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Abstract 

In this thesis we propose a new method for the parameter identification of large-scale 

models. The proposed state substitution method can be applied to parametric, non-

parametric or hybrid models, but in this work, we will focus on the parametric models, 

to show methods capabilities of identifying all parameter values. The method aims to 

decouple the whole system into separate sub-systems, whose parameters can be 

identified separately, therefore decomposing the solution space. By decreasing the 

solution space in this manner, traditional parameter identification techniques can be 

used to identify the parameters of each sub-model. The solved sub-systems are 

subsequently combined for re-optimisation using a global solver (in this work global 

search), which ensures statistical optimality of the parameter values. 

The proposed decoupling method uses state substitution approach, i.e.: measured 

values (which contain process noise) are used to create a spline, which replaces 

coupled components in each ODE sub-system. This makes it possible to integrate 

each of the sub-systems separately, because the sub-systems are only dependant on 

the unknown model parameters. In addition, dividing the problem into smaller sections, 

reduces computational time significantly compared to current simultaneous solution 

methods.  

The proposed state substitution method is compared with two state-of-art approaches. 

The derivative method and the integral method. Both state-of-art methods and the 

proposed state substitution method are used to identify parameters for four different 

cases studies, where they performance is compared. Cases studies increase in 

complexity allowing comparison of how each method handles different levels of 

complexity. First three cases studies use simulated data sets, and fourth one uses real 

measured data. First case study is an artificial benchmark problem, whereas case 

studies two, three and four are bio-system models, with increasing complexity. 

This thesis also proposes ways of evaluating complexity of the system, so systems 

complexity can be relatively compared to other systems. This allows to assess each 

systems’ relative complexity, an ensure that correct parameter identification method is 

chosen for the parameter identification. Complexity evaluation is quantified with three 

different methods, Principal component analysis visualization, self-organizing map 

analysis and sorted minimization. 
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1. Introduction 

To be able to understand behaviour of any system, we perform experiments and record 

measurements, which then need to be interpreted to create knowledge about the 

system. Across fields, research has produced and produces knowledge in different 

types and forms and at varying levels of detail and scale, leaving a segregated and 

distributed vast of knowledge sources. Condensing knowledge into underlining 

controlling mechanics allows us to construct model of the systems, which can predict 

behaviour of these systems. In addition, the evolution in analytic techniques has 

tremendously increased the number of quantities that can be measured, particularly in 

the life science. The rise of the “system” research fields, which seek to combine 

knowledge into an integrated and coherent whole, was a consequent development that 

could be observed over the last decades, e.g., process system engineering, systems 

biology, or systems medicine. In all those “systems” fields methods are developed and 

sought that can help to integrate the different knowledge sources to faithfully describe 

the system (Wellstead 2008; Wolkenhauer 2014; Zhao 2012). These models consist 

of states that we can measure and of the parameters that influence this system. Within 

each individual system only the states vary with time, and all parameters are constant. 

However, if same model would be applied to similar system, which has same 

underlining mechanics, but different set-up this will lead to different parameter values, 

which are unique to the system in question. Development of such parametric models 

is very time consuming, as it involves performing large number of experiments, and 

vast amount of data to be condensed into underlining equations of the model. Which 

is why it is not reasonably possible to create unique model for every system, and 

generic model are used to predict behaviour of the similar systems. To be able to use 

generic models, parameters of the system need to be identified, such that it represents 

the system accurately. 

As an alternative to parametric models that are time consuming to make, non-

parametric models, which derivate their predictions of the system directly from data. 

Although this approach is less time consuming and can provide model that are 

accurate for specific application, they do not create any underlining understanding 

about how system behaves. It is simply a data driven analysis connecting, input 

variables to output variables. Also, non - parametric model accuracy is highly 

dependent on accuracy of the data used to create them, and these models are not 

transferable between similar systems. 
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Another alternative is to use a hybrid model, which are combination of parametric 

model and non-parametric model. This type of models allows us to use parametric 

parts of the model which we have knowledge off and use non-parametric parts of the 

model where we do not have enough knowledge about underlining mechanics of the 

system. Although hybrid model cuts of some of the parameters that need to be 

identified, the parametric part can be still complex with large search space leading to 

long computational time to identify the parameters. 

This large amount of measured data leads to construction of larger and more accurate 

models, that become more complex each day. This development cycle is hindered by 

parameter identification step, as such large and complex models take extremely long 

time to solve due to sheer size of the search space. 

Any model that has a parametric part, will always require a parameter identification 

step before it can be used, for system prediction purposes. If this parameter 

identification step if very time consuming it effect the ability to improve the models and 

use them for practical applications. 

To be able to practically use these complex models, we require a method that would, 

cut on time required to identify the parameter within the system. If a methodology would 

exist that allowed to decouple the identification problems whenever possible, this 

would decrease the search space for the identification algorithm. Then parameter 

identification in large-scale complex systems would become solvable with current 

parameter identification techniques. 

1.1. Aims 

Aim of this thesis is to introduce a novel parameter identification method, which would 

allow to solve complex systems faster than current state of art methods. As this new 

proposed state substitution method is only suited for solving large and complex 

systems, it will perform worse than state of art methods when solving simpler systems. 

Therefore, a secondary aim of this thesis is to construct a way of quantifying the 

complexity of the system, which would help to decide what kind of parameter 

identification strategy should be used to solve the system within reasonable time and 

high accuracy. 
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1.2. Objectives 

• Select state of art methods to be compared with the proposed state substitution 

method (Chapters 2 and 3) 

• Construct complexity analysis (Chapter 4) 

• Construct novel parameter identification method (Chapter 5) 

• Compare the proposed state substitution method with state of art methods, with 

multiple cases studies (Chapter 6) 

• Define boundaries where the proposed state substitution method performs 

better and where it does not (Chapter 7) 
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2. Literature review 

This literature review discusses the importance and need for accurate and fast 

parameter identification techniques. Potential methods are separated into three 

categories a) gradient-based algorithms b) stochastic algorithms c) other algorithms. 

All categories are compared, and gradient based algorithms are selected as best 

option due ease of use, which is are highly important criteria for industry. Selected 

category of gradient based algorithms is explored in-depth. Gradient based algorithms 

can be broken down into several steps: a) objective function construction b) optimality 

conditions c) parameter changes. Each of these steps are discussed focusing the on 

the most commonly used techniques within each step. Moreover, gradient based 

algorithms can only optimise towards closest local minimum making them, not useful 

on their own, for optimisation where cost function have multiple local minima. As cost 

function defines a value of error between model and the measured data, by following 

the gradient it is only possible to reach closest solution to starting location, which may 

not be global solution. To reach the global minimum, amongst the multiple local 

minima, a global solver should be used instead of a local optimiser. To see which of 

the global solvers can be used as a state of art method, with local gradient-based 

solver - five global solvers are explored. The five chosen solvers are all present in the 

MATLAB optimization toolbox. For each global solver, the working principals are 

explained, and then they are evaluated using four criteria: a) speed – based on 

computational time b) complexity – based on how simple it is to use c) accuracy – 

based of how accurate the final model is d) stability – based on how replicable the 

results are. This is used to explain why global search optimization will be used for the 

derivative method and multi-start optimization used for the iterative method in later 

chapters. Furthermore, the literature review serves as basis, to explain why the 

derivative and iterative approaches, were chosen as two state of art parameter 

identification methods to be compared with the proposed new method of parameter 

estimation. 
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2.1. Introduction 

Parameter identification is a problem where a user tries to find parameters values for 

provided generic model, to produce a model with accurate prediction capabilities for a 

specific application. Model is considered accurate, when it matches already measured 

data, and can make predictions of how system will develop in the future. Process of 

solving parameter identification problem normally starts with having a generic model 

consisting of first order ordinary differential equations. This generic model has 

condensed knowledge of similar system behaviour, that are only differentiated by the 

parameter values. Each of these equations may have multiple parameters, where 

specific numerical values would produce best fit to current measurements, enabling a 

user to use model for future predictions. Only over determined problems can be solved 

analytically as they provide more equations than unknowns. Unfortunately, normally 

these problems cannot be solved analytically because number of unknowns is larger 

than number of equations. Such problems are under determined, making it impossible 

to find a singular unique parameter values that satisfies the equation. For this reason, 

parameter identification algorithms have been developed to tackle this kind of problem. 

It tackles this problem iteratively, making each iteration more accurate than the 

previous one. 

The ability to identify the parameters of models of complex large-scale (bio) chemical 

systems is critical in order to develop an understanding of a system as well as to use 

the model as a basis for process control or process optimization. Applications of such 

knowledge can be found in “Quality by design” approach, which is widely used by FDA 

(Food and drugs administration). Such design philosophy creates better products but 

requires firm knowledge about the system. (Riley and Li 2011; Yu and Woodcock 2015) 

Established methods of parameter identification normally simultaneously solve the 

entire set of nonlinear ordinary differential equations (ODEs) that describe the system 

to determine the model parameters. In order to solve them, ODEs are integrated, and 

the optimisation problem is set based on the model prediction and measured data 

difference, which then can be minimised. Figure 2.1, shows general structure of how 

measured data is used to calculate parameter values for specific application, using 

generic model. 
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Figure 2.1 General structure of the parameter identification problem structure 

Generic optimization methods can be separated into three categories: a) gradient 

based algorithms b) stochastic search algorithms c) other algorithms (Chou and Voit 

2009).  

Gradient based algorithms seem like a natural choice as optimisation problem are 

constructed in terms of cost functions that need to be minimised. This is achieved using 

gradient based regression and it is included in all major software’s. Stochastic search 

algorithms consist of methods that are used for global optimization. Such algorithms 

as genetic algorithms, simulated annealing, and clustering methods. These methods 

are fit for purpose of finding global optimum in highly non-linear systems but require 

additional computational time to converge to a solution. Other algorithms consist of 

approaches that try to reduce the parameter search space or reduce risk of method 

getting stuck in local minima. These methods are hard to implement and are system 

specific. Such algorithms consist of Alternating regression and geometric 

programming. 

Companies prefer to use easy to apply and fast algorithms for their kinetic analysis of 

systems (Steijns 1997). This makes gradient based algorithms the preferred options, 

as stochastic search algorithms, such as genetic algorithms (Y. Maki and Tominaga 
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2001), are slow and hard to implement (Kikuchi et al. 2003), and other methods that 

don't fit within the first two groups like geometric programming are normally hard to 

implement (Marin-Sanguino et al. 2007). For these reasons gradient based optimizers 

are included in all major software packages (Chou and Voit 2009).  

Most gradient based parameter identification techniques can be separated into integral 

and derivative approaches. The derivative approach normally proceeds by estimating 

derivatives to approximate the change per unit time for a set of ODEs (Froment and 

Bischoff 1990; Holland and Rayford 1989).  When approximating derivatives, you 

develop a set of algebraic equations for each state, which normally can be solved 

relatively fast because a numerical integrator is not used. However this method often 

results in sub-optimal parameter values (Willis and Stosch 2016; Yeow et al. 2003). 

This is caused by errors in measurements, which are amplified when estimating 

derivatives which can lead to inaccurate parameter values. This means that problem 

must be normalised, making it only suitable for rich data environments.  

On the other hand, the integral approach can be used if a system can be written as a 

scalar differential equation of higher order. When combined with a measured data set 

an error model can be produced by creating a least squares cost function to estimate 

the parameters simultaneously (Voss and Timmers 2004). This has been done for 

several different approaches of the least square’s method (Aguirre and Billings 1995; 

Breeden and Hubler 1990; Cremers and Hubler 1987; Crutchfield and McNamara 

1987; Gouesbet 1991; Hegger 1998; Kadtke et al. 1993). These attempts achieved 

varying degree of success, but they all suffer from same problems: a) poor noise 

robustness – it has been shown that these approaches work well for small noise levels, 

but lead to inaccurate parameter values when noise levels are increased (Timmer J 

2000) b) different size errors in variables – if not taken into account lead to biased and 

inaccurate parameter values (Voss and Timmers 2004) if non-sensitive variables are 

part of ODE equation that has larger error impact than the other ODEs within the 

system, optimizers would try to adjust those parameters in exchange for accuracy of 

sensitive variables within ODEs with lower noise c) these methods are all parametric 

and require full and accurate structure of the system.  

Although, these techniques can work well, (taking into account points a, b and c 

mentioned above) they can be relatively slow, because for larger systems the solution 

space rapidly grows (Bardow and Marquardt 2004). 
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Both the integral and derivative methods can be improved by using multithreading, 

adding assessment of noise, using scaling variances. (Raue et al. 2013). 

Multithreading can be beneficial to any iterative algorithm as it can run multiple 

integration loops in parallel, reducing total computational time. However, this require 

that software and hardware would be compatible for such use. Assessment of noise 

can help to improve algorithms accuracy, as noise can be minimized in post-

processing of the data. However, this requires having a prior knowledge of noise level, 

cause, and behaviour. Scaling variances enables algorithm to consider smaller 

variance of states which do not have high measured values. All these techniques 

increase the performance of the method but do not alter the method itself. This work 

will not focus on supportive algorithms that can improve performance of a method, 

because these supportive algorithms can be applied to most of optimization techniques 

regardless of a chosen method. 

The method proposed in this work will be compared to one existing integral method 

and one existing derivative method. It is generally agreed that the current best integral 

method for identifying parameters is multi-start search with Latin hypercube sampling 

providing the initial conditions (Degasperi et al. 2017; Raue et al. 2013). This provides 

a best compromise between accuracy and computational time. As for the derivative 

method, derivative estimation at each point will be applied and compared with 

calculated derivatives, creating a network of simple algebraic equations that can be 

optimised, for the parameter values (D.I. Kamenski and Dimitrov 1993). This method 

is chosen for it's simple application and fast computational time, as these two criteria 

are desired by industry (Steijns 1997). 

The following literature review will describe different gradient-based optimization 

algorithms that can be used with the integral and derivative approaches. The literature 

review will also cover the advantages and disadvantages of the proposed state 

substitution method in comparison with existing integral and derivative approaches. 
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2.2. Gradient based optimisation 

Optimization algorithms are central to both the integral and derivative approaches, as 

they are used to calculate the unknown model parameters. Although the derivative 

and integral approaches use gradient based optimisation to find parameter numeric 

values, they reach different results. This makes them easily comparable side by side, 

as all differences in performance must come for their different approach strategies. 

Gradient based optimizers can have many different forms including but not limited to:  

a) non-linear regression (Nigel 1995) b) Levenberg-Marquardt algorithm (Simeone 

2006) c) Newton flow optimization (Kutalik et al. 2007). Each of these variations have 

the same general structure (See the flowchart figure 2.2).

 

Figure 2.2 Flowchart of gradient based optimisation 

This iterative procedure is repeated until the optimality conditions are satisfied and a 

satisfactory solution is obtained. Which is defined by some convergence criteria or 

tolerance being specified 

2.2.1. Objective function 

When constructing the objective function, to represent the error between measured 

data and model prediction. The most important thing is to be make sure that error 

provided, represent the model’s validity the best. Most commonly this is represented 

by the sum of Euclidean distances between, measured data and model predicted data. 

Moreover, usually two different data sets are used for satisfactory identification, 

because a single data set, can be fitted with arbitrary parameters to produce good fit, 
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without making the model useful for other predictions. This results in two objective 

functions of each data set, to form the final error value. Individual objective functions 

can be modified to best represent the system depending of the needs. Three most 

common techniques are:  

a) Weighting: If the system consists of several species or states that are 

observed such as biomass, substrates, products, etc. That can be 

described as individual ODE's, the weighting of each ODEs error can 

improve the objective function representation of model performance. A 

higher weighting factor should be allocated to states that are less 

sensitive to parameter changes, this ensures that small changes created 

by important parameters are more easily observed in overall objective 

function. Unfortunately, there is no formal procedure to decide what 

weighting values should be allocated to each state to obtain best results. 

These values are usually derived from previous knowledge about the 

system and experimentation with different setups. Equation 2.1 shows 

example of cost function with weighting incorporated. 𝐽 is for cost 

function value, 𝑤𝑖  for weighting values for i state, 𝑋𝑖𝑗 measured value of 

i state at j time point,  𝑋̂𝑖𝑗 model prediction value of i state at j time point. 

 

𝐽 = 𝑤𝑖∑|(𝑋𝑖𝑗 − 𝑋̂𝑖𝑗)|

𝑛

𝑖=1

 2.1 

 

b) Normalization: If different state measurements are an order of 

magnitude different, it is good idea to normalise, all measurement and 

model predicted data, to avoid disproportional error representation. For 

example, if biomass concentration measurements are in the range of 0 

to 1, and substrate concentration measurements are in the range 0 to 

100. Ten percent error in both of these measurements would be 

maximum of 0.1 and 10. If the objective function is not normalised then 

the same relative size mismatch in substrate will perceived by algorithm 

as hundred times worse, then in biomass. To avoid this normalisation is 

performed by dividing all measurements of each state with the maximum 

value, of each measurement set. This "rescales" all measurements and 
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predicted data to the scale 0 to 1. Equation 2.2 shows example of cost 

function with normalization incorporated. 𝐽 is for cost function value, 𝑋𝑖𝑗 

measured value of i state at j time point,  𝑋̂𝑖𝑗 model prediction value of i 

state at j time point. 

 

𝐽 =∑|(
𝑋𝑖𝑗 − 𝑋̂𝑖𝑗

max⁡(𝑋𝑖𝑗)
)|

𝑛

𝑖=1

 2.2 

 

c) Squaring: As a model of a system is normally not perfect, one hundred 

percent accurate predictions are not possible, nevertheless for practical 

applications one hundred percent accuracy is not needed and small 

deviations are acceptable, if general trend is accurate. To promote 

algorithm to avoid large error and ignore small ones, squaring of error 

may be performed. This has an effect where a large error between the 

measurement and model predictions, becomes even bigger and very 

small errors gets even smaller. Equation 2.3 shows example of cost 

function with squaring incorporated. 𝐽 is for cost function value, 𝑋𝑖𝑗 

measured value of i state at j time point,  𝑋̂𝑖𝑗 model prediction value of i 

state at j time point. 

 

𝐽 =∑(𝑋𝑖𝑗 − 𝑋̂𝑖𝑗)
2

𝑛

𝑖=1

 2.3 

 

2.2.2. Optimality of numerical optimisation algorithms 

Optimality refers to conditions chosen, that determinate if the current solution is 

satisfactory or if optimization should continue. Optimality can consist of single or 

multiple conditions. With multiple conditions, it usually enough to satisfy one of them. 

Optimality conditions should be chosen to be strict enough to produce accurate 

parameter values, but flexible enough to make it possible to reach the solution. The 

best optimality conditions are very system specific and could vary a lot from application 

to application. Four most common optimality conditions are: 

a) Tolerance: Is a value, that is compared with objective function after each 

iteration. If objective function is lower than, the tolerance value optimality is 
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reached. Increasing tolerance, makes optimization faster and easier in 

exchange for lower accuracy of the model prediction. Equation 2.4 example of 

tolerance optimality condition, where 𝐽 is cost function value and 𝜀 is value of 

tolerance. 

 

|𝐽| ≤ ⁡𝜀 2.4 

 

b) Step tolerance: Is a value, that is compared with a difference between the 

current iteration objective function value and the previous one after each 

iteration. If the difference between the current and previous iterations objective 

function values is lower than the step tolerance value optimality is reached. Step 

tolerance allows the optimization algorithm to reach its local minimum without 

knowing the value of objective function at the minimum. This is most commonly 

used optimality condition of numerical optimization algorithms. Equation 2.5 

example of step tolerance optimality condition, where 𝐽 is cost function value, n 

current iteration number and 𝜀 is value of step tolerance. 

 

|𝐽𝑛−1 − 𝐽𝑛| ≤ ⁡𝜀 2.5 

 

c) The number of iterations: Is an optimality condition that stops, the optimization 

algorithm after certain number of iterations. This optimality condition is usually 

set to high number and is a safeguard, that prevents algorithm from getting stuck 

in infinite loop. Equation 2.6 example of the number of iteration optimality 

condition, where 𝑛 is current number of iterations, and 𝜀 is value of the number 

of iterations. 

 

𝑛 = ⁡𝜀 2.6 

 

d) The time of iteration: Is an optimality condition that stops, optimization after 

certain time has passed. Similarity to the number of iterations optimality 

condition, it is used most of the time as safeguard against infinite loops. It is also 

useful for optimization with very wide search spaces, to ensure algorithm does 

not spend too much time optimizing each set. Equation 2.7 example of the time 
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of iteration optimality condition, where 𝑛𝑡 is current length of the iteration, and 𝜀 

is value of the time of iteration. 

 

𝑛𝑡 = ⁡𝜀 2.7 

 

2.2.3. Parameter change 

The core of gradient based optimization algorithms is how the algorithm within each 

iteration decides to adjust the parameter values. This step determines how fast and 

accurate the overall optimization algorithm will be. Parameter values are changed 

based on the gradient of cost function with respect to each parameter. Within the 

system as it represents if parameter value gets closer or further from a local minimum. 

This can be easily visualized with a simple parabolic curve with a single parameter (fig 

2.3). If we follow parameter value from -100 to 0, we can see that function value 

decreases, and the gradient value increases. Negative gradient means we are 

approaching local optimum and positive gradient means we are moving away from the 

local optimum; zero gradient is at a local optimum. 

 

Figure 2.3 Objective function with single parameter value and gradient value versus parameter 
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This simple visualization is improved upon in the actual implementation of gradient 

based optimization algorithms in order to deal with multiple parameters and multiple 

functions. The two most common algorithms are the Gauss-Newton algorithm and the 

Levenberg-Marquardt algorithm. Both methods can be used to solve non-linear 

optimization problems which is most common type of optimization problems.  

The Gauss-Newton algorithm (GNA) is derivation of Newton–Raphson method, but 

has the advantage of not needing second order derivatives of the system, which can 

be hard to obtain (Mittelhammer 2000). The Gauss-Newton method can minimize the 

summed squared error of multiple variables and functions at the same time. Starting 

with the provided initial conditions x(0), the algorithm creates next iteration parameter 

set by applying (Equation 2.8), Jr within the equation represents the first order partial 

derivatives and is also known as the Jacobian matrix. If y (function) and x (parameters) 

are column vectors the Jacobian matrix can be written as (Equation 2.9). In case 

number of evaluated functions and number of estimated parameters are equal Gauss-

Newton method can be simplified (Equation 2.10). Although method works well with 

one unique solution it can become unstable, while trying to optimize system with 

multiple solutions, or multiple local minimums (Mascarenhas 2013). For this reason, 

Gauss-Newton algorithm will not be used in this work. 

𝑥(𝑡 + 1) = ⁡𝑥(𝑡) − (𝐽𝑟𝑇𝐽𝑟)−1𝐽𝑟𝑇𝑦(𝑥(𝑡)) 

 
2.8 

(𝐽𝑟)𝑖𝑗 =
𝜕𝑦𝑖(𝑥(𝑡))

𝜕𝑥𝑗
 2.9 

𝑥(𝑡 + 1) = ⁡𝑥(𝑡) − 𝐽𝑟−1𝑦(𝑥(𝑡)) 

 

 

2.10 

The Levenber-Marquardt algorithm(LMA) was first published in 1944 (Levenberg 

1944). The LMA is an improvement to the GNA, by increasing robustness, but slightly 

increasing computational time. The LMA modifies (Equation 2.8), by introducing a 

damping factor λ, and rearranging the equation to calculate a change in parameter 

values instead of the new parameter values (Equation 2.11). The damping factor is 

adjusted each iteration, based on the change in objective function value. If the change 

in the objective function is sufficient the damping factor is reduced, which brings it 

closer to the GNA, but if the change in objective function is not sufficient the damping 

factor is increased bringing it closer to pure gradient descent. 
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𝑥(𝑡 + 1) − 𝑥(𝑡) = ⁡−(𝐽𝑟𝑇𝐽𝑟 + 𝜆𝐼)−1𝐽𝑟𝑇𝑦(𝑥(𝑡)) 2.11 

 

The strategy of adjusting the damping factor can be different, which will provide 

different speeds of optimization and accuracy. A common way of adjusting the 

damping factor within the LMA optimization is to set an initial damping factor value (λ0) 

and velocity value (v). The velocity value must be higher than 1 (v > 1). After each 

iteration multiple new damping factors are calculated (table 2.1). The objective function 

is computed with each damping factor and the damping factor that produces the lowest 

function value, is set as the new λ. It should be noted that velocity value (v) stays the 

same with each iteration. The absolute values of v and λ are based on the scale of the 

objective function. 

Possible damping factors 

λ = λ0 λ = λ0/v λ = λ0vj, j = 1,2,3... 

Table 2-1 Damping factors to be evaluated after each iteration 

As mentioned before, this type of LMA will lead to more robust solutions in exchange 

for a slight increase to computational time, when compared with GNA. To improve LMA 

computational time Geodesic acceleration can be used. Instead of only adjusting 

parameters, based on the first order derivatives, second order derivatives can be 

incorporated to adjust the parameter change at each iteration. It only requires the 

single directional second derivative, which does not add a large amount of 

computational time, but improves convergence significantly (Mark K 2012). The 

parameter change is then defined by velocity (first order) and acceleration (second 

order) (Equation 2.12). The first order change is estimated as explained above while 

the second order directional derivative (Equation 2.13) can be estimated using finite 

difference approximation. By using finite difference approximation only one additional 

function evaluation f(x+hδ) needs to be done, as the Jr matrix and f(x) is already 

computed in the previous step (Equation 2.14). This requires selecting an arbitrary step 

(h) value. It was reported that a value of 0.1 works well for most cases (Mark K 2012). 

Lastly, to accept this modified parameter change it must satisfy condition (Equation 

2.15), if not it is rejected and the unmodified change of velocity (𝛥𝑥1) is selected. The 

value of α can be selected to be anything below 1, but it is suggested to use 0.75 for 

most cases and 0.1 for difficult problems (Mark K 2012). 
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𝛥𝑥 = ⁡𝛥𝑥1 + 𝛥𝑥2 = 𝑣𝛿𝑡 +
1

2
𝑎𝛿𝑡2 2.12 

𝛥𝑥2 =⁡−
1

2
(𝐽𝑟𝑇𝐽𝑟 + 𝜆𝐼)−1𝐽𝑟𝑇𝑦(𝑥(𝑡))

𝑛
 2.13 

𝑦(𝑥(𝑡))
𝑛
≈
2

ℎ
(
f(x + hδ) − f(x)

ℎ
− 𝐽𝛥𝑥1) 2.14 

2|𝛥𝑥2|

|𝛥𝑥1|
≤ 𝛼 2.15 

  

 

Combined with improvements, LMA outperforms GNA in every aspect, which is why 

LMA was chosen as the algorithm for gradient based optimization in this work. 

