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Abstract

The last two decades led to a significant increase in data availability. This is especially true

for online communities. Namely, we have been seeing a significant activity and content

amount increase within social networks, forum communities and electronic marketplaces.

All these can be seen as platforms for online community interactions. Moreover, these

platforms contain all the history of the interactions, creating a large footprint and allowing

us to study more subtle structures within the data. While 20 years ago researchers only

started thinking about topic detection and tracking in textual data sources (mostly limited by

news feeds), now we have a huge variety of data feeds including Twitter, Stack Overflow, and

Reddit, to name the most popular ones. Furthermore, these data sources contain hundreds

of gigabytes of structured and free text data, that can be easily accessed and analysed.

For instance, over the last decade, many successful attempts were made to detect various

event types in Twitter data in an automatic way. These included natural disasters, local

concerts, celebrity-related events, collective events like pandemics, and so on. The more

data we get access to, the more ambitious goals we can set. There are many activities in

online communities that are not widely advertised. This is especially true for hacker forums,

as well as forums dedicated to other illegal activities. Considering the growth of these

communities, it becomes essential to perform automated analysis and risk assessment of

such platforms and their trends.

The current work lays the basis for achieving this goal by introducing the notion of micro-

event, as an event not detectable for a single data record. For instance, if there is a single

tweet, one cannot judge whether it is related or not related to the micro-event. However,

in the context of other tweets, it might be treated as related to the micro-event. This subtle

nature of micro-events makes them incredibly hard to reliably detect in an automatic way.

Hence, it is essential to design a generalisable methodology that would allow reliability,

reproducibility and comparability when studying micro-events.

In the work, I propose a definition of micro-events, as well as a generalisable methodol-

ogy for their discovery and classification. In the work, I discover that the definition, as well

as the methodology, are suitable not only for textual communications but also generalisable

to time series data. Since it is not feasible to get the labelled data for the above-mentioned
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use cases, I design datasets and experiments to mimic the described settings as closely as

possible.

Firstly, I apply the proposed methodology to detect FLOSS (Python packages) version

release events in Stack Overflow data. The version releases are not explicitly mentioned or

advertised in the data source, however, the events impact the community by introducing and

deprecating packages’ functionality. This makes the proposed experiment a good example

of the micro-event detection task. Secondly, I adapt the proposed methodology to financial

time series data, where market patterns align well with the introduced definition of micro-

events. I introduce a machine learning-tailored market pattern, means for its automatic

detection, and prediction of the price action scenarios after the event takes place.
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Chapter 1

Introduction

“You know my method. It is founded upon the observation of trifles.” — Arthur Conan Doyle,

The Boscombe Valley Mystery - a Sherlock Holmes Short Story

1.1 Setting up the scene

The XXI century is the century when the amount of available data revolutionises society [1].

The so-called, "revolution" is driven among others by machine learning and AI [1]. The

volumes and variety of data have been growing orders of magnitude over the last two decades

due to more efficient crowdsourcing [2] and generally better community linkage [3]. We

see that many industrial and business processes become data- and AI-driven with little-

to-no involvement of humans [4, 5]. The fields where the outcomes are evident include

advertisement [5], online communications [5] and financial markets [6]. The data in these

fields has been intensively studied both in application-focused and fundamental science

contexts [5, 7]. Considering the ever-growing complexity and volume of the data, new

contexts emerge all the time. For instance, it becomes possible to identify properties in the

data which were unrecognisable in the past [8].

The increasing connectivity of the society [3] is manifested by the rapidly-growing volume

of interaction footprints. The examples of online community footprints are diverse and

include social networks, forum-like textual communications, online review platforms, online

stores, electronic marketplaces, etc [9]. There is no doubt that it is essential to understand

how these communities function and develop methods for policing them [10]. One of the

approaches to analysing and understanding online communities is topic detection and

tracking (TDT) [11]. TDT is aimed at detecting events and topics in textual data sources,

including news feeds and social networks. There are different kinds of events, including
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events involving a tiny fraction of the community, collective events like epidemics, celebrity-

related events, natural disaster events, and so on [12]. Their main limitation is that they are

identifiable from a single unit of text, like a news article or a social network post.

To better understand this limitation, let us consider the following scenario: a purse is

lost on bus route number A. The purse falls from the seat, gets opened and all its contents

get spread through the bus. Passengers find this content and some of them post on Twitter

about the discoveries. Before the purse falls down, it can be found using conventional TDT

approaches, such as described by Sukel et al. [13]. However, the is a likelihood that the

purse falls down and is not found by passengers but its contents are found. In such a case,

conventional TDT approaches and event definitions would fail to discover the bus route.

Addressing this limitation, in the current work, I introduce the definition of a so-called

micro-event and propose a methodology for their detection and classification. The diagram

illustrating the two scenarios is provided in Figure 1.1. In the current chapter, I use the

notions of micro-event and event to distinguish ones not identifiable from a single data

entry from the rest.

While the above-described example is simplistic and is of no interest from the application

point of view, it helps communicate the notion of micro-event. A potentially impactful appli-

cation of micro-events might include new and emerging threats detection in hacker forums,

where the most advanced products are not publicly advertised but rather available to the

trusted community members [14]. Naturally, the datasets of the most advanced malicious

software that are made available to smaller hacker groups are not publicly available, hence

designing an experiment for this specific application is not feasible. Hence, in the current

work, I design datasets and experiments for micro-event detection in public financial and

online communications data. In the past, this was not feasible either due to a lack of data.

Nowadays, online community footprints provide massive volumes of structured free-text

data, allowing to design experiments for micro-events detection.

In the current chapter, I first formally introduce events and micro-events, and put the

latter in a wider context. Then, I discuss the challenges of micro-event detection and detail

the scope of the thesis and contributions within the considered domains, as well as by setting

the overall aim and objectives. Lastly, I conclude the chapter with the thesis structure and

the list of studies published and submitted while working on it.

1.1.1 Events and micro-events

In the Cambridge International Dictionary of English “event” is defined as “anything that

happens, especially something important or unusual” [15]. From the definition, one infers

that the concept of the event can be applied to a wide range of contexts, depending on what
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Conventional event Micro-event

Fig. 1.1 Conventional events and micro-events scenarios of a purse lost on a bus route
number A. Green and red icons indicate passengers who post and do not post on Twitter
about an item discovery, correspondingly. When the purse is opened and its contents
are discovered by different passengers, the detection of the event becomes not feasible
by means of the existing topic detection and tracking approaches. The concept of micro-
events introduced in the current work together with the methodology allows the discovery
of micro-events.
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“important” or “unusual” means for an individual. Hence, it is not surprising that the current

body of knowledge contains a variety of event detection studies conducted at different scales

and contexts [16].

I define micro-events as events that are not detectable from a single data entry. Moreover,

a data entry cannot be associated with the micro-event on its own, but only in some context

of other data entries. The data entry notion is broad here and might be a social network post,

forum message, or even an electronic marketplace order.

While micro-events could be potentially treated as anomalies [17], their subtle nature

would lead to a large false-positive rate when detected as anomalies, making the approach

readily unsuitable for the scenarios considered in the current work.

Interestingly, the way events are defined in the TDT setting, they are limited to textual

data footprints. However, the way micro-events are defined, this limitation is relaxed. In the

current work, being guided by the proposed definition and methodology, I not only perform

micro-event detection in forum-like textual communications but also demonstrate how

micro-events can be detected and classified in the financial time series data with minimal

methodological adjustments. This demonstrates the breadth of applications of the proposed

definition of micro-events and the methodology of their detection.

As it was mentioned above, existing research on event detection focuses on the iden-

tification of events that can be associated with a single data entry [11]. The detection of

weakly-manifested events, that can only be detected by looking collectively at multiple

entries, has attracted far less to no attention in the events detection literature.1 I see at least

two reasons for that: i) conventional events are intuitively more impactful; and ii) research

focused on conventional events has a lower risk of the null result.

1.1.2 Challenges

What are the factors making micro-event detection so challenging and risky for research?

These include but are not limited by their weak manifestation, general data non-stationarity,

as well as data complexity. These reasons are discussed below a bit more in detail.

Weak manifestation of micro-events

Even though micro-events are weaker-manifested than conventional events, there is no

doubt that they might still have a huge impact on the whole community. For instance,

financial markets are driven by large players but detection and understanding of their con-

tributions is a big challenge [18]. There are at least two reasons for the weak manifestation,

1By the data entry I mean a piece of text, a message, a time series point, etc.
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i) desire of the community member to stay anonymous or undetected, and ii) indirect rela-

tionship of the community member to the micro-event. An example of the first one is large

players in financial markets who trade large volumes and want to minimise their impact on

the market [18]. As the reader will see later, the second reason is relevant for the micro-event

detection in forum-like communications performed in the current work.

Due to the weak manifestation, the performance of the machine learning models in the

micro-event setting is relatively low. Hence, it is not clear, whether commonly accepted

model explainability methods (like SHAP [19]) are reliable in this context. In the current

work I follow one of the many potential ways of detecting micro-events. Other relevant

approaches are discussed in the Background Chapter.

Data non-stationarity

When considering a developing online community, its characteristics change. For instance,

the average activity of the members, the total number of posts per day, the breadth and

depth of the discussed topics and the general nature of the interactions. Let us introduce

the concept of this change more formally below. Stationary systems can be defined as

having a constant unconditional joint probability distribution of its feature values over time,

hence fixed mean and variance [20]. Non-stationary systems do not satisfy this condition.

Definition of stationary and non-stationary systems varies across fields and authors by

adding domain- and system-specific conditions, but the provided general definition is

sufficient for the current work. The sources of non-stationarity in financial time series are

constant qualitative and quantitative changes in market participants and all the external

economic factors. In the case of forum-like textual communications, the non-stationarity is

caused by internal community changes as well as external factors affecting the intensity and

matter of the communications. As one can imagine, these changes require adjusting tools

that are used for the community footprint analysis. For instance, one of the requirements

is that the representation of the time step should be consistent and comparable across the

analysed timeline.

Data multidimensionality

The number of variables used to describe the system defines the dimensionality of the

analysed data. The more dimensions are present in the data, the higher the risk of finding

spurious relationships between them [21]. On the other hand, the more data is available,

the more likely it is to successfully analyse the system. On the lowest level, the financial time

series is represented by a series of orders submitted, cancelled and executed by the market
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participants. However, a common way of representing the system is through traded volumes,

numbers of trades, and price changes over time [6]. More fine-grained classification of

volumes and trades leads to even higher dimensionality of the data. Forum-like textual

communications are represented by multiple communities and threads. The complexity of

the footprint naturally dictates the higher dimensionality of the data representation. Con-

sidering the above-described non-stationarity, every dimension of the data representation

should be made stationary and comparable across the considered time steps.

1.1.3 Objectives & aims

The overall aim of the work is to investigate the suitable means for micro-event detection

and classification in the contexts of textual communications and financial time series,

considering the non-stationarity and multidimensionality of the data sources. After better

understanding the setting, propose a methodology for efficient micro-event detection &

classification.

The specific objectives of the current thesis can be formulated as the following:

1. Define the micro-events in the context of online Q&A communities and financial

markets;

2. Design a generalisable methodology allowing to work with weakly manifested micro-

events in both domains;

3. Detect and classify the micro-events in forum-like communications data on the exam-

ples of Stack Overflow Q&A platform and financial time series;

4. Investigate the reliability of SHAP model explanations in the context of weakly mani-

fested micro-events;

5. Detail the outcomes and limitations of the work.

In the later chapters, I state the more specific research questions that contribute to the

stated overall aim and objectives. Below, I elaborate on the objectives with respect to the

considered domains. Moreover, in Section 1.3, I relate every chapter to the stated objectives.

1.2 Thesis contributions

In the current section, I introduce the domains of interest more in detail, namely, forum-like

textual data and financial time series. I list the contributions of the thesis to each of the
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domains. Since the two settings have substantial differences, I identify research gaps and set

aims separately for both.

1.2.1 Event detection in forum-like textual data

Event detection in textual data is a subfield of a larger research area of Topic Detection and

Tracking (TDT). TDT has been an active research field for at least two decades [22]. It focuses

on the identification and detection of events in text data, like news feeds and Twitter, as well

as the investigation of how topics emerge in online communities and data sources. News

articles or tweets in these datasets can be classified as related or not related to the event

or topic. The common feature of these events is that they are followed by an observable

response from the community, from which the event can be detected.

Until now, events that have been addressed in the Topic Detection and Tracking com-

munity were detectable from a single text entry [23–25]. Studying event detection in textual

communications, I focus on software engineering (SE)-related forum data analysis due to

the ample data availability, as well as the lack of event detection studies in the domain. Tex-

tual data in SE is present, among others, in the form of Question & Answer (Q&A) platform

communications - Reddit and Stack Overflow (SO) to name two examples. These platforms

have a large impact on the field because they are commonly queried for code snippets and

solutions during the software development process.

I consider Free/Libre Open Source Software (FLOSS) version releases as micro-events in

textual data and Stack Overflow Q&A communications as a platform where the associated

communities interact and leave the footprint. I investigate whether FLOSS version releases

can be associated with a characteristic change in the associated community interactions. In

other words, I aim at detecting FLOSS version release events from SO message data.

Contributions

The contributions of the current work within the domain of TDT may be listed as follows:

• I introduce the concept of micro-event as well as the generalisable methodology for

micro-event detection and classification, design a dataset specifically for micro-event

detection and demonstrate how the methodology can be applied to it.

• I perform a feasibility analysis of the approach across a broad range of scenarios. Such

elements as a set of considered features (predictors), different estimators, the type

and length of the detection time window, and the type of events are investigated and

discussed.
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• Lastly, feeling the need for a better understanding of the micro-event concept, I

introduce a synthetic forum-like data generation model, allowing the generation of

synthetic datasets with controlled strength of the community response. It creates a

synthetic data-driven basis for studying scenarios in which the micro-events can be

detected.

1.2.2 Event detection in financial time series

Market events are the key means to evaluate changes in financial markets [6]. The study of

these particular events allows traders to predict potential changes in market dynamics and

permit the analysis of factors that may impact the profitability of trades. Being conditioned

by the financial context, the notion of a conventional event here is narrower than in the TDT

setting, however, is still very broad and includes natural disasters, economic news, political

speeches, tweets, or even certain financial time-series patterns.

The micro-events in financial time series follow the original definition and are manifested

as specific patterns of price and volume change detectable from multiple data entries.

Trading platforms offer the widest range of time series analysis tools, however since the

analysis was done manually in the past, the existing methods are not necessarily optimal for

the machine learning setting. Nevertheless, they are often adopted in automated trading

systems off the shelf. This fact creates a knowledge gap in the field, as machine learning

methods might have different requirements for the data representations and limitations

in comparison to human intelligence. In the current work, I bridge the gap by introducing

a new feature extraction approach and extending the volume profile market pattern to be

suitable for the machine learning setting.

Contributions

The contributions of the current work to the field of financial time series analysis are the

following:

• I describe all the components involved in the automated trading stack, including the

challenges and complexity associated with each component.

• I introduce the concept of micro-event as well as the generalisable methodology for

micro-event detection and classification, design a dataset specifically for micro-event

detection and demonstrate how the methodology can be applied to it.

• I perform a statistically-backed feasibility study of the proposed approach for different

time horizons, asset liquidity, method configurations, etc.
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Due to the broad notion of events and, hence the varying objectives of the studies,

both fields - TDT and financial time series suffer from poor research reproducibility and

comparability. In the current work, I make the best effort to bridge this gap by introducing

the methodology which allows for comparability and reproducibility of the results across

studies.

1.3 Thesis structure

There are two types of chapters in the current thesis: the ones which lay a basis for the

studies, and the technical ones. The rest of the thesis is structured as follows:

• Chapter 2 introduces all essential information necessary to understand the work as

well as links between the current thesis and the existing body of knowledge;

• Chapter 3 communicates in detail the study of micro-event detection in the forum-like

textual data [Objectives 1, 2, 3, 5];

• Chapter 4 delivers the micro-event (pattern) extraction and classification method

in the context of time series, guided by the methodology introduced in Chapter 2

[Objectives 1, 3, 5];

• Chapter 5 builds on top of the Chapter 4 following the same methodology, expand-

ing the idea of automatic micro-event detection to the newly introduced type of

micro-event, comparing the two types of patterns from the classification performance

perspective, assessing the optimal market conditions for the introduced micro-event

type, and, last but not least, assessing the validity of using SHAP model interpretations

in the context of micro-event detection and financial markets setting in particular

[Objectives 3, 4, 5].

• In Chapter 6 I discuss the results obtained from both domains with respect to the

thesis objectives and overall aim and conclude the conducted work.

Chapters 3, 4 and 5 are technical and can be treated as separate studies and comprise

of Aims, Material and Methods, Results, as well as individual Discussion and Conclusion

sections.

1.4 Publications

The technical chapters of the thesis are based on the publications written by myself under

the supervision of Jaume Bacardit and Thomas Gross or in collaboration with Luca Arnaboldi.
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In the latter case, I present only work performed by myself. The papers used in the thesis are

the following:

• Chapter 3: Sokolovsky A, Gross T, Bacardit J (2021) Is it feasible to detect FLOSS version

release events from textual messages? A case study on Stack Overflow. PLoS ONE 16(2):

e0246464. https://doi.org/10.1371/journal.pone.0246464.

• Chapter 4: Sokolovsky A, Arnaboldi L (2021) Machine Learning Classification of Price

Extrema Based on Market Microstructure and Price Action Features. A Case Study of

S&P500 E-mini Futures. ArXiv pre-print: 2009.09993.

• Chapter 5: Sokolovsky A, Arnaboldi L, Bacardit J, Gross T, (2021) Explainable Machine

Learning-driven Strategy for Automated Trading Pattern Extraction. ArXiv pre-print:

2103.12419.



Chapter 2

Background

2.1 Introduction

In the current section, I provide all necessary information for understanding the methods,

results, and findings of the current work. Since the research involves two distinct domains

(TDT and financial time series), I first provide the background information common for

both, then detail each of the domains separately. Namely, in Section 2.2, I introduce the

concepts of supervised and unsupervised machine learning (ML), linear and non-linear

ML estimators, classification and regression tasks, performance metrics, feature selection

and hyperparameter tuning, and model analysis; in Section 2.4, I detail the statistical meth-

ods which allow addressing, certain limitations of ML - effect sizes, statistical tests and

corrections for multiple comparisons. In the context of TDT (Section 2.5), I discuss state-of–

of-the–the-art topic modelling approaches, synthetic text generation, and text difference

metrics. For the financial time series (Section 2.6) I detail the way financial markets operate,

then I introduce the concept of automated trading and its challenges, finally, I introduce

ways of assessing automated trading system performance.

2.2 Machine learning

Machine learning term was defined in 1959 by Arthur Samuel as “the field of study that gives

computers the ability to learn without being explicitly programmed”. [26]. The algorithms

are provided with the data which they use to build or refine models and assess the quality

of the models using specific performance metrics [27]. Machine learning can be used for

distinguishing entries into classes or assigning them continuous variables [28].



12 Background

Machine learning nowadays is used in most (if not all) data-driven fields, where one

is expected to make decisions based on the data [29]. Concretely, it is used for data pre-

processing, denoising, structuring, filtering, transforming, designing representations, etc.

In the current section, one can characterise machine learning approaches as supervised

and unsupervised, based on the target variable availability as well as introduce particular

methods of both types used in the thesis.

Importantly, the other two types of machine learning approaches exist, that are not

described in this chapter. Namely, reinforcement learning (RL) [30] and time series fore-

casting [31]. These approaches are not used in the current work hence not covered in the

current chapter. In the dissertation, I do not explicitly perform time series forecasting but

rather design labels and extract features from time series and timestamped text data for

supervised classification.

2.2.1 Supervised machine learning

Supervised learning can be defined as a family of algorithms which learns to map an input

to an output [32]. The learning is done on the training data, where the input-output pairs

are defined and the algorithm aims at learning the existing mapping rules, which would

hold for the unseen data. The latter is called inference data. When inference data constitutes

a part of the original dataset, it is called test data. There are two common ways to set the

supervised learning problems - regression and classification. The difference is in the form of

output - regression models have a continuous target variable, and classification models use

distinct classes as the target. In classification, the target is represented as a discrete variable.

Learning algorithms

Below I introduce the concept of estimator and linearity, then describe the algorithms used

in the work. Estimators are data processing elements responsible for the modelling of the

entries’ target variables (and giving their estimate) based on input features (or observed

data) [33]. The choice of the specific method differs depending on the size of the dataset,

the number of features, and the expected relationships between them [34]. Moreover, one

should also consider the complexity of the estimator itself, as it affects the overhead required

to understand its output [35].

One of the many ways of classifying ML estimators is by their linearity [36]. Linear

estimators use linear functions to separate the classes or fit the data relationships and

usually require fewer resources, non-linear ones use non-linear solutions to find relations

in the data and are more computationally demanding. Pronounced model non-linearity
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often leads to finding spurious relationships in the data (also called high variance or over-

fitting), hence poor generalisability to unseen data. Over-simplistic models might not be

able to spot all present relationships in the data leading to the large bias of the fit (also called

under-fitting) [37]. Linear estimators are much more transparent in terms of analysis and

interpretation, while non-linear ones are often treated as a black box.

Hence, in the context of the current thesis, aiming to preserve transparency and good

performance, I use both types of estimators. Namely: logistic regression and ensemble

tree methods. The first one is an example of a linear estimator, the latter is a non-linear

estimator.

Logistic regression One of the simplest estimators is built from the logistic regression.

It is a model where the input features are fed into the model with adjustable coefficients,

then the logistic function is applied to it to get the output. It is used for modelling binary

variables, where the output is a float value in the range (0,1), representing the probability

of the output. If one applies some output threshold, the two classes can be distinguished

based on the probability output [38].

The logistic function (called logistic or sigmoid curve) in its general form is defined as

follows:

f (x) = L

1+e−k(x−x0)
, (2.1)

where x0 is the midpoint of the sigmoid, L is the maximum Y value of the sigmoid, k is the

steepness of the curve. When applied in the estimator, more constrains are introduced.

Namely, x0 = 0, k = 1, L = 1, leading to the following function:

f (x) = 1

1+e−x
. (2.2)

Building a logistic model for n-dimensional X, the following equation applies:

f (X ) = 1

1+e−(β0+β1x1+β2x2+...+βn xn )
, (2.3)

where f (X) is the probability of the positive class output. The model can be further extended

to the multivariate version, where the number of outcomes is more than 2. In such a case,

the probability of class Z output for K possible outcomes can be computed as the following:

Pr (Yi = Z ) = eβZ ·Xi

1+∑K−1
k=1 eβk ·Xi

(2.4)
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Being very simple, this model is easy to interpret, additionally, there is a stack of well-

established statistical methods for the model analysis, including the goodness of fit, outlier

detection, influential cases, residuals analysis, etc. [39]. The variety of available analysis

methods comes from the fragility of the model - there are many factors that might affect its

fit quality. For instance, the linear dependency between the features (also called observed

variables), different scales of feature values, and outliers. Importantly, these factors do

not have that large impact in the case of more complex machine learning models. In the

current work, logistic regression is used as a well-established powerful statistical tool in

event detection in textual data.

Decision trees A decision tree can be considered as a predictive modelling approach,

used in data science and machine learning in particular [40]. The training is performed

by searching for the conditions to split the training entries into groups in a hierarchical

way. Most decision tree building algorithms are greedy in nature but not all of them [41].

The hierarchies create decision paths, allowing to separate the entries into classes. The

output of the model is obtained by following a number of conditional splits, depending

on the values of the input features. The sequence of the splits leading to a leaf is called a

decision path. The diagram of a simple decision tree is provided in Figure 2.1. The trees

Categorical Feature 1
(CF1)

Numerical Feature 1 
(NF1)

P1 - probability of
class 1;

S1 - support.

P2 - probability of
class 1;

S2 - support.

P3 - probability of
class 1;

S3 - support.

CF1=A CF1=B

NF1>k NF1 ≤ k

Fig. 2.1 An example of a decision tree for an arbitrary binary classification task. Two splits
are demonstrated - for CF1 and NF1. Also, there are 3 leaves representing the tree decisions
with the associated supports and class probabilities.

can be used for both classification and regression (called regression trees) tasks. Regression

might require a more complex tree structure as the regression output often has more bins

than classification. Generally, the number of output bins depends on the size of the training
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dataset, the complexity of the problem, the feature space size, and the distribution of the

outputs.

While simple decision trees are directly interpretable, in real-life scenarios, the number

of splits might reach hundreds, depending on the feature space. Hence, at some point,

the model becomes infeasible to manually assess and interpret [42]. Decision trees are an

example of an unstable model, where a tiny change in the numerical feature value might

lead to a completely different decision path. This instability makes it a great fit for ensembles

of estimators, where multiple estimators are fitted on different versions of the dataset and

their outputs are aggregated.

Ensembles By definition, ensemble estimators take outputs of multiple base estimators

and aggregate them. The base estimators can be anything in theory, but decision trees are

often used as an example of a relatively simple unstable estimator [43]. Another reason

why tree-based approaches are hugely popular is that they are directly interpretable. In the

ensemble setting several different trees are trained and used in unison to come up with the

result. The simplest and most known case of this is Random Forest. Random Forest operates

by constructing a multitude of decision trees simultaneously. The features and training

entries are bootstrapped (sampled with replacement with uniform probability distribution)

to diversify the information exposure of the single trees [44]. However, being guided by

randomness, bootstrapping is not the most optimal way of fitting individual trees.

Improved robustness and performance are provided by boosting algorithms. In boosting,

the base estimators are fitted sequentially with the following ones being more focused on

the more complex entries. The final contributions of the base estimators are obtained

either from their performance on the validation data or goodness of fit. One of the first

boosting algorithms, as we know them, was AdaBoost [45], this work presented the concept

of combining the output of the boosters into a weighted sum that represents the final output

of the boosted classifier. Following on from this technique two other techniques were

introduced - XGBoost [46] and LightGBM [47], both libraries have recently gained a lot of

traction in the machine learning community for their efficacy, and are widely used nowadays.

In this category, the most recent algorithm is CatBoost [48]. CatBoost is highly efficient and

less prone to bias and over-fitting than its predecessors. CatBoost was specifically proposed

to expand issues in the previous approaches which lead to target leakage (disagreement

between the actual and predicted target distributions), which sometimes led to over-fitting.

This was achieved by using ordered boosting, a new technique allowing independent training

and avoiding leakage. Since boosting algorithms are robust, and efficient and often provide



16 Background

close to state-of-the-art performance, I use CatBoost for classification problems in both

domains. Additionally, in the TDT domain, I compare CatBoost to Random Forest.

Artificial neural networks Neural networks (NNs) are a biologically-inspired family of

estimators. There are two general contexts in which the neural networks are studied: i. the

biological and natural sciences approach, where the focus is to model the NNs of living

systems and understand them better, and ii. making the best use of the models for problem-

solving tasks [49]. In the current thesis, I only use the networks in the latter context.

An elementary unit of the NN is a neuron, which is represented by a mathematical

function (called activation function). In the simplest case, the neurons are assembled in

layers, where all outputs from layer k are fed into all the neurons in layer k +1 with varying

weights (representing the strength of the connection). The outputs are multiplied by weights

and summed, then the activation function is applied. The diagram representing the neural

network model is provided in Figure 2.2 This architecture is called a fully connected feed-

forward neural network. There is a wide variety of topologies that can be represented as

networks with many of them known for decades. For example, Markov Chain - is a stochastic

process represented by a set of states, where the probability of the following state is defined

by the current state only, as well as its extension to Markov Chain Monte Carlo (MCMC)

models that sample the original chain getting the probabilities distributions [50]. Another

example is the Boltzmann machine - is a symmetrically connected network of neuron-like

units that make stochastic decisions about its activity [51]. The learning is performed by

updating weights between the units.

More recently discovered topologies involve connections between far-positioned layers,

like ResNet [52] or even more complex connectivity as in Attention networks [53]. The

further development of attention networks are transformers that differentiate the input data

by significance for the model. Due to the parallel architecture of the neural networks and

the simplicity of the base units (neurons), these models scale very well - they are commonly

fitted using GPUs (Graphical Processing Units), which are capable of working with hundreds

and thousands of threads in parallel. There are many NN architectures nowadays having up

to trillions of neurons with the largest ones used for natural language processing tasks [53].

NNs are known to provide state-of-the-art performance in high-dimensional problems

with complex relationships between features, like computer vision and natural language

processing - to name two. The model training is done by adjustment of the weights through

a backpropagation algorithm - the weights are changed proportionally to their contributions

to the incorrect output. In the current dissertation, I use a pre-fitted transformer-based

GPT2 neural network [54] for generating synthetic data.
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Input layer

Hidden layer

Output
layer

Fig. 2.2 A simple neural network architecture with a single hidden layer. The data flows from
the left to the right. The thickness of the arrows represents different weights (can be seen as
impact) of the source neuron to the target neuron. The input layer does not perform any
transformation on the data. The transformations are introduced in the hidden and output
layer.

2.2.2 Unsupervised machine learning

Unsupervised models focus on different types of tasks, e.g., finding aggregations of data

points or frequent patterns in the data. They do not require labelled data to make use of it.

Depending on the objective, the formalism may vary. Common examples are clustering of

the unlabelled data or learning to reproduce the structure of the input data. Consequently,

there might be different outcomes of such models - clustered data, which domain experts

analyse and make use of, or models which learned the structure of the data and are capable

of performing new tasks, for example, NLP domain, text translation, question answering,

text generation, etc. Another example is topic modelling, wherein in the training phase, a

model identifies topics in the text and assigns topics to the previously unseen texts in the

inference phase.
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As one can see, supervised and unsupervised approaches have very distinct applications

and work in different settings. Both of them may be of use for event detection tasks. For

instance, supervised learning is good for classifying entries into relevant or irrelevant to

the event, while unsupervised learning may be used for synthetic data generation with the

purpose of better understanding of the system, or extracting topic modelling features from

the text. Below I overview of approaches that are used in the thesis.

Learning algorithms

All the data representations in the SO data analysis are based on topic modelling. The

underlying assumption is that any relative changes in topics might be indicative of a micro-

event. At the same time, these changes will unlikely be spotted by lower-level features,

like Bag-of-Words. Below, I discuss two methods for topic modelling which are used in the

current work: LDA and hSBM. LDA is a gold-standard topic modelling method, that is robust,

scalable, and gives a relatively small number of topics as the result of optimisation. hSBM in

its turn is a novel network-based approach that gives a large number of topics in the output.

When choosing these methods, I wanted to offer comparability (LDA) as well as make sure

that I am not missing on the novelty (hSBM) or the limitations of the feature space size.

Please note that when conducting the research, robust deep learning (DL) language

model implementations were not available, hence it was not feasible to implement the topic

modelling based on DL vector representations. At the time of designing experiments, the

chosen models were considered as offering the best performance among topic modelling

methods.

LDA Latent Dirichlet Allocation (LDA) topic modelling - is a generative model widely

used in Natural Language Processing [55]. The model requires Bag-of-Words encoded text1

as an input and outputs a distribution of topics present in the text. Each topic has a set

of associated tokens. In the model training phase, the topics are automatically defined

based on the word co-occurrences. Concretely: a word subset, occurring across multiple

texts (messages, documents, posts, etc.) defines a latent topic. As an example: the words

"oranges" and "fruits" are seen together more often than "oranges" and "transactions",

while "transactions" are often found in the context of "banks". In case of a sufficient number

of documents containing these subsets of words, the model would detect a topic for fruits,

represented by "fruits" and "oranges"; and a financial topic, defined by the words "banks"

and "transactions". An interpretation of topics is usually done manually, but the quality of

the topics can be assessed in an automatic way.

1First, one gets a list of unique words in the corpus of text, then uses as a vector to encode the text units.
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hSBM The hierarchical Stochastic Block Model - is a novel approach based on finding

communities in complex networks and topic modelling [56]. Concretely: it represents the

dataset as a bipartite graph of posts and words. The model outperforms LDA leading to

better topic models. Also, hSBM does not require setting the number of topics allowing

the model to find them naturally. We used this method to obtain a larger feature space

and ensure that our feasibility analysis covers the dimensionality aspect. We computed the

per-time step representations by taking topic means across posts in the time step, the same

way as for LDA.

2.3 Machine learning pipeline

While machine learning algorithms are the heart of the data analysis pipelines, it is equally

important to prepare the data, ensure pipeline consistency, take care of data-related biases,

etc. Below, I introduce common machine learning pipeline concepts and best practices.

Namely, I describe data preprocessing, feature selection, hyperparameter tuning, model

evaluation, and model interpretation steps in the context of the conducted research. The

workflow diagram is provided in Figure 2.3.

Data Preprocessing Feature Selection Hyperparameter tuning Model evaluation

Model interpretation

Fig. 2.3 Machine Learning workflow diagram. Feature selection and hyperparameter tuning
steps can be performed in different orders and even iteratively as an optimisation task.

2.3.1 Data preprocessing

To make use of the data, it is necessary to design the experiment based on the expectations

of the practitioner - the scientific hypothesis. Deriving the hypothesis, one should be aware

of its assumptions and limitations. It is also essential to be familiar with the mechanics
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behind the data collection as they largely define the limitations of the raw data. After the

hypothesis is formulated, the dataset is designed - one identifies the output variable as well

as the available raw features for building the feature space. After the feature space is built,

one is aware of the dimensionality and value distribution, hence it is feasible to choose the

estimator. Depending on the estimators used, different initial data processing steps might

be required. For instance, data normalisation, standardisation, removal of outliers and

capping [39]. For instance, logistic regression is known to be affected by outliers, dependent

data entries and multicollinearity between the features [39]. More complex estimators, like

ensembles, have way fewer restrictions and all limitations of the logistic regression do not

apply to them. However, data preprocessing might still affect the final performance of the

model.

