation, Latin hyper cube and proposed

state substitution methods, with 0.3h sampling and 5% noise for measured data. ... 87

Figure 6.10 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 10% noise for measured

data. .. 90

xi

Figure 6.11 Performance results for Derivate estimation, Latin hyper cube and

proposed state substitution methods, with 0.3h sampling and 20% noise for measured

data. .. 93

Figure 6.12 Summary of performance results for all three methods for polynomial

model .. 95

Figure 6.13 PCA error plot for Monod model (6.2), with colour coded points for

convexity, where blue points are convex, red points are non-convex and green points

are failed integrations. Black x marks global optimum solution. 97

Figure 6.14 Monod model (6.2) thousand samples sorted optimization, where blue is

all samples and red are convex samples only. .. 98

Figure 6.15 Left 2d SOM of Monod model (6.2), colour coded based of model error,

where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right

2d SOM with same colour code as left, but also showing relative distance in n-

dimensional plane represented as colour bar and number of individual members of

each cluster. .. 100

Figure 6.16 U-matrix represents N-dimensional plane as 2d SOM with relative

distances as colour bar, followed by each component n-dimensional plane of its value

distribution represented as colour bar ... 101

Figure 6.17 a) Positive cross-correlation between each parameter map and overall

error map. b) Negative cross-correlation between each parameter map and overall

error map. .. 102

Figure 6.18 Bipartite chart of the Monod model (6.2) .. 103

Figure 6.19 Hierarchy of the Monod model (6.2) ... 104

Figure 6.20 Performance results for Derivate estimation, Latin hyper cube and

proposed state substitution methods, with 0.1h sampling and 5% random noise for

measured data. ... 109

Figure 6.21 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.1h sampling and 10% random noise for

measured data. ... 112

Figure 6.22 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 5% random noise for

measured data. ... 115

Figure 6.23 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 10% random noise for

measured data. ... 118

xii

Figure 6.24 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 20% random noise for

measured data. ... 120

Figure 6.25 Summary of performance results for all three methods for Monod kinetics

model .. 123

Figure 6.26 Four reaction of CHO culture model .. 125

Figure 6.27 PCA error plot for CHO cell culture model (6.3), with colour coded points

for convexity, where blue points are convex, red points are non-convex and green

points are failed integrations. Black x marks global optimum solution. 126

Figure 6.28 PCA error plot for CHO cell culture model (6.3), with colour coded points

for convexity, where blue points are convex and red points are non-convex. Black x

marks global optimum solution. .. 127

Figure 6.29 CHO cell culture model (6.3) thousand samples sorted optimization, where

blue circles is all samples and red circles are convex samples only 128

Figure 6.30 Left 2d SOM of CHO cell culture model (6.3), colour coded based of model

error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.

Right 2d SOM with same colour code as left, but also showing relative distance in n-

dimensional plane represented as colour bar and number of individual members of

each cluster. ... 131

Figure 6.31 U-matrix represents N-dimensional plane as 2d SOM with relative

distances as colour bar, followed by each component n-dimensional plane of its value

distribution represented as colour bar. .. 132

Figure 6.32 a) Positive cross-correlation between each parameter map and overall

error map. b) Negative cross-correlation between each parameter map and overall

error map. ... 133

Figure 6.33 Hierarchy of the CHO cell culture model (6.3) 135

Figure 6.34 Bipartite chart of the CHO cell culture model (6.3) 136

Figure 6.35 Bar graph of connections of CHO culture bipartite chart 137

Figure 6.36 Performance results for Derivate estimation with 0.1h sampling and 5%

random noise for measured data. ... 144

Figure 6.37 Performance results for Latin hyper cube method with 0.1h sampling and

5% random noise for measured data. ... 147

Figure 6.38 Performance results for the proposed state substitution method with 0.1h

sampling and 5% random noise for measured data. ... 150

xiii

Figure 6.39 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 5% random noise for

measured data. ... 154

Figure 6.40 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.1h sampling and 10% random noise for

measured data. ... 158

Figure 6.41 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 10% random noise for

measured data. ... 162

Figure 6.42 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, with 0.3h sampling and 20% random noise for

measured data. ... 166

Figure 6.43 Summary of performance results for all three methods for CHO cell culture

model .. 168

Figure 6.44 PCA error plot for Zymomonas mobilis model (6.4), with colour coded

points for convexity, where blue points are convex, red points are non-convex and

green points are failed integrations. Black x marks global optimum solution. 170

Figure 6.45 Zymomonas mobilis model (6.4) thousand samples sorted optimization,

where blue circles are all samples. .. 171

Figure 6.46 Left 2d SOM of Zymomonas mobilis model (6.4), colour coded based of

model error, where green (L) is low error, blue (M) is medium error, and red (H) is high

error. Right 2d SOM with same colour code as left, but also showing relative distance

in n-dimensional plane represented as colour bar and number of individual members

of each cluster. .. 174

Figure 6.47 U-matrix represents N-dimensional plane as 2d SOM with relative

distances as colour bar, followed by each component n-dimensional plane of its value

distribution represented as colour bar. .. 175

Figure 6.48 a) Positive cross-correlation between each parameter map and overall

error map. b) Negative cross-correlation between each parameter map and overall

error map. .. 176

Figure 6.49 Hierarchy of the Zymomonas mobilis model (6.4) 177

Figure 6.50 Bipartite chart of the Zymomonas mobilis model (6.4) 178

Figure 6.51 Bar graph of connections of Zymomonas mobilis bipartite chart 179

xiv

Figure 6.52 Performance results for Derivate estimation, Latin hyper cube, and

proposed state substitution methods, for 10 different experimentally collected data

sets. .. 187

Figure 6.53 Summary of performance results for all three methods for Zymomonas

mobilis model .. 189

Tables

Table 2-1 Damping factors to be evaluated after each iteration 15

Table 3-1 Performance comparison of different sampling methods with benchmarking

problem ... 30

Table 3-2 Identified parameter values using different sampling techniques.............. 30

Table 3-3 Comparison of accuracy and computational time, with 10% screening and

without .. 31

Table 3-4 Identified parameter values using 10% screening and without it 31

Table 3-5 Comparison of model accuracy pre- and post-re-optimization for the

derivative method ... 32

Table 3-6 Comparison of the identified parameter values pre- and post-re-optimization

for the derivative method .. 32

Table 4-1 Example of two variables being heavily correlated 38

Table 5-1 Table of positive and negative mean matching factor of each parameter for

system .. 55

Table 5-2 Options used for ode45 solver .. 58

Table 5-3 Options table for sub-set solver lsqnonlin ... 60

Table 6-1 Table of positive and negative mean matching factor of each parameter for

system (6.1) .. 70

Table 6-2 Summary of modelling conditions for system (6.1) 75

Table 6-3 Parameter search space for system (6.1) ... 75

Table 6-4 Computational time of all three method for experiment 1. 76

Table 6-5 Squared error values of each method and each data set for experiment 1

 .. 76

Table 6-6 Summary of identified parameter values for each method for experiment 1

 .. 77

Table 6-7 Computational time of all three method for experiment 2 80

Table 6-8 Squared error values of each method and each data set for experiment 2

 .. 80

xv

Table 6-9 Summary of identified parameter values for each method for experiment 2

 .. 81

Table 6-10 Computational time of all three method for experiment 3. 83

Table 6-11 Squared error values of each method and each data set for experiment 3

 .. 84

Table 6-12 Summary of identified parameter values for each method for experiment 3.

 .. 85

Table 6-13 Computational time of all three method for experiment 4. 87

Table 6-14 Squared error values of each method and each data set for experiment 4

 .. 87

Table 6-15 Summary of identified parameter values for each method for experiment 4.

 .. 88

Table 6-16 Computational time of all three method for experiment 4 90

Table 6-17 Squared error values of each method and each data set for experiment 4

 .. 91

Table 6-18 Summary of identified parameter values for each method for experiment 4.

 .. 91

Table 6-19 Table of positive and negative mean matching factor of each parameter for

system (6.2) ... 99

Table 6-20 Summary of modelling conditions for the system (6.2) 105

Table 6-21 Parameter search space for the system (6.2) 105

Table 6-22 Computational time of all three method for experiment 1 105

Table 6-23 Squared error values of each method and each data set for experiment 1

 .. 106

Table 6-24 Summary of identified parameter values for each method for experiment 1

 .. 106

Table 6-25 Computational time of all three method for experiment 2 110

Table 6-26 Squared error values of each method and each data set for experiment 2

 .. 110

Table 6-27 Summary of identified parameter values for each method for experiment

 .. 111

Table 6-28 Computational time of all three method for experiment 3 113

Table 6-29 Squared error values of each method and each data set for experiment 3

 .. 113

xvi

Table 6-30 Summary of identified parameter values for each method for experiment 3

 .. 114

Table 6-31 Computational time of all three method for experiment 4 116

Table 6-32 Squared error values of each method and each data set for experiment 4

 .. 116

Table 6-33 Summary of identified parameter values for each method for experiment 4

 .. 116

Table 6-34 Computational time of all three method for experiment 5 118

Table 6-35 Squared error values of each method and each data set for experiment 5

 .. 119

Table 6-36 Summary of identified parameter values for each method for experiment 5

 .. 119

Table 6-37 Table of positive and negative mean matching factor of each parameter for

system (6.3) .. 130

Table 6-38 Summary of modelling conditions for the system (5.3) 138

Table 6-39 Parameter search space for the system (6.2) 139

Table 6-40 Computational time of all three methods for experiment 1 140

Table 6-41 Squared error values of each method and each data set for experiment 1

 .. 140

Table 6-42 Summary of identified parameter values for each method for experiment 1

 .. 141

Table 6-43 Computational time of all three method for experiment 2 151

Table 6-44 Squared error values of each method and each data set for experiment 2

 .. 151

Table 6-45 Summary of identified parameter values for each method for experiment 2

 .. 152

Table 6-46 Computational time of all three method for experiment 3 154

Table 6-47 Squared error values of each method and each data set for experiment 3

 .. 155

Table 6-48 Summary of identified parameter values for each method for experiment 3

 .. 156

Table 6-49 Computational time of all three method for experiment 4 158

Table 6-50 Squared error values of each method and each data set for experiment 4

 .. 159

xvii

Table 6-51 Summary of identified parameter values for each method for experiment 4

 .. 160

Table 6-52 Computational time of all three method for experiment 5 162

Table 6-53 Squared error values of each method and each data set for experiment 5

 .. 163

Table 6-54 Summary of identified parameter values for each method for experiment 5

 .. 164

Table 6-55 Table of positive and negative mean matching factor of each parameter for

system (6.4) ... 173

Table 6-56 Computational time of all three methods ... 180

Table 6-57 Squared error values for each method and each data set 181

Table 6-58 Summary of identified parameter values for each method 182

1

1. Introduction

To be able to understand behaviour of any system, we perform experiments and record

measurements, which then need to be interpreted to create knowledge about the

system. Across fields, research has produced and produces knowledge in different

types and forms and at varying levels of detail and scale, leaving a segregated and

distributed vast of knowledge sources. Condensing knowledge into underlining

controlling mechanics allows us to construct model of the systems, which can predict

behaviour of these systems. In addition, the evolution in analytic techniques has

tremendously increased the number of quantities that can be measured, particularly in

the life science. The rise of the “system” research fields, which seek to combine

knowledge into an integrated and coherent whole, was a consequent development that

could be observed over the last decades, e.g., process system engineering, systems

biology, or systems medicine. In all those “systems” fields methods are developed and

sought that can help to integrate the different knowledge sources to faithfully describe

the system (Wellstead 2008; Wolkenhauer 2014; Zhao 2012). These models consist

of states that we can measure and of the parameters that influence this system. Within

each individual system only the states vary with time, and all parameters are constant.

However, if same model would be applied to similar system, which has same

underlining mechanics, but different set-up this will lead to different parameter values,

which are unique to the system in question. Development of such parametric models

is very time consuming, as it involves performing large number of experiments, and

vast amount of data to be condensed into underlining equations of the model. Which

is why it is not reasonably possible to create unique model for every system, and

generic model are used to predict behaviour of the similar systems. To be able to use

generic models, parameters of the system need to be identified, such that it represents

the system accurately.

As an alternative to parametric models that are time consuming to make, non-

parametric models, which derivate their predictions of the system directly from data.

Although this approach is less time consuming and can provide model that are

accurate for specific application, they do not create any underlining understanding

about how system behaves. It is simply a data driven analysis connecting, input

variables to output variables. Also, non - parametric model accuracy is highly

dependent on accuracy of the data used to create them, and these models are not

transferable between similar systems.

2

Another alternative is to use a hybrid model, which are combination of parametric

model and non-parametric model. This type of models allows us to use parametric

parts of the model which we have knowledge off and use non-parametric parts of the

model where we do not have enough knowledge about underlining mechanics of the

system. Although hybrid model cuts of some of the parameters that need to be

identified, the parametric part can be still complex with large search space leading to

long computational time to identify the parameters.

This large amount of measured data leads to construction of larger and more accurate

models, that become more complex each day. This development cycle is hindered by

parameter identification step, as such large and complex models take extremely long

time to solve due to sheer size of the search space.

Any model that has a parametric part, will always require a parameter identification

step before it can be used, for system prediction purposes. If this parameter

identification step if very time consuming it effect the ability to improve the models and

use them for practical applications.

To be able to practically use these complex models, we require a method that would,

cut on time required to identify the parameter within the system. If a methodology would

exist that allowed to decouple the identification problems whenever possible, this

would decrease the search space for the identification algorithm. Then parameter

identification in large-scale complex systems would become solvable with current

parameter identification techniques.

1.1. Aims

Aim of this thesis is to introduce a novel parameter identification method, which would

allow to solve complex systems faster than current state of art methods. As this new

proposed state substitution method is only suited for solving large and complex

systems, it will perform worse than state of art methods when solving simpler systems.

Therefore, a secondary aim of this thesis is to construct a way of quantifying the

complexity of the system, which would help to decide what kind of parameter

identification strategy should be used to solve the system within reasonable time and

high accuracy.

3

1.2. Objectives

• Select state of art methods to be compared with the proposed state substitution

method (Chapters 2 and 3)

• Construct complexity analysis (Chapter 4)

• Construct novel parameter identification method (Chapter 5)

• Compare the proposed state substitution method with state of art methods, with

multiple cases studies (Chapter 6)

• Define boundaries where the proposed state substitution method performs

better and where it does not (Chapter 7)

4

2. Literature review

This literature review discusses the importance and need for accurate and fast

parameter identification techniques. Potential methods are separated into three

categories a) gradient-based algorithms b) stochastic algorithms c) other algorithms.

All categories are compared, and gradient based algorithms are selected as best

option due ease of use, which is are highly important criteria for industry. Selected

category of gradient based algorithms is explored in-depth. Gradient based algorithms

can be broken down into several steps: a) objective function construction b) optimality

conditions c) parameter changes. Each of these steps are discussed focusing the on

the most commonly used techniques within each step. Moreover, gradient based

algorithms can only optimise towards closest local minimum making them, not useful

on their own, for optimisation where cost function have multiple local minima. As cost

function defines a value of error between model and the measured data, by following

the gradient it is only possible to reach closest solution to starting location, which may

not be global solution. To reach the global minimum, amongst the multiple local

minima, a global solver should be used instead of a local optimiser. To see which of

the global solvers can be used as a state of art method, with local gradient-based

solver - five global solvers are explored. The five chosen solvers are all present in the

MATLAB optimization toolbox. For each global solver, the working principals are

explained, and then they are evaluated using four criteria: a) speed – based on

computational time b) complexity – based on how simple it is to use c) accuracy –

based of how accurate the final model is d) stability – based on how replicable the

results are. This is used to explain why global search optimization will be used for the

derivative method and multi-start optimization used for the iterative method in later

chapters. Furthermore, the literature review serves as basis, to explain why the

derivative and iterative approaches, were chosen as two state of art parameter

identification methods to be compared with the proposed new method of parameter

estimation.

5

2.1. Introduction

Parameter identification is a problem where a user tries to find parameters values for

provided generic model, to produce a model with accurate prediction capabilities for a

specific application. Model is considered accurate, when it matches already measured

data, and can make predictions of how system will develop in the future. Process of

solving parameter identification problem normally starts with having a generic model

consisting of first order ordinary differential equations. This generic model has

condensed knowledge of similar system behaviour, that are only differentiated by the

parameter values. Each of these equations may have multiple parameters, where

specific numerical values would produce best fit to current measurements, enabling a

user to use model for future predictions. Only over determined problems can be solved

analytically as they provide more equations than unknowns. Unfortunately, normally

these problems cannot be solved analytically because number of unknowns is larger

than number of equations. Such problems are under determined, making it impossible

to find a singular unique parameter values that satisfies the equation. For this reason,

parameter identification algorithms have been developed to tackle this kind of problem.

It tackles this problem iteratively, making each iteration more accurate than the

previous one.

The ability to identify the parameters of models of complex large-scale (bio) chemical

systems is critical in order to develop an understanding of a system as well as to use

the model as a basis for process control or process optimization. Applications of such

knowledge can be found in “Quality by design” approach, which is widely used by FDA

(Food and drugs administration). Such design philosophy creates better products but

requires firm knowledge about the system. (Riley and Li 2011; Yu and Woodcock 2015)

Established methods of parameter identification normally simultaneously solve the

entire set of nonlinear ordinary differential equations (ODEs) that describe the system

to determine the model parameters. In order to solve them, ODEs are integrated, and

the optimisation problem is set based on the model prediction and measured data

difference, which then can be minimised. Figure 2.1, shows general structure of how

measured data is used to calculate parameter values for specific application, using

generic model.

6

Figure 2.1 General structure of the parameter identification problem structure

Generic optimization methods can be separated into three categories: a) gradient

based algorithms b) stochastic search algorithms c) other algorithms (Chou and Voit

2009).

Gradient based algorithms seem like a natural choice as optimisation problem are

constructed in terms of cost functions that need to be minimised. This is achieved using

gradient based regression and it is included in all major software’s. Stochastic search

algorithms consist of methods that are used for global optimization. Such algorithms

as genetic algorithms, simulated annealing, and clustering methods. These methods

are fit for purpose of finding global optimum in highly non-linear systems but require

additional computational time to converge to a solution. Other algorithms consist of

approaches that try to reduce the parameter search space or reduce risk of method

getting stuck in local minima. These methods are hard to implement and are system

specific. Such algorithms consist of Alternating regression and geometric

programming.

Companies prefer to use easy to apply and fast algorithms for their kinetic analysis of

systems (Steijns 1997). This makes gradient based algorithms the preferred options,

as stochastic search algorithms, such as genetic algorithms (Y. Maki and Tominaga

7

2001), are slow and hard to implement (Kikuchi et al. 2003), and other methods that

don't fit within the first two groups like geometric programming are normally hard to

implement (Marin-Sanguino et al. 2007). For these reasons gradient based optimizers

are included in all major software packages (Chou and Voit 2009).

Most gradient based parameter identification techniques can be separated into integral

and derivative approaches. The derivative approach normally proceeds by estimating

derivatives to approximate the change per unit time for a set of ODEs (Froment and

Bischoff 1990; Holland and Rayford 1989). When approximating derivatives, you

develop a set of algebraic equations for each state, which normally can be solved

relatively fast because a numerical integrator is not used. However this method often

results in sub-optimal parameter values (Willis and Stosch 2016; Yeow et al. 2003).

This is caused by errors in measurements, which are amplified when estimating

derivatives which can lead to inaccurate parameter values. This means that problem

must be normalised, making it only suitable for rich data environments.

On the other hand, the integral approach can be used if a system can be written as a

scalar differential equation of higher order. When combined with a measured data set

an error model can be produced by creating a least squares cost function to estimate

the parameters simultaneously (Voss and Timmers 2004). This has been done for

several different approaches of the least square’s method (Aguirre and Billings 1995;

Breeden and Hubler 1990; Cremers and Hubler 1987; Crutchfield and McNamara

1987; Gouesbet 1991; Hegger 1998; Kadtke et al. 1993). These attempts achieved

varying degree of success, but they all suffer from same problems: a) poor noise

robustness – it has been shown that these approaches work well for small noise levels,

but lead to inaccurate parameter values when noise levels are increased (Timmer J

2000) b) different size errors in variables – if not taken into account lead to biased and

inaccurate parameter values (Voss and Timmers 2004) if non-sensitive variables are

part of ODE equation that has larger error impact than the other ODEs within the

system, optimizers would try to adjust those parameters in exchange for accuracy of

sensitive variables within ODEs with lower noise c) these methods are all parametric

and require full and accurate structure of the system.

Although, these techniques can work well, (taking into account points a, b and c

mentioned above) they can be relatively slow, because for larger systems the solution

space rapidly grows (Bardow and Marquardt 2004).

8

Both the integral and derivative methods can be improved by using multithreading,

adding assessment of noise, using scaling variances. (Raue et al. 2013).

Multithreading can be beneficial to any iterative algorithm as it can run multiple

integration loops in parallel, reducing total computational time. However, this require

that software and hardware would be compatible for such use. Assessment of noise

can help to improve algorithms accuracy, as noise can be minimized in post-

processing of the data. However, this requires having a prior knowledge of noise level,

cause, and behaviour. Scaling variances enables algorithm to consider smaller

variance of states which do not have high measured values. All these techniques

increase the performance of the method but do not alter the method itself. This work

will not focus on supportive algorithms that can improve performance of a method,

because these supportive algorithms can be applied to most of optimization techniques

regardless of a chosen method.

The method proposed in this work will be compared to one existing integral method

and one existing derivative method. It is generally agreed that the current best integral

method for identifying parameters is multi-start search with Latin hypercube sampling

providing the initial conditions (Degasperi et al. 2017; Raue et al. 2013). This provides

a best compromise between accuracy and computational time. As for the derivative

method, derivative estimation at each point will be applied and compared with

calculated derivatives, creating a network of simple algebraic equations that can be

optimised, for the parameter values (D.I. Kamenski and Dimitrov 1993). This method

is chosen for it's simple application and fast computational time, as these two criteria

are desired by industry (Steijns 1997).

The following literature review will describe different gradient-based optimization

algorithms that can be used with the integral and derivative approaches. The literature

review will also cover the advantages and disadvantages of the proposed state

substitution method in comparison with existing integral and derivative approaches.

9

2.2. Gradient based optimisation

Optimization algorithms are central to both the integral and derivative approaches, as

they are used to calculate the unknown model parameters. Although the derivative

and integral approaches use gradient based optimisation to find parameter numeric

values, they reach different results. This makes them easily comparable side by side,

as all differences in performance must come for their different approach strategies.

Gradient based optimizers can have many different forms including but not limited to:

a) non-linear regression (Nigel 1995) b) Levenberg-Marquardt algorithm (Simeone

2006) c) Newton flow optimization (Kutalik et al. 2007). Each of these variations have

the same general structure (See the flowchart figure 2.2).

Figure 2.2 Flowchart of gradient based optimisation

This iterative procedure is repeated until the optimality conditions are satisfied and a

satisfactory solution is obtained. Which is defined by some convergence criteria or

tolerance being specified

2.2.1. Objective function

When constructing the objective function, to represent the error between measured

data and model prediction. The most important thing is to be make sure that error

provided, represent the model’s validity the best. Most commonly this is represented

by the sum of Euclidean distances between, measured data and model predicted data.

Moreover, usually two different data sets are used for satisfactory identification,

because a single data set, can be fitted with arbitrary parameters to produce good fit,

10

without making the model useful for other predictions. This results in two objective

functions of each data set, to form the final error value. Individual objective functions

can be modified to best represent the system depending of the needs. Three most

common techniques are:

a) Weighting: If the system consists of several species or states that are

observed such as biomass, substrates, products, etc. That can be

described as individual ODE's, the weighting of each ODEs error can

improve the objective function representation of model performance. A

higher weighting factor should be allocated to states that are less

sensitive to parameter changes, this ensures that small changes created

by important parameters are more easily observed in overall objective

function. Unfortunately, there is no formal procedure to decide what

weighting values should be allocated to each state to obtain best results.

These values are usually derived from previous knowledge about the

system and experimentation with different setups. Equation 2.1 shows

example of cost function with weighting incorporated. 𝐽 is for cost

function value, 𝑤𝑖 for weighting values for i state, 𝑋𝑖𝑗 measured value of

i state at j time point, 𝑋̂𝑖𝑗 model prediction value of i state at j time point.

𝐽 = 𝑤𝑖∑|(𝑋𝑖𝑗 − 𝑋̂𝑖𝑗)|

𝑛

𝑖=1

 2.1

b) Normalization: If different state measurements are an order of

magnitude different, it is good idea to normalise, all measurement and

model predicted data, to avoid disproportional error representation. For

example, if biomass concentration measurements are in the range of 0

to 1, and substrate concentration measurements are in the range 0 to

100. Ten percent error in both of these measurements would be

maximum of 0.1 and 10. If the objective function is not normalised then

the same relative size mismatch in substrate will perceived by algorithm

as hundred times worse, then in biomass. To avoid this normalisation is

performed by dividing all measurements of each state with the maximum

value, of each measurement set. This "rescales" all measurements and

11

predicted data to the scale 0 to 1. Equation 2.2 shows example of cost

function with normalization incorporated. 𝐽 is for cost function value, 𝑋𝑖𝑗

measured value of i state at j time point, 𝑋̂𝑖𝑗 model prediction value of i

state at j time point.

𝐽 =∑|(
𝑋𝑖𝑗 − 𝑋̂𝑖𝑗

max⁡(𝑋𝑖𝑗)
)|

𝑛

𝑖=1

 2.2

c) Squaring: As a model of a system is normally not perfect, one hundred

percent accurate predictions are not possible, nevertheless for practical

applications one hundred percent accuracy is not needed and small

deviations are acceptable, if general trend is accurate. To promote

algorithm to avoid large error and ignore small ones, squaring of error

may be performed. This has an effect where a large error between the

measurement and model predictions, becomes even bigger and very

small errors gets even smaller. Equation 2.3 shows example of cost

function with squaring incorporated. 𝐽 is for cost function value, 𝑋𝑖𝑗

measured value of i state at j time point, 𝑋̂𝑖𝑗 model prediction value of i

state at j time point.

𝐽 =∑(𝑋𝑖𝑗 − 𝑋̂𝑖𝑗)
2

𝑛

𝑖=1

 2.3

2.2.2. Optimality of numerical optimisation algorithms

Optimality refers to conditions chosen, that determinate if the current solution is

satisfactory or if optimization should continue. Optimality can consist of single or

multiple conditions. With multiple conditions, it usually enough to satisfy one of them.

Optimality conditions should be chosen to be strict enough to produce accurate

parameter values, but flexible enough to make it possible to reach the solution. The

best optimality conditions are very system specific and could vary a lot from application

to application. Four most common optimality conditions are:

a) Tolerance: Is a value, that is compared with objective function after each

iteration. If objective function is lower than, the tolerance value optimality is

12

reached. Increasing tolerance, makes optimization faster and easier in

exchange for lower accuracy of the model prediction. Equation 2.4 example of

tolerance optimality condition, where 𝐽 is cost function value and 𝜀 is value of

tolerance.

|𝐽| ≤ ⁡𝜀 2.4

b) Step tolerance: Is a value, that is compared with a difference between the

current iteration objective function value and the previous one after each

iteration. If the difference between the current and previous iterations objective

function values is lower than the step tolerance value optimality is reached. Step

tolerance allows the optimization algorithm to reach its local minimum without

knowing the value of objective function at the minimum. This is most commonly

used optimality condition of numerical optimization algorithms. Equation 2.5

example of step tolerance optimality condition, where 𝐽 is cost function value, n

current iteration number and 𝜀 is value of step tolerance.

|𝐽𝑛−1 − 𝐽𝑛| ≤ ⁡𝜀 2.5

c) The number of iterations: Is an optimality condition that stops, the optimization

algorithm after certain number of iterations. This optimality condition is usually

set to high number and is a safeguard, that prevents algorithm from getting stuck

in infinite loop. Equation 2.6 example of the number of iteration optimality

condition, where 𝑛 is current number of iterations, and 𝜀 is value of the number

of iterations.