2.3. Global solver 

Gradient based optimization on its own can only find local minimum. If a problem has 

multiple local minimums, only the closest local minimum to the initial conditions will be 

found. To work around this issue a global solver strategy needs to be used. There are 

many global solvers, but we will focus only on the ones MATLAB provides, as it is the 

software used to develop the proposed new method and compare it to the state-of-the-

art methods. MATLAB offers five different global solvers (MATLAB documentation) a) 

Pattern search (Charles Audet; J. E. Dennis 2002) b) Particle swarm (James Kenedy 

1995) c) Genetic algorithm (Goldberg 1989) d) Surrogate optimization (Gutmann 2001) 

e) Global search (Ugray 2007). 

a) The pattern search algorithm works, by creating several separate groups 

of potential solution around the initial point and evaluating the objective 

function at each of these points. These groups are called pooling. For 

example, if the objective function has two parameters, the pattern search 

algorithm would create four new parameter sets and evaluate the change 

of the objective function with parameters in all four cardinal directions. 

The size of change for these parameters is called a mesh, which is 

doubled on successful pooling and halved on unsuccessful pooling by 

default. Pooling is considered to be successful when at least one of the 

newly defined parameter sets produces a lower objective function value, 

than the previous iteration. On successful pooling the parameter set with 

lowest objective function value is considered to be the new initial point 

for the next iteration, in case of unsuccessful pooling the initial point is 
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not changed, only the mesh size is adjusted. Pattern search is robust to 

discontinuities in the objective function, as such solutions would be 

simply ignored. However, this approach does not guarantee that a global 

optimum will be found, but may avoid some local minimums, in which 

simple gradient-based approach would get stuck to. This method is 

usually fast, but not extremely accurate. In one of the examples when it 

is compared to genetic algorithm (Michael Wetter 2003), it is showed that 

two out of three cases accuracy of the method was lower than GA. It is 

stated that although pattern search is global optimiser it can be attracted 

to a local minimum, which make it difficult to bypass discontinuities or 

local minima, that are between starting position and global optimum. 

 

b) The particle swarm algorithm works by searching a bounded parameter 

space without needing to have an initial starting point. The algorithm 

initializes an array of random parameters values known as 'particles' 

within a bounded region. For each iteration the particle swarm algorithm, 

generates a random velocity vector for each particle, then moves a 

particle to a new location based on its own unique velocity vector and 

estimates the objective function value at each of these locations. The 

position with the lowest objective function is considered to be the new 

position of that particle. After a new position is found a particles velocity 

vector is adjusted based on certain criteria such as: previous velocity, 

distance between previous and new location and distance between other 

particles. This process is repeated for each particle. Particle swarm has 

a high success rate of finding global minimum, as the number of 

evaluated functions is significantly higher than e.g., pattern search. This 

comes at a cost of increased computational time. Particle swarm is a 

stochastic algorithm, which means it will not yield same results for every 

optimisation run. Particle swarm can be applied as parameter 

identification algorithm, but it is not popular option. Only 2.8% of 

published paper until 2007 about particle swarm, were used for modelling 

applications. (Poli et al. 2007). Although its popularity rise it does not 

seem as go-to robust method for parameter optimisation currently. 
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c) A genetic algorithm is another stochastic method that is based on real 

life evolution. The method is initialized by a provided random or pre-

selected population of samples. Each of the samples are evaluated using 

the objective function and are ranked based on their score. Lower 

objective function values provide higher score. A certain percentage of 

population with the best scores are selected to create the next iteration 

population - to be 'parents'. From the parents next iteration population is 

most commonly created in three ways. First a very small number of 'elite' 

samples are selected to be part of next iteration population. ‘Elite’ 

samples are the ones with best score values. A common value for 'elite' 

is 1% of the selected 'parent' samples. Second the rest of the 'parent' 

population is randomly selected for one of the two method, which are 

mutation and crossover. During mutation, a single random parent is 

chosen, and its parameter values are randomly adjusted, this creates a 

'child' for next iteration population. During crossover two random parents 

are selected and by combining their parameter values a 'child' for next 

iteration is made. Crossover and mutation are repeated till a new 

population reaches the size of the initial population. Once a new 

population is ready, the same process is repeated. A genetic algorithm 

has a near 100% probability to reach global minimum if given enough 

time, however the sheer number of evaluations and iterations needed to 

reach good solution increases computational time exponentially. Genetic 

algorithms can be successfully applied to variety of problems from 

energy usage optimisation (Leonori et al. 2020; Salata et al. 2020), to 

optimising PID controllers (Abadlia et al. 2020). Each of these cases 

does not go into detail of computational demand for these optimisations, 

as this is not the focus of the study, but it is safe to assume computational 

time is high, due to how genetic algorithm are executed. Furthermore, 

application for genetic algorithm typically are the ones that value high 

accuracy of optimisation and does not have time constraints. 

 

d) Surrogate optimization operates with two main steps, construction of a 

surrogate model and search for the minimum. During construction of the 

surrogate model quasi-random parameter sets are created. If any initial 

parameters are defined, they are used together with quasi-random 
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parameter sets. Each of the sets are evaluated using an objective 

function to provide the value to each parameter set. After evaluation the 

objective function values of each set are interpolated using (a / the) radial 

basis function (Powell 1992) to create surrogate model of the objective 

function. Then the incumbent point is found – which is the lowest 

objective function value from given parameter sets. Once the surrogate 

model is constructed and the incumbent point found the algorithm moves 

to search for a minimum. Search starts around the incumbent point, by 

using a set 'scale' value and the algorithm determines the range of search 

around the incumbent point. Within this range of search thousands of 

pseudo-random vectors are created and applied to the incumbent point 

to find an array of new sample points. Each sample points are evaluated 

with the merit function, which is a combination of surrogate values and 

distance values (Equation 2.16-18). Increasing weight (w) within the 

merit function increases the rewards for the algorithm to search close to 

incumbent point, where lowering weight (w) value encourages algorithm 

to search further from incumbent point revealing new regions. The 

parameter set with lowest merit function value is evaluated with the 

objective function and the surrogate model is updated by adding newly 

acquired value. If addition of a new value, changes the incumbent point, 

search is considered successful. After multiple consecutive successful 

searches, the scale of search is increased, similarly after multiple 

consecutive unsuccessful searches the scale of search is decreased. 

This ends a single iteration. By default, the stopping criteria for surrogate 

optimization is the number of iterations which must be defined, prior to 

start of optimization. This might lead to the algorithm not reaching the 

global optimum due to insufficient number of iterations, or running much 

longer than needed, after the global optimum is found. 

 

𝑓𝑚𝑒𝑟𝑖𝑡(𝑥) = ⁡𝑤𝑆(𝑥) + (1 − 𝑤)𝐷(𝑥) 2.16 

𝐷(𝑥) = ⁡
𝑑𝑚𝑎𝑥 − 𝑑(𝑥)

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛
 2.17 

𝑆(𝑥) = ⁡
𝑠(𝑥) − 𝑠𝑚𝑖𝑛
𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛

 2.18 
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d(x) is distance between sampled points and s(x) is surrogate function value of 

samples points. Surrogate optimisation while useful according to (Lu et al. 

2020), can struggle to optimise parameters when possible parameter 

boundaries are too large. 

 

e) Global Search or multi start algorithms work similarly but have some 

differences. Key differences are that global search rejects start points 

that are unlikely to improve, current best local minimum, whereas the 

multi start optimizes all start points. Multi start allows multiple local 

solvers, whereas global search does not. Furthermore, multi start can run 

in parallel. Global search starts with taking the provided initial conditions 

and a running local optimization solver and if the initial start point cannot 

converge to a solution the algorithm cannot continue. Once convergence 

is reached the algorithm records, the start position, end position and 

radius of estimated basin between those two positions. Furthermore, the 

final objective function value is recorded to be used in a score function 

later on. The score function consists of the objective function and a 

multiple of the sum of the constraint violations, this way viable points 

score function equal to their objective function value. After initial local 

optimization the algorithm generates a trial point by using non 

symmetrical  scatter (Glover 1998). These trial points are potential 

starting points for the next step. To obtain a stage 1 start points, a fraction 

of trial points are selected to be evaluated for their score function. The 

trial point with best score function is selected to be locally optimized, and 

similar to initial start values, its start position, end position and radius of 

estimated basin between those two positions is recorded. After stage 1 

start point evaluation, the algorithm moves on to stage 2 evaluation, 

where the rest of trial points, selected previously, are locally optimised if 

they fit the following criteria: a) the selected position is not in any existing 

basin b) the position score value is below a local solver threshold. If the 

trial point satisfies these conditions, it is locally optimised, and the newly 

created basin is added to the list together with adjusted threshold value. 

This process is repeated till no trial points are left. All solutions create a 

global solution vector, where all samples are ranked based on their 

objective function value and lowest value is chosen as final solution.  
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In comparison multi start approach is simpler in comparison. At the start of the 

algorithm, multi start generates randomly equally distributed parameter sets 

within specified boundaries. The number of generated start points has to be 

manually selected, and the algorithm use the provided start points first and will 

generate any additional sets if needed. After having required number of starting 

points each point is locally optimized and solutions are stored into a global 

solution vector, which is ranked in descending order based on the objective 

function. The best solution is selected which managed to achieve lowest 

objective function. Both of these methods are commonly used in global 

optimization as they are computationally efficient to reach desirable solution.  

Each of these solvers can be used for global optimization, but all of them have their 

own advantages and disadvantages. There are four main criteria we can look at when 

selecting a global solver: a) speed b) complexity c) accuracy d) stability. Speed of the 

solver is important as fast solvers can be adjusted multiple times, allowing the user to 

experiment with parameter conditions, without losing valuable time. From the 

previously discussed five global solvers the fastest one is pattern search, and slowest 

is genetic algorithm (documentation; ). Complexity of a solver can be important criteria 

if the algorithm needs to be applied to a large number of different problems and set up 

time and effort becomes significant. Setup complexity of all five global solvers is 

generally similar, with the exception of particle swarm as it does not need initial 

conditions and can be started with only the objective function. Accuracy is a criterion 

that is important, when results of optimization need to be trustworthy. If an optimization 

problem is only required to be solved for general knowledge and an exact result is not 

important some of the accuracy can be exchanged to improve the other criteria. Based 

on MATLAB benchmarks most accurate MATLAB global solver is a genetic algorithm 

followed by global search and surrogate optimization (documentation; ). The stability 

of a solver is important for each optimization to be consistent and being robust to stiff 

problems and problems with discontinuities. Purely stochastic algorithms like particle 

swarm and genetic algorithm very rarely yield similar results between repeats, and an 

algorithm like pattern search deal with discontinuities easily but will navigate away from 

solution that yield incomplete solution as an answer.  

As mentioned before industrial companies prefer fast algorithms that are easy to 

implement (Steijns 1997), but we cannot neglect accuracy. Between methods that are 
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able to delivery robust and high accuracy results, we choose the one that have lowest 

computational time. Computational time is important as it creates time saving, that can 

be used performing experiments or improving model structure itself. This still leaves 

us with at least two options that seem to fit the description, which are global search 

and surrogate optimization. Both of these methods could be used, as a state of art 

method for global optimization and would make good benchmark comparison to the 

proposed state substitution method. However global search was selected to be the 

global solver, because of the reports in literature of various multi start being one of the 

best currently optimization techniques (Degasperi et al. 2017; Raue et al. 2013). Multi 

start and global search are very similar, but have their differences as discussed before. 

For this reason, both of these approaches will be used for comparison, global search 

with derivative approach and multi-start with integral approach. 

2.4. Summary 

The literature review chapter looks at why parameter identification problem is important 

and how it can be solved focusing on gradient based optimisation algorithms. Literature 

reviews identify the need for faster parameter identification techniques for large 

systems. This is primary gap that the proposed state substitution method for parameter 

identification is trying to fill. Flowchart (fig 2.2) of gradient based optimisation algorithm 

is defined, and key features are investigated in detail, such as the objective function 

construction, the optimality conditions and the parameter change algorithms. It is noted 

that local optimisation is not sufficient to obtain accurate parameter values in complex 

systems. Therefore, five global solvers are investigated and compared, based on four 

criteria speed, complexity, accuracy, and stability. From information about local and 

global solver, two variations of gradient based optimisation are chosen to serve as 

state of art methods, for comparison with the new proposed state substitution method 

for parameter identification.  
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3. Kinetic model calibration: State of the art methods 

This chapter will discuss, two state of the art methods that were chosen as a basis for 

comparison with, the proposed state substitution method. The literature review helped 

to establish that the integral and the derivative approaches are best choices. This 

chapter will discuss the details of these two approaches. To make sure that both 

approaches are best suited for the case studies that were selected, modifications are 

made. Modifications, such as different sampling algorithms, screening or re-

optimization are required to cut down computational time, that does not contribute 

towards more accurate identification of parameter values. This way the state of art 

methods should perform at their best when compared to the proposed state 

substitution method. 

3.1. Integral approach 

The integral method is a direct method that requires an algorithm to integrate the whole 

model at each integration time step and to evaluate the error between model and 

measured data. This leads to a slow working method which, spends up to 95% of its 

time integrating model, and not optimizing the parameters. Furthermore if the model 

equations are stiff, this increases computational time almost by 100% (Voit and 

Almeida 2004). Nevertheless, the integral approach predicted model output is very 

accurate as numerically integrating the model allows the optimisation algorithm to 

capture all interactions between parameters and states of the model. In addition, the 

integral method is robust to noisy data, and is easy to implement. The main drawback 

of integral method is the long computational time, with most of that time being spent 

integrating the model ODEs, it is important to focus on decreasing the amount of time 

needed to integrate the model. To have a good state of art integral approach, for 

accurate comparison, modifications were made to improve the integral approach 

computational time without sacrificing the accuracy of the method. Multi-start was 

chosen as the best global optimizer for this approach, as it only locally optimizes given 

starting locations, and does not search for new start points. This is important as new 

start points would increase the number of integrations required, thus increasing 

computational time. 

3.2. Derivative approach 

The derivative approach tries to deal with the main drawback of integral approach the 

long computational time associated with model integration. This is done by removing 

the integration step completely and replacing it by set of algebraic equations that can 
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be optimized simultaneously or separately. In order to do this, slope estimation is 

required, that would replace the derivative term in each ODE making it a single point 

algebraic equation. Slope estimation can be done in various ways including: a) linear 

interpolation b) splines (P.J. Green and Silverman 1994) c) Three point method (R.L. 

Burden and Faires 1993) d) Hand fitting (Voit 1982)  e) Artificial neural networks 

(ANNs) (Almeida 2002; J.S. Almeida 2003) f) Filters (Eilers 2003; M. Vilela 2007; 

Whittaker 1923). 

Slope estimation methods a, c, and d can work for low or noise free data, as noise 

tends to get amplified when estimating slopes. As noise is inevitable in any real system 

this leaves b, e, and f methods, which can deal with noise to certain levels by 

performing smoothing of the data. ANNs are accurate at finding general trends and 

fitting data with 'universal functions', but they require a lot of data sets and 

computational time to be trained. This adds additional complexity to the setup of the 

method and computational time, which we try to reduce. Between splines and various 

filters, splines where chosen as a better candidate for the derivative method due to 

simpler use. Splining is done by fitting data with a polynomial (equation 3.1), or other 

types of splines, to minimize the error between the spline and measured data. With a 

spline state values can be approximated at any time point. Which allows to estimate 

slopes (equation 3.2) at any time point to be replaced in the ODE to change it into 

group of algebraic equations (equation 3.3). With slopes estimated the algebraic 

equation can be optimised locally for each data point with non-linear least squares 

method, creating vector of solutions xt, as noise can affect these solutions an average 

of all solutions is taken to represent starting point for global optimisation. 

𝐶(𝑥) = ⁡𝛼1 + 𝛼2𝑥+𝛼3𝑥
2 +⋯+ 𝛼𝑛𝑥

𝑛−1 3.1 

  

𝐶(𝑥𝑡) − 𝐶(𝑥t+1)

𝑡𝑛 − 𝑡𝑛+1
⁡=
𝑑𝐶̂

𝑑𝑡
≈ ⁡
𝑑𝐶

𝑑𝑡
, 𝑎𝑡⁡𝑡𝑛 3.2 

  

𝑑𝐶

𝑑𝑡
= 𝐴 ∗ x⁡ ≈

𝑑𝐶̂

𝑑𝑡
= 𝐴 ∗ 𝑥𝑡 , 𝑤ℎ𝑒𝑟𝑒⁡𝑥𝑡 ⁡𝑎𝑟𝑒⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑎𝑡⁡t⁡𝑡𝑖𝑚𝑒⁡𝑝𝑜𝑖𝑛𝑡 3.3 

Where C(x) is polynomial of variables x, a are weights, and t is time.  
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3.3. Integral method modifications 

Two modifications were done to general integral multi-start approach to improve its 

accuracy and computational time. Sampling of the search space was changed to Latin-

hyper cube sampling as it provides benefit of each sample on average being closer to 

the global solution. Screening was introduced to reduce the number of starting samples 

that need to be optimised. This is important for complex systems especially as they 

introduce discontinuities which cannot be optimised and there is no need to waste 

computational time optimising them. 

3.3.1. Sampling of the search space 

In an attempt to ensure that global minimum is found using multi-start approach, 

sampling of the search space for starting points, has to be done methodically, while 

trying to minimize the number of starting points, but covering the whole search space. 

The simplest solution for sampling the search space would be a factorial design, which 

is commonly used for experimental setups, to capture the effects of each parameter 

(Abdel Moamen et al. 2015; Biró et al. 2009). Unfortunately, this expands the number 

of samples, exponentially with increasing number of parameters. Furthermore, unlike 

experiments, model parameters can be very sensitive even to minor changes requiring 

a lot of steps for each parameter. A better sampling technique for this application is 

Latin-hyper cube sampling (McKay et al. 1979). The search space is split up into equal 

size pockets, and each sample point is randomly put into one of these pockets, while 

having straight line of sight with each coordinate end, without interfering with other 

samples points line of sight (fig 3.1). This decreases the number of samples required, 

to capture dynamics of the model, as each new sample provides unique setup, without 

overlapping with other samples. The Latin-hypercube sampling requires 

predetermined number of samples, which has to be manually selected. The number of 

initial samples should increase with larger and more complex models and decrease 

with simpler and smaller models.  
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Figure 3.1 Example of Latin hyper cube sampling in 2d space, with X denoting each sample and red square places 

that are unavailable to following samples. 

3.3.2. Screening 

The second modification to improve integral method, is screening of initial start points. 

This is required because, we do not know if we have selected too many samples and 

some of them can be redundant and for complex systems a lot of starting points 

extremely far away from global optimum or cannot be integrated. Screening is 

performed for all samples evaluating their objective function, then 10% of best starting 

points are given to multi-start algorithm to optimize further. This screening process cuts 

off a large amount of unnecessary time, without compromising accuracy of the overall 

method. This type of screening works, because as parameter values get closer to 

global optimum, error between prediction and the model decreases. This makes it safe 

to assume that values that have initial low error values before optimization, will have 

even lower final error value.  

3.3.3. Modified integral method structure 

When these modifications are implemented the incremental method approach flow 

chart changes (fig 3.2). First the search space is sampled using Latin-hyper cube 

sampling method for specific number of samples, second all samples are screened for 

their objective function value and the best 10% passes to next stage, lastly multi-start 

global optimiser locally optimises all provided starting samples and global solution is 
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reached. This modified version of integral approach should be most competitive versus 

the proposed state substitution method. 

 

Figure 3.2 The integral method flowchart 

3.4. Derivative estimation method modifications 

Only one modification was added to the derivative estimation method. Re-optimization 

step is required to convert derivative estimation from local only into global optimisation 

technique. 

3.4.1. Re-optimization 

Global optimisation is performed with global search, as it is similar to multi-start but 

only requires single starting point input. This step is called re-optimization to ensure 

that solution is globally optimum, as algebraic equation were only locally optimised. 

Global search method is described in section 2.3. 

3.4.2. Modified derivative estimation method structure 

When re-optimization is implemented into the derivative method it structure becomes 

as follows (fig 3.3). First measured data is splined and approximated with cubic spline. 

Then slopes are estimated using splines and used to replace derivates in ODEs of the 

model, to construct set of algebraic equations that are locally optimised at every data 

point. Solution vector is averaged and supplied as starting point for global search 

algorithm for re-optimization step. The final solution is produced by global search 

algorithm. 



28 
 

 

Figure 3.3 The derivative method flowchart 

3.5. Benchmark problem 

To study the effects of modifications, within each method, a benchmark problem was 

optimised, with and without these modifications and compared to assess the impact of 

each modification. The chosen benchmark problem is a simplified version of Monod 

kinetics (equation 3.4). This system consists of two states biomass (x, g/L) and 

substrate (S, g/L). This model also has three parameters Umax, Ks and q, which are the 

maximum specific growth rate (h-1), half-velocity constant (g/L) and the substrate 

consumption rate constant (g/h) respectively. Models’ outputs are rate of change in 

biomass 
𝑑𝑥

𝑑𝑡
⁡and substrate 

𝑑𝑆

𝑑𝑡
.  

𝑑𝑥

𝑑𝑡
= 𝑢 ∗ 𝑥 

𝑑𝑆

𝑑𝑡
= −𝑞 ∗ 𝑢 ∗ 𝑥 

𝑢 = 𝑈𝑚𝑎𝑥 ∗
𝑆

𝐾𝑠 + 𝑆
 

3.4 
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3.5.1. Generating benchmark data 

To simulate data sets using this model, parameters values need to set to desired 

constants and the model needs to be initialised with initial conditions for biomass (x) 

and substrate (S). Data sets were generated using numerical integrator ode45 in-build 

into MATLAB. Output of each ODE is added to existing value of the state producing 

time-series data of biomass (x) and substrate (S). Data was generated at 10h-1 sample 

rate, and white random noise with 10% magnitude was added after, data generation, 

but before it being used in optimisation algorithm. The parameter values that were used 

to generate data are Umax = 0.9, Ks = 0.3 and q = 4. These are considered true values 

of the parameters and the parameter identification algorithm accuracy can be 

evaluated based on how close identified parameter values are to real values. Typical 

data set have low starting biomass concentration and high substrate concentration. As 

time progress substrate is consumed exponentially and biomass growths exponentially 

(fig 3.4). 

  

Figure 3.4 Typical data set of benchmark problem, without the noise 

3.5.2. Objective function 

Objective function for this benchmark model was constructed as a sum of two different 

data sets errors. Where error was defined as squared difference between data sets of 
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generated noisy data, and model predictions (equation 3.5). X and Y and are generated 

data sets, 𝑋̂and 𝑌̂ are model predictions. 

𝐽 = (𝑋𝑖 − 𝑋𝑖̂)
2
+ (𝑌𝑖 − 𝑌𝑖̂)

2
 3.5 

3.6. Effects of the modifications 

Each of the modifications for the state of art methods were done with intention to 

increase accuracy or decrease computational time. This sub-section describes with 

example how these modification effect state of art methods. 

3.6.1. Sampling space 

To test how much difference there are between the Latin hyper cube sampling 

technique and factorial design both sampling techniques were compared while using 

integral method. When exposed to the benchmarking problem, both methods were 

able to identify a solution, but Latin hyper cube method was faster and produced more 

accurate model (table 3.1). Benchmarking problem was convex and global solution can 

be achieved from many different starting points. However, Latin-hyper cube sampling 

provided with better overall parameter values (table 3.2). Also, the run time is 

significantly different, the Latin hyper cube sampling method outperforms factorial 

design by 15% in terms of computational time. As both methods had same number of 

samples, faster computational time is achieved by having initial parameter values 

(samples) on average closer to the global solution. This leads to optimiser having to 

do less iterations to reach a solution. Visual comparison of the model, with each 

identified sets of parameters is shown in figure 3.5. 

Sampling method Squared error of the 

model 

Run time, s 

Latin hyper cube 425.29 728.47  

Factorial design 1439.79 862.33  

Table 3-1 Performance comparison of different sampling methods with benchmarking problem 

Parameter Real values Latin-hyper cube 

sampling 

Factorial design 

sampling 

Umax 0.9 0.898 0.875 

Ks 0.3 0.083 0.248 

q 4 3.987 3.992 

Table 3-2 Identified parameter values using different sampling techniques. 
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Figure 3.5 Comparison on biomass concentration model predictions, of different sampling methods with 

benchmarking problem 

3.6.2. Screening 

A benchmarking test was performed to check the effect of screening on accuracy and 

computational time (table 3.3). By only optimizing 10% of best initial parameter values, 

computational time can be reduced by 97%. At the same time accuracy does not 

change significantly. Model performance can be observed at figure 3.6 and identified 

parameter values at table 3.4. 

Screening method Squared error of the 

model 

Run time, s 

None 425.29 728.47 

10% best 425.98 21.57 

Table 3-3 Comparison of accuracy and computational time, with 10% screening and without 

Parameter Real values 10% Screening No screening 

Umax 0.9 0.904 0.898 

Ks 0.3 0.248 0.083 

q 4 3.951 3.987 

Table 3-4 Identified parameter values using 10% screening and without it 
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Figure 3.6 Comparison on biomass concentration model predictions with 10% screening and without 

3.6.3. Re-optimization 

Benchmark test was performed to compare accuracy pre- and post-re-optimization to 

assess the effect of re-optimization. It was found that re-optimization improved the 

benchmark problem solution accuracy by 195% (table 3.5). This is also clear from 

identified parameter values (table 3.6). Pre-optimization values are very susceptible to 

noise in generated data, as slope estimation is very sensitive to noise. This re-

optimization step makes the method more robust to noise and makes model prediction 

very accurate (fig 3.7). Also using global re-optimization step makes the derivative 

method similar to integral method, so comparison between two is more direct.  

 Squared error of the model 

Pre re-optimization 36606.03 

Post re-optimization 422.66 

Table 3-5 Comparison of model accuracy pre- and post-re-optimization for the derivative method 

Parameter Real values Pre re-

optimisation 

Post re-

optimisation 

Umax 0.9 1.064 0.899 

Ks 0.3 0.565 0.242 

q 4 4.543 3.989 

Table 3-6 Comparison of the identified parameter values pre- and post-re-optimization for the derivative method 
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Figure 3.7 Comparison of model performance pre- and post-re-optimization 

3.7. Summary 

Chapter focuses on the derivative and integral methods as core state of art 

approaches. The integral method is improved with two modifications, Latin-hyper cube 

sampling and screening. Latin-hyper cube sampling is chosen as a sampling technique 

instead of factorial design or random distribution of samples, because it provides, on 

average, samples that are closer to global optimum given same number of samples. 

