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Abstract          

Smart mobility, one of the most important topics in smart city studies, aims to reduce pollution, 

mitigate traffic congestion and enhance safety through research into Mass Transit Systems, 

Individual Mobility, and Intelligent Transportation Systems (ITS). ITS are advanced applications 

to collect, store and process data, information and knowledge aimed at planning, implementing 

and evaluating integrated initiatives and policies of smart mobility. Within ITS, high-resolution 

microscopic traffic data (HRMTD) can be obtained by infrastructure-based monitoring systems 

relying on various types of sensors. In the context of traffic monitoring, the acquisition of 

comprehensive information presents challenges in vehicle detection, tracking, reconstruction 

and classification. However, many existing traffic monitoring studies cover only one or two of 

these challenges, and the related developments are either not state-of-the-art or inapplicable to 

the relatively new technology of lidar (light detection and ranging) systems that are capable of 

acquiring accurate 3D data in real-time for future urban traffic monitoring. 

This research develops a 3D lidar-based traffic monitoring system that can provide 

comprehensive information through an end-to-end workflow, thereby determining fundamental 

traffic parameters including the number of vehicles, vehicle dynamics, dimensions and types. A 

three-step method is employed to realize vehicle detection, in which the first two steps are 

moving points extraction and instance clustering. The final step, vehicle and non-vehicle 

classification, is implemented by both a deep learning method (PointVoxel-RCNN, PV-RCNN) and 

a traditional machine learning approach (Random Forest, RF). Two frameworks are proposed to 

perform vehicle tracking. The first aims to provide more accurate vehicle speeds via a tracking 

refinement module. The other runs tracking and detection in parallel so that misdetections from 

the vehicle detection stage can be mitigated. Vehicle reconstruction is then implemented from 

the perspectives of both 2D and 3D without assuming any a priori knowledge. Vehicles can be 

fine-grained classified into different categories such as car, van, bus and truck.  

The developed traffic monitoring system has been practically demonstrated using data acquired 

from different laser scanners operating in different urban scenarios. It has been evaluated using 

roadside lidar data obtained from two different panoramic 3D lidar sensors, a RoboSense RS-
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LiDAR-32 and a Velodyne VLP-16, in four real-world case studies: a road section including a round 

corner, a straight road section near a traffic light, a road junction and a crossroad, respectively. 

Based on experimentation, more than 94 % of on-road vehicles are detected and tracked with a 

mean speed accuracy of 0.2m/s. The average range of vehicle trajectories is increased by c. 21% 

from the results of different scenes based on the improved framework. The continuity of the 

trajectories is also enhanced and the maximum effective tracking ranges of both tested laser 

scanners in different traffic scenes are found to exceed 110m. The dimensions of the vehicles 

being reconstructed are assessed with a Root Mean Square Error (RMSE) smaller than 0.24m. 

Vehicles are further classified into different categories with F1 score greater than 0.90. The 

reported accuracies demonstrate the potential of the developed system to efficiently serve fine-

grained urban traffic monitoring. 
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Chapter 1. Introduction 

1.1  Background 

It was reported in 2014 that more people (54 % of the global population) lived in cities than in 

rural areas (Cohen, 2015). This trend towards city living is predicted to continue, with the urban 

population expected to make up 66 % of the total by 2050 (United Nations, 2014). However, 

continuing urbanization is putting significant pressure on city environments including housing, 

infrastructure, transportation, energy and employment, greatly affecting the quality of life. With 

an urgent need to alleviate this situation, the concept of ‘smart cities’ has gained the attention 

of scientists and practitioners and become a much-studied topic, as it is perceived as a strategy 

to help mitigate many severe urban problems such as traffic pollution, energy consumption and 

waste treatment. Smart mobility is one of the six characteristics of smart cities. As one research 

area in smart mobility, the utilization of Intelligent Transportation Systems (ITS) is foreseen to be 

beneficial for the economy, the environment, as well as traffic conditions (Benevolo et al., 2016). 

Some prevailing topics such as Connected Vehicle (CV) are involved in the field of ITS, and traffic 

monitoring is an effective approach to facilitate the realization of these topics. Among all the 

sensing technologies, lidar has great potential to be widely employed in traffic monitoring. 

Related concepts are introduced in sub-sections 1.1.1 to 1.1.4.                                     

1.1.1 Smart cities                                                                                                                                                  

The ‘Smart City’ is generally defined as a concept that involves implementation and deployment 

of information and communication technology infrastructures to support social and urban 

growth through improving the economy, citizens’ involvement and governmental efficiency 

(Hollands, 2008). It integrates information and communication technology (ICT), and various 

physical devices connected to a network (the Internet of things (IoT)) to optimize the efficiency 

of city operations and services for citizens. In fact, the ideas of smart cities involve the 

combination of other urban policies such as digital, green, and knowledge cities, therefore, it is a 

complex, long-term vision of a better urban area (Benevolo et al., 2016).        
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Smart cities are defined by six characteristics that are described as smart economy, mobility, 

environment, people, living and governance (Lazaroiu and Roscia, 2012). Each aspect plays a 

unique role in the construction of a holistic smart city. Smart mobility, as one of the most 

important facilities to support the functioning of urban areas, involves both environmental and 

economic aspects and requires both high-tech and virtuous people behaviour (Staricco, 2013; 

Benevolo et al., 2016). As transportation issues can create severe problems for the quality of 

urban living, such as pollution and traffic congestion, smart mobility is becoming one of the most 

important topics in smart city studies. It has the ability to produce significant improvements for  

the life quality of almost all citizens through objectives that include reducing pollution, relieving 

traffic congestion, increasing safety, and so on (Frank et al., 2006; Bencardino and Greco, 2014).    

1.1.2  ITS  

ITS are advanced applications to collect, store and process data, information and knowledge 

aimed at planning, implementing and evaluating integrated initiatives and policies of smart 

mobility (Benevolo et al., 2016). ITS incorporate state-of-the-art telecommunication technologies 

and electronics into transportation systems in order to monitor traffic conditions, appropriately 

inform drivers, and enhance the efficiency of road networks (Park et al., 2017). Acquisition of 

important traffic information enables highly flexible monitoring, and the extracted information 

may be used for various evaluations such as safety (Pyykönen et al., 2010) and emission 

measurement (Morris et al., 2012). Ultimately, applications of ITS will benefit both the economy 

and the environment in addition to traffic conditions. It is suggested that, through the utilization 

of ITS, it is possible to reduce energy consumption by 12%, decrease emissions of pollutants by 

10%, increase network capacity by 5-10%, and diminish the number of accidents by 10-15% 

(Benevolo et al., 2016).           

CV, a prevailing topic in the field of ITS, is an advanced sensing and communication technology 

which enables vehicles, roads and infrastructure to “talk” to each other and share vital 

transportation information through advanced wireless communication technologies (Zhao, 2019). 

The communication between vehicles and surroundings can be achieved via Vehicle to 

Infrastructure (V2I), Vehicle to Vehicle (V2V), Vehicle to Cloud (V2C), Vehicle to Pedestrian (V2P) 
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and Vehicle to Everything (V2X) protocols. Collisions can be reduced to some extent through 

adoption of V2V and V2P. Moreover, traffic congestion can be relieved by V2I and V2V 

communication. However, the full benefits of CV applications can only be realised when all road 

users are equipped with communication devices. Unfortunately, there are still a certain number 

of unconnected road users in current traffic flows, which causes a data gap and malfunction of 

CV systems (Xu et al., 2018). Therefore, one challenge for CV applications is to obtain high 

resolution microscopic traffic data (HRMTD) of unconnected road users (Wu, 2018b). Unlike 

macroscopic traffic data which includes traffic flow rates, average speeds, and occupancy, 

HRMTD refers to the trajectory data of the road users (Xu et al. 2018).    

