
Data-Driven Approaches for Formal
Synthesis of Cyber-Physical Systems

Milad Kazemi Mehrabadi

School of Computing
Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

March 2023

I would like to dedicate this thesis to my loving parents.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done
in collaboration with others except as specified in the text and Acknowledgements. This
dissertation contains fewer than 80000 words, including appendices, bibliography, footnotes,
tables and equations, and has fewer than 100 figures.

Milad Kazemi Mehrabadi
March 2023

Acknowledgements

First and foremost, I would like to thank my supervisor Dr Sadegh Soudjani. Having the
opportunity to work with him has been an exceptional intellectual and personal experience for
me. I enjoy his wealth of ideas, clarity of thought, enthusiasm, endless energy, and constant
encouragement. I feel very fortunate to have had him as an advisor and a teacher.

It has been a pleasure to be a part of the AMBER group at Newcastle University, where I
have made many great friends. My deepest thanks go to my former and current office-mates
at USB 6.030. I would like to especially acknowledge Ben Wooding for his collaboration
and friendship.

In the course of my doctoral studies, I was fortunate enough to collaborate on a variety
of research projects with several different people. For all the assistance and support they
provided to me during this period, I would like to express my gratitude to Ashutosh, Fabio,
Majid and Mateo from the University of Colorado Boulder, Alvaro from DARPA, Mahmoud
and Rupak from the Max Planck Institute for Software Systems, Abolfazl from Newcastle
University, and Vahid from Nottingham Trent University.

I am grateful to all my friends who have supported me through the years and have made
my time at Newcastle so enjoyable. In particular, I would like to thank Armin, Desiree,
Roberto, Roberta, Oliver, Paulius, Mazyounah, Felix, Jecel, Emnani, Artur, Dasha, Ivan,
Ziqi, Alex, Marco, Mohammad Hossein, Mojtaba, Mostafa, and Radin. My special thanks
go to my close friend Luca, with whom I share many unforgettable memories.

My deepest gratitude and love, of course, belong to my parents Alireza and Maryam, and
my sisters Mobina and Mahdis for their unconditional love and support all through my life.
To them, I owe all that I am and all that I have ever accomplished, and it is to them that I
dedicate this thesis.

Abstract

The traditional view in control theory connects sensing, actuation, and computation in a
feedback loop to provide stability, performance, and robustness. In recent years, the control
community has started looking at controlling systems such as trustworthy autonomous
systems and networked systems to satisfy complex requirements. The question has then
changed to address dynamic, interconnection, and computing in a unified and scalable
framework against high-level logical requirements including safety. Such a comprehensive
framework is needed especially for the design of safety-critical systems.

The requirements on the system’s behaviour can generally be expressed as temporal logic
specifications. Such specifications express formally how the system should behave as time
passes. Examples of logical specifications include: always staying in a safe region, reach a
destination within a certain time, and visit a region infinitely often.

A prominent approach for formal control synthesis against logical specifications is to use
abstraction-based methods. Due to the complex nature of the system dynamics that evolve
over continuous or hybrid spaces, an abstract model is first constructed that approximates the
dynamical system’s behaviour with a simple finite model. Analysing the finite-state model
is more accessible than the continuous-state model, and efficient computational methods
are available from Computer Science literature using compact data structures. There exists
a gap between the dynamical behaviour of the original model and the abstraction that is
considered to guarantee the satisfaction of the specification on the original model. This gap
is generally addressed by ensuring that the abstract model over-approximates the behaviour
of the original model or by making the specification more conservative.

This thesis aims to push the boundaries of abstraction-based methods by making them
applicable to large-scale systems that operate in an uncertain environment using data-driven
compositional learning approaches. Formal abstraction-based synthesis schemes rely on a
precise mathematical model of the system to build a finite state abstract model. Their usage
is limited to small-scale models because the finite abstract model is generally constructed
by state space discretisation. This thesis will address the above limitations by making the
following contributions.

x

The first contribution of this thesis is to make abstraction-based schemes applicable
when the system dynamics is unknown. We study the formal synthesis of controllers for
continuous-space systems with unknown dynamics to satisfy requirements expressed as
linear temporal logic (LTL) formulas. We propose a data-driven approach that computes the
growth bound of the system using a finite number of trajectories. The growth bound gives
the distance between the trajectories started from different initial states. The growth bound
and the sampled trajectories are used to construct the abstraction and synthesise a controller.
Our approach casts the computation of the growth bound as a robust convex optimisation
program (RCP). Since the unknown dynamics appear in the optimisation, we formulate a
scenario convex program (SCP) corresponding to the RCP using a finite number of sampled
trajectories. We establish a sample complexity result that gives a lower bound for the number
of sampled trajectories to guarantee the correctness of the growth bound computed from the
SCP with a given confidence.

The second contribution of this thesis is to address the scalability of abstraction-based
methods for systems that are influenced by random uncertainties. We design model-free
reinforcement methods to satisfy temporal properties on unknown stochastic systems with
continuous state spaces. We show how reinforcement learning (RL) can be applied for
computing policies that are finite-memory and deterministic, using only the paths of the
stochastic process. We address properties expressed in LTL and give a path-dependent reward
function maximised via the RL algorithm. We develop the required assumptions and theories
for the learned policy to converge to the optimal policy in the continuous state space.

The third contribution of this thesis is to provide a formal compositional synthesis
approach designed for large-scale interconnected systems. We introduce a novel RL scheme
to synthesise policies for networks of continuous-space stochastic control systems with
unknown dynamics. The proposed compositional framework applies model-free two-player
RL in an assume-guarantee fashion and compositionally compute strategies for continuous-
space interconnected systems without explicitly constructing their finite-state abstractions.
This approach gives a guaranteed lower bound for the probability of property satisfaction by
the interconnected system based on those of individual controllers over subsystems.

As our last contribution, we address the use of average-reward RL for controller syn-
thesis with formal convergence guarantees. Previous approaches rely on using discounted
RL with formal guarantees that hold only when the discounting factor convergences to
one. Discounted RL prioritises the short-term behaviour of the system over the long-term
performance. To satisfy an LTL property, we need to choose the discounting factor close to
one, leading to the instability of the learning algorithms. An alternative to discounted RL is
to use the average objective without discounting, which inherently focuses on the system’s

xi

long-term behaviour. We restrict our attention to specifications corresponding to absolute
liveness properties (i.e., those that cannot be invalidated by a finite prefix). We propose a
translation from absolute liveness properties to an average reward objective for RL. This
reduction can be made on the fly without full knowledge of the system, thereby enabling the
use of model-free RL algorithms.

The contributions made during the course of this PhD enable us to perform formal con-
trol synthesis against high-level logical specifications on larger classes of systems. This is
achieved by designing novel data-driven and learning methods with proper formal (conver-
gence or closeness) guarantees.

Table of contents

List of figures xvii

List of tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and objectives . 3
1.3 Contributions . 3
1.4 Thesis outline . 4
1.5 Publications . 5

2 Background on formal synthesis of cyber-physical systems 7
2.1 Introduction . 7
2.2 Cyber-physical systems . 7
2.3 Model-based synthesis approaches . 9

2.3.1 Abstraction-based control synthesis 10
2.4 Data-driven control synthesis approaches 12

2.4.1 Data-driven abstraction-based control synthesis 13
2.4.2 Reinforcement learning . 14
2.4.3 Model-free reinforcement learning 16
2.4.4 Reward machines in reinforcement learning 18

3 Data-driven abstraction-based control synthesis 21
3.1 Chapter introduction . 21
3.2 Introduction . 22
3.3 Preliminaries and problem statement . 25

3.3.1 Preliminaries . 25
3.3.2 Problem statement . 27

3.4 Robust convex programs . 27

xiv Table of contents

3.5 Data-driven abstraction . 29
3.5.1 Growth bound for reachable sets 29
3.5.2 SCP for the computation of growth bound 30
3.5.3 Lipschitz constant estimation . 35

3.6 Synthesis via abstraction refinement . 36
3.7 Experimental evaluation . 38

3.7.1 DC-DC boost converter . 38
3.7.2 Path planning problem with partition refinement 39
3.7.3 Three area three machine power system 41
3.7.4 Comparison with PAC learning 45
3.7.5 Parameter optimisation . 49

3.8 Discussion and future work . 49

4 Model-free RL for formal control of stochastic systems 53
4.1 Chapter introduction . 53
4.2 Introduction . 54
4.3 Discrete-time stochastic control systems 56

4.3.1 Discrete-time stochastic control systems 56
4.3.2 Stochastic games and Markov decision processes 58
4.3.3 Reinforcement learning . 60
4.3.4 Finite-horizon specifications . 62

4.4 Problem definition . 64
4.5 Controller synthesis for unknown continuous-space stochastic control systems 65

4.5.1 Abstraction of dt-SCS Σ by a finite MDP 67
4.6 Synthesis via reinforcement learning . 68

4.6.1 Product Markov decision process 68
4.6.2 Unknown conditional stochastic kernels 70
4.6.3 Reward shaping: overcoming sparse rewards 70
4.6.4 Discussion . 72

4.7 Controller synthesis for networks of unknown stochastic control systems . . 73
4.8 Compositional controller synthesis via reinforcement learning 76

4.8.1 Accelerating RL with multi-level discretisation 77
4.9 Case studies . 78

4.9.1 Room temperature (network) . 78
4.9.2 Road traffic (network) . 79
4.9.3 Learning Controllers . 80
4.9.4 7-dimensional BMW 320i car . 83

Table of contents xv

4.10 Conclusion . 83

5 Formal policy synthesis for continuous-state systems via RL 85
5.1 Chapter introduction . 85
5.2 Introduction . 86
5.3 Preliminaries and problem statement . 87

5.3.1 Controlled Markov processes . 87
5.3.2 Semantics of controlled Markov processes 89
5.3.3 Linear temporal logic . 90
5.3.4 Limit-deterministic Büchi automata 92
5.3.5 Problem statement . 92

5.4 Augmented CMP with reachability specification 93
5.4.1 The augmented CMP . 93
5.4.2 The product CMP . 95

5.5 Reinforcement learning for policy synthesis 96
5.5.1 Specification-guided learning . 97

5.6 Case studies . 99
5.6.1 Cart-pole system . 99
5.6.2 Boat driving problem . 100

5.7 Future work . 102

6 Translating ω-regular specifications to average objectives for RL 103
6.1 Chapter introduction . 103
6.2 Introduction . 104
6.3 Problem definition . 107
6.4 Construction and correctness . 112
6.5 Experimental results . 116
6.6 Related work . 119
6.7 Conclusion . 121

7 Conclusion 123
7.1 Summary of the research and contributions 123
7.2 Limitations of the research . 124
7.3 Suggestions for future work . 125

References 127

List of figures

2.1 Abstraction-based synthesis for control of a continuous system [108]. . . . 11
2.2 Schematic of a reinforcement learning algorithm 15

3.1 The closed-loop trajectory of the DC-DC boost converter with w̄ = (0,0)
under the controller designed by our data-driven abstraction approach. The
rectangle in red colour represents the target region and the area in grey shows
the winning region of the controller [78]. 40

3.2 The closed-loop trajectory of the DC-DC boost converter with w̄ = (0.01,0)
under the controller designed by our data-driven abstraction approach. The
rectangle in red colour represents the target region and the area in grey shows
the winning region of the controller [78]. 40

3.3 Comparison between the closed-loop trajectories of the system (3.7.1)without
disturbance under the controllers designed by our data-driven abstraction
refinement approach (black) and by the model-based approach of SCOTS
(red). Blue blocks represent the obstacles, the green dot represents the initial
state, and the orange rectangle shows the target region [78]. 42

3.4 Comparison between the closed-loop trajectories of the system (3.7.1) with
disturbance bound w̄ = (0.01,0,0) under the controllers designed by our
data-driven abstraction refinement approach (black) and by the model-based
approach of SCOTS (red) [78]. 42

3.5 3A3M power system with generators (G) and loads (L). L1 represents a
bidirectional load such as Electric Vehicles or Energy Storage Systems [78]. 43

3.6 3A3M power system frequency without applying any control input. The
frequency falls below 59.1 Hz thus violates the specification [78]. 44

xviii List of figures

3.7 3A3M power system frequencies for the three areas, with the frequency of
an area is measured at the corresponding bus in that area. The control synthe-
sised by the fixed discretisation approach successfully keeps the frequencies
of the three areas outside of the avoid set. The frequencies leave the target
set for around 4.4 seconds before staying in the target set [78]. 46

3.8 3A3M power system load changes for the three areas. Loads at buses 2 and
3 increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control
the frequency using our data-driven approach with fixed discretisation [78]. 46

3.9 3A3M power system frequencies for the three areas, with the frequency
of an area is measured at the corresponding bus in that area. The control
synthesised by the abstraction refinement approach successfully satisfies the
specification. The frequencies leave the target set for around 4.2 seconds
before staying in the target set [78]. 47

3.10 3A3M power system load changes for the three areas. Loads at buses 2 and 3
increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control the
frequency using our data-driven approach with abstraction refinement [78]. 47

3.11 Required number of samples for our approach as a function of β for a fixed
ε = 0.01 [78]. 50

3.12 Required number of samples for our approach as a function of ε for a fixed
β = 0.01 [78]. 50

3.13 The bias term γ as a function of ε [78]. 51

4.1 Interconnection of stochastic control subsystems Σ1 and Σ2 [88]. 58
4.2 DFA for pUq with no time horizon (left) and with T = 2 (right). The

finite-horizon DFA may be obtained by unrolling the co-safety DFA or by
translating the finite-horizon formula q∨ (p∧X(q∨ (p∧Xq))) [88]. 64

4.3 Model-free reinforcement learning is employed by DFA Aφ corresponding to SCLTL

objective φ to provide scalar rewards by combining DFA Aφ and a δ -quantised

observation set of the continuous-space MDP Σ. In particular, the δ -quantised

observation set of the continuous-space MDP Σ is used by an interpreter process to

compute a run of Aφ . When the run of Aφ reaches a final state, the interpreter gives

the reinforcement learner a positive reward and the training episode terminates. Any

converging reinforcement learning algorithm over such δ -quantised observation set

is guaranteed to maximise the probability of satisfaction of the scLTL objective

φ and converge to a 2ε-optimal strategy over the concrete dt-SCS Σ, thanks to

Theorem 4.2 [88]. 68
4.4 A circular building in a network of 20 rooms [88]. 79

List of figures xix

4.5 Model of a road traffic control with the length of 500 meters, 1 way out, and
2 entries, one of which is controlled by a traffic light [88]. 79

4.6 Model of a road traffic network in a ring composed of 7 identical cells, each
of which has 1 entry and 1 exit [88]. 79

4.7 Room temperature control: A heat-map visualisation of strategies learned via
Reinforcement Learning after 105 episodes (left) and after 8·106 episodes
(right). The x axis shows the room temperature in ◦C, while the y axis shows
time steps 1≤k≤10. The action selected by the strategy is in the input set
{0.03,0.09,0.15, 0.21,0.27,0.33,0.39,0.45,0.51,0.57} and is color-coded
according to the map shown in the middle: Bright yellow and deep blue
represent maximum and minimum heat. In the first step, strategies are only
defined for the initial state; this causes the blue bands at the top [88]. 80

4.8 State evolution of the learned distributed controllers visualised through
percentiles from 106 sampled trajectories [88]. 81

4.9 Trajectories of 100 simulations of the RL-synthesised controller for a 7-
dimensional model of a BMW 320i car trained using DDPG. The road
segment is 6 meter wide and 50 meter long; the length of the car is 4.508
meters and its width is 1.610 meters [88]. 84

5.1 Cart-pole system with a 4-dim state space. It should stay within the limits
specified by C1, always keep the pole upright in the range C2, and reach the
region A [80]. 88

5.2 A CMP with space {1,2,3, . . .}, a single input and accepting states B =

{3,4,5, . . .}. Its augmented CMP Sζ does not show convergence with a
linear rate [80]. 95

5.3 Cart-pole system. Cart’s position (left) and pole’s angle (right) for 50,000
trajectories under the learned policy. The grey area is an envelop for these
trajectories, their mean is indicated by the solid line and the standard devia-
tion around mean is indicated by dashed lines. Only 515 trajectories (1.03%)
go outside of the safe location [−1,1] or drop the pole outside of the angle
interval [−12◦,12◦] [80]. 101

5.4 Cart-pole system. Histogram of the first time the trajectories reach the
interval [0.4,1]. A majority of the trajectories reach this interval within 150
time steps [80]. 101

5.5 Boat driving problem. The satisfaction probability as a function of the
initial position y0 for the policies learned with labelling functions Li, i ∈
{0,1,2,3,4} [80]. 101

xx List of figures

6.1 A Büchi automaton for ϕ = F(Ga∨GFb) [79]. 113
6.2 The two state MDP and a persistence property [79]. 116
6.3 Comparison of the distributions of probability of satisfaction of learned

policies across sampled hyperparameters in the continuing setting. For each
distribution, the mean is shown as a circle, and the maximum and minimum
are shown as vertical bars. We compare our proposed reduction, the reduction
of [57] with Q-learning, and the reduction of [19] with Q-learning. Episodic
resetting was not used [79]. 117

List of tables

3.1 Results for the DC-DC boost converter [78]. 39
3.2 Results for the path planning case study [78]. 41
3.3 Results for the 3A3M power system [78]. 45
3.4 Comparing the winning domain of controllers obtained from our RSA

method, PAC method of [179], and the model-based approach of [127].
The pairwise comparison is made by computing the intersections (∩) and set
differences (row\ column). The results are reported both in cardinalities and
percentages [78]. 48

4.1 Q-Learning Results for Room Temperature and Road Traffic [88]. 80
4.2 Results for distributed controller learned by minimax Q-learning on the

quantised subsystems [88]. 81

6.1 Learning results and comparison. Hyperparameters used for our reduction
are shown. Blank entries indicate that default values were used. The default
parameters are c =−1, ε = 0.1, α = 0.1, and η = 0.1. Times are in seconds.
Superscript † indicates results from Q-learning with reduction from [57],
while superscript ‡ indicates Q-learning with reduction from [19]. Results
for † and ‡ required episodic resetting. All hyperparameters were tuned by
hand [79]. 118

Chapter 1

Introduction

1.1 Motivation

Driven by advancements in data analysis, artificial intelligence, and mathematical modelling,
Cyber-Physical Systems (CPS) development and analysis are employed across many disci-
plines, from smart grids to medical devices to robotic systems. CPS integrate computing
devices that interact with the physical world through sensors and actuators. The economic
and societal potentials of these systems attract significant investments worldwide to develop
the technology. The challenge of design and analysis to ensure the reliability of such systems
has attracted researchers from academia and industry.

Central to the analysis of CPS is control theory, a well-studied field with many mathemat-
ical tools for design and analysis. The design of controllers requires modelling the dynamics
of the physical systems. Although we are seeking to design controllers for specific tasks, we
expect a high level of confidence in the correct performance of the system because errors
can lead to unacceptable consequences such as loss of life. Specifically, in safety-critical
systems, safety has a higher priority over other design objectives.

The traditional approach for checking the performance of a system is by extensive testing
and validation. However, a more thorough approach involves writing mathematically precise
requirements of the desired task and checking whether the system’s model meets them. This
framework leads to model-based approaches for controller design. The goal of modelling
in system analysis is to provide mathematical abstractions to manage design complexity.
Abstraction-based approaches use a mathematical abstraction as part of the framework for
analysis and synthesis. However, constructing a sufficiently accurate model could be costly
and time consuming. Data-driven approaches provide a solution for such cases when a model
of the system is not available or is difficult to construct.

2 Introduction

As CPS include numerous subsystems, the complex network structure, heterogeneity, and
nonlinearity make it increasingly challenging to use traditional optimisation algorithms. This
complexity motivates the effective use of artificial intelligence (AI) and machine learning
(ML) methods.

Reinforcement learning (RL), as one essential ML paradigm in AI, has been adopted to
address some of these issues. RL refers to learning through interaction and experience, which
translates to exploration and exploitation. RL is a process through which an agent learns
from its own experience. The agent has some states, actions, and rewards, an initial state
and a task to accomplish. After it learns through mistakes, it can take an optimal action in
each state that steers it toward accomplishing the task. In RL, we have the notion of reward,
which makes it different from the traditional ML algorithms, such as supervised learning and
unsupervised learning. The notion of reward validates the predicted output of the system. In
this way, we can consider the reward as a lens to reaching the goal.

Traditional RL algorithms use an ad-hoc approach for designing the reward function.
However, designing a reward function is not a trivial task. In this way, choosing an inappro-
priate reward structure may lead to finding an incorrect policy. A more thorough approach
involves writing mathematically precise requirements of the desired task and translating them
into an appropriate reward function.

To check that the RL algorithm works appropriately, the designer must represent the tasks
in a mathematically precise manner. We can usually express these tasks as temporal logic
formulas covering a range of specification formalisms and associated techniques for formal
verification. We can classify these properties into two main groups: safety properties and
liveness properties. A safety requirement asserts that “nothing bad ever happens”. On the
other hand, a liveness requirement asserts that “something good eventually happens.” Most
of the desired tasks for dynamical systems can be represented as a combination of safety and
liveness properties.

In model-based approaches, analysis tools like model checkers allow the designer to
check that the system accomplishes the task. The same reasoning applies when we intend to
use data-driven approaches. The designer needs to represent the tasks in a mathematically
precise manner. However, the goal is to provide a formally correct translation from these
temporal logic formulas into a reward function. We are looking for a correct translation from
a temporal logic formula to a reward function.

This thesis studies whether we can provide a translation from a task to a reward function
with correctness guarantees. In this way, throughout this thesis, we examine different RL
paradigms and how we can translate a task into a reward machine. The RL algorithms we

1.2 Aims and objectives 3

explore in this thesis do not require constructing an explicit model of the underlying system,
and in this sense, they are all model-free.

1.2 Aims and objectives

This thesis studies formal model-free reinforcement learning algorithms while providing
correctness guarantees for the translation of temporal properties into reward functions. The
objectives of the research are as follows.

• Study the problem of model-free formal policy synthesis to satisfy a temporal property
when we have an underlying stochastic continuous state dynamical system.

• Investigate the problem of model-free formal policy synthesis for temporal properties
when we have a continuing task without any resetting and an average reward objective.

• Develop data-driven abstraction-based approaches for temporal properties and also
providing a lower bound for the probability of satisfaction and sample size complexity.

• Applying compositional formal RL algorithms and using game-theoretic approaches
to improve the scalability of traditional RL algorithms.

• Provide a data-driven approach for efficient construction of finite abstractions of
continuous systems.

1.3 Contributions

The contributions of this thesis are as follows:

• We develop a data-driven abstraction-based algorithm for formal control synthesis
of continuous systems. In comparison to existing results, our novel approach does
not allow violation of the property on any subset of the state space, which leads to a
correct lower bound for the probability of satisfaction. This algorithm and its sample
complexity are presented in Chapter 3.

• We develop a compositional framework that applies model-free two-player RL in an
assume-guarantee fashion. It compositionally computes strategies for continuous-space
interconnected systems without explicitly constructing their finite-state abstractions.
The algorithm and the associated guaranteed lower bound for the probability of satis-
faction for the network are presented in Chapter 4.

4 Introduction

• We develop a translation from a temporal task to an RL objective. We investigate
reductions without full knowledge of the system and develop the required assumptions
and theories for the convergence of the learned policy to the optimal policy in Chapter 5.

• We develop a translation from the temporal properties to an average reward objective
for RL. We explore reductions that can be made on the fly without full knowledge of
the environment, thereby enabling the use of model-free RL algorithms in Chapter 6.

1.4 Thesis outline

This thesis comprises seven chapters, including this introduction chapter. The remainder of
this thesis chapters is organised as follows:
Chapter 2 In this chapter, the necessary background techniques on formal synthesis of
cyber-physical systems are provided.
Chapter 3 This chapter studies data-driven formal abstraction-based synthesis schemes
to design a controller for continuous-space systems with unknown dynamics. Additionally,
it discusses the sample complexity that gives a lower bound for the number of sampled
trajectories to guarantee the correctness of the controller with a given confidence. The result
of this chapter is based on the work [78], which is under review in the Elsevier Journal on
Nonlinear Analysis: Hybrid Systems. This work was the collaboration between Newcastle
University and Max Planck Institute for Software Systems.
Chapter 4 This chapter provides formal Reinforcement Learning schemes to synthesise
policies for a network of continuous-space stochastic control systems with unknown dynam-
ics. Additionally, it explores compositional game-theoretic model-free RL framework for
control synthesis. It also discusses computing a guaranteed lower bound for the probability
of property satisfaction by the interconnected system based on those of individual controllers
over subsystems. The result of this chapter is based on the work which is under review at
Nonlinear Analysis: Hybrid Systems. This work was the collaboration between Newcastle
University, ETH, and University of Colorado at Boulder.
Chapter 5 This chapter studies the satisfaction of temporal properties on unknown stochas-
tic processes that have continuous state spaces. It also explores the required assumptions and
theories for the convergence of the learned policy to the optimal policy in the continuous state
space. Additionally, it discusses sequential learning procedures to guide the RL algorithm
toward a policy that converges to an optimal policy under suitable assumptions on the process.
The result of this chapter is based on the work [80].
Chapter 6 This chapter provides formal average-reward RL algorithms for control syn-
thesis of continuing tasks. Additionally, it discusses empirically with various benchmarks a

1.5 Publications 5

comparison between the proposed method of using average reward RL for continuing tasks
defined by omega-regular specifications and competing approaches that leverage discounted
RL. The result of this chapter is based on the work [79]. This work was the collaboration
between Newcastle University, University of Colorado at Boulder, and Air force research.
Chapter 7 This chapter presents the conclusion of this thesis. we summarise our contribu-
tions, limitations of our research and possible future research directions.

1.5 Publications

– Kazemi, Milad, and Sadegh Soudjani. "Formal policy synthesis for continuous-state
systems via reinforcement learning." International Conference on Integrated Formal
Methods. Springer, Cham, 2020.

– Kazemi, Milad, et al. "Translating omega-regular specifications to average objec-
tives for model-free reinforcement learning." Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems. 2022.

– Kazemi, Milad. "Data-driven Approaches for Formal Synthesis of Dynamical Sys-
tems." Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems. 2022.

– Kazemi, Milad, et al. "Smart Charging and Operation of Electric Fleet Vehicles in
a Smart City." Cyberphysical Smart Cities Infrastructures: Optimal Operation and
Intelligent Decision Making (2022): 61-94.

– Wooding, Ben, et al. "Control and management of active buildings." Active Building
Energy Systems. Springer, Cham, 2022. 161-192.

– Lavaei, A., et al. "Compositional Reinforcement Learning for Discrete-Time Stochastic
Control Systems.", Nonlinear Analysis: Hybrid Systems.(Under Review)

– Kazemi, Milad, et al. "Data-Driven Abstraction-Based Control Synthesis", Nonlinear
Analysis: Hybrid Systems. (Under Review)

– Kazemi, Milad, et al. "Assume-Guarantee Reinforcement Learning", Thirty-Seventh
AAAI Conference on Artificial Intelligence. (Under Review)

Chapter 2

Background on formal synthesis of
cyber-physical systems

2.1 Introduction

The goal of this chapter is to provide an introduction to the principles of control synthesis
algorithms. We approach this subject in the context of the design and analysis of cyber-
physical systems. Due to the distinguishing characteristics of cyber-physical systems, these
approaches include a diverse set of disciplines such as model-based design, formal methods
for specification and verification, control theory, and machine learning. In this chapter,
we start by explaining the notion of cyber-physical systems, control synthesis, and formal
methods, and then we discuss data-driven approaches. For data-driven approaches, we focus
on abstraction-based approaches and reinforcement learning.

2.2 Cyber-physical systems

Ongoing advances in science and engineering and the attempts in linking the computation and
physical elements leads to ubiquitous use of cyber-physical systems in many applications such
as smart grids, robotics, autonomous automobile systems and medical monitoring devices.
In a cyber-physical system, computing devices communicate and interact with sensors and
actuators to control physical objects. Across various sectors, from smart buildings to medical
devices to automobiles, such systems are becoming more common. In recent years, there has
been a surge in developing tools to ensure the reliability of such systems.

Traditionally, system development includes designing and implementing the system,
followed by extensive testing and validation to detect bugs. It is more principled to define

8 Background on formal synthesis of cyber-physical systems

precise mathematical requirements for a system before it is developed. Furthermore, for
design and analysis, a system model is necessary. Analysis tools are then used to verify
whether the system model meets requirements. In comparison to traditional approaches, this
methodology will detect design errors early and increase reliability.

Controlling a physical system is done by modelling it with a component called envi-
ronment. It is possible to influence the evolution of the environment using actions, but it
is equally dependent on uncontrollable environmental factors, known as disturbances. The
agent responds to commands from the user based on specification and can make its decisions
based on observation of the environment provided by the sensors, for example, for designing
a policy to move a robot from a region to another region. The sensor is a GPS sensor on the
robot that can measure the current position. The agent’s task is to design the policy to move
toward the target region. The agent can influence the position by adjusting the angle of the
steering wheel and acceleration. The environment, in this case, needs to capture how the
robot’s position changes as a function of the steering angle and acceleration and wind, which
is the uncontrolled disturbance.

It is worth noting that the vocabulary of reinforcement learning and control theory can be
used synonymously. In this way we can call the environment as plant, the action as control
input, and the agent as controller.

Every cyber-physical system has a physical underlying component. One way to model
this dynamical system is to represent the system as a set of differential equations:

ẋ = F(x,u,w) (2.2.1)

In Eq. (2.2.1), the differential equations represents the evolution of the dynamical system
with time derivatives equal to F . x∈Rnx represents the state of the system, u∈Rnu represents
the control input, and w ∈ Rnw represents bounded disturbance input with known bounded
interval. This model has a continuous uncountable state space, and any computational method
needs to translate the model into a finite abstract model.

In CPS analysis, control theory is central. Control theory is a well-studied field of
mathematics that gives many tools for design and analysis. Controller designs require
modelling of the dynamics of physical systems. Modelling in system design helps manage
the complexity of a system by creating mathematical abstractions. There are different
paradigms in modelling dynamical systems. A model tries to capture the future behaviour of
the dynamical system. In deterministic models, the parameter and initial values determine
the model’s future behaviour. However, in probabilistic (or stochastic) models, randomness
plays a role in the system’s future behaviour.

2.3 Model-based synthesis approaches 9

To verify whether the design of a system (or implementation of one) works as intended,
one needs to first mathematically represents the precise requirements. We call these re-
quirements as specifications. The designer can then check whether the system meets the
requirements using analysis tools. Additionally, the designer can synthesise a controller
under which the system satisfies the requirements. Given our access to a precise model of
the system, we can use model-based approaches.

We divide the approaches for control synthesis in two important categories: model-based
and data-driven approaches. In the following we start with model-based approaches. In
model-based approaches, analysis tools like model checkers allow the designer to check
that the system accomplishes the task. The fact that we are aiming to construct controllers
for specific tasks does not absolve us from the responsibility of ensuring that the system
performs as expected since errors can have catastrophic consequences, including loss of life.
The designer needs to represent the tasks in a mathematically precise manner.

2.3 Model-based synthesis approaches

In this section, we discuss model-based approaches for formal synthesis of systems. There
is an extensive body of literature on model-based formal synthesis for both deterministic
and probabilistic systems. We refer the reader to the books [8, 161, 13] and seminal papers
[49, 1]. In terms of specifications, computation tree logic (CTL) and linear temporal logic
(LTL) are some of the most common temporal logics used to express the correctness of
computer programs and digital circuits modelled as finite-state transition systems. Formal
analysis or model checking, the process of analysing such models against a temporal logic
formula, has received much attention over the past few decades. Several efficient algorithms
and software tools are available for this task.

Automata-based and optimisation-based methods represent the major current approaches
to combine optimality and correctness [12]. Automata-based approaches are based on the
observation that an LTL formula can be translated into an automaton such that the language
accepted by the automaton is the language satisfying the formula. There are different ways
these automata can be represented, depending on the desired expressivity of the specification
language. A control problem can then be reduced to a game. This game is played on the
product between a system and an automaton generated from the specification. The winning
condition, which ensures correctness, is the acceptance condition of the automaton. The main
limitation of automata-based methods stems from their computational complexity, which
leads to an exponential blowup of the partition-based abstraction for infinite-horizon systems.

10 Background on formal synthesis of cyber-physical systems

In addition, due to the partition-based abstraction, such methods are generally conservative
for infinite systems.

The basis of optimisation-based methods is temporal logic over finite-horizon signals.
These finite-horizon logics not only indicate whether signals satisfy or violate a formula but
also support quantitative semantics, which assesses the robustness of satisfactions. Moreover,
it can be rewritten as the feasibility part of an optimisation problem. In this way we solve
an optimisation problem on top of satisfying the property. It is possible to combine the
cost of penalising deviations from the desired trajectory with the satisfaction’s robustness to
reach the optimisation’s overall objective. Therefore, these types of methods benefit from
combining correctness and optimality, robustness, and scalability.

2.3.1 Abstraction-based control synthesis

Consider the problem of finding a policy for a system to satisfy a temporal property ex-
pressed as an LTL formula. LTL specifications need to be translated into automata with
appropriate acceptance conditions. A product automaton is created by synchronising a finite
approximated version of the system and the automaton. The satisfying run of this product
system visits a set of accepting states infinitely often. The existence of an optimal run with a
prefix-suffix structure implies that it is sufficient to search for runs with a finite transient state
followed by a periodic steady state. To find an optimal cycle containing an accepting state,
we use a polynomial-time graph algorithm to find solutions to shortest-path problems [134].

Although the proposed approaches in [1, 71] have been promising, they rely on knowing
a precise system model; thus, they cannot be applied when the model is not known. Accurate
models for many physical systems are either unavailable or too complex to be of practical use;
hence, one cannot employ model-based techniques to analyse these systems. Although there
are results in the literature to handle various analysis and synthesis problems by learning
approximate models utilising identification approaches [25, 69], acquiring an accurate model
for complex systems is always very challenging, time-consuming, and expensive. This critical
challenge motivated us to bypass the system identification phase and employ a data-driven
approach for controller synthesis of complex stochastic systems with (fully or partially)
unknown dynamics.

An approach to handle models of systems over continuous uncountable spaces is to
approximate them with finite-state models conservatively. These finite models are then
called abstractions of the original concrete model. In abstraction-based control synthesis, a
controller for a continuous-state system is synthesised through a three-step process [108].
They abstract the continuous-state system into a finite transition system, solving the controller
for the abstraction and refining the controller for the continuous system. We describe this

2.3 Model-based synthesis approaches 11

Fig. 2.1 Abstraction-based synthesis for control of a continuous system [108].

procedure next. The schematic of the abstraction-based control synthesis approach is shown
in Fig. 2.1.

Abstraction

The abstraction-based control synthesis starts with constructing an abstraction of the dynami-
cal system. We abstract the continuous system in Eq. (2.2.1) into a finite transition system
defined by the triple (X ,U,δ), where X is a set of symbols (also called states), U is a finite
set of controls, and δ : X×U → 2X is a non-deterministic transition relation that describes
the set of possible next states for each input-state combinations in X ×U . To construct a
finite transition system (X ,U,δ), all continuous sets and behaviours of Eq. (2.2.1) need to
be discretised. We begin by uniformly partitioning the continuous state space Inx into a finite
set of smaller intervals. The partition parameter is represented as αx ∈ N and is the number
of elements per dimension for the abstraction, meaning that the whole partition X contains
αnx

x intervals, each denoting a discrete state of the abstraction. Our next step is to create a
discretisation of the control set U . The computational complexity of the abstraction step de-
pends on the number of discrete elements. While increasing the number of discrete elements
is favourable for the control synthesis step, we want to avoid computational complexity in
the abstraction step. It is not necessary to discretise the disturbance set w, which is included
directly in the reachability analysis as discussed next.

Finally, we discretise the continuous behaviours of Eq. (2.2.1) to the finite and nonde-
terministic transition relation δ : X×U → 2X . Given a sampling time τ > 0, we denote by
R(τ,x,u)⊂ Inx the reachable set

R(τ,x,u) := {Φ(τ;x,u,w)|x ∈ X ,u ∈U,w : [0,τ]→W},

where Φ(τ;x,u,w) is the state of the system at time τ starting from any state in the partition
element x ∈ X , with constant control input u ∈U and for any disturbance taking values in W .
Then, we can define the set of successors of the pair (x,u) ∈ X×U as

δ (x,u) = {x′ ∈ X |x′∩R(τ,x,u) ̸= /0}, (2.3.1)

12 Background on formal synthesis of cyber-physical systems

which determines a non-empty intersection between all partition elements in X and the
reachable set.

Control synthesis

The second step that needs to be undertaken after constructing the abstraction is to synthesise
a discrete controller on the finite abstract model to satisfy the desired specification. Graph
search and model checking algorithms give us a powerful tool to combine the strength of the
transition systems and wide range of high-level specifications, which can be expressed as
temporal logic formulas.

Given a finite set of abstract states as target set T ⊆ X , the reachability game for T aims
to find all abstract states that can be brought to the target set in a finite number of transitions
of the abstraction.

Controller refinement

In the third final step of abstraction-based synthesis approaches, the discrete controller is
refined to a controller for the continuous control system in Eq. (2.2.1). To achieve this, define
the zero-order hold version of the discrete controller with the desired sampling period τ

(which means keep the same value for the controller over the time period of length τ). The
controller measures the current continuous state at each sampling time, find the partition
element (or abstract state) that contains this continuous state, and apply the constant value of
the discrete controller during the whole sampling period.

2.4 Data-driven control synthesis approaches

The more complex the dynamical system gets, the more difficult it is to analyse. This
uncertainty and difficulty of having access to accurate models led to the introduction of
data-driven approaches. Data-driven approaches for analysing, verifying, and synthesising
systems have recently received significant attention [73]. They try to improve the efficiency
and scalability of model-based approaches and to study problems in which a model of the
system is either not available or costly and time-consuming to construct. These data-driven
approaches are usually classified into two main categories: model-based and model-free
approaches.