Screening is implemented to reduce number of samples needed to be optimized, as it 

is showed with benchmark problem, that accuracy of the solution is increased, and 

computational time is decreased significantly. For the derivative estimation method, it 

is chosen to estimate slopes, by using splines, as they are robust to noise, easy to use 

and does not require large amount of different data sets. Re-optimization step is 

introduced to increase solution accuracy. Final flowchart of both methods is shown, 

and these methods are used as comparison with the proposed state substitution 

method later in the work.  
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4. Problem visualization 

In this chapter, we will discuss how the “curse of dimensionality” affects parameter 

identification and how it should be addressed. We will investigate a common problem 

of not being able to visualize the cost function error plane if we have a high dimensional 

problem, and what information we are losing because of it. Firstly, we will discuss what 

techniques can be used to visualize high dimensional problem and how to extract the 

same information, that we can normally extract from 3d visualization of cost function 

error plots. The methods investigated will involve, principal component analysis (PCA) 

visualization, self-organizing maps (SOM) and the used of sorted cost function 

performance graphs. For each of the techniques a simple example is used to help 

understanding how the technique works and what information it portrays. Secondly, 

we will address the concept of “complex” problems and how visualization techniques 

in conjunction with convexity criteria can allow the quantification and assessment of 

“complexity”. Lastly, we will discuss how these techniques can be used to determinate 

if state of art parameter identification methods, are capable of solving a given problem 

within reasonable time, or if a different approach should be taken (e.g., proposed state 

substitution method State-substitution).  
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4.1. Introduction 

When solving parameter identification problems, it is very useful to be able to visualize 

your solution space, as this provides insight about the model you are working with.  By 

observing solution space, you can verify if there are multiple optimum solutions, how 

much impact each parameter has on the model and how sensitive those parameters 

are. Simple way of visualizing the solution space of a model is to make an error plot. 

An error plot is a graph, where all parameters of a system a varied and each parameter 

combination is given a model performance value (error), when compared to the 

measured data. From such an error plot we can find how many optimum solutions there 

are by counting number of different valleys, that converge on a point called local 

minimum. We can assess parameter impact on the system, by measuring difference 

between maximum and minimum error values when only one parameter is varied. 

Similarly, we can assess parameter sensitivity, by measuring rate change of error when 

only one parameter is varied. To show example of how to use error plot consider 

equation 4.1. This simple system has single output of y, and two parameters P1 and 

P2. If we assume real parameter values are P1 = 1 and P2 = 2, then we can calculate 

error between y = sin(1) – 2 and ym = sin(P1) – P2, where p1 and P2 is varied. 

𝑦 = sin(𝑃1) − 𝑃2 4.1 

Because P1 and P2 values are not know, we vary these values and plot them on x and 

y axes. Each combination of P1 and P2 has an error value on z axis. Error is calculated 

as square difference between global optimum (P1 = 1, P2 = 2), and any given 

parameter values. This construct error plot of equation 4.1 (fig. 4.1). 

 

Figure 4.1 Error plot of the system (equation 4.1) 



36 
 

4.1.1. Analysis of the error plane 

There are multiple ways to analyse the error plane of the system. Most useful 

observation can be broken down into a) number of local optima b) Impact of the 

parameters c) sensitivity of the parameters. 

4.1.1.1. Number of local optima 

Red circle in error plot marks global optimum i.e. P1 = 1, P2 = 2. By observing this 

error plot, we can tell that there two local optimum solution as we can see two separate 

valleys, which are defined by P1 parameter.  First valley between values (0,4) and 

second valley between values of (4,10). This provides useful insight, telling us that if 

we use gradient based solver, we should start in correct valley to reach global solution. 

4.1.1.2. Impact of the parameters 

When trying to assess the impact each parameter makes to the system, we measure 

the maximum error value that can be reached by varying one parameter and keeping 

others at optimal values. We can tell that parameter P2 is more impactful as it can 

reach up to 70 on error axis while P2 is at optimal value. On other hand when varying 

P2 with P1 being fixed at optimal value, we observe only small up increase in error up 

to around 5. We can also observe that there a link of impact between parameters. As 

value of P2 increases, impact of the P1 increases too, but it is still lower than impact 

of P2. 

4.1.1.3. Sensitivity of the parameters 

When trying to assess the sensitivity of the parameter similar approach to impact 

measuring take place, where we vary one parameter keeping other constant. We can 

observe that P1 has more variation in error, than P2, making it more sensitive to 

changes. Where P1 has two peaks, throughout the sampling range, P2 only has a 

steady increase. With increasing values of P2 sensitivity of P1 is more pronounced, 

but general trend is the same. 

These insights from the error plot provides valuable information about parameters 

itself, but also how to avoid local minimums and provides knowledge about the system. 

Unfortunately, this is only possible for two parameter systems, and a higher dimension 

problem, cannot be simply plotted, as there are not enough axes. Having a method to 

visualize higher order problems would allow the extracting of this information from high 

dimensional parameter identification problems. 
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4.2. Example systems 

To facilitate explanation of the methods, which were used to visualize problems, and 

assess the system complexity, two system will be used. First model is simplified 

version of Monod kinetics (equation 4.2), this system consists of two states biomass 

(x, g/L) and substrate (S, g/L). This model also has three parameters Umax, Ks and q, 

which are maximum specific growth rate (h-1), half-velocity constant (g/L) and substrate 

consumption rate constant (g/h) respectively. This model calculates rate of change in 

biomass 
𝑑𝑥

𝑑𝑡
⁡and substrate 

𝑑𝑆

𝑑𝑡
. Two simulate data sets using this model parameters 

values need to set to desired constants and model needs to be initialised with initial 

conditions for biomass (x) and substrate (S). Data sets were generated using 

numerical integrator ode45 in-build into MATLAB. Output of each ODE is added to 

existing value of the state producing time-series data of biomass (x) and substrate (S). 

𝑑𝑥

𝑑𝑡
= 𝑢 ∗ 𝑥 

𝑑𝑆

𝑑𝑡
= −𝑞 ∗ 𝑢 ∗ 𝑥 

𝑢 = 𝑈𝑚𝑎𝑥 ∗
𝑆

𝐾𝑠 + 𝑆
 

4.2 

Second model is a simple polynomial (equation 4.3). It is a simple function that outputs 

f(x) value based on input x values. It has twenty parameters (p1-p20). This model does 

not require any simulations as it is simple one value input-output system. 

𝑓(𝑥) = 𝑥 ∗ 𝑝1 + 𝑥 ∗ 𝑝2 + 𝑥 ∗ 𝑝3…𝑥 ∗ 𝑝20 4.3 

  

These two systems are selected as they differ in two criteria. First is complexity, Monod 

kinetics are much more complex system then the polynomial model, because it 

involves ODE, rate of change, multiple equations, and time series data. Second 

criteria, which separates these systems is number of parameters, polynomial model 

has twenty parameters whereas Monod kinetics model has only three. 
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4.3. Utilizing PCA to visualize the model 

The main problem regular error plot visualization faces with higher order problems is 

that there are not enough axes for each parameter. Even if we could plot higher 

dimensional planes, it would be hard or even impossible for us to interpret results as 

we are used to work in 3d space. Therefore, any potential solution should provide 

visualization in 3d. One of the possible solutions is to reduce number of parameters 

we need to plot converting model from n-parameter to 2-parameter model. We can 

achieve this by using PCA (Principal component analysis) developed by (Pearson 

1901), modern version explanation can be found (Rasmus Bro 2014). PCA is a 

technique that is useful for the compression and classification of data. The purpose is 

to reduce the dimensionality of a data set (sample) by finding a new set of variables, 

smaller than the original set of variables, that nonetheless retains most of the sample's 

information. PCA achieves this by combines variables to produce new ones, that hold 

combined information about combines variables. For example, if we have two variables 

that seems to correlate (table 4.1), we can combine them by fractional addition 

(equation 4.4). Where F is new combined variable, wi is fraction factor and xj is 

variables.  

𝐹 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑖𝑥𝑗 4.4 

 

 Ethanol g/L Biomass g/L 

Sample 1 90 60 

Sample 2 45 120 

Sample 3  0 180 

Table 4-1 Example of two variables being heavily correlated 

Only question is what fraction of each variable we should use to represent new 

combined variable. In this example there is strong and uniform correlation between 

variables, which would mean we should weight them evenly, but instead of weighting 

vector being w = [0.5 0.5], we should consider making it take into account that new 

combined variable represents two variables and not one, therefore it’s magnitude 

should be bigger than just and average of two variables. Similarity to vector addition, 

adding two vectors of same size at 90˚ angle, would make combined vector larger in 

magnitude (fig. 4.2). This can be applied when combining two variables as x and y axis 

are at 90˚. We can use unit vector and Pythagoras theorem to figure out what weighting 
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we should use for same magnitude samples (fig. 4.2). This works out to be w = 

[0.7,0.7]. 

 

Figure 4.2 Example of unit vector addition 

With this we can define PCA as a function of data X, weighting vector w and PC which 

is new variable representing whole system called scores (equation 4.5). This kind of 

combination of variables can be performed for more then two variables at the time, but 

it is quite rare that variables corelated so perfectly as in this example. Which is why we 

can only try to select such weighting vector w, that combined new variable represents 

most of the systems variability.  

𝑋𝑤 = 𝑃𝐶 4.5 

So, problem becomes how to measure how much variability of the system variable PC 

represent in comparison to variables X. We can do that by performing regression of all 

X variables on PC, which will provide us with equation 4.6. Where r is regression 

coefficients and E is matrix of residuals. 

𝑋 = 𝑃𝐶𝑟𝑇 ⁡+ 𝐸 4.6 

Once we have our residual matrix, we can calculate how much variability is explained 

by PC variable (equation 4.7). Now we can optimise our selection of weighting vector 

w, by maximising variability expressed by PC. 

‖𝑋‖2 − ‖𝐸‖2

‖𝑋‖2
∗ 100% 

4.7 

 In most cases one principal component will not be able to represent system in it 

entirety, this process can be repeated to generate second principal component, which 

will have explain less variability of the full system, than first principal component (PC). 
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Nevertheless, combining multiple PCs we can represent system well with lower 

number of variables, then system had initially. Using PCA we can create two principal 

parameters with highest explained variability. This will allow to plot similar plot as 

regular error plot. Downside to this method is that we will not be able to tell parameter 

sensitives anymore as they will be combined. 

4.3.1. Example of applying PCA for visualization 

Plot (fig 4.3) reveal similar information to normal error plot, it shows global/local 

optimums, and in this case, there is one clear “valley” around -1 of principal component 

(PC) 2, within it a global optimum around 0 PC1 and -1 PC2. There two potentially 

difficult areas while optimising this model. First the bottom of the main “valley”, for 

gradient based optimiser may look like an optimum if its optimisation path is along PC2 

axis. The Second problem there is lot of flat surface, where gradient based optimizer 

can get stuck for the same reason. As these both problematic regions do not represent 

clear local minimums, it is subjective to judge how much of a difficulty they pose for the 

optimizer. It would depend on optimiser settings, initial guess, and other optimizer 

options.  

 

Figure 4.3 Error plot of Monod model first two principal components (PC's) 
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4.4. Convexity with PCA 

When problematic regions in error plot/PCA error plot are not well-defined additional 

analysis is needed. In order to judge difficulty of optimization more objectively a 

convexity criterion is applied to all sample’s points within the PCA error plot. Convexity 

is a criterion, of how likely sample is to reach an optimum. To meet convexity criteria 

equation below must be satisfied (Hass et al. 2018): 

J(αθ(1) + (1 − α)θ (2)) ≤ αJ(θ (1)) + (1 − α)J(θ (2)) 4.8 

Where J is cost function, θ(1) first set of samples/parameters, θ(2) is second random 

set of samples/parameters that satisfies relationship ||θ (2) − θ (1)|| = 1 and α is a 

random location on connecting line between these two sample parameters sets. 

This criterion can be calculated for every sample point (or combination of parameters), 

and then we can calculate percentage of samples, which are convex within sampling 

space. Providing a percentage convexity of a system. 

To analyse model (equation 4.2), more in-depth we join this connectivity criteria with, 

PCA error plot to more information. 

Figure 4.3 shows that flat areas are more problematic than “valley” for optimizers to 

solve, nevertheless this system has 27% convexity. This means if initial conditions for 

optimization algorithm are not within flat/red regions optimiser will solver problem with 

relative easily. Example of colour coded PCA visualization can be found in figure 6.13. 

Although, this method gives us good indication about complexity of system and 

possibility of running into local minimum it does not show which of the parameters are 

dominant. 

4.5. Self-organizing map 

Another way to visualize higher dimension problems are to use self-organizing map 

(SOM). First SOM was published by Teuvo Kohonen in 1982 (T.Kohonen 1982). A self-

organizing map (SOM) is a type of artificial neural network (ANN) that is trained 

using unsupervised learning to produce a low-dimensional (typically two-dimensional), 

discretized representation of the input space of the training samples. Within SOM 

algorithm each data point competes to be represented among their neighbours. 

Winning node or sample is awarded, with higher change to be selected for next random 

sample comparison. This allow maps to form shapes, such as square, rectangular, 

hexagonal, toroid. Benefit for this technique that it will allow to have some insight of 

individual parameter importance, by comparing each parameter map with error map 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Unsupervised_learning
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and to confirm PCA visualization results. SOM algorithm can be summarized in 

fallowing steps (T.Kohonen 1990):  

1. Each node’s weights are randomly initialized. 

2. A vector is chosen at random from the set of training data. 

3. Every node is examined to calculate which one’s weights are most like the input 

vector. This is done using Euclidean distance formula. The winning node with 

lowest distance between input vector and its weight is commonly known as 

the Best Matching Unit (BMU). 

4. The neighbour nodes of the BMU have their weights recalculated to pull them 

closer to the BMU node (equation 4.9). W is node weight, X is input vector, 

𝜃(𝑢, 𝑣, 𝑠) is neighbourhood function, 𝛼(𝑠) is learning rate function, s current 

iteration step. 

𝑊(𝑠 + 1) = 𝑊(𝑠) + 𝜃(𝑖, 𝑗, 𝑠) ∗ 𝛼(𝑠) ∗ (𝑋 −𝑊(𝑠)) 4.9 

Both learning rate and neighbourhood functions can be defined in various ways, but 

they should always be decreasing functions (Fausett 1994). Learning rate function 

controls the size of the weight vector. Most common ways of using learning rate are 

linear (equation 4.10), inverse of time (equation 4.11) and power series (equation 4.12) 

(J. Vesanto 2000). N is total number of iterations. 

𝑎(𝑠) = 𝑎(0)
1

𝑠
 4.10 

𝑎(𝑠, 𝑁) = 𝑎(0) (1 −
𝑠

𝑁
) 4.11 

𝑎(𝑠, 𝑁) = 𝑎(0)𝑒
𝑠
𝑁 4.12 

Neighbourhood function defines which nodes considered to be in the neighbourhood 

of the BMU. Most commonly used function is Bubble (equation 4.13) (W. Natita 2016). 

Nc is the index set of the neighbour nodes close to BMU node. 

𝜃(𝑖, 𝑗, 𝑠) = {
𝑎(𝑠), (𝑖, 𝑗) ∈ 𝑁𝑐
0, (𝑖, 𝑗) ∉ ⁡𝑁𝑐

 4.13 

5. The winning weight is rewarded with becoming more like the sample vector. The 

neighbours also become more like the sample vector. The closer a node is to 

the BMU, the more its weights get altered and the farther away the neighbour is 

from the BMU, the less it learns. 

6. Repeat step 2 for N iterations. 



43 
 

4.5.1. Example of SOM application 

SOM can be difficult to analyse, but they are consistent with other visualization 

techniques. First it should be noted is that green nodes seem to be scattered as it 

would suggest there are multiple local minima, but by observing U-matrix we can see 

that line that separates those green areas is very tiny in terms of distance. This means 

it is a valley rather than multiple local minimums. This observation matches with 

observation done with PCA visualization. This reassures that visualization techniques 

are showing correct results. The biggest benefit that SOM provides, and that other 

visualization techniques lack is variability of each parameter within n-dimensional 

plane. For Monod model (equation 4.2) if we compare figure 4.5 colour coded figure 

with figure 4.6 of each parameter figure we can see that pattern of U-matrix matches 

Umax parameter pattern. Starting with high values on the right side with decreasing 

values to the left and increasing again once past lowest valley point. This observation 

shows connection between changes in Umax parameter and the model error, implying 

high impact from the parameter. How to use SOM maps to assess parameter 

importance will be discussed in further chapters. 

 

Figure 4.4 Left 2d SOM of Monod model (equation 4.2), colour coded based of model error, where green (L) is low 

error, blue (M) is medium error, and red (H) is high error. Right 2d SOM with same colour code as left, but also 

showing relative distance in n-dimensional plane represented as colour bar. 
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Figure 4.5 From top left: 1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) Umax 

parameter variation within n-dimensional plane, parameter values denoted in colour bar. 3) Ks parameter variation 

within n-dimensional plane, parameter values denoted in colour bar. 4) q parameter variation within n-dimensional 

plane, parameter values denoted in colour bar. 

4.6. Performance optimum vs parameter optimum 

To ensure, that visualization techniques produce correct results, optimization of the 

sample space was performed. Taking thousand samples from the sample space and 

optimizing each of them individually. This is computationally very demanding, but it 

helps to make sure that other techniques provide reliable results. Once all sample 

points were optimized, their cost function values are sorting in acceding order and 

plotted to show potential local minimums. Simple problems will tend to have large flat 

regions because most of sample will converge to same cost function value. Where 

complicated problems will have varied region indicating multiple local minimums. For 

comparison two systems are observed, Monod kinetics (equation 4.2), and polynomial 

(equation 4.3). 

Figure 6.13 shows the results of the Monod model (equation 4.2). Model is performing 

as expected, for single valley problem. The system has one flat area to indicate the 

“valley” and drop down to show that is has one global minimum that is hard to reach. 
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With low tolerance even non-convex point can be optimized to reach optimum “valley”. 

Optimizing just convex points provides advantage over optimizing all sample points as 

only a fraction of samples needs to be optimized to achieve same trend.   

On other hand polynomial model (equation 4.3) does not perform as you would expect 

from model with 100% convexity (figure 6.2). It shows lots of local minimum before 

reaching flat area of global minimum, but difference between worst and best 

optimization is very small (10-10 scale). This indicates that although there many 

different local minimums it does not affect overall model error. 

These two models show two different behaviours, one where cost function optimization 

leads to correct parameter values, hence parameter optimum can be reached and 

other where cost function optimization led to good model performance, but wrong 

parameter values, hence performance optimum can be reached. Model with only 

performance optimum, have one feature in common - their parameters are only 

relatively sensitive to each other. This means that if parameter value difference is 

relative same, performance of model will not suffer even when those values are far 

away from correct values. For examples if take polynomial model, as it is additive 

model all parameter values (p1, p2…) can be changed in position and it would not 

affect overall model performance. Therefore, identifying these parameter values 

correctly becomes impossible. 
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4.7. Summary 

A key reason to search for different approach to parameter identification is when state 

of art methods, struggle to produce accurate results or their computational demand is 

too high. Both are encountered when model is complex. Unfortunately, complexity of 

a model is not directly associated with model size or number of parameters. By 

performing analysis of a model by using techniques described in this chapter it is 

possible identify if model complexity is something that would be of concern and take 

appropriate approach when identifying parameters. Firstly, convexity criteria 

evaluation is a good start, as it is fast analysis and can immediately tell if model is not 

complex. Because, parameters upper and lower limits will affect accuracy of any 

identification algorithm, to obtain accurate convexity value, calculation should be 

performed within same boundaries as identification algorithm. Performing PCA 

visualization with marked convex points, would be next step. By observing PCA 

visualization scatter plot there are several things to look for, first how many local 

minimums can be observed, second are local minimums separated with convex or non-

convex regions. Multiple local minima make model more complex, but it is much worse 

if they are separated with non-convex regions. This leads to problem, where 

optimization algorithm not only will need to search for global minimum between all local 

minimum, but also it will not converge at all when situated in non-convex region. When 

dealing with models that have multiple local minima with non-convex regions in 

between, models should be treated as medium complexity and parameter identification 

algorithm set appropriately. This might involve modifying state of art approach to better 

deal with specific model or use alternative methods. Lastly, if still not certain about 

complexity of a model an optimization full sample space can be done, to observe if 

model can be optimized only towards performance or also towards correct parameter 

values. It is suggested to sample parameter space with Latin-hyper cube, as it will 

make this computational demanding analysis more efficient.  Once all optimized cost 

function values are sorted, obtained graph can be analysed. Within this sorted 

minimization graph each flat region represents local minimum, this should be same as 

number local minimum observed in PCA visualization. If graph has a “curve” such as 

figure 4.8, and difference between maximum and minimum cost function values is 

large, this tell that system is complex and should be approached with caution. 
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This kind of approach is enough to quantify complexity of a model. Although overall 

complexity may not be numerically quantified, this approach has enough quantitative 

measurements to compare model to each other to determinate which is more complex. 
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5. Methods 

In this chapter the working principles of the proposed state substitution method are 

explained in detail, and any methods involved within the framework of the state 

substitution method. First the key steps of the State Substitution method are explained, 

which are approximation of data, decoupling of the ODE model, integration of sub-sets 

of the model and parameter identification and re-optimization of the whole model 

structure. Then any additional algorithms required for State Substitution to work are 

explained, in addition to any supportive methods, which include the use of a bipartite 

chart, sub-set solver, global solver, data generation and algorithm for establishing 

hierarchy of sub-sets. 
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5.1. State Substitution method 

The proposed state substitution method for parameter identification of the unknown 

constants of models described by ODEs consists of four main steps a) approximation 

of data b) decoupling of the system of nonlinear ODEs c) integration of the subsets of 

nonlinear ODEs and parameter identification d) re-optimization of full ODE model. In 

order to assist with the explanation of the method a simple example is used as a 

demonstration throughout this chapter (equation 5.1). It is assumed that there is a set 

of measured data, i.e. measurements of X, S and P. at various time points. The data 

measurements do not have to be equally spaced and can have varying noise levels 

(fig. 5.1). The aim is to use the data to estimate the unknown model parameters (Umax, 

Ks, q and qs) such that predictions of the model would match measured data. As 

discussed in chapter 2, most of the methods would numerically integrate the whole set 

of coupled ODEs and using iterative optimisation algorithm would get the optimal 

parameter values. 

Where t is time (h), X is biomass concentration (g/L), S is substrate concentration (g/L), 

P is product concentration (g/L), D is dilution factor, Sf is feed substrate concentration 

(g/L), Umax is maximum specific growth rate (h-1) ,Ks is half-velocity constant (g/L), q 

substrate consumption rate constant (g/h) and qp is product production rate constant 

(g/h). 

 

5.1 

ە
ۖ
۔

ۖ
ۓ

𝑑𝑋

𝑑𝑡
= 𝑢𝑋 − 𝐷𝑋

𝑑𝑆

𝑑𝑡
= −𝑞𝑢𝑋 − 𝐷(𝑆 − 𝑆𝑓)

𝑑𝑃

𝑑𝑡
= 𝑞𝑝𝑋 − 𝐷𝑃

 , where 𝑢 =
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠+𝑆
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Figure 5.1 Example of an uneven sampling 

a) Approximation of data 

It is a required step to generate data sets from measured data that can be used to 

decouple the system. As measurements do not consists of sample points at all possible 

time points, we require to approximate it. Approximation can be done with various 

methods such as polynomials, splines etc. as discussed in chapter 3. In this work 

approximation of data is done with cubic spline, which is explained in detail in in section 

5.5. For simpler explanation we will use polynomial as an approximation technique for 

this example. With polynomial any measured data can be expressed as (equation 5.2), 

where 𝑌̂𝑡 is approximated data value at time t, αn values are optimised to provided good 

data fit of 𝑌̂𝑡 to measured data. Finalized approximated data set can produce a state 

value at any time point. This is important for later step withing the method as decoupled 

sub-systems get integrated state values need to be known sat every time point. 

𝑌̂𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2 +⋯+ 𝛼𝑛𝑡

𝑛 5.2 

 

b) Decoupling of the system 

During this step we replace any coupled states within subset, with polynomials 

produced in step a). This allows to solve each subset individually, thus reducing the 

solution space. If consider example system (equation 5.1), we need to create a 

different polynomial for each state within the system (equation 5.3). These polynomials 



51 
 

then can replace coupled states within each ODE to effectively decouple the whole 

system (equation 5.4). This allows the system to be solved as three sub-systems, thus 

reducing the search space. 

𝑋̂𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2 +⋯+ 𝛼𝑛𝑡

𝑛 

𝑆̂𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 +⋯+ 𝛽𝑛𝑡

𝑛 

𝑃̂𝑡 = 𝛾0 + 𝛾1𝑡 + 𝛾2𝑡
2 +⋯+ 𝛾𝑛𝑡

𝑛 

5.3 

  

𝑑𝑋

𝑑𝑡
=
𝑈𝑚𝑎𝑥𝑆̂𝑡

𝐾𝑠 + 𝑆̂𝑡
∗ 𝑋𝑡 − 𝐷𝑋𝑡 

𝑑𝑆

𝑑𝑡
= −𝑞

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑋̂𝑡 −𝐷(𝑆 − 𝑆𝑓) 

𝑑𝑃

𝑑𝑡
= 𝑞𝑝𝑋̂𝑡 − 𝐷𝑃 

5.4 

To visualise how decoupling reduces search space, we can start by visualized full 

system with its four unknown parameters (Umax, Ks, q and qs). To draw a four-

dimensional search space in 3d we need to construct a tesseract. Tesseract is four-

dimensional equivalent of a cube, which is three-dimensional search space (fig. 5.2). 

After the decoupling we have three separate search spaces that consist of a plane, 

cube, and a straight line (fig. 5.3).  

 

Figure 5.2 Search space visualization of the example system (equation 5.1) which has four parameters 
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Figure 5.3 Decoupled search space of the exampled system (equation 5.1) into three separate sub-systems (equation 

5.4) 

c) Integration of subsets and parameter identification 

If a polynomial regression model replaces coupled states, each ODE can be integrated 

separately, in this work Ode45 solver was used for that purpose. It should be noted 

that choice integrator will affect results if your system is stiff, so dependent on your 

system adequate solver should be used (Spyridon Dallas 2017). Whereas for 

parameter identification each subset was solved using lsqnonlin. This solver was 

chosen, because it is made for solving non-linear problems and performed squaring of 

the error. Solving order is important as decoupled subsets can be solved individually, 

but only a specific order gives best results. To come up with structure hierarchy, 

bipartite chart is used to separate most influential states and parameters. Considering 

influence of state and parameters, subsets are separated in different levels. Levels 

must be solved in sequential matter, where everything within same level can be solved 

simultaneously. Detail explanation of how model hierarchy is defined is explained in 

section 5.3. 

d) Re-optimization 

Solving each individual ODE will only provide sub-optimal parameter values, because 

we do not account for interactions between different ODEs. To ensure statically optimal 

parameters values re-optimization should be done using a global solver (in this work a 

genetic algorithm is used) and the sub-optimal parameter values as initial guesses. 

This step makes the method robust to noise, as readjustment can be done for 

parameters which are harder to identify from subsets only. To achieve the best results 
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each state should be weighted, according to hierarchy in cost function. Meaning top 

level states have higher weightings and lowest level states have lowest. 