1.1.3 Traffic monitoring          

HRMTD of road users can be obtained by infrastructure-based traffic monitoring systems relying 

on different sensors. In the context of traffic monitoring, the acquisition of traffic information 

mainly presents three challenges: vehicle detection, classification, and tracking (Ambardekar et 

al., 2014; Park et al., 2017). Vehicle detection plays a vital role in traffic management systems 

because it can provide important information such as congestion level and statistical analysis of 

traffic flow (Zhang et al., 2013). Moreover, detection results are regarded as an essential input 

to traffic monitoring systems and are the basis for subsequent processing tasks such as vehicle 

tracking (Liu et al., 2013). Vehicle classification is another indispensable aspect since the 

categories of detected vehicles can supply significant information to ensure that traffic 

regulations are obeyed, such as certain types of vehicles not appearing in particular restricted 

areas, or ordinary vehicles not parking in reserved spaces (Ambardekar et al., 2014; Xiao et al., 

2016b).                                                                                                                                         

Vehicle tracking is important in urban traffic systems. For traffic condition improvement, tracking 

vehicles driving through a controlled area can help to observe and hence prevent traffic violations 

such as speeding, excessive lane changes, as well as drink driving (Sanchez et al., 2010). Moreover, 

microscopic traffic models operate with detailed and precise traffic data through variables 

including individual vehicle position, speed, acceleration, and deceleration. All such variables can 

be acquired through vehicle tracking from various monitoring sensors, with accurate tracking of 
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individual vehicles necessary in creating HRMTD to serve traffic modelling and emission studies. 

In addition to the above three components, vehicle reconstruction is also an important aspect in 

the field of traffic monitoring. On one hand, vehicle size, which can be obtained by measuring 

the complete vehicle shape, is an indispensable variable for vehicle emission modelling (Pinto et 

al., 2020). On the other, it would be beneficial for classification and tracking tasks if accurate 

geometric characteristics of the vehicle could be measured (Xia et al., 2020a; Xia et al., 2020b).         

1.1.4 Lidar technologies in traffic monitoring    

Previous traffic monitoring systems mainly based on traditional low-cost sensors, and vision-

based sensors. With the rapid development in recent years, lidar technologies have shown great 

potential in traffic monitoring.        

Lidar sensors can be divided into two types: flash lidar sensors and rotating lidar sensors. Flash 

lidar sensors are sometimes referred to as Time-of-Flight (ToF) camera sensors or Time-of-Flight 

lidar. Since flash lidar only gives very clear resolution in focused areas, rotating lidar is preferred 

for traffic monitoring from roadside. Existing rotating lidar manufacturers mainly include 

Velodyne, Robosense, Routescene, Leddartech, Riegl, YellowScan, Quanergy and Geodetics 

(Zhao et al., 2020).   

A lidar sensor is usually composed of a number of vertically configured laser beams covering a 

wide vertical field-of-view (FOV). Each laser channel is fixed at a specific elevation angle relative 

to the sensor’s central axis (Figure 1.1). These laser beams rotate 360° along the sensor’s central 

axis to form a series of conical surfaces in one scan. Seen as Figure 1.2, two laser beams form 

their own conical surfaces independently. A panoramic view of the surroundings is thereby 

recorded in the form of a 3D point cloud. Operating at a high frequency, vehicles can potentially 

be detected and tracked directly in 3D with high spatial accuracy and temporal resolution. Such 

panoramic lidar sensors, or some with horizontal FOV smaller than 360°, have been adopted 

extensively for environment perception in autonomous vehicles (Xiao et al., 2015), however, they 

are seeing increased use as traffic monitoring sensors due to the ability to capture objects directly 

in 3D with a high accuracy (Xiao et al., 2016a). The precision of the obtained individual 

measurements can be as high as 2–3cm. Moreover, with the ongoing development of lidar 
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technology and increased ubiquity, the cost of such sensors has dramatically decreased in recent 

years. Therefore, it is foreseen that such sensors will be widely employed in traffic monitoring 

for smart cities in the near future.      

 

                                                            Figure 1.1.  Laser distribution of a lidar sensor.       

 

 
Figure 1.2.  Two laser beams rotating around the central axis (Zhao et al., 2020). 

1.2 Aims and objectives                                                  

From the above introduction, it can be seen that exploiting lidar technologies in traffic monitoring 

is becoming a popular research area. However, the number of related studies is still small 

especially those based on roadside lidar system, and the research scope is limited (see summary 

Section 2.3). Therefore, the research reported in this thesis aims to develop an integrated lidar-
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based roadside traffic monitoring system that can provide fundamental traffic information, 

including the number of vehicles, vehicle dynamics, vehicle dimensions and vehicle types. This 

overall aim is addressed via the following objectives:                                                                     

(1) Quantification of vehicle numbers through vehicle detection                

Propose a machine learning-based method that can detect vehicles from roadside lidar data with 

competitive or improved performance with respect to existing methods.                                                

(2) Acquisition of high-quality vehicle trajectories through vehicle tracking.                                             

Develop a vehicle tracking framework with the purpose of increasing the accuracy, improving the 

completeness and extending the range of the obtained vehicle trajectories. Vehicle dynamics can 

be inferred from the acquired trajectories.   

(3) Measurement of vehicle dimensions through vehicle reconstruction        

Based on the tracking results from Objective (2), reconstruct the vehicles to obtain complete 

vehicle shapes for further analysis.                                      

(4) Identification of vehicle type through fine-grained vehicle classification    

Present a method to classify vehicles into one of four fine-grained classes, car, van, bus and truck. 

This objective is realised as a subsequent procedure of Objective (3), which means the input of 

the classifier should be the reconstructed vehicles.                               

1.3 Thesis outline                                                            

Following the current introductory chapter, the remainder of the thesis is organized as follows:    

Chapter 2 provides a comprehensive literature review of existing traffic monitoring systems and 

related fields to the proposed system.     

Chapter 3 outlines the methodology for each element in the proposed traffic monitoring system.      

Chapter 4 firstly reports the results of experiments to evaluate the performance of the proposed 

traffic monitoring system, then discusses the experiments and the methodologies in order to 

provide insights on real-world implementation.  
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Chapter 5 discusses the influential factors and proposes suggestions for real-world lidar 

installation.                   

Chapter 6 draws conclusions from the study and recommends future work in the research topic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 Chapter 2. Traffic Monitoring Systems                              

Considerable advances have been made in traffic monitoring in recent years (Jain et al., 2019). 

Existing traffic monitoring systems are based on a variety of sensors, such as traditional low-cost 

sensors, vision-based sensors and lidar sensors. To improve knowledge of current traffic 

monitoring technologies, existing representative systems are introduced in this chapter. 

Corresponding studies are summarized in Table 2.1 and explained in sub-sections 2.1 to 2.3.                                                                              

As lidar technologies are developing rapidly in the field of traffic monitoring, there is much 

research potential in lidar-based monitoring systems. Studies related to each element of an 

integrated lidar-based traffic monitoring system are summarized in Section 2.4.           

