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ABSTRACT 

 
Batch processes are commonly used for the manufacturing of high-value-added products such 

as specialty chemicals and pharmaceuticals. The efficient operation of batch processes is of 

great importance to produce high-quality products with minimal consumption of energy and 

resources. Batch process optimization and control are essential for achieving this.  

One common approach to the modelling and optimization of batch process systems is to use 

the first principle concept in building the models of the process using mass balances, energy 

balances and reaction kinetics of the batch process operations. However, this type of 

mechanistic model is difficult to develop due to the complexity of the process operations, 

multiple variables, and batch-to-batch variations involved. The development of mechanistic 

models is time and effort-challenging, which may not be feasible for batch processes where 

frequent changes in product specifications occur and a type of product is usually 

manufactured for a limited time in response to the dynamic market demand. 

Computational intelligence techniques address these shortcomings by making use of data-

driven concepts in the modelling and optimization of batch processes. With the development 

and progress in research, data-driven modelling is becoming the more widely used method in 

modelling and analyses of batch/fed-batch process operations. Extreme learning machine 

(ELM) is a type of data-driven modelling technique with a fast-training process and can be 

used for modelling a different kind of process operation like the conventional neural network 

(NN). ELM has been established to be successful in modelling nonlinear (complex) batch 

operations as it provides good generalization performance at fast learning speed and gives 

accurate long-range or multi-step ahead prediction performance. However, it has its 

shortcomings as well, hence the need to combine other statistical learning techniques to 

improve its general prediction capabilities. 

This work presents the modelling and optimisation of fed-batch processes using different 

data-driven modelling techniques such as the ELM, Bootstrap Aggregated ELM, and Iterative 

Learning Control. It also presents the strategy of merging extreme learning machine (ELM) 

and recursive least square (RLS) techniques in modelling and batch-to-batch optimization of 

fed-batch processes.  

To cope with the batch-to-batch variations due to unknown disturbances such as unknown 

process condition drift, the RLS algorithm is integrated with the ELM to update the output 
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layer weights recursively from batch to batch. This is because the number of hidden neurons 

selection together with the output layer weights computation are major criteria towards 

accurate model predictions in ELM. The recursive least square (RLS) adapts to the current 

process operation by recursively solving the least-squares problem in the considered model. 

RLS estimation algorithm nullifies the model plant mismatches caused by the occurrence of 

unknown disturbances. The offline trained output layer weights of the ELM are used as the 

initial parameter estimation in RLS. After updating the ELM model, optimisation is carried 

out to update the feeding policy for the next batch.  

The proposed technique is thus applied to two fed-batch case studies including a simulated 

fed-batch reactor process and a simulated baker’s yeast fermentation process. The results 

obtained from the use of the proposed technique show that the proposed technique can 

accurately cope with unknown disturbances and improve process operation from batch to 

batch. 
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CHAPTER 1. 

INTRODUCTION 

1.1 Research Background 

Batch process operation is the production in time-sequential form, into distinct sets with 

characteristic features of flexibility, unsteady and nonlinear dynamical behaviour during the 

production process. Currently, many industrial companies make use of batch/semi-batch 

process techniques during production for their simplicity in the mode of operation and also 

support the production of high-value products, such as fine chemicals, and other suspension 

polymers with specific morphological properties, pharmaceutical products (bio and non-bio) 

and semiconductor products. Despite their limited usage in some big manufacturing 

industries, batch/semi-batch operation processes still form significant manufacturing 

processes that cannot be eliminated due to their simplified process operation and, 

consequently the sole interest of better monitoring of end-of-batch quality control parameters 

(Zhang, 2005a). 

According to (Kulkarni et al., 2004) there are three (3) main stages involved in running 

batch/semi-batch process operation, namely: (i) the feeding of reactants into the reactor, (ii) 

monitoring of the evolvement of operation and (iii) the yield delivery at the termination of 

process operation. The most decisive among these stages of operation is the monitoring of the 

process operation and to monitor such stage, the process control personnel need an accurate 

process model to achieve process optimisation. Therefore, the primary facet of process 

optimisation lies in the accurate process model which can either be in empirical (data-driven) 

or mechanistic (from the first principle) model form. In mechanistic modelling, detailed 

concepts of the process kinetics, reactions, energy, momentum, and mass balances 

phenomenon need to be well understood as these will provide precise insights into the 

mathematical representation of the process behaviour.  

However, due to the complex nature of many chemical processes such as batch-to-batch 

variation and non-linearity of the processes, the detailed conceptualisation information proves 

more difficult and time-consuming to obtain. Developing mechanistic models usually require 

a significant amount of time and effort in understanding the process concepts, which may not 

be feasible for batch/fed-batch processes where frequent changes in product specifications 
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occur and some product brand is usually manufactured for a limited period in response to the 

dynamic market demands. Data-driven modelling can be a very useful alternative in this case. 

 The new trending idea of machine learning and data science analysis in research 

developments has become widely acceptable insight used in modelling and analyses of any 

form of process operations. Thus, the data-driven modelling concept utilizes statistical 

theories in establishing the process performances, monitoring the progress of pre-set 

conditions of operation for optimization purposes and generalization capabilities in predicting 

unforeseen circumstances. In this concept, detailed knowledge of the process operation is not 

necessary but past historical data on the process operation is required. As long as the 

historical data is large enough, data-driven modelling and process optimization can be 

established with machine learning and statistical theories conceptualization (Liu et al., 2019). 

Machine learning (ML) concepts such as Neural Networks (NN) and Extreme Learning 

Machine (ELM) are like having as powerful means of approximating continuous nonlinear 

functions with an encouraging prospect in modelling and controlling any chemical processes 

through utilizing historical process operational data. These ML models can be used to forecast 

steady-state and dynamic process behaviour if properly trained and validated, hence resulting 

in better-quality control performance and process optimisation (Zhang, 1999; Tian;Zhang and 

Morris, 2001; Kulkarni et al., 2004; Xiong et al., 2004a; Zhang, 2004; Xiong and Zhang, 

2005; Mukherjee and Zhang, 2008; Zhang, 2008). To model and control process plants 

effectively with a data-driven concept, large sets of data capturing the essential parts of the 

process settings will be required (Zhang, 2004). In most manufacturing industries, there is 

always insufficient batch-run data to use in training the model due to production cost 

minimisation. Thus, the neural network training with limited data sometimes leads to 

overfitting with an inaccurate model and poor generalisation.  

To improve model prediction accuracy from insufficient data available while training during 

modelling, (Zhang, 1999) suggests the use of bootstrap aggregated or stacked neural 

networks. The bootstrap aggregated network combines several individual neural networks in 

building a model as different networks do perform well in different sections and combining 

those networks into a single network gave an improved model prediction.  

Recently, various researchers have demonstrated the use of an extreme learning machine 

(ELM) instead of a conventional neural network for its fast training. An ELM is a single 

hidden layer feedforward neural network (SLFNN), but its training processes are different. In 
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ELM, the hidden layer weights are arbitrarily assigned and fixed without repeated adjustment, 

unlike the traditional neural network training approaches. The parameters to be learned in an 

ELM are the connections (weights) between the hidden layer and the output layer, which are 

determined with a one-step regression-type approach using Moore-Penrose (MP) generalized 

inverse matrix. Thus, “ELM is formulated as a linear-in-the-parameter model and then solved 

in form of the linear system of equations” (Huang et al., 2015). ELM is impressively 

proficient, fast in training, with good generalization ability, and able to reach global optimum 

with the least human interference when compared to traditional feed-forward neural network 

learning methods. Previous studies have shown that  ELM maintains its general 

approximation capability with arbitrarily generated hidden layer weights if “the activation 

function in the hidden layer is infinitely differentiable” (Huang;Zhu and Siew, 2006) and its 

learning algorithm could be used to train SLFNNs with either differentiable or non-

differentiable activation functions (Cao and Yuan, 2011; Li et al., 2017) . Based on all these 

facts, ELM is a good choice for data-driven modelling in a situation where there’s insufficient 

historical process data, unavoidable disturbances with transient characteristics process and for 

nonlinear batch/semi-batch process. To have an accurate model prediction, a large aggregate 

of data covering the diverse aspect of process operating conditions should be used in training 

of the model prediction (Jie, 2003; Zhang, 2004; Mukherjee and Zhang, 2008; Li et al., 2017).  

Regardless of all the facts mentioned above on ELM, its quick training and good 

generalization ability depend on the generation of random weights and selection of the 

number of hidden neurons, which is clearly by chances or probabilities and thus this 

sometimes led to model process mismatch. Furthermore, unknown disturbances commonly 

exist in production processes due to variations in raw materials composition, reactive 

impurities, process equipment degradation due to wearing and reactor fouling is common in 

many manufacturing plants (Zhang et al., 1999). All these and insufficient historical data 

can lead to inaccurate model prediction or model plant mismatch. To overcome the model 

plant mismatches, the recursive least square technique (RLS) is proposed to be integrated 

with an ELM algorithm to correct the model plant mismatch prediction in ELM by 

updating the output layer weights of the ELM model from batch to batch. Based on the 

batch-wise updated ELM model, the optimal control policy can also be updated from batch 

to batch. This is termed as batch-to-batch optimal control strategy which utilises the 

repetitive feature of batch operation, by using immediate batch historical (previous) 

operational data to improve the operating trajectories of the next (current) batch runs 

intending to improve the process performance indicator of the overall batch operation. Due 
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to the repetitive nature of batch processes, the error-tracking strategy from the previous 

batch is corrected onto the next batch using the error difference from the current and 

previous batch in achieving desired output trajectories close to actual product quality, 

although the final time product quality is the target of the control strategy (Jie, 2003).  

Many conventional optimal control techniques have been invented for linear time-invariant 

systems, which are presumed to be well-known. In most real instances, the systems to be 

controlled are nonlinear and the detailed first principle knowledge is unknown. This 

unknown situation becomes difficult when the unknown parameters of the system model 

change endlessly during the process operation. These changes in the parameters bring about 

uncertainties in the model, which are sometimes difficult to control with the established 

adaptive control techniques. The adaptive control technique can adjust itself in unfamiliar 

uncertainties through either direct or indirect forms. It is said to be direct if the estimated 

parameters solution is used directly in an adaptive controller and indirect if parameter 

estimate details are used to adjust the controller. It has been shown to work well for many 

dynamic systems with unknown fixed parameters. However, their applications may not be 

easy to extend to unknown time-varying parameter systems (Ahn;Chen and Moore, 2007). 

The RLS technique is a statistical tool in form of an adaptive filter algorithm for online 

parameter estimation, which estimates a plant model by repeatedly searching for the 

coefficients that minimise the weighted least squares solution of that model. RLS can solve 

least square estimation problems by attempting to minimise the sum of weighted squared 

errors between the measured and the predicted outputs. This concept is used repeatedly in 

obtaining the parameter estimation of the predicted output weight by using a model that is 

linear in predicted output weight from the ELM (Alli and Zhang, 2020).  

Generally, parameter estimation is usually time-varying in many process systems which 

can be of two cases, namely: the parameter estimation can be constant for a long period and 

suddenly changes and sometimes changes with time slowly as the process operation 

progresses. In either case, a monitoring solution is sought and for the former case, 

covariance resetting is the solution for abrupt changes while for the latter case, the 

forgetting factor is added to correct the slow changes with time in the parameter estimation 

of that process (Wigren, 1993).  

 



5 
 

1.2 Motivation  

Over a couple of decades, machine learning has been in vogue in modelling various industrial 

complex situations where traditional techniques have constraints in giving accurate model 

representation. Machine learning-based models may tend to be much easier to establish than 

mechanistic models but still encounter plant model mismatches and insufficient datasets in 

building reliable process models. Hence, the basic questions that always come to mind are 

how we can solve or minimize such problems to make machine learning much easier with 

negligible error for process modelling, monitoring and optimization purposes (Cao, 2018). 

Many researchers have also worked on the improvements of machine learning for modelling 

complex process operations such as the advent of bootstrap aggregated NN and bootstrap 

aggregated ELM which majorly focused on maximal utilization of the historical dataset 

through bootstrapping of a dataset in building a reliable process model. However, this 

research work will propose another possible way of improving machine learning with a 

minimal historical dataset for modelling and optimization of chemical processes by merging 

the well-established machine learning (ELM) model with the statistical technique (RLS) 

concept. 

 

1.3 Justification of the research 

Admittedly, many strategies and concepts have been employed towards neural network-based 

models for batch-to-batch optimization in literature to compensate for process model 

discrepancy (modelling error) but as advancements and discoveries of new techniques of NN 

were being discovered, there is a need to apply the new concepts to new research to show how 

efficient and effective the new techniques is when applied to case study and compared to 

traditional concepts. Some of the earlier concepts suggested are: the use of bootstrap 

aggregated neural networks through principal component regression (PCR) concept for the 

development of robust nonlinear models was proposed (Zhang, 1999), comparative studies 

between single neural network and stacked neural networks in modelling and controlling 

batch polymerization reactor and the study admitted that stack neural networks outperform the 

single NN (Tian;Zhang and Morris, 2001), the use of recurrent neural networks for optimal 

control strategy in pilot-scale polymerisation reactor (Xiong and Zhang, 2005), and the use of 

support vector regression model for optimal batch to batch control (Liu et al., 2005) etc. 
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Single hidden layer feedforward neural networks (SLFNNs) trained using the conventional 

backpropagation training have some limitations such as slow convergence speed, large 

numbers of iteration learning steps which lead to large training time, and the possibility of 

converging to local optima instead of global optima (Huang;Zhu and Siew, 2006). Moreover, 

NN with more than two layers is difficult to train using a traditional gradient descent scheme 

which suggested pre-processing data before data analysis and extraction for modelling (Jeong 

and Lee, 2018). This eliminates noises and outliers in the data and possibly reduces its 

searching dimensionality. With all these shortcomings and limitations of traditional NNs, it 

opens opportunities for more effective empirical forms such as extreme learning machines 

(ELM), deep learning machines, deep belief learning machines and restricted Boltzmann 

machine to be used for process modelling, monitoring and optimization purposes. 

 

1.4 Aims and Objectives of the Research 

This research work is aimed at developing improved model reliability and capability by 

using computational intelligence techniques for batch process modelling and control 

through the combination of an extreme learning machine and recursive least square 

technique. 

The main objectives are to: 

1. Develop models for batch/fed-batch chemical processes with ELM and Bootstrap 

aggregated ELM. 

2. Investigate methods for improving ELM model reliability and generalization capability 

in (1) through a combination of ELM and RLS algorithms for the case studies. 

3. Modelling and optimization of the batch/fed-batch chemical processes with the proposed 

ELM and RLS algorithm in (2). 

 

1.5 Scope of the Research 

Both extreme learning machine (ELM) and bootstrap aggregated ELM will be used to model 

some typical batch/fed-batch chemical processes. Furthermore, an improvement in the model 

reliability and generalization will then be sought through a combination of ELM and RLS 

algorithms. The RLS is expected to take care of the model plant mismatch that may arise due 

to outliers (unavoidable changes that do occur to the dataset during algorithm execution) in 

some of the datasets after data processing and analysis on the historical dataset.  
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This proposed technique will be applied to some typical batch/fed-batch chemical processes 

for process modelling, monitoring, control, and optimisation of the process operation.  

 

 

1.6 Thesis organisation 

The thesis is organised as follows: 

In Chapter two, relevant general literature related to batch process modelling and 

computational intelligence is reviewed. This is to provide detailed insight into the progress in 

the improvement of machine learning techniques to process modelling. Some of the discussed 

modelling techniques are the Artificial Neural Network (NN), Bootstrap Aggregated Neural 

Network (BAGNET), Extreme learning machine (ELM), Bootstrap Aggregated ELM (BA-

ELM), Iterative Learning Control (ILC) and lastly combining ELM with Recursive Least 

Squares technique (ELM-RLS), which is the focus of this research work.  

Chapter three presents studies of the modelling of fed-batch reactor and baker’s yeast 

fermentation process using different data-driven modelling techniques such as ELM, BA-

ELM and ILC. This is done to show how effective, fast, reliable, and good generalisation 

performance each computational intelligence method will be achieved. Both static and 

dynamic models of these case studies are developed using either the full or partial simulated 

model-based datasets and they all offer different levels of accuracy in their model predictions.  

Chapter four focuses on batch-to-batch adaptive modelling of the case studies (the fed-batch 

reactor system and baker’s yeast fermentation process) using the proposed ELM-RLS 

modelling technique. These models developed are in the static form, with part of the 

simulated historical datasets used. Despite the use of insufficient historical process data in 

building the static model, the proposed batch-to-batch adaptive modelling offers an accurate 

and reliable model prediction for both case studies.  

Chapter five focuses on the optimization control of the fed-batch process of the baker’s yeast 

fermentation obtained with the proposed ELM-RLS technique. In this chapter, iterative batch-

to-batch optimization control utilizes the repetitive nature of the process by finding the 

updated input variables using information from the previous and the current batch runs to 

enhance the future batch runs of the yeast fermentation process. The results obtained show an 
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improved feeding control policy which yields an improved final biomass concentration when 

applied to the mechanistic simulation model. 

Chapter six focuses on research conclusions and recommendations for some possible future 

works on the proposed hybrid technique of merging ELM with some other useful statistical 

techniques.  

 

1.7 Conference Attended and Presentations 

• Kazeem Alli and Jie Zhang (2018) ‘Batch-to-Batch Online Optimisation Control with 

Extreme Learning Machine and Integrated System Optimisation & Parameter 

Estimation’, Advances in Process Analytics and Control Technology 2018 

Conference, 25th-27th April 2018, Gateshead, UK. 

• Kazeem Alli and Jie Zhang (2020) ‘Adaptive Modelling of Fed-Batch Processes with 

Extreme Learning Machine and Recursive Least Square Technique’, 12th International 

Conference on Agents and Artificial Intelligence, 22nd-24th February 2020, Valletta, 

Malta. 

• Kazeem Alli and Jie Zhang (2021) ‘Adaptive Optimal Control of Baker’s Yeast 

Fermentation with Extreme Learning Machine and Recursive Least Square 

Technique’, Advances in Process Analytics and Control Technology (APACT-21 On-

line Conference), 19th-23rd April 2021, UK. 

• Kazeem Alli and Jie Zhang (2021) ‘Adaptive Optimal Control of Baker’s Yeast 

Fermentation with Extreme Learning Machine and Recursive Least Square 

Technique’, 31st European Symposium on Computer Aided Process Engineering 

(ESCAPE-31), 6th-9th June 2021, Istanbul, Turkey.  

 

Published Papers  

• Alli, Kazeem, and Jie Zhang (2020). Adaptive Modelling of Fed-batch Processes with 

Extreme Learning Machine and Recursive Least Square Technique. In Proceedings of 

the 12th International Conference on Agents and Artificial Intelligence-Volume (2): 

ICAART, ISBN 978-989-758-395-7 ISSN 2184-433X, pages 668-674”. DOI: 

10.5220/0008980506680674. SciTePress - Publication Details 

• Alli, Kazeem, and Jie Zhang (2021). Adaptive Optimal Control of Baker’s Yeast 

Fermentation Process with Extreme Learning Machine and Recursive Least Square 

https://www.scitepress.org/Link.aspx?doi=10.5220%2f0008980506680674
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Technique. Computer-Aided Chemical Engineering, Vol.50, The 31st European 

Symposium on Computer-Aided Process Engineering, Elsevier. 

https://doi.org/10.1016/B978-0-323-88506-5.50191-1 . 

• Alli, Kazeem, and Jie Zhang. “Optimal Control of Fed-Batch Processes with 

Computational Intelligence and Statistical Learning Technique”. (Drafted and ready 

for submission). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Batch Process Modelling and Control 

Batch and semi-batch processes are well-known means of manufacturing high-quality and 

value-added products in the chemical, biochemical, pharmaceutical, and food industries. They 

are characterised by dynamic and non-stationary behaviour, high conversions of batch-end 

quality products, finite duration, and the cyclic repetition of all batch stages of the production 

process.  

The main objective of the batch operation process is to achieve reliable and reproducible 

desired product qualities at all times of the production process but usually, this is not feasible 

due to batch-to-batch variations which affect the batch-end product quality. To reduce the 

batch-to-batch variations, efficient process monitoring, and control is developed to detect any 

deviation and take corrective measure in the process operation thereby increasing the output 

turnover of the constantly fluctuating market demands. Process monitoring of batch operation 

helps in fault diagnosis, maintaining process safety, reducing the cost of production through 

efficient use of materials in production and lastly for an improved understanding of the 

process operation. On the other part, quality control helps in maintaining uniform quality at 

all stages of production through the standardisation of the quality variables to the required 

settings (Qin, 2012) .  

Some of the process variables in batch processes include temperature, pressure, feed rate and 

agitation rate etc. They are the key indicators of process performance which can either be 

offline or online measured. Information captured is thereby used to analyse the process 

behaviour for improved process operating conditions which leads to reliable product quality 

(Choi; Morris and Lee, 2008). 

As both batch and semi-batch processes are highly nonlinear, time-varying, and highly 

intertwined with many uncertainties, building a process model from the governing physical 

and chemical process laws (i.e., first principle model or mechanistic model), is incredibly 

tough and a series of strategies have been developed to unravel these limitations in the 

mechanistic model for monitoring and controlling of batch processes. 

 Machine learning techniques are increasingly applied emerging technologies that can greatly 

boost the utilisation of plant data in the creation of data-based process models. This is known 
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as a data-driven modelling approach, and it provides fast and accurate modelling of processes 

without requiring extensive process knowledge. To generate an improved model, machine 

learning is utilised in conjunction with process knowledge as well as engineering constraints. 

Data-driven models are typically referred to as empirical models, which are obtained either by 

linear regression or non-linear regression and provide easier alternatives to complicated 

mechanistic modelling of batch processes, bio-process reactors and fermenters, complex 

refining units and fluidized bed processes. It also allows model-building analysis in a broader 

set of data while leveraging advanced data science techniques for model predictions of these 

processes.  

 

2.2 Modelling Techniques with Machine Learning 

Machine learning is a broad term that describes how hardware or software enables machines 

to mimic human intelligence using algorithms programmed in computer codes in analysing 

large datasets in making intelligent decisions. Since the invention of machine learning, we 

have seen a significant increase in its applications in various fields of sciences, engineering, 

and medical technologies both at the academic and industrial levels. To health personnel, it is 

a great tool for diagnosing patients, developing new drugs through a combination of possible 

substances (like in the case of coronavirus vaccines) and making drug prescriptions more 

comfortable through an online application. To the automobile industry, it redefines the 

industry into the advent of autonomous (self-driving) cars, self-delivery drones and highly 

intelligent flight control, and to the manufacturing sectors, it boosts production quality and 

quantity through the application of intelligent components such as sensors and actuators 

which helps in effective production, thereby leading to saving billions of pounds through 

increased productivity. 

Machine learning permits systems to acquire knowledge directly from historical data 

information using its computational algorithm to acquire the necessary information and to 

execute assignments logically and flawlessly. The computational algorithm is the brain behind 

the processing instruction procedure of any machine learning concept called artificial 

intelligence (AI). In other words, machine learning is a subset of AI that uses principles of 

computer science together with statistical techniques in creating models for predictions and 

inferences (Nwankpa et al., 2018). Figure 2.1 gives a map of how machine learning and 

artificial intelligence are related. 
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Machine learning can use supervised, unsupervised, semi-supervised, or reinforcement 

learning methods in obtaining detailed information about any process operation either through 

online or batch learning. In supervised learning, the algorithm learns information from 

historical data to forecast future outputs for given input data, while in unsupervised learning, 

the algorithm discovers hidden patterns or data structures of the historical data, and in semi-

supervised learning, the algorithm is the combination of both the supervised and unsupervised 

algorithms. Figure 2.2 gives a general overview of the types of machine learning. 

 

Figure 2.1 Relationship between Artificial Intelligence and Machine Learning 

 

 

Figure 2.2 General overview of the types of machine learning 

Machine 
Learning

• Classification
• Regression (Linear and Logistic)
• Support Vector Machines (SVMs)
• Decision Trees and Random Forests
• Neural Networks
• K- Nearest Neighbours

Supervised 
Learning

Unsupervised 
Learning

Semi-
supervised 
Learning

• Clustering (HCA, K-Means, EM)
• Visualization and dimensionality 

reduction (PCA,KPCA, LLE)
• Support Vector Machines (SVMs)
• Association rule learning

• Deep Belief Networks
• Restricted Boltzmann machines 

(RBMs)
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Advanced control and monitoring of industrial processes required accurate process models, 

and when choosing a modelling technique, the mechanistic modelling technique might not be 

the best option because of the complex nature and large-time execution of the process model 

involved. A data-driven or hybrid combination of data and mechanistic model provides a 

better alternative solution but still faces the effect of unexpected disturbance which leads to 

model misfit of the process operation.   

Apart from the unexpected disturbances (such as impurities or catalyst activities) which affect 

both the data-driven and the mechanistic modelling, the primary cause of model misfit in 

data-driven modelling is the insufficient availability of data to train the model and the 

inability to obtain data of some quality variables of the process operation. A large amount of 

data is needed to build a correct data-driven model and without an adequate amount of data 

for training the model, it could easily lead to over-training and substantial errors when applied 

to unobserved data (Zhang, 1999; Zhang, 2008). 