5.2. Bipartite graph and structure hierarchy 

To be able to decouple more complex systems, knowledge of the involved 

parameter/state relationships and their influence on the system is required. One way 

of observing these relationships is through the construction of a bipartite graph 

(Bomhoff et al. 2010). A bipartite chart is constructed by plotting the connection 

between the model state and other states and parameters within the model. Required 

information can be extracted directly from the ODEs. This type of chart is required to 

design the order in which ODE’s need to be solved, because after decoupling it can be 

solved in number of ways. It can be adapted to any system. To understand how it works 

an example is provided using an example system (equation 5.1). 

By inspection of the ODEs (equation 5.1) we can construct a bipartite graph by putting 

states of the model on the top of the graph and parameters/states of the model at the 

bottom. A connection can then be drawn from the bottom to the top showing the 

relationship between the state and parameter/state of the model. Dilution factor D and 

substrate concertation Sf are not on a graph, because these values are known constant 

values. The resulting graph is shown in figure (5.4). 
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Figure 5.4 Bipartite chart of the example system (equation 5.1) 

By the assessing the structure of bipartite chart we can construct a decoupling 

structure. Starting with the states with most connections to least. In this example we 

can observe that the biomass(X) state affects all three states which means it’s of 

highest importance and should be solved first during decoupling. Furthermore, 

parameters Umax and Ks estimates from the biomass(X) ODE can be used in further 

calculation to ensure that they do not change, creating disturbance in X state model. 

In addition to this it can be observed that state S and state P have no common 

parameter connections, which means that they can be solved both at the same time 

after solving for state X state ODE. To summarise the decoupled state ODE hierarchy 

is constructed in two level, first one consisting of biomass state ODE and second level 

consisting of substrate and product ODE. Full hierarchy is provided in Figure 5.5: 

 

Figure 5.5 Hierarchy of decoupled ODE’s for Monod model 

5.2.1. Parameter impact 

Although bi-partite chart provides information about connections between the model 

state and other model states and parameters, it does not provide how impactful those 

parameters are for overall system. This is important as to achieve best result we want 

to identify most impactful parameters from state of highest importance. In other words, 

we need to solve for most sensitive parameters of the system first and then for the rest 

in ascending order of sensitivity. To perform full sensitivity analysis of all the 

parameters can be very hard for high dimensional system, with high number of 

parameters. Nevertheless, a Self-organizing map can be used to perform parameter 

impact correlation on overall system to determinate most impactful variables, which 

effect overall system. SOM’s produce component maps and unified distance maps 

(chapter 4), which we can colour, based on average error values of each cluster. We 
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colour the lowest error cluster as white and highest error cluster as black and 

everything in between as a gradient. SOM produced component maps already are in 

this format. This allows direct cross-correlation of component maps versus system 

error map. Cross-correlation of maps is performed pixel by pixel to produce heat maps 

of parameter impact. Cross correlation matching factor of 1 denotes perfect match and 

0 a complete mismatch. These correlations are performed with a normal component 

map and inverse component map, colour wise, as parameters can be positively or 

negatively corelated. Average correlation factor can be calculated from these 

heatmaps. Example system (equation 5.1) produced heatmaps can be seen in figures 

5.6-5.7, and their correlation factors in table 1. Matching factor calculation are 

performed five times and standard deviation is presented together with results.  These 

figures, together with table, show that most impactful parameter for this system is Umax, 

followed by q then Ks and qs. This agrees with our bipartite chart observation that Umax 

value should be identified from biomass state and level 1. 

Parameters Positive Matching 

Factor 

Negative Matching 

Factor 

Umax 0.81 ± 0.03  0.50 ± 0.00 

Ks 0.65 ± 0.02 0.63 ± 0.03 

q 0.68 ± 0.03 0.60 ± 0.02 

qs 0.63 ± 0.01 0.61 ± 0.01 

Table 5-1 Table of positive and negative mean matching factor of each parameter for system 
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Figure 5.6 Positive cross-correlation between each parameter map and overall error map. 
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Figure 5.7 Negative cross-correlation between each parameter map and overall error map.
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5.3. Data generation 

For case studies which use simulated data sets, data is generated by solving ODE 

system given initial conditions. The Ode45 solver in MATLAB is used for this task as 

it is solver that is most fit for the task based on (Spyridon Dallas 2017). The options 

for solver are provided in Table 4.2, with values provided for example system (equation 

5.1): 

Option Description Value 

Nonnegative The scalar or vector selects which solution 

components must be nonnegative.  

1:3 (Covers 

all states) 

RelTol  Relative tolerance. This tolerance measures the 

error relative to the magnitude of each solution 

component.  

1e-13 

AbsTol Absolute tolerance. This tolerance is a threshold 

below which the value of the solution becomes 

unimportant.  

1e-13 

Table 5-2 Options used for ode45 solver 

The Sampling time was varied between 0.1h and 0.3h. The Lower bound was selected 

by calculating time constants of system responses using simple method described by 

(Niemann and Miklos 2014) and taking 1/10 of fastest response time constant , to 

ensure no process dynamics are lost. Whereas the upper bound was found by trial 

and error at the point where the method still worked, but performance is not 

satisfactory. 

After initial data generation is finished, desired amount of random white noise is added 

to noise free values to create ‘measured’ values. In this work all data was exposed to 

5% or 20% random white noise. General structure of noise addition is provided below: 

Measured values = Noise free data *(1 + ((b-a)*Random number + a)) 5.5 

 

Where a is upper percentage bound, b is lower percentage bound and random number 

stand for randomly generated number between 0 and 1. For example for 5% noise a 

= 0.05, and b = -0.05. 
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5.4. Approximation spline 

In this work cubic spline was used to approximate measurement data sets. Splining 

data allows us to supply ode solver with required data points for integration. 

Furthermore, when done correctly, splining of data cancels out some of the system 

noise, without losing any crucial information. If approximation is done to high level 

information about system kinetics is lost due to smoothing it out, if it is done to low 

level noise is dominant instead of system dynamics. Therefore, it is important to 

optimise your approximation method to not lose process dynamics from measurement 

data. The chosen smoothing spline function in MATLAB was csaps. It’s a cubic 

smoothing spline of given data x, y. It allows you to specify a smoothing parameter p, 

which controls the smoothness level. When p is 0 csaps fit least squares straight line 

to given data, on other hand when p is 1 fitted function is the `natural' or variational 

cubic spline interpolant. This smoothing spline minimizes the function provided: 

𝑝∑𝑤(𝑗)|𝑦(: , 𝑗) − 𝑓(𝑥(𝑗))|2
𝑛

𝑗=1

+ (1 − 𝑝)∫𝜆(𝑡) |𝐷2𝑓(𝑡)|2𝑑𝑡 5.6 

Where w(j) is weighting vector, y(:,j) is provided data matrix, f(x(j)) is newly replaced 

value matrix, j is length of time vector(or length of x axis points),  D2f(t) is second 

derivative of function f. 

Value of p was chosen to be 0.95 as during initial testing of error sensitivity to 

smoothing parameter revealed it to be optimum value in most cases. 
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5.5. Sub-system solver 

The solver that was chosen to solve decoupled sub-systems was lsqnonlin. This solver 

is non-linear least square solver and incorporated error squaring into algorithm, for 

these two reasons it was best fit solver as a sub-system solver. The options for solver 

are provided in Table 4.3, with values provided for example system (equation 5.1): 

Option Description Value 

DiffMaxChange The scalar value, of maximum change for finite-

difference gradients 

0.1 

TolFun Function tolerance, this is value is threshold which 

algorithm stop if objective function value reaches it.  

1e-8 

TolX Step function tolerance, this is value is threshold which 

algorithm stop if change in objective function is lower 

than the threshold. 

1e-8 

MaxFunEval Maximum number of function evaluation allowed before 

termination of the algorithm 

10000 

MaxIter Maximum number of iterations allowed before 

termination of the algorithm 

2000 

Jacobian Specifies if algorithm should use finite difference 

Jacobians or user defined ones 

‘on’ 

Table 5-3 Options table for sub-set solver lsqnonlin 

Initial parameter points where supplied as 0.5 for each subsystem, as its reasonable 

initial conditions for most cases, being positive and close to 0. It should be noted initial 

parameter guess have no effect on solution, as long it is within solution bonds. The 

lower bounds where specified as 0 and upper bounds as double the real parameter 

value rounded up to closest integer. Each subset was supplied with enough different 

data sets so all parameters within sub-system would be observable. For the example 

system (equation 5.1) two different data sets where required across all three 

subsystems. To increase solver accuracy and speed Jacobian matrix was defined for 

each of the sub-systems. Structure of Jacobian matrix is showed in equation 5.7: 

𝑑

𝑑𝑡

𝑑𝑥𝑖
𝑑𝑝𝑗

=
𝑑𝑓

𝑑𝑝𝑗
+
𝑑𝑓

𝑑𝑥𝑖
∗
𝑑𝑥𝑖
𝑑𝑝𝑗

 5.7 
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Where 𝑥𝑖 is state which is integrated, f is function which is integrated, 𝑝𝑗 is parameter, 

which is integrated, and t is time.  

This Jacobian matrix provides solver trust-region function removing need of evaluating 

function of each parameter, consequently it allows solver to reach optimal solution 

faster. Cost function consisted of difference between measured values of the state 

and predicted values of the state. For each unique data set used by the solver one 

cost function was created.  In a case of multiple cost function, total error was 

calculating by adding all cost functions with equal weightings. Jacobian matrix is 

collection of parameter sensitivities over time, this allows to estimate all parameter 

change with single function. To obtain the Jacobian matrix function for the example 

system (equation 5.1), we start with defining unknown parameter vector (equation 5.8) 

and ODE function vector (equation 5.9). Then we can replace corresponding terms 

within Jacobian matrix function (equation 5.7), to obtain general form (equation 5.10). 

Letting 𝑆([𝑋, 𝑆, 𝑃], 𝑝̂𝑗, 𝑡) =
𝑑[𝑋,𝑆,𝑃](𝑡)

𝑑𝑝𝑗
 to be sensitivities of states (X,S,P), for the model 

parameter pj we get sensitivity ODEs, which then are used as first order derivatives in 

objective function during optimisation. It should be noted that sensitivity initial 

conditions are always 𝑆([𝑋, 𝑆, 𝑃], 𝑝̂𝑗 , 0) = 0. Example of final Jacobian matrix for all 

states and Umax parameter is provided in (equation 5.11). 

𝑝̂𝑗 = [U𝑚𝑎𝑥⁡K𝑠⁡q⁡q𝑠] 5.8 

  

𝑓(𝑡) = [𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)]
𝑇 =

[
 
 
 
 
 

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
∗ 𝑋 − 𝐷𝑋

−𝑞
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑋 − 𝐷(𝑆 − 𝑆𝑓)

⁡𝑞𝑝𝑋 − 𝐷𝑃 ]
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𝑑

𝑑𝑡

[
 
 
 
 
 
 
𝑑𝑋(𝑡)

𝑑𝑝̂𝑗
𝑑𝑆(𝑡)

𝑑𝑝̂𝑗
𝑑𝑃(𝑡)

𝑑𝑝̂𝑗 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑑𝑓1(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓1(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓1(𝑡)

𝑑𝑃(𝑡)
𝑑𝑓2(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓2(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓2(𝑡)

𝑑𝑃(𝑡)
𝑑𝑓3(𝑡)

𝑑𝑋(𝑡)

𝑑𝑓3(𝑡)

𝑑𝑆(𝑡)

𝑑𝑓3(𝑡)

𝑑𝑃(𝑡) ]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑑𝑋(𝑡)

𝑑𝑝̂𝑗
𝑑𝑆(𝑡)

𝑑𝑝̂𝑗
𝑑𝑃(𝑡)

𝑑𝑝̂𝑗 ]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
𝑑𝑓1(𝑡)

𝑑𝑝̂𝑗
𝑑𝑓2(𝑡)

𝑑𝑝̂𝑗
𝑑𝑓3(𝑡)

𝑑𝑝̂𝑗 ]
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𝑑

𝑑𝑡
[

𝑆(𝑋, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑆, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑃, 𝑈𝑚𝑎𝑥, 𝑡)
]

=

[
 
 
 
 
 
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
− 𝐷

𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
−
𝑈𝑚𝑎𝑥𝑆𝑋

(𝐾𝑠 + 𝑆)2
0

−𝑞
𝑈𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
𝑞
𝑈𝑚𝑎𝑥𝑆𝑋

(𝐾𝑠 + 𝑆)2
− 𝑞

𝑈𝑚𝑎𝑥𝑋

𝐾𝑠 + 𝑆
− 𝐷 0

⁡𝑞𝑝 0 −𝐷]
 
 
 
 
 

[

𝑆(𝑋, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑆, 𝑈𝑚𝑎𝑥, 𝑡)

𝑆(𝑃, 𝑈𝑚𝑎𝑥, 𝑡)
]

+

[
 
 
 
 

𝑆𝑋

𝐾⁡ + ⁡𝑆

−𝑞
𝑆𝑋

𝐾𝑠 + 𝑆
0 ]
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5.6. Global solver 

Global solver chosen for the proposed state substitution method is Global search as 

discussed in section 2.4. Global search algorithm requires only couple of the inputs a) 

Objective function b) Initial parameter values c) Parameter value boundaries d) Select 

local solver e) Any additional solver options (optional). For the proposed state 

substitution method global search was used during re-optimisation step for all four 

case studies. 

a) Objective function was constructed for all cases studies as a sum of weighted 

least-squared problem. First, all state values were normalised, to avoid over-

representation of high values states in total error of the objective function. Then 

each of the of the model state values were subtracted from the measured state 

values and squared. Weighting was assigned based on the level of in the 

hierarchy model, where first level is assigned highest weight value. 

b) Initial parameter values for the global search were values that were optimised, 

by the decoupling approach. 

c) Parameter value boundaries were defined as ± 20% of the initial parameter 

values. This is an arbitrary decision, but it aims to keep global solver search 

space close to initial start point. This encourages the global solver to make 

precise search around the starting point 

d) Local solver was selected to be ‘fmincon’. This is default solver and the most 

robust one. 
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e) Only single additional solver option was added, which was maximum number 

of function evaluations, which was set to 3200. By default, this value is 

100*Number of parameters. This option value was changed to high static value, 

to ensure detailed search with low parameter amount, and to stop algorithm 

from optimising increasingly small amounts for larger number of parameters. 

It should be noted that if parameter value search space grows too large or is unknown 

global search algorithm cannot be used for re-optimisation. It makes algorithm not 

capable of optimising parameter values anymore as, search space is too large. If that 

is the case global search should be swapped for genetic algorithms (GA). 

Furthermore, changes to default (GA) algorithm should be made as described below. 

The population size should be chosen based on work done by Stanley Gotshall 

(Gotshall and Rylander 2002). His experiments showed effect of population size for 3 

distinctive problems keeping other variables same. The results show that optimal 

population size for 3 parameters would be 85. This would produce lowest amount of 

incorrect solution while keeping number of generations at minimum. 

There are several crossover functions that serves different purposes. Intermediate 

crossover function should be chosen because, initial population provided is already 

close to global minimum, which means creating child within the hypercube defined by 

placing the parents at opposite vertices would provide solution close to initial guess.  

Mutation function should be chosen based such that it generates direction of mutation 

based of successful and unsuccessful generation. In addition, mutation should be kept 

within upper and lower constrains. Both characteristics are desired for re-optimization. 

Elite count should be set to 50% of population size. This specific number is chosen for 

two reasons. First it is same values used in (Gotshall and Rylander) when selecting 

population size and second as initial population is already close to global minimum it 

is desired to keep most of population to stop it from migrating too far. 

Function tolerance should be lowered form default value of 1e-6 to 1e-3, because 

during testing it was observed that GA reach place where cost function is almost flat 

in all direction making optimization take longer that it should without any significant 

improvement. 
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Most of options were to limit GA search around initial points instead of allowing it full 

range search, thus increasing efficiency and speed of algorithm. Initial population 

should be generated by creating random vectors of parameters with the standard 

deviation of 1 and mean of values that were produced by the decoupling step. 

5.7. Summary 

Chapter describes all algorithms used in the proposed state substitution method for 

parameter identification required for methods set-up and its execution. The set-up 

requires the user to determinate most optimal model hierarchy after decoupling, which 

is achieved with help of two methods, Bi-partite chart and the parameter impact 

correlation using SOM. Bi-partite chart provides a straightforward answer, which of the 

systems states affect most of the other states. This helps while setting up the 

hierarchy, as states with most impact should be higher solved first. Similarity the 

parameters that affect most of the systems states should be solved first and passed 

on to lower levels of hierarchy. Parameter impact correlation allows to calculate, which 

of the parameters have most effect on overall prediction error. Prioritizing these 

parameters to be solved first, increases accuracy of the state substitution method. 

Execution of the proposed state substitution method for parameter identification can 

be broken down into following steps: data generation (if needed), data approximation, 

local decoupled optimisation, global re-optimization. For testing of the validity and 

accuracy of the proposed state substitution method data of the system was generated 

with artificial levels of random white noise. Data approximation was performed by cubic 

spline, with smoothing parameter of 0.95. Local optimisation was performed by 

nonlinear least squared algorithm and global optimization was performed with genetic 

algorithm.  
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6. Results and discussion 
This chapter presents results collected from four case studies and analyses their 

complexity. Three out of four models are based on simulated data, and one is based 

on experimental data. Case studies was selected to represent different levels of 

complexity. Complexity was evaluated based on methods described in chapter 4. Each 

case study consists of four sub sections: a description of system, complexity analysis, 

method comparison and summary of the results. The description of the systems 

explains why the system was chosen and what are the key features of this system. 

The complexity analysis provides details of system complexity, so it can be compared 

relatively to other cases studies. The method comparison shows results of the system 

performance while varying noise levels and sampling time of the system. The 

proposed State-Substitution method is compared with the derivative estimation 

method and Latin hyper-cube sampled multi start method. The accuracy of each 

method and computational time is compared and discussed. The method comparison 

sub section also provides a list of the difference between identified parameters and 

theoretical (real) values for comparison of parameter identification accuracy. 

6.1. Case study 1 – Polynomial model 

This system was created as a benchmark problem, to show that the complexity of a 

system is not directly linked to a large number of parameters, rather, it is related to the 

amount of coupling within system. For this reason, a low complexity polynomial is 

created, consisting of twenty parameters and only one differential equation, meaning 

there is no coupling effects. This also means that the proposed state substitution 

method will not work as intended, because there no way to utilise the decoupling 

technique on a single ODE system. The proposed state substitution method will be 

applied to identify parameters of this system for completion and comparison with other 

methods (Derivative estimation, Multi-Start). Equation 6.1 shows the polynomial 

system. 

𝑑𝑥

𝑑𝑡
= 𝑝1𝑥 + 𝑝2𝑥 + 𝑝3𝑥 + ⋯+ 𝑝20𝑥 (6.1) 

6.1.1. Complexity analysis  

To compare complexities of different systems several criteria are considered. First, a 

PCA visualization plot of the first principal component scores versus model error will 

be used to provide an overall impression of the systems error plane and will show if a 

global minimum is clearly visible. By marking the PCA visualization plot with 
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convex/non-convex points we see where problematic regions are and get the 

convexity number in terms of a percentage. Second, each of the PCA visualization 

points, have scores that relate to certain set of parameters, we can optimize each of 

these sets and sort them out from highest final error to lowest. This will show how 

many local minima we can expect and how well they are defined. This will also help 

us to determine if the system can be optimised towards performance only or for 

parameter values too. Separating systems into these two groups is crucial, so in the 

event where a model provides accurate predictions, we know how confident of the 

parameter values we can be. Third, we will look at SOM analysis, we will mark the 

unified distance matrix plot with colours based on the dominant error value within each 

cluster. This will allow to visualise multiple minimum (if they exist). In addition, SOM 

component plots can help identify parameters that influence the system most. If any 

individual parameter SOM patterns agree with SOM patterns of overall error, we can 

infer that the system is dominated by that parameter. Complexity analysis will be 

performed for each case study so direct comparison of relative complexity can be 

made. 
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6.1.1.1. PCA visualization 

The PCA visualization graph is constructed by decomposing the array of parameter 

values. These values are obtained by using the Latin hyper cube sampling technique 

to provide ten thousand samples. For each parameter set, the first two principal 

component scores are obtained. Then these scores are plotted against squared error 

of the difference between models with theoretical values and sample values. Looking 

at the figure 6.1 it shows us that it is largely flat in PCA2 axis (scores of second 

principal component) and has a slight curve in PCA1 axis (scores of first principal 

component). This makes a downward slope towards global optimal solution. Looking 

at graphs we can also see that all plotted points are marked blue, meaning this system 

is 100% convex, or in other words no matter where the initial parameters values are 

(within analysed boundaries) a gradient based optimisation algorithm will always tend 

towards the global optimum. The downward slope also means all solution are more 

sensitive with respect to PCA1 than PCA2, this is expected as during PCA analysis 

PCA1 will always hold most variability followed by PCA2, then PCA3 and so on. For 

this system both PCA1 and PCA2 explain 5% variability of the system for a total of 

10%. Simple surface structure of this error plot and 100% convexity suggests that this 

is low complexity problem to optimize. 

Figure 6.1 PCA error plot for Polynomial model (6.1), with colour coded points for convexity, where blue points are 

convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution. 
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6.1.1.2. Sorted minimization 

Sorted optimization is performed same way as described in section 4.7. Parameter 

space is sampled for thousand initial parameter values. As mentioned before in 

chapter 4.7, for a system with 100% convexity, you would expect a horizontal straight 

line as all the points should converge to the global optimum, but that is not the case. 

This is because this polynomial system, is only solvable for performance optimum not 

parameter optimum. Looking at the difference between ‘worst’ and ‘best’ optimisation 

provides more clarity in what is happening. With ‘worst’ squared error being in a range 

of 10-12 and ‘best’ squared error being 10-18. For all practical application both squared 

error values are same as zero. Meaning although there is a difference, and there are 

plenty of different local minimum within that gap, the difference between these local 

minimums is negligible. The reason why this system behaves like this is to do with its 

structure. Parameters values are interchangeable, meaning if any two parameter 

values would be swapped places no change in overall function (6.1) would occur. It 

becomes very clear if we simplify this system to two parameter system such as 10 = x 

+ y. The combination of pairs of x + y values which can sum to ten is infinite. Each of 

those pair would satisfy system performance criteria i.e. the solution outcome is 

correct, but the actual values can vary. This shows us that this polynomial model can 

be easily solved to perform well, but it is true parameter values, cannot be identified. 

 

Figure 6.2 Polynomial model (6.1) thousand samples sorted optimization, where blue is all samples and red are 

convex samples only (As this model is 100% convex all samples and convex samples is same). 
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6.1.1.3. SOM analysis 

As with the PCA visualization, the Latin Hyper cube sampling technique was used to 

obtain an array of parameters. Each sampled array of parameters is treated as a 

sample and they are sorted and coloured by the error between the modelled solution 

and the true solution. Errors are classified into high medium low and the most 

abundant solutions in a particular space are the dominant colour on the map. Within 

analysed boundaries, error values above 50% of maximum error where considered to 

be high error values(red). Error values between 50% and 5% of maximum error where 

considered to be medium error values(blue), and error values below 5% of maximum 

error where considered to be low error values(green). The same colour coding is 

consistent within all SOM analysis in this thesis. 

Looking at figure 6.3 results of SOM, supports previous conclusions that system is 

easily solvable, but has multiple local minima. All high error values are concentrated 

in the centre, creating one big local minimum around it. Lowest error clusters are 

scattered showing you can reach similar performance with completely different set of 

parameters. Looking at figure 3b, each hex has multiple colours, these colours 

represent values that were assigned to that clusters, bigger the colour more of it was 

within that hex. Grey hexes around it provides value of relative distance between each 

cluster of coloured hexes. This further supports the multiple minima conclusion, 

scattered around the plane. It should be noted that none of the green values are found 

in the middle cluster of high error values. 

Although from the structure of the polynomial we know that none of the parameters 

are dominant, it is not always obvious with more complicated systems. To be able to 

see if how strongly parameters effect the system, we can utilise the SOM component 

maps and colour coded SOM. We cross correlate the patterns of component maps to 

overall error map to see how well they match. Matching component map and overall 

error map implies there is a dominant connection between the parameter and the 

system. Although correlation does not mean causation, with large enough sample size 

it is very unlikely to run into false positives. Furthermore cross-correlation need to be 

done twice, as parameters can be positively or negatively correlated. Therefore, a 

second cross-correlation is done to inverse error map. 

Figures 6.5 - 6.6 shows how well component maps match up versus total error maps. 

Positive values mean higher degree of matching, and lower values mean lower. Cross 
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correlation factor of 1, represents perfect match and 0 represent mismatch. As 

expected, none of the parameters seems to be more dominant than others. These 

figures allow to see how well, parameter changes match overall error changes in the 

system and to represent a quantifiable measurement of how dominant the parameter 

an overall matching factor was calculated (Table 6.1).  

Parameter Positive Matching 

Factor 

Negative Matching 

Factor 

x1 0.66 ± 0.03 0.62 ± 0.04 

x2 0.69 ± 0.02 0.60 ± 0.03 

x3 0.66 ± 0.02 0.63 ± 0.03 

x4 0.68 ± 0.02 0.60 ± 0.05 

x5 0.72 ± 0.03 0.59 ± 0.04 

x6 0.71 ± 0.02 0.58 ± 0.04 

x7 0.68 ± 0.05 0.63 ± 0.03 

x8 0.68 ± 0.04 0.62 ± 0.03 

x9 0.69 ± 0.01 0.59 ± 0.06 

x10 0.68 ± 0.05 0.60 ± 0.04 

x11 0.68 ± 0.03 0.62 ± 0.03 

x12 0.67 ± 0.05 0.64 ± 0.05 

x13 0.72 ± 0.04 0.57 ± 0.01 

x14 0.67 ± 0.03 0.62 ± 0.02 

x15 0.70 ± 0.05 0.60 ±0.05 

x16 0.71 ± 0.03 0.59 ± 0.02 

x17  0.69 ± 0.05 0.60 ± 0.04 

x18 0.67 ± 0.03 0.63 ± 0.03 

x19 0.73 ± 0.02 0.58 ± 0.01 

x20 0.68 ± 0.04 0.62 ± 0.04 

Table 6-1 Table of positive and negative mean matching factor of each parameter for system (6.1) 

We also can look at biggest difference between matching factors in table 6.1. Those 

are 0.068 and 0.065, respectively. This shows there is very little difference in influence 

between parameters confirming that none of the parameters are dominant.
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Figure 6.3 a) 2d SOM of Polynomial model (1), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. b) 2d SOM with 

same colour code as a), but also showing relative distance in n-dimensional plane represented as colour bar and separation of different colour within each cluster. 
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Figure 6.4 From top left: 1) n-dimensional plane represented in 2d SOM with relative distances as colour bar. 2) - 21) x1 to x20 parameters with their respective variation within n-

dimensional plane, parameter values denoted in colour bar. 
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Figure 6.5 Positive cross-correlation between each parameter map and overall error map. 
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Figure 6.6 Negative cross-correlation between each parameter map and overall error map.
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6.1.2. Method comparison 

To evaluate the proposed state substitution method, it will be compared to the two 

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper 

cube sampled multi start method. Two main criteria will be compared, model 

performance accuracy and the computational time between each of the methods. 