2.1 Traditional traffic monitoring sensors                                                                                        

The most commonly used traditional traffic monitoring sensors are inductive loop detectors 

(Figure 2.1 (a)) and infrared detectors (Figure 2.1(b)). Inductive loop detectors are electrical 

conducting loops which are insulated and embedded directly in the pavement (Haritha and 

Kumar, 2017). The oscillation frequency of the inductive loop is directly controlled by the 

inductance of the loop which changes with vehicle presence. When a vehicle passes over, rests, 

or stops on the loop area, the inductance of the loop is reduced, showing the presence of a 

vehicle. The principle is based on a change in the inductance within the loop caused by the 

metallic components of the passing vehicles (Sulaiman et al., 2013; Meta and Cinsdikici, 2010). 

Loop detectors can be deployed to monitor traffic in individual lanes or across two lanes 

depending on application.  In addition to detecting vehicles, such sensors also can estimate 

vehicle speeds, as well as classify vehicle types (Lin et al., 2004; Ki and Baik, 2006a; Ki and Baik, 

2006b; Meta and Cinsdikici, 2010; Ali et al., 2011). A set of double-loop detectors, which is known 

as a speed trap, is commonly used for vehicle speed measurement. However, double-loop speeds 

that are computed using digital outputs typically have errors between 3% and 5% for ordinary 

vehicles such as cars and pickups (Ki and Baik, 2006a). Also, inductive loops detector are subject 

to a high failure rate when installed in poor road surfaces. According to Washington State 

inductive-loop failure rate survey results which were based on 23 cities and 7 counties within 

Washington State, the mean failure rate per year was 4.1% among 477 loops (Klein et al.  2006). 
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The installation of inductive loop detectors decreases pavement life as well as stops traffic during 

maintenance and repair (Dangi et al., 2012).                                        

Infrared detectors can actively work day and night and obtain information about vehicle position, 

type, count and speed. The advantages of these infrared detectors are that they can be easily 

mounted on roadsides and can detect infrared light from large distances over a wide area. 

Nevertheless, they are very sensitive to extreme weather conditions such as rain, fog and snow 

(Haritha and Kumar, 2017).      
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Table 2.1.  Summary of existing traffic monitoring Systems          

Traffic monitoring Systems Advantages Disadvantages Studies Output 

Traditional 
sensors 

Inductive loop 
detector 

           Cost-effective 

• Subject to high failure rate 
when installed in poor road 
surfaces  

• Decrease pavement life 

• Block traffic during 
maintenance and repair    

(Lin et al., 2004; Ki and Baik, 
2006a; Ki and Baik, 2006b; 
Meta and Cinsdikici, 2010; 

Ali et al., 2011) 

Vehicle detection 
and classification 
results;  

Individual vehicle 
speeds and 
occupancy time  

Infrared detector  

• Easy to install on 
roadsides 

• detect infrared light 
from large distances 
over a wide area 

Very sensitive to extreme weather 
conditions  

(Haritha and Kumar, 2017) 
Vehicle position, 
type, count and 
speeds   

Vision-
based 

CCTV  
• Richer visual 

information 

• Modern computer 
vision technologies to 
process the 
information 

• Night time detection is difficult 

• Shadow and vehicle occlusions 

• Limited field of view                   

(Im et al., 2016) 

(Ki et al., 2017) 

(Bell et al., 2020)  

Traffic volume and 
vehicle speeds 

UAV 
Only work continuously for a short 
time    

(Khan et al., 2017) 

(Puri, 2005) 
Traffic volume 

                 Lidar-based 

• High fidelity of point 
cloud measurements 

• Work day and night 

• 3D information 

• Lack of spectral and textural 
information 

• Expensive  

(Yao et al., 2012) 

(Börcs and Benedek, 2013) 

(Aijazi et al., 2016) 

(Luo et al., 2016) 

Vehicle detection 
results; 

Vehicle tracking 
results. 
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                                                 (a)                                                                                               (b)                                                                           
Figure 2.1.   (a): Inductive loop detectors (Sulaiman et al., 2013); (b): vehicle detection results in infrared 
Images (Iwasaki et al., 2013). 

2.2 Vision-based traffic monitoring approaches        

With advanced progress in image processing techniques, vision-based methods have become one 

of the primary approaches to monitor traffic, with the following advantages: video cameras can 

produce richer visual information (Figure 2.2(a)) than traditional devices without affecting the 

integrity of the road and the information can be processed more intuitively with modern 

computer vision technologies (Tian et al., 2011).            

A new method was proposed to automatically calculate traffic volume and vehicle speeds by 

pattern analysis using pixel data extracted from Closed-Circuit Television (CCTV) video imagery 

(Im et al., 2016). As the performance of loop detectors to obtain travel speeds is not adequate 

(see introduction in Section 2.1), a new model was presented for measuring the average link 

travel speeds using CCTV (Ki et al., 2017). Automatic Number Plate Recognition (ANPR) 

technology is a mass surveillance method that uses optical character recognition on imagery to 

read vehicle registration plates (Mathews and Babu, 2017). By using ANPR on CCTV systems, it is 

possible to monitor individual vehicles, automatically providing information about the speeds 

and flow of various routes. However, ANPR systems cannot always offer an overall extent of road 
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users due to specific focus on recognizing characters in car plates and discarding candidate 

detections if car plates are not fully recognized  (Buch et al., 2011). A vehicle detection and 

tracking workflow via fixed Digital Single-Lens Reflex (DSLR) camera was  devised by Bell et al. 

(2020). Deep learning algorithm You Only Look Once (YOLO) v2 was used for vehicle detection, 

while Simple Online Real-time Tracking algorithm was enabled for vehicle tracking.                                                

Unmanned Aerial Vehicles (UAVs) are increasingly being used to collect data beyond the range 

of fixed sensors in order to obtain detailed and accurate data over space and time. This can be 

particularly useful in areas where fixed sensor infrastructure is not available or it is not financially 

feasible to install a high density of fixed sensors in an area to be monitored (Khan et al., 2017). 

Reviews about existing UAV-based traffic monitoring studies can show the advantages of UAVs 

in an overview perspective. Puri (2005) provided a technical report of research related to the 

application of UAVs for traffic management. The report pointed out that UAVs can 

simultaneously view an entire network of roads and inform the base station of emergency or 

accident sites. Khan et al. (2017) presented a universal guiding framework for ensuring a safe and 

efficient execution of a UAV-based study. The proposed framework provided a comprehensive 

guideline for an efficient conduction and completion of a drone-based traffic study. It gave an 

overview of the management in the context of the hardware and the software entities involved 

in the process. The practical applications of the proposed guiding framework of the UAV-based 

traffic monitoring and analysis study showed great enlightenment to future research. In addition 

to review work, concrete examples can provide a better understanding of how UAV can be used 

in traffic monitoring. A UAV-based smart traffic surveillance system using 5G technology was 

proposed by Khan et al. (2020) (Figure 2.2 (b)) to reduce the number of traffic accidents by 

managing risks. In the system, the UAV monitors the traffic and detects the excess speed limit 

and other traffic safety violations on highways and roads over a designated area. When a 

violation is detected, the UAV warns the vehicle and driver through an integrated module on 1st 

time as a warning and issue a ticket on the 2nd time and sends the information to the nearby 

base station. The concerned authorities will take legal action against the violation.         
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                                                  (a)                                                                                           (b)                 

Figure 2.2.  (a) CCTV image data (RAC, 2017); (b) a UVA-based traffic monitoring system(Khan et al., 2020) 

Despite the popularity of vision-based methods, it is undeniable that there are issues that make 

vision-based traffic monitoring challenging. In particular, night time detection is difficult due to 

poor illumination and sensitivity to light (Robert, 2009). Moreover, for CCTV systems, shadows 

and vehicle occlusions create difficulty in vehicle detection, tracking and so on. Because of the 

fixed view angle of cameras, it is often difficult to obtain overall information of vehicles, especially 

when they undergo sudden motion changes (Saunier and Sayed, 2006). All the above factors 

affect either the continuity of the monitoring system or the quality of the obtained traffic data. 