Since data preprocessing is data- and problem-specific, I describe the dataset design

and its preprocessing in the corresponding sections of the technical chapters.

2.3.2 Feature selection

Considering any machine learning model, one cannot infinitely increase the number of

input features (also called feature space) as this would lead to increasingly sparse data entries

in the considered feature space. The impact of large input feature spaces is well-known

and studied [57]. One of the ways of mitigating the effects of the large feature space is by

applying feature selection methods.

The objective of such methods is to choose the best suitable features from the large

feature space and remove the ones bringing no new information. The choice can be guided

by the feature variance, statistical tests, goodness of fit measures, performance on unseen

data, etc. One can distinguish three different classes of feature selection methods:

• Filter - model-agnostic methods that perform the selection based on the properties of

the features, like variance or correlation with the target. They are usually computa-

tionally efficient and relatively robust to overfitting [58].

• Wrapper - model-specific methods, evaluating performance on the subsets of features.

They are capable of detecting feature interactions. However, due to their increased

complexity, they are prone to overfitting. Finally, due to the number of feature subset

variants, their evaluation might require significant computational resources [59]. One

of the common examples is recursive feature elimination which is described below.



2.3 Machine learning pipeline 21

• Embedded - feature selection embedded into the machine learning model. This class

might possess characteristics of both filter and wrapper methods. The most common

examples are Decision tree and LASSO [60].

In the current work, it is essential to take feature interactions into account, hence I use

Recursive feature Elimination with Cross-Validation (RFECV) [61], which is a commonly

adopted standard for wrapper feature selection methods in the machine learning community.

The method works as the following: the model is fitted to the full set of features, cross-

validated, then user-defined k of the least important features are dropped, and the model is

fitted again. This is repeated until there is a single feature in the model. The best subset is

chosen based on the cross-validated performance of the model. Depending on the problem,

various performance metrics can be used in the cross-validation phase. The pseudo-code

for the RFECV algorithm is provided in Algorithm 1:

Algorithm 1 RFECV algorithm pseudo-code

Require: N features > 0;

p - minimum size of the feature subset (user-defined);

k - number of features removed from the subset per iteration (user-defined);

for a feature subset Si of sizes ∈ [N..p] with a step k do:

1. Train the model on the Si feature subset;

2. Compute the performance metric of the cross-validation dataset;

3. Calculate feature importances;

4. Remove k least important features from the subset;

end for

2.3.3 Hyperparameter tuning

It is important to distinguish between model parameters and hyperparameters. Referring

to hyperparameters, one usually means the configuration of the model - its complexity,

loss function, optimisation algorithm, regularisation, etc. Model parameters are usually

learned from the data during training. Since hyperparameters vary depending on the model,

there are no strict guidelines on how to set them up for a specific problem. Hence, the pro-

cess of tweaking the hyperparameters is usually data-driven - the performance of different

model configurations is compared on a validation dataset. Since it is often not feasible to

try all possible model configurations, there are various ways of finding the optimal set of

hyperparameters. The simplest ones are grid-search and random search, where one either

iterate over a pre-defined set of configurations or randomly chooses configurations from
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the search space [62]. In case the models are computationally intensive, more sophisticated

approaches, based on Bayesian search and assessment of the configurations of the partially

fitted models [63]. Since models considered in the current work can be fitted within min-

utes and hyperparameter optimisation is not the focus of the thesis, I use the grid-search

approach in all experiments.

2.3.4 Model evaluation

In the machine learning world, models usually need extra data for exploratory tests, model

selection, feature selection, and hyperparameter tuning. Hence, the available data needs

to be split into batches. Depending on the nature of the data, this can be done in many

ways. For instance, a commonly used approach is K-Fold cross-validation - the method

splits the data into training and test batches in K folds [64], test data from the fold sums to

the available dataset with no overlaps. Depending on the variant of the K-Fold, additional

conditions may be introduced, like class balance within folds. Moreover, there are more

advanced ways of cross-validation, like nested K-fold. In its nested form, the cross-validation

is done internally for each fold (as described above), hence the test data of all the folds cover

the whole dataset multiple times [65].

K-Fold cross-validation is not applicable when there is a notion of time in the data and,

hence, risk of introducing the look-ahead bias. In this case, the cross-validation is done

sequentially, with the preserved temporal component - in this case, the training data is

taken from earlier times than the test data [66]. Since in both domains (financial time series

and TDT) there is a notion of time, I use the time-aware cross-validation approach I use

throughout the experiments.

2.3.5 Model interpretation

Explainable machine learning (or explainable AI) is an active research area across many

different disciplines [67]; however, the community has yet to reach a consensus on how to

achieve perfect understanding as several challenges arise [68–70]. It is generally understood

that by focusing on more understandable machine learning algorithms, such as logistic

regressions, and with careful feature selection, one can greatly improve understanding.

While this is a very active area in certain domains, such as medicine [71], comparatively little

research has been applied to financial time series analysis.

Generally speaking, one can achieve explainability in AI in three ways [72]: 1) using

more understandable algorithms, 2) reverse engineering estimator to understand how it

comes to a decision, and/or 3) domain-specific adjustment of the input entries and feature
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design. Whilst the first approach is more desirable of the two, as explainability comes inbuilt,

there is often a trade-off between using simpler, more understandable models that may

be less accurate, and more complex (less understandable) models that may well be highly

accurate [73]. The second approach is gaining traction in recent years, focusing on using:

i. Visualisations, ii. Natural language explanations and iii. Explanations by example [72].

The latter is based on selecting particular data entries and explaining the model decisions

based on them. Example-based explanations lead to optimal input entries and feature

space. Applied to financial time series, this means careful selection of the events (time series

patterns) as well as the use of the most relevant features, leading to less convoluted model

explanations [72].

Before introducing particular methods of model interpretation, it is necessary to define

the vocabulary. Namely, it is crucial to distinguish the interpretability and explainability of

the estimators. Interpretability is usually associated with white-box models, whose decisions

can be interpreted explicitly and by design. Examples of interpretable models are logistic

regression, decision trees, k-nearest neighbours, and ensemble methods, depending on the

base estimator. Explainability is associated with the black-box models, which are not feasible

to interpret explicitly and external tools involving certain approximations are needed [74].

The most common examples are neural networks, however, one might think of many models

becoming harder to interpret after a certain level of complexity is reached. Hence, these

terms should be used with care.

In the current dissertation (Chapter 5) I showcase a combination of novel state-of-the-

art machine learning techniques and statistical methods to create effective data analysis

pipelines that can both potentially be used in live settings while still being potentially by a

practitioner.

Below I will detail the model interpretation methods common for the ML community,

namely feature importance and local explanations, including LIME and SHAP. In Section 2.4

I additionally communicate model interpretation techniques common for the statistical

assessment of the linear models.

Feature importance

For most of the ML estimators, one can obtain the feature importance of a fitted model [75].

The importance represents how useful the feature is for fitting to the considered dataset. The

importance is assessed based on an estimator-specific criterion, hence should be treated as

one of the ways of ranking features [76]. Feature importance is a useful approach to model

interpretation, however, its limitation is that feature importance does not allow to assess of

the contributions of features on a per-entry basis (as in the case of local explanations).
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Local explanations

Local explanations address the limitation of the feature importance. They allow getting

feature contributions for predicting a single entry. Local explanations are model-agnostic

and in general, treat the model as a black box. There are two widely used local explanation

methods - SHAP [77] and LIME [78]. Both these approaches create an interpretable surrogate

model which is trained to replicate the target model outputs for the specified inputs. SHAP

uses a game-theoretical model and LIME uses a linear LASSO model. Then, there is an

assumption that if the outputs agree, then the feature contributions should be similar

between the surrogate and the target model as well. This is quite a strong assumption,

making local explanation methods highly susceptible to adversarial examples [79]. In the

current dissertation, I use SHAP feature explanations as one of the ways of explaining the

model outputs. Also, I assess its suitability for financial time series analysis by comparing it

to the explicit model interpretations.

2.4 Statistical approach - ensuring generalisability & com-

parability

Machine learning is a rapidly emerging field of research, it already offers a set of incredibly

powerful tools for data analysis. While ML methods usually offer state-of-the-art perfor-

mance, it does not focus on statistical evaluation of the results. Hence, one might take the

best of the two worlds by integrating the performance of the ML methods and statistically

supporting the findings by using well-established statistical methods.

In the current section, I describe the set of tools that can be used as a part of the data pro-

cessing pipeline in integration with machine learning methods. Namely, I introduce effect

size as a way of model-agnostic feature ranking, analysis of linear models by assessing its

goodness of fit and odds ratios, hypothesis testing, and correction for multiple comparisons.

2.4.1 Effect sizes

Generally, the effect size is a measure for calculating the strength of a statistical claim.

The claim might be based on the mean difference, correlation of continuous features, the

association of ordinal features, etc. [80] Larger effect sizes indicate that there is a larger

difference between the treatment (method) and the control sample. Reporting effect sizes is

considered a good practice when presenting empirical research findings in many fields [81–

83]. Two types of effect sizes exist: relative and absolute. Absolute ones provide a raw
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difference between the two groups and are usually used for quantifying the effect of a

particular use case. Relatives are obtained by normalising the difference by the absolute

value of the control group.

Variance explained measures the proportion to which a mathematical model accounts

for the variation in the data. One of the most common ways to do this in the context of

effect sizes is making use of Pearson Correlation [84], or its squared version, known as

R-squared [85]. These measures allow assessing the proportion of variance shared by the

two variables.

Another approach is to look at the differences in sample means, using a standardisation

factor. Popular approaches include Cohen’s d [86], which calculates the difference between

two sample means with pooled standard deviation as the standardisation factor. However, it

was found that the standard deviation may be biased as the standardisation factor, meaning

that when the two means are compared and standardised by division as follows u1−u2
SD , if

the standard deviation SD is used it may cause some bias and alternative standardisation

may be preferred. This is rectified in Hedge’s g [87] method, which corrects the bias using a

correction factor when computing the pooled standard deviation. A further extension that

can be added on top of this correction is to use av or rather an average variance instead of

variance. The extension accounts for the correlation between the compared samples. The

corrected measures are referred to as Cohen’s da v and Hedge’s gav [88, 89].

The effect size for categorical variable associations checks the inter-correlation of vari-

ables and can evaluate the probability of variables being dependent on one another. An

example of this is the chi-squared test [90], also effective on ordinal variables. This test

assesses the significance of the differences in feature category distributions between the

tested groups by comparing them to the χ2 distribution.

Another way of assessing effect size for ordinal variables is by using Cliff’s Delta [91] as an

effect size measure. It is also applied when the sample values are distributed non-normally.

Cliff’s delta is computed by first defining the delta function as:

δ(x, y) =


+1, x > y

−1, x < y

0, x = y

(2.5)

Then, using the defined function, one computes the relationship between all entries of

the compared groups X and Y of sizes n and m as the following:

δ= 1

nm

n∑
i=1

m∑
j=1

δ(xi , y j ) (2.6)
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To generalise the findings for the samples to the population, it is advised to report .95

confidence intervals (CIs), representing the range where the effect size for the population

might be found with the .95 probability [92].

When discussing effect sizes, their interpretation in different fields varies depending on

the commonly observed differences in the effects between the test groups [93]. For instance,

in social and medical sciences, it is common to consider Hedge’s g effect sizes above 0.2,

0.5 and 0.8 as small, medium and large, respectively [89]. To my knowledge, there are no

established effect size thresholds in the fields of financial time series and event detection

in textual data. Hence, throughout the dissertation, I use the 0-threshold indicating the

absence of the effect size and contribute to the establishment of domain-specific thresholds

by reporting the effect size values. Interpreting the data, I am guided by the confidence

intervals. I use effect sizes for two purposes - to quantify the effectiveness of the method

(financial time series) as well as assess to what extent the classes are linearly separable by

the considered features (textual data experiments). In both cases, I compute confidence

intervals aiming to check the generalisability of the findings.

2.4.2 Model analysis

When considering statistical models, there is a need to investigate the model behaviour not

just to interpret the decisions made, but also to check the validity of the model. Namely,

whether it learns anything from the data, if it is affected by outliers, data non-linearity or

excessively large feature space. Hence, there is a set of tools to do that, which I review below.

Since from the statistical tools, I use only logistic regression, I focus on its analysis.

Goodness of fit

There are different ways of assessing the goodness of fit for linear models, including Akaike’s

Information Criterion, Bayesian Information Criterion, pseudo-R-squared, Log-likelihood

ratio test, etc.

The log-likelihood ratio (LR) test is a way of statistical verification of the significance

of the model fit. In this setting, the model is compared against its intercept version and

the t-statistic is used to evaluate the significance [94]. While answering the question about

significance, being a statistical test, it does not quantify the difference between the models.

For that purpose, one might use different tools, like pseudo-R-squared.

Pseudo-R-squared is the concept derived from the R-squared measure of linear re-

gression for the assessment of the fraction variance explained by the model. Or, also an

improvement of the fitted model over the intercept (null) model. Since logistic regression



2.4 Statistical approach - ensuring generalisability & comparability 27

is a classifier, one cannot compute the R-squared between the actual data labels and the

model output. Consequently, there is a need to assess the goodness of fit of the model

differently. Many variants of the pseudo-R-squared scores exist. Among the most popular

are McFadden (and its adjusted version), Nagelkerke, Cox-Snell, and Tjur [95]. It is a good

practice to report multiple ones as they are affected by different aspects of the data, hence

contrasting different aspects of the data. Their values usually lay within the [0,1] range and

the larger values mean a better fit of the estimator. However, there are measures adjusted for

the number of features, which can have negative values as well. Also, there are ones that

never reach 0 or 1 (like Cox-Snell).

Variance inflation factors

Variance inflation factors (VIFs) quantify the collinearity in linear models. And collinearity

(or multicollinearity) is a phenomenon in which an input feature can be predicted from other

input features by a linear model with a certain level of success. The danger of collinearity is

that tiny changes in the data might lead to large changes in the model fit [96]. As advised by

Andy Field et al., VIFs exceeding 10 indicate the presence of strong collinearity in the model,

and at this point, the model is considered unreliable [39].

Data linearity

The linearity assumption of logistic regression is that there is a linear relationship between

any continuous input feature and the logit of the output (l og (p/(1−p)), where p is the output

probability). To check whether the assumption is fulfilled, one fits the model with interaction

features designed as features multiplied by its log transformations. If the interaction features

are significant in the fitted model, the assumption is violated [39].

Influential outliers

It is known that linear model fits are susceptible to influential observations [97]. There are

various ways of detecting them - from visual analysis of the added variable plots [98] to

running statistical tests, like the Bonferroni outlier test [99].

2.4.3 Hypothesis testing

Another core component of the statistical assessment is hypothesis testing, which is a form

of inferential statistics. With hypothesis testing, one aims to determine whether the findings

are generalisable to the population. There are many ways to do that, depending on the



28 Background

sample size, relationships between the entries and groups, domain-specific requirements,

etc. Often the hypothesis testing is designed in a form of a general linear model [100]. Since

we cannot empirically confirm the hypothesis, the general concept is that one defines the

null hypothesis, which is considered the opposite of the alternative hypothesis and checks

it for rejection. Strictly speaking, its rejection does not confirm the alternative hypothesis,

but excludes its opposite, contributing to the likelihood of the alternative hypothesis being

valid. Popular approaches include t-test [101], ANOVA [102], Wilcoxon [103], and many

more, depending on the considered setting.

A t-test is a type of inferential statistic used to determine if there is a significant difference

between the means of two groups, which may be related in certain features. The basic

functioning is that you take a sample from two populations, and establish the null hypothesis

for which the sample means are equal, it then calculates the mean difference and assesses

the probability of it being observed by chance instead of due to an actual effect. If the mean

difference is statistically significant, one rejects the null hypothesis. However, the t-test

relies on several assumptions: 1) that the data is continuous, 2) that the sample is randomly

collected from the total populations, 3) that the data is normally distributed, and 4) that the

data variance is homogeneous [104]. This makes the t-test not suited to the analysis of small

samples, where normality and other sample properties are hard to assess reliably.

An approach that doesn’t face the same limitations is the Wilcoxon test [103]. The

advantage of this approach is that instead of comparing means, it repeatedly compares rank

differences, this means it will check the arithmetic average of the indexed position within a

list. This type of comparison is applicable for paired data only and done on individual paired

subjects, increasing the power of the comparison. However, a downside of this approach

is that it is non-parametric. A parametric test is able to better observe the full distribution

and is consequently able to observe more differences and specific patterns, however, as

we saw with t-tests, they rely on stronger assumptions and are sometimes impractical. In

the current work, I use the Wilcoxon test for hypothesis testing in the financial time series

analysis, as well as the Log-likelihood ratio test to evaluate the significance of the model fit

in the textual data experiments.

Throughout the thesis I encode the hypotheses in the following way: H0X and H1X

correspond to null and alternative hypotheses, respectively, for research question X.

2.4.4 Correction for multiple comparisons

The more inferences are made (or hypotheses tested), the more likely erroneous inferences

are to occur. Multiple comparisons arise when a statistical analysis involves multiple si-

multaneous statistical tests, each of which has the potential to produce the discovery, of
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the same dataset or dependent datasets. Hence, the overall probability of the discovery

increases. This increased chance should be corrected. Some methods are more specific, but

there exist a class of general significance level α adjustments.

Examples of these are the Bonferroni Corrections [105], Holm-Bonferroni corrections [106]

and Šidák Corrections [107]. The general idea follows from the following: given that the

p-value establishes that if the null hypothesis holds what is the likelihood of getting an effect

at least as large in your own sample. Then if the p-value is small enough, you can conclude

that your sample is inconsistent with the null hypothesis and reject it for the population. So

the idea of the corrections is that to retain a prescribed significance level α in an analysis

involving more than one comparison, the significance level for each comparison must be

more stringent than the initial α.

In the case of Bonferroni corrections, if n multiple tests are performed, we ensure that its

p-value is less than 1.0−α/n, then we can conclude, as previously, that the associated null

hypothesis is rejected. Holm-Bonferroni corrections apply varying corrections depending

on the ranked p-values from lowest to highest as 1.0−α/(n +1−k), where k is the rank of

the experiment p-value. One can notice that for the first-ranked p-value Holm-Bonferroni

correction is the same as Bonferroni. The following p-values have smaller significance levels

α.

I correct the significance level for multiple comparisons in all the experiments across the

dissertation. Namely, I use Holm-Bonferroni corrections for the textual data experiments

and Bonferroni corrections for the financial time series data. The choice is motivated by a

potentially weaker signal in the textual data as well as larger assumptions in the experiment

design.

2.5 Topic detection and tracking

The current section introduces the concept of topic detection and tracking as well as high-

lights the research approaches in the field. Moreover, it details works in the field related to

the current dissertation.

Initially, topic detection and tracking were limited to detecting and following events in

news streams. Later, after Twitter started gaining popularity, the area benefited from the

Twitter data [108]. Currently, these two streams are being developed in parallel with a certain

overlap in methods and approaches [11].

One can distinguish two general types of event detection:

• Retrospective Event Detection (RED) - analysis of data from the past to discover new,

unknown events;
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• New Event Detection (NED) - usually done in an online fashion with a stream of data.

The field of event detection is very broad and there are various definitions of events in

the literature. Their classification can be done by the following set of properties:

• Topic - there are topic-specific and general events.

• Geographic location - there are events, relevant for particular locations, like traffic

information, concerts, etc. and fewer location-specific events, like financial reports,

online entertainment project releases, etc.

• Time scale - depending on the event, the time horizon might be from hours to weeks

and months.

• Reaction - not every event can be associated with a characteristic change in the data

source. There might be different reasons for that, and depending on the methodology

it may be addressed differently.

The event detection approaches may be also described as Feature Pivot or Document

Pivot [11]. The first one involves a certain representation of documents/posts/messages

within a time window with changes in the representation indicating the event. The Doc-

ument Pivot focuses on the classification of the documents as related or not related to a

particular event.

In terms of machine learning, the detection challenges can be treated as the following:

• Supervised Clustering - the entries are classified in a supervised fashion, then clus-

tered [11];

• Semi-supervised Clustering - a small subset of the dataset is labelled and used to train

the classifier, then the classified entries are clustered [11];

• Unsupervised Clustering - conventional clustering of entries is applied [109];

• Classification - the methods based purely on the classification of entries [11];

• Anomaly Detection - the discovery of entries that are anomalous for the considered

dataset. In the current context, anomalies are expected to be observed within the

topic, vocabulary, language, etc. [11].

Document Pivot approaches are developed for conventional event detection tasks and

are not applicable to the micro-events introduced in the current work. The feature pivot

approach is commonly used for collective event detection [110] and is applicable to the

context of micro-event detection. I adopt the feature pivot approach and adjust it to spot

subtle changes in the time steps.
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2.5.1 Related research

A known example of an event detection system on Twitter is TwitInfo proposed by Marcus

et al. [111]. The system performs clustering by topic and implies that peaking activity in

a certain topic is a consequence of an event. Then the most relevant tweets are obtained

using a keyword-based ranking. The ranking limits the generalisation of the TwitInfo to

micro-events as single text units cannot be associated with the micro-events.

Another relevant topic is collective event detection, for example, flu epidemics. Collective

events require multiple posts for detection [112, 113]. At the same time, each post can be

successfully labelled as related or not related to the event (like in the study by Aramaki et al.

[114]), distinguishing collective events from the introduced notion of micro-events.

Multiple instance learning (MIL)

It should be noted that it is not uncommon in TDT studies to use a temporal representation

of textual data [115]. In NED, the temporal component is used either directly or implicitly

as there it is essential to be aware of time when making the data available to the model.

The current work does not diverge from this principle and uses the notion of time when

processing the data and designing data representations.

Finally, the approach proposed in the thesis has its commonalities with Multiple-instance

learning (MIL). MIL is defined as a supervised learning problem where instead of input-

output pairs the model is provided with sets of entries associated with a particular class.

In its simplest form, if a set is labelled negative, all its instances are negative, however, if

the label is positive, there is at least one positive instance in it [116]. MIL use cases include

scenarios where the effect is present but its cause is not clear. It has been used in a range of

domains, like object detection [117], audio event detection [118], text categorisation [119],

etc. The classification process usually involves an initial instance-level classification step

either in a sequential way, using attention [120] and convolution neural networks [121], or

in an independent way, using estimators like SVMs [122]. Then, there is a pooling procedure,

summarising the output for all the elementary entries [118]. The schematic of the MIL

workflow is provided in Figure 2.4.

MIL’s approach is similar to the proposed in the current thesis in considering multiple

instances as bags. However, it operates under the assumption that the elementary instances

can be labelled which is not the case in this work.
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Fig. 2.4 Multiple instance learning workflow diagram.

Topic modelling

One of the methods used for detecting events is topic modelling. A well-established tech-

nique for that is Latent Dirichlet Allocation (LDA) [55], where changes in topics across time

windows might indicate an event. Usually, dynamic or temporal implementations of LDA

are used [123] for this purpose. However, they require certain adjustments, like incremental

refitting of the model, and often do not have a scalable implementation available. Gerlach

et al. recently proposed a stochastic block model-based method (hSBM) which outperforms

LDA [56]. In the current work, I use both LDA and hSBM approaches to obtain text unit

representations.

Applying the LDA topic modelling approach, I follow a well-established policy of model

parameter optimisation. I feel that it is necessary to relate the existing works on SO data

analysis using LDA to the way I approach the problem. Below, I overview of three works

from the perspective of LDA application - by Barua et al. [124], Yang et al. [125] and Abellatif

et al. [126].

First, is a study by Barua et al. on the analysis of topics and trends in the Stack Overflow

community [124]. The study applies LDA as a technique for topic extraction, focusing

on the empirical analysis of single messages as well as the investigation of trends. When

assigning topics to posts, the authors use a probability threshold, not considering topics

with probabilities below 0.1. It should be noted that even though it helps manual post

interpretation, ML models might benefit from less probable topics as these may still contain

valid information. The second study is by Yang et al. [125] on the analysis of security-

related topics in SO data. The authors perform optimisation of the number of topics using a

genetic algorithm with a Silhouette coefficient as an objective function. While LDA itself is a
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computationally intensive method, the genetic algorithm adds an extra layer of complexity

to it. It is justifiable in the research setting, but such an approach is unlikely to be used in the

live setting. The study is focused on topic analysis rather than event detection. Finally, there

is a recent study by Abellatif et al. analysing the chatbot community of Stack Overflow [126].

Abellatif et al. manually associate increased posting activity with two technology releases.

It is infeasible to investigate these observations statistically due to the small sample size,

hence in the following chapter I formalize the challenge by defining more subtle events of

similar nature and proposing a dataset with a statistically sound pipeline for investigating

them.

2.6 Financial time series

The current section introduces the concepts of financial markets mechanics, approaches to

automated trading and its components, as well as highlights the research approaches in the

field. Moreover, it details works in the field related to the current dissertation.

The financial market is an inevitable part of the modern world economy. This is a

mechanism allowing speculation and exchange of almost any goods, including currencies

(Forex), company shares in the form of stocks, options, futures contracts, metals, grains,

dairy products, meat, energy, digital assets (blockchain products), and many more.

The classical financial market may be represented as a double-auction, where both

buyers and sellers compete for the deal. The reason for that is the fact that the same

indistinguishable asset is owned by many parties, as well as many parties, are interested in

purchasing the asset. Here I do not consider more exotic markets, where the asset units are

distinguishable as this is out of the scope of the research conducted for this thesis.

The mechanics behind the double-auction varies depending on the particular asset

traded. Since the research of the thesis is conducted on two Chicago Mercantile Exchange

(CME) Futures markets, I limit the explanations of the mechanics to this particular type of

asset. The footprint of the double-auction is represented as time series of price changes,

sent/cancelled orders, executed orders, as well as numbers of traded contracts. Having said

that, one seems that we are dealing with multidimensional time series. Single-dimensional

time series are known to be analysed using autoregressive models like AR, ARMA, SARIMAX,

etc. [127]. While there are attempts to use these models for forecasting financial time

series [128], more complex models are often required. Among other methods, forecasting

attempts are made using deep reinforcement learning [129]. In the current work, I do not

use these approaches as not aim to directly predict the future price. Instead, I focus on

the classification of future price behaviour scenarios. The adopted approach is aimed at
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simplifying the problem as much as possible without any loss of utility in the studied context.

Operations of purchasing or selling assets on the financial markets are called investing or

trading, depending on the time scales of the activity. To improve the readability of the work,

I provide a glossary of the financial markets-related terms in Table 2.1.

Terms Definitions

Futures contract provide the means to trade a commodity (instrument) at a predetermined

price at a specific time in the future.

Tick represent a single movement upward or downward by a specific increment

in the price for a specific instrument (e.g. 0.25$ for S&P futures).

Bar used to identify a window of interest-based on some heuristic, and then

aggregate the features of that window. It may contain several features

and it is up to the individual to decide what features to select, common

features include: Bar start time, Bar end time, Sum of Volume, Open Price,

Close Price, Min and Max (usually called High and Low) prices, and any

other features that might help characterise the trading performed within

this window

Price Range Bar the bar formed using the price action heuristic. Namely, the bar is consid-

ered completed when the difference between the price extrema equals N

ticks. Where N is user-defined and depends on the trading frequency.

Volume refers to the number of traded contracts (or shares) for a particular instru-

ment

Volume profile refers to the volume traded per price visualised as a vertical histogram for

a range of prices over a certain time range

Liquidity how rapidly stocks may be traded without affecting the market price. Has

an impact on whether you are able to get the desired instrument at your

choice of price (sell or buy)

Volatility degree of variation for the price of a given instrument over a period of

time.

Trading the buying (long) and selling (short) of a financial instrument

Trading platform is software that you use to conduct your trading. Allows for the centralised

management of instruments and positions

Time & Sales a set of features provided real-time for each trade executed in an exchange.

Features include: volume, price, direction, date, and time
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Order Book the list of orders used by a trading venue to keep track of offers and bids

by buyers and sellers for a particular instrument. These are then matched

in specific order to execute a trade

Flat Market is a stable state in which the range for the broader market does not move

either higher or lower, but instead trades within the boundaries of recent

highs and lows.

Trending Market shifts in the market towards a raise or decrease in price compared to

expected highs or lows. Used to buy and sell at the point where one is

most likely to gain profit

Long positions owning the asset for a time period with the expectation that the asset will

go up in price

Short positions if the expectation is that the price will decrease over time, you can short

an asset to profit from its decreasing value.

Actionable ML In the context of machine learning and more specifically algorithmic

trading, actionability refers to the ability to act upon a prediction. This

may directly relate to understanding the reason behind the prediction, in

turn, allowing you to make informed decisions on how to act upon it.

Take-profit an order that specifies a price at which the trade is closed with profit. The

order remains open until the price is reached

Stop-loss an order placed at a specific price that gets closed if the price lowers be-

yond a certain amount. This is meant to reduce potential losses incurred

if the desired price is not reached.

Table 2.1 Glossary: This glossary contains some essential definitions used throughout
Chapters 4 and 5 of the thesis. Sometimes similar definitions are reintroduced in specific
contexts to centre the discussion.

Most current-day trading (with positions opened for less than 24 hours) is done elec-

tronically, through various available applications. Market data is propagated by the trading

exchanges and handled by specialised trading feeds to keep track of trades, bids and asks

by the participants of the exchange. Different exchanges provide data in different formats

following predetermined protocols and data structures. Finally, the dataset is relayed back

to a trading algorithm or human to make trading decisions. Decisions are then relayed

back to the exchange, through a gateway, normally by means of a broker, which informs the

exchange about the wish to buy (long) or sell (short) specific assets. This series of actions

rely on the understanding of a predetermined protocol that allows communication between

various parties. Several software tools exist to ensure that almost all these steps are done
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for you, with the decisions made being the single point that may be uniquely done by the

individual. After a match is made (either bid to ask or ask to bid) with another market

participant, the match is conveyed back to the software platform and the transaction is

completed. In this context, the main goal of ML is to automate the decision making in this

pipeline.

When constructing algorithmic trading software or Automatic Trading Pipeline (ATP),

each of the components of the exchange protocol needs to be included. Speed is often a key

factor in these exchanges as a full round of the protocol may take as little as milliseconds.

Therefore, to construct a robust ATP, time is an important factor. This extra layer adds further

complexity to the machine learning problem. A diagram of what an ATP looks like in practice

is presented in Figure 2.5.

1.

Bid Ask

Order Book

Electronic Trading Platform

Historic Data Machine Learning

2.

Trading Strategy

A. B.

preprocess

5.6.
.

Order Entry Gateway

7.

Feed HandlerExchange
market data

Fig. 2.5 Full overview of Automated Trading Platform components

In Figure 2.5 it can be observed that the main ML component is focused on training of

the decision making and strategy. This is by no means a straightforward feat as successful

strategies are often jealously guarded secrets, as a consequence of potential financial profits.

Several different components are required, not the least analysing the market to establish

components of interest. Historical raw market data contains unstructured information, al-

lowing one to reconstruct all trading activity, however, that is usually not enough to establish

persistent and predictable price action patterns due to the market non-stationarity. This

characterisation is a complex process, which requires guidance and domain understanding.
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While traditional approaches have focused on trying to learn from the market time series

over the whole year or potentially across dozens of years, more recent work has proposed

the usage of data manipulation to identify key events in the market [130], this advanced

categorisation can then become a focus for machine learning input to improve performance.

This methodology focuses on identifying the states of a financial market, which can then

be used to identify points of drastic change in the correlation structure, whether positive or

negative. Previous approaches have used these states to correlate them to worldwide events

and general market values to categorize interesting scenarios [131], showing that using these

techniques the training of the strategy can be greatly optimised. At the same time, there is a

lack of research proposing a full-stack automated trading platform and evaluating it using

statistical methods.

2.6.1 Financial data types

There are several different types of financial data, and each of these has a different role

in financial trading. They are widely classified into four categories: i. Fundamental Data,

this kind of data is formed by a set of documents, for example, financial accounts, that a

company has to send to the organisation that regulates its activities, this is most commonly

accounting data of the business, ii. Market Data, this constitutes all trading activities that

occur, allowing you to reconstruct a trading book, iii. Analytics, this is often derivative data

acquired by analysing the raw data to find patterns, and can take the form of fundamental

or market analytics, and iv. Alternate data, this is extra domain knowledge that might help

with the understanding of the other data, such as world events, social media, Twitter and

any other external sources.

2.6.2 Market states

In their seminal work Munnix et al. [130] first proposed the characterisation of market

structures based on correlation. Through this, they were able to detect key states of market

crises from raw market data. This same technique also allows the mapping of drastic changes

in the market, which correspond to key points of interest for trading. By using k-means

clustering, the authors were able to predict whether the market was approaching a crisis,

allowing them to react accordingly and construct a resilient strategy. Their successful results

initiated a lot more research in this area, where methods more advanced than correlation

like random matrix theory [132] and copulas [133] were used to assess the market states.