The model-based approaches usually rely on constructing a model from the available
data and synthesising a controller using the constructed model. In classical control theory,
this approach is the equivalent of the identification and control approach [67]. In recent years

2.4 Data-driven control synthesis approaches 13

there has been a surge in providing end-to-end approaches for guaranteeing the controller’s
performance [33].

In model-free data-driven approaches, the goal is to directly compute an optimal policy
without generating a model. One of the approaches in model-based synthesis is to use an
approximate model of the system. Given a prior inaccurate knowledge about the model
of the system, a research line is to use data for refining the model and then synthesise a
controller. This refining relies on the assumption over the underlying model of system. In
doing so, such approaches assume a class of models and improve the estimation of the
uncertainty within the model class. These approaches range from using Gaussian processes
[110, 9], differential inclusions [38], rapidly-exploring random graphs [51], piecewise affine
models [131], and model-based reinforcement learning algorithms [27]. On the other hand,
data-driven model-free approaches compute the solution of the synthesis problem directly
from data without constructing a model.

2.4.1 Data-driven abstraction-based control synthesis

Abstraction-based synthesis is an an effective approach to the synthesis of continuous-
space stochastic systems. Existing results for stochastic systems include the construction
of finite Markov decision processes (MDPs) for formal verification and synthesis [1, 144,
147]. In these approaches, a finite state model with probabilistic transitions is constructed
based on the continuous probabilistic evolution of the system. Approximation methods
for stochastic systems with error bounds that depend on higher-orders of the discretisation
resolution is proposed in [145]. The assumption of continuous probabilistic evolution for
error quantification is relaxed in [146, 150] to make the abstraction approach applicable
to systems that have a mixture of probabilistic and deterministic evolution. Forward and
backward computations of the safety and reachability probabilities using abstract models are
studied in [149, 152], with extension of such techniques to infinite time-horizon properties in
[163].

Utilising compact data structures and mu-calculus for formal verification and synthesis of
stochastic systems against high-level specifications is studied recently [104, 103, 10, 11, 102].
Earlier in Sec. 2.3.1, we introduced how we can formally synthesise a control through an
abstraction-based controller synthesis algorithm. Unfortunately, these techniques rely on
state-space discretisation. Therefore, they severely suffer from the curse of dimensionality.
So, their computation cost increases exponentially with the size of the state set. Compositional
abstraction-based techniques have been recently introduced to mitigate this scalability issue.
In this way, finite abstractions of large systems are constructed by dividing the system into a
smaller subsystems and then doing the abstraction and synthesis locally [91, 90, 86]. Safety

14 Background on formal synthesis of cyber-physical systems

verification and synthesis of stochastic systems based on discretisation-free approaches are
studied in [123] using control barrier certificates. This notion is extended and used for
verification and synthesis against high-level temporal properties in [70, 71].

On the downside, there is no guarantee that a control barrier certificate exists for a
stochastic system.

The research on data-driven constructions of abstract models is limited. Legat et al. [94]
provide an abstraction-based controller synthesis approach for hybrid systems by computing
Lyapunov functions and Bellman-like Q-functions and using a branch and bound algorithm
to solve the optimal control problem. Makdesi et al. [106] studied unknown monotone
dynamical systems and sampled a set of trajectories generated by the system to find a
minimal map overapproximating the dynamics of any system that produces these transitions.
Consequently, they calculate an abstraction of the system related to this mapping and prove
that an alternating bisimulation relation exists between them. However, this approach is
restricted to monotone systems and does not apply to nonlinear dynamical systems.

We present in Chapter 3 of this thesis a data-driven abstraction-based control synthesis
approach, where we construct an abstraction using sampled trajectories, which then can be
used for synthesising a controller against any linear temporal logic specification. In the rest
of this chapter, we will focus on reinforcement learning algorithms that are used extensively
in the research presented in the thesis.

2.4.2 Reinforcement learning

Reinforcement learning (RL) [160] is a promising paradigm for sequential decision-making
when a system model is unavailable or hard to construct and analyse. The objective of an RL
algorithm is to find suitable action policies to maximise the collected rewards that depend
on the states and actions taken at those states. In general, in RL algorithms, an agent learns
from its own experience. The agent has some states, actions, and rewards. There is an initial
state and a goal for the agent. After learning through mistakes, given a state, it can make an
optimal move that guides it toward the end goal.

Reinforcement learning differs from other machine learning algorithms, such as su-
pervised and unsupervised learning. In supervised learning, the goal is to generalise and
extrapolate from a labelled training dataset which usually comes from a knowledgeable
external expert. Supervised learning is an essential category of learning algorithms; however,
it is inadequate for learning by interaction. RL also is different from unsupervised learning
where the goal is to learn a hidden structure or pattern from an unlabelled dataset. It is
tempting to assume that RL is a type of unsupervised learning; however, finding a hidden

2.4 Data-driven control synthesis approaches 15

Fig. 2.2 Schematic of a reinforcement learning algorithm

structure, though it can be helpful, does not maximise the accumulated reward and does not
give us the correct behaviour of the system.

RL learns through interaction and experience, which translates to exploration and ex-
ploitation. Throughout the learning, the agent needs to take a sequence of actions which
maximises the reward based on her previous experience. On the other hand, the agent needs
to discover good actions by trying other actions. In other words, the agent should exploit her
already known knowledge about the environment while trying to explore the unknown parts
of the environment. One challenge in RL research is to find a balance between exploration
and exploitation.

Another key feature of RL is learning the whole task by interacting with an uncertain
environment. In other disciplines, the problem of finding good behaviour can be divided into
several sub-problems and solving all sub-problems leads to finding the policy. For instance,
in control theory, we can solve a reachability problem by breaking it into a planning and
tracking problem. Then, the combined solution of the two problems gives us the optimal
controller. This is not the case at least in vanilla RL algorithms. In vanilla RL, we represent
the goal as a reward structure and solve the problem without prior knowledge about the
environment.

As we established, in any RL algorithm, we have an agent who wants to learn good
behaviour, and this agent is interacting with an unknown environment. Beyond agent and
environment, we can now introduce other vital elements of an RL algorithm: a policy, a
reward function, a value function, and, optionally, an environment model [160].

A policy describes the agent’s decision-making at a given time. Roughly speaking, a
policy maps the perceived history or state of the environment to actions to be taken when
the system behaves according to the perceived history or the visited states. A policy can be
stochastic as well.

A reward function represents the goal in an RL problem. The environment sends a reward
to the RL agent each time step. The agent’s goal is to maximise the accumulated reward. In

16 Background on formal synthesis of cyber-physical systems

this way, the agent locally can use this reward each time step and eventually steer the system
towards a prefered behaviour. The environment sends an immediate reward when we take
action, given the state and the action. The agent can change this reward directly by choosing
a different action or indirectly by changing the state.

A value function acts as a prediction for the accumulated reward for the future. The
immediate reward gives us a sense of quality for the current state. Although the immediate
reward is necessary for the RL algorithm, we need to predict the accumulated reward for the
future. Value function plays the role of accumulated reward approximator.

Last but not least, we need access to an environment’s model. In RL algorithms, the
agent needs to visit all state and action pairs infinitely often to converge. If we have access
to physical systems satisfying this requirement is not easy to meet. In most cases, we can
introduce a mathematical model miming the system’s behaviour.

In the following, I will provide a brief account of model-free RL algorithms, which is a
class of RL algorithms that do not construct or learn a model of the system based on data.
This is in particular important as they allow a model-free analysis, verification and synthesis
of the system. I will prove this observation in Chapters 5, 4, and 6.

2.4.3 Model-free reinforcement learning

Model-free RL [157] refers to a class of asymptotically space-efficient techniques because
they do not construct a complete system model. In other words, model-free RL does not
approximate the transition probabilities of the underlying system. These techniques include
classical algorithms like TD(λ) [159] and Q-learning [172] as well as their extensions to deep
neural networks such as deep deterministic policy gradient (DDPG) [96] and neural-fitted Q-
iterations [128]. TD(λ) and Q-learning algorithms provide convergence results for finite-state
MDPs with unknown transition probabilities: they compute optimal strategies as long as the
number of training episodes goes to infinity. On the downside, these algorithms suffer severely
if the state space of the underlying finite MDP is too large. Conversely, DDPG and neural-
fitted Q-iterations can deal with large, finite MDPs with unknown transition probabilities
at the cost of providing no convergence guarantee. Model-free reinforcement learning has
achieved performance comparable to human experts in video and board games [162, 112,
138]. This success has motivated applications of RL to design controllers for safety-critical
systems [96, 95] despite a lack of theoretical convergence guarantees of RL for general
continuous state spaces [29]. There are two major ways to value a policy based on the
infinite reward sequence that it generates, namely the average- and discounted-reward policy
value formulations. They induce the average- and discounted-reward optimality criteria,

2.4 Data-driven control synthesis approaches 17

respectively [35]. We focus on Q-learning as a discounted RL and differential Q-learning as
an example of average reawrd RL as a primary model-free RL algorithm in the following.

Q-learning

Discounted RL is the most prominent approach for designing a policy for infinite horizon
tasks. The infinite-horizon discounted model takes the long-run reward of the agent into
account, but rewards that are received in the future are geometrically discounted according
to a discount factor. In this way the discounted RL algorithm can guarantee convergence.
One of the earliest discounted RL algorithm is Q-learning. Watkins [172] proposed the first
Q-learning algorithm for estimating the optimal action-value functions, Q-functions. The
agent’s goal is to devise a policy that maximises the accumulated reward. The algorithm has
a function that calculates the quality of a state–action combination:

Q : S×A→ R.

Before learning begins, Q is initialised to a possibly arbitrary fixed value. Then, at each
time t the agent selects an action at , observes a reward rt , enters a new state st+1 (that may
depend on both the previous state st and the selected action), and Q is updated. The core of
the algorithm is a Bellman equation as a simple value iteration update, using the weighted
average of the old value and the new information:

Qnew(st ,at)← Q(st ,at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

temporal difference︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal difference target)

−Q(st ,at)︸ ︷︷ ︸
old value

)

where rt is the reward received when moving from the state st to the state st+1 , and α is
the learning rate (0 < α ≤ 1).

Differential Q-learning

There is a rich history of studies in average reward RL [35, 100]. The lack of stopping criteria
for multichain MDPs affects the generality of model-free RL algorithms. In this way, all
model-free RL algorithms put some restrictions on the structure of MDP (e.g. ergodicity
[2, 173] or communicating property). The work [141] proposes a model-based RL algorithm
for maximising average reward objective with safety constraints for communicating MDPs.

18 Background on formal synthesis of cyber-physical systems

It is worth noting that in a multichain setting, the state-of-the-art learning algorithms use
model-based RL algorithms.

The state of the art model-free average reward RL algorithms assume that the underlying
MDP is (weakly) communicating. One of the recent attempts is to provide off-policy RL
algorithms for average reward objectives. Off-policy algorithms do not update the policy
and value function at the same time. Under the communicating assumption, there exists a
unique optimal reward rate r⋆ that is independent of start state. We define reward rate r for
an arbitrary policy π and a start state s:

r(π,s) = lim
n→∞

n

∑
t=1

E[Rt |S0 = s,a0:t−1 ∼ π]

where r⋆ = supπ r(s,π). It is worth noting r⋆ does not depend on the state.
In the following we explain the differential Q-learning as an example of average reward

RL algorithms.

Qnew(st ,at)← Q(st ,at)︸ ︷︷ ︸
old value

+ αt︸︷︷︸
learning rate

· δt︸︷︷︸
temporal difference

Qnew(s,a)← Q(s,a),∀s,a ̸= st ,at

Where the temporal difference is defined as follows:

δt = Rt+1− (R̄t−1 +η ·αt−1 ·δt−1)︸ ︷︷ ︸
scalar estimate of r⋆

+ max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value

−Q(st ,at)

where η is a positive constant and R̄t is an estimate of r⋆.

2.4.4 Reward machines in reinforcement learning

Many objectives, including satisfaction of temporal properties on stochastic systems, do not
admit an equivalent additive reward structure. A natural approach used in the literature (e.g.,
[92]) is to use heuristics for assigning additive rewards and then apply RL algorithms to
obtain a policy. Unfortunately, there is no unique procedure for constructing these rewards,
and the learning does not necessarily converge to the optimal policy. For instance, consider
the objective that a robot should visit two regions infinitely often. We can specify a reward
for the following behaviour: sequentially visit the first region m number of times and then
the second region n number of times, with positive numbers m,n. The RL algorithm cannot
advise on the best sequence of visiting these regions, which depends on the robot’s dynamics.

2.4 Data-driven control synthesis approaches 19

Due to these limitations, there is a need to provide data-driven algorithms that do not
require any heuristics and have suitable convergence guarantees to policies that are optimal
for the satisfaction of temporal properties.

The development and use of formal reward structures for RL have witnessed an increased
interest in recent years. This research area largely focuses on translating tasks into reward
functions for reinforcement learning algorithms. The classical approach is to translate the
task into an automaton with reward and then incorporate this automaton in the learning
algorithm. There is a rich literature in using this technique in different scenarios for instance
when we have finite-horizon or infinite-horizon tasks, or when we have discounted reward,
average reward or total reward reinforcement learning.

Recently, there is a surge in using the structure of the reward in designing RL algorithms.
In reward machine based RL algortihms on top of translating the task to an automaton, the
algorithm also have access to the structure of the automaton as well. In this way, we can use
the full potential of the information that we have i.e. the task by using for instance reward
shaping or counterfactual reasoning.

In the rest of this thesis, we first present our novel data-driven framework for constructing
finite abstractions of continuous systems with formal correctness guarantees. We then present
our results on using RL for formal synthesis of controllers with convergence guarantees.

Chapter 3

Data-driven abstraction-based control
synthesis

3.1 Chapter introduction

This chapter studies formal synthesis of controllers for continuous-space systems with
unknown dynamics to satisfy requirements expressed as linear temporal logic formulas.
Formal abstraction-based synthesis schemes rely on a precise mathematical model of the
system to build a finite abstract model, which is then used to design a controller. The
abstraction-based schemes are not applicable when the dynamics of the system are unknown.
We propose a data-driven approach that computes the growth bound of the system using a
finite number of trajectories. The growth bound together with the sampled trajectories are
then used to construct the abstraction and synthesise a controller.

We show that our data-driven approach can be readily used as a model-free abstraction
refinement scheme by modifying the formulation of the growth bound and providing similar
sample complexity results. The performance of our approach is shown on three case studies.

The research presented in the chapter has been submitted for publication in Nonlinear
Analysis: Hybrid Systems, and the e-print can also be viewed on arXiv [78]. This research
was the result of a collaboration with the Max Planck Institute for Software Systems. My
role in this research is to provide the theoretical results, help with the simulations, and write
the paper.

22 Data-driven abstraction-based control synthesis

3.2 Introduction

One of the major objectives in the design of safety-critical systems is to ensure their safe
operation while satisfying high-level requirements. Examples of safety-critical systems in-
clude power grids, autonomous vehicles, traffic control, and battery-powered medical devices.
The automated design of controllers for such systems that can fulfil the given requirements
has received significant attention recently. These systems can be represented as control
systems with continuous state spaces. Within these continuous spaces, it is challenging
to leverage automated control synthesis methods that provide satisfaction guarantees for
high-level specifications, such as those expressed in Linear Temporal Logic [8, 13, 161, 49].

A common approach to tackle the continuous nature of the state space is to use abstraction-
based controller design (ABCD) schemes [161, 13, 105, 133]. The first step in the ABCD
scheme is to compute a finite abstraction by discretising the state and action spaces. Finite
abstractions are connected to the original system via an appropriate behavioural relation such
as feedback refinement relations or alternating bisimulation relations [127, 161]. Under such
behavioural relations, trajectories of the abstraction are related to the ones of the original
system. Therefore, a controller designed for the simpler finite abstract system can be refined
to a controller for the original system. The controller designed by the ABCD scheme is
described as formal due to the guarantees on the satisfaction of the specification by the
original system in a closed loop with the designed controller.

ABCD schemes generally rely on a precise mathematical model of the system. This
stems from the fact that establishing a behavioural relation between the original system and
its finite abstraction uses reachability analysis over the dynamics of the original system that
require knowledge of the dynamical equations. Although such equations can, in principle, be
derived, for instance, by using physics laws, the real-world control systems are a mixture
of differential equations, block diagrams, and lookup tables. Therefore, extracting a clean
analytical model for systems of practical interest could be infeasible. A promising approach
to tackle this issue is to develop data-driven control synthesis schemes with appropriate
formal (probabilistic) guarantees.

The main contribution of this chapter is to provide a data-driven approach for the formal
synthesis of controllers to satisfy temporal specifications. We focus on continuous-time
nonlinear dynamical systems whose dynamics are unknown, but sampled trajectories are
available. Our approach constructs a finite abstract model of the system using only a
finite number of sampled trajectories and the growth bound of the system. We formulate
the computation of the growth bound as a robust convex program (RCP) with an infinite
uncountable number of constraints. We then approximate the solution of the RCP with a
scenario convex program (SCP) that has a finite number of constraints and can be solved

3.2 Introduction 23

using only a finite set of sampled trajectories. We establish a sample complexity result that
gives a lower bound for the required number of trajectories to guarantee the correctness of
the growth bound over the whole state space with a given confidence. We also provide a
sample complexity result for the satisfaction of the specification on the system in closed loop
with the designed controller for given confidence. Our result requires estimating a bound
on the Lipschitz constant of the system with respect to the initial state that we obtain using
extreme value theory. As our last contribution, we show that our approach can be extended
to a model-free abstraction refinement scheme by modifying the formulation of the growth
bound and providing similar sample complexity results. We demonstrate the performance of
our approach on three case studies.

The remainder of this chapter is organised as follows. After discussing the related work,
Section 3.3 covers preliminaries on dynamical systems and finite abstractions and provides
the problem statement. In Section 3.4, we present the assumptions and theoretical results
needed for connecting RCPs and their corresponding SCPs. In Section 3.5, we present our
approach on the data-driven computation of the growth bound and the abstraction and prove
our sample complexity result. This section also discusses the estimation of the Lipschitz
constant of the system for computing the number of samples. Section 3.6 discusses the
extension of our approach to a data-driven abstraction refinement scheme. Several numerical
examples are provided in Section 3.7 that support the theoretical findings of the chapter.
Finally, Section 3.8 contains concluding remarks and future research directions.

Related Work. There is an extensive body of literature on model-based formal synthesis for
both deterministic and probabilistic systems. We refer the reader to the books [8, 161, 13]
and seminal papers [49, 1]. Data-driven approaches for analysis, verification, and synthesis
of systems have received significant attention recently to improve efficiency and scalability
of model-based approaches, and to study problems in which a model of the system is either
not available or costly and time-consuming to construct.

Given a prior inaccurate knowledge about the model of the system, a research line is to
use data for refining the model and then synthesise a controller. Such approaches assume
a class of models and improve the estimation of the uncertainty within the model class.
These approaches range from using Gaussian processes [110, 9], differential inclusions
[38], rapidly-exploring random graphs [51], piecewise affine models [131], and model-based
reinforcement learning algorithms [27]. A data-driven framework is proposed in [42] for
verifying properties of hybrid systems when the continuous dynamics are unknown but the
discrete transitions are known.

Data-driven model-free approaches compute the solution of the synthesis problem directly
from data without constructing a model. In [64], authors provide a reach-avoid Q-learning

24 Data-driven abstraction-based control synthesis

algorithm with convergence guarantees for an arbitrarily tight conservative approximation of
the reach-avoid set. The paper [170] proposes a falsification-based adversarial reinforcement
learning algorithm for metric temporal logic specifications. Satisfying signal temporal
logic specifications is studied in [168] using counterexample-guided inductive synthesis on
nonlinear systems, and using model-free reinforcement learning in [75] for Markov decision
processes. A learning framework for synthesis of control-affine systems in provided in [158].
The authors of [171] study learning from demonstration while preventing the violation of
safety under the learned policy.

The research on data-driven constructions of abstract models is very limited. Legat
et al. [94] provide an abstraction-based controller synthesis approach for hybrid systems
by computing Lyapunov functions and Bellman-like Q-functions, and using a branch and
bound algorithm to solve the optimal control problem. Makdesi et al. [106] studied unknown
monotone dynamical systems and sampled a set of trajectories generated by the system to
find a minimal map overapproximating the dynamics of any system that produces these
transitions. Consequently, they calculate an abstraction of the system related to this map and
prove that an alternating bisimulation relation exists between them. In contrast, our approach
is not restricted to monotone systems and is applicable to any nonlinear dynamical system.

The closest work to our problem formulation is the work by Devonport et al. [34], where
a data-driven abstraction technique is provided for satisfying finite-horizon specifications.
Our results are more general than the work [34] in two main aspects. First, our constructed
abstraction can be used for synthesising a controller against any linear temporal logic
specification. Our sample complexity result is independent of the horizon of the specification
and does not limit using the approach on finite-horizon specifications. Second, the guarantee
provided in [34] is based on a Probably Approximately Correct (PAC) approach. It means
that the constructed abstraction is always wrong on a small subset of the state space whose
size can be made smaller at the cost of high computational efforts. Our formulated guarantee
ensures that the abstraction is valid on the entire state space with high confidence. The
confidence is interpreted from the frequentist view of probability: if we run our algorithm
multiple times, we always get a correct abstraction except a small number of times reflected
in the confidence value.

In our approach, we formulate the synthesis problem as a robust convex program and
approximate it with a scenario program. Such approximations have been studied for the
past two decades. Calafiore and Campi [22] provide an approximately feasible solution
for the associated chance constrained program by solving a scenario program, and give a
sample complexity result. Relaxing the convexity assumption is studied in [156] by assuming
additional properties of the underlying probability distributions. We will use the results by

3.3 Preliminaries and problem statement 25

Esfahani et al. [41], where the optimality of the robust program is connected directly to the
scenario program. These results are also used recently in the papers [87, 132] for performing
data-driven verification and synthesis. Inspired by the works [175, 174], we will use extreme
value theory to estimate the Lipschitz constant needed for the sample complexity results.

3.3 Preliminaries and problem statement

3.3.1 Preliminaries

Notation. We denote the set of natural, real, positive real, and non-negative real numbers
by N, R, R>0, and R≥0, respectively. The set of natural numbers including zero is denoted
by N≥0. We use superscript n > 0 with these sets to denote the Cartesian product of n
copies of these sets. The power set of a set A is denoted by 2A and includes all the subsets
of A. For any x,y ∈ Rn with x = (x1, . . . ,xn) and y = (y1, . . . ,yn), and a relational symbol
▷ ∈ {≤,<,=,>,≥}, we write x▷ y if xi ▷ yi for every i ∈ {1,2, . . . ,n}. A matrix M ∈ Rn×n

is said to be non-negative if all of its entries are non-negative. We use the operators | · | and
∥ · ∥ to denote the element-wise absolute value and the infinity norm, respectively. We use
the notation Ωε(c) := {x ∈ Rn | ∥x− c∥ ≤ ε} to denote the ball with respect to infinity norm
centred at c ∈ Rn with radius ε ∈ Rn

>0. We consider a probability space (Ω,FΩ,PΩ), where
Ω is the sample space, FΩ is a sigma-algebra on Ω comprising its subsets as events, and PΩ

is a probability measure that assigns probabilities to events.

Control Systems. A continuous-time control system is a tuple Σ = (X ,xin,U,W, f), where
X ⊂ Rn is the state space, xin ∈ X is the initial state, U ⊂ Rm is the input space, and W ⊂ Rn

is the disturbance space which is assumed to be a compact set containing the origin. The
vector field f : X×U→ X is such that f (·,u) is locally Lipschitz for all u∈U . The evolution
of the state of Σ is characterised by the differential equation

ẋ(t) = f (x(t),u(t))+w(t), (3.3.1)

where w(t) ∈W represents the additive disturbance.
We consider the class of input and disturbance signals u : R≥0→U and w : R≥0→W

to be piecewise constant with respect to a sampling time τ > 0, i.e., u(t) = u(kτ) and
w(t) = w(kτ) for every kτ ≤ t < (k+ 1)τ and k ∈ N≥0. Given a sampling time τ > 0, an
initial state x0 ∈ X , a constant input u ∈U , and a constant disturbance w ∈W , define the
continuous-time trajectory ζx0,u,w of the system on the time interval [0,τ] as an absolutely
continuous function ζx0,u,w : [0,τ]→ X such that ζx0,u,w(0) = x0, and ζx0,u,w satisfies the
differential equation ζ̇x0,u,w(t) = f (ζx0,u,w(t),u)+w for almost all t ∈ [0,τ]. The solution

26 Data-driven abstraction-based control synthesis

of (3.3.1) from x0 for the constant control input u with w(t) = 0 for all t ≥ 0 is called the
nominal trajectory of the system. For a fixed τ , we define the operators

ϕ(x,u,w) := ζx,u,w(τ) and

Φ(x,u) := {ϕ(x,u,w) | w ∈W}

respectively for the trajectory at time τ and the set of such trajectories starting from x.
In this chapter, we consider control systems Σ = (X ,xin,U,W, f) whose vector field f is

not known, but we can observe their time-sampled trajectories. A sequence x0,x1,x2, . . . is a
time-sampled trajectory of Σ if for each i≥ 0, we have xi+1 ∈Φ(xi,ui) for some ui ∈U .

Finite-state Abstraction of Control Systems. Let Σ = (X ,xin,U,W, f) be a control system
with a sampling time τ > 0. We consider abstract models constructed by using uniformly
sized rectangular partitioning of X and U . We select representative points from these partition
sets to obtain X̂ and Û . We assume that the radius of these partition sets are provided as
vectors ηx ∈ Rn

>0 and ηu ∈ Rm
>0, respectively. Parameters ηx,ηu are inputs to the abstraction

procedure. A finite-state abstraction of Σ is characterised by the tuple Σ̂ = (X̂ ,Û , f̂), where
X̂ is the set of representative points from a finite partition of X , Û is the set of representative
points from a finite partition of U , and f̂ : X̂ ×Û → 2X̂ is a set-valued map. For any x̂ ∈ X̂
and û ∈ Û , x̂′ ∈ f̂ (x̂, û) if there is a pair of states x ∈ Ωηx(x̂) and x′ ∈ Ωηx(x̂

′) such that
x′ ∈ Φ(x, û). Note that, the larger ηx is (where comparison is made dimension-wise), the
smaller is the cardinality of X̂ resulting in a coarser abstraction. On the other hand, the
smaller ηx is, the more precise the abstraction Σ̂ will be, increasing the chance of a successful
controller synthesis (see, e.g., [161] for more details on this construction).

Feedback Controller. A feedback controller for Σ̂ is a function Ĉ : X̂ → Û . We denote
by Ĉ ∥ Σ̂ the feedback composition of Σ̂ and Ĉ. The set of trajectories of the closed-loop
system Ĉ ∥ Σ̂ consists of all finite trajectories x̂0, x̂1, x̂2, . . . such that for all i ∈ N≥0, we have
x̂i+1 ∈ f̂ (x̂i,Ĉ(x̂i)).

We can relate a finite abstraction Σ̂ to Σ for control synthesis purposes. Simulation
relations or feedback refinement relations [161, 127] established between Σ and Σ̂ enable
us to refine a controller Ĉ designed for Σ̂ to a controller C for Σ. In its general form, such
a refined controller C maps the current states x ∈Ωηx(x̂) into an input u = Ĉ(x̂) for Σ. The
purpose of designing Ĉ is that the closed-loop system C ∥ Σ satisfies the given objective. Our
synthesis objective is expressed as Linear Temporal Logic (LTL) specifications. We refer to
[8] and references therein for detailed syntax and semantics of LTL. For the details of the
controller synthesis and tool implementation using abstract models we refer to [127] and
[129], respectively.

3.4 Robust convex programs 27

3.3.2 Problem statement

We study abstraction-based control design (ABCD) for systems with unknown dynamics
using available data from the system such that a given specification is satisfied with high
confidence on the closed-loop system.

Assumption 3.1 The vector field f of the control system Σ = (X ,xin,U,W, f) in unknown,
but sampled trajectories of the system can be obtained in the form of SN := {(xk,uk,x′k) |x′k ∈
Φ(xk,uk), k = 1,2, . . . ,N}.

Problem 3.1 (Data-driven ABCD) Inputs: Control system Σ = (X ,xin,U,W, f) with un-
known vector field f , specification Ψ, sampled trajectories SN , and confidence parameter
β ∈ (0,1).

Outputs: Abstract model Σ̂, abstract controller Ĉ, and refined controller C for Σ, such that
C ∥ Σ satisfies Ψ with confidence (1−β).

The first step of the ABCD is to compute a finite abstraction Σ̂ for Σ. Once such an
abstraction is computed, synthesis of the controller Ĉ and refining it to C follow the model-
based ABCD scheme. Therefore, the main challenge is to provide a data-driven computation
of the abstraction Σ̂ that is a true overapproximation of Σ with confidence (1−β).

Problem 3.2 (Data-driven Abstraction) Inputs: Control system Σ = (X ,xin,U,W, f)
with unknown vector field f , sampled trajectories SN , discretisation parameters ηx and
ηu, and confidence parameter β ∈ (0,1).

Outputs: Finite model Σ̂ that is an abstraction of Σ with confidence (1−β).

In this chapter, we tackle Problem 3.2 by showing how to construct Σ̂ from sampled
trajectories SN , and provide a lower bound on the data size N in order to ensure correctness
of the abstraction with confidence (1−β). The required theoretical tools are presented in
the next section.

3.4 Robust convex programs

In this section, we describe robust convex programs (RCPs) and data-driven approximation
of their solution. In Sections 3.5 and 3.6, we show how such an approximation can be used
for solving the data-driven abstraction in Problem 3.2.

Let T ⊂Rq be a compact convex set for some q ∈N and c ∈Rq be a constant vector. Let
(D ,B,P) be the probability space of the uncertainty and g : T ×D → R be a measurable

28 Data-driven abstraction-based control synthesis

function, which is convex in the first argument for each d ∈D , and bounded in the second
argument for each θ ∈ T . The robust convex program (RCP) is defined as

RCP:

 minθ c⊤θ

s.t. θ ∈ T and g(θ ,d)≤ 0 ∀d ∈D .
(3.4.1)

Computationally tractable approximations of the optimal solution of the RCP (3.4.1) can
be obtained using scenario convex programs (SCPs) that only require gathering finitely
many samples from the uncertainty space [114]. Let (di)

N
i=1 be N independent and identi-

cally distributed (i.i.d.) samples drawn according to the probability measure P. The SCP
corresponding to the RCP (3.4.1) strengthened with γ ≥ 0 is defined as

SCPγ :

 minθ c⊤θ

s.t. θ ∈ T, and g(θ ,di)+ γ ≤ 0 ∀i ∈ {1,2, . . . ,N}.
(3.4.2)

We denote the optimal solution of RCP (3.4.1) as θ ∗RCP and the optimal solution of SCPγ (3.4.2)
as θ ∗SCP. Note that θ ∗RCP is a single deterministic quantity but θ ∗SCP is a random quantity that
depends on the i.i.d. samples (di)

N
i=1 drawn according to P. The RCP (3.4.1) is a challenging

optimisation problem since the cardinality of D is infinite and the optimisation has infinite
number of constraints. In contrast, the SCP (3.4.2) is a convex optimisation with finite
number of constraints for which efficient optimisation techniques are available [18]. The
following theorem provides a sample complexity result for connecting the optimal solution
of the SCPγ to that of the RCP.

Theorem 3.1 ([114]) Assume that the mapping d 7→ g(θ ,d) in (3.4.1) is Lipschitz continuous
uniformly in θ ∈ T with Lipschitz constant Ld and let h : [0,1]→R≥0 be a strictly increasing
function such that

P(Ωε(d))≥ h(ε), (3.4.3)

for every d ∈D and ε ∈ [0,1]. Let θ ∗RCP be the optimal solution of the RCP (3.4.1) and θ ∗SCP

the optimal solution of SCPγ (3.4.2) with

γ = Ldh−1(ε) (3.4.4)

3.5 Data-driven abstraction 29

computed by taking N i.i.d. samples (di)
N
i=1 from P. Then θ ∗SCP is a feasible solution for the

RCP with confidence (1−β) if the number of samples N ≥ N(ε,β), where

N(ε,β) := min

{
N ∈ N

∣∣∣ q−1

∑
i=0

(
N
i

)
ε

i(1− ε)N−i ≤ β

}
, (3.4.5)

with q being the dimension of the decision vector θ ∈ T .

3.5 Data-driven abstraction

In this section, we first discuss the steps required for model-based abstraction of control
systems. We then show how this can be formulated as an RCP and present its associated SCP.
Finally, we use the connection between the RCPs and SCPs in Theorem 3.1 to provide a
lower bound for number of required samples to certify a desired confidence. The simplifying
assumption used in this section is that samples from the nominal trajectories of the system
Σ is also available in the form of {(xk,uk,x′k) |x′k = ϕ(xk,uk,0), k = 1,2, . . . ,N}. We discuss
in the next section how this assumption can be relaxed by modifying the inequality of the
growth bound.

3.5.1 Growth bound for reachable sets

Consider a control system Σ = (X ,xin,U,W, f) with the disturbance set W = [−w̄, w̄] for
some vector w̄ ∈ Rn

≥0. Let ηx and ηu be discretisation parameters for the state and input
spaces X and U used to construct X̂ and Û of sizes nx and nu, respectively. The first step
of ABCD is to compute a finite abstraction Σ̂ = (X̂ ,Û , f̂) using overapproximations of the
reachable sets for every pair of abstract state and input. The reachable set for every pair
(x̂, û) ∈ X̂×Û is defined as

Reach(x̂, û) := {x′ ∈Φ(x, û) | x ∈Ωηx(x̂)}.

The set Reach(x̂, û) is usually overapproximated using the growth bound of the system
dynamics [127].

Definition 3.1 The growth bound of a control system Σ with abstract state and input spaces
X̂ ,Û is a function κ : Rn

≥0× X̂×Û → Rn
≥0 that satisfies

|ϕ(x, û,w)−ϕ(x̂, û,0)| ≤ κ(|x− x̂|, x̂, û) (3.5.1)

∀x̂ ∈ X̂ , ∀û ∈ Û , ∀x ∈Ωηx(x̂), ∀w ∈W.

30 Data-driven abstraction-based control synthesis

Note that ϕ(x̂, û,0) is the nominal (disturbance-free) trajectory of the system. Using this defi-
nition, for every abstract state-input pair (x̂, û) ∈ X̂×Û , the reachable set Reach(x̂, û) is over-
approximated with a ball centered at z(x̂, û) := ϕ(x̂, û,0) with radius λ (x̂, û) := κ(ηx, x̂, û).

When the system dynamics are known, it is shown in [127] that the growth bound can be
computed as

κ(r, x̂, û) = eL(û)τr+
∫

τ

0
eL(û)sw̄ds, (3.5.2)

for all r ∈ Rn
≥0, x̂ ∈ X̂ , and û ∈ Û , where L : Û → Rn×n is a matrix such that the entries of

L(û) satisfy the following inequality for all x ∈ X :

Li, j(û)≥
{

D j fi(x, û) i = j
|D j fi(x, û)| i ̸= j,

(3.5.3)

for all i, j ∈ {1,2, . . . ,n}, where fi(x,u) is the ith element of the vector field f (x,u) and D j fi

is its partial derivative with respect to the jth element of x.

3.5.2 SCP for the computation of growth bound

When the model of the system is unknown, the matrix L(û) defined using (3.5.3) is not
computable, thus the growth bound in (3.5.2) is not available. To tackle this bottleneck, we
use the parameterisation

κ(θ)(r, x̂, û) := θ1(x̂, û)r+θ2(x̂, û),∀r ∈ Rn
≥0, x̂ ∈ X̂ , û ∈ Û , (3.5.4)

where θ1 ∈ Rn×n and θ2 ∈ Rn. We denote by θ ∈ Rn2+n the concatenation of columns of θ1

and θ2.

Remark 3.1 The parameterised growth bound in (3.5.4) is linear with respect to r similar
to (3.5.2), but is more general and less conservative by allowing θ1,θ2 to depend on x̂ (i.e.,
they are defined locally for each abstract state).

Theorem 3.2 The inequality (3.5.1) with the parameterised growth bound (3.5.4) can be
written as the robust convex program

minθ c⊤θ

s.t. 0≤ θ ≤ θ̄ , and ∀x ∈Ωηx(x̂), ∀w ∈W,

|ϕ(x, û,w)−ϕ(x̂, û,0)|−κ(θ)(|x− x̂|, x̂, û)≤ 0,

(3.5.5)

where c = [1,1, . . . ,1] ∈ Rn2+n and θ̄ is a sufficiently large positive vector.

3.5 Data-driven abstraction 31

Proof 3.1 We first show that the optimisation (3.5.5) is in fact a robust convex programme.
Let D = Ωηx(x̂)×W be the uncertainty space and

g(θ ,x,w) := |ϕ(x, û,w)−ϕ(x̂, û,0)|−κ(θ)(|x− x̂|, x̂, û)

for all x ∈Ωηx(x̂) and w ∈W and fixed (x̂, û) ∈ X̂×Û . We need to show that g is convex in θ

for each (x,w) ∈D and bounded in (x,w) for every θ ∈ [0, θ̄]. The convexity holds due to the
parameterisation of κ(θ) in (3.5.4) being linear with respect to the optimisation variables
in θ . The boundedness holds due to the set D being compact and trajectories of the system
being continuous.

We note that any feasible solution for the optimisation (3.5.5) gives a function κ that
satisfies the inequality (3.5.1) for Σ. Such a system will also have a growth bound of the
form (3.5.2) that is a feasible solution for (3.5.5). To see this, we show that θ1 = eL(û)τ

and θ2 =
∫

τ

0 eL(û)sw̄ds are always non-negative. By definition, all the entries of L(û) are
non-negative except the diagonal entries. We decompose this matrix as L(û) = Q+D, where
D is a diagonal matrix with all diagonal entries equal to the constant maxi ∑ j |Li, j(û)| and
Q = L(û)−D is a sub-stochastic matrix as (i) its non-diagonal entries are non-negative
(Qi, j = Li, j(û)≥ o for i ̸= j), (ii) its diagonal entries are non-positive (Qi,i ≤ 0), and finally
(iii) all of its row sums are non-positive. Note that D is a multiple of identity matrix and
therefore, DQ = QD and e(Q+D)τ = eQτeDτ . Further, we define the matrix

Q̄ =

 Q
... −Q1

.