For UAV-based video systems, the biggest issue is that they can only work for a short time due to 

the limitation of hardware and the flying regulations of the city where the UAV is located, making 

continuous traffic monitoring infeasible.                    

2.3 Lidar-based traffic monitoring systems                                                        

Recently, lidar technologies have developed rapidly in the field of traffic monitoring due to 

reduced cost and high fidelity of point cloud measurements (Shirazi and Morris, 2016). Moreover, 

lidar-based traffic monitoring can work at night because active lidar sensing can be obtained 

without the requirement of illumination. Furthermore, mobile or fixed lidar systems usually 

consist of a certain number of laser arrays rotating rapidly around the vertical axis so that the 

surroundings are continuously scanned, greatly improving the completeness of the acquired data 

(Xiao et al., 2017). Turning movements of road users at junctions can therefore be monitored, 
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which is a challenge for traditional traffic monitoring sensors.  Another important fact is that lidar 

data contains 3D information of vehicles that is essential for traffic modelling. Take VLP-16 lidar 

sensor manufactured by Velodyne as an example. One data frame is generated after the sensor 

completes a 360° scan and the collected point clouds are stored in a packet capture (pcap) file. 

For each point, information including the location (X,Y,Z coordinates), the distance to the sensor, 

intensity, laser ID, azimuth and timestamp is stored in the pcap file. Figure 2.3 shows a frame of 

raw lidar data collected by a VLP-16 lidar sensor. Different colours of the points represent the 

intensity of the objects. The main drawback of lidar data is the lack of spectral and textural 

information. In addition, high profile laser scanners can still be costly. For example, a RoboSense 

RS-Ruby Laser Rangefinder with 128 beams can cost $30,714.00.    

 
Figure 2.3.  A frame of lidar data collected by a VLP-16 lidar sensor. 

Yao et al. (2012) investigated the theoretical background for airborne laser scanning systems to 

be used for traffic monitoring. A complete scheme was proposed to analyse urban traffic in real-

life situations, which combined vehicle detection successively with the motion classification 

method. The velocity of the moving vehicle could be derived with knowledge about the vehicle 

shape. This scheme provided a good representation of the whole traffic situation and the velocity 

distribution in urban areas. Although the results showed potential in traffic monitoring 

applications, they were not comparable with those from optical or ground-based sensors. Börcs 

and Benedek (2012) presented a new model for joint extraction of vehicles and coherent vehicle 

groups in airborne lidar point clouds collected from crowded urban areas. Firstly, the 3D point 

set was segmented into terrain, vehicle, roof, vegetation and clutter classes. Then the points with 

the corresponding class labels and intensity values were projected to the ground plane, where 

the optimal vehicle and traffic segment configuration was described by a Two-Level Marked Point 
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Process (L2MPP) model of 2D rectangles. Finally, a stochastic algorithm was utilized to find the 

optimal configuration. In the proposed model, the vehicles were grouped based on similar 

orientation, so more complex vehicle arrangement patterns such as strongly curved exit ramps 

or roundabouts could not be handled.  Aijazi et al. (2016) presented a new method for automatic 

detection of vehicles using a compact 3D Velodyne sensor mounted on traffic signals in the urban 

environment. The sensor was then mounted on top of a traffic signal to detect vehicles at road 

intersections. The 3D point cloud obtained from the sensor was first over-segmented into super-

voxels and then objects were extracted using a Link-Chain method. The segmented objects were 

then classified as vehicles or non-vehicles using geometrical models and local descriptors. The 

results evaluated on real data demonstrated the suitability of the proposed solution for such 

traffic monitoring applications. However, vehicle and non-vehicle classification stage was still 

based on a rule-based method while machine learning methods have become more and more 

widely used. Luo et al. (2016) published a novel real-time multiple vehicle detection and tracking 

system based on a Velodyne HDL-32E sensor. In this system, a radially bounded nearest 

neighbour algorithm was applied for clustering. Hungarian algorithm procedure and adaptive 

Kalman filtering were used for data association and tracking algorithm. Even though this article 

was claimed as vehicle detection and tracking, it was not clearly described how to distinguish 

vehicles and non-vehicles. The above research has only focused on one or two of vehicle 

detection and tracking which are only two aspects of an overall traffic monitoring framework.  

Despite the fact that extensive studies into traffic monitoring have been conducted, none of the 

identified traffic monitoring systems have the ability to provide comprehensive traffic 

information including the number of vehicles, vehicle dynamics, vehicle dimensions and vehicle 

types simultaneously. As can be seen from the above, vehicle dimensions and vehicle types are 

largely ignored in most of the approaches. Also, vehicle trajectories from the existing tracking 

procedures are not of high quality specifically regarding the effective range. Therefore, there is 

an urgent need to provide an integrated framework for the comprehensive monitoring of traffic.  
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2.4 Lidar-based traffic information acquisition      

As mentioned in  the introductory chapter, the acquisition of information in the context of traffic 

monitoring mainly includes four challenges: vehicle detection, tracking, reconstruction and 

classification. As can be seen from the review undertaken in Section 2.1, the number of existing 

lidar-based traffic monitoring studies, especially those covering the aforementioned four 

challenges, is still quite limited. Therefore, it is necessary to explore the existing lidar-based 

approaches to each of the challenges, to provide insights into the development of an integrated 

lidar-based traffic monitoring system. Corresponding literature is summarised in the subsequent 

sections.             

2.4.1 Established vehicle detection methods                           

An increasing number of methods have been developed for vehicle detection based on lidar 

systems. These methods can be categorized into either established methods (Section 2.4.1) or 

state-of-the-art deep learning related methods (Zhang et al., 2020) (Section 2.4.2). Established 

vehicle detection methods mainly incorporate three stages: background filtering to remove 

unrelated points; clustering to group points into individual objects; vehicle and non-vehicle 

classification to distinguish vehicles from other objects (Zhao et al., 2019; Zhang et al., 2020). 

After background filtering, only moving points from on-road objects such as vehicles and 

pedestrians remain. These scattered points are then clustered into different groups, with each 

representing an individual object. The purpose of the following procedure is to distinguish 

vehicles from other objects, so vehicle and non-vehicle classification is performed by machine 

learning methods.                                                 

2.4.1.1 Background filtering (moving points detection)   

In terms of creating HRMTD, foreground information includes all interested road users (e.g., 

vehicles, pedestrians, and cyclists), while background information ordinarily refers to non-

interesting objects such as static background objects (e.g., ground surfaces and buildings) and 

dynamic background objects (e.g., swaying branches and bushes) (Cheung and Kamath, 2005). 