Although the proposed state substitution method aims to reduce computational time, 

model performance accuracy is also very important and cannot be completely 

neglected. Each method will be assessed with different random noise levels and 

sampling times. For each method three different state initial conditions are compared, 

first two (Pink and Blue) are set same for all methods and are conditions that were 

provided for the optimisation algorithm and third initial condition (Black) is randomised 

between first two initial conditions and was never seen by algorithm before. This allows 

to check method accuracy with unseen data sets, which are within same boundary 

conditions. Modelling conditions and parameter search space are summarised in 

tables below: 

Experiment 

number 

Sampling 

Rate 

Noise 

level 

Initial 

conditions 

Pink 

Initial 

conditions 

Blue 

Initial 

conditions 

Black 

1 0.1h 5% 0, 0, 0 30, 30, 30 16.9, 7.1, 14.9 

2 0.1h 10% 0, 0, 0 30, 30, 30 15.4, 15.6, 24.4 

3 0.3h 5% 0, 0, 0 30, 30, 30 23.1, 20.6, 4.9 

4 0.3h 10% 0, 0, 0 30, 30, 30 26.6, 18.0, 18.9 

5 0.3h 20% 0, 0, 0 30, 30, 30 22.5, 18.1, 27.0 

Table 6-2 Summary of modelling conditions for system (6.1) 

Parameters Lower bound Upper bound 

x1, x2, x3…. x20 0 2 

Table 6-3 Parameter search space for system (6.1) 
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6.1.2.1. Experiment 1 0.1h sampling and 5% random noise 

While comparing the accuracy of the model, we do not see much of a difference 

between each method. Furthermore, the sampling rate is high and noise level is low, 

allowing multiple approaches to perform accurately (Fig 6.7), without getting stuck in 

local minima. This result is expected. Since accuracy of model predictions are high 

(table 6.4) and very similar between different methods, then we should investigate 

computational time as the next important criteria.  

Method Computational time, s 

Derivative estimation 223 

Latin hyper cube multi-start 93 

Proposed state substitution method 181 

Table 6-4 Computational time of all three method for experiment 1. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 2.61E-05 3.38E-05 3.20E-05 

Latin hyper cube multi-start 2.39E-04 3.08E-04 3.00E-04 

Proposed state substitution 

method 

1.19E-04 1.55E-04 1.46E-04 

Table 6-5 Squared error values of each method and each data set for experiment 1 

When comparing computational times, it is easy to see that multi-start method is much 

faster, than the other two methods (table 6.3). As the system is 100% convex it works 

in the favour of the multi-start method as computational time is very sensitive to the 

convexity of the problem. Starting position needs to be in right valley to able to optimise 

towards global optimum. This leads to requiring a smaller size of Latin hyper cube, 

thus reducing computation time. 

The multi-start method is faster than Derivative estimation method, because with a low 

complexity problem it does not require a large number samples to be able to optimise 

towards the correct solution, and screening for best starting points reduces the number 

of optimizations that need to be done. Where the Derivative estimation method solves 

the lower complexity algebraic equations, but the absolute number of equations 

significantly increases the computation time. 
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It is also faster than the proposed state substitution method, as it cannot take 

advantage of decoupling of the system as there is only one ODE. In principle the 

method still works, but it does additional steps that do not have any benefit for such a 

lower complexity system, but still required significant computational time to be 

calculated. It is also important to compare parameter values, that were identified with 

theoretical values. Table summarizing parameter values can be seen below: 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

x1 0.81 0.11 0.39 0.73 

x2 0.91 0.68 0.92 1.28 

x3 0.13 0.62 0.41 0.23 

x4 0.91 0.65 0.11 0.9 

x5 0.63 0.97 1.85 1.51 

x6 0.1 0.05 0.56 0.75 

x7 0.28 0.41 0.43 0.21 

x8 0.55 0.52 0.37 0.66 

x9 0.96 0.65 0.06 0.6 

x10 0.96 1.72 0.42 0.92 

x11 0.16 0.86 1.73 1.16 

x12 0.97 1.97 0.55 0 

x13 0.96 0 0.39 1.12 

x14 0.49 1.23 0.84 0.15 

x15 0.8 0.12 1.45 0.64 

x16 0.14 0.04 0.45 0.46 

x17  0.42 1.8 1.32 0.41 

x18 0.92 0 0.11 0.38 

x19 0.79 0.15 0.11 0.44 

x20 0.96 0.25 0.46 0.34 

Table 6-6 Summary of identified parameter values for each method for experiment 1 

Comparing parameter values, we observe the hypothesised behaviour, based on 

sorted minimization in chapter 5.1.1.2. No exact parameter values match due to the 

infinite number of combinations that produce same result. 
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Figure 6.7 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.1h sampling and 5% random noise for measured data. 

6.1.2.2. Experiment 2 0.1h sampling and 10% random noise 

Even with increased noise from 5% to 10%, from previous setup, accuracy of model 

does not suffer in any of the methods. This is for the same reasons as explained in 

chapter 6.1.2.1. Problem is not complex enough to affect accuracy of the methods. It 

should be noted that total squared error (SSE) decreased, for the proposed and the 

Latin hyper cube methods, and increased for the derivative estimation method. This 

changed is due to methods ability to cope with noise. Although these changes are 

observable, they are not significant on a model scale (figure 6.8). 
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Method Computational time, s 

Derivative estimation 243 

Latin hyper cube multi-start 107 

Proposed state substitution method 180 

Table 6-7 Computational time of all three method for experiment 2 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 2.28E-04 2.98E-04 2.72E-04 

Latin hyper cube multi-start 1.19E-05 1.55E-05 1.46E-05 

Proposed state substitution 

method 

1.10E-06 1.43E-06 1.35E-06 

Table 6-8 Squared error values of each method and each data set for experiment 2 

When comparing computational times there are some differences with previous setup. 

Firstly, all methods computational time increased. This is due to larger magnitude 

noise, therefore increasing uncertainty of method, as error surface becomes more 

disturbed. This makes each integration for each method harder. Table summarizing 

parameter values can be seen below: 
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

x1 0.81 0.76 0.15 0.65 

x2 0.91 0.24 1.24 0.71 

x3 0.13 1.83 0.76 0.69 

x4 0.91 0.69 0.25 0.55 

x5 0.63 0.04 0.31 0.61 

x6 0.1 1.29 0.03 0.74 

x7 0.28 0.03 0.23 0.67 

x8 0.55 0.03 1.09 0.56 

x9 0.96 0.33 0.25 0.77 

x10 0.96 1.05 0.95 0.55 

x11 0.16 0.62 0.62 0.59 

x12 0.97 0.31 1.16 0.72 

x13 0.96 0.05 0.84 0.55 

x14 0.49 0.31 1.81 0.57 

x15 0.8 0.13 1.05 0.57 

x16 0.14 0.13 0.08 0.55 

x17  0.42 1.76 1.16 0.69 

x18 0.92 1.04 0.65 0.73 

x19 0.79 0.8 0.13 0.59 

x20 0.96 1.4 0.11 0.71 

Table 6-9 Summary of identified parameter values for each method for experiment 2 

As before we see parameter values that are completely different than in previous 

setup, but still producing good performance models, due to nature of the system. 
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Figure 6.8 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.1h sampling and 10% noise for measured data. 

6.1.2.3. Experiment 3 0.3h sampling and 5% random noise 

Increasing sampling time from 0.1h to 0.3h, seem to effect derivate estimation method 

and proposed state substitution method in this case, while Latin hyper cube method 

performs at the same accuracy. Lower number of sample points provide less 

information for each method to optimise correctly towards solution. Still even with 

some inaccuracies all methods can find solution that produces acceptable 

performance. The Latin hyper cube method seems to outperform other methods in 

terms of accuracy (table 6.10). 

Method Computational time, s 

Derivative estimation 190 

Latin hyper cube multi-start 98 

Proposed state substitution method 140 

Table 6-10 Computational time of all three method for experiment 3. 
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Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 3.23E-04 4.24E-04 4.16E-04 

Latin hyper cube multi-start 3.42E-07 4.44E-07 4.11E-07 

Proposed state substitution 

method 

1.04E-04 1.34E-04 1.23E-04 

Table 6-11 Squared error values of each method and each data set for experiment 3 

When comparing computational time, we can see that the overall trend stays the same 

of multi-start method being best followed by proposed and derivate estimation 

methods. Furthermore, all computational times dropped compared to experiments 1 

and 2. That is because with decreased sampling frequency, there is less data to 

compute, making methods faster to arrive at a solution, at the cost of accuracy. The 

Multi-start method seems to be unaffected by this, keeping its computational time 

relatively similar, but at the same time it does not suffer any accuracy penalties either. 

Table summarising parameter values can be seen below: 
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

x1 0.81 0.02 0.08 0.61 

x2 0.91 0.5 1.49 0.98 

x3 0.13 0.49 0.62 0.63 

x4 0.91 0.37 0.41 1.39 

x5 0.63 1.89 0.08 0 

x6 0.1 0.19 0.76 1.11 

x7 0.28 1.91 1.76 1.09 

x8 0.55 0.18 0.01 0.45 

x9 0.96 0.48 0.84 0.7 

x10 0.96 0.21 0.9 0.59 

x11 0.16 0.11 0.74 0.7 

x12 0.97 1.28 0.49 0.58 

x13 0.96 0.16 0.1 0.81 

x14 0.49 0.33 0.04 0.8 

x15 0.8 1.16 0.88 0.65 

x16 0.14 0.9 1.24 0.4 

x17  0.42 0.24 0.79 0.49 

x18 0.92 0.39 0.67 0.27 

x19 0.79 0.9 0.66 0.08 

x20 0.96 1.24 1.84 0.35 

Table 6-12 Summary of identified parameter values for each method for experiment 3. 
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Figure 6.9 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods, 

with 0.3h sampling and 5% noise for measured data. 

6.1.2.4. Experiment 4 0.3h sampling and 10% random noise 

With increased noise from 5% to 10%, all methods seem to suffer in accuracy. Errors 

are small and all methods produce acceptable performance of a model. All methods 

seem to perform on similar accuracy levels. 

Method Computational time, s 

Derivate estimation 204 

Latin hyper cube multi-start 99 

Proposed state substitution method 176 

Table 6-13 Computational time of all three method for experiment 4. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 1.34E-04 1.73E-04 1.61E-04 

Latin hyper cube multi-start 1.27E-04 1.65E-04 1.55E-04 

Proposed state substitution 

method 

2.39E-04 3.13E-04 2.84E-04 

Table 6-14 Squared error values of each method and each data set for experiment 4 
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We can also see that methods accuracy degrade more than with experiment 3, from 

their computational time all methods, with exception of Latin hyper cube model, have 

significant increase in computational time. Table summarizing parameter values can 

be seen below: 

Parameter Theoretical 

value 

Derivate Latin hyper 

cube 

Proposed 

x1 0.81 1.76 0.07 0.61 

x2 0.91 1.25 1.08 0.79 

x3 0.13 0.21 1.69 1.04 

x4 0.91 0.18 0.53 0.55 

x5 0.63 0.25 0.48 0.5 

x6 0.1 0.63 0.9 0.67 

x7 0.28 0.13 1.25 0.43 

x8 0.55 0.59 1.41 0.56 

x9 0.96 0.21 0.4 0.61 

x10 0.96 1.35 0.14 0.89 

x11 0.16 0.35 1.3 0.46 

x12 0.97 0.12 0.03 0.87 

x13 0.96 1.24 0.47 0.66 

x14 0.49 0.44 0.52 0.78 

x15 0.8 1.29 0.92 0.62 

x16 0.14 0.39 0.56 0.63 

x17  0.42 1 0.24 0.48 

x18 0.92 0.15 0.25 0.3 

x19 0.79 0.18 0.2 0.92 

x20 0.96 1 0.31 0.57 

Table 6-15 Summary of identified parameter values for each method for experiment 4. 

As before we see parameter value that are completely different than in previous 

experiments, but still producing good performance models, due to nature of the 

system. 
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Figure 6.10 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 10% noise for measured data. 

6.1.2.5. Experiment 5 0.3h sampling and 20% random noise 

At noise levels of 20% we start to see Further degradation in the performance of the 

methods. From figure 6.11, we can say that the derivate method and the proposed 

state substitution method have worst accuracies and the Latin hyper cube method 

having better accuracy. At 20% noise level a lot of parameter influence on system is 

hidden by large noise. Reason why methods can still be accurate, at least for the first 

half of the model, is because system is so forgiving with parameter selection. Making 

it very simple problem to identify to perform well. 

Method Computational time, s 

Derivate estimation 256 

Latin hyper cube multi-start 141 

Proposed state substitution method 236 

Table 6-16 Computational time of all three method for experiment 4 
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Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 1.60E-03 2.13E-03 1.93E-03 

Latin hyper cube multi-start 3.51E-04 4.62E-04 4.31E-04 

Proposed state substitution 

method 

3.40E-03 4.25E-03 3.92E-03 

Table 6-17 Squared error values of each method and each data set for experiment 4 

Computational time follows same trend as before. Increase in noise level increase 

computational time across all methods, keeping them in same order from fastest to 

slowest. Table summarizing parameter values can be seen below: 

Parameter Theoretical 

value 

Derivate Latin hyper 

cube 

Proposed 

x1 0.81 0.78 0.77 0.61 

x2 0.91 0.63 0.28 0.7 

x3 0.13 1.06 0.17 0.9 

x4 0.91 0.53 0.68 0.16 

x5 0.63 1.29 0.16 1.45 

x6 0.1 0.41 1.55 0.7 

x7 0.28 0.37 0.97 0.7 

x8 0.55 0.98 0.31 0.03 

x9 0.96 0.77 0.18 0.11 

x10 0.96 0.7 0.15 0.96 

x11 0.16 0.73 0.38 0.63 

x12 0.97 0.83 0.22 0.68 

x13 0.96 0.18 1.57 0.81 

x14 0.49 0.53 0.14 0.6 

x15 0.8 0.48 1.01 0.18 

x16 0.14 0.31 0.58 0.62 

x17  0.42 1 0.52 0.84 

x18 0.92 0.19 0.83 0.73 

x19 0.79 0.49 1.38 0.5 

x20 0.96 1.07 0.84 0.61 

Table 6-18 Summary of identified parameter values for each method for experiment 4. 
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As before we see parameter value that are completely different than in previous 

experiments, but still producing good performance models, due to nature of the 

system. 
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Figure 6.11 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods, 

with 0.3h sampling and 20% noise for measured data. 

6.1.3. Summary of results for polynomial model 

This case study serves as a benchmark model, to show that complexity is not 

proportional with the number of parameters. It is showed that even with large number 

of parameters (Twenty), every method was able to provide highly accurate solution. 

This case study also shows how noise effect each method, although complexity is low 

increasing noise does decrease accuracy of the solution, for each of the models. With 

this low complexity model, this case study allows to assess viability of the complexity 

analysis tools. Each of the complexity analysis tools, provide different way to visualise 

complexity of the system, and together form a way to quantify the complexity of the 

model. This complexity measurement is not absolute, but rather a relative way to 

measure complexity. It allows to compare complexity of two different models, but not 

set a classification of the system complexity. The final decision of system complexity 

classification (Low, Medium, High) is up to users’ interpretation. Using system, with 

known complexity based on prior knowledge is a good way to help establish what kind 

of results you should expect from this complexity analysis based on their complexity 

class. Using these methods complexity was assessed to be low for the polynomial 

model, because of several reasons. First, it consists of single ODE, which means there 
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no coupling interactions between different ODE’s, making it easier to identify 

parameters, as they are all affected only by only one ODE. PCA visualization confirms 

this by forming a single uniform valley, that drops towards the global optimum. In 

addition to this convexity of this system is 100%, meaning it does not have problematic 

regions, that would stop system from converging. These results already suggesting 

this system has low complexity as it is simple to solve and has one global performance 

optimum. Sorted minimization reveals that system’s parameters are not possible to 

identify. This is expected as explained in chapter 6.1.1.2, structure of the model makes 

exact parameter value unidentifiable, because all parameter values are 

interchangeable. Model still can be optimised to perform well when compared to 

measured data. This also suggest that individual values of the parameters are not 

sensitive, for the same reason. SOM analysis confirms this by showing that system 

has multiple local minimums, but they all produce same level of performance. SOM 

analysis also provides supporting evidence of the parameters being not sensitive as 

cross-correlating SOM parameter maps with the overall model error SOM map is not 

able to identify any dominant variables. When comparing results of different parameter 

identification algorithms, for this system the Latin hyper-cube method is the most 

accurate method, in all five experimental setups. Accuracy of other two methods is 

comparability close for the first four experimental setups, but difference between the 

Latin hyper cube method increases when noise level reaches 20% mark. Accuracy 

levels for all methods were consistent between seen data (Pink and Blue) and unseen 

data (Black). Computational time is significantly different within all five experimental 

setups, with the Latin hyper cube method having lowest computational time, followed 

by other two methods. This is mainly due to small search space and simple model 

error hyperplane. This makes required number of samples to be low, therefore 

reducing computational time as well. This benchmark also shows that the proposed 

state substitution method is not suitable single ODE system, because decoupling 

cannot be used. This makes the proposed state substitution method perform worse 

than it would on a more complex system, when comparing with state of art methods. 

Although performance of identified model is satisfactory, all identified parameters 

values are not consistent. Identified parameter values are not consistent nor with 

theoretical values nor with other methods identified values. This reinforce the fact that 

parameter values are non-sensitive and unidentifiable, but good accuracy of the model 

can be still reached. 
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Figure 6.12 Summary of performance results for all three methods for polynomial model
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6.2. Case study 2 – Monod kinetics 

Monod kinetics are widely used for modelling bio-systems growth, while being 

relatively simple model. This makes Monod kinetics a good benchmark problem to 

evaluate the proposed new method. Monod kinetics also allows to observe how 

accurate complexity analysis is on coupled ODE system, as a lot of knowledge is 

known about Monod kinetics, to compare results. Monod kinetics in its simplest form, 

which is used for this case study, consists of two ODE’s and three parameters. Both 

ODE’s are coupled, and three parameters vary in sensitivity. Where maximum specific 

growth rate (Umax) and substrate consumption rate (q) values has large effects on 

model accuracy and half velocity constant (Ks) value, has low effects on model 

accuracy. Making half velocity constant hard to precisely identify. Equation 6.2 shows 

the system. Data was generated as described in section 5.4. 

{

𝑑𝑋

𝑑𝑡
=
𝑈𝑚𝑎𝑥 ∗ 𝑆

𝐾𝑠 + 𝑆
∗ 𝑋

𝑑𝑆

𝑑𝑡
= ⁡−𝑞 ∗

𝑈𝑚𝑎𝑥 ∗ 𝑆

𝐾𝑠 + 𝑆
∗ 𝑋

 

  

(6.2) 

 

  

6.2.1. Complexity analysis 

Complexity analysis will be performed in three steps as mentioned in section 6.1.1. 

These steps consist of performing PCA visualization with convexity calculations, 

sorted minimization and SOM analysis. The aim of this analysis is to compare relative 

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system. 

6.2.1.1. PCA visualization 

Figure 6.12 shows different structure, than the one described in section 6.1.1.1. 

Visualization of error plane shows as much more clearly defined global minimum and 

has non-convex regions that were not present in polynomial case study. Similar to first 

case study five thousand sample points, were used in PCA visualization of Monod 

model. These points were calculated as described in section 6.1.1.1. We can see that 

global optimum is well defined by sharp valley in middle of graph, but it might not be 

as easy to find because we can observe other two feature in this graph. A valley within 

which global optimum sits, and a flat area surrounding that valley. As we would expect 

those flat areas are non-convex, as starting in them gives an optimizer almost no 

indication where the minimum is. Secondly, this system also has failed integration 
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points, which means we cannot assess their convexity, due to solver limitations. For 

each convex point three different values need to be evaluated (Section 4.5), failure to 

evaluate any of those three conditions gives failed integration/green dot. This graph 

suggests that the system can be difficult to optimize if the initial conditions fall within 

flat/red dot regions. This is also represented by overall convexity of 27%. Overall, we 

can conclude that the system is not a trivial problem to optimize but should not a pose 

big challenge if initial conditions are chosen correctly. That said, it can be tricky to get 

to true global optimum as it is hiding within a secondary valley that can be mistaken 

as the global optimum. Figure 6.12 is very good representation of the search space 

as PCA1 explains 90.9% variability of the system and PCA2 8.2% for a total of 99.1% 

variability. 

 

Figure 6.13 PCA error plot for Monod model (6.2), with colour coded points for convexity, where blue points are 

convex, red points are non-convex and green points are failed integrations. Black x marks global optimum solution. 

6.2.1.2. Sorted minimization 

Sorted optimization is performed same way as described in section 4.7. Parameter 

space is sampled for thousand initial parameter values. Optimization of these 

thousand samples, makes majority of samples to converge to same value, hence a 
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flat line for figure 6.13. There is a drop down at last 200 samples but change in overall 

error is negligible. Still those last couple of point indicate they are approaching true 

global optimum, and not a valley around it which gives good performance. We can 

also see from figure 6.13 that even points that started at non-convex regions can 

convergence close to global optimum within this system. In addition, we can see that 

identifying convex points is beneficial as they hold same information as the full 

spectrum but require less points to be optimized. We can be sure that parameters 

values can be identified accurately, and minimization shows one dominant optimum 

(flat line). 

 

Figure 6.14 Monod model (6.2) thousand samples sorted optimization, where blue is all samples and red are convex 

samples only. 

5.2.1.1. SOM analysis 

Looking at figure 6.14 results of SOM, would suggests that there are multiple local 

minimums as lowest error green hexes(L) are not connected. With careful observation 

we can see green low error hexes(L) form two lines one closer to red hexes and 

second further away, also between these two lines distances are much smaller than 

anywhere else. Inspecting the U-matrix in figure 6.14 reveal that, this SOM has two 

places where the distance between hexes reaches very low values. One of those low 

distances lines are in the middle of red high error(H) hexes and second is in between 

green low error(L) hexes. This observation allows to see true general trend of high 

value on the left getting lower and lower while going to the right and finally increasing 
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to blue medium error value(M) on the right edge again. This agrees with what we saw 

in a PCA visualization earlier, a valley of close to global optimum solutions. 

We know that with the Monod system parameter Umax is dominant and only at very 

low substrate values Ks become dominant parameter. To see if our SOM parameter 

analysis can find that we will cross correlate SOM error map with parameters maps to 

see which of them match best. If our cross-correlation method is correct it should show 

biggest matching between Umax and error fallowed by q and Ks. As before cross-

correlation of maps are performed for positive and negative correlation. 

Figures 6.16-6.17 shows how well component maps match up versus total error maps. 

Positive values mean higher degree of matching, and lower values mean lower. Cross 

correlation factor of 1, represents perfect match and 0 represent mismatch. As 

expected, none of the parameters seems to be more dominant than others. These 

figures allow to see how well, parameter changes match overall error changes in the 

system and to represent a quantifiable measurement of how dominant the parameter 

an overall matching factor was calculated (Table 6.18).  

Parameters Positive Matching 

Factor 

Negative Matching 

Factor 

Umax 0.82 ± 0.01  0.47 ± 0.00 

Ks 0.61 ± 0.01 0.59 ± 0.01 

q 0.66 ± 0.00 0.65 ± 0.01 

Table 6-19 Table of positive and negative mean matching factor of each parameter for system (6.2) 

We can observe that there is significant difference between matching factors as 

maximum difference between matching factors are 0.16 and 0.18, respectively. 

Furthermore, Umax shows the highest level of agreement with overall error map as 

expected. This provides additional confirmation that Umax is most dominant variable. 

This allows us to have more confidence when arranging order in which ODE are 

solved, for proposed state substitution method.
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Figure 6.15 Left 2d SOM of Monod model (6.2), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right 2d SOM 

with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster. 
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Figure 6.16 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution 

represented as colour bar
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a)                                                                                                                             b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map. 
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6.2.2. Model hierarchy 

The Monod model (6.2) consists of two coupled ODE’s, which when applied to the 

proposed state substitution methods’ decoupling algorithm leaves two independent 

sub-sets that can be solved in any order. Yet a specific solution hierarchy will lead to 

better results, because of the different levels of sensitivity from the parameters. In 

order to figure out the model hierarchy we need to look at the bi-partite chart (figure 

6.18). This reveals that both states have same level of importance and could be solved 

simultaneously, but from (figure 6.16 and table 6.18), we can see that the parameter 

Umax, has highest correlation with model error, hence highest sensitivity. This leads 

to need for one of the sub-sets to be solved first to acquire the Umax value for best 

overall results. Although X(Biomass) and S(Substrate) sub-sets could be chosen, X 

sub-set is chosen, because it only has one other parameter associated with it (Ks). 

This means that the optimization algorithm will be more aware of Umax effects to the 

sub-set as it has less variables to optimize. This makes a two-level model hierarchy, 

with Umax value being passed on from level one to level two (figure 6.19). 

 

Figure 6.18 Bipartite chart of the Monod model (6.2) 
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Figure 6.19 Hierarchy of the Monod model (6.2) 

6.2.3. Method Comparison 

To evaluate the proposed state substitution method, it will be compared to the two 

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper 

cube sampled multi start method. Two main criteria will be compared, model 

performance accuracy and the computational time between each of the methods. 

Although the proposed state substitution method aims to reduce computational time, 

model performance accuracy is also very important and cannot be completely 

neglected. Each method will be assessed with different random noise levels and 

sampling times. For each method three different state initial conditions are compared, 

first two (Pink and Blue) are set same for all methods and are conditions that were 

provided for the optimisation algorithm and third initial condition (Black) is randomised 

between first two initial conditions and was never seen by algorithm before. This allows 

to check method accuracy with unseen data sets, which are within same boundary 

conditions. Only biomass data set will be presented for model performance, as 

biomass dictates accuracy of substrate model. This will allow to avoid unnecessary 

graphs while still presenting enough evidence about model performance. However, for 

completeness first experiment will show predictions for all states. Modelling conditions 

and parameter search space are summarised in tables below. 