0⊤
... 0

 ,

where 0 and 1 represent n−dimensional vectors with all entries equal to zero and one,
respectively. Note that Q̄ is a stochastic matrix since Q̄i,i =−∑ j ̸=i Q̄i, j for every 1≤ i≤ n+1
and Q̄i, j ≥ 0 for i ̸= j. Therefore, matrix Q̄ correspond to the transition probability matrix
of a continuous-time Markov chain with state space {1,2, . . . ,n+1} (see, e.g., [8] for more
details). Therefore, the entry (i, j) of eQ̄τ is the probability that the Markov chain reaches the
jth state from the ith state at time τ , which is a non-negative quantity. Further, we have

eQ̄τ =

eQτ
... 1− eQτ1

.

0⊤
... 1

 .

32 Data-driven abstraction-based control synthesis

Therefore, eQτ is non-negative, which gives eL(û)τ = eQτeDτ since eDτ ≥ 0. This naturally
results in θ1 and θ2 being non-negative as the integral of non-negative functions.

To construct the SCPγ associated with the RCP (3.5.5), we fix x̂ ∈ X̂ and û ∈ Û , consider
a uniform distribution on the space D = Ωηx(x̂)×W and obtain N i.i.d. sample trajectories
SN = {(xi, û,x′i) |x′i ∈Φ(xi, û), i = 1,2, . . . ,N}. Note that every x′i corresponds to a random
disturbance wi ∈W . The SCPγ is

minθ c⊤θ

s.t. 0≤ θ ≤ θ̄ and ∀i ∈ {1, . . . ,N},
|x′i− x′nom|−θ1(x̂, û)|xi− x̂|+θ2(x̂, û)+ γ ≤ 0,

(3.5.6)

where x′nom := ϕ(x̂, û,0) and γ ∈ R≥0.

Theorem 3.3 For any x̂ ∈ X̂ constructed with discretisation size ηx, any û ∈ Û , and the
disturbance set W = [−w̄, w̄], the optimal solution of (3.5.6) gives a growth bound for the
system Σ corresponding to (x̂, û) with confidence (1− β), when the number of samples
N ≥ N(ε,β) and

γ = 4Lϕ(û) 2n

√
ε

n

∏
i=1

ηx(i)
n

∏
i=1

w̄(i), (3.5.7)

where ε ∈ [0,1], n is the dimension of the state space and Lϕ(û) is the Lipschitz constant of
the system trajectories ϕ(x, û,w) with respect to (x,w).

Proof 3.2 We apply Theorem 3.2 to the RCP (3.5.5) for fixed x̂ ∈ X̂ and û ∈ Û . Define

g(θ ,x,w) := max{|ϕ(x, û,w)−ϕ(x̂, û,0)| (3.5.8)

−θ1(x̂, û)|x− x̂|−θ2(x̂, û)},

where the max{·} is applied to the elements of its argument that belongs to Rn. Since the
distribution on D = Ωηx(x̂)×W is uniform, we choose

h(ε) = P(Ωε(d)) =
(ε/2)2n

∏
n
i=1 ηx(i)∏

n
i=1 w̄(i)

to satisfy the inequality (3.4.3). Note that h(ε) gives the probability of choosing a point
within the 2n−ball Ωε(d) uniformly at random. We use Equation (3.4.4) as γ = Ldh−1(ε) to
get the value of γ in (3.5.7). It only remains to show that g(θ ,x,w) is Lipschitz continuous

3.5 Data-driven abstraction 33

with constant Ld = 2Lϕ(û). Note that Lϕ(û) is the Lipschitz constant of ϕ(x, û,w) with
respect to (x,w), and satisfies

∥ϕ(x, û,w)−ϕ(x′, û,w′)∥ ≤ Lϕ(û)∥(x,w)− (x′,w′)∥ (3.5.9)

for all x,x′ ∈Ωηx(x̂) and w,w′ ∈W. Since ∥θ1(x̂, û)∥ can be bounded by Lϕ(û), we get that

∥g(θ ,x,w)−g(θ ,x′,w′)∥
≤ ∥ϕ(x, û,w)−ϕ(x′, û,w′)∥+∥θ1(x̂, û)∥∥x− x′∥
≤ Lϕ(û)∥(x,w)− (x′,w′)∥+Lϕ(û)∥x− x′∥
≤ 2Lϕ(û)∥(x,w)− (x′,w′)∥,

Therefore, g(θ ,x,w) is Lipschitz continuous with constant 2Lϕ(û). This completes the proof.

Remark 3.2 The value of γ in (3.5.7) depends on the Lipschitz constant Lϕ . We provide an
algorithm in the next subsection for estimating this constant using sampled trajectories of
the system. Note that as the above proof shows, the estimated quantity θ1 = Lϕ1n×n can be
used to construct the abstraction, but this would give conservative results without any formal
guarantee. We will demonstrate this observation on a case study in Section 3.7.

Corollary 3.1 The abstract model constructed using the growth bounds as solutions of SCPγ

with confidence (1−β) for state-input pairs (x̂, û) ∈ X̂×Û is a valid abstract model for Σ

with confidence at least (1−nxnuβ), where nx and nu are respectively the cardinality of X̂
and Û.

Proof 3.3 Denote the optimal solution of SCPγ in (3.5.6) by θ ∗. The ball centered at
z(x̂, û) := x′nom with radius λ (x̂, û) = κ(θ ∗)(ηx, x̂, û)+ γ is a valid overapproximation of
the reachable set from the state-input pair (x̂, û) with confidence at least 1−β . Since the
number of pairs (x̂, û) is nxnu, the chance of getting an invalid growth bound in at least one
instance of SCPγ is bounded by nxnuβ . Therefore, we get a sound abstraction that truly
overapproximates the behaviour of the system with confidence (1−nxnuβ).

Remark 3.3 The parameter ε ∈ [0,1] gives a tradeoff between the required number of
samples and the level of conservativeness applied to the SCP. Smaller ε results in a larger
number of sample trajectories, but reduces the value of γ in (3.5.7) (less conservative
constraints in the SCP and higher chance of finding a feasible solution). In contrast, larger ε

results in a smaller number of sample trajectories but increases the value of γ .

34 Data-driven abstraction-based control synthesis

Remark 3.4 The quantity 2n used in (3.5.7) is in fact the dimension of the sample space
D = Ωηx(x̂)×W. If the system does not have any disturbance (i.e., the system can be
modeled as an ODE having deterministic trajectories), the sample space will be D = Ωηx(x̂)
and its dimension n can be used in (3.5.7): γ = 4Lϕ(û) n

√
ε ∏

n
i=1 ηx(i). This will substantially

reduce the number of required sample trajectories. Similarly, if the disturbance does not
affect some of the state equations, 2n can be replaced by (n+q) where q is the dimension of
the disturbance set considered as a non-zero measure set.

Algorithm 1 uses the result of Corollary 3.1 to provide an algorithmic solution for
Problem 3.2. This algorithm receives a confidence parameters β , divides it by the cardinality
of X̂ ×Û (i.e., nxnu), computes the growth bounds for each pair (x̂, û) ∈ X̂ ×Û using the
SCPγ in (3.5.6) with confidence 1−β/(nxnu), and constructs the abstraction using these
growth bounds.

Algorithm 1 Data-Driven Abstraction [78].
Data: (X ,U,W) of a control system Σ, confidence β , discretisation parameters ηx, ηu

1 Compute the finite state and input sets X̂ and Û using ηx, ηu Define nx and nu as cardinalities
of X̂ and Û Choose ε ∈ [0,1] Set N = N(ε, β

nxnu
) using Eq. (3.4.5) Compute γ using

Eq. (3.5.7)
2 for x̂ ∈ X̂ do
3 for û ∈ Û do
4 f̂ (x̂, û) = /0 Consider the uncertainty space D = Ωηx(x̂)×W Select N i.i.d sample

trajectories using uniform distribution over D Simulate the nominal trajectory
(x̂, û,x′nom) Solve the SCPγ (3.5.6) to get the optimiser θ ∗(x̂, û) z← x′nom λ ←
κ(θ ∗)(ηx, x̂, û)+ γ Find all states x̂′ ∈ X̂ for which Ωηx(x̂

′)∩Ωλ (z) ̸= /0 and add
them to f̂ (x̂, û)

5 end
6 end

Result: Σ̂ = (X̂ ,Û , f̂) as a finite abstraction of Σ with confidence (1− β), θ ∗(x̂, û) as a
growth bound for x̂ ∈ X̂ , û ∈ Û

The finite abstraction Σ̂ constructed by Algorithm 1 is a valid abstraction for Σ with
confidence (1−β). This means any controller Ĉ synthesised on Σ̂ and refined to a controller
C for Σ will satisfy the desired specification with confidence (1−β) on the closed loop
system Σ ∥C. In the next section, we extend our approach to make it suitable for abstraction
refinement in case there is no controller Ĉ satisfying the specification due to the conservatism
of the approach.

3.5 Data-driven abstraction 35

3.5.3 Lipschitz constant estimation

For estimating the Lipschitz constant Lϕ in (3.5.9), we estimate an upper bound for the
fraction

∆(û) :=
∥ϕ(x, û,w)−ϕ(x′, û,w′)∥
∥(x,w)− (x′,w′)∥

that holds for all x,x′ ∈ X and w,w′ ∈W . We follow the line of reasoning in [175, 174] and
use the extreme value theory for the estimation.

Let us fix a δ > 0 and assign uniform distribution to the pairs (x,w) and (x′,w′) over the
domain

{x,x′ ∈ X , w,w′ ∈W with ∥(x,w)− (x′,w′)∥ ≤ δ}. (3.5.10)

Then ∆(û) is a random variable with an unknown cumulative distribution function (CDF).
Based on the assumption of Lipschitz continuity of the system, the support of the distribution
of ∆(û) is bounded from above, and we want to estimate an upper bound for its support. We
take n sample pairs (x,w) and (x′,w′), and compute n samples ∆1,∆2, . . . ,∆n for ∆(û). The
CDF of max{∆1,∆2, . . . ,∆n} is called the limit distribution of ∆(û). Fisher-Tippett-Gnedenko
theorem says that if the limit distribution exists, it can only be one of the three family of
extreme value distributions – the Gumbel class, the Fréchet class, and the reverse Weibull
class. These CDF’s have the following forms:

Gumbel class: G(s) = exp
[
−exp

[
s−a

b

]]
, s ∈ R

Fréchet class: G(s) =

0 if s < a

exp
[
−[s−a

b]−c] if s≤ a

Reverse Weibull class: G(s) =

exp
[
−[a−s

b]c
]

if s < a

1 if s≤ a

where a ∈ R,b > 0,c > 0 are respectively the location, scale and shape parameters of the
distributions.

Among the above three distributions, only the reverse Weibull class has a support bounded
from above. Therefore, the limit distribution of ∆(û) will be from this class and the location
parameter a is such an upper bound. As a result, we can estimate the location parameter of
the limit distribution of ∆(û) to get an estimation of the Lipschitz constant.

The approach is summarised in Algorithm 2. The most inner loop computes samples of
∆(û). The middle loop computes samples of max{∆1, . . . ,∆n}. The outer loop estimates the
Lipschitz constant for each û by fitting a reverse Weibull distribution.

36 Data-driven abstraction-based control synthesis

Algorithm 2 Lipschitz Constant Estimation [78].

Data: (X ,U,W) of a control system Σ, abstract input space Û
7 Select number of samples n and m for the estimation

Select δ > 0
for û ∈ Û do

8 for j = 1 : m do
9 for i = 1 : n do

10 Sample pairs (x,w),(x′,w′) uniformly from the domain in (3.5.10)
Run Σ to get trajectories ϕ(x, û,w) and ϕ(x′, û,w′)
Compute ∆i := ∥ϕ(x,û,w)−ϕ(x′,û,w′)∥

∥(x,w)−(x′,w′)∥
11 end
12 Γ j := max{∆1, . . . ,∆n}
13 end
14 Fit a reverse Weibull distribution to the sample set {Γ1,Γ2, . . . ,Γm}

Lϕ(û) is the location parameter of the fitted distribution
15 end

Result: Estimated value of Lϕ(û) for all û ∈ Û

3.6 Synthesis via abstraction refinement

The data-driven synthesis discussed in Section 3.5 inherits the soundness property from
the ABCD approach: they both work with overapproximations of the dynamics and may
not return a controller despite one may exists. Therefore, there is a need for refining the
abstraction in order to check for controllers using less conservative abstractions. While the
method of Section 3.5 is good for a given fixed discretisation parameter ηx, it is not suitable
for reducing ηx, which requires re-computing all local parameters of the growth bounds
θ1(x̂, û),θ2(x̂, û). Another shortcoming of the method is related to the data collection: the
nominal trajectories of the system should be available and are used in the constraints of the
SCP. In this section, we discuss an extension of the approach of Section 3.5, in order to

– enable reducing ηx without the need for re-computing the growth bound, and

– relax the assumption of having access to the nominal trajectories of the system.

Let us define a modified growth bound as a function κe : Rn
≥0× X̂ ×Û → Rn

≥0 that is
strictly increasing in its first argument and satisfies

|ϕ(x1, û,w1)−ϕ(x2, û,w2)| ≤ κe(|x1− x2|, x̂, û)
∀x̂ ∈ X̂ , ∀û ∈ Û , ∀x1,x2 ∈Ωηx(x̂), ∀w1,w2 ∈W. (3.6.1)

3.6 Synthesis via abstraction refinement 37

This definition is more conservative than (3.5.1) in comparing trajectories under two arbitrary
disturbances, and we always have that κe satisfies (3.5.1). Using this new definition, for every
pair of abstract state and input (x̂, û), the corresponding overapproximation of the reach set
can be computed as a ball centred at any z(x̂, û) ∈Φ(x̂, û) with radius λ (x̂, û) = κe(ηx, x̂, û).

we choose a parametrisation for κe similar to (3.5.4), i.e.,

κe(θ)(r, x̂, û) = θ1(x̂, û)r+θ2(x̂, û), (3.6.2)

where r ∈R≥0, θ1 ∈Rn×n, θ2 ∈Rn, and θ ∈Rn2+n is constructed by concatenating columns
of θ1 and θ2. The SCP associated with this growth bound is constructed by consid-
ering a uniform distribution over Ωηx(x̂)×W and obtain 2N i.i.d. sample trajectories
S2N = {(xi, ûi,x′i) |x′i ∈Φ(xi, û), i = 1,2, . . . ,2N} so that every x′i corresponds to a random
disturbance wi ∈W . The modified SCPγ is defined as

minc⊤θ

s.t. 0≤ θ ≤ θ̄ and ∀i ∈ {1, . . . ,N}
|x′2i−1− x′2i|−θ1(x̂, û)|x2i−1− x2i|−θ2(x̂, û)+ γ ≤ 0

where c = [1,1, . . . ,1] ∈Rn2+n is a constant vector, θ̄ ∈Rn2+n
>0 is sufficiently large, and γ ≥ 0.

Theorem 3.4 For any x̂ ∈ X̂ constructed with the discretisation size ηx, any û ∈ Û , and
the disturbance set W = [−w̄, w̄], the optimal solution of (3.6.3) gives a growth bound for
the system Σ corresponding to (x̂, û) that satisfies (3.6.1) with confidence (1−β), when the
number of samples 2N ≥ N(ε,β) and

γ = 8Lϕ

4n

√√√√
ε

[
n

∏
i=1

ηx(i)
n

∏
i=1

w̄(i)

]2

, (3.6.3)

where ε ∈ [0,1], ,n is the dimension of the state space, and Lϕ(û) is the Lipschitz constant of
the system trajectories ϕ(x, û,w) with respect to (x,w).

Proof 3.4 The proof of this theorem is similar to that of Theorem 3.3. Define

g(θ ,x1,w1,x2,w2) :=max{|ϕ(x1, û,w1)−ϕ(x2, û,w2)|
−θ1(x̂, û)|x1− x2|−θ2(x̂, û)}.

38 Data-driven abstraction-based control synthesis

To satisfy the inequality (3.4.3), we can choose

h(ε) = P(Ωε(d)) =
(ε/2)4n

[∏n
i=1 ηx(i)∏

n
i=1 w̄(i)]2

,

since the distribution on (Ωηx(x̂)×W)2 is uniform. Using Equation (3.4.4), we have γ =

Ldh−1(ε). In order to prove that γ takes the value in (3.6.3), we must show that g is Lipschitz
continuous with constant Ld = 4Lϕ(û). Bounding ∥θ1(x̂, û)∥ by Lϕ , for all (x1,w1,x2,w2)

and (x′1,w
′
1,x
′
2,w
′
2) we have

∥g(θ ,x1,w1,x2,w2)−g(θ ,x′1,w
′
1,x
′
2,w
′
2)∥

≤ ∥ϕ(x1, û,w1)−ϕ(x′1, û,w
′
1)∥

+∥ϕ(x2, û,w2)−ϕ(x′2, û,w
′
2)∥

+∥θ1(x̂, û)∥(∥x1− x′1∥+∥x2− x′2∥)
≤ 4Lϕ(û)∥(x1,w1,x2,w2)− (x′1,w

′
1,x
′
2,w
′
2)∥.

Therefore, g is Lipschitz continuous with constant 4Lϕ(û). This completes the proof.

A statement similar to Corollary 3.1 holds for the growth bound computed using (3.6.3).

3.7 Experimental evaluation

To demonstrate our approach, we apply it to a DC-DC boost converter and a path planning
problem. These case studies are taken from [129, 50] and will be used as black-box models
to generate sample trajectories. We also introduce a case study from power systems based
on [99], that is implemented in the Power System Toolbox (PST) [26]. We will will use
trajectories from the black-box reduced model of the 30 state power system model. We apply
our approach to construct finite abstractions of these systems and employ SCOTS [129]
to design controllers. Our algorithms are implemented in C++ on a 64-bit Linux cluster
machine with two Intel Xeon E5 v2 CPUs, 1866 MHz, and 50GB RAM.

3.7.1 DC-DC boost converter

The objective in the DC-DC boost converter problem is to design a controller to enforce
a reach and stay specification. The DC-DC boost converter can be modelled as a two
dimensional linear switching system with two functional modes. The state vector of the
system at time t ∈ R≥0 is x(t) = (il(t),vc(t)), where il is the inductor current and vc is the

3.7 Experimental evaluation 39

Table 3.1 Results for the DC-DC boost converter [78].

Case-study Dimension Disturbance Fixed Discretisation
X U W N time (min) |V |

DC-DC boost converter 2 1
{0} 1,807 22.2 37,783

[−0.01,0.01] 2,285 30.6 37,414

capacitor voltage. The system’s evolution can be controlled by selecting the appropriate
mode u(t) ∈ {1,2} at every time t ∈ R≥0. The system’s dynamics under the two modes can
be represented as ẋ = Au(t)x(t)+b+ cw(t), u ∈ {1,2}, with matrices A1,A2,b,c as reported
in [50]. The state and input spaces are X = [0.65,1.65]× [4.95,5.95] and U = [1,2]. The
initial state is (il0(t),vc0(t)) = (0.7,5.4) and the target set is [1.1,1.6]× [5.4,5.9]. The target
set is shown in red colour in Figure 3.1.

Our implementation results are reported in Table 3.1 for the system without disturbance
(w̄ = (0,0)) and with disturbance bound w̄ = (0.01,0). These results are obtained with
discretisation parameters ηx = (0.005,0.005) and ηu = 1, confidence parameter β = 0.01,
ε = 0.01 and estimation for Lϕ = 0.9935. The resulted finite abstraction has cadinalities
nx = 40,000 and nu = 2. The required number of sample trajectories, N, for each (x̂, û) ∈
X̂×Û is computed using equation (3.4.5). Runtimes and the resulting winning region sizes,
|V |, for the DC-DC boost converter are given in Table 3.1.

We have used Algorithm 1 to compute the finite-state abstraction by collecting sample
trajectories of the system. Subsequently, SCOTS is used for designing the controller. The
performance of the controller is shown in Figures 3.1 and 3.2 for the system without and
with the disturbance. These figures show one sample closed-loop trajectory of the system
under the controllers designed by our data-driven ABCD approach. In both cases, without
and with disturbance, it can be noticed from Figures 3.1 and 3.2 that our approach has been
successful in finding controllers satisfying the given reach and stay specification, despite the
the dynamics being unknown.

3.7.2 Path planning problem with partition refinement

We consider a path planning problem for a vehicle that is modelled as

ẋ = vcos(α +θ)/cos(α)+w
ẏ = vsin(α +θ)/cos(α)

θ̇ = v tan(ω),

(3.7.1)

40 Data-driven abstraction-based control synthesis

0.8 1 1.2 1.4 1.6

5

5.2

5.4

5.6

5.8

Fig. 3.1 The closed-loop trajectory of the DC-DC boost converter with w̄ = (0,0) under
the controller designed by our data-driven abstraction approach. The rectangle in red
colour represents the target region and the area in grey shows the winning region of the
controller [78].

0.8 1 1.2 1.4 1.6

5

5.2

5.4

5.6

5.8

Fig. 3.2 The closed-loop trajectory of the DC-DC boost converter with w̄ = (0.01,0) under
the controller designed by our data-driven abstraction approach. The rectangle in red
colour represents the target region and the area in grey shows the winning region of the
controller [78].

3.7 Experimental evaluation 41

Table 3.2 Results for the path planning case study [78].

Case-study Dimension Disturbance Abstraction Refinement
X U w̄ N time (min) |V |

Path planning 3 2
(0,0,0) 3,127 225 405,493

(0.01,0,0) 4,277 513 447,212

where the state variables x,y,θ represent the position of the vehicle in the 2-dimensional
space and the orientation of the vehicle, respectively. Inputs are (v,ω), the disturbance is
w, and α := arctan(tan(ω)/2). The state and input spaces are X = [0,10]× [0,10]× [−π−
0.4,π+0.4] and U = [−1,1]2, respectively. The goal is to find a controller to steer the vehicle
from the initial state (x0,y0,θ0) = (0,1.2,0) to the target set (x,y)∈ [9,9.51]× [0,0.51] while
avoiding the obstacles. These obstacles are shown in blue colour in Figures 3.3 and 3.4.

We computed the growth bounds with a coarse discretisation ηx = (1.6,1.6,1.6) and
reduced it iteratively with the factor of two. The algorithm successfully finds a controller
for the system after five iterations. The implementation results are reported in Table 3.2.
These results are obtained with ηu = (0.3,0.3), the confidence parameter β = 0.01, ε = 0.01
and estimated constant Lϕ = 1.46. The resulted abstraction has cardinalities nx = 88,500
and nu = 24. For the case of disturbance-free model we set w̄ = (0,0,0), and for the case
of dynamics with disturbance, we set w̄ = (0.01,0,0). The required number of sample
trajectories for each (x̂, û) is computed using Equation (3.4.5) and marked with N in the table.
Finally, runtimes and size of the winning regions |V | are reported.

We have used the synthesis method based on abstraction refinement presented in Sec-
tion 3.6, to construct the finite-state abstraction by collecting sample trajectories of the system.
We used SCOTS to design the controller fulfilling the given specification. The performance of
the controller is shown in Figures 3.3 and 3.4 for the system without and with the disturbance,
respectively. These figures compare the closed-loop trajectories of the system under the
controllers designed by our data-driven abstraction refinement algorithm approach (black)
and by the model-based approach of SCOTS (red). Our data-driven approach successfully
finds a controller for the system that satisfies the specification without the need for knowing
the dynamics of the system.

3.7.3 Three area three machine power system

We consider a three area three machine (3A3M) power system adapted from [99] and is
shown in Figure 3.5. The system consists of three buses, which are each connected to a power

42 Data-driven abstraction-based control synthesis

Fig. 3.3 Comparison between the closed-loop trajectories of the system (3.7.1)without
disturbance under the controllers designed by our data-driven abstraction refinement approach
(black) and by the model-based approach of SCOTS (red). Blue blocks represent the obstacles,
the green dot represents the initial state, and the orange rectangle shows the target region [78].

Fig. 3.4 Comparison between the closed-loop trajectories of the system (3.7.1) with distur-
bance bound w̄ = (0.01,0,0) under the controllers designed by our data-driven abstraction
refinement approach (black) and by the model-based approach of SCOTS (red) [78].

3.7 Experimental evaluation 43

Fig. 3.5 3A3M power system with generators (G) and loads (L). L1 represents a bidirectional
load such as Electric Vehicles or Energy Storage Systems [78].

source (generator) and a load. At bus 1 we consider a load which is bidirectional, meaning it
can both draw power and inject power into the system. The loads at buses 2 and 3 can only
draw power from the system; when these loads increase, more power will be drawn from
the system, causing an imbalance between generation and consumption which may result in
reduction of the network frequency. The nominal frequency of the network is set to 60 Hz.

We consider a worst case scenario when a sudden increase occurs in the loads at buses
2 and 3 by 0.2 and 0.3 per unit (pu), respectively. The control task is for the load at bus 1
to balance the load increase at buses 2 and 3 by either reducing its load or injecting power
into the network. The simulation is run using PST on a 30 state model of this power system.
Balanced realisation of the system reduces its dynamics to three states. To compute the
data-driven finite abstraction, sample trajectories are gathered using a black-box approach
of the reduced system representation for the original model. The dynamics of the reduced
system are given by

ẋ = Ax+Bu+Ew
y =Cx,

(3.7.2)

where

A =

0.00027563 0 0
0 −0.3951 0.687
0 −0.6869 −0.016

44 Data-driven abstraction-based control synthesis

Fig. 3.6 3A3M power system frequency without applying any control input. The frequency
falls below 59.1 Hz thus violates the specification [78].

B =

0.00031166
0.1359
0.0230

E =

0.00033103 0.00031244
0.1309 0.1308
0.0250 0.0233

C =

[
−0.0115 −0.2296 0.0412

]
. (3.7.3)

The state and input spaces are X = [−0.02,0.02]× [−0.05,0.05]× [−0.12,0.12] and
U = [0,0.5]. Further, we set W = [−0.2,0.2]× [−0.3,0.3], ηu = 0.025, τ = 0.4, ηx =

(0.0015,0.0015,0.0015), β = 0.01 and ε = 0.01. The resulted abstraction has nx = 228,480
and nu = 20. The estimated Lipschitz constant is Lϕ = 1.5715. The target set is given by
−0.008 < y < 0.008 and the avoid set is given by y <−0.015. Multiplying by the nominal
frequency to get the specification in Hertz, the target region is [59.52,60.48] and the avoid
region is (−∞,59.1). Figure 3.6 shows that the specification is violated when no control is
applied.

We apply the data-driven approaches of Section 3.5 (fixed discretisation) and Section 3.6
(abstraction refinement). Both controllers are synthesised with disturbance W = [−0.2,0.2]×

3.7 Experimental evaluation 45

[−0.3,0.3]. A comparison of the two control approaches is shown in Table 3.3. The required
number of sample trajectories for each (x̂, û) is computed using equation (3.4.5) and marked
with N in the table. The abstraction refinement starts with ηx = 0.012 and refines the
discretisation iteratively with a factor of two. The algorithm successfully finds a controller
after five iterations. The runtimes and the resulting winning region sizes |V | are also given in
Table 3.3. The abstraction refinement synthesises the controller a factor of 100 times faster
than the fixed discretisation by iteratively decreasing the value of ηx.

Table 3.3 Results for the 3A3M power system [78].

Control Approach Dimension Disturbance
X U w̄ N time (min) |V |

Fixed Discretisation
3 1

(0.2,0.3) 3,290 5,253 230,760
Adaptive Refinement (0.2,0.3) 4,460 50.25 314,802

The data-driven control approach with fixed discretisation is simulated in PST and is
reported in Figures 3.7 and 3.8. The controlled system successfully keeps the frequencies
of the three areas outside of the avoid set (i.e., always above 59.1 Hz) and bring them back
to the target set (i.e., above 59.52 Hz). Figure 3.8 shows the load changes in the system.
Load at bus 1 is able to maintain the frequencies of the three areas above the avoid region
and facilitate the system returning to the target set for the maximum disturbances applied at
buses 2,3. Figures 3.9 and 3.10 show the results of simulating the system in PST with the
control obtained from the abstraction refinement approach. The controlled system has the
same performance in satisfying the specification.

3.7.4 Comparison with PAC learning

In this subsection, we compare our approach with the results provided by Xue et al. [179] that
is based on probably approximately correct (PAC) learning on the 3A3M power system case
study. The abstraction approach of [179] has no bias term γ , but uses confidence parameter
β ∈ (0,1), error level ε ∈ (0,1), and cardinality of the parameter vector θ denoted by q ∈ N.
The required number of samples is

N ≥ 2
ε
(ln

1
β
+q), (3.7.4)

which allows the constructed abstraction to hold for the entire state space except a subset
measured by parameter ε .

46 Data-driven abstraction-based control synthesis

Fig. 3.7 3A3M power system frequencies for the three areas, with the frequency of an area
is measured at the corresponding bus in that area. The control synthesised by the fixed
discretisation approach successfully keeps the frequencies of the three areas outside of the
avoid set. The frequencies leave the target set for around 4.4 seconds before staying in the
target set [78].

0 5 10 15 20 25
-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 3.8 3A3M power system load changes for the three areas. Loads at buses 2 and 3
increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control the frequency using
our data-driven approach with fixed discretisation [78].

3.7 Experimental evaluation 47

Fig. 3.9 3A3M power system frequencies for the three areas, with the frequency of an area is
measured at the corresponding bus in that area. The control synthesised by the abstraction
refinement approach successfully satisfies the specification. The frequencies leave the target
set for around 4.2 seconds before staying in the target set [78].

0 5 10 15 20 25
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 3.10 3A3M power system load changes for the three areas. Loads at buses 2 and 3
increase by 0.3 and 0.2 pu, respectively. Load at bus 1 is used to control the frequency using
our data-driven approach with abstraction refinement [78].

48 Data-driven abstraction-based control synthesis

Table 3.4 Comparing the winning domain of controllers obtained from our RSA method,
PAC method of [179], and the model-based approach of [127]. The pairwise comparison is
made by computing the intersections (∩) and set differences (row\ column). The results are
reported both in cardinalities and percentages [78].

Winning Domain RSA PAC Model-based
∩ \ ∩ \ ∩ \

RSA 230,760 0 230,760 0 230,760 0
% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

PAC 230,760 15,664 246,424 0 245,345 1,079
% 93.64% 6.36% 100.00% 0.00% 99.56% 0.44%

Model-based 230,760 22,216 245,345 7,631 252,976 0
% 91.22% 8.78% 96.98% 3.02% 100.00% 0.00%

We implement our data-driven robust scenario approach (RSA), the PAC approach in
[179] with parameters β = 0.01 and ε = 0.01, and the model-based approach of [127].
Table 3.4 compares the winning domain of the controllers by reporting the intersections (∩)
and set differences (row\ column). It can be seen that the winning domain obtained by our
RSA method is a subset of the ones computed by PAC and the model-based approaches. This
shows that our approach is more conservative than the model-based approach but correctly
finds a subset of the winning domain. In contract, the PAC approach gives a winning domain
that includes states not identified winning by the model-based approach. It includes 1079
states outside of the winning domain obtained by the model-based approach. Due to the
nature of the PAC learning, some of these states are incorrectly identified as winning. The
main reason is that the PAC method may miss to capture some of the transitions and does not
always generate an overapproximation of the system behaviours. Among these 1079 states,
a counter example can be found, demonstrating a lack of guarantee provided by the PAC
method. At state (0.0187,0.0262,−0.1163) the PAC controller calculates u =−0.075 to be
an input which will transition to a safe state under any disturbances. However, the system
under disturbances W1 = 0.2 and W2 = 0.3 will lead to the state (0.0188,0.0131,−0.1167)
that is outside of the winning domain of the controller. In comparison, the winning domain
provided by our RSA method is a subset of the one from the model-based method and provides
full guarantees on the satisfaction of the specification and correctness of the controller. This
guarantee is obtained at the cost of increased number of samples and a bias term included in
the growth bound calculations, which makes the controller more conservative.

3.8 Discussion and future work 49

As a final point on this case study, note that our sampling approach uses the Lipschitz
constant estimated using sample trajectories. This Lipschitz constant can in turn be used to
construct the abstraction. The direct use of the estimated Lipschitz constant does not provide
a formal guarantee as it is an estimated value that converges to the true value only in the limit
(i.e., the number of samples goes to infinity), and is likely to provide an overly conservative
controller. On this particular case study, the direct use of the Lipschitz constant gives a
controller that covers only 78.8% of the winning domain of the model-based approach.

3.7.5 Parameter optimisation

In this subsection, we discuss how selection of different parameters can affect the sample
complexity and conservativeness of our method. We fix the path planning case study with
the estimated Lipschitz constant 1.46. Figures 3.11 and 3.12 illustrate the effect of changing
parameters ε,β on the number of samples N required for each pair (x̂, û) in order to compute
the growth bound with confidence (1−β). Figure 3.11 illustrates the effect of increasing the
confidence parameter β on reducing the sample complexity, for a fixed ε = 0.01. Figure 3.12
shows that for a fixed β = 0.01, increasing ε leads to a rapid drop in N. In both Figures 3.11
and 3.12, the sample complexity increases in the presence of disturbance as the dimension of
the sample space becomes larger.

Figure 3.13 demonstrate the effect of changing ε on the value of the bias term γ that
makes the inequalities of the SCP more conservative. The bias term γ increases for larger
values of ε . Therefore, increasing ε can decrease the sample complexity while increasing γ .
Finally, it can be observed that the value of γ is larger in the presence of disturbance.

3.8 Discussion and future work

We proposed a data-driven method for computing finite abstractions of continuous systems
with unknown dynamics. Our approach casts the computation of an overapproximation
of reachable sets as a robust convex program (RCP). A feasible solution for the RCP is
then obtained with a given confidence by solving a corresponding scenario convex program
(SCP). The SCP does not need the dynamics of the system and requires only a finite set of
sample trajectories. We provided a sample complexity result that gives a lower-bound on
the number of trajectories to achieve a certain confidence. Our sample complexity results
requires knowing a bound on the Lipschitz constant of the system, that we estimated using
extreme value theory.

50 Data-driven abstraction-based control synthesis

0.01 0.05 0.1 0.15 0.2

600

800

1000

1200
With disturbance

Without disturbance

Fig. 3.11 Required number of samples for our approach as a function of β for a fixed
ε = 0.01 [78].

0.01 0.05 0.1 0.15 0.2

200

400

600

800

1000

1200

Fig. 3.12 Required number of samples for our approach as a function of ε for a fixed
β = 0.01 [78].

3.8 Discussion and future work 51

0.01 0.05 0.1 0.15 0.2

0.04

0.05

0.06

0.07

0.08
With disturbance

Without disturbance

Fig. 3.13 The bias term γ as a function of ε [78].

We guaranteed that with high confidence, the computed abstraction is a valid abstraction
of the system that overapproximates its behaviours on its entire state space. We showed that
our data-driven approach can be embedded into abstraction refinement schemes for designing
a controller and enlarging the winning region of the controller with respect to satisfaction of
temporal properties. Finally, we evaluated our approach on three case studies.

In the future, we plan to extend our approach by enlarging the class of disturbances beyond
piece-wise constant ones (i.e., tackling the issue of infinite dimensional sampling spaces),
improve scalability of the approach by providing more efficient parallel implementation of
the approach, and apply it to large case studies that are combinations of differential equations,
block diagrams, and lookup tables.

Chapter 4

Model-free RL for formal control of
stochastic systems

4.1 Chapter introduction

We discussed in Chapter 3 that using abstraction approaches is computationally expensive.
In this chapter, the main focus is on tackling scalability issues. In this way, we introduce a
game theoretic framework in which we decompose the system and restate the problem as a
two-player zero-sum game. Though this approach is conservative, it solves the scalability
issue of abstraction-based approaches.

This chapter introduces a novel reinforcement learning (RL) scheme to synthesise policies
for continuous-space stochastic control systems with unknown dynamics. The proposed
framework is based on implicitly abstracting the system with a finite Markov decision process
(MDP) with unknown transition probabilities, synthesising a strategy for the abstract model,
and then mapping the results back over the continuous-space system while providing approxi-
mate optimality guarantees for the synthesised strategy. We consider finite-horizon properties,
expressed in the syntactically co-safe fragment of linear temporal logic (scLTL) augmented
with a time bound. A key contribution is to leverage the classical convergence results for
RL on finite MDPs to provide strategies that maximise the probability of satisfaction over
unknown continuous-space systems. Since automata-based reward functions are often sparse,
we also present a novel potential-based reward shaping technique to accelerate learning by
producing dense rewards. We then extend our approach to networks of unknown stochastic
control systems. The proposed compositional framework applies model-free two-player RL
in an assume-guarantee fashion and compositionally compute strategies for continuous-space
interconnected systems without explicitly constructing their finite-state abstractions. Our

54 Model-free RL for formal control of stochastic systems

approach gives a guaranteed lower bound for the probability of property satisfaction by
the interconnected system based on those of individual controllers over subsystems. The
effectiveness of the proposed approaches is demonstrated via three physical benchmarks, in-
cluding (i) regulation of a room temperature (network), (ii) control of a road traffic (network),
and (iii) control of a 7-dimensional nonlinear model of a BMW 320i car.

The research presented in the chapter has been submitted for publication in Nonlinear
Analysis: Hybrid Systems, and the e-print can also be viewed on arXiv [88]. This research
was the result of a collaboration with the University of Colorado Boulder. My role in this
research is to provide the theoretical results and write the paper.