Their way of analysing a market as a series of states proved to be a winning strategy allowing

for more focused decision making and improving the understanding of the market. In the
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context of the current work, the crises and the drastic changes of the markets can be seen as

events. Following on from this same approach I seek to characterise the market as a series

of points of interest (micro-events) and understand whether the market structure allows

their classification into different price action scenarios. This constitutes the initial stage of

ATP or preprocessing, and with their approach, several steps of manual intervention are still

required.

2.6.3 Market data preprocessing

To prepare data for processing, the raw data is structured into predetermined formats to

make it easier for a machine learning algorithm to digest. There are several ways to group

data, and various different features may be aggregated. The main idea is to identify a window

of interest-based on some heuristic, and then aggregate the features of that window to get a

representation, called Bar. Bars may contain several features and it is up to the individual to

decide what features to select, common features include Bar start time, Bar end time, Sum

of Volume, Open Price, Close Price, Min and Max (usually called High and Low) prices, and

any other features that might help characterise the trading performed within this window.

The decision of how to select this window may be a make or break for your algorithm, as

it will mean you either have good useful data or data not representative of the market. An

example of this would be the choice of using time as a metric for the bar window, e.g. take n

hours snapshots. However, given the fact there are active and non-active trading periods,

one might find that only some bars are actually useful using this methodology. In practice,

the widely considered way to construct bars is based on the number of transactions that

have occurred or the volume traded. This allows for the construction of informative bars

which are independent of timing and get a good sampling of the market, as it is done as a

function of trading activity. There are of course many other ways to select a bar [6], so it is

up to the prospective user to select the one that works for their case.

2.6.4 Local price extrema

In mathematics, an extremum is any point at which the value of a function is the largest

(maximum) or smallest (minimum). These can either be local or global extrema. At the

local extremum, the value is larger/lower at immediately adjacent points, while at a global

extremum the value of the function is larger than its value at any other point in the interval

of interest. If one wants to maximise their profits theoretically, their intent would be to

identify an extremum and trade at that point of optimality, i.e., the peak. This is one of the

many ways of defining the points of optimality.
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As far as the algorithms for an ATP are concerned, they will often perform with active

trading, so finding a global extremum serves little purpose. Consequently, local extrema

within a pre-selected window are instead chosen. Several complex algorithms exist to do

so, with use cases in many fields such as biology [134]. However, the objective is actually

quite simple: identify a sample for which neighbours on each side have lower values for

maxima and higher values for minima. This approach is very straightforward and can be

implemented with a linear search. In the case where there are flat peaks, which means several

entries are of equal value the middle entry is selected. Two further metrics of interest are,

the prominence and width of a peak. The prominence of a peak measures how much a peak

stands out from the surrounding baseline of the near entries, and is defined as the vertical

distance between the peak and lowest point. The width of the peak is the distance between

each of the lower bounds of the peak, signifying the peak duration. In the case of peak

classification, these measures can aid a machine learning estimator to relate the obtained

features to the discovered peaks. This avoids attempts to directly relate the properties of

narrow or less prominent peaks to wider or more prominent peaks. These measures allow

for the classification of good points of trading as well as giving insight as to what led to this

classification with prominence and width.

Historically, there has been an intuition that the changes in market price are random. By

this it is understood that whilst volatility peaks are linked to certain events, it is not possible

to extract them from raw data. Despite this, volatility is still one of the core metrics for

trading [135]. In an effort to statistically analyse price changes and break down key events

in the market Caginalp & Caginalp [136], propose a method to find peaks in the volatility,

representing price extrema. The price extrema represent the optimal point at which the

price is being traded before a large fluctuation. This strategy depends on the exploitation of

a shift away from the optimal point to either sell high or buy low. The authors describe the

supply and demand of a single asset as a stochastic equation where the peak is found when

the maximum variance is achieved. Since the implied relationship of supply and demand

is something that will hold true for any exchange, this is a great fit for various different

instruments. In a different context, Miller et al [137], analyse Bitcoin data to find profitable

trading bounds. Bitcoin, unlike more traditional exchanges, is decentralised and traded 24h

a day, making the data much smoother and with less concentrated trading periods. This

makes the trends harder to analyse. Their approach manipulates the data in such a way that

it is smoothed, through the removal of splines, this seeks to manipulate the curves to make

its points more closely related. By this technique, they are able to remove outliers and find

clearer points of fluctuation as well as peaks. The authors then construct a bounded trading

strategy that proves to perform well against unbounded strategies. Since Bitcoin has more
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decentralised access, and by the very nature of those investing in it, this also reduces barriers

to entry, making automated trading much more common. This means that techniques to

identify bounds and points of interest in the market are also more favoured and widely used.

2.6.5 Derivation of the market microstructure features

A market microstructure is the study of financial markets and how they operate. Its features

represent the way that the market operates, how decisions are made about trades, the price

discovery process and many more [138]. The process of market microstructure analysis is

the identification of why and how the market prices will change, in order to trade profitably.

These may include, 1) the time between trades, as it is usually an indicator of trading inten-

sity [139] 2) volatility, which might represent evidence of good and bad trading scenarios, as

high volatility may lead to an unsuitable market state [140], 3) volume, which may directly

correlate with trade duration, as it might represent informed trading rather than less high

volume active trading [141], and 4) trade duration, high trading activity is related to greater

price impact of trades and faster price adjustment to trade-related events, whilst slower

trades may indicate informed single entities [142]. Whist several other options are available

they are often instrument-related and require expert domain knowledge. In general, it is

important to tailor and evaluate your features to cater to the specific scenario identified.

One such important scenario to consider when catering to prices is whether the price

action is caused by aggressive buyers or sellers. In an Order Book, a match implies a trade,

which occurs whenever a bid match asks and conversely, however, the trade is only ever

initiated by one party. In order to dictate who is the aggressor is in this scenario (if not

annotated by the marketplace), the tick rule is used [143]. The rule labels a buy initiated

trade as 1, and a sell-initiated trade as -1. The logic is the following an initial label l is

assigned an arbitrary value of 1 if a trade occurs and the price change is positive, then l = 1

if the price change is negative, and l = 0 and if there is no price change l is inverted. This

has been shown to be able to identify the aggressor with a high degree of accuracy [144].

2.6.6 Automated trading systems

An automated trading system is a piece of code that autonomously trades in the market. The

goal of such constructs is the identification of a market state in which a trade is profitable,

and to automatically perform the transaction at that stage. Such a system is normally tailored

for a specific instrument, analysing unique patterns to improve the characterisation. One

such effort focusing on Forex markets is, Dempster & Leemans [145]. In this work, a tech-

nique using reinforcement learning is proposed to learn market behaviours. Reinforcement
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learning is another area of machine learning concerned with how software agents ought

to take actions in an environment in order to maximize the notion of cumulative reward.

This is achieved by assigning positive rewards to desired actions and negative rewards to

undesired actions, leading to an optimisation towards actions that increment rewards. In

financial markets, this naturally corresponds to profitable trades. Using this approach, the

authors are able to characterise when to trade, perform an analysis of associated risks, and

automatically make decisions based on these factors. In the more recent work, Booth et

al. [131], describe a model for seasonal stock trading using an ensemble of Random Forests.

This leveraged variability in seasonal data to predict the price return based on these events

taking place. Their random forest-based approach reduces the drawn-down change of peak

to through events. Their approach is based on domain knowledge of well-known seasonality

events, usual approaches following this technique find that whilst the event is predictable,

the volatility is not. So their characterisation allows for predicting which events will lead to

profits. The Random Forests are used to characterise features of interest in a time window,

and multiple of these are aggregated to inform the decision process. These ensembles are

then weighted based on how effective they are and used to inform the decision with higher

weights having more input. Results across fifteen DAX assets show increases in profitability

and in prediction precision.

As can be seen, statistical and machine learning techniques have been successfully

applied in a variety of scenarios, proving effective as the basis of automatic trading and

identification of profitable events. This makes the further investigation into more advanced

machine learning techniques a desirable and interesting area. In the current thesis, I expand

on these previous concepts to seek new ways to characterise the market via the micro-events.

Trading strategy

In the current thesis, due to the data time frames, I only consider strategies for day trading.

Active trading seeks to gain profit by exploiting price variations, to beat the market over

shorter holding periods. Perhaps the most common approach is trend-based strategies.

These strategies aim to identify shifts in the market towards a raise or decrease in price and

sell at the point where they are likely to gain profit. The second common approach is called

the flat strategy. Unlike trending markets, a flat market is a stable state in which the range

for the broader market does not move either higher or lower, but instead trades within the

boundaries of recent highs and lows. This makes it easier to understand changes in the

market and make a profit with a known market range. The role of machine learning in both

these strategies is to predict whether the market is entering a state of flatness or trending

respectively.
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To evaluate the effectiveness of the trading strategy, the Sharpe Ratio is used. This is a

measure for assessing the performance of an investment or trading approach and can be

computed as the following:

S = Rp −R f

σp
, (2.7)

where Rp & R f correspond to the portfolio and risk free returns, respectively, and σp is a

standard deviation of the portfolio return. While the equation gives a good intuition of

the measure, in practice, its annualised version is often computed. It assumes that daily

returns follow the Wiener process distribution, hence to obtain annualised values, the daily

Sharpe values are multiplied by
p

252 - the annual number of trading days. It should be

noted that such an approach might overestimate the resulting Sharpe ratios as returns

auto-correlations might be present, violating the original assumption [146].

2.6.7 Backtesting

In order to test a trading strategy, its evaluation on historical data is performed to assess the

profitability. While it is possible to do so on real market data, it is generally more favourable

to do so on historical data to get a risk-free estimation of performance. The notion is that a

strategy that would have worked poorly in the past will probably work poorly in the future,

and conversely. However, as you can see, a key part of backtesting is the risky assumption

that past performance predicts future performance.

Several approaches exist to perform backtesting and different things can be assessed.

Beyond testing trading strategies, backtesting can show how positions are opened and the

likelihood of certain scenarios taking place within a trading period. The more common

technique is to implement the backtesting within the trading platform, as this has the

advantage that the same code as live trading can be used. Almost all platforms allow for

simulations on historical data, although it may differ in form from the raw data one may

have used for training. For more flexibility, one can implement their own backtesting system

in languages such as Python or R. This specific approach enables for the same code pipeline,

that is, training the classifier to also test the data, allowing for much smoother testing. Whilst

this will ensure the same data that is used for training may be used for testing, it may suffer

from differences in the trading software that might skew the results. Another limitation

of this approach is that there is no connection to the exchange or the broker, there will be

limitations on how order queues are implemented as well as the simulating of latency which

will be present during live trading. This means that the identification of slippages, which is

the difference between where the order is submitted by the algorithm and the actual market

entry/exit price, will differ and impact the order of trades.
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2.7 Conclusion

In the current chapter, I have set up the scene for the later-described studies. At this point,

the reader should have a feeling of the major design decisions taken throughout the dis-

sertation. "Topic detection and tracking" together with "Financial time series" sections

give an idea about the sources of the data complexity and non-stationarity by drafting the

underlying mechanisms for the domains of financial markets and forum-like communica-

tions. I believe that they also allow the reader to appreciate the complexity of the problem of

micro-event detection and classification.

"Machine learning" section describes only a tiny fraction of the available breadth of

machine learning methods and their application contexts. At the same time, it suggests a

need for an informed choice of machine learning algorithms.

It is evident that when tackling such a challenging problem as micro-event detection &

classification, it is necessary to take all precautions for obtaining unbiased results. "Machine

learning pipeline" and "Statistical approach - ensuring generalisability & comparability"

sections provide a set of essential tools and practices for rigorous research in the considered

setting. Statistical tools support that idea further, allowing one to achieve a higher level of

interpretability (logistic regression, odds ratios, variable coefficients, pseudo-R-squared),

generalisability (effect sizes with confidence intervals) and reproducibility (hypothesis

testing) of the results.





Chapter 3

Event Detection in Forum-like Textual

Data

Topic Detection and Tracking (TDT) is a very active research topic within the area of text

mining, generally applied to news feeds and Twitter datasets, where topics and events are

detected. The notion of "event" is broad, but typically it applies to occurrences that can be

detected from a single post or message. As it was mentioned in the earlier chapters, none

to little attention has been drawn to what I call "micro-events", which, due to their nature,

cannot be detected from a single piece of textual information. From the previous chapter

one can infer that TDT is commonly done on textual data. Hence, to avoid introducing

too many degrees of freedom at once, I first attempt detecting micro-events from textual

communications data. The chapter investigates the feasibility of micro-event detection

on textual data using a sample of messages from the Stack Overflow Q&A platform and

Free/Libre Open Source Software (FLOSS) version releases from Libraries.io dataset. I build

pipelines for detection of micro-events using three different estimators whose parameters

are optimised using a grid search approach. I consider two feature spaces: LDA topic mod-

elling with sentiment analysis, and hSBM topics with sentiment analysis. The feature spaces

are optimised using the recursive feature elimination with the cross-validation (RFECV)

strategy.

In the conducted experiments, I investigate whether there is a characteristic change

in the topics distribution or sentiment features before or after micro-events occur, and

thoroughly evaluate the capacity of each variant of the proposed analysis pipeline to detect

micro-events. Additionally, I perform a detailed statistical analysis of the models, including

influential cases, variance inflation factors, validation of the linearity assumption, pseudo

R2 measures and no-information rate. After linear models are analysed, I apply non-linear

models, such as Random Forests and CatBoost. The proposed pipeline, that consists of
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statistics and machine learning elements, proves to be a robust and thorough approach to

micro-event detection and is reused throughout the thesis. Finally, in order to study the

limits of micro-event detection, I design a method for generating micro-event synthetic

datasets with similar properties to the real-world data and use them to identify the micro-

event detectability threshold for each of the evaluated classifiers. The background to the

experiments is provided in Chapter 2, Section 2.5.

The idea of the research was conceptualised in discussions with Thomas Gross and

Jaume Bacardit. Both my supervisors contributed by providing feedback on the experiment

design, methodology, and writing of the original paper.

3.1 Materials and methods

In the current section, I state the research question of this chapter, formulate the null and

alternative hypotheses, introduce data sampling strategy, label design, data preprocessing

steps, and, finally, means for hypothesis assessment and model analysis.

3.1.1 Research gap & aims

As I already mentioned in the introductory chapter of the dissertation, relatively little atten-

tion has been paid to micro-events detection, both in textual data processing and financial

time series analysis. The current chapter fills the gap with a detailed feasibility study of the

micro-events in forum-like textual communications.

Aiming to investigate, whether micro-events can be detected in the software engineering

texts, I formulate the research question in the following way:

RQ: Is it feasible to associate FLOSS version releases with a characteristic change in the

associated community interactions in a form of textual communications on a Q&A resource

- Stack Overflow?

To formally evaluate the research question, I formulate the null and alternative hypothe-

ses:

H01: An event is not associated with a change in the topic distribution or sentiment,

representing textual communication of the community.

H11: There is an associated change in the topic distribution or sentiment, representing

the textual communication of a community and the event.

The significance level for the study is α= 0.05. The multiple comparisons are accounted

for using Holm-Bonferroni corrections. Each type of dataset (Selenium, Django, Multiple)

is considered a separate experiment family. I apply the corrections when judging the sig-
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nificance of the models or model features - each case is explicitly mentioned in the Results

section. Moreover, I have made the data and the code of the study available via Zenodo [147]

and Newcastle University data storage [148].

3.1.2 Data description and sampling strategy

I use two data sources in the study: stackoverflow.com and libraries.io. Both of them comply

with Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) allowing data sharing and

adaption. Older posts of StackOverflow comply with the earlier versions of the license (2.5

and 3.0), still allowing adapting and sharing the data. The datasets are downloaded from the

libraries.io and archive.org web pages, where they were originally shared by the owners of

the resources. At every stage of the study, I fully comply with the terms and conditions of

stackoverflow.com, libraries.io and archive.org web-resources.

The study sample consists of a subset of packages related to the Django web framework,

selected based on the presence of the associated discussions on the SO platform and having

associated event entries in the libraries.io 1.4.0 dataset [149]1. The proposed sample allows

the investigation of two dataset configurations - a single package SO data sample with

associated version releases, and multiple packages.

I manually obtain the initial list of packages from djangopackages.org. This is done in full

compliance with the web page terms of use. Since I aim to ensure the theoretical possibility

of event detection for every package, I require the package-associated SO community to

be large enough and active. I perform initial filtering of the packages by the number of

package followers on Github - all packages with <1000 followers were dropped. In the next

step, I filter packages by the number of SO posts associated with them - communities with

a number of messages < 1% of the number of posts associated with the Django package

are dropped. I choose Django as a reference package as it is a well-established package

with a large community and package updates. Moreover, Django relies on a number of

other packages which might have a positive performance impact on the multiple-package

datasets.

I download a complete data dump from Stack Overflow, version June 2018, then filter the

messages by checking the presence of the selected package names in the body and tags of

the messages. Finally, I split the dataset into training and test sets by using the first 60% of

messages (chronologically) for training and the remaining 40% for test. The dataset design

is illustrated in Figure 3.1.

1Libraries.io collects, among other information, release dates of FLOSS packages.
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djangopackages.org

Package
sampling

Number of related SO
posts > 1% of those

for Django
Github stars > 1000

Stack Overflow data
dump, June 2018

Post samplingPost tag contains the
sampled package title

Post body contains
the sampled package

title

Fig. 3.1 The figure illustrates the dataset design steps. First, the packages are sampled based
on popularity and SO community presence, then the relevant SO posts are sampled. The
dashed lines indicate the sampling conditions.

Throughout the chapter, I use the following dataset naming convention: [package][type

of event][time-step]. I study the datasets of 3 types: Multiple (dataset including messages

and releases of 7 different packages), Django and Selenium. The event types are major, minor

and patch updates. And the time-steps are either event-based or calendar week-based (c.w.).

3.1.3 Dataset design

Class labels

From the list of release dates provided by libraries.io, I extract three types of FLOSS version

releases: patch, minor and major updates. When identifying the event types, I apply the

Semantic Versioning 2.0.0 convention 2. These three package types are used for creating

separate datasets. The major limitation of the dataset is that there is no guarantee that every

package maintainer follows the current convention. At the same time, the dataset covers all

the public package manager version releases.

2https://semver.org/#semantic-versioning-200
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Time

week 1 week 2 week 3 week N

time step 1 time step 2 time step 3 time step K

(A)

(B)

Fig. 3.2 The figure illustrates two designs of time-steps - calendar week-based (A), and event-
based (B). Grey triangles indicate events that take place at the beginning of event-based
time-steps and at any moment of calendar week-based time-steps.

Datasets

I use the two largest packages (by community size) to generate the single-package datasets,

namely, Django and Selenium. Additionally, 7 packages (listed in Figure 3.6) were used

to generate the multiple-packages dataset. I distinguished all three types of updates for

the multiple-packages dataset and only patch and minor updates for the single-package

datasets as major updates are too sparse to use them in the single-package datasets. Finally,

I have designed two types of time-steps.

Time-steps

The first design is based on calendar weeks - every calendar week is a single time-step. Events

occur on any day of the time-step (Figure 3.2, (A)). If multiple events occur in the same

time-step, only the most significant (major>minor>patch) is considered while labelling.

This ranking is based on the assumption that major updates might include characteristics

from the patches, and the minor ones include the properties of the patches. The ranking is

necessary to avoid interference of the effects from the different update types. The control

time-steps are those in which no event of any type occurred. This approach is aimed to

study prior and posterior characteristic changes in communication.

The second time-step generation is event-based. Each event occurs on day 0 of the

time-step (Figure 3.2, (B)). Whenever there are multiple events with less than 7 days of the

gap, time-steps overlap (i.e. the time-steps share messages). As control time-steps, I defined
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the second week of 14-day intervals with no event occurring within that period. Because of

this restrictive definition, messages of certain dates (first week of 14 day periods) could not

be used for either type of time-step and had to be dropped. This design decision minimizes

the noise characteristic changes caused by prior events.

The more days a time-step consists of, the fewer entries one gets in the dataset. Based

on the frequencies of the events and common sense, I set the time-step length to 7 days. It

allows on average 3.5 days for a developer to relate to the event considering the calendar

week granularity of the time-steps, and 7 days - for the event-based approach. Daily time-

steps were studied as well (the experiments are not reported, but available in the code

supplement), however, they would require much faster responses from the community and

more prolific communication.

3.1.4 Preprocessing

Prior to applying the NLP tools, the code snippets and HTML tags are removed from the

body of the messages. Initially, 3 techniques are applied to design the features: sentiment

analysis, LDA topic modelling, hSBM topic modelling. The central analysis of this chapter is

conducted using two feature spaces: LDA with sentiment analysis and hSBM with sentiment

analysis. These feature spaces allow investigation of both small- and large-dimensional

experiment setups, and at the same time give the best trade-off between the dimensionality

and the contained information. The features are extracted on a per-message basis with

further grouping by the time-step.

Sentiment analysis features are generated using the NLTK python package [150], specif-

ically using the Vader method [151]. There are 4 features generated for each message:

negative, neutral, positive and compound components. The latter is a 1d representation of

the sentiment. I include sentiment analysis in every feature space, due to its compactness.

The sentiment features are coded as "sentiment_<component>", where the components

are negative, neutral, positive and compound.

Latent Dirichlet Allocation (LDA) topic modeling is described in the Background Chap-

ter, Section 2.2.2.

I optimize and fit the model on the training part of the dataset and compute fixed-

dimensional vectors for posts in the whole dataset. Each dimension represents the probabil-

ity of the post belonging to a particular topic. To get the per-time-step representations, I

compute per-topic averages across the messages in the time-step.

To apply LDA, I choose the gensim package with a robust and scalable implementation

of the method [152]. I built the vocabulary from the lemmatised messages with included bi-

and tri-grams. The topic number is optimised on the training dataset. Coherence measure
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(C_V) was used to find the optimal number of topics. I compute the coherence for 3 random-

seeded models to ensure the result is not randomness-biased. Finally, I choose a number of

topics using the Elbow method heuristic.

To verify the soundness of the obtained LDA topics, I manually inspect the top 5 messages

associated with each topic, ranked by the gap in the probabilities between the target topic

and the next closest one. Finally, showing the general theme of the discussions, I assign

names to the LDA topics. The feature names are encoded as "lda_topic__<topic name>".

Hierarchical Stochastic Block Model (hSBM) is described in the Background Chapter,

Section 2.2.2. I use a default configuration of the hSBM not limiting the number of topics.

Since the approach is novel, computationally more intensive than LDA and there is no

well-supported implementation, I assume that due to a large number of topics, randomness

does not affect the results as largely, as in the case of the LDA. Finally, due to the large final

number of topics, I do not interpret them, setting their names to the order numbers from

the list they are obtained.

I do not conduct any formal analysis of other feature spaces (like Bag-of-Words and

TextRank) for two reasons:

• Their dimensionality is up to 2 orders larger in comparison to the used approaches,

making the models susceptible to the curse of dimensionality [57];

• I assume that lower-level features, such as Bag-of-Words (BoW), contribute to the

output as subsets. And discovering feature interactions in the setting where the

number of features is orders larger than the number of entries is bound to detect

spurious interactions and, consequently, leads to interpretation errors.

Standardisation As I wanted to make the feature values comparable across time-steps, we

standardised them as the following:

z = xi −µ
σ

, (3.1)

where µ is the sample average and σ is the sample standard deviation. Both values are

obtained from the training partition of the data.

3.1.5 Analysis pipelines

I perform the data analysis using three different estimators - Logistic Regression (LR), Ran-

dom Forest (RF) and CatBoost (CB) [153]. I select those to cover a rigorous statistical

approach (LR), a well-known machine learning approach (RF) and a robust state-of-the-art

machine learning method (CB). For the Logistic Regression, I perform a full stack of model
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investigation techniques recommended by Field et al. [39] to ensure that the obtained mod-

els are statistically reliable. Both Random Forest and CatBoost are based on decision trees

and there is a well-established set of model interpretation tools, which I apply in the current

chapter.

Uniform methodology

Due to the nature of micro-events, their detection is expected to be challenging. Hence,

there is a need for robust methodology that would allow not only measuring performance

reliably but also analyse the causes of poor performance. I propose such a methodology

(Figure 3.3). It is applicable to all the considered estimators in terms of feature selection,

model optimisation, fitting, and performance assessment. I ensure an as uniform pipeline

design as possible between the three estimators. However, the model analysis differs since

the approaches are model-specific. The proposed methodology is applicable to textual

communications and financial time series data, as it will be demonstrated in the following

chapters.

Effect sizes

Tukey outlier
detection

Feature selection
(RFECV)

Hyperparameter
tuning

Model explanations
(SHAP)

Model 
performance
evaluation

Log-likelihood ratio
test

Pseudo R-squared
metrics Odds ratios

Variance inflation
factors

Non-linear
relationships
assessment

Bonferroni Outlier
Test

Random Forest  
& CatBoost Logistic Regression

Fig. 3.3 The diagram illustrates a proposed sequence of steps for non-linear (Random Forest
and CatBoost) and linear (Logistic Regression) models. Elements belonging to both and
placed outside of the "wings" are relevant for both types of models.
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Below, I justify every step of the proposed approach.

Description of the Logistic Regression pipeline

Effect sizes I compute effect sizes to get a model-agnostic quantitative measure of the

phenomenon magnitude. The benefit of the method is the ability to directly compare the

strengths of different phenomena irrespective of the models used in the study. I use Cliff’s

Delta [91] as an effect size measure, due to a non-normal feature values distribution. R

effsize package is used to compute the effect sizes. Additionally, I report the .95 confidence

intervals (CIs). Finally, I correct the CIs for multiple comparisons.

Outliers Prior to fitting LR models, I cap outliers using the Tukey method [154], as they

are known to unduly affect the Logistic Regression model results. I use R boxpl ot .st at s()

implementation for this purpose. I obtain the capping thresholds from the training partition

of the data and cap the whole dataset.

Feature selection I perform feature selection using recursive feature elimination with

cross-validation (RFECV), which is described in the Background, Section 2.3.2.

Parameter tuning and model fitting The only tunable parameter in the R glm (generalised

linear model) implementation of LR is class weights. However, uneven class weights affect

the base probability of the model as well as skew output distribution. Consequently, it de-

creases the interpretability of the model and makes any finding inaccurate and inapplicable

to the population. I proceed with even class weights to avoid the mentioned issues.

After fitting the model, the Log-Likelihood Ratio (LLR) test is performed to check the

significance of the model fit for the optimal feature space. It is important to note that no test

data is used to conduct the test and it does not say anything about the model performance.

Model analysis The assessment of the model quality involves the following procedures:

1. I estimate the goodness of fit using Tjur, Nagelkerke, Cox-Snell, and Adjusted McFad-

den pseudo R2 measures.

2. I compute odds ratios of the model and plot them as a forest plot with the .95 confi-

dence intervals. The intervals are corrected for multiple comparisons. Since the data

are standardised, one standard deviation change in the feature value leads to the odds

ratio multiplicative change in the base probability: for the base probability p and the
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odds ratio value d , a standard deviation feature value change results in the updated

probability of p ×d .

3. To assess the model quality, I compute Variance Inflation Factors (VIFs). They allow

spotting potentially redundant features in the model. As advised by Andy Field et

al. [39], VIFs exceeding 10 indicate the unreliability of the model.

4. Since logistic regression operates under the assumption of linear relations between

inputs and outputs, I verify whether it holds by adding log ( f )× f features to the model

and checking their significance [39].

5. To make sure there are no influential outliers in the fitted model, I apply the Bonferroni

Outlier Test on the fitted model. It allows spotting influential cases significantly

changing the behaviour of the model.

Model Performance Since the presence of the event is a minority in most datasets and the

majority in the Multiple packages dataset, I compute the mean of PRAUC, treating events

as a positive and a negative class. This metric is used across the study. Additionally, I use

PRAUC as a performance metric in permutation tests. Lastly, I provide alternative metrics -

ROCAUC and F1-score, to allow a better understanding of the results.

Description of the Random Forest and CatBoost pipelines

Feature selection RFECV takes the feature ranking after fitting a subset of features. N

worst-ranked features are removed to perform the next iteration of the method. For the LDA

feature space, the features were removed one-by-one, hSBM feature space is larger and I

drop 10% of the bottom-ranked features to make the experiments computationally feasible.

At this point, I use the default estimator parameters, as both RF and CB are known to be

rather unpretentious in terms of parameter tuning.

Parameter Tuning To tune the model parameters, I use a Grid Search approach with a

2-folded time series split cross-validation. I optimize the number of trees, maximal tree

depth and class weights. For CatBoost I additionally optimize the tree L2-regularisation and

use of the temporal dimension (binary variable).

Model Analysis For RF and CB estimators, I generate SHAP values and visualise feature

impacts on a per-entry basis using the shap python package implementation [77]. Taking
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into account feature values and their impact on a per-entry basis, SHAP provides theory-

grounded and more reliable feature importance estimates in comparison to the built-in

sklearn and catboost packages feature importance.

Model Performance For CB and RF, I compute the same set of performance metrics as for

the LR.

3.1.6 Synthetic data generation

As it was previously mentioned, micro-events are potentially harder to detect than conven-

tional events. Moreover, to the best of my knowledge, there is no dataset offering ground

truth for micro-event detection. In the current chapter I propose a way to design a micro-

event dataset. However, in the proposed dataset, it is not feasible to quantify the impact

of factors influencing the detection performance. I assume that one of the major factors

impacting the micro-event manifestation strength is the fraction of the community engaged

in it. The larger the fraction, the more obvious changes it causes in the data. Being guided

by this assumption, I generate a synthetic dataset with the objective of understanding

what strength of the reactions in textual communications can be reliably detected by the

considered means.

In the current section I first briefly describe the data generation process, then I get into

detail in the Deep Learning Text Generator subsection. The sequence of the synthetic data

study phases is shown in Figure 3.4.

Please note, for the experiments on synthetic datasets, I could not evaluate the hSBM

feature space because the available software implementation of this method was not able to

handle the size of our dataset.

Create Synthetic
Datasets

(Assign messages to
time steps)

Design Seed
Phrases

(3-Compound Model)

Generate Messages
(Event-based and

background)

Indentify
Detectability

Threshold

Fine-tune GPT-2
(On the Stack

Overflow sample)

Fig. 3.4 The sequence of steps for the synthetic dataset.

When generating the synthetic data, I separately generate control and event-related

messages. After the messages are generated, I form time-steps by bagging messages of two
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types in a variable proportion. To assess the model performance, I follow the same feature

design procedure as in the case of SO data.

The process of data generation can be seen as a set of steps:

1. Generate background messages;

2. Generate event-related messages;

3. By bagging messages from (1) and (2) I create time-steps with positive labels;

4. I bag messages from (1) to create negatively labelled time-steps.

I assume that in the real world scenario only a fraction of messages are relevant to

an event - by changing the proportion of the two message types in step 3) I assess this

assumption.

Synthetic Data Analysis Pipeline

After generating the data, I aim to find the detectability threshold for the micro-events.

I define the threshold as a minimal fraction of event-related messages, for which micro-

events can be detected with a significant outcome of the permutation test. I perform the

same feature selection, optimisation, and performance assessment for the SO datasets and

synthetic data.

Additionally, to reduce the influence of randomness, I repeat the experiments multiple

times for each dataset configuration by reshuffling messages across the time-steps.

Deep Learning Text Generator

The posts are generated using a small version of GPT-2 OpenAI neural network [54] with

117M neurons. The original pre-trained version of GPT-2 is fine-tuned on the multiple

packages sample of Stack Overflow data.

Message types The background (or control) messages, having no relation to an event, are

generated from an empty context - no seed phrase is provided to the model. To generate

event-related messages, I propose an approach to inject events into the data. In the pro-

posed approach the community values are represented by 3 compounds: rules, people

and products (Figure 3.5). Changes in any of these compounds might lead to changes in

community communications. These are abstract entities, specific to every community.

I generate event-related messages from a set of seed phrases, used as a context for the

generator network.
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Fig. 3.5 Three compound model is used for the generation of the event-related messages.
It assumes that the textual representation of the community in the forum-like platforms
consists of 3 compounds and any change in them (event) might lead to the reaction. This
model is used to generate event-related messages.

The seed phrases are designed on the basis of the real-world dataset, used for the gener-

ator fine-tuning. Entities representing the three compounds (rules, people and products)

have to be identified in the Stack Overflow dataset. For that purpose, I use the Word2Vec

model [155], fitted on the Google News dataset. I expect this model to be generic and cover

a wide range of topics including IT.

I obtain the closest (cosine similarity) 1.7k nouns for each of the components from the

SO dataset. Since the events are represented by changes in the compounds, I also take 1k

closest verbs representing addition and removal operations.

Finally, I obtain the seed phrases for generating event-related messages by concatenating

the selected nouns and verbs. For the generation, I use a random set of 100 seed phrases. I

use the NLTK POS tagger for the Part of Speech identification.

The proposed approach is the first step towards synthetic data generation for micro-event

detection tasks, hence there is a lot to understand. At this stage, I expect that the proposed

synthetic data generation method is generalisable to other textual communications datasets.

However, it cannot be applied directly to time series data. I provide a detailed description of

the generator optimisation and ways of validating the synthetic data quality in Synthetic

data generator optimisation.
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3.2 Results

3.2.1 Data sample

Stack Overflow data

In the single package experiments, I focused on Django and Selenium, as they account for

around 85% of the messages. Table 3.1 shows the packages (and the number of associated

messages) included in the study sample. Moreover, Figure 3.6 represents chronologically

the events associated with these seven packages. Black strips at the top part of the figure

represent the events. I provide this figure to support the reproducibility of the study.