𝑛 = ⁡𝜀 2.6

d) The time of iteration: Is an optimality condition that stops, optimization after

certain time has passed. Similarity to the number of iterations optimality

condition, it is used most of the time as safeguard against infinite loops. It is also

useful for optimization with very wide search spaces, to ensure algorithm does

not spend too much time optimizing each set. Equation 2.7 example of the time

13

of iteration optimality condition, where 𝑛𝑡 is current length of the iteration, and 𝜀

is value of the time of iteration.

𝑛𝑡 = ⁡𝜀 2.7

2.2.3. Parameter change

The core of gradient based optimization algorithms is how the algorithm within each

iteration decides to adjust the parameter values. This step determines how fast and

accurate the overall optimization algorithm will be. Parameter values are changed

based on the gradient of cost function with respect to each parameter. Within the

system as it represents if parameter value gets closer or further from a local minimum.

This can be easily visualized with a simple parabolic curve with a single parameter (fig

2.3). If we follow parameter value from -100 to 0, we can see that function value

decreases, and the gradient value increases. Negative gradient means we are

approaching local optimum and positive gradient means we are moving away from the

local optimum; zero gradient is at a local optimum.

Figure 2.3 Objective function with single parameter value and gradient value versus parameter

14

This simple visualization is improved upon in the actual implementation of gradient

based optimization algorithms in order to deal with multiple parameters and multiple

functions. The two most common algorithms are the Gauss-Newton algorithm and the

Levenberg-Marquardt algorithm. Both methods can be used to solve non-linear

optimization problems which is most common type of optimization problems.

The Gauss-Newton algorithm (GNA) is derivation of Newton–Raphson method, but

has the advantage of not needing second order derivatives of the system, which can

be hard to obtain (Mittelhammer 2000). The Gauss-Newton method can minimize the

summed squared error of multiple variables and functions at the same time. Starting

with the provided initial conditions x(0), the algorithm creates next iteration parameter

set by applying (Equation 2.8), Jr within the equation represents the first order partial

derivatives and is also known as the Jacobian matrix. If y (function) and x (parameters)

are column vectors the Jacobian matrix can be written as (Equation 2.9). In case

number of evaluated functions and number of estimated parameters are equal Gauss-

Newton method can be simplified (Equation 2.10). Although method works well with

one unique solution it can become unstable, while trying to optimize system with

multiple solutions, or multiple local minimums (Mascarenhas 2013). For this reason,

Gauss-Newton algorithm will not be used in this work.

𝑥(𝑡 + 1) = ⁡𝑥(𝑡) − (𝐽𝑟𝑇𝐽𝑟)−1𝐽𝑟𝑇𝑦(𝑥(𝑡))

2.8

(𝐽𝑟)𝑖𝑗 =
𝜕𝑦𝑖(𝑥(𝑡))

𝜕𝑥𝑗
 2.9

𝑥(𝑡 + 1) = ⁡𝑥(𝑡) − 𝐽𝑟−1𝑦(𝑥(𝑡))

2.10

The Levenber-Marquardt algorithm(LMA) was first published in 1944 (Levenberg

1944). The LMA is an improvement to the GNA, by increasing robustness, but slightly

increasing computational time. The LMA modifies (Equation 2.8), by introducing a

damping factor λ, and rearranging the equation to calculate a change in parameter

values instead of the new parameter values (Equation 2.11). The damping factor is

adjusted each iteration, based on the change in objective function value. If the change

in the objective function is sufficient the damping factor is reduced, which brings it

closer to the GNA, but if the change in objective function is not sufficient the damping

factor is increased bringing it closer to pure gradient descent.

15

𝑥(𝑡 + 1) − 𝑥(𝑡) = ⁡−(𝐽𝑟𝑇𝐽𝑟 + 𝜆𝐼)−1𝐽𝑟𝑇𝑦(𝑥(𝑡)) 2.11

The strategy of adjusting the damping factor can be different, which will provide

different speeds of optimization and accuracy. A common way of adjusting the

damping factor within the LMA optimization is to set an initial damping factor value (λ0)

and velocity value (v). The velocity value must be higher than 1 (v > 1). After each

iteration multiple new damping factors are calculated (table 2.1). The objective function

is computed with each damping factor and the damping factor that produces the lowest

function value, is set as the new λ. It should be noted that velocity value (v) stays the

same with each iteration. The absolute values of v and λ are based on the scale of the

objective function.

Possible damping factors

λ = λ0 λ = λ0/v λ = λ0vj, j = 1,2,3...

Table 2-1 Damping factors to be evaluated after each iteration

As mentioned before, this type of LMA will lead to more robust solutions in exchange

for a slight increase to computational time, when compared with GNA. To improve LMA

computational time Geodesic acceleration can be used. Instead of only adjusting

parameters, based on the first order derivatives, second order derivatives can be

incorporated to adjust the parameter change at each iteration. It only requires the

single directional second derivative, which does not add a large amount of

computational time, but improves convergence significantly (Mark K 2012). The

parameter change is then defined by velocity (first order) and acceleration (second

order) (Equation 2.12). The first order change is estimated as explained above while

the second order directional derivative (Equation 2.13) can be estimated using finite

difference approximation. By using finite difference approximation only one additional

function evaluation f(x+hδ) needs to be done, as the Jr matrix and f(x) is already

computed in the previous step (Equation 2.14). This requires selecting an arbitrary step

(h) value. It was reported that a value of 0.1 works well for most cases (Mark K 2012).

Lastly, to accept this modified parameter change it must satisfy condition (Equation

2.15), if not it is rejected and the unmodified change of velocity (𝛥𝑥1) is selected. The

value of α can be selected to be anything below 1, but it is suggested to use 0.75 for

most cases and 0.1 for difficult problems (Mark K 2012).

16

𝛥𝑥 = ⁡𝛥𝑥1 + 𝛥𝑥2 = 𝑣𝛿𝑡 +
1

2
𝑎𝛿𝑡2 2.12

𝛥𝑥2 =⁡−
1

2
(𝐽𝑟𝑇𝐽𝑟 + 𝜆𝐼)−1𝐽𝑟𝑇𝑦(𝑥(𝑡))

𝑛
 2.13

𝑦(𝑥(𝑡))
𝑛
≈
2

ℎ
(
f(x + hδ) − f(x)

ℎ
− 𝐽𝛥𝑥1) 2.14

2|𝛥𝑥2|

|𝛥𝑥1|
≤ 𝛼 2.15

Combined with improvements, LMA outperforms GNA in every aspect, which is why

LMA was chosen as the algorithm for gradient based optimization in this work.

2.3. Global solver

Gradient based optimization on its own can only find local minimum. If a problem has

multiple local minimums, only the closest local minimum to the initial conditions will be

found. To work around this issue a global solver strategy needs to be used. There are

many global solvers, but we will focus only on the ones MATLAB provides, as it is the

software used to develop the proposed new method and compare it to the state-of-the-

art methods. MATLAB offers five different global solvers (MATLAB documentation) a)

Pattern search (Charles Audet; J. E. Dennis 2002) b) Particle swarm (James Kenedy

1995) c) Genetic algorithm (Goldberg 1989) d) Surrogate optimization (Gutmann 2001)

e) Global search (Ugray 2007).

a) The pattern search algorithm works, by creating several separate groups

of potential solution around the initial point and evaluating the objective

function at each of these points. These groups are called pooling. For

example, if the objective function has two parameters, the pattern search

algorithm would create four new parameter sets and evaluate the change

of the objective function with parameters in all four cardinal directions.

The size of change for these parameters is called a mesh, which is

doubled on successful pooling and halved on unsuccessful pooling by

default. Pooling is considered to be successful when at least one of the

newly defined parameter sets produces a lower objective function value,

than the previous iteration. On successful pooling the parameter set with

lowest objective function value is considered to be the new initial point

for the next iteration, in case of unsuccessful pooling the initial point is

17

not changed, only the mesh size is adjusted. Pattern search is robust to

discontinuities in the objective function, as such solutions would be

simply ignored. However, this approach does not guarantee that a global

optimum will be found, but may avoid some local minimums, in which

simple gradient-based approach would get stuck to. This method is

usually fast, but not extremely accurate. In one of the examples when it

is compared to genetic algorithm (Michael Wetter 2003), it is showed that

two out of three cases accuracy of the method was lower than GA. It is

stated that although pattern search is global optimiser it can be attracted

to a local minimum, which make it difficult to bypass discontinuities or

local minima, that are between starting position and global optimum.

b) The particle swarm algorithm works by searching a bounded parameter

space without needing to have an initial starting point. The algorithm

initializes an array of random parameters values known as 'particles'

within a bounded region. For each iteration the particle swarm algorithm,

generates a random velocity vector for each particle, then moves a

particle to a new location based on its own unique velocity vector and

estimates the objective function value at each of these locations. The

position with the lowest objective function is considered to be the new

position of that particle. After a new position is found a particles velocity

vector is adjusted based on certain criteria such as: previous velocity,

distance between previous and new location and distance between other

particles. This process is repeated for each particle. Particle swarm has

a high success rate of finding global minimum, as the number of

evaluated functions is significantly higher than e.g., pattern search. This

comes at a cost of increased computational time. Particle swarm is a

stochastic algorithm, which means it will not yield same results for every

optimisation run. Particle swarm can be applied as parameter

identification algorithm, but it is not popular option. Only 2.8% of

published paper until 2007 about particle swarm, were used for modelling

applications. (Poli et al. 2007). Although its popularity rise it does not

seem as go-to robust method for parameter optimisation currently.

18

c) A genetic algorithm is another stochastic method that is based on real

life evolution. The method is initialized by a provided random or pre-

selected population of samples. Each of the samples are evaluated using

the objective function and are ranked based on their score. Lower

objective function values provide higher score. A certain percentage of

population with the best scores are selected to create the next iteration

population - to be 'parents'. From the parents next iteration population is

most commonly created in three ways. First a very small number of 'elite'

samples are selected to be part of next iteration population. ‘Elite’

samples are the ones with best score values. A common value for 'elite'

is 1% of the selected 'parent' samples. Second the rest of the 'parent'

population is randomly selected for one of the two method, which are

mutation and crossover. During mutation, a single random parent is

chosen, and its parameter values are randomly adjusted, this creates a

'child' for next iteration population. During crossover two random parents

are selected and by combining their parameter values a 'child' for next

iteration is made. Crossover and mutation are repeated till a new

population reaches the size of the initial population. Once a new

population is ready, the same process is repeated. A genetic algorithm

has a near 100% probability to reach global minimum if given enough

time, however the sheer number of evaluations and iterations needed to

reach good solution increases computational time exponentially. Genetic

algorithms can be successfully applied to variety of problems from

energy usage optimisation (Leonori et al. 2020; Salata et al. 2020), to

optimising PID controllers (Abadlia et al. 2020). Each of these cases

does not go into detail of computational demand for these optimisations,

as this is not the focus of the study, but it is safe to assume computational

time is high, due to how genetic algorithm are executed. Furthermore,

application for genetic algorithm typically are the ones that value high

accuracy of optimisation and does not have time constraints.

d) Surrogate optimization operates with two main steps, construction of a

surrogate model and search for the minimum. During construction of the

surrogate model quasi-random parameter sets are created. If any initial

parameters are defined, they are used together with quasi-random

19

parameter sets. Each of the sets are evaluated using an objective

function to provide the value to each parameter set. After evaluation the

objective function values of each set are interpolated using (a / the) radial

basis function (Powell 1992) to create surrogate model of the objective

function. Then the incumbent point is found – which is the lowest

objective function value from given parameter sets. Once the surrogate

model is constructed and the incumbent point found the algorithm moves

to search for a minimum. Search starts around the incumbent point, by

using a set 'scale' value and the algorithm determines the range of search

around the incumbent point. Within this range of search thousands of

pseudo-random vectors are created and applied to the incumbent point

to find an array of new sample points. Each sample points are evaluated

with the merit function, which is a combination of surrogate values and

distance values (Equation 2.16-18). Increasing weight (w) within the

merit function increases the rewards for the algorithm to search close to

incumbent point, where lowering weight (w) value encourages algorithm

to search further from incumbent point revealing new regions. The

parameter set with lowest merit function value is evaluated with the

objective function and the surrogate model is updated by adding newly

acquired value. If addition of a new value, changes the incumbent point,

search is considered successful. After multiple consecutive successful

searches, the scale of search is increased, similarly after multiple

consecutive unsuccessful searches the scale of search is decreased.

This ends a single iteration. By default, the stopping criteria for surrogate

optimization is the number of iterations which must be defined, prior to

start of optimization. This might lead to the algorithm not reaching the

global optimum due to insufficient number of iterations, or running much

longer than needed, after the global optimum is found.

𝑓𝑚𝑒𝑟𝑖𝑡(𝑥) = ⁡𝑤𝑆(𝑥) + (1 − 𝑤)𝐷(𝑥) 2.16

𝐷(𝑥) = ⁡
𝑑𝑚𝑎𝑥 − 𝑑(𝑥)

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 2.17

𝑆(𝑥) = ⁡
𝑠(𝑥) − 𝑠𝑚𝑖𝑛
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

 2.18

20

d(x) is distance between sampled points and s(x) is surrogate function value of

samples points. Surrogate optimisation while useful according to (Lu et al.

2020), can struggle to optimise parameters when possible parameter

boundaries are too large.

e) Global Search or multi start algorithms work similarly but have some

differences. Key differences are that global search rejects start points

that are unlikely to improve, current best local minimum, whereas the

multi start optimizes all start points. Multi start allows multiple local

solvers, whereas global search does not. Furthermore, multi start can run

in parallel. Global search starts with taking the provided initial conditions

and a running local optimization solver and if the initial start point cannot

converge to a solution the algorithm cannot continue. Once convergence

is reached the algorithm records, the start position, end position and

radius of estimated basin between those two positions. Furthermore, the

final objective function value is recorded to be used in a score function

later on. The score function consists of the objective function and a

multiple of the sum of the constraint violations, this way viable points

score function equal to their objective function value. After initial local

optimization the algorithm generates a trial point by using non

symmetrical scatter (Glover 1998). These trial points are potential

starting points for the next step. To obtain a stage 1 start points, a fraction

of trial points are selected to be evaluated for their score function. The

trial point with best score function is selected to be locally optimized, and

similar to initial start values, its start position, end position and radius of

estimated basin between those two positions is recorded. After stage 1

start point evaluation, the algorithm moves on to stage 2 evaluation,

where the rest of trial points, selected previously, are locally optimised if

they fit the following criteria: a) the selected position is not in any existing

basin b) the position score value is below a local solver threshold. If the

trial point satisfies these conditions, it is locally optimised, and the newly

created basin is added to the list together with adjusted threshold value.

This process is repeated till no trial points are left. All solutions create a

global solution vector, where all samples are ranked based on their

objective function value and lowest value is chosen as final solution.

21

In comparison multi start approach is simpler in comparison. At the start of the

algorithm, multi start generates randomly equally distributed parameter sets

within specified boundaries. The number of generated start points has to be

manually selected, and the algorithm use the provided start points first and will

generate any additional sets if needed. After having required number of starting

points each point is locally optimized and solutions are stored into a global

solution vector, which is ranked in descending order based on the objective

function. The best solution is selected which managed to achieve lowest

objective function. Both of these methods are commonly used in global

optimization as they are computationally efficient to reach desirable solution.

Each of these solvers can be used for global optimization, but all of them have their

own advantages and disadvantages. There are four main criteria we can look at when

selecting a global solver: a) speed b) complexity c) accuracy d) stability. Speed of the

solver is important as fast solvers can be adjusted multiple times, allowing the user to

experiment with parameter conditions, without losing valuable time. From the

previously discussed five global solvers the fastest one is pattern search, and slowest

is genetic algorithm (documentation;). Complexity of a solver can be important criteria

if the algorithm needs to be applied to a large number of different problems and set up

time and effort becomes significant. Setup complexity of all five global solvers is

generally similar, with the exception of particle swarm as it does not need initial

conditions and can be started with only the objective function. Accuracy is a criterion

that is important, when results of optimization need to be trustworthy. If an optimization

problem is only required to be solved for general knowledge and an exact result is not

important some of the accuracy can be exchanged to improve the other criteria. Based

on MATLAB benchmarks most accurate MATLAB global solver is a genetic algorithm

followed by global search and surrogate optimization (documentation;). The stability

of a solver is important for each optimization to be consistent and being robust to stiff

problems and problems with discontinuities. Purely stochastic algorithms like particle

swarm and genetic algorithm very rarely yield similar results between repeats, and an

algorithm like pattern search deal with discontinuities easily but will navigate away from

solution that yield incomplete solution as an answer.

As mentioned before industrial companies prefer fast algorithms that are easy to

implement (Steijns 1997), but we cannot neglect accuracy. Between methods that are

22

able to delivery robust and high accuracy results, we choose the one that have lowest

computational time. Computational time is important as it creates time saving, that can

be used performing experiments or improving model structure itself. This still leaves

us with at least two options that seem to fit the description, which are global search

and surrogate optimization. Both of these methods could be used, as a state of art

method for global optimization and would make good benchmark comparison to the

proposed state substitution method. However global search was selected to be the

global solver, because of the reports in literature of various multi start being one of the

best currently optimization techniques (Degasperi et al. 2017; Raue et al. 2013). Multi

start and global search are very similar, but have their differences as discussed before.

For this reason, both of these approaches will be used for comparison, global search

with derivative approach and multi-start with integral approach.

2.4. Summary

The literature review chapter looks at why parameter identification problem is important

and how it can be solved focusing on gradient based optimisation algorithms. Literature

reviews identify the need for faster parameter identification techniques for large

systems. This is primary gap that the proposed state substitution method for parameter

identification is trying to fill. Flowchart (fig 2.2) of gradient based optimisation algorithm

is defined, and key features are investigated in detail, such as the objective function

construction, the optimality conditions and the parameter change algorithms. It is noted

that local optimisation is not sufficient to obtain accurate parameter values in complex

systems. Therefore, five global solvers are investigated and compared, based on four

criteria speed, complexity, accuracy, and stability. From information about local and

global solver, two variations of gradient based optimisation are chosen to serve as

state of art methods, for comparison with the new proposed state substitution method

for parameter identification.

23

3. Kinetic model calibration: State of the art methods

This chapter will discuss, two state of the art methods that were chosen as a basis for

comparison with, the proposed state substitution method. The literature review helped

to establish that the integral and the derivative approaches are best choices. This

chapter will discuss the details of these two approaches. To make sure that both

approaches are best suited for the case studies that were selected, modifications are

made. Modifications, such as different sampling algorithms, screening or re-

optimization are required to cut down computational time, that does not contribute

towards more accurate identification of parameter values. This way the state of art

methods should perform at their best when compared to the proposed state

substitution method.

3.1. Integral approach

The integral method is a direct method that requires an algorithm to integrate the whole

model at each integration time step and to evaluate the error between model and

measured data. This leads to a slow working method which, spends up to 95% of its

time integrating model, and not optimizing the parameters. Furthermore if the model

equations are stiff, this increases computational time almost by 100% (Voit and

Almeida 2004). Nevertheless, the integral approach predicted model output is very

accurate as numerically integrating the model allows the optimisation algorithm to

capture all interactions between parameters and states of the model. In addition, the

integral method is robust to noisy data, and is easy to implement. The main drawback

of integral method is the long computational time, with most of that time being spent

integrating the model ODEs, it is important to focus on decreasing the amount of time

needed to integrate the model. To have a good state of art integral approach, for

accurate comparison, modifications were made to improve the integral approach

computational time without sacrificing the accuracy of the method. Multi-start was

chosen as the best global optimizer for this approach, as it only locally optimizes given

starting locations, and does not search for new start points. This is important as new

start points would increase the number of integrations required, thus increasing

computational time.

3.2. Derivative approach

The derivative approach tries to deal with the main drawback of integral approach the

long computational time associated with model integration. This is done by removing

the integration step completely and replacing it by set of algebraic equations that can

24

be optimized simultaneously or separately. In order to do this, slope estimation is

required, that would replace the derivative term in each ODE making it a single point

algebraic equation. Slope estimation can be done in various ways including: a) linear

interpolation b) splines (P.J. Green and Silverman 1994) c) Three point method (R.L.

Burden and Faires 1993) d) Hand fitting (Voit 1982) e) Artificial neural networks

(ANNs) (Almeida 2002; J.S. Almeida 2003) f) Filters (Eilers 2003; M. Vilela 2007;

Whittaker 1923).

Slope estimation methods a, c, and d can work for low or noise free data, as noise

tends to get amplified when estimating slopes. As noise is inevitable in any real system

this leaves b, e, and f methods, which can deal with noise to certain levels by

performing smoothing of the data. ANNs are accurate at finding general trends and

fitting data with 'universal functions', but they require a lot of data sets and

computational time to be trained. This adds additional complexity to the setup of the

method and computational time, which we try to reduce. Between splines and various

filters, splines where chosen as a better candidate for the derivative method due to

simpler use. Splining is done by fitting data with a polynomial (equation 3.1), or other

types of splines, to minimize the error between the spline and measured data. With a

spline state values can be approximated at any time point. Which allows to estimate

slopes (equation 3.2) at any time point to be replaced in the ODE to change it into

group of algebraic equations (equation 3.3). With slopes estimated the algebraic

equation can be optimised locally for each data point with non-linear least squares

method, creating vector of solutions xt, as noise can affect these solutions an average

of all solutions is taken to represent starting point for global optimisation.

𝐶(𝑥) = ⁡𝛼1 + 𝛼2𝑥+𝛼3𝑥
2 +⋯+ 𝛼𝑛𝑥

𝑛−1 3.1

𝐶(𝑥𝑡) − 𝐶(𝑥t+1)

𝑡𝑛 − 𝑡𝑛+1
⁡=
𝑑𝐶̂

𝑑𝑡
≈ ⁡
𝑑𝐶

𝑑𝑡
, 𝑎𝑡⁡𝑡𝑛 3.2

𝑑𝐶

𝑑𝑡
= 𝐴 ∗ x⁡ ≈

𝑑𝐶̂

𝑑𝑡
= 𝐴 ∗ 𝑥𝑡 , 𝑤ℎ𝑒𝑟𝑒⁡𝑥𝑡 ⁡𝑎𝑟𝑒⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑎𝑡⁡t⁡𝑡𝑖𝑚𝑒⁡𝑝𝑜𝑖𝑛𝑡 3.3

Where C(x) is polynomial of variables x, a are weights, and t is time.

25

3.3. Integral method modifications

Two modifications were done to general integral multi-start approach to improve its

accuracy and computational time. Sampling of the search space was changed to Latin-

hyper cube sampling as it provides benefit of each sample on average being closer to

the global solution. Screening was introduced to reduce the number of starting samples

that need to be optimised. This is important for complex systems especially as they

introduce discontinuities which cannot be optimised and there is no need to waste

computational time optimising them.

3.3.1. Sampling of the search space

In an attempt to ensure that global minimum is found using multi-start approach,

sampling of the search space for starting points, has to be done methodically, while

trying to minimize the number of starting points, but covering the whole search space.

The simplest solution for sampling the search space would be a factorial design, which

is commonly used for experimental setups, to capture the effects of each parameter

(Abdel Moamen et al. 2015; Biró et al. 2009). Unfortunately, this expands the number

of samples, exponentially with increasing number of parameters. Furthermore, unlike

experiments, model parameters can be very sensitive even to minor changes requiring

a lot of steps for each parameter. A better sampling technique for this application is

Latin-hyper cube sampling (McKay et al. 1979). The search space is split up into equal

size pockets, and each sample point is randomly put into one of these pockets, while

having straight line of sight with each coordinate end, without interfering with other

samples points line of sight (fig 3.1). This decreases the number of samples required,

to capture dynamics of the model, as each new sample provides unique setup, without

overlapping with other samples. The Latin-hypercube sampling requires

predetermined number of samples, which has to be manually selected. The number of

initial samples should increase with larger and more complex models and decrease

with simpler and smaller models.

26

Figure 3.1 Example of Latin hyper cube sampling in 2d space, with X denoting each sample and red square places

that are unavailable to following samples.

3.3.2. Screening

The second modification to improve integral method, is screening of initial start points.

This is required because, we do not know if we have selected too many samples and

some of them can be redundant and for complex systems a lot of starting points

extremely far away from global optimum or cannot be integrated. Screening is

performed for all samples evaluating their objective function, then 10% of best starting

points are given to multi-start algorithm to optimize further. This screening process cuts

off a large amount of unnecessary time, without compromising accuracy of the overall

method. This type of screening works, because as parameter values get closer to

global optimum, error between prediction and the model decreases. This makes it safe

to assume that values that have initial low error values before optimization, will have

even lower final error value.

3.3.3. Modified integral method structure

When these modifications are implemented the incremental method approach flow

chart changes (fig 3.2). First the search space is sampled using Latin-hyper cube

sampling method for specific number of samples, second all samples are screened for

their objective function value and the best 10% passes to next stage, lastly multi-start

global optimiser locally optimises all provided starting samples and global solution is

27

reached. This modified version of integral approach should be most competitive versus

the proposed state substitution method.

Figure 3.2 The integral method flowchart

3.4. Derivative estimation method modifications

Only one modification was added to the derivative estimation method. Re-optimization

step is required to convert derivative estimation from local only into global optimisation

technique.

3.4.1. Re-optimization

Global optimisation is performed with global search, as it is similar to multi-start but

only requires single starting point input. This step is called re-optimization to ensure

that solution is globally optimum, as algebraic equation were only locally optimised.

Global search method is described in section 2.3.

3.4.2. Modified derivative estimation method structure

When re-optimization is implemented into the derivative method it structure becomes

as follows (fig 3.3). First measured data is splined and approximated with cubic spline.

Then slopes are estimated using splines and used to replace derivates in ODEs of the

model, to construct set of algebraic equations that are locally optimised at every data

point. Solution vector is averaged and supplied as starting point for global search

algorithm for re-optimization step. The final solution is produced by global search

algorithm.

28

Figure 3.3 The derivative method flowchart

3.5. Benchmark problem

To study the effects of modifications, within each method, a benchmark problem was

optimised, with and without these modifications and compared to assess the impact of

each modification. The chosen benchmark problem is a simplified version of Monod

kinetics (equation 3.4). This system consists of two states biomass (x, g/L) and

substrate (S, g/L). This model also has three parameters Umax, Ks and q, which are the

maximum specific growth rate (h-1), half-velocity constant (g/L) and the substrate

consumption rate constant (g/h) respectively. Models’ outputs are rate of change in

biomass
𝑑𝑥

𝑑𝑡
⁡and substrate

𝑑𝑆

𝑑𝑡
.

𝑑𝑥

𝑑𝑡
= 𝑢 ∗ 𝑥

𝑑𝑆

𝑑𝑡
= −𝑞 ∗ 𝑢 ∗ 𝑥

𝑢 = 𝑈𝑚𝑎𝑥 ∗
𝑆

𝐾𝑠 + 𝑆

3.4

29

3.5.1. Generating benchmark data

To simulate data sets using this model, parameters values need to set to desired

constants and the model needs to be initialised with initial conditions for biomass (x)

and substrate (S). Data sets were generated using numerical integrator ode45 in-build

into MATLAB. Output of each ODE is added to existing value of the state producing

time-series data of biomass (x) and substrate (S). Data was generated at 10h-1 sample

rate, and white random noise with 10% magnitude was added after, data generation,

but before it being used in optimisation algorithm. The parameter values that were used

to generate data are Umax = 0.9, Ks = 0.3 and q = 4. These are considered true values

of the parameters and the parameter identification algorithm accuracy can be

evaluated based on how close identified parameter values are to real values. Typical

data set have low starting biomass concentration and high substrate concentration. As

time progress substrate is consumed exponentially and biomass growths exponentially

(fig 3.4).

Figure 3.4 Typical data set of benchmark problem, without the noise

3.5.2. Objective function

Objective function for this benchmark model was constructed as a sum of two different

data sets errors. Where error was defined as squared difference between data sets of

30

generated noisy data, and model predictions (equation 3.5). X and Y and are generated

data sets, 𝑋̂and 𝑌̂ are model predictions.

𝐽 = (𝑋𝑖 − 𝑋𝑖̂)
2
+ (𝑌𝑖 − 𝑌𝑖̂)

2
 3.5

3.6. Effects of the modifications

Each of the modifications for the state of art methods were done with intention to

increase accuracy or decrease computational time. This sub-section describes with

example how these modification effect state of art methods.