Thus, the mathematical representation of the general batch process modelling is given as 

follows: 

Given the historical batch process operation data containing input and the product quality 

trajectories at all sampling times in the jth batch run as below, 

𝑈𝑈𝑗𝑗 = [𝑃𝑃𝑗𝑗(0),𝑃𝑃𝑗𝑗(1), … ,𝑃𝑃𝑗𝑗(𝑁𝑁 − 1)]𝑇𝑇 

𝑌𝑌𝑗𝑗 = [𝑦𝑦𝑗𝑗(1),𝑦𝑦𝑗𝑗(2), … , 𝑦𝑦𝑗𝑗(𝑁𝑁)]𝑇𝑇   (2.1) 

where j represents the batch index, N is the number of sampling intervals within a batch, 𝑃𝑃 ∈

 𝑅𝑅𝑚𝑚 is the manipulated input variable for the product quality variables 𝑦𝑦 ∈  𝑅𝑅𝑛𝑛 and the initial 

conditions for both input and output variables are given as (𝑃𝑃0,𝑦𝑦0) respectively. Thus, the 

non-linear relationship that exists between the 𝑈𝑈𝑗𝑗 and 𝑌𝑌𝑗𝑗 of the batch process case study is 

modelled by using neural networks. 

Each batch run of the manipulated input variable 𝑈𝑈𝑗𝑗 is parameterised at a constant sampling 

interval to cover the whole batch run length of 𝑡𝑡𝑓𝑓 of the process operation. This strategy of 

parameterisation at equal sampling intervals throughout the process operation time ensures 

that the product qualities obtained at each final batch get close to desired output values (Xiong 

and Zhang, 2003). 
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There are three (3) different ways of utilising the historical operational data in predicting the 

dynamic nonlinear relationship between the input control variables and output product quality 

stated in equation (2.1) above, namely: 

The first type of dynamic model utilises the lagged values of the product quality variable and 

the input control variables up to time t-1 to predict in establishing the future time-series model 

prediction 𝑦𝑦𝑓𝑓(𝑡𝑡). This form of time-series model prediction is referred to as nonlinear 

autoregressive with exogenous (external) input (NARX), which is of the form: 

𝑦𝑦𝑓𝑓(𝑡𝑡) = 𝑓𝑓[𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … , 𝑦𝑦(𝑡𝑡 − 𝑑𝑑𝑜𝑜),𝑃𝑃(𝑡𝑡 − 1),𝑃𝑃(𝑡𝑡 − 2), …𝑃𝑃(𝑡𝑡 − 𝑑𝑑𝑖𝑖)]    (2.2) 

The second form of time-series model prediction is close to the NARX type but only uses the 

manipulated inputs variable of the past historical process operational data 𝑃𝑃(𝑡𝑡) without past 

𝑦𝑦(𝑡𝑡) operational data to predict the output/desired series of future 𝑦𝑦(𝑡𝑡). The form of the 

modelling representation equation is given as: 

𝑦𝑦𝑓𝑓(𝑡𝑡)  = 𝑓𝑓[𝑃𝑃(𝑡𝑡 − 1),𝑃𝑃(𝑡𝑡 − 2), …𝑃𝑃(𝑡𝑡 − 𝑑𝑑𝑖𝑖)]      (2.3) 

Lastly, the future time-series prediction 𝑦𝑦𝑓𝑓(𝑡𝑡) is predicted from only past time-series 

historical output data 𝑦𝑦(𝑡𝑡) and this is referred to as nonlinear autoregressive (NAR). The 

modelling equation is given as: 

𝑦𝑦𝑓𝑓(𝑡𝑡) = 𝑓𝑓[𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … , 𝑦𝑦(𝑡𝑡 − 𝑑𝑑𝑜𝑜)]     (2.4) 

where 𝑦𝑦𝑓𝑓 represent the predicted future output, y is the process output, u is the process inputs, 

t represents the discrete time, 𝑑𝑑𝑜𝑜 𝑑𝑑𝑎𝑎𝑑𝑑 𝑑𝑑𝑖𝑖 represents the time delays in the model output and 

input respectively. 

Among all the forms of time-series dynamic predictions mentioned above, the NARX model 

always gives superior model prediction based on its utilisation of both inputs and output 

historical data in capturing more information to make an informed decision in predicting 

future time-series output (Xiong and Zhang, 2003).Thus, the manipulated input variable and 

output product quality are given in equation (2.1) and are utilised in equation (2.2) in 

obtaining the model prediction for the different techniques used. 

Moreover, suppose a fed-batch reaction process is represented as given in equation (2.1) 

below:  

 



15 
 

𝑑𝑑𝑎𝑎 + 𝑏𝑏𝑏𝑏 → 𝐺𝐺𝐶𝐶 + 𝑑𝑑𝜏𝜏        (2.5) 

The mass, mole balances and rate of reaction are given as: 

For mass balance, Mass (m) = Density (𝜌𝜌0) x Volume (V), 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

= �̇�𝑚  and   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜗𝜗0       (2.6) 

𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝜌𝜌0
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑉𝑉 𝑑𝑑𝜌𝜌0
𝑑𝑑𝑑𝑑

        (2.7) 

�̇�𝑚  = 𝜌𝜌0𝜗𝜗0         (2.8) 

For 𝑡𝑡 = 0 𝑑𝑑𝑎𝑎𝑑𝑑 𝑉𝑉 = 𝜗𝜗0         

𝑉𝑉 = 𝑉𝑉0+𝜗𝜗0𝑡𝑡         (2.9) 

The mole balance of reactant A is given as: 

𝐹𝐹𝐴𝐴0 − 𝐹𝐹𝐴𝐴 + 𝐺𝐺𝐴𝐴 =  𝑑𝑑𝑁𝑁𝐴𝐴
𝑑𝑑𝑑𝑑

  (i.e., IN – OUT + GEN = ACC)    (2.10) 

where 𝐹𝐹𝐴𝐴0 is the input molar flow rate, 𝐹𝐹𝐴𝐴 is the output molar flow rate, 𝐺𝐺𝐴𝐴 is the generation 

and the differential term is the accumulation in moles per time. If the system variables are 

uniform throughout the system volume (𝐹𝐹𝐴𝐴0 = 𝐹𝐹𝐴𝐴 = 𝐺𝐺𝑜𝑜𝑎𝑎𝑠𝑠𝑡𝑡𝑑𝑑𝑎𝑎𝑡𝑡), then equation (2.10) 

becomes: 

𝐺𝐺𝐴𝐴 =  𝑑𝑑𝑁𝑁𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐴𝐴𝑉𝑉        (2.11) 

where  𝑑𝑑𝑁𝑁𝐴𝐴
𝑣𝑣.𝑑𝑑𝑑𝑑

  denotes the amount in the mole of A disappearing per unit volume per unit time 

and  

𝑑𝑑𝑁𝑁𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑑𝑑[𝐶𝐶𝐴𝐴𝑑𝑑]
𝑑𝑑𝑑𝑑

= 𝑉𝑉 𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

+ 𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

       (2.12) 

Recall that from equation (2.6), equation (2.12) becomes: 

𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐴𝐴 −
𝜗𝜗0𝐶𝐶𝐴𝐴
𝑑𝑑

        (2.13) 

Similarly, the other mole balances are given as:  

𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐵𝐵 −
𝜗𝜗0(𝐶𝐶𝐵𝐵0−𝐶𝐶𝑩𝑩)

𝑑𝑑
        (2.14) 

𝑑𝑑𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐶𝐶 −
𝜗𝜗0𝐶𝐶𝐶𝐶
𝑑𝑑

        (2.15) 

𝑑𝑑𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝐷𝐷 −
𝜗𝜗0𝐶𝐶𝐷𝐷
𝑑𝑑

        (2.16) 
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 In addition, the rates of reaction of all materials from equation (2.14) to equation (2.16) are 

all related as follows: 

−𝑟𝑟𝐴𝐴
𝑎𝑎

= −𝑟𝑟𝐵𝐵
𝑏𝑏

= 𝑟𝑟𝐶𝐶
𝑐𝑐

= 𝑟𝑟𝑑𝑑
𝑑𝑑

       (2.17) 

Experience has shown that the rate of reaction is influenced by both the composition and the 

energy of the material (Levenspiel, 1999). 

For this research work, two different case studies of fed-batch reaction processes will be 

discussed, namely: the isothermal fed-batch reactor and the baker’s yeast fermentation 

process. In real terms, I used the fermentation model equations from (2.13) to (2.16) to 

explain the mass, mole balances and rate of reactions that occurred in the baker’s yeast 

fermentation process. 

 

2.3 Artificial Neural Network 

A typical artificial neural network (ANN) is comprised of interconnected processing nodes 

called neurons and weights which are used for modelling complex non-linear patterns in data. 

A neural network learns the relationships and patterns in the data and uses the learnt 

knowledge in predicting the targeted output. These neurons are arranged into three (3) or 

more distinct layers, namely: the input layer, the hidden layers, and the output layer. The input 

layer accepts data and assigns weighted values by multiplying the scalar input with the 

corresponding scalar weights. The hidden layers establish relationships within the net input 

function through the summation of the weighted inputs to the scalar biases to form the net 

input signal for the activation function and lastly, the output layer produces the final network 

outputs.  

The activation function controls the limits of the output to an acceptable range of finite values 

by manipulating the weighted sum of inputs and biases.  These activation functions or transfer 

functions can either be linear or non-linear depending on the function it represents and there 

are many forms of the functions, namely: the sigmoid, step, hyperbolic, threshold, ramp, 

radial and many other functions but the sigmoid function is the most used. The sigmoid 

function is a non-linear activation function that is bounded by a differentiable real function. It 

is sometimes referred to as a ‘logistic function’ and it is represented as given in equation 

(2.18): 
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𝑓𝑓(𝑥𝑥) =  1
1+𝑒𝑒−𝑥𝑥

       (2.18) 

where 𝑥𝑥 is the input values and 𝑓𝑓(𝑥𝑥) is the output of a sigmoid function. In general, neural 

networks are trained on a data set containing system inputs and the corresponding system 

outputs and the network weights are adjusted based on the differences between the predicted 

outputs and the actual targets until the network outputs match the actual targets. For the 

network outputs to match with the actual targets, several weight-updating iterations are 

required to train such a network and a typical illustration of such is shown in Figure 2.3. 

The behaviour of an ANN is determined by its architecture, weights, and transfer/activation 

function (Agatonovic-Kustrin and Beresford, 2000). Therefore, the architectures of ANN can 

be categorised into two groups, namely: the feedforward networks with a typical example as 

the single hidden layer feedforward neural network (SLFNN), and the Recurrent or feedback 

network. One of the simplest and most widely used feedforward NN is the SLFNN, in which 

signals move forward through all layers in only the forward direction (i.e., linked directly to 

an output layer).  Typical architectures of a single neuron model, feedforward and recurrent 

network are shown in Figures 2.4, 2.5 and 2.6 respectively.  

 

 

Figure 2.3 Typical structure of a supervised ANN (Adnan et al., 2012) 
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Fig 2.4 A typical single-neuron model (Haykin, 2009) 

 

 

Figure 2.5 A single-layer feedforward network architecture (Baron and Zhang, 2017) 
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Fig 2.6 A recurrent network architecture with no self-feedback loops (Haykin, 2009) 

 

 

Over the past few decades, ANN has been gaining a rapid push into research by diversifying 

into different aspects of science and technological innovations. One of its numerous benefits 

is seen in estimating continuous nonlinear functions for modelling and controlling chemical 

processes, especially when a detailed understanding of the process operation is restricted 

(Zhang, 2004). ANN model is useful in forecasting both steady and dynamic process 

behaviour accurately if trained and validated correctly (Xiong et al., 2004a). Hence, it 

improves the control performance and later leads to enhanced process optimisation of the 

operation. Unlike the regression model, ANN can learn nonlinear relationships from 

observational data and use the captured knowledge in predicting targeted output through 

patterns structure in input data.  

 

2.3.1 Single-hidden Layer Feedforward Network 

SLFN consists of one input layer, one hidden layer and one output layer. The input layer 

accepts input signals while the output layer gives out the outcomes for the given input signals. 
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The hidden layer contains multiple hidden nodes where an activation function converts the 

sums of weighted inputs to neuron outputs. Figure 2.7 shows the structure of an SLFN. 

 

 

 

Figure 2.7 SLFN structure (Li et al., 2017) 

 

For N arbitrary distinct samples (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖), where 𝑥𝑥𝑖𝑖 = [𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛 ]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 is a vector of 

network inputs and 𝑡𝑡𝑖𝑖 = [𝑡𝑡𝑖𝑖1, 𝑡𝑡𝑖𝑖2, … , 𝑡𝑡𝑖𝑖𝑚𝑚]𝑇𝑇 ∈ 𝑅𝑅𝑚𝑚 is a vector of the target values of network 

outputs. The standard SLFNs with 𝐿𝐿� hidden nodes and activation function 𝑑𝑑(𝑥𝑥) can be 

modelled mathematically as: 

  ∑ 𝛽𝛽𝑖𝑖𝑑𝑑𝑖𝑖�𝑥𝑥𝑗𝑗� = 𝐿𝐿�
𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝐺𝐺�𝑑𝑑𝑖𝑖 . 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖 �𝐿𝐿�

𝑖𝑖=1 =  𝑂𝑂𝑗𝑗   (2.19) 

where j = 1, …, N, 𝑑𝑑𝑖𝑖 = [𝑑𝑑𝑖𝑖1,𝑑𝑑𝑖𝑖2, … , 𝑑𝑑𝑖𝑖𝑛𝑛]𝑇𝑇 is a vector of weight connecting the ith hidden 

node with the inputs,  𝑏𝑏𝑖𝑖  is the bias of the ith hidden nodes, 𝑥𝑥𝑗𝑗 is the jth input sample, 𝛽𝛽𝑖𝑖 ∈

𝑅𝑅𝑚𝑚  is the weight linking the ith hidden node and the output node. The linear activation 

function is usually chosen for the output node. According to Xiong and Zhang (2004), 

“standard SLFNs can approximate any continuous nonlinear functions with zero error” which 

implies that ∑ �𝑂𝑂𝑗𝑗 − 𝑡𝑡𝑗𝑗�𝐿𝐿�
𝑗𝑗=1 = 0, i.e., there exists (𝑑𝑑𝑖𝑖, 𝑏𝑏𝑖𝑖) and 𝛽𝛽𝑖𝑖 such that: 

  ∑ 𝛽𝛽𝑖𝑖𝐺𝐺�𝑑𝑑𝑖𝑖 . 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖 �𝐿𝐿�
𝑖𝑖=1 =  𝑡𝑡𝑗𝑗,  j= 1, …, N.    (2.20) 

The above N equations can be written in compact form as: 

  𝐻𝐻𝛽𝛽 = 𝑇𝑇 , where: 

𝐻𝐻(𝑑𝑑1, … ,𝑑𝑑𝐿𝐿� , 𝑏𝑏1, … , 𝑏𝑏𝐿𝐿� , 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 )       (2.21) 
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= �
𝐺𝐺(𝑑𝑑1. 𝑥𝑥1 + 𝑏𝑏1 ) ⋯ 𝐺𝐺(𝑑𝑑𝐿𝐿� . 𝑥𝑥1 + 𝑏𝑏𝐿𝐿�  )

⋮ ⋱ ⋮
𝐺𝐺(𝑑𝑑1. 𝑥𝑥𝑁𝑁 + 𝑏𝑏1 ) ⋯ 𝐺𝐺(𝑑𝑑𝐿𝐿� . 𝑥𝑥𝑁𝑁 + 𝑏𝑏𝐿𝐿�  )

�
𝑁𝑁 ×𝐿𝐿�

 

  𝛽𝛽 = �
𝛽𝛽1

𝑇𝑇

⋮
𝛽𝛽𝑇𝑇𝐿𝐿�

�

𝐿𝐿�𝑋𝑋𝑚𝑚

 𝑑𝑑𝑎𝑎𝑑𝑑 𝑇𝑇 = �
𝑡𝑡1𝑇𝑇
⋮
𝑡𝑡𝑇𝑇𝑁𝑁

�
𝑁𝑁𝑋𝑋𝑚𝑚

      (2.22) 

In the above equation (2.30), H is called the hidden layer output matrix of the neural network 

and the ith column of H is the ith hidden node output concerning inputs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 ;ℎ(𝑥𝑥) =

𝐺𝐺(𝑑𝑑1. 𝑥𝑥1 + 𝑏𝑏1 ) …𝐺𝐺(𝑑𝑑𝐿𝐿� . 𝑥𝑥𝑁𝑁 + 𝑏𝑏𝐿𝐿�  ) is called the hidden node feature mapping; the ith row of H 

is the hidden layer feature mapping for the ith input 𝑥𝑥𝑗𝑗 (Hsu; Chang and Hsu, 2017). 

The backpropagation algorithm is usually used in training SLFN which is simply equivalent 

to finding the least square solution in �̂�𝛽 of the linear system 𝐻𝐻𝛽𝛽 = 𝑇𝑇 in equation (2.22). This 

can be described mathematically as: 

min
𝛽𝛽
‖𝐻𝐻𝛽𝛽 − 𝑇𝑇‖         (2.23) 

Equation (2.23) is equivalent to minimizing the error function given in equation (2.24). The 

MSE function plays a major role in the fast learning rate in learning algorithms and is 

expressed mathematically as follows: 

𝐸𝐸 = 𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑁𝑁×𝑚𝑚

∑(‖𝐻𝐻𝑁𝑁×𝐿𝐿�𝛽𝛽𝐿𝐿�×𝑚𝑚 − 𝑇𝑇𝑁𝑁×𝑚𝑚‖2)    (2.24) 

During the minimisation of MSE in equation (2.33), the parameters 𝜃𝜃 = (𝛽𝛽,𝐻𝐻) are adjusted 

iteratively as: 

𝛼𝛼𝑘𝑘+1 = 𝛼𝛼𝑘𝑘 − 𝜂𝜂 𝜕𝜕𝜕𝜕(𝐻𝐻)
𝜕𝜕(𝐻𝐻)

        (2.25) 

where 𝜂𝜂 is the learning rate and the commonly used algorithm for computing the error update 

of the output layer to the input layer is the backpropagation algorithm.  

Moreover, if the number of hidden nodes  𝐿𝐿� is equal to the number of distinct training samples 

N (𝐿𝐿� = 𝑁𝑁), matrix H becomes a squared matrix and could be invertible when the input weight 

vectors 𝑑𝑑𝑖𝑖 and hidden biases 𝑏𝑏𝑖𝑖 are randomly chosen. However, in most cases, the number of 

hidden nodes is always less than the number of distinct training samples and H resulted in a 

non-square matrix (Huang; Zhu and Siew, 2006). 

Thus, this conventional gradient descent algorithm can also be substituted with different 

forms of optimisation techniques such as the Levenberg-Marquardt algorithm, bayesian 

regularisation and scaled conjugate gradient method to achieve the minimum error and 

parameters update of the network (Ahmad, 2005). 
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2.3.2 Bootstrap Aggregated Neural Network 

The bootstrap aggregated neural network (BAGNET) was created to address the shortcomings 

of neural networks in terms of poor generalisation of unknown input data. This concept 

focuses on the generalisation accuracy of future predictions (i.e., predictions based on 

unknown data). Training individual neural networks tend to overfit leading to poor 

generalisation capabilities of the model. As a result, it ends up in local optima instead of 

global optima during process optimisation. Figure 2.8 shows the relationship between 

generalisation error and the training of networks. The training error can be minimised by 

either increasing the number of hidden neurons or running more training iterations; however, 

in both cases, overfitting does always occur. As the accuracy of training data estimations 

improves, the training error decreases and the generalisation error tends to improve 

(Engineers Handbook, 2006). 

Moreover, the trained network may not be able to minimise the error on the training data set 

due to the uncontrolled excess nonlinearity in the training data. According to Noor et al. 

(2010), the size (number of neurons) of a neural network is a measure of its ability to 

represent detailed information about the data set. If the networks are large enough, a wide 

range of solutions can be obtained to fit the training data provided there’s minimal noise in 

the data set and if otherwise, there will be a lack of robustness on the individual neural 

networks which leads to the second form of overfitting or under-fitting.  

There are quite a several techniques have been established for improving the robustness of 

neural networks. These include the Bayesian learning approach (MacKay, 1992), the early 

stopping technique (Bishop, 1995), the regularisation technique (Bishop, 1991), training with 

static and dynamic process data (Zhang, 2001) and a combination of several neural networks 

(Zhang et al., 1997; Zhang, 1999; Jie, 2002; Ahmad and Zhang, 2005; Mukherjee and Zhang, 

2008). Among all these techniques, the bootstrap aggregated neural network has been 

established to be highly effective in improving model robustness and generalisation accuracy 

for predictions on unseen data. According to Noor et al. (2010), there are three (3) different 

algorithm techniques to resample training data in a stacked neural network, namely: adaptive 

boosting, bootstrap resampling, and the ensemble technique. Individual neural networks may 

perform better in different segments of the input space  
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Figure 2.8 Training error and generalisation error (Baron and Zhang, 2017) 

 

while developing neural network models. Prediction accuracy and robustness throughout the 

entire input space could be enhanced by combining several individual neural networks using 

different training data sets or different initial weights for the training of the individual 

networks. Moreover, instead of choosing the single best from the trained individual networks, 

aggregated neural networks are being used (Zhang et al., 1997; Zhang et al., 1998; Tian; 

Zhang and Morris, 2001; Mukherjee and Zhang, 2008; Zhang, 2008). Another technique of 

combining individual neural network is known as bootstrap resampling, where multiple neural 

networks data are resampled from the same original data to create different randomised data 

set for training and testing (Zhang et al., 1998; Zhang, 1999; Baron and Zhang, 2017) and the 

last method, is to create a good ensemble through adjustment of the initial random weight 

assigned to the individual networks. Figure 2.9 shows a representation of bootstrap 

aggregated neural networks, where multiple network models are combined to model the same 

process data.  
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Figure 2.9 A typical representation of a bootstrap aggregated neural network (Mukherjee and 

Zhang, 2008) 

 

The weighted sum of the individual/multiple neural network outputs is the overall aggregated 

neural network and can be represented in form of the following equation:  

𝑓𝑓(𝑋𝑋) = ∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋)𝑘𝑘
𝑖𝑖=1       (2.26) 

where 𝑓𝑓(𝑋𝑋) is the aggregated neural network predictor, 𝑓𝑓𝑖𝑖(𝑋𝑋) is the ith neural network, 𝑤𝑤𝑖𝑖 is the 

aggregated weight for combining the ith neural network, k is the number of networks and X is a vector 

of neural network inputs. For an effective modelling performance, the stacking weights need to be 

accurately determined but due to the high correlations of the individual/multiple neural networks, this 

could be obtained using either the principal component regression (PCR) or partial least square (PLS) 

regression as the weighted averaging method of networks combination (Noor et al., 2010).  

However, the main motive behind these techniques of neural network combination is to reduce the 

number of shared failures or lack of robustness in the individual networks. When combining several 

neural networks, some may not necessarily enhance the model generalisation capability due to the 

repetition of the same captured information from other individual networks or networks that are 

sternly over-fit. Therefore, a selective combination of neural networks may be sought such as choosing 

the lowest sum of squared errors in a combination of individual networks suggested by Perrone and 

Cooper (1992). Bootstrap aggregated neural network also has the added advantage of finding the 

model prediction confidence bounds of the individual neural networks in BAGNET. This is achieved 

by finding the smallest standard errors of the predicted values among the number of neural networks 

and can be represented as (Mukherjee and Zhang, 2008):   

𝜎𝜎𝑒𝑒 = � 1
𝑘𝑘−1

∑ [𝑓𝑓𝑖𝑖(𝑋𝑋) − 𝑦𝑦(𝑋𝑋)]2𝑘𝑘
𝑖𝑖=1 �

1/2
    (2.27) 

where  𝑦𝑦(𝑋𝑋) = ∑ 𝑓𝑓𝑖𝑖(𝑋𝑋)/𝑗𝑗𝑘𝑘
𝑖𝑖=1  and k is the number of neural networks. Provided that prediction errors 

are normally distributed, the 95% confidence bounds can be calculated as 𝑦𝑦(𝑥𝑥𝑖𝑖; . ) ± 1.96𝜎𝜎𝑒𝑒. 
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2.4 Extreme learning machine 

Despite the successful applications of feedforward artificial neural networks in numerous 

fields, it has limitations of slower training convergence speed, over-fitting of training data, 

large numbers of learning/training steps, convergence to local optima instead of global optima 

and time consumption when using the gradient descent method (Huang; Zhu and Siew, 2006). 

These limitations of ANN become more pronounced when there are multiple hidden layers. 

Many researchers have been working on these shortcomings and one of the findings by Jeong 

and Lee (2018) suggested a way of reducing these limitations of ANN by pre-detecting the 

outliers from the data through unsupervised learning before training of the data set begins.  