Table 3.1 Number of posts per package after filtering by the package name in the post’s tag
or body. The total number of posts in the Stack Overflow platform data dump of 06/2018 is
65049182.

Package Number of posts
Django 475760
Selenium 210498
Sentry 60874
Django-rest-framework 24852
celery 20864
Hypothesis 19401
Gunicorn 14602
Total (unique) 826851 (777812)
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Fig. 3.6 The studied sample of the posts and the events per package for the available time
range. The number of posts is provided in a per-week fashion. The packages are stacked
vertically. The spike drops take place in the New Year’s Eve periods.

The posts before 27 July 2015 belong to the training set, after the date - to test.
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Synthetic Data

The optimised generator was used to obtain 1109150 background messages and 154680

event-related messages.

I generated 15 instances of each dataset configuration with event-related message frac-

tions in the range from 0.1 to 0.45 with a step of 0.05. Each synthetic dataset consists of

335 time-steps, to match the number of time steps in the SO dataset, ranging from 171 to

708 time-steps. The ratio of positive to negative time steps was set to 0.25 to mirror the

considered real-world scenarios (the mean event fraction in the SO datasets is 0.26).

The details on how the messages and the time steps were generated are provided in the

Synthetic data generation section.

3.2.2 SO datasets results

Summary of the results

I list the performance summary of the three estimators (Table 3.2) obtained by fitting and

tuning on the training dataset batch and assessing performance on the test batch of the

dataset. I provide more metrics in Performance of estimators. Feature selection leads to

larger feature spaces in the case of CB and RF estimators - this is observed for the hBSM

feature space (Table 2 of Performance of estimators), it is less obvious from LDA feature

space results (Table 1 of Performance of estimators). Once the corrections for multiple

comparisons are applied within each experiment family, the permutation tests reveal 7

significant models in total. Interestingly, 6 of them belong to the multiple packages dataset.

Considering the PR-AUC metric, one sees that the models’ performance in most cases are

only marginally better than the baseline of 0.5.

To further analyse the results and understand the limitations of the models, in this

section, I focus on a particular dataset as a case study: Selenium package, patch updates,

event-based time steps dataset. I chose this dataset based on the goodness of fit of the

LDA features space. Concretely: I assessed Adjusted McFadden and Tjur R2 measures (see

The goodness of fit measures of Logistic Regression models). I did not consider multiple

packages datasets with event-based time steps due to their violation of the independence

assumption of the logistic regression - a message may be included in multiple time steps

simultaneously, as described in section 3.1.3. Also, when considering the goodness of fit, I

restrict myself to LDA feature space due to the artificial behaviour of some metrics caused

by the large dimensionality of hSBM feature space.
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Table 3.2 CatBoost, Random Forest and Logistic Regression model performance is reported. I
evaluate the three estimators on all the datasets. PR-AUC and f1-score metrics are computed
as averages of events being positive and a negative class. P.test columns contain p-values of
the permutation tests over 1000 permutations. After applying Holm-Bonferroni corrections
the threshold for the top 1 model is 0.0014. The significant entries are marked with a star (*).
More metrics are reported in Performance of estimators.

hSBM feature space
Dataset CatBoost RF LR

PRAUC P.test F1 PRAUC P.test F1 PRAUC P.test F1
Multiple major event-based 0.54 1.00 0.16 0.52 1.00 0.16 0.52 0.76 0.20
Multiple minor event-based 0.50 0.01 0.51 0.75 <0.001* 0.49 0.50 0.90 0.36
Multiple patch event-based 0.50 0.81 0.35 0.50 0.88 0.41 0.51 <0.001* 0.49
Django minor event-based 0.50 0.26 0.50 0.55 <0.001* 0.47 0.51 0.01 0.41
Django patch event-based 0.52 1.00 0.46 0.54 1.00 0.47 0.51 0.15 0.42
Selenium minor event-based 0.52 1.00 0.46 0.50 1.00 0.46 0.50 1.00 0.46
Selenium patch event-based 0.50 1.00 0.44 0.51 1.00 0.44 0.50 1.00 0.44
Multiple major c.w.-based 0.50 1.00 0.46 0.50 1.00 0.46 0.51 1.00 0.47
Multiple minor c.w.-based 0.50 0.03 0.48 0.51 0.29 0.45 0.51 0.01 0.53
Multiple patch c.w.-based 0.51 0.14 0.51 0.51 <0.001* 0.40 0.51 0.02 0.46
Django minor c.w.-based 0.51 0.04 0.46 0.51 1.00 0.45 0.50 0.54 0.45
Django patch c.w.-based 0.50 1.00 0.48 0.50 1.00 0.48 0.50 1.00 0.48
Selenium minor c.w.-based 0.51 1.00 0.47 0.56 0.07 0.35 0.51 0.10 0.47
Selenium patch c.w.-based 0.52 0.44 0.45 0.52 1.00 0.47 0.50 0.08 0.54

LDA feature space
Dataset CatBoost RF LR

PRAUC P.test F1 PRAUC P.test F1 PRAUC P.test F1
Multiple major event-based 0.56 0.07 0.58 0.57 0.06 0.58 0.40 0.88 0.49
Multiple minor event-based 0.51 <0.001* 0.45 0.59 0.19 0.52 0.45 0.93 0.45
Multiple patch event-based 0.51 <0.001* 0.46 0.70 0.01 0.51 0.50 0.98 0.46
Django minor event-based 0.51 0.50 0.46 0.53 0.02 0.44 0.51 0.36 0.43
Django patch event-based 0.54 0.15 0.55 0.50 0.30 0.51 0.47 0.44 0.47
Selenium minor event-based 0.51 1.00 0.45 0.51 1.00 0.47 0.46 0.98 0.47
Selenium patch event-based 0.50 0.81 0.46 0.50 0.03 0.46 0.52 0.46 0.45
Multiple major c.w.-based 0.53 0.18 0.54 0.50 0.23 0.50 0.48 0.80 0.48
Multiple minor c.w.-based 0.51 <0.001* 0.37 0.51 0.22 0.50 0.54 0.19 0.52
Multiple patch c.w.-based 0.50 0.40 0.52 0.51 0.49 0.46 0.46 0.89 0.32
Django minor c.w.-based 0.50 1.00 0.44 0.50 1.00 0.44 0.50 0.52 0.44
Django patch c.w.-based 0.50 0.21 0.53 0.51 1.00 0.44 0.48 0.86 0.47
Selenium minor c.w.-based 0.50 1.00 0.45 0.51 1.00 0.48 0.48 0.72 0.48
Selenium patch c.w.-based 0.51 1.00 0.46 0.51 1.00 0.46 0.52 0.21 0.47

Effect sizes As a model-agnostic feature analysis, I build a forest plot of the effect sizes,

sorted by the range of the confidence intervals (CIs) (Figure 3.7).
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Feature effect sizes for minor updates
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sentiment_Neutral

sentiment_Positive

sentiment_Compound
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Fig. 3.7 Effect sizes computed for the Selenium package, minor updates, event-based time
steps dataset, LDA feature space. Cliff’s Delta is used as the effect size measure to account
for the non-normal distribution of the feature values. The error bars account for 0.95
confidence intervals (CIs). Features, whose lower CI bound is greater than 0 are considered
to be statistically significant. Interpreting the CIs - there is a 0.95 probability that the effect
size computed on the population is in the bounds of the CI.

The error bars illustrate the 0.95 CIs allowing assessment of the significance of the

features beyond the considered sample. There are 18 features in total - 14 LDA topics and 4

sentiment-related ones. At this point, there are only 3 features with significant effect size -

Servers, Testing and Web Elements LDA topics.

I do not report the effect sizes of hSBM feature space due to its dimensionality leading to

large CIs and, consequently, the insignificance of all the features.

Logistic regression analysis

Model fitting analysis I have fitted the logistic regression model (Tables 3.3 and 3.4) and

computed their goodness of fit measures. After the feature selection step, there are 13

features in the case of LDA feature space. After correcting for multiple comparisons, 5 of

them are significant - Intercept, Template Tags, Testing, Forms and Models and Servers LDA

topics. Based on Tjur R2 one can see that around 16% of the variance is explained, other R2

measures support that statement. It should be noted that pseudo R2 typical values tend to be
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smaller than linear regression R2. Concretely: McFadden suggests that McFadden pseudo-R2

values of 0.2-0.4 correspond to an excellent model fit [156]. Overall, the pseudo R2 values

do not show any anomalies. Correcting for multiple comparisons, the Log-Likelihood test

outcome indicates that the model fit is significant. hSBM feature spaces model contains only

two features including the intercept. Even though the topic feature is significant, R2 and LLR

test metrics indicate a poor model quality and close to no variance explained (Table 3.4).

Table 3.3 LR model fit with its assessment of the goodness of fit. The model was fitted on
Selenium package, event-based time steps, minor updates dataset, LDA feature space, with
the update events as a dependent variable. The subset of features was selected using the
RFECV method with a step of 1. After applying Holm-Bonferroni corrections, significant
p-values are marked with a star (*).

Predictor Estimate Std. Error Z-value Pr(> |z|) VIF
(Intercept) -1.68 0.19 -8.94 < 0.001*
lda_topic__Web_Elements 0.44 0.33 1.34 0.179 3.93
lda_topic__Package_Managers 0.28 0.18 1.58 0.114 1.15
lda_topic__Template_Tags 0.58 0.18 3.13 0.002* 1.35
lda_topic__Testing 1.14 0.36 3.19 0.001* 5.37
lda_topic__Dajngo_Apps 0.38 0.18 2.17 0.03 1.22
lda_topic__Errors 0.41 0.22 1.82 0.068 1.75
lda_topic__Forms_and_Models 0.57 0.18 3.11 0.002* 1.24
lda_topic__Servers 0.57 0.19 3.07 0.002* 1.44
lda_topic__File_Directories 0.31 0.19 1.65 0.099 1.27
lda_topic__Objects_Queries 0.36 0.18 1.96 0.05 1.18
sentiment_Positive 0.58 0.24 2.42 0.015 2.03
sentiment_Compound -0.49 0.25 -1.98 0.048 2.19

Fit Measurements
LLR Test Chi2 50.8 Observations 329
Log Likelihood -147 Null model Log Likelihood -173
LLR Test p-value <.001 Degrees of freedom 13

AIC 321 Adj. McFadden R2 0.07
Null model base probability 0.22 Cox-Snell R2 0.14

Nagelkerke R2 0.22
Tjur R2 0.16

I compute the odds ratios of the models (Figs 3.8 and 3.9) to assess per-feature con-

tributions to the model output. The error bars correspond to 0.95 CIs. Since the data is

standardised, one standard deviation change in the feature value leads to the event proba-

bility change multiplicative of the feature’s odds ratio. Significant features are ones whose

CIs do not cross a vertical line at X = 1.0.
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Table 3.4 LR model fit with its assessment of the fit quality. The model was fitted on Selenium
package, event-based time steps, minor updates dataset, hSBM feature space, with the
update events as a dependent variable. The subset of features was selected using the RFECV
method, where 10% of features were removed per iteration. After applying Holm-Bonferroni
corrections, the significant p-values are marked with a star (*).

Predictor Estimate Std. Error Z-value Pr(> |z|) VIF
(Intercept) -1.29 0.13 -9.54 < .001* -
hsbm_topic_310 0.24 0.12 1.98 0.048* -

Fit Measurements
LLR Test Chi2 3.92 Observations 329
Log Likelihood -172.87 Null model Log Likelihood -171
LLR Test p-value 0.048 Degrees of freedom 1

AIC 346 Adj. McFadden R2 0.0
Null model base probability 0.22 Cox-Snell R2 0.01

Nagelkerke R2 0.02
Tjur R2 0.01

Let us interpret the feature impact on the model output on the example of the LDA

feature space. If considering significant features with odds ratios around 2 and the model

base probability equals 0.22, one standard deviation increment in any of the features leads

to the event probability increasing twice - to 0.44. Due to the intercept odds ratios being far

from neutrality (1.0), the positive model output might require multiple features activated.

Validating model assumptions Logistic regression algorithm assumes there is a linear

relation between features and the output. I assess that assumption by extending the feature

space with interaction terms and checking their significance. For the considered dataset

configuration, LDA feature space, I find that Errors LDA topic (F × l og (F )) is significant -

the linearity criterion is violated. I observe this for the hSBM feature space as well - the

non-linear feature of topic 310 is also significant. I conclude that there is a non-linearity

present in both cases and they cannot be detected using the LR model. RF and CB do not

have any constraints on the data linearity and are capable of detecting the effects missed by

the LR.

None of the Variance Inflation Factors (VIFs) crosses the threshold of 10 (Table 3.3),

meaning there are no superfluous features in the model. Since there is only one topic

feature in the hSBM case, no VIF is computed. Bonferroni Outlier Test did not discover any

significant outliers, meaning that there are no influential cases in the training data.
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Odds Ratios for minor updates
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Fig. 3.8 Odds Ratios computed for the model fitted on Selenium package, minor update
events, event-based dataset, LDA feature space. The X-axis is logarithmic and the features
are sorted ascendingly by the confidence interval range.

Random Forest and CatBoost analysis

I tuned model parameters using a grid search approach with time series cross-validation

and report the optimised parameters in Table 3.5.

I plot SHAP values with respect to the positive class output for RF and CB, both feature

spaces in Figs 3.10-3.13.

The optimised LDA feature space consists of 6 and 4 features for RF and CB, respectively.

More often smaller feature values contribute towards a negative class output. Furthermore,

there are 3 common features in the models. Moreover, they affect the output in the same
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Odds Ratios for minor updates

(Intercept)

hsbm_topic_310

0.25 0.35 0.50 0.71 1.0 1.41

Fig. 3.9 Odds Ratios computed for the model fitted on Selenium package, minor update
events, event-based dataset, hSBM feature space. The X-axis is logarithmic and the features
are sorted ascendingly by the confidence interval range.

Table 3.5 The table shows the final parameters of Random Forest and CatBoost estimators
for the Selenium package, minor updates, event-based time step dataset. "s-balanced" value
accounts for "subsample-balanced" type of class label balancing. Depth corresponds to
the maximum depth of a decision tree. Temporal nature is a binary variable, indicating
whether the temporal nature of data should be considered when fitting the model. The last
two parameters were optimised only for CatBoost.

hSBM feature space LDA feature space
Random Forest CatBoost Random Forest CatBoost

Depth 8 6 8 6
Trees number 200 200 50 500
Class balance s-balanced balanced balanced balanced
L2 Regularisation - 3 - 7
Temporal nature - True - True

way. For most of the features, the maximum impact towards a negative output is stronger

than the maximum impact towards a positive - this is shown by larger absolute SHAP values

to the left from zero value (X-axis). This leads to a more probable negative class output of the

model (agrees with the LR model). When I obtain a confusion matrix, the majority class is

predicted for all entries in both models. From the odds ratios of LR and SHAP values, one can

see that the Testing topic has the largest impact on the model output from all the LDA topics

for all three estimators. The nature of the impact is similar as well - larger feature values

contribute towards a positive output. Forms and Models topic (which is significant in the

LR model) is also present in all the models. Its impact is shifted for CB and RF - there are a
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Fig. 3.10 The figure illustrates the influence of the features on the output of the Random
Forest model fitted on the Selenium package, minor updates, event-based time steps dataset.
Colour encodes the feature value and the X-axis represents the impact of the feature in a
particular case. The RF features partially overlap with the LR - there are 4 common features,
2 of which are significant in the LR. There are 3 features overlapping with the CB model.

3 2 1 0 1 2 3
SHAP value (impact on model output)

lda_topic__Databases

lda_topic__Forms_and_Models

lda_topic__Learning

lda_topic__Testing

Low

High

Fe
at

ur
e 

va
lu

e

Fig. 3.11 The figure illustrates the influence of the features (SHAP) on the output of the
CatBoost model fitted on the Selenium package, minor updates, event-based time steps
dataset. Colour encodes the feature value and the X-axis represents the impact of the feature
in a particular case. There are two features that overlap with the LR model and 3 features
overlapping with the RF model.

number of entries where middle to large values of the feature cause no impact or contribute

towards a negative class output.

Considering hSBM feature space, the optimised feature subsets are large, hence in

Figs 3.12 and 3.13, we show only the top 10 features for each model. Due to a large number

of hSBM topics, it is not feasible to interpret all of them. Consequently, later in the text,
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Fig. 3.12 The figure illustrates the influence of the features (SHAP) on the output of the
Random Forest model fitted on the Selenium package, minor updates, event-based time
steps dataset. Colour encodes the feature value and the X-axis represents the impact of the
feature in a particular case. Only the top 10 features from the feature space are shown.

I interpret the top 3 impactful features for each model. Overall, there are 441 features

overlapping between RF and CB models.

LDA topics interpretation

LDA was optimised on the training dataset and 14 topics setting has the optimal coherence

C_V score based on the Elbow heuristic, as shown in Figure 3.14.

Below I interpret significant features of the LR model and all the features of RF.

File Directories LDA topic - the topic contains messages on the operations with files and file

systems, like accessing, storing, and downloading. The top 4 characteristic words extracted

from the LDA model are: ’file’, ’image’, ’directory’, ’folder’.

Template Tags LDA topic - communication on Django template language, use of tags in the

context of this language. The tokens are ’template’, ’view’, ’use’, ’url’.

Forms and Models topic - posts on Django models and forms. These two notions are related

in a way that models provide access to databases and forms are used to input the data into
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Fig. 3.13 The figure illustrates the influence of the features (SHAP) on the output of the
CatBoost model fitted on the Selenium package, minor updates, event-based time steps
dataset. Colour encodes the feature value and the X-axis represents the impact of the feature
in a particular case. Only the top 10 features from the feature space are shown.

the databases. The characteristic tokens are ’model’, ’form’, ’field’, ’class’.

Java Map topic - communication on Java map structure and its aspects. The characteristic

words are ’value’, ’list’, ’use’, ’string’.

Learning topic - posts on coding skills development and IT education. The characteristic

tokens are ’use’, ’good’, ’time’, ’would’.

Errors topic’s characteristic words are ’try’, ’error’, ’get’, ’work’.

Testing topic’s characteristic words are ’test’, ’use’, ’selenium’, ’run’.

Servers topic’s characteristic words are ’django’, ’app’, ’server’, ’use’.

I did not expect to see Learning and Java Map topics in the list of selected features of RF,

since they seem to be less related to the Selenium package dataset. In this sense, LR model

optimisation leads to a more expected feature subset.
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Fig. 3.14 LDA topic number optimisation is visualised. The figure demonstrates coherence
measures computed for varying number of topics, for LDA models randomly initialised with
3 random seeds, as well as mean coherence across the models. Elbow heuristic is applied
using the mean coherence across the models. As an outcome, 14 LDA topics model is used
throughout the study.
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hSBM topics interpretation

I interpret the top 3 features of CatBoost and Random Forest models, hSBM feature space.

The interpretation is done by providing their characteristic tokens with associated probabili-

ties in Table 3.6.

Table 3.6 The table provides characteristic tokens with associated probabilities for top 3
features of RF and CB models fitted on hSBM feature space. Since topic 595 is common for
both models, there are 5 features interpreted in total.

Topic 595 Topic 296 Topic 129 Topic 519 Topic 641
Token Prob. Token Prob. Token Prob. Token Prob. Token Prob.
attribute 0.28 setting 0.98 team 0.28 driver 0.45 run 0.089
item 0.18 settingsi 0.0015 game 0.15 protractor 0.097 test 0.064
insert 0.10 settingsand 0.0011 player 0.11 phantomjs 0.088 com 0.051
parent 0.087 yourproject 0.0010 story 0.11 headless 0.076 server 0.047

One might notice that Topic 641 looks similar to the LDA Testing topic with 2 character-

istic tokens overlapping (’test’ and ’run’). Additionally, Topic 641 contains a common ’server’

token with LDA Servers.

3.2.3 Synthetic data results - response strength analysis

I assess the performance of the three estimators on the synthetic data for a varying fraction

of event-related posts. I perform permutation tests for all instances and plot the results

as a scatter plot (Figure 3.15). Error bars show 0.95 confidence intervals for the multiple

instances of the same configuration. The colour indicates the maximum p-value among

the 15 instances of the same configuration - the darker, the smaller the p-value is. One can

see that the first significant p-value is at 0.25 fraction of the event-related messages. The

significance of fractions 0.05 and 0.01 is reached by CB and RF, respectively.

In terms of the absolute performance, all estimators perform comparably - CIs overlap,

consequently there is no significant difference in their performance.

3.3 Discussion

3.3.1 Results interpretation

I found 13 significant fits of LR models based on the Log-likelihood Ratio test after applying

the corrections for multiple comparisons. At the same time, I observed 7 models with

significant permutation test results in the SO data. The null hypothesis can be rejected -
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Fig. 3.15 Performance of CatBoost (CB), Random Forest (RF), and Logistic Regression (LR)
estimators against the fraction of the event-related messages. The experiments were con-
ducted on a synthetically generated dataset. The performances are means over 15 randomly
initialised dataset instances of the same configuration. The illustrated p-values are obtained
from the permutation tests (1000 permutations) and are the maxima (as the worst case) over
15 random initialisations. The error bars account for 0.95 confidence intervals computed
from the random initialisations.

we have found a statistically significant change in the topics distribution when events take

place. This can be already stated on the basis of the significance of the model fit. Moreover,

from the assessment of the significance of the predictions, I state that the fitted models

generalize to the unseen data. Even though the tests indicate significant results, the absolute

model performance is rather weak. I feel that there is a need for model improvement before

it is used for solving real-world challenges.

3.3.2 Limitations

Time step design

The event-based time steps might violate the independence assumption for the logistic

regression model in case there are multiple updates of the same type taking place within

the time interval of a time step. It leads to using some fraction of posts in multiple entries,

making the entries dependent. The violation does not allow to rely on the logistic regression
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model results in the case of the multiple packages dataset. However, this setting can be used

in the machine learning approach with its own benefits, such as more data points and a

narrower defined setting in comparison to the calendar week-based time steps.

The proposed time step representation has a low risk of encountering ethical issues

because it does not require labelling individual messages and hence it can better preserve

the privacy of individual message contributors.

Response lag

In this work, I assume that the reaction can be observed within up to 7 days after the event

took place. This assumption was empirically derived from the sparsity of the events-posts as

well as my understanding of the software engineering workflows. Moreover, when designing

reference time steps, one has to assume that the reaction to the most recent event is not

in the data any longer. For the event-based time steps, I assume that day 8 after the event

would belong to the reference time step. The assumption becomes unrealistically strict

when considering daily time steps. Depending on the available length of the time series, the

nature of events, and the activity of the community, the time step window can be optimised.

It should be noted that the two suggested time step designs are aimed at two different

temporal natures of the reactions. The event-based design is aimed at posterior reactions to

events, and the calendar week based is aimed at both prior and posterior. It should be taken

into account if comparing the results.

NLP tools

I am aware of the limitations of the sentiment analysis tools [157, 158], as well as part-

of-speech recognition tools [159] applied to the SE domain. Indeed, it makes SE texts

challenging for the NLP tasks. I used a classical NLTK Python package POS tagger, and NLTK

Vader sentiment analysis over other potentially more powerful methods like deep learning

attention-based [160] and manual labelling-based [161] to ensure the best generality possi-

ble. The deep learning approach is computationally intensive, especially when applied to

large datasets. The manually labelled dataset is available for SE texts, however, there is no

guarantee that there is a similar tool in other domains. Concluding: there is definitely space

to extend the demonstrated approach, which I discuss below.

When generating event-related synthetic messages, I assume that the three community

components are represented by nouns and the change operations - by verbs. Depending on

the community and its language, it might not hold.
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Generator fine-tuning

To fine-tune the generator, I use multiple packages post sample, which contains both

event-related and not related entries. To generate event-related and background messages

separately, I use the seed phrases, designed based on the 3-Compound model. This way I

overcome the requirement of manual labelling of messages, making the approach scalable

and applicable to the content where possibilities for manual labelling are limited.

Design decisions

Multiple design decisions were made throughout the study. Ideally, all the applied thresholds

should be further optimised to find an optimal configuration and evaluate their influence

on the final result. For instance, the 1% threshold for the inclusion of package-related

messages into the dataset might be suboptimal. However, its optimisation would require an

additional correction for multiple comparisons. At the same time, this decision does not

affect the single-package dataset configurations. I have done the optimisation where it was

computationally and statistically feasible.

The number of LDA topics in the above-mentioned papers by Barua et al. [124], Yang

et al. [125] and Abellatif et al. [126] is 40, 30 and 12, respectively. This is the same order as

obtained in the result of the optimisation in the current work.

3.3.3 Implications for practitioners

In the current state, the approach requires adjustment for applying to real-world problems.

Concretely: model performance at this point is unsatisfactory for reliable event detection

and might require improvement.

There would be several benefits from the reliable detection of micro-events motivating

the continuation of this work, as it would: i. enable software developers to observe the

event-related community interactions. ii. On historical data, the developers would be able to

make better-informed decisions when choosing dependencies for their projects (i.e. identify

problematic dependencies). iii. Finally, it would boost the feedback loop between users and

the developers - the event-related interactions can help measure a release’s success.

More broadly, the approach might benefit other settings, like detection of emerging

scams, illegal products, fraud schemes, etc. Generally, any setting with micro-events and

linked forum-like textual communications might make use of the current study.
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3.3.4 Future work

As it was mentioned above, the pipeline can be improved, for example by adjusting the NLP

tools to the domain. Using domain-agnostic tools, I have demonstrated that micro-event

detection is possible in the challenging domain of SE. Considering the improvements, there

are more advanced extended LDA models, such as Author-Topic LDA, which links authors,

topics, documents and words [162], LDA with Genetic Algorithm, acting on multimodal

data [163] or LACT acting on the source code [164]. I feel that specifically for SE, source code

analysis might contribute towards model performance improvement.

In the study, I have investigated the pooling through average across the messages within

the time step. There might exist more perspective approaches, using, for instance, clustering

prior to pooling to get more fine-grained statistics. Finally, it might be worth investigating

more in detail other time window designs, as well as adding an additional lag between the

event and reference time windows.

As an alternative data representation, deep learning unsupervised models can be used.

For instance, variable input size autoencoders [165], and context-aware word embeddings

from transformer-based deep learning architectures [54].

Finally, the synthetic dataset generation pipeline may be improved by looking into more

advanced ways of comparing real-world and synthetic data. Potential directions are the

application of alternative distance measures in parallel with the used ones and the use of

human intelligence for assessment.

3.4 Chapter conclusion

The contribution of the chapter is twofold, i) a feasibility study of the micro-events detec-

tion on the example of FLOSS version releases and ii) micro-event detection methodology

that is generalisable to different types of data, as it will be demonstrated in the following

chapters. A significant performance of the proposed approach for micro-event detection

was demonstrated and null hypothesis was rejected.

I lay out a detailed analysis to understand model decisions. The experiments on synthetic

datasets help understand the limitations on the detectability of the studied micro-events.

The analysis of the features contributing to the fitted models can help better understand the

nature of the predicted events, and contribute insight for the monitoring and management

of the FLOSS ecosystem health. Finally, I identify a series of limitations in the message/time

step representations, models and data preparation that lead to several potential lines of

future work.
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I have performed the detection of micro-events in one of the most challenging domains

of textual data. In the following chapters I demonstrate that the notion of micro-event and

the proposed methodology are generalisable to other data modalities, like financial time

series.





Chapter 4

Event Detection in Price Extrema Patterns

of Financial Time Series

As the previous chapter showed, detecting micro-events is challenging in textual data. In this

chapter, I move to the financial time series, which presents a very different scenario. Events

are often straightforward to observe in financial time series, through volatility changes.

However, a new challenge emerges: predicting how these events will impact future price

behaviour. Hence, I identify two scenarios of price action and perform micro-event detection

and classification.

The chapter introduces a way of automatic extraction of micro-events represented

by price patterns from the financial time series. Then, I design a classification pipeline

predicting the price movement scenario after the event takes place. The micro-events are

defined as price extrema with specific properties. Price extrema is a commonly traded

pattern. However, to the best of my knowledge, there is no study presenting a pipeline for

automated detection, classification, statistical and profitability evaluation. The current

chapter addresses this gap by adjusting the previously proposed methodology (Chapter 3)

and presenting a deep analysis of the matter supported by statistical tools which allow

generalisability to unseen data and comparability to other studies. The background to the

experiments is provided in Chapter 2, Section 2.6.

4.1 Material and methods

In the current chapter, I demonstrate how off-the-shelf machine learning methods can be

applied to financial markets analysis and trading in particular. Taking into account the

non-stationary nature of the financial markets, I narrow down the number of considered
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scenarios (and, hence, non-stationarity) by considering only specific subsets of the time

series. I propose a price-action-based way of defining the points of interest (micro-events)

and performing their classification. Concretely: I identify local price extrema and predict

whether the price will reverse (or ’rebound’) or continue its movement (also called ’crossing’).

For demonstration purposes, I set up a simplistic trading strategy, where I trade the price

reversal after a discovered local extremum is reached as shown in Fig. 4.1. I statistically assess

the choices of the feature space and feature extraction method. In the simulated trading,

I limit the analysis to backtesting and do not perform any live trading. In the Discussion

section I address the limitations of such an approach. Also, I share the reproducibility

package for the chapter [166, 167].

Fig. 4.1 The figure illustrates what data we use for the 2-step feature extraction: price level
(PL) and market shift (MS) components. It also demonstrates peaks, peak widths, as well as
rebound and crossing labelling.

In the section, I first formally introduce the aim, then describe the datasets and pre-

processing procedures. Then, I outline the experiment design comprising of entries labelling

and setting up the classification task, designing features, evaluating the model performance,

evaluating the results statistically, interpreting model results and, finally, simulated trading.

4.1.1 Research gap & aims

For the current chapter I identify the research gap as twofold: i. lack of studies making use

of the existing statistical tools for formal assessment of the findings; and ii. to the best of my
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knowledge, there was no attempt to investigate micro-event detection and classification in

the context of financial markets.

The aim of the chapter is comprised of multiple aspects: i) demonstrate a way to au-

tomatically extract the price patterns ii) propose a two-step way of feature extraction and

statistically assess its validity, iii) build a classifier of the events and assess its performance,

iv) interpret the classifier decisions, v) propose an automated trading system and check the

significance of its performance, iv) demonstrate benefits of the statistical methods in the

context of financial time series analysis.

I formulate the research questions and statistical hypotheses which are later evaluated

as follows. As the first research question, I aim to assess whether the estimator is capable of

fitting to the data given the considered feature space. I believe, it is a necessary initial step,

as without this information it would be hard to judge the following findings.

RQ1: Is it feasible to classify the extracted price extrema using the proposed feature space

and CatBoost estimator better than the baseline precision?

Assuming that there is value in the proposed data representation, the baseline precision

is obtained from an estimator with an always positive class output.

As the second research question, I aim to investigate if the proposed 2-step method for

feature extraction gives any benefit in comparison to using any of the extraction steps alone.

RQ2: Does the use of the 2-step feature extraction improve the extremum classification

performance with respect to the individual steps?

I provide more details and formulate the null and alternative hypotheses in Section 4.1.5.

4.1.2 Data

In the current chapter, I use S&P500 E-mini CME futures contracts ES(H-Z)2017, ES(H-

Z)2018 and ES(H-U)2019. Which correspond to ES futures contracts with expiration in March

(H), June (M), September (U) and December (Z). I operate on ticks data with associated

Time&Sales records statistics, namely: bid and ask volumes and numbers of trades, as well

as the largest trade volumes per tick. I consider a tick to incorporate all the market events

between the two price changes by a minimum price step. For the considered financial

instrument the tick size is $0.25.

4.1.3 Data pre-processing

I sample the contracts data to the active trading periods by considering only the nearest

expiring contracts with the conventionally accepted rollover dates. Namely, the samples end

on the second Thursday of the expiration month - on that day the active trading is usually
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transferred to the following contract. This decision ensures the highest liquidity, and, due to

the double-auction nature of the financial markets, stable minimum bid-ask spreads [168].

For the classification, I consider the two simplest scenarios of the price behaviour after it

reaches the local extremum - reversal and extremum crossing. When labelling the entries, I

require from 4 to 15 ticks price movement as a reversal (or rebound) and only 3 ticks for the

extremum crossing. The labelling approach allows to study of a range of configurations of

the reversals and investigate how the configurations affect the performance of the models.

At the same time, these ranges are well within the boundaries of the intraday price changes.

An essential part of the proposed experiments is the detection of the price extrema. The

detection is performed on a sliding window of the streamed ticks with a window size of

500. I capture peaks with widths from 100 to 400 (the peak width is defied in Chapter 2,

Section 2.6.4). The selected widths range serves three purposes: i) ensures that we do not

consider high-frequency trading (HFT) scenarios which require more modelling assump-

tions and a different backtesting engine; ii) allows to stay in intraday trading time frames

and have a large enough number of trades for analysis; iii) makes the price level feature

values comparable across many of the entries.

4.1.4 Experiment design

In the experiment design I make use of the methodology proposed in Chapter 3. Namely, I

use it for consistent integration of the machine learning and statistical methods, as well as

reporting the results. The reused components are described below and justified. Together,

they ensure comparability and reproducibility of the study as well as allow analysing weakly-

manifested effects. Since in the current and the following chapter the baseline is defined

differently than that in Chapter 3, the logistic regression component of the methodology in

omitted.