3.6.1. Sampling space

To test how much difference there are between the Latin hyper cube sampling

technique and factorial design both sampling techniques were compared while using

integral method. When exposed to the benchmarking problem, both methods were

able to identify a solution, but Latin hyper cube method was faster and produced more

accurate model (table 3.1). Benchmarking problem was convex and global solution can

be achieved from many different starting points. However, Latin-hyper cube sampling

provided with better overall parameter values (table 3.2). Also, the run time is

significantly different, the Latin hyper cube sampling method outperforms factorial

design by 15% in terms of computational time. As both methods had same number of

samples, faster computational time is achieved by having initial parameter values

(samples) on average closer to the global solution. This leads to optimiser having to

do less iterations to reach a solution. Visual comparison of the model, with each

identified sets of parameters is shown in figure 3.5.

Sampling method Squared error of the

model

Run time, s

Latin hyper cube 425.29 728.47

Factorial design 1439.79 862.33

Table 3-1 Performance comparison of different sampling methods with benchmarking problem

Parameter Real values Latin-hyper cube

sampling

Factorial design

sampling

Umax 0.9 0.898 0.875

Ks 0.3 0.083 0.248

q 4 3.987 3.992

Table 3-2 Identified parameter values using different sampling techniques.

31

Figure 3.5 Comparison on biomass concentration model predictions, of different sampling methods with

benchmarking problem

3.6.2. Screening

A benchmarking test was performed to check the effect of screening on accuracy and

computational time (table 3.3). By only optimizing 10% of best initial parameter values,

computational time can be reduced by 97%. At the same time accuracy does not

change significantly. Model performance can be observed at figure 3.6 and identified

parameter values at table 3.4.

Screening method Squared error of the

model

Run time, s

None 425.29 728.47

10% best 425.98 21.57

Table 3-3 Comparison of accuracy and computational time, with 10% screening and without

Parameter Real values 10% Screening No screening

Umax 0.9 0.904 0.898

Ks 0.3 0.248 0.083

q 4 3.951 3.987

Table 3-4 Identified parameter values using 10% screening and without it

32

Figure 3.6 Comparison on biomass concentration model predictions with 10% screening and without

3.6.3. Re-optimization

Benchmark test was performed to compare accuracy pre- and post-re-optimization to

assess the effect of re-optimization. It was found that re-optimization improved the

benchmark problem solution accuracy by 195% (table 3.5). This is also clear from

identified parameter values (table 3.6). Pre-optimization values are very susceptible to

noise in generated data, as slope estimation is very sensitive to noise. This re-

optimization step makes the method more robust to noise and makes model prediction

very accurate (fig 3.7). Also using global re-optimization step makes the derivative

method similar to integral method, so comparison between two is more direct.

 Squared error of the model

Pre re-optimization 36606.03

Post re-optimization 422.66

Table 3-5 Comparison of model accuracy pre- and post-re-optimization for the derivative method

Parameter Real values Pre re-

optimisation

Post re-

optimisation

Umax 0.9 1.064 0.899

Ks 0.3 0.565 0.242

q 4 4.543 3.989

Table 3-6 Comparison of the identified parameter values pre- and post-re-optimization for the derivative method

33

Figure 3.7 Comparison of model performance pre- and post-re-optimization

3.7. Summary

Chapter focuses on the derivative and integral methods as core state of art

approaches. The integral method is improved with two modifications, Latin-hyper cube

sampling and screening. Latin-hyper cube sampling is chosen as a sampling technique

instead of factorial design or random distribution of samples, because it provides, on

average, samples that are closer to global optimum given same number of samples.

Screening is implemented to reduce number of samples needed to be optimized, as it

is showed with benchmark problem, that accuracy of the solution is increased, and

computational time is decreased significantly. For the derivative estimation method, it

is chosen to estimate slopes, by using splines, as they are robust to noise, easy to use

and does not require large amount of different data sets. Re-optimization step is

introduced to increase solution accuracy. Final flowchart of both methods is shown,

and these methods are used as comparison with the proposed state substitution

method later in the work.

34

4. Problem visualization

In this chapter, we will discuss how the “curse of dimensionality” affects parameter

identification and how it should be addressed. We will investigate a common problem

of not being able to visualize the cost function error plane if we have a high dimensional

problem, and what information we are losing because of it. Firstly, we will discuss what

techniques can be used to visualize high dimensional problem and how to extract the

same information, that we can normally extract from 3d visualization of cost function

error plots. The methods investigated will involve, principal component analysis (PCA)

visualization, self-organizing maps (SOM) and the used of sorted cost function

performance graphs. For each of the techniques a simple example is used to help

understanding how the technique works and what information it portrays. Secondly,

we will address the concept of “complex” problems and how visualization techniques

in conjunction with convexity criteria can allow the quantification and assessment of

“complexity”. Lastly, we will discuss how these techniques can be used to determinate

if state of art parameter identification methods, are capable of solving a given problem

within reasonable time, or if a different approach should be taken (e.g., proposed state

substitution method State-substitution).

35

4.1. Introduction

When solving parameter identification problems, it is very useful to be able to visualize

your solution space, as this provides insight about the model you are working with. By

observing solution space, you can verify if there are multiple optimum solutions, how

much impact each parameter has on the model and how sensitive those parameters

are. Simple way of visualizing the solution space of a model is to make an error plot.

An error plot is a graph, where all parameters of a system a varied and each parameter

combination is given a model performance value (error), when compared to the

measured data. From such an error plot we can find how many optimum solutions there

are by counting number of different valleys, that converge on a point called local

minimum. We can assess parameter impact on the system, by measuring difference

between maximum and minimum error values when only one parameter is varied.

Similarly, we can assess parameter sensitivity, by measuring rate change of error when

only one parameter is varied. To show example of how to use error plot consider

equation 4.1. This simple system has single output of y, and two parameters P1 and

P2. If we assume real parameter values are P1 = 1 and P2 = 2, then we can calculate

error between y = sin(1) – 2 and ym = sin(P1) – P2, where p1 and P2 is varied.

𝑦 = sin(𝑃1) − 𝑃2 4.1

Because P1 and P2 values are not know, we vary these values and plot them on x and

y axes. Each combination of P1 and P2 has an error value on z axis. Error is calculated

as square difference between global optimum (P1 = 1, P2 = 2), and any given

parameter values. This construct error plot of equation 4.1 (fig. 4.1).

Figure 4.1 Error plot of the system (equation 4.1)

36

4.1.1. Analysis of the error plane

There are multiple ways to analyse the error plane of the system. Most useful

observation can be broken down into a) number of local optima b) Impact of the

parameters c) sensitivity of the parameters.

4.1.1.1. Number of local optima

Red circle in error plot marks global optimum i.e. P1 = 1, P2 = 2. By observing this

error plot, we can tell that there two local optimum solution as we can see two separate

valleys, which are defined by P1 parameter. First valley between values (0,4) and

second valley between values of (4,10). This provides useful insight, telling us that if

we use gradient based solver, we should start in correct valley to reach global solution.

4.1.1.2. Impact of the parameters

When trying to assess the impact each parameter makes to the system, we measure

the maximum error value that can be reached by varying one parameter and keeping

others at optimal values. We can tell that parameter P2 is more impactful as it can

reach up to 70 on error axis while P2 is at optimal value. On other hand when varying

P2 with P1 being fixed at optimal value, we observe only small up increase in error up

to around 5. We can also observe that there a link of impact between parameters. As

value of P2 increases, impact of the P1 increases too, but it is still lower than impact

of P2.

4.1.1.3. Sensitivity of the parameters

When trying to assess the sensitivity of the parameter similar approach to impact

measuring take place, where we vary one parameter keeping other constant. We can

observe that P1 has more variation in error, than P2, making it more sensitive to

changes. Where P1 has two peaks, throughout the sampling range, P2 only has a

steady increase. With increasing values of P2 sensitivity of P1 is more pronounced,

but general trend is the same.

These insights from the error plot provides valuable information about parameters

itself, but also how to avoid local minimums and provides knowledge about the system.

Unfortunately, this is only possible for two parameter systems, and a higher dimension

problem, cannot be simply plotted, as there are not enough axes. Having a method to

visualize higher order problems would allow the extracting of this information from high

dimensional parameter identification problems.

37

4.2. Example systems

To facilitate explanation of the methods, which were used to visualize problems, and

assess the system complexity, two system will be used. First model is simplified

version of Monod kinetics (equation 4.2), this system consists of two states biomass

(x, g/L) and substrate (S, g/L). This model also has three parameters Umax, Ks and q,

which are maximum specific growth rate (h-1), half-velocity constant (g/L) and substrate

consumption rate constant (g/h) respectively. This model calculates rate of change in

biomass
𝑑𝑥

𝑑𝑡
⁡and substrate

𝑑𝑆

𝑑𝑡
. Two simulate data sets using this model parameters

values need to set to desired constants and model needs to be initialised with initial

conditions for biomass (x) and substrate (S). Data sets were generated using

numerical integrator ode45 in-build into MATLAB. Output of each ODE is added to

existing value of the state producing time-series data of biomass (x) and substrate (S).

𝑑𝑥

𝑑𝑡
= 𝑢 ∗ 𝑥

𝑑𝑆

𝑑𝑡
= −𝑞 ∗ 𝑢 ∗ 𝑥

𝑢 = 𝑈𝑚𝑎𝑥 ∗
𝑆

𝐾𝑠 + 𝑆

4.2

Second model is a simple polynomial (equation 4.3). It is a simple function that outputs

f(x) value based on input x values. It has twenty parameters (p1-p20). This model does

not require any simulations as it is simple one value input-output system.

𝑓(𝑥) = 𝑥 ∗ 𝑝1 + 𝑥 ∗ 𝑝2 + 𝑥 ∗ 𝑝3…𝑥 ∗ 𝑝20 4.3

These two systems are selected as they differ in two criteria. First is complexity, Monod

kinetics are much more complex system then the polynomial model, because it

involves ODE, rate of change, multiple equations, and time series data. Second

criteria, which separates these systems is number of parameters, polynomial model

has twenty parameters whereas Monod kinetics model has only three.

38

4.3. Utilizing PCA to visualize the model

The main problem regular error plot visualization faces with higher order problems is

that there are not enough axes for each parameter. Even if we could plot higher

dimensional planes, it would be hard or even impossible for us to interpret results as

we are used to work in 3d space. Therefore, any potential solution should provide

visualization in 3d. One of the possible solutions is to reduce number of parameters

we need to plot converting model from n-parameter to 2-parameter model. We can

achieve this by using PCA (Principal component analysis) developed by (Pearson

1901), modern version explanation can be found (Rasmus Bro 2014). PCA is a

technique that is useful for the compression and classification of data. The purpose is

to reduce the dimensionality of a data set (sample) by finding a new set of variables,

smaller than the original set of variables, that nonetheless retains most of the sample's

information. PCA achieves this by combines variables to produce new ones, that hold

combined information about combines variables. For example, if we have two variables

that seems to correlate (table 4.1), we can combine them by fractional addition

(equation 4.4). Where F is new combined variable, wi is fraction factor and xj is

variables.

𝐹 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑖𝑥𝑗 4.4

 Ethanol g/L Biomass g/L

Sample 1 90 60

Sample 2 45 120

Sample 3 0 180

Table 4-1 Example of two variables being heavily correlated

Only question is what fraction of each variable we should use to represent new

combined variable. In this example there is strong and uniform correlation between

variables, which would mean we should weight them evenly, but instead of weighting

vector being w = [0.5 0.5], we should consider making it take into account that new

combined variable represents two variables and not one, therefore it’s magnitude

should be bigger than just and average of two variables. Similarity to vector addition,

adding two vectors of same size at 90˚ angle, would make combined vector larger in

magnitude (fig. 4.2). This can be applied when combining two variables as x and y axis

are at 90˚. We can use unit vector and Pythagoras theorem to figure out what weighting

39

we should use for same magnitude samples (fig. 4.2). This works out to be w =

[0.7,0.7].

Figure 4.2 Example of unit vector addition

With this we can define PCA as a function of data X, weighting vector w and PC which

is new variable representing whole system called scores (equation 4.5). This kind of

combination of variables can be performed for more then two variables at the time, but

it is quite rare that variables corelated so perfectly as in this example. Which is why we

can only try to select such weighting vector w, that combined new variable represents

most of the systems variability.

𝑋𝑤 = 𝑃𝐶 4.5

So, problem becomes how to measure how much variability of the system variable PC

represent in comparison to variables X. We can do that by performing regression of all

X variables on PC, which will provide us with equation 4.6. Where r is regression

coefficients and E is matrix of residuals.

𝑋 = 𝑃𝐶𝑟𝑇 ⁡+ 𝐸 4.6

Once we have our residual matrix, we can calculate how much variability is explained

by PC variable (equation 4.7). Now we can optimise our selection of weighting vector

w, by maximising variability expressed by PC.

‖𝑋‖2 − ‖𝐸‖2

‖𝑋‖2
∗ 100%

4.7

 In most cases one principal component will not be able to represent system in it

entirety, this process can be repeated to generate second principal component, which

will have explain less variability of the full system, than first principal component (PC).

40

Nevertheless, combining multiple PCs we can represent system well with lower

number of variables, then system had initially. Using PCA we can create two principal

parameters with highest explained variability. This will allow to plot similar plot as

regular error plot. Downside to this method is that we will not be able to tell parameter

sensitives anymore as they will be combined.

4.3.1. Example of applying PCA for visualization

Plot (fig 4.3) reveal similar information to normal error plot, it shows global/local

optimums, and in this case, there is one clear “valley” around -1 of principal component

(PC) 2, within it a global optimum around 0 PC1 and -1 PC2. There two potentially

difficult areas while optimising this model. First the bottom of the main “valley”, for

gradient based optimiser may look like an optimum if its optimisation path is along PC2

axis. The Second problem there is lot of flat surface, where gradient based optimizer

can get stuck for the same reason. As these both problematic regions do not represent

clear local minimums, it is subjective to judge how much of a difficulty they pose for the

optimizer. It would depend on optimiser settings, initial guess, and other optimizer

options.

Figure 4.3 Error plot of Monod model first two principal components (PC's)

41

4.4. Convexity with PCA

When problematic regions in error plot/PCA error plot are not well-defined additional

analysis is needed. In order to judge difficulty of optimization more objectively a

convexity criterion is applied to all sample’s points within the PCA error plot. Convexity

is a criterion, of how likely sample is to reach an optimum. To meet convexity criteria

equation below must be satisfied (Hass et al. 2018):

J(αθ(1) + (1 − α)θ (2)) ≤ αJ(θ (1)) + (1 − α)J(θ (2)) 4.8

Where J is cost function, θ(1) first set of samples/parameters, θ(2) is second random

set of samples/parameters that satisfies relationship ||θ (2) − θ (1)|| = 1 and α is a

random location on connecting line between these two sample parameters sets.

This criterion can be calculated for every sample point (or combination of parameters),

and then we can calculate percentage of samples, which are convex within sampling

space. Providing a percentage convexity of a system.

To analyse model (equation 4.2), more in-depth we join this connectivity criteria with,

PCA error plot to more information.

Figure 4.3 shows that flat areas are more problematic than “valley” for optimizers to

solve, nevertheless this system has 27% convexity. This means if initial conditions for

optimization algorithm are not within flat/red regions optimiser will solver problem with

relative easily. Example of colour coded PCA visualization can be found in figure 6.13.

Although, this method gives us good indication about complexity of system and

possibility of running into local minimum it does not show which of the parameters are

dominant.

4.5. Self-organizing map

Another way to visualize higher dimension problems are to use self-organizing map

(SOM). First SOM was published by Teuvo Kohonen in 1982 (T.Kohonen 1982). A self-

organizing map (SOM) is a type of artificial neural network (ANN) that is trained

using unsupervised learning to produce a low-dimensional (typically two-dimensional),

discretized representation of the input space of the training samples. Within SOM

algorithm each data point competes to be represented among their neighbours.

Winning node or sample is awarded, with higher change to be selected for next random

sample comparison. This allow maps to form shapes, such as square, rectangular,

hexagonal, toroid. Benefit for this technique that it will allow to have some insight of

individual parameter importance, by comparing each parameter map with error map

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Unsupervised_learning

42

and to confirm PCA visualization results. SOM algorithm can be summarized in

fallowing steps (T.Kohonen 1990):

1. Each node’s weights are randomly initialized.

2. A vector is chosen at random from the set of training data.

3. Every node is examined to calculate which one’s weights are most like the input

vector. This is done using Euclidean distance formula. The winning node with

lowest distance between input vector and its weight is commonly known as

the Best Matching Unit (BMU).

4. The neighbour nodes of the BMU have their weights recalculated to pull them

closer to the BMU node (equation 4.9). W is node weight, X is input vector,

𝜃(𝑢, 𝑣, 𝑠) is neighbourhood function, 𝛼(𝑠) is learning rate function, s current

iteration step.

𝑊(𝑠 + 1) = 𝑊(𝑠) + 𝜃(𝑖, 𝑗, 𝑠) ∗ 𝛼(𝑠) ∗ (𝑋 −𝑊(𝑠)) 4.9

Both learning rate and neighbourhood functions can be defined in various ways, but

they should always be decreasing functions (Fausett 1994). Learning rate function

controls the size of the weight vector. Most common ways of using learning rate are

linear (equation 4.10), inverse of time (equation 4.11) and power series (equation 4.12)

(J. Vesanto 2000). N is total number of iterations.

𝑎(𝑠) = 𝑎(0)
1

𝑠
 4.10

𝑎(𝑠, 𝑁) = 𝑎(0) (1 −
𝑠

𝑁
) 4.11

𝑎(𝑠, 𝑁) = 𝑎(0)𝑒
𝑠
𝑁 4.12

Neighbourhood function defines which nodes considered to be in the neighbourhood

of the BMU. Most commonly used function is Bubble (equation 4.13) (W. Natita 2016).

Nc is the index set of the neighbour nodes close to BMU node.

𝜃(𝑖, 𝑗, 𝑠) = {
𝑎(𝑠), (𝑖, 𝑗) ∈ 𝑁𝑐
0, (𝑖, 𝑗) ∉ ⁡𝑁𝑐

 4.13

5. The winning weight is rewarded with becoming more like the sample vector. The

neighbours also become more like the sample vector. The closer a node is to

the BMU, the more its weights get altered and the farther away the neighbour is

from the BMU, the less it learns.

6. Repeat step 2 for N iterations.

43

4.5.1. Example of SOM application

SOM can be difficult to analyse, but they are consistent with other visualization

techniques. First it should be noted is that green nodes seem to be scattered as it

would suggest there are multiple local minima, but by observing U-matrix we can see

that line that separates those green areas is very tiny in terms of distance. This means

it is a valley rather than multiple local minimums. This observation matches with

observation done with PCA visualization. This reassures that visualization techniques

are showing correct results. The biggest benefit that SOM provides, and that other

visualization techniques lack is variability of each parameter within n-dimensional

plane. For Monod model (equation 4.2) if we compare figure 4.5 colour coded figure

with figure 4.6 of each parameter figure we can see that pattern of U-matrix matches

Umax parameter pattern. Starting with high values on the right side with decreasing

values to the left and increasing again once past lowest valley point. This observation

shows connection between changes in Umax parameter and the model error, implying

high impact from the parameter. How to use SOM maps to assess parameter

importance will be discussed in further chapters.

Figure 4.4 Left 2d SOM of Monod model (equation 4.2), colour coded based of model error, where green (L) is low

error, blue (M) is medium error, and red (H) is high error. Right 2d SOM with same colour code as left, but also

showing relative distance in n-dimensional plane represented as colour bar.

44

Figure 4.5 From top left: 1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) Umax

parameter variation within n-dimensional plane, parameter values denoted in colour bar. 3) Ks parameter variation

within n-dimensional plane, parameter values denoted in colour bar. 4) q parameter variation within n-dimensional

plane, parameter values denoted in colour bar.

4.6. Performance optimum vs parameter optimum

To ensure, that visualization techniques produce correct results, optimization of the

sample space was performed. Taking thousand samples from the sample space and

optimizing each of them individually. This is computationally very demanding, but it

helps to make sure that other techniques provide reliable results. Once all sample

points were optimized, their cost function values are sorting in acceding order and

plotted to show potential local minimums. Simple problems will tend to have large flat

regions because most of sample will converge to same cost function value. Where

complicated problems will have varied region indicating multiple local minimums. For

comparison two systems are observed, Monod kinetics (equation 4.2), and polynomial

(equation 4.3).

Figure 6.13 shows the results of the Monod model (equation 4.2). Model is performing

as expected, for single valley problem. The system has one flat area to indicate the

“valley” and drop down to show that is has one global minimum that is hard to reach.

45

With low tolerance even non-convex point can be optimized to reach optimum “valley”.

Optimizing just convex points provides advantage over optimizing all sample points as

only a fraction of samples needs to be optimized to achieve same trend.

On other hand polynomial model (equation 4.3) does not perform as you would expect

from model with 100% convexity (figure 6.2). It shows lots of local minimum before

reaching flat area of global minimum, but difference between worst and best

optimization is very small (10-10 scale). This indicates that although there many

different local minimums it does not affect overall model error.

These two models show two different behaviours, one where cost function optimization

leads to correct parameter values, hence parameter optimum can be reached and

other where cost function optimization led to good model performance, but wrong

parameter values, hence performance optimum can be reached. Model with only

performance optimum, have one feature in common - their parameters are only

relatively sensitive to each other. This means that if parameter value difference is

relative same, performance of model will not suffer even when those values are far

away from correct values. For examples if take polynomial model, as it is additive

model all parameter values (p1, p2…) can be changed in position and it would not

affect overall model performance. Therefore, identifying these parameter values

correctly becomes impossible.

46

4.7. Summary

A key reason to search for different approach to parameter identification is when state

of art methods, struggle to produce accurate results or their computational demand is

too high. Both are encountered when model is complex. Unfortunately, complexity of

a model is not directly associated with model size or number of parameters. By

performing analysis of a model by using techniques described in this chapter it is

possible identify if model complexity is something that would be of concern and take

appropriate approach when identifying parameters. Firstly, convexity criteria

evaluation is a good start, as it is fast analysis and can immediately tell if model is not

complex. Because, parameters upper and lower limits will affect accuracy of any

identification algorithm, to obtain accurate convexity value, calculation should be

performed within same boundaries as identification algorithm. Performing PCA

visualization with marked convex points, would be next step. By observing PCA

visualization scatter plot there are several things to look for, first how many local

minimums can be observed, second are local minimums separated with convex or non-

convex regions. Multiple local minima make model more complex, but it is much worse

if they are separated with non-convex regions. This leads to problem, where

optimization algorithm not only will need to search for global minimum between all local

minimum, but also it will not converge at all when situated in non-convex region. When

dealing with models that have multiple local minima with non-convex regions in

between, models should be treated as medium complexity and parameter identification

algorithm set appropriately. This might involve modifying state of art approach to better

deal with specific model or use alternative methods. Lastly, if still not certain about

complexity of a model an optimization full sample space can be done, to observe if

model can be optimized only towards performance or also towards correct parameter

values. It is suggested to sample parameter space with Latin-hyper cube, as it will

make this computational demanding analysis more efficient. Once all optimized cost

function values are sorted, obtained graph can be analysed. Within this sorted

minimization graph each flat region represents local minimum, this should be same as

number local minimum observed in PCA visualization. If graph has a “curve” such as

figure 4.8, and difference between maximum and minimum cost function values is

large, this tell that system is complex and should be approached with caution.

47

This kind of approach is enough to quantify complexity of a model. Although overall

complexity may not be numerically quantified, this approach has enough quantitative

measurements to compare model to each other to determinate which is more complex.

48

5. Methods

In this chapter the working principles of the proposed state substitution method are

explained in detail, and any methods involved within the framework of the state

substitution method. First the key steps of the State Substitution method are explained,

which are approximation of data, decoupling of the ODE model, integration of sub-sets

of the model and parameter identification and re-optimization of the whole model

structure. Then any additional algorithms required for State Substitution to work are

explained, in addition to any supportive methods, which include the use of a bipartite

chart, sub-set solver, global solver, data generation and algorithm for establishing

hierarchy of sub-sets.

49

5.1. State Substitution method

The proposed state substitution method for parameter identification of the unknown

constants of models described by ODEs consists of four main steps a) approximation

of data b) decoupling of the system of nonlinear ODEs c) integration of the subsets of

nonlinear ODEs and parameter identification d) re-optimization of full ODE model. In

order to assist with the explanation of the method a simple example is used as a

demonstration throughout this chapter (equation 5.1). It is assumed that there is a set

of measured data, i.e. measurements of X, S and P. at various time points. The data

measurements do not have to be equally spaced and can have varying noise levels

(fig. 5.1). The aim is to use the data to estimate the unknown model parameters (Umax,

Ks, q and qs) such that predictions of the model would match measured data. As

discussed in chapter 2, most of the methods would numerically integrate the whole set

of coupled ODEs and using iterative optimisation algorithm would get the optimal

parameter values.

Where t is time (h), X is biomass concentration (g/L), S is substrate concentration (g/L),

P is product concentration (g/L), D is dilution factor, Sf is feed substrate concentration

(g/L), Umax is maximum specific growth rate (h-1) ,Ks is half-velocity constant (g/L), q

substrate consumption rate constant (g/h) and qp is product production rate constant

(g/h).

5.1

ە
ۖ
۔

ۖ
ۓ

𝑑𝑋

𝑑𝑡
= 𝑢𝑋 − 𝐷𝑋

𝑑𝑆

𝑑𝑡
= −𝑞𝑢𝑋 − 𝐷(𝑆 − 𝑆𝑓)

𝑑𝑃

𝑑𝑡
= 𝑞𝑝𝑋 − 𝐷𝑃

 , where 𝑢 =
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠+𝑆

50

Figure 5.1 Example of an uneven sampling

a) Approximation of data

It is a required step to generate data sets from measured data that can be used to

decouple the system. As measurements do not consists of sample points at all possible

time points, we require to approximate it. Approximation can be done with various

methods such as polynomials, splines etc. as discussed in chapter 3. In this work

approximation of data is done with cubic spline, which is explained in detail in in section

5.5. For simpler explanation we will use polynomial as an approximation technique for

this example. With polynomial any measured data can be expressed as (equation 5.2),

where 𝑌̂𝑡 is approximated data value at time t, αn values are optimised to provided good

data fit of 𝑌̂𝑡 to measured data. Finalized approximated data set can produce a state

value at any time point. This is important for later step withing the method as decoupled

sub-systems get integrated state values need to be known sat every time point.

𝑌̂𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2 +⋯+ 𝛼𝑛𝑡

𝑛 5.2

b) Decoupling of the system

During this step we replace any coupled states within subset, with polynomials

produced in step a). This allows to solve each subset individually, thus reducing the

solution space. If consider example system (equation 5.1), we need to create a

different polynomial for each state within the system (equation 5.3). These polynomials

51

then can replace coupled states within each ODE to effectively decouple the whole

system (equation 5.4). This allows the system to be solved as three sub-systems, thus

reducing the search space.

𝑋̂𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2 +⋯+ 𝛼𝑛𝑡

𝑛

𝑆̂𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 +⋯+ 𝛽𝑛𝑡

𝑛

𝑃̂𝑡 = 𝛾0 + 𝛾1𝑡 + 𝛾2𝑡
2 +⋯+ 𝛾𝑛𝑡

𝑛

5.3

𝑑𝑋

𝑑𝑡
=
𝑈𝑚𝑎𝑥𝑆̂𝑡

𝐾𝑠 + 𝑆̂𝑡
∗ 𝑋𝑡 − 𝐷𝑋𝑡

𝑑𝑆

𝑑𝑡
= −𝑞

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑋̂𝑡 −𝐷(𝑆 − 𝑆𝑓)

𝑑𝑃

𝑑𝑡
= 𝑞𝑝𝑋̂𝑡 − 𝐷𝑃

5.4

To visualise how decoupling reduces search space, we can start by visualized full

system with its four unknown parameters (Umax, Ks, q and qs). To draw a four-

dimensional search space in 3d we need to construct a tesseract. Tesseract is four-

dimensional equivalent of a cube, which is three-dimensional search space (fig. 5.2).