 

X Biomass 

S Substrate 

Umax 

Ks,q 

Level 1 

Level 2 
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Experiment 

number 

Sampling 

Rate 

Noise 

level 

Initial 

conditions 

Pink 

Initial 

conditions 

Blue 

Initial 

conditions 

Black 

1 0.1h 5% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.54, 0.57, 0.14 

2 0.1h 10% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.17, 0.14, 0.15 

3 0.3h 5% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.31, 0.47, 0.12 

4 0.3h 10% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.47, 0.15, 0.35 

5 0.3h 20% 0.1, 0.1, 0.1 0.5, 0.5, 0.5 0.21, 0.45, 0.18 

Table 6-20 Summary of modelling conditions for the system (6.2) 

Parameters Lower bound Upper bound 

Umax 0 3 

Ks 0 1 

q 0 10 

Table 6-21 Parameter search space for the system (6.2) 

6.2.3.1. Experiment 1 0.1h sampling and 5% random noise 

When we look at computational times (table 6.20) we can see that proposed state 

substitution method already produce significant improvements, in comparison to 

previous case study (6.1). That is, because Monod model (6.2) has coupled states 

and proposed state substitution method decouples them to reduce search space, in 

order to reduce computational time. When comparing proposed state substitution 

method with Derivative estimation and Latin hyper cube method we get 107% and 

38% improvements in computational time, respectively.  

Method Computational time, s 

Derivative estimation 425 

Latin hyper cube multi-start 190 

Proposed state substitution method 129 

Table 6-22 Computational time of all three method for experiment 1 

In terms of accuracy of model predictions, Latin hyper cube and proposed state 

substitution methods seemed to be of similar accuracy, with Latin hyper cube method 

being slightly better in certain cases. Whereas derivative estimation method falls short 

of accuracy in comparison (table 6.21).  
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Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 7.18E-03 6.50E-05 4.01E-03 

Latin hyper cube multi-start 4.00E-05 1.18E-04 6.75E-05 

Proposed state substitution 

method 

2.38E-04 1.79E-04 1.48E-04 

Table 6-23 Squared error values of each method and each data set for experiment 1 

In can be noted that if we compare computational times to same experimental setup 

of polynomial model (6.1) (table 6.3). We will see that due to increased complexity of 

the system Derivative estimation and Latin hyper cube methods both roughly doubled 

their computational times, where proposed state substitution method decreased it. 

Both methods have positive correlation between complexity of a system and 

computational time, whereas because proposed state substitution method is using 

decoupling techniques, it will struggle with low complexity systems, but will outperform 

other methods when dealing with high complexity systems. 

When looking at identified parameters values, we observe that as predicted from SOM 

analysis most important variable is Umax, as all methods identified this parameter 

accurately. Ks parameter is not very sensitive, because Latin hyper cube and 

proposed state substitution method are very close in accuracy, but Ks values is 

different by 24% and Derivative method has 100% change and still able to keep 

relatively accurate model prediction, although not as accurate as other two methods. 

Which is why it is most likely that q parameter is responsible for that accuracy change, 

as it is change from theoretical value seem to match with change in Sq. Error, between 

methods. 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

Umax 0.9 0.90 0.90 0.90 

Ks 0.3 0.60 0.30 0.23 

q 4 4.06 4.00 4.01 

Table 6-24 Summary of identified parameter values for each method for experiment 1 

 

 



107 
 

 

 



108 
 

 

 



109 
 

 

 

Figure 6.20 Performance results for Derivate estimation, Latin hyper cube and proposed state substitution methods, 

with 0.1h sampling and 5% random noise for measured data. 



110 
 

6.2.3.2. Experiment 2 0.1h sampling and 10% random noise 

As expected with increased noise from 5% to 10% computational time of all methods 

should increase. Pattern of computational time stay the same as in experiment 1. 

Proposed state substitution method is still fastest by 107% and 34% compared to 

Derivative estimation and Latin hyper cube method, respectively. 

Method Computational time, s 

Derivative estimation 455 

Latin hyper cube multi-start 193 

Proposed state substitution method 137 

Table 6-25 Computational time of all three method for experiment 2 

Accuracy still high of all method with Derivative estimation method providing lowest 

accuracy and Latin hyper cube and proposed state substitution method providing 

slightly better accuracy. All methods suffer loss in accuracy in comparison with 

experiment 1, due to increased noise level. When comparing squared Errors of 

experiment 2 to experiment 1, we see that experiment 2 squared error are more 

uniform than experiment 1. This is caused by increased error levels, making 

measurements on average further from real data. This creates sort of limiting band 

how low error of the model can be pushed.  

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 2.17E-02 1.92E-03 1.29E-02 

Latin hyper cube multi-start 2.09E-03 1.25E-03 1.15E-03 

Proposed state substitution 

method 

4.58E-03 3.16E-03 2.93E-03 

Table 6-26 Squared error values of each method and each data set for experiment 2 

When looking at identified parameter values, we observe that Umax is still identified 

correctly by all method. This allows all methods to provide decent model prediction, 

because as mention before Umax is most sensitive and most impactful parameter in 

this system. With increased noise we see more variation in Ks and q parameters as 

their effect on system are slowly being hidden by noise. Ks parameter identified values 

vary more than q parameter, indicating that q parameters has more influence over the 

system than Ks. 
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

Umax 0.9 0.90 0.90 0.90 

Ks 0.3 0.57 0.22 0.34 

q 4 4.12 4.04 3.95 

Table 6-27 Summary of identified parameter values for each method for experiment 
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Figure 6.21 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.1h sampling and 10% random noise for measured data. 
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6.2.3.3. Experiment 3 0.3h sampling and 5% random noise 

First thing we can observe in computational time that seemed to not fallow the pattern 

of previous experimental setups that, although higher sampling rate should result in 

more complex problem to identify, all the computational times have decreased. That 

is because with increased sampling time, there is less data points per same time span. 

Which reduce amount of calculation that required to be done by any method. Other 

than that same pattern persists of proposed state substitution method being fastest, 

followed by Latin hyper cube and Derivative estimation methods. Proposed state 

substitution method is 102% and 33% faster than other two methods, respectively.  

Method Computational time, s 

Derivative estimation 377 

Latin hyper cube multi-start 172 

Proposed state substitution method 123 

Table 6-28 Computational time of all three method for experiment 3 

Accuracy overall fallows same pattern, with Latin hyper cube being most accurate, 

proposed state substitution method being just as accurate, but not in all three data 

sets, and derivative estimation method having worst accuracy. All methods are still 

capable to producing models that fallow general trend accurately. It should be noted 

that Squared error values of experiments with different sampling rates, cannot be 

directly compared as different number of samples affect total error value. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 3.64E-03 3.05E-04 2.72E-03 

Latin hyper cube multi-start 6.86E-05 2.84E-05 4.74E-05 

Proposed state substitution 

method 

5.31E-04 1.15E-05 7.74E-05 

Table 6-29 Squared error values of each method and each data set for experiment 3 

Umax is still being accurately identified by all methods, where q and Ks varies between 

methods. As in previous cases all difference in accuracy comes from difference in 

these less important variables, and as Latin hyper cube and proposed state 

substitution method have similar values of Ks and q, which leads to their accuracies 

being very similar too. This case all proves that q parameter has more important than 

Ks, as proposed state substitution method has better estimate of Ks parameter, but 
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worse estimated in q parameter, which leads to Latin hyper cube being just a slightly 

more accurate than proposed state substitution method. 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

Umax 0.9 0.90 0.90 0.90 

Ks 0.3 0.43 0.22 0.29 

q 4 4.08 3.99 3.97 

Table 6-30 Summary of identified parameter values for each method for experiment 3 
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Figure 6.22 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 5% random noise for measured data. 
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6.2.3.4. Experiment 4 0.3h sampling and 10% random noise 

When noise is increased, we come back to regular pattern of all computational times 

increasing. Latin hyper cube seemed to be least affected by this change, but it is still 

slower then proposed state substitution method. Proposed state substitution method 

is 91% and 14% faster than Derivative estimation and Latin hyper cube methods, 

respectively. 

Method Computational time, s 

Derivative estimation 410 

Latin hyper cube multi-start 177 

Proposed state substitution method 154 

Table 6-31 Computational time of all three method for experiment 4 

In terms of accuracy all methods start to be very similar although proposed state 

substitution method and Latin hyper cube method does seem to provide more accurate 

results then Derivative estimation in certain cases. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 5.10E-03 2.16E-03 4.54E-03 

Latin hyper cube multi-start 1.37E-03 1.29E-05 8.02E-04 

Proposed state substitution 

method 

4.66E-03 2.27E-05 4.06E-03 

Table 6-32 Squared error values of each method and each data set for experiment 4 

Identify parameter values are roughly same, just Ks values starts to vary even more. 

Umax parameter value also starts to be more difficult to identify. All these fluctuation 

in estimated parameter values is direct affect from increased noise, which slowly starts 

to hide parameter effects on the system. 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

Umax 0.9 0.89 0.90 0.91 

Ks 0.3 0.31 0.51 0.79 

q 4 4.10 4.05 4.09 

Table 6-33 Summary of identified parameter values for each method for experiment 4 
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Figure 6.23 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 10% random noise for measured data. 

6.2.3.5. Experiment 5 0.3h sampling and 20% random noise 

With increased noise from 10% to 20% computational time of all methods increased. 

Proposed state substitution method continues to be fastest. Proposed state 

substitution methods computational time is lower by 96% and 23%, when compared 

with Derivative estimation and Latin hyper cube methods, respectively. 

Method Computational time, s 

Derivative estimation 413 

Latin hyper cube multi-start 183 

Proposed state substitution method 145 

Table 6-34 Computational time of all three method for experiment 5 

Noise also effected accuracy of all methods. Overall accuracy seems to be same but 

depending on specific initial condition different methods produce more accurate 

results. All methods are still capable to fallowing correct general trend of the system. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 4.88E-03 8.15E-04 5.19E-03 
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Latin hyper cube multi-start 6.64E-05 1.67E-03 5.28E-05 

Proposed state substitution 

method 

4.94E-03 2.16E-04 1.09E-02 

Table 6-35 Squared error values of each method and each data set for experiment 5 

We can see that Derivative estimation method and Latin hyper cube method cannot 

identify Ks anymore, but this does not seem to have big impact on their model 

performances. Proposed state substitution method can identify Ks, but it is way off. 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

Umax 0.9 0.90 0.89 0.91 

Ks 0.3 0.00 0.00 0.80 

q 4 3.92 4.01 4.09 

Table 6-36 Summary of identified parameter values for each method for experiment 5 
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Figure 6.24 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 20% random noise for measured data. 
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6.2.3.6. The summary of results for the Monod model 

This case study is great example of small system that contains complexity, which 

comes from different ODE interaction. The Monod system only has three parameters, 

but its complexity is higher than the polynomial system that was discussed in section 

6.1. As Monod kinetics is widely used, this system as studied extensively and well 

understood. This allows us to test complexity analysis tools, which can determinate 

dominant variables, as it is known that only one variable out of three is highly dominant 

(Umax). Using complexity analysis tools, complexity of this system was determined to 

be medium/low for the following reasons. First the Monod system consist of two ODEs 

that are strongly coupled, meaning changes in one of the are strongly reflected into 

other. This makes optimisation of the parameters more difficult, as parameters cannot 

be optimised one by one anymore and have to be optimised at the same time. PCA 

visualization reveal non-convex regions, which makes gradient-based optimisation 

methods, stop before converging into a solution. In addition, global optimum solution 

is surrounded by secondary valley, which can be interpreted as a local minimum. 

These complications are reflected in convexity measurement, which is 27%. This 

means that starting values of parameters heavily influence on the final result, as only 

roughly third of starting points will converge towards the solution. Sorted minimization 

shows that optimised model can reach accurate performance and accurate parameter 

values. The SOM analysis shows agreement with PCA visualization results, revealing 

a global optimum, surrounded by a secondary valley of local minimum. SOM analysis 

of parameter maps, shows that Umax is indeed most dominant variable, followed by 

q and Ks. Although SOM parameter analysis suggest that variable q is just slightly 

more dominant than Ks, identified values suggest that Ks is extremally non sensitive 

value, as it changes most between different experiments and methods but does not 

seem to impact the overall error of the model significantly. That being said, looking at 

the structure of ODEs (equation 6.1), we can see that variable Ks, impact increases 

as substrate concentration (S) decreases. Very small amount of data exists around 

low substrate values as it immediately tends to zero stopping the growth of biomass. 

This makes it hard to observe effect of Ks variable, but SOM parameter analysis is 

able to pick up that importance. When comparing results of different parameter 

identification algorithms, for this system the proposed state substitution method has 

lowest computational time across all five experiments. As there two heavily coupled 

ODEs the proposed state substitution method can fully utilize its decoupling technique 
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to decrease the search space making it more efficient than other methods. Latin hyper 

cube method is the most accurate method, but not by significant margin when 

compared to the proposed state substitution method and derivative estimation method. 

Accuracy levels for all methods were consistent between seen data (Pink and Blue) 

and unseen data (Black). Identified parameter values, seem to be consistent in all five 

experimental setups, apart from Ks parameter. For the first three experimental setups 

Ks value was identifiable but had large error when compared to the theorical value, 

but during the experiment four and five it is not identifiable anymore. This is due to as 

discussed before, not being able to observe the impact Ks value has, and with 

increased noise levels making this observation because impossible for the algorithm. 

This case study is like a proof of concept for the proposed state substitution method. 

As complexity is not high and the system is well understood, it allows good comparison 

with other state of art methods. Due to ability to heavily decrease the search space, 

the proposed state substitution method outperforms other methods in terms of speed, 

but accuracy of the method could be better.
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Figure 6.25 Summary of performance results for all three methods for Monod kinetics model
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6.3. Case study 3 – CHO cell culture model 

CCO Culture kinetics was selected as case study 3, for several factors. First it has 

increased complexity in model, consisting of two competing substrates, two by-

products, biomass, and an antibody product. Secondly in comparison to case study 2, 

it has much deeper coupling, consisting of six ODE’s and sixteen parameters. First 

five ODEs are coupled between each other similarly to Monod kinetics in case study 

2. There are four reactions happening within this model. Biomass growth with by-

product production, biomass death, biomass sustain, and production of antibodies. All 

these reactions happen simultaneously (figure 6.25). Another unique characteristic of 

this model is that has several parameter ratios, which can mean both parameter values 

can only be identified if, one of them is known beforehand. This increase difficulty of 

obtaining values for all parameters. Model was obtained from (Saraiva et al. 2015). 

Equation 6.3 shows the system, later in the thesis parameters of this system will be 

preplaced by o1 - o16 encoding for easier reading. 
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𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐺𝑙𝑢𝑡𝑎𝑚𝑖𝑛𝑒 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠
→     𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 𝐴𝑚𝑚𝑜𝑛𝑖𝑎 

 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑎𝑙𝑖𝑣𝑒) → 𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑑𝑒𝑎𝑑) 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 +  𝐵𝑖𝑜𝑚𝑎𝑠𝑠 →  𝐵𝑖𝑜𝑚𝑎𝑠𝑠 

 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 →  𝐵𝑖𝑜𝑚𝑎𝑠𝑠 +  𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑖𝑒𝑠 

Figure 6.26 Four reaction of CHO culture model 

6.3.1. Complexity analysis 

Complexity analysis will be performed in three steps as mentioned in section 6.1.1. 

These steps consist of performing PCA visualization with convexity calculations, 

sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative 

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system. 

6.3.1.1. PCA visualization 

As this model has sixteen parameters, and high level of complexity it is required to use 

large number of samples for PCA visualization so first two principal components would 

be able to represent whole system. For this number of sample points is increased to 

fifty thousand. Sampling was performed same way as in section 6.1.1.1. First, we can 

observe large number of failed integration points (figure 6.26), this suggests that there 

is a lot of discontinuity in the system, leading to gradient search getting stuck very 

𝑑
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often. To have clearer picture of the error plane of the system failed integration points 

are removed (figure 6.27). There seem to be no clear valley leading towards global 

optimum, but there are number of valleys in different places. This means there are 

local optimums that are in separate valleys from global optimum. Another feature that 

can be observed is a denser plane of convex and non-convex points around error 

value of 404. This is probably, plane of separation, where majority of local minimums 

start to diverge. For that reason, low amount points can be observed above this plane, 

and very high number of points reside on the plane. This signifies a first barrier for 

optimization algorithm to pass, in order to reach any optimal solution. Combining all 

these obstacles, system achieves overall convexity of 7%, around three times lower 

than Monod model (6.2). Overall, it can be concluded that system is of a high 

complexity level, and involved multiple obstacles, towards global optimum. We can be 

certain that this representation of search space is accurate as both PC1 and PC2 

explains 48.4% each, for a total of 96.8% variability. 

 

Figure 6.27 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue 

points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum 

solution. 
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Figure 6.28 PCA error plot for CHO cell culture model (6.3), with colour coded points for convexity, where blue 

points are convex and red points are non-convex. Black x marks global optimum solution. 

6.3.1.2. Sorted minimization 

Sorted optimization is performed same way as described in section 4.7. Parameter 

space is sampled for thousand initial parameter values. When optimizing thousand 

samples for this system, it shows a lot of different local minimums. Although it would 

seem, that more than half samples converge to same value (samples from 1000 to 

around 450), they do not. This is just high error value of 1010 that is assigned to failed 

integrations. Which means over a half of starting positions cannot be optimized at all. 

This agrees with PCA visualization results which show large amount of failed 

integration implying there are a lot of discontinuities in this model. This makes model 

extremely problematic to most optimization techniques. Only about hundred initial 

points can reach decent error values, of below 10-4 which is about 10% of starting 

points. Points that start in non-convex regions, get to the low error values much faster, 

as expected. This emphasises how crucial it is to have your starting condition in 

convex regions for fast and optimal results, when using gradient based optimization 

algorithms. This sorted optimization graph (figure 6.28), also provides us with 

information that although the systems parameters are hard to identify, they can be 
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identified correctly, as difference between lowest and highest error points is clearly 

visible. Still, your result accuracy will be heavily dependent on your starting points. 

 

 

Figure 6.29 CHO cell culture model (6.3) thousand samples sorted optimization, where blue circles is all samples and 

red circles are convex samples only 

6.3.1.3. SOM analysis 

Looking at figure 6.29 results of SOM, shows couple of local minimums scattered 

around the plane, but if we look at the U-matrix there are much more not as 

pronounced local minimums scatter all around the place. This is like what we saw in 

PCA visualization earlier of lots of local minimums scattered all around the plane and 

several deeper valleys of local minimums which are more distinctive. Although there 

is a general valley towards the middle, some of the smaller local minimums are even 

scattered in high error zones. This kind of layout makes gradient-based algorithm 

easily stuck in wrong local minimums, which there are plenty of. Looking at individual 

component map hints to couple things, only parameters o11 and o15 have continuous 

patterns, where all other are chaotic. Continuous patterns were observed with Monod 

model (6.2), where there was clear dominant variable and identifiable parameters. 

Whereas chaotic nature of these maps where observed in Polynomial model (6.1), 

where there was no dominant parameter and parameter values where not identifiable 

due to nature of the model. This could be due to several factors: a) chaotic component 

maps are due to large amount of discontinuity in model b) only parameters o11 and 
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o15 are dominant c) large number of parameters leads to chaotic component maps, 

during the training of SOM. 

To see if we can answer why most component maps have no continuous patterns to 

them, we need to look at importance of factor and how well they match with overall 

error map. Figures 6.31-6.32 shows how well component maps match up versus total 

error maps. Positive values mean higher degree of matching, and lower values mean 

lower. Cross correlation factor of 1, represents perfect match and 0 represent prefect 

mismatch. Cross correlation maps seem to indicate some parameters are more 

dominant than others, but not by large amount. This is confirmed by matching factors. 

Most dominant parameter is o1, that said it is by small margin. It can only be dominant 

variable because of its low variability. This would imply that with larger number of 

variables matching factors become more similar making it hard to distinguish dominant 

variables from the rest. Maximum difference between matching factors is 0.05 and 

0.03, respectively (table 6.35). This is a very small difference, but it has low variability 

in comparison with Polynomial model (6.1). 
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Parameters Encoded 

parameters 

Positive Matching 

Factor 

Negative Matching 

Factor 

𝝁𝒎𝒂𝒙 o1 0.68 ± 0.01 0.64 ± 0.02 

𝒌𝑮𝒍𝒄 o2 0.63 ± 0.01 0.66 ± 0.01 

𝒌𝑮𝒍𝒏 o3 0.66 ± 0.03 0.63 ± 0.02 

𝝁𝒅,𝒎𝒂𝒙 o4 0.65 ± 0.02 0.63 ± 0.02 

𝒌𝒅,𝑳𝒂𝒄 o5 0.66 ± 0.03 0.63 ± 0.03 

𝒌𝒅,𝑨𝒎𝒎 o6 0.65 ± 0.02 0.65 ± 0.02 

𝒌𝒅,𝑮𝒍𝒏 o7 0.65 ± 0.01 0.64 ± 0.01 

𝒀𝑿𝒗/𝑮𝒍𝒄 o8 0.64 ± 0.01 0.66 ± 0.01 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 o9 0.65 ± 0.02 0.63 ± 0.02 

𝒎𝑮𝒍𝒄 o10 0.65 ± 0.04 0.65 ± 0.03 

𝒌𝒎,𝑮𝒍𝒄 o11 0.65 ± 0.01 0.64 ± 0.02 

𝒀𝑿𝒗/𝑮𝒍𝒏 o12 0.65 ± 0.02 0.65 ± 0.01 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 o13 0.65 ± 0.01 0.64 ± 0.02 

𝜷 o14 0.63 ± 0.02 0.66 ± 0.03 

𝜶 o15 0.61 ± 0.01 0.66 ± 0.03 

𝒌𝝁 o16 0.64 ± 0.02 0.65 ± 0.01 

Table 6-37 Table of positive and negative mean matching factor of each parameter for system (6.3) 
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Figure 6.30 Left 2d SOM of CHO cell culture model (6.3), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. Right 

2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster. 
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Figure 6.31 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution 

represented as colour bar. 
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a)                                                                                                                                                      b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.32 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map. 



134 
 

6.3.2. Model hierarchy 

The CHO cell culture model consists of six coupled ODE’s, which when applied 

proposed state substitution methods’ decoupling algorithm leave six independent sub-

sets that can be solved in any order. Yet specific solution hierarchy will lead to better 

results, because of the different levels of sensitivity from the parameters. To figure out 

best hierarchy of the model we need to use additional tools like bi-partite chart (figure 

6.34) and SOM analysis of parameter importance (figures 6.32-31, table 6.35). When 

combined these tools reveal which order of solving individual subsets will lead best 

results. Bi-partite chart of the CHO cell culture model shows that there are three most 

important states biomass, glucose, and glutamine. This separates six subsets into two 

levels of biomass, glucose, glutamine and lactate, ammonia, antibodies. SOM 

component analysis was only able to confirm that o1 parameter is most dominant one, 

this means we would need to solve for o1 first to pass it on for best results. Parameter 

o1 can be calculated from any of the six subsets, but it is best to use biomass to 

calculate o1, because o1 is specific growth rate of biomass. This would separate 

model hierarchy into three levels, by raising biomass one level above both substrates. 

Lastly there is a problem of parameter ratios, we need to make sure that where 

parameter ratios appear one of the ratio components is already known. Ratios within 

CHO cell culture model are as follows: a) o1/o8 b) o1/o12 c) o9/o8 d) o13/o12. Luckily 

with three level approach this is not a problem as o1 is solver in level one, then o8 and 

o12 can be solved in level two, finally with o8 and o12 known we can solve for o9 and 

o13 in level 3.  
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Figure 6.33 Hierarchy of the CHO cell culture model (6.3) 
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Figure 6.34 Bipartite chart of the CHO cell culture model (6.3)
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Figure 6.35 Bar graph of connections of CHO culture bipartite chart
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6.3.3. Method comparison 

To evaluate the proposed state substitution method, it will be compared to the two 

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper 

cube sampled multi start method. Two main criteria will be compared, model 

performance accuracy and the computational time between each of the methods. 

Although the proposed state substitution method aims to reduce computational time, 

model performance accuracy is also very important and cannot be completely 

neglected. Each method will be assessed with different random noise levels and 

sampling times. For each method three different state initial conditions are compared, 

first two (Pink and Blue) are set same for all methods and are conditions that were 

provided for the optimisation algorithm and third initial condition (Black) is different 

from the first two initial conditions and was never seen by algorithm before. This allows 

to check method accuracy with unseen data sets, which are within same boundary 

conditions. Only biomass data set will be presented for model performance, as 

biomass dictates accuracy for the rest of the states. This will allow to avoid 

unnecessary graphs while still presenting enough evidence about model performance. 

However, for completeness first experiment will show predictions for all states 

Modelling conditions and parameter search spaces are summarised in tables below. 

Experiment 

number 

Sampling 

Rate 

Noise 

level 

Initial 

conditions 

Pink 

Initial 

conditions 

Blue 

Initial 

conditions 

Black 

1 0.1h 5% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2 

2 0.1h 10% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2 

3 0.3h 5% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2 

4 0.3h 10% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2 

5 0.3h 20% 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.2, 0.2, 0.2 

Table 6-38 Summary of modelling conditions for the system (5.3) 
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Parameters Lower bound Upper bound 

𝝁𝒎𝒂𝒙 0 2 

𝒌𝑮𝒍𝒄 0 2 

𝒌𝑮𝒍𝒏 0 1 

𝝁𝒅,𝒎𝒂𝒙 0 0.5 

𝒌𝒅,𝑳𝒂𝒄 0 0.5 

𝒌𝒅,𝑨𝒎𝒎 0 0.5 

𝒌𝒅,𝑮𝒍𝒏 0 0.5 

𝒀𝑿𝒗/𝑮𝒍𝒄 0 0.5 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 0 5 

𝒎𝑮𝒍𝒄 0 5 

𝒌𝒎,𝑮𝒍𝒄 0 50 

𝒀𝑿𝒗/𝑮𝒍𝒏 0 1 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0 1 

𝜷 0 10 

𝜶 0 50 

𝒌𝝁 0 0.5 

Table 6-39 Parameter search space for the system (6.2) 
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6.3.3.1. Experiment 1 0.1h sampling and 5% random noise 

When we compare computational times (table 6.37) we can see that although the 

proposed state substitution method is slower than the derivative estimation method it 

is faster than the Latin hyper cube method. The proposed state substitution method is 

faster by 49% compared to the Latin hyper cube method and slower by 32% than the 

Derivative estimation method. 

Method Computational time, s 

Derivative estimation 1371s 

Latin hyper cube multi-start 3109s 

Proposed state substitution method 1887s 

Table 6-40 Computational time of all three methods for experiment 1 

Although the proposed state substitution method is slower than the Derivative 

estimation method it is considerably more accurate, when predicting all three data 

sets. The Latin hyper cube method seems to be able to predict general trend right, but 

its accuracy is not as good as in previous case studies. This is most likely is caused 

by CHO cell culture model having a lot of discontinuities in error plane. Main advantage 

of the Latin hyper cube method is that is has large number of starting positions, but 

when discontinuities separate whole error plane into small pieces, getting good 

starting location becomes difficult and unreliable. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 9.66E-03 2.21E-02 3.53E-03 

Latin hyper cube multi-start 1.24E-02 7.91E-03 1.32E-02 

Proposed state substitution 

method 

1.76E-02 2.22E-04 5.33E-04 

Table 6-41 Squared error values of each method and each data set for experiment 1 

As complexity analysis suggested this model (5.3) is considerably harder to optimize 

than previous two cases studies, and it is confirmed by much higher computational 

time in all three methods. Due to increased complexity proposed state substitution 

method outperforms Latin hyper cube method in terms of speed and accuracy. 