As stated earlier while describing the SLFNNs above, an extreme learning machine (ELM) 

was primarily proposed for SLFNNs and later used for generalising SLFNNs to reduce 

training time and enhance generalisation capability.  In ELM, the hidden layer weights and 

biases are assigned randomly to overcome the slow training problem of the backpropagation 

training method. The gradient descent method is generally slow and required many iterative 

learning steps and according to Bartlett (1998), the smaller the norm of weights in a network, 

the better the generalisation performance of such a network. Thus, in ELM, one may not 

necessarily need to tune the hidden layer weights and biases which resulted in the learning 

technique being thousands of times faster than the traditional feedforward neural network 

learning algorithm. The ELM was later extended to the radial basis function case (RBF), in 

which the kernels were arbitrarily assigned instead of adjusted like in the case of the 

backpropagation method in ANN (Guang-Bin and Chee-Kheong, 2004). 

Recently, ELM has been improved by various researchers for fast training of single hidden 

layer feedforward neural networks (SLFNNs). ELM is one of the modern learning algorithm 

concepts used for SLFNs in learning from data. Its structure is like traditional SLFNNs but 

their ways of parameter updating are different and its learning strategy is extremely fast. In 

ELM, the hidden layer weights are arbitrarily assigned and fixed without any iterative 

adjustment unlike the traditional training for SLFNs. Parameters to be learned are the 

connecting output weights between the hidden layer and the output layer which can be 

determined with a one-step regression-type approach using Moore-Penrose (MP) generalised 

inverse. Thus, ELM training is expressed as a linear-in-parameter model which could be 

solved as a linear system of equations (Huang et al., 2015).  

ELM is impressively proficient, fast, has good generalisation ability and reaches global 

optimum with the least human interference when compared to traditional feedforward neural 
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network learning methods. Reports on its studies have shown that ELM maintains its general 

approximation capability with arbitrarily generated hidden layer weights if “the activation 

function in the hidden layer is infinitely differentiable” and its learning algorithm could be 

used to train SLFNs with both non-differentiable and differentiable activation functions 

(Wang; Cao and Yuan, 2011).  

However, as the input weights and hidden biases are randomly assigned, there may exist 

additional and dissatisfied selections. This makes ELM require more hidden neurons than the 

traditional SLFNNs and gave rise to slow response in testing data and later resulted in variant 

forms of ELM inventions by researchers. There is a lot of growing interest in ways of 

improving ELM generalisation and later extending its usage for classification and regression 

problems. Noteworthy theoretical validations and sensational ELM algorithms have been 

developed and established in a wide range of fields that ELM and its new variants such as 

Incremental-ELM, Bidirectional-ELM, Pruning-ELM, Adaptive-ELM, sparse-ELM, Online 

Sequential-ELM, and Generalized-ELM are capable if not better than ordinary ELM, precise 

and stress-free to implement (Huang et al., 2011). 

In the use of ELM for modelling chemical processes in this research work, the PCR algorithm 

replaces the least square algorithm in basic ELM for obtaining the output layer weights of the 

ELM. This concept can solve the problem of correlation/collinearity issues among hidden 

neuron outputs which can be used for long-range or multi-step-ahead model prediction on a 

fed-batch reactor (Li et al., 2017).  

2.4.1 Basic ELM 

As stated earlier, ELM has been proposed by various researchers for fast training of single 

hidden layer feedforward neural networks (SLFNs) in which the hidden layer is not neuron-

like, with an output function given as: 

  𝑓𝑓𝑙𝑙(𝑥𝑥) = ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖(𝑥𝑥)𝐿𝐿
𝑖𝑖=1 = ℎ(𝑥𝑥)𝛽𝛽     (2.28) 

where 𝛽𝛽 = [𝛽𝛽1, … ,𝛽𝛽𝐿𝐿]𝑇𝑇 is the output weight vector between the hidden layer L nodes to the 

output nodes, and ℎ(𝑥𝑥) = [ℎ1(𝑥𝑥), … , ℎ𝐿𝐿(𝑥𝑥)] is ELM nonlinear feature mapping. 

  ℎ𝑖𝑖(𝑥𝑥) = 𝐺𝐺�𝑑𝑑𝑖𝑖 . 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖 �,       (2.29) 

Equation (2.29) is equivalent to equations (2.28) and (2.19), where 𝐺𝐺(𝑑𝑑, 𝑏𝑏, 𝑥𝑥) with hidden 

node parameters (𝑑𝑑, 𝑏𝑏) is a nonlinear piecewise continuous function satisfying ELM universal 

approximation capability theorems. 
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Essentially, the ELM training process involves two (2) key stages, namely: the random weight 

allocation, where the hidden layer is randomly initialized to allocate the input data into feature 

space with some nonlinear activation functions such as SVM, RBM etc. and the minimization 

of approximation error in the least square error form, where the connecting weights in the 

hidden layer and the output layer, denoted by 𝛽𝛽, are solved in the form of: 

  min‖𝐻𝐻𝛽𝛽 − 𝑇𝑇‖2       (2.30) 

where H is the hidden layer output matrix (randomized matrix): 

  𝐻𝐻 = �
ℎ(𝑥𝑥1)
⋮

ℎ(𝑥𝑥𝑁𝑁)
� = �

ℎ1(𝑥𝑥1) ⋯ ℎ𝐿𝐿(𝑥𝑥1)
⋮ ⋱ ⋮

ℎ1(𝑥𝑥𝑁𝑁) ⋯ ℎ𝐿𝐿(𝑥𝑥𝑁𝑁)
�     (2.31) 

and T is the training data-target matrix: 

  𝑇𝑇 = �
𝑡𝑡1𝑇𝑇
⋮
𝑡𝑡𝑁𝑁𝑇𝑇
� = �

𝑡𝑡11 ⋯ 𝑡𝑡1𝑚𝑚
⋮ ⋱ ⋮
𝑡𝑡𝑁𝑁1 ⋯ 𝑡𝑡𝑁𝑁𝑚𝑚

�      (2.32)  

where ‖. ‖ represents the Frobenius norm. 

The optimal solution (smallest norm least-squares solution) of equation (2.22) is given by:  

  �̂�𝛽 = 𝐻𝐻†𝑇𝑇        (2.33) 

where 𝐻𝐻† denotes the Moore-Penrose generalised inverse of matrix H and this can also be 

solved with many other competing methods such as singular value decomposition (SVD), 

Gaussian elimination, iterative method etc. 

Summarily, the basic ELM provides the following features: the ability to learn without 

iterative tuning of the hidden nodes, the fast learning speed, a unified learning algorithm for a 

generalization of networks, better generalisation performance through reaching the smallest 

output weights and training error and lastly, it satisfies the universal approximation capability 

(Huang et al., 2015). 

ELM has its major limitation of random allocation of weights to the hidden layers, and this 

makes it require a considerably large number of hidden neurons. This resulted in poor 

modelling capability due to the collinearity that exists within the hidden layer outputs. 

According to Li et al. (2017), to improve the modelling capability of the ELM, the default 

least square method in the ELM can be substituted with the PCR technique to solve 

multicollinearity challenges. However, the first two (2) terms of the principal components 

decomposition of the H matrix are used as a regressor in place of regressing H and T. The H 
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matrix principal component is decomposed into the sum of rank-one matrices and represented 

as: 

  𝐻𝐻 = 𝑝𝑝1𝑡𝑡1𝑇𝑇 + 𝑝𝑝2𝑡𝑡2𝑇𝑇 + ⋯+ 𝑝𝑝𝑚𝑚𝑡𝑡𝑚𝑚𝑇𝑇      (2.34) 

In the above equation (2.34), 𝑝𝑝𝑖𝑖  is called the ith score vector and 𝑡𝑡𝑖𝑖 is called the ith loading 

vector. The score vectors are mutually orthogonal and so are the loading vectors which are of 

unit length. The loading vector 𝑡𝑡1 describes the utmost variability and the score vector 𝑝𝑝1, 

known as the first principal component, represent the projection of each column in H onto 𝑡𝑡1. 

In the principal component regression technique, the model output is obtained as a linear 

combination of the first m principal components of H as: 

  𝑇𝑇� = 𝑃𝑃𝑚𝑚𝑤𝑤 = 𝐻𝐻𝑡𝑡𝑚𝑚𝑤𝑤        (2.35) 

where w denotes the vector of the model parameters in terms of principal components and its 

least square estimate is given as: 

  𝑤𝑤 = (𝑃𝑃𝑚𝑚𝑇𝑇𝑃𝑃𝑚𝑚)−1𝑃𝑃𝑚𝑚𝑇𝑇𝑇𝑇� = (𝐻𝐻𝑇𝑇𝑡𝑡𝑚𝑚𝑇𝑇𝐻𝐻𝑡𝑡𝑚𝑚)−1𝐻𝐻𝑇𝑇𝑡𝑡𝑚𝑚𝑇𝑇𝑇𝑇�     (2.36) 

The model parameters in equation (2.33) can be calculated through PCR as given below: 

 𝛽𝛽 =  𝑃𝑃𝑚𝑚𝑤𝑤 = 𝑃𝑃𝑚𝑚[(𝐻𝐻𝑇𝑇𝑡𝑡𝑚𝑚𝑇𝑇𝐻𝐻𝑡𝑡𝑚𝑚)−1𝐻𝐻𝑇𝑇𝑡𝑡𝑚𝑚𝑇𝑇𝑇𝑇�]    (2.37) 

In other forms,  𝛽𝛽 = (𝐻𝐻𝑇𝑇𝐻𝐻 )−1𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇 

Thus, the 𝐻𝐻† in equation (2.33) can also be solved through several techniques such as the 

singular value decomposition (SVD), orthogonal projection, orthogonalization and iterative 

method. For the orthogonal projection method to perform well, 𝐻𝐻𝑇𝑇𝐻𝐻 need to be non-singular 

and 𝐻𝐻† = (𝐻𝐻𝑇𝑇𝐻𝐻 )−1𝐻𝐻𝑇𝑇 but not in all cases will 𝐻𝐻𝑇𝑇𝐻𝐻 be singular and in all these cases, the 

SVD method performs well. The data set for building a model is partitioned into training and 

testing data sets. PCR models are developed on training data and validated on testing data 

with the least testing errors as the appropriate number of principal components. Appendices A 

and B give details explanations of PCA and linear regression respectively. 

2.4.2 Bootstrap Aggregated ELM 

The bootstrap aggregated ELM has the same concept as the BAGNET described above. It 

involves combining multiple ELM networks to improve the prediction accuracy and 

generalization capability of the network on unseen data. Original training data were 

replicated/resampled to generate individual ELM networks and the overall stacked network 

output is a weighted combination of the individual ELM networks. 
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Summarily, for a given original training data as (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖) … (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑖𝑖)𝑚𝑚|𝑥𝑥𝑖𝑖 ∈  𝑅𝑅𝑚𝑚, 𝑡𝑡𝑖𝑖 ∈  𝑅𝑅𝑛𝑛, 𝑑𝑑 =

1, 2, …𝑁𝑁 with activation function of 𝑑𝑑(𝑥𝑥) and 𝑁𝑁� number of hidden neurons, the bootstrap 

aggregated ELM can be described in three (3) steps, namely: 

• Apply bootstrap re-sampling to the original training data to produce n replications 

depending on the number of ELMs required. 

• Build ELM models with the individual bootstrap replications obtained in step one 

above through: 

 Assign random values to the hidden layer weights 𝑤𝑤𝑖𝑖 and bias 𝑏𝑏𝑖𝑖, where 𝑑𝑑 =

1, 2, …  𝑁𝑁�. 

 Calculate the hidden layer output matrix 𝐻𝐻 and  

 Calculate the output layer weights 𝛽𝛽 = (𝐻𝐻𝑇𝑇𝐻𝐻 )−1𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇 

• Combine the n numbers of the individual ELM models through the weighted average 

of their predictions. 

According to Mukherjee and Zhang (2008), it is possible to calculate the model prediction 

confidence bounds from the individual predictions of the bootstrap aggregated ELM. The 

standard error of the ith predicted value is estimated as given in equation (2.27). The smallest 

confidence bound shows the most accurate model prediction among all.  

 

2.5 Iterative Learning Control  

Many conventional optimal control techniques have been proposed for linear time-invariant 

systems, which are presumed to be well-known. In most real instances, the systems to be 

controlled are nonlinear and the basic physical processes are unknown. This unknown 

situation becomes difficult when the unknown parameters of the system model change 

endlessly or several times during the process operation. These changes in the parameters bring 

about uncertainties in the model, which are difficult to control with the state-of-the-art 

established adaptive control techniques. Adaptive control techniques have been shown to 

work well for many dynamic systems with unknown fixed parameters. However, their 

applications may not be easy to extend to unknown time-varying parameter systems. 

As an approach to solving the time-varying parameter systems highlighted above, several 

iterative learning control (ILC) techniques have been established. The concept of an ILC 

strategy was first introduced by Arimoto et al. (1984) for robotic manipulations and from then 

onward, the strategy has been in use for industrial application processes such as 
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pharmaceutical industries or general chemical industries that readily use batch processes in 

the manufacturing of their products (Xu et al., 1999; Ahn et al., 2014; Oh and Lee, 2016). 

Batch chemical processes such as batch distillation operation, heat treatment processes for 

metallic products and batch reactors can successfully gain from this ILC strategy. 

Apart from applications of ILC strategy to industrial batch process operations, it has also been 

applied to various processes such as computer-numerical machine control (Krishnamoorthy 

and Tsao, 2004), robotics (Tayebi, 2004; Wallén; Norrlöf and Gunnarsson, 2011), in injection 

moulding machine (Havlicek and Alleyne, 1999), induction motors, even in accelerators, free-

electron laser (Rezaeizadeh and Smith, 2018), automated manufacturing plants, injection 

moulding and food processing industries. 

The ILC control strategy, its main target is to improve the transitory tracking performance of 

systems that operate repeatedly over some specific time interval. Its basic principle is to 

update the current trajectory inputs of a system with the use of the previous/last batch 

calculated error of the process operation. This is done by using the tracking error of the 

current batch to update the manipulated input variables or trajectory sequence for the 

current/next batch run with the sole aim of obtaining improved tracking performance from 

batch to batch until the predicted output meets up or is close to the desired output. One major 

feature of ILC is its learning strategy, which is capable of tracking the entire reference 

trajectory while many other control methods only achieve asymptotic tracking in the time 

domain (Kuc; Lee and Nam, 1992). Instead of this, it differs from adaptive control (AC) 

strategies and repetitive control (RC) in that the ILC modify/updates the input trajectories 

while AC updates a whole system controller. As for the RC and ILC, they are similar in 

operation but differ as RC is applied to continuous operation while ILC is applicable to 

batch/discontinuous operation. Similarly, the ELM learns from historical data through training 

to predict future value on unseen input data. This occurs because of modification in controller 

parameters (output weights) rather than the control input trajectories modification by ILC. 

Other features that distinguish ILC from the rest of the controller are: (i) the desired/reference 

input trajectory is specified over a time interval and (ii) initialization of the reference input 

trajectories is updated and reset at each batch step of the iteration. 

Over the past few years, large numbers of variant forms of ILC have been developed which 

makes ILC virtually applicable in all facets of control field operations. All variant forms of an 

ILC have their peculiar features, which makes them distinct from one another, but they all try 

to achieve a common task (improve tracking performance) although ways of tracking the 
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target trajectory differ in terms of convergence, learning speed, robustness, or suitability for 

specific plants processes. Detail overview of many of these variant forms of ILC can be seen 

in the work of (Bristow; Tharayil and Alleyne, 2006; Ahn et al., 2014).  

 

2.5.1 Iterative Learning Algorithms 

Generally, the main task of an ILC is for error tracking convergence and stability of the 

system during repetitive tracking of operation. This has attracted a lot of research interest, as 

there are many possible ways to track the desired trajectory of any system, which leads to 

various forms of ILC algorithms. However, two divisions of an ILC algorithm, namely: (i) 

algorithms operate without historical knowledge of the plant model (i.e., simple computation 

of the control updating vector by the control error). (ii) Algorithms that use the mathematical 

model-based representation of the plant. 

According to Arimoto et al. (1985), there is a derivative ILC algorithm (D-type), which uses 

the first order derivative of the tracking error as the satisfactory learning filter and 

proportional gain (P-type) algorithm ILC that is simple to implement without the use of 

tracking error derivatives. Moreover, there were many other types of ILC algorithms 

mentioned earlier, such as the combined PID-type ILC proposed by (Dong-Il and Sungkwun, 

1996) which can turn to P-type or D-type depending on the setting value of the gains (i.e. if 

the integral and the proportional or the integral and the derivative are set equals to zero). To 

eradicate time delay in the implementation of the ILC controller, (Barton; Lewin and Brown, 

2000) reported that step-ahead prediction error should be used instead of the instantaneous 

error. Both (Longman, 2000; Freeman *; Lewin and Rogers, 2005; Freeman et al., 2009), 

expand on the technique of (Barton; Lewin and Brown, 2000) of the phase-lead algorithm on 

successful control of non-minimum phase plant by appropriate selection of learning filter. 

 

2.5.2 Model-based ILC Algorithms 

These ILC algorithms utilise the mathematical model-based representation of the plant for 

transient response of tracking the performance of the repetitive system. Thus, a perfect or 

close-to-perfect model is required for ILC convergence and stability of the system. The ELM 

model prediction has been established to provide good approximation in long-range or multi-

steps ahead predictions on nonlinear batch systems but there are always unavoidable 
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disturbances in the real process such as raw material variations in composition, reactive 

impurities and at times fouling in reactors, which do cause model mismatches. 

Although the model-based concept is useful in providing key and concealed information the 

non-model-based technique cannot reveal the desired process system. Phan and Frueh (1999) 

reported new ways by which controllers can learn (i.e., training) from plant models at each 

batch of process operation of the system”. Lee et al., (2000) revisited the update on the model-

based ILC algorithm concept (i.e., the quadratic criterion for time-varying linear systems) by 

generalizing quadratic criterion performance for time-varying linear constrained systems. 

They reported that the generalization principle could only apply to “chemical process control, 

where excess input trajectories are unavoidable and many process variables are subject to 

difficult constraints”. 

The general mathematical representation for a discrete LTI SISO system is given below:  

𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑥𝑥(𝑡𝑡) + 𝑏𝑏𝑃𝑃(𝑡𝑡)       

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡)        (2.38) 

where 𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑎𝑎𝑑𝑑 𝑦𝑦(𝑡𝑡) are input and output signals respectively. The plant dynamics 

represented by (G) can be written in matrix form over a finite time interval 0 ≤ 𝑡𝑡 ≤ 𝐾𝐾 as 

tends to 𝐾𝐾 < ∞.  

𝐺𝐺 = �
𝐶𝐶𝑏𝑏 ⋯ 0
⋮ ⋱ ⋮

𝐶𝐶𝑎𝑎𝐾𝐾−1 ⋯ 𝐶𝐶𝑏𝑏
�       (2.39) 

where A, B, and C represent the Markov parameters of the input and output systems 

represented above. Thus, the classical ILC update algorithm is given as: 

𝑈𝑈𝐾𝐾+1 = 𝑈𝑈𝐾𝐾 + 𝐿𝐿𝑒𝑒𝐾𝐾        (2.40) 

where 𝑈𝑈𝐾𝐾+1 is the next batch input trajectory update, 𝑈𝑈𝐾𝐾 is the current input trajectory, L is 

called the learning filter, which penalises the error signal to the input update. Equation (2.40) 

above can be re-written as: 

∆𝑈𝑈𝑘𝑘+1= 𝑈𝑈𝑘𝑘+1 − 𝑈𝑈𝑘𝑘       

∆𝑈𝑈𝑘𝑘+1= 𝐿𝐿𝑘𝑘𝑒𝑒𝑘𝑘       (2.41) 
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where 𝑒𝑒𝑘𝑘(𝑡𝑡) = 𝑦𝑦𝑘𝑘 (𝑡𝑡) − 𝑦𝑦�𝑘𝑘(𝑡𝑡) and 𝑦𝑦𝑘𝑘 is the desired output trajectory with 𝑦𝑦�𝑘𝑘 as the 

predicted/measured output trajectory. According to (Barton; Lewin and Brown, 2000), 

equation (2.40) can also be re-written in the time domain as: 

𝑈𝑈𝐾𝐾+1(𝑡𝑡) = 𝑈𝑈𝐾𝐾(𝑡𝑡) + 𝐿𝐿𝐾𝐾(𝑡𝑡)∑ 𝑒𝑒𝑖𝑖(𝑡𝑡)𝐾𝐾+1
𝑖𝑖=1     (2.42) 

The learning filter 𝐿𝐿𝑘𝑘 in equation (2.42) is the diagonal learning gain matrix that ensures 

convergence of the next batch error, 𝑒𝑒𝑘𝑘+1 = 0 (Ahn; Chen and Moore, 2007). 

Many researchers have shown that the learning filter can be obtained as the ILC model 

inverse (i.e., 𝐿𝐿𝑘𝑘 = 𝐺𝐺−1), where G represents the matrix form of the relationship between the 

output trajectory and the input trajectories for the entire batch run of the process. 

Sogo et al. (2000) reported a simple way of achieving stable model based ILC inversion to 

avoid the conventional casual ILC model inversion. They explained further, by saying 

“inversion of non-minimum phase plant will lead to an unstable system”. This implies, at least 

a single pole will be found on the right half of the complex plane. Moreover, (Lee; Lee and 

Kim, 2000) stated that computation of the ILC model inverse on the real plant will always 

contain differentiators (if at all will exist) in continuous time case which becomes very 

sensitive to components of modelling errors of the system. In short, ILC model inversion 

cannot be used directly without the inclusion of a general objective function for non-square 

MIMO processes and other notable constraints peculiar to physical or safety considerations. 

2.5.3 Optimal Model-based ILC Algorithm 

The optimisation is the process of searching for the best solution among the feasible solutions. 

Optimal model based ILC was proposed by many researchers but differs in format and 

strategies of implementation. Its concept is to accommodate the shortcomings of ordinary 

model-based ILC such as the ability to accept non-square MIMO systems, relaxed zero-

tracking error constraints through minimum likely error with the help of the least-square 

principle (Togai and Yamano, 1985; Moore, 1999; Lee; Lee and Kim, 2000; Norrlöf and 

Gunnarsson, 2002).  

There are two categories of optimisation according to the variables involved being in either 

continuous or discrete form. (Tao;Kosut and Aral, 1994) and many other researchers have 

proposed discrete-time learning control strategies, which take into consideration the simplicity 
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of implementation, error convergence, noise sensitivity and improper learning constraints 

with input penalisation terms. Its mathematical representation is given as: 

min 𝐽𝐽𝐾𝐾 = ‖𝑒𝑒𝐾𝐾‖𝑄𝑄2 + ‖𝑃𝑃𝐾𝐾‖𝑅𝑅2  as 𝑗𝑗 → ∞     (2.43) 

A similar optimisation concept has also been considered by (Amann et al., 1996) and (Lee; 

Lee and Kim, 2000) but as a continuous time domain and change in input, a penalisation term 

was proposed. Therefore, equation (2.43) can be re-written as: 

min 𝐽𝐽𝐾𝐾 = ‖𝑒𝑒𝐾𝐾‖𝑄𝑄2 + ‖𝑃𝑃𝐾𝐾 − 𝑃𝑃𝐾𝐾−1‖𝑅𝑅2      (2.44) 

thus, the next batch (k+1) of equation (2.44) will be of the form: 

min 𝐽𝐽𝐾𝐾+1(𝑃𝑃𝐾𝐾+1) = ‖𝑒𝑒𝐾𝐾‖𝑄𝑄2 + ‖𝑃𝑃𝐾𝐾+1 − 𝑃𝑃𝐾𝐾‖𝑅𝑅2     (2.45) 

where Q and R are the weight matrices, selected as 𝑄𝑄 = 𝜆𝜆𝑞𝑞. 𝐼𝐼𝑀𝑀 𝑑𝑑𝑎𝑎𝑑𝑑 𝑅𝑅 = 𝜆𝜆𝑟𝑟 . 𝐼𝐼𝑁𝑁 that should be 

symmetric and positive at all time (t). The minimisation of either equation (2.43) or (2.44) 

ensures minimum possible error and prevents excessive control to be applied to the input 

trajectories. The error at batch (k+1) is given as  

𝑒𝑒𝑘𝑘+1(𝑡𝑡) = 𝑦𝑦𝑘𝑘 (𝑡𝑡) − 𝑦𝑦�𝑘𝑘+1(𝑡𝑡)      (2.46) 

where 𝑦𝑦�𝑘𝑘+1(𝑡𝑡) is the model prediction from an ELM at the (k+1)th batch. This is 

approximated with the use of first-order Taylor’s series expansion approximation given as: 

𝑦𝑦�𝑘𝑘+1(𝑡𝑡) = 𝐺𝐺.𝑃𝑃𝐾𝐾+1       (2.47) 

where G is the linear operator of the system dynamics relating the output trajectory to the 

input trajectories. (Amann; Owens and Rogers, 1996) and Lee et al. (2000) respectively 

reported the derivation for the input update as: 

𝑃𝑃𝐾𝐾+1 = 𝑃𝑃𝐾𝐾 + 𝑅𝑅−1𝐺𝐺𝑇𝑇𝑄𝑄𝑒𝑒𝑘𝑘+1      (2.48) 

and 

𝑃𝑃𝐾𝐾+1 = 𝑃𝑃𝐾𝐾 + (𝐺𝐺𝑇𝑇𝑄𝑄𝐺𝐺 + 𝑅𝑅)−1𝐺𝐺𝑇𝑇𝑄𝑄𝑒𝑒𝑘𝑘+1    (2.49) 

Equation (2.41) was derived from 𝛿𝛿𝐽𝐽𝑘𝑘
𝛿𝛿𝑢𝑢𝑘𝑘

= 0, then equation (2.48) and equation (2.49) are quite 

similar concerning the learning filter 𝐿𝐿𝑘𝑘 to the transpose of the linear operator 𝐺𝐺𝑇𝑇 and the 

weighing matrix R and Q, given as: 
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𝐿𝐿𝑘𝑘 = 𝑅𝑅−1𝐺𝐺𝑇𝑇𝑄𝑄        (2.50) 

Amann et al. (1998) later extend the work of Amann and Owens (1994)  and Amann et al. 