Classification task

In order to incorporate machine learning into the automated trading system, I design a

binary classification task, where the labels correspond to price reversals (positives) and

crossings (negatives). Due to the label design, there is more flexibility in take-profit and

stop-loss sizes when trading reversals (up to 15 ticks versus 3 ticks) - this explains their

positive labelling.1 The pseudo-code for labelling is provided in Algorithm 2.

1The vocabulary is provided in Table 2.1.
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Algorithm 2 Price level labelling

Require: Price level (PL) exists and is reached;

if PL is minimum then

if (current price + 3 ticks) ≤ PL then

Label as crossing;

else if (current price - [4..15] ticks) ≥ PL then

Label as reversal;

else wait;

end if

end if

if PL is maximum then

if (current price - 3 ticks) ≥ PL then

Label as crossing;

else if (current price + [4..15] ticks) ≤ PL then

Label as reversal;

else wait;

end if

end if

Feature design

To perform the extrema classification, I obtain two types of features: i) designed from the

price level ticks (called price level (PL) features), and ii) obtained from the ticks right before

the extremum is approached (called market shift (MS) features) as I illustrate in Fig. 4.1.

I believe (and statistically test it) it is beneficial to perform the two-step collection since

the PL features contain properties of the extremum, and the MS features allow to spot any

market changes that happened between the time when the extremum was formed and the

time it was approached for the second time and traded.

Considering different extrema widths, varying amounts of the data do not allow to use it

for classification in its raw format as most of the algorithms take fixed-dimensional vectors as

input. I ensure the fixed dimensionality of a classifier input by aggregating per-tick features

by price. The aggregation is performed for the price range of 10 ticks below (or above in case

of a minimum) the extremum. This price range is flexible - 10 ticks are often not available

within ticks associated with the price level (red dashed rectangle in Fig. 4.1) in this case I fill

the empty price features with zeros (called padding). I assume that in most cases the further

the price from the extremum the less information relevant to the classification it contains.

Hence, considering the intraday volatility of ES, I believe that the information beyond 10
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ticks from the extremum is unlikely to improve the predictions. If one considers larger time

frames (peak widths), this number would need to be increased.

PL features are obtained from per-tick features by grouping by price with the sum, max

or count statistics. For instance: if one is considering volumes, it is reasonable to sum all

the aggressive buyers and sellers before comparing them. Of course, one can also compute

mean or consider max and min volumes per tick. If following this line of reasoning, the

feature space can be increased to very large dimensions. I empirically choose a feature space

described in Tables 4.1 and 4.2 for Price Level and Market Shift components, respectively.

Defining the feature space I aim to make the feature selection step computationally feasible.

Too large feature space might be also impractical from the optimisation point of view,

especially if the features are correlated.

To track the market changes, for the MS feature component I use 237 and 21 ticks and

compare statistics obtained from these two periods. Non-round numbers help avoid inter-

ference with the majority of manual market participants who use round numbers [6]. I also

choose the values to be comparable to our expected trading time frames. No optimisation

was made on them. I obtain the MS features being 2 ticks away from the price level to ensure

that the modelling does not lead to any time-related artefacts where one cannot physically

send the order fast enough to be executed on time.

Model evaluation

After the features are designed and extracted, the classification can be performed. As a

classifier, I choose the CatBoost estimator. I feel that CatBoost is a good fit for the task

since it is resistant to over-fitting, stable in terms of parameter tuning, efficient and one of

the best-performing boosting algorithms [48]. Finally, being based on decision trees, it is

capable of correctly processing zero-padded feature values when no data at price is available.

Other types of estimators might be comparable in one of the aspects and require much more

focus in the other ones. For instance, neural networks might offer better performance but

are very demanding in terms of architecture and parameter optimisation.

In this study I use precision as the main scoring function (S):

S = T P

T P +F P
, (4.1)

where TP is the number of true positives and FP is the number of false positives. All the

statistical tests are run on the precision scores of the samples. This was chosen as the main

metric since by design every FP leads to losses, and false negative (FN) means a lost trading

opportunity without any explicit loss. To give a more comprehensive view of the model
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Table 4.1 Price level feature space component used in the experiments. These features are
obtained when the price level is formed. When discussed, features are referred to by the
codes in the square brackets at the end of descriptions.
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Equation Description∑p=|PL−t |
t (Vb +Va) Bid and ask volumes summed across all the ticks for t ∈ [0,1,2] [PL0]∑p=|PL−t |
t Vb Bid volumes summed across all the ticks for t ∈ [0,1,2] [PL1]∑p=|PL−t |
t Va Ask volumes summed across all the ticks for t ∈ [0,1,2] [PL2]∑p=|PL−t |
t Tb Number of bid trades summed across all the ticks for t ∈ [0,1,2] [PL3]∑p=|PL−t |
t Ta Number of ask trades summed across all the ticks for t ∈ [0,1,2] [PL4]

M(T p = |PL− t |)b Maximum bid trade across all the ticks for t ∈ [0,1,2] [PL5]
M(Tp=|PL−t |)a Maximum ask trade across the ticks for t ∈ [0,1,2] [PL6]∑p=|PL−t |

t 1 Number of ticks at price for t ∈ [0,1,2] [PL7]∑p=|PL−t |
t Vb∑p=|PL−t |
t Va

PL1 divided by PL2, for t ∈ [0,1,2] [PL8]

∑p=|PL−t |
t Tb∑p=|PL−t |
t Ta

Feature PL3 divided by feature PL4 [PL9]

∑p=|PL−t |
t M(T )b∑p=|PL−t |
t M(T )a

Feature PL5 divided by feature PL6 [PL10]

∑p=|PL−t |
t (Vb+Va )∑p=|PL−t |

t 1
Total volume at price |PL− t | divided by the number of ticks [PL11]∑10

t=0
∑p=|PL−t |

t Va Total Ask Volume [PL12]∑10
t=0

∑p=|PL−t |
t Vb Total Bid Volume [PL13]∑10

t=0
∑p=|PL−t |

t Ta Total Ask Trades [PL14]∑10
t=0

∑p=|PL−t |
t Tb Total Bid Trades [PL15]∑10

t=0
∑p=|PL−t |

t (Va +Vb) Total Volume [PL16]

- Peak extremum - minimum or maximum [PL17]
- Peak width in ticks described in the Background section [PL18]
- Peak prominence - described in the Background section [PL19]
- Peak width height - described in the Background section [PL20]∑p=|PL−t |

t∈[0,1,2] Vb∑p=|PL−t |
t∈[3..9] Vb

Bid volumes close to extremum divided by ones which are further [PL21]

∑p=|PL−t |
t∈[0,1,2] Va∑p=|PL−t |
t∈[3..9] Va

Ask volumes close to extremum divided by ones which are further [PL22]

∑p=|PL−t |
t∈[0,1,2] Vb∑p=|PL−t |
t∈[0,1,2] Va

Sum bid volume close to the price extremum divided by
the close ask volume [PL23]∑p=|PL−t |

t∈[3..9] Vb∑p=|PL−t |
t∈[3..9] Va

Sum bid volume far from the price extremum divided by
the far ask volume [PL24]

K
ey

OB - order book T - trades t - ticks N - total ticks p - price
w - tick window PL - extremum price V - volume b - bid a - ask
PN - price level neighbours until distance M(X) - Max value in set X



84 Event Detection in Price Extrema Patterns of Financial Time Series

Table 4.2 Market shift feature space component used in the experiments. These features
are obtained right before the already formed price level is approached. When discussed,
features are referred to by the codes in the square brackets at the end of descriptions.
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Equation Description∑w=237
t ,b (Vb )∑w=237
t ,a (Va )

Fraction of bid over ask volume for last 237 ticks [MS0]

∑w=237
t ,b (Tb )∑w=237
t ,a (Ta )

Fraction of bid over ask trades for last 237 ticks [MS1]

∑w=237
t Vb∑w=237
t Va

−
∑w=21

t Vb∑w=21
t Va

Fraction of bid/ask volumes for long minus
short periods [MS2]∑w=237

t Tb∑w=237
t Ta

−
∑w=21

t Tb∑w=21
t Ta

Fraction of bid/ask trades for long minus short periods [MS3]

∑w=237
t M(T )b∑w=237
t M(T )a

−
∑w=21

t M(T )b∑w=21
t M(T )a

Max bid trade divided by ask for long periods minus
short periods [MS4]

RSI(p ∈ S) Technical indicator RSI with the stated periods p [MS5X ]

MACD(l p ∈ S; sp = l p/2)
Technical indicator MACD with the stated long & short periods
l p, sp [MS6X ]

K
ey

T - trades N - total ticks w - tick window V - volume
b - bid a - ask PN - price level neighbours until distance
M(X) - Max value in set X S - ranges [20,40,80,120,160,200]

performance, I also report F1 scores, PR-AUC (precision-recall area under the curve) and

ROC-AUC (receiver-operating characteristic area under the curve) metrics. I report model

performances for the two-step feature extraction approach as well as for each of the feature

extraction steps separately.

In order to avoid large bias in the base classifier probability, I introduce balanced class

weights into the model. The weights are inversely proportional to the number of entries per

class. The contracts for training and testing periods are selected sequentially - training is

done on the active trading phase of contract N , testing - on N +1, for N ∈ [0,B −1], where B

is the number of contracts considered in the study.

I apply a commonly accepted ML community procedure for input feature selection and

model parameter tuning [62]. Firstly, I perform the feature selection step using a Recursive

Feature Elimination with cross-validation (RFECV) method. In the current study on each

RFECV step, we remove 10% of the least important features. Cross-validation allows robust

assessment of how the model performance generalizes to the unseen data. Since I operate

on the time series, I use time series splits for cross-validation. For the feature selection, the

model parameters are left default, the only configuration I adjust is class labels balancing as

our data is imbalanced. Secondly, I optimize the parameters of the model in a grid-search

fashion. Even though CatBoost has a very wide range of parameters that can be optimised,

I choose the parameters common for tree ensemble models for the sake of feasibility of
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the optimisation and leaving the possibility of comparing the optimisation behaviour to

the other ensemble algorithms. The following parameters are optimised: 1) Number of

iterations, 2) Maximum depth of trees, 3) has_time parameter set to True or False, and 4)

L2 regularisation. For the parameter optimisation, I use a cross-validation dataset as well.

I perform training and cross-validation within a single contract and the backtesting of

the strategy on the subsequent one to ensure the relevance of the optimised model. The

high-level pipeline flow diagram is provided in Figure 4.2

Automatic micro-
event (pattern)

extraction

Micro-event labelling

2-step feature
extraction

Price Level and
Market Shift feature

extraction

Model training &
evaluation

Feature selection

Hyperparameter
tuning

Fig. 4.2 The figure illustrates the flow diagram for the dataset design, data pre-processing
and machine learning (ML) model training & evaluation approach is taken in the study.
The dashed lines highlight the ML part of the pipeline and solid ones account for pattern
extraction and feature engineering. Vertically aligned components may be performed in any
order, and the shift indicates their order in the current study.

Statistical evaluation

Here I formalise the research questions by proposing null and alternative hypotheses, sug-

gesting statistical tests for validating them, as well as providing the details on the effect size

measure used.

In the current chapter, I report Hedge’s gav - an unbiased measure designed for paired

data. I correct the confidence intervals for multiple comparisons by applying Bonferroni

corrections.

When testing the hypotheses, the samples consist of the test precisions on the considered

contracts, leading to equal sample sizes in both groups, and entries are paired as the same

underlying data is used. Comparing a small number of paired entries and being unsure

about the normality of their distribution, we take a conservative approach and for hypothesis

testing use the single-tailed Wilcoxon signed-rank test. This test is a non-parametric paired

difference test, which is used as an alternative to a t-test when the data does not fulfil the

assumptions required for the parametric statistics. When reporting the test outcomes, I

support them with the statistics of the compared groups. Namely, its standard deviations,

means and medians.
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I set the significance level of the study toα= .05. Also, I account for multiple comparisons

by applying Bonferroni corrections inside of each experiment family [105]. I consider

research questions as separate experiment families.

Model analysis

I perform the model analysis in an exploratory fashion - no research questions and hypothe-

ses are stated in advance. Hence, the outcomes of the analysis might require additional

formal statistical assessment. I use SHAP local explanations to understand how models

end up with the particular outputs. Through the decision plot visualisations, I aim to find

common decision paths across entries as well as informally compare models with small and

large numbers of features. The reproducibility package contains the code snippets as well as

the trained models, which allow repeating the experiments for all the models and contracts

used in the chapter.

Simulated trading

The trading strategy is defined based on our definition of the crossed and rebounded price

levels, and schematically illustrated in Fig. 4.3. It is a flat market strategy, where one expects

a price reversal from the price level. Backtrader Python package 2 is used for backtesting the

strategy. Backtrader does not allow taking bid-ask spreads into account, that is why I am

minimising its effects by excluding HFT trading opportunities (by limiting the minimum

peak widths) and sticking to the actively traded contracts only. Since ES is a very liquid trad-

ing instrument, its bid-ask spreads are usually 1 tick, which however does not always hold

during extraordinary market events, scheduled news, session starts and ends. I additionally

address the impact of spreads as well as order queues in the Discussion section.

In the performed backtests, I evaluate the performance of the models with different

rebound configurations and fixed take-profit parameters, and varying take-profits with

a fixed rebound configuration to better understand the impact of both variables on the

simulated trading performance.

Since take-profit and stop-loss are fixed within the experiments, it does not make a

difference whether using the actual TP&SL values in a regression form or class labels. Trading

fees and other market assumptions may vary depending on the volumes, brokerage, country

of residence, etc., hence they are not included in the labelling process.

2Available at: https://www.backtrader.com/
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end

Fig. 4.3 The block diagram illustrates the steps of the trading strategy.

4.1.5 Addressing research questions

In the current subsection, I continue formalising the research questions by proposing the

research hypotheses. The hypotheses are aimed to support the findings of the chapter,

making them easier to communicate. For both research questions, I run the statistical tests

on the precision metric.

RQ1 - CatBoost versus no-information model

In the first research question, I investigate whether it is feasible to improve the baseline

performance for the extrema datasets using the chosen feature space and CatBoost classifier.

I consider the baseline performance to be the precision of an always positive class output

estimator. The statistical test addresses the following hypothesis:

H11: CatBoost estimator allows classification of the extracted extrema with a precision

better than the no-information approach.
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H01: CatBoost estimator allows classification of the extracted extrema with a worse or

equal precision in comparison to the no-information approach.

RQ2 - Two-step versus single-step feature extraction

The second research question assesses if the proposed two-step feature extraction gives any

statistically significant positive impact on the extremum classification performance. The

statistical test assesses the following hypotheses:

H12: Two-step feature extraction leads to an improved classification precision in com-

parison to using features extracted from any of the steps on their own.

H02: Two-step feature extraction gives equal or worse classification precision than fea-

tures extracted from any of the steps on their own.

In the current setting, I compare the target sample (the 2-step approach) to the two control

samples (MS and PL components). I am not aiming to formally relate the MS and PL groups,

hence only comparisons to the 2-step approach are necessary. In order to reject the null

hypothesis, the test outcomes for both MS and PL components should be significant.

4.2 Results

In the current section, I communicate the results of the experiments. Namely: the original

dataset and pre-processed data statistics, model performance for all the considered experi-

ment configurations, statistical evaluation of the overall approach and the two-step feature

extraction, and, finally, simulated trading and model analysis. An evaluation of these results

is presented in Sec. 4.3.

4.2.1 Raw and pre-processed data

The considered data sample and processed datasets are provided in Table 4.3. In the table, I

report the number of ticks per contract, the number of positive entries as well as the total

number of entries for the considered price reversal (rebound) configurations. I perform

the whole study on 3 different rebound configurations: 7, 11 and 15 ticks price movement

required for the positive labelling. The contracts are sorted by the expiration date from top

to bottom ascendingly. The number of ticks changes non-monotonically - while the overall

trend is rising, the maximum number of ticks is observed for the ESZ2018 contract. And the

largest change is observed between ESZ2017 & ESH2018. As one can see, the numbers of

the extracted extrema do not strictly follow the linear relation with the numbers of ticks per
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contract. Considering the numbers of positively labelled entries, the numbers decrease for

the larger rebound sizes.

Table 4.3 The table communicates numbers of reconstructed ticks per contract, numbers of
positive labels, as well as total numbers of entries per contract. ’Reb.’ corresponds to the
rebound - the required number of ticks for the positive labelling. Rebound columns show
numbers of positively labelled entries.

Contract No. Ticks Reb. 7 Reb. 11 Reb. 15 Total
ESH2017 1271810 896 804 703 4911
ESM2017 1407792 951 881 756 4181
ESU2017 1243120 858 812 693 3446
ESZ2017 1137427 689 640 518 12317
ESH2018 2946336 2014 1983 1953 11537
ESM2018 2919757 1965 1936 1868 6534
ESU2018 1825417 1271 1226 1095 16331
ESZ2018 3633969 2677 2620 2565 11718
ESH2019 3066530 1990 1949 1883 9743
ESM2019 2591000 1711 1692 1630 10389
ESU2019 2537197 1761 1735 1704 6191

4.2.2 Price Levels

Automatic extraction

The first step of the pipeline is detecting peaks, which is done automatically, the same

way as shown in Fig. 4.1. The peaks are marked with grey circles and the associated peak

widths are depicted with solid grey lines. In the considered setting some of the peaks are not

automatically discovered as not satisfying conditions of the algorithm by having insufficient

widths or being not prominent enough (see Chapter 2, Section 2.6.4 for the definitions of

both).

Classification of the extrema

For all the considered models I perform feature selection and parameter tuning. The op-

timisation results are made available as a part of the reproducibility package. The model

precision obtained on a per-contract basis for the 2-step feature extraction, PL and MS

feature spaces, and no-information model is provided in Table 4.4. The relative changes in

the precision across contracts are preserved across the labelling configurations. There is no

evidence that certain configuration shows consistently better performance across contracts.
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I report the rest of the metrics for the 2-step feature extraction method, PL and MS features

in the supplementary data, in Tables B.2, B.2, B.3, respectively.

Table 4.4 Precisions of CatBoost classifier with the 2-step feature extraction (’2-step’) and
always-positive output classifier (’Null’). As well as Precisions of the Market Shift (MS) and
Price Level (PL) feature spaces. The performance is reported for 3 labelling configurations:
7,11 and 15 ticks rebounds. The implications of the obtained performance values in the
context of the financial markets is detailed in the Discussion section.

Contract Rebound 7 Rebound 11 Rebound 15
2-step Null MS PL 2-step Null MS PL 2-step Null MS PL

ESH2017 .20 .19 .20 .19 .20 .18 .19 .17 .15 .15 .15 .15
ESM2017 .22 .21 .24 .21 .23 .19 .20 .19 .19 .17 .16 .18
ESU2017 .25 .20 .25 .23 .15 .19 .23 .17 .18 .15 .15 .19
ESZ2017 .17 .16 .18 .16 .17 .16 .16 .16 .19 .16 .16 .15
ESH2017 .19 .17 .19 .17 .18 .17 .18 .18 .17 .16 .17 .16
ESM2018 .21 .19 .22 .19 .21 .19 .21 .20 .18 .17 .18 .17
ESU2018 .17 .16 .17 .15 .16 .16 .17 .16 .16 .16 .16 .15
ESZ2018 .18 .17 .18 .17 .17 .17 .17 .18 .16 .16 .17 .16
ESH2019 .18 .18 .19 .18 .18 .17 .18 .17 .18 .17 .17 .17
ESM2019 .18 .17 .18 .18 .17 .17 .18 .17 .17 .16 .18 .16

RQ1 - Price Levels, CatBoost versus No-information estimator

Below I report the effect sizes with .95 confidence intervals (CIs) (Table 4.5) associated with

the research question. Concretely, I use precision as the measurement variable for com-

paring the no-information model and the CatBoost classifier. There are no configurations

showing significant effect sizes. The largest effect size is observed for the 15 tick rebound

labelling. Large CIs are observed partially due to the small sample size.

I test the null hypothesis for rejection for the 3 considered configurations. The original

data used in the tests are provided in Table 4.4 - ’2-step’ and ’Null’ columns. I report test

outcomes in a form of test statistics and p-values in Table 4.5. Additionally, in the same

table, the sample statistics are included. I illustrate the performance of the compared groups

in the supplementary materials, in Figure B.2. There is no skew in any of the labelling

configurations - medians and means do not differ within the groups. I see around 2 times

larger standard deviations for the CatBoost model in comparison to the no-information

model. The potential reasons and implications are discussed in sections 4.3.2 and 4.3.5,

respectively. There are 3 tests run in this experiment family, hence after applying Bonferroni

corrections for multiple comparisons, the corrected significance level is α= .05/3 = .0167.
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RQ2 - Price Levels, 2-step feature extraction versus its components

I communicate the effect sizes related to the second research question in Table 4.4 - ’2-step’,

’PL’, ’MS’ columns. They are reported separately for PL and MS components versus the 2-step.

There are no significant effects observed for any of the labelling configurations. Moreover,

for the considered sample MS effect sizes are negative for rebounds 7 and 11 (Tab. 4.5).

The negative effect size in the considered setting means that the MS compound performs

better than the 2-step approach. This effect is insignificant, hence does not generalise to the

population.

I perform statistical tests to check if the null hypothesis H02 can be rejected. The original

data used in the tests are provided in Table 4.4, for the target (2-step) and control groups

(MS and PL). I communicate the test outcomes in Table 4.5. In the same table, I report

the compared groups’ standard deviations, means and medians. The results of the tests

are interpreted in section 4.3.3. Finally, to support the reader, I plot the performance of

the considered groups in the supplementary data, Figure B.4. There are 6 tests run in this

experiment family, hence after applying Bonferroni corrections, the corrected significance

level is α= .05/6 = .0083.

4.2.3 Model analysis

Below I report the exploratory analysis of the trained models. I choose two models trained

on the same contract but with different labelling configurations. Namely, the analysis of the

models trained on the ESH2019 contract, with rebounds 7 and 11 is reported. The choice is

motivated by very different numbers of features after the feature selection step.

The core analysis is done on the decision plots, provided in Figures 4.4 and 4.5. Since no

pattern was observed when plotting the whole sample, I illustrate a random sub-sample of

100 entries from the top 1000 entries sorted by the per-feature contribution. Additionally,

Figures B.5 & B.6 provide summary plots with the SHAP values of the models for the whole

sample in the supplementary materials. There are 29 features in the model trained on the

rebound 11 configuration, and 8 features in the one trained on the rebound 7 labels. 7

features are present in both models: PL23, MS6_80, MS0, PL24, MS2, MS6_20, MS6_200.

Contributions from the features in the rebound 7 model are generally larger, also, the overall

confidence of the model is higher. One might notice that the most impactful features are

coming from the Market Shift features. In Figure 4.4 one can see two general decision

patterns: one ending up at around 0.12-0.2 output probability and another one consisting

of a number of misclassified entries ending up at around 0.8 output probability. The output

probabilities correspond to the positive class (price reversal). In the first decision path, most
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Table 4.5 Statistics supporting the outcomes of the Wilcoxon test which assesses whether
CatBoost estimator with the 2-step feature extraction (’CB’ column) leads to a better classifi-
cation performance than the always-positive output classifier (’Null’ column) and whether
CatBoost estimator with the 2-step feature extraction (’2-step’ column) leads to a better
classification performance than each of the single-step feature extraction (’PL’ and ’MS’
columns). The result is reported for the rebound labelling configurations of 7, 11 and 15
ticks.

Statistics Test Groups
Rebound 7

RQ1 RQ2
PL MS

One-tailed Wilcoxon test p-value < .001 .0049 .96
Test Statistics 55.0 52.0 11.0

Effect Size (Hedges gav ) 0.64±1.02 0.57±1.15 −0.1±1.07
CB Null 2-step PL 2-step MS

Mean (Precision) .19 .18 .19 .18 .19 .20
Median (Precision) .18 .17 .18 .18 .18 .19

Standard Deviation (Precision) .025 .0151 .025 .018 .025 .028

Rebound 11
RQ1 RQ2

PL MS
One-tailed Wilcoxon test p-value .053 .080 .58

Test Statistics 44.0 42.0 26.0
Effect Size (Hedges gav ) 0.38±0.96 0.6±1.16 −0.02±1.06

CB Null 2-step PL 2-step MS
Mean (Precision) .18 .17 .18 .18 .18 .19

Median (Precision) .18 .17 .18 .18 .18 .18
Standard Deviation (Precision) .022 .0112 .022 .012 .022 .017

Rebound 15
RQ1 RQ2

PL MS
One-tailed Wilcoxon test p-value .0049 .052 .35

Test Statistics 52.0 44.0 32.0
Effect Size (Hedges gav ) 1.05±1.16 0.8±1.22 0.2±1.07

CB Null 2-step PL 2-step MS
Mean (Precision) .17 .16 .17 .16 .17 .17

Median (Precision) .17 .16 .17 .16 .17 .17
Standard Deviation (Precision) .012 .0055 .012 .006 .012 .010

of the MS features contribute consistently towards the negative class, however, PL23 and

PL2 often push the probability in the opposite direction. In the second decision path, PL23
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Fig. 4.4 The figure illustrates the feature contributions to the output on a per-entry basis for
the CatBoost model, trained on ESH2019, rebound 7 configuration. The X-axis shows the
strength of the contribution either towards a positive class (when the change is >0) or towards
the negative one. Colours indicate the model output confidence of the positive class - blue
corresponds to the negative class (crossing) and red - to the positive (rebound). Features
are sorted by importance descending from the top. Misclassified entries are depicted with
dashed lines.

has the most persistent effect towards the positive class, which is opposed by MS6_80 in

some cases and gets almost no contribution from MS0 and MS6_200 features.

In Figure 4.5 there is a skew in the output probabilities towards the negative class. Con-

tributions from the PL features are less pronounced than for the rebound 7 model - the top

8 features belong to the MS feature extraction step. There is no obvious decision path with

misclassified entries. At the same time, I see strong contributions towards negative outputs

from MS6_20 and MS6_40. This is especially noticeable for the entries which have output

probabilities around 0.5 before MS6 are taken into account.

4.2.4 Simulated trading

In the current section, I report the cumulative profits for the 3 different labelling configu-

rations in Fig. 4.6. In addition to the cumulative profits, I report annualised Sharpe ratios

with a 5% risk-free annual profit. These results are reported for 15 ticks take-profit, as shown

in Fig. 4.3. There is a descending trend in the Sharpe ratios across all the configurations.

However, the behaviour of rebound 15 differs from the rest by performing worse till Oct

2018, then having a profitable time period which is not observed for the other configura-

tions. I also run experiments with altered take-profits for 15 ticks rebound labelling and find

out that decreasing take-profit leads to slightly worse cumulative profits and comparable
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Fig. 4.5 The figure illustrates the feature contributions to the output on a per-entry basis for
the CatBoost model, trained on ESH2019, Rebound 11 configuration. Read as above.
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Sharpe ratios (Figure B.7). Seems that the profitability period after Oct 2018 depends on the

take-profit size and vanishes if take it is reduced.
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Fig. 4.6 Cumulative profit curves for the best-performing rebound configuration of 15 ticks
and take-profits of 7, 11 and 15 ticks for years 2017-2019 with the corresponding annualised
rolling Sharpe ratios (computed for 5% risk-free income). The trading fees are already
included in the cumulative profits.

When computing the net outcomes of the trades, I add $4.2 per-contract trading costs

based on the assessment of broker and clearance fees in Jan 2021. I do not set any slippage in

the backtesting engine, since ES liquidity is large. However, I execute the stop-losses and take-

profits on the tick following the close-position signal to account for order execution delays

and slippages. This allows taking into account uncertainty rooting from large volatilities and

gaps happening during the extraordinary market events. The backtesting is done on the tick

data, therefore there are no bar-backtesting assumptions made.

4.3 Discussion

This section breaks down and analyses the results presented in the previous section (Sec-

tion 4.3). Results are discussed in relation to the overall pattern (micro-event) extraction

and model performance, then research questions, model analysis and, finally, simulated

trading. Additionally, I discuss limitations in regards to our approach and how they can
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be addressed. Finally, I present the view on implications for practitioners and intuition of

potential advancements and future work in this area.

4.3.1 Pattern extraction

The numbers of price levels and ticks per contract follow the same trend (Table 4.3). Since

the number of peaks is proportional to the number of ticks, one can say that the mean peak

density is preserved over time to a large extent. In this context, the peak pattern can be

considered stationary and appears in various market conditions.

4.3.2 RQ1 - Price Levels, CatBoost versus No-information estimator

The precision improvement for the CatBoost over the no-information estimator varies a

lot across contracts (Table 4.4). At the same time, the improvement is largely preserved

across the labelling configurations. It might be due to the original feature space, whose

effectiveness depends a lot on the market state - for certain market states (and time periods)

the utility of the feature space drops and the drop is quite consistent across the labelling

configurations. Extensive research of the feature spaces would be necessary to make further

claims. The overall performance of the models is weak on an absolute scale, however, it is

comparable to the existing body of knowledge in the area of financial markets [169].

Effect sizes in RQ1 Table 4.5 are not significant. The significance here means that the

chosen feature space with the model statistically significantly contributes towards the per-

formance improvement with respect to the no-information model. Positive but insignificant

effect size means that there is an improvement that is limited to the considered sample and

is unlikely to generalise to the unseen data (statistical population).

Assessing the results of the statistical tests, I use the significance level corrected for the

multiple comparisons. Tests run on the rebound 7 and 15 configurations result in significant

p-values, rebound 11 is insignificant (Table 4.5). Hence, I reject the null hypothesis H01 for

the labelling configurations of 7 and 15 ticks. This outcome is not supported by the effect

sizes. This divergence between the test and effect sizes indicates a need for feature space

optimisation before the use of the approach in the live trading setting. The insignificant

outcome may be caused by particular market properties, or by unsuitable feature space for

this particular labelling configuration. Interestingly, standard deviations differ consistently

between the compared groups across the configurations. While no-information model

performance depends solely on the fraction of the positively labelled entries, CatBoost per-

formance additionally depends on the suitability of the feature space and model parameters

- this likely explains higher standard deviations in the case of the CatBoost model.
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4.3.3 RQ2 - Price Levels, 2-step feature extraction versus its components

Computing the effect sizes in Table 4.5 I compare the 2-step feature extraction approach to

its components - PL and MS. I do not see any significant effects showing supremacy of any

of the approaches. Negative effect sizes in the case of the Market Shift component mean

that in the considered sample MS performs better than the 2-step approach. This result

does not generalise to the unseen data as its confidence intervals cross the 0-threshold (are

not significant). The possible explanation of the result is the much larger feature space of

the 2-step approach (consisting of PL and MS features) than the MS compound. In case if

PL features are generally less useful than MS, which is empirically supported by our model

analysis (Figs B.5 and B.6), they might have a negative impact during the feature selection

process by introducing noise.

Assessing the statistical tests, I use the significance level corrected for 6 comparisons. The

p-values from Table 4.5 show that there is no significant outcome and the null hypothesis

H02 cannot be rejected. While the 2-step approach does not bring any improvement to the

pipeline, there is no evidence that it significantly harms the performance either. It might be

the case that if PL features are designed differently, the method could benefit from them. I

withhold from iteratively tweaking the feature space to avoid any loss of statistical power. I

find this aspect interesting for future work, however, it would require increasing the sample

size to be able to account for the increased number of comparisons.

4.3.4 Simulated trading

In the simulated trading, I observe an interesting result - data labelling configuration has

more impact on the profitability than the take-profits (Figures B.7,4.6). I hypothesise that

the reason is the simplistic trading strategy which is overused by the trading community in

various configurations. In contrast, the labelling configuration is less straightforward and

has more impact on profitability. Note that the obtained precision (Table 4.4) cannot be

directly related to the modelled profitability trading strategy as there might be multiple price

levels extracted within the time interval of a single trade. Consequently, there are extrema

that are not traded.

It is hard to expect consistent profitability considering the simplicity of the strategy

and lack of optimisation of the feature space, however, even in the current setting one can

see profitable episodes (Figure 4.6). The objective of the experiments is not to provide a

ready-to-trade strategy, but rather to demonstrate the approach.
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4.3.5 Limitations

The proposed experiment design is one of the many ways the financial markets can be

studied empirically. Statistical methods often have strong use case conditions and assump-

tions. When there is no entirely suitable tool available, one chooses the closest matching

solution. While it is advised to use Glass’s ∆ in case of the significantly different standard

deviations between groups, this measure does not have corrections for the paired data.

Hence, in the proposed experimental design I choose to stick to the Hedge’s gav . For the sake

of completeness, I verified the results using Glass’s ∆ - 15 ticks rebound effect size becomes

significant in the RQ1.

In the backtesting, I use the last trade price to define ticks and do not take into account

bid-ask spreads. In live trading, trades are executed by bid or ask price, depending on the

direction of the trade. In reality, it leads to an implicit cost of the size of the bid-ask spread

per trade. This is crucial for intraday trading as average per-trade profits often lay within

a couple of ticks. Moreover, when modelling order executions, I do not consider per-tick

volumes coming from aggressive buyers and sellers (bid and ask). It might be the case that

for some ticks only aggressive buyers (sellers) are present, and the strategy executes a long

(short) limit order. This leads to uncertainty in opening positions - in reality, some of the

profitable orders may have not been filled. At the same time, losing orders would always be

executed.