After the decoupling we have three separate search spaces that consist of a plane,

cube, and a straight line (fig. 5.3).

Figure 5.2 Search space visualization of the example system (equation 5.1) which has four parameters

52

Figure 5.3 Decoupled search space of the exampled system (equation 5.1) into three separate sub-systems (equation

5.4)

c) Integration of subsets and parameter identification

If a polynomial regression model replaces coupled states, each ODE can be integrated

separately, in this work Ode45 solver was used for that purpose. It should be noted

that choice integrator will affect results if your system is stiff, so dependent on your

system adequate solver should be used (Spyridon Dallas 2017). Whereas for

parameter identification each subset was solved using lsqnonlin. This solver was

chosen, because it is made for solving non-linear problems and performed squaring of

the error. Solving order is important as decoupled subsets can be solved individually,

but only a specific order gives best results. To come up with structure hierarchy,

bipartite chart is used to separate most influential states and parameters. Considering

influence of state and parameters, subsets are separated in different levels. Levels

must be solved in sequential matter, where everything within same level can be solved

simultaneously. Detail explanation of how model hierarchy is defined is explained in

section 5.3.

d) Re-optimization

Solving each individual ODE will only provide sub-optimal parameter values, because

we do not account for interactions between different ODEs. To ensure statically optimal

parameters values re-optimization should be done using a global solver (in this work a

genetic algorithm is used) and the sub-optimal parameter values as initial guesses.

This step makes the method robust to noise, as readjustment can be done for

parameters which are harder to identify from subsets only. To achieve the best results

53

each state should be weighted, according to hierarchy in cost function. Meaning top

level states have higher weightings and lowest level states have lowest.

5.2. Bipartite graph and structure hierarchy

To be able to decouple more complex systems, knowledge of the involved

parameter/state relationships and their influence on the system is required. One way

of observing these relationships is through the construction of a bipartite graph

(Bomhoff et al. 2010). A bipartite chart is constructed by plotting the connection

between the model state and other states and parameters within the model. Required

information can be extracted directly from the ODEs. This type of chart is required to

design the order in which ODE’s need to be solved, because after decoupling it can be

solved in number of ways. It can be adapted to any system. To understand how it works

an example is provided using an example system (equation 5.1).

By inspection of the ODEs (equation 5.1) we can construct a bipartite graph by putting

states of the model on the top of the graph and parameters/states of the model at the

bottom. A connection can then be drawn from the bottom to the top showing the

relationship between the state and parameter/state of the model. Dilution factor D and

substrate concertation Sf are not on a graph, because these values are known constant

values. The resulting graph is shown in figure (5.4).

54

Figure 5.4 Bipartite chart of the example system (equation 5.1)

By the assessing the structure of bipartite chart we can construct a decoupling

structure. Starting with the states with most connections to least. In this example we

can observe that the biomass(X) state affects all three states which means it’s of

highest importance and should be solved first during decoupling. Furthermore,

parameters Umax and Ks estimates from the biomass(X) ODE can be used in further

calculation to ensure that they do not change, creating disturbance in X state model.

In addition to this it can be observed that state S and state P have no common

parameter connections, which means that they can be solved both at the same time

after solving for state X state ODE. To summarise the decoupled state ODE hierarchy

is constructed in two level, first one consisting of biomass state ODE and second level

consisting of substrate and product ODE. Full hierarchy is provided in Figure 5.5:

Figure 5.5 Hierarchy of decoupled ODE’s for Monod model

5.2.1. Parameter impact

Although bi-partite chart provides information about connections between the model

state and other model states and parameters, it does not provide how impactful those

parameters are for overall system. This is important as to achieve best result we want

to identify most impactful parameters from state of highest importance. In other words,

we need to solve for most sensitive parameters of the system first and then for the rest

in ascending order of sensitivity. To perform full sensitivity analysis of all the

parameters can be very hard for high dimensional system, with high number of

parameters. Nevertheless, a Self-organizing map can be used to perform parameter

impact correlation on overall system to determinate most impactful variables, which

effect overall system. SOM’s produce component maps and unified distance maps

(chapter 4), which we can colour, based on average error values of each cluster. We

55

colour the lowest error cluster as white and highest error cluster as black and

everything in between as a gradient. SOM produced component maps already are in

this format. This allows direct cross-correlation of component maps versus system

error map. Cross-correlation of maps is performed pixel by pixel to produce heat maps

of parameter impact. Cross correlation matching factor of 1 denotes perfect match and

0 a complete mismatch. These correlations are performed with a normal component

map and inverse component map, colour wise, as parameters can be positively or

negatively corelated. Average correlation factor can be calculated from these

heatmaps. Example system (equation 5.1) produced heatmaps can be seen in figures

5.6-5.7, and their correlation factors in table 1. Matching factor calculation are

performed five times and standard deviation is presented together with results. These

figures, together with table, show that most impactful parameter for this system is Umax,

followed by q then Ks and qs. This agrees with our bipartite chart observation that Umax

value should be identified from biomass state and level 1.

Parameters Positive Matching

Factor

Negative Matching

Factor

Umax 0.81 ± 0.03 0.50 ± 0.00

Ks 0.65 ± 0.02 0.63 ± 0.03

q 0.68 ± 0.03 0.60 ± 0.02

qs 0.63 ± 0.01 0.61 ± 0.01

Table 5-1 Table of positive and negative mean matching factor of each parameter for system

56

Figure 5.6 Positive cross-correlation between each parameter map and overall error map.

57

Figure 5.7 Negative cross-correlation between each parameter map and overall error map.

58

5.3. Data generation

For case studies which use simulated data sets, data is generated by solving ODE

system given initial conditions. The Ode45 solver in MATLAB is used for this task as

it is solver that is most fit for the task based on (Spyridon Dallas 2017). The options

for solver are provided in Table 4.2, with values provided for example system (equation

5.1):

Option Description Value

Nonnegative The scalar or vector selects which solution

components must be nonnegative.

1:3 (Covers

all states)

RelTol Relative tolerance. This tolerance measures the

error relative to the magnitude of each solution

component.

1e-13

AbsTol Absolute tolerance. This tolerance is a threshold

below which the value of the solution becomes

unimportant.

1e-13

Table 5-2 Options used for ode45 solver

The Sampling time was varied between 0.1h and 0.3h. The Lower bound was selected

by calculating time constants of system responses using simple method described by

(Niemann and Miklos 2014) and taking 1/10 of fastest response time constant , to

ensure no process dynamics are lost. Whereas the upper bound was found by trial

and error at the point where the method still worked, but performance is not

satisfactory.

After initial data generation is finished, desired amount of random white noise is added

to noise free values to create ‘measured’ values. In this work all data was exposed to

5% or 20% random white noise. General structure of noise addition is provided below:

Measured values = Noise free data *(1 + ((b-a)*Random number + a)) 5.5

Where a is upper percentage bound, b is lower percentage bound and random number

stand for randomly generated number between 0 and 1. For example for 5% noise a

= 0.05, and b = -0.05.

59

5.4. Approximation spline

In this work cubic spline was used to approximate measurement data sets. Splining

data allows us to supply ode solver with required data points for integration.

Furthermore, when done correctly, splining of data cancels out some of the system

noise, without losing any crucial information. If approximation is done to high level

information about system kinetics is lost due to smoothing it out, if it is done to low

level noise is dominant instead of system dynamics. Therefore, it is important to

optimise your approximation method to not lose process dynamics from measurement

data. The chosen smoothing spline function in MATLAB was csaps. It’s a cubic

smoothing spline of given data x, y. It allows you to specify a smoothing parameter p,

which controls the smoothness level. When p is 0 csaps fit least squares straight line

to given data, on other hand when p is 1 fitted function is the `natural' or variational

cubic spline interpolant. This smoothing spline minimizes the function provided:

𝑝∑𝑤(𝑗)|𝑦(: , 𝑗) − 𝑓(𝑥(𝑗))|2
𝑛

𝑗=1

+ (1 − 𝑝)∫𝜆(𝑡) |𝐷2𝑓(𝑡)|2𝑑𝑡 5.6

Where w(j) is weighting vector, y(:,j) is provided data matrix, f(x(j)) is newly replaced

value matrix, j is length of time vector(or length of x axis points), D2f(t) is second

derivative of function f.

Value of p was chosen to be 0.95 as during initial testing of error sensitivity to

smoothing parameter revealed it to be optimum value in most cases.

60

5.5. Sub-system solver

The solver that was chosen to solve decoupled sub-systems was lsqnonlin. This solver

is non-linear least square solver and incorporated error squaring into algorithm, for

these two reasons it was best fit solver as a sub-system solver. The options for solver

are provided in Table 4.3, with values provided for example system (equation 5.1):

Option Description Value

DiffMaxChange The scalar value, of maximum change for finite-

difference gradients

0.1

TolFun Function tolerance, this is value is threshold which

algorithm stop if objective function value reaches it.

1e-8

TolX Step function tolerance, this is value is threshold which

algorithm stop if change in objective function is lower

than the threshold.

1e-8

MaxFunEval Maximum number of function evaluation allowed before

termination of the algorithm

10000

MaxIter Maximum number of iterations allowed before

termination of the algorithm

2000

Jacobian Specifies if algorithm should use finite difference

Jacobians or user defined ones

‘on’

Table 5-3 Options table for sub-set solver lsqnonlin

Initial parameter points where supplied as 0.5 for each subsystem, as its reasonable

initial conditions for most cases, being positive and close to 0. It should be noted initial

parameter guess have no effect on solution, as long it is within solution bonds. The

lower bounds where specified as 0 and upper bounds as double the real parameter

value rounded up to closest integer. Each subset was supplied with enough different

data sets so all parameters within sub-system would be observable. For the example

system (equation 5.1) two different data sets where required across all three

subsystems. To increase solver accuracy and speed Jacobian matrix was defined for

each of the sub-systems. Structure of Jacobian matrix is showed in equation 5.7:

𝑑

𝑑𝑡

𝑑𝑥𝑖
𝑑𝑝𝑗

=
𝑑𝑓

𝑑𝑝𝑗
+
𝑑𝑓

𝑑𝑥𝑖
∗
𝑑𝑥𝑖
𝑑𝑝𝑗

 5.7

61

Where 𝑥𝑖 is state which is integrated, f is function which is integrated, 𝑝𝑗 is parameter,

which is integrated, and t is time.

This Jacobian matrix provides solver trust-region function removing need of evaluating

function of each parameter, consequently it allows solver to reach optimal solution

faster. Cost function consisted of difference between measured values of the state

and predicted values of the state. For each unique data set used by the solver one

cost function was created. In a case of multiple cost function, total error was

calculating by adding all cost functions with equal weightings. Jacobian matrix is

collection of parameter sensitivities over time, this allows to estimate all parameter

change with single function. To obtain the Jacobian matrix function for the example

system (equation 5.1), we start with defining unknown parameter vector (equation 5.8)

and ODE function vector (equation 5.9). Then we can replace corresponding terms

within Jacobian matrix function (equation 5.7), to obtain general form (equation 5.10).

Letting 𝑆([𝑋, 𝑆, 𝑃], 𝑝̂𝑗, 𝑡) =
𝑑[𝑋,𝑆,𝑃](𝑡)

𝑑𝑝𝑗
 to be sensitivities of states (X,S,P), for the model

parameter pj we get sensitivity ODEs, which then are used as first order derivatives in

objective function during optimisation. It should be noted that sensitivity initial

conditions are always 𝑆([𝑋, 𝑆, 𝑃], 𝑝̂𝑗 , 0) = 0. Example of final Jacobian matrix for all

states and Umax parameter is provided in (equation 5.11).

𝑝̂𝑗 = [U𝑚𝑎𝑥⁡K𝑠⁡q⁡q𝑠] 5.8

𝑓(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)]
𝑇 =

[

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
∗ 𝑋 − 𝐷𝑋

−𝑞
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑋 − 𝐷(𝑆 − 𝑆𝑓)

⁡𝑞𝑝𝑋 − 𝐷𝑃]

 5.9

𝑑

𝑑𝑡

[

𝑑𝑋(𝑡)

𝑑𝑝̂𝑗
𝑑𝑆(𝑡)

𝑑𝑝̂𝑗
𝑑𝑃(𝑡)

𝑑𝑝̂𝑗]

=

[

𝑑𝑓1(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓1(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓1(𝑡)

𝑑𝑃(𝑡)
𝑑𝑓2(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓2(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓2(𝑡)

𝑑𝑃(𝑡)
𝑑𝑓3(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓3(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓3(𝑡)

𝑑𝑃(𝑡)]

[

𝑑𝑋(𝑡)

𝑑𝑝̂𝑗
𝑑𝑆(𝑡)

𝑑𝑝̂𝑗
𝑑𝑃(𝑡)

𝑑𝑝̂𝑗]

+

[

𝑑𝑓1(𝑡)

𝑑𝑝̂𝑗
𝑑𝑓2(𝑡)

𝑑𝑝̂𝑗
𝑑𝑓3(𝑡)

𝑑𝑝̂𝑗]

 5.10

62

𝑑

𝑑𝑡
[

𝑆(𝑋, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑆, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑃, 𝑈𝑚𝑎𝑥, 𝑡)
]

=

[

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
− 𝐷

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
−
𝑈𝑚𝑎𝑥𝑆𝑋

(𝐾𝑠 + 𝑆)2
0

−𝑞
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑞
𝑈𝑚𝑎𝑥𝑆𝑋

(𝐾𝑠 + 𝑆)2
− 𝑞

𝑈𝑚𝑎𝑥𝑋

𝐾𝑠 + 𝑆
− 𝐷 0

⁡𝑞𝑝 0 −𝐷]

[

𝑆(𝑋, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑆, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑃, 𝑈𝑚𝑎𝑥, 𝑡)
]

+

[

𝑆𝑋

𝐾⁡ + ⁡𝑆

−𝑞
𝑆𝑋

𝐾𝑠 + 𝑆
0]

5.11

5.6. Global solver

Global solver chosen for the proposed state substitution method is Global search as

discussed in section 2.4. Global search algorithm requires only couple of the inputs a)

Objective function b) Initial parameter values c) Parameter value boundaries d) Select

local solver e) Any additional solver options (optional). For the proposed state

substitution method global search was used during re-optimisation step for all four

case studies.

a) Objective function was constructed for all cases studies as a sum of weighted

least-squared problem. First, all state values were normalised, to avoid over-

representation of high values states in total error of the objective function. Then

each of the of the model state values were subtracted from the measured state

values and squared. Weighting was assigned based on the level of in the

hierarchy model, where first level is assigned highest weight value.

b) Initial parameter values for the global search were values that were optimised,

by the decoupling approach.

c) Parameter value boundaries were defined as ± 20% of the initial parameter

values. This is an arbitrary decision, but it aims to keep global solver search

space close to initial start point. This encourages the global solver to make

precise search around the starting point

d) Local solver was selected to be ‘fmincon’. This is default solver and the most

robust one.

63

e) Only single additional solver option was added, which was maximum number

of function evaluations, which was set to 3200. By default, this value is

100*Number of parameters. This option value was changed to high static value,

to ensure detailed search with low parameter amount, and to stop algorithm

from optimising increasingly small amounts for larger number of parameters.

It should be noted that if parameter value search space grows too large or is unknown

global search algorithm cannot be used for re-optimisation. It makes algorithm not

capable of optimising parameter values anymore as, search space is too large. If that

is the case global search should be swapped for genetic algorithms (GA).

Furthermore, changes to default (GA) algorithm should be made as described below.

The population size should be chosen based on work done by Stanley Gotshall

(Gotshall and Rylander 2002). His experiments showed effect of population size for 3

distinctive problems keeping other variables same. The results show that optimal

population size for 3 parameters would be 85. This would produce lowest amount of

incorrect solution while keeping number of generations at minimum.

There are several crossover functions that serves different purposes. Intermediate

crossover function should be chosen because, initial population provided is already

close to global minimum, which means creating child within the hypercube defined by

placing the parents at opposite vertices would provide solution close to initial guess.

Mutation function should be chosen based such that it generates direction of mutation

based of successful and unsuccessful generation. In addition, mutation should be kept

within upper and lower constrains. Both characteristics are desired for re-optimization.

Elite count should be set to 50% of population size. This specific number is chosen for

two reasons. First it is same values used in (Gotshall and Rylander) when selecting

population size and second as initial population is already close to global minimum it

is desired to keep most of population to stop it from migrating too far.

Function tolerance should be lowered form default value of 1e-6 to 1e-3, because

during testing it was observed that GA reach place where cost function is almost flat

in all direction making optimization take longer that it should without any significant

improvement.

64

Most of options were to limit GA search around initial points instead of allowing it full

range search, thus increasing efficiency and speed of algorithm. Initial population

should be generated by creating random vectors of parameters with the standard

deviation of 1 and mean of values that were produced by the decoupling step.

5.7. Summary

Chapter describes all algorithms used in the proposed state substitution method for

parameter identification required for methods set-up and its execution. The set-up

requires the user to determinate most optimal model hierarchy after decoupling, which

is achieved with help of two methods, Bi-partite chart and the parameter impact

correlation using SOM. Bi-partite chart provides a straightforward answer, which of the

systems states affect most of the other states. This helps while setting up the

hierarchy, as states with most impact should be higher solved first. Similarity the

parameters that affect most of the systems states should be solved first and passed

on to lower levels of hierarchy. Parameter impact correlation allows to calculate, which

of the parameters have most effect on overall prediction error. Prioritizing these

parameters to be solved first, increases accuracy of the state substitution method.

Execution of the proposed state substitution method for parameter identification can

be broken down into following steps: data generation (if needed), data approximation,

local decoupled optimisation, global re-optimization. For testing of the validity and

accuracy of the proposed state substitution method data of the system was generated

with artificial levels of random white noise. Data approximation was performed by cubic

spline, with smoothing parameter of 0.95. Local optimisation was performed by

nonlinear least squared algorithm and global optimization was performed with genetic

algorithm.

65

6. Results and discussion
This chapter presents results collected from four case studies and analyses their

complexity. Three out of four models are based on simulated data, and one is based

on experimental data. Case studies was selected to represent different levels of

complexity. Complexity was evaluated based on methods described in chapter 4. Each

case study consists of four sub sections: a description of system, complexity analysis,

method comparison and summary of the results. The description of the systems

explains why the system was chosen and what are the key features of this system.

The complexity analysis provides details of system complexity, so it can be compared

relatively to other cases studies. The method comparison shows results of the system

performance while varying noise levels and sampling time of the system. The

proposed State-Substitution method is compared with the derivative estimation

method and Latin hyper-cube sampled multi start method. The accuracy of each

method and computational time is compared and discussed. The method comparison

sub section also provides a list of the difference between identified parameters and

theoretical (real) values for comparison of parameter identification accuracy.

6.1. Case study 1 – Polynomial model

This system was created as a benchmark problem, to show that the complexity of a

system is not directly linked to a large number of parameters, rather, it is related to the

amount of coupling within system. For this reason, a low complexity polynomial is

created, consisting of twenty parameters and only one differential equation, meaning

there is no coupling effects. This also means that the proposed state substitution

method will not work as intended, because there no way to utilise the decoupling

technique on a single ODE system. The proposed state substitution method will be

applied to identify parameters of this system for completion and comparison with other

methods (Derivative estimation, Multi-Start). Equation 6.1 shows the polynomial

system.

𝑑𝑥

𝑑𝑡
= 𝑝1𝑥 + 𝑝2𝑥 + 𝑝3𝑥 + ⋯+ 𝑝20𝑥 (6.1)

6.1.1. Complexity analysis

To compare complexities of different systems several criteria are considered. First, a

PCA visualization plot of the first principal component scores versus model error will

be used to provide an overall impression of the systems error plane and will show if a

global minimum is clearly visible. By marking the PCA visualization plot with

66

convex/non-convex points we see where problematic regions are and get the

convexity number in terms of a percentage. Second, each of the PCA visualization

points, have scores that relate to certain set of parameters, we can optimize each of

these sets and sort them out from highest final error to lowest. This will show how

many local minima we can expect and how well they are defined. This will also help

us to determine if the system can be optimised towards performance only or for

parameter values too. Separating systems into these two groups is crucial, so in the

event where a model provides accurate predictions, we know how confident of the

parameter values we can be. Third, we will look at SOM analysis, we will mark the

unified distance matrix plot with colours based on the dominant error value within each

cluster. This will allow to visualise multiple minimum (if they exist). In addition, SOM

component plots can help identify parameters that influence the system most. If any

individual parameter SOM patterns agree with SOM patterns of overall error, we can

infer that the system is dominated by that parameter. Complexity analysis will be

performed for each case study so direct comparison of relative complexity can be

made.

67

6.1.1.1. PCA visualization

The PCA visualization graph is constructed by decomposing the array of parameter

values. These values are obtained by using the Latin hyper cube sampling technique

to provide ten thousand samples. For each parameter set, the first two principal

component scores are obtained. Then these scores are plotted against squared error

of the difference between models with theoretical values and sample values. Looking

at the figure 6.1 it shows us that it is largely flat in PCA2 axis (scores of second

principal component) and has a slight curve in PCA1 axis (scores of first principal

component). This makes a downward slope towards global optimal solution. Looking

at graphs we can also see that all plotted points are marked blue, meaning this system

is 100% convex, or in other words no matter where the initial parameters values are

(within analysed boundaries) a gradient based optimisation algorithm will always tend

towards the global optimum. The downward slope also means all solution are more

sensitive with respect to PCA1 than PCA2, this is expected as during PCA analysis

PCA1 will always hold most variability followed by PCA2, then PCA3 and so on. For

this system both PCA1 and PCA2 explain 5% variability of the system for a total of

10%. Simple surface structure of this error plot and 100% convexity suggests that this

is low complexity problem to optimize.

Figure 6.1 PCA error plot for Polynomial model (6.1), with colour coded points for convexity, where blue points are

convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution.

68

6.1.1.2. Sorted minimization

Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. As mentioned before in

chapter 4.7, for a system with 100% convexity, you would expect a horizontal straight

line as all the points should converge to the global optimum, but that is not the case.

This is because this polynomial system, is only solvable for performance optimum not

parameter optimum. Looking at the difference between ‘worst’ and ‘best’ optimisation

provides more clarity in what is happening. With ‘worst’ squared error being in a range

of 10-12 and ‘best’ squared error being 10-18. For all practical application both squared

error values are same as zero. Meaning although there is a difference, and there are

plenty of different local minimum within that gap, the difference between these local

minimums is negligible. The reason why this system behaves like this is to do with its

structure. Parameters values are interchangeable, meaning if any two parameter

values would be swapped places no change in overall function (6.1) would occur. It

becomes very clear if we simplify this system to two parameter system such as 10 = x

+ y. The combination of pairs of x + y values which can sum to ten is infinite. Each of

those pair would satisfy system performance criteria i.e. the solution outcome is

correct, but the actual values can vary. This shows us that this polynomial model can

be easily solved to perform well, but it is true parameter values, cannot be identified.

Figure 6.2 Polynomial model (6.1) thousand samples sorted optimization, where blue is all samples and red are

convex samples only (As this model is 100% convex all samples and convex samples is same).

69

6.1.1.3. SOM analysis

As with the PCA visualization, the Latin Hyper cube sampling technique was used to

obtain an array of parameters. Each sampled array of parameters is treated as a

sample and they are sorted and coloured by the error between the modelled solution

and the true solution. Errors are classified into high medium low and the most

abundant solutions in a particular space are the dominant colour on the map. Within

analysed boundaries, error values above 50% of maximum error where considered to

be high error values(red). Error values between 50% and 5% of maximum error where

considered to be medium error values(blue), and error values below 5% of maximum

error where considered to be low error values(green). The same colour coding is

consistent within all SOM analysis in this thesis.

Looking at figure 6.3 results of SOM, supports previous conclusions that system is

easily solvable, but has multiple local minima. All high error values are concentrated

in the centre, creating one big local minimum around it. Lowest error clusters are

scattered showing you can reach similar performance with completely different set of

parameters. Looking at figure 3b, each hex has multiple colours, these colours

represent values that were assigned to that clusters, bigger the colour more of it was

within that hex. Grey hexes around it provides value of relative distance between each

cluster of coloured hexes. This further supports the multiple minima conclusion,

scattered around the plane. It should be noted that none of the green values are found

in the middle cluster of high error values.

Although from the structure of the polynomial we know that none of the parameters

are dominant, it is not always obvious with more complicated systems. To be able to

see if how strongly parameters effect the system, we can utilise the SOM component

maps and colour coded SOM. We cross correlate the patterns of component maps to

overall error map to see how well they match. Matching component map and overall

error map implies there is a dominant connection between the parameter and the

system. Although correlation does not mean causation, with large enough sample size

it is very unlikely to run into false positives. Furthermore cross-correlation need to be

done twice, as parameters can be positively or negatively correlated. Therefore, a

second cross-correlation is done to inverse error map.

Figures 6.5 - 6.6 shows how well component maps match up versus total error maps.

Positive values mean higher degree of matching, and lower values mean lower. Cross

70

correlation factor of 1, represents perfect match and 0 represent mismatch. As

expected, none of the parameters seems to be more dominant than others. These

figures allow to see how well, parameter changes match overall error changes in the

system and to represent a quantifiable measurement of how dominant the parameter

an overall matching factor was calculated (Table 6.1).

Parameter Positive Matching

Factor

Negative Matching

Factor

x1 0.66 ± 0.03 0.62 ± 0.04

x2 0.69 ± 0.02 0.60 ± 0.03

x3 0.66 ± 0.02 0.63 ± 0.03

x4 0.68 ± 0.02 0.60 ± 0.05

x5 0.72 ± 0.03 0.59 ± 0.04

x6 0.71 ± 0.02 0.58 ± 0.04

x7 0.68 ± 0.05 0.63 ± 0.03

x8 0.68 ± 0.04 0.62 ± 0.03

x9 0.69 ± 0.01 0.59 ± 0.06

x10 0.68 ± 0.05 0.60 ± 0.04

x11 0.68 ± 0.03 0.62 ± 0.03

x12 0.67 ± 0.05 0.64 ± 0.05

x13 0.72 ± 0.04 0.57 ± 0.01

x14 0.67 ± 0.03 0.62 ± 0.02

x15 0.70 ± 0.05 0.60 ±0.05

x16 0.71 ± 0.03 0.59 ± 0.02

x17 0.69 ± 0.05 0.60 ± 0.04

x18 0.67 ± 0.03 0.63 ± 0.03

x19 0.73 ± 0.02 0.58 ± 0.01

x20 0.68 ± 0.04 0.62 ± 0.04

Table 6-1 Table of positive and negative mean matching factor of each parameter for system (6.1)

We also can look at biggest difference between matching factors in table 6.1. Those

are 0.068 and 0.065, respectively. This shows there is very little difference in influence

between parameters confirming that none of the parameters are dominant.

71

Figure 6.3 a) 2d SOM of Polynomial model (1), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. b) 2d SOM with

same colour code as a), but also showing relative distance in n-dimensional plane represented as colour bar and separation of different colour within each cluster.

72

Figure 6.4 From top left: 1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) - 21) x1 to x20 parameters with their respective variation within n-

dimensional plane, parameter values denoted in colour bar.

73

Figure 6.5 Positive cross-correlation between each parameter map and overall error map.

74

Figure 6.6 Negative cross-correlation between each parameter map and overall error map.

75

6.1.2. Method comparison

To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper

cube sampled multi start method. Two main criteria will be compared, model

performance accuracy and the computational time between each of the methods.