(1996) to improve on the shortcomings of their discoveries. One of his findings stated that the 

plant model's non-minimum phase zeros are linked to a specific direction in the input space 

where error convergence is delayed. Their form of optimal model-based ILC incorporates 

future predicted errors and is of the form: 

min 𝐽𝐽𝐾𝐾+1,𝑁𝑁(𝑃𝑃𝐾𝐾+1) = ∑ 𝜆𝜆𝑖𝑖−1(‖𝑒𝑒𝐾𝐾‖𝑄𝑄2 + ‖𝑃𝑃𝐾𝐾+1 − 𝑃𝑃𝐾𝐾‖𝑅𝑅2)𝑁𝑁
𝑖𝑖=1   (2.51) 

Equation (2.42) and equation (2.49) are quite similar; the only difference is the weight 

parameter that captured the unseen predicted errors and updates/changes on inputs at each 

batch of iterations.  

 

2.5.4 Linearized perturbation model in ILC 

Most (if not virtually all) batch processes are nonlinear, but in ILC, the linear model is 

required for the control of the systems. Therefore, it is necessary to seek the departure of 

variables from their standardized trajectories. Given the input and output variables (𝑋𝑋 𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌), 

as functions of time, then their perturbation variables, [𝑋𝑋 � ,𝑌𝑌]���, will also be a function of time. 

Xiong and Zhang (2003) reported that the linearization of the non-linear batch process around 

the nominal trajectory is done by removing the time-varying nominal trajectories away from 

the desired trajectories operation. This idea will ensure the removal of the bias effect from 

each batch iteration through an incremental update of the variables of the system. The 

linearized perturbation model can be represented as: 

Δ𝑌𝑌�𝐾𝐾+1 = 𝐺𝐺𝐾𝐾+1Δ𝑋𝑋�𝐾𝐾+1      (2.52) 

where, 

Δ𝑌𝑌�𝐾𝐾+1 = 𝑌𝑌�𝐾𝐾+1- 𝑌𝑌�𝐾𝐾 and Δ𝑋𝑋�𝐾𝐾+1 = 𝑋𝑋�𝐾𝐾+1- 𝑋𝑋�𝐾𝐾, then    

𝐺𝐺𝐾𝐾+1 is the linear operator that can be obtained through the linearized perturbation concept 

and varies from batch to batch as the input trajectories vary at each step of iteration of the 

process operation. Provided there are sufficient historical batch runs, 𝐺𝐺𝐾𝐾+1 can be obtained 

through any regression method such as partial least square regression (PLS), multiple linear 

regression (MLR), or principal component regression (PCR). Recall that a batch process 
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operation is always modelled in the form of a dynamic model just because the process of 

operation is in a transient state and therefore no feasible steady state at any point in time, but 

steady state operation is quite easy to work with. However, if the whole batch input and 

output trajectories are considered, it is possible to establish a static model linking the whole 

batch input and output trajectories. The steady-state input control policy relating to the output 

quality over the whole batch duration is of the form: 

𝑌𝑌𝐾𝐾 = 𝐹𝐹(𝑋𝑋𝐾𝐾) + 𝑉𝑉𝐾𝐾      (2.53) 

where F(.) represents the nonlinear dynamic state function between 𝑋𝑋𝐾𝐾(𝑡𝑡) and 𝑌𝑌𝐾𝐾(𝑡𝑡) at 

different batch times and 𝑉𝑉𝐾𝐾 is the vector of noises. Therefore, to obtain the linearized model 

concerning 𝑋𝑋𝐾𝐾 around nominal trajectories 𝑋𝑋𝑆𝑆 𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌𝑆𝑆, the following equation can be obtained. 

𝑌𝑌𝐾𝐾 = 𝑌𝑌𝑆𝑆 + 𝜕𝜕𝜕𝜕(𝑋𝑋𝐾𝐾)
𝜕𝜕(𝑈𝑈𝐾𝐾) Ι𝑋𝑋𝑆𝑆(𝑋𝑋𝐾𝐾 − 𝑋𝑋𝑆𝑆) + 𝑣𝑣𝐾𝐾 + 𝑤𝑤𝐾𝐾    (2.54) 

 

where  𝑤𝑤𝐾𝐾 is the sequence of model errors resulting from the neglect of other higher terms, 𝑣𝑣𝐾𝐾 

is the noise with unexpected disturbances that may arise and the linearized model 𝐺𝐺𝐾𝐾 is  

   𝐺𝐺𝐾𝐾 = 𝜕𝜕𝜕𝜕(𝑋𝑋𝐾𝐾)
𝜕𝜕(𝑈𝑈𝐾𝐾) Ι𝑋𝑋𝑆𝑆     (2.55) 

The 𝐺𝐺𝐾𝐾+1 in equation (2.52) and 𝐺𝐺𝐾𝐾in equation (2.55) is the same, only that the former is 

representing the updated/next batch while the latter is representing the current batch. Its 

structure is restricted to a lower block-triangular form to prevent causality (due to correlated 

data) given as: 

𝐺𝐺𝐾𝐾 =

⎣
⎢
⎢
⎡𝑑𝑑10

𝑘𝑘

𝑑𝑑20𝑘𝑘
0
𝑑𝑑21𝑘𝑘

⋯ 0
0

⋮         ⋮ ⋱ ⋮
𝑑𝑑𝑁𝑁0𝑘𝑘 𝑑𝑑𝑁𝑁1𝑘𝑘 ⋯ 𝑑𝑑𝑁𝑁𝑁𝑁−1𝑘𝑘 ⎦

⎥
⎥
⎤
    (2.56) 

For every batch process operation, optimisation of product quality at the end of the operation 

is the major goal whereby the control policies are the determinant of optimisation. Moreover, 

the control actions at each batch iteration could be correlated, in such a situation, a regression 

method capable of removing the causalities will be used in obtaining the linearized models 

(Jie, 2003; Xiong and Zhang, 2004; Xiong et al., 2004b; Xiong et al., 2007). 
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2.6 Recursive Least Square Technique 

The recursive least square (RLS) technique is a form of adaptive filter algorithm concept of 

online parameter estimation, which estimates a plant model by repeatedly updating the model 

parameters that minimise the weighted linear least square cost function of that model. This is 

obtained by recursively updating the model parameters based on the error difference between 

desired model output and the model prediction until the desired model is realized. 

Model parameters are usually time-varying in many practical process systems where there can 

be two cases, namely: the parameters can suddenly change or sometimes change with time 

slowly as the process operation progresses. In either case, monitoring solutions are sought. 

For the former case, covariance resetting is the solution for abrupt changes while for the latter 

case; the forgetting factor needs to be included to correct the slow changes with time in the 

parameter estimation of that process (Wigren, 1993). 

In the recursive algorithm technique, the parameter estimation of the next batch is obtained by 

using the current and the previous parameter estimates with correction terms in the 

computation of the predicted model. The correction term is proportional to the deviation of 

the prediction model from the desired model. 

There are two categories of a recursive algorithm for online parameter estimation of any 

process operation (i.e., the finite-history and infinite-history algorithms) and the offline or 

batch method of parameter estimation. For the finite-history algorithms, the algorithms target 

to minimise the error between the desired and the predicted outputs over a specific number of 

past time steps while the infinite-history algorithms also object to minimise the error between 

the desired and the predicted outputs over the whole process operation from the start until the 

end of the operation (The Math Works, Inc., 2017). 

 

2.6.1 Recursive Least Square Estimation 

Given the following system of equations as the input samples and desired output samples 

respectively as: { 𝑋𝑋(1),𝑋𝑋(2), …𝑋𝑋(𝑡𝑡)} and { 𝑑𝑑(1),𝑑𝑑(2), …𝑑𝑑(𝑡𝑡)} 

𝑦𝑦(𝑡𝑡) = 𝑑𝑑1𝑋𝑋(𝑡𝑡 − 1) + 𝑑𝑑2𝑋𝑋(𝑡𝑡 − 2) + ⋯+ 𝑑𝑑𝑘𝑘𝑋𝑋(𝑡𝑡 − 𝑀𝑀) 
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= [𝑋𝑋(𝑡𝑡 − 1)  𝑋𝑋(𝑡𝑡 − 2) …     𝑋𝑋(𝑡𝑡 − 𝑀𝑀)] �

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑀𝑀

� 

 𝑦𝑦(𝑡𝑡) = ∑ 𝑑𝑑𝑘𝑘𝑋𝑋(𝑡𝑡 − 𝑗𝑗) = 𝑑𝑑𝑘𝑘𝑇𝑇𝑋𝑋(𝑡𝑡)𝑀𝑀
𝑘𝑘=0   where k= 1, 2, 3,…, M             (2.57) 

From equation (2.57), 𝑑𝑑𝑘𝑘𝑇𝑇 is termed as the parameter vector to be estimated and 𝑋𝑋(𝑡𝑡) as the 

regressor. Therefore, to find the parameters estimates at time t, the sum of the square error 

between the predicted and the desired models needs to be minimized, with the error signal at 

each iteration of time (t) given as: 

𝑒𝑒(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑘𝑘𝑇𝑇𝑋𝑋(𝑡𝑡)     (2.58) 

The error signal can be represented as the negative feedback loop in the diagram below: 

 

         𝑑𝑑(𝑡𝑡) 

  𝑋𝑋(𝑡𝑡)     𝑦𝑦(𝑡𝑡)  

         𝜃𝜃(𝑡𝑡)        𝑒𝑒(𝑡𝑡) 

 

 

Figure 2.10 Schematic representation of ELM with RLS 

 

The basic goal in the RLS technique is to minimize a cost function F through a selection of 

appropriate parameter estimates of the model parameters and thereby updating the parameters 

at each iteration, i.e., at each sampling time (t) throughout the operation of the batch process. 

The parameter estimation in equation (2.57) can be solved with the method of ordinary least 

squares (Yuxin et al., 2004). This results in finding the optimal parameter estimates of 𝑑𝑑𝑇𝑇(𝑡𝑡) 

in equation (2.58) which resulted to minimising the following: 

𝐽𝐽(𝑒𝑒𝑑𝑑) = ∑ 𝜆𝜆𝑑𝑑−𝑖𝑖(𝑑𝑑(𝑑𝑑) − 𝑦𝑦(𝑑𝑑))2𝑑𝑑
𝑖𝑖=0      (2.59) 

ELM Prediction 

Algorithm 

RLS Algorithm 
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The equation above is the weighted least square error function. It is a sum of the weighted 

error terms and therefore depends on the forgetting factor 𝜆𝜆, which penalises the previous 

(historical) measurement exponentially in general. The forgetting factor typically has a 

positive value between the range of 0.98 and 0.995 and it is significant for parameter 

estimation such that if systems remain constant over time (𝑇𝑇0),  𝜆𝜆 will be chosen as:  

𝑇𝑇0 =  1
1−𝜆𝜆

        (2.60) 

Setting 𝜆𝜆 = 1, signifies that there’s no forgetting factor and a constant (time-invariant) 

coefficient will be estimated, but if 𝜆𝜆 < 1, this signifies that less weight is given to historical 

measurements and can as well be forgotten during parameter estimation (Bai et al., 2005). 

Moreover, the lesser the value of 𝜆𝜆, the faster the detail information captured from historical 

data will be forgotten and hence the 𝜆𝜆 is termed as the forgotten factor. 

2.6.2 Recursive Least Square Derivation 

The minimisation of equation (2.59) leads to the normal equations given by (Gaensler and 

Benesty, 2004): 

R𝑑𝑑 . y𝑑𝑑 = P𝑑𝑑       (2.61) 

Where R𝑑𝑑 and P𝑑𝑑 is an estimate of the input signal covariance matrix and an estimate of the 

cross-correlation vector between input and output respectively and are represented as:  

R𝑑𝑑 = ∑ 𝜆𝜆𝑀𝑀−𝑖𝑖𝑋𝑋(𝑑𝑑).𝑋𝑋(𝑑𝑑)𝑇𝑇𝑀𝑀
𝑖𝑖=0  and 

P𝑑𝑑 = �𝜆𝜆𝑀𝑀−𝑖𝑖𝑋𝑋(𝑑𝑑).𝑑𝑑(𝑑𝑑)
𝑑𝑑

𝑖𝑖=0

 

Therefore, equation (2.61) can be re-written as  

y𝑑𝑑 = R𝑑𝑑
−1. P𝑑𝑑       (2.62) 

The RLS algorithm parameters estimation y𝑑𝑑 is solved through iterative steps of the process 

by incrementally updating the equation (2.62) and obtaining the inverse of R𝑑𝑑 the matrix in 

solving for the parameter estimation of the filter weight in equation (2.62), the matrix 

inversion formula is employed to avoid the rigorous matrix inversion computation (Chi Sing 

et al., 1996). 
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The matrix inversion formula stated that if A and B are 𝑀𝑀 ×  𝑀𝑀 positive definite matrices, D 

is a 𝑁𝑁 ×  𝑁𝑁 matrix, and C is 𝑀𝑀 ×  𝑁𝑁 matrix, then they are related as follows:  

𝑎𝑎 = 𝑏𝑏−1 + 𝐶𝐶𝜏𝜏−1𝐶𝐶𝑇𝑇 

Then,  𝑎𝑎−1 = 𝑏𝑏 − 𝑏𝑏𝐶𝐶(𝜏𝜏 + 𝐶𝐶𝑇𝑇𝑏𝑏𝐶𝐶)−1𝐶𝐶𝑇𝑇𝑏𝑏 

with matrix inversion formula on equation (2.62), the R𝑑𝑑
−1 give rise to: 

R𝑑𝑑
−1  = 𝜆𝜆−1[R𝑑𝑑−1

−1  − K𝑑𝑑 .𝑋𝑋𝑑𝑑𝑇𝑇. R𝑑𝑑−1
−1 ]   (2.63) 

Therefore, the parameter estimate update in equation (2.62) is of the form: 

𝑦𝑦𝑑𝑑+1 = 𝑦𝑦𝑑𝑑 + 𝐾𝐾𝑑𝑑. 𝑒𝑒𝑑𝑑      (2.64) 

where, 𝑒𝑒𝑑𝑑 is termed as the prediction error. Given as: 

𝑒𝑒𝑑𝑑 = 𝑑𝑑𝑑𝑑+1 − 𝑋𝑋𝑑𝑑+1𝑇𝑇 .𝑦𝑦𝑑𝑑      (2.65)  

𝐾𝐾𝑑𝑑 is termed as the filter gain, given as: 

𝐾𝐾𝑑𝑑  =  𝑃𝑃𝑑𝑑−1.𝑋𝑋𝑑𝑑 .𝑍𝑍𝑑𝑑       (2.66) 

Where 𝑍𝑍𝑑𝑑 is the error dispersion and it is given as: 

  𝑍𝑍𝑑𝑑  = �𝜆𝜆 + 𝑋𝑋𝑑𝑑 .𝑋𝑋𝑑𝑑−1.𝑃𝑃𝑑𝑑−1�
−1

     (2.67) 

𝑃𝑃𝑑𝑑 = 𝑃𝑃𝑑𝑑−1.  𝜆𝜆−1[𝐼𝐼 −  𝐾𝐾𝑑𝑑 .𝑋𝑋𝑑𝑑]     (2.68) 

In the RLS algorithm stated above from equation (2.64)  to equation (2.68), equations (2.68) 

is termed as the dispersion estimate and equation (2.64) is termed the weighted update, which 

were the major equations for parameter estimation of the initial output weight predicted from 

the ELM. The output weight prediction from the ELM will be used to initialize the weight 

update for the parameter estimation and 𝑃𝑃(𝑡𝑡) will be initialized as: 

𝑃𝑃𝑑𝑑 = 𝑃𝑃(0) = 𝛿𝛿𝐼𝐼      (2.69) 

Thus 𝑃𝑃𝑑𝑑 is proportional to the covariance matrix of the parameters 𝑦𝑦(𝑡𝑡) but the initial values 

of 𝑦𝑦(0) is uncertain and then a very high covariance matrix of the parameters is estimated as: 

𝛿𝛿 > 100𝜎𝜎2       (2.70) 
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According to (Chen; Billings and Grant, 1990), the recommended value for 𝛿𝛿 is given in 

above equation and for large data, the initialization step does not really matter since the 

exponential forgetting factor will take care of it. 

In summary, at the end of this chapter, I have been able to give some basic background 

knowledge on different forms of modelling and process controlling techniques. All these 

techniques will be utilized to model and optimize case studies in the rest of the chapters.  
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CHAPTER THREE 

MODELLING AND OPTIMISATION OF FED-BATCH PROCESSES USING 

DIFFERENT MODELLING TECHNIQUES 

3.1 Introduction 

Fed-batch processes are  commonly used for the manufacturing of high value-added products 

such as specialty chemicals and pharmaceuticals (Ruppen;Benthack and Bonvin, 1995; 

Bonvin, 1998). Both fed batch and batch processes operate in similar pattern only that the 

intermittent addition of the reactants is not required in the case of batch operation. 

These process operations possess great benefit in many manufacturing industries as they help 

to ascertain controlled situation during the progress of a reaction whereby operating variables, 

such as the feed-rate, temperature, pressure, and agitation rate are varied according to a 

specified dynamic or steady trajectory. According to (Xiong and Zhang, 2005), the significant 

requirement of batch process optimization is the accurate mathematical representation of the 

process capable of providing accurate and reliable long range predictions. Process models can 

be generally classified into three forms, namely: mechanistic models, data-driven models, and 

hybrid models. Mechanistic models are developed based on the first principles governing the 

processes such as mass balance, energy balance, and reaction kinetics. Due to the processing 

of multiple materials, batch-to-batch variation and complexity involved (e.g., large numbers 

of reactions), first principle mechanistic models for batch processes are usually difficult to 

obtain. Developing mechanistic models usually requires significant amount of time and effort, 

which may not be feasible for batch processes where frequent changes in product 

specifications occur and a type of product is usually manufactured for a limited time in 

response to the dynamic market demand. Data-driven modelling can be a very useful 

alternative in this case. With the development and progress in research, data-driven modelling 

is becoming the most widely used method in modelling and analyses of batch/fed-batch 

process operations.  

Moreover, to obtain good control policy for a batch or fed-batch process, a reliable model 

capable of providing accurate predictions is required and some examples of batch processes 

includes polymerisation reaction, in which the mechanistic models are usually complicated 

and difficult to implement for both offline and on-line control system. However, low-quality, 

or inadequate operational data, as well as variability in process conditions frequently cause a 

mismatch between the predicted model and the actual plant model. As a result, the optimal 
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control profile obtained from the model may not be optimal when applied to the actual plant 

but due to the repetitive nature of batch operation, this can be improved using the previous 

and current batch knowledge to improve the next batch operation (Liu et al., 2005). This is 

termed as batch-to-batch optimisation and many researchers have worked on this by trying 

different modelling techniques. 

To employ the concept of data-driven in modelling the nonlinear characteristics relationship 

between the manipulated input variable and the output product quality, substantial amount of 

historical (previous) process operational data is necessary for an accurate model prediction of 

final product quality. Different modelling techniques such as ELM, bootstrap aggregated 

ELM (BAGNET) and iterative learning control (ILC) will be used to model and control an 

isothermal fed-batch and baker’s yeast fermentation process.  

The remaining part of this chapter is organised as follows. Section 3.2 gives the general 

background knowledge on both the isothermal fed-batch reactor and the baker’s yeast 

fermentation process while the rest of the sections talks about modelling of the case studies 

with different computational techniques such as ELM, BA-ELM, and an ILC.   

 

3.2 Case studies 

Two case studies are used in this thesis. One is a fed-batch reactor and the other one is fed-

batch fermentation process. Simulations of the two case studies based on detailed mechanistic 

models are used here to represent the actual industrial processes. These two case studies have 

been widely used in the batch process optimisation and control area.  

 

3.2.1 An Isothermal Fed-Batch Reactor Process 

The isothermal fed-batch reactor is taken from (Tian;Zhang and Morris, 2001) with the 
following reaction system kinetics: 

𝑎𝑎 + 𝑏𝑏
𝐾𝐾1��  𝐶𝐶         3.18 

𝑏𝑏 + 𝑏𝑏
𝐾𝐾2��𝜏𝜏        3.19 

The above reactions are conducted in an isothermal fed-batch reactor. In this process, reactant 

A and B are raw materials, C is the desired product, and D is the undesired by-product. The 



44 
 

objective of the process operation is to produce maximum amount of desired product C while 

minimizing the amount of the undesired by-product D at the end of a batch with a specified 

final time 𝑡𝑡𝑓𝑓 by feeding reactant B in an optimal way. Adding all the reactant B at the 

beginning of the batch will lead to more side reactions (3.19) which will eventually lead to 

yield of the undesired by-product D. To keep this undesired by-product D as low as possible, 

the reactor is operated in fed-batch mode, where B is added in a feed stream at a constant 

concentration. The following mechanistic model equations were derived based on material 

balances and reaction kinetics. 

𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

=  𝐾𝐾1𝐶𝐶𝐴𝐴𝐶𝐶𝐵𝐵 −
𝐶𝐶𝐴𝐴
𝑑𝑑
𝑃𝑃                (3.19) 

𝑑𝑑𝐶𝐶𝐵𝐵
𝑑𝑑𝑑𝑑

=  𝐾𝐾1𝐶𝐶𝐴𝐴𝐶𝐶𝐵𝐵 − 2𝐾𝐾2𝐶𝐶𝐵𝐵2 + 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑−𝐶𝐶𝐵𝐵
𝑑𝑑

𝑃𝑃            (3.20) 

𝑑𝑑𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

=  𝐾𝐾1𝐶𝐶𝐴𝐴𝐶𝐶𝐵𝐵 −
𝐶𝐶𝐶𝐶
𝑑𝑑
𝑃𝑃              (3.21) 

𝑑𝑑𝐶𝐶𝐷𝐷
𝑑𝑑𝑑𝑑

= 2𝐾𝐾2𝐶𝐶𝐵𝐵2 −
𝐶𝐶𝐷𝐷
𝑑𝑑
𝑃𝑃                (3.22) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃                  (3.23) 

where 𝐶𝐶𝐴𝐴,𝐶𝐶𝐵𝐵 ,𝐶𝐶𝐶𝐶 ,𝐶𝐶𝐷𝐷 denote the concentrations of A, B, C, and D respectively, V is the current 

reaction volume, u is the reactant feed rate, and  𝐾𝐾1  and 𝐾𝐾2 are the reaction rate constants. 

The operation conditions and other physical properties of the fed-batch reactor is given in 

Table 3.1: 

Table 3.1 Operation conditions and physical properties of the fed-batch reactor. 

Parameters       Value 

 

𝑏𝑏𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑       0.2 𝑚𝑚3.𝑚𝑚𝑑𝑑𝑎𝑎−1    

𝐾𝐾1 and 𝐾𝐾2       0.5 𝐿𝐿.𝑚𝑚𝑜𝑜𝑚𝑚𝑒𝑒𝑠𝑠−1.𝑚𝑚𝑑𝑑𝑎𝑎−1 

𝐶𝐶𝐴𝐴(0)       0.2 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 

𝐶𝐶𝐵𝐵(0) = 𝐶𝐶𝐷𝐷(0) = 𝐶𝐶𝐶𝐶(0)    0 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 

𝑉𝑉(0)       0.5 𝑚𝑚3 

Batch time (𝑡𝑡𝑓𝑓)     120 𝑚𝑚𝑑𝑑𝑎𝑎 
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3.2.2 Process Model for Baker’s Yeast Fermentation Process 

Fermentation is a biochemical process that converts glucose extract to an alcohols and organic 

acids in the presence (aerobic) or an absence (anaerobic) of oxygen. Mostly in biotechnology 

and food industries, fermentation process plays vital role in the production of baker’s yeast 

also known as Saccharomyces cerevisiae, alcoholic beverages, organic solvents and 

antibiotics or biopolymers. The importance of these products in food industries cannot be 

over-emphasised which leads to their highly competitive market demands and hence, the 

industrial production of baker’s yeast and ethanol.  

Fed-batch processes operation are commonly seen in many fermentation industries. The mode 

of operation allows the substrate concentration and all other operating variables (such as the 

feed-rate, temperature, pressure, and agitation rate) to be varied and monitored during the 

progress of production to obtain maximum and desired biomass yield at the end of 

production.  According to (Xiong and Zhang, 2005), the significant requirement of batch 

process modelling lies in the accurate mathematical representation of the process capable of 

providing accurate and reliable model predictions but due to the complexity nature of the 

fermentation processes such as multiple process variables, batch-to-batch variation and non-

linear and dynamic mathematical equations of the process, accurate kinetic model 

representation is difficult and challenging to obtain.  