This initial background filtering stage not only provides more effective data to track and detect 
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road users, but also significantly reduces the computational cost in the subsequent procedures 

(Zhao, 2019).                                                                                                                       

There are two predominant strategies for background filtering in research: distance comparison 

(Xiao et al., 2016a; Zhang et al., 2019; Zhao, 2019) and density statistics (Xiao et al., 2017; Wu, 

2018a; Wu et al., 2018; Cui et al., 2019). In the first strategy, Zhao (2019) pre-saves the distance 

information of background objects in a 2D Azimuth-Channel-Distance table (Figure 2.4). Each row 

of this 2D table represents each azimuth interval of the laser beams during 0° to 360° scan 𝜃𝜃; 

each column of the table indicates each laser beam of the lidar sensor 𝛾𝛾 and the content of the 

table is the distance value of the detected background point 𝐷𝐷, which is shot by a given laser 

beam at a specific azimuth angle. When a raw lidar frame is input, it is parsed and each point is 

with attributes of Distance 𝐷𝐷𝑖𝑖 , Orientation 𝜃𝜃𝑖𝑖 and Laser Beam 𝛾𝛾𝑖𝑖 . 𝐷𝐷𝑖𝑖 is compared with the 

distance 𝐷𝐷  from the Azimuth-Channel-Distance table. If the pre-defined filtering criteria is 

satistified, this point is regarded as a target point and be saved, otherwise it is regarded as a 

background point and be removed.       

 
Figure 2.4.  Flowchart of Azimuth-Channel-Distance Background Filtering Method (Zhao, 2019). 
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Similarly, a distance map is used to represent the static background in the proposed Max-distance 

method from Xiao et al. (2016a). Due to the high resolution of lidar data and the complexity of 

surrounding environments, there may be several distance values for points from the same laser 

beam at the same horizontal angle in the raw data used for background construction. Therefore, 

as well as the farthest distance, the mean distance of each laser beam with a certain azimuth 

angle is also restored in the background dataset by Zhang et al. (2019).             

In the second strategy, an algorithm referred to as 3D Density-Statistic-Filtering (3D-DSF) is 

relatively popular in roadside lidar data processing (Wu, 2018a; Wu et al., 2018; Cui et al., 2019), 

seen as Figure 2.5. The algorithm collects raw data during a certain period as the initial input for 

background learning. The data frames in a period were aggregated based on lidar point 

coordinates in Frame Aggregation stage. Afterwards, the 3D space is divided into multiple cubes 

for the purpose of density statistics, and the point density of each cube is calculated. A threshold 

of point density of the cubes is then determined to distinguish background and non-background 

cubes. The background matrix can be constructed once the traverse over all the cubes is finished.  

When real-time lidar data is input, if the location of a point can be identified in the background 

matrix, this point is regarded as a background point and removed. Otherwise, the point is 

considered as a moving object point and kept in the lidar data. Another algorithm, usually called 

Nearest-Point (Xiao et al., 2017) is introduced from the principle that points are accumulated on 

static objects, while those on moving objects locate along non-stationary trajectories. Similar to 

the aforementioned cube, a temporal window is defined, assuming a certain movement speed 

and a proper object size. The number of neighbour points for the background elements is 

significantly larger than that of neighbour points for moving objects. One limitation of the second 

strategy is that the accuracy of the background filtering algorithm directly depends upon the size 

of each cube or window.  
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Figure 2.5.  Flowchart of 3D-DSF algorithm (Wu et al., 2018). 

2.4.1.2 Clustering    

In order to cluster objects from lidar data, the related methods can be divided into four categories 

according to the internal relationships among points: centroid-based; distance-based (originally 

known as connectivity-based); distribution-based and density-based clustering. The 

representative method of centroid-based clustering is K-means clustering, in which clusters are 

represented by a central vector. When the number of clusters is fixed to K, the clustering task is 

transferred to an optimisation problem: to find the K cluster centres and assign the objects to 

the nearest one, such that the distance between the object and the selected cluster centre is 

minimised (Kanungo et al., 2002). The advantage of the K-means clustering method is the low 

computational cost. However, the number of K clusters must be predefined, which renders the 

method inconvenient to use in practice. Moreover, since K-means begins with a random choice 

of cluster centres, varying clustering results may be generated on different runs.                

Distance-based clustering methods group objects according to computed distance among points. 

Thus, the key issue is how to compute distances among points. Except for different options of 
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distance functions, linkage criteria for clusters such as single-linkage (the minimum object 

distances), complete-linkage (the maximum object distances), and average-linkage 

(unweighted/weighted pair group method with arithmetic mean) also needs to be determined. 

A representative distance-based clustering method is Euclidean Cluster Extraction(ECE) (Dieterle 

et al., 2017), which is a method for identifying subsets in an input point cloud set, achieved by 

aggregating points with a recursive nearest neighbour search. The primary parameters consist of 

the minimum and maximum number of points in one cluster, and the cluster tolerance distance. 

It is concluded that distance-based clustering methods are computationally expensive for large 

datasets (Beeferman and Berger, 2000).     

The notion of distribution-based clustering methods is that objects within the same cluster have 

similar distributions. Models that capture correlation and dependence between properties in 

clusters are needed. One representative method is Expectation-Maximisation (EM) clustering 

using Gaussian mixture models (GMM), in which the data is modelled with a fixed quantity of 

Gaussian distributions. The models are initialised randomly, with the corresponding parameters 

being iteratively optimised to better fit the dataset (Fraley and Raftery, 1998). One disadvantage 

of distribution-based clustering methods is that it is difficult to ascertain concisely defined 

mathematical models in practice.    

In density-based clustering, points in the higher density areas are grouped as clusters, while 

points in the lower density areas are considered as either noises or borders. Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) is the best known density-based clustering 

method (Ester et al., 1996). It connects points based on the requirement that the number of 

points within a certain distance threshold (searching radius) satisfy a density criterion (MinPts). 

Point with more than MinPts neighbours within this radius (including the query point) is 

considered to be a core point. All neighbours within the searching radius of a core point are 

considered to be part of the same cluster as the core point (direct density reachable). If any of 

these neighbours is again a core point, their neighbourhoods are transitively included (density 

reachable). Non-core points in this set are called border points, and all points within the same 

set are density connected. Points which are not density reachable from any core point are 

considered noise and not belong to any cluster. Figure 2.6 illustrates the above concepts. The 
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MinPts parameter is 4, and the searching radius is indicated by the circles. N is a noise point, A is 

a core point, and points B and C are border points. The major advantages of DBSCAN include that 

there is no pre-set for the number of clusters and the clusters can be in arbitrary shapes. However, 

DBSCAN algorithm fails in case of varying density clusters.     

 
Figure 2.6.  Illustration of the DBSCAN algorithm (Schubert et al., 2017). 

2.4.1.3  Vehicle and non-vehicle classification      

A wealth of studies of object classification from 3D lidar data rely on machine learning strategies. 

Traditional machine learning has proven to be an efficient approach to object classification from 

lidar data, with feature selection and classifier training being two important factors in its effective 

implementation. A summary of some representative methods in recent years has been made in 

Table 2.2 with regard to the selected features, the adopted classifiers, the data type and the 

objects classes.  

Low-level features based on a small group of points are utilised in the majority of related studies. 