Another limitation is that I do not model order queues, and, consequently cannot guar-

antee that orders would have been filled if submitted live even if both bid and ask volumes

are present in the tick. This is crucial for high-frequency trading (HFT), where thousands

of trades are performed daily with tiny take-profits and stop-losses, but has less impact on

the trade intervals considered in the experiments. Finally, there is an assumption that the

strategy entering the market does not change its state significantly. I believe it is valid to

assume so considering the liquidity of S&P E-mini futures. Commenting on the potential

profitability of the method, I compare the obtained Sharpe Ratios to the existing body of

knowledge. For instance, a paper by Xiong et al. [170] reports the Sharpe Ratio of 1.79 using

a deep reinforcement learning approach. The results of the study were obtained for US

stocks. Another study, by Yang et al. [171], reports the Sharpe Ratio of 1.3. In the study,

the authors consider a subset of 30 US stocks data. The approach suggested in the current

study offers worse performance, with the Sharpe Ratios being around 0. However, when

directly comparing performance, the backtesting environment assumptions, as well as data

granularity, should be taken into account. It is essential to highlight that the purpose of the

current study is defined by the research questions, and not aimed at maximisation of the
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strategy profitability. In the next chapter, a method of performance superior to the listed

studies will be proposed.

4.3.6 Implications for practitioners

I provide a systematic approach to the evaluation of automated trading strategies. While

large market participants have internal evaluation procedures, I believe that the conducted

research could support various existing pipelines. Considering the state of the matter with

the lack of code and data publishing in the field, I am confident that the demonstrated

approach can be used towards improving the generalisability and reproducibility of research.

Specific methods like extrema classification and 2-step feature extraction are a good baseline

for the typical effect sizes observed in the field.

4.3.7 Future work

In the current chapter, I have proposed an approach for extracting extrema from the time

series and classifying them. Since the peaks are quite consistently present in the market,

their characteristics might be used for assessing the market state in a particular time scale.

The approach can be validated for trading trends - in this case, one would aim to classify

price level crossings with high precision. A stricter definition of the crossings in terms of the

price movement is necessary for that.

In terms of improving the strategy, there is a couple of things that can be done. For

instance: take-profit and stop-loss offsets might be linked to the volatility instead of being

constant. Also, flat strategies usually work better at certain times of the day - it would be

wise to interrupt trading before USA and EU session starts and ends, as well as scheduled

reports, news and impactful speeches. Additionally, all the mentioned parameters I have

chosen can be looked into and optimised to the needs of the market participant.

In terms of the chosen model, it would be interesting comparing the CatBoost classifier

to DA-RNN [172] model as it makes use of the attention-based architecture designed on the

basis of the recent breakthrough in the area of natural language processing [54].

Finally, I see a gap in the available FLOSS (Free/Libre Open Source Software) backtesting

tools. To the best of my knowledge, there is no publicly available backtesting engine taking

into account bid and ask prices and order queues. While there are solutions with this

functionality provided as parts of the proprietary trading platforms, they can only be used

as a black box. An open-source engine would contribute to the transparency of the field and

has the potential to become the solution for both the research and industry worlds.
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4.4 Chapter conclusion

The current chapter showcased an end-to-end approach to perform automated trading

using price extrema as micro-events, which are automatically extracted and classified. Whilst

extrema have been discussed as potentially high performance means for trading decisions,

there has been no work proposing means to automatically extract them from data and design

a strategy. The current work demonstrated an automated pipeline using this approach and

showed some interesting results.

This chapter has presented every single aspect of data processing, feature extraction,

feature evaluation and selection, machine learning estimator optimisation and training, as

well as details of the trading strategy. Moreover, I statistically assessed the findings - the null

hypothesis was rejected when answering RQ1 - the proposed approach performs statistically

better than the baseline. I did not observe any significant effect sizes for RQ2 and could not

reject the null hypothesis. Hence, the use of the 2-step feature extraction does not improve

the performance of the approach for the proposed feature space and the model. However,

there is no evidence that it significantly hampers the performance of the pipeline either. I

hope that providing every single step of the ATP, would enable further research in this area

and be useful to a varied audience. I conclude by providing samples of the code online [166].

While price extrema are thought to manifest the swings of the beliefs of the market

participants, they might be also formed due to a "thin" market (low liquidity). In the next

chapter, I look into a more holistic way of extracting the micro-events from the financial

time series data. Namely, I use the volumes property of the market together with the price to

unambiguously identify the attention of the market participants to a particular price in time.



Chapter 5

Event Detection in Volume Profile

Patterns of Financial Time Series

Financial markets are a source of non-stationary multidimensional time series which has

been drawing attention for decades. Each financial instrument has specific properties in

how it changes over time, making its analysis a complex task. Improvement of understanding

and development of methods for financial time series analysis is essential for successful

operation on financial markets and a general increase of financial system stability. In this

chapter, I propose a volume-based data pre-processing method for making financial time

series more suitable for machine learning pipelines. I use a statistical approach for assessing

the performance of the method. Namely, I propose a set of research questions, formally

state the hypotheses, compute effect sizes with confidence intervals, and reject the null

hypotheses. Additionally, I assess the trading performance of the proposed method on

historical data and compare it to the approach from the previous chapter (Chapter 4). My

analysis shows that the proposed volume-based method allows successful classification of

the financial time series events, and also leads to better classification performance than

a price action-based method, excelling specifically on more liquid financial instruments.

Finally, I propose an approach for obtaining feature interactions explicitly from tree-based

models and compare the approach to SHAP local explanations method.

5.1 Material and methods

In this section, I provide details of the aims of the study, all the datasets used, experiments

performed, model training and statistical evaluation methodology. Most of the discussion
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around the market structures will focus on the currently proposed volume bars, details of

price levels approach are discussed in the previous chapter.

5.1.1 Research gap & aims

When studying financial time series, it is natural to do so in the context of the financial

market activities, like trading and investing. Trading platforms offer a wide range of time

series analysis tools, however since the analysis was done manually in the past, these

methods were originally developed for humans. They are often adopted in the automated

trading systems off the shelf. This fact creates a knowledge gap in the field, as machine

learning methods might have different requirements to the data and limitations in the

analysis in comparison to human intelligence. To the best of my knowledge, the way I am

addressing it was not studied by the research community. In the current chapter, I focus

on financial time series patterns, based on volume profiles, by making them suitable for

machine learning pipelines.

I use a state-of-the-art boosting trees algorithm - CatBoost [173]. It is explainable by

post hoc explanations i.e. SHAP [19], efficient and easy to tune. To my knowledge, there

is no study investigating whether SHAP explanations of CatBoost, which are derived from

an approximation of the original model, are applicable to the financial markets. In the

current work, I bridge the gap by comparing SHAP feature interactions to the ones extracted

explicitly from the CatBoost model.

I state four research questions. The questions are aimed at a detailed assessment of

the proposed method performance as well as empirical identification of optimal perfor-

mance conditions. Additionally, I tackle the interpretability of the used classifier by directly

extracting feature interactions from it.

The proposed method allows the extraction of events (or patterns) of certain properties

from the financial time series. In order to make use of the extracted patterns, I classify them

into scenarios depending on the price action after the pattern is formed. It is done the same

way as in chapter 4). I consider two the most general price behaviours which can be traded -

price crossing the target and price reversing from the target. While in the previous chapter

the targets were price extrema, here it is POC (Point Of Control - the price with the largest

volume in the volume profile). By choosing a particular target, I informally attempt to bring

stationarity in the non-stationary financial time series.

The classification depends a lot on the feature space. Hence, answering the first two

research questions, I investigate whether the chosen market microstructure-based feature

space and model are appropriate for the proposed method and further experiments. Below
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I list the research questions, while the hypotheses are formulated further in the text. This

way I gradually introduce technical aspects of the study to the reader.

RQ1: Given our proposed volume-based pattern extraction method baseline performance (as

always-positive), can one further increase it with a domain-led feature engineering and ML

model?

RQ2: Are the proposed volume-based patterns potentially better suitable for trading than

price level-based?

To answer this question generally, I do not limit myself to a particular trading strategy.

Instead, I set up a classification task and compare the classification performance of the

methods.

For the third research question, I hypothesise that volume-based patterns will perform

statistically better on a more liquid market (S&P E-mini in our case). The reasoning is that if

there are more large players on the market, the price is less price-action driven and "noisy".

I use a volume-based approach for pattern extraction and expect it to be more suitable for

liquid markets.

RQ3: Does the classification of volume-based patterns show better results on a liquid market?

While explainability of model outputs might be not necessarily critical in textual com-

munications micro-event detection, in finance it is essential to have justifications behind

decisions. Explanations of complex ML models are not always straightforward. Since finan-

cial time series is very challenging in terms of analysis, the trained models offer performance

that would be considered poor in other domains and such models would be disregarded.

Hence, it is not clear whether the established explainability methods are suitable in the

financial time series domain. Consequently, the final RQ arises from the field of explain-

able machine learning, seeking to assess to what extent one can apply commonly used

explainability approaches in a financial time series setting.

RQ4: Are feature interactions discovered with SHAP associated with the ones obtained directly

from the decision paths?

SHAP is a game-theoretical model-agnostic framework for interpretations of the model

outputs [19]. Among other information, it provides a ranking of features based on contri-

bution to the prediction per instance, and feature interactions. Since SHAPs provide an

intuitive understanding and are easy to interpret, they are an ideal candidate to evaluate
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diverse real-world models. Nevertheless, since SHAP values are an approximation of the orig-

inal model, it would be useful to compare SHAPs to an explicit model interpretation method

for completeness. To do so, I propose a way of obtaining any order feature interactions

explicitly from a tree-based boosting model by leveraging the Monoforest approach [174].

5.1.2 Datasets

In the current study, I use a convenience sample of S&P E-mini (ES) and British Pound (B6)

futures instruments data, traded on CME Globex. Namely, I perform the experiments on a

time range of 39 months - from March 2017 until June 2020. When discussing the results,

the data outside of this time range is considered as a statistical population.

Since order book data is less commonly available and requires extra assumptions for

pre-processing, I use tick data with only Time&Sales per-tick statistics. Concretely: I obtain

numbers of trades and volumes performed by aggressive sellers and buyers, at the bid

and ask, respectively. Additionally, I collect millisecond-resolution time stamps on tick

starts and ends as well as the prices of the ticks. While in Chapter 4 I use actively traded

contract data samples, here I want to compare results between financial instruments with

different expiration dates. Hence, to make the instruments comparable, I use price-adjusted

volume-based rollover contracts data. This way the contract transitions become seamless

and instruments with different expiration dates can be directly compared. Detailed data

pre-processing is explained later on.

5.1.3 Volume-centred range bars (VCRB)

A volume profile is a representation of trading activity over a specified time and price

range, its variations are also called market profiles. They are commonly used for market

characterisation (when considering daily volume profiles) and trading. Volume profiles

are usually built from the temporal or price range bars1, once every n bars. These settings

make the obtained profiles highly non-stationary and applying ML to them has the same

drawbacks as feeding raw financial time series into a model. Namely, in such a setting

models are hard to fit and require large datasets due to the constantly changing properties

of the data.

In the proposed method I aim to increase the stationarity of the volume profiles, as well

as obtain as many entries per time interval as possible. I illustrate a high-level diagram of

the VCRB extraction pipeline in Figure 5.1.

1Please see Table 2.1 for definition
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Fig. 5.1 Visualisation of the volume-based pattern extraction approach. Entries filled with
black indicate initialisations of new buffers.

The core of the proposed method is a set of tick buffers simultaneously filled on a per-tick

basis. A set is formed by new buffers started at a price if there is currently no incomplete

buffer that has been initialised at the price in the past. Consequently, there is a buffer

initialised at every possible historical price. This way I ensure capturing all the patterns

potentially having the desired volume-centred configuration which is described in the next

paragraph. When the desired price range is reached for a buffer, it is considered complete

and is not filled with the streamed ticks anymore - the same way as it works for conventional

range bars. The price range is measured as a minimum tick price subtracted from the

maximum price in the buffer.

After the buffer is complete, I build its volume profile and check if the largest volume is

in its centre. If so, I proceed with computing its features and labelling it. Otherwise, I ignore

it. As I show later in Section 4.2, the tick buffer fulfilling the condition can be visualised as a

volume-centred range bar (VCRB). The largest volume in the volume profile of the buffer

is called Point of Control (POC). I use the PoC as a target for labelling, where price either

reverses from or crosses it. From now on I refer to the price range as range configuration.

5.1.4 Experiment Design

In the current subsection, I describe all the components of the experiment design. I ensure

that the design is as uniform as feasible across the experiments. When highlighting the

differences, I refer to the experiments by the associated research questions - from RQ1 to



106 Event Detection in Volume Profile Patterns of Financial Time Series

RQ4. The methodology proposed in Chapter 3 is reused in the current chapter. Also, its

effect size assessment, model analysis, and hypothesis testing aligned with the machine

learning components are consistent with the methodology of Chapter 3.

Label Design and Classification Setting

For the sake of comparability, in the current study, I reuse the labelling procedure from

Chapter 4. The labelling process starts when the VCRB is formed. After the price reaches the

target (PoC or extremum of the pattern for VCRB and price level, respectively), there are two

scenarios: it reverses or continues its movement. For the reversal, I require the price to move

for at least 15 ticks from the target. For the crossings, I take the 3 ticks beyond the target.

Price reversals are labelled as positive examples and crossings as negative ones. Based on

the domain knowledge, I consider these numbers suitable for intraday trading scenarios -

this is also supported by intraday standard deviations of the price. Optimisation of these

numbers is out of the scope of the current study.

I perform binary classification of the extracted VCRB and price levels patterns. Namely:

I classify whether the entries are followed by price rebounds (reversals) from the target or

target crossings. CatBoost is used as a classifier throughout the chapter as an example of the

robust and efficient cutting-edge ML algorithm.

Feature Space and Model Parameter Tuning

I conduct two types of experiments - with and without feature selection and model parame-

ter tuning. I do so to study different aspects of the matter:

• Experiments with feature selection and model tuning. Since the models are free to

choose the feature subset and model configurations, these experiments are not limited

by a particular feature set, but rather by an overall feature space. I use this setting for

RQ1-3.

• Experiments with a fixed feature space and model parameters. These are aimed at

studying feature interactions across datasets. Fixed feature space and model parame-

ters ensure that any differences in the feature interactions are caused by the data or

the model analysis approach and not by varying model configuration or feature space.

These are used specifically in RQ4.

When designing the feature space I follow the approach proposed in Chapter 4 - I extract

a set of features from the volume-based pattern or a price level - called Pattern (P) features,

and the second one from the most recent ticks before the target is approached (being 2
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ticks away from it) - called Market Shift (MS) features. In order to decrease the number of

uncontrolled factors and their impact on the experiment design, I limit the feature space to

only market microstructure-based features. I list the features and the associated equations

in Table 5.1. The provided equations are valid for volume-based patterns. Since the data is

available only below or above the extrema in the case of the price level patterns, the features

are computed slightly differently. Negative t values are considered as an odd number of ticks

distances from extrema and positive - as even numbers. I believe that this alteration is the

closest possible to the original while preserving the domain knowledge at the same time.

Numbers 237 and 21 in Table 5.1 were taken arbitrarily with three requirements: not round,

within the trading time interval range, substantially different. I performed no optimisation

of these parameters.

To perform the feature selection, I run a Recursive Feature Elimination with Cross-

Validation (RFECV) process with a step of 1 and use the internal CatBoost feature importance

measure for the feature ranking. Model parameter tuning is done for the following model

parameters: i) a number of iterations; ii) maximum tree depth; iii) whether a temporal

component of the data is considered, and iv) L2-regularisation. I considered it infeasible to

optimise over a larger number of parameters, as with the current setting the experiments

take in total >7k CPU hours. When optimising the feature space and tuning the model

parameters, the precision metric is used - I explain the reasons in Chapter 4, Section 4.1.4.

Performance Metrics

For the RQ1 experiments, the performance is evaluated using the precision metric as it

directly defines the potential profitability of the model. I elaborate on this in the Discussion

section.

While the underlying data is the same for all the RQ1 experiments for null and alternative

hypotheses, there is no constraint on the performance metrics used. In RQ2 and RQ3 I

compare the classification performance of differently imbalanced datasets, hence I use

binary Precision-Recall Area Under Curve (PR-AUC) score. This measure is advised for use

in this setting [175].

For the sake of completeness and easier interpretation of the results, I provide the

mentioned metrics together with ROC-AUC and f1-score for all the experiments. As there is

no notion of performance in the experiments associated with RQ4, I describe its metric later,

in Section 5.1.5.
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Table 5.1 Features (referred to by code ’[code]’) used in the study in two stages, Stage 1 -
Pattern and Stage 2 - Market Shift (MS)
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Equation Description∑p=X+t
t∈[1;5] (Vb )∑p=X+t

t∈[−5;−1](Vb )
Sum of upper (above PoC) bid volumes divided by lower ones [P0]

∑p=X+t
t∈[1;5] (Va )∑p=X+t

t∈[−5;−1](Va )
Sum of upper ask volumes divided by lower ones [P1]

∑p=X+t
t∈[1;5] (Ta )∑p=X+t

t∈[−5;−1](Ta )
Number of upper bid trades divided by lower ones [P2]

∑p=X+t
t∈[1;5] (Tb )∑p=X+t

t∈[−5;−1](Tb )
Number of upper ask trades divided by lower ones [P3]

∑p=X+t
t∈[1;5] (Vb )∑p=X+t

t∈[1;5] 1
Average upper bid trade size [P4]

∑p=X+t
t∈[1;5] (Va )∑p=X+t

t∈[1;5] 1
Average upper ask trade size [P5]

∑p=X+t
t∈[−5;−1](Vb )∑p=X+t

t∈[−5;−1] 1
Average lower bid trade size [P6]

∑p=X+t
t∈[−5;−1](Va )∑p=X+t

t∈[−5;−1] 1
, Average lower ask trade size [P7]

∑p=X Vb∑p=X+t
t∈[1;5] Vb

Sum of PoC bid volumes divided by sum of upper bid volumes [P8]

∑p=X Va∑p=X+t
t∈[1;5] Va

Sum of PoC ask volumes divided by sum of upper ask volumes [P9]

∑p=X Vb∑p=X+t
t∈[−5;−1] Vb

Sum of PoC bid volumes divided by sum of lower bid volumes [P10]

∑p=X Va∑p=X+t
t∈[−5;−1] Va

Sum of PoC ask volumes divided by sum of lower ask volumes [P11]

∑p=X+t
t Vb∑p=X+t
t Va

Sum of bid volumes divided by sum of ask volumes as price X+t;
t ∈ [−1;1] as different features [P12]∑p=X+t

t Tb∑p=X+t
t Ta

Number of bid trades divided by number of ask trades as price X+t;
t ∈ [−1;1] as different features [P13]

- Side - below or above the price when the pattern is formed [P14]
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S
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∑w=237
t ,b (Vb )∑w=237
t ,a (Va )

Fraction of bid over ask volume for last 237 ticks [MS0]∑w=237
t ,b (Tb )∑w=237
t ,a (Ta )

Fraction of bid over ask trades for last 237 ticks [MS1]∑w=237
t Vb∑w=237
t Va

−
∑w=21

t Vb∑w=21
t Va

Fraction of bid/ask volumes for long minus short periods [MS2]∑w=237
t Tb∑w=237
t Ta

−
∑w=21

t Tb∑w=21
t Ta

Fraction of bid/ask trades for long minus short periods [MS3]

K
ey

t - number of ticks a - ask p - price w - tick window PN - neighbours until distance N
V - volume b - bid T - trades X - PoC or extremum
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Model Evaluation

Price-adjusted volume-based rollover pre-processing of the data allows splitting the data

into 3-month chunks without any extra care of contract rollovers. I do so since the length of

contracts is different for ES and B6. When training the models, I apply a temporal sliding

window approach, using batch N for training, N +1 for testing, for N ∈ [1,B −1], where B

is the total number of the 3-month batches available. For the feature selection and model

parameter tuning, I use 3-fold time series cross-validation within the training batch with

the final re-training on the whole batch. To support the reader, I summarise the experiment

design for all the experiments in Table 5.2. In the following subsections, I address the

statistical component of the methodology.

Table 5.2 Experiment design across the experiments. Fsel & Mtune column accounts for
feature selection and model tuning. “Comparison H0/H1” column indicates the settings
used to obtain null and alternative hypotheses data. “Other” indicates whether the test is
conducted on both instruments (ES, B6) and whether only VCRB pattern extraction method
was used. “Metric” corresponds to the measurement variable. All hypotheses are evaluated
using Wilcoxon test.

Experiment Fsel & Mtune Metric Comparison H0/H1 Other
RQ1 ✓ Precision No-info. / CatBoost VCRB; ES, B6
RQ2 ✓ PR-AUC Price levels / VCRB ES, B6
RQ3 ✓ PR-AUC B6 / ES VCRB

RQ4 - Footrule distance
Bootstrap / SHAP,
Monoforest-based

ES, B6

Statistical Evaluation

In the current study, I use effect sizes following the formalism of comparison of treatment

and control groups. For the two groups, I perform a pair-matched comparison choosing

suitable measurement variables for each case, as shown in Table 5.2. In the current setting,

the treatment and control groups are represented by the methods applied to the time series

batches.

Before evaluating the hypotheses, I compute Hedge’s gav effect sizes for paired data

together with the .95 confidence intervals (CIs).

In the choice of the statistical test, I am guided by the same reasons as in Chapter 4

and choose Wilcoxon signed-rank test [176] as the best suitable candidate, applying its

single-sided version to validate the hypotheses of the chapter.

I set the significance level for the statistical tests of the study to α= .05. Finally, I apply

Bonferroni corrections to all the statistical tests within each experiment family [105]. The
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experiment families are defined based on the data and objectives - each research question

forms a separate experiment family.

Model Interpretation

The challenge of interpreting the modern ML models roots in their complexity. Even consid-

ering decision tree-based models, interpretation becomes problematic when the number

of features grows. When it comes to interpretations, the number of decision paths of the

CatBoost model is usually well beyond the limit of manual analysis. The recently pro-

posed Monoforest [174] approach represents the tree ensemble as a set of polynomials

and makes the decision paths uniform. Additionally, its implementation gives access to

machine-readable decision paths. This allows to retrieve the following information from

each polynomial: the subset of the involved features, feature thresholds, as well as support

(w) and contribution (c) to the output of the model.

I assume that interactions between features take place if they are found in the same

decision path. Please note that the way SHAP defines feature interactions is principally

different, as I elaborate in Discussion section. In order to get interactions for the whole

model, I average across the decision paths in the following way:

I(F 1,F 2) =
∑N

i=0 c ×w

N
, (5.1)

where N is the total number of decision paths containing features 1 and 2 (F 1, F 2), c is

the contribution of the decision path to the model output and w is the support, computed

as a number of times the path was activated in the training set divided by the total number

of training entries.

If there is a single feature in the decision path, I consider it as a main effect. I include

main effects into the interaction matrix in the same fashion as it is done for SHAP [19] - as

diagonal elements of the matrix. When there are more than two features in the decision

path, I treat them as multiple pair-wise interactions to be able to represent them in a single

2d matrix and compare them to SHAP interactions. By considering decision paths with a

fixed number of features, one can get interactions of a particular order. Moreover, these

interactions are directly comparable across orders, models and datasets.

Backtesting

I perform backtesting of the proposed method in the Python Backtrader platform. I use the

same strategy, assumptions and trading fees as used in Chapter 4. I focus on performance

comparison based on classification tasks over the backtesting simulations for two reasons: i)
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different trading intensities lead to varying impacts of the modelling assumptions; ii) limiting

our comparison to a particular strategy significantly decreases the generality of the finding.

Elaborating on the first point: influences of order queues, slippages and bid-ask spreads

are partially taken into account, however, it is fair to expect these effects to have increasing

impacts with an increase of the trading intensity. Quantification of these is out of the scope

of this thesis, however, might be very useful. I describe how the modelling assumptions

might affect the backtesting results in the Discussion section. As a complementary analysis,

in the current study, I report annual rolling Sharpe ratios for all the range configurations,

and for the price level method.

5.1.5 Addressing Research Questions

In the current subsection, I list the conducted experiments associated with the research

questions, as well as highlight any experiments-specific choices.

RQ1 - VCRB method, CatBoost versus no-information estimator

Firstly I assess the performance of the no-information and CatBoost classifiers and compare

them. Prior to evaluating the hypotheses, I compute the effect sizes. Then, I run the statistical

test with the following hypotheses:

H01: CatBoost estimator performs equally or worse than the no-information model.

H11: CatBoost estimator performs better than the no-information model.

In the results, I report statistical test outcomes for the configuration with the largest

effect sizes, with the other configurations, are reported in the supplementary materials.

RQ2 - VCRB vs price levels approach

To answer the second research question I compare the performance of the two methods -

price levels and VCRB. I obtain the PR-AUC classification performance for both methods

and both instruments. Then, I compute the effect sizes, and, finally, run the statistical test

with the following hypotheses:

H02: Price level patterns are classified with performance equally good or better than

volume-based patterns.

H12: Volume-based patterns are classified with statistically better performance.
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RQ3 - VCRB method, ES versus B6 datasets

Answering the third research question, I compare CatBoost classification performance on

the VCRB-extracted data over the two datasets - B6 and ES, where the latter is far more liquid.

After the PR-AUC classification performance is obtained, I compute the effect sizes and run

the statistical tests with the following hypotheses:

H03: Both instruments perform comparably or performance on B6 is statistically better.

H13: Volume-based patterns are classified with statistically better performance for the

instrument with higher liquidity (ES).

RQ4 - Relatedness of feature interactions from SHAP and decision paths

To answer the last research question I need to get the data representing the null hypothesis

- having no relation (potentially in contrast to SHAP and decision paths), and propose a

method for assessing the relatedness. As the first step, I obtain feature interactions in a form

of a square matrix using SHAP and the Monoforest-based method. To generate the null

hypothesis data, I bootstrap (randomly sample with replacement) the interaction matrices’

elements separately for both approaches. I choose to generate 500 bootstrapped entries

for each method. As a result, I get two sets of matrices with the same value distributions as

the original feature interaction matrices (SHAP and Monoforest-based). Since I perform

bootstrapping, by definition there is no association between any two matrices from the two

sets.

Since both methods output interactions scaled differently, I make the matrices com-

parable by ranking the interaction strengths within each matrix. After that, I compare the

ranks across the two methods by computing their Footrule distances [177]. This measure is

designed specifically for ranks data and computed as the following:

D = |R A
1 −RB

1 |+ |R A
2 −RB

2 |+ ...+|R A
n −RB

n |, (5.2)

where R is the position order of the element in the rankings A & B of the length n, and

the lower indices correspond to the compared elements. Later the distances are used as

a proxy to assess the relatedness of the methods - the larger the distance, the weaker the

relationship.

In order to get a reliable null hypothesis distance, I compute the mean of the distances

between the bootstrapped matrices. At this point, the relatedness of SHAP and decision

paths methods can be compared against the bootstrapped data. To quantify the differences,

I obtain the effect sizes on the Footrule distance (instead of the classification performance

used in the other RQs). Finally, I run the statistical test with the following hypotheses:
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H04: There is no difference between Footrule distances on ranks of SHAP-decision paths

and bootstrapped feature interactions matrices or SHAP-decision paths are larger.

H14: There is a difference between Footrule distances on ranks of SHAP-decision paths

and bootstrapped feature interactions matrices with SHAP-decision paths being smaller

than bootstrapped.

5.2 Results

This section presents the results of the experiments described in the previous section. I

provide a detailed analysis of how the results match the stated hypotheses in Section 5.3,

and the current one only contains outcomes of the experiments.

5.2.1 Pattern extraction from the datasets

In this subsection, I report statistics on the original datasets as well as numbers of entries

obtained from every dataset batch, for both pattern (or micro-event) extraction methods

and financial instruments.

In Table 5.3 I show numbers of ticks and total volumes per batch for both instruments.

Table 5.3 Original datasets statistics. Volume columns correspond to the total volume traded
per the stated time interval. The Ticks columns show the numbers of ticks per the time
interval.

Batch ES B6
Volume Ticks Volume Ticks

3/17 to 6/17 86123932 151965 6663094 118098
6/17 to 9/17 82384394 132964 6575559 115576
9/17 to 12/17 73925568 98600 7971963 142548
12/17 to 3/18 88050918 517451 7588515 159565
3/18 to 6/18 96653879 536280 7267680 131215
6/18 to 9/18 71968775 235841 6956995 116275
9/18 to 12/18 109410969 581345 7128825 155895
12/18 to 3/19 95948559 673838 6078533 136554
3/19 to 6/19 92201997 378788 6643282 132441
6/19 to 9/19 93229922 458141 5677468 94248
9/19 to 12/19 75613694 343666 7193235 153081
12/19 to 3/20 101547199 587658 6122643 100381
3/20 to 6/20 126756329 3482845 5593815 270096

One notices in Table 5.4 that in the year 2017 there are more entries for VCRB B6 than

for ES, later the situation reverses. Overall, there are around 5-8 times fewer entries for
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the price level-based method in comparison to the volume-based. I address the potential

consequences of these differences for the hypothesis testing in the Discussion section.

Table 5.4 Numbers of extracted patterns for volume-based (VCRB) range 7, and price level-
based (PL) methods, reported for the analysed data sets, both instruments.

Batch VCRB PL
ES B6 ES B6

3/17 to 6/17 2236 2785 458 278
6/17 to 9/17 1998 2789 360 267
9/17 to 12/17 1416 3440 268 378
12/17 to 3/18 10471 4018 1643 418
3/18 to 6/18 10231 3125 1695 335
6/18 to 9/18 4182 2643 736 287
9/18 to 12/18 11876 3789 1926 370
12/18 to 3/19 13937 3354 2234 348
3/19 to 6/19 6940 3480 1186 358
6/19 to 9/19 9111 2329 1413 235
9/19 to 12/19 6202 3878 1060 410
12/19 to 3/20 12886 2505 1856 227
3/20 to 6/20 88486 8373 12085 738

5.2.2 Volume-centred range bars

I generate VCRBs for range sizes of 5, 7, 9 and 11 ticks. For comparison purposes, I extract

price-based patterns using a configuration from Chapter 4. I visualise the VCRBs in Fig. 5.2.

As it was explained before (Section 5.1), the volume in the centre is the largest one. The

volume distributions differ a lot for the provided entries. If there is a price with zero volume

(second pattern from the left in Figure 5.2), I skip that price in the visualisation.

5.2.3 Prediction of the reversals and crossings

The initial experimental stages are feature selection and model parameter tuning. I do not

report the optimised feature spaces and model parameters in the chapter making this data

available in the publicly available reproducibility package [178, 179].

For the classification task, I report all the stated performance metrics for the configura-

tion range 7, which is chosen based on RQ1 effect sizes, together with the PR-AUC metric

for the price levels method in Tables 5.5 and 5.6. The rest of the metrics for price levels are

reported in the supplementary materials, in Tables C.1 & C.2. Additionally, in the supple-
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Fig. 5.2 Example of volume-centred range bars generated for ES instrument. Histograms
indicate traded volumes within the buffer. Points of control are in the centre of the volume
profiles, marked with dark grey. The profiles are formed when the price buffer is complete (9
ticks in this case). Zero-volume entries are not shown.

mentary materials I plot the data representing null and alternative hypotheses throughout

the study - in Figures C.1, C.2, C.3 and C.4.

In all the experiment families I compute effect sizes for all the VCRB configurations

(ranges 5, 7, 9 and 11). The statistical test results are reported only for the largest effect size

configuration from the RQ1 experiment family, on S&P E-mini (ES) instrument. I commu-

nicate the rest of the statistical tests in the supplementary materials. When evaluating the

statistical tests, I correct for multiple comparisons - the corrected significance levels are

provided separately for each experiment group.

RQ1 - VCRB method, CatBoost versus No-information estimator

Here I provide the classification performance comparison between the CatBoost estimator

and the no-information estimator. First, I plot the effect sizes with .95 confidence intervals

in Fig. 5.3. Then, I provide performance statistics and the statistical test results in Table 5.7.

Additionally, to allow easier comprehension of the results, I visualise the precision of the

models from Tables 5.5 and 5.6 in supplementary materials, Fig. C.1.

From Figure 5.3 one sees that effect sizes for ES are generally larger. The effect size

pattern across configurations is preserved between the two instruments with an exception



116 Event Detection in Volume Profile Patterns of Financial Time Series

Table 5.5 Performance metrics for ES, volume-based pattern extraction configuration range
7. The dates are reported in the form MM/YY. While the results are poor on the absolute
scale, it is expected in the financial time series domain, more details are provided in the
Discussion section.

Batch VCRB Price levels
PR-AUC ROC-AUC F1-score Precision Null_precision PR-AUC

3/17 to 6/17 0.25 0.54 0.34 0.25 0.23 0.14
6/17 to 9/17 0.23 0.51 0.32 0.22 0.21 0.19
9/17 to 12/17 0.25 0.51 0.30 0.25 0.24 0.15
12/17 to 3/18 0.24 0.52 0.27 0.24 0.23 0.16
3/18 to 6/18 0.25 0.52 0.30 0.24 0.23 0.16
6/18 to 9/18 0.25 0.53 0.34 0.25 0.24 0.16
9/18 to 12/18 0.25 0.52 0.31 0.25 0.24 0.16
12/18 to 3/19 0.24 0.52 0.33 0.23 0.22 0.18
3/19 to 6/19 0.25 0.52 0.29 0.26 0.24 0.16
6/19 to 9/19 0.25 0.53 0.35 0.25 0.24 0.15
9/19 to 12/19 0.24 0.51 0.28 0.25 0.23 0.14
12/19 to 3/20 0.24 0.51 0.30 0.24 0.23 0.17
3/20 to 6/20 0.24 0.52 0.33 0.24 0.23 0.17

Table 5.6 Performance metrics for B6, volume-based pattern extraction configuration range
7. The dates are reported in the form MM/YY. While the results are poor on the absolute
scale, it is expected in the financial time series domain, more details are provided in the
Discussion section.