The new trending concept of machine learning coupled with the data science analysis in 

research developments has become widely accepted concept used in modelling and analyses 

of any form of process operations. Thus, the data-driven concept utilizes statistical theories in 

establishing the process performances, monitoring the progress of preset conditions of 

operation for optimization purpose and generalization capabilities in predicting the unforeseen 

circumstances. In this concept, detailed knowledge of the process operation is not necessary 

but past historical data of the process operation is required. As much as the historical data is 

large enough, data-driven model of the process with optimization can be establish with 

machine learning and statistical theories conceptualization (Liu et al., 2019). 
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3.2.3 Kinetic Model 

According to (Yüzgeç;Türker and Hocalar, 2009), the yeast cell kinetic model of the baker’s 

yeast fermentation metabolism process is based on the hypothesis developed by (Sonnleitner 

and Käppeli, 1986), which was later updated with glucose uptake and oxidative capacity 

terms by (Karakuzu, 2003). The cell kinetic model equations are given as follows: 

The glucose uptake: 𝑄𝑄𝑠𝑠 = 𝑄𝑄𝑠𝑠,𝑚𝑚𝑎𝑎𝑚𝑚
𝐶𝐶𝑠𝑠

𝐾𝐾𝑠𝑠+𝐶𝐶𝑠𝑠
�1 − 𝑒𝑒

−𝑑𝑑
𝑑𝑑𝑑𝑑� �     (3.24) 

Oxidative capacity: 𝑄𝑄𝑜𝑜,𝑙𝑙𝑖𝑖𝑚𝑚 = 𝑄𝑄𝑜𝑜,𝑚𝑚𝑎𝑎𝑚𝑚
𝐶𝐶𝑜𝑜

𝐾𝐾𝑜𝑜+𝐶𝐶𝑜𝑜

𝐾𝐾𝑖𝑖
𝐾𝐾𝑖𝑖+𝐶𝐶𝑓𝑓

     (3.25) 

Specific growth rate limit: 𝑄𝑄𝑠𝑠,𝑙𝑙𝑖𝑖𝑚𝑚 = 𝜇𝜇𝑐𝑐𝑐𝑐
𝑌𝑌𝑥𝑥/𝑠𝑠
𝑜𝑜𝑥𝑥      (3.26) 

Oxidative glucose metabolism: 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚 = 𝑚𝑚𝑑𝑑𝑎𝑎�

𝑄𝑄𝑠𝑠
𝑄𝑄𝑠𝑠,𝑙𝑙𝑖𝑖𝑚𝑚

𝑄𝑄𝑜𝑜,𝑙𝑙𝑖𝑖𝑚𝑚
𝑌𝑌𝑜𝑜/𝑠𝑠
�

�    (3.27) 

Reductive glucose metabolism: 𝑄𝑄𝑠𝑠,𝑟𝑟𝑒𝑒𝑑𝑑 = 𝑄𝑄𝑠𝑠 − 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚     (3.28) 

Ethanol uptake rate: 𝑄𝑄𝑒𝑒,𝑢𝑢𝑢𝑢 = 𝑄𝑄𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚
𝐶𝐶𝑓𝑓

𝐾𝐾𝑓𝑓+𝐶𝐶𝑓𝑓

𝐾𝐾𝑖𝑖
𝐾𝐾𝑖𝑖+𝐶𝐶𝑓𝑓

     (3.29) 

Oxidative ethanol metabolism: 𝑄𝑄𝑒𝑒,𝑜𝑜𝑚𝑚 = 𝑚𝑚𝑑𝑑𝑎𝑎 �
𝑄𝑄𝑒𝑒,𝑢𝑢𝑢𝑢

(𝑄𝑄𝑜𝑜,𝑙𝑙𝑖𝑖𝑚𝑚 − 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚𝑌𝑌𝑜𝑜
𝑠𝑠
)𝑌𝑌𝑒𝑒/𝑜𝑜

�  (3.30) 

Ethanol production rate: 𝑄𝑄𝑒𝑒,𝑢𝑢𝑟𝑟 = 𝑄𝑄𝑠𝑠,𝑟𝑟𝑒𝑒𝑑𝑑𝑌𝑌𝑒𝑒/𝑠𝑠      (3.31) 

Total specific growth rate: 𝜇𝜇 = 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚𝑌𝑌𝑚𝑚/𝑠𝑠
𝑜𝑜𝑚𝑚 + 𝑄𝑄𝑠𝑠,𝑟𝑟𝑒𝑒𝑑𝑑𝑌𝑌𝑚𝑚/𝑠𝑠

𝑟𝑟𝑒𝑒𝑑𝑑 + 𝑄𝑄𝑒𝑒,𝑜𝑜𝑚𝑚𝑌𝑌𝑚𝑚/𝑒𝑒   (3.32) 

Oxygen consumption rate: 𝑄𝑄𝑜𝑜 = 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚𝑌𝑌𝑜𝑜/𝑠𝑠 + 𝑄𝑄𝑒𝑒,𝑜𝑜𝑚𝑚𝑌𝑌𝑜𝑜/𝑒𝑒    (3.33) 

Carbon (IV) oxide production rate: 𝑄𝑄𝑐𝑐 = 𝑄𝑄𝑠𝑠,𝑜𝑜𝑚𝑚𝑌𝑌𝑐𝑐/𝑠𝑠
𝑜𝑜𝑚𝑚 + 𝑄𝑄𝑠𝑠,𝑟𝑟𝑒𝑒𝑑𝑑𝑌𝑌𝑐𝑐/𝑠𝑠

𝑟𝑟𝑒𝑒𝑑𝑑 + 𝑄𝑄𝑒𝑒,𝑜𝑜𝑚𝑚𝑌𝑌𝑐𝑐/𝑒𝑒    

(3.34) 

Respiratory quotient: RQ = 𝑄𝑄𝑐𝑐/𝑄𝑄𝑜𝑜       (3.35) 

 

3.2.4 Reactor Dynamic Model 

This is based on mass balance equations describing the glucose, biomass, oxygen and ethanol 

concentrations in the fermenter as follows (Yüzgeç;Türker and Hocalar, 2009): 

For substrate concentration rate:  
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𝑑𝑑𝐶𝐶𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝜕𝜕
𝑑𝑑

(𝑀𝑀𝑜𝑜 − 𝐶𝐶𝑠𝑠) − � 𝜇𝜇
𝑌𝑌𝑥𝑥/𝑠𝑠
𝑜𝑜𝑥𝑥 + 𝑄𝑄𝑓𝑓,𝑝𝑝𝑐𝑐

𝑌𝑌𝑓𝑓/𝑠𝑠
+ 𝑄𝑄𝑚𝑚�𝐶𝐶𝑚𝑚     (3.36) 

For oxygen concentration rate: 

𝑑𝑑𝐶𝐶𝑜𝑜
𝑑𝑑𝑑𝑑

= −𝑄𝑄𝑜𝑜𝐶𝐶𝑚𝑚 + 𝐾𝐾𝐿𝐿𝑑𝑑𝑜𝑜(𝐶𝐶0∗ − 𝐶𝐶0) − 𝜕𝜕
𝑑𝑑
𝐶𝐶0     (3.37) 

For ethanol concentration rate: 

𝑑𝑑𝐶𝐶𝑓𝑓
𝑑𝑑𝑑𝑑

= �𝑄𝑄𝑒𝑒,𝑢𝑢𝑟𝑟 − 𝑄𝑄𝑒𝑒,𝑜𝑜𝑚𝑚�𝐶𝐶𝑚𝑚 −
𝜕𝜕
𝑑𝑑
𝐶𝐶𝑒𝑒      (3.38) 

For biomass: 𝑑𝑑𝐶𝐶𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝐶𝐶𝑚𝑚
𝜕𝜕
𝑑𝑑
𝐶𝐶𝑚𝑚       (3.39) 

Volume: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹        (3.40) 

Volumetric mass transfer: 𝐾𝐾𝐿𝐿𝑑𝑑𝑜𝑜 = 113 �𝜕𝜕𝑎𝑎
𝐴𝐴𝑅𝑅
�
0.25

    (3.41) 

 where 𝐹𝐹𝑎𝑎 is the air feedrate and 𝑎𝑎𝑅𝑅 is the cross-sectional area of the fermentor? Table 1 

shows the values of the other model parameters from equation (3.24) to equation (3.41) as 

stated in (Yüzgeç;Türker and Hocalar, 2009). Other model parameter values are given in 

Table 3.2 and a typical example of a computer control fermentor is given in Figure 3.1 

 

3.3 Modelling of an Isothermal Fed-Batch Process Using Different Computational 

Intelligence Techniques 

3.3.1 Dynamic Modelling of Fed-Batch Reactor Process using ELM 

Based on the reaction kinetics, material balances in equation (3.19) to (3.23) and the process 

operational conditions in Table 3.1, one hundred (100) batches of process operations under 

different feeding profiles were simulated as inputs historical process data sets. These 100 

feeding rate profiles were generated by adding random perturbations with normal distribution 

and zero mean to some base profiles. Each process batch time is 120 minutes, with 12 minutes 

sampling time at 10 equal intervals and the simulation of the fed-batch reactor process solved 

using the ODE 45 solver in MATLAB R2020a.  The feed rate is constant within each interval. 

Thus, a feeding profile is a vector of 10 elements. The feeding rate constraint is given as: 0 <

𝑃𝑃𝑖𝑖 < 0.01 (𝑑𝑑 = 1, 2, … ,𝑁𝑁) and the nonlinear dynamic modelling is of the form:  

𝑦𝑦(𝑡𝑡) = 𝑓𝑓[ 𝑃𝑃(𝑡𝑡 − 1),𝑃𝑃(𝑡𝑡 − 2), …𝑃𝑃(𝑡𝑡 − 𝑑𝑑𝑖𝑖),𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), … ,𝑦𝑦(𝑡𝑡 − 𝑑𝑑𝑜𝑜)] (3.42) 



48 
 

where y is the process output variables (𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷), u is the process inputs variables (the 

feeding rate profile generated), 𝑓𝑓[ ] is the nonlinear function represented by an ELM network, 

t represents the discrete time, 𝑑𝑑𝑜𝑜 𝑑𝑑𝑎𝑎𝑑𝑑 𝑑𝑑𝑖𝑖 represents the time lags in the model output and input 

respectively, and depend on the chosen number of batches considered for process model. 

Equation (3.42) is called a nonlinear autoregressive with exogenous (external) input model 

and it was implemented by an ELM, where 20 hidden neurons was used for building the 

process model. This is used in predicting future values of a time-series 𝑦𝑦(𝑡𝑡) from past values 

of its time-series and past values of a second time-series 𝑃𝑃(𝑡𝑡). Output 𝑦𝑦(𝑡𝑡) is regressed on its 

previous output signal value and previous independent input signal value 𝑃𝑃(𝑡𝑡).  

 

 

Table 3.2 Model parameters value for the fermentation process. 

Parameters  Values  Parameters Values  

𝐾𝐾𝑒𝑒-Saturation constant (eth) 0.1 g/L 𝑌𝑌𝑐𝑐/𝑒𝑒  0.6450 g/g 

𝐾𝐾𝑖𝑖-Inhibition constant 3.5 g/L 𝑌𝑌𝑐𝑐/𝑠𝑠
𝑟𝑟𝑒𝑒𝑑𝑑  0.5744 g/g 

𝐾𝐾𝑜𝑜-Saturation constant (oxy) 9.6E-5 g/L 𝑌𝑌𝑐𝑐/𝑠𝑠
𝑜𝑜𝑚𝑚   0.4620 g/g 

𝐾𝐾𝑠𝑠-Saturation constant (sub) 0.612 g/L 𝑄𝑄𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚  0.2380 g/gh 

𝑌𝑌𝑚𝑚/𝑠𝑠
𝑜𝑜𝑚𝑚 - yield component (ox) 0.5850 g/g 𝑄𝑄𝑠𝑠,𝑚𝑚𝑎𝑎𝑚𝑚  2.9430 g/gh 

𝑌𝑌𝑚𝑚/𝑠𝑠
𝑟𝑟𝑒𝑒𝑑𝑑- yield component (red) 0.0500 g/g 𝑄𝑄𝑜𝑜,𝑚𝑚𝑎𝑎𝑚𝑚  0.2550 g/gh 

𝑌𝑌𝑒𝑒/𝑠𝑠  0.4859 g/g 𝑄𝑄𝑚𝑚  0.0300 g/gh 

𝑌𝑌𝑜𝑜/𝑠𝑠  0.3857 g/g 𝜇𝜇𝑐𝑐𝑟𝑟  0.2100 /h 

𝑌𝑌𝑜𝑜/𝑒𝑒  0.8904 g/g 𝐶𝐶0∗  0.0060 g/L 

𝑌𝑌𝑒𝑒/𝑜𝑜  1.1236 g/g 𝑀𝑀𝑜𝑜  325 g/L 

𝑌𝑌𝑚𝑚/𝑒𝑒  0.7187 g/g 𝑎𝑎𝑅𝑅  12.56 m2 
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Figure 3.1 A typical computer controlled fermentor (Alford, 2006)  

The batch simulation of each feeding rate profile used end of the batch process output 

variables in building the historical target process data for the ELM model network. The 

historical input and output process data are given as: 

𝑈𝑈 = �
𝑈𝑈𝑗𝑗1𝑇𝑇
⋮

𝑈𝑈𝑗𝑗100𝑇𝑇
�  , 𝑌𝑌 = �

𝑌𝑌𝑖𝑖1
𝑇𝑇

⋮
𝑌𝑌𝑖𝑖100
𝑇𝑇

�  𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌𝑖𝑖 = �
𝑦𝑦𝑖𝑖𝐶𝐶(𝑡𝑡𝑓𝑓)
𝑦𝑦𝑖𝑖𝐷𝐷(𝑡𝑡𝑓𝑓)

�      (3.43) 

While building the ELM model, the data set was pre-processed by scaling to zero mean and 

unit variance to work easily with the data magnitudes and units. The data samples were 

divided into 70% of training and testing and 30% for validation data set and the ELM model 

was developed using the training and testing data sets as in form of equation (3.42).  

The developed ELM model is used for obtaining both one step ahead and multi-step ahead 

predictions. For the calculation of multi-step ahead predictions, the network output is fed back 

repeatedly to the network input via one or more-time delay units. To evaluate the performance 

of this ELM dynamic process modelling, performance on one of the unseen validation batches 

is shown in detail in the next subsection.  
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In this study of an isothermal fed-batch reactor process, the performance of ELM modelling 

predictions in terms of one-step-ahead and multi-step-ahead predictions for both 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 

are compared with their actual values.  Many researchers have reported and established ELM 

models which are fast in learning and reaches global optimum with least human intervention 

when compared to SLFN network.  

Hence, there is a need to see the feasibility of the ELM model predictions on both short- and 

long-term model prediction on an isothermal fed-batch case study.  

The root mean square error (RMSE) is used to check the prediction performance on both 

𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷. The RMSE is the root of the mean squared errors between the predicted and the 

actual/observed values. The larger the values of the RMSE, the worse the ELM model fits the 

isothermal fed-batch reactor data. Conversely, the smaller the RMSE, the better the ELM 

model prediction of the data. Figures 3.1, 3.2, 3.3 and 3.4 show the one-step and multi-step 

ahead ELM model prediction on first batch of the simulated validation data for 

both 𝐶𝐶𝐶𝐶 𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 respectively. The RMSE performance values of the ELM model predictions 

on any of the validation data batches is given in Table 3.3. 

 

 

Figure 3.1 One-step ahead ELM model prediction on 𝐶𝐶𝐶𝐶 
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Figure 3.2 Multi-step ahead ELM model prediction on 𝐶𝐶𝐶𝐶 

 

Figure 3.3 One-step ahead ELM model prediction on 𝐶𝐶𝐷𝐷 
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Figure 3.4 Multi-step ahead ELM model prediction on 𝐶𝐶𝐷𝐷 

 

Table 3.3: Comparison of modelling performance on one-step and multi-step predictions 

Predictions    RMSE for 𝐶𝐶𝐶𝐶 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1)  RMSE for 𝐶𝐶𝐷𝐷 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

 

One-step ahead  0.00063    0.00019 

Multi-step ahead  0.00270    0.00120 

 

 

Obviously from the ELM model predictions figures shown for both the 𝐶𝐶𝐶𝐶 𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

above, ELM can predict very accurately for one-step ahead predictions and reasonably well 

for multi-step model predictions. In the case of one-step ahead predictions for 

𝐶𝐶𝐶𝐶 𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1), the RMSE values are 0.00063 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 and 0.00019 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 

respectively. For the multi-step ahead predictions, the RMSE values obtained for 
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𝐶𝐶𝐶𝐶 𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) are 0.0027 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 and 0.00120 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 respectively. The RMSE 

performance evaluation results in Table 3.3 and the Figure 3.3 and 3.4 plots shows that ELM 

can accurately predict for both short- and long-term prediction horizon but short-term 

predictions are more accurate than long term model predictions. This is due to the 

accumulations of errors in multi-step ahead model predictions.  

The long-range model prediction is quite important in industries for model predictive control 

and real-time optimisation. The more accuracy of modelling technique for multi-step ahead 

predictions, the better the model predictive control performance. Therefore, there is a need to 

try some other modelling techniques or improve on ELM modelling predictions by merging 

some other statistical learning techniques. 

 

3.3.2 Static Modelling of Fed-Batch Reactor Process using ELM 

In the static models, the product quality variables at the end of each batch are to be predicted 

by the ELM models using the feed profile as model inputs. The historical input and output 

process data, batch duration and batch interval remain the same as described in dynamic 

modelling above. The essence of having many sampling intervals within a batch is to improve 

the performance of the network model by increasing the degree of freedom in control policy. 

The more the sampling interval, the more the tendency to improve the performance and vice-

versa. 

The main objective of this process modelling is to maximise the amount of the final product 

𝐶𝐶𝐶𝐶 (𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓) and at the same time, keeping the amount of undesirable product 𝐶𝐶𝐷𝐷(𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓) to 

the barest minimum. Adding all the reactant B at the start of the reaction will lead to the side 

reaction II in equation (3.19) and this leads to the yield of the undesired product D. To keep 

the undesired product D to the barest minimum, the reactor is operated in semi-batch (fed-

batch) mode, where B is added in a feed stream intermittently. The static ELM network 

models for the prediction of 𝐶𝐶𝐶𝐶 (𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓) and 𝐶𝐶𝐷𝐷(𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓) is of the form: 

𝑦𝑦𝐶𝐶 = 𝑓𝑓1(𝑋𝑋)        (3.44) 

𝑦𝑦𝐷𝐷 = 𝑓𝑓2(𝑋𝑋)        (3.45) 

where 𝑦𝑦𝐶𝐶 = 𝐶𝐶𝐶𝐶 (𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓), 𝑦𝑦𝐷𝐷 = 𝐶𝐶𝐷𝐷 (𝑡𝑡𝑓𝑓)𝑉𝑉(𝑡𝑡𝑓𝑓), 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥10,]𝑇𝑇 is a vector of the reactant 

feed rates over a batch, 𝑓𝑓1 𝑑𝑑𝑎𝑎𝑑𝑑 𝑓𝑓2 are the nonlinear functions representing the ELM networks. 
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As stated previously in dynamic modelling, 100 batches of historical simulated process data 

were generated with normal random noise distribution in the range of 0 < 𝑥𝑥𝑖𝑖 < 0.01. Out of 

these 100 batches, 75% of the historical process data were used for training and testing in 

building the ELM models while the remaining 25% were used as unseen validation data. 

 

Results and Discussions 

In the static models, the performance of ELM model predictions on training, testing and 

validation data for 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 are shown in Figures 3.5 and 3.6 respectively. 26% out of the 

75% training and testing historical data were used as training data to build the ELM models. 

The 26% out of the 75% training data was used in building the ELM models to show the 

effect of having insufficient (few) datasets in the process of learning from the training data. 

Although, it is expected that inaccurate model predictions may occur due to insufficient data 

to learn. Many other techniques can be added to the ELM concept to give a good 

generalisation capability of the model predictions despite the use of insufficient training data.  

Moreover, the mean square errors (MSE) between the actual historical data and the predicted 

data for both the product 𝐶𝐶𝐶𝐶 and by-product 𝐶𝐶𝐷𝐷 are also given in Table 3.4. 

 

 

 

 

 

 

 

 

 

 



55 
 

 

 

Figure 3.5 ELM Model predictions of [C] 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 at batch end. 
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Figure 3.6 ELM Model predictions of [D] 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 at batch end. 

 

Table 3.4 Predicted MSE Values on 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 Using ELM 

 Data     MSE for 𝐶𝐶𝐶𝐶 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1)  MSE for 𝐶𝐶𝐷𝐷 (𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

 

Training &Testing   0.8506    0.3287 

Validation    0.7161    0.2982 
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The ELM model predictions on [C] given in Figure 3.5 shows accurate model predictions on 

only the first 20 batches of the training and testing datasets. This is due to the 26% of datasets 

that were used in modelling the training and testing data. For the rest of the batches, the model 

prediction errors tend to become larger, from the 21st batch till the 65th batch when the 

prediction error becomes smaller on the training and testing dataset. This is caused by an 

insufficient dataset the model can learn from before being able to predict accurately on an 

unseen dataset. In general, the model prediction on the validation dataset is said to be 

inaccurate due to wide model mismatches between the actual and the predicted data shown in 

Figure 3.5. The same explanation goes for the model predictions seen on [D] in Figure 3.6. 

However, based on the low values of the MSE obtained in Table 3.4 above, some might 

believe that the ELM model predictions seem to be accurate and predicted well enough for 

both the by-product 𝐶𝐶𝐷𝐷 and the main product 𝐶𝐶𝐶𝐶. The MSE values are 0.8506 𝑑𝑑𝑎𝑎𝑑𝑑 0.7161 for 

training, testing and validation data of 𝐶𝐶𝐶𝐶 were close because it’s an overall batches error 

where some batches of less error are added up with batches of large errors. The same 

explanation goes for the MSE values of  𝐶𝐶𝐷𝐷 given as 0.3287  for the training and testing data 

and 0.2982   for the validation data. 

To re-validate and be certain of the mean square error performance of the ELM static 

modelling, some techniques can be integrated with the ELM (which will be discussed in 

Chapter 4) or re-sample the historical data in form of bootstrap aggregated ELM (BA-ELM) 

instead of the ordinary ELM in the steady-state modelling of the process. 

 

3.3.3 Static Modelling of Fed-batch Reactor Process using BA-ELM 

As stated earlier in building steady-state ELM modelling, the pre-processing steps, and the 

data allocations: 70% for training and testing and 30% for validation remain the same for 

building BA-ELM static model. The bootstrap resampling technique was applied to the 

training data set to generate 𝑎𝑎𝑚𝑚 = 20 different bootstrap replication data sets for training 

individual ELM networks. 56% of the original training data were selected for training, 24% 

for testing and 20% for unseen validation data to build the BA-ELM model. The individual 

ELM model networks are linearly stacked as a weighted combination of the individual ELM 

networks to improve the model generalisation capability in predictions. Figures 3.7, 3.8, and 

3.9 show the BA-ELM model predictions and the mean square error (MSE) plots of the 

individual BA-ELM output on training, testing and validation data sets for product 𝐶𝐶𝐶𝐶  , while 
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Figures 3.10, 3.11 and 3.12 show BA-ELM model predictions and the MSE for the by-

product 𝐶𝐶𝐷𝐷. Moreover, Figures 3.13 and 3.14 show the 95% confidence bound of BA-ELM 

model prediction plots for both 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷. 

 

Results and Discussions 

 

 

Figure 3.7 Training and Validation data Plots using BA-ELM for 𝐶𝐶𝐶𝐶(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 
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Figure 3.8 Plot of MSE for Individual Single ELM Network on 𝐶𝐶𝐶𝐶(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

 

Figure 3.9 Plot of MSE for Individual Aggregated ELM Network on 𝐶𝐶𝐶𝐶(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

M
S

E
 (

tr
ai

ni
ng

 &
 te

st
in

g)

10
-4

0 2 4 6 8 10 12 14 16 18 20

Number of Batches 

0

0.2

0.4

0.6

0.8

1

M
S

E
 (

va
lid

at
io

n)

10
-4

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

M
S

E
 (

tr
ai

ni
ng

 &
 te

st
in

g)

10
-5

0 2 4 6 8 10 12 14 16 18 20

Number of Batches

0

1

2

3

4

5

M
S

E
 (

va
lid

at
io

n)

10
-5



60 
 

 

Figure 3.10 Training and Validation data Plots using BA-ELM for 𝐶𝐶𝐷𝐷(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

 

Figure 3.11 Plot of MSE for Individual Single ELM Network on 𝐶𝐶𝐷𝐷(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 
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Figure 3.12 Plot of MSE for Individual Aggregated ELM Network on 𝐶𝐶𝐷𝐷(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 

 

Figure 3.13 Confidence Bound Plot of BA-ELM model prediction on 𝐶𝐶𝐶𝐶(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 
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Figure 3.14 Confidence Bound Plot of BA-ELM model prediction on 𝐶𝐶𝐷𝐷(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) 
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MSE can be seen to be stable (from network 10 till the last network), in the same range and 

becoming lower from one trained network data to the next network. Same explanation for 

comparing Figures 3.11 and 3.12 but to the by-product 𝐶𝐶𝐷𝐷. 