Although the proposed state substitution method aims to reduce computational time,

model performance accuracy is also very important and cannot be completely

neglected. Each method will be assessed with different random noise levels and

sampling times. For each method three different state initial conditions are compared,

first two (Pink and Blue) are set same for all methods and are conditions that were

provided for the optimisation algorithm and third initial condition (Black) is randomised

between first two initial conditions and was never seen by algorithm before. This allows

to check method accuracy with unseen data sets, which are within same boundary

conditions. Modelling conditions and parameter search space are summarised in

tables below:

Experiment

number

Sampling

Rate

Noise

level

Initial

conditions

Pink

Initial

conditions

Blue

Initial

conditions

Black

1 0.1h 5% 0, 0, 0 30, 30, 30 16.9, 7.1, 14.9

2 0.1h 10% 0, 0, 0 30, 30, 30 15.4, 15.6, 24.4

3 0.3h 5% 0, 0, 0 30, 30, 30 23.1, 20.6, 4.9

4 0.3h 10% 0, 0, 0 30, 30, 30 26.6, 18.0, 18.9

5 0.3h 20% 0, 0, 0 30, 30, 30 22.5, 18.1, 27.0

Table 6-2 Summary of modelling conditions for system (6.1)

Parameters Lower bound Upper bound

x1, x2, x3…. x20 0 2

Table 6-3 Parameter search space for system (6.1)

76

6.1.2.1. Experiment 1 0.1h sampling and 5% random noise

While comparing the accuracy of the model, we do not see much of a difference

between each method. Furthermore, the sampling rate is high and noise level is low,

allowing multiple approaches to perform accurately (Fig 6.7), without getting stuck in

local minima. This result is expected. Since accuracy of model predictions are high

(table 6.4) and very similar between different methods, then we should investigate

computational time as the next important criteria.

Method Computational time, s

Derivative estimation 223

Latin hyper cube multi-start 93

Proposed state substitution method 181

Table 6-4 Computational time of all three method for experiment 1.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 2.61E-05 3.38E-05 3.20E-05

Latin hyper cube multi-start 2.39E-04 3.08E-04 3.00E-04

Proposed state substitution

method

1.19E-04 1.55E-04 1.46E-04

Table 6-5 Squared error values of each method and each data set for experiment 1

When comparing computational times, it is easy to see that multi-start method is much

faster, than the other two methods (table 6.3). As the system is 100% convex it works

in the favour of the multi-start method as computational time is very sensitive to the

convexity of the problem. Starting position needs to be in right valley to able to optimise

towards global optimum. This leads to requiring a smaller size of Latin hyper cube,

thus reducing computation time.

The multi-start method is faster than Derivative estimation method, because with a low

complexity problem it does not require a large number samples to be able to optimise

towards the correct solution, and screening for best starting points reduces the number

of optimizations that need to be done. Where the Derivative estimation method solves

the lower complexity algebraic equations, but the absolute number of equations

significantly increases the computation time.

77

It is also faster than the proposed state substitution method, as it cannot take

advantage of decoupling of the system as there is only one ODE. In principle the

method still works, but it does additional steps that do not have any benefit for such a

lower complexity system, but still required significant computational time to be

calculated. It is also important to compare parameter values, that were identified with

theoretical values. Table summarizing parameter values can be seen below:

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

x1 0.81 0.11 0.39 0.73

x2 0.91 0.68 0.92 1.28

x3 0.13 0.62 0.41 0.23

x4 0.91 0.65 0.11 0.9

x5 0.63 0.97 1.85 1.51

x6 0.1 0.05 0.56 0.75

x7 0.28 0.41 0.43 0.21

x8 0.55 0.52 0.37 0.66

x9 0.96 0.65 0.06 0.6

x10 0.96 1.72 0.42 0.92

x11 0.16 0.86 1.73 1.16

x12 0.97 1.97 0.55 0

x13 0.96 0 0.39 1.12

x14 0.49 1.23 0.84 0.15

x15 0.8 0.12 1.45 0.64

x16 0.14 0.04 0.45 0.46

x17 0.42 1.8 1.32 0.41

x18 0.92 0 0.11 0.38

x19 0.79 0.15 0.11 0.44

x20 0.96 0.25 0.46 0.34

Table 6-6 Summary of identified parameter values for each method for experiment 1

Comparing parameter values, we observe the hypothesised behaviour, based on

sorted minimization in chapter 5.1.1.2. No exact parameter values match due to the

infinite number of combinations that produce same result.

78

79

Figure 6.7 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.1h sampling and 5% random noise for measured data.

6.1.2.2. Experiment 2 0.1h sampling and 10% random noise

Even with increased noise from 5% to 10%, from previous setup, accuracy of model

does not suffer in any of the methods. This is for the same reasons as explained in

chapter 6.1.2.1. Problem is not complex enough to affect accuracy of the methods. It

should be noted that total squared error (SSE) decreased, for the proposed and the

Latin hyper cube methods, and increased for the derivative estimation method. This

changed is due to methods ability to cope with noise. Although these changes are

observable, they are not significant on a model scale (figure 6.8).

80

Method Computational time, s

Derivative estimation 243

Latin hyper cube multi-start 107

Proposed state substitution method 180

Table 6-7 Computational time of all three method for experiment 2

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 2.28E-04 2.98E-04 2.72E-04

Latin hyper cube multi-start 1.19E-05 1.55E-05 1.46E-05

Proposed state substitution

method

1.10E-06 1.43E-06 1.35E-06

Table 6-8 Squared error values of each method and each data set for experiment 2

When comparing computational times there are some differences with previous setup.

Firstly, all methods computational time increased. This is due to larger magnitude

noise, therefore increasing uncertainty of method, as error surface becomes more

disturbed. This makes each integration for each method harder. Table summarizing

parameter values can be seen below:

81

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

x1 0.81 0.76 0.15 0.65

x2 0.91 0.24 1.24 0.71

x3 0.13 1.83 0.76 0.69

x4 0.91 0.69 0.25 0.55

x5 0.63 0.04 0.31 0.61

x6 0.1 1.29 0.03 0.74

x7 0.28 0.03 0.23 0.67

x8 0.55 0.03 1.09 0.56

x9 0.96 0.33 0.25 0.77

x10 0.96 1.05 0.95 0.55

x11 0.16 0.62 0.62 0.59

x12 0.97 0.31 1.16 0.72

x13 0.96 0.05 0.84 0.55

x14 0.49 0.31 1.81 0.57

x15 0.8 0.13 1.05 0.57

x16 0.14 0.13 0.08 0.55

x17 0.42 1.76 1.16 0.69

x18 0.92 1.04 0.65 0.73

x19 0.79 0.8 0.13 0.59

x20 0.96 1.4 0.11 0.71

Table 6-9 Summary of identified parameter values for each method for experiment 2

As before we see parameter values that are completely different than in previous

setup, but still producing good performance models, due to nature of the system.

82

83

Figure 6.8 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.1h sampling and 10% noise for measured data.

6.1.2.3. Experiment 3 0.3h sampling and 5% random noise

Increasing sampling time from 0.1h to 0.3h, seem to effect derivate estimation method

and proposed state substitution method in this case, while Latin hyper cube method

performs at the same accuracy. Lower number of sample points provide less

information for each method to optimise correctly towards solution. Still even with

some inaccuracies all methods can find solution that produces acceptable

performance. The Latin hyper cube method seems to outperform other methods in

terms of accuracy (table 6.10).

Method Computational time, s

Derivative estimation 190

Latin hyper cube multi-start 98

Proposed state substitution method 140

Table 6-10 Computational time of all three method for experiment 3.

84

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 3.23E-04 4.24E-04 4.16E-04

Latin hyper cube multi-start 3.42E-07 4.44E-07 4.11E-07

Proposed state substitution

method

1.04E-04 1.34E-04 1.23E-04

Table 6-11 Squared error values of each method and each data set for experiment 3

When comparing computational time, we can see that the overall trend stays the same

of multi-start method being best followed by proposed and derivate estimation

methods. Furthermore, all computational times dropped compared to experiments 1

and 2. That is because with decreased sampling frequency, there is less data to

compute, making methods faster to arrive at a solution, at the cost of accuracy. The

Multi-start method seems to be unaffected by this, keeping its computational time

relatively similar, but at the same time it does not suffer any accuracy penalties either.

Table summarising parameter values can be seen below:

85

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

x1 0.81 0.02 0.08 0.61

x2 0.91 0.5 1.49 0.98

x3 0.13 0.49 0.62 0.63

x4 0.91 0.37 0.41 1.39

x5 0.63 1.89 0.08 0

x6 0.1 0.19 0.76 1.11

x7 0.28 1.91 1.76 1.09

x8 0.55 0.18 0.01 0.45

x9 0.96 0.48 0.84 0.7

x10 0.96 0.21 0.9 0.59

x11 0.16 0.11 0.74 0.7

x12 0.97 1.28 0.49 0.58

x13 0.96 0.16 0.1 0.81

x14 0.49 0.33 0.04 0.8

x15 0.8 1.16 0.88 0.65

x16 0.14 0.9 1.24 0.4

x17 0.42 0.24 0.79 0.49

x18 0.92 0.39 0.67 0.27

x19 0.79 0.9 0.66 0.08

x20 0.96 1.24 1.84 0.35

Table 6-12 Summary of identified parameter values for each method for experiment 3.

86

87

Figure 6.9 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,

with 0.3h sampling and 5% noise for measured data.

6.1.2.4. Experiment 4 0.3h sampling and 10% random noise

With increased noise from 5% to 10%, all methods seem to suffer in accuracy. Errors

are small and all methods produce acceptable performance of a model. All methods

seem to perform on similar accuracy levels.

Method Computational time, s

Derivate estimation 204

Latin hyper cube multi-start 99

Proposed state substitution method 176

Table 6-13 Computational time of all three method for experiment 4.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 1.34E-04 1.73E-04 1.61E-04

Latin hyper cube multi-start 1.27E-04 1.65E-04 1.55E-04

Proposed state substitution

method

2.39E-04 3.13E-04 2.84E-04

Table 6-14 Squared error values of each method and each data set for experiment 4

88

We can also see that methods accuracy degrade more than with experiment 3, from

their computational time all methods, with exception of Latin hyper cube model, have

significant increase in computational time. Table summarizing parameter values can

be seen below:

Parameter Theoretical

value

Derivate Latin hyper

cube

Proposed

x1 0.81 1.76 0.07 0.61

x2 0.91 1.25 1.08 0.79

x3 0.13 0.21 1.69 1.04

x4 0.91 0.18 0.53 0.55

x5 0.63 0.25 0.48 0.5

x6 0.1 0.63 0.9 0.67

x7 0.28 0.13 1.25 0.43

x8 0.55 0.59 1.41 0.56

x9 0.96 0.21 0.4 0.61

x10 0.96 1.35 0.14 0.89

x11 0.16 0.35 1.3 0.46

x12 0.97 0.12 0.03 0.87

x13 0.96 1.24 0.47 0.66

x14 0.49 0.44 0.52 0.78

x15 0.8 1.29 0.92 0.62

x16 0.14 0.39 0.56 0.63

x17 0.42 1 0.24 0.48

x18 0.92 0.15 0.25 0.3

x19 0.79 0.18 0.2 0.92

x20 0.96 1 0.31 0.57

Table 6-15 Summary of identified parameter values for each method for experiment 4.

As before we see parameter value that are completely different than in previous

experiments, but still producing good performance models, due to nature of the

system.

89

90

Figure 6.10 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 10% noise for measured data.

6.1.2.5. Experiment 5 0.3h sampling and 20% random noise

At noise levels of 20% we start to see Further degradation in the performance of the

methods. From figure 6.11, we can say that the derivate method and the proposed

state substitution method have worst accuracies and the Latin hyper cube method

having better accuracy. At 20% noise level a lot of parameter influence on system is

hidden by large noise. Reason why methods can still be accurate, at least for the first

half of the model, is because system is so forgiving with parameter selection. Making

it very simple problem to identify to perform well.

Method Computational time, s

Derivate estimation 256

Latin hyper cube multi-start 141

Proposed state substitution method 236

Table 6-16 Computational time of all three method for experiment 4

91

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 1.60E-03 2.13E-03 1.93E-03

Latin hyper cube multi-start 3.51E-04 4.62E-04 4.31E-04

Proposed state substitution

method

3.40E-03 4.25E-03 3.92E-03

Table 6-17 Squared error values of each method and each data set for experiment 4

Computational time follows same trend as before. Increase in noise level increase

computational time across all methods, keeping them in same order from fastest to

slowest. Table summarizing parameter values can be seen below:

Parameter Theoretical

value

Derivate Latin hyper

cube

Proposed

x1 0.81 0.78 0.77 0.61

x2 0.91 0.63 0.28 0.7

x3 0.13 1.06 0.17 0.9

x4 0.91 0.53 0.68 0.16

x5 0.63 1.29 0.16 1.45

x6 0.1 0.41 1.55 0.7

x7 0.28 0.37 0.97 0.7

x8 0.55 0.98 0.31 0.03

x9 0.96 0.77 0.18 0.11

x10 0.96 0.7 0.15 0.96

x11 0.16 0.73 0.38 0.63

x12 0.97 0.83 0.22 0.68

x13 0.96 0.18 1.57 0.81

x14 0.49 0.53 0.14 0.6

x15 0.8 0.48 1.01 0.18

x16 0.14 0.31 0.58 0.62

x17 0.42 1 0.52 0.84

x18 0.92 0.19 0.83 0.73

x19 0.79 0.49 1.38 0.5

x20 0.96 1.07 0.84 0.61

Table 6-18 Summary of identified parameter values for each method for experiment 4.

92

As before we see parameter value that are completely different than in previous

experiments, but still producing good performance models, due to nature of the

system.

93

Figure 6.11 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,

with 0.3h sampling and 20% noise for measured data.

6.1.3. Summary of results for polynomial model

This case study serves as a benchmark model, to show that complexity is not

proportional with the number of parameters. It is showed that even with large number

of parameters (Twenty), every method was able to provide highly accurate solution.

This case study also shows how noise effect each method, although complexity is low

increasing noise does decrease accuracy of the solution, for each of the models. With

this low complexity model, this case study allows to assess viability of the complexity

analysis tools. Each of the complexity analysis tools, provide different way to visualise

complexity of the system, and together form a way to quantify the complexity of the

model. This complexity measurement is not absolute, but rather a relative way to

measure complexity. It allows to compare complexity of two different models, but not

set a classification of the system complexity. The final decision of system complexity

classification (Low, Medium, High) is up to users’ interpretation. Using system, with

known complexity based on prior knowledge is a good way to help establish what kind

of results you should expect from this complexity analysis based on their complexity

class. Using these methods complexity was assessed to be low for the polynomial

model, because of several reasons. First, it consists of single ODE, which means there

94

no coupling interactions between different ODE’s, making it easier to identify

parameters, as they are all affected only by only one ODE. PCA visualization confirms

this by forming a single uniform valley, that drops towards the global optimum. In

addition to this convexity of this system is 100%, meaning it does not have problematic

regions, that would stop system from converging. These results already suggesting

this system has low complexity as it is simple to solve and has one global performance

optimum. Sorted minimization reveals that system’s parameters are not possible to

identify. This is expected as explained in chapter 6.1.1.2, structure of the model makes

exact parameter value unidentifiable, because all parameter values are

interchangeable. Model still can be optimised to perform well when compared to

measured data. This also suggest that individual values of the parameters are not

sensitive, for the same reason. SOM analysis confirms this by showing that system

has multiple local minimums, but they all produce same level of performance. SOM

analysis also provides supporting evidence of the parameters being not sensitive as

cross-correlating SOM parameter maps with the overall model error SOM map is not

able to identify any dominant variables. When comparing results of different parameter

identification algorithms, for this system the Latin hyper-cube method is the most

accurate method, in all five experimental setups. Accuracy of other two methods is

comparability close for the first four experimental setups, but difference between the

Latin hyper cube method increases when noise level reaches 20% mark. Accuracy

levels for all methods were consistent between seen data (Pink and Blue) and unseen

data (Black). Computational time is significantly different within all five experimental

setups, with the Latin hyper cube method having lowest computational time, followed

by other two methods. This is mainly due to small search space and simple model

error hyperplane. This makes required number of samples to be low, therefore

reducing computational time as well. This benchmark also shows that the proposed

state substitution method is not suitable single ODE system, because decoupling

cannot be used. This makes the proposed state substitution method perform worse

than it would on a more complex system, when comparing with state of art methods.

Although performance of identified model is satisfactory, all identified parameters

values are not consistent. Identified parameter values are not consistent nor with

theoretical values nor with other methods identified values. This reinforce the fact that

parameter values are non-sensitive and unidentifiable, but good accuracy of the model

can be still reached.

95

Figure 6.12 Summary of performance results for all three methods for polynomial model

96

6.2. Case study 2 – Monod kinetics

Monod kinetics are widely used for modelling bio-systems growth, while being

relatively simple model. This makes Monod kinetics a good benchmark problem to

evaluate the proposed new method. Monod kinetics also allows to observe how

accurate complexity analysis is on coupled ODE system, as a lot of knowledge is

known about Monod kinetics, to compare results. Monod kinetics in its simplest form,

which is used for this case study, consists of two ODE’s and three parameters. Both

ODE’s are coupled, and three parameters vary in sensitivity. Where maximum specific

growth rate (Umax) and substrate consumption rate (q) values has large effects on

model accuracy and half velocity constant (Ks) value, has low effects on model

accuracy. Making half velocity constant hard to precisely identify. Equation 6.2 shows

the system. Data was generated as described in section 5.4.

{

𝑑𝑋

𝑑𝑡
=
𝑈𝑚𝑎𝑥 ∗ 𝑆

𝐾𝑠 + 𝑆
∗ 𝑋

𝑑𝑆

𝑑𝑡
= ⁡−𝑞 ∗

𝑈𝑚𝑎𝑥 ∗ 𝑆

𝐾𝑠 + 𝑆
∗ 𝑋

(6.2)

6.2.1. Complexity analysis

Complexity analysis will be performed in three steps as mentioned in section 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,

sorted minimization and SOM analysis. The aim of this analysis is to compare relative

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system.

6.2.1.1. PCA visualization

Figure 6.12 shows different structure, than the one described in section 6.1.1.1.

Visualization of error plane shows as much more clearly defined global minimum and

has non-convex regions that were not present in polynomial case study. Similar to first

case study five thousand sample points, were used in PCA visualization of Monod

model. These points were calculated as described in section 6.1.1.1. We can see that

global optimum is well defined by sharp valley in middle of graph, but it might not be

as easy to find because we can observe other two feature in this graph. A valley within

which global optimum sits, and a flat area surrounding that valley. As we would expect

those flat areas are non-convex, as starting in them gives an optimizer almost no

indication where the minimum is. Secondly, this system also has failed integration

97

points, which means we cannot assess their convexity, due to solver limitations. For

each convex point three different values need to be evaluated (Section 4.5), failure to

evaluate any of those three conditions gives failed integration/green dot. This graph

suggests that the system can be difficult to optimize if the initial conditions fall within

flat/red dot regions. This is also represented by overall convexity of 27%. Overall, we

can conclude that the system is not a trivial problem to optimize but should not a pose

big challenge if initial conditions are chosen correctly. That said, it can be tricky to get

to true global optimum as it is hiding within a secondary valley that can be mistaken

as the global optimum. Figure 6.12 is very good representation of the search space

as PCA1 explains 90.9% variability of the system and PCA2 8.2% for a total of 99.1%

variability.

Figure 6.13 PCA error plot for Monod model (6.2), with colour coded points for convexity, where blue points are

convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution.

6.2.1.2. Sorted minimization

Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. Optimization of these

thousand samples, makes majority of samples to converge to same value, hence a

98

flat line for figure 6.13. There is a drop down at last 200 samples but change in overall

error is negligible. Still those last couple of point indicate they are approaching true

global optimum, and not a valley around it which gives good performance. We can

also see from figure 6.13 that even points that started at non-convex regions can

convergence close to global optimum within this system. In addition, we can see that

identifying convex points is beneficial as they hold same information as the full

spectrum but require less points to be optimized. We can be sure that parameters

values can be identified accurately, and minimization shows one dominant optimum

(flat line).

Figure 6.14 Monod model (6.2) thousand samples sorted optimization, where blue is all samples and red are convex

samples only.

5.2.1.1. SOM analysis

Looking at figure 6.14 results of SOM, would suggests that there are multiple local

minimums as lowest error green hexes(L) are not connected. With careful observation

we can see green low error hexes(L) form two lines one closer to red hexes and

second further away, also between these two lines distances are much smaller than

anywhere else. Inspecting the U-matrix in figure 6.14 reveal that, this SOM has two

places where the distance between hexes reaches very low values. One of those low

distances lines are in the middle of red high error(H) hexes and second is in between

green low error(L) hexes. This observation allows to see true general trend of high

value on the left getting lower and lower while going to the right and finally increasing

99

to blue medium error value(M) on the right edge again. This agrees with what we saw

in a PCA visualization earlier, a valley of close to global optimum solutions.

We know that with the Monod system parameter Umax is dominant and only at very

low substrate values Ks become dominant parameter. To see if our SOM parameter

analysis can find that we will cross correlate SOM error map with parameters maps to

see which of them match best. If our cross-correlation method is correct it should show

biggest matching between Umax and error fallowed by q and Ks. As before cross-

correlation of maps are performed for positive and negative correlation.

Figures 6.16-6.17 shows how well component maps match up versus total error maps.

Positive values mean higher degree of matching, and lower values mean lower. Cross

correlation factor of 1, represents perfect match and 0 represent mismatch. As

expected, none of the parameters seems to be more dominant than others. These

figures allow to see how well, parameter changes match overall error changes in the

system and to represent a quantifiable measurement of how dominant the parameter

an overall matching factor was calculated (Table 6.18).

Parameters Positive Matching

Factor

Negative Matching

Factor

Umax 0.82 ± 0.01 0.47 ± 0.00

Ks 0.61 ± 0.01 0.59 ± 0.01

q 0.66 ± 0.00 0.65 ± 0.01

Table 6-19 Table of positive and negative mean matching factor of each parameter for system (6.2)

We can observe that there is significant difference between matching factors as

maximum difference between matching factors are 0.16 and 0.18, respectively.

Furthermore, Umax shows the highest level of agreement with overall error map as

expected. This provides additional confirmation that Umax is most dominant variable.

This allows us to have more confidence when arranging order in which ODE are

solved, for proposed state substitution method.

100

Figure 6.15 Left 2d SOM of Monod model (6.2), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right 2d SOM

with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

101

Figure 6.16 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution

represented as colour bar

102

a) b)

Figure 6.17 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

103

6.2.2. Model hierarchy

The Monod model (6.2) consists of two coupled ODE’s, which when applied to the

proposed state substitution methods’ decoupling algorithm leaves two independent

sub-sets that can be solved in any order. Yet a specific solution hierarchy will lead to

better results, because of the different levels of sensitivity from the parameters. In

order to figure out the model hierarchy we need to look at the bi-partite chart (figure

6.18). This reveals that both states have same level of importance and could be solved

simultaneously, but from (figure 6.16 and table 6.18), we can see that the parameter

Umax, has highest correlation with model error, hence highest sensitivity. This leads

to need for one of the sub-sets to be solved first to acquire the Umax value for best

overall results. Although X(Biomass) and S(Substrate) sub-sets could be chosen, X

sub-set is chosen, because it only has one other parameter associated with it (Ks).

This means that the optimization algorithm will be more aware of Umax effects to the

sub-set as it has less variables to optimize. This makes a two-level model hierarchy,

with Umax value being passed on from level one to level two (figure 6.19).

Figure 6.18 Bipartite chart of the Monod model (6.2)

104

Figure 6.19 Hierarchy of the Monod model (6.2)

6.2.3. Method Comparison

To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper

cube sampled multi start method. Two main criteria will be compared, model

performance accuracy and the computational time between each of the methods.

Although the proposed state substitution method aims to reduce computational time,

model performance accuracy is also very important and cannot be completely

neglected. Each method will be assessed with different random noise levels and

sampling times. For each method three different state initial conditions are compared,

first two (Pink and Blue) are set same for all methods and are conditions that were

provided for the optimisation algorithm and third initial condition (Black) is randomised

between first two initial conditions and was never seen by algorithm before. This allows

to check method accuracy with unseen data sets, which are within same boundary

conditions. Only biomass data set will be presented for model performance, as

biomass dictates accuracy of substrate model. This will allow to avoid unnecessary

graphs while still presenting enough evidence about model performance. However, for

completeness first experiment will show predictions for all states. Modelling conditions

and parameter search space are summarised in tables below.

X Biomass

S Substrate

Umax

Ks,q

Level 1

Level 2

105

Experiment

number

Sampling

Rate

Noise

level

Initial

conditions

Pink

Initial

conditions

Blue

Initial

conditions

Black

1 0.1h 5% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.54, 0.57, 0.14

2 0.1h 10% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.17, 0.14, 0.15

3 0.3h 5% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.31, 0.47, 0.12

4 0.3h 10% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.47, 0.15, 0.35

5 0.3h 20% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.21, 0.45, 0.18

Table 6-20 Summary of modelling conditions for the system (6.2)

Parameters Lower bound Upper bound

Umax 0 3

Ks 0 1

q 0 10

Table 6-21 Parameter search space for the system (6.2)

6.2.3.1. Experiment 1 0.1h sampling and 5% random noise

When we look at computational times (table 6.20) we can see that proposed state

substitution method already produce significant improvements, in comparison to

previous case study (6.1). That is, because Monod model (6.2) has coupled states

and proposed state substitution method decouples them to reduce search space, in

order to reduce computational time. When comparing proposed state substitution

method with Derivative estimation and Latin hyper cube method we get 107% and

38% improvements in computational time, respectively.

Method Computational time, s

Derivative estimation 425

Latin hyper cube multi-start 190

Proposed state substitution method 129

Table 6-22 Computational time of all three method for experiment 1

In terms of accuracy of model predictions, Latin hyper cube and proposed state

substitution methods seemed to be of similar accuracy, with Latin hyper cube method

being slightly better in certain cases. Whereas derivative estimation method falls short

of accuracy in comparison (table 6.21).

106

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 7.18E-03 6.50E-05 4.01E-03

Latin hyper cube multi-start 4.00E-05 1.18E-04 6.75E-05

Proposed state substitution

method

2.38E-04 1.79E-04 1.48E-04

Table 6-23 Squared error values of each method and each data set for experiment 1

In can be noted that if we compare computational times to same experimental setup

of polynomial model (6.1) (table 6.3). We will see that due to increased complexity of

the system Derivative estimation and Latin hyper cube methods both roughly doubled

their computational times, where proposed state substitution method decreased it.

Both methods have positive correlation between complexity of a system and

computational time, whereas because proposed state substitution method is using

decoupling techniques, it will struggle with low complexity systems, but will outperform

other methods when dealing with high complexity systems.

When looking at identified parameters values, we observe that as predicted from SOM

analysis most important variable is Umax, as all methods identified this parameter

accurately. Ks parameter is not very sensitive, because Latin hyper cube and

proposed state substitution method are very close in accuracy, but Ks values is

different by 24% and Derivative method has 100% change and still able to keep

relatively accurate model prediction, although not as accurate as other two methods.

Which is why it is most likely that q parameter is responsible for that accuracy change,

as it is change from theoretical value seem to match with change in Sq. Error, between

methods.

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

Umax 0.9 0.90 0.90 0.90

Ks 0.3 0.60 0.30 0.23

q 4 4.06 4.00 4.01

Table 6-24 Summary of identified parameter values for each method for experiment 1

107

108

109

Figure 6.20 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods,

with 0.1h sampling and 5% random noise for measured data.

110

6.2.3.2. Experiment 2 0.1h sampling and 10% random noise

As expected with increased noise from 5% to 10% computational time of all methods

should increase. Pattern of computational time stay the same as in experiment 1.

Proposed state substitution method is still fastest by 107% and 34% compared to

Derivative estimation and Latin hyper cube method, respectively.

Method Computational time, s

Derivative estimation 455

Latin hyper cube multi-start 193

Proposed state substitution method 137

Table 6-25 Computational time of all three method for experiment 2

Accuracy still high of all method with Derivative estimation method providing lowest

accuracy and Latin hyper cube and proposed state substitution method providing

slightly better accuracy. All methods suffer loss in accuracy in comparison with

experiment 1, due to increased noise level. When comparing squared Errors of

experiment 2 to experiment 1, we see that experiment 2 squared error are more

uniform than experiment 1. This is caused by increased error levels, making

measurements on average further from real data. This creates sort of limiting band

how low error of the model can be pushed.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 2.17E-02 1.92E-03 1.29E-02

Latin hyper cube multi-start 2.09E-03 1.25E-03 1.15E-03

Proposed state substitution

method

4.58E-03 3.16E-03 2.93E-03

Table 6-26 Squared error values of each method and each data set for experiment 2

When looking at identified parameter values, we observe that Umax is still identified

correctly by all method. This allows all methods to provide decent model prediction,

because as mention before Umax is most sensitive and most impactful parameter in

this system. With increased noise we see more variation in Ks and q parameters as

their effect on system are slowly being hidden by noise. Ks parameter identified values

vary more than q parameter, indicating that q parameters has more influence over the

system than Ks.