As shown in Table 2.2, this includes: the number of points in the object cluster (Cui et al., 2019; 

Zhao et al., 2019; Song et al., 2021; Zhang et al., 2021); object dimension indices including length, 

width and height (Xiao et al., 2016b; Cui et al., 2019; Zhang et al., 2020; Song et al., 2021); height 

profile (Cui et al., 2019; Song et al., 2021); difference between height and length (Cui et al., 2019; 

Song et al., 2021); distance to the lidar instrument (Cui et al., 2019; Zhao et al., 2019; Song et al., 

2021; Zhang et al., 2021); and statistics on point distribution in the object cluster (Xiao et al., 

2016b; Zhao et al., 2019; Zhang et al., 2020).    
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As can also be seen from Table 2.2, Naive Bayes, K-Nearest Neighbor (KNN), Support Vector 

Machine (SVM), Random Forest (RF), Back Propagation Neural Network (BPNN), Back 

Propagation Artificial Neural Network (BP-ANN) and Probabilistic Neural Network (PNN) are 

commonly used classifiers in lidar-based object classification. Some related studies adopted a 

single classifier (Yao et al., 2011; Wang et al., 2017; Zhao et al., 2019; Zhang et al., 2021), while 

others experimented on several classifiers and recommended one with the most optimal 

performance (Xiao et al., 2016b; Cui et al., 2019; Zhang et al., 2020; Song et al., 2021). Naive 

Bayes, KNN, RF and SVM were tested to detect vehicles from roadside lidar, with RF providing 

the highest detection  accuracy (Cui et al., 2019). SVM, RF, BPNN and PNN were employed to 

distinguish the road users into ten groups. This demonstrated that SVM utilising the Gaussian 

kernel function has the greatest ability to classify road-users (Song et al., 2021). SVM and RF were 

used to recognise vehicles from on-board lidar data, with the two methods showing similar 

performances. It was noted that RF is capable of evaluating the importance of each feature in the 

feature set (Xiao et al., 2016b). Similarly, both RF and SVM were assessed with four different 

feature sets and it was reported that RF performed slightly better than SVM (Zhang et al., 2020).        

2.4.2 State-of-the-art vehicle detection methods           

There has been an increasing number of deep learning related methods developed for object 

detection from 3D lidar data in recent years. These methods are summarized as follows:           

2.4.2.1 3D object detection with grid-based methods        

To tackle the irregular data format of point clouds, most existing works project the point clouds 

to regular grids to be processed by a 2D or 3D Convolutional Neural Network (CNN). The pioneer 

work Multi-View 3D networks (MV3D) (Chen et al., 2017) projects the point clouds to 2D birds-

eye view grids and places predefined 3D anchors for generating 3D bounding boxes. ORiented 3D 

object detection from PIXel-wise neural network predictions (PIXOR) (Yang et al., 2018b) projects 

all points onto a 2D feature map with 3D occupancy and point intensity information to remove  

the expensive 3D convolutions. 
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Table 2.2.  Vehicle and non-vehicle classification methods 

References Selected features Classifier Data             Object classes 

(Cui et al., 
2019) 

Object length  
Object height  
Distance between the object and the 
lidar  
Number of points 
Difference between the height and 
the length 
Object height profile       

Naive 
Bayes  
KNN 
RF 

SVM 

Roadside 
lidar Vehicle, non-vehicle  

(Song et al., 
2021) 

Max-length in the trajectory  
Number of points in the frame with 
max length  
Nearest distance from object points 
to lidar 
Max-height in the trajectory  
The difference between length and 
height  
Target height profile 

SVM  
RF  

BP-NN 
PNN 

Roadside 
lidar 

Ten classes including 
car, bus, pedestrian, 

et al. 

(Wang et al., 
2017) 

Eigenvalue, eigenvector, histogram 
of two planes, and slice feature SVM On-board 

lidar 
Pedestrian, non-

pedestrian 
(Yao et al., 

2011) 
Elongatedness, planarity, vertical 
position vertical range                                 SVM Airborne 

lidar Vehicle, non-vehicle 

(Zhao et al., 
2019) 

Total number of points in a cluster 
The distance of the reference point 
of each cluster to the lidar sensor   
Direction of the clustered points’ 
distribution 

BP-ANN Roadside 
lidar Vehicle, Pedestrian 

(Xiao et al., 
2016b) 

Object dimension, volumetric 
feature, relative position, vertical 
point distribution histogram  

RF  
SVM 

On-board 
lidar Vehicle, non-vehicle 

(Zhang et al., 
2020) 

The vertical point distribution 
histogram of the cluster 
The standard deviation of points in 
the cluster 
The volume size of the cluster 
The area of the 2-D minimum 
bounding box of the cluster 

SVM  
RF  

Rule-
based 

Roadside 
lidar Vehicle, non-vehicle 

(Zhang et al., 
2021) 

Number of points (NP) 
Max intensity change (MIC)          
Distance between tracking point and 
lidar (D) 
Max distance in the XY plane (MDXY) 
Max distance in Z-axis (MDZ)         

PNN Roadside 
lidar 

Pedestrian, bicycle, 
passenger car, and 

truck 
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Some other works divide the point clouds into 3D voxels to be processed by 3D CNN. For example, 

VoxelNet (Zhou and Tuzel, 2018) divides a point cloud into equally spaced 3D voxels and 

transforms a group of points within each voxel into a unified feature representation through the 

newly introduced voxel feature encoding layer. Graham et al.(2018) introduced 3D sparse 

convolution for efficient 3D voxel processing. Sparsely Embedded CONvolutional Detection 

(SECOND) (Yan et al., 2018) simplifies VoxelNet and speeds up sparse 3D convolutions. 

PointPillars (Lang et al., 2019) replaces all voxel computation with a pillar representation, a single 

tall elongated voxel per map location, to improve backbone efficiency. A two-stage 3D detector, 

CentrePoint (Yin et al., 2021), uses a standard lidar-based backbone network, i.e. VoxelNet or 

PointPillars, to build a representation of the input point-cloud. This representation is then 

flattened into an overhead map-view and a standard image-based keypoint detector is used to 

find object centres. A summary of the above-mentioned networks is shown in Table 2.3.  

Table 2.3.  Representative grid-based 3D vehicle detection networks. 

Network Network architecture Strategy to deal with lidar 

MV3D    
3D proposal Network+  Region-based Fusion 

Network 
2D bird’s eye view grids 

PIXOR Backbone network + Header network 2D feature map with 3D 
occupancy and point intensity 

VoxelNet 
Feature learning network+ Convolutional 
middle layers+ Region proposal network 

Equally spaced voxels 

SECOND 
Voxelwise feature extractor+ Sparse 

convolutional middle layer+ RPN(Region 
Proposal Network) 

Voxels 

PointPillars Pillar Feature Network +2D CNN Backbone +SSD 
Detection Head Pillars 

CentrePoint 
3D backbone (VoxelNet or pointpillars)+2D 

CNN+ MLP 
Voxels or Pillars 

2.4.2.2  3D object detection with point-based methods                 

Grid-based methods are generally efficient for accurate 3D proposal generation, but the 

receptive fields are constrained by the kernel size of 2D or 3D convolutions. Therefore, 3D object 

detection methods operating directly on points have recently emerged.       

PointNet is a pioneering effort that directly processes point sets (Qi et al., 2017a). The basic idea 

of PointNet is to learn a spatial encoding of each point and then aggregate all individual point 
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features to a global point cloud signature. A hierarchical neural network, named as PointNet++ 

(Qi et al., 2017b), was proposed  to process a set of points sampled in a metric space in a 

hierarchical fashion. The set of points are firstly partitioned into overlapping local regions, in 

which local features are extracted by capturing fine geometric structures from small 

neighbourhoods. Afterwards, such local features are grouped into larger units and processed to 

produce higher level features. The above process is repeated until the features of the whole point 

set are obtained.     