Both Figure 3.13 and Figure 3.14 show the 95% confidence limit for the predictions of 

𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 respectively on the validation data. In these plots, the upper green dashed curves 

indicate the upper confidence limit, the lower black dashed curves denote the lower 

confidence limit of the historical process data, the blue plus marks represent the actual values 

and the red circles denote the BA-ELM predictions. The essence of the confidence limit plot 

is to show the prediction reliability of the BA-ELM model in that the true values lie within the 

confidence interval (i.e., between the lower and upper limit) with 95% probability. If the 

confidence intervals are narrow, the predictive model will be reliable and accurate. It can be 

seen from both Figures 3.13 and 3.14 that the actual and the predicted values 

 

3.4 Product Quality Control of Fed-Batch Reactor using Iterative Learning Control 

The iterative learning control (ILC) strategy can improve the final product quality of an 

isothermal fed-batch reactor process by learning from batch-to-batch historical control 

performance data of that process. The general idea of batch-to-batch control is to use the 

repetitive feature of the batch process to reformulate the control profile to meet the desired 

product quality. This is achieved using past process knowledge to update the current batch 

operation so that the product trajectory will converge asymptotically to the desired reference 

trajectory.  

In this study, only the 20 batches out of the 100 simulated process model of the fed-batch 

reactor system are used and all other data cleaning (the sampling interval, time, input 

constraint and batch end) remains exactly same as given in equation (3.47) below. Remember 

that the main aim is to achieve the highest possible value of the desired product 𝐶𝐶𝐶𝐶   and the 

lowest corresponding value for undesired by-product 𝐶𝐶𝐷𝐷. We want to make predictions on 

both the product and the by-product 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 at the same batch end time (120 mins). For 

batch processes, the bulk of the non-linearity in the process operation can be removed by 

subtracting time-varying nominal trajectories from process operation trajectories which will 

eventually allow the linear modelling technique to perform well on the perturbation variables 

(Xiong and Zhang, 2003). 
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In a linear time-varying (LTV) model given by equation (3.46) below: 

𝑌𝑌 = 𝐺𝐺𝑋𝑋        (3.46) 

where Y is the output trajectory, X is the input trajectory and G is the linear model between 

the input and the output trajectories for the batch process. Let the input and output nominal 

trajectory matrix be represented as: 

𝑋𝑋 = �
𝑋𝑋𝑗𝑗1𝑇𝑇
⋮

𝑋𝑋𝑗𝑗20𝑇𝑇
�  , 𝑌𝑌 = �

𝑌𝑌𝑖𝑖1
𝑇𝑇

⋮
𝑌𝑌𝑖𝑖20
𝑇𝑇
�  𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌𝑖𝑖 = �

𝑦𝑦𝑖𝑖𝐶𝐶(𝑡𝑡𝑓𝑓)
𝑦𝑦𝑖𝑖𝐷𝐷(𝑡𝑡𝑓𝑓)

� ,𝑋𝑋𝑠𝑠 = �
𝑋𝑋𝑖𝑖1

𝑇𝑇

⋮
𝑋𝑋𝑖𝑖20

𝑇𝑇
�  , 𝑌𝑌𝑠𝑠 = �

𝑌𝑌𝑖𝑖1
𝑇𝑇

⋮
𝑌𝑌𝑖𝑖20
𝑇𝑇
�  

         (3.47) 

The perturbation model matrix, 𝐺𝐺𝑠𝑠 can be considered in two cases, namely: the fix and the 

time-varying matrix 𝐺𝐺𝑠𝑠. For the fix matrix 𝐺𝐺𝑠𝑠, its perturbation model depends on the nominal 

trajectories and when it is fixed then the perturbation model is also fixed. 𝐺𝐺𝑠𝑠 can be calculate 

using PLS, PCR, or MLR techniques and for MLR calculation, it is represented as: 

𝐺𝐺𝑠𝑠 = ((X − Xs)𝑇𝑇(X − Xs))−1(X − Xs)𝑇𝑇(𝑌𝑌 − 𝑌𝑌𝑠𝑠))   (3.48)  

and the control gain is calculated as: 

𝜏𝜏𝑖𝑖 = (𝐺𝐺𝑇𝑇𝑄𝑄𝐺𝐺 + 𝑅𝑅)−1𝐺𝐺𝑠𝑠𝑇𝑇𝑄𝑄      (3.49) 

Where Q, as a (2 × 2) matrix, and R, as a (10 × 10) matrix, are the positive-definitive 

weighting matrices, 𝜏𝜏𝑖𝑖 is a (10 × 2) matrix, and 𝐺𝐺𝑠𝑠 is a (2 × 10) matrix. The 𝑅𝑅 matrix is a 

determinant of the convergence level, the larger the weight on the input, the slower the 

convergence.  The Q and R matrices are given as: 

𝑅𝑅 =  𝜆𝜆 × 𝐼𝐼     𝑑𝑑𝑎𝑎𝑑𝑑   𝑄𝑄 = �𝛽𝛽 0
0 𝜃𝜃�     (3.50) 

The 𝛽𝛽 𝑑𝑑𝑎𝑎𝑑𝑑 𝜃𝜃 values in Q were also determinants for convergences to reference trajectories. A 

higher value of either the 𝛽𝛽 𝑜𝑜𝑟𝑟 𝜃𝜃 will leads to a better convergence to the desired reference 

trajectories of both product and by-product. 

To improve the feeding policy from batch to batch, the calculation for the tracking error 𝑒𝑒𝑖𝑖 for 

the ith batch is given as: 

𝑒𝑒𝑖𝑖 = 𝑌𝑌𝑑𝑑 − 𝑌𝑌𝑖𝑖        (3.51) 
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where 𝑌𝑌𝑑𝑑 = �
𝐶𝐶𝐶𝐶(𝑡𝑡𝑓𝑓)
𝐶𝐶𝐷𝐷(𝑡𝑡𝑓𝑓)�

𝑑𝑑
 and the calculation for the next batch control is given as: 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑒𝑒𝑖𝑖       (3.52) 

The process runs until all the 20th batches has been completed where we can see all the 

progress of the quality of both product and the by-product batch by batch. 

For the changing matrix 𝐺𝐺𝑠𝑠, the tracking of the model prediction can be improved through the 

update of 𝐺𝐺𝑠𝑠 at each batch of operation (Xiong et al., 2007). At each batch completion, the 

matrices of the output and the input trajectories increases by a row. The new row defines the 

update for the nominal trajectory matrices 𝑋𝑋𝑠𝑠 𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌𝑠𝑠 which lead to new update for 𝐺𝐺𝑠𝑠 and 

the control action 𝜏𝜏𝑖𝑖. The looping process can be listed as: 

 Calculation of the 𝑒𝑒𝑖𝑖 
 Calculation of the next input trajectory 𝑋𝑋𝑖𝑖+1 
 Simulation of the next output trajectory 𝑌𝑌𝑖𝑖+1 
 Definition of new nominal trajectory matrices 𝑋𝑋𝑠𝑠 𝑑𝑑𝑎𝑎𝑑𝑑 𝑌𝑌𝑠𝑠, and lastly 
 Calculation of the new 𝐺𝐺𝑠𝑠 𝑑𝑑𝑎𝑎𝑑𝑑 𝜏𝜏𝑖𝑖  

 

Results and Discussions 

The accuracy of fixed 𝐺𝐺𝑠𝑠 depends on the initialisation of its historical input matrix. Bad 

initialisation leads to a bad perturbation model 𝐺𝐺𝑠𝑠 and control actions of the batches. 

Likewise, good initialisation allows easy convergence of the product quality to the desired 

trajectories. 

The last vector of the input matrix 𝑋𝑋 is used as the nominal trajectory 𝑋𝑋𝑠𝑠 and the desired 

parameters are given as: 

𝑌𝑌𝑑𝑑 = �0.0618
0.0189� ,𝑅𝑅 = 0.1 × 1 𝑑𝑑𝑎𝑎𝑑𝑑 𝑄𝑄 = �50 0

0 1� 

Figure 3.15 shows the tracking evolution of the iterative learning control (ILC) on a fed-batch 

reactor without perturbation. The figure shows how both the desired product 𝐶𝐶𝐶𝐶 and undesired 

by-product 𝐶𝐶𝐷𝐷 reaches the desired values of 0.0618g/L and 0.0189g/L from starting point 

value of 0.0560g/L and 0.0220g/L respectively. It also shows how the tracking error 𝑒𝑒𝑘𝑘 

evolved through all the batches for both 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷.  
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For the progress of product 𝐶𝐶𝐶𝐶 in fixed 𝐺𝐺𝑠𝑠 without perturbation, the desired product quality 

value has been reached from batch 6 while the undesired by-product value was reached at 

batch 15 but seem to get close to the desired value from batch 8. This is signifying that there 

is quite an improvement in product quality without increasing the by-product value. 

 

Figure 3.15 ILC tracking of the fed-batch reactor without Perturbation 
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Figure 3.16 ILC tracking of the fed-batch reactor with Perturbation 

 

Figure 3.16 shows the plots of the tracking progress for the product, undesired by-product, 

and batch-to-batch progress of their errors. The constant of proportionalities 𝐾𝐾1𝑑𝑑𝑎𝑎𝑑𝑑 𝐾𝐾2 𝑑𝑑𝑠𝑠 0.5 

from the beginning of the process tracking and at batch 8, 𝐾𝐾1 value is increased to 0.65, 

favouring the fed-batch reaction to proceed to the right (i.e., an increase in the 𝐶𝐶𝐶𝐶 product). 

The perturbation was applied at batch 8 because the ILC tracked value will have reached the 

desired product quality value and stabilised for some time as seen in Figure 3.15 before 

introducing perturbation at batch number 8. 
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Despite the introduction of the perturbation, it can be seen from Figure 3.16 that the product 

quality value can still be maintained and tracked to reach the desired product value. From 

batch 8 to batch 14, it shows the effect of the perturbation on product 𝐶𝐶𝐶𝐶 and from batch 15, 

the ILC has been able to track the product quality value to the desired product value. Both the 

product and the undesired by-product have been able to be tracked accurately to the desired 

values in the presence of the perturbation. 

 

3.5 Modelling of Baker’s Yeast Fermentation Process  

3.5.1 Static Modelling of Baker’s Yeast Fermentation process using ELM 

The cell kinetic and the reactor dynamic model equations given in equations (3.24) to (3.41) 

are termed as the mechanistic model for the yeast fermentation process. Simulated process 

operation data generated from the mechanistic model of the fermentation process is used to 

develop data-driven models. These simulated data serve as the process historical data of the 

baker’s yeast fermentation in the absence of real-life operational data (i.e., if there were 

historical process data of the fermentation process from industry, there would be no need to 

simulate the process operation data). 

The model inputs are the substrate feed flow rate, randomly generated in the range of 0 to 

2500 L/h for 100 batches with some uniform distribution random noise of ±0.5𝐿𝐿/ℎ added to 

each batch to show that the fermentor is operated in the real situation. The total batch time of 

16.5h is divided into 10 equal intervals with constant substrate feed rate at each interval. 

Thus, the ELM model is of the static model form, relating the final biomass to the substrate 

input vector as given below: 

𝑌𝑌𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖)        (3.53) 

where 𝑌𝑌𝑖𝑖 is the final biomass concentration of the ith batch and 𝑥𝑥𝑖𝑖 = [𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥10] represent 

the substrate feed rates at the ith batches. 

Simulated process data were obtained using equation (3.24) to (3.41). Model parameter values 

and initial condition set values given in Table 3.2. The simulated data were scaled to zero 

mean and unit variance before dividing the data set into training and testing (70% of the data) 

while the remaining data were used as validation data (30% of the data). Only the first 28.6% 

of the training and testing data were used for ELM modelling of the fermentation process and 
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the essence of modelling with few data sets is to show how inaccurate the ELM predictions 

can be with few historical process data availabilities. 

 

3.5.2 Results and Discussions 

 

Figure 3.17 ELM modelling on Baker’s Yeast Fermentation 

 

The simulation result of the final biomass concentration of the baker’s yeast fermentation is 

shown in Figure 3.17. The first plot in Figure 3.17 shows the ELM model prediction on the 

actual training and testing data set and the first 20 batch samples were tracked accurately with 

ELM model. This is because only 28.6% of the training data were used for the ELM 

modelling to show the effect of having few or insufficient data for modelling with an ELM 

method. Although, the whole training data set can be used in modelling the fermentation 

process to have better and accurate model representation of the process but what will happen 

in a situation where we have insufficient data to model the process system?  
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Both plots on Figure 3.17 shows the effects of using insufficient historical process data for 

ELM model prediction on an unseen validation and the actual validation dataset. The ELM 

model predictions are not accurate due to the limited historical data used in modelling the 

fermentation process. 

 

3.6 Static Modelling of Baker’s Yeast Fermentation process using BA-ELM 

In modelling of the baker’s yeast fermentation with BA-ELM, the simulated process data for 

the ELM modelling stated in Section 3.5.1 and all other cases like data pre-processing all 

remain the same. At the beginning of the learning process, simulated process biomass data is 

divided into training, testing and validation data. 75% of the simulated data were allocated for 

training and testing while the remaining 25% of the data were used as validation. Thus, the 

training and testing data were re-sampled to generate 30 different bootstrap replications for 

training the individual ELM networks for the fermentation process.  

For the development of each of the 30 different individual networks, the numbers of hidden 

neurons from 2 to 30 were tried and the ELM model with the smallest sum of squared errors 

on the testing data was selected. At the end of all the learning process, the main objective is to 

model the relationship between the input feeding rates (substrate) to the output biomass 

concentration (g/L) as given in equation (3.53) which can be described fully with sets of 

weights and biases of the hidden and output layers represented by (𝑤𝑤1, 𝑏𝑏1)𝑑𝑑𝑎𝑎𝑑𝑑 (𝑤𝑤2, 𝑏𝑏2) 

respectively.  

Therefore, the individual ELM model networks are linearly stacked as a weighted 

combination of the individual ELM networks to improve the model generalisation capability 

in predictions. Figure 3.18 shows the performance of the BA-ELM model network and the 

accuracy of the model where the predicted final biomass concentration values are plotted 

against the actual biomass concentration to show the predicted error distributions over the 

diagonal. Thus, it is referred to as the measure of dispersion, to describe the variability of the 

predicted error between the actual and the predicted biomass concentration (g/L). 

Figure 3.19 shows the BA-ELM model predictions on unseen validation data of the actual 

biomass concentration and shows the 95% confidence bounds while Figures 3.20 and 3.21 

shows MSE plots of the training, testing and validation data sets on both single and 

aggregated networks. 



71 
 

3.6.1 Result and Discussions 

 
 

Figure 3.18 Measure of Dispersion of BA-ELM predictions 

 

 

0 10 20 30 40 50 60 70 80 90 100

Actual biomass conc (g/L)

0

10

20

30

40

50

60

70

80

90

100

P
re

di
ct

ed
 b

io
m

as
s 

co
nc

 (g
/L

)

b+:training & testing data; ro:unseen validation data



72 
 

  

Figure 3.19 BA-ELM model predictions on unseen validation data 

  

Figure 3.20 MSE values of individual networks 
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Figure 3.21 MSE values of individual BA-ELM with different numbers of aggregated 
networks 

 

Figure 3.18 shows the measures of dispersion of the predicted and actual biomass 

concentration on the validation data. It can be seen from the plot that the spread of the 

biomass concentration for both the actual and predicted values were very close to the perfect 

model line. The more the closeness of the biomass yield spread along the perfect model line, 

the more accurate the predicted biomass yields. Thus, the BA-ELM seems to predict well 

enough with some sense of high accuracy as the actual biomass yield plot tend to be 

superimposed by the BA-ELM biomass yield concentration.  
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Moreover, Figure 3.20 shows the mean squared error (MSE) plot of the individual BA-ELM 
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accurate predictions on the unseen data. However, Figure 3.21 shows consistency in the 

model performance on both training and testing data and unseen validation data. This is due to 

applying the bootstrap aggregation on the individual models leading to robust and accurate 

model predictions on the unseen validation data. For instance, there are some batches (1, 3, 

15, 20, 23 and 25) in Figure 3.20 with high MSE values on both training and validation data 

and these have been successfully reduced to the barest minimum values in both training and 

validation data on Figure 3.21. Thus, lower values of MSE on the unseen validation data 

indicate that the BA-ELM model provides more robust and accurate predictions than the 

single ELM models. 

 

3.6.2 Conclusion 

Summarily, at the end of this chapter, I have been able to demonstrate ways of developing 

models and controlling fed-batch case studies through either a static or dynamic ELM model, 

bootstrap aggregated ELM (BA-ELM) and an iterative learning control (ILC) technique. 

Moreover, different prediction performances such as MSE, RMSE, and validation plots were 

all used in confirming the reliability and robustness of any of the model prediction methods. 
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CHAPTER FOUR 

 

BATCH-TO-BATCH ADAPTIVE MODELLING USING ELM AND RLS 

4.1 Introduction 

Both fed batch and batch processes are vital mode of process operation commonly used in 

many chemical and pharmaceutical manufacturing industries. In these process operations, the 

interest lies in the final-batch product quality. To obtain an optimal control policy for the 

process operation, model capable of accurate predicting the final product quality variables 

(i.e., at batch-end) is required. The optimal control policy obtained from the ELM model may 

not be optimal when applied to the actual process due to model-plant mismatches and 

unforeseen disturbances that may arises due to changes in operating conditions from batch to 

batch. To overcome this, model updating is required. Previous ELM batch model prediction 

errors can be used in the recursive least square (RLS) algorithm to improve the ELM model 

predictions for the current batch. The improved predictions are proven by Xiong et al., (2004)  

to decreased from batch to batch. Therefore, batch-to-batch adaptive modelling with ELM and 

RLS is sought to overcome the problem of plant model mismatches. 

This chapter presents a technique of merging ELM and RLS in obtaining a batch-to-batch 

improved model for the fed-batch case studies (the baker’s yeast and the reactor system) 

mentioned in Chapter 3. ELM has some characteristic features of fast training together with 

good generalisation capability. To cope with batch-to-batch variations due to unknown 

disturbances such as unknown process condition drift, the RLS algorithm is integrated with 

the ELM to update its output layer weights recursively from batch to batch. The offline 

trained output layer weights of the ELM are used as the initial parameter estimation in RLS.  

The rest of this chapter is organised as follows. Section 4.2 presents batch to batch modelling 

with an updated ELM. Applications of the proposed method to the fed-batch reactor system 

and the baker’s yeast fermentation process are discussed in detail in Sections 4.3 and 4.4 

respectively. Section 4.5 conclude this chapter.  
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4.2 Batch-to-Batch Modelling with an Updated ELM Model 

 
4.2.1 Batch Process Modelling Using ELM 
 

An ELM is a single-hidden layer feedforward networks (SLFNs) where the hidden layer 

weights and bias are assigned randomly. The output layer usually uses the linear activation 

function, and the output is calculated as:  

y = ∑𝐿𝐿𝑑𝑑=1 𝛽𝛽𝑑𝑑ℎ𝑑𝑑(𝑥𝑥) = ℎ(𝑥𝑥)𝛽𝛽               (4.1) 

where 𝛽𝛽 = [𝛽𝛽1, …, 𝛽𝛽𝐿𝐿]𝑇𝑇 is a vector of the output layer weights, L is the number of hidden 

neurons, and ℎ(𝑥𝑥) = [ℎ1(𝑥𝑥), …, ℎ𝐿𝐿(𝑥𝑥)] is a vector of the hidden layer outputs calculated as:  

ℎ𝑖𝑖(𝑥𝑥) = 𝐺𝐺(𝑑𝑑𝑖𝑖 . 𝑥𝑥 + 𝑏𝑏𝑖𝑖 )             (4.2) 

where j = 1, …, N, 𝑑𝑑𝑑𝑑 = [𝑑𝑑𝑑𝑑1, 𝑑𝑑𝑑𝑑2, …, 𝑑𝑑𝑑𝑑𝑁𝑁]𝑇𝑇 is a vector of weights connecting the ith hidden 

node to the inputs, 𝑏𝑏𝑑𝑑  is the bias of the ith hidden nodes, 𝑥𝑥𝑗𝑗 is the jth input sample, and G is 

the hidden layer neuron activation function typically taken as the sigmoid function. The 

output layer weights, denoted by 𝛽𝛽, are obtained by solving a regression type problem as 

follows:  

min‖𝐻𝐻𝛽𝛽 − 𝑇𝑇‖2                (4.3) 

where H is the hidden layer output matrix and T is the training target matrix.  

The optimal solution of Eq. (4.3) is given by:   

�̂�𝛽 = 𝐻𝐻†𝑇𝑇                           (4.4) 

where 𝐻𝐻† denotes the Moore-Penrose generalised inverse of matrix H.  

Both the input and the output historical process data are represented like the equation (3.43) 

given Chapter 3 and the ELM static model is the form given in equation (4.6).  

𝑈𝑈 = �
𝑈𝑈𝑗𝑗1𝑇𝑇
⋮

𝑈𝑈𝑗𝑗100𝑇𝑇
�  , 𝑌𝑌 = �

𝑌𝑌𝑖𝑖1
𝑇𝑇

⋮
𝑌𝑌𝑖𝑖100
𝑇𝑇

�      (4.5) 

 𝑌𝑌𝑖𝑖(𝑡𝑡𝑓𝑓) = 𝑓𝑓(𝑋𝑋0,  𝑈𝑈𝑖𝑖)       (4.6) 
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where 𝑌𝑌 is the final biomass concentration at each batch, 𝑋𝑋0 is the initial condition of process 

operation and 𝑈𝑈𝑖𝑖 = [𝑃𝑃1,  𝑃𝑃2 …𝑃𝑃10] represent the substrate, feed rates at ith time intervals. 

 

4.2.2 Batch-wise Updated ELM Model with RLS  

Batch to batch variations exist due to the presence of unknown disturbances and due to 

changes in operating conditions from batch to batch. Any variations in the process operation 

could make the ELM model inaccurate in predictions on unseen data. To cope with operating 

condition changes, the ELM can be updated from batch to batch by using the RLS algorithm.   

In RLS, the parameter estimation at the current batch is obtained by using the previous 

parameter estimation and data from the current batch. The correctional term applied to the 

output layer weights is proportional to the prediction error at the current batch. The updating 

output layer weights by the RLS algorithm is given as:  

𝛽𝛽(𝑗𝑗 +  1)  =  𝛽𝛽(𝑗𝑗)  +  𝐹𝐹(𝑗𝑗).𝐸𝐸(𝑗𝑗 +  1)         (4.5) 

𝐹𝐹(𝑗𝑗) = 𝑃𝑃(𝑗𝑗). H𝑘𝑘+1
𝑇𝑇[𝜆𝜆 + H𝑘𝑘+1.𝑃𝑃(𝑗𝑗). H𝑘𝑘+1

𝑇𝑇]−1       (4.6) 

P(𝑗𝑗 + 1)  =  [I − 𝐹𝐹(k). H𝑘𝑘+1] P(k)/ λ         (4.7) 

𝑃𝑃(0) = 𝐼𝐼 .𝑅𝑅                 (4.8) 

where E(𝑗𝑗 + 1) = 𝑦𝑦𝑗𝑗+1 − 𝐻𝐻𝑗𝑗+1𝛽𝛽(𝑗𝑗) is the ELM model prediction error at the current batch, 𝛽𝛽(𝑗𝑗) 

is the current parameter estimate of the ELM output layer weights, 𝐹𝐹(𝑗𝑗) is the Kalman gain, 

Hk+1 is a vector of the hidden neuron outputs at the current batch, λ is a forgetting factor = 

0.99, I = identity matrix specified at number of hidden neurons magnitude and R being a large 

positive number, e.g. 10000 .  

Equations (4.5) to (4.7) are the key RLS equations that need to be updated at each batch of the 

recursive process. In integrating the RLS with ELM in this work, equation (4.5) is termed as 

the weight update, which is the major equation for parameter estimation of the initial output 

weight predicted from the ELM. The output weight prediction from the ELM is used to 

initialise the weight update for the parameter estimation and 𝑃𝑃(𝑗𝑗) will be initialise as 

equation (4.8). The RLS algorithm adjusts the ELM to fit the most recent process data by 

recursively solving the least squares problem in estimating the output layer weights of the 

ELM model. The RLS algorithm tries to eliminate the model plant mismatches caused by the 
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occurrence of unknown disturbances through correction of the differences between the actual 

model output and the predicted process output. 

The offline trained output layer weights of an ELM are used as the initial values for the model 

parameter estimation in RLS and the ELM output layer weights can thus be update iteratively 

with the two major recursion terms in RLS algorithm technique mentioned earlier in Chapter 

2. 