111

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

Umax 0.9 0.90 0.90 0.90

Ks 0.3 0.57 0.22 0.34

q 4 4.12 4.04 3.95

Table 6-27 Summary of identified parameter values for each method for experiment

112

Figure 6.21 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.1h sampling and 10% random noise for measured data.

113

6.2.3.3. Experiment 3 0.3h sampling and 5% random noise

First thing we can observe in computational time that seemed to not fallow the pattern

of previous experimental setups that, although higher sampling rate should result in

more complex problem to identify, all the computational times have decreased. That

is because with increased sampling time, there is less data points per same time span.

Which reduce amount of calculation that required to be done by any method. Other

than that same pattern persists of proposed state substitution method being fastest,

followed by Latin hyper cube and Derivative estimation methods. Proposed state

substitution method is 102% and 33% faster than other two methods, respectively.

Method Computational time, s

Derivative estimation 377

Latin hyper cube multi-start 172

Proposed state substitution method 123

Table 6-28 Computational time of all three method for experiment 3

Accuracy overall fallows same pattern, with Latin hyper cube being most accurate,

proposed state substitution method being just as accurate, but not in all three data

sets, and derivative estimation method having worst accuracy. All methods are still

capable to producing models that fallow general trend accurately. It should be noted

that Squared error values of experiments with different sampling rates, cannot be

directly compared as different number of samples affect total error value.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 3.64E-03 3.05E-04 2.72E-03

Latin hyper cube multi-start 6.86E-05 2.84E-05 4.74E-05

Proposed state substitution

method

5.31E-04 1.15E-05 7.74E-05

Table 6-29 Squared error values of each method and each data set for experiment 3

Umax is still being accurately identified by all methods, where q and Ks varies between

methods. As in previous cases all difference in accuracy comes from difference in

these less important variables, and as Latin hyper cube and proposed state

substitution method have similar values of Ks and q, which leads to their accuracies

being very similar too. This case all proves that q parameter has more important than

Ks, as proposed state substitution method has better estimate of Ks parameter, but

114

worse estimated in q parameter, which leads to Latin hyper cube being just a slightly

more accurate than proposed state substitution method.

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

Umax 0.9 0.90 0.90 0.90

Ks 0.3 0.43 0.22 0.29

q 4 4.08 3.99 3.97

Table 6-30 Summary of identified parameter values for each method for experiment 3

115

Figure 6.22 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 5% random noise for measured data.

116

6.2.3.4. Experiment 4 0.3h sampling and 10% random noise

When noise is increased, we come back to regular pattern of all computational times

increasing. Latin hyper cube seemed to be least affected by this change, but it is still

slower then proposed state substitution method. Proposed state substitution method

is 91% and 14% faster than Derivative estimation and Latin hyper cube methods,

respectively.

Method Computational time, s

Derivative estimation 410

Latin hyper cube multi-start 177

Proposed state substitution method 154

Table 6-31 Computational time of all three method for experiment 4

In terms of accuracy all methods start to be very similar although proposed state

substitution method and Latin hyper cube method does seem to provide more accurate

results then Derivative estimation in certain cases.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 5.10E-03 2.16E-03 4.54E-03

Latin hyper cube multi-start 1.37E-03 1.29E-05 8.02E-04

Proposed state substitution

method

4.66E-03 2.27E-05 4.06E-03

Table 6-32 Squared error values of each method and each data set for experiment 4

Identify parameter values are roughly same, just Ks values starts to vary even more.

Umax parameter value also starts to be more difficult to identify. All these fluctuation

in estimated parameter values is direct affect from increased noise, which slowly starts

to hide parameter effects on the system.

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

Umax 0.9 0.89 0.90 0.91

Ks 0.3 0.31 0.51 0.79

q 4 4.10 4.05 4.09

Table 6-33 Summary of identified parameter values for each method for experiment 4

117

118

Figure 6.23 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 10% random noise for measured data.

6.2.3.5. Experiment 5 0.3h sampling and 20% random noise

With increased noise from 10% to 20% computational time of all methods increased.

Proposed state substitution method continues to be fastest. Proposed state

substitution methods computational time is lower by 96% and 23%, when compared

with Derivative estimation and Latin hyper cube methods, respectively.

Method Computational time, s

Derivative estimation 413

Latin hyper cube multi-start 183

Proposed state substitution method 145

Table 6-34 Computational time of all three method for experiment 5

Noise also effected accuracy of all methods. Overall accuracy seems to be same but

depending on specific initial condition different methods produce more accurate

results. All methods are still capable to fallowing correct general trend of the system.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 4.88E-03 8.15E-04 5.19E-03

119

Latin hyper cube multi-start 6.64E-05 1.67E-03 5.28E-05

Proposed state substitution

method

4.94E-03 2.16E-04 1.09E-02

Table 6-35 Squared error values of each method and each data set for experiment 5

We can see that Derivative estimation method and Latin hyper cube method cannot

identify Ks anymore, but this does not seem to have big impact on their model

performances. Proposed state substitution method can identify Ks, but it is way off.

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

Umax 0.9 0.90 0.89 0.91

Ks 0.3 0.00 0.00 0.80

q 4 3.92 4.01 4.09

Table 6-36 Summary of identified parameter values for each method for experiment 5

120

Figure 6.24 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 20% random noise for measured data.

121

6.2.3.6. The summary of results for the Monod model

This case study is great example of small system that contains complexity, which

comes from different ODE interaction. The Monod system only has three parameters,

but its complexity is higher than the polynomial system that was discussed in section

6.1. As Monod kinetics is widely used, this system as studied extensively and well

understood. This allows us to test complexity analysis tools, which can determinate

dominant variables, as it is known that only one variable out of three is highly dominant

(Umax). Using complexity analysis tools, complexity of this system was determined to

be medium/low for the following reasons. First the Monod system consist of two ODEs

that are strongly coupled, meaning changes in one of the are strongly reflected into

other. This makes optimisation of the parameters more difficult, as parameters cannot

be optimised one by one anymore and have to be optimised at the same time. PCA

visualization reveal non-convex regions, which makes gradient-based optimisation

methods, stop before converging into a solution. In addition, global optimum solution

is surrounded by secondary valley, which can be interpreted as a local minimum.

These complications are reflected in convexity measurement, which is 27%. This

means that starting values of parameters heavily influence on the final result, as only

roughly third of starting points will converge towards the solution. Sorted minimization

shows that optimised model can reach accurate performance and accurate parameter

values. The SOM analysis shows agreement with PCA visualization results, revealing

a global optimum, surrounded by a secondary valley of local minimum. SOM analysis

of parameter maps, shows that Umax is indeed most dominant variable, followed by

q and Ks. Although SOM parameter analysis suggest that variable q is just slightly

more dominant than Ks, identified values suggest that Ks is extremally non sensitive

value, as it changes most between different experiments and methods but does not

seem to impact the overall error of the model significantly. That being said, looking at

the structure of ODEs (equation 6.1), we can see that variable Ks, impact increases

as substrate concentration (S) decreases. Very small amount of data exists around

low substrate values as it immediately tends to zero stopping the growth of biomass.

This makes it hard to observe effect of Ks variable, but SOM parameter analysis is

able to pick up that importance. When comparing results of different parameter

identification algorithms, for this system the proposed state substitution method has

lowest computational time across all five experiments. As there two heavily coupled

ODEs the proposed state substitution method can fully utilize its decoupling technique

122

to decrease the search space making it more efficient than other methods. Latin hyper

cube method is the most accurate method, but not by significant margin when

compared to the proposed state substitution method and derivative estimation method.

Accuracy levels for all methods were consistent between seen data (Pink and Blue)

and unseen data (Black). Identified parameter values, seem to be consistent in all five

experimental setups, apart from Ks parameter. For the first three experimental setups

Ks value was identifiable but had large error when compared to the theorical value,

but during the experiment four and five it is not identifiable anymore. This is due to as

discussed before, not being able to observe the impact Ks value has, and with

increased noise levels making this observation because impossible for the algorithm.

This case study is like a proof of concept for the proposed state substitution method.

As complexity is not high and the system is well understood, it allows good comparison

with other state of art methods. Due to ability to heavily decrease the search space,

the proposed state substitution method outperforms other methods in terms of speed,

but accuracy of the method could be better.

123

Figure 6.25 Summary of performance results for all three methods for Monod kinetics model

124

6.3. Case study 3 – CHO cell culture model

CCO Culture kinetics was selected as case study 3, for several factors. First it has

increased complexity in model, consisting of two competing substrates, two by-

products, biomass, and an antibody product. Secondly in comparison to case study 2,

it has much deeper coupling, consisting of six ODE’s and sixteen parameters. First

five ODEs are coupled between each other similarly to Monod kinetics in case study

2. There are four reactions happening within this model. Biomass growth with by-

product production, biomass death, biomass sustain, and production of antibodies. All

these reactions happen simultaneously (figure 6.25). Another unique characteristic of

this model is that has several parameter ratios, which can mean both parameter values

can only be identified if, one of them is known beforehand. This increase difficulty of

obtaining values for all parameters. Model was obtained from (Saraiva et al. 2015).

Equation 6.3 shows the system, later in the thesis parameters of this system will be

preplaced by o1 - o16 encoding for easier reading.

125

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒
𝐵𝑖𝑜𝑚𝑎𝑠𝑠
→ 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 𝐴𝑚𝑚𝑜𝑛𝑖𝑎

 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑎𝑙𝑖𝑣𝑒) → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑑𝑒𝑎𝑑)

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠

 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑖𝑒𝑠

Figure 6.26 Four reaction of CHO culture model

6.3.1. Complexity analysis

Complexity analysis will be performed in three steps as mentioned in section 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,

sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system.

6.3.1.1. PCA visualization

As this model has sixteen parameters, and high level of complexity it is required to use

large number of samples for PCA visualization so first two principal components would

be able to represent whole system. For this number of sample points is increased to

fifty thousand. Sampling was performed same way as in section 6.1.1.1. First, we can

observe large number of failed integration points (figure 6.26), this suggests that there

is a lot of discontinuity in the system, leading to gradient search getting stuck very

𝑑

𝑑𝑡
⁡

[

𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑋𝑣)
𝐺𝑙𝑢𝑐𝑜𝑠𝑒(𝐺𝑙𝑐)
𝐿𝑎𝑐𝑡𝑎𝑡𝑒(𝐿𝑎𝑐)

𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒(𝐺𝑙𝑛)
𝐴𝑚𝑚𝑜𝑛𝑖𝑎(𝐴𝑚𝑚)
𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑖𝑒𝑠(𝑀𝐴𝑏)]

⁡= ⁡

[

1 −1 0 0
−1/𝑌𝑋𝑣/𝐺𝑙𝑐 0 −1 0

𝑌𝐿𝑎𝑐/𝐺𝑙𝑐/𝑌𝑋𝑣/𝐺𝑙𝑐 0 𝑌𝐿𝑎𝑐/𝐺𝑙𝑐 0

−1/𝑌𝑋𝑣/𝐺𝑙𝑛 0 0 0

𝑌𝐴𝑚𝑚/𝐺𝑙𝑛/𝑌𝑋𝑣/𝐺𝑙𝑛 0 0 0

0 0 0 1]

[

𝑓1
𝑓2
𝑓3
𝑓4

]⁡

𝑓𝑖 ⁡= ⁡ 𝑢𝑖𝑋𝑣⁡, 𝑖 = 1,4

𝑢1 ⁡= ⁡𝜇𝑚𝑎𝑥
𝐺𝑙𝑐

(𝑘𝐺𝑙𝑐 + 𝐺𝑙𝑐)

𝐺𝑙𝑛

(𝑘𝐺𝑙𝑛 + 𝐺𝑙𝑛)

𝑢2 ⁡= 𝜇𝑑,𝑚𝑎𝑥
1

(𝜇𝑚𝑎𝑥 − 𝑘𝑑,𝐿𝑎𝑐𝐿𝑎𝑐)

1

(𝜇𝑚𝑎𝑥 − 𝑘𝑑,𝐴𝑚𝑚𝐴𝑚𝑚)

𝑘𝑑,𝐺𝑙𝑛

(𝑘𝑑,𝐺𝑙𝑛 + 𝐺𝑙𝑛)

𝑢3 ⁡= ⁡𝑚𝐺𝑙𝑐
𝐺𝑙𝑐

(𝑘𝑚,𝐺𝑙𝑐 + 𝐺𝑙𝑐)

𝑢4 ⁡= ⁡𝛽⁡ + 𝛼
𝑢1

𝑘𝜇 ⁡+ 𝑢1

(5.3)

126

often. To have clearer picture of the error plane of the system failed integration points

are removed (figure 6.27). There seem to be no clear valley leading towards global

optimum, but there are number of valleys in different places. This means there are

local optimums that are in separate valleys from global optimum. Another feature that

can be observed is a denser plane of convex and non-convex points around error

value of 404. This is probably, plane of separation, where majority of local minimums

start to diverge. For that reason, low amount points can be observed above this plane,

and very high number of points reside on the plane. This signifies a first barrier for

optimization algorithm to pass, in order to reach any optimal solution. Combining all

these obstacles, system achieves overall convexity of 7%, around three times lower

than Monod model (6.2). Overall, it can be concluded that system is of a high

complexity level, and involved multiple obstacles, towards global optimum. We can be

certain that this representation of search space is accurate as both PC1 and PC2

explains 48.4% each, for a total of 96.8% variability.

Figure 6.27 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue

points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum

solution.

127

Figure 6.28 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue

points are convex and red points are non-convex. Black x marks global optimum solution.

6.3.1.2. Sorted minimization

Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. When optimizing thousand

samples for this system, it shows a lot of different local minimums. Although it would

seem, that more than half samples converge to same value (samples from 1000 to

around 450), they do not. This is just high error value of 1010 that is assigned to failed

integrations. Which means over a half of starting positions cannot be optimized at all.

This agrees with PCA visualization results which show large amount of failed

integration implying there are a lot of discontinuities in this model. This makes model

extremely problematic to most optimization techniques. Only about hundred initial

points can reach decent error values, of below 10-4 which is about 10% of starting

points. Points that start in non-convex regions, get to the low error values much faster,

as expected. This emphasises how crucial it is to have your starting condition in

convex regions for fast and optimal results, when using gradient based optimization

algorithms. This sorted optimization graph (figure 6.28), also provides us with

information that although the systems parameters are hard to identify, they can be

128

identified correctly, as difference between lowest and highest error points is clearly

visible. Still, your result accuracy will be heavily dependent on your starting points.

Figure 6.29 CHO cell culture model (6.3) thousand samples sorted optimization, where blue circles is all samples and

red circles are convex samples only

6.3.1.3. SOM analysis

Looking at figure 6.29 results of SOM, shows couple of local minimums scattered

around the plane, but if we look at the U-matrix there are much more not as

pronounced local minimums scatter all around the place. This is like what we saw in

PCA visualization earlier of lots of local minimums scattered all around the plane and

several deeper valleys of local minimums which are more distinctive. Although there

is a general valley towards the middle, some of the smaller local minimums are even

scattered in high error zones. This kind of layout makes gradient-based algorithm

easily stuck in wrong local minimums, which there are plenty of. Looking at individual

component map hints to couple things, only parameters o11 and o15 have continuous

patterns, where all other are chaotic. Continuous patterns were observed with Monod

model (6.2), where there was clear dominant variable and identifiable parameters.

Whereas chaotic nature of these maps where observed in Polynomial model (6.1),

where there was no dominant parameter and parameter values where not identifiable

due to nature of the model. This could be due to several factors: a) chaotic component

maps are due to large amount of discontinuity in model b) only parameters o11 and

129

o15 are dominant c) large number of parameters leads to chaotic component maps,

during the training of SOM.

To see if we can answer why most component maps have no continuous patterns to

them, we need to look at importance of factor and how well they match with overall

error map. Figures 6.31-6.32 shows how well component maps match up versus total

error maps. Positive values mean higher degree of matching, and lower values mean

lower. Cross correlation factor of 1, represents perfect match and 0 represent prefect

mismatch. Cross correlation maps seem to indicate some parameters are more

dominant than others, but not by large amount. This is confirmed by matching factors.

Most dominant parameter is o1, that said it is by small margin. It can only be dominant

variable because of its low variability. This would imply that with larger number of

variables matching factors become more similar making it hard to distinguish dominant

variables from the rest. Maximum difference between matching factors is 0.05 and

0.03, respectively (table 6.35). This is a very small difference, but it has low variability

in comparison with Polynomial model (6.1).

130

Parameters Encoded

parameters

Positive Matching

Factor

Negative Matching

Factor

𝝁𝒎𝒂𝒙 o1 0.68 ± 0.01 0.64 ± 0.02

𝒌𝑮𝒍𝒄 o2 0.63 ± 0.01 0.66 ± 0.01

𝒌𝑮𝒍𝒏 o3 0.66 ± 0.03 0.63 ± 0.02

𝝁𝒅,𝒎𝒂𝒙 o4 0.65 ± 0.02 0.63 ± 0.02

𝒌𝒅,𝑳𝒂𝒄 o5 0.66 ± 0.03 0.63 ± 0.03

𝒌𝒅,𝑨𝒎𝒎 o6 0.65 ± 0.02 0.65 ± 0.02

𝒌𝒅,𝑮𝒍𝒏 o7 0.65 ± 0.01 0.64 ± 0.01

𝒀𝑿𝒗/𝑮𝒍𝒄 o8 0.64 ± 0.01 0.66 ± 0.01

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 o9 0.65 ± 0.02 0.63 ± 0.02

𝒎𝑮𝒍𝒄 o10 0.65 ± 0.04 0.65 ± 0.03

𝒌𝒎,𝑮𝒍𝒄 o11 0.65 ± 0.01 0.64 ± 0.02

𝒀𝑿𝒗/𝑮𝒍𝒏 o12 0.65 ± 0.02 0.65 ± 0.01

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 o13 0.65 ± 0.01 0.64 ± 0.02

𝜷 o14 0.63 ± 0.02 0.66 ± 0.03

𝜶 o15 0.61 ± 0.01 0.66 ± 0.03

𝒌𝝁 o16 0.64 ± 0.02 0.65 ± 0.01

Table 6-37 Table of positive and negative mean matching factor of each parameter for system (6.3)

131

Figure 6.30 Left 2d SOM of CHO cell culture model (6.3), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right

2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

132

Figure 6.31 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution

represented as colour bar.

133

a) b)

Figure 6.32 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

134

6.3.2. Model hierarchy

The CHO cell culture model consists of six coupled ODE’s, which when applied

proposed state substitution methods’ decoupling algorithm leave six independent sub-

sets that can be solved in any order. Yet specific solution hierarchy will lead to better

results, because of the different levels of sensitivity from the parameters. To figure out

best hierarchy of the model we need to use additional tools like bi-partite chart (figure

6.34) and SOM analysis of parameter importance (figures 6.32-31, table 6.35). When

combined these tools reveal which order of solving individual subsets will lead best

results. Bi-partite chart of the CHO cell culture model shows that there are three most

important states biomass, glucose, and glutamine. This separates six subsets into two

levels of biomass, glucose, glutamine and lactate, ammonia, antibodies. SOM

component analysis was only able to confirm that o1 parameter is most dominant one,

this means we would need to solve for o1 first to pass it on for best results. Parameter

o1 can be calculated from any of the six subsets, but it is best to use biomass to

calculate o1, because o1 is specific growth rate of biomass. This would separate

model hierarchy into three levels, by raising biomass one level above both substrates.

Lastly there is a problem of parameter ratios, we need to make sure that where

parameter ratios appear one of the ratio components is already known. Ratios within

CHO cell culture model are as follows: a) o1/o8 b) o1/o12 c) o9/o8 d) o13/o12. Luckily

with three level approach this is not a problem as o1 is solver in level one, then o8 and

o12 can be solved in level two, finally with o8 and o12 known we can solve for o9 and

o13 in level 3.

135

Figure 6.33 Hierarchy of the CHO cell culture model (6.3)

136

Figure 6.34 Bipartite chart of the CHO cell culture model (6.3)

137

Figure 6.35 Bar graph of connections of CHO culture bipartite chart

138

6.3.3. Method comparison

To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper

cube sampled multi start method. Two main criteria will be compared, model

performance accuracy and the computational time between each of the methods.

Although the proposed state substitution method aims to reduce computational time,

model performance accuracy is also very important and cannot be completely

neglected. Each method will be assessed with different random noise levels and

sampling times. For each method three different state initial conditions are compared,

first two (Pink and Blue) are set same for all methods and are conditions that were

provided for the optimisation algorithm and third initial condition (Black) is different

from the first two initial conditions and was never seen by algorithm before. This allows

to check method accuracy with unseen data sets, which are within same boundary

conditions. Only biomass data set will be presented for model performance, as

biomass dictates accuracy for the rest of the states. This will allow to avoid

unnecessary graphs while still presenting enough evidence about model performance.

However, for completeness first experiment will show predictions for all states

Modelling conditions and parameter search spaces are summarised in tables below.

Experiment

number

Sampling

Rate

Noise

level

Initial

conditions

Pink

Initial

conditions

Blue

Initial

conditions

Black

1 0.1h 5% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2

2 0.1h 10% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2

3 0.3h 5% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2

4 0.3h 10% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2

5 0.3h 20% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2

Table 6-38 Summary of modelling conditions for the system (5.3)

139

Parameters Lower bound Upper bound

𝝁𝒎𝒂𝒙 0 2

𝒌𝑮𝒍𝒄 0 2

𝒌𝑮𝒍𝒏 0 1

𝝁𝒅,𝒎𝒂𝒙 0 0.5

𝒌𝒅,𝑳𝒂𝒄 0 0.5

𝒌𝒅,𝑨𝒎𝒎 0 0.5

𝒌𝒅,𝑮𝒍𝒏 0 0.5

𝒀𝑿𝒗/𝑮𝒍𝒄 0 0.5

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 0 5

𝒎𝑮𝒍𝒄 0 5

𝒌𝒎,𝑮𝒍𝒄 0 50

𝒀𝑿𝒗/𝑮𝒍𝒏 0 1

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0 1

𝜷 0 10

𝜶 0 50

𝒌𝝁 0 0.5

Table 6-39 Parameter search space for the system (6.2)

140

6.3.3.1. Experiment 1 0.1h sampling and 5% random noise

When we compare computational times (table 6.37) we can see that although the

proposed state substitution method is slower than the derivative estimation method it

is faster than the Latin hyper cube method. The proposed state substitution method is

faster by 49% compared to the Latin hyper cube method and slower by 32% than the

Derivative estimation method.

Method Computational time, s

Derivative estimation 1371s

Latin hyper cube multi-start 3109s

Proposed state substitution method 1887s

Table 6-40 Computational time of all three methods for experiment 1

Although the proposed state substitution method is slower than the Derivative

estimation method it is considerably more accurate, when predicting all three data

sets. The Latin hyper cube method seems to be able to predict general trend right, but

its accuracy is not as good as in previous case studies. This is most likely is caused

by CHO cell culture model having a lot of discontinuities in error plane. Main advantage

of the Latin hyper cube method is that is has large number of starting positions, but

when discontinuities separate whole error plane into small pieces, getting good

starting location becomes difficult and unreliable.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 9.66E-03 2.21E-02 3.53E-03

Latin hyper cube multi-start 1.24E-02 7.91E-03 1.32E-02

Proposed state substitution

method

1.76E-02 2.22E-04 5.33E-04

Table 6-41 Squared error values of each method and each data set for experiment 1

As complexity analysis suggested this model (5.3) is considerably harder to optimize

than previous two cases studies, and it is confirmed by much higher computational

time in all three methods. Due to increased complexity proposed state substitution

method outperforms Latin hyper cube method in terms of speed and accuracy.

Nevertheless, it must sacrifice some of its speed to maintain accuracy making it solver

than the Derivative estimation method. This leads to think that for initial optimization

141

the Derivative estimation method could be better choice provided noise levels and

sampling time is low.

When comparing identified parameter values, we observe that parameter values that

are closest to their theoretical values are o1, o5, o8, o9, o12, o13 and o15. Out of all

these variables only o1 was picked up to be dominant variable in SOM component

analysis, confirming that with large number of variables it is very hard to pick all

dominant variables using this technique. On other hand we can see that parameters

o10 and o11 have very large variation across all methods implying they have very low

impact over the system.

Table 6-42 Summary of identified parameter values for each method for experiment 1

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

𝝁𝒎𝒂𝒙 1.09 1.04 1.12 1.01

𝒌𝑮𝒍𝒄 1.00 0.79 0.91 0.56

𝒌𝑮𝒍𝒏 0.30 0.11 0.27 0.18

𝝁𝒅,𝒎𝒂𝒙 0.09 0.00 0.11 0.02

𝒌𝒅,𝑳𝒂𝒄 0.01 0.03 0.01 0.02

𝒌𝒅,𝑨𝒎𝒎 0.06 0.19 0.00 0.09

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.50 0.01

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.10 0.12 0.11

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.74 1.83 1.81

𝒎𝑮𝒍𝒄 1.70 2.17 0.79 3.27

𝒌𝒎,𝑮𝒍𝒄 19.00 33.10 1.94 46.75

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.37 0.41 0.37

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.87 0.82 0.86

𝜷 3.50 6.76 2.87 2.67

𝜶 25.70 21.03 25.73 27.56

𝒌𝝁 0.02 0.00 0.01 0.00

142

143

144

Figure 6.36 Performance results for Derivate estimation with 0.1h sampling and 5% random noise for measured

data.

145

146

147

Figure 6.37 Performance results for Latin hyper cube method with 0.1h sampling and 5% random noise for

measured data.

148

149

150

Figure 6.38 Performance results for the proposed state substitution method with 0.1h sampling and 5% random noise

for measured data.

151

6.3.3.2. Experiment 2 0.3h sampling and 5% random noise

Surprisingly, the Derivative estimation method is slowest out of three methods in this

experimental setup. It is slower than proposed state substitution method by 98%, and

slower than the Latin hyper cube method by 32%. This is most likely cause, by method

being at its critical point, where it can still predict general trend of the model, but it is

close to its capability limit, if this is the case it should be expected that with increased

noise the Derivative estimation method should stop being able to predict the model.

On the other hand, proposed state substitution method is faster than the Latin hyper

cube method by 72%.

Method Computational time, s

Derivative estimation 4180s

Latin hyper cube multi-start 3021s

Proposed state substitution method 1426s

Table 6-43 Computational time of all three method for experiment 2

When comparing sq. Error for each method (table 6.41) it looks like accuracy is similar,

between the proposed and the Latin hyper cube methods, and the Derivative

estimation method falls short. It is expected because of two factors: a) increased

sampling time, has large negative impact on methods performance b) as discussed

before it looks like method is at its critical point. Other two methods seem to deal just

fine with this experimental setup, implying they are more effected by noise levels, than

sampling time.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 4.41E-03 4.08E-02 4.03E-02

Latin hyper cube multi-start 3.70E-05 8.01E-04 6.44E-04

Proposed state substitution

method

4.20E-05 1.03E-03 1.19E-03

Table 6-44 Squared error values of each method and each data set for experiment 2

Computational time decreased for all methods except the Derivative estimation

method. This is due to increased sampling time, which in turn decreases amount of

data required to process. When comparing identified parameter values, parameters

o1, o5, o8, o9, o12, o13 and o15 are still consistence between all three methods and

parameter o10 and o11 vary a lot.

152

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

𝝁𝒎𝒂𝒙 1.09 1.09 1.09 1.15

𝒌𝑮𝒍𝒄 1.00 0.62 1.06 1.37

𝒌𝑮𝒍𝒏 0.30 0.38 0.26 0.39

𝝁𝒅,𝒎𝒂𝒙 0.09 0.04 0.03 0.02

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.02 0.03

𝒌𝒅,𝑨𝒎𝒎 0.06 0.00 0.01 0.00

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.50 0.00

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.11

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.79 1.78 1.82

𝒎𝑮𝒍𝒄 1.70 4.76 2.41 0.78

𝒌𝒎,𝑮𝒍𝒄 19.00 50.00 37.16 0.91

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.37 0.38 0.38

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.82 0.84 0.85

𝜷 3.50 3.76 3.97 3.40

𝜶 25.70 25.15 24.39 25.00

𝒌𝝁 0.02 0.02 0.01 0.02

Table 6-45 Summary of identified parameter values for each method for experiment 2

153

154

Figure 6.39 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 5% random noise for measured data.