Although PointNet and PointNet++ were proposed mainly for scene segmentation, they have 

served in other novel object detection networks. FPointNet (Qi et al., 2018) proposes to apply 

PointNet for 3D detection from the cropped point clouds based on the 2D image bounding boxes. 

PointRCNN (Shi et al., 2019a) generates 3D proposals directly from the whole point clouds instead 

of 2D images for 3D detection only  with point clouds, and the following work  Sparse-To-Dense 

3D Object Detector (STD) (Yang et al., 2019) proposes the sparse to dense strategy for better 

proposal refinement. Qi et al. (2019) propose the VoteNet network which adopts the Hough 

voting strategy1 for better object feature grouping. Compared to traditional Hough voting, where 

the votes (offsets from local key points) are determined by look ups in a pre-computed codebook, 

Qi et al. propose to generate votes with a deep network based voting module. A 3D Single Stage 

object Detector (3DSSD) introduces Furthest-Point-Sampling based on Feature distance (F-FPS) 

as a complement of Furthest-Point-Sampling based on 3D Euclidean distance (D-FPS) and 

develops the first one stage object detector operating on raw point clouds (Yang et al., 2020). 

The above point-based methods are mostly based on the PointNet series, especially the set 

abstraction operation (Qi et al., 2017b) which enables flexible receptive fields for point cloud 

feature learning.                

2.4.2.3  3D Object Detection with point-and-voxel methods             

As described above, state-of-the-art 3D object detection approaches exploit either 3D voxel CNN 

with sparse convolution or PointNet-based networks as the backbone. Generally, the 3D voxel 

 
1 the key concept of Hough voting strategy is to perform a ranking of the image features (such as edges and corners) 
in the parameter space of the shape to be detected. Votes are counted in an accumulator for which the 
dimensionality is equal to the number of unknown parameters of the considered shape class.  
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sparse CNNs are more efficient (Yan et al., 2018; Shi et al., 2020c) and are able to generate high-

quality 3D proposals, while the PointNet-based methods can capture more accurate contextual 

information with flexible receptive fields. If the advantages of two types of networks are 

integrated, object detection performance can be further improved. According to existing related 

literature, PointVoxel-Region-based CNN (PV-RCNN) (Shi et al., 2020a) and the improved version 

of it, PV-RCNN++ (Shi et al., 2021) , are two main networks that have realised the aforementioned 

integration.                                                                                                                                                  

PV-RCNN, a two-stage 3D detection framework, utilizes a 3D voxel CNN with sparse convolution 

as the backbone for efficient feature encoding and proposal generation. Given each 3D proposal, 

to effectively pool its corresponding features from the scene, two novel operations are proposed: 

the voxel-to-key-point scene encoding, which summarizes all the voxels of the overall scene  

feature volumes into a small number of feature key-points, and the point-to-grid RoI feature 

abstraction, which effectively aggregates the scene key-point features to RoI grids for proposal 

confidence prediction and location refinement.                                                               

Compared with PV-RCNN, the improvements of PV-RCNN++ mainly lie in two aspects. Firstly, a 

sectorized proposal-centric key-point sampling strategy, which concentrates the limited key-

points to be around 3D proposals to encode more effective features, is proposed for scene 

encoding and proposal refinement. Meanwhile, the sectorized Furtherest Point Sampling (FPS) is 

conducted to parallel sample key-points in different sectors to keep the uniformly distributed 

property of key-points while accelerating the key-point sampling process. Secondly, VectorPool 

aggregation is proposed as a novel local feature aggregation operation for more effective feature 

encoding from local neighbourhoods.                

2.4.3 Fundamentals of object tracking      

Vehicle tracking is a critical element in traffic monitoring systems. Hence, fundamentals including 

initialization and state update, data association and track management, are introduced in this 

section to provide the basic knowledge of object tracking. Afterwards, two predominant object 

tracking strategies, namely tracking-by-detection and tracking-before-detection, are summarized 

in sub-sections 2.4.4 and 2.4.5.            
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2.4.3.1 Initialization and state update                                                                                                                                                                                                                            

A review of related literature shows that Kalman Filter (KF) (Kalman, 1960), Extended Kalman 

Filter (EKF) (Bar‐Shalom et al., 1990), Unscented Kalman Filter (UKF) (Chen et al., 2018) and 

Particle Filter (PF) (Doucet et al., 2000) are commonly used filters for initializing and updating 

tracks in object tracking.                                                                        

KF is recommended when working with Gaussian noise processes of zero mean in linear dynamic 

systems and observation models. However, when the system dynamics and observation 

equations are nonlinear, EKF becomes the better choice. UKF can be used to track both linear 

and nonlinear motions due to the unscented transform, a method for calculating the statistics of 

a random variable which undergoes a nonlinear transformation. The above parametric filters are 

computationally cost-efficient, but they cannot represent complex beliefs caused by data 

ambiguities. In contrast, non-parametric filters, such as PF, can represent arbitrary beliefs by a 

set of particles. Nevertheless, the computational cost is at an exponential rate of the 

dimensionality of the state.        

The tracker has to be placed near the measurements in the first place. For first time step, every 

track is distributed evenly in the tracking region. When the measurements have been received 

by the next time step, the tracks are relocated to the last known measurement point which has 

not been associated with the existing tracks. If all measurements have been associated with 

existing tracks, the remaining uninitialized tracks are to be relocated randomly in the tracking 

region (Rachman, 2017).   

2.4.3.2  Data association   

The data association problem in object tracking is classically solved by filtering algorithms such 

as Multiple Hypothesis Tracking (MHT), Joint Probabilistic Data Association (JPDA), Global 

Nearest Neighbour (GNN) and Probability Hypothesis Density (PHD).     

MHT is one of the earliest proposed multi-object tracking filters. It produces an optimal state 

estimation by generating a hypothesis (track) for each possible track-measurement pair. The 

resulting target states from each hypothesis are then estimated using a KF. At the subsequent 

scan, the new measurements will generate a new set of hypotheses for each track and the 
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probabilities of these joint hypotheses are updated recursively. The track with the highest 

likelihood is selected to be the target’s state, while all the track hypotheses are maintained. (Reid, 

1979; De Feo et al., 1997; Blackman, 2004; Kim et al., 2015).         

JPDA was first proposed in the early 1980s. Instead of associating all new measurements to each 

hypothesis track, it associates the new measurements to existing tracks based on their joint 

probabilistic score, which measures how well the association between the measurement and the 

track is. After calculating the score for each possible pair, the tracks are updated with the sum of 

measurements weighted by their respective scores. However, the traditional JPDA formulation 

requires that the number of targets/tracks to be known beforehand and remains fixed (De Feo 

et al., 1997; Rezatofighi et al., 2015).            

Both MHT and JPDA suffer from high computational and memory cost. Besides, with an 

increasing number of targets and measurements, the operation becomes intractable and is not 

feasible for real time applications. Various work has been done on approximating or simplifying 

part of the formulation to make both filters tractable at the expense of accuracy (Kim et al., 2015; 

Rezatofighi et al., 2015).                                     

GNN (Radosavljević, 2006) is another tracking approach, where only a single hypothesis is 

maintained for each target at each time step. Instead of using a joint probabilistic score for pair 

evaluation, the best pair is selected to be the one that minimises a particular cost function. The 

cost function can be in the form of a Mahalanobis distance2 between each possible pair, a 

similarity measure in terms of size and shape, or a similarity measure between features of the  

measurements to the target. However, it performs poorly when there are crossings among the 

targets’ paths.             