Nevertheless, it must sacrifice some of its speed to maintain accuracy making it solver 

than the Derivative estimation method. This leads to think that for initial optimization 
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the Derivative estimation method could be better choice provided noise levels and 

sampling time is low. 

When comparing identified parameter values, we observe that parameter values that 

are closest to their theoretical values are o1, o5, o8, o9, o12, o13 and o15. Out of all 

these variables only o1 was picked up to be dominant variable in SOM component 

analysis, confirming that with large number of variables it is very hard to pick all 

dominant variables using this technique. On other hand we can see that parameters 

o10 and o11 have very large variation across all methods implying they have very low 

impact over the system.  

  

Table 6-42 Summary of identified parameter values for each method for experiment 1 

 

  

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

𝝁𝒎𝒂𝒙 1.09 1.04 1.12 1.01 

𝒌𝑮𝒍𝒄 1.00 0.79 0.91 0.56 

𝒌𝑮𝒍𝒏 0.30 0.11 0.27 0.18 

𝝁𝒅,𝒎𝒂𝒙 0.09 0.00 0.11 0.02 

𝒌𝒅,𝑳𝒂𝒄 0.01 0.03 0.01 0.02 

𝒌𝒅,𝑨𝒎𝒎 0.06 0.19 0.00 0.09 

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.50 0.01 

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.10 0.12 0.11 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.74 1.83 1.81 

𝒎𝑮𝒍𝒄 1.70 2.17 0.79 3.27 

𝒌𝒎,𝑮𝒍𝒄 19.00 33.10 1.94 46.75 

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.37 0.41 0.37 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.87 0.82 0.86 

𝜷 3.50 6.76 2.87 2.67 

𝜶 25.70 21.03 25.73 27.56 

𝒌𝝁 0.02 0.00 0.01 0.00 
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Figure 6.36 Performance results for Derivate estimation with 0.1h sampling and 5% random noise for measured 

data. 
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Figure 6.37 Performance results for Latin hyper cube method with 0.1h sampling and 5% random noise for 

measured data. 
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Figure 6.38 Performance results for the proposed state substitution method with 0.1h sampling and 5% random noise 

for measured data. 
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6.3.3.2. Experiment 2 0.3h sampling and 5% random noise 

Surprisingly, the Derivative estimation method is slowest out of three methods in this 

experimental setup. It is slower than proposed state substitution method by 98%, and 

slower than the Latin hyper cube method by 32%. This is most likely cause, by method 

being at its critical point, where it can still predict general trend of the model, but it is 

close to its capability limit, if this is the case it should be expected that with increased 

noise the Derivative estimation method should stop being able to predict the model. 

On the other hand, proposed state substitution method is faster than the Latin hyper 

cube method by 72%. 

Method Computational time, s 

Derivative estimation 4180s 

Latin hyper cube multi-start 3021s 

Proposed state substitution method 1426s 

Table 6-43 Computational time of all three method for experiment 2 

When comparing sq. Error for each method (table 6.41) it looks like accuracy is similar, 

between the proposed and the Latin hyper cube methods, and the Derivative 

estimation method falls short. It is expected because of two factors: a) increased 

sampling time, has large negative impact on methods performance b) as discussed 

before it looks like method is at its critical point. Other two methods seem to deal just 

fine with this experimental setup, implying they are more effected by noise levels, than 

sampling time. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 4.41E-03 4.08E-02 4.03E-02 

Latin hyper cube multi-start 3.70E-05 8.01E-04 6.44E-04 

Proposed state substitution 

method 

4.20E-05 1.03E-03 1.19E-03 

Table 6-44 Squared error values of each method and each data set for experiment 2 

Computational time decreased for all methods except the Derivative estimation 

method. This is due to increased sampling time, which in turn decreases amount of 

data required to process. When comparing identified parameter values, parameters 

o1, o5, o8, o9, o12, o13 and o15 are still consistence between all three methods and 

parameter o10 and o11 vary a lot.  
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

𝝁𝒎𝒂𝒙 1.09 1.09 1.09 1.15 

𝒌𝑮𝒍𝒄 1.00 0.62 1.06 1.37 

𝒌𝑮𝒍𝒏 0.30 0.38 0.26 0.39 

𝝁𝒅,𝒎𝒂𝒙 0.09 0.04 0.03 0.02 

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.02 0.03 

𝒌𝒅,𝑨𝒎𝒎 0.06 0.00 0.01 0.00 

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.50 0.00 

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.11 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.79 1.78 1.82 

𝒎𝑮𝒍𝒄 1.70 4.76 2.41 0.78 

𝒌𝒎,𝑮𝒍𝒄 19.00 50.00 37.16 0.91 

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.37 0.38 0.38 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.82 0.84 0.85 

𝜷 3.50 3.76 3.97 3.40 

𝜶 25.70 25.15 24.39 25.00 

𝒌𝝁 0.02 0.02 0.01 0.02 

Table 6-45 Summary of identified parameter values for each method for experiment 2 
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Figure 6.39 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 5% random noise for measured data. 

6.3.3.3. Experiment 3 0.1h sampling and 10% random noise 

Similarly, as in experiment 1 when we compare computational times (table 6.43) we 

can see that although the proposed state substitution method is slower than the 

derivative estimation method it is faster than the Latin hyper cube method. The 

proposed state substitution method is faster by 12% compared to the Latin hyper cube 

method and slower by 86% than the Derivative estimation method. 

Method Computational time, s 

Derivative estimation 1933s 

Latin hyper cube multi-start 5482s 

Proposed state substitution method 4848s 

Table 6-46 Computational time of all three method for experiment 3 

When comparing sq. Error for each method (table 6.44) it looks like accuracy is similar, 

but when comparing performances (figure 6.37), proposed state substitution method 

predicts trends of model much more accurately. The proposed state substitution 

method ability to break down complex problem into smaller sub-sets to solve initially 

seems to lead much better results accuracy wise when it comes to high complexity 

models. Although general trend is still predicted by the Derivative estimation and the 
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Latin hyper cube methods, they accuracy seem to deteriorate heavily with increased 

noise. Furthermore, most inaccuracy seem to appear in unseen data (Black) for all 

three methods and in glucose limiting data set (Pink) for the Derivative estimation and 

Latin hyper cube methods. 

Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 2.78E-03 6.93E-02 1.66E-02 

Latin hyper cube multi-start 1.14E-02 8.92E-02 3.69E-02 

Proposed state substitution 

method 

2.65E-03 9.89E-03 1.68E-02 

Table 6-47 Squared error values of each method and each data set for experiment 3 

Computational time increased for all methods as expected due to increase in noise 

level, therefore increase in uncertainty optimization algorithm must deal with. When 

comparing identified parameter values, parameters o1, o5, o8, o9, o12, o13 and o15 

are still consistence between all three methods and parameter o10 and o11 vary by 

large amount. 

  



156 
 

Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

𝝁𝒎𝒂𝒙 1.09 1.14 1.07 1.07 

𝒌𝑮𝒍𝒄 1.00 1.30 0.89 0.86 

𝒌𝑮𝒍𝒏 0.30 0.30 0.26 0.25 

𝝁𝒅,𝒎𝒂𝒙 0.09 0.10 0.14 0.11 

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.00 0.00 

𝒌𝒅,𝑨𝒎𝒎 0.06 0.00 0.00 0.06 

𝒌𝒅,𝑮𝒍𝒏 0.02 0.50 0.00 0.00 

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.11 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.81 1.81 1.81 

𝒎𝑮𝒍𝒄 1.70 1.80 2.82 3.79 

𝒌𝒎,𝑮𝒍𝒄 19.00 29.67 34.37 50.00 

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.41 0.38 0.38 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.86 0.85 0.84 

𝜷 3.50 4.12 4.04 4.00 

𝜶 25.70 25.23 24.54 24.58 

𝒌𝝁 0.02 0.05 0.01 0.01 

Table 6-48 Summary of identified parameter values for each method for experiment 3 
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Figure 6.40 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.1h sampling and 10% random noise for measured data. 

6.3.3.4. Experiment 4 0.3h sampling and 10% random noise 

Computational time (table 6.46) comes back to trend from experiment 1 with the 

Derivative estimation method being fastest followed by the proposed and Latin hyper 

cube methods. This type of trend was expected, if the Derivative estimation method is 

pushed beyond its capability limits. Which mean it should not be able to predict model 

accurately anymore. This makes the proposed state substitution method slower than 

the Derivative method by 47% and faster than the Latin hyper cube method by 84%. 

Method Computational time, s 

Derivative estimation 1466s 

Latin hyper cube multi-start 5778s 

Proposed state substitution method 2371s 

Table 6-49 Computational time of all three method for experiment 4 

Just by looking at Sq. Error (table 6.47), we see that the Derivative estimation method 

indeed falls behind other two methods in terms of accuracy. The difference can be 

seen clearly in performance graphs (figure 6.38).  
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Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 5.22E-01 6.67E-02 2.60E-02 

Latin hyper cube multi-start 1.02E-02 3.65E-03 6.84E-03 

Proposed state substitution 

method 

4.05E-03 2.35E-03 9.20E-03 

Table 6-50 Squared error values of each method and each data set for experiment 4 

As the Derivative estimation method cannot predict trends of the model anymore, 

parameters identified by it hold no value, but are displayed for comparison. Coupled 

of the values that seem to be correctly identified allows it to keep accuracy at early 

parts of the model. When comparing other two methods identified parameter values, 

parameters o1, o5, o8, o9, o12, o13 and o15 are still consistent between and 

parameter o10 and o11 vary a lot as before. 
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

𝝁𝒎𝒂𝒙 1.09 1.15 1.14 1.00 

𝒌𝑮𝒍𝒄 1.00 1.07 1.05 0.53 

𝒌𝑮𝒍𝒏 0.30 0.00 0.34 0.10 

𝝁𝒅,𝒎𝒂𝒙 0.09 0.00 0.00 0.01 

𝒌𝒅,𝑳𝒂𝒄 0.01 0.03 0.03 0.02 

𝒌𝒅,𝑨𝒎𝒎 0.06 0.05 0.10 0.17 

𝒌𝒅,𝑮𝒍𝒏 0.02 0.42 0.21 0.07 

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.14 0.12 0.12 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.85 1.80 1.93 

𝒎𝑮𝒍𝒄 1.70 1.32 1.22 0.85 

𝒌𝒎,𝑮𝒍𝒄 19.00 0.45 10.71 0.13 

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.40 0.40 0.39 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.76 0.85 0.83 

𝜷 3.50 9.89 4.09 1.06 

𝜶 25.70 17.03 25.54 25.37 

𝒌𝝁 0.02 0.00 0.05 0.00 

Table 6-51 Summary of identified parameter values for each method for experiment 4 
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Figure 6.41 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 10% random noise for measured data. 

6.3.3.5. Experiment 5 0.3h sampling and 20% random noise 

In worst case scenario experiment 5, the Latin hyper cube and the proposed state 

substitution method seems to approach their critical points, similar as the Derivative 

estimation method did in experimental setup 2. The proposed state substitution 

method is still faster than the Latin hyper cube method by 38%. Decrease in gap of 

computational time between these two methods shows that both methods approach 

critical point. 

Method Computational time, s 

Derivative estimation 1411s 

Latin hyper cube multi-start 11053s 

Proposed state substitution method 7492s 

Table 6-52 Computational time of all three method for experiment 5 

Although the proposed state substitution method can keep the accuracy to certain 

degree, the Latin hyper cube model struggle to keep accuracy high even more. Both 

methods suffer in performance due to high noise levels (figure 6.39). 
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Method Sq. Error 

(Blue) 

Sq. Error 

(Pink) 

Sq. Error 

(Black) 

Derivative estimation 2.30E+00 2.39E-01 2.15E-01 

Latin hyper cube multi-start 9.14E-02 1.82E-01 9.05E-02 

Proposed state substitution 

method 

4.46E-02 1.19E-03 4.93E-02 

Table 6-53 Squared error values of each method and each data set for experiment 5 

Identification of parameters is very difficult at this point and only most dominant 

variables can be identified. When comparing other two methods identified parameter 

values, parameters o1, o5, o8, o9, o12, o13 and o15 are still consistent as they were 

for all five experimental. This suggests that these seven variables are most dominant 

within this system. 
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Parameter Theoretical 

value 

Derivative Latin hyper 

cube 

Proposed 

𝝁𝒎𝒂𝒙 1.09 1.08 1.17 1.09 

𝒌𝑮𝒍𝒄 1.00 0.79 1.65 1.08 

𝒌𝑮𝒍𝒏 0.30 0.27 0.33 0.31 

𝝁𝒅,𝒎𝒂𝒙 0.09 0.05 0.18 0.09 

𝒌𝒅,𝑳𝒂𝒄 0.01 0.00 0.00 0.01 

𝒌𝒅,𝑨𝒎𝒎 0.06 0.15 0.02 0.07 

𝒌𝒅,𝑮𝒍𝒏 0.02 0.24 0.20 0.02 

𝒀𝑿𝒗/𝑮𝒍𝒄 0.11 0.11 0.11 0.10 

𝒀𝑳𝒂𝒄/𝑮𝒍𝒄 1.80 1.80 1.81 1.76 

𝒎𝑮𝒍𝒄 1.70 2.25 0.60 0.72 

𝒌𝒎,𝑮𝒍𝒄 19.00 29.14 0.51 3.23 

𝒀𝑿𝒗/𝑮𝒍𝒏 0.38 0.39 0.40 0.38 

𝒀𝑨𝒎𝒎/𝑮𝒍𝒄 0.85 0.84 0.90 0.86 

𝜷 3.50 4.30 5.92 3.79 

𝜶 25.70 24.81 25.00 25.75 

𝒌𝝁 0.02 0.02 0.11 0.02 

Table 6-54 Summary of identified parameter values for each method for experiment 5 
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Figure 6.42 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

with 0.3h sampling and 20% random noise for measured data. 

6.3.4. The summary of results for the CHO cell culture model 

This case study represents the starting complexity of a model the proposed state 

substitution method is aimed at. It is a system with a moderate number of parameters 

(sixteen), but complex enough to take significant amount of time to identify parameters 

using state of art methods. Using complexity analysis tools, complexity of this system 

was determined to be high for the following reasons. The system describes complex 

behaviour consisting of four simultaneous reactions, involving two competing 

substrates and inhibiting by-product. Six ODEs that consist within the system, create 

a closely coupled network, between first five ODEs. PCA visualization shows multiple 

local minim that are surrounded by discontinuities. This makes the system especially 

tricky to optimise with gradient-based algorithms as they can get stuck if they reach 

boundary of discontinuity. PCA visualization also reveals the in the systems error 

hyperplane there is a flat boundary level, which separates all the local minima from 

the rest of the hyperplane. This already indicate high complexity which is also 

confirmed by the convexity measurement which is 7%. When performing sorted 

minimisation, it shows that model can achieve good performance and accurate 

parameter values if algorithm can get pas majority of the local minima. Sorted 
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minimization also reveals that more than half of the samples, are not possible to 

integrate, due to discontinuity boundary. The SOM analysis are in agreement with PCA 

visualization showing multiple local minima scattered around the whole plane. The 

analysis of parameter SOM maps unfortunately is only able to show one dominant 

variable o1, where it was expected to see at least o1, o2 and o3. Also, the difference 

between matching factors of dominant variable and the rest are significantly smaller 

when compared to Monod model SOM analysis. This indicates that increasing number 

of variables makes this analysis type of analysis less accurate. This most likely is due 

to fact that large number of parameters make each of them carry less total variance of 

the system, which in term makes it harder for them to be dominant variable. When 

comparing results of the different parameter identification algorithms, for this system 

the derivative estimation method has the lowest computational time, but it also has the 

lowest accuracy. The derivative estimation method is failing to identify general trend 

in experiments 4 and 5. The proposed state substitution method is slower than the 

derivative estimation, but significantly faster than the multi-start method. The proposed 

state substitution methods accuracy is on par with multi-start accuracy and even 

slightly better in some cases. I would seem that noise has bigger effect of model 

performance, than sampling time for all of the methods. Parameter identification 

reveals that parameter o10 and o11 are extremally not sensitive as their mismatch 

affect is not seen on the model performance. High complexity of the system allows the 

proposed state substitution method to utilize its decoupling strategy to keep high 

accuracy but decrease computational time. All methods have lowest accuracy with 

unseen data.
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 Figure 6.43 Summary of performance results for all three methods for CHO cell culture model
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6.4. Case study 4 - Ethanol production with Zymomonas mobilis model 

All three cases so far focused on benchmarking developed tools and proposed state 

substitution method with increasing difficulty and used simulated data which was 

generated with different noise levels and sampling times to mimic possible scenarios 

of real data collection. To fully explore benefits and capabilities of this new proposed 

state substitution method we need to test it against real collected data. This model 

published by (Hodge and Karim, 2002), and later improved by (Diaz and Willis, 2019). 

This provides this model a unique environment, where there is plenty of real data 

based on reactions in this model as it was published long time ago. At the same time, 

it was shown that model is not perfect and can be improved significantly, meaning 

there is model – process mismatch making parameter identification more difficult and 

more realistic. Ten different measured data sets were collected for this case study. All 

three method will be compared within all ten data sets. Sampling times are determined 

by data collected and noise levels are unknown. Model has two competing substrates 

glucose and xylose which produce ethanol and allow biomass to grow. Although it has 

less ODEs the case study 3, it has increased number of parameters to twenty-six. 

Equation 6.4 shows full mathematical model. 

𝑑𝑋

𝑑𝑡
= 𝑟1 + 𝑟2⁡⁡⁡⁡

𝑑𝑆1

𝑑𝑡
=  − 𝑟3⁡⁡⁡⁡⁡

𝑑𝑆2

𝑑𝑡
=  − 𝑟4⁡⁡⁡⁡⁡

𝑑𝑃

𝑑𝑡
= 𝑟3 ∗ 𝑌𝑃_𝑆1 + 𝑟4 ∗ 𝑌𝑃_𝑆2 

𝑟1 = 𝑋 ∗ (
𝑢_𝑚𝑎𝑥1 ∗ 𝑆1

𝐾1𝑥 + 𝑆1 + 𝑆2 ∗
𝐾1𝑥
𝐾2𝑥

) ∗ f5(S2 + S1) ∗ f6(P) 

𝑟2 = 𝑋 ∗ (
𝑢_𝑚𝑎𝑥2 ∗ 𝑆2

𝐾2𝑥 + 𝑆2 + 𝑆1 ∗
𝐾2𝑥
𝐾1𝑥

) ∗ f7(S2 + S1) ∗ f8(P) 

𝑟3 = 𝑋 ∗ (
𝑞_𝑝𝑚𝑎𝑥1 ∗ 𝑆1

𝐾1 + 𝑆1 + 𝑆2 ∗
𝐾1
𝐾2

) ∗ f1(S2 + S1) ∗ f2(P) 

𝑟4 = 𝑋 ∗ (
𝑞_𝑝𝑚𝑎𝑥2 ∗ 𝑆2

𝐾2 + 𝑆2 + 𝑆1 ∗
𝐾2
𝐾1

) ∗ f3(S2 + S1) ∗ f4(P) 

𝑓𝑖(𝑗) =  {
𝑎𝑖 ∗ 𝑗

2 + 𝑏𝑖 ∗ 𝑗 + 1,  𝑓𝑖(𝑗) ≥ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

}  𝑖 = 1,2…8; 𝑗 ∈ {𝑃, 𝑆1 + 𝑆2} 

6.4 
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6.4.1. Complexity analysis 

Complexity analysis will be performed in three steps as mentioned in cshapter 6.1.1. 

These steps consist of performing PCA visualization with convexity calculations, 

sorted minimization and SOM analysis. Aim of this analysis is to compare its’ relative 

complexity with other cases studies within this work, and to find problems gradient-

based algorithms might run into trying to optimize this system. 

6.4.1.1. PCA visualization 

PCA visualization of this system model, shows very similar results to case study 3, but 

there are some key differences too. It has similar shape - non-convex points scattered 

everywhere with couple of convex points mixed in, with no obvious global optimum 

valley. This leads to believe there is multiple local optimums within the system. In 

contract to case study 3, Zymomonas mobilis model, does not have overwhelming 

number of failed integrations, which mean error plane is smooth, also it lacks flat plane 

barrier. Without these two obstacles, optimization algorithm should have easier time 

reach optimum solutions. That being said, overall convexity of the system is 2%. This 

complexity is also reflected, by decreases variability explained by PCA visualization. 

PC1 explains 48.9% of variability and PC2 explain 31.0% variability for a total of 

79.9%. 

 

Figure 6.44 PCA error plot for Zymomonas mobilis model (6.4), with colour coded points for convexity, where blue 

points are convex, red points are non-convex and green points are failed integrations. Black x marks global optimum 

solution. 
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6.4.1.2. Sorted minimization 

Sorted optimization is performed same way as described in section 4.7. Parameter 

space is sampled for thousand initial parameter values. suspected from PCA 

visualization, sorted minimization method reveal multiple local minimums, eventually 

most of them settle for one global solution. This global solution although has lowest 

error value, it is still high error value. This implies actual parameter values after 

identification might not be, real parameter value, just optimal for performance. This is 

mostly cause due to fact we are using real collected data, and there is model – process 

mismatch. This makes it hard to drive overall error value very low. Nevertheless, this 

sorted minimization of Zymomonas mobilis model, suggest that it should not be too 

difficult to achieve optimal performance with the quality of data provided, but it might 

prove problematic to determinate actual parameter values. 

 

Figure 6.45 Zymomonas mobilis model (6.4) thousand samples sorted optimization, where blue circles are all samples. 

6.4.1.3. SOM analysis 

SOM analysis seem to provide similar picture as PCA visualization, that there are large 

number of local optimums scattered across the plane. It might not be clear of with 

colour coded hexes only, but U-matrix makes it clear that there is a lot of local 

minimums (figure 6.42).  If we would compare to SOM analysis of case study 3, there 

is one major difference.  In SOM analysis of the CHO cell culture model (6.3), local 

minimums where uniformly spread, whereas in SOM map of the Zymomonas mobilis 

model, local minimums are clustered. We can see four clusters of low error regions 
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separated with high error region in the middle of U-matrix. These clusters represent 

valleys of local minimum, which we could not observe in PCA visualization. This shows 

that with large number of variables it is much harder for PCA visualization to capture 

2d representation of higher dimensional plane, whereas SOM map, can still do a good 

job.  

To observe if any of the parameters are dominant, we perform cross-correlation of 

errors map with component maps. Figures 6.44-45 shows how well component maps 

match up versus total error maps. Positive values mean higher degree of matching, 

and lower values mean lower. Cross correlation factor of 1, represents perfect match 

and 0 represent prefect mismatch. Although large number of parameters should hinder 

SOM parameter analysis to determinate dominant variables, it is able to pick two 

dominant variables out of twenty-six, u_max1 most dominant variable negatively with 

matching factor of 0.73 and K1x most dominant variable positively with matching factor 

of 0.75. Maximum difference between matching factors is 0.18 and 0.20 respectively 

to positive and negative matching factors. 
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Table 6-55 Table of positive and negative mean matching factor of each parameter for system (6.4) 

Parameters Positive Matching Factor Negative Matching Factor 

u_max1 0.57 ± 0.02 0.73 ± 0.02 

u_max2 0.64 ± 0.03 0.61 ± 0.04 

K1x 0.75 ± 0.01 0.54 ± 0.03 

K2x 0.61 ± 0.02 0.66 ± 0.03 

q_pmax1 0.64 ± 0.05 0.64 ± 0.04 

q_pmax2 0.67 ± 0.03 0.56 ± 0.03 

K1 0.65 ± 0.02 0.64 ± 0.02 

K2 0.62 ± 0.02 0.65 ± 0.01 

YP_S1 0.66 ± 0.03 0.63 ± 0.04 

YP_S2 0.63 ± 0.04 0.65 ± 0.02 

a(1) 0.65 ± 0.04 0.60 ± 0.06 

a(2) 0.64 ± 0.02 0.64 ± 0.03 

a(3) 0.63 ± 0.02 0.64 ± 0.04 

a(4) 0.68 ± 0.03 0.63 ± 0.03 

a(5) 0.64 ± 0.06 0.62 ± 0.07 

a(6) 0.62 ± 0.02 0.65 ± 0.01 

a(7) 0.64 ± 0.02 0.62 ± 0.01 

a(8) 0.63 ± 0.03 0.61 ± 0.06 

b(1) 0.65 ± 0.02 0.65 ± 0.03 

b(2) 0.64 ± 0.02 0.62 ± 0.06 

b(3) 0.64 ± 0.03 0.63 ± 0.02 

b(4) 0.63 ± 0.06 0.60 ± 0.05 

b(5) 0.61 ± 0.03 0.67 ± 0.03 

b(6) 0.62 ± 0.02 0.65 ± 0.04 

b(7) 0.66 ± 0.03 0.62 ± 0.03 

b(8) 0.65 ± 0.04 0.65 ± 0.03 
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Figure 6.46 Left 2d SOM of Zymomonas mobilis model (6.4), colour coded based of model error, where green (L) is low error, blue (M) is medium error, and red (H) is high error. 

Right 2d SOM with same colour code as left, but also showing relative distance in n-dimensional plane represented as colour bar and number of individual members of each cluster. 

 



175 
 

 

 

 

Figure 6.47 U-matrix represents N-dimensional plane as 2d SOM with relative distances as colour bar, followed by each component n-dimensional plane of its value distribution 

represented as colour bar. 
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a)                                                                                                            b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.48 a) Positive cross-correlation between each parameter map and overall error map. b) Negative cross-correlation between each parameter map and overall error map. 
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6.4.2. Model hierarchy 

The Zymomonas mobilis model consist of four coupled ODE’s, which when decoupled 

with proposed state substitution method leave four independent sub-sets that can be 

solved in any order. Specific order of solution will yield best results, therefore model 

hierarchy needs to be established, based on importance on each sub-set and how 

many dominant variables it has. To figure out best hierarchy of the model we need to 

use additional tools like bi-partite chart (figure 6.47) and SOM analysis of parameter 

importance (figures 6.44-6.45, table 6.52). When combined these tools reveal which 

order of solving individual subsets will lead best results. Bi-partite chart reveals that 

although all four states of model have heavy coupling, parameters can be separated 

into groups that do not mix. Only exception to that is ethanol, as it has same 

parameters as both substrates, as it directly dependant on them. This makes model 

hierarchy simple two-level hierarchy with ethanol state being only state in second level. 

Unfortunately, there are two ratios in this model, but because they only exist in ratio 

form and never separate, it is not possible to solve for their exact values. 