6.3.3.3. Experiment 3 0.1h sampling and 10% random noise

Similarly, as in experiment 1 when we compare computational times (table 6.43) we

can see that although the proposed state substitution method is slower than the

derivative estimation method it is faster than the Latin hyper cube method. The

proposed state substitution method is faster by 12% compared to the Latin hyper cube

method and slower by 86% than the Derivative estimation method.

Method Computational time, s

Derivative estimation 1933s

Latin hyper cube multi-start 5482s

Proposed state substitution method 4848s

Table 6-46 Computational time of all three method for experiment 3

When comparing sq. Error for each method (table 6.44) it looks like accuracy is similar,

but when comparing performances (figure 6.37), proposed state substitution method

predicts trends of model much more accurately. The proposed state substitution

method ability to break down complex problem into smaller sub-sets to solve initially

seems to lead much better results accuracy wise when it comes to high complexity

models. Although general trend is still predicted by the Derivative estimation and the

155

Latin hyper cube methods, they accuracy seem to deteriorate heavily with increased

noise. Furthermore, most inaccuracy seem to appear in unseen data (Black) for all

three methods and in glucose limiting data set (Pink) for the Derivative estimation and

Latin hyper cube methods.

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 2.78E-03 6.93E-02 1.66E-02

Latin hyper cube multi-start 1.14E-02 8.92E-02 3.69E-02

Proposed state substitution

method

2.65E-03 9.89E-03 1.68E-02

Table 6-47 Squared error values of each method and each data set for experiment 3

Computational time increased for all methods as expected due to increase in noise

level, therefore increase in uncertainty optimization algorithm must deal with. When

comparing identified parameter values, parameters o1, o5, o8, o9, o12, o13 and o15

are still consistence between all three methods and parameter o10 and o11 vary by

large amount.

156

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

𝝁𝒎𝒂𝒙 1.09 1.14 1.07 1.07

𝒌𝑮𝒍𝒄 1.00 1.30 0.89 0.86

𝒌𝑮𝒍𝒏 0.30 0.30 0.26 0.25

𝝁𝒅,𝒎𝒂𝒙 0.09 0.10 0.14 0.11

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.00 0.00

𝒌𝒅,𝑨𝒎𝒎 0.06 0.00 0.00 0.06

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.00 0.00

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.11

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.81 1.81 1.81

𝒎𝑮𝒍𝒄 1.70 1.80 2.82 3.79

𝒌𝒎,𝑮𝒍𝒄 19.00 29.67 34.37 50.00

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.41 0.38 0.38

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.86 0.85 0.84

𝜷 3.50 4.12 4.04 4.00

𝜶 25.70 25.23 24.54 24.58

𝒌𝝁 0.02 0.05 0.01 0.01

Table 6-48 Summary of identified parameter values for each method for experiment 3

157

158

Figure 6.40 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.1h sampling and 10% random noise for measured data.

6.3.3.4. Experiment 4 0.3h sampling and 10% random noise

Computational time (table 6.46) comes back to trend from experiment 1 with the

Derivative estimation method being fastest followed by the proposed and Latin hyper

cube methods. This type of trend was expected, if the Derivative estimation method is

pushed beyond its capability limits. Which mean it should not be able to predict model

accurately anymore. This makes the proposed state substitution method slower than

the Derivative method by 47% and faster than the Latin hyper cube method by 84%.

Method Computational time, s

Derivative estimation 1466s

Latin hyper cube multi-start 5778s

Proposed state substitution method 2371s

Table 6-49 Computational time of all three method for experiment 4

Just by looking at Sq. Error (table 6.47), we see that the Derivative estimation method

indeed falls behind other two methods in terms of accuracy. The difference can be

seen clearly in performance graphs (figure 6.38).

159

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 5.22E-01 6.67E-02 2.60E-02

Latin hyper cube multi-start 1.02E-02 3.65E-03 6.84E-03

Proposed state substitution

method

4.05E-03 2.35E-03 9.20E-03

Table 6-50 Squared error values of each method and each data set for experiment 4

As the Derivative estimation method cannot predict trends of the model anymore,

parameters identified by it hold no value, but are displayed for comparison. Coupled

of the values that seem to be correctly identified allows it to keep accuracy at early

parts of the model. When comparing other two methods identified parameter values,

parameters o1, o5, o8, o9, o12, o13 and o15 are still consistent between and

parameter o10 and o11 vary a lot as before.

160

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

𝝁𝒎𝒂𝒙 1.09 1.15 1.14 1.00

𝒌𝑮𝒍𝒄 1.00 1.07 1.05 0.53

𝒌𝑮𝒍𝒏 0.30 0.00 0.34 0.10

𝝁𝒅,𝒎𝒂𝒙 0.09 0.00 0.00 0.01

𝒌𝒅,𝑳𝒂𝒄 0.01 0.03 0.03 0.02

𝒌𝒅,𝑨𝒎𝒎 0.06 0.05 0.10 0.17

𝒌𝒅,𝑮𝒍𝒏 0.02 0.42 0.21 0.07

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.14 0.12 0.12

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.85 1.80 1.93

𝒎𝑮𝒍𝒄 1.70 1.32 1.22 0.85

𝒌𝒎,𝑮𝒍𝒄 19.00 0.45 10.71 0.13

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.40 0.40 0.39

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.76 0.85 0.83

𝜷 3.50 9.89 4.09 1.06

𝜶 25.70 17.03 25.54 25.37

𝒌𝝁 0.02 0.00 0.05 0.00

Table 6-51 Summary of identified parameter values for each method for experiment 4

161

162

Figure 6.41 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 10% random noise for measured data.

6.3.3.5. Experiment 5 0.3h sampling and 20% random noise

In worst case scenario experiment 5, the Latin hyper cube and the proposed state

substitution method seems to approach their critical points, similar as the Derivative

estimation method did in experimental setup 2. The proposed state substitution

method is still faster than the Latin hyper cube method by 38%. Decrease in gap of

computational time between these two methods shows that both methods approach

critical point.

Method Computational time, s

Derivative estimation 1411s

Latin hyper cube multi-start 11053s

Proposed state substitution method 7492s

Table 6-52 Computational time of all three method for experiment 5

Although the proposed state substitution method can keep the accuracy to certain

degree, the Latin hyper cube model struggle to keep accuracy high even more. Both

methods suffer in performance due to high noise levels (figure 6.39).

163

Method Sq. Error

(Blue)

Sq. Error

(Pink)

Sq. Error

(Black)

Derivative estimation 2.30E+00 2.39E-01 2.15E-01

Latin hyper cube multi-start 9.14E-02 1.82E-01 9.05E-02

Proposed state substitution

method

4.46E-02 1.19E-03 4.93E-02

Table 6-53 Squared error values of each method and each data set for experiment 5

Identification of parameters is very difficult at this point and only most dominant

variables can be identified. When comparing other two methods identified parameter

values, parameters o1, o5, o8, o9, o12, o13 and o15 are still consistent as they were

for all five experimental. This suggests that these seven variables are most dominant

within this system.

164

Parameter Theoretical

value

Derivative Latin hyper

cube

Proposed

𝝁𝒎𝒂𝒙 1.09 1.08 1.17 1.09

𝒌𝑮𝒍𝒄 1.00 0.79 1.65 1.08

𝒌𝑮𝒍𝒏 0.30 0.27 0.33 0.31

𝝁𝒅,𝒎𝒂𝒙 0.09 0.05 0.18 0.09

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.00 0.01

𝒌𝒅,𝑨𝒎𝒎 0.06 0.15 0.02 0.07

𝒌𝒅,𝑮𝒍𝒏 0.02 0.24 0.20 0.02

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.10

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.80 1.81 1.76

𝒎𝑮𝒍𝒄 1.70 2.25 0.60 0.72

𝒌𝒎,𝑮𝒍𝒄 19.00 29.14 0.51 3.23

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.39 0.40 0.38

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.84 0.90 0.86

𝜷 3.50 4.30 5.92 3.79

𝜶 25.70 24.81 25.00 25.75

𝒌𝝁 0.02 0.02 0.11 0.02

Table 6-54 Summary of identified parameter values for each method for experiment 5

165

166

Figure 6.42 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

with 0.3h sampling and 20% random noise for measured data.

6.3.4. The summary of results for the CHO cell culture model

This case study represents the starting complexity of a model the proposed state

substitution method is aimed at. It is a system with a moderate number of parameters

(sixteen), but complex enough to take significant amount of time to identify parameters

using state of art methods. Using complexity analysis tools, complexity of this system

was determined to be high for the following reasons. The system describes complex

behaviour consisting of four simultaneous reactions, involving two competing

substrates and inhibiting by-product. Six ODEs that consist within the system, create

a closely coupled network, between first five ODEs. PCA visualization shows multiple

local minim that are surrounded by discontinuities. This makes the system especially

tricky to optimise with gradient-based algorithms as they can get stuck if they reach

boundary of discontinuity. PCA visualization also reveals the in the systems error

hyperplane there is a flat boundary level, which separates all the local minima from

the rest of the hyperplane. This already indicate high complexity which is also

confirmed by the convexity measurement which is 7%. When performing sorted

minimisation, it shows that model can achieve good performance and accurate

parameter values if algorithm can get pas majority of the local minima. Sorted

167

minimization also reveals that more than half of the samples, are not possible to

integrate, due to discontinuity boundary. The SOM analysis are in agreement with PCA

visualization showing multiple local minima scattered around the whole plane. The

analysis of parameter SOM maps unfortunately is only able to show one dominant

variable o1, where it was expected to see at least o1, o2 and o3. Also, the difference

between matching factors of dominant variable and the rest are significantly smaller

when compared to Monod model SOM analysis. This indicates that increasing number

of variables makes this analysis type of analysis less accurate. This most likely is due

to fact that large number of parameters make each of them carry less total variance of

the system, which in term makes it harder for them to be dominant variable. When

comparing results of the different parameter identification algorithms, for this system

the derivative estimation method has the lowest computational time, but it also has the

lowest accuracy. The derivative estimation method is failing to identify general trend

in experiments 4 and 5. The proposed state substitution method is slower than the

derivative estimation, but significantly faster than the multi-start method. The proposed

state substitution methods accuracy is on par with multi-start accuracy and even

slightly better in some cases. I would seem that noise has bigger effect of model

performance, than sampling time for all of the methods. Parameter identification

reveals that parameter o10 and o11 are extremally not sensitive as their mismatch

affect is not seen on the model performance. High complexity of the system allows the

proposed state substitution method to utilize its decoupling strategy to keep high

accuracy but decrease computational time. All methods have lowest accuracy with

unseen data.

168

 Figure 6.43 Summary of performance results for all three methods for CHO cell culture model

169

6.4. Case study 4 - Ethanol production with Zymomonas mobilis model

All three cases so far focused on benchmarking developed tools and proposed state

substitution method with increasing difficulty and used simulated data which was

generated with different noise levels and sampling times to mimic possible scenarios

of real data collection. To fully explore benefits and capabilities of this new proposed

state substitution method we need to test it against real collected data. This model

published by (Hodge and Karim, 2002), and later improved by (Diaz and Willis, 2019).

This provides this model a unique environment, where there is plenty of real data

based on reactions in this model as it was published long time ago. At the same time,

it was shown that model is not perfect and can be improved significantly, meaning

there is model – process mismatch making parameter identification more difficult and

more realistic. Ten different measured data sets were collected for this case study. All

three method will be compared within all ten data sets. Sampling times are determined

by data collected and noise levels are unknown. Model has two competing substrates

glucose and xylose which produce ethanol and allow biomass to grow. Although it has

less ODEs the case study 3, it has increased number of parameters to twenty-six.

Equation 6.4 shows full mathematical model.

𝑑𝑋

𝑑𝑡
= 𝑟1 + 𝑟2⁡⁡⁡⁡

𝑑𝑆1

𝑑𝑡
= − 𝑟3⁡⁡⁡⁡⁡

𝑑𝑆2

𝑑𝑡
= − 𝑟4⁡⁡⁡⁡⁡

𝑑𝑃

𝑑𝑡
= 𝑟3 ∗ 𝑌𝑃_𝑆1 + 𝑟4 ∗ 𝑌𝑃_𝑆2

𝑟1 = 𝑋 ∗ (
𝑢_𝑚𝑎𝑥1 ∗ 𝑆1

𝐾1𝑥 + 𝑆1 + 𝑆2 ∗
𝐾1𝑥
𝐾2𝑥

) ∗ f5(S2 + S1) ∗ f6(P)

𝑟2 = 𝑋 ∗ (
𝑢_𝑚𝑎𝑥2 ∗ 𝑆2

𝐾2𝑥 + 𝑆2 + 𝑆1 ∗
𝐾2𝑥
𝐾1𝑥

) ∗ f7(S2 + S1) ∗ f8(P)

𝑟3 = 𝑋 ∗ (
𝑞_𝑝𝑚𝑎𝑥1 ∗ 𝑆1

𝐾1 + 𝑆1 + 𝑆2 ∗
𝐾1
𝐾2

) ∗ f1(S2 + S1) ∗ f2(P)

𝑟4 = 𝑋 ∗ (
𝑞_𝑝𝑚𝑎𝑥2 ∗ 𝑆2

𝐾2 + 𝑆2 + 𝑆1 ∗
𝐾2
𝐾1

) ∗ f3(S2 + S1) ∗ f4(P)

𝑓𝑖(𝑗) = {
𝑎𝑖 ∗ 𝑗

2 + 𝑏𝑖 ∗ 𝑗 + 1, 𝑓𝑖(𝑗) ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 𝑖 = 1,2…8; 𝑗 ∈ {𝑃, 𝑆1 + 𝑆2}

6.4

170

6.4.1. Complexity analysis

Complexity analysis will be performed in three steps as mentioned in cshapter 6.1.1.

These steps consist of performing PCA visualization with convexity calculations,

sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system.

6.4.1.1. PCA visualization

PCA visualization of this system model, shows very similar results to case study 3, but

there are some key differences too. It has similar shape - non-convex points scattered

everywhere with couple of convex points mixed in, with no obvious global optimum

valley. This leads to believe there is multiple local optimums within the system. In

contract to case study 3, Zymomonas mobilis model, does not have overwhelming

number of failed integrations, which mean error plane is smooth, also it lacks flat plane

barrier. Without these two obstacles, optimization algorithm should have easier time

reach optimum solutions. That being said, overall convexity of the system is 2%. This

complexity is also reflected, by decreases variability explained by PCA visualization.

PC1 explains 48.9% of variability and PC2 explain 31.0% variability for a total of

79.9%.

Figure 6.44 PCA error plot for Zymomonas mobilis model (6.4), with colour coded points for convexity, where blue

points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum

solution.

171

6.4.1.2. Sorted minimization

Sorted optimization is performed same way as described in section 4.7. Parameter

space is sampled for thousand initial parameter values. suspected from PCA

visualization, sorted minimization method reveal multiple local minimums, eventually

most of them settle for one global solution. This global solution although has lowest

error value, it is still high error value. This implies actual parameter values after

identification might not be, real parameter value, just optimal for performance. This is

mostly cause due to fact we are using real collected data, and there is model – process

mismatch. This makes it hard to drive overall error value very low. Nevertheless, this

sorted minimization of Zymomonas mobilis model, suggest that it should not be too

difficult to achieve optimal performance with the quality of data provided, but it might

prove problematic to determinate actual parameter values.

Figure 6.45 Zymomonas mobilis model (6.4) thousand samples sorted optimization, where blue circles are all samples.

6.4.1.3. SOM analysis

SOM analysis seem to provide similar picture as PCA visualization, that there are large

number of local optimums scattered across the plane. It might not be clear of with

colour coded hexes only, but U-matrix makes it clear that there is a lot of local

minimums (figure 6.42). If we would compare to SOM analysis of case study 3, there

is one major difference. In SOM analysis of the CHO cell culture model (6.3), local

minimums where uniformly spread, whereas in SOM map of the Zymomonas mobilis

model, local minimums are clustered. We can see four clusters of low error regions

172

separated with high error region in the middle of U-matrix. These clusters represent

valleys of local minimum, which we could not observe in PCA visualization. This shows

that with large number of variables it is much harder for PCA visualization to capture

2d representation of higher dimensional plane, whereas SOM map, can still do a good

job.

To observe if any of the parameters are dominant, we perform cross-correlation of

errors map with component maps. Figures 6.44-45 shows how well component maps

match up versus total error maps. Positive values mean higher degree of matching,

and lower values mean lower. Cross correlation factor of 1, represents perfect match

and 0 represent prefect mismatch. Although large number of parameters should hinder

SOM parameter analysis to determinate dominant variables, it is able to pick two

dominant variables out of twenty-six, u_max1 most dominant variable negatively with

matching factor of 0.73 and K1x most dominant variable positively with matching factor

of 0.75. Maximum difference between matching factors is 0.18 and 0.20 respectively

to positive and negative matching factors.

173

Table 6-55 Table of positive and negative mean matching factor of each parameter for system (6.4)

Parameters Positive Matching Factor Negative Matching Factor

u_max1 0.57 ± 0.02 0.73 ± 0.02

u_max2 0.64 ± 0.03 0.61 ± 0.04

K1x 0.75 ± 0.01 0.54 ± 0.03

K2x 0.61 ± 0.02 0.66 ± 0.03

q_pmax1 0.64 ± 0.05 0.64 ± 0.04

q_pmax2 0.67 ± 0.03 0.56 ± 0.03

K1 0.65 ± 0.02 0.64 ± 0.02

K2 0.62 ± 0.02 0.65 ± 0.01

YP_S1 0.66 ± 0.03 0.63 ± 0.04

YP_S2 0.63 ± 0.04 0.65 ± 0.02

a(1) 0.65 ± 0.04 0.60 ± 0.06

a(2) 0.64 ± 0.02 0.64 ± 0.03

a(3) 0.63 ± 0.02 0.64 ± 0.04

a(4) 0.68 ± 0.03 0.63 ± 0.03

a(5) 0.64 ± 0.06 0.62 ± 0.07

a(6) 0.62 ± 0.02 0.65 ± 0.01

a(7) 0.64 ± 0.02 0.62 ± 0.01

a(8) 0.63 ± 0.03 0.61 ± 0.06

b(1) 0.65 ± 0.02 0.65 ± 0.03

b(2) 0.64 ± 0.02 0.62 ± 0.06

b(3) 0.64 ± 0.03 0.63 ± 0.02

b(4) 0.63 ± 0.06 0.60 ± 0.05

b(5) 0.61 ± 0.03 0.67 ± 0.03

b(6) 0.62 ± 0.02 0.65 ± 0.04

b(7) 0.66 ± 0.03 0.62 ± 0.03

b(8) 0.65 ± 0.04 0.65 ± 0.03

174

Figure 6.46 Left 2d SOM of Zymomonas mobilis model (6.4), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error.

Right 2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster.

175

Figure 6.47 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution

represented as colour bar.

176

a) b)

Figure 6.48 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map.

177

6.4.2. Model hierarchy

The Zymomonas mobilis model consist of four coupled ODE’s, which when decoupled

with proposed state substitution method leave four independent sub-sets that can be

solved in any order. Specific order of solution will yield best results, therefore model

hierarchy needs to be established, based on importance on each sub-set and how

many dominant variables it has. To figure out best hierarchy of the model we need to

use additional tools like bi-partite chart (figure 6.47) and SOM analysis of parameter

importance (figures 6.44-6.45, table 6.52). When combined these tools reveal which

order of solving individual subsets will lead best results. Bi-partite chart reveals that

although all four states of model have heavy coupling, parameters can be separated

into groups that do not mix. Only exception to that is ethanol, as it has same

parameters as both substrates, as it directly dependant on them. This makes model

hierarchy simple two-level hierarchy with ethanol state being only state in second level.

Unfortunately, there are two ratios in this model, but because they only exist in ratio

form and never separate, it is not possible to solve for their exact values.

Figure 6.49 Hierarchy of the Zymomonas mobilis model (6.4)

178

Figure 6.50 Bipartite chart of the Zymomonas mobilis model (6.4)

179

Figure 6.51 Bar graph of connections of Zymomonas mobilis bipartite chart

180

6.4.3. Method comparison

To evaluate the proposed state substitution method, it will be compared to the two

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper

cube sampled multi start method. Two main criteria will be compared, model

performance accuracy and the computational time between each of the methods.

Although the proposed state substitution method aims to reduce computational time,

model performance accuracy is also very important and cannot be completely

neglected. In contrast to the first three case studies, we no longer have simulated data,

so we cannot vary noise or sampling time to see its effects on methods. Instead after

parameter identification each of their model prediction will be compared with measured

data, for each of the ten different data sets. Although measured data can be unreliable

and might have larger noise or error involved methods performance will be compared

as in how close its prediction is to measured data. As before only biomass data will be

presented for model performance as biomass dictates accuracy for the rest of the

states. This will allow to avoid unnecessary graphs while still presenting enough

evidence about model performance.

When comparing computational time (table 6.53) we see that the proposed state

substitution method is fastest among all three methods. It is faster by 56% compared

to the Latin hyper cube method, and 44% faster than the Derivative estimation method.

Method Computational time, s

Derivative estimation 7019s

Latin hyper cube multi-start 7948s

Proposed state substitution method 4478

Table 6-56 Computational time of all three methods

As discussed before to compare performance of model prediction of each of the

methods, squared error value was calculated for each method versus experimental

data. The Derivative estimation method and Latin hyper cube method, has same error

values because their identified parameters were identical, meaning they both reached

same local minimum. This is most likely caused, because SOM analysis revealed

clusters of local minimums, and one of the clusters was larger than the other. This

mean that starting locations of the Latin hyper cube method, are much more likely to

start in this large cluster and if this cluster does not hold global optimum, it becomes

nearly impossible to reach. On other hand the Derivative estimation method uses

global search global solver for optimization. Starting position for this global optimizer

181

is determined by optimizing derivative estimates at each time point and taking average

of all solutions. Although global search after reaching solution look for other solutions,

it starts its search around primary solution. If this cluster is local minimum is large

enough, global search will never look outside of its boundaries. Both methods in

comparison to the proposed state substitution method did worse, managing to get

three out of ten data sets to lower squared error value than the proposed state

substitution method (table 6.54). Furthermore, the proposed state substitution method

in data sets 7 and 9, managed to capture correct trend of experimental data, where in

comparison other two methods failed to even predict general trend.

Comparing identified parameter values (table 6.55), shows large gap within the

proposed state substitution method and other two methods. This makes it difficult to

say with confidence that identified parameter values are correct parameter values, as

sorted minimisation suggests, even once global optimum is reached total error value

is still high.

Data set number Derivative

estimation

Latin hyper cube Proposed state

substitution

method

1 2.33E+00 2.33E+00 2.49E+01

2 2.22E+00 2.22E+00 7.75E-01

3 1.05E+00 1.05E+00 7.33E-01

4 5.43E-01 5.43E-01 1.06E+00

5 8.25E+00 8.25E+00 1.92E+00

6 3.35E+00 3.35E+00 2.72E-01

7 5.01E+00 5.01E+00 1.68E+00

8 1.37E+00 1.37E+00 1.76E+01

9 9.66E+00 9.66E+00 9.75E-01

10 3.39E+00 3.39E+00 4.53E-01

Table 6-57 Squared error values for each method and each data set

182

Parameters Derivative

estimation

Latin hyper cube Proposed state

substitution method

u_max1 0.389 0.389 0.047

u_max2 0.095 0.095 0.45

K1x 13.772 13.772 0.409

K2x 6.08 6.08 0.121

q_pmax1 2.037 2.037 2.02

q_pmax2 6.375 6.375 12.53

K1 0.247 0.247 0.294

K2 11.886 11.886 1.697

YP_S1 0.502 0.502 0.806

YP_S2 0.462 0.462 0.349

a(1) 0 0 0

a(2) 0 0 -0.001

a(3) 0 0 0

a(4) 0 0 -0.002

a(5) 0 0 0

a(6) 0 0 0

a(7) 0 0 0

a(8) 0 0 -0.005

b(1) 0.001 0.001 -0.004

b(2) -0.006 -0.006 0.025

b(3) 0.002 0.002 -0.007

b(4) -0.004 -0.004 0.1

b(5) 0 0 0.023

b(6) -0.002 -0.002 0.007

b(7) 0 0 0.013

b(8) -0.014 -0.014 0.05

Table 6-58 Summary of identified parameter values for each method

183

184

185

186

187

Figure 6.52 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods,

for 10 different experimentally collected data sets.

188

6.4.4. The summary of results for the Zymomonas mobilis model

This case study is chosen to illustrate the practical application of the proposed state

substitution method. It has twenty-six parameters making it not a light optimisation

problem. It has model-process mismatch, as (Grisales Díaz and Willis 2019) were able

to improve the model that it is used in this study. This is important as in practical

applications model-process mismatch happens all the time and it is important that

optimization algorithm can accommodate this mismatch. Using complexity analysis

methods, complexity of this system was determined to be medium/high for the following

reasons. System consist of four ODEs, with coupled interactions between states, but

there is very little interaction between variables. Only ethanol state parameters are

coupled with other states. PCA visualization shows multiple local minima, similarly to

case study 3. This system does not have so many discontinuities as case study 3, but

its overall convexity of the system is only 2%. Sorted minimization shows that model

has one dominant global optimum, but its overall error value is high. This leads to

suspect that identified parameter values are not ‘true’ values of the system, however

they are statically most optimal values for highest model accuracy. Reason for such

high error value at global optimum, lies with the fact that this model is not truly correct

representation of the bio-system in question. This process-model mismatch is the

cause of high error, but statically accurate parameter values. SOM analysis reveals

multiple minima that are clustered into four clusters. Thus, making local minima have

large separation. It should be noted that if gradient based algorithm gets into one of

these clusters it will be stuck there. SOM parameter analysis also reveal two dominant

variables u_max1 and K1x. It seems reasonable that these variables are dominant as

from bio-system perspective, specific growth rate and substrate consumption rate are

very highly linked with biomass growth. When comparing results of different parameter

identification algorithms, we can see that multi-start method and Derivative estimation

method both identified same solution. This is most likely due to fact they both ended

up in the same cluster of local minima, whereas the proposed state substitution method

ended up in different one. The proposed state substitution method almost twice as fast

as other two methods, also the proposed state substitution method had better accuracy

in seven out of ten data sets, when compared too other methods. In addition, for data

sets 7 and 9, state of art methods failed to identify general trend, whereas the proposed

state substitution method succeeded.

189

Figure 6.53 Summary of performance results for all three methods for Zymomonas mobilis model

190

7. Conclusions

During this research two algorithms were developed. Firstly, the proposed new method

for parameter identification, and secondly complexity analysis algorithms. This chapter

will cover, what was learned and achieved by developing and applying complexity

analysis and new proposed state substitution method for the parameter identification

of the four different case studies. We will look at each of the algorithm separately

stating their strengths and weaknesses.

7.1. Complexity analysis

Complexity analysis consists of three different approaches, that should provide overall

picture of the system complexity and some quantifiable measure of the systems

complexity. This complexity analysis allows to compare the systems complexity

relatively to other systems complexity but does not provide an absolute benchmark

value of the complexity. Analysis algorithms are a) PCA visualization b) Sorted

minimization c) SOM analysis.

a) PCA visualization is very effective for systems with smaller number of

parameters, providing good insight on location of all local minimums. Combining

it with convexity calculation, makes observations easier to interpret, due to

distinction of convex and non-convex regions. This method can allow users to

avoid local minimums, by selecting starting position, which when locally

optimized tends towards global optimum. With increasing number of parameters

PCA visualization loses its benefits, as PCA visualization uses only two first

principal components to visualise error plane of the system. With increasing

complexity and number of parameters, first two principal components no longer

contain enough variability of overall system to be able to depict error plane

accurately. Overall convexity percentage provides quantifiable measurement of

complexity and is an accurate tool to compare complexity of different systems.