4.2 Introduction

Motivations. Stochastic control systems with continuous state and action sets have gained
significant attention as an important modelling framework describing many real-life safety-
critical applications, including traffic networks and power grids. Since the closed-form
characterisation of optimal policies for continuous-space stochastic systems is not available in
general, it is challenging to automatically synthesise policies [8] for such complex systems to
achieve some high-level properties, e.g., those expressed in linear temporal logic (LTL) [122].
To alleviate the complexity in synthesising policies for continuous-space stochastic systems,
one promising approach is to discretise the state, synthesise an optimal policy for the resulting
abstract finite-state model (using formal methods [8] or reinforcement learning (RL) [160]),
and then translate the results back to the original system, while providing bounds on the error
introduced by the discretisation process [143, 89].
Main contribution. The contribution of this chapter is twofold: First, we propose an RL
approach to synthesise policies for the satisfaction of finite-horizon properties in unknown
stochastic systems with uncountable state sets, while providing convergence guarantees. In
particular, we leverage a closeness guarantee between probabilities of satisfaction by the
unknown continuous-space stochastic system and its finite abstraction that can be controlled
a-priori and utilise the classical convergence results for RL on finite MDPs. This approach
enables us to apply model-free, off-the-shelf RL algorithms to compute ε-optimal strategies
for continuous-space systems with a precision ε that is defined a-priori and without explicitly
constructing finite abstractions. We also propose a novel potential-based reward shaping
[118] technique to produce dense rewards that are based on the structure of the automata
representing the specifications of interest.

In the second part of the chapter, we develop a scalable approach for the synthesis of
controllers for networks of continuous-space stochastic systems with unknown dynamics so

4.2 Introduction 55

that they satisfy finite-horizon properties. The controller for the whole network is composed
from controllers synthesised for subsystems. Each of these controllers is obtained by solving
a stochastic game, in which other components are treated as adversaries. Since probabilities
are unknown, we use the converging multi-agent RL framework in [97, 98] to synthesise
strategies. The compositional approach we propose provides a significant step towards
scalability since convergent RL algorithms are computationally very expensive when applied
to large finite MDPs. We demonstrate on two case studies how this approach can reduce
the size of the system that needs to be reasoned over by orders of magnitude. We utilise a
closeness guarantee between probabilities of satisfaction by subsystems and their implicit
finite MDPs (which can be chosen a-priori), and leverage convergence results of minimax-Q
learning [98] for solving stochastic games on finite MDPs. We provide, for the first time, a
theoretical lower bound on the probability of satisfaction of finite-horizon properties by the
original interconnected continuous-space stochastic system with unknown dynamics in terms
of the bounds computed for the subsystems.

We demonstrate the effectiveness of the proposed results by applying them to three
physical benchmarks including (i) regulation of a room temperature (network), (ii) control of
a road traffic (network), and (iii) control of a 7-dimensional nonlinear model of a BMW 320i
car.
Related work. A model-free RL framework for synthesising policies for unknown, and
possibly continuous-state, stochastic systems is presented in [61, 181]. Our proposed ap-
proaches here differ from the ones in [61, 181] in two main directions. First and foremost,
the proposed approaches in [61, 181] provide theoretical guarantees only if the underlying
system has finitely many states, and the results for continuous-state systems are only empiri-
cally illustrated. In contrast, we utilise here a closeness guarantee between probabilities of
satisfaction by the unknown continuous-space stochastic system and its finite abstraction to
compute ε-optimal strategies for original systems using RL with a-priori defined precision
ε . In addition, we propose in the second part of chapter a compositional RL framework for
the policy synthesis of networks of continuous-space stochastic systems, whereas the results
in [61, 181] only deal with monolithic systems.

A subset of the results in this chapter has recently appeared in [89]. Our approaches here
differ from those in [89] in several directions. First and foremost, the results in [89] only apply
to monolithic systems and, hence, suffer from the curse of dimensionality when confronted
with large-scale interconnected systems. In contrast, we propose here a compositional RL
framework for networks of continuous-space stochastic systems with unknown dynamics
by breaking the main synthesis problem into simpler ones while still providing a lower
bound on the probability of property satisfaction for interconnected systems based on optimal

56 Model-free RL for formal control of stochastic systems

probabilities of their subsystems. As the second main extension, we propose here a multi-
level discretisation scheme for RL in which the agent learns control policies on a sequence
of finer and finer discretisations of the same system. We show that this improves learning
efficiency while preserving convergence results. Finally, we provide a detailed and mature
description of the results announced in [89], including all proofs that were omitted.

4.3 Discrete-time stochastic control systems

Given functions fi : Xi→Yi, for 1≤i≤N, their product×N
i=1 fi :×N

i=1 Xi→×N
i=1Yi is defined

as (x1, . . . ,xN)7→[f1(x1); . . . ; fN(xN)]. We represent a diagonal matrix with σ1, . . . ,σn as its
entries as diag(σ1, . . . ,σn).

We assume that random variables are measurable functions of the form X : Ω→ SX .
Any random variable X induces a probability measure on its space (SX ,FX) as Prob{A}=
PΩ{X−1(A)} for any A ∈ FX . A discrete probability distribution, or just distribution,
over a (possibly countable) set X is a function d : X→[0,1] such that ∑x∈X d(x) = 1 and
supp(d) = {x ∈ X | d(x)>0} is at most countable. We say that d : X→[0,1] is a point
distribution if d(x) = 1 for some x ∈ X .

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a
Polish space (i.e., a separable and completely metrisable space). Examples of a Borel space
are the Euclidean spaces Rn, their Borel subsets endowed with the subspace topology, as
well as hybrid spaces. Any Borel space S is assumed to be endowed with a Borel σ -algebra,
which is denoted by B(S). We say that a map f : S→ Y is measurable whenever it is Borel
measurable.

4.3.1 Discrete-time stochastic control systems

In this chapter, we consider networks of stochastic control systems in discrete time where
each component, a discrete-time stochastic control system or dt-SCS, is defined as follows.

Definition 4.1 A discrete-time stochastic control system (dt-SCS) is a tuple

Σ = (X ,U,W,ς , f ,Y,h), (4.3.1)

where:

– X ⊆ Rn, a Borel space, is the state space of the system. We denote by (X ,B(X)) the
measurable space with B(X) being the Borel sigma-algebra;

4.3 Discrete-time stochastic control systems 57

– U is the external input space;

– W ⊆ Rp is the internal input space;

– ς is a sequence of independent and identically distributed (i.i.d.) random variables
from a sample space Ω to the set Vς , namely ς := {ς(k) : Ω→ Vς , k ∈ N};

– f : X×U×W ×Vς → X is a measurable function characterizing the state evolution
of Σ;

– Y ⊆ Rq is the output space;

– h : X→Y , a measurable function, maps states to outputs.

We write P{ f (x,v,w, ·) ∈ B | x,u,w} for the probability that the next state is in B ∈B(X)

given current state x∈X, external input u∈U, internal input w∈W, when the remaining
argument is distributed like the random variables in ς .

The execution of Σ from x(0)∈X, and inputs {υ(k) : Ω→U, k∈N} and {w(k) : Ω→W, k∈N}
is described by:

Σ :

{
x(k+1) = f (x(k),υ(k),w(k),ς(k)),
y(k) = h(x(k)),

k ∈ N. (4.3.2)

Remark 4.1 The input space U of a dt-SCS Σ is in general a continuous Borel space, e.g., a
subset of Rm. Since any input sequence will be implemented by a digital controller, without
loss of generality, we assume that the input set U is finite here.

We will also consider special subclass of dt-SCS, called closed dt-SCS, where the internal
inputs are absent, i.e., when p = 0. Such systems may also result from considering an
interconnection of dt-SCSs (cf. Definition 4.2), monolithically. For notational convenience,
we represent closed dt-SCS as a tuple (X ,U,ς , f) and its execution can be simplified to

Σ :

{
x(k+1) = f (x(k),υ(k),ς(k)),
y(k) = h(x(k)),

k ∈ N. (4.3.3)

For a closed dt-SCS, we write P{ f (x,v, ·) ∈ B | x,u} for the probability that the next state is
in B given the current state x ∈ X and input u ∈U .

For emphasis, we call a non-closed dt-SCS open. When clear from context, we drop the
open or closed specifier.

58 Model-free RL for formal control of stochastic systems

I (Σ1,Σ2)

Σ1

Σ2

x1υ1

x2υ2

h1

w2 h2

w1

Fig. 4.1 Interconnection of stochastic control subsystems Σ1 and Σ2 [88].

Definition 4.2 (Network of dt-SCS) For 1 ≤ i ≤ N, let Σi = (Xi,Ui,Wi,ςi, fi,Yi,hi) be a
family of N open dt-SCS. The network of ⟨Σi⟩1≤i≤N is defined by the interconnection map
g :×N

i=1Yi→×N
i=1Wi, and gives rise to a closed dt-SCS Ig(Σ1, . . . ,ΣN)= (X ,U,ς , f), where

X :=×N
i=1 Xi, U :=×N

i=1Ui, and f :=×N
i=1 fi, subjected to the following interconnection

constraint:

[w1; . . . ;wN] = g(h1(x1), . . . ,hN(xN)). (4.3.4)

An example of the interconnection of two stochastic control subsystems Σ1 and Σ2 is
illustrated in Fig. 4.1.

4.3.2 Stochastic games and Markov decision processes

The semantics of an open dt-SCS Σ can sometimes be given as a stochastic game [125, 44]
between two players—player Max (the control), who controls the external inputs U , and
player Min (the adversary), who controls the internal inputs. We assume that the adversary is
more powerful than the controller in that the adversary can see the choices of the controller
at every step. From control synthesis perspective, this view results in a cautious controller
with a pessimistic view of the environment. On the other hand, a strategy computed in this
manner also works against the weaker adversary.

Definition 4.3 A stochastic game arena (SGA) is a tuple G=(S,A,T,SMax,SMin) where:

– S is (potentially uncountable) state space;

– A is the set of actions and we write A(s) for the set of actions enabled at a state s ∈ S;

– T : S×A×B(S)→ [0,1] is a conditional stochastic kernel that assigns to any s ∈ S
and a ∈ A, a probability measure P(·|s,a) on the measurable space (S,B(S)).

– SMax ⊆ S and SMin ⊆ S form a partition of S into the set of states controlled by players
Max and Min, respectively.

4.3 Discrete-time stochastic control systems 59

For the stochastic kernel T , state s ∈ S, action a ∈ A, and set B ∈B(S), we write T (B | s,a)
for T (s,a,B).

We say that a SGA is finite, if both S and A are finite. For finite SGAs, the transition
function T (s,a, ·) is a discrete probability distribution for every s ∈ S and a ∈ A. For a finite
SGA, we write T (s′ | s,a) for T (s,a,s′) for all s,s′ ∈ S and a ∈ A. Also, we refer to an SGA
as a Markov decision process (MDP) if SMin = /0. We represent an MDP as (S,A,T). An
MDP (S,A,T) is finite if both S and A are finite.

Definition 4.4 (dt-SCS: Semantics) An open dt-SCS Σ=(X ,U,W,ς , f ,Y,h) can be interpreted[76,
Proposition 7.6] as an SGA GΣ = (S,A,T,SMax,SMin), where

– S=X ∪ (X×U) such that SMax = X and SMin = X×U;

– A=U ∪W such that for all s ∈ X we have A(s) = U and for all s ∈ X ×U we have
A(s) =W;

– T : S×A×B(S)→ [0,1] such that

1. for x ∈ SMax and u ∈U

T ((x,u) | x,u) = 1, T (S\{(x,u)} | x,u) = 0,

2. for all (x,u) ∈ SMin, w ∈W, and all B ∈B(X)

T (B | (x,u),w) = P
{

f (x,v,w, ·) ∈ B | x,u,w
}
.

Similarly, a closed dt-SCS Σ = (X ,U,ς , f) can be equivalently represented as a Markov
decision process MΣ = (S = X ,A =U,T) where T : S×A×B(S)→ [0,1] such that for all
x ∈ X, u ∈U, and B ∈B(X), we have that

T (B | x,u) = P
{

f (x,u, ·) ∈ B
∣∣x,u

}
.

Abusing notation, we write Σ for its SGA GΣ or MDP MΣ.

The objective in an SGA is to determine a policy—a decision rule for every step to
choose the next action—for both players that optimise a given objective. A decision rule
may be history-dependent (depends on all the information available at a given time step) or
memoryless (depends only on the current state); they may be stochastic (defines a stochastic
kernel on the actions) or deterministic (chooses a fixed action with probability 1). For the

60 Model-free RL for formal control of stochastic systems

objectives in this chapter, w.l.o.g. we only need to consider memoryless, deterministic
policies [36]. We call these policies Markov policies as defined next.

Definition 4.5 (Markov policies) For an SGA G , a Markov policy ρ of player Max is a
sequence (ρ0,ρ1,ρ2, . . .) of decision rules where each rule ρn : SMax→ A, for n ∈ N, is a
universally measurable function such that ρn(s) ∈ A(s) for all s ∈ S. Similarly, a Markov
policy ξ of player Min is a sequence (ξ0,ξ1,ξ2, . . .) where ξn : SMin→ A, for n ∈ N, is a
universally measurable function such that ξn(s) ∈ A(s) for all sMin ∈ S. We write ΠG

Max and
ΠG

Min for the set of all Markov policies of player Max and player Min, respectively. For an
MDP M we write ΠM for the set of policies. We omit the superscripts M and G when clear
from the context.

Definition 4.6 (Solution process) Any pair of Markov policies ρ ∈ ΣMax and ξ ∈ ΣMin, and
initial state s ∈ S, characterise a unique stochastic process over sequences of states and
actions. We write G s

ρ,ξ
for this stochastic process and write Sn and An for the random

variables corresponding to the state and action at time step n ∈ N. We write Es
ρ,ξ

[·] for the
expected value of a random variable for the stochastic process G s

ρ,ξ
. Similarly, we write M s

ρ

for the stochastic process of an MDP M with initial state s and policy ρ , and Es
ρ [·] for the

expected value of a random variable for M s
ρ .

4.3.3 Reinforcement learning

Reinforcement learning (RL) [160] is a sample-based approach to controller synthesis in
stochastic environments where a learning agent—the controller—relies on scalar reward sig-
nals to select inputs aimed at achieving a prescribed objective. RL is intimately connected to
optimal control, with the main distinction being that the stochastic system is “unknown,” i.e.,
the transition probabilities as well as the reward structure of the underlying stochastic system
may not be known in advance, but can be sampled. Strong convergence guarantees [160, 98]
exists for learning optimal control using RL for finite stochastic game arenas. For this reason,
the presentation on this subsection focuses on finite SGAs.

A stochastic game is a pair (G ,R) where G = (S,A,P,SMax,SMin) is a finite SGA and
R : S×A×S→ R is a (scalar) reward function. From an initial state s = s0 ∈ S, the game
evolves by having the player that controls sk at time step k ∈ N select an action ak+1 ∈ A(sk).
The state then evolves under probability distribution P(· | sk,ak) resulting in a next state
sk+1 and reward rk+1 = R(sk,ak,sk+1). Given a discount factor γ ∈ [0,1), the payoff (from
player Min to player Max) of the SGA is defined as the γ-discounted sum of rewards, i.e.,

∑
∞
k=0 rk+1γk. The objective of player Max is to maximise the expected payoff, while the

4.3 Discrete-time stochastic control systems 61

objective of player Min is the opposite. Recall that ΠMax and ΠMin are the set of Markov
policies for player Max and player Min in G . We say that a policy ρ∗ ∈ΠMax is optimal if

inf
ξ∈ΠMin

Es
ρ∗,ξ

[∞

∑
k=0

R(Sk,Ak+1,Sk+1)γ
k
]

≥ inf
ξ∈ΠMin

Es
ρ,ξ

[∞

∑
k=0

R(Sk,Ak+1,Sk+1)γ
k
]
,

for all ρ ∈ΠMax. The optimal policies for player Min are defined analogously. The goal of
RL is to compute optimal policies for both players with samples from the game, without
apriori knowledge of the transition probability and rewards.

The RL algorithms solve this problem by learning a state-action value function defined to
be

Qρ,ξ (s,a) = E
s
ρ,ξ

[∞

∑
k=0

R(Sk,Ak+1,Sk+1)γ
k
]
,

where ρ ∈ΠMax and ξ ∈ΠMin. These are called Q-values, or quality, of the pair (s,a)∈ S×A.
Since the state and action space is finite, this can be represented as a look-up table called the
Q-table. RL algorithms that use a look-up table are called tabular methods. We define

Q∗(s,a) = sup
ρ∈ΠMax

inf
ξ∈ΠMin

Qρ,ξ (s,a).

Given Q∗(s,a), one can extract the policy for both players by selecting the maximum value
action in states controlled by player Max and the minimum value action in states controlled
by player Min. The following recurrence relation, known as Bellman optimality equations,
characterises the optimal solutions and forms the basis for computing the Q-table with
dynamic programming:

Q∗(s,a)= ∑
s′∈S

T (s′|s,a)·
(
R(s′,a,s)+γ · opt

a′∈A(s′)
Q∗(s′,a′)

)
,

where opt is max if s′ ∈ SMax and min if s′ ∈ SMin. Minimax-Q learning [97] estimates
the dynamic programming update from the stream of samples by performing the following
update at each time step:

Q(s(k),a(k))← (1−αk)Q(s(k),a(k)) +

αk(r(k+1)+ γ opt
a′∈A(s(k+1))

Q(s(k+1),a′)),

where← is the assignment operator, and αk ∈ (0,1) is the learning rate at time step k and is
a parameter of the algorithm.

62 Model-free RL for formal control of stochastic systems

Theorem 4.1 (Minimax-Q[98]) Minimax-Q learning is guaranteed to converge to the
unique fixpoint Q∗(s,a) if r(k) is bounded, learning rate satisfies the Robbins-Monro con-
ditions (i.e., ∑

∞
k=0 αk = ∞ and ∑

∞
k=0 α2

k < ∞), and all state-action pairs are seen infinitely
often.

Remark 4.2 For finite horizon objectives (i.e., when r(k)=0 for all k>N for some fixed
N>0), this convergence result holds even for undiscounted case, i.e., when γ=1.

Minimax-Q algorithm produces the controller directly, without internally producing
estimates of the unknown system dynamics, which is called model-free. The minimax-Q
algorithm of Littman [97] reduces to standard Q-learning [172] algorithm for MDPs, i.e.,
when SMin = /0. Our choice of minimax-Q learning and Q-learning is due to its popularity
and performance.

When SGAs are not finite, one can no longer represent the Q-values in a look-up table. A
popular alternative is based on neuro-dynamic programming [15] where we can represent
the Q-values by a parameterised function. The study of RL when the parameterised function
is an artificial neural network is called deep reinforcement learning, and has seen recent
empirical success. Deep Q-learning [112] is a popular adaptation of the Q-learning algorithm
which uses an artificial neural network to estimate Q-values. Unfortunately, for deep RL
convergence to the optimal solution is not guaranteed.

4.3.4 Finite-horizon specifications

Logics like Linear Temporal Logic (LTL) and automata provide rigorous and unambiguous
formalisms to express requirements for stochastic control systems [8].

Formulae of LTL and ω-automata describe sets of infinite words whose letters are drawn
from a finite alphabet. In applications like ours, the alphabet is the powerset of a set of
atomic propositions, which are measurable predicates defined over the states of a system.
We are interested in finite-horizon properties; that is properties for which membership can
be decided by examining a fixed-length prefix of a word. We briefly discuss two ways to
restrict LTL to finite-horizon properties. The first way starts with a fragment of LTL known
as syntactically co-safe linear temporal logic (scLTL) [142, 84, 13], which is defined below.

Definition 4.7 (Syntactically co-safe LTL (scLTL)) scLTL over the atomic propositions
AP is a fragment of LTL such that the negation operator (¬) only occurs before atomic
propositions, and characterised by the following grammar:

φ ::= p |¬p |φ1∨φ2 |φ1∧φ2 | Xφ |φ1Uφ2,

4.3 Discrete-time stochastic control systems 63

with p ∈ Σa, where Σa = 2AP, and ∨,∧,X,U are the customary logical and temporal opera-
tors [8, 122].

Even though scLTL formulae are defined over infinite words (as are LTL formulae), their
satisfaction only depends on a (finite) prefix of a word [84]. Any infinite word ω ∈ Σω

a

satisfying an scLTL formula φ (written ϖ |= φ) has a finite prefix ω f such that all infinite
extensions of ω f also satisfy the formula φ . We denote the set of all such prefixes associated
with scLTL formula φ by L f (φ).

Given a dt-SCS with state space X and a set of atomic propositions AP⊆ 2X , a trajectory
of the dt-SCS defines a word in Σω

a . We write P(Σx
ρ |= φ) for the probability that a trajectory

of a closed dt-SCS Σ started from state x and governed by policy ρ satisfies φ . For an open
dt-SCS, we write P(Σx

(ρ,ξ)
|= φ). This notation is extended in the natural way to MDPs, and

SGAs.
A formula of scLTL describes an open set in the Cantor topology of Σω

a [4]. It is decided
by a deterministic finite automaton on finite words (DFA) that accepts L f (φ) [84].

Definition 4.8 A deterministic finite automaton (DFA) is a tuple A =(Q,Σa, t,q0,Fa), where
Q is a finite set of states, Σa is a finite alphabet, t : Q×Σa→ Q is a transition function,
q0 ∈ Q is the initial state, and Fa ⊆ Q is a set of accepting states. We write λ for the
empty word and Σ∗a for the set of finite strings over Σa. The extended transition function
t̂ : Q×Σ∗a→ Q (extended from letters to words) is defined as:

t̂(q, w̄) =

q, if w̄ = λ ,

t(̂t(q,x),a), if w̄ = xa for x ∈ Σ∗a anda∈Σa.

The language accepted by a DFA A is L (A) = {w̄ ∈ Σ∗a | t̂(q0, w̄)) ∈ Fa}.

For verification and synthesis purposes, an scLTL property can be compiled into a DFA
Aφ over the alphabet 2AP such that L f (φ) = L (Aφ). This construction is routine; we refer
the interested reader to [84] for the details. The resulting DFA has a unique accepting state
whose out-going transitions are all self-loops. Such a DFA is known as a co-safety automaton.
In the following, we assume that the DFA Aφ for an scLTL property φ is a co-safety one.

Some formulae of scLTL describe finite-horizon properties. For example, p∨XXq only
requires checking the first three letters of a word. Other properties, like pUq are satisfied
by finite words of arbitrary length. We can, however, adjoin a finite time horizon T to a
formula φ and stipulate that an infinite word satisfies (φ ,T) if it has a prefix of length at
most T +1 that is in L (Aφ).

64 Model-free RL for formal control of stochastic systems

0

1

2

p∧¬q
q

¬p∧¬q

⊤

⊤

0 3 4

1

2

p∧¬q

q

¬p∧¬q

p∧¬q
q

¬p∧¬q

q

¬q

⊤

⊤

Fig. 4.2 DFA for pUq with no time horizon (left) and with T = 2 (right). The finite-horizon
DFA may be obtained by unrolling the co-safety DFA or by translating the finite-horizon
formula q∨ (p∧X(q∨ (p∧Xq))) [88].

The sets described by scLTL formulae with finite time horizon are clopen. This follows
from the observation [85, Lemma 2.1] that a subset of Σω

a is both open and closed if and only
if it has a finite minimal basis. One then observes that there are only finitely many words of
length up to T +1 in L f (φ). Clopen sets are closed under finite union, intersection, and
complementation. Accordingly, finite-horizon LTL properties are closed under finite Boolean
operations.

A DFA that accepts a clopen set can be restricted to have exactly one accepting sink state
and one rejecting sink state. All other states are transient: they can only be visited once.
We call automata with this structure finite-horizon automata. The finite-horizon automaton
for the bounded time-horizon satisfaction of φ can be computed by unrolling the co-safety
automaton Aφ (cf. Fig. 4.2).

The second way we consider to restrict LTL to finite-horizon properties is to remove
the “until" operator from the definition of scLTL, leaving only X as temporal modality. The
resulting fragment also describes clopen sets and finite-horizon automata can be obtained
by direct translation of such properties. On the one hand, the formulae that forgo the until
operator do not need a separate specification of the time horizon. On the other hand, they
tend to be more cumbersome to write. Hence, scLTL plus time horizon is usually preferable
and is the type of specification assumed in the sequel.

4.4 Problem definition

We say that a dt-SCS Σ = (X ,U,W,ς , f ,Y,h) is unknown if f and the distribution of ς are
not known explicitly, but can be sampled. We are interested in automatically synthesising

4.5 Controller synthesis for unknown continuous-space stochastic control systems 65

controllers for a network of unknown dt-SCS (Definition 4.2) whose requirements are
specified as finite-horizon properties. We present our solution to this problem in two parts.
In the first part (Section 4.5 and 4.6) we consider the network of systems monolithically
and study how to synthesise a centralised control for such monolithic system by studying
the synthesis for closed and unknown dt-SCSs against scLTL specifications using RL. We
extend this approach to compositionally design a decentralised controller for a network of
open dt-SCSs by exploiting minimax-Q learning in the second part (Section 4.7 and 4.8).
Finally, we demonstrate the effectiveness and scalability of our approaches on three physical
benchmarks.

We emphasise that, even when the system is known, there is no closed-form solution for
computing optimal policies enforcing scLTL specifications over continuous-space stochastic
control systems. One can employ the approximation approaches, discussed in Subsec-
tion 4.5.1, to synthesise those policies which, however, suffer severely from the curse of
dimensionality and, more importantly, require knowing precisely the probabilistic evolution
of states in models. Instead, we propose an RL approach synthesising policies for unknown
continuous-space stochastic systems while providing quantitative probabilistic guarantees
on the satisfaction of properties.

4.5 Controller synthesis for unknown continuous-space
stochastic control systems

In this section, we are concerned with automatically synthesising controllers for the unknown
continuous-space stochastic control systems in (4.3.3) whose requirements are specified in
finite-horizon LTL. Given a discrete-time stochastic control system Σ = (X ,U,ς , f), where f
and the distribution of ς are unknown and given a finite-horizon formula φ , we seek a Markov
policy enforcing satisfaction of the property φ in Σ with probability within a guaranteed
threshold from the unknown optimal probability.

In order to provide any formal guarantee, we need to make further assumptions on the
dt-SCS. In particular, we assume that the dynamical system in (4.3.3) is Lipschitz-continuous
with a constant H . Consider the system in (4.3.3) where ς(·) is i.i.d. with a distribution tς (·).
Suppose that the vector field f is continuously differentiable and the matrix ∂ f

∂ς
is invertible.

Then, the implicit function theorem guarantees the existence and uniqueness of a function
ḡ : X ×X ×U → Vς such that ς(k) = ḡ(x(k+ 1),x(k),υ(k)). In this case, the conditional

66 Model-free RL for formal control of stochastic systems

density function is:

tx(x′|x,u) =
∣∣∣∣det

[
∂ ḡ
∂x′

(x′,x,υ)
]∣∣∣∣ tς (ḡ(x′,x,υ)).

The Lipschitz constant H is specified by the dependency of the function ḡ(x′,x,υ) on the
variable x. As a special case, consider a nonlinear system with an additive noise

f (x,υ ,ς) = fa(x,υ)+ ς .

Then the invertibility of ∂ f
∂ς

is guaranteed and ḡ(x′,x,υ) = x′− fa(x,υ). In this case, H is
the product of the Lipschitz constant of tς (·) and fa(·).

Example 4.1 Consider a dt-SCS Σ with linear dynamics x(k+1) = Ax(k)+ B̄υ(k)+ ς(k),
where A = [ai j], and ς(k) is i.i.d. for k = 0,1,2, . . . with a normal distribution having zero

mean and covariance matrix diag(σ1, . . . ,σn). Then, one obtains H = ∑i, j
2|ai j|

σi
√

2π
. Note

that for the computation of the approximation error (cf. (4.5.2)), it is sufficient to know an
upper bound on entries of the matrix A and a lower bound on the standard deviation of the
noise.

An alternative way of computing the Lipschitz constant H is to estimate it from sample
trajectories of Σ. This can be done by first constructing a non-parametric estimation of
the conditional density function using techniques proposed in [136] and then compute H

numerically using the derivative of the estimated conditional density function. We refer the
interested reader to [89, equation (3)] for more details.

Now we have all the required ingredients to state the main problem we address in the
first part of the chapter.

Problem 4.1 Let φ be a finite-horizon formula and Σ = (X ,U,ς , f) a closed discrete-
time stochastic control system, where f and the distribution of ς are unknown, but the
Lipschitz constant H is known. Synthesise a Markov policy that enforces satisfaction of
the property φ by Σ with probability within a-priori defined threshold ε of the unknown
optimal probability.

To present our solution to this problem, we first present a technical result connecting
continuous-space stochastic systems with corresponding finite abstractions. We then exploit
this result to provide a reinforcement learning-based solution to Problem 4.1. We emphasise
that we do not explicitly construct finite abstractions of continuous-space stochastic systems.

4.5 Controller synthesis for unknown continuous-space stochastic control systems 67

In fact, we cannot construct them because the dynamics of continuous-space systems are
unknown.

4.5.1 Abstraction of dt-SCS Σ by a finite MDP

We approximate the dt-SCS Σ in (4.3.3) with a finite Σ̂ using an abstraction algorithm. The
algorithm first constructs a finite partition of the state space X = ∪iXi. Then representative
points x̂i ∈ Xi are selected as abstract states. Given a dt-SCS Σ = (X ,U,ς , f), the constructed
finite MDP Σ̂ is

Σ̂ = (X̂ ,Û ,ς , f̂), (4.5.1)

where X̂ = {x̂i, i = 1, . . . ,nx}, a finite subset of X , and Û :=U are finite state and input sets
of the MDP Σ̂. Moreover, f̂ : X̂ × Û ×Vς → X̂ is defined as f̂ (x̂, υ̂ ,ς) = Qx(f (x̂, υ̂ ,ς)),
where Qx : X → X̂ is the map that assigns to any x ∈ X , the representative point x̂ ∈ X̂ of the
corresponding partition set containing x. The initial state of Σ̂ is also selected according to
x̂0 := Qx(x0) with x0 being the initial state of Σ.

Abusing notation, a policy in Σ̂ can be considered as a valid policy in Σ, i.e., ΠΣ̂ ⊆ΠΣ.
The following theorem [147] shows the closeness between a continuous-space stochastic
control system Σ and its finite abstraction Σ̂ in a probabilistic setting.

Theorem 4.2 Let Σ = (X ,U,ς , f) be a continuous-space stochastic control system and
Σ̂ = (X̂ ,Û ,ς , f̂) be its finite abstraction. For finite-horizon specification φ , Markov policy
ρ ∈ΠΣ̂, and initial state x ∈ X, we have:

|P(Σx
ρ |= φ)−P(Σ̂x̂

ρ |= φ)| ≤ ε, with ε := T δH L, (4.5.2)

where x̂ = Qx(x), T is the finite time horizon, δ is the state discretisation parameter, H is
the Lipschitz constant of the stochastic kernel, and L is the Lebesgue measure of the state
space. Moreover, if we take the optimal policy ρ∗ ∈ΠΣ̂ of satisfying the specification in Σ̂

and applying it to Σ, we have the error at most 2ε , i.e.,∣∣ max
ρ∈ΠΣ

P(Σx
ρ |= φ)−P(Σx

ρ∗ |= φ)
∣∣≤ 2ε. (4.5.3)

The error bound ε in (4.5.2) is obtained by characterising P(Σx
ρ |= φ) recursively similar

to dynamic programs (DP). This error is related to the approximation of the continuous kernel
via a discrete one, hence, the term δH appears in ε . There is also an integration over the
state space, thus L appears in ε . Finally, the errors contributed in every iteration of the DP
are added, hence, the horizon T appears in ε .

68 Model-free RL for formal control of stochastic systems

Stochastic Control System

xx̂

δ − quantizer

a

Interpreter

scLTL Specification

u

Reinforcement Learner

x
⋆ , ρ

⋆

T

q1

Fig. 4.3 Model-free reinforcement learning is employed by DFA Aφ corresponding to SCLTL
objective φ to provide scalar rewards by combining DFA Aφ and a δ -quantised observation set of the
continuous-space MDP Σ. In particular, the δ -quantised observation set of the continuous-space MDP
Σ is used by an interpreter process to compute a run of Aφ . When the run of Aφ reaches a final state,
the interpreter gives the reinforcement learner a positive reward and the training episode terminates.
Any converging reinforcement learning algorithm over such δ -quantised observation set is guaranteed
to maximise the probability of satisfaction of the scLTL objective φ and converge to a 2ε-optimal
strategy over the concrete dt-SCS Σ, thanks to Theorem 4.2 [88].

Remark 4.3 Note that in order to employ Theorem 4.2, one can first a-priori fix the desired
threshold ε in (4.5.2). According to the values of H , L , and T , one computes the required
discretisation parameter as δ = ε

T H L . For instance in the case of a uniform quantiser, one
can divide each dimension of the set X into intervals of size δ/

√
n with n being the dimension

of the set.

4.6 Synthesis via reinforcement learning

In this section, we sketch how we apply Theorem 4.2 to solve Problem 4.1 when conditional
stochastic kernels are unknown. We begin by detailing the solution of finding optimal policies
for finite-horizon properties in the case of known MDPs, and then we show how to exploit
that to provide an RL-based algorithm to synthesise an optimal policy.

4.6.1 Product Markov decision process

It follows from Theorem 4.2 that one can construct a finite MDP Σ̂ from a continuous-space
dt-SCS Σ with known conditional stochastic kernels such that the optimal probability of
satisfaction of a finite-horizon specification φ for T steps in Σ̂ is no more than 2ε-worse
than the optimal policy in Σ; see the definition of ε in Theorem 4.2. Hence, given a dt-SCS
Σ with known conditional stochastic kernels, a finite-horizon property φ with horizon T , a

4.6 Synthesis via reinforcement learning 69

2ε-optimal policy to satisfy φ is computed using a suitable finite MDP with the corresponding
δ as the state discretisation parameter. This problem can be solved using the finite-horizon
dynamic programming over the product of Σ̂ and the DFA Aφ (cf. Definition 4.7 and the
paragraph afterward) by giving a scalar reward to all transitions once a final state of Aφ is
reached.

Definition 4.9 (Product MDP) Given a finite MDP Σ̂ = (X̂ ,Û , T̂) with initial state x̂0 ∈ X̂ ,
a labeling function L : X → Σa (cf. Subsection 4.3.4), and a DFA Aφ = (Q,Σa, t,q0,Fa)

capturing the finite-horizon specification φ , we define the product MDP M⋆ as a finite MDP
(X⋆,U⋆,T⋆) with initial state x⋆0, and reward function R⋆ where:

– X⋆ = X̂×Q is the set of states;

– U⋆ = Û is the set of actions;

– T⋆ : X⋆×U⋆×X⋆→[0,1] is the probabilistic transition function defined as

T⋆((x,q),v,(x′,q′)) =

T̂ (x,v,x′), if q′ = t(q,L(x)),

0, otherwise,

– x⋆0 = (x0,q0) is the initial state; and

– R⋆ : X⋆×U⋆×X⋆→N is the reward function defined as:

R⋆((x,q),v,(x′,q′)) =

1, if q′ ∈ Fa,

0, otherwise.

Recall that the DFA Aφ corresponding to a finite-horizon specification φ has the property
that there is a unique accepting state and all out-going transitions from that state are self-loops.
It follows that total optimal expected reward in the product is equal to the optimal probability
of satisfying the specification.

Proposition 4.1 (Product preserves probability [28]) An expected reward-optimal policy
in (X⋆,U⋆,T⋆) from initial state x⋆0 ∈ S⋆ and reward function R⋆ along with Aφ characterises
an optimal policy in Σ̂ to satisfy φ . The optimal expected total reward and an optimal policy
can be computed in polynomial time [120] in the size of the MDP and the DFA.

70 Model-free RL for formal control of stochastic systems

4.6.2 Unknown conditional stochastic kernels

When stochastic kernels are unknown, Theorem 4.2 still provides the correct probabilistic
bound given a discretisation parameter δ if the Lipschitz constant H is known. This
observation enables us to employ RL algorithms over the underlying discrete MDP without
explicitly constructing the abstraction by simply restricting observations of the reinforcement
learner to the closest representative point in the set of partitions.

Model-free RL can be employed under such observations by using the DFA Aφ to
provide scalar rewards as defined in Definition 4.9. The observations of the MDP are
used by an interpreter process to compute a run of the DFA. When the DFA reaches a
final state, the interpreter gives the reinforcement learner a positive reward and the training
episode terminates. Since the product MDP M⋆ is a finite MDP, from Proposition 4.1, it
follows that any correct and convergent RL algorithm that maximises this expected reward is
guaranteed to converge to a policy that maximises the probability of satisfaction of the scLTL
objective. From Theorem 4.2, it then follows that any converging reinforcement learning
algorithm [68, 17] over such finite observation set then converges to a 2ε-optimal policy over
the concrete dt-SCS Σ, thanks to Theorem 4.2. We summarise the proposed solution in the
following theorem.

Theorem 4.3 Let φ be a finite-horizon formula, ε > 0, and Σ = (X ,U,ς , f) be a continuous-
space MDP, where f and the distribution of ς are unknown but the Lipschitz constant H

as discussed before is known. For a discretisation parameter δ satisfying T δH L ≤ ε , a
convergent model-free RL algorithm (e.g., Q-learning [17] or TD(λ) [68]) over Σ̂ with a
reward function guided by the DFA Aφ , converges to a policy which is 2ε-optimal for Σ.

4.6.3 Reward shaping: overcoming sparse rewards

Consider a finite MDP Σ̂= (X̂ ,Û , T̂), a co-safety automaton Aφ = (Q,Σa, t,q0,qF), and their
product MDP M⋆ = (X⋆,U⋆,T⋆) along with the starting state x⋆0, and the reward function R⋆.
Since the reward function R⋆ is sparse, it may not be computationally effective in the RL. For
this reason, we introduce a “shaped” reward function Rκ (parameterised by a hyper-parameter
κ) such that for suitable values of κ , optimal policies for Rκ are the same as optimal policies
for R⋆, but unlike R⋆ the function Rκ is dense.

The function Rκ is defined based on the structure of co-safety automaton Aφ . Let
d(q) be the minimum distance of the state q to the unique accepting state qF . Let dmax =
1+maxq∈Q{d(q) : d(q) < ∞}. If there is no path from q to qF , let d(q) be equal to dmax.