The main reason of integrating extreme learning machine (ELM) with recursive least square 

technique (RLS) is to provide a better model performance under unknown disturbances that 

may affect the accuracy of an ELM model prediction. However, the number of hidden 

neurons selection together with the output weights in ELM modelling computation are major 

criteria towards accurate model prediction for an ELM but combining RLS with the ELM, the 

number of hidden neurons selection seem to be insignificant criteria in model predictions. The 

schematic representation of the proposed method, ELM-RLS, is illustrated in Figure 4.12 

below: 

 

Fig 4.1 Schematic Integration of ELM and RLS. 

 

 

4.3 Modelling of an Isothermal Fed-batch Reactor using the proposed ELM-RLS 

All data simulations and pre-processing of the fed-batch reactor systems remain same as used 

in ELM modelling stated in section 3.3.1. Recall that 26% of the 75% of the historical process 
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data were used for training and testing while 25% of the entire process data were used for the 

validation dataset. The model equations given in equation (3.44) and (3.45) were both re-

modelled using the proposed algorithms of ELM-RLS.  

 

 

Figure 4.2 ELM-RLS model predictions of 𝐶𝐶𝐶𝐶(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) at batch end 
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Figure 4.3 ELM-RLS model predictions of 𝐶𝐶𝐷𝐷(𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1) at batch end 

 

Table 4.1 MSE Values on 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷 Using ELM and ELM-RLS 

Models MSE (Training and Testing) 

C                                D 

MSE (Validation)  

C                       D 

 

ELM 

 

0.8506                       0.3287 

 

0.7161               0.2982 

ELM-RLS 0.0021                       0.0007 0.0096               0.0016 
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Figures 4.2 and 4.3 show the performance of the proposed ELM-RLS model predictions on 

the product 𝐶𝐶𝐶𝐶 and the by-product 𝐶𝐶𝐷𝐷 respectively. Moreover, their MSE values are also 

shown in Table 4.1. 

Figure 3.5 and Figure 4.2 show the model predictions on 𝐶𝐶𝐶𝐶  for conventional ELM and the 

proposed integrated ELM-RLS respectively. Likewise, the model predictions on 𝐶𝐶𝐷𝐷 are shown 

in Figure 3.6 and Figure 4.3 for conventional ELM and the proposed ELM-RLS respectively. 

In comparing Figures 3.6 and 4.3, the proposed ELM-RLS model predictions are more robust 

and accurate than that of the conventional ELM model. Provided that there are no unknown 

disturbances (which may not be feasible in reality) on the fed-batch reactor system and there 

are large historical process simulation data, the ELM model can also predict the system 

accurately without the need to merge RLS algorithms with ELM. 

During the process simulations and building of the ELM models for both 𝐶𝐶𝐶𝐶  𝑑𝑑𝑎𝑎𝑑𝑑 𝐶𝐶𝐷𝐷, it is 

assumed that there is insufficient historical process data by using 26% out of the 75 % 

allocated training and testing data which makes the ELM model inaccurate in its prediction 

and generalisation capability on the fed-batch reactor systems. However, with the proposed 

ELM-RLS technique, both predictions on training, testing and validation data are shown to be 

accurate and with good generalisation capabilities. 

Moreover, the MSE values shown in Table 4.1confirm the prediction accuracy of the 

proposed technique. It shows how the ELM MSE values of the 𝐶𝐶𝐶𝐶 in training and testing data 

changes from 0.8506 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 to 0.0021 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 of the ELM-RLS proposed technique and 

likewise its validation MSE values changes from 0.7161 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 to 0.0096 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1. The 

MSE value for the  𝐶𝐶𝐷𝐷 also reduces close to zero for both the training, testing and validation 

data using the proposed technique. For training and testing data, it changes from 0.3287 

𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 to 0.0006 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 and for its validation data, it changes from 0.2982 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1 to 

0.0016 𝑚𝑚𝑜𝑜𝑚𝑚. 𝐿𝐿−1. 

In general, the MSE measures the average squared errors between the predicted data and the 

actual data. An MSE of zero or values very close to zero like the case of the values in Table 

4.1, means that the proposed technique predicts with perfect accuracy and good generalisation 

capabilities of the model prediction. 
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4.4 Modelling of Baker’s Yeast Fermentation Process using ELM-RLS 

Modelling of the baker’s yeast fermentation with the proposed ELM-RLS technique uses the 

same simulated process data obtained from the ELM modelling in Section 3.5.1 and all other 

cases of data cleaning such as pre-processing of the simulated process data remained same. At 

the beginning of the learning process with the proposed technique (ELM-RLS), the simulated 

process biomass data is divided into training, testing and validation by 75% to 25 % 

respectively.  

The steady-state model equation given in equation (3.53) is re-modelled using the proposed 

algorithms of ELM-RLS and the performance evaluation plot of the ELM-RLS model 

predictions on the actual model for both the training and validation data sets are given in 

Figure 4.4. The MSE values were also shown in Table 4.2 under the results and discussions. 

 

 

Figure 4.4 ELM-RLS model performance for predicting fermentor final biomass yield 
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Table 4.2 MSE Values on Baker’s Yeast Fermentation Using ELM and ELM-RLS 

Models MSE (Training and Testing) MSE (Validation)  

ELM 1.0369 0.7044 

ELM-RLS 0.1262 0.0281 

 

The model predictions of the final biomass concentration of the baker’s yeast fermentation 

using the proposed technique are shown in Figure 4.4. The first plot in Figure 4.4 represents 

the ELM-RLS model prediction on the training and testing data set while the second plot 

show shows the ELM-RLS model prediction on the validation data set.  

Figure 3.17 and Figure 4.4 show the model predictions on using the conventional ELM and 

the proposed integrated ELM-RLS technique respectively. In comparing these figures, the 

model predictions of the proposed ELM-RLS technique show more accuracy in model 

prediction on the final biomass concentration when compared to the model prediction of the 

conventional ELM model predictions. This is because the RLS technique has been merged 

with the conventional ELM to cater for the unexpected disturbances that may arise as an error 

in the fermentation process system. 

During the process simulations and building of the conventional ELM models for the baker’s 

yeast fermentation, it is assumed that there is insufficient historical process data by using 29% 

out of the 70 % allocated training and testing simulated data which makes the ELM model to 

be inaccurate in its prediction and generalisation capability on the yeast fermentation process. 

Despite the use of insufficient data in modelling the fermentation process, which caused large 

model errors between the actual and the predicted data, the line plots of the model prediction 

in Figure 4.4 shows that the proposed ELM-RLS technique can adapt to the process changes 

and provide accurate model predictions with good generalisation capability. 
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Moreover, the MSE values shown in Table 4.2 confirms the prediction accuracy of the 

proposed technique. It shows that the MSE value for training and testing data decrease from 

1.0369 (of the ELM model predictions) to 0.1262 (of the proposed ELM-RLS technique), and 

likewise the validation MSE values changes from 0.7044 (of the ELM model predictions) to 

0.0281 (of the proposed ELM-RLS technique).  

In general, the MSE measures the average squared errors between the predicted data and the 

actual data. An MSE of zero or values very close to zero like the case of the values in Table 

4.2 for the proposed ELM-RLS technique, it means that the proposed technique predicts with 

good accuracy and good generalisation capabilities. 

Provided that there are no unknown disturbances on the process operation system and there is 

large amount of historical process data, the ELM model would model and predict the process 

operation accurately without the need to merge RLS algorithms with ELM. However, the 

presence of unknown disturbance during real industrial process operation is inevitable. 

4.5 Conclusions 

An adaptive batch-to-batch modelling approach integrating ELM with RLS for modelling fed-

batch processes is proposed in this Chapter. Through batch-to-batch adaptation of ELM 

output layer weights, the ELM model can track unknown disturbances and process drift. Such 

a model is very useful in batch-to-batch optimal control which will be focused on next 

chapter. Based on the results obtained and comparison between the conventional ELM and the 

proposed ELM-RLS method, the proposed method showed better modelling performance of 

both the isothermal fed-batch reactor process and baker’s yeast fermentation process, 

compared to the ordinary ELM.  
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CHAPTER FIVE 

BATCH-TO-BATCH OPTIMIZATION CONTROL 

5.1 Introduction 

Machine learning has recently taken the world by storm, engaging with a broad audience of 

practitioners, research institutes and academics. It has grown in acceptance and is used in a 

variety of manufacturing industries, including both sales and production stages, machine 

translation, speech recognition, picture recognition, recommendation systems, and many other 

ones. Machine learning includes optimization as an important factor and its algorithms work 

by creating an optimization model through learning the parameters of the objective function in 

the datasets. Thus, machine learning optimization is the process of modifying 

hyperparameters to identify the extremum (either minimize or maximize) of the cost function 

and satisfy the constraints. In doing this, we tend to find the discrepancy between the actual 

data set and the model predictions. 

The popularity and implementation of machine learning models are heavily influenced by the 

effectiveness and efficiency of their numerical optimization techniques in the presence of 

large datasets. Several effective optimization strategies have been proposed to accelerate the 

development of machine learning models, which have enhanced the performance and 

efficiency of machine learning models. Generally, optimization methods are divided into three 

categories, namely: the first-order optimization method, which involves the commonly used 

stochastic gradient methods, the higher-order optimization method, and the heuristic 

derivative-free optimization methods (Sun et al., 2020).  

The progress of optimization makes a significant contribution to the advancement of machine 

learning. However, there are still many shortcomings and unresolved problems in machine 

learning for optimization problems, such as the case of ways to improve optimization 

efficiency in neural networks modelling with insufficient data. This causes significant 

variances and overfitting in the modelling based on machine learning. Furthermore, one other 

major issue with neural networks is that the training usually involves non-convex 

optimization, which causes the optimization to produce a locally optimal solution rather than 

a global optimal one. 

Optimization techniques have a great impact on several aspects of machine learning. This 

makes the machine learning problem to be conceived as an optimization problem during 
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which the goal is to identify the extremum of the training objective function. The initial stage 

in machine learning approaches is to build models and develop realistic objective functions. 

To address the optimization problem, relevant numerical or analytical optimization methods 

are usually utilised with the determined objective function. Some of these well-known 

optimization techniques in machine learning are  

(i) Exhaustive search, which involves searching for all possible solution options 

whether it is a good match of the extremum. This type of search is inefficient and 

slow when the dataset involves are hundreds and thousands.  

(ii) Gradient descent is the most used numerical optimization technique. This involves 

finding the local minimum of a differentiable function and it is referred to as 

finding the partial derivatives in the cost function with respect to the decision 

variables. Its main goal is to minimize the cost function by searching to the 

position where these partial derivatives are close to zero. The major shortcoming 

in this method is its possibility of getting stuck to a local minimum rather than the 

global minimum.  

(iii) Genetic algorithms use the theory of evolution in form of generic population-based 

metaheuristic optimization to machine learning. This is done by finding the best 

models among the system of multiple models by calculating the accuracy of each 

model. The second generation of models is derived from the initial best models 

which are randomly mutated to obtain other sets of best models. One possible 

advantage of the Genetic algorithm technique is: it has great possibility of reaching 

for global optimum, but it is hard to come up with its heuristic’s formulation. 

Figures 5.1 and 5.2 give an overview description of both the Genetic algorithm 

and Gradient descent methods. 

Thus, the key responsibilities in machine learning are to construct a model hypothesis through 

building a reliable model, set the objective function, and find the objective function's 

maximum or minimum (extremum) to decide the model's parameters. The first two steps of 

these 3 main processes are machine learning modelling issues, and the third step is to solve 

the desired model using optimization approaches. 

The batch-to-batch optimization control approach for batch operations is based on the 

proposed ELM-RLS modelling method. The proposed ELM-RLS models are built using 

process operation data to address the difficulties of developing detailed mechanistic models. 

The optimal control policy calculated using this model may not be optimal when applied to 

the actual process due to model process mismatches and unknown/disturbances. The ELM-



87 
 

RLS model-based iterative learning control is used to enhance the process performance from 

batch to batch by harnessing the repeated nature of batch processes. Thus, making the batch-

to-batch control to be able to enhance the future batch's performance but cannot improve the 

performance of the current batch. The proposed approach of batch-to-batch optimization 

control is successfully applied to a simulated baker’s yeast fermentation and fed-batch reactor 

processes. 

 

 

 

 

Figure 5.1 An Overview of Genetic Algorithm Technique 
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Figure 5. 2 An overview of Local and Global minimum 

 

The rest of this chapter is organised as follows. Section 5.2 discusses the iterative batch-to-

batch optimization control in relation to the baker yeast fermentation process, followed by 

Section 5.3 which gives the simulation results and discussion on the fermentation process and 

lastly, Section 5.3 states the general conclusion of the batch-to-batch optimization of the 

fermentation case study. 

 

5.2 Iterative Batch-to-Batch Optimization Control 

During the baker’s yeast fermentation process, the substrate is constantly delivered to the 

fermentor in a fed-batch mode, where no cells or products are removed during the batch run. 

This action provides a great chance to change the substrate feeding profile, which would 

allow for more precise control of bioactivities such as cell biomass growth, nutrient uptake, 

and metabolite production. As a result, the feeding profile could have a significant impact on 

the intended product's productivity and output at the end of the production process. Here, the 

main objective will be to improve the final biomass concentration by modifying the control 

policy which is composed of the substrate feed rate subject to the process constraints. 

Global 
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Moreover, many fermentation industries are currently keen to establish an inexpensive and 

effective control system to reduce manufacturing costs and enhance yields while retaining the 

quality of the desired products. Hence, the need to work on this case study and apply the 

proposed technique in modelling and optimization to help in achieving the main goal of 

finding an updated profile of input variables that will maximise the objective function of the 

baker’s yeast fermentation process. However, according to Jin et al. (2014), the modelling and 

optimization of fermentation processes are still faced with many challenges like the 

unpredictability of varying model parameters which causes unavoidable plant model 

mismatches, the nonlinear complexity and dynamic of the process operation, and the lack of 

robust online sensors for significant variables such as biomass or product concentration is a 

major hindrance to reliable optimal control of bioprocesses.  

The proposed iterative optimal control of the baker’s yeast fermentation is based on the static 

ELM-RLS model prediction given by equation (3.53) and the optimization problem can be 

solved with the following equation, represented as: 

min
𝜕𝜕
𝐽𝐽 = −𝑓𝑓𝜕𝜕𝐿𝐿𝑀𝑀±𝑅𝑅𝐿𝐿𝑆𝑆�𝑌𝑌(𝑡𝑡𝑓𝑓)�      (5.1) 

𝑠𝑠𝑃𝑃𝑏𝑏𝑗𝑗𝑒𝑒𝐺𝐺𝑡𝑡 𝑡𝑡𝑜𝑜: �
0 ≤ 𝑌𝑌𝑖𝑖 ≤ 3000, 𝑑𝑑 = 1,2, … ,10

𝑉𝑉𝑓𝑓 ≤ 50000       

where 𝑓𝑓𝜕𝜕𝐿𝐿𝑀𝑀±𝑅𝑅𝐿𝐿𝑆𝑆�𝑌𝑌(𝑡𝑡𝑓𝑓)� is the ELM-RLS predicted final biomass concentration and 𝐹𝐹 is the 

vector of substrate feeding rates. The constrained optimisation problem in Eq. (5.1) was 

solved using the nonlinear programming (interior-point) method of “fmincon” function in the 

MATLAB 2019a Optimization Toolbox.  

In general, the batch-to-batch optimization control of the fermentation process explores the 

repetitive nature of the fed-batch/batch processes to improve the feeding control policy by 

using information from the previous and the current batch runs to enhance the future batch 

runs of the process. This strategy has been reported by (Xiong & Zhang, 2005; Zhang, 2004a, 

2004b, 2004d, 2005a) to help in controlling the declining control performance exhibited in 

many model-based control techniques due to model-plant mismatch and unavoidable 

disturbances. These model plant mismatches and disturbances always exist due to an 

insufficient amount of historical process operational data and sometimes from raw material 

variations, reactor fouling and reactive impurities. Thus, the optimal control policy is only 

optimal on the model and may not be optimal when applied to the real process (Zhang, 

2004b) . To address this problem, (Zhang, 2004a)  established a technique of ensuring a 
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reliable optimum control policy through the incorporation of model prediction confidence 

bounds within the optimization objective function. This ensures penalization of any wide 

model prediction confidence bounds that may arise during the optimization. 

The governing equation that explains the basis of the batch-to-batch optimization control has 

been given in equation (2.58) through equation (2.66) when discussing about the optimal 

model-based ILC algorithm. According to (Zhang, 2004b; Xiong et al., 2004), there may be 

failing of control performance which is caused by model-plant mismatches and some 

unavoidable disturbances. To solve this, batch-to-batch optimal control technique was 

developed using ILC concept with the neural network model.  

In this chapter, instead of using the previously reported neural network model-based batch-to-

batch optimal control technique (Zhang, 2004b; Xiong et al., 2004), the proposed ELM-RLS 

model will be used in batch-to-batch optimal control. Based on the yeast fermentation process 

established in Chapter 4 and remember for static batch modelling, the objective function is set 

to the function of the batch state variables at the batch end time. This is represented as given 

in equation (4.6) above. This equation can be expanded around a nominal control profile with 

Taylor series expansion as: 

𝑌𝑌��𝑡𝑡𝑓𝑓� = 𝑓𝑓0 + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢1

∆𝑃𝑃1 +  𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢2

∆𝑃𝑃2+ .  .  . + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢𝑁𝑁

∆𝑃𝑃𝑁𝑁    (5.2) 

For the ith batch, the actual biomass concentration can be written as the model prediction and 

an error term, given as: 

𝑌𝑌𝑖𝑖�𝑡𝑡𝑓𝑓� = 𝑌𝑌��𝑡𝑡𝑓𝑓� +  𝑒𝑒𝑖𝑖        (5.3) 

where 𝑌𝑌��𝑡𝑡𝑓𝑓� and 𝑌𝑌𝑖𝑖�𝑡𝑡𝑓𝑓� represents the predicted biomass and actual (mechanistic model 

simulated) biomass concentration values respectively. The 𝑒𝑒𝑖𝑖 is the model predicted model 

error representing model-plant mismatches. 

For model prediction at the end of the next (𝑗𝑗 + 1)𝑡𝑡ℎ batch, equation (5.3) becomes: 

𝑌𝑌𝑖𝑖+1�𝑡𝑡𝑓𝑓� = 𝑌𝑌�𝑖𝑖+1�𝑡𝑡𝑓𝑓� +  𝑒𝑒𝑖𝑖+1      (5.4) 

where the optimal control solution is similar to equation (2.58). Thus, the following 

summarizes the stepwise approach of the batch-to-batch optimal optimization control: 
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 An ELM model is built from historical data to predict the yielding output [𝑦𝑦𝑖𝑖(𝑡𝑡𝑓𝑓)] 

using the substrate input trajectory as model inputs. 

 Optimal control profile, i.e., input trajectory (𝑈𝑈𝑖𝑖), is calculated using the ELM model-

based optimisation. 

 The substrate input trajectory (𝑈𝑈𝑖𝑖) is fed into the current batch run i under the initial 

conditions (𝑋𝑋0) of the fermentation process, which results in yielding output [𝑦𝑦𝑖𝑖(𝑡𝑡𝑓𝑓)] 

at the batch end time. 

 Prediction errors from the previous batch runs are used in the RLS algorithm to update 

the output layer weights of the ELM model. 

 The optimization problem is solved again using the improved model predictions from 

the proposed technique, and a new input control policy 𝑈𝑈𝑖𝑖+1 for the next batch is 

formed.  

 The optimal input control policy is applied to the mechanistic model simulation to 

obtain the desired product quality at batch end time. 

 This procedure is repeated from batch to batch until the magnitude of the desired 

product quality value is not significantly increasing. This will indicate that the batch-

to-batch optimal control technique to have converged. The schematic representation of 

the stepwise approach can be illustrated in Figure 5.3 below: 

 

 

Figure 5. 3 Schematic representation of Batch-to-Batch Optimization Control 
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Moreover, on the other hand, the batch-to-batch control can only increase the performance of 

future batch runs and not the current batch run. Furthermore, batch-to-batch control is 

ineffective when the disturbance occurs only in a single batch rather than a series of batches. 

Some mid-batch process data can be used to detect the consequences of an unknown 

disruption in the current batch run. As a result, the impacts of unknown disturbances on the 

starting batch state might be inferred from these mid-batch process measures. Corrective 

control steps can thus be done throughout the remainder of the batch process operation, 

reducing any serious impacts of the unknown disturbance on the end-product quality. 

 

5.3 Simulation results and Discussions 

The optimal simulation results obtained in Table 5.1 shows a significant improvement in 

model accuracy and reliability of the proposed optimization method when applied to unseen 

data. The initial final biomass concentration increases from 40.79g/L of the ELM model 

prediction to 55.32g/L of the ELM-RLS model prediction values when the optimal control 

policy obtained is applied to mechanistic model simulation to obtain the desired biomass 

concentration yield at batch end time after 1st batch optimization. 

 

Table 5.1 Optimal Control Results on Final Biomass Concentration 

Models Optimal biomass value 

(g/L) 

Final biomass value from new policy 

(g/L) 

 

ELM 

 

77.04 

 

40.79 

 

ELM-RLS 89.39 55.32 

 

In this fermentation case study, the desired final product quality is the biomass concentration. 

Among the 100 simulated batches of the process operation, the final biomass concentration is 

in the range of 32.48 g/L to 62.23 g/L with each batch ending time at 16.5 hours. Based on the 



93 
 

model-based modelling techniques using both the proposed technique (ELM-RLS) and the 

ELM model, the optimal control policy was calculated together with the biomass optimal 

yield to obtain new substrate feeding policy. The optimal control new policy was later applied 

to the mechanistic model simulation to attain the desired biomass yield at batch end time. The 

result obtained is given in Table 5.1 above and it shows how the model predicted final 

biomass concentration improved from 62.23 g/L to 77.04g/L after optimization of the process 

model with an ELM and later improved to 89.39 g/L when the proposed modelling technique 

(ELM-RLS) was used. 

Aside obtaining the optimal biomass yield from optimization, the new control policy obtained 

was reapplied on the mechanistic model simulation to check the biomass yield concentration 

value. This is also shown in Table 5.1 for both the ELM and the proposed ELM-RLS 

technique, where it increases from 40.79 g/L on ELM model to 55.32 g/L on ELM-RLS 

model. The biomass concentration yield obtains on the mechanistic models reapplication of 

new control policy shows that the optimal control policy on model-based modelling is not 

optimal when applied to the real process. This is as result of the significance differences 

between the biomass concentration yield obtained with initial feeding control policy and the 

optimal control policy (either on the ELM or the proposed ELM-RLS). 

 

Table 5. 2 Optimal Control Results on ELM-RLS Model Simulation 

 

 

The results shown in Table 5.2 are from applying the proposed batch-to-batch optimal control 

technique for 4 consecutive batches. The biomass concentration yield on the mechanistic 

model improves significantly from 55.32 g/L of 1st batch optimization to 65.75g/L, 69.57g/L 

Re-optimization
concentration

Optimal biomass value
(g/L)

Final biomass from 
new policy

1st 89.39 55.32

2nd 108.45 65.75

3rd 110.68 69.57

4th 115.21 70.65
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and to 70.65g/L of 2nd, 3rd, and 4th batch optimization respectfully. This signifies that the 

batch-to batch optimal control technique has almost converge when the previous batch yield is 

insignificantly increased as in the case of the results of the 3rd and 4th batch. 

 

5.4 Conclusions  

A batch-to-batch optimal control strategy of a fed-batch fermentation process is proposed in 

this chapter using integrated ELM-RLS method model-based. Historical process operation 

data is used to establish an initial ELM model and to cope with the presence of unknown 

disturbances, the ELM model is updated after each batch using RLS. The updated ELM with 

RLS is used to find the optimal control policy for the next batch. The proposed batch-wise 

modelling and optimisation control strategy is demonstrated on a simulated fed-batch 

fermentation process for producing baker’s yeast. It has been shown that the proposed 

adaptive optimal control strategy can effectively overcome the effect of unknown 

disturbances and achieve improved product output operation from batch to batch. 
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CHAPTER SIX 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH WORKS 

6.1 Conclusions  

The major goal of many manufacturing industries would be to cut the production costs and 

increases the output yield while retaining or even improving the quality of the desired 

products. To accomplish this, either the mechanistic, data-driven modelling or even both 

methods should be deployed in process optimisation and control. 

Data-driven modelling techniques are an alternative way to mechanistic modelling and do not 

demand a full understanding of the process description, unlike the mechanistic modelling that 

does. Aside from this, mechanistic modelling sometimes is inaccurate due to the 

unavailability of some model parameters and uncertain reaction pathways, and this results in 

model-plant mismatches. Moreover, building an accurate model for processes seems a 

difficult task due to the incomplete knowledge of physicochemical properties. 

However, in this research, different data-driven modelling method was explored in modelling 

both the isothermal fed-batch reactor systems and the baker’s yeast fermentation processes in 

Chapter 3 of this thesis. The data-driven models investigated here for batch process modelling 

are categorized into two groups: the dynamic and the static models. The explored 

computational intelligence techniques are ELM, BA-ELM, ILC and the proposed ELM-RLS. 