It should be noted that very low convexity percentage systems (0-5%) are

harder to compare between.

b) Sorted minimization is useful for identifying expected number of local minimums

in the system, within constrained boundaries. In addition, sorted minimization

determinates if the systems parameters are identifiable or just systems

performance can be optimized. This helps to make objective decision about the

optimization provided optimal parameter. Are these parameters real values or

191

just statically optimal arbitrary values that makes model perform at its best.

Although sorted minimization provides valuable information, it is most

computationally demanding algorithm used for complexity analysis in this work.

For systems, that has extremely large search spaces, this analysis can take

even up to several days. For this reason, sorted minimization should only be

performed if analysis is not time constrained.

c) SOM analysis provides similar visualization of error plane of the system as PCA

visualization, but it is more robust when dealing with large number of parameters

within the system. In terms of visualization, it is harder to interpret results of

SOM than PCA visualization. Key observation that can be derived from SOM

analysis, is parameter dominance. Positive and negative matching factor of

each parameter provides insight into how dominant each parameter is in

comparison with others. While algorithm resolution decrease with systems

containing large number of parameters it is still able to pinpoint most dominant

variable. This is important for use of proposed state substitution method as this

information will help to set up best model hierarchy which will lead to best

results.

All of three analysis methods should be used with caution as interpretation of results

might lead to different conclusions. Nevertheless, each of these methods provide

valuable information that can be used to understand level of complexity within the

system and compared this complexity between different systems. These methods

might also, allow to establish what makes the system complex and how to mitigate

complication introduced by these complexities.

192

7.2. Proposed state substitution method

Proposed state substitution method was compared with two state of art methods -

derivate and integral methods. Comparison was done using four case studies, with

increasing complexity. In terms of computational time, proposed state substitution

method performed worse than both state of art methods when optimizing simple

system with single ODE (Case study 1). However, its advantages become increasingly

more apparent as complexity of the systems rose. Where state of art performance was

linearly decreasing with increasing complexity of the systems as expected, the

proposed state substitution method not only performed better, but also gap between

the state of art methods and the proposed state substitution method was increasing.

In terms of robustness to noise, integral method and the proposed state substitution

method were able to deal with higher level of noise, where the derivate method would

fall short. In terms of accuracy the derivative method had worse average accuracy,

throughout all case studies. The proposed state substitution method and the integral

method, where able to keep similar accuracy levels in all four case studies. This would

suggest that best course of action, when dealing with unknown system, is to perform

complexity analysis first, then if system has high complexity use the proposed state

substitution method approach instead of the state of art methods. This should lead to

lower computational times, and same levels of accuracy. It should be noted that this

computational time save, would be especially impactful, during model development

where multiple different variations of model need to be tested to check which one

produces best results.

193

8. Future work

This chapter will focus on limitations of this work and areas which can be expanded or

improved. Chapter will cover both complexity analysis and proposed new method as

independent methods.

Complexity analysis, main use is to assess the systems complexity. While discussed

methods allows to do it, only overall convexity value and number of local minima can

be used as numerical comparison, leaving other features to be interpreted by the user.

This makes it not universal when used by different users as their assessment of

topology of the SOMs and PCA visualization will vary. To make complexity analysis

techniques useful in broader spectrum, there is a need for uniform framework of these

type of analysis to allow uniform benchmarking process. Furthermore, methods used

to evaluate systems complexity, where only tested on four case studies mentioned in

this work, which is too small of a sample size to make general conclusions about

methods usage to benchmark any problems. However, this work highlight possible

uses in industry to identify systems that do require additional attention and might

require to deviate from state of art methods to produce fast and accurate model

capable of prediction. Excluding sorted minimisation, other techniques are fast and

easy to implement, making them good for initial exploration of system complexity and

helps to choose appropriate methodology for further analysis.

The proposed state substitution method seems to achieve significant reduction in

computational time, when applied to complex systems, but case studies provided

where full parametric models. While this shows that method is able to identify all

parameters that are identifiable, it says nothing about its ability to work on hybrid

models. While in theory there should be no change in methodology as long as non-

parametric part can be evaluated by objective function this was not tested and cannot

be stated to work. In addition, similarly the proposed state substitution method was

extensively tested with four case studies described in this work. Even though these

case studies cover large variability of the problems, it does not cover all types of

problems. Furthermore, this work did not investigate optimizing algorithms that are part

of the proposed state substitution method, such as ODE integrators. Nevertheless, this

new approach allows to make exploration of model structure faster and more efficient.

By reducing computational time of parameter identification, it allows researchers and

industry to explore check more model structures within save time frame or introduce

more complex model without sacrificing additional time required to identify them.

194

9. Appendix

Example code for case study 3. It should be noted not all functions are given and

provided code will not work, if directly copied to the MATLAB environment. This is to

give high-level overview of methodologies used in this work:

Derivative estimation main script example:

clear all
close all
profile on % turning profiler on to measure computational time

global par
global p
global w

w = [200,50,1,50,1,1]; % weight values for states manually inputted
sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data
timeS = 0.001; % Sampling interval of the spline

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); %

Generating random staring point of unseen data

[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating

data, with (y0n) noise and without (y0) noise
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode);

% Cubic spline opproximatation
for i = 1:length(y0n(1,:))
 yy1(i,:) = csaps(t1,y0n(:,i));
 yy2(i,:) = csaps(t1,y02n(:,i));
end

% Sampling of the spline with smaller interval
for ii = 1:length(y0n(1,:))
 fx1(ii,:) = fnval(yy1(ii,:),0:timeS:t1(end));
 fx2(ii,:) = fnval(yy2(ii,:),0:timeS:t1(end));
end

% Derivative calculation of time series
for iii = 1:length(y0n(1,:))
 dx1(iii,:) = diff(fx1(iii,:))/timeS;
 dx2(iii,:) = diff(fx2(iii,:))/timeS;
end

opts =

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',6400

); % Solver settings

% Optimisation of all estimated derivatives
for j = 1:(t1(end)/timeS)

195

[x(j,:),fval(j)] =

fmincon(@(p)DerivMonod(p,yy1,yy2,dx1(:,j),dx2(:,j),timeS*j),zeros(1,length(

p))+0.5,[],[],[],[],a,b,[],opts);
end

par = mean(x); % taking mean of the estimated parameter vector

Problem = @(par)MinError(par,fnc,x0,t1,y0n,ode,OPTS,y02n,t1); %Setting up

objective function for the global search
opts =

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',3200

); % setting parameters for global search

problem = createOptimProblem('fmincon','objective',Problem,'x0',par,...
 'lb',a,'ub',b,'options',opts);
gs = GlobalSearch('Display','iter');
ms = MultiStart('Display','iter','MaxTime',60); % initializing global search
[xf,f,flag,table,residGS] = run(gs,problem); % Running global search

PPP = profile('info');

RunTime =

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','DerivativeEs

t')).TotalTime; % Checking computational time
profile off % Stopping profiler

Multi-start script example:

clear all
close all
profile on % Turning profiler on to measure computational time

global w
global p

w = [200,50,1,50,1,1]; % weight values for states manually inputed
sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); %

Generating random staring point of unseen data

[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating

data, with (y0n) and without (y0) noise
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode);

pop = 20; % Population of the Latin hyper cube samples
N = length(par0); % Number of Variables
Best = pop*1; % Number of best initial cases after screening

lb = a; % Setting lower parameter boundries
ub = b; % Setting upper parameter boundries

X = lhsdesign(pop,N,'criterion','correlation');

196

D = bsxfun(@plus,lb,bsxfun(@times,X,(ub-lb))); % Initial conditions for latin

hyper cube

% Performing intial screening
for j = 1:pop
 E = MinError(D(j,1:N),fnc,x0,t1,y0n,ode,OPTS,y02n,t1);
 D(j,N+1) = E;
end

% Selecting fraction of best case initial conditions
D = sortrows(D,N+1);
D = D(1:round(Best/pop*size(D,1)),1:N+1);

fLow = 1e+10;

% initialing multi-start
for i = 1:size(D,1)
 disp({'Run Number:',i});
opts = optimoptions(@fmincon,'Algorithm','sqp','Display','iter');
problem =

createOptimProblem('fmincon','objective',@(par1)MinErrorW(par1,fnc,x0,t1,y0

n,ode,OPTS,y02n,w,t1),...
'x0',D(i,1:N),'lb',lb,'ub',ub,'options',opts);

ms = MultiStart('Display','iter','MaxTime',60);
[xf,f] = run(ms,problem,1);

if f < fLow % updating parameter values, if error is lowest compared to other

runs
 Par = xf;
 fLow = f;
end
end

PPP = profile('info');

RunTime =

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','Latin')).Tot

alTime; % Checking computational time
profile off % Stopping profiler

State substation Method main script example:

clear all
close all
profile on % Turning profiler on to measure computational time

global w
global p

w = [200,50,1,50,1,1]; % weight values for states manually inputed
sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;

197

x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); %

Generating random staring point of unseen data

[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating

data, with (y0n) and without (y0) noise
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode);

options = optimset('Display', 'iter', 'MaxIter',200,...
 'LargeScale','on','Jacobian','on','DiffMaxChange',...
 0.1,'DerivativeCheck','off','MaxfunEvals',200,...
 'TolFun',1e-10, 'TolX',1e-10);
% local solver options

% Each state is solved individually based on hierarchy model

p0 = [0.5,0.5,0.5,0.001,0.001,0.001,0.001];
[p1,resnorm1,resid1,exitflag1,output1,lambda1,jacobian1] =

lsqnonlin(@Parameters1,p0,...
[0,0,0,0,0,0,0],[2,2,1,0.5,0.5,0.5,0.5],options);
par = p1;

p0 = [0.5,0.5,0.3,0.5,0.5];
[p2,resnorm2,resid2,exitflag2,output2,lambda2,jacobian2] =

lsqnonlin(@Parameters2,p0,...
[0,0,0,0,0],[2,1,0.5,5,50],options);
par(8) = p2(3);

p0 = [0.5,0.5,0.4];
[p4,resnorm4,resid4,exitflag4,output4,lambda4,jacobian4] =

lsqnonlin(@Parameters4,p0,...
[0,0,0],[2,1,1],options);
par(2) = mean([p1(2),p2(1),p4(1)]);
par(3) = mean([p1(3),p2(2),p4(2)]);
par(12) = p4(3);

p0 = [0.5,0.5,0.5];
[p3,resnorm3,resid3,exitflag3,output3,lambda3,jacobian3] =

lsqnonlin(@Parameters3,p0,...
[0,0,0],[5,5,50],options);
par(9) = p3(1);
par(10) = mean([p2(4),p3(2)]);
par(11) = mean([p2(5),p3(3)]);

p0 = [0.5];
[p5,resnorm5,resid5,exitflag5,output5,lambda5,jacobian5] =

lsqnonlin(@Parameters5,p0,...
[0],[1],options);
par(13) = p5(1);

p0 = [0.5,0.5,0.5];
[p6,resnorm6,resid6,exitflag6,output6,lambda6,jacobian6] =

lsqnonlin(@Parameters6,p0,...
[0,0,0],[10,50,0.5],options);
par([14,15,16]) = p6([1,2,3]);

w = [200,50,1,50,1,1]; % weigths for state
fnc = @(b)problem(b); % Setting up objective function for the global solver

lb = a; % Setting lower parameter boundries
ub = b; % Setting upper parameter boundries

198

opts =

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',3200

); % Global solver options
problem = createOptimProblem('fmincon','objective',fnc,'x0',par,...
 'lb',lb,'ub',ub'options',opts);
gs = GlobalSearch('Display','iter');
ms = MultiStart('Display','iter','MaxTime',60);
[xf,f,flag,table,residGS] = run(gs,problem); % Running global search

PPP = profile('info');
RunTime =

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','Latin')).Tot

alTime; % Checking computational time
profile off % Stopping profiler

PCA visualization algorithm main script example:

clear all
close all

global w
global p

w = [200,50,1,50,1,1]; % weight values for states manually inputted
sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data
pop = 5000; % Population of the samples

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); %

Generating random staring point of unseen data

[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating

data, with (y0n) and without (y0) noise
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode);

[Answer,ACP,y0,Sample,CC,Error,Cluster,NoC,y02] =

Convex(x0,t1,par,a,b,fnc,pop,noise,ode,OPTS,t2);% function that calculates

convexivity of #pop triple samples in percentage

[coff,score] = pca(Sample',2); % Calculating scores of the first two principal

components.

SOM main script example:

clear all
close all

global w
global p

w = [200,50,1,50,1,1]; % weight values for states manually inputed

199

sample = 0.1; % Sampling interval of generated data
noise = 0.1; % Noise level of the generated data

Name = 'case study 3';
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for

selected case study

p = par0;
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); %

Generating random staring point of unseen data

[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating

data, with (y0n) and without (y0) noise
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode);

pop = 5000; % population size of the latin hyper cube sampling
N = length(par); % Variables
lb = a;
ub = b;
XX = lhsdesign(pop,N,'criterion','correlation');
D = bsxfun(@plus,lb,bsxfun(@times,XX,(ub-lb)));

w = [200,50,1,50,1,1]; % weigths for state

for i = 1:length(D)
 Error(i) = MinErrorW(D(i,:),fnc,x0,t,y0,ode,OPTS,y02,w,t); % optimizing

initial samples points
end

% Removing all failed integration samples and sorting from best to worst

E = Error(Error<2e+10);
Esort = sort(E);

% Labelling based samples based on error value

EE(1:length(E))= {'H'};
EE(E<Esort(round(0.5*length(E))))= {'M'};
EE(E<Esort(round(0.05*length(E))))= {'L'};

SomData =

som_data_struct(D(Error<2e+10,:),'name','SOMdata','labels',EE','comp_names'

,Names);
Map = som_make(SomData, 'algorithm', 'batch','shape','cyl'); % defaults batch

traininf used (faster than sequential training)
Map = som_autolabel(Map,SomData,'vote'); %vote = most hits dictates class!

x1=find(ismember(SomData.labels,'H')==1);
x2=find(ismember(SomData.labels,'M')==1);
x3=find(ismember(SomData.labels,'L')==1);

h1 = som_hits(Map,SomData.data(x1,:));
h2 = som_hits(Map,SomData.data(x2,:));
h3 = som_hits(Map,SomData.data(x3,:));

 c1=ismember(Map.labels,'H')*1; %Class 1 (Application for iris

Accepted)
 c2=ismember(Map.labels,'M')*2; %Class 2 (Application for iris

Rejected)
 c3=ismember(Map.labels,'L')*3; %Class 3 Empty
 c4=ismember(Map.labels,'')*4;

 classes=c1+c2+c3+c4;

200

 col_mat=zeros([length(classes),3]); % Initialise Matrix of colors to be

associated with each node

 for count=1:length(classes)
 if ismember(classes(count),1)==1
 col_mat(count,:)= [1,0,0];
 elseif ismember(classes(count),2)==1 %This section finds and

replaces with the correct colors
 col_mat(count,:)=[0,0,1];
 elseif ismember(classes(count),3)==1 %This section finds and

replaces with the correct colors
 col_mat(count,:)=[0,1,0];
 elseif ismember(classes(count),4)==1
 col_mat(count,:)=[0,0,0];
 end
 end

 C=som_clustercolor(Map,classes,col_mat); % coloring based most voted

clusters

 for i = 1:length(Map.codebook)
 Error1(i) =

MinErrorW(Map.codebook(i,:),fnc,x0,t,y0,ode,OPTS,y02,w,t); % Calculating

error of the mean cluster parameter values

 end

 Error1(2,:) = 1:length(Error1);
 Error1 = sortrows(Error1',1);
 CG = gray(length(Error1)); % Creating grayscale vector based on the amount

of samples
 RCG(Error1(:,2),:) = CG; % assigning correct grayscale values to each

error value

[Like,LikeI,Diff] = Pmatch(Map,RCG); % Comparing SOM error plane with

parameter error plane in grayscale

201

10. References

Abadlia, Issam, et al. (2020), 'Adaptive fuzzy control with an optimization by using
genetic algorithms for grid connected a hybrid photovoltaic–hydrogen
generation system', International Journal of Hydrogen Energy, 45 (43), 22589-
99.

Abdel Moamen, O. A., et al. (2015), 'Factorial design analysis for optimizing the
removal of cesium and strontium ions on synthetic nano-sized zeolite', Journal
of the Taiwan Institute of Chemical Engineers, 55, 133-44.

Aguirre, L.A and Billings, S.A (1995), 'Retrieving dynamical invariants from chatotic
data using NARMAX models', Int. J. Bifurcation and Chaos, 5, 449 - 74.

Almeida, Jonas S (2002), 'Predictive non-linear modeling of complex data by artificial
neural networks', Current Opinion in Biotechnology, 13.

Anonymous 'ODE45 solver options',
<https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument_d0e7
08771>, accessed 2017/05/11.

Bardow, Andrew and Marquardt, Wolfgang (2004), 'Incremental and simultaneous
identification of reaction kinetics: methods and comparison', Chemical
Engineering Science, 59, 2373-684.

Biró, E., et al. (2009), 'Three-step experimental design to determine the effect of
process parameters on the size of chitosan microspheres', Chemical
Engineering and Processing: Process Intensification, 48 (3), 771-79.

Bomhoff, Matthijs, Kern, Walter, and Still, Georg (2010), 'On bounded block
decomposition problems for under-specified systems of equations',
Memorandum 1930.

Breeden, J.L and Hubler, A. (1990), 'Reconstructing equations of motion from
experimental data with unobserved variables', Phys. Rev., A42, 5817 - 26.

Charles Audet; J. E. Dennis, Jr. (2002), 'Analysis of generalized pattern searches',
Society for Industrial and Applied Mathematics, 13, 889–903.

Chou, I. C. and Voit, E. O. (2009), 'Recent developments in parameter estimation and
structure identification of biochemical and genomic systems', Math Biosci, 219
(2), 57-83.

Cremers, J. and Hubler, A. (1987), 'construction of differental equations from
experimental data', Z. Naturforsch, 42a, 797 - 802.

Crutchfield, J. P. and McNamara, B.S. (1987), 'Equations of motion from data series',
Compl. Syst., 1, 417 - 51.

D.I. Kamenski and Dimitrov, S.D. (1993), 'Parameter estimation in differential
equations by applications of rational functions', Computers & Chemical
Engineering, 17, 643-51.

Degasperi, A., Fey, D., and Kholodenko, B. N. (2017), 'Performance of objective
functions and optimisation procedures for parameter estimation in system
biology models', NPJ Syst Biol Appl, 3, 20.

documentation;, MATLAB (2020), 'Matlab global solver comparison',
<https://www.mathworks.com/help/gads/example-comparing-several-
solvers.html>, accessed 30/05/2020.

Eilers, P.H.C. (2003), 'A perfect smoother', Analytical Chemistry, 75, 3631-36.
Fausett, L. (1994), Fundamental of Neural Networks: Architectures, Algorithms, and

Applications.
Froment, G.F. and Bischoff, K.B. (1990), Chemical reaction analysis and design. (New

York: Wiley).
Glover, F (1998), 'A template for scatter search and path relinking', Artificial Evolution

13-54.

https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument_d0e708771
https://uk.mathworks.com/help/matlab/ref/odeset.html#input_argument_d0e708771
https://www.mathworks.com/help/gads/example-comparing-several-solvers.html
https://www.mathworks.com/help/gads/example-comparing-several-solvers.html

202

Goldberg, David E (1989), Genetic Algorithms in Search, Optimization & Machine
Learning.

Gotshall, Stanley and Rylander, Bart (2002), 'Optimal population size and the genetic
algorithm', 2nd WSEAS International Conference of Soft Computing,
Optimization, Simulation and Manufacturing Systems.

Gouesbet, G (1991), 'Reconstruction of the vestor fields of continuous dynamical
systems from scalar time series', Phys. Rev., A43, 5321 - 31.

Grisales Díaz, Víctor Hugo and Willis, Mark J. (2019), 'Ethanol production using
Zymomonas mobilis: Development of a kinetic model describing glucose and
xylose co-fermentation', Biomass and Bioenergy, 123, 41-50.

Gutmann, H.-M. (2001), 'A Radial Basis Function Method for Global Optimization',
Journal of Global Optimization, 19, 201–27.

Hass, Helge, et al. (2018), 'Benchmark Problems for Dynamic Modeling of Intracellular
Processes', Bioinformatics.

Hegger, R. et al. (1998), 'Dynamical properties of a ferroelectric capacitor observed
through nonlinear time series analysis', Chaos, 8, 727 - 36.

Holland, D.H. and Rayford, G.A. (1989), Fundamentals of chemical reaction
enginerring (New Jersey: Prentice-Hall).

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. 'SOM Toolbox for Matlab
5. Laboratory of Computer and Information Science (CIS)',
<http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf>, accessed.

J.S. Almeida, E.O. Voit (2003), 'Neural-network-based parameter estimation in S-
system models of biological networks', Genome Informatics, 14.

James Kenedy, Russell Ebehart (1995), 'Particle swarm optimization', IEEE, 1942-48.
Kadtke, J., Brush, J., and Holzfuss, J. (1993), 'Global dynamical equations and

Lyapunov exponents from noisy chaotic time series', Int. J. Bifurcation and
Chaos, 3 (607 - 616).

Kikuchi, S., et al. (2003), 'Dynamic modeling of genetic networks using genetic
algorithm and S-system', Bioinformatics, 19 (5), 643-50.

Kutalik, Z., Tucker, W., and Moulton, V. (2007), 'S-system parameter estimation for
noisy metabolic profiles using newton-flow analysis', IET Syst Biol, 1 (3), 174-
80.

Leonori, Stefano, et al. (2020), 'Optimization strategies for Microgrid energy
management systems by Genetic Algorithms', Applied Soft Computing, 86.

Levenberg, Kenneth (1944), 'A Method for the Solution of Certain Non-Linear Problems
in Least Squares', Quarterly of Applied Mathematics, 2.

Lu, Jiawei, et al. (2020), 'Surrogate modeling-based multi-objective optimization for the
integrated distillation processes', Chemical Engineering and Processing -
Process Intensification.

M. Vilela, C.C. Borges, S. Vinga, A.T. Vasconcelos, H. Santos, E.O. Voit, J.S. Almeida
(2007), 'Automated smoother for the numerical decoupling of dynamics models',
BMC Bioinform., 8.

Marin-Sanguino, A., et al. (2007), 'Optimization of biotechnological systems through
geometric programming', Theor Biol Med Model, 4, 38.

Mark K, Transtruma; James P, Sethnaa (2012), 'Improvements to the Levenberg-
Marquardt algorithm for nonlinear least-squares minimization', Journal of
Computational Physics.

Mascarenhas (2013), 'The divergence of the BFGS and Gauss Newton Methods',
Mathematical Programming, 147, 253-76.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979), 'Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code', Technometrics, 21 (2), 239-45.

http://www.cis.hut.fi/somtoolbox/package/papers/techrep.pdf

203

Michael Wetter, and Jonathan Wright (2003), 'Comparison of a generalized pattern
search', Eighth International IBPSA Conference, 1401-08.

Mittelhammer, Ron C.; Miller, Douglas J.; Judge, George G. (2000), Econometric
Foundations. 197–98.

Niemann, Henrik and Miklos, Robert (2014), 'A Simple Method for Estimation of
Parameters in First order Systems', Journal of Physics: Conference Series, 570
(1).

Nigel, Meade; Towhidul, Islam (1995), 'Prediction Intervals for Growth Curve
Forecasts', Journal of Forecasting, 14, 413-30.

P.J. Green and Silverman, B.W. (1994), Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach.

Pearson, Karl. (1901), 'On lines and planes of closest fit to systems of points in space',
Philosophical Magazine, 2, 559-72.

Poli, Riccardo, Kennedy, James, and Blackwell, Tim (2007), 'Particle swarm
optimization', Swarm Intelligence, 1 (1), 33-57.

Powell, M. J. D (1992), 'The Theory of Radial Basis Function Approximation ',
Advances in Numerical Analysis, 2, 105–210.

R.L. Burden and Faires, J.D. (1993), Numerical Analysis.
Rasmus Bro, Age K, Smilde (2014), 'Principal component analysis', Analytical

Methods, 6, 2812-31.
Raue, A., et al. (2013), 'Lessons learned from quantitative dynamical modeling in

systems biology', PLoS One, 8 (9), e74335.
Riley, B. S. and Li, X. (2011), 'Quality by design and process analytical technology for

sterile products--where are we now?', AAPS PharmSciTech, 12 (1), 114-8.
Salata, Ferdinando, et al. (2020), 'Effects of local conditions on the multi-variable and

multi-objective energy optimization of residential buildings using genetic
algorithms', Applied Energy, 260.

Saraiva, I., Vande Wouwer, A., and Hantson, A. L. (2015), 'Parameter identification of
a dynamic model of CHO cell cultures: an experimental case study', Bioprocess
Biosyst Eng, 38 (11), 2231-48.

Simeone, Marino; Eberhard O. Voit (2006), 'An automated procedure for the extraction
of metabolic network information from time series data', Journal of
Bioinformatics and Computational Biology, 4.

Spyridon Dallas, Konstantinos Machairas, Evangelos Papadopoulos (2017), 'A
Comparison of ODE Solvers for Dynamical Systems with Impacts', J. Comput.
Nonlinear, 12 (6), 8.

Steijns, A.N.R Bos; L. Lefferts; G.B. Marin; M.H.G.H (1997), 'Kinetic research on
heterogeneously catalysed processes: A questionnaire on the state-of-the-art
in industry', Applied catalysis, 160, 185-90.

T.Kohonen (1982), 'Self-organized formation of topologically correct feature maps',
Biological Cybernetics, 43, 59-63.

--- (1990), 'The self-organizing map', Proceedings of the IEEE, 78, 1464-80.
Timmer J, et al. (2000), 'Parameter estiamtion in nonlinear stochastic differential

equations', Chaos solid. Fract., 11, 2571 -78.
Ugray, Zsolt, Leon Lasdon, John C. Plummer, Fred Glover, James Kelly, and Rafael

Martí. (2007), 'Scatter Search and Local NLP Solvers: A Multistart Framework
for Global Optimization', INFORMS Journal on Computing, 19, 328–40.

Voit, E. O. (1982), 'Power-law approach to modeling biological-systems', Journal of
fermentation technology, 60, 233-41.

Voit, E. O. and Almeida, J. (2004), 'Decoupling dynamical systems for pathway
identification from metabolic profiles', Bioinformatics, 20 (11), 1670-81.

204

Voss, Henning U. and Timmers, Jens (2004), 'Nonlinear dynamical system
identification from uncertain and indirect measurements', International Journal
of Bifurcation and Chaos, 14 (6), 1905-33.

W. Natita, W. Wiboonsak, and S. Dusadee (2016), 'Appropriate Learning Rate and
Neighborhood Function of Self-organizing Map (SOM) for Specific Humidity
Pattern Classification over Southern Thailand', International Journal of Modeling
and Optimization, 6 (1), 61-65.

Wellstead, P., et al. (2008), 'The rôle of control and system theory in systems biology',
Annual Reviews in Control, 32, 33-37.

Whittaker, E. T. (1923), 'On a New Method of Graduation', Proc. Edinburgh Math. Soc.
Willis, Mark J. and Stosch, Moritz von (2016), 'Inference of chemical reaction networks

using mixed integer linear programming', Computers & Chemical Engineering,
90, 31-43.

Wolkenhauer, O., et al. (2014), 'Enabling multiscale modeling in systems medicine',
Genome Medicine, 6.

Y. Maki and Tominaga, D. (2001), 'Development of a system for the inference of large
scale genetic networks', Pacific Symposium on Biocomputing, 6, 446-58.

Yeow, Y. Leong, et al. (2003), 'A new method of processing the time-concentration
data of reaction kinetics', Chemical Engineering Science, 58 (16), 3601-10.

Yu, L. X. and Woodcock, J. (2015), 'FDA pharmaceutical quality oversight', Int J Pharm,
491 (1-2), 2-7.

Zhao, Y., C. Jiang, and A. Yang (2012), 'Towards computer-aided multiscale
modelling: An overarching methodology and support of conceptual modelling',
Computers & Chemical Engineering, 36, 10-21.