4.6 Synthesis via reinforcement learning 71

We define the potential function P : N→ R as the following:

P(d) =

κ
d−d(q0)
1−dmax

, for d > 0,

1, for d = 0,

where κ is a constant hyper-parameter. Note that the potential function of the initial state is
P(d(q0)) = 0 and the potential function of the final state is P(d(qF)) = 1. Note that

P(1)−P(dmax) = κ.

We define the “shaped” reward function Rκ : X̂ × Û × X̂ → R as the difference between
potentials of the destination and of the target states of transition of the automaton, i.e.,

Rκ((x,q),v,(x′,q′)) = P(d(q′))−P(d(q)).

Moreover, notice that for every run r = (x0,q0),v1,(x1,q1), v2, . . . ,vn,(xn,qn) of M⋆, its
accumulated reward is simply the potential difference between the last and the first states,
i.e., P(d(qn))−P(d(q0)).

Theorem 4.4 (Correctness of reward shaping) For every product MDP M⋆ = (X⋆,U⋆,T⋆)
with initial state x⋆0 and reward function R⋆, there exists κ⋆ > 0 such that for all κ < κ⋆ we
have that the set of optimal expected reward policies for M⋆ is the same as the set of optimal
expected reward policies for M⋆ with reward function Rκ .

Proof 4.1 First we note that for the optimality, it is sufficient [124] to focus on positional
strategies. Let η1 and η2 be two positional strategies such that the optimal probability of
reaching the final state qF for η1 is greater than that for η2. We write p1 and p2 for these
probabilities and p1 > p2. Notice that these probabilities are equal to the optimal expected
reward with the R⋆ reward function.

We denote the expected total reward for policies η1 and η2 for the shaped reward function
Rκ as s1 and s2, respectively. These rewards satisfy the following inequalities:

s1 ≥ p1(P(0)−P(d(q0)))+(1−p1)(P(dmax)−P(d(q0)),

s2 ≤ p2(P(0)−P(d(q0)))+(1−p2)(P(1)−P(d(q0))).

Now consider:

s1− s2

72 Model-free RL for formal control of stochastic systems

≥
(

p1(P(0)−P(d(q0)))+(1−p1)(P(dmax)−P(d(q0))
)

−
(

p2(P(0)−P(d(q0)))+(1−p2)(P(1)−P(d(q0)))
)

=
(

p1(1−P(d(q0)))+(1−p1)(P(dmax)−P(d(q0))
)

−
(

p2(1−P(d(q0)))+(1−p2)(P(1)−P(d(q0)))
)

=
(

p1 +(1−p1)P(dmax)−P(d(q0))
)

−
(

p2 +(1−p2)P(1)−P(d(q0)))
)

=
(

p1 +(1−p1)P(dmax)
)
−
(

p2 +(1−p2)P(1)
)

=
(

p1 +(1−p2)P(dmax)− (p1−p2)P(dmax)
)

−
(

p2 +(1−p2)P(1)
)

= (p1−p2)+(1−p2)(P(dmax)−P(1))−(p1−p2)P(dmax)

= (p1− p2)− (1−p2)κ− (p1−p2)P(dmax)

= (p1− p2)−κ
(
(1−p2)+(p1−p2)P(dmax)

)
≥ (p1−p2)−κ.

We used p2 ≥ 0, p1−p2>0, andP(dmax)≤0 to conclude the last inequality. It can be verified
that if κ < p1− p2 then s1 > s2. Therefore, if η1 is an optimal positional strategy, and η2 is
one of the next best positional strategies, choosing κ∗ < p1− p2 guarantees that an optimal
strategy in Mκ is also optimal for M⋆, which concludes the proof. ■

Theorem 4.4 demonstrates one way to shape rewards such that the optimal policy remains
unaffected while making the rewards less sparse. Along similar lines, one can construct a
variety of potential functions and corresponding shaped rewards with similar correctness
properties. Of course, the reward shaping scheme presented here is no silver bullet: we expect
the performance of different potential functions to be incomparable along a carefully chosen
ensemble of MDPs. Since rewards are shaped without any knowledge of the underlying
MDP, there may be MDPs where un-shaped rewards may work as well or even better than
a given shaped reward. We envisage that the ability to combine several competing ways to
shape reward may work better in practice. While sparse rewards may be sufficient for simpler
learning tasks, we demonstrate that shaped rewards such as the one provided here are crucial
for larger case studies such as the BMW case-study reported in the case study section.

4.6.4 Discussion

Before proceeding with the second part of the chapter, we elaborate on the dimension depen-
dency in our proposed RL techniques compared to the abstraction-based ones. Assuming

4.7 Controller synthesis for networks of unknown stochastic control systems 73

a uniform quantiser, the finite MDP constructed in Subsection 4.5.1 is a matrix with a di-
mension of (nx×nu)×nx, where nu is the cardinality of the finite input set U . Computing
this matrix is one of the bottlenecks in abstraction-based approaches since an n-dimensional
integration has to be done numerically for each entries of this matrix. Moreover, nx (i.e., the
cardinality of the finite state set) grows exponentially with the dimension n. Once this matrix
is computed, it is employed for the dynamic programming on a vector of the size (nx×nu).
This is a second bottleneck of the process. On the other hand, by employing the proposed RL
approach, the curse of dimensionality reduces to only learning the vectors of size (nx×nu)

without having to compute the full matrix. Moreover, the abstraction-based techniques need
to precisely know the probabilistic evolution of states in models, whereas in this work we
only need to know the Lipschitz constant H , which can be readily estimated from sample
trajectories of Σ.

Although the proposed RL framework has the above-mentioned merits compared to
the abstraction-based techniques, it may not be efficient enough while dealing with large-
scale stochastic systems. In particular, when a system is described as an interconnection
of subsystems, the proposed approach produces a centralised controller operating on the
monolithic states of the interconnected systems. This does not take advantage of the system
topology and suffers from the curse of dimensionality. In the rest of the chapter, we propose
synthesising a set of decentralised controllers by solving a stochastic game for each subsystem
(cf. (4.3.2)) using multi-agent reinforcement learning [97]. We derive performance bounds
on the composed controller from the bounds computed based on the individual controllers.

4.7 Controller synthesis for networks of unknown stochas-
tic control systems

In this part we generalise our results by proposing a compositional approach for the controller
synthesis of networks for unknown continuous-space stochastic control systems under finite-
horizon specifications. We apply a model-free two-player RL in an assume-guarantee
fashion and compositionally compute policies over finite horizons for continuous-space
interconnected systems without explicitly constructing their finite-state abstractions. We then
propose a lower bound for the optimality guarantee of synthesised controllers when applied
to the interconnected system based on those of individual controllers.

Given discrete-time stochastic subsystems Σ = (X ,U,W,ς , f ,Y,h), where f , h, and
distribution of ς are unknown, and given finite-horizon specifications ϕ for them1, we

1We dropped index i from Σ and ϕ for the sake of simple presentation.

74 Model-free RL for formal control of stochastic systems

implicitly abstract each subsystem in the network with a finite MDP with unknown transition
probabilities. We then synthesise policies over each abstract MDP in an assume-guarantee
fashion using RL and map the results back over the concrete network while providing
guarantees on satisfaction probability. In particular, we propose a lower bound on the
satisfaction probability of synthesised policies when applied to the interconnected system
based on those of individual policies applied to subsystems.

In order to provide any formal guarantee, we assume that the system in (4.3.2) is Lipschitz-
continuous with respect to states and internal inputs with constants Hx and Hw, respectively.
The next example provides a systematic way of computing Hx and Hw for a class of linear
continuous-space stochastic control subsystems.

Example 4.2 Consider a dt-SCS Σ with linear dynamics x(k+1)=Ax(k)+B̄υ(k)+Dw(k)+
ς(k), for some matrices A = [ai j], B̄, and D = [di j] of appropriate dimensions, where
ς(k) is i.i.d. for k = 0,1,2, . . . with normal distribution, zero mean and covariance ma-
trix diag(σ1, . . . ,σn). Then, one obtains the Lipschitz constants of the stochastic kernel with

respect to states and internal inputs as Hx = ∑i, j
2|ai j|

σi
√

2π
and Hw = ∑i, j

2|di j|
σi
√

2π
, respec-

tively.

Now, we state the main problem that we aim to solve in this section. In particular, this
problem is an extension of Problem 4.1 to allow a more efficient solution and make it more
scalable when the underlying system is an interconnection of many subsystems.

Problem 4.2 Let ϕi be finite-horizon objectives and Σi = (Xi,Ui,Wi,ςi, fi,Yi,hi)

continuous-space subsystems, where fi,hi and distribution of ςi are unknown, but Lipschitz
constants Hxi and Hwi are known, for 1≤ i≤ N. Synthesise Markov policies that satisfy
ϕi in Σi with probabilities within a-priori defined thresholds εi from unknown optimal ones.
Then, provide a lower bound on the satisfaction probability of synthesised controllers
when applied to the interconnected system based on those of individual controllers applied
to subsystems.

To present our solution to this problem, we first report the following result [164, 147] to
show the closeness between a continuous-space subsystem Σ and its finite abstraction Σ̂ in
a probabilistic setting. We then leverage this result in Section 4.8 to provide a two-player
stochastic game RL-based solution to Problem 4.2. Note that all (Markov) policies for Σ̂ are
also (Markov) policies for Σ, i.e., Π̂Max ⊆ΠMax and Π̂Min ⊆ΠMin.

Corollary 4.1 Let Σ = (X ,U,W,ς , f ,Y,h) be a continuous-space subsystem and
Σ̂= (X̂ ,Û ,Ŵ ,ς , f̂ ,Ŷ , ĥ) be its finite abstraction. For a given finite-horizon objective ϕ , initial

4.7 Controller synthesis for networks of unknown stochastic control systems 75

state x ∈ X, and Markov policy pair (ρ,ξ) ∈ Π̂Max× Π̂Min for the closed-loop Σ̂ (denoted by
the solution process Σ̂x

(ρ,ξ)
), the closeness between the continuous-space subsystem and its

abstraction in terms of satisfaction probability is given by

|P(Σx
(ρ,ξ) |= ϕ)−P(Σ̂x̂

(ρ,ξ) |= ϕ)| ≤ ε, (4.7.1)

with ε :=T L (δHx+µHw),

where x̂ = Qx(x), T is the time horizon, δ and µ are respectively state and internal input
discretisation parameters, Hx and Hw are respectively Lipschitz constants of the stochastic
kernel with respect to states and internal inputs, and L is the Lebesgue measure of (bounded)
state space.

Note that if the state space is unbounded, we assume that the specification requires the system
to stay in a safe bounded subset of the state space, and this bounded subset can be used in the
above corollary. Next, we consider networks of stochastic control subsystems and provide a
lower bound for the satisfaction probability of synthesised controllers when applied to the
interconnected system based on those of individual controllers applied to subsystems as in
Corollary 4.1.

Theorem 4.5 Let Σ = (X ,U,ς , f) be an interconnected continuous-space stochastic control
system and Σ̂ = (X̂ ,Û ,ς , f̂) be its finite abstraction. For a given finite-horizon objective
ϕ = ϕ1∧ϕ2∧ . . .∧ϕN , we have

P(Σx
ρ∗ |= ϕ) ≥

N

∏
i=1

min
ξi∈ΠΣi

P((Σ̂i)
xi
(ρ∗i ,ξi)

|= ϕi) −
1
2
[(1 + ε)N − (1 − ε)N], (4.7.2)

where ε := maxi εi, the state x ∈ X is the initial state of the interconnected system, for every
subsystem 1≤ i≤ N the state xi ∈ Xi is its initial state, and ρ∗ ∈ΠΣ is the policy obtained
by composing the optimal policies ρ∗i ∈Π

Σi
Max for an objective ϕi.

Proof 4.2 We have

P(Σx
ρ∗ |= ϕ)≥

N

∏
i=1

min
ξi∈ΠΣi

P((Σi)
xi
(ρ∗i ,ξi)

|= ϕi).

76 Model-free RL for formal control of stochastic systems

This inequality holds due to the dynamic programming (DP) formulation of P(Σx
ρ∗ |= ϕ)

[153, 154] and the following property of the Bellman operator used in each iteration of DP:∫
X1

∫
X2

V1(x̄1)V2(x̄2)T1(d x̄1 |x1,x2)T2(d x̄2 |x1,x2)

=
∫

X1

V1(x̄1)T1(d x̄1 |x1,x2)
∫

X2

V2(x̄2)T2(d x̄2 |x1,x2)

≥min
w1

∫
X1

V1(x̄1)T1(d x̄1|x1,w1)min
w2

∫
X2

V2(x̄2)T2(d x̄2|w2,x2),

where Ti is the stochastic kernel of Σi and Vi is the value function used in each iteration of
DP, for i ∈ {1,2}. This inequality allows us to consider the effect of other subsystems in the
worst case and get a lower bound on the solution.

Since for i = 1,2, . . . ,N,∣∣∣∣∣ min
ξi∈ΠΣi

P((Σi)
xi
(ρ∗i ,ξi)

|= ϕi)− min
ξi∈ΠΣi

P((Σ̂i)
xi
(ρ∗i ,ξi)

|= ϕi)

∣∣∣∣∣≤ εi.

one can write

P(Σx
ρ∗ |= ϕ)≥

N

∏
i=1

(min
ξi∈ΠΣi

P((Σ̂i)
xi
(ρ∗i ,ξi)

|= ϕi)−εi)

≥
N

∏
i=1

min
ξi∈ΠΣi

P((Σ̂i)
xi
(ρ∗i ,ξi)

|= ϕi)−
[(

N
1

)
ε+

(
N
3

)
ε

3+. . .

]
=

N

∏
i=1

min
ξi∈ΠΣi

P((Σ̂i)
xi
(ρ∗i ,ξi)

|= ϕi)−
1
2
[(1+ ε)N−(1− ε)N],

where ε = maxi εi and it completes the proof. ■

4.8 Compositional controller synthesis via reinforcement
learning

According to Corollary 4.1, one can construct a finite abstraction Σ̂i from a given continuous-
space subsystem Σi with known stochastic kernels such that the optimal probability of
satisfaction of a finite-horizon specification ϕi with horizon T in Σ̂i is no more than 2εi-
worse than the optimal strategy in Σi. Hence, given subsystems Σi with known stochastic
kernels, properties ϕi, and time horizon T , 2εi-optimal strategies to satisfy ϕi in T steps

4.8 Compositional controller synthesis via reinforcement learning 77

can be computed using a suitable finite SGA with δi and µi as state and internal input
discretisation parameters for subsystems.

When the stochastic kernels are unknown, Corollary 4.1 still provides the correct prob-
abilistic bound given discretisation parameters δi and µi if Lipschitz constants Hxi and
Hwi are known. This observation enables us to employ two-player RL on the underlying
discrete SGA, denoted by Σ̂δi , without explicitly constructing the abstraction by restricting
observations of the reinforcement learner to the closest representative point in the discrete
set of states. Similarly to Section 4.6.1, we can construct the product of a SGA and a DFA.
Consequently, any converging RL algorithm for two-player stochastic games over such
finite observation set then converges to a 2εi-optimal strategy for the concrete dt-SCS Σi (cf.
Corollary 4.1). We summarise our proposed solution in the following theorem.

Theorem 4.6 Let ϕi be given finite-horizon properties, εi > 0, and Σi =(Xi,Ui,Wi,ςi, fi,Yi,hi)

be continuous-space subsystems, where fi,hi and distribution of ςi are unknown, but Lipschitz
constants Hxi and Hwi are known for i ∈ {1, . . . ,N}. For discretisation parameters δi and
µi satisfying TiLi(δiHxi +µiHwi)≤ εi, a convergent model-free reinforcement learning al-
gorithm (e.g., minimax-Q learning [98]) for two-player stochastic games over Σ̂δi converges
to a 2εi-optimal strategy for subsystems Σi. Accordingly, one can compute a lower bound
for the satisfaction probability of the synthesised controllers applied to the interconnected
system based on (4.7.2).

We reiterate that in our proposed setting, we do not need to compute transition probabili-
ties T̂X since we directly learn the value functions using the proposed RL.

4.8.1 Accelerating RL with multi-level discretisation

The efficiency of tabular RL algorithms is directly connected to the size of the state set of the
finite control system—with larger state sets typically requiring longer training times. For
instance, if two different agents are trained on a coarse discretisation and a fine discretisation
of the same system, then the former will typically have shorter training times at the cost of
higher discretisation error. However, since the underlying continuous system is the same, the
two agents will learn roughly similar policies. We propose first training an RL agent on a
coarse discretisation of the system and then using the resulting policy to initialise training for
a different RL agent on a finer discretisation of the same system. By repeating this process
with increasingly fine discretisation levels, we reach the final desired discretisation level.
Our experimental results demonstrate that this multi-level discretisation scheme dramatically
accelerates the learning process.

78 Model-free RL for formal control of stochastic systems

The proposed multi-level discretisation algorithms begin by creating a coarse discreti-
sation of the continuous system. It then trains a minimax-Q learning agent for a fixed time.
After this time has elapsed, it decreases the discretisation parameter to create a more finely
discretised system by, for instance, halving the discretisation parameter. It then creates a
new learning agent for the more finely discretised problem. The values for the new Q-table
get initialised from the old Q-table where the value of a state inherits its values from the
corresponding nearest state in the previous discretisation. This new agent is then trained
for a fixed time and is used to initialise a new agent on an even finer discretisation of the
system. This process gets repeated until we reach the final desired discretisation level. Note
that as long as we stop refining the discretisation at some point, we retain in the limit the
convergence of minimax-Q learning since the minimax-Q learning algorithm will converge
from an arbitrarily initialised Q-table.

4.9 Case studies

To demonstrate the effectiveness of the proposed approaches, we apply them to three physical
benchmarks, including (i) regulation of a room temperature (network), (ii) control of a
road traffic (network), and (iii) control of a 7-dimensional nonlinear model of a BMW 320i
car. We note that application of formal abstraction-based methods is studied previously
in smart grids [176], temperature regulation of smart buildings [148, 151, 77, 43], and
transportation networks [3, 155] for either small-scale models or aggregate models without
coupled dynamics.

4.9.1 Room temperature (network)

Monolithic system. We first apply our results to the temperature regulation of a room
equipped with a heater. The model of this case study is adapted from [109] by including
stochasticity in the model in the form of an additive noise.

The goal is to synthesise a controller for Σ using Theorem 4.3, so that the controller
maintains the temperature of the room in the safe set [19,21] for at least 10 steps.

Network of systems. We then apply the compositional approach proposed in the second
part of the chapter to a network of N = 20 rooms with a circular topology (cf. Fig. 4.4). We
employ Theorem 4.6 and synthesise a controller for Σ via its implicit abstract subsystems
Σ̂δi , so that the controller maintains the temperature of any room in the safe set [17,18] for at
least 45 minutes.

4.9 Case studies 79

Σ1

Σ2

Σ3 Σ4

Σ5

Σ20

Fig. 4.4 A circular building in a network of 20 rooms [88].

4.9.2 Road traffic (network)

Monolithic System. We also apply our results to a road traffic system containing a cell with
2 entries and 1 way out, as schematically depicted in Fig. 4.5. The model of this case study
is taken from [93]; stochasticity is included in the model as an additive noise. One of the

Traffic light

Σ

Way out

Entry

Fig. 4.5 Model of a road traffic control with the length of 500 meters, 1 way out, and 2
entries, one of which is controlled by a traffic light [88].

entries of the cell is controlled by a traffic light, denoted by v ∈ {0,1}, that enables (green
light) or not (red light) the vehicles to pass.

We synthesise a controller for Σ using Theorem 4.3, so that traffic density is less than 20
vehicles for at least 10 steps.

Σ1 Σ2

.

Σ7

Road Traffic

Network

Traffic light

Σ1

.

.

Way out

Fig. 4.6 Model of a road traffic network in a ring composed of 7 identical cells, each of which
has 1 entry and 1 exit [88].

Network of systems. We apply our compositional approach to a road traffic ring network
that consists of N = 7 identical cells, each of which has 1 entry and 1 exit, as schematically

80 Model-free RL for formal control of stochastic systems

Table 4.1 Q-Learning Results for Room Temperature and Road Traffic [88].
Room Traffic

δ pr p∗ ε pl ph pr p∗ ε pl ph
0.01 0.969 0.975 0.246 0.728 1.0 0.985 0.999 0.016 0.983 1.0
0.02 0.974 0.975 0.493 0.481 1.0 0.997 0.999 0.031 0.967 1.0
0.05 0.954 0.975 1.233 0.000 1.0 0.999 0.999 0.079 0.919 1.0
0.1 0.977 0.975 2.467 0.000 1.0 0.999 0.999 0.159 0.839 1.0
0.2 0.973 0.974 4.935 0.000 1.0 0.999 0.999 0.319 0.680 1.0

 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

 20 40 60 80 100 120 140 160 180 200

1

2

3

4

5

6

7

8

9

10

Fig. 4.7 Room temperature control: A heat-map visualisation of strategies learned via Rein-
forcement Learning after 105 episodes (left) and after 8·106 episodes (right). The x axis shows
the room temperature in ◦C, while the y axis shows time steps 1≤k≤10. The action selected
by the strategy is in the input set {0.03,0.09,0.15, 0.21,0.27,0.33,0.39,0.45,0.51,0.57}
and is color-coded according to the map shown in the middle: Bright yellow and deep blue
represent maximum and minimum heat. In the first step, strategies are only defined for the
initial state; this causes the blue bands at the top [88].

depicted in Fig. 4.6. By leveraging Theorem 4.6, we synthesise a controller for Σ via its
implicit abstract subsystems Σ̂δi so that the controller keeps traffic density below 20 vehicles
per cell for at least 36 seconds.

4.9.3 Learning Controllers

Monolithic analysis. Table 4.1 shows a comparison of Q-learning to the computed optimal
probabilities for the room temperature and road traffic examples. For each model, five
different discretisation steps (δ) are considered and for each value of δ , probabilities of
satisfaction of the finite-horizon objectives are reported in the columns labelled pr. These
probabilities are Q-values of the initial state of the finite-state MDP for the policy computed
by Q-learning after 106 episodes. The objective is to keep the system safe for at least 10
steps. For comparison, the optimal probability p∗ for a time-dependent policy is reported
assuming that we know the exact dynamics for these two examples. Note that we compute p∗
by dynamic programming over the constructed finite MDPs as proposed in Subsection 4.5.1
to verify our results. The optimal probability p∗ reported in Table 4.1 corresponds to the

4.9 Case studies 81

Table 4.2 Results for distributed controller learned by minimax Q-learning on the quantised
subsystems [88].

p+ plow ε psampled

Room
0.999943 0.902585

0.004807
0.998880

0.999952 0.902769 ± 0.000066
± 0.000014 ± 0.000272

Traffic
0.996837 0.932064

0.006571
0.999999

0.998878 0.946167 ± 0.000002
± 0.000066 ± 0.000459

0 20 40
17

17.2

17.4

17.6

17.8

18

0 20 40
0

5

10

15

20

Fig. 4.8 State evolution of the learned distributed controllers visualised through percentiles
from 106 sampled trajectories [88].

same initial condition that is utilised in the learning process. The optimal probability for the
original continuous-space stochastic system is always within an interval [pl, ph] centred at
p∗ and with a radius ε as reported in Table 4.1. One can readily see from Table 4.1 that as
the discretisation parameter δ decreases, the size of this interval shrinks, which implies that
the optimal probability for the original continuous-space stochastic system converges to p∗.
While finer abstractions give better theoretical guarantees, for a fixed number of episodes
it is easier to learn good strategies for coarser abstractions. This is reflected in Table 4.1,
where the values of pr do not necessarily get better with smaller values of δ . However, by
increasing the number of episodes, strategies converge toward the optimal one, as illustrated
in Fig. 4.7, which visualises room temperature control strategies computed by Q-learning
after different numbers of episodes. Note that in Table 4.1, the error bound ε exceeds 1 for
δ ≥ 0.05 in the room temperate control example, which is not a useful probability bound for
the continuous-space system. However, we report the corresponding values of pr and p∗ so
that they may still be compared.

Compositional analysis. Following the motivation in Sections 4.7 and 4.8, we synthesise
a controller for Σ in both case studies by first producing implicitly the abstract subsystems

82 Model-free RL for formal control of stochastic systems

Σ̂δi . We then learn a controller for the resulting stochastic game with minimax Q-learning. To
accelerate learning, we use the multi-level discretisation scheme described in Section 4.8.1.
For the room temperature control and road traffic network, the final discretisation values
are δi = 0.001, µi = 0.1, and δi = 0.05, µi = 0.01, respectively. For the room temperature
control, we use 1.5 million episodes, a learning rate of 0.04 decayed linearly to 0.02, an
exploration rate of 0.1, and a discount factor of 1. This takes approximately 5 minutes of
wall-clock time. For the road traffic network, we use 2 million episodes, a learning rate of
0.1 decayed linearly to 0.02, an exploration rate of 0.2, and a discount factor of 1. This takes
approximately 4 minutes of wall-clock time.

Table 4.2 shows the results for the learned controllers: p+ is the (approximate) probability
of the learned policy satisfying the finite-horizon objective over the subsystem against an
optimal adversarial internal input, ε is the bound on the quantised measurement error from
equation (4.7.1), plow is the lower bound from equation (4.7.2) on the probability of the
decentralised controller satisfying the finite-horizon objective over the interconnected system,
and psampled is a 95% confidence bound on the probability of satisfying the finite-horizon
objective using the decentralised controller as computed via 106 samples. We compute
p+ in two ways. First, we approximate p+ without knowledge of the model by fixing the
controller policy that results from learning and producing a 95% confidence bound on the
probability of satisfying the objective from 106 samples. Second, we fix the controller policy
that results from learning and compute an optimal strategy for the internal input by dynamic
programming. This requires knowledge of the model and is done to validate the results of
learning.

Table 4.2 shows that on these case studies, the computed bound on the probability
of the decentralised controller satisfying the finite-horizon objective is within 0.1 of the
estimated probability using samples for both examples. Additionally, there is a successful
mitigation of the curse of dimensionality versus synthesising a centralised controller for
the interconnected system monolithically. On the room temperature example, the selected
quantisation parameters result in nx = 1000 states and nw = 20 internal inputs for each
subsystem. Combined with nυ = 6 control inputs and a time horizon of T = 5, there are
T (nxnυ +nxnυnw) = 630,000 total state-input pairs in the stochastic game which we need
to solve to produce the decentralised controller. For comparison, we can select appropriate
quantisation parameters which yield the same quantisation error in the compositional case,
1
2 [(1+ ε)N−(1− ε)N], as in the monolithic case, ε . The appropriate quantisation results
in n̂x = 9 states for each individual subsystem. Even with only a few states required in
each quantised subsystem, the monolithic approach still needs to reason over T (n̂xnυ)

20 ≈
2.22 ·1035 state-input pairs to produce a controller. For the road traffic example, there are

4.10 Conclusion 83

nx = 400 states, nw = 2000 internal inputs, nυ = 2 control inputs, and a time horizon of T = 2.
We require n̂x = 21 states per subsystem for producing a monolithic controller with the same
quantisation error as in the compositional case. We get that there are T (nxnυ +nxnυnw) =

3,201,600 state-input pairs in the stochastic game, and T (n̂xnυ)
7 ≈ 4.61 ·1011 state-input

pairs in the monolithic setting.

4.9.4 7-dimensional BMW 320i car

The previous case-studies are representative of what can be solved by discretisation and
tabular methods like Q-learning. Relaxing those constraints, we were able to apply deep
deterministic policy gradient (DDPG) [96] to a 7-dimensional nonlinear model of a BMW
320i car [5] to synthesise a reach-while-avoid controller. Though convergence guarantees
are not available for DDPG and for most RL algorithms with nonlinear function approxi-
mations, breakthroughs in this direction will expand the applicability of our results to more
complex safety-critical applications. For instance, the authors in [80] propose an approach
for maximising the probability of satisfying LTL specifications over unknown stochastic
processes with continuous state spaces. The results in [80] show that under some regularity
assumptions, the learned policy converges to the optimal one given the convergence of the
RL algorithm.

The model of the BMW 320i case study is borrowed from [5, Section 5.1] by discretising
the dynamics in time and including a stochasticity inside the dynamics as additive noises. We
are interested in the autonomous operation of the vehicle on a highway. Consider a situation
on a two-lane highway when an accident suddenly happens on the same lane on which our
vehicle is travelling. The vehicle’s controller should find a safe manoeuvre to avoid the crash
with the next-appearing obstacle. Details of the dynamics of the vehicle and its specification
can be found in [89].

Fig. 4.9 shows the simulation from 100 samples with varying initial positions and initial
heading velocities (16–18 [m/s]) for the learned controller. We employed potential-based
reward shaping to speed-up learning in this case study from 10K episodes (no success) to
under 5K episodes (for a convincing learning, see Fig. 4.9).

4.10 Conclusion

In this chapter, we proposed a policy synthesis approach for continuous-space stochastic
systems with unknown dynamics. The goal of the policy was to maximise the probability
that the system satisfies a complex property written in a fragment of LTL. Our approach

84 Model-free RL for formal control of stochastic systems

0 10 20 30 40 50

-2

0

2

4

6

8

Fig. 4.9 Trajectories of 100 simulations of the RL-synthesised controller for a 7-dimensional
model of a BMW 320i car trained using DDPG. The road segment is 6 meter wide and 50
meter long; the length of the car is 4.508 meters and its width is 1.610 meters [88].

replaced the unknown system with a finite MDP without explicitly constructing it. Since
transition probabilities of the MDP are unknown, we utilised RL to find a policy and apply
it to the original continuous-space system. We showed that any converging RL algorithm
over such a finite MDP converges to a 2ε-optimal strategy over the concrete continuous-
space system with unknown dynamics, where ε is defined a-priori and can be controlled.
Since automata-based reward functions are often sparse, we also presented a potential-based
reward shaping technique to produce dense rewards and speed up the learning procedure.
We also proposed a compositional approach for the policy synthesis of networks of unknown
stochastic systems using a novel two-player RL scheme. We proposed a lower bound for the
probability of satisfaction of a finite-horizon property by the interconnected system based on
those of subsystems. We finally applied our approaches to three physical case studies.

Chapter 5

Formal policy synthesis for
continuous-state systems via
reinforcement learning

5.1 Chapter introduction

In previous chapters the procedure of designing a controller includes an abstraction step and
then we synthesised the controller for a finite state system. This chapter studies satisfaction
of temporal properties on unknown stochastic processes that have continuous state spaces
without an abstraction step.

We show how reinforcement learning (RL) can be applied for computing policies that are
finite-memory and deterministic using only the paths of the stochastic process. We address
properties expressed in linear temporal logic (LTL) and use their automaton representation
to give a path-dependent reward function maximised via the RL algorithm. We develop
the required assumptions and theories for the convergence of the learned policy to the
optimal policy in the continuous state space. To improve the performance of the learning
on the constructed sparse reward function, we propose a sequential learning procedure
based on a sequence of labelling functions obtained from the positive normal form of the
LTL specification. We use this procedure to guide the RL algorithm towards a policy that
converges to an optimal policy under suitable assumptions on the process. We demonstrate
the approach on a 4-dim cart-pole system and 6-dim boat driving problem.

The research presented in the chapter has been accepted and presented in the IFM
Conference [80]. My role in this research was to provide the theoretic results, simulate the
case studies and write the paper.

86 Formal policy synthesis for continuous-state systems via RL

5.2 Introduction

Motivations. Omega-regular languages provide a rich formalism to unambiguously express
desired properties of the system. Linear temporal logic (LTL), as a class of omega-regular
languages, is widely used for task specification such as safety, liveness, and repeated reach-
ability. Synthesising policies formally for a system to satisfy a specification requires the
knowledge of a model of the system. Extensive techniques are developed in the literature
for different classes of models including finite-space models [8] and continuous-state or
hybrid models [53, 89, 104, 107]. Reinforcement learning (RL) is a promising paradigm for
sequential decision making when a model of the system is not available or is very hard to
construct and analyse. The objective of an RL algorithm is to find suitable action policies in
order to maximise the collected rewards that depend on the states and actions taken at those
states. The RL algorithms are in particular useful when the total collected reward has an
additive structure.

Many objectives including satisfaction of omega-regular properties on stochastic systems
do not admit an equivalent additive reward structure. A natural approach used in the literature
(e.g., [92]), is to use heuristics for assigning additive rewards and then apply RL algorithms
to obtain a policy. Unfortunately, there is no unique procedure for constructing these rewards
and the learning does not necessarily converge to the optimal policy. Due to all of these
limitations, there is a need to provide data-driven algorithms that do not require any heuristics
and have suitable convergence guarantees to policies that are optimal for satisfaction of
temporal properties.

Main contributions. We apply RL algorithms to continuous-state stochastic systems using
only paths of the system to find optimal policies satisfying an LTL specification. We show that
if a suitable assumption on the system holds, the formulated optimal average reward converges
linearly to the true optimal satisfaction probability. We use negation of the specification
and learn a lower bound on this satisfaction probability. To improve the performance of the
learning on the constructed sparse reward function, we show how to construct a sequence
of labelling functions based on the positive normal form of the LTL specification and use
them for guiding the RL algorithm in learning the policy and its associated value function.
This sequential learning is able to find policies for our case studies in less than 1.5 hours but
direct learning does not converge in 24 hours.

Organisation. Section 5.3 recalls definition of controlled Markov processes (CMPs) as the
unknown model. We also give linear temporal logic, limit-deterministic automata, and the
problem statement in the same section. Section 5.4 gives construction of the augmented CMP
and the product CMP. It establishes the relation between the reachability on the augmented

5.3 Preliminaries and problem statement 87

CMP and the LTL satisfaction on the original CMP. Section 5.5 gives the reward function
for reachability on the augmented CMP that can be used by RL algorithms. It also gives
a procedure for guiding the learning task via a sequence of labelling functions. Finally,
Section 5.6 illustrates our approach on two case studies, a 4-dim cart-pole system and 6-dim
boat driving problem.

5.3 Preliminaries and problem statement

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-
algebra on Ω comprising subsets of Ω as events, and PΩ is a probability measure that
assigns probabilities to events. We assume that random variables introduced in this chapter
are measurable functions of the form X : (Ω,FΩ)→ (SX ,FX) from the measurable space
(Ω,FΩ) to a measurable space (SX ,FX). Any random variable X induces a probability
measure on its space (SX ,FX) as Prob{A}=PΩ{X−1(A)} for any A∈FX . We often directly
discuss the probability measure on (SX ,FX) without explicitly mentioning the underlying
sample space and the function X itself.

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a
Polish space (i.e., a separable and completely metrisable space). Examples of a Borel space
are the Euclidean spaces Rn, its Borel subsets endowed with a subspace topology, as well as
hybrid spaces of the form Q×Rn with Q being a finite set. Any Borel space S is assumed
to be endowed with a Borel sigma-algebra, which is denoted by B(S). We say that a map
f : S→ Y is measurable whenever it is Borel measurable. We denote the set of non-negative
integers by N := {0,1,2, . . .} and the empty set by /0.

5.3.1 Controlled Markov processes

Controlled Markov processes (CMPs) are a natural choice for physical systems that have
three main features: an uncountable state space that can be continuous or hybrid, control
inputs to be designed, and inputs in the form of disturbance which have certain probabilistic
behaviour [39].

We consider CMPs in discrete time defined over a general state space, characterised
by the tuple S= (S ,A ,{A (s)|s ∈S },Ts) , where S is a Borel space as the state space
of the CMP. We denote by (S ,B(S)) the measurable space with B(S) being the Borel
sigma-algebra on the state space. A is a Borel space as the input space of the CMP. The
set {A (s)|s ∈ S } is a family of non-empty measurable subsets of A with the property
that K := {(s,u) : s ∈S ,u ∈A (s)} is measurable in S ×A . Intuitively, A (s) is the set

88 Formal policy synthesis for continuous-state systems via RL

u

A

C1

C2

Fig. 5.1 Cart-pole system with a 4-dim state space. It should stay within the limits specified
by C1, always keep the pole upright in the range C2, and reach the region A [80].

of inputs that are feasible at state s ∈S . Ts : B(S)×S ×A → [0,1], is a conditional
stochastic kernel that assigns to any s ∈S and u ∈ A (s) a probability measure Ts(·|s,u)
on the measurable space (S ,B(S)) so that for any set A ∈B(S),Ps,u(A) =

∫
A Ts(ds|s,u),

where Ps,u denotes the conditional probability P(·|s,u).

Example 5.1 Consider the cart-pole in Figure 5.1. The cart moves along a line in either
direction. The states are position s1, velocity s2, pole’s angle s3, and the angular velocity s4.
The input un is the force applied to the cart at time step n. Its dynamics in discrete time are
according to the following 4-dim difference equation:

s1

n+1 = s1
n +∆s2

n

s2
n+1 = s2

n +∆a3

s3
n+1 = s3

n +∆s2
n

s4
n+1 = s4

n +∆a2 +ηn,

with

a3 := a1−
la2 cos(s3

n)

(M+m)

a2 :=
gsin(s3

n)− cos(s3
n)a1

l(4
3 −m(cos(s3

n))
2/(M+m))

a1 :=
un + l(s4

n)
2 sin(s3

n)

M+m
.

(5.3.1)

∆ is the sampling time, M is the mass of the cart, m is the mass of the pole, l is the half length
of the pole, and ηn models the disturbance. The cart has discrete input and can be either
pushed to the left or right with a fixed value, A = {−Fmax,Fmax}. This input un appears
in a1 that affects both a2 and a3. Assuming that the disturbances are all independent with
normal distribution N (· ; 0,σ2), this system is a CMP with S = R4, A (s) = A for all
s ∈S , and kernel

Ts(ds̄ |s,u) = N (ds̄4 ; s4
n+ ∆a2 , σ2)δ (ds̄1 ; s1

n +∆s2
n)

×δ (ds̄2 ; s2
n +∆a3)δ (ds̄3 ; s3

n +∆s2
n),

5.3 Preliminaries and problem statement 89

where δ (· ; a) is the Dirac delta measure centred at a and N (· ; m,σ2) is the normal
probability measure with mean m and variance σ2.

5.3.2 Semantics of controlled Markov processes

The semantics of a CMP is characterised by its paths or executions, which reflect both the
history of previous states of the system and of implemented control inputs. Paths are used to
measure the performance of the system.