VCRB Price levels
Batch PR-AUC ROC-AUC F1-score Precision Null_precision PR-AUC
3/17 to 6/17 0.24 0.51 0.25 0.25 0.23 0.17
6/17 to 9/17 0.23 0.51 0.27 0.24 0.22 0.16
9/17 to 12/17 0.24 0.51 0.24 0.24 0.23 0.16
12/17 to 3/18 0.23 0.52 0.26 0.23 0.22 0.15
3/18 to 6/18 0.21 0.50 0.25 0.20 0.21 0.12
6/18 to 9/18 0.23 0.51 0.23 0.24 0.23 0.18
9/18 to 12/18 0.23 0.51 0.26 0.23 0.22 0.15
12/18 to 3/19 0.24 0.52 0.26 0.24 0.23 0.19
3/19 to 6/19 0.21 0.50 0.20 0.20 0.21 0.18
6/19 to 9/19 0.22 0.50 0.25 0.23 0.22 0.20
9/19 to 12/19 0.22 0.50 0.24 0.23 0.23 0.14
12/19 to 3/20 0.23 0.50 0.31 0.22 0.22 0.17
3/20 to 6/20 0.24 0.53 0.25 0.24 0.21 0.20

of range 7. For ES the maximum effect size is observed at range 7 and the minimum - at

range 9, while for B6 the maximum is at range 5 and the minimum is at range 9. Finally,

judging the significance of the effect sizes by the confidence intervals (CIs) crossing the
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Fig. 5.3 Hedge’s gav effect sizes quantifying the improvement of the precision from using the
CatBoost over the no-information estimator. The error bars illustrate the .95 confidence in-
tervals, corrected for multiple comparisons. The dashed line corresponds to the significance
threshold. Ranges correspond to different configurations of the pattern extraction method.

Table 5.7 Statistics supporting the outcomes of the Wilcoxon test. The test is aimed to
check whether, on the VCRB data and the considered feature space, CatBoost performs
significantly better than the no-information estimator. The provided result is for the range 7
configuration.

Statistics Dataset
ES B6

One-tailed Wilcoxon test p-value < .001 .024
Test Statistics 91.0 74.0

CatBoost No-information CatBoost No-information
Mean (precision) 0.24 0.23 0.23 0.22

Median (precision) 0.25 0.23 0.23 0.22
Standard Deviation (precision) 0.0092 0.0074 0.0138 0.0067

significance threshold line, one notices that there are no significant effect sizes in B6, while

ranges 5 and 7 are significant for ES.

Performance statistics in Table 5.7 indicates no skew in the data between CatBoost

and no-information models, at the same time there is a 1.2 and 2 times difference in the

sample variance for ES and B6, respectively. The results for other VCRB configurations are

provided in the supplementary materials, Table C.3. Since 8 statistical tests are conducted (4

configurations × 2 instruments), I correct the significance level as follows: α= .05/8 = .00625.
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For the rest of the experiment families, the statistical tests are reported for the range 7

configuration, as it demonstrated the largest effect size for RQ1 experiments.

RQ2 - VCRB versus price levels approach

In the current section, I present the results of the investigation on whether volume-based

centred bars lead to a better classification performance than the price level approach. I

report Hedge’s gav effect sizes on paired data with .95 confidence intervals in Fig. 5.4, and the

outcomes of the statistical test with the supporting statistics in Table 5.8. Complementing

the results, I visualise PR-AUC values from Tables 5.5 and 5.6 in supplementary materials,

Fig. C.2).

0 5 10
Hedge's gav

Range 5

Range 7

Range 9

Range 11
ES

0 2 4 6
Hedge's gav

B6

Fig. 5.4 Hedge’s gav effect sizes, quantifying the supremacy of the VCRB over the price levels
approaches on the basis of the PR-AUC metric. The error bars illustrate the .95 confidence
intervals, corrected for multiple comparisons. The dashed line accounts for the significance
threshold. Ranges correspond to different configurations of the pattern extraction method.

One sees that all the effect sizes in Fig. 5.4 are significant as the confidence intervals do

not overlap with the significance threshold line. Also, confidence intervals for ES are larger

in comparison to B6. Lastly, the largest effect size is observed for range 5 configuration

across instruments.

Performance statistics in Table 5.8 shows no skew in the data, however, sample variances

differ up to 4 times between the two methods. The rest of the VCRB configurations are
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Table 5.8 Statistics support the outcomes of the Wilcoxon test which checks whether the
Volume-based pattern extraction method leads to better classification performance than
the price level pattern extraction. The result is reported for the range 7 configuration.

Statistics Dataset
ES B6

One-tailed Wilcoxon test p-value < .001 < .001
Test Statistics 91.0 91.0

VCRB Price levels VCRB Price levels
Mean (PR-AUC) 0.24 0.16 0.23 0.17

Median (PR-AUC) 0.25 0.16 0.23 0.17
Standard Deviation (PR-AUC) 0.0066 0.0118 0.0094 0.022

reported in Table C.4. In the current experiment family, I run 8 tests in total, hence the

corrected significance level is α= .05/8 = .00625.

RQ3 - VCRB method, ES versus B6 datasets

Here I detail the results of comparing the classification performance of the VCRB entries

extracted from ES and B6 datasets. I report effect sizes with .95 confidence intervals in

Fig. 5.5, and the statistical test with the supporting statistics from range 7 configuration in

Table 5.9. The test outcomes for the other configurations are provided in supplementary

materials, in Table C.5. Additionally, I visualise PR-AUC performance from Tables 5.5 and 5.6

in supplementary materials, Fig. C.3.

Table 5.9 Statistics support the outcomes of the Wilcoxon test which assesses whether the
VCRB pattern extraction method leads to better classification performance on the more
liquid market (ES in comparison to B6). The result is reported for the range 7 configuration.

Statistics Datasets
One-tailed Paired Wilcoxon test p-value < .001

Test Statistics 88.0
ES B6

Mean (PR-AUC) 0.24 0.23
Median (PR-AUC) 0.25 0.23

Standard Deviation (PR-AUC) 0.0066 0.0094

In Figure 5.5 larger range of the VCRB leads to a smaller effect size. At the same time, the

confidence intervals shrink with the range increase, indicating that the effect for the larger

ranges is smaller but more stable.
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Fig. 5.5 Hedge’s gav effect sizes for Volume-based method PR-AUC performance improve-
ment on ES over B6 datasets. Error bars illustrate the .95 confidence intervals corrected
for multiple comparisons. Ranges correspond to different configurations of the pattern
extraction method.

The statistics on the results in Table 5.9 shows that variances differ by around 50%

between the samples and there is no skew in the distributions. In the current experiment

family, I run 4 tests in total, hence the corrected significance level is α= .05/4 = .0125.

5.2.4 Backtesting

Figures 5.6 and 5.7 show annual rolling Sharpe ratios with a 5% risk-free rate and cumulative

profits in ticks for all the configurations of the VCRB and price level methods.

For easier interpretation of the figures, I plot Sharpe ratios averaged over 30-day peri-

ods. The lag of Sharpe ratio plots with respect to the cumulative profits is caused by the

requirement of the Sharpe ratio to have a year of data available for obtaining the initial value.

5.2.5 RQ4 - Relatedness of feature interactions from SHAP and decision

paths

The following results assess the relatedness of the feature interactions data extracted using

SHAP and the proposed decision paths methods by comparing their relatedness to the

bootstrapped data. Following the format of the previous experiments, I report effect sizes

in Figure 5.8, and provide results of the statistical test as well as supporting statistics in

Table 5.10. Additionally, I report the statistical test outcomes for the rest of the configurations
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Fig. 5.6 Sharpe ratios and cumulative profits of the volume-based method configurations.
Profits are provided in ticks. The simulation does not take bid-ask spreads and order queues
into account, hence might be over-optimistic.

in the supplementary materials, Table C.6. Lastly, I plot the differences between data

representing both hypotheses in supplementary materials, Figure C.4.

From Figure 5.8 one notices that the smallest effect sizes are observed for configurations

7 and 9 in ES and for configuration 5 in B6. Interestingly, the behaviour across the configura-

tions is flipped for ES and B6. In Table 5.10 one can see that there is no skew in the data as

mean and median values are very similar. At the same time, there are significant differences

in the data variances, which I address in the Discussion section. The test statistics values

are small in comparison to the previous tests - in the current experiment smaller Footrule

distances represent the alternative hypothesis, hence the statistical test is computed for the

opposite difference sign with respect to the previous cases. In the current experiment family,

I run 8 tests in total, hence the corrected significance level is α= .05/8 = .00625.
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Fig. 5.7 Sharpe ratios and cumulative profits of the price level-based method. Profits are
provided in ticks. The simulation does not take bid-ask spreads and order queues into
account, hence might be over-optimistic.

Table 5.10 Outcomes of the one-tailed Wilcoxon test which check whether SHAP and decision
paths feature interactions extraction methods are related significantly stronger than the
bootstrapped data. The statistics of the samples compared by the statistical test are provided
in columns ”Actual distance” & ”Bootstrapped”. Mean, Median and Standard Deviation
(SD) are produced for footrule distance. Footrule distance is inversely proportional to the
relatedness. The result is reported for the range 7 configuration.

Statistics Dataset
ES B6

Wilcoxon < .001 < .001
Test Statistics 2.0 0.0

Actual distance Bootstrapped Actual distance Bootstrapped
Mean 88281 93281 86552 93280

Median 88104 93279 86296 93281
SD 4208.0 5.3 3134 6.6
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Fig. 5.8 Hedge’s gav effect sizes quantifying the relatedness strength of the SHAP and decision
paths methods for extracting feature interactions with respect to the relatedness of the
bootstrapped data. The relatedness of the feature interactions is assessed through the
Footrule distances of the ranked interaction strengths. Error bars illustrate the .95 confidence
intervals corrected for multiple comparisons. Ranges correspond to different configurations
of the pattern extraction method.

5.3 Discussion

In the current section, I reflect on the obtained results in the same order as the experiments

are conducted. Namely, a performance comparison between i) CatBoost and no-information

models; ii) volume-based (VCRB) and price levels extraction methods; iii) ES and B6 financial

instrument, and iv) relatedness of feature interactions obtained from SHAP and the explicit

model decision paths. Furthermore, I discuss the limitations of the study as well as its

broader implications and future work.

5.3.1 RQ1 - Classification Performance of VCRB Bars

Larger effect sizes for the ES instrument in Figure 5.3 mean that there is a larger improvement

from using the CatBoost model for ES rather than for the B6 instrument. Based on the p-

values reported in Tables 5.7 and C.3 and considering the corrected significance level for

the current experiment family, the null hypothesis is rejected for configurations 5 and 7,

ES instrument. The rejection of the null hypothesis means that the CatBoost estimator

performs significantly better than the no-information model. From these results, I conclude
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that the feature space and the model work acceptably well in some configurations. I answer

positively the first research question (RQ1) for the range 5 and 7 configurations. It is worth

a note that the studied setting might have even more potential if considering extensive

optimisation of the system parameters.

No-information models, whose precision represents the fraction of the positively labelled

patterns, are the highest for range 5 (Table C.3). A potential interpretation is that this

configuration is the most suitable for the studied markets. Possible underlying reasons

include lack of interest in the implied trading frequency from the larger market participants,

whose capitals exceed liquidity offered at this time scale. Alternatively, it might mean that

the observed performance supremacy is purely theoretical and in reality, is levelled off by

higher risks associated with more frequent market exposure.

Looking at the precision of the models in Figure C.1, there is possibly a descending

performance trend for both models and instruments. This can be interpreted as a gradual

increase of market efficiency in the aspect of the wider use of market microstructure data for

investment and trading decision making. Overall, the CatBoost model with the considered

feature space gives a larger performance increase with respect to the no-information model

for the ES than for the B6 dataset. This might be due to larger trading volumes of the ES

instrument, hence less price action is not supported by volumes.

5.3.2 RQ2 - Comparison of VCRB and Price Level Trading

The statistical test outcomes are reported in Tables 5.8 and C.4. Considering the corrected

significance level for the current experiment family, all the statistical tests in the current

experiment family have a significant outcome, and the null hypothesis is rejected. An-

swering the research question, the results mean that VCRB patterns can be classified with

significantly better performance than price level-based patterns.

All the effect sizes in Figure 5.4 are significant based on the confidence intervals not

overlapping the 0-threshold. In Figure C.2 I see quite a stable gap of around 0.08 in the

PR-AUC performance between VCRB and price levels for ES. The gap is smaller (around

0.04) and converges for B6.

Estimators might be worse at learning a reliable classification path from the price levels

data for at least two hypothetical reasons: i) higher non-stationarity of the price level patterns

in comparison to the VCRBs; ii) smaller price levels dataset sizes (Table 5.4). The latter can

be potentially solved by increasing the considered time ranges of the training datasets.

However, verification of any of these reasons is out of the scope of the current work and

requires separate research for validation. Finally, I see a better backtesting performance for
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the volume-based method in comparison to the price level in Figs 5.6, 5.7, which additionally

supports the findings.

5.3.3 RQ3 - Impact of Market Liquidity on VCRB

As per my initial hypothesis (H13), VCRB trading performed significantly better in the more

liquid market (ES). This is shown by rejecting the null hypothesis, as the VCRB bars allow

classification with significantly better performance on the ES dataset for all the considered

configurations (Tables 5.9 and C.5). Looking at the model performance for both instruments

in Figure C.3, one sees that the method performs generally better for the ES dataset with up

to 0.04 differences of PR-AUC, and two cases where B6 has a marginally better performance.

This is something expected as with more liquidity comes more impact from the volume-

based features. This is also reflected in the number of POCs, with ever-increasing identified

points correlating to an increase in liquidity (more recent years).

One of the potential reasons for the better performance for the ES dataset is a much

larger number of extracted patterns in the ES market (Table 5.4), hence more training data is

available.

Finally, I see a better backtesting performance for the more liquid asset in Figure 5.6,

which supports the formal findings. Interestingly, Sharpe ratios have the same character

of changes per method across configurations, especially for B6. There is less similarity

between the two pattern extraction methods. While it is a known fact that most of the

financial instruments are related, making it harder to diversify risks, these relations cause

similar impacts on the intraday trading performance. This might suggest that using the

same trading approach across instruments might not contribute to risks diversification to

the expected extent, and requires careful prior research.

5.3.4 RQ4 - Feature Interaction Associations

In this chapter, I also investigate the relatedness of two different feature interaction methods.

SHAP values are a widely used measure that is easy to compute and approximates the pre-

dictor. However, due to this approximation, it might be not suitable for every single setting,

especially for the cases where the expected performance is far from ideal, like financial

markets. Hence, I aimed at checking the relatedness of SHAP and explicitly extracted feature

interactions. I designed a null hypothesis dataset using a bootstrapping approach, if the

relatedness between the null dataset and the other feature analysis dataset were similar

then the relatedness would be insignificant; conversely, if the relatedness was akin between

the interaction analysis methods but not the null hypothesis then the null hypothesis (H04)



126 Event Detection in Volume Profile Patterns of Financial Time Series

would be rejected. From the test outcomes in Tables 5.10 and C.6 I conclude that for all the

configurations and both instruments the null hypothesis is rejected and relatedness between

the two methods is significant. In Figure C.4 one sees that mean bootstrapped distances

have a negligible variance in comparison to the actual feature interaction methods. The

low variance of the null hypothesis data is a sign of the correct choice of the bootstrapped

sample size since the baseline is stable.

Also, the distances of all the entries are smaller than the null hypothesis data for B6 and

ES with one exception entry being slightly larger than the bootstrapped entry. Distances

between the two methods are around 5% smaller on average than the null hypothesis

datasets.

SHAP assigns a local explanation based on introducing a numeric measure of credit

to each input feature. Then by combining many local explanations, it represents global

structure while retaining local faithfulness to the original model [180]. This is in contrast to

the used explicit approach which instead computes global values, accounting for the large

mean distance. Hence, the varying principles underlying these approaches contribute to

the observed results.

5.3.5 Limitations

I would like to highlight that the analysis provided in this chapter is but one of the possible

means to empirically answer the stated research questions. Whilst I choose to focus on strict

statistical analysis to showcase the significance of the results, other valid approaches could

be implemented. A limitation of the conducted work is that even though the analysis is

extensive, it focuses on only two examples of trading instruments. Whilst these are chosen to

represent different markets that allow observing the performance of the proposed method in

vastly different scenarios, one could envision that a more thorough systematic analysis of the

same approach across varied instruments could have some benefits; although I argue this

may be out of the scope of the current work. One potential limitation of the analysis resides

in the relatively small sample size. To reject the null hypotheses I made use of the Wilcoxon

test. The same as in Chapter 4, this decision was guided by the small sample size, which in

turn made it not feasible to reliably establish whether the data was normally distributed,

consequently I could not use parametric tests. Whilst sometimes less precise, this decision

is supported by literature to be the optimum choice in these circumstances [181].

When assessing the absolute model performance, I consider the theoretical profitabil-

ity threshold computed for the simplistic strategy proposed in Chapter 4, Section 4.1.4.

Concretely, assuming that the take-profit is 15 ticks, and the stop-loss is 3 ticks, I count

0.5 ticks for the trading fees (which is above a typical trading fee at the beginning of 2021).
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Hence, for each entry, I have a maximum possible theoretical profit of 14.5 ticks and a loss

of 3.5 ticks. Dividing one by another I get the theoretical profitability threshold at 24.1%

precision. Being more conservative, I would want to account for the bid-ask spread, which

is 1 tick most of the time for ES and B6 (less stable). The presence of the spread means

that after one enters the market, their open P&L (profit & loss) is -1 tick - if the position is

opened by bid, it will be liquidated by ask which is 1 tick away and vice versa. Of course, it

affects the fraction of the trades closed by the stop loss in a live setting in comparison to

the no-spread simulation. There is not enough information available to probabilistically

model this, but if I account for the spread by subtracting 1 tick from all trades, I end up

with the profitability threshold of 33.3% precision. While the original take profit to stop

loss sizes relate as 1 to 5, the actual picture (after taking into account all the mechanics and

fees) is very different. In the considered setting, the limitation of the profitability threshold

value comes from multiple entries observed within a short time range. With an already open

position, the assumed strategy does not make use of the following signals until the current

position gets liquidated. Also, there is a limitation caused by order queues hampering the

strategy performance in the live market - potentially profitable orders are more likely to not

be executed, as one expects the price to reverse. Losing positions will be executed always as

the price continues its movement.

I note that the different instruments and datasets will involve differences in volatility and

liquidity, which impacts the length of the trades and other factors which may influence back-

testing results. Considering all these, I conclude that it is necessary to take the backtesting

results with a certain grain of salt.

While in most other machine learning contexts the obtained performance may seem low

if not horrendous, in the current domain it is in line with expectations as shown in previous

works [169].

It should be noted that by design the hypotheses are tested on market microstructure-

based feature space. By rejecting the null hypotheses one cannot claim that these findings

hold for an arbitrary feature space, but rather for the proposed one. By running the experi-

ments with the feature selection and model optimisation steps, I make an informal effort to

expand the findings to a flexible feature set and a model configuration. Also, even though I

have made the best effort to unify the experiment design, the feature spaces slightly vary

between the two methods, which may have some impact on the results.

Similar test statistics numbers across Tables 5.7-5.9 result from the small group sizes and

similar pairwise measurement variable comparison outcomes.
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Performance-wise, the current study’s trading performance resulted in Sharpe ratios

of around 2 for the best-performing configurations. The obtained performance can be

considered at least comparable to the studies mentioned in 4.3.5.

5.3.6 Implications for practitioners

The current chapter proposes an approach to the classification of micro-events in multidi-

mensional non-stationary financial time series. This work advances the body of knowledge

in applied financial time series analysis by proposing a pattern extraction method and shap-

ing the contexts in which it can be used. The proposed method can be directly applied as a

part of an algorithmic trading pipeline. Moreover, the method might become an alternative

way of sampling the market and stand in a row with other types of sampling, like volume

and range bars.

There are other research areas dealing with a similar setting, like social networks and

forums analysis, topic detection and tracking, fraud detection, etc. I believe that the idea

of the proposed method is applicable to some of these fields. Namely, identification of a

micro-event in one of the time series dimensions as an "anchor" for the multidimensional

pattern extraction. It is likely that for obtaining optimal results, the design of the anchor

should involve domain knowledge.

5.3.7 Future work

I see a number of paths for future work. Namely, an extension of the experiments to other

markets, more advanced backtesting, fundamental assessment of the stationarity, and

extension of the feature space. Other financial markets, like Forex, Crypto and stocks would

require certain adjustments of the proposed method since there are multiple marketplaces

and volumes are distributed across them. Moreover, prices might also differ between the

marketplaces, making it harder to aggregate the data. Overall, each financial instrument has

its own characteristic properties and it would be interesting to see how generalisable the

proposed method is.

While the used backtesting engine is relatively simple, there are more advanced ones

that exist in the field. However, they are usually made available as parts of trading platforms.

Since the trading platforms are usually proprietary, the mechanics of the backtesting engines

are not always clear and transparent and cannot be replicated outside the platform. Hence,

it would be beneficial to develop an open-source package for backtesting which includes

bid-ask spreads and models the trading queues.



5.4 Chapter conclusion 129

The current study is based on empirical methods and is considered application-oriented.

I hypothesise that the proposed method allows extracting patterns that are more stationary

than the market itself. However, I never formally measure the stationarity, to avoid further

complications of the study design. A formal assessment of the stationarity would allow

choosing the most promising pattern extraction methods which in theory might require

fewer training entries for successful classification and trading.

In the current work, I used volumes-based feature space. There is a different approach

to feature design - technical indicators, like RSI, MACD, Parabolic SAR, etc. To fully incor-

porate the indicators into the pipeline, the feature space should be increased significantly.

This might be done in parallel with the more fine-grained configuration of the estimator

and the development of a more realistic trading strategy. Even though this point is rather

implementation-focused, it might lead to very interesting results, which could be further

supported by the statistical approach followed in the current chapter.

5.4 Chapter conclusion

In this chapter, I present a new automated trading micro-event extraction method suitable

for ML called Volume-Centred Range Bars (VCRB). The work presents a detailed statistical

analysis of the presented approach to thoroughly assess its performance.

I firstly assess the volume-based pattern extraction validity by evaluating 1) the signifi-

cance of the classification performance, 2) the improvement of the proposed feature space

and 3) model configurations with respect to the baseline (RQ1). This expands beyond simply

trading using VCRBs as I showcase how performance can be improved using a state-of-the-

art feature engineering approach and a machine learning estimator. I further investigate the

method’s effectiveness by comparing it with another successful pattern extraction method

based on price levels. The results showcase a net improvement in performance across

two different financial instruments (RQ2). By rejecting the null hypothesis H03, I answer

positively on research question 3 (RQ3), that liquid markets improve the effectiveness of the

proposed approach.

Additionally, contributing to the explainability, I compare two different feature inter-

action extraction approaches - the popular ML approach SHAP, which approximates the

model, and an extension of Monoforest, which uses explicit decision paths from the model.

The analysis shows that in the considered setting, both methods are significantly related,

hence holding some common findings. I conclude that SHAP can be used for providing

explainability in the considered setting, something which had previously not been investi-

gated.
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To conclude, the proposed methodology in the current and previous chapters is struc-

tured in a way that allows for comparability across studies by providing the effect sizes; and

reproducibility, by detailing the method and sharing the reproducibility package. My hope

is that this will make it easier for the practitioners to test this same approach and evaluate it

against other methods, hopefully helping improve the field for the better. Code to reproduce

the conducted analysis and match the results is available online [178, 179].



Chapter 6

Conclusion & final considerations

Reiterating the original objectives:

" i. Define the micro-events in the context of online Q&A communities and financial markets;

ii. Design a generalisable methodology allowing to work with weakly manifested micro-events

in both domains; iii. Detect and classify the micro-events in forum-like communications data

on the example of StackOverflow Q&A platform and financial time series; iv. Investigate the

reliability of SHAP model explanation in the context of weakly manifested micro-events; v.

Detail the outcomes and limitations of the work."

In the current thesis, I have introduced the concept of micro-events and proposed a

generalisable methodology for their detection and classification. The latter allowed me to

demonstrate how micro-events can be defined in the domains of textual communications

and financial time series. Then, I have demonstrated that SHAP model explanations can be

reliably used in the context of the micro-events. Finally, for each domain, I have outlined the

outcomes, limitations, and future work of the conducted studies. At this point I conclude

that the odjectives of the dissertation were successfully achieved, making a significant contri-

bution to the body of knowledge of micro-event detection and time series analysis [182–184].

The purpose of the current chapter is to discuss the findings of the dissertation in a more

general context. This includes the potential impact of the findings on the field, identified

fundamental limitations of the conducted studies, as well as potential future work. I finish

the chapter with concluding remarks.

The current chapter is structured as follows: I discuss the obtained results in Section 6.1,

describe the future work in the area of micro-event detection in Section 6.3, list the limi-

tations of the pursued approach in Section 6.2, and make the concluding remarks in Sec-

tion 6.4.



132 Conclusion & final considerations

6.1 Discussion

In the dissertation, I set up a model experiment aimed at detecting micro-events in textual

data with an assumption that these micro-events might impact the online community. I

demonstrate that it is feasible to design statistically significant models for detecting the

micro-events. The experiment design involves defining the impact time window, engineering

the data representation, assessing the feature effect sizes, as well as training analysing linear

and nonlinear models. I also propose an approach to financial time series analysis, aimed at

extraction and classification of the micro-events. While the proposed approach is one of

many ways of looking at the financial time series data, it is supported by financial markets

mechanics, therefore, gives a fresh perspective of the analysis. Overall, I propose a way of

analysing non-stationary data with a low signal-to-noise ratio in a consistent, comparable

and reproducible way.

The quality of the fitted models in the previous chapters is far from the theoretical

performance cap. On the one hand, it means that there is still a lot to be done in the field. On

the other hand, the considered data is constantly changing which makes the advancement

very challenging.

Financial time series are generated to a large extent as a result of multiple parties exploit-

ing the predictable aspects (or inefficiencies) of the market. Being exploited, the predictable

traits vanish, however, each market activity might lead to a new inefficiency. As a result, we

observe a non-stationary self-regulated system, which can be predicted only to a certain

extent. Its change is largely supported by a constantly changing number of interacting

parties and their objectives, as well as the advancement of analytical methods. These make

financial markets an infinite source of challenging labelled data.

Considering the textual communication data, it also constantly emerges. The changes

are caused by the communicating parties, conditioned by the non-linearity and diversity of

the biological neural networks - brains. The communicating parties are affected by various

external events, which form their lives. These events might either contribute to the general

evolvement of the party’s personality or be directly related to the communication topic.

While there is no direct competition in predicting the change in the data, there are too many

factors causing it, and the current body of knowledge is far from accurately identifying and

modelling all the impacts.

Being driven by completely different objectives of the parties, the two domains have

the same underlying source of non-stationarity - humans. One might hypothesise that the

amount of non-stationarity in the society-related data is conditioned by the engagement of

the individuals, the amount of freedom they have, a varying amount of interacting agents,

as well as the objective of the underlying process. Certain crowd behaviours can be suc-
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cessfully modelled and predicted [185, 186]. While the quality of such models is sufficient

for many real-world applications, it is quite application-specific and often far from being

perfect. Involving a smaller fraction of the community, micro-events are harder to model

and analyse. I believe that the current work gives a realistic assessment of the capabilities of

the available methods in detecting micro-events. Based on the performance of the models,

one might conclude that detecting or predicting micro-events is a principally different task

than predicting the behaviour of the crowd.

6.1.1 What I have learnt from the dissertation

• The outcomes of the work allowed us to appreciate the level of complexity of the micro-

event detection. I initially hypothesised that this is a higher-risk research topic, and

the results of the dissertation clearly support it. One should take into account that the

studied communities are fairly open and the communications are completely public.

There is no access management based on reputation, as it is usually implemented in

dark web communities. Consequently, one would expect the challenge of micro-event

detection in dark web forums even more challenging and require a targeted approach.

For instance, a work by Pastrana [187] demonstrates how eWhoring can be detected

and measured. The measurement relies on assumptions on agent interactions and

data quality. Relating the study to the current thesis, one should note that eWhoring

often requires a single unit of text for detection, making it stronger-manifested than

micro-events considered in the dissertation.

• I have observed the importance of the carefully-designed methodology, allowing to

evaluate the success of the study in different dimensions, including the quality of

the designed features, the significance of the model fit and feature contributions,

the significance of the model performance, and, finally, statistical assessment of the

null hypothesis rejection criteria. While shortcuts might be acceptable for stronger-

manifested and easier-classifiable events and data, the studied matter requires all the

tools to reverse-engineer the experiment design and identify its weaker points.

• While in the current thesis, I aimed to understand the feasibility of a generalisable

approach, it naturally limited the final performance of the solution. When developing

an applied system for micro-event detection, I would take a targeted approach and

evaluate it against the provided generalised solution. This would involve making

the best use of the domain knowledge as well as making use of all the available data.

For instance, for the textual data, it would mean developing a representation of the

community members, their expertise, relationships and contributions, and including
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it into the input features. Considering time series data, one could include news, time

series of the related markets, as well as order book data into the analysis. It would

substantially increase the amount of processed data, the complexity of the final model,

and potentially its performance. I conclude that with the currently available analytical

methods, the generalised approach for micro-event detection is rather infeasible.

In terms of the broader implications of the current work, I envision that it creates a

baseline for micro-event detection not only in terms of model performance but also from

the perspective of methodology and rigour. As I stated above, micro-event detection requires

a set of specific sensitive tools and methods allowing careful analysis of the experiment

design. I hope that the current work will serve as a foundation and a guide for the coming

studies on micro-event detection in a wide range of domains.

6.2 Limitations

While the idea of treating the points of interest as events is very broad, it still has certain

boundaries. It implicitly focuses on the points of interest, limiting the use of indirect

methods, where the points of interest are not clearly defined or even cannot be defined. It is

evident when the event detection is compared to topic tracking - the emergence of the new

topics is expected at any point of the analysis. Moreover, the process of the topic emergence

might be smooth, represented by a gradual transformation or merge of the existing topics,

where the particular event point is not present. When one tries to assess this process as

an event detection task, the event’s temporal boundaries would be largely indefinite. In

fact, the change might be inherent in the system’s nature. For example, bifurcations in

complex systems, where the qualitative change of the system is caused by a gradual change

of the certain system parameter values [188]. Relating the matter to the studied systems, the

example of a bifurcation might be observed when the market dynamics experiences large

changes after a certain number of agents is reached. In terms of textual communications, at

some point of the platform popularity, an average weight time before a question is answered

might have a sudden drop as more and more people start competing for platform reputation.

Considering the studied domains, in both cases, the interacting parties are represented

by highly non-linear agents - humans. Moreover, both domains are known to be successfully

studied from the perspective of bifurcation theory [189–191]. While the qualitative change

of the system is detectable, its causes are at least difficult to explore by means of the event

detection formalism. In terms of predictions - it would require identifying the critical

parameters of the system causing the bifurcations, which is at least a very challenging task

considering the complexity of the systems. Finally, even when one is not aiming to explicitly
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detect or predict bifurcations, they are still present in the systems and might act as a source

of noise when detecting or predicting other types of events.

Discussing the financial markets, it is worth mentioning other approaches to define

points of interest. Namely, there is a term called alpha, which is defined as a trading signal

which potentially adds value to the financial portfolio [192]. The trading signal may be

represented as a rule of sampling points of interest from the time series. It can be based

on domain knowledge or be completely abstract. The latter can be mined in an automatic

way [193]. Of course, one sees parallels between the points of interest sampled by the alpha

and the micro-events studied in the thesis - the points of interest might be called events and

alphas might be seen as the event extraction methods.

When extracting the events from financial time series, I use domain knowledge. The

boundaries introduced by this domain-specific view, limit the flexibility of the method to

some extent. In this sense, abstract alpha mining gives a much broader space of variants.

I would consider this as a limitation of the methods proposed in the thesis. However, the

extraction rules can be merged. This is especially true when the number of sampled entries

is large. I expect that running an automatic abstract alpha search on top of the proposed

methods would create a foundation for an automatic alpha mining system backed by domain

knowledge.

6.3 Future work

While the details of the future work on the individual technical chapters are provided in their

corresponding sections (3.3.4, 4.3.7, 5.3.7), the current section covers the future work of the

thesis as a whole.