A small percentage (25-30%) of the historical process data were used in static modelling with 

all the modelling methods to show the impacts of insufficient process data in building the 

models. 

BA-ELM were found to be more robust, reliable and provide an accurate model prediction 

even with the insufficient process data used in building the model. This is due to the re-

sampling replications of the original training datasets and the combination of multiple models 

which can guard against the failure of single models.  

To improve the model accuracy and reliability of an ELM model with insufficient historical 

process data used, Chapter 4 proposed an adaptive batch-to-batch modelling approach that 

dealt with ways of integrating an ELM with RLS for modelling batch and fed-batch 

processes. Through the batch-to-batch adaptation of ELM output layer weights with the RLS 

algorithm, the ELM model can reduce the model-plant mismatches caused by unknown 

disturbances, insufficient datasets, and unforeseen disturbances. Such a reliable model is very 



96 
 

useful for both the batch-to-batch optimal control and for soft sensors developments for 

processes monitoring.  

The proposed ELM-RLS technique was applied to both the isothermal fed-batch reactor 

process and the baker’s yeast fermentation. Based on the results obtained and comparison 

between the conventional ELM and the proposed ELM-RLS method, the proposed method in 

both case studies showed better modelling performance compared to the ordinary ELM.  

Furthermore, Chapter 5 proposed batch-to-batch optimal control strategy of the fed-batch 

fermentation process by using the proposed integrated ELM-RLS method model-based 

obtained in Chapter 4. Historical process operation data is used to establish an initial ELM 

model and, to cope with the presence of unknown disturbances, the ELM model is updated 

after each batch using RLS. The updated ELM with RLS is used to find the optimal control 

policy for the next batch. The proposed batch-wise modelling and optimisation control 

strategy is demonstrated on a simulated fed-batch fermentation process for producing baker’s 

yeast. It has been shown that the proposed adaptive optimal control strategy can effectively 

overcome the effect of unknown disturbances and achieve improved product output operation 

from batch to batch. 

 

 6.2 Recommendations for Future Works 

From the knowledge gained while working on this research over the years, some of these 

recommendations and suggestions may be of great importance to further the scope of the 

research. These are stated as follows: 

 

 All historical process data used for developing the model were simulated and 

generated from the mechanistic model equations represented in different articles. The 

model equation representation in terms of the chemical reaction kinetics, mass 

balances, and physicochemical properties for both case studies was all assumed to be 

accurate from the journals and simulated with an ODE45 in MATLAB to generate the 

datasets. To practically demonstrate the developed techniques, real industrial process 

data should be used, and the modelling and optimisation control strategies developed 

should be tested on real industrial processes. 

 



97 
 

 Future work should be done in using the developed batch-to batch optimization 

control to develop soft sensors for process monitoring and control. 

 

 Future work should be done in integrating the ELM and ILC to improve the model 

reliability and control. Aside from integrating ELM with ILC, ELM with other 

statistical techniques should also be worked on. 
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Appendices 

 

Appendix A 

 

1. Principal Component Analysis 

Principal Component Analysis (PCA) is the analysis of inconsistency in a particular set of 

data by shrinking the dimension of the specific dataset through inspecting number of direct 

groupings that can be used to represent the original variables without loss of key 

information. In other words, it eliminates redundancy by finding a combination of features 

that captures important discrepancies between the original data features and brings out 

strong concise patterns in the dataset. The primary objectives of PCA are data 

summarisation, grouping of variables and fault detection which has extensive applications 

in both industries and research institutions. 

The PCA decompose the data into principal components (PCs) with each component 

representing the total inconsistency to original data. The first PC have the greatest 

discrepancy followed by the subsequent PCs. Therefore, the first and second PCs captured 

virtually all the variability to the original data with other PCs as mere random noise 

(MacGregor and Kourti, 1995). All these can be explained and represented mathematically 

as follows: 

2. Principal component  

Let Y be a 𝐾𝐾 × 𝑚𝑚 matrix with each of its column representing the variables of the process 

and each row representing specific sample time datasets. The dataset Y can be decomposed 

into the summation of l outer product of vectors as: 

  𝑌𝑌 = 𝑝𝑝1𝑡𝑡1𝑇𝑇 + 𝑝𝑝2𝑡𝑡2𝑇𝑇 + ⋯+ 𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑇𝑇      2.1 

In Eq (2.1), 𝑝𝑝𝑖𝑖  𝜖𝜖 𝑅𝑅𝑘𝑘 is called the ith score vector and 𝑡𝑡𝑖𝑖 𝜖𝜖𝑅𝑅𝑙𝑙 is called the ith load vector. The 

score vectors of Y are also called the principal components of Y. Eq (2.1) can be written in 

the following matrix form: 

  𝑌𝑌 = 𝑃𝑃𝑇𝑇𝑇𝑇          2.2 
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where 𝑃𝑃 = [𝑝𝑝1 𝑝𝑝2 … 𝑝𝑝𝑙𝑙 ] is called the score matrix and 𝑇𝑇 = [𝑡𝑡1 𝑡𝑡2 … 𝑡𝑡𝑙𝑙 ] is called the loading 

matrix. Score and loading vectors are mutually orthogonal if and only if 𝑑𝑑 ≠ 𝑗𝑗,  𝑝𝑝𝑖𝑖𝑇𝑇𝑝𝑝𝑗𝑗 = 0 

and  𝑡𝑡𝑖𝑖𝑇𝑇𝑡𝑡𝑗𝑗 = 0         2.3 

   𝑡𝑡𝑖𝑖𝑇𝑇𝑡𝑡𝑗𝑗 = 1 for  𝑑𝑑 = 𝑗𝑗      2.4 

Multiplying both sides of Eq (2.1) by 𝑡𝑡𝑖𝑖, we can get the following 

  𝑌𝑌𝑡𝑡𝑖𝑖 = 𝑝𝑝1𝑡𝑡1𝑇𝑇𝑡𝑡𝑖𝑖 + 𝑝𝑝2𝑡𝑡2𝑇𝑇𝑡𝑡𝑖𝑖 + ⋯+ 𝑝𝑝𝑙𝑙𝑡𝑡𝑙𝑙𝑇𝑇𝑡𝑡𝑖𝑖     2.5 

Substituting Eq (2.3) and Eq (2.4) into Eq (2.5) gives 

  𝑝𝑝𝑖𝑖 = 𝑌𝑌𝑡𝑡𝑖𝑖        2.6 

Eq (2.6) represents the ith score vector 𝑝𝑝𝑖𝑖  as the forecast of the dataset Y on the 

corresponding loading vector. Thus, the length 𝑝𝑝𝑖𝑖  reveals the deviation of Y in the direction 

of 𝑡𝑡𝑖𝑖  . If the length of the score vectors are arranged in descending order as follows: 

∥ 𝑝𝑝1 ∥ > ∥ 𝑝𝑝2 ∥ > ⋯ >∥ 𝑝𝑝𝑙𝑙 ∥   

The loading vector 𝑡𝑡1 represents the largest variation in Y while 𝑡𝑡2  represents the second 

largest direction of variation in Y, and 𝑡𝑡𝑙𝑙 represents the smallest direction of variation in Y. 

According to (MacGregor and Kourti, 1995) the discrepancy in Y dataset are captured in 

the first few PC’s decomposition, provided there is a direct correlation between the 

variables of Y. The first two or three PCs are enough to explain the discrepancies of Y from 

the original dataset without considering other decomposed PC’s. Therefore, the PCA 

decomposition of Y can be denoted as follows:  

  𝑌𝑌 = 𝑝𝑝1𝑡𝑡1𝑇𝑇 + 𝑝𝑝2𝑡𝑡2𝑇𝑇 + ⋯+ 𝑝𝑝𝑘𝑘𝑡𝑡𝑘𝑘𝑇𝑇 + ⋯+ 𝐸𝐸      2.7 

where E is the residual matrix representing the variation of Y in the directions of  

𝑡𝑡𝑘𝑘+1 to  𝑡𝑡𝑚𝑚.  In many practical applications, k is usually much smaller than l. Since E 

mainly contains noise, ignoring E has the effect of noise filtering and will not cause any 

significant loss of useful information. Therefore, the data set Y can be approximated as : 

  𝑌𝑌 = 𝑝𝑝1𝑡𝑡1𝑇𝑇 + 𝑝𝑝2𝑡𝑡2𝑇𝑇 + ⋯+ 𝑝𝑝𝑘𝑘𝑡𝑡𝑘𝑘𝑇𝑇 = ∑ 𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑇𝑇𝑙𝑙
𝑖𝑖=1     2.8 

The PCA of Y is equivalent to the eigenvector analysis of the covariance matrix of Y and 

𝑌𝑌𝑇𝑇𝑌𝑌 and the loading vectors of Y are the eigenvectors of 𝑌𝑌𝑇𝑇𝑌𝑌 such that if the eigenvalues 

of 𝑌𝑌𝑇𝑇𝑌𝑌 is arranged in descending order in the following sequence: 𝜆𝜆1 ≥  𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑙𝑙  , 

then the corresponding eigenvectors 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑙𝑙 are the loading vectors of Y. 
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PCA can also be solved with singular value decomposition (SVD) technique. The SVD 

concept involves determining the discrepancy in Y which can be expressed as: 

  𝑌𝑌 = 𝑈𝑈∑𝑉𝑉𝑇𝑇        2.9  

 where  

  𝑈𝑈 = [𝑃𝑃1 𝑃𝑃2  … 𝑃𝑃𝑛𝑛] ∈  𝑅𝑅𝑛𝑛 ×𝑛𝑛 

  𝑈𝑈 = [𝑣𝑣1 𝑣𝑣2  … 𝑣𝑣𝑚𝑚] ∈  𝑅𝑅𝑚𝑚 ×𝑚𝑚 

  

In the above equation, 𝜎𝜎1 > 𝜎𝜎2> …> 𝜎𝜎𝑚𝑚 are the singular values of Y. the singular values of 

Y are the square root of the eigenvalues of its covariance matrix 𝑌𝑌𝑇𝑇𝑌𝑌. 

Where 

  𝜎𝜎1 =  �𝜆𝜆1 

  𝜎𝜎2 =  �𝜆𝜆2 

  … 

  𝜎𝜎𝑚𝑚 =  �𝜆𝜆𝑚𝑚 

The columns in U are orthogonal and of unit length, so are the columns in V.  Therefore, Eq 

(2.9) can be represented as: 

   𝑌𝑌 =  𝜎𝜎1𝑃𝑃1𝑣𝑣1𝑇𝑇 + 𝜎𝜎2𝑃𝑃2𝑣𝑣2𝑇𝑇 + … + 𝜎𝜎𝑚𝑚𝑃𝑃𝑚𝑚𝑣𝑣𝑚𝑚𝑇𝑇     2.10 

If 𝑣𝑣𝑖𝑖 is denoted as 𝑡𝑡𝑖𝑖  and 𝜎𝜎𝑖𝑖𝑃𝑃𝑖𝑖 as 𝑝𝑝𝑖𝑖, then Eq (2.10) becomes Eq (2.1) which implies that 

𝜎𝜎1𝑃𝑃1 is the first score vector while 𝑣𝑣1 is the loading vector of Y. 

The principal components of Y vary with the scales used for the variables in Y. According 

to Zhang (2018, p.15), “when applying PCA concept, the ideal practice is to scale the data 
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to zero mean and unit variance in order not to obtain different numerical values because 

same variable can have different unit.”  

3. Linear Regression 

Regression analysis is one of the widely used analytical modelling methods that explore the 

relationship between a dependent variable and one or more independent variables using a 

linear function. The regression analysis concept can either be linear (when it involves a 

dependent variable and one independent variable) or multiple linear (when it involves a 

dependent variable and two or more independent variables) regression (MLR). The method 

involves building a model from the available data to forecast desired responses and the 

built model served as the summary representation of the whole available data. This 

technique is mainly used for prediction in time series modelling or finding the fundamental 

relationships that exist within the variables. 

Linear regression models are one of the most widely used to be fitted to a new dataset 

because it is simple to interpret and easy to train, they are often used as a baseline for 

evaluating other more complex regression models. Some of the linear regression types are 

as follows:  

a. Single variable least squares 

Theoretically, the fitting of a straight line gives no great difficulty. By selecting any two 

points on the straight line 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝐶𝐶, both the slope (m) and the intercept (C) coefficients 

are calculated. For instance, considering these two points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2), the slope 

can be found as: 

  𝑚𝑚 =  𝑦𝑦2−𝑦𝑦1 
𝑚𝑚2−𝑚𝑚1

       2.11 

Once m has been obtained, the intercept, C, can be found by solving the equation of the 

straight line: 

  𝐶𝐶 =  𝑦𝑦1 − 𝑚𝑚𝑥𝑥1       2.12 

While this procedure provides exact, correct coefficients using points that lie on a straight 

line, experimental points rarely (if ever) do so. This is indicated by the expression generally 

used to represent a regression model with a single predictor variable: 

  𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝐺𝐺 + 𝜀𝜀        2.13 

https://www.analyticsvidhya.com/blog/2015/06/establish-causality-events/
https://www.analyticsvidhya.com/blog/2015/06/establish-causality-events/
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Where the additional term in Eq (2.13), 𝜀𝜀 , signifies that for a fixed value of the predictor 

variable the observed value of the response will not lie exactly on the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝐶𝐶, but 

will be in error by an amount 𝜀𝜀. 

 

b. The principle of least squares 

To predict responses for the model equation (2.14) below, 

  𝑦𝑦 =  𝛼𝛼 +  𝛽𝛽𝑥𝑥 + 𝜀𝜀       2.14 

 it is natural to select a predicting equation of the form: 

  𝑦𝑦� =  𝛼𝛼� +  �̂�𝛽𝑥𝑥 + 𝜀𝜀         2.15 

Where 𝛼𝛼� and �̂�𝛽 are the estimates of the true intercept, 𝛼𝛼� and slope, �̂�𝛽, respectively. A 

measured of how well 𝑦𝑦� predicts the response variable y is the magnitude of the residual, r, 

the difference between y and 𝑦𝑦�: 

  𝑟𝑟 = 𝑦𝑦 −  𝑦𝑦� = 𝑦𝑦 − (𝛼𝛼� +  �̂�𝛽𝑥𝑥)     2.16 

Ideally, one would like the magnitudes of the residuals to be as small as possible, close to 

zero. Provided that 𝜀𝜀 = 0 for all responses, if not, all observed responses will not lie on a 

straight line and no prediction equations in the above form will fit the data points exactly. 

Hence no linear prediction equations can make all the residuals zero. In this case, to find 

the values of intercept, 𝛼𝛼� and slope, �̂�𝛽, which would minimise the sum of the squared 

residuals for all the observations. 

The sum of squared residuals can be written as: 

  𝐽𝐽 =  ∑ 𝑟𝑟𝑖𝑖2 =  ∑ �𝑦𝑦𝑖𝑖 −  𝛼𝛼� −  �̂�𝛽𝑥𝑥𝑖𝑖�
2𝑁𝑁

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1           2.17 

Differentiating equation (2.17) with respect to 𝛼𝛼� and  �̂�𝛽, we have 

𝑑𝑑𝐽𝐽
𝑑𝑑𝛼𝛼�

=  −2∑ �𝑦𝑦𝑖𝑖 −  𝛼𝛼� −  �̂�𝛽𝑥𝑥𝑖𝑖�𝑁𝑁
𝑖𝑖=1 = 2𝑁𝑁𝛼𝛼� − 2∑ 𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 + 2�̂�𝛽 ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1         2.18 

𝑑𝑑𝐽𝐽
𝑑𝑑𝛽𝛽�

= −2∑ �𝑦𝑦𝑑𝑑 −  𝛼𝛼� −  𝛽𝛽�𝑥𝑥𝑑𝑑�𝑁𝑁
𝑑𝑑=1 𝑥𝑥𝑑𝑑 = 2∑ 𝑦𝑦𝑑𝑑

𝑁𝑁
𝑑𝑑=1 𝑥𝑥𝑑𝑑 + 2𝛼𝛼� ∑ 𝑥𝑥𝑑𝑑𝑁𝑁

𝑑𝑑=1 + 2𝛽𝛽� ∑ 𝑥𝑥𝑑𝑑2𝑁𝑁
𝑑𝑑=1      2.19 

At the optimum value of equation (2.18) and (2.19), the gradients should be zero. Equating 

the two equations to zero and solving for 𝛼𝛼� and �̂�𝛽, we have: 
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  �̂�𝛽 =  ∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑚𝑚𝑖𝑖−(∑ 𝑦𝑦𝑖𝑖−∑ 𝑚𝑚𝑖𝑖𝑁𝑁

𝑖𝑖=1 )/𝑁𝑁𝑁𝑁
𝑖𝑖=1

∑ 𝑚𝑚𝑖𝑖2𝑁𝑁
𝑖𝑖=1 −�∑ 𝑚𝑚𝑖𝑖𝑁𝑁

𝑖𝑖=1 �
2

/𝑁𝑁
     2.20 

  𝛼𝛼� =  ∑ 𝑦𝑦𝑖𝑖−𝛽𝛽� ∑ 𝑚𝑚𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
       2.21 

 

c. Multi-variable Least Squares 

Consider multi-input single output (MISO) models, the extension to multi-input multi- output 

(MIMO) models is straightforward. Consider the following model: 

   𝑦𝑦 =  ∑ 𝜃𝜃𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝜀𝜀        2.22 

where y represents the response variable, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are the n predictor variables and 𝜀𝜀 is 

the random error term. The prediction equation will be of the form: 

  𝑦𝑦� = ∑ 𝜃𝜃𝚤𝚤�𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1         2.23 

where𝜃𝜃�1,𝜃𝜃�2, … ,𝜃𝜃�𝑛𝑛are suitable estimate of the unknown regression 

coefficients 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑎𝑎. The model prediction residual of the equation (2.23) is 

  𝑒𝑒 = 𝑦𝑦 −  𝑦𝑦� = 𝑦𝑦 − ∑ 𝜃𝜃𝚤𝚤�𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1        2.24 

For N observations, the following matrix equation can be formulated 

  𝑌𝑌� = 𝑋𝑋𝜃𝜃�        2.25 

  𝐸𝐸 = 𝑌𝑌 − 𝑌𝑌� = 𝑌𝑌 − 𝑋𝑋𝜃𝜃�       2.26 

Where 𝑌𝑌 𝜖𝜖 𝑅𝑅𝑁𝑁×1 is a vector observed responses, 𝑌𝑌� 𝜖𝜖 𝑅𝑅𝑁𝑁×1 is a vector of model predictions, 

𝑋𝑋� 𝜖𝜖 𝑅𝑅𝑁𝑁×𝑛𝑛 is matrix predictors, 𝐸𝐸 𝜖𝜖 𝑅𝑅𝑁𝑁×1 is a vector for model residuals and 𝜃𝜃� 𝜖𝜖 𝑅𝑅𝑛𝑛×1 is a 

vector of model parameters. 

The sum of squared residuals can be written as  

  𝐽𝐽 =  𝐸𝐸𝑇𝑇𝐸𝐸 = �𝑌𝑌 − 𝑋𝑋𝜃𝜃��𝑇𝑇�𝑌𝑌 − 𝑋𝑋𝜃𝜃�� 

     = 𝑌𝑌𝑇𝑇𝑌𝑌 − 2𝑌𝑌𝑇𝑇𝑋𝑋𝜃𝜃� + 𝜃𝜃�𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝜃𝜃�      2.27 

Differentiating J with respect to 𝜃𝜃�, we have 

  𝑑𝑑𝐽𝐽
𝑑𝑑𝜃𝜃�

=  −2𝑋𝑋𝑇𝑇𝑌𝑌 + 2𝑋𝑋𝑇𝑇𝑋𝑋𝜃𝜃�      2.28 
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When the model parameters are at their peak figures, the above slope vector should be a 

zero vector. Equating Eq (2.28) to a zero vector, we have the following matrix equation 

  −2𝑋𝑋𝑇𝑇𝑌𝑌 + 2𝑋𝑋𝑇𝑇𝑋𝑋𝜃𝜃� = 0       2.29 

Which is known as the normal equation. Solving the normal equation for 𝜃𝜃�, we have 

  𝜃𝜃� =  (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑌𝑌        2.30 

The above equation also applies to multi-input multi-output models where Y is a matrix of 

observed responses.  
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Appendix B 

 

1. Principal Component Regression 

Principal component regression (PCR) is a regression technique that basically compute 

principal components (PCs) and provides maximum discrepancy of variables in a dataset 

using least squares principle to optimize the predictive ability of the model. Thus, it only 

extracts the score vectors to describe the observed variability in the independent variables 

without considering the dependent variable.  

According to Zhang (2018, p.18) when the number of independent variables correlated is 

large compared to number of observations due to noise, the matrix 𝑋𝑋𝑇𝑇𝑋𝑋 will be of full rank 

and likely to be singular. Thus, in such case, using the least squares concept or multiple 

linear regression will result to significant errors in model parameters correlations and PCR 

will be helpful in providing solution to the problem of full rank. 

The predictor matrix, X, is substituted with its score’s matrix, T, which comprises of the 

major score vectors.  

  𝑇𝑇 = 𝑋𝑋𝑃𝑃        2.31 

with the multiple linear regression formula of the form: 

  𝑌𝑌 = 𝑇𝑇𝑏𝑏 + 𝐸𝐸        2.32 

where B is a vector of model parameters. The least square estimation of B is given as  

  𝑏𝑏 =  (𝑇𝑇𝑇𝑇𝑇𝑇)−1𝑇𝑇𝑇𝑇𝑌𝑌        2.33 

when the estimated model parameter vector B in Eq (2.33) is substituted into the model 

parameter vector 𝜃𝜃� in the following Eq (2.34), it resulted to: 

  𝜃𝜃� = 𝑃𝑃𝑏𝑏 = 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇)−1𝑇𝑇𝑇𝑇𝑌𝑌       2.34 

Thus, the least model error on the testing data is selected when the PCR models are tested 

on the testing data set and the number of principal components to be used can be 

determined from cross validation as well. 
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2. Partial Least Square Regression 

Partial least square regression (PLS-R) is another form of statistical technique that combine 

both MLR and PCR techniques. PLS-R is different from PCR only that it takes cognisance of 

dependent variable while capturing the observed discrepancy in the independent variables and 

tries to achieve maximum correlation (dimension reduction) between the response and 

independent variables. Detail explanation on PLS-R techniques can be read on journal 

presented by (Geladi and Kowalski, 1986). 

PLS-R is particularly useful when there is multicollinearity (i.e. independent variables is 

large and there exist high collinearity) between X and Y. In other word, when predictor 

matrix has more variables than observations. The mathematical representation of PLS-R is 

given as follows: 

The outer relationship for the input data matrix X can be written as: 

  𝑋𝑋 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐸𝐸 =  ∑ 𝑡𝑡ℎ𝑎𝑎
ℎ=1 𝑃𝑃ℎ𝑇𝑇 + 𝑀𝑀     2.35 

 The outer relationship for the output data matrix Y can be written as: 

  𝑌𝑌 = 𝑈𝑈𝑄𝑄𝑇𝑇 + 𝐹𝐹 = ∑ 𝑃𝑃ℎ𝑎𝑎
ℎ=1 𝑞𝑞ℎ𝑇𝑇 + 𝑁𝑁      2.36 

If enough eigenvectors (i.e., sufficiently large a) are used, then both M and N can be made 

zero. The main goal of PLS-R modelling is to forecast the relationship (by predicting Y 

from X) between X and Y while reducing the magnitude of N as minimum as desired. The 

inner relationship in PLSR can be represented as: 

  𝑃𝑃�ℎ = 𝑏𝑏ℎ𝑡𝑡ℎ        2.37 

where 𝑏𝑏ℎ = 𝑡𝑡ℎ𝑇𝑇𝑃𝑃ℎ
𝑡𝑡ℎ𝑇𝑇𝑡𝑡ℎ
� . Here 𝑏𝑏ℎ can be referred to same as the regression parameter in 

MLR or PCR. According to Zhang (2018, p.19) “If equation (2.35) and (2.36) is used to 

calculate the principal components, then the resulting model is not the most desirable 

model. This is because the principal components of X and Y are calculated under the 

condition that X and Y are independent and, therefore, there may not exists a strong 

relationship between 𝑃𝑃ℎ and 𝑡𝑡ℎ. The objective of modelling is to maximally explain the 

output Y using input X”. 
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3. Nonlinear Regression 

Nonlinear regression is a statistical modelling method that helps to explain the nonlinear 

relationships in dataset into linear or explainable form. The nonlinear regression models are 

commonly regarded as parametric because all the modelling equations representing the model 

are described as a nonlinear equation (nonlinear refers to a fit of function that is not linear in 

function of the parameters). This type of regression is always useful where data has strong 

nonlinear trends and cannot be easily transformed into a linear space. 

One area that the nonlinear regression is applicable is through the extension of the 

independent variables by incorporating nonlinear function terms in the original independent 

variables. The nonlinear transformations term includes logarithmic transformation, 

sinusoidal transformation, and polynomial transformation and sometimes a nonlinear model 

can be transformed directly into linear model by applying some mathematical 

transformations such as log or semi-log transformation. Some of this nonlinear regression 

can be of the form: 

 Nonlinear regression through least squares optimisation 

 Orthogonal least squares regression. 
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