Definition 5.1 A finite path of S is a sequence wn = (s0,u0, . . . ,sn−1,un−1,sn), n∈N, where
si ∈S are state coordinates and ui ∈A (si) are control input coordinates of the path. The
space of all paths of length n is denoted by PATHn := K n ×S . Further, we denote
projections by wn[i] := si and wn(i) := ui. An infinite path of the CMP S is the sequence
w = (s0,u0,s1,u1, . . .), where si ∈S and ui ∈A (si) for all i ∈N. As above, let us introduce
w[i] := si and w(i) := ui. The space of all infinite paths is denoted by PATH∞ := K ∞.

Given an infinite path w or a finite path wn, we assume below that si and ui are their
state and control coordinates respectively, unless otherwise stated. For any infinite path
w ∈ PATH∞, its n-prefix (ending in a state) wn is a finite path of length n, which we also call
n-history. We are now ready to introduce the notion of control policy.

Definition 5.2 A policy is a sequence ρ = (ρ0,ρ1,ρ2, . . .) of universally measurable stochas-
tic kernels ρn [14], each defined on the input space A given PATHn and such that for all
wn ∈ PATHn with n ∈ N, ρn(A (sn)|wn) = 1. The set of all policies is denoted by Π.

Given a policy ρ ∈Π and a finite path wn ∈ PATHn, the distribution of the next control
input un is given by ρn(·|wn) and is supported on A (sn) (i.e., the chance of selecting
an invalid input at sn is zero). For a CMP S, any policy ρ ∈ Π together with an initial
probability measure α : B(S)→ [0,1] of the CMP induce a unique probability measure
on the canonical sample space of paths [63] denoted by Pρ

α with the expectation Eρ

α . When
the initial probability measure is supported on a single point, i.e., α(s) = 1, we write Pρ

s

and Eρ
s in place of Pρ

α and Eρ

α , respectively. We denote the set of probability measures on
(S ,B(S)) by D. Implementation of a general policy requires an infinite memory. In this
work, we restrict our attention to the class of policies that depend on the paths via a finite
memory.

Definition 5.3 A finite-memory policy for S is a tuple ρ f := (Ŝ , ŝ0,Tp,To), where Ŝ is
the state space of the policy, ŝ0 ∈ Ŝ is the initial state, Tp : Ŝ ×S ×B(Ŝ)→ [0,1] is the

90 Formal policy synthesis for continuous-state systems via RL

stochastic kernel for updating the state of the policy, and To : Ŝ ×S ×B(A)→ [0,1] is
the output kernel such that To(A (s) | ŝ,s) = 1 for all ŝ ∈ Ŝ and s ∈S . We denote the set of
such policies by Π f ⊂Π.

Note that the state space Ŝ could in general be any continuous or hybrid space. The
policy has access to the current state sn of S and updates its own state ŝn according to
ŝn+1 ∼ Tp(· | ŝn,sn). As we will see later in Lemma 5.1, a finite Ŝ is sufficient for optimal
satisfaction of LTL specifications.

There is a special class of policies called positional that do not need a memory state as
defined next.

Definition 5.4 A policy ρ is positional if there is a stochastic kernel C : S ×B(A)→ [0,1]
such that at any time n ∈ N, the input un is taken from the probability measure C (·|sn).
Namely, the output kernel To(·|ŝ,s) in Definition 5.3 is independent of ŝ. We denote the class
of positional policies by Πp ⊂Π f and a positional policy just by the kernel C ∈Πp.

Designing optimal finite-memory policies to satisfy a specification on S can be reduced
to finding an optimal positional policy for satisfying a specification on an extended model
S′. This is formally proved in Section 5.4. Next we define the class of specifications used in
this chapter.

5.3.3 Linear temporal logic

Linear temporal logic (LTL) provides a high-level language for describing the desired
behaviour of a process. Formulas in this logic are constructed inductively by using a set
of atomic propositions and combining them via Boolean operators. Consider a finite set of
atomic propositions AP that defines the alphabet Σ := 2AP. Thus, each letter of this alphabet
evaluates a subset of the atomic propositions as true. Composed as an infinite string, these
letters form infinite words defined as ω = ω0,ω1,ω2, . . . ∈ ΣN. These words are connected to
paths of CMP S via a measurable labelling function L : S → Σ that assigns letters α = L(s)
to state s ∈S . That is, infinite paths w = (s0,u0,s1,u1, . . .) are mapped to the set of infinite
words ΣN, as ω = L(w) := (L(s0),L(s1),L(s2), . . .).

Definition 5.5 An LTL formula over a set of atomic propositions AP is constructed induc-
tively as

ψ ::= true | false | p |¬p |ψ1∧ψ2 |ψ1∨ψ2 | Xψ |ψ1Uψ2 |ψ1 sfR ψ2, p ∈ AP, (5.3.2)

with ψ1,ψ2,ψ being LTL formulas.

5.3 Preliminaries and problem statement 91

Let ωn = (ωn,ωn+1,ωn+2, . . .) be a postfix of ω . The satisfaction relation is denoted by
ω ⊨ ψ (or equivalently ω0 ⊨ ψ) and is defined recursively as follows

– ωn ⊨ true always hold and ωn ⊨ false does not hold.

– An atomic proposition, ωn ⊨ p for p ∈ AP holds if p ∈ ωn.

– A negation, ωn ⊨ ¬p, holds if ωn ⊭ p.

– A logical conjunction, ωn ⊨ ψ1∧ψ2, holds if ωn ⊨ ψ1 and ωn ⊨ ψ2.

– A logical disjunction, ωn ⊨ ψ1∨ψ2, holds if ωn ⊨ ψ1 or ωn ⊨ ψ2.

– A temporal next operator, ωn ⊨ Xψ , holds if ωn+1 ⊨ ψ .

– A temporal until operator, ωn ⊨ ψ1Uψ2, holds if there exists an i ∈ N such that
ωn+i ⊨ ψ2, and for all j ∈ N, 0≤ j < i, we have ωn+ j ⊨ ψ1.

– A temporal release operator is dual of the until operator and is defied as ωn ⊨ ψ1 sfRψ2

if ωn ⊭ ¬ψ1U¬ψ2.

In addition to the aforementioned operators, we can also use eventually ♢, and always □
operators as ♢ψ := (trueUψ) and □ψ := false sfR ψ .

Remark 5.1 The above definition is the canonical form of LTL and is called positive normal
form (PNF), in which negations only occur adjacent to atomic propositions. If this is not the
case, it is possible to construct an equivalent formula [8, Theorem 5.24] in the canonical
form in polynomial time as a function of the length of the formula. We utilise the canonical
form in Section 5.5.1 to construct a sequence of learning procedures that guides the optimal
policy learning problem.

Example 5.1 (Continued). The cart in Figure 5.1 should stay within the limits specified by
C1, always keep the pole upright in the range C2, and reach the region A. We can express this
requirement as the LTL specification

ψ = ♢a∧□(c1∧ c2) (5.3.3)

with AP = {a,c1,c2} and the labelling function L with a ∈ L(s) if the cart is inside A,
c1 ∈ L(s) if the cart is inside C1, and c2 ∈ L(s) if the pole angle is inside the specified range
of C2.

92 Formal policy synthesis for continuous-state systems via RL

5.3.4 Limit-deterministic Büchi automata

Satisfaction of LTL formulas can be checked on a class of automata called Limit-Deterministic
Büchi Automata (LDBA) [28, 56, 137, 57]. Similar to [57], we use the translation of the
specification to an LDBA that has one set of accepting transitions and is presented next.
This translation is provided by [56]. An implementation of a wide range of algorithms for
translating LTL to various types of automata is also available [82].

Definition 5.6 (LDBA) an LDBA is a tuple A = (Q,Σ,δ ,q0,Acc), where Q is a finite set of
states, Σ is a finite alphabet, δ : Q×(Σ∪{ε})→ 2Q is a partial transition function, q0 ∈Q is
an initial state, and Acc⊂Q×Σ×Q is a set of accepting transitions. The transition function
δ is such that it is total for all (q,ω) ∈ Q×Σ, i.e., |δ (q,ω)| ≤ 1 for all ω ̸= ε and q ∈ Q.
Moreover, there is a partition {QN ,QD} for Q such that

– δ (q,ε) = /0 for all q ∈ QD, i.e., the ε-transitions can only occur in QN .

– δ (q,ω)⊂ QD for all q ∈ QD and ω ∈ Σ, i.e., the transitions starting in QD remain in
QD.

– Acc⊂ QD×Σ×QD, the accepting transitions start only in QD.

We can associate to an infinite word ω = (ω0,ω1,ω2, . . .) ∈ (Σ∪ {ε})N, a path r =

(q0,ω0,q1,ω1,q2, . . .) to A such that q0 is the initial state of A and qn+1 ∈ δ (qn,ωn) for
all n ∈ N. Such a path always exists when ω ∈ ΣN. Let us denote by in f (r) as the set of
transitions (q,ω,q′) appearing in r infinitely often. We say the word ω is accepted by A

if it has a path r with in f (r)∩Acc ̸= /0. The accepting language of A is the set of words
accepted by A and is denoted by L (A).

5.3.5 Problem statement

We are interested in the probability that an LTL specification ψ can be satisfied by paths of a
CMP S under different policies. Suppose a CMP S= (S ,A ,{A (s)|s ∈S },Ts), an LTL
specification ψ over the alphabet Σ, and a labelling function L : S → Σ are given. An infinite
path w = (s0,u0,s1,u1, . . .) of S satisfies ψ if the infinite word ω = L(w) ∈ ΣN satisfies ψ .
We denote such an event by S |= ψ and will study the probability of the event.

Remark 5.2 In general, one should use the notation S |=L ψ to emphasise the role of
labelling function L in the satisfaction of ψ by paths of S. We eliminate the subscript L
with the understanding that it is clear from the context. We add the labelling function in
Section 5.5.1 when discussing multiple labelling functions for evaluation of S |= ψ .

5.4 Augmented CMP with reachability specification 93

Given a policy ρ ∈ Π f and initial state s ∈ S , we define the satisfaction probability as
f (s,ρ) :=Pρ

s (S |=ψ), and the supremum satisfaction probability f ∗(s) := supρ∈Π f
Pρ

s (S |=
ψ).

Problem 5.1 (Synthesis for LTL) Given CMP S, LTL specification ψ , and labelling func-
tion L, find an optimal policy ρ∗ ∈Π f along with f ∗(s) s.t. Pρ∗

s (S |= ψ) = f ∗(s).

Measurability of the set {S |= ψ} in the canonical sample space of paths under the
probability measure Pρ

s is proved in [165]. The function f ∗(s) is studied in [165] with an
approximation procedure presented in [104]. These works are for fully known S and only for
Büchi conditions where the system should visit a set B⊂S infinitely often. This condition
is denoted by ψ =□♢B.

Problem 5.2 (Synthesis for Büchi conditions) Given S, a set of accepting states B∈B(S),
find an optimal positional policy ρ∗ ∈Πp along with f ∗(s) s.t. Pρ∗

s (S |=□♢B) = f ∗(s).

Remark 5.3 We have restricted our attention to finite-memory policies in Problem 5.1. This
is due to the fact that proving existence of an optimal policy ρ∗ ∈Π is an open problem. We
note that existence of ε-optimal policies is already proved [101, 45]. We prove in Section 5.4
that Problems 5.1 and 5.2 are closely related: in order to find a solution for Problem 5.1, we
can find a solution for Problems 5.2 on another CMP with an extended state space.

5.4 Augmented CMP with reachability specification

In this section we discuss approximating solutions of Problems 5.1 and 5.2 using reachability
specifications. This section contains one of the main contributions of the chapter that is
formulating Assumption 5.1 and proving Theorems 5.1-5.3 and Lemma 5.1 for continuous-
state CMPs.

5.4.1 The augmented CMP

Given S= (S ,A ,{A (s)|s ∈S },Ts) and a set of accepting states B⊂S , we construct an
augmented CMP Sζ =

(
Sζ ,A ,{Aζ (s)|s ∈Sζ},T ζ

s

)
that has an additional dummy state

φ , Sζ := S ∪{φ} and the same input space A . The set of valid inputs Aζ (s) is the same as
A (s) for all s ∈S and Aζ (φ) = A . The stochastic kernel of Sζ is a modified version of Ts
as T ζ

s (A|s,u) = [1− (1−ζ)1B(s)]Ts(A|s,u), T ζ
s (φ |s,u) = (1−ζ)1B(s), and Ts(φ |φ ,u) = 1,

for all A ∈B(S), s ∈S and u ∈Aζ (s). In words, T ζ
s takes the same Ts, adds a sink state

φ , and for any accepting state s ∈ B, the process will jump to φ with probability (1−ζ). It

94 Formal policy synthesis for continuous-state systems via RL

also normalises the outgoing transition probabilities of accepting ones with ζ . We establish a
relation between S and Sζ regarding satisfaction of Büchi conditions under the following
assumption.

Assumption 5.1 For S and a set B, define the random variable τB as the number of times
the set B is visited in paths of S conditioned on having it as a finite number. The quantity
τ∗B := supρ E

ρ
s (τB) is bounded for any s ∈S .

Theorem 5.1 Given S satisfying Assumption 5.1 and for any positional policy ρ on S, there
is a positional policy ρ̄ on Sζ such that

Pρ̄
s (Sζ |= ♢φ)− (1−ζ)Eρ

s (τB)≤ Pρ
s (S |=□♢B)≤ Pρ̄

s (Sζ |= ♢φ). (5.4.1)

For any ρ̄ on Sζ , there is ρ on S such that the same inequality holds.

The above theorem shows that the probability of satisfying a Büchi condition with
accepting set B⊂S by S is upper bounded by the probability of reaching φ in Sζ . It also
establishes a lower bound but requires knowing Eρ

s (τB).
Inequalities of Theorem 5.1 can be extended to optimal satisfaction probabilities as stated

in the next theorem.

Theorem 5.2 For any S satisfying Assumption 5.1, we have

sup
ρ̄

Pρ̄
s (Sζ |= ♢φ)− (1−ζ)τ∗B ≤ sup

ρ

Pρ
s (S |=□♢B)≤ sup

ρ̄

Pρ̄
s (Sζ |= ♢φ). (5.4.2)

Corollary 5.1 Under Assumption 5.1, the optimal value supρ̄ Pρ̄
s (Sζ |= ♢φ) converges to

supρ Pρ
s (S |= □♢B) from above when ζ converges to one from below, and the rate of

convergence is at least linear with (1−ζ).

Next example highlights the need for Assumption 5.1 on S to get the linear convergence.
Such an assumption holds for all S with finite state spaces as used in [57, 19] but it may not
hold for S with infinite state spaces.

Example 5.2 Consider the S presented in Figure 5.2, which has a countable state space
{1,2,3, . . .} and the input space is singleton. S starts at state s = 2. The state 1 is absorbing.
From any other state n, it jumps to state 1 with probability 1

n and to state (n+ 1) with
probability n−1

n . Take the set of accepting states B = {3,4,5, . . .}. Eρ
s (τB) is unbounded for

S:

Eρ
s (τB) =

∞

∑
n=1

n× 1
2
× 2

3
× 3

4
×·· · n

n+1
× 1

n+2
=

∞

∑
n=1

n
(n+1)(n+2)

= ∞.

5.4 Augmented CMP with reachability specification 95

2 6543 7

1

. . .

1
2

1
6

1
5

1
4

1
3

1
2

6
7

5
6

4
5

3
4

2
3

1
7

1

Fig. 5.2 A CMP with space {1,2,3, . . .}, a single input and accepting states B = {3,4,5, . . .}.
Its augmented CMP Sζ does not show convergence with a linear rate [80].

It can be easily verified that

Pρ
s (S |=□♢B) =

1
2
× 2

3
× 3

4
× 4

5
×·· ·= 0

Pρ̄
s (Sζ |= ♢φ) = (1−ζ)

[
1+

1
2

ζ +
1
3

ζ
2 +

1
4

ζ
3 + . . .

]
=
−(1−ζ) ln(1−ζ)

ζ
.

The left-hand side of inequality (5.4.2) is still technically true for this S despite Eρ
s (τB) = ∞,

but the provided lower bound is trivial and does not give linear convergence mentioned in
Corollary 5.1.

Remark 5.4 The lower bound in (5.4.2) is useful for showing linear convergence when
ζ → 1−, but it is not beneficial for learning purposes since the computation of τ∗B requires
knowing the structure of the underlying unknown transition kernel Ts. In the next subsection,
we utilise Theorem 5.2 to give a lower bound independent of τ∗B. We also demonstrate
convergence experimentally in the case study section.

5.4.2 The product CMP

The product of a CMP and an LDBA is used in the literature, e.g., [57, 19, 61] for finite state
spaces. We provide this construction for continuous-state CMPs.

Definition 5.7 The product CMP S⊗ = (S ⊗,A ⊗,{A ⊗(x)|x ∈ S ⊗},T ⊗
x) of an CMP

(S ,A ,{A (s)|s ∈ S },Ts) and an LDBA A = (Q,Σ,δ ,q0,Acc) is defined as follows:
S ⊗ := S×Q is the set of states, A ⊗ := A ∪Aε with Aε := {εq|q ∈ Q} is the set of actions.
The valid input sets are A ⊗(s,q) = A (s) if δ (q,ε) = /0 and A ⊗(s,q) = εq′ if q′ ∈ δ (q,ε).

96 Formal policy synthesis for continuous-state systems via RL

The stochastic kernel is defined as

T ⊗
x (A×{q′}|s,q,u) :=

Ts(A|s,u) if q′ = δ (q,L(s)) and u ∈A (s)

1A(s) if q′ = δ (q,ε) and u = εq′

0, otherwise,

where 1A(s) is the indicator function of the set A.

Any distribution α : B(S)→ [0,1] for the initial state of S induces an initial distribution
α⊗ : B(Ŝ)→ [0,1] with α⊗(A×{q}) := α(A) for any A ∈B(S) and q = q0, and zero
otherwise. The set of accepting states in the product CMP S⊗ is

Acc⊗ =
{
(s,q) |(q,L(s),q′) ∈ Acc,q′ = δ (q,L(s))

}
. (5.4.3)

We say the path w⊗ of S⊗ satisfies the Büchi condition ψB if the number of states in Acc⊗

visited by the path is not finite (the set is visited infinitely often).

Lemma 5.1 Any positional policy on S⊗ can be translated into a finite-memory policy for
S that has a finite state space equal to the space of the LDBA A . Moreover, the class of
finite-memory policies are sufficient for solving Problem 5.1 if an optimal policy exists.

Due to Lemma 5.1, we focus in the next section on finding positional policies for the
product CMP using reinforcement learning. Next theorem is one of the main contributions of
the chapter that formalises a lower bound on the optimal satisfaction probability.

Theorem 5.3 For any S, specification ψ , labelling function L, and any s ∈S ,

1− inf
ρ̄

Pρ̄
s,q0(S

⊗
1ζ
|= ♢φ)≤ sup

ρ

Pρ
s (S |= ψ)≤ sup

ρ̄

Pρ̄
s,q0(S

⊗
2ζ
|= ♢φ), (5.4.4)

where S⊗1ζ
and S⊗2ζ

are the augmented CMPs constructed for the products of S with A¬ψ

and Aψ , respectively.

In the next section, we focus on the computation of the right-hand side of (5.4.4) using
RL. The left-hand side is computed similarly.

5.5 Reinforcement learning for policy synthesis

This section contains another main contribution of the chapter that is using relaxed versions of
the LTL specification in learning a policy. We have shown that Problem 5.1 can be reduced to

5.5 Reinforcement learning for policy synthesis 97

Problem 5.2 on a product CMP, which then can be approximated using reachability objectives
as shown in (5.4.4). The reachability probability is an average reward criterion

Pρ̄
s (Sζ |= ♢φ) = lim

N→∞

1
N +1

Eρ̄
s

N

∑
n=0

R(sn), (5.5.1)

with the reward function R : Sζ →R defined as R(s) = 1 for s = φ and R(s) = 0 otherwise. It
can alternatively be written with a total (undiscounted) additive reward criterion by assigning
reward one to the first visit of the φ and zero otherwise. Both cases can be computed by
RL algorithms whenever the model of the CMP is not known or is hard to analyse. Any
off-the-shelf RL algorithm for continuous systems can be used to learn a policy. Note that for
a general LTL specification, the reward function R is state dependent on the product CMP,
but it becomes path dependent when interpreted over the original CMP through the LDBA of
the specification.

Advantage actor-critic RL. RL algorithms are either value based or policy based. In
value-based RL, the algorithm tries to maximise a value function that is a mapping between
a state-input pair and a value. Policy-based RL tries to find the optimal policy without using
a value function. The policy-based RL has better convergence and effectiveness on high
dimensions or continuous state spaces, while value-based RL is more sample efficient and
steady. The intersection between these two categories is the actor-critic RL, where the goal
is to optimise the policy and the value function together. It optimises the policy and value
function as a function of state. We use in this chapter the Advantage Actor-Critic RL (A2C)
[111] that takes the value function as a baseline. It makes the cumulative reward smaller
by subtracting it with the baseline, thus have smaller gradients and more stable updates. It
works better in comparison with other actor-critic RL in terms of the stability of the learning
process and lower variance. An implementation of A2C is available in MATLAB. We have
taken this implementation and adapted it to be applicable to the augmented CMP S⊗

ζ
. A

pseudo algorithm of our approach based on the A2C is provided in the extended version [80].

5.5.1 Specification-guided learning

The reward function R used in (5.5.1) is sparse and it slows down the learning. To improve
the learning performance, we give an algorithm that sequentially trains the Actor and Critic
networks and guides the learning process by a sequence of labelling functions defining
satisfaction of the specification with different relaxation degrees. This sequential training
has a similar spirit as the approach of [92]. The novelty of our algorithm is in constructing a

98 Formal policy synthesis for continuous-state systems via RL

sequence of labelling functions that automatically encode the satisfaction relaxation, thus
requires Actor and Critic networks with fixed structures.

Relaxed labelling functions. We denote the elements of the alphabet by Σ = {Σ1, . . . ,Σm}.
The labelling function L : S → Σ induces a partition of the state space {S1,S2, . . . ,Sm} such
that Si := L−1(Σi), S = ∪n

i=1Si, and Si∩S j = /0 for all i ̸= j. Define the r-expanded version
of a set S⊂S by

S+r := {s ∈S |∃s′ ∈ S with ∥s− s′∥∞ ≤ r}, (5.5.2)

for any r ≥ 0, where ∥ · ∥∞ is the infinity norm. Define the r-relaxed labelling function
Lr : S → 2Σ with

Lr(s) := {Σi |L(Si) = Σi and s ∈ S+r
i }, for all s ∈S . (5.5.3)

Theorem 5.4 The relaxed labelling functions Lr are monotonic with respect to r, i.e., for
any 0≤ r ≤ r′ and L, we have {L(s)}= L0(s)⊂ Lr(s)⊂ Lr′(s).

Specification interpreted over Σ. We interpret the specification ψ over the letters in Σ

instead of the atomic propositions in AP. For this, we take the PNF form of ψ and replace
an atomic proposition p by ∨i{Σi | p ∈ Σi}. We also replace ¬p by ∨i{Σi | p /∈ Σi}. Let us
denote this specification in PNF with the letters {Σ1, . . . ,Σm} treated as atomic propositions
ψ̄ . We can construct its associated LDBA ¯Aψ as discussed in Section 5.3.4,

¯Aψ := (Q̄,2Σ, δ̄ , q̄0,Acc). (5.5.4)

Theorem 5.5 For any 0≤ r ≤ r′ and L, we have

{S |=L ψ}=
{
S |=L0 ψ̄

}
⊂ {S |=Lr ψ̄} ⊂

{
S |=Lr′ ψ̄

}
, (5.5.5)

where Lr is the r-relaxed labelling function defined in (5.5.3), and ψ̄ is the specification ψ in
PNF and interpreted over Σ.

A pseudo algorithm for the specification-guided learning is provided in Alg. 1 that is
based on repeatedly applying an RL algorithm to S using a sequence of r-relaxed labelling
functions. The algorithm starts by applying Actor-Critic RL to the most relaxed labelling
function Lrm . Then it repeatedly fixes the actor network (the policy) by setting its learning
rate to zero (Step 6), runs Actor-Critic RL on the next most relaxed labelling function to
update the Critic network that gives the total reward (Step 7), and uses these two networks as
initialisation for running Actor-Critic RL to optimise both Actor and Critic networks (Step 9).

5.6 Case studies 99

Algorithm 1: Specification-guided learning [80].
input : CMP S as a black box, specification ψ , labelling function L : S → Σ

output :Actor network µ(s,q|θ µ) and Critic network Q(s,q|θQ)
1 Select hyper-parameters rm > rm−1 > .. .r1 > r0 = 0
2 Compute r-relaxed labelling functions Lri : S → 2Σ according to (5.5.3)
3 Compute LDBA ¯Aψ as discussed for (5.5.4)
4 Run the Actor-Critic RL with (S, ¯Aψ , Lrm) to get Actor and Critic networks µ(s,q|θ µ) and

Q(s,q|θQ)
5 for i =m to 1 do
6 Fix parameters θ µ of the Actor network by setting its learning rate to zero
7 Run Actor-Critic RL with Lri−1 to train only the Critic network
8 Change the learning rate of Actor back to normal
9 Run Actor-Critic RL with Lri−1 and initial parameters obtained in Steps 6 and 7

10 end

Remark 5.5 The main feature of Alg. 1 is that the structure of the LDBA ¯Aψ is fixed through
the entire algorithm and only the labelling function (thus the reward function) is changed in
each iteration.

We presented Alg. 1 for the computation of the right-hand side of (5.4.4). The lower bound
in (5.4.4) is computed similarly. The only difference is that the LDBA is constructed using
¬ψ . The reward function should assign zero to φ and one to all other states. The r-relaxed
labelling functions in (5.5.3) can be used for guiding the computation of the lower bound.

5.6 Case studies

To demonstrate our model-free policy synthesis method, we first apply it to the cart-pole
system of Example 5.1 and then discuss the results on a 6-dim boat driving problem. Note
that it is not possible to compare our approach with [89] that only handles finite-horizon
specifications. Also, the approach of [60, 62] maximises the frequency of visiting a sequence
of sets of accepting transitions and does not come with formal convergence or lower-bound
guarantees.

Our algorithms are implemented in MATLAB R2019a on a 64-bit machine with an Intel
Core(TM) i7 CPU at 3.2 GHz and 16 GB RAM.

5.6.1 Cart-pole system

We use negation of the specification (5.3.3) to learn a lower bound on the optimal satisfaction
probability. We set the safe interval C2 = [−12◦,12◦] for the angle, safe range C1 = [−1,1]

100 Formal policy synthesis for continuous-state systems via RL

and reach set A = [0.4,1] in meters for the location. We first directly apply A2C RL to the
specification (5.3.3) and set the timeout of 24 hours. The RL does not converge to a policy
within this time frame. Note that it is a very challenging task to keep the pole upright and at
the same time move the cart to reach the desired location.

We then apply Alg. 1 by using the expanded sets A+i = [αi,1] with αi ∈ {−1,0.01,0.4}
for defining the relaxed labelling functions Li. We select the Actor network to have 7 inputs
(4 real states and 3 discrete states of the automaton) and 2 outputs. It also has two fully-
connected hidden layers each with 7 nodes. The Critic network has the same number of
inputs as Actor network, one output, and one fully-connected layer with 7 nodes. We also set
ζ = 0.999, learning rate 8×10−4, and episode horizon N = 500.

Our sequential learning procedure successfully learns the policy within 44 minutes
and gives the lower bound 0.9526 for satisfaction probability (according to Theorem 5.3).
Figure 5.3 shows cart’s position (left) and pole’s angle (right) for 50,000 trajectories under
the learned policy. The grey area is an envelop for these trajectories, their mean is indicated
by the solid line and the standard deviation around mean is indicated by dashed lines. Only
515 trajectories (1.03%) go outside of the safe location [−1,1] or drop the pole outside of the
angle interval [−12◦,12◦]. All trajectories reach the location [0.4,1]. The histogram of the
first time the trajectories reach this interval is presented in Figure 5.4, which shows majority
of the trajectories reach this interval within 150 time steps.

Using Hoeffding’s inequality,1 we get that the true satisfaction probability under the
learned policy is in the interval [0.975,1] with confidence 1−4×10−10. This is in line with
the lower bound 0.9526 computed by the RL.

5.6.2 Boat driving problem

The objective in the boat driving problem is to design a policy for driving a boat from the
left bank to the right bank quay in a river with strong nonlinear current. Variations of this
problem have been used in the literature (see e.g. [121]). We use a more general version
presented in [74] with the dynamics reported in [80]. The model has six continuous states
including x and y coordinates for the location both in the interval [0,200]. The boat starts its
journey from the left bank of the river x0 = 0 and y0 ∈ [60,100] and should reach the right
bank of the river xn = 200 and yn ∈ [95,105] for some n. There is an unknown nonlinear
stochastic current affecting the location of the boat.

1Hoeffding’s inequality asserts that the tail of the binomial distribution is exponentially decaying: Prob(H ≥
(p+ ε)N)≤ exp(−2ε2N) for all ε > 0 with the number of trials N, the success probability p, and the observed
number of successes H.

5.6 Case studies 101

Fig. 5.3 Cart-pole system. Cart’s position (left) and pole’s angle (right) for 50,000 trajecto-
ries under the learned policy. The grey area is an envelop for these trajectories, their mean is
indicated by the solid line and the standard deviation around mean is indicated by dashed
lines. Only 515 trajectories (1.03%) go outside of the safe location [−1,1] or drop the pole
outside of the angle interval [−12◦,12◦] [80].

Fig. 5.4 Cart-pole system. Histogram of
the first time the trajectories reach the in-
terval [0.4,1]. A majority of the trajec-
tories reach this interval within 150 time
steps [80].

Fig. 5.5 Boat driving problem. The satis-
faction probability as a function of the ini-
tial position y0 for the policies learned with
labelling functions Li, i∈{0,1,2,3,4} [80].

102 Formal policy synthesis for continuous-state systems via RL

Direct application of A2C RL does not converge to a policy within 24 hours. We then
apply Alg. 1 with labelling functions L4,L3,L2,L1,L0 respectively with the target range
[50,150], [80,120], [85,115], [90,110], and [95,105]. We also adaptively increase the value
of ζ to get better lower bounds on the satisfaction probability: ζ4 = 0.9950, ζ3 = 0.9965,
ζ2 = 0.9980, ζ1 = 0.9995, and ζ0 = 0.9999. The results of this sequential learning procedure
are presented in Fig. 5.5 as a function of the initial position of the boat. The learning rate is
set to 8×10−4 and the computational time is 70 minutes. The results show that the lower
bound on satisfaction probability is monotonically increasing for all initial positions of the
boat when ζ increases, which shows also convergence as a function of ζ .

In order to validate the computed bound, we took the initial position (x0,y0) = (0,80) and
obtained 50,000 trajectories. All trajectories reach the target location. Based on Hoeffding’s
inequality, the true probability is in [0.99,1] with confidence 5×10−5, which confirms the
lower bound 0.9810 computed by RL.

5.7 Future work

We presented an approach for applying reinforcement learning (RL) to unknown continuous-
state stochastic systems with the goal of satisfying a linear temporal logic specification. We
formulated an optimal average reward criterion that converges linearly to the true optimal
satisfaction probability under suitable assumptions. We used RL to learn a lower bound on
this optimal value and improved the performance of the learning by a sequential algorithm
using relaxed versions of the specification. In future, we plan to study the relation with
discounting reward functions [19], formal connections with maximising frequency of visits,
and providing guidance in adapting the network architecture in the RL to the structure of the
specification.

Chapter 6

Translating omega-regular specifications
to average objectives for model-free
reinforcement learning

6.1 Chapter introduction

In all previous chapters, we learn an omega-regular task in an episodic manner whereby the
environment is periodically reset to an initial state during learning. In some settings, this
assumption is challenging or impossible to satisfy. Instead, in the continuing setting, the agent
explores the environment without resets over a lifetime. This is a more natural setting for
reasoning about omega-regular specifications defined over infinite traces of agent behaviour.
Optimising the average reward instead of the usual discounted reward is more natural in
this case due to the infinite-horizon objective that poses challenges to the convergence of
discounted RL solutions.

We restrict our attention to the omega-regular languages which correspond to absolute
liveness specifications. Any finite prefix of agent behaviour cannot invalidate these specifica-
tions in accordance with the spirit of a continuing problem. We propose a translation from
absolute liveness omega-regular languages to an average reward objective for RL. Our reduc-
tion can be done on-the-fly, without full knowledge of the environment, thereby enabling the
use of model-free RL algorithms. Additionally, we propose a reward structure that enables
RL without episodic resetting in communicating MDPs, unlike previous approaches. We
demonstrate empirically with various benchmarks that our proposed method of using average
reward RL for continuing tasks defined by omega-regular specifications is more effective
than competing approaches that leverage discounted RL.

104 Translating ω-regular specifications to average objectives for RL

The research presented in the chapter has been presented at the 21st International Con-
ference on Autonomous Agents and Multiagent Systems [79]. An extended version of
this research is invited for potential publication in the Journal of Autonomous Agents and
Multiagent Systems. This research was the result of a collaboration with the University of
Colorado Boulder. My role in this research is to provide the theoretical results and write the
paper.

6.2 Introduction

The area of reinforcement learning (RL) for sequential decision-making has witnessed
tremendous success in recent years. This is evidenced by RL architectures with superhuman
performance in games of perception and precision such as Go [138, 140], general board
games [139], and Atari [113, 112, 135], among others. In these settings, the reward signal by
which agent experience is labelled for positive or negative reinforcement needs only account
for the current state observed by the agent and the action chosen by the same. However,
it is often necessary or useful to account for the history of the agent when arbitrating the
credit assignment computed by the reward function of the underlying decision process.
Examples of this include learning in decision processes where rewards are sparse [116],
where states are partially observable [166], or where the objective is temporally extended
[24]. Moreover, it is often more natural to express the goal of the agent as the language
of desirable and undesirable outcomes, with the reward signal reflecting the pursuit and
avoidance, respectively, of such behaviours. The use of formal language structures to define
such behavioural specifications has been well-studied in the area of formal verification and
is gaining traction in specifying reward signals for RL. These specifications take the form
of automata with various accepting conditions that define the language they capture. It
is worth noting that there exist techniques to translate natural language objectives to their
corresponding automata representations in some settings [21].

The recent development of reward machines provides a similar structured representation
of the underlying reward signal and can capture non-Markovian, or history-dependent,
behaviour [65, 66]. These reward machines are automata whose transitions denote the reward
observed by an agent for traversing from the initial node in the reward machine to some
other node via a sequence of transitions that capture semantically meaningful events in the
decision process. This naturally enables the definition of temporally extended objectives
in RL as well as the augmentation of the underlying decision process to include observed
transitions in the reward machine, thereby transforming some non-Markovian objectives into

6.2 Introduction 105

Markovian tasks over the augmented decision process [47, 178]. Traditional off-the-shelf RL
solutions can be employed for these Markovian tasks.

The field of RL [160] studies sampling-based approaches to derive decision-making
policies that rely on scalar reward signals to optimise for the underlying learning objective.
Samples of behaviour and their associated rewards are used in a data-driven fashion to refine
state or action value functions and compute policies that maximise expected cumulative
reward. In episodic RL, the environment is periodically reset to an initial state over the course
of learning. In continuing RL, the environment is not reset, and the agent seeks to maximise
its performance over its lifetime. Additionally, the environment in this setting should permit
the agent to visit any state from all other states in order to allow the agent to correct early
mistakes. Such an environment is called communicating.

The foregoing notions of formal languages and RL have been used to great effect in
the formal synthesis of control policies, which has garnered much interest in recent years
[12, 71, 103]. This paradigm enables developers to focus on defining the behavioural
specification of interest in some formal language as opposed to translating and implementing
said specification as a reward signal or learning objective manually, which is known to be
error-prone and lacking guarantees of behaviour [81]. Formal synthesis algorithms leverage
the underlying specification and compute a correct-by-construction policy yielding the desired
behaviour. In this chapter, we explore such formal synthesis of policies through the use
of average reward model-free reinforcement learning (RL) [100, 169] for a class of formal
specifications expressed in omega-regular languages [8]. These languages provide a rich
formalism to express desired properties of the system unambiguously. These languages are
accepted by automata on infinite words, where a word denotes a sequence of semantically
meaningful observations observed by the agent. We introduce the notion of nondeterministic
reward machines to capture reward inherent in ω-regular automata. Then, by computing
a product Markov decision process (MDP) between the reward machine of an ω-regular
specification and the MDP that models the agent-environment dynamics, existing continuing
RL algorithms can be readily adopted to search for an optimal policy.

We focus our attention to the problem of translating omega-regular objectives to average
reward for model-free RL. This is justified by challenges facing the adoption of discounted
RL for continuing tasks, as discussed in the sequel. Consider the cumulative reward that
is often expressed as a discounted sum of the individual rewards received by the agent at
each step. The use of a discount factor ensures that the cumulative reward is bounded even
for an infinite sequence of actions and rewards, thereby facilitating convergence. While
mathematically convenient, discounting results in short-term rewards being valued higher
than the long-run performance of the system. Thus, obtaining a suitable policy for long-run

106 Translating ω-regular specifications to average objectives for RL

behaviour depends on choosing the right discount factor, which may have to approach 1
as the size of the environment increases. However, choosing a discount factor close to 1
results in a weak contraction in RL algorithms, causing slow convergence and instability.
This is exacerbated in continuing task settings, where one has to choose a very high discount
factor to approximate the maximisation of long-run performance. Moreover, despite the
success of discounted RL for episodic tasks [112], the solution of discounted RL depends on
initial state distributions, which makes it an optimization that is not compatible with function
approximations in continuing settings [115]. Such function approximation is critical for
learning policies on large-scale models, as evidenced by the adoption of large learning models
in state-of-the-art RL solutions. Thus, a natural alternative to discounting is optimising the
agent’s average reward in these settings.