Based on the sections above, I would see at least a couple of aspects, where the current

work could be extended. Firstly, it would be very interesting to study the sources of noise of

the investigated systems. There is a huge body of knowledge of studying non-linear systems,

which suggests potential interdisciplinary research in the field. In particular, modelling of

the noise sources might allow better synthetic data generation, as well as assessment of the

stability of the newly proposed event extraction methods. Secondly, the extension of the

proposed event extraction methods in financial time series might be interesting. While the

proposed methods serve as a good baseline, there is definitely space for improvement of

the approach. As suggested above, abstract trading signal extraction can be revised from

the perspective of integration of the domain knowledge into it through the components

suggested in the current work.
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When one is considering a wider perspective of the event detection topic, there is cur-

rently no method that would allow robust event detection in a domain-agnostic way. How-

ever, being aware of the pronounced heterogeneity in the field, one can consider aspects of

the analysis that could be generalised. For instance, explainability of the models in the con-

text of event detection. We already know that the effect sizes in the field are medium at most.

Hence, models fitted on the considered data might require adjustments of the explainability

methods. I have already studied feature interactions reliability for event detection using

SHAP. However, due to smaller effect sizes and a large number of contributing factors, there

might be a need for more fundamental research of applicability of the surrogate model-

based methods like SHAP or LIME to event detection. Finally, even though it is a general

challenge, the field would benefit from development of new direct model explainability

methods that are not limited by linear models.

In the dissertation, I have covered two domains. If I would have started from scratch, I

would have focused on a single domain and after developing the generalisable solution as a

baseline, would have aimed to develop a targeted approach. This would have potentially

allowed me to propose an end-to-end solution to a real-world problem. Developing the

targeted solution, I would focus on the data representation and incorporating the online

community structure in the final model. This would apply both for time series analysis

and online communications data. Going further, I would model agent interactions in the

system, incorporating the body of knowledge of the agent-based modelling research field,

and especially agent-based modelling of ML-based agents.

6.4 Concluding remarks

Considering the current development of the event-detection methods and approaches, in

the current work I have begun to scratch the surface of the unknown in the area of micro-

event detection. This is a broad topic with potential applications in security, well-being

support, communication quality enhancement, etc. I believe that with further improvement

of the analytical tools, its impact will only grow. The reported statistically-backed findings

suggest that there are ways of detecting and classifying the micro-events using the already

available tools. However, the performance of the models is yet to be improved. Considering

the current machine learning advancement pace, it becomes clear that new findings in the

field are not so far away. I hope that the current work will help the research community by

providing a sound methodology and baseline performance in the context of micro-event

detection and classification.
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Umut Güçlü, Marcel Van Gerven, and Rob van Lier. Explainable and interpretable
models in computer vision and machine learning. Springer, 2018.

[75] Alexander Zien, Nicole Krämer, Sören Sonnenburg, and Gunnar Rätsch. The feature
importance ranking measure. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 694–709. Springer, 2009.

[76] Yanjun Qi. Random forest for bioinformatics. In Ensemble machine learning, pages
307–323. Springer, 2012.

[77] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local
explanations to global understanding with explainable AI for trees. Nature Machine
Intelligence, 2(1):56–67, 2020.

[78] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144,
2016.

[79] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju.
Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186,
2020.

[80] Ken Kelley and Kristopher J Preacher. On effect size. Psychological methods, 17(2):137,
2012.

[81] Roger Stern. Good statistical practice for natural resources research. CABI, 2004.

[82] D Hawkins, E Gallacher, M Gammell, et al. Statistical power, effect size and animal
welfare: recommendations for good practice. Animal Welfare, 22(3):339–344, 2013.

[83] Leland Wilkinson. Statistical methods in psychology journals: Guidelines and expla-
nations. American psychologist, 54(8):594, 1999.

[84] Wilhelm Kirch. Pearson’s correlation coefficient. Encyclopedia of Public Health, pages
1090–1091, 2008.

[85] RG Carpenter. Principles and procedures of statistics, with special reference to the
biological sciences. The Eugenics Review, 52(3):172, 1960.

[86] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psycho-
logical measurement, 20(1):37–46, 1960.

[87] Larry V Hedges. Distribution theory for glass’s estimator of effect size and related
estimators. journal of Educational Statistics, 6(2):107–128, 1981.

[88] Geoff Cumming. Understanding the new statistics: Effect sizes, confidence intervals,
and meta-analysis. Routledge, 2013.



References 143

[89] Daniël Lakens. Calculating and reporting effect sizes to facilitate cumulative science:
A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 2013.

[90] Cynthia Fraser. Association between two categorical variables: Contingency analysis
with chi square. In Business Statistics for Competitive Advantage with Excel 2019 and
JMP, pages 341–377. Springer, 2019.

[91] Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychological Bulletin, 114(3):494–509, 1993.

[92] Ronald A Fisher. Statistical methods and scientific inference. Hafner Publishing Co.,
1956.

[93] Joseph A. Durlak. How to select, calculate, and interpret effect sizes. Journal of
Pediatric Psychology, 34(9):917–928, 2009.

[94] Barnet Woolf. The log likelihood ratio test (the g-test). Annals of human genetics,
21(4):397–409, 1957.

[95] Michael R Veall and Klaus F Zimmermann. Pseudo-r2 measures for some common
limited dependent variable models. Journal of Economic surveys, 10(3):241–259, 1996.

[96] Robert M O’brien. A caution regarding rules of thumb for variance inflation factors.
Quality & quantity, 41(5):673–690, 2007.

[97] Michael E Miller, Siu L Hui, and William M Tierney. Validation techniques for logistic
regression models. Statistics in medicine, 10(8):1213–1226, 1991.

[98] R Dennis Cook and Sanford Weisberg. Applied regression including computing and
graphics, volume 488. John Wiley & Sons, 2009.

[99] R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York:
Chapman and Hall, 1982.

[100] Keith A McNeil, Isadore Newman, and Francis J Kelly. Testing research hypotheses with
the general linear model. SIU Press, 1996.

[101] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

[102] Ellen R Girden. ANOVA: Repeated measures. Number 84. Sage, 1992.

[103] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in
statistics, pages 196–202. Springer, 1992.

[104] M Usman. On consistency and limitation of independent t-test kolmogorov smirnov
test and mann whitney u test. IOSR Journal of Mathematics, 12(4):22–27, 2016.

[105] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni
del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62, 1936.

[106] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.



144 References
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Supplementary materials for Chapter 3

A.1 The goodness of fit measures of Logistic Regression mod-

els

In the current appendix, I provide detailed information on the goodness of fit for the Logistic

Regression models (Tables A.1 and A.2). Tjur R2 and Adjusted McFadden (Adj. MF) R2 are

used to choose the best-fitted model whose detailed analysis is described in the paper. Event-

based multiple packages datasets are not considered due to violation of the independence

condition of the Logistic Regression model. Based on the goodness of fit, I choose the

Selenium package, minor updates, event-based time steps dataset. Not all the statistical

tools are meant to be used with the numbers of features considered in the Table A.2 - Tjur

R2 does not fully adjust to the larger numbers of features, leading to erroneous results,

hence adjusted McFadden R2 is a more appropriate measure for the hSBM feature space

interpretation.

A.2 Performance of estimators

The appendix provides detailed results of the Chapter 3 experiments using various perfor-

mance metrics and the permutation test (Tables A.3,A.4). Due to the class imbalance, I

report mean values over two cases - events treated as a positive and a negative class. The

exception is the ROC-AUC metric which is computed with events as a positive class - its

mean is always .5 by definition.
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Table A.1 Logistic Regression models, LDA: goodness of fit. "c.w.-based" values correspond
to the calendar week-based time step datasets. The Number of Features column corresponds
to the number of features in the model after the RFECV feature selection step. Significant
model fits based on the Log-likelihood Ratio test are marked with a star(*).

AIC LLR Test Tjur R2 Adj. McFadden R2 Number of Features
Multiple major event-based 117.27 .17 .20 -0.16 18
Multiple minor event-based 306.04 <.001* .40 .27 10
Multiple patch event-based 423.54 <.001* .23 .18 1
Django minor event-based 311.03 <.001* .07 .05 4
Django patch event-based 130.02 .10 .02 -0.03 2
Selenium minor event-based 320.96 <.001* .16 .07 12
Selenium patch event-based 135.06 .17 .00 -0.03 1
Multiple major c.w.-based 165.83 .62 .06 -0.17 18
Multiple minor c.w.-based 457.04 <.001* .13 .04 15
Multiple patch c.w.-based 480.45 <.001* .13 .03 17
Django minor c.w.-based 200.83 .01 .05 .01 4
Django patch c.w.-based 95.57 <.001* .13 .05 5
Selenium minor c.w.-based 306.02 <.001* .10 .05 8
Selenium patch c.w.-based 151.27 .36 .04 -0.12 14

Table A.2 Logistic Regression models, hSBM: goodness of fit. "c.w.-based" values correspond
to the calendar week-based time step datasets. The Number of Features column corresponds
to the number of features in the model after the RFECV feature selection step. Significant
model fits based on the Log-likelihood Ratio test are marked with a star(*).

AIC LLR Test Tjur R2 Adj. McFadden R2 Number of Features
Multiple major event-based 246.00 .90 1.00 -1.41 675
Multiple minor event-based 642.09 .004 .99 -0.52 407
Multiple patch event-based 484.17 <.001* .09 .06 2
Django minor event-based 270.00 <.001* 1.00 .21 139
Django patch event-based 636.00 1.00 1.00 -3.81 608
Selenium minor event-based 345.82 .05 .01 -0.01 2
Selenium patch event-based 131.00 .01 .02 -0.00 2
Multiple major c.w.-based 153.46 .02 .05 -0.00 5
Multiple minor c.w.-based 294.09 <.001* .72 .39 72
Multiple patch c.w.-based 500.97 .01 .03 .00 5
Django minor c.w.-based 728.00 1.00 1.00 -2.44 474
Django patch c.w.-based 85.25 <.001* .20 .22 5
Selenium minor c.w.-based 248.35 <.001* .68 .23 72
Selenium patch c.w.-based 710.00 1.00 1.00 -4.00 407
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A.3 Synthetic data generator optimisation

To ensure maximum similarity between the synthetic and real-world datasets, the softmax

temperature and top_k parameters of the fine-tuned GPT-2 generator are optimized. These

parameters affect the properties of the generator output distribution.

The following two metrics are sequentially used to assess the similarity between message

corpora:

1. Pairwise Jaccard similarity [194] between the posts, which is used in Natural Language

Processing in different variations [195];

2. Kullback-Leibler divergence is used for quantitative comparison of the distance distri-

butions, as a well-established method for distributions comparison [196–198].

Since it is not feasible to compute the pairwise distances between all individual messages,

I take random samples of 500 posts from the data and repeat this sampling 30 times to get

the standard deviations of the result. I also make sure that further increase of the random

sample size does not change the optimization outcome.

To my knowledge, there is no unified framework for assessing the quality of the synthetic

text. However, it is common to consider such measures as Fluency, Novelty, Diversity and

Intelligibility of the generated entries [195]. Generating the data for automated processing

purposes, I have taken two properties - Novelty and Diversity, which are obtained for the

synthetic and real-world datasets.

Based on the equations in [195], Novelty defines the distance between the synthetically

generated and the real-world datasets. Diversity of the dataset can be measured as novelty

between two samples of the same dataset. Fluency and Intelligibility are more subtle

measures and cannot be directly measured from the defined metrics. Aiming to make the

approach simple and universal, I limit the synthetic data assessment to the 2 measures.

With this understanding, I apply the measures to the considered setting:

• Novelty: a sample of the synthetic data is assessed against the sample of the real-world

data. The metrics value should be as small as possible. Ideally, it should be equal to

the Diversity of the real-world dataset.

• Diversity: a data sample is assessed against a different sample within the same dataset.

The metrics values should be as similar as possible for the real world and synthetic

data.

The optimization process is performed separately for the event-related and background

messages. Then, a single set of parameters is chosen to generate all the messages in order to
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Fig. A.1 Synthetic data generator optimisation. The mean values of SO and synthetic data are
computed across background and event messages. The error bars represent the standard
deviations over 30 random samples.

preserve the consistency of the dataset and avoid the process of differentiating between the

positive and negative entries becoming trivial.

The optimal configuration is chosen based on the mean value of Novelty and Diversity

of the event-related and background messages (Fig A.1). The consensus set of parameters is

expected to have the least differences between the synthetic and real-world data. The metric

I take is the mean value of both properties. Moreover, I use the Elbow heuristic to avoid the

divergence of the vocabularies between the SO and synthetic data. I note that a .1 decrease

of the softmax temperature leads to a huge divergence between the properties of synthetic

and real-world data, hence I do not decrease it. As the result of the optimisation, I set the

softmax temperature to 1.0 and the top_k to 400.
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Table A.3 Model performance, LDA feature space. In the table I report the number of features
after the feature selection step together with ROC-AUC, PR-AUC, F1-score and permutation
test p-value measures for LDA feature space.

CatBoost
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 1 .67 .56 .58 .07
Multiple minor event-based 2 .44 .51 .45 <.001
Multiple patch event-based 1 .59 .51 .46 <.001
Django minor event-based 5 .42 .51 .46 .50
Django patch event-based 4 .49 .54 .55 .15
Selenium minor event-based 4 .30 .51 .45 1.00
Selenium patch event-based 14 .59 .50 .46 .81
Multiple major c.w.-based 9 .47 .53 .54 .18
Multiple minor c.w.-based 2 .57 .51 .37 <.001
Multiple patch c.w.-based 2 .51 .50 .52 .40
Django minor c.w.-based 17 .52 .50 .44 1.00
Django patch c.w.-based 2 .44 .50 .53 .21
Selenium minor c.w.-based 7 .43 .50 .45 1.00
Selenium patch c.w.-based 2 .54 .51 .46 1.00

Random Forest
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 1 .66 .57 .58 .06
Multiple minor event-based 1 .52 .59 .52 .19
Multiple patch event-based 1 .50 .70 .51 .01
Django minor event-based 14 .48 .53 .44 .02
Django patch event-based 1 .56 .50 .51 .30
Selenium minor event-based 6 .35 .51 .47 1.00
Selenium patch event-based 14 .49 .50 .46 .03
Multiple major c.w.-based 9 .46 .50 .50 .23
Multiple minor c.w.-based 7 .60 .51 .50 .22
Multiple patch c.w.-based 2 .45 .51 .46 .49
Django minor c.w.-based 10 .57 .50 .44 1.00
Django patch c.w.-based 11 .37 .51 .44 1.00
Selenium minor c.w.-based 18 .31 .51 .48 1.00
Selenium patch c.w.-based 5 .45 .51 .46 1.00

Logistic Regression
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 18 .32 .40 .49 .88
Multiple minor event-based 10 .38 .45 .45 .93
Multiple patch event-based 1 .52 .50 .46 .98
Django minor event-based 4 .53 .51 .43 .36
Django patch event-based 2 .37 .47 .47 .44
Selenium minor event-based 12 .37 .46 .47 .98
Selenium patch event-based 1 .54 .52 .45 .46
Multiple major c.w.-based 18 .42 .48 .48 .80
Multiple minor c.w.-based 15 .56 .54 .52 .19
Multiple patch c.w.-based 17 .46 .46 .32 .89
Django minor c.w.-based 4 .48 .50 .44 .52
Django patch c.w.-based 5 .42 .48 .47 .86
Selenium minor c.w.-based 8 .41 .48 .48 .72
Selenium patch c.w.-based 14 .60 .52 .47 .21
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Table A.4 Model performance, hSBM feature space. In the table I report the number of
features after the feature selection step together with ROC-AUC, PR-AUC, F1-score and
permutation test p-value measures for hSBM feature space.

CatBoost
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 674 .26 .54 .16 1.00
Multiple minor event-based 540 .64 .50 .51 .01
Multiple patch event-based 1 .56 .50 .35 .81
Django minor event-based 1 .50 .50 .50 .26
Django patch event-based 473 .55 .52 .46 1.00
Selenium minor event-based 473 .59 .52 .46 1.00
Selenium patch event-based 674 .52 .50 .44 1.00
Multiple major c.w.-based 71 .55 .50 .46 1.00
Multiple minor c.w.-based 4 .47 .50 .48 .03
Multiple patch c.w.-based 607 .52 .51 .51 .14
Django minor c.w.-based 138 .47 .51 .46 .04
Django patch c.w.-based 272 .59 .50 .48 1.00
Selenium minor c.w.-based 205 .62 .51 .47 1.00
Selenium patch c.w.-based 4 .59 .52 .45 .44

Random Forest
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 138 .71 .52 .16 1.00
Multiple minor event-based 1 .50 .75 .49 <.001
Multiple patch event-based 1 .59 .50 .41 .88
Django minor event-based 1 .57 .55 .47 <.001
Django patch event-based 1 .64 .54 .47 1.00
Selenium minor event-based 607 .48 .50 .46 1.00
Selenium patch event-based 1 .43 .51 .44 1.00
Multiple major c.w.-based 138 .48 .50 .46 1.00
Multiple minor c.w.-based 406 .56 .51 .45 .29
Multiple patch c.w.-based 473 .45 .51 .40 <.001
Django minor c.w.-based 1 .52 .51 .45 1.00
Django patch c.w.-based 607 .48 .50 .48 1.00
Selenium minor c.w.-based 607 .60 .56 .35 .07
Selenium patch c.w.-based 607 .69 .52 .47 1.00

Logistic Regression
Number of features ROC-AUC PR-AUC F1-score P.test p-val

Multiple major event-based 674 .29 .52 .20 .76
Multiple minor event-based 406 .60 .50 .36 .90
Multiple patch event-based 1 .37 .51 .49 <.001
Django minor event-based 138 .37 .51 .41 .01
Django patch event-based 607 .54 .51 .42 .15
Selenium minor event-based 1 .52 .50 .46 1.00
Selenium patch event-based 1 .52 .50 .44 1.00
Multiple major c.w.-based 4 .57 .51 .47 1.00
Multiple minor c.w.-based 71 .57 .51 .53 .01
Multiple patch c.w.-based 4 .44 .51 .46 .02
Django minor c.w.-based 473 .39 .50 .45 .54
Django patch c.w.-based 4 .55 .50 .48 1.00
Selenium minor c.w.-based 71 .57 .51 .47 .10
Selenium patch c.w.-based 406 .55 .50 .54 .08
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Fig. B.1 Hedge’s gav effect sizes quantifying the improvement of the precision from using
the CatBoost over the no-information estimator. The error bars illustrate the .95 confidence
intervals, corrected for multiple comparisons (3 in this case). The dashed line corresponds
to the significance threshold. Rebounds accord to different labelling configurations, where
7, 11 and 15 are ticks required for the positive labelling of an entry.
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Table B.1 Model performance measures reported for the 2-step feature extraction, 3 different
labelling configurations: 7, 11 and 15 ticks rebounds. Null-Precision corresponds to the
performance of an always-positive classifier.

Contract PR-AUC F1-score Precision ROC-AUC Null-Precision
Rebound 7

ESH2017 .19 .26 .20 .51 .19
ESM2017 .25 .28 .22 .54 .21
ESU2017 .25 .29 .25 .56 .20
ESZ2017 .18 .16 .17 .52 .16
ESH2018 .19 .28 .19 .54 .17
ESM2018 .22 .32 .21 .55 .19
ESU2018 .17 .18 .17 .52 .16
ESZ2018 .18 .28 .18 .53 .17
ESH2019 .18 .24 .18 .51 .18
ESM2019 .17 .24 .18 .52 .17

Rebound 11
ESH2017 .19 .30 .20 .53 .18
ESM2017 .21 .14 .23 .54 .19
ESU2017 .18 .14 .15 .50 .19
ESZ2017 .17 .23 .17 .52 .16
ESH2018 .19 .27 .18 .53 .17
ESM2018 .21 .31 .21 .55 .19
ESU2018 .16 .17 .16 .50 .16
ESZ2018 .19 .27 .17 .52 .17
ESH2019 .18 .24 .18 .52 .17
ESM2019 .17 .25 .17 .52 .17

Rebound 15
ESH2017 .15 .20 .15 .51 .15
ESM2017 .18 .21 .19 .53 .17
ESU2017 .17 .17 .18 .54 .15
ESZ2017 .17 .11 .19 .51 .16
ESH2018 .17 .26 .17 .52 .16
ESM2018 .18 .28 .18 .53 .17
ESU2018 .16 .22 .16 .51 .16
ESZ2018 .17 .26 .16 .52 .16
ESH2019 .17 .26 .18 .51 .17
ESM2019 .17 .26 .17 .52 .16
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Table B.2 Model performance measures reported for the Price Level feature extraction
component, 3 different labelling configurations: 7, 11 and 15 ticks rebounds. Null-Precision
corresponds to the performance of an always-positive classifier.

Contract PR-AUC F1-score Precision ROC-AUC Null-Precision
Rebound 7

ESH2017 .19 .24 .19 .50 .19
ESM2017 .21 .28 .21 .50 .21
ESU2017 .22 .25 .23 .53 .20
ESZ2017 .16 .19 .16 .49 .16
ESH2018 .18 .23 .17 .50 .17
ESM2018 .19 .25 .19 .49 .19
ESU2018 .16 .15 .15 .50 .16
ESZ2018 .18 .24 .17 .51 .17
ESH2019 .18 .26 .18 .51 .18
ESM2019 .18 .21 .18 .50 .17

Rebound 11
ESH2017 .17 .19 .17 .49 .18
ESM2017 .20 .18 .19 .51 .19
ESU2017 .18 .18 .17 .50 .19
ESZ2017 .16 .19 .16 .50 .16
ESH2018 .17 .23 .18 .51 .17
ESM2018 .19 .17 .20 .50 .19
ESU2018 .16 .22 .16 .50 .16
ESZ2018 .18 .20 .18 .52 .17
ESH2019 .18 .25 .17 .51 .17
ESM2019 .17 .22 .17 .50 .17

Rebound 15
ESH2017 .15 .20 .15 .50 .15
ESM2017 .17 .24 .18 .51 .17
ESU2017 .17 .16 .19 .53 .15
ESZ2017 .16 .13 .15 .50 .16
ESH2018 .16 .25 .16 .50 .16
ESM2018 .18 .21 .17 .51 .17
ESU2018 .15 .16 .15 .49 .16
ESZ2018 .16 .19 .16 .51 .16
ESH2019 .17 .24 .17 .50 .17
ESM2019 .16 .18 .16 .49 .16
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Table B.3 Model performance measures reported for the Market Shift feature extraction
component, 3 different labelling configurations: 7, 11 and 15 ticks rebounds. Null-Precision
corresponds to the performance of an always-positive classifier.

Contract PR-AUC F1-score Precision ROC-AUC Null-Precision
Rebound 7

ESH2017 .20 .26 .20 .51 .19
ESM2017 .25 .28 .24 .55 .21
ESU2017 .25 .31 .25 .56 .20
ESZ2017 .17 .26 .18 .52 .16
ESH2018 .20 .29 .19 .54 .17
ESM2018 .21 .33 .22 .55 .19
ESU2018 .17 .23 .17 .51 .16
ESZ2018 .18 .28 .18 .52 .17
ESH2019 .19 .28 .19 .53 .18
ESM2019 .18 .27 .18 .53 .17

Rebound 11
ESH2017 .18 .24 .19 .51 .18
ESM2017 .21 .24 .20 .50 .19
ESU2017 .21 .31 .23 .56 .19
ESZ2017 .16 .12 .16 .50 .16
ESH2018 .20 .28 .18 .54 .17
ESM2018 .20 .32 .21 .55 .19
ESU2018 .17 .22 .17 .51 .16
ESZ2018 .17 .27 .17 .52 .17
ESH2019 .18 .26 .18 .52 .17
ESM2019 .18 .27 .18 .53 .17

Rebound 15
ESH2017 .15 .22 .15 .48 .15
ESM2017 .17 .20 .16 .50 .17
ESU2017 .16 .17 .15 .51 .15
ESZ2017 .16 .11 .16 .50 .16
ESH2018 .17 .27 .17 .53 .16
ESM2018 .18 .28 .18 .54 .17
ESU2018 .16 .22 .16 .51 .16
ESZ2018 .17 .27 .17 .52 .16
ESH2019 .17 .27 .17 .52 .17
ESM2019 .18 .27 .18 .53 .16



161

0.16

0.18

0.20

0.22

0.24

Rebound 7

0.16

0.18

0.20

0.22

P
re

c
is

io
n

Rebound 11

ESH2017

ESU2017

ESH2018

ESU2018

ESH2019

Contract

0.15

0.16

0.17

0.18

Rebound 15

The p

Fig. B.2 Precision of the CatBoost model and the always-positive estimator. The plot shows
the labelling configurations of 7, 11 and 15 ticks rebounds.
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Fig. B.3 Hedge’s gav effect sizes quantify the improvement of the precision from using the
2-step feature extraction over each of the components (PL and MS). The error bars illustrate
the .95 confidence intervals, corrected for multiple comparisons (6 in this case). The dashed
line corresponds to the significance threshold. Rebounds accord to different labelling
configurations, where 7, 11 and 15 are ticks required for the positive labelling of an entry.
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Fig. B.4 The precision of the model which uses the 2-step feature extraction (MS+PL) versus
the performance of the models using the single-step feature extraction (MS, PL). The plot
shows the labelling configurations of 7, 11 and 15 ticks rebounds.
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Fig. B.5 SHAP summary plot of the model trained on ESH2019 contract, rebound 7 configu-
ration. Each marker is a classified entry. X-axis quantifies the contribution of the entries
towards the positive or negative class output.
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Fig. B.6 SHAP summary plot of the model trained on ESH2019 contract, rebound 11 configu-
ration. Each marker is a classified entry. X-axis quantifies the contribution of the entries
towards the positive or negative class output.
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Fig. B.7 Cumulative profit curves for all the rebound configurations and fixed take profit of 15
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Table C.1 Performance metrics for ES, price levels pattern extraction method. The dates are
reported in the form MM/YY. "Null_precision" corresponds to the no-information model
precision.

PR-AUC ROC-AUC F1-score Precision Null_precision
3/17 to 6/17 0.14 0.44 0.11 0.10 0.15
6/17 to 9/17 0.19 0.53 0.14 0.14 0.18
9/17 to 12/17 0.15 0.49 0.20 0.16 0.16
12/17 to 3/18 0.16 0.50 0.17 0.15 0.16
3/18 to 6/18 0.16 0.48 0.07 0.12 0.17
6/18 to 9/18 0.16 0.51 0.25 0.17 0.16
9/18 to 12/18 0.16 0.51 0.10 0.16 0.15
12/18 to 3/19 0.18 0.53 0.13 0.18 0.17
3/19 to 6/19 0.16 0.50 0.18 0.17 0.17
6/19 to 9/19 0.15 0.50 0.14 0.14 0.15
9/19 to 12/19 0.14 0.50 0.14 0.13 0.15
12/19 to 3/20 0.17 0.50 0.15 0.18 0.17
3/20 to 6/20 0.17 0.51 0.21 0.17 0.16
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Table C.2 Performance metrics for B6, price levels pattern extraction method.
"Null_precision" corresponds to the no-information model precision.

PR-AUC ROC-AUC F1-score Precision Null_precision
3/17 to 6/17 0.17 0.47 0.15 0.15 0.17
6/17 to 9/17 0.16 0.50 0.15 0.18 0.16
9/17 to 12/17 0.16 0.49 0.24 0.16 0.16
12/17 to 3/18 0.15 0.48 0.15 0.17 0.16
3/18 to 6/18 0.12 0.51 0.13 0.11 0.13
6/18 to 9/18 0.18 0.54 0.27 0.20 0.16
9/18 to 12/18 0.15 0.50 0.18 0.13 0.13
12/18 to 3/19 0.19 0.51 0.22 0.14 0.15
3/19 to 6/19 0.18 0.53 0.11 0.18 0.16
6/19 to 9/19 0.20 0.51 0.21 0.22 0.19
9/19 to 12/19 0.14 0.45 0.13 0.15 0.16
12/19 to 3/20 0.17 0.50 0.20 0.22 0.15
3/20 to 6/20 0.20 0.52 0.12 0.14 0.16
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Table C.3 Statistics supporting the outcomes of the Wilcoxon test. The test is aimed to
validate whether on the VCRB data and the considered feature space, CatBoost performs
significantly better than the no-information estimator. The result is reported for the range
configurations of 5, 9 and 11.

Statistics Dataset
Range 5

ES B6
One-tailed Wilcoxon test p-value < .001 .024

Test Statistics 90.0 74.0
CatBoost No-information CatBoost No-information

Mean (precision) 0.25 0.24 0.23 0.23
Median (precision) 0.25 0.24 0.23 0.23

Standard Deviation (precision) 0.0084 0.0049 0.0081 0.0039

Range 9
ES B6

One-tailed Wilcoxon test p-value .0199 .47
Test Statistics 75.0 47.0

CatBoost No-information CatBoost No-information
Mean (precision) 0.24 0.23 0.22 0.22

Median (precision) 0.24 0.23 0.23 0.22
Standard Deviation (precision) 0.0109 0.0043 0.0112 0.0068

Range 11
ES B6

One-tailed Wilcoxon test p-value .0164 .170
Test Statistics 76.0 60.0

CatBoost No-information CatBoost No-information
Mean (precision) 0.24 0.24 0.23 0.23

Median (precision) 0.24 0.23 0.23 0.23
Standard Deviation (precision) 0.0118 0.0057 0.0201 0.0082
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Table C.4 Statistics supporting the outcomes of the Wilcoxon test which validates whether
Volume-based pattern extraction method leads to better classification performance than
the price level pattern extraction. The result is reported for the range configurations of 5, 9
and 11.

Statistics Dataset
Range 5

ES B6
One-tailed Wilcoxon test p-value < .001 < .001

Test Statistics 91.0 91.0
VCRB Price levels VCRB Price levels

Mean (PR-AUC) 0.25 0.16 0.23 0.17
Median (PR-AUC) 0.25 0.16 0.23 0.17

Standard Deviation (PR-AUC) 0.0066 0.0118 0.0060 0.022

Range 9
ES B6

One-tailed Wilcoxon test p-value < .001 < .001
Test Statistics 91.0 91.0

VCRB Price levels VCRB Price levels
Mean (PR-AUC) 0.24 0.16 0.22 0.17

Median (PR-AUC) 0.24 0.16 0.22 0.17
Standard Deviation (PR-AUC) 0.0106 0.0118 0.0085 0.022

Range 11
ES B6

One-tailed Wilcoxon test p-value < .001 < .001
Test Statistics 91.0 91.0

VCRB Price levels VCRB Price levels
Mean (PR-AUC) 0.24 0.16 0.23 0.17

Median (PR-AUC) 0.24 0.16 0.23 0.17
Standard Deviation (PR-AUC) 0.0126 0.0118 0.0131 0.022
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Table C.5 Statistics supporting the outcomes of the Wilcoxon test which assesses whether
VCRB pattern extraction method leads to better classification performance on the more
liquid market (ES in comparison to B6). The result is reported for the range configurations
of 5, 9 and 11.

Statistics Datasets
Range 5

One-tailed Wilcoxon test p-value < .001
Test Statistics 91.0

ES B6
Mean (PR-AUC) 0.25 0.23

Median (PR-AUC) 0.25 0.23
Standard Deviation (PR-AUC) 0.0066 0.0060

Range 9
One-tailed Wilcoxon test p-value < .001

Test Statistics 88.0
ES B6

Mean (PR-AUC) 0.24 0.22
Median (PR-AUC) 0.24 0.22

Standard Deviation (PR-AUC) 0.0106 0.0085

Range 11
One-tailed Wilcoxon test p-value .040

Test Statistics 71.0
ES B6

Mean (PR-AUC) 0.24 0.23
Median (PR-AUC) 0.24 0.23

Standard Deviation (PR-AUC) 0.0126 0.0131
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Table C.6 Statistics supporting the outcomes of the Wilcoxon test which assesses whether
SHAP and decision paths feature interaction extraction methods are related significantly
stronger than the bootstrapped data. Footstep distance is inversely proportional to the
relatedness. The result is reported for the range configurations of 5, 9 and 11.

Statistics Dataset
Range 5

ES B6
One-tailed Wilcoxon test p-value < .001 < .001

Test Statistics 3.0 2.0
Actual distance Bootstrapped Actual distance Bootstrapped

Mean (footstep distance) 88247 93280 87891 93279
Median (footstep distance) 87390 93281 88408 93278

Standard Deviation (footstep distance) 3166.0 5.0 4083.0 3.4

Range 9
ES B6

One-tailed Wilcoxon test p-value .00171 < .001
Test Statistics 6.0 0.0

Actual distance Bootstrapped Actual distance Bootstrapped
Mean (footstep distance) 88188 93279 86172 93278

Median (footstep distance) 88728 93279 86132 93279
Standard Deviation (footstep distance) 4429.0 6.1 2998.0 4.6

Range 11
ES B6

One-tailed Wilcoxon test p-value < .001 < .001
Test Statistics 1.0 0.0

Actual distance Bootstrapped Actual distance Bootstrapped
Mean (footstep distance) 87266 93281 87228 93280

Median (footstep distance) 86994 93281 86198 93279
Standard Deviation (footstep distance) 3081.0 5.5 2925.0 3.4
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Fig. C.1 Precision performance metric for the no-information model and CatBoost plotted
for both instruments - ES and B6. The Y-axis is mutual for both subplots.
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Fig. C.2 We plot PR-AUC for volume-based pattern extraction method and price level-based.
The metric is reported for ES and B6 instruments. Volume-based method is reported for
range 7 configuration.
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Fig. C.3 PR-AUC of CatBoost models obtained for ES and B6 futures instruments. Reported
for range 7 configuration.
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Fig. C.4 Footrule distances between ranks of the feature interactions for SHAP and decision
path-based methods for S&P E-mini and British Pound futures instruments.
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