 

Figure 6.49 Hierarchy of the Zymomonas mobilis model (6.4) 
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Figure 6.50 Bipartite chart of the Zymomonas mobilis model (6.4)
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Figure 6.51 Bar graph of connections of Zymomonas mobilis bipartite chart  
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6.4.3. Method comparison 

To evaluate the proposed state substitution method, it will be compared to the two 

existing methods discussed in chapter 3. The derivative estimation and Latin-hyper 

cube sampled multi start method. Two main criteria will be compared, model 

performance accuracy and the computational time between each of the methods. 

Although the proposed state substitution method aims to reduce computational time, 

model performance accuracy is also very important and cannot be completely 

neglected. In contrast to the first three case studies, we no longer have simulated data, 

so we cannot vary noise or sampling time to see its effects on methods. Instead after 

parameter identification each of their model prediction will be compared with measured 

data, for each of the ten different data sets. Although measured data can be unreliable 

and might have larger noise or error involved methods performance will be compared 

as in how close its prediction is to measured data. As before only biomass data will be 

presented for model performance as biomass dictates accuracy for the rest of the 

states. This will allow to avoid unnecessary graphs while still presenting enough 

evidence about model performance. 

When comparing computational time (table 6.53) we see that the proposed state 

substitution method is fastest among all three methods. It is faster by 56% compared 

to the Latin hyper cube method, and 44% faster than the Derivative estimation method. 

Method Computational time, s 

Derivative estimation 7019s 

Latin hyper cube multi-start 7948s 

Proposed state substitution method 4478 

Table 6-56 Computational time of all three methods 

As discussed before to compare performance of model prediction of each of the 

methods, squared error value was calculated for each method versus experimental 

data. The Derivative estimation method and Latin hyper cube method, has same error 

values because their identified parameters were identical, meaning they both reached 

same local minimum. This is most likely caused, because SOM analysis revealed 

clusters of local minimums, and one of the clusters was larger than the other. This 

mean that starting locations of the Latin hyper cube method, are much more likely to 

start in this large cluster and if this cluster does not hold global optimum, it becomes 

nearly impossible to reach. On other hand the Derivative estimation method uses 

global search global solver for optimization. Starting position for this global optimizer 
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is determined by optimizing derivative estimates at each time point and taking average 

of all solutions. Although global search after reaching solution look for other solutions, 

it starts its search around primary solution. If this cluster is local minimum is large 

enough, global search will never look outside of its boundaries. Both methods in 

comparison to the proposed state substitution method did worse, managing to get 

three out of ten data sets to lower squared error value than the proposed state 

substitution method (table 6.54). Furthermore, the proposed state substitution method 

in data sets 7 and 9, managed to capture correct trend of experimental data, where in 

comparison other two methods failed to even predict general trend. 

Comparing identified parameter values (table 6.55), shows large gap within the 

proposed state substitution method and other two methods. This makes it difficult to 

say with confidence that identified parameter values are correct parameter values, as 

sorted minimisation suggests, even once global optimum is reached total error value 

is still high. 

Data set number Derivative 

estimation 

Latin hyper cube Proposed state 

substitution 

method 

1 2.33E+00 2.33E+00 2.49E+01 

2 2.22E+00 2.22E+00 7.75E-01 

3 1.05E+00 1.05E+00 7.33E-01 

4 5.43E-01 5.43E-01 1.06E+00 

5 8.25E+00 8.25E+00 1.92E+00 

6 3.35E+00 3.35E+00 2.72E-01 

7 5.01E+00 5.01E+00 1.68E+00 

8 1.37E+00 1.37E+00 1.76E+01 

9 9.66E+00 9.66E+00 9.75E-01 

10 3.39E+00 3.39E+00 4.53E-01 

Table 6-57 Squared error values for each method and each data set 
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Parameters Derivative 

estimation 

Latin hyper cube Proposed state 

substitution method 

u_max1 0.389 0.389 0.047 

u_max2 0.095 0.095 0.45 

K1x 13.772 13.772 0.409 

K2x 6.08 6.08 0.121 

q_pmax1 2.037 2.037 2.02 

q_pmax2 6.375 6.375 12.53 

K1 0.247 0.247 0.294 

K2 11.886 11.886 1.697 

YP_S1 0.502 0.502 0.806 

YP_S2 0.462 0.462 0.349 

a(1) 0 0 0 

a(2) 0 0 -0.001 

a(3) 0 0 0 

a(4) 0 0 -0.002 

a(5) 0 0 0 

a(6) 0 0 0 

a(7) 0 0 0 

a(8) 0 0 -0.005 

b(1) 0.001 0.001 -0.004 

b(2) -0.006 -0.006 0.025 

b(3) 0.002 0.002 -0.007 

b(4) -0.004 -0.004 0.1 

b(5) 0 0 0.023 

b(6) -0.002 -0.002 0.007 

b(7) 0 0 0.013 

b(8) -0.014 -0.014 0.05 

Table 6-58 Summary of identified parameter values for each method 
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Figure 6.52 Performance results for Derivate estimation, Latin hyper cube, and proposed state substitution methods, 

for 10 different experimentally collected data sets. 
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6.4.4. The summary of results for the Zymomonas mobilis model 

This case study is chosen to illustrate the practical application of the proposed state 

substitution method. It has twenty-six parameters making it not a light optimisation 

problem. It has model-process mismatch, as (Grisales Díaz and Willis 2019) were able 

to improve the model that it is used in this study. This is important as in practical 

applications model-process mismatch happens all the time and it is important that 

optimization algorithm can accommodate this mismatch. Using complexity analysis 

methods, complexity of this system was determined to be medium/high for the following 

reasons. System consist of four ODEs, with coupled interactions between states, but 

there is very little interaction between variables. Only ethanol state parameters are 

coupled with other states. PCA visualization shows multiple local minima, similarly to 

case study 3. This system does not have so many discontinuities as case study 3, but 

its overall convexity of the system is only 2%. Sorted minimization shows that model 

has one dominant global optimum, but its overall error value is high. This leads to 

suspect that identified parameter values are not ‘true’ values of the system, however 

they are statically most optimal values for highest model accuracy. Reason for such 

high error value at global optimum, lies with the fact that this model is not truly correct 

representation of the bio-system in question. This process-model mismatch is the 

cause of high error, but statically accurate parameter values. SOM analysis reveals 

multiple minima that are clustered into four clusters. Thus, making local minima have 

large separation. It should be noted that if gradient based algorithm gets into one of 

these clusters it will be stuck there. SOM parameter analysis also reveal two dominant 

variables u_max1 and K1x. It seems reasonable that these variables are dominant as 

from bio-system perspective, specific growth rate and substrate consumption rate are 

very highly linked with biomass growth. When comparing results of different parameter 

identification algorithms, we can see that multi-start method and Derivative estimation 

method both identified same solution. This is most likely due to fact they both ended 

up in the same cluster of local minima, whereas the proposed state substitution method 

ended up in different one. The proposed state substitution method almost twice as fast 

as other two methods, also the proposed state substitution method had better accuracy 

in seven out of ten data sets, when compared too other methods. In addition, for data 

sets 7 and 9, state of art methods failed to identify general trend, whereas the proposed 

state substitution method succeeded. 
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Figure 6.53 Summary of performance results for all three methods for Zymomonas mobilis model



190 
 

7. Conclusions 

During this research two algorithms were developed. Firstly, the proposed new method 

for parameter identification, and secondly complexity analysis algorithms. This chapter 

will cover, what was learned and achieved by developing and applying complexity 

analysis and new proposed state substitution method for the parameter identification 

of the four different case studies. We will look at each of the algorithm separately 

stating their strengths and weaknesses.  

7.1. Complexity analysis 

Complexity analysis consists of three different approaches, that should provide overall 

picture of the system complexity and some quantifiable measure of the systems 

complexity. This complexity analysis allows to compare the systems complexity 

relatively to other systems complexity but does not provide an absolute benchmark 

value of the complexity. Analysis algorithms are a) PCA visualization b) Sorted 

minimization c) SOM analysis. 

a) PCA visualization is very effective for systems with smaller number of 

parameters, providing good insight on location of all local minimums. Combining 

it with convexity calculation, makes observations easier to interpret, due to 

distinction of convex and non-convex regions. This method can allow users to 

avoid local minimums, by selecting starting position, which when locally 

optimized tends towards global optimum. With increasing number of parameters 

PCA visualization loses its benefits, as PCA visualization uses only two first 

principal components to visualise error plane of the system. With increasing 

complexity and number of parameters, first two principal components no longer 

contain enough variability of overall system to be able to depict error plane 

accurately. Overall convexity percentage provides quantifiable measurement of 

complexity and is an accurate tool to compare complexity of different systems. 

It should be noted that very low convexity percentage systems (0-5%) are 

harder to compare between. 

 

b) Sorted minimization is useful for identifying expected number of local minimums 

in the system, within constrained boundaries. In addition, sorted minimization 

determinates if the systems parameters are identifiable or just systems 

performance can be optimized. This helps to make objective decision about the 

optimization provided optimal parameter. Are these parameters real values or 
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just statically optimal arbitrary values that makes model perform at its best. 

Although sorted minimization provides valuable information, it is most 

computationally demanding algorithm used for complexity analysis in this work. 

For systems, that has extremely large search spaces, this analysis can take 

even up to several days. For this reason, sorted minimization should only be 

performed if analysis is not time constrained. 

 

c) SOM analysis provides similar visualization of error plane of the system as PCA 

visualization, but it is more robust when dealing with large number of parameters 

within the system. In terms of visualization, it is harder to interpret results of 

SOM than PCA visualization. Key observation that can be derived from SOM 

analysis, is parameter dominance. Positive and negative matching factor of 

each parameter provides insight into how dominant each parameter is in 

comparison with others. While algorithm resolution decrease with systems 

containing large number of parameters it is still able to pinpoint most dominant 

variable. This is important for use of proposed state substitution method as this 

information will help to set up best model hierarchy which will lead to best 

results. 

All of three analysis methods should be used with caution as interpretation of results 

might lead to different conclusions. Nevertheless, each of these methods provide 

valuable information that can be used to understand level of complexity within the 

system and compared this complexity between different systems. These methods 

might also, allow to establish what makes the system complex and how to mitigate 

complication introduced by these complexities.  
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7.2. Proposed state substitution method 

Proposed state substitution method was compared with two state of art methods - 

derivate and integral methods. Comparison was done using four case studies, with 

increasing complexity. In terms of computational time, proposed state substitution 

method performed worse than both state of art methods when optimizing simple 

system with single ODE (Case study 1). However, its advantages become increasingly 

more apparent as complexity of the systems rose. Where state of art performance was 

linearly decreasing with increasing complexity of the systems as expected, the 

proposed state substitution method not only performed better, but also gap between 

the state of art methods and the proposed state substitution method was increasing. 

In terms of robustness to noise, integral method and the proposed state substitution 

method were able to deal with higher level of noise, where the derivate method would 

fall short. In terms of accuracy the derivative method had worse average accuracy, 

throughout all case studies. The proposed state substitution method and the integral 

method, where able to keep similar accuracy levels in all four case studies. This would 

suggest that best course of action, when dealing with unknown system, is to perform 

complexity analysis first, then if system has high complexity use the proposed state 

substitution method approach instead of the state of art methods. This should lead to 

lower computational times, and same levels of accuracy. It should be noted that this 

computational time save, would be especially impactful, during model development 

where multiple different variations of model need to be tested to check which one 

produces best results. 
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8. Future work 

This chapter will focus on limitations of this work and areas which can be expanded or 

improved. Chapter will cover both complexity analysis and proposed new method as 

independent methods.  

Complexity analysis, main use is to assess the systems complexity. While discussed 

methods allows to do it, only overall convexity value and number of local minima can 

be used as numerical comparison, leaving other features to be interpreted by the user. 

This makes it not universal when used by different users as their assessment of 

topology of the SOMs and PCA visualization will vary. To make complexity analysis 

techniques useful in broader spectrum, there is a need for uniform framework of these 

type of analysis to allow uniform benchmarking process. Furthermore, methods used 

to evaluate systems complexity, where only tested on four case studies mentioned in 

this work, which is too small of a sample size to make general conclusions about 

methods usage to benchmark any problems. However, this work highlight possible 

uses in industry to identify systems that do require additional attention and might 

require to deviate from state of art methods to produce fast and accurate model 

capable of prediction. Excluding sorted minimisation, other techniques are fast and 

easy to implement, making them good for initial exploration of system complexity and 

helps to choose appropriate methodology for further analysis. 

The proposed state substitution method seems to achieve significant reduction in 

computational time, when applied to complex systems, but case studies provided 

where full parametric models. While this shows that method is able to identify all 

parameters that are identifiable, it says nothing about its ability to work on hybrid 

models. While in theory there should be no change in methodology as long as non-

parametric part can be evaluated by objective function this was not tested and cannot 

be stated to work. In addition, similarly the proposed state substitution method was 

extensively tested with four case studies described in this work. Even though these 

case studies cover large variability of the problems, it does not cover all types of 

problems. Furthermore, this work did not investigate optimizing algorithms that are part 

of the proposed state substitution method, such as ODE integrators. Nevertheless, this 

new approach allows to make exploration of model structure faster and more efficient. 

By reducing computational time of parameter identification, it allows researchers and 

industry to explore check more model structures within save time frame or introduce 

more complex model without sacrificing additional time required to identify them. 
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9. Appendix 

Example code for case study 3. It should be noted not all functions are given and 

provided code will not work, if directly copied to the MATLAB environment. This is to 

give high-level overview of methodologies used in this work: 

Derivative estimation main script example: 

clear all 
close all 
profile on % turning profiler on to measure computational time 

  
global par 
global p 
global w 
 

w = [200,50,1,50,1,1]; % weight values for states manually inputted 
sample = 0.1; % Sampling interval of generated data 
noise = 0.1; % Noise level of the generated data 
timeS = 0.001; % Sampling interval of the spline 

  
Name = 'case study 3';  
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for 

selected case study 

  
p = par0; 
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); % 

Generating random staring point of unseen data 

 
[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating 

data, with (y0n) noise and without (y0) noise 
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode); 

  
% Cubic spline opproximatation 
for i = 1:length(y0n(1,:)) 
    yy1(i,:) = csaps(t1,y0n(:,i)); 
    yy2(i,:) = csaps(t1,y02n(:,i)); 
end 

  
% Sampling of the spline with smaller interval 
for ii = 1:length(y0n(1,:)) 
    fx1(ii,:) = fnval(yy1(ii,:),0:timeS:t1(end)); 
    fx2(ii,:) = fnval(yy2(ii,:),0:timeS:t1(end)); 
end 

  
% Derivative calculation of time series 
for iii = 1:length(y0n(1,:)) 
    dx1(iii,:) = diff(fx1(iii,:))/timeS; 
    dx2(iii,:) = diff(fx2(iii,:))/timeS; 
end 

  
opts = 

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',6400

); % Solver settings 

  
% Optimisation of all estimated derivatives 
for j = 1:(t1(end)/timeS) 
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[x(j,:),fval(j)] = 

fmincon(@(p)DerivMonod(p,yy1,yy2,dx1(:,j),dx2(:,j),timeS*j),zeros(1,length(

p))+0.5,[],[],[],[],a,b,[],opts); 
end 

  
par = mean(x); % taking mean of the estimated parameter vector 

 
Problem = @(par)MinError(par,fnc,x0,t1,y0n,ode,OPTS,y02n,t1); %Setting up 

objective function for the global search 
opts = 

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',3200

); % setting parameters for global search 

  
problem = createOptimProblem('fmincon','objective',Problem,'x0',par,... 
    'lb',a,'ub',b,'options',opts); 
gs = GlobalSearch('Display','iter'); 
ms = MultiStart('Display','iter','MaxTime',60); % initializing global search 
[xf,f,flag,table,residGS] = run(gs,problem); % Running global search 

  
PPP = profile('info'); 

  
RunTime = 

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','DerivativeEs

t')).TotalTime; % Checking computational time 
profile off % Stopping profiler 

 

Multi-start script example: 

clear all 
close all 
profile on % Turning profiler on to measure computational time 

  
global w 
global p 

  
w = [200,50,1,50,1,1]; % weight values for states manually inputed 
sample = 0.1; % Sampling interval of generated data 
noise = 0.1; % Noise level of the generated data 

  
Name = 'case study 3';  
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for 

selected case study 
 

p = par0; 
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); % 

Generating random staring point of unseen data 

 
[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating 

data, with (y0n) and without (y0) noise 
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode); 

  
pop = 20; % Population of the Latin hyper cube samples 
N = length(par0); % Number of Variables 
Best = pop*1; % Number of best initial cases after screening 

  
lb = a; % Setting lower parameter boundries 
ub = b; % Setting upper parameter boundries 

X = lhsdesign(pop,N,'criterion','correlation'); 
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D = bsxfun(@plus,lb,bsxfun(@times,X,(ub-lb))); % Initial conditions for latin 

hyper cube 

  
% Performing intial screening 
for j = 1:pop 
    E = MinError(D(j,1:N),fnc,x0,t1,y0n,ode,OPTS,y02n,t1); 
    D(j,N+1) = E; 
end 

  
% Selecting fraction of best case initial conditions 
D = sortrows(D,N+1); 
D = D(1:round(Best/pop*size(D,1)),1:N+1); 

  
fLow = 1e+10; 

  
% initialing multi-start 
for i = 1:size(D,1) 
    disp({'Run Number:',i}); 
opts = optimoptions(@fmincon,'Algorithm','sqp','Display','iter'); 
problem = 

createOptimProblem('fmincon','objective',@(par1)MinErrorW(par1,fnc,x0,t1,y0

n,ode,OPTS,y02n,w,t1),... 
'x0',D(i,1:N),'lb',lb,'ub',ub,'options',opts); 

  
ms = MultiStart('Display','iter','MaxTime',60); 
[xf,f] = run(ms,problem,1); 

  
if f < fLow % updating parameter values, if error is lowest compared to other 

runs 
     Par = xf;  
     fLow = f; 
end 
end 

  
PPP = profile('info'); 

  
RunTime = 

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','Latin')).Tot

alTime; % Checking computational time 
profile off % Stopping profiler 

 

State substation Method main script example: 

clear all 
close all 
profile on % Turning profiler on to measure computational time 

  

global w 
global p 

  
w = [200,50,1,50,1,1]; % weight values for states manually inputed 
sample = 0.1; % Sampling interval of generated data 
noise = 0.1; % Noise level of the generated data 

  
Name = 'case study 3';  
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for 

selected case study 
 

p = par0; 
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x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); % 

Generating random staring point of unseen data 

 
[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating 

data, with (y0n) and without (y0) noise 
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode); 

 

options = optimset('Display', 'iter', 'MaxIter',200,... 
                'LargeScale','on','Jacobian','on','DiffMaxChange',... 
                0.1,'DerivativeCheck','off','MaxfunEvals',200,... 
                'TolFun',1e-10, 'TolX',1e-10); 
% local solver options 

% Each state is solved individually based on hierarchy model 

p0 = [0.5,0.5,0.5,0.001,0.001,0.001,0.001];          
[p1,resnorm1,resid1,exitflag1,output1,lambda1,jacobian1] = 

lsqnonlin(@Parameters1,p0,... 
[0,0,0,0,0,0,0],[2,2,1,0.5,0.5,0.5,0.5],options); 
par = p1; 

  
p0 = [0.5,0.5,0.3,0.5,0.5];             
[p2,resnorm2,resid2,exitflag2,output2,lambda2,jacobian2] = 

lsqnonlin(@Parameters2,p0,... 
[0,0,0,0,0],[2,1,0.5,5,50],options); 
par(8) = p2(3); 

  
p0 = [0.5,0.5,0.4];           
[p4,resnorm4,resid4,exitflag4,output4,lambda4,jacobian4] = 

lsqnonlin(@Parameters4,p0,... 
[0,0,0],[2,1,1],options); 
par(2) = mean([p1(2),p2(1),p4(1)]); 
par(3) = mean([p1(3),p2(2),p4(2)]); 
par(12) = p4(3); 

  
p0 = [0.5,0.5,0.5];             
[p3,resnorm3,resid3,exitflag3,output3,lambda3,jacobian3] = 

lsqnonlin(@Parameters3,p0,... 
[0,0,0],[5,5,50],options); 
par(9) = p3(1); 
par(10) = mean([p2(4),p3(2)]); 
par(11) = mean([p2(5),p3(3)]); 

  
p0 = [0.5];             
[p5,resnorm5,resid5,exitflag5,output5,lambda5,jacobian5] = 

lsqnonlin(@Parameters5,p0,... 
[0],[1],options); 
par(13) = p5(1); 

   
p0 = [0.5,0.5,0.5];             
[p6,resnorm6,resid6,exitflag6,output6,lambda6,jacobian6] = 

lsqnonlin(@Parameters6,p0,... 
[0,0,0],[10,50,0.5],options); 
par([14,15,16]) = p6([1,2,3]);  

  
w = [200,50,1,50,1,1]; % weigths for state 
fnc = @(b)problem(b); % Setting up objective function for the global solver 

 
lb = a; % Setting lower parameter boundries 
ub = b; % Setting upper parameter boundries 
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opts = 

optimoptions(@fmincon,'Algorithm','sqp','Display','iter','MaxFunEvals',3200

); % Global solver options 
problem = createOptimProblem('fmincon','objective',fnc,'x0',par,... 
    'lb',lb,'ub',ub'options',opts); 
gs = GlobalSearch('Display','iter'); 
ms = MultiStart('Display','iter','MaxTime',60); 
[xf,f,flag,table,residGS] = run(gs,problem); % Running global search 

  
PPP = profile('info');  
RunTime = 

PPP.FunctionTable(structfind(PPP.FunctionTable,'FunctionName','Latin')).Tot

alTime; % Checking computational time 
profile off % Stopping profiler 

 

PCA visualization algorithm main script example: 

clear all 
close all 

 
global w 
global p 

  
w = [200,50,1,50,1,1]; % weight values for states manually inputted 
sample = 0.1; % Sampling interval of generated data 
noise = 0.1; % Noise level of the generated data 
pop = 5000; % Population of the samples 

 

Name = 'case study 3';  
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for 

selected case study 
 

p = par0; 
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); % 

Generating random staring point of unseen data 

 
[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating 

data, with (y0n) and without (y0) noise 
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode); 

  

 
[Answer,ACP,y0,Sample,CC,Error,Cluster,NoC,y02] = 

Convex(x0,t1,par,a,b,fnc,pop,noise,ode,OPTS,t2);% function that calculates 

convexivity of #pop triple samples in percentage 

  

 
[coff,score] = pca(Sample',2); % Calculating scores of the first two principal 

components. 

  

SOM main script example: 

clear all 
close all 

  
global w 
global p 

  
w = [200,50,1,50,1,1]; % weight values for states manually inputed 
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sample = 0.1; % Sampling interval of generated data 
noise = 0.1; % Noise level of the generated data 

  
Name = 'case study 3';  
[fnc,x0,par0,a,b,t,ode,OPTS] = Idata(Name); % Pulling initial conditions for 

selected case study 
 

p = par0; 
x02(:,1) = ((x0(:,1)-x0(:,2)).*rand(length(x0(:,1)),1)+x0(:,2)); % 

Generating random staring point of unseen data 

 
[y0n,y02n,y0,y02,t1] = DataGen(x0,sample,noise,t,fnc,OPTS,ode); % Generating 

data, with (y0n) and without (y0) noise 
[y03n,y03,~] = DataGen(x02,sample,noise,t,fnc,OPTS,ode); 
 

pop = 5000; % population size of the latin hyper cube sampling 
N = length(par); % Variables 
lb = a; 
ub = b; 
XX = lhsdesign(pop,N,'criterion','correlation'); 
D = bsxfun(@plus,lb,bsxfun(@times,XX,(ub-lb))); 

  
w = [200,50,1,50,1,1]; % weigths for state 

  
for i = 1:length(D) 
    Error(i) = MinErrorW(D(i,:),fnc,x0,t,y0,ode,OPTS,y02,w,t); % optimizing 

initial samples points 
end 
 

% Removing all failed integration samples and sorting from best to worst 

E = Error(Error<2e+10); 
Esort = sort(E); 
 

% Labelling based samples based on error value 

EE(1:length(E))= {'H'}; 
EE(E<Esort(round(0.5*length(E))))= {'M'}; 
EE(E<Esort(round(0.05*length(E))))= {'L'}; 

  
SomData = 

som_data_struct(D(Error<2e+10,:),'name','SOMdata','labels',EE','comp_names'

,Names); 
Map = som_make(SomData, 'algorithm', 'batch','shape','cyl'); % defaults batch 

traininf used (faster than sequential training) 
Map = som_autolabel(Map,SomData,'vote'); %vote = most hits dictates class! 

  
x1=find(ismember(SomData.labels,'H')==1); 
x2=find(ismember(SomData.labels,'M')==1); 
x3=find(ismember(SomData.labels,'L')==1); 

 
h1 = som_hits(Map,SomData.data(x1,:)); 
h2 = som_hits(Map,SomData.data(x2,:)); 
h3 = som_hits(Map,SomData.data(x3,:)); 

 
    c1=ismember(Map.labels,'H')*1;     %Class 1 (Application for iris 

Accepted) 
    c2=ismember(Map.labels,'M')*2;     %Class 2 (Application for iris 

Rejected) 
    c3=ismember(Map.labels,'L')*3;        %Class 3 Empty 
    c4=ismember(Map.labels,'')*4; 

  
    classes=c1+c2+c3+c4; 
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    col_mat=zeros([length(classes),3]); % Initialise Matrix of colors to be 

associated with each node 

  
    for count=1:length(classes) 
        if ismember(classes(count),1)==1 
            col_mat(count,:)= [1,0,0]; 
        elseif ismember(classes(count),2)==1       %This section finds and 

replaces with the correct colors 
            col_mat(count,:)=[0,0,1]; 
        elseif ismember(classes(count),3)==1       %This section finds and 

replaces with the correct colors 
            col_mat(count,:)=[0,1,0]; 
        elseif ismember(classes(count),4)==1 
            col_mat(count,:)=[0,0,0]; 
        end 
    end 

  
    C=som_clustercolor(Map,classes,col_mat); % coloring based most voted 

clusters 

     
    for i = 1:length(Map.codebook) 
        Error1(i) = 

MinErrorW(Map.codebook(i,:),fnc,x0,t,y0,ode,OPTS,y02,w,t); % Calculating 

error of the mean cluster parameter values 

    end 

     
    Error1(2,:) = 1:length(Error1); 
    Error1 = sortrows(Error1',1); 
    CG = gray(length(Error1)); % Creating grayscale vector based on the amount 

of samples 
    RCG(Error1(:,2),:) = CG; % assigning correct grayscale values to each 

error value 

     
[Like,LikeI,Diff] = Pmatch(Map,RCG); % Comparing SOM error plane with 

parameter error plane in grayscale 
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