However, the adoption of average reward RL faces its own set of challenges. While
establishing the existence of an optimal policy for discounted RL is relatively straightfor-
ward, analysing MDPs with the average reward objective is more difficult and requires some
assumptions over the structure of the underlying MDP. Unlike discounted RL approaches,
where the discount factor plays the role of the contraction parameter and enables conver-
gence, in average reward RL algorithms, the contraction factor depends on communicating
assumptions of the MDP. When the communicating assumption is satisfied, there are model-
free convergent average reward RL algorithms. Satisfying the communicating assumption
presents a challenge to the adoption of average reward RL for the formal synthesis of policies
satisfying omega-regular specifications. Indeed, the product MDP resulting from the property
and the underlying MDP may not be communicating. When episodic resetting is unavailable,
communication is a natural assumption. The challenge is to ensure that this property is
preserved in the MDP product. By leveraging the proposed reward machines, we demonstrate
that this communicating property is preserved in the product MDP for an important class of
omega-regular specifications.

The main contribution of this chapter is to provide an average-reward model-free RL
algorithm for the design of policies that satisfy a given absolute liveness omega-regular
specification. Our approach ensures that the communicating property is preserved in the
product, enabling the learning of optimal policies, while not requiring episodic resetting.
Despite the assumption of communicating MDPs, the naive synchronisation of the MDP
with the automaton is not generally communicating. We propose a reward machine and
an augmented specification to preserve the communicating property of the synchronised
MDP. Our work is the first to provide a translation from omega-regular objectives to average-
reward RL with formal guarantees. We validate our approach with an implementation of the
proposed construction and demonstrate its effectiveness on several benchmarks.

6.3 Problem definition 107

The chapter is organised as follows. Section 6.3 includes the preliminaries and states the
problem definition. Section 6.4 presents the main results of the chapter, which establish a
novel algorithm for producing optimal policies for an absolute liveness property with average
reward RL. In Section 6.5, we test the performance of our approach on different case studies
against prior techniques. Section 6.6 discusses related work in formal synthesis, average
reward RL, and related areas. We conclude with a summary in Section 6.7.

6.3 Problem definition

Markov Decision Processes. Let D(S) be the set of distributions over a given set S. A
Markov decision process (MDP) M is a tuple (S,s0,A,T,AP,L) where S is a finite set
of states, s0 ∈ S is the initial state, A is a finite set of actions, T : S×A −⇁ D(S) is the
probabilistic transition function, AP is the set of atomic propositions, and L : S→ 2AP is the
labeling function.

For any state s ∈ S, we let A(s) denote the set of actions that can be selected in state
s. An MDP is a Markov chain if A(s) is singleton for all s ∈ S. For states s,s′ ∈ S and
a ∈ A(s), T (s,a)(s′) equals p(s′|s,a), probability of next state, s′ given current state s
and taking the action a. A run of M is an ω-word ⟨s0,a1,s1, . . .⟩ ∈ S× (A× S)ω such
that p(si+1|si,ai+1)>0 for all i ≥ 0. A finite run is a finite such sequence. For a run
r = ⟨s0,a1,s1, . . .⟩ we define the corresponding labelled run as L(r) = ⟨L(s0),L(s1), . . .⟩ ∈
(2AP)ω . We write RunsM (FRunsM) for the set of runs (finite runs) of the MDP M and
RunsM (s)(FRunsM (s)) for the set of runs (finite runs) of the MDP M starting from the
state s. We write last(r) for the last state of a finite run r.

A strategy in M is a function σ : FRuns→ D(A) such that supp(σ(r)) ⊆ A(last(r)),
where supp(d) denotes the support of the distribution d. A memory skeleton is a tuple
M = (M,m0,αu) where M is a finite set of memory states, m0 is the initial state, and
αu : M×Σ→M is the memory update function. We define the extended memory update
function α̂u : M×Σ∗→M in a straightforward way. A finite memory strategy for M over a
memory skeleton M is a Mealy machine (M,αx) where αx : S×M→D(A) is the next action
function that suggests the next action based on the MDP and memory state. The semantics
of a finite memory strategy (M,αx) is given as a strategy σ : FRuns→D(A) such that for
every r ∈ FRuns we have that σ(r) = αx(last(r), α̂u(m0,L(r))).

A strategy σ is pure if σ(r) is a point distribution for all runs r ∈ FRunsM and is mixed
(short for strictly mixed) if supp(σ(r)) = A(last(r)) for all runs r ∈ FRunsM . Let RunsM

σ (s)
denote the subset of runs RunsM (s) that correspond to strategy σ with initial state s. Let
ΠM be the set of all strategies. We say that σ is stationary if last(r) = last(r′) implies

108 Translating ω-regular specifications to average objectives for RL

σ(r) = σ(r′) for all runs r,r′ ∈ FRunsM . A stationary strategy can be given as a function
σ : S→D(A). A strategy is positional if it is both pure and stationary.

An MDP M under a strategy σ results in a Markov chain Mσ . If σ is a finite memory
strategy, then Mσ is finite-state Markov chain. The behaviour of an MDP M under a strategy
σ and starting state s ∈ S is defined on a probability space (RunsM

σ (s),FRunsM
σ (s),PrMσ (s))

over the set of infinite runs of σ with starting state s. Given a random variable f : RunsM →R,
we denote by EM

σ (s){ f} the expectation of f over the runs of M originating at s that follow
σ .

A sub-MDP of M is an MDP M ′ = (S′,A′,T ′,AP,L′), where S′ ⊂ S, A′ ⊆ A is such that
A′(s)⊆ A(s) for every s ∈ S′, and T ′ and L′ are analogous to T and L when restricted to S′

and A′. Moreover, M ′ is closed under probabilistic transitions. An end-component [30] of an
MDP M is a sub-MDP M ′ such that for every state pair s,s′ ∈ S′ there is a strategy that can
reach s′ from s with positive probability. A maximal end-component is an end-component
that is maximal under set-inclusion. Every state s of an MDP M belongs to at most one
maximal end-component. An MDP M is communicating if it is equal to its maximal end-
component. A bottom strongly connected component (BSCC) of a Markov chain is any of its
end-components.

Reward machines. In the classical RL literature, the learning objective is specified using
Markovian reward functions, i.e. a function ρ : S×A→ R assigning utility to state-action
pairs. A rewardful MDP is a tuple M = (S,s0,A,T,ρ) where S,s0,A, and T are defined in
a similar way as for MDPs, and ρ is a Markovian reward function. A rewardful MDP M

under a strategy σ determines a sequence of random rewards ρ(Xi−1,Yi)i≥1, where Xi and Yi

are the random variables denoting the i-th state and action, respectively. For λ ∈ [0,1[, the
discounted reward Disct(λ)Mσ (s) is defined as

lim
N→∞

EM
σ (s)

{
∑

1≤i≤N
λ

i−1
ρ(Xi−1,Yi)

}
,

while the average reward AvgM
σ (s) is defined as

limsup
N→∞

1
N
EM

σ (s)

{
∑

1≤i≤N
ρ(Xi−1,Yi)

}
.

For an objective RewardM∈{Disct(λ)M ,AvgM } and state s, we define the optimal re-
ward RewardM

∗ (s) as supσ∈ΠM
RewardM

σ (s). A strategy σ is optimal for RewardM if

6.3 Problem definition 109

RewardM
σ (s)=RewardM

∗ (s) for all s∈S. The optimal cost and strategies for these objectives
can be computed in polynomial time [124].

Often, complex learning objectives cannot be expressed using Markovian reward signals.
A recent trend is to express learning objectives using finite-state reward machines [65]. We
require a more expressive variant of reward machine capable of ε transitions and nonde-
terminism. We call them nondeterministic reward machines. A (nondeterministic) reward
machine is a tuple R = (Σε ,U,u0,δr,ρ) where U is a finite set of states, u0 ∈ U is the
starting state, δr : U ×Σε → 2U is the transition relation, and ρ : U ×Σε ×U → R is the
reward function, where Σε = (Σ∪{ε}) and ε is a special silent transition.

Given an MDP M = (S,s0,A,T,AP,L) and a reward machine R = (Σε ,U,u0,δr,ρ) over
the alphabet Σ = 2AP, their product

M ×R = (S×U,s0×u0,(A×U)∪{ε} ,T×,ρ×)

is a rewardful MDP where T× : (S×U)×((A×U)∪{ε})→D(S×U) is such that T×((s,u),α)((s′,u′))
equals

T (s,a)(s′) if α = (a,u′) and (u,L(s),u′) ∈ δr

1 if α = ε and s = s′ and δ (u,ε,u′) ∈ δr

0 otherwise.

and ρ× : (S×U)× ((A×U)∪{ε})× (S×U)→ R is defined such that ρ×((s,u),α,(s′,u′))
equalsρ(u,L(s),u′) if α = (a,u′) and (u,L(s),u′) ∈ δr

ρ(u,ε,u′) if α = ε.

For technical convenience, we assume that M×R contains only reachable states from
(s0,u0). For both discounted and average objectives, the optimal strategies of M×R are
positional on M×R. Moreover, these positional strategies characterise a finite memory
strategy (with a memory skeleton based on the states of R and the next-action function based
on the positional strategy) over M maximising the learning objective given by R.

Omega-Regular Specifications. Formal specification languages, such as ω-automata and
logical based objectives, provide a rigorous and unambiguous mechanism to express learning
objective over continuing tasks. There is a growing trend [57, 130, 59, 19, 80] in expressing

110 Translating ω-regular specifications to average objectives for RL

learning objectives in RL using linear temporal logic (LTL) and ω-regular languages (that
strictly generalise LTL). We will express ω-regular languages as good-for-MDP Büchi
automata [58].

LTL [8] is a temporal logic whose formulae describe a subset of the ω-regular languages,
which is often used to specify objectives in human-readable form. Given a set of atomic
propositions AP, the LTL formulae over AP can be defined via the following grammar:

ϕ := a ∈ AP | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ. (6.3.1)

Additional operators are defined as abbreviations: ⊤ def
= a∨¬a; ⊥ def

= ¬⊤; ϕ ∧ψ
def
= ¬(¬ϕ ∨

¬ψ); ϕ→ ψ
def
= ¬ϕ ∨ψ ; Fϕ

def
=⊤Uϕ ; and Gϕ

def
= ¬F¬ϕ . We write w |= ϕ if ω-word w over

2AP satisfies LTL formula ϕ . The satisfaction relation is defined inductively [8]. Every LTL
formula can be converted [137, 82] into a Good-for-MDP Büchi automaton, defined later.

Nondeterministic Büchi automata are finite state machines capable of expressing all
ω-regular languages. Formally, a (nondeterministic) Büchi automaton is a tuple A =

(Σ,Q,q0,δ ,F), where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial
state, δ : Q×Σ→ 2Q is the transition function, and F ⊂ Q×Σ×Q is the set of accepting
transitions.

A run r of A on w ∈ Σω is an ω-word r0,w0,r1,w1, . . . in (Q×Σ)ω such that r0 = q0

and, for i > 0, ri ∈ δ (ri−1,wi−1). Each triple (ri−1,wi−1,ri) is a transition of A . We write
inf(r) for the set of transitions that appear infinitely often in the run r. A run r of A is
accepting if inf(r)∩F ̸= /0. The language L (A) of A is the subset of words in Σω that
have accepting runs in A . A language is ω-regular if it is accepted by a Büchi automaton.

Given an MDP M and an ω-regular objective ϕ given as an ω-automaton Aϕ =

(Σ,Q,q0,δ ,F), we want to compute an optimal strategy satisfying the objective. We define
the satisfaction probability of σ from starting state s as:

PSemM
A (s,σ) = PrM

σ (s)
{

r ∈ RunsM
σ (s) : L(r) ∈L (A)

}
.

The optimal satisfaction probability PSemM
A (s) for specification A is defined as

supσ∈ΠM
PrMσ (s,σ) and we say that σ ∈ΠM is an optimal strategy for A if PSemM

A (s,σ)(s)=
PSemM

A (s).
Given an MDP M = (S,s0,A,T,AP,L) and automaton A = (2AP,Q,q0,δ ,F), the prod-

uct M ×A = (S×Q,(s0,q0),A×Q,T×,F×) is an MDP with initial state (s0,q0) and

6.3 Problem definition 111

accepting transitions F× where T× : (S×Q)× (A×Q)−⇁ D(S×Q) is defined by

T×((s,q),(a,q′))((s′,q′))=

T (s,a)(s′) if (q,L(s,a,s′),q′)∈δ

0 otherwise.

The accepting transitions F×⊆ (S×Q)×(A×Q)×(S×Q) is defined by ((s,q),(a,q′),(s′,q′))∈
F× if, and only if, (q,L(s,a,s′),q′) ∈ F and T (s,a)(s′)> 0. A strategy σ× on the product
defines a strategy σ on the MDP with the same value, and vice versa. Note that for a
stationary σ×, the strategy σ may need memory. End-components and runs of the product
MDP are defined just like for MDPs.

A run of M ×A is accepting if inf(r)∩F× ̸= /0. We define the syntactic satisfaction
probabilities PSatMA ((s,q),σ×) as the probability of accepting runs, i.e.

PrM×A
σ× (s,q)

{
r ∈ RunsM×A

σ× (s,q) : inf(r)∩F× ̸= /0
}

Similarly, we define PSatMA (s) as the optimal probability over the product, i.e.
supσ×

(
PSatMA ((s,q0),σ

×)
)
. For a deterministic A the equality PSatMA (s) = PSemM

A (s)
holds; however it is not guaranteed for nondeterministic Büchi automata as the optimal
resolution of nondeterministic choices may require access to future events. This motivates for
the definition of a good-for-MDP nondeterminisitc Büchi automata. A Büchi automaton A

is good for MDPs (GFM), if PSatMA (s0) = PSemM
A (s0) holds for all MDPs M and starting

states s0 [58]. Note that every ω-regular objective can be expressed as a GFM automaton [58].
A popular class of GFM automata is suitable limit-deterministic Büchi automata [56, 137].
This chapter considers only GFM Büchi automata.

The satisfaction of an ω-regular objective given as a GFM automaton A by an MDP
M can be formulated in terms of the accepting maximal end-components of the product
M×A , i.e. the maximal end-component that contains an accepting transition from F×. The
optimal satisfaction probabilities and strategies can be computed by computing the accepting
maximal end-component of M ×A and then maximizing the probability to reach states in
such components. The optimal strategies are positional on M ×A and characterise a finite
memory strategy over M maximising the satisfaction probability of the learning objective
given by A .

Reinforcement learning. Given an MDP M , reward machine R, and an optimisation
objective (discounted or average reward), an optimal strategy can be computed in polynomial
time using linear programming [124]. Similarly, graph-theoretic techniques to find maximal
end-components can be combined with linear programming to compute optimal strategies

112 Translating ω-regular specifications to average objectives for RL

for ω-regular objectives [56]. However, when the transition/reward structure of the MDP is
unknown, such techniques are not applicable.

Reinforcement learning [160] (RL) is a sampling-based optimisation approach where an
agent learns to optimise its strategy by repeatedly interacting with the environment relying
on the reinforcements (numerical reward signals) it receives for its actions. We focus on
model-free approach to RL where the learner computes optimal strategies without explicitly
estimating the transition probabilities and rewards. These approaches are asymptotically
space-efficient [157] than model-based RL and have been shown to scale well [112, 138].
Some prominent model-free RL algorithms for discounted and average reward objectives
include Q-learning and TD [160] and differential Q-learning [169].

In some applications, such as running a maze or playing tic-tac-toe—the interaction
between the agent and the environment naturally breaks into finite length learning sequences,
called episodes. Thus the agent optimises its strategy by combining its experience over
different episodes. We call such tasks episodic. On the other hand, for some applications—
such as process control and reactive systems—this interaction continues ad-infinitum and the
agent lives and learns over a single lifetime. We call such tasks continuing.

6.4 Construction and correctness

Let us fix a communicating MDP M = (S,s0,A,T,AP,L) and an absolute liveness GFM
property A = (Σ,Q,q0,δ ,F) for the rest of this section. Our goal is to learn a reward
machine R such that we can use an off-the-shelf average reward RL on M ×R to compute
an optimal strategy of M against A .

Since the optimal strategies are not positional on M but rather positional on M×A , it is
natural to assume that the reward machine R takes the structure of A with a reward function
providing positive reinforcement with every accepting transition. Unfortunately, even for
absolute liveness GFM automata A , the product M ×A with a communicating MDP M

may not be communicating.

Example 6.1 Assume a communicating MDP M with at least one state labelled a or b,
and the absolute liveness property ϕ = F(Ga∨GFb) and its automaton shown in Fig. 6.1.
Observe that any run that visits one of the two accepting states cannot visit the other one.
Hence, the product does not satisfy the communicating property.

Reward machine construction Let A = (Σ,Q,q0,δ ,F) be an absolute liveness GFM
automaton. Consider RA = (Σε ,Q,q0,δ

′,ρ) where δ ′(q,a) = δ (q,a) for all a ∈ Σ and ε

6.4 Construction and correctness 113

q0

q1

q2

q4

q3

a

b

¬a

¬b

b

⊤

a

b

⊤

¬b

Fig. 6.1 A Büchi automaton for ϕ = F(Ga∨GFb) [79].

transitions reset to the starting state, i.e. δ ′(q,ε) = q0. Note that by adding the reset (ε)
action from every state of R to its initial state, the graph structure of M is strongly connected.
The reward function ρ : Q×Σ∪{ε}×Q→R is such that

ρ(q,a,q′) =

c if a = ε

1 if (q,a,q′) ∈ F

0 otherwise.

Lemma 6.1 (Preservation of communication) For a communicating MDP M and reward
machine RA for an absolute liveness GFM automaton A , we have that the product M×RA

is communicating.

Proof 6.1 To show that M×RA is communicating, we need to show that for arbitrary
states (s,q),(s′,q′) ∈ S×Q reachable from the initial state (s0,q0), we have that there is a
strategy that can reach (s′,q′) from (s,q) with positive probability. Note that since M is
communicating, it is possible to reach (s0,q′) from (s,q) for some q′ of RA using a strategy
to reach s0 from s in M . We can then use a reset (ε) action in RA to reach the state (s0,q0).
Since (s′,q′) is reachable from the initial state (s0,q0), we have a strategy to reach (s′,q′)
from (s,q) with positive probability.

Lemma 6.2 (Average and probability) There exists a c∗ < 0 such that for all c < c∗, posi-
tional strategies that maximise the average reward on M ×RA will maximise the satisfaction
probability of A .

114 Translating ω-regular specifications to average objectives for RL

Proof 6.2 The proof is in three parts.

1. First observe that if c < 0, then for any average-reward optimal strategy in M ×RA ,
the expected average reward is non-negative. This is so because all other actions
except ε actions provide non-negative rewards. Hence, any strategy that takes ε actions
only finitely often, results in a non-negative average reward.

2. Let Π∗ be the set of positional strategies in M×RA such that the ε actions are taken
only finitely often, i.e. no BSCC of the corresponding Markov chain contains an ε

transition. Let Πε be the set of remaining positional strategies, i.e., the set of positional
strategies that visit an ε transition infinitely often. Let 0<pmin<1 be a lower bound on
the expected long-run frequency of the ε transitions among all strategies in Πε . Let
c∗ =−1/pmin. Observe that for every policy σ ′ ∈Πε , the expected average reward is
negative and cannot be an optimal strategy in M ×RA . To see that, let 0 < p≤ 1 be
the the long-run frequency of the ε transitions for σ and let 0≤ q < 1 be the long-run
frequency of visiting accepting transitions for σ . The average reward for σ is

AvgM×RA
σ (s0,q0) = p · c+q ·1+(1− p−q) ·0

≤ p · c+q ·1+(1− p−q) ·1
= p · c+(1− p)

≤ p · c∗+(1− p)

= −p/pmin+(1− p)

≤ −1+(1− p)≤−p.

Since every optimal policy must have a non-negative average reward, no policy in Πε

is optimal for c < c∗.

3. Now consider an optimal policy σ∗ in Π∗. We show that this policy also optimises the
probability of satisfaction of A . There are two cases to consider.

(a) If the expected average reward of σ∗ is 0, then under no strategy it is possible to
reach an accepting transition (positive reward transition) in M ×RA . Hence,
every policy is optimal in M against A , and so is σ∗.

(b) If the expected average reward of σ∗ is positive, then notice that for every BSCC
of the Markov chain of M ×RA under σ∗, the average reward is the same. This
is so because otherwise, there is a positional policy that reaches the BSCC with
the optimal average from all the other BSCCs with lower averages, contradicting
the optimality of σ∗. Since for an optimal policy σ∗, every BSCC provides

6.4 Construction and correctness 115

the same positive average, every BSCC must contain an accepting transition.
Hence, every run of the MDP M under σ∗ will eventually dwell in an accepting
component and in the process will see a finitely many ε (reset) transitions. For
any such given run r, consider the the suffix r′ of the run after the last ε transition
is taken and let r = wr′ for some finite run w. Since L(r′) is an accepting word in
A , and since A is an absolute liveness property any arbitrary prefix w′ to this
run r′ is also accepting. This implies that the original run r is also accepting for
A . It follows that for such a strategy σ∗, the probability of satisfaction of A is 1,
making σ∗ an optimal policy for M against A .

The proof is now complete.

Since our translation from ω-regular objective to reward machines is model-free, the
following theorem is immediate.

Theorem 6.1 (Convergence of model-free RL) Differential Q-learning algorithm for max-
imising average reward objective on M ×RA will converge to a strategy maximising the
probability of satisfaction of A for a suitable value of c. Moreover, the product construction
M ×RA can be done on-the-fly and it is model-free.

As an example, consider the property FGa and an MDP with two states and all transitions
between states are available as deterministic actions (Fig. 6.2). Only one of the states is
labeled a. An infinite memory strategy could see a for one step, reset, then see two as, reset,
then see three as and so forth. This strategy will produce the same average value as the
positional strategy which sees a forever without resetting. However, the infinite memory
strategy will fail the property while the positional one will not.

Shaping rewards via hard resets. For a Büchi automaton A , we say that its state q ∈ Q
is coaccessible if there exists a path starting from that state to an accepting transition. If a
state is not coaccessible then any run of the product M ×A that ends in such a state will
never be accepting, and hence one can safely redirect all of its outgoing transitions to the
initial state with reward c (a hard reset). Such hard resets will promote speedy learning by
reducing the time spent in such states during unsuccessful explorations, and at the same time
adding these resets does not make a non-accepting run accepting or vice versa. Lemma 6.1,
Lemma 6.2, and Theorem 6.1 continue to hold with such hard resets. Introducing hard resets
is a reward shaping procedure in that it is a reward transformation [117] under which optimal
strategies remain invariant.

116 Translating ω-regular specifications to average objectives for RL

q0 q1 q2
a ¬a

⊤ a ⊤

(a) Automaton of FGa, dashed lines represent reset transitions [79].

a ¬a

(b) MDP, each transition represents an action

Fig. 6.2 The two state MDP and a persistence property [79].

6.5 Experimental results

We implemented the reduction1 with hard resets presented in Section 6.4. As described, we
do not build the product MDP explicitly, and instead, compose it on-the-fly by keeping track
of the MDP and automaton states independently. We use Differential Q-learning [169] to
learn optimal, positional average reward strategies. For our experiments, we have collected a
set of communicating MDPs with absolute liveness properties2.

We compare with two previous approaches for translating omega-regular languages to
rewards: the method of [57] with Q-learning and the method of [19] with Q-learning. The
method of [57] translates a GFM Büchi automaton into a reachability problem through a suit-
able parameter ζ . This reachability problem can be solved with discounted RL by rewarding
reaching the target state and using a large enough discount factor. The method of [19] uses a
state dependent discount factor γB and a GFM Büchi automaton. By using a suitable γB and
large enough discount factor, one can learn optimal strategies for the omega-regular objective.

RQ1. How do previous approaches perform in the continuing setting? The methods
of [57] and [19] may produce product MDPs that are not communicating (see Example 6.1).
This means that a single continuing run of the MDP may not explore all relevant states and
actions. Thus, previous methods are not guaranteed to converge in this setting.

1The implementation is available at https://plv.colorado.edu/mungojerrie/.
2Case studies are available at https://plv.colorado.edu/mungojerrie/aamas22.

https://plv.colorado.edu/mungojerrie/
https://plv.colorado.edu/mungojerrie/aamas22

6.5 Experimental results 117

We studied if this behaviour affects these prior methods in practice. As a baseline,
we include our proposed approach. Instead of tuning hyperparameters for each method,
where hyperparameters that lead to convergence may not exist, we instead take a sampling
approach. We select a wide distribution over hyperparameters for each method and sample
200 hyperparameter combinations for each method and example. We then train for 10 million
training steps on each combination. The hyperparameter distribution we selected is α ∼
D(0.01,0.5), ε ∼D(0.01,1.0), c∼D(1,200), η ∼D(0.01,0.5), ζ ∼D(0.5,0.995), γB ∼
D(0.5,0.995), and discount factor γ ∼ D(0.99,0.99999) where D(a,b) is a log-uniform
distribution from a to b. The end points of these distributions and the training amount was
selected by finding hyperparameters which led to convergence in the episodic setting for
these methods.

Figure 6.3 shows the resulting distribution over runs. A distribution entirely at 0 indicates
that all sampled runs produced strategies that satisfy the property with probability 0. A

0.00 0.25 0.50 0.75 1.00
Probability of satisfaction

adverse

frozenSmall

frozenLarge

windy

windyStoch

grid5x5

ishift

doublegrid

busyRingMC2

busyRingMC4

Learning comparison without episodic resetting

Average (ours)
Hahn et al.
Bozkurt et al.

Fig. 6.3 Comparison of the distributions of probability of satisfaction of learned policies
across sampled hyperparameters in the continuing setting. For each distribution, the mean is
shown as a circle, and the maximum and minimum are shown as vertical bars. We compare
our proposed reduction, the reduction of [57] with Q-learning, and the reduction of [19] with
Q-learning. Episodic resetting was not used [79].

118 Translating ω-regular specifications to average objectives for RL

Name states prod. time time† time‡ c ε α η train-steps
adverse 202 507 8.51 7.09 12.56 -150 0.2 10M
frozenSmall 16 64 0.99 20.23 9.88 500k
frozenLarge 64 256 4.07 3.88 8.79 0.02 0.02 3M
windy 123 366 1.40 1.81 2.61 0.95 0.5 0.05 1M
windyStoch 130 390 2.97 3.91 2.53 0.5 2M
grid5x5 25 100 0.62 1.12 1.02 0.5 200k
ishift 4 29 0.03 0.01 0.02 10k
doublegrid 1296 5183 16.43 3.45 3.09 -2 0.5 0.05 0.01 12M
busyRingMC2 72 288 0.03 0.03 0.03 0.01 10k
busyRingMC4 2592 15426 6.08 3.94 2.33 0.01 1.5M

Table 6.1 Learning results and comparison. Hyperparameters used for our reduction are
shown. Blank entries indicate that default values were used. The default parameters are
c =−1, ε = 0.1, α = 0.1, and η = 0.1. Times are in seconds. Superscript † indicates results
from Q-learning with reduction from [57], while superscript ‡ indicates Q-learning with
reduction from [19]. Results for † and ‡ required episodic resetting. All hyperparameters
were tuned by hand [79].

distribution entirely at 1 indicates that all sampled runs produced strategies that satisfy the
property with probability 1. For many examples, prior approaches had no successful hyper-
parameter combinations, with distributions centered entirely at 0. However, our proposed
approach always had some hyperparameters that led to optimal, probability 1, strategies, as
indicated by the tails of the distributions touching the probability 1 region of the plot.

RQ2. How does our method compare to previous approaches when we allow episodic
setting? By allowing episodic resetting, we can now find hyperparameters for previous
methods that lead to convergence. We tuned all hyperparameters by hand to minimise training
time while verifying with a model checker that the produced strategies are optimal. Table 6.1
shows learning times, as well as hyperparameters for our reduction. We report the number of
states reachable in the MDP and the product, learning times averaged over 5 runs, the reset
penalty c, the ε-greedy exploration rate ε , the Differential Q-learning learning rates α and
η , as well as the number of training steps. Note that we do not do any episodic resetting
when training with our reduction. This means that the RL agent must learn to recover from
mistakes during training, while previous approaches are periodically reset to a good initial
state. Our reduction using Differential Q-learning is competitive with previous approaches
while not being reliant on episodic resetting.

6.6 Related work 119

6.6 Related work

The development and use of formal reward structures for RL have witnessed an increased
interest in recent years. For episodic RL, logics have been developed over finite traces of
agent behavior, including LTL f and Linear Dynamic Logic (LDL f) [32, 23]. These logics
have equivalent automaton and reward machine representations. These representations have
catalysed a series of efforts on defining novel reward shaping functions to accelerate the
convergence of RL algorithms subject to formal specifications [31, 65, 24]. These methods
leverage the graph structure of the automaton to provide an artificial reward signal to the
agent. More recently, dynamic reward shaping using LTL f has been introduced as a means
to both learn the transition values of a given reward machine and leverage these values
for reward shaping and transfer learning [167]. There has also been work on learning or
synthesising the entire structure of such reward machines from agent interactions with the
environment by leveraging techniques from satisfiability and active grammatical inference
[116, 177, 47, 178, 166].

For the infinite-trace settings, LTL has been extensively used to verify properties and
synthesise policies formally using the mathematical model of a system [8, 16, 104, 80, 89,
180]. The notion of coupling between stochastic systems is developed in [54, 53, 55] with
extensions to multi-objective setting [52] to check infinite-horizon properties.

Considering the generality of the results in terms of the structure of the underlying
MDP, most of the research focuses on discounted reward structures. Despite the simplicity
of discounted Markov decision problems, the discounted reward structure (unlike average
reward) prioritises the transient response of the system. However, the application of the
average reward objective because of the restriction over the structure of the MDP is limited.
The work [37] proposes a policy iteration algorithm for satisfying LTL properties of the
form GFφ ∧ψ for a communicating MDP almost surely. In [6], the authors propose a value
iteration algorithm for solving the average reward problem for multichain MDPs. In this way,
the algorithm first computes the optimal value for each of the strongly connected components
of the MDP and then weighted reachability to find the optimal policy. The work [7] provides
a linear programming formulation for policy synthesis of multichain MDPs with steady-state
constraints.

In the last few years, researchers have started developing data-driven policy synthesis
techniques in order to satisfy temporal properties. There is a large body of literature in
safe reinforcement learning (RL) (see e.g. [48, 126, 40]). The problem of learning a policy
to maximise the satisfaction probability of a temporal property using discounted RL is
studied recently [20, 46, 130, 19, 59, 61, 119]. The work [57] by using a parameterised
augmented MDP provides an RL-based policy synthesis for finite MDPs with unknown

120 Translating ω-regular specifications to average objectives for RL

transition probabilities. It shows that the optimal policy obtained by RL for the reachability
probability on the augmented MDP gives a policy for the MDP with a suitable convergence
guarantee. In [19] authors provide a path-dependent discounting mechanism for the RL
algorithm based on a limit-deterministic Buchi automaton (LDBA) representation of the
underlying omega-regular property and prove convergence of their approach on finite MDPs
when the discounting factor goes to one. An LDBA is also leveraged in [59, 61, 119] for
discounted-reward model-free RL in both continuous- and discrete-state MDPs. The LDBA
is used to define a reward function that incentivises the agent to visit all accepting components
of the automaton. These works use episodic discounted RL with a discount factor close to one
to solve the policy synthesis problem. There are two issues with the foregoing approaches.
First, because of the episodic nature of the algorithms, they are not applicable in continuing
settings. Second, because of high discount factors in practice, these algorithms are difficult to
converge. On the other hand, recent work on reward shaping for average reward RL has been
explored based on safety properties to be satisfied by the synthesised policy [72]. In contrast
to the solution proposed in this chapter, the preceding approach requires knowledge of the
graph structure of the underlying MDP and does not account for absolute liveness properties.

There is a rich history of studies in average reward RL [35, 100]. The lack of stopping
criteria for multichain MDPs affects the generality of model-free RL algorithms. In this way,
all model-free RL algorithms put some restrictions on the structure of MDP (e.g. ergodicity
[2, 173] or communicating property). The closest line of work to this work is to use the
average reward objective for safe RL. The work [141] proposes a model-based RL algorithm
for maximising average reward objective with safety constraints for communicating MDPs.
It is worth noting that in multichain settings, the state-of-the-art learning algorithms use
model-based RL algorithms. The work [83] studies satisfaction of ω-regular properties
using data-driven approaches. The authors introduce an algorithm where the optimality of
the policy is conditioned to not leaving the corresponding maximal end component which
leads to a sub-optimal solution. The authors provide PAC analysis for the algorithm as well.
Despite all the efforts to use data-driven approaches for satisfying the ω-regular properties,
there is a gap in using average reward model-free RL algorithms for satisfying temporal
properties.

This chapter is an attempt to close this gap by proposing a model-free average reward RL
algorithm for a subclass of LTL properties called absolute liveness properties. We claim this
subclass captures a large class of interesting properties and is suitable for average reward
RL. Furthermore, the eventual satisfaction semantics of an arbitrary omega-regular or LTL
specification φ can be captured by an absolute liveness property Fφ .

6.7 Conclusion 121

6.7 Conclusion

This work addressed the problem of synthesising policies that satisfy a given absolute
liveness omega-regular property in the continuing setting. Continuing tasks are concerned
with the eventual satisfaction of properties, which is naturally captured by the notion of
absolute liveness. Our key contribution is a model-free translation from the omega-regular
specification to an average reward objective, enabling the use of off-the-shelf average reward
RL. This is in contrast to existing methods in the literature that use discounted, episodic
learning, which requires the ability to reset the underlying environment. Such a requirement
is restrictive in some settings, and our approach avoids this episodic learning, instead learning
the optimal policy in one life-long episode without resetting. Furthermore, the proposed
solution does not require access to a model of the environment nor to its graph structure,
thereby avoiding a common assumption made in the literature where the computation of
end components is required for verification and synthesis of policies subject to some omega-
regular specification.

As a result, the proposed approach can be integrated with a wide range of model-free
average-reward RL algorithms. For our experiments, we applied Differential Q-learning to
a range of case studies and showed that the proposed approach is successful in converging
to optimal strategies under the raised assumptions. In particular, our experiments showed
that the proposed approach is superior to previous methods in the continuing setting. This
lends credence to the important and understudied idea that average reward RL is better-suited
for continuing task settings than the more popular discounted RL. For future work, we will
explore the use of function approximation in the hopes that the average reward RL can
experience the same success for continuing tasks that its discounted RL counterpart has
witnessed in episodic settings.

Chapter 7

Conclusion

7.1 Summary of the research and contributions

In this thesis we developed data-driven approaches to formally synthesis controller for cyber-
physical systems. This approaches can be divided into two categories: abstraction based
methods that rely on a simplified model of the system, and model-free methods that aim
for synthesising the controller directly without constructing any (simplified) model for the
system.

In Chapter 3, We proposed a method for computing finite abstractions of continuous
systems with unknown dynamics that is based on the use of data. We proposed a way to
compute an overapproximation of reachable sets by implementing it as a robust convex
program (RCP). It is then possible to determine a feasible solution to the RCP with preset
confidence by solving a scenario convex program (SCP) that corresponds to the RCP. There
is no need to include the system’s dynamics as part of the SCP, and all that is needed is a
finite set of sample trajectories. Using the sample complexity result that we have provided,
we can give a lower bound on the number of trajectories needed to achieve a certain level of
confidence. Based on our analysis, we can confidently state that the computed abstraction
is a valid abstraction of the system. In other words, this abstract representation accurately
describes the system’s behaviour over the entire state space. Using our data-driven approach,
we could design a controller and enlarge its winning region to satisfy temporal properties
using abstraction refinement schemes.

In Chapter 4, we proposed a policy synthesis approach for continuous-space stochastic
systems with unknown dynamics. Essentially, the policy’s goal was to maximise the prob-
ability that the system would satisfy a complex property written in a fragment of Linear
Temporal Logic (LTL). This approach replaces the unknown system with a finite Markov
decision process (MDP) without having to construct it explicitly. To find a policy and apply it

124 Conclusion

to the original continuous-space system, we applied RL to the MDP with unknown transition
probabilities. We proposed a compositional method to synthesise policies for unknown
stochastic networks using a novel two-player RL scheme.

In Chapter 5, We applied reinforcement learning (RL) to unknown continuous-state
stochastic systems to satisfy a linear temporal logic specification. Taking into account
appropriate assumptions, we formulated an optimal average reward criterion which converges
linearly to the true optimal satisfaction probability. By applying a sequential algorithm and
relaxing the specification, we were able to learn a lower bound on this optimal value.

In Chapter 6, we sought to synthesise policies that satisfy a set of absolute liveness
omega-regular properties in a continuing setting. The notion of absolute liveness naturally
captures the idea of continuing tasks, which involves the eventual satisfaction of properties.
Furthermore, the proposed solution requires no access to a model of the environment or its
graph. Thus, we avoid a commonly held claim in the literature, where end components must
be computed for policies to be verified and synthesised.

7.2 Limitations of the research

In this thesis, we investigated the potential of data-driven control synthesis techniques with
formal guarantees. The algorithms presented in this thesis have a lot of potential in real world
applications but at the same time they come with their limitations. In the following I will
point out some of these limitations.

In Chapter 3 we proposed a data-driven abstraction-based approach. As a limitation of this
approach, we limit disturbance signals whose value does not change during the fixed sampling
period. We can relax this restriction by knowing a set, possibly an overestimated set, including
all the possible accumulated disturbance signals during the sampling period. Additionally, we
considered a uniform distribution over the disturbance set. We can extend our method to those
distributions whose probability density function is known. The sample complexity of the
approach is exponential with respect to the dimension of the system. It would be interesting
to study existence of such sampling approaches that require computational complexity below
exponential (e.g., polynomial with respect to the space dimension).

In Chapter 4, instead of analysing the whole network monolithically, and hence facing
the scalability barrier, we investigated a compositional approach that solves the optimisation
problem for each subsystem in the network separately, while considering the other subsystems
as adversaries in a two-player game. In this approach, we limit the class of properties to just
invariant properties. Future work include considering richer class of properties beyond safety

7.3 Suggestions for future work 125

and allow some form of communication between the subsystems (a preliminary work on this
direction is under submission).

In Chapter 5 we presented an algorithm for control synthesis of continuous state systems
and provided the correctness guarantees of the reward machine for satisfying temporal
properties. The convergence guarantee provided in this approach is valid under a technical
assumption on the underlying dynamics of the system. It is known that this assumption does
hold for finite-state Markov decision processes. It would be interesting to study which class
of continuous-space models satisfy the required assumption. In other words, what structural
properties are needed in the underlying dynamical system such that the convergence of the
algorithm to the true value is guaranteed?

As an alternative for discounted reward, in Chapter 6 we study average reward objectives
and in particular how we can translate a temporal property to an average reward objective
for RL algorithms. In this work we had two limitations: First, all of the state-of-the-art
model-free RL algorithms have (weakly) communicating assumption over the structure of
underlying MDP. Second, we need to restrict the class of properties to absolute liveness
properties which is a subclass of ω-regular properties. The intuition behind these assumptions
is to make sure the system can recover from the mistakes that can happen early on in the
learning procedure. It would be interesting to relax these assumptions as much as possible,
for instance by finding the largest class of properties where the translation to average reward
would lead to a correct optimal policy.

7.3 Suggestions for future work

This thesis was an attempt to study data-driven control synthesis approaches. We developed
algorithms with correctness guarantees in both episodic and continual tasks. This area of
research is relatively new and there are a lot of directions we are considering for future
work. In the following I mention a few of these directions regarding the contribution of each
chapter.

The data-driven abstraction-based approach presented in Chapter 3 can be extended to
handle a larger class of disturbances beyond piecewise constant ones. We can also parallelise
the method and apply it to large-scale case studies more efficiently. The formal RL algorithm
which was the focus of Chapter 5 can be extended to more general classes of properties such
as hyper-properties.

The average reward objectives were presented in Chapter 6. Our future efforts will
explore function approximation for the average reward objective with the hope of seeing the
same success as the discounted reward RL in episodic settings. A second research direction

126 Conclusion

is to study the connection between transfer learning and lifelong learning and to incorporate
their success into our approach. The third research direction is to study lexicographic and
more general multi-objective scenarios in average reward framework.

The compositional approach for control synthesis was presented in Chapter 4. The
class of properties we consider for this research was restricted to invariant properties. A
future direction for research is to extend the approach to finite-horizon properties. A second
direction is to explore using collaborative frameworks in control synthesis in decentralised
multi-agent scenarios. Security and privacy in CPS has received attention recently. It would
be interesting to extend the data-driven ideas of this thesis to handle challenging problems of
security of CPS.

References

[1] Abate, A., Prandini, M., Lygeros, J., and Sastry, S. (2008). Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724–
2734.

[2] Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvari, C., and Weisz, G.
(2019). POLITEX: Regret bounds for policy iteration using expert prediction. In Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97, pages
3692–3702. PMLR.

[3] Adzkiya, D., Soudjani, S., and Abate, A. (2014). Finite abstractions of stochastic
max-plus-linear systems. In Norman, G. and Sanders, W., editors, Proceedings of the
International Conference on Quantitative Evaluation of Systems, volume 8657 of LNCS,
pages 74–89. Springer Verlag.

[4] Alpern, B. and Schneider, F. B. (1985). Defining liveness. Information Processing
Letters, 21:181–185.

[5] Althof, M. (2019). Commonroad: Vehicle models (version 2018a). Tech. rep.
https://commonroad.in.tum.de, Technical University of Munich, 85748 Garching, Ger-
many (October 2018).

[6] Ashok, P., Chatterjee, K., Daca, P., Křetínskỳ, J., and Meggendorfer, T. (2017). Value
iteration for long-run average reward in Markov decision processes. In International
Conference on Computer Aided Verification, pages 201–221. Springer.

[7] Atia, G. K., Beckus, A., Alkhouri, I., and Velasquez, A. (2020). Verifiable planning in
expected reward multichain MDPs. arXiv preprint arXiv:2012.02178.

[8] Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT press.

[9] Bajcsy, A., Bansal, S., Bronstein, E., Tolani, V., and Tomlin, C. J. (2019). An efficient
reachability-based framework for provably safe autonomous navigation in unknown
environments. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
1758–1765. IEEE.

[10] Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., and Soudjani, S. (2022a). A
direct symbolic algorithm for solving stochastic rabin games. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 81–98.
Springer.

128 References

[11] Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., and Soudjani, S. (2022b).
Fast symbolic algorithms for omega-regular games under strong transition fairness. arXiv
preprint arXiv:2202.07480.

[12] Belta, C. and Sadraddini, S. (2019). Formal methods for control synthesis: An opti-
mization perspective. Annual Review of Control, Robotics, and Autonomous Systems,
2:115–140.

[13] Belta, C., Yordanov, B., and Gol, E. A. (2017). Formal methods for discrete-time
dynamical systems, volume 15. Springer.

[14] Bertsekas, D. and Shreve, S. (1996). Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific.

[15] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic programming. Athena
Scientific.

[16] Blom, H. and J. Lygeros (2006). Stochastic Hybrid Systems: Theory and Safety Critical
Applications. Number 337 in Lecture Notes in Control and Information Sciences. Springer
Verlag, Berlin Heidelberg.

[17] Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control and Optimization,
38(2):447–469.

[18] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

[19] Bozkurt, A. K., Wang, Y., Zavlanos, M. M., and Pajic, M. (2020). Control synthesis
from linear temporal logic specifications using model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 10349–10355.
IEEE.

[20] Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Křetínskỳ, J., Kwiatkowska, M.,
Parker, D., and Ujma, M. (2014). Verification of Markov decision processes using learning
algorithms. In Automated Technology for Verification and Analysis (ATVA), pages 98–114.
Springer.

[21] Brunello, A., Montanari, A., and Reynolds, M. (2019). Synthesis of LTL formulas
from natural language texts: State of the art and research directions. In 26th International
Symposium on Temporal Representation and Reasoning (TIME 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[22] Calafiore, G. C. and Campi, M. C. (2006). The scenario approach to robust control
design. IEEE Transactions on automatic control, 51(5):742–753.

[23] Camacho, A., Baier, J. A., Muise, C., and McIlraith, S. A. (2018). Finite LTL synthesis
as planning. In Twenty-Eighth International Conference on Automated Planning and
Scheduling.

References 129

[24] Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A., and McIlraith, S. A. (2019).
LTL and beyond: Formal languages for reward function specification in reinforcement
learning. In IJCAI, volume 19, pages 6065–6073.

[25] Cheng, R., Orosz, G., Murray, R. M., and Burdick, J. W. (2019). End-to-end safe
reinforcement learning through barrier functions for safety-critical continuous control
tasks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3387–3395.

[26] Chow, J. and Cheung, K. (1992). A toolbox for power system dynamics and control
engineering education and research. IEEE Transactions on Power Systems, 7(4):1559–
1564.

[27] Cohen, M. H. and Belta, C. (2021). Model-based reinforcement learning for approx-
imate optimal control with temporal logic specifications. In HSCC ’21: 24th ACM
International Conference on Hybrid Systems: Computation and Control, Nashville, Ten-
nessee, May 19-21, 2021, pages 12:1–12:11. ACM.

[28] Courcoubetis, C. and Yannakakis, M. (1995). The complexity of probabilistic verifica-
tion. Journal of the ACM (JACM), 42(4):857–907.

[29] Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., and Song, L. (2017).
Sbeed: Convergent reinforcement learning with nonlinear function approximation.
arXiv:1712.10285.

[30] De Alfaro, L. (1998). Formal verification of probabilistic systems. PhD thesis, Stanford
University.

[31] De Giacomo, G., Iocchi, L., Favorito, M., and Patrizi, F. (2019). Foundations for
restraining bolts: Reinforcement learning with LTLf/LDLf restraining specifications. In
Proceedings of the International Conference on Automated Planning and Scheduling,
volume 29(1), pages 128–136.

[32] De Giacomo, G. and Vardi, M. (2015). Synthesis for LTL and LDL on finite traces. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

[33] Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. (2020). On the sample complexity
of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633–
679.

[34] Devonport, A., Saoud, A., and Arcak, M. (2021). Symbolic abstractions from data: A
pac learning approach. arXiv preprint arXiv:2104.13901.

[35] Dewanto, V., Dunn, G., Eshragh, A., Gallagher, M., and Roosta, F. (2020). Average-
reward model-free reinforcement learning: a systematic review and literature mapping.
arXiv preprint arXiv:2010.08920.

[36] Ding, J., Kamgarpour, M., Summers, S., Abate, A., Lygeros, J., and Tomlin, C. (2013).
A stochastic games framework for verification and control of discrete time stochastic
hybrid systems. Automatica, 49(9):2665–2674.

130 References

[37] Ding, X., Smith, S. L., Belta, C., and Rus, D. (2014). Optimal control of Markov
decision processes with linear temporal logic constraints. IEEE Transactions on Automatic
Control, 59(5):1244–1257.

[38] Djeumou, F., Vinod, A. P., Goubault, E., Putot, S., and Topcu, U. (2020). On-the-fly
control of unknown systems: From side information to performance guarantees through
reachability. arXiv preprint arXiv:2011.05524.

[39] Dynkin, E. B. and Yushkevich, A. A. (1979). Controlled Markov processes, volume
235. Springer.

[40] Efroni, Y., Mannor, S., and Pirotta, M. (2020). Exploration-exploitation in constrained
MDPs. arXiv preprint arXiv:2003.02189.

[41] Esfahani, P. M., Sutter, T., and Lygeros, J. (2014). Performance bounds for the scenario
approach and an extension to a class of non-convex programs. IEEE Transactions on
Automatic Control, 60(1):46–58.

[42] Fan, C., Qi, B., Mitra, S., and Viswanathan, M. (2017). Dryvr: Data-driven verification
and compositional reasoning for automotive systems. In Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, volume 10426 of Lecture Notes in Computer Science, pages 441–461.
Springer.

[43] Farahani, S. S., Majumdar, R., Prabhu, V. S., and Soudjani, S. (2018). Shrinking
horizon model predictive control with signal temporal logic constraints under stochastic
disturbances. IEEE Transactions on Automatic Control.

[44] Filar, J. and Vrieze, K. (1997). Competitive Markov Decision Processes. Springer.

[45] Flesch, J., Predtetchinski, A., and Sudderth, W. (2018). Simplifying optimal strategies
in limsup and liminf stochastic games. Discrete Applied Mathematics, 251:40 – 56.

[46] Fu, J. and Topcu, U. (2014). Probably approximately correct MDP learning and control
with temporal logic constraints. In Proceedings of Robotics: Science and Systems.

[47] Gaon, M. and Brafman, R. (2020). Reinforcement learning with non-Markovian
rewards. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34(04),
pages 3980–3987.

[48] Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480.

[49] Girard, A. and Pappas, G. J. (2007). Approximation metrics for discrete and continuous
systems. IEEE Transactions on Automatic Control, 52(5):782–798.

[50] Girard, A., Pola, G., and Tabuada, P. (2009). Approximately bisimilar symbolic models
for incrementally stable switched systems. IEEE Transactions on Automatic Control,
55(1):116–126.

[51] Grover, K., dos Santos Barbosa, F., Tumova, J., and Kretınsky, J. (2021). Semantic
abstraction-guided motion planningfor scltl missions in unknown environments. In
Robotics: Science and Systems.

References 131

[52] Haesaert, S., Nilsson, P., and Soudjani, S. (2021). Formal multi-objective synthesis of
continuous-state MDPs. IEEE Control Systems Letters, 5(5):1765–1770.

[53] Haesaert, S. and Soudjani, S. (2020). Robust dynamic programming for temporal logic
control of stochastic systems. IEEE Transactions on Automatic Control, 66(6):2496–2511.

[54] Haesaert, S., Soudjani, S., and Abate, A. (2017). Verification of general Markov
decision processes by approximate similarity relations and policy refinement. SIAM
Journal on Control and Optimization, 55(4):2333–2367.

[55] Haesaert, S., Soudjani, S., and Abate, A. (2018). Temporal logic control of general
Markov decision processes by approximate policy refinement. IFAC-PapersOnLine,
51(16):73–78.

[56] Hahn, E. M., Li, G., Schewe, S., Turrini, A., and Zhang, L. (2015). Lazy probabilistic
model checking without determinisation. In International Conference on Concurrency
Theory (CONCUR), pages 354–367.

[57] Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., and Wojtczak, D. (2019).
Omega-regular objectives in model-free reinforcement learning. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 395–412. Springer.

[58] Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., and Wojtczak, D.
(2020). Good-for-mdps automata for probabilistic analysis and reinforcement learning. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 306–323. Springer.

[59] Hasanbeig, M., Abate, A., and Kroening, D. (2019a). Certified reinforcement learning
with logic guidance. arXiv preprint arXiv:1902.00778.

[60] Hasanbeig, M., Abate, A., and Kröning, D. (2019b). Logically-constrained neural fitted
Q-iteration. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems (AAMS), pages 2012–2014.

[61] Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G. J., and Lee, I. (2019c).
Reinforcement learning for temporal logic control synthesis with probabilistic satisfaction
guarantees. In IEEE Conference on Decision and Control (CDC), pages 5338–5343.
IEEE.

[62] Hasanbeig, M., Kroening, D., and Abate, A. (2020). Deep reinforcement learning with
temporal logics. In Formal Modeling and Analysis of Timed Systems, pages 1–22.

[63] Hernández-Lerma, O. and Lasserre, J. B. (1996). Discrete-time Markov control pro-
cesses, volume 30 of Applications of Mathematics. Springer.

[64] Hsu, K.-C., Rubies-Royo, V., Tomlin, C. J., and Fisac, J. F. (2021). Safety and liveness
guarantees through reach-avoid reinforcement learning. In Robotics: Science and Systems.

[65] Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S. (2018). Using reward
machines for high-level task specification and decomposition in reinforcement learning.
In International Conference on Machine Learning, pages 2107–2116. PMLR.

132 References

[66] Icarte, R. T., Klassen, T. Q., Valenzano, R. A., and McIlraith, S. A. (2020). Re-
ward machines: Exploiting reward function structure in reinforcement learning. CoRR,
abs/2010.03950.

[67] Ikonen, E. and Najim, K. (2001). Advanced process identification and control. CRC
Press.

[68] Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms. In Advances in neural information processing systems,
pages 703–710.

[69] Jagtap, P., Pappas, G. J., and Zamani, M. (2020a). Control barrier functions for unknown
nonlinear systems using Gaussian processes. In Proceedings of the 59th IEEE Conference
on Decision and Control (CDC), pages 3699–3704.

[70] Jagtap, P., Soudjani, S., and Zamani, M. (2018). Temporal logic verification of stochastic
systems using barrier certificates. In International Symposium on Automated Technology
for Verification and Analysis, pages 177–193. Springer.

[71] Jagtap, P., Soudjani, S., and Zamani, M. (2020b). Formal synthesis of stochastic
systems via control barrier certificates. IEEE Transactions on Automatic Control.

[72] Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., and Stone, P. (2021). Temporal-
logic-based reward shaping for continuing reinforcement learning tasks. Good Systems-
Published Research.

[73] Jothimurugan, K., Bansal, S., Bastani, O., and Alur, R. (2021). Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing
Systems, 34:10026–10039.

[74] Jouffe, L. (1998). Fuzzy inference system learning by reinforcement methods. IEEE
Transactions on Systems, Man, and Cybernetics, 28(3):338–355.

[75] Kalagarla, K. C., Jain, R., and Nuzzo, P. (2021). Model-free reinforcement learning for
optimal control of markovdecision processes under signal temporal logic specifications.
arXiv preprint arXiv:2109.13377.

[76] Kallenberg, O. (1997). Foundations of modern probability. Springer-Verlag, New York.

[77] Kamgarpour, M., Ellen, C., Soudjani, S., Gerwinn, S., Mathieu, J., Mullner, N., Abate,
A., Callaway, D., Fränzle, M., and Lygeros, J. (2013). Modeling options for demand side
participation of thermostatically controlled loads. In International Conference on Bulk
Power System Dynamics and Control (IREP), pages 1–15.

[78] Kazemi, M., Majumdar, R., Salamati, M., Soudjani, S., and Wooding, B. (2022a).
Data-driven abstraction-based control synthesis. arXiv preprint arXiv:2206.08069.

[79] Kazemi, M., Perez, M., Somenzi, F., Soudjani, S., Trivedi, A., and Velasquez, A.
(2022b). Translating omega-regular specifications to average objectives for model-free re-
inforcement learning. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 732–741.

References 133

[80] Kazemi, M. and Soudjani, S. (2020). Formal policy synthesis for continuous-state
systems via reinforcement learning. In International Conference on Integrated Formal
Methods, pages 3–21. Springer.

[81] Kress-Gazit, H., Lahijanian, M., and Raman, V. (2018). Synthesis for robots: Guar-
antees and feedback for robot behavior. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1:211–236.

[82] Kretínský, J., Meggendorfer, T., and Sickert, S. (2018). Owl: A library for ω-words,
automata, and LTL. In International Symposium on Automated Technology for Verification
and Analysis (ATVA), volume 11138 of LNCS, pages 543–550. Springer.

[83] Kretínský, J., Michel, F., Michel, L., and Perez, G. (2020). Finite-memory near-optimal
learning for Markov decision processes with long-run average reward. In Conference on
Uncertainty in Artificial Intelligence, pages 1149–1158. PMLR.

[84] Kupferman, O. and Vardi, M. Y. (2001). Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314.

[85] Landweber, L. H. (1969). Decision problems for ω-automata. Mathematical Systems
Theory, 3(4):376–384.

[86] Lavaei, A. (2019). Automated Verification and Control of Large-Scale Stochastic
Cyber-Physical Systems: Compositional Techniques. PhD thesis, Department of Electrical
Engineering, Technische Universität München, Germany.

[87] Lavaei, A., Nejati, A., Jagtap, P., and Zamani, M. (2021). Formal safety verification of
unknown continuous-time systems: A data-driven approach. In Proceedings of the 24th
International Conference on Hybrid Systems: Computation and Control, HSCC ’21, New
York, NY, USA. Association for Computing Machinery.

[88] Lavaei, A., Perez, M., Kazemi, M., Somenzi, F., Soudjani, S., Trivedi, A., and Zamani,
M. (2022). Compositional reinforcement learning for discrete-time stochastic control
systems. arXiv preprint arXiv:2208.03485.

[89] Lavaei, A., Somenzi, F., Soudjani, S., Trivedi, A., and Zamani, M. (2020a). Formal
controller synthesis for continuous-space MDPs via model-free reinforcement learning.
In International Conference on Cyber-Physical Systems (ICCPS), pages 98–107.

[90] Lavaei, A., Soudjani, S., and Zamani, M. (2019). Compositional construction of infinite
abstractions for networks of stochastic control systems. Automatica, 107:125–137.

[91] Lavaei, A., Soudjani, S., and Zamani, M. (2020b). Compositional (in)finite abstractions
for large-scale interconnected stochastic systems. IEEE Trans. on Automatic Control,
65(12):5280–5295.

[92] Lazaric, A., Restelli, M., and Bonarini, A. (2008). Reinforcement learning in continuous
action spaces through sequential Monte Carlo methods. In Advances in neural information
processing systems, pages 833–840.

134 References

[93] Le Corronc, E., Girard, A., and Goessler, G. (2013). Mode sequences as symbolic
states in abstractions of incrementally stable switched systems. In Proceedings of the 52th
IEEE Conference on Decision and Control, pages 3225–3230.

[94] Legat, B., Jungers, R. M., and Bouchat, J. (2021). Abstraction-based branch and bound
approach to q-learning for hybrid optimal control. In Learning for Dynamics and Control,
pages 263–274. PMLR.

[95] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. J. Mach. Learn. Res., 17(1):1334–1373.

[96] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2015). Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971.

[97] Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. In International Conference on Machine Learning, pages 157–163.

[98] Littman, M. L. and Szepesvari, C. (1996). A generalized reinforcement-learning model:
Convergence and applications. In International Conference on Machine Learning, pages
310–318.

[99] Ma, M. and Fan, L. (2016). Implementing consensus based distributed control in power
system toolbox. In 2016 North American Power Symposium (NAPS), pages 1–6.

[100] Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Machine learning, 22(1):159–195.

[101] Maitra, A. and Sudderth, W. (1993). Borel stochastic games with lim sup payoff. The
Annals of Probability, 21(2):861–885.

[102] Majumdar, R., Mallik, K., Schmuck, A.-K., and Soudjani, S. (2021a). Symbolic
control for stochastic systems via parity games. arXiv:2101.00834.

[103] Majumdar, R., Mallik, K., Schmuck, A.-K., and Soudjani, S. (2021b). Symbolic
qualitative control for stochastic systems via finite parity games. IFAC-PapersOnLine,
54(5):127–132.

[104] Majumdar, R., Mallik, K., and Soudjani, S. (2020a). Symbolic controller synthesis for
Büchi specifications on stochastic systems. In Hybrid Systems: Computation and Control
(HSCC), New York, NY, USA. ACM.

[105] Majumdar, R., Ozay, N., and Schmuck, A. (2020b). On abstraction-based controller
design with output feedback. In Ames, A. D., Seshia, S. A., and Deshmukh, J., editors,
HSCC ’20: 23rd ACM International Conference on Hybrid Systems: Computation and
Control, Sydney, New South Wales, Australia, April 21-24, 2020, pages 15:1–15:11. ACM.

[106] Makdesi, A., Girard, A., and Fribourg, L. (2021). Efficient data-driven abstraction of
monotone systems with disturbances. In 7th IFAC Conference on Analysis and Design
of Hybrid Systems, ADHS 2021, Brussels, Belgium, July 7-9, 2021, volume 54 of IFAC-
PapersOnLine, pages 49–54. Elsevier.

References 135

[107] Mallik, K., Soudjani, S., Schmuck, A.-K., and Majumdar, R. (2017). Compositional
construction of finite state abstractions for stochastic control systems. In Conference on
Decision and Control (CDC), pages 550–557. IEEE.

[108] Meyer, P.-J., Devonport, A., and Arcak, M. (2021). Abstraction-based control synthe-
sis. In Interval Reachability Analysis, pages 93–101. Springer.

[109] Meyer, P. J., Girard, A., and Witrant, E. (2017, accepted). Compositional abstraction
and safety synthesis using overlapping symbolic models. IEEE Transactions on Automatic
Control.

[110] Mitsioni, I., Tajvar, P., Kragic, D., Tumova, J., and Pek, C. (2021). Safe data-driven
contact-rich manipulation. In 2020 IEEE-RAS 20th International Conference on Humanoid
Robots (Humanoids), pages 120–127. IEEE.

[111] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning, volume 48, pages 1928–1937.

[112] Mnih, V. et al. (2015). Human-level control through reinforcement learning. Nature,
518:529–533.

[113] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[114] Mohajerin Esfahani, P., Sutter, T., and Lygeros, J. (2015). Performance bounds for the
scenario approach and an extension to a class of non-convex programs. IEEE Transactions
on Automatic Control, 60(1):46–58.

[115] Naik, A., Shariff, R., Yasui, N., and Sutton, R. (2019). Discounted reinforcement
learning is not an optimization problem. ArXiv, abs/1910.02140.

[116] Neider, D., Gaglione, J.-R., Gavran, I., Topcu, U., Wu, B., and Xu, Z. (2021). Advice-
guided reinforcement learning in a non-Markovian environment. In Proceedings of the
AAAI Conference on Artificial Intelligence.

[117] Ng, A. Y., Harada, D., and Russell, S. (1999a). Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99, pages
278–287.

[118] Ng, A. Y., Harada, D., and Russell, S. J. (1999b). Policy invariance under reward
transformations: Theory and application to reward shaping. In International Conference
on Machine Learning, pages 278–287.

[119] Oura, R., Sakakibara, A., and Ushio, T. (2020). Reinforcement learning of control
policy for linear temporal logic specifications using limit-deterministic Büchi automata.
IEEE Control Systems Letters, 4(3):761–766.

[120] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov decision
processes. Mathematics of operations research, 12(3):441–450.

136 References

[121] Piche, S. W. (1994). Steepest descent algorithms for neural network controllers and
filters. IEEE Transactions on Neural Networks, 5(2):198–212.

[122] Pnueli, A. (1977). The temporal logic of programs. In Proc. 18th Symposium on
Foundations of Computer Science, pages 46–57. IEEE.

[123] Prajna, S., Jadbabaie, A., and Pappas, G. J. (2007). A framework for worst-case and
stochastic safety verification using barrier certificates. IEEE Transactions on Automatic
Control, 52(8):1415–1428.

[124] Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[125] Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206–230.

[126] Recht, B. (2018). A tour of reinforcement learning: The view from continuous control.
Annual Review of Control, Robotics, and Autonomous Systems, pages 253–279.

[127] Reissig, G., Weber, A., and Rungger, M. (2016). Feedback refinement relations for
the synthesis of symbolic controllers. IEEE TAC, 62(4):1781–1796.

[128] Riedmiller, M. (2005). Neural fitted Q iteration – First experiences with a data efficient
neural reinforcement learning method. In Machine Learning: ECML 2005, pages 317–328.
Springer.

[129] Rungger, M. and Zamani, M. (2016). Scots: A tool for the synthesis of symbolic
controllers. In Proceedings of the 19th international conference on hybrid systems:
Computation and control, pages 99–104.

[130] Sadigh, D., Kim, E. S., Coogan, S., Sastry, S. S., and Seshia, S. A. (2014). A learning
based approach to control synthesis of Markov decision processes for linear temporal
logic specifications. In Conference on Decision and Control, pages 1091–1096.

[131] Sadraddini, S. and Belta, C. (2018). Formal guarantees in data-driven model identifica-
tion and control synthesis. In Proceedings of the 21st International Conference on Hybrid
Systems: Computation and Control (part of CPS Week), HSCC 2018, Porto, Portugal,
April 11-13, 2018, pages 147–156. ACM.

[132] Salamati, A., Lavaei, A., Soudjani, S., and Zamani, M. (2021). Data-driven verifi-
cation and synthesis of stochastic systems through barrier certificates. arXiv preprint
arXiv:2111.10330.

[133] Samuel, S., Mallik, K., Schmuck, A., and Neider, D. (2020). Resilient abstraction-
based controller design. In HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April 21-24,
2020, pages 33:1–33:2. ACM.

[134] Schrijver, A. et al. (2003). Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer.

References 137

[135] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering atari, go, chess
and shogi by planning with a learned model. Nature, 588(7839):604–609.

[136] Scott, D. W. (1992). Multivariate Density Estimation. Theory, Practice, and Visualiza-
tion. Wiley.

[137] Sickert, S., Esparza, J., Jaax, S., and Křetínskỳ, J. (2016). Limit-deterministic Büchi
automata for linear temporal logic. In International Conference on Computer Aided
Verification (CAV), pages 312–332. Springer.

[138] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489.

[139] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144.

[140] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without
human knowledge. Nature, 550(7676):354.

[141] Singh, R., Gupta, A., and Shroff, N. B. (2020). Learning in Markov decision processes
under constraints. arXiv preprint arXiv:2002.12435.

[142] Sistla, A. P. (1994). Safety, liveness and fairness in temporal logic. Formal Aspects in
Computing, 6:495–511.

[143] Soudjani, S. (2014). Formal Abstractions for Automated Verification and Synthesis of
Stochastic Systems. PhD thesis, Technische Universiteit Delft, The Netherlands.

[144] Soudjani, S. and Abate, A. (2011). Adaptive gridding for abstraction and verification
of stochastic hybrid systems. In Proceedings of the 8th International Conference on
Quantitative Evaluation of Systems, pages 59–69.

[145] Soudjani, S. and Abate, A. (2012a). Higher-Order Approximations for Verification
of Stochastic Hybrid Systems. In Chakraborty, S. and Mukund, M., editors, Automated
Technology for Verification and Analysis, volume 7561 of Lecture Notes in Computer
Science, pages 416–434. Springer Verlag, Berlin Heidelberg.

[146] Soudjani, S. and Abate, A. (2012b). Probabilistic invariance of mixed deterministic-
stochastic dynamical systems. In ACM Proceedings of the 15th International Conference
on Hybrid Systems: Computation and Control, pages 207–216, Beijing, PRC.

[147] Soudjani, S. and Abate, A. (2013a). Adaptive and sequential gridding procedures
for the abstraction and verification of stochastic processes. SIAM Journal on Applied
Dynamical Systems, 12(2):921–956.

138 References

[148] Soudjani, S. and Abate, A. (2013b). Aggregation of thermostatically controlled loads
by formal abstractions. In European Control Conference, pages 4232–4237, Zurich,
Switzerland.

[149] Soudjani, S. and Abate, A. (2014a). Precise approximations of the probability distribu-
tion of a Markov process in time: an application to probabilistic invariance. In TACAS’14,
volume 8413 of Lecture Notes in Computer Science, pages 547–561. Springer.

[150] Soudjani, S. and Abate, A. (2014b). Probabilistic reach-avoid computation for partially-
degenerate stochastic processes. IEEE Transactions on Automatic Control, 59(2):528–534.

[151] Soudjani, S. and Abate, A. (2015a). Aggregation and control of populations of
thermostatically controlled loads by formal abstractions. IEEE Transactions on Control
Systems Technology, 23(3):975–990.

[152] Soudjani, S. and Abate, A. (2015b). Quantitative approximation of the probability
distribution of a markov process by formal abstractions. Logical Methods in Computer
Science, 11(3):1–29.

[153] Soudjani, S., Abate, A., and Majumdar, R. (2015). Dynamic Bayesian networks
as formal abstractions of structured stochastic processes. In Proceedings of the 26th
International Conference on Concurrency Theory, pages 1–14.

[154] Soudjani, S., Abate, A., and Majumdar, R. (2017). Dynamic Bayesian networks for
formal verification of structured stochastic processes. Acta Informatica, 54(2):217–242.

[155] Soudjani, S., Adzkiya, D., and Abate, A. (2016). Formal verification of stochastic
max-plus-linear systems. IEEE Transactions on Automatic Control, 61(10):2861–2876.

[156] Soudjani, S. and Majumdar, R. (2018). Concentration of measure for chance-
constrained optimization. IFAC-PapersOnLine, 51(16):277–282.

[157] Strehl, A. L., Li, L., Wiewiora, E., Langford, J., and Littman, M. L. (2006). Pac
model-free reinforcement learning. In Proceedings of the 23rd international conference
on Machine learning, pages 881–888.

[158] Sun, D., Jha, S., and Fan, C. (2020). Learning certified control using contraction
metric. arXiv preprint arXiv:2011.12569.

[159] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44.

[160] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

[161] Tabuada, P. (2009). Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer Publishing Company, Incorporated, 1st edition.

[162] Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Commun. ACM,
38(3):58–68.

References 139

[163] Tkachev, I. and Abate, A. (2011). On infinite-horizon probabilistic properties and
stochastic bisimulation functions. In Proceedings of the 50th IEEE Conference on Decision
and Control, pages 526–531.

[164] Tkachev, I., Mereacre, A., Katoen, J., and Abate, A. (2013). Quantitative automata-
based controller synthesis for non-autonomous stochastic hybrid systems. In Hybrid
Systems: Computation and Control, pages 293–302. ACM.

[165] Tkachev, I., Mereacre, A., Katoen, J.-P., and Abate, A. (2017). Quantitative model-
checking of controlled discrete-time Markov processes. Information and Computation,
253:1–35.

[166] Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., and McIlraith,
S. (2019). Learning reward machines for partially observable reinforcement learning.
Advances in Neural Information Processing Systems, 32:15523–15534.

[167] Velasquez, A., Bissey, B., Barak, L., Beckus, A., Alkhouri, I., Melcer, D., and Atia,
G. (2021). Dynamic automaton-guided reward shaping for monte carlo tree search. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35(13), pages
12015–12023.

[168] Verdier, C. F., Kochdumper, N., Althoff, M., and Mazo Jr, M. (2020). Formal synthesis
of closed-form sampled-data controllers for nonlinear continuous-time systems under stl
specifications. arXiv preprint arXiv:2006.04260.

[169] Wan, Y., Naik, A., and Sutton, R. S. (2021). Learning and planning in average-reward
Markov decision processes. In International Conference on Machine Learning, pages
10653–10662. PMLR.

[170] Wang, X., Nair, S., and Althoff, M. (2020). Falsification-based robust adversarial
reinforcement learning. In 2020 19th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 205–212. IEEE.

[171] Watanabe, K., Renninger, N., Sankaranarayanan, S., and Lahijanian, M. (2021).
Probabilistic specification learning for planning with safety constraints. In Intelligent
Robots and Systems (IROS), page TBA. IEEE.

[172] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s
College, Cambridge.

[173] Wei, C.-Y., Jahromi, M. J., Luo, H., Sharma, H., and Jain, R. (2020). Model-free
reinforcement learning in infinite-horizon average-reward Markov decision processes. In
International conference on machine learning, pages 10170–10180. PMLR.

[174] Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao, Y., Hsieh, C.-J., and Daniel, L.
(2018). Evaluating the robustness of neural networks: An extreme value theory approach.
In International Conference on Learning Representations.

[175] Wood, G. and Zhang, B. (1996). Estimation of the lipschitz constant of a function.
Journal of Global Optimization, 8(1):91–103.

140 References

[176] Wooding, B., Vahidinasab, V., and Soudjani, S. (2020). Formal controller synthesis
for frequency regulation utilising electric vehicles. In 2020 International Conference on
Smart Energy Systems and Technologies (SEST), pages 1–6. IEEE.

[177] Xu, Z., Gavran, I., Ahmad, Y., Majumdar, R., Neider, D., Topcu, U., and Wu, B.
(2020). Joint inference of reward machines and policies for reinforcement learning. In
Proceedings of the International Conference on Automated Planning and Scheduling,
volume 30, pages 590–598.

[178] Xu, Z., Wu, B., Ojha, A., Neider, D., and Topcu, U. (2021). Active finite reward
automaton inference and reinforcement learning using queries and counterexamples. In
Machine Learning and Knowledge Extraction - 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9,
WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August
17-20, 2021, Proceedings, volume 12844 of Lecture Notes in Computer Science, pages
115–135. Springer.

[179] Xue, B., Zhang, M., Easwaran, A., and Li, Q. (2020). Pac model checking of black-
box continuous-time dynamical systems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 39(11):3944–3955.

[180] Yoon, H., Chou, Y., Chen, X., Frew, E., and Sankaranarayanan, S. (2019). Predictive
runtime monitoring for linear stochastic systems and applications to geofence enforcement
for UAVs. In International Conference on Runtime Verification. Springer.

[181] Yuan, L. Z., Hasanbeig, M., Abate, A., and Kröning, D. (2019). Modular deep rein-
forcement learning with temporal logic specifications. arXiv preprint arXiv:1909.11591.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Aims and objectives
	1.3 Contributions
	1.4 Thesis outline
	1.5 Publications

	2 Background on formal synthesis of cyber-physical systems
	2.1 Introduction
	2.2 Cyber-physical systems
	2.3 Model-based synthesis approaches
	2.3.1 Abstraction-based control synthesis

	2.4 Data-driven control synthesis approaches
	2.4.1 Data-driven abstraction-based control synthesis
	2.4.2 Reinforcement learning
	2.4.3 Model-free reinforcement learning
	2.4.4 Reward machines in reinforcement learning

	3 Data-driven abstraction-based control synthesis
	3.1 Chapter introduction
	3.2 Introduction
	3.3 Preliminaries and problem statement
	3.3.1 Preliminaries
	3.3.2 Problem statement

	3.4 Robust convex programs
	3.5 Data-driven abstraction
	3.5.1 Growth bound for reachable sets
	3.5.2 SCP for the computation of growth bound
	3.5.3 Lipschitz constant estimation

	3.6 Synthesis via abstraction refinement
	3.7 Experimental evaluation
	3.7.1 DC-DC boost converter
	3.7.2 Path planning problem with partition refinement
	3.7.3 Three area three machine power system
	3.7.4 Comparison with PAC learning
	3.7.5 Parameter optimisation

	3.8 Discussion and future work

	4 Model-free RL for formal control of stochastic systems
	4.1 Chapter introduction
	4.2 Introduction
	4.3 Discrete-time stochastic control systems
	4.3.1 Discrete-time stochastic control systems
	4.3.2 Stochastic games and Markov decision processes
	4.3.3 Reinforcement learning
	4.3.4 Finite-horizon specifications

	4.4 Problem definition
	4.5 Controller synthesis for unknown continuous-space stochastic control systems
	4.5.1 Abstraction of dt-SCS by a finite MDP

	4.6 Synthesis via reinforcement learning
	4.6.1 Product Markov decision process
	4.6.2 Unknown conditional stochastic kernels
	4.6.3 Reward shaping: overcoming sparse rewards
	4.6.4 Discussion

	4.7 Controller synthesis for networks of unknown stochastic control systems
	4.8 Compositional controller synthesis via reinforcement learning
	4.8.1 Accelerating RL with multi-level discretisation

	4.9 Case studies
	4.9.1 Room temperature (network)
	4.9.2 Road traffic (network)
	4.9.3 Learning Controllers
	4.9.4 7-dimensional BMW 320i car

	4.10 Conclusion

	5 Formal policy synthesis for continuous-state systems via RL
	5.1 Chapter introduction
	5.2 Introduction
	5.3 Preliminaries and problem statement
	5.3.1 Controlled Markov processes
	5.3.2 Semantics of controlled Markov processes
	5.3.3 Linear temporal logic
	5.3.4 Limit-deterministic Büchi automata
	5.3.5 Problem statement

	5.4 Augmented CMP with reachability specification
	5.4.1 The augmented CMP
	5.4.2 The product CMP

	5.5 Reinforcement learning for policy synthesis
	5.5.1 Specification-guided learning

	5.6 Case studies
	5.6.1 Cart-pole system
	5.6.2 Boat driving problem

	5.7 Future work

	6 Translating -regular specifications to average objectives for RL
	6.1 Chapter introduction
	6.2 Introduction
	6.3 Problem definition
	6.4 Construction and correctness
	6.5 Experimental results
	6.6 Related work
	6.7 Conclusion

	7 Conclusion
	7.1 Summary of the research and contributions
	7.2 Limitations of the research
	7.3 Suggestions for future work

	References