PHD shows good robustness and low computational complexity. The targets and measurements 

are modelled as random finite sets (RFS) instead of dealing with explicit association between 

 
2 Given a probability distribution  𝑄𝑄  on  𝑅𝑅𝑁𝑁, with mean  𝜇𝜇 = (𝜇𝜇1 , 𝜇𝜇2 , 𝜇𝜇3 , . . . , 𝜇𝜇𝑁𝑁 )𝑇𝑇 and positive-definite covariance 
matrix 𝑆𝑆 , the Mahalanobis distance of a point �⃗�𝑥 = (𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3 , . . . , 𝑥𝑥𝑁𝑁 )𝑇𝑇  from 𝑄𝑄 is : 𝑑𝑑𝑀𝑀(�⃗�𝑥,𝑄𝑄) =
 �(�⃗�𝑥 − 𝜇𝜇)𝑇𝑇𝑆𝑆−1(�⃗�𝑥 − 𝜇𝜇)  
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them.  A mixture of probability density functions are used to represent the target states. Using 

RFS allows the filtering problem to be formulated in a Bayesian framework to jointly estimate the 

number of targets and their states (Mahler, 2003). By using linear Gaussian multi-target model, 

a closed form solution was able to be formulated by Vo and Ma in 2006. The Gaussian Mixture 

Probability Hypothesis Density (GMPHD) filter proposed by Vo and Ma has been successfully 

implemented in numerous real time applications with promising results (Clark et al., 2006; Vo 

and Ma, 2006; Jeong, 2007; Pham et al., 2007).           

As summarized in the above section, traditional filter-based approaches have been widely used 

in object tracking.  However, they are vulnerable to extreme motion conditions, such as sudden 

braking and turning (Wang et al., 2020b). Besides, those methods tend to struggle if the initial 

assignment is wrong (Pöschmann et al., 2020).          

Deep learning strategies have achieved state-of-the-art results in perception tasks such as image 

classification, segmentation, and object tracking. Milan et al. (2017) proposed the first fully end-

to-end multi-object tracking method based on deep learning. The method predicts the 

assignments of each target, one at a time, using a recurrent neural network (RNN). In contrast, 

the approach from Baser et al. (2019) feeds all detections and their learned similarity scores at 

once into a CNN to predict the assignments. Besides, Weng et al. (2020b) presented two 

techniques to improve discriminative feature learning for multiple object tracking: (1) instead of 

obtaining features for each object independently, a novel feature interaction mechanism based 

on the Graph Neural Network is proposed; (2) instead of obtaining the features from either 2D 

or 3D space in prior work, a novel joint feature extractor to learn appearance and motion features 

from 2D and 3D space simultaneously is proposed. Moreover, an end-to-end 3D object detection 

and tracking network, PointTrackNet, is proposed to generate foreground masks, 3D bounding 

boxes, and point-wise tracking association displacements for each detected object (Wang et al., 

2020b). The network merely takes two adjacent point cloud frames as input and outputs object 

bounding boxes and corresponding trajectories. A point-wise data association method is 

designed to reduce the possible negative impacts caused by degraded object detection. 

Furthermore, a novel optimization-based approach that does not rely on explicit and fixed 

assignments is proposed (Pöschmann et al., 2020). The result of an off-the-shelf 3D object 
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detector is represented as GMM, which is incorporated in a factor graph framework. This 

guarantees the flexibility to assign all detections to all objects simultaneously. As a result, the 

assignment problem is solved implicitly and jointly with the 3D spatial multi-object state 

estimation using non-linear least squares optimization.            

2.4.3.3 Track management           

According to the multi-object tracking literature, the tracking management is mainly concerned 

with hatching new tracks when objects enter the scene, pruning the tracks during the tracking 

process and terminating tracks when objects leave the scene.   

Normally, all unmatched detections are considered as potential new objects entering the scene 

(Weng et al., 2020a). According to Weng et al. (2020a) and  Weng et al. (2020b), if a new object 

is able to find the match in certain frames continuously, it will be assigned an ID and be added to 

the set of tracked objects. However, if this object stops finding the match before being assigned 

an ID, the birth count is reset to zero. If a tracked object cannot find the matched detection in 

certain frames, it is believed that this object has disappeared and will be deleted from the set of 

tracked objects. Whereas, if this tracked object can still find a match before being deleted, it is 

considered that the object still exists and the death count will be reset to zero. In the first frame 

of the data, an empty set is initialized to store the tracked objects.      

In order to prevent duplicate tracks associated with the same object, a track pruning mechanism 

is implemented based on track history or Euclidean distance of the neighbouring tracks (Rachman, 

2017). In the first approach, the last n KF states of each track are stored in history in the first 

place. Then the difference between the states history value of a track towards all other tracks is 

computed. If the cumulative sum of the standard deviations is smaller than a predefined 

threshold (history gating level), the track is considered as duplicate. Finally, the track that has the 

shorter lifetime is deleted (i.e. to preserve track continuity). The second approach computes the 

Euclidean distance of a track towards each one of others. If the distance is less than the physical 

distance between two moving traffic objects in practice, the newer track will be deleted. Sualeh 

and Kim (2019) proposed an example of the second approach: a check is set to ensure that 

multiple tracks do not get associated with the same object (duplicate tracks) for more than five 
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consecutive time steps. The states of all tracks are traversed in every time step with Euclidian 

distance threshold of less than one metre. The track with highest maturity count is retained and 

the rest are pruned out.                    

2.4.4 Tracking-by-detection                                           

Most existing lidar-based object tracking methodologies adopt a tracking-by-detection principle 

in which objects are detected before they are tracked. According to the methodology exploited 

in object detection, existing tracking-by-detection related studies can be divided into the 

subsequent two categories.           

In the first category (Wu et al.; Wu, 2018a; Cui et al., 2019; Zhao et al., 2019; Zhang et al., 2020), 

object detection is generally realised by the object detection framework introduced in Section 

2.4.1 which contains moving points detection (background filitering), clustering and classification. 

Object tracking is conducted by filtering methods introduced in Section 2.4.3. Several 

representative studies are summarized as follows:              

In the study proposed by Zhao et al. (2019), the background filtering algorithm involves frame 

aggregation, points statistics, threshold learning, and real-time filtering. In the clustering stage, 

a modified DBSCAN clustering algorithm with adaptive MinPts value and searching radius is 

developed. After clustering, a reference point is selected to represent each cluster, which will be 

used in the later procedures. With three hand-crafted features as inputs, a classification model 

based on BP-ANN is developed to distinguish pedestrians and vehicles in the detection range. A 

discrete KF is used in the tracking stage.               

In the work of Zhang et al. (2020), moving points are extracted by Max-Distance algorithm in the 

first instance. Then they are clustered into individual objects via ECE algorithm. These objects are 

later classified into vehicles and non-vehicles by traditional classification methods. A tracker 

composed of UKF and Joint Probabilistic Data Association Filter (JPDAF) is adopted in the 

subsequent tracking  stage.              

Wu (2018) developed an automatic 3D-DSF algorithm to filter out the background. A unique 

operation after background filtering is lane identification which aims to restrict the operation 
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area to lanes. Consequently, the remaining foreground points only belong to vehicles so that 

classification is no longer needed. The following procedures mainly include vehicle clustering and 

vehicle continuous tracking. DBSCAN is adopted in vehicle clustering. To realize vehicle 

continuous tracking, a tracking point is selected for each vehicle cluster and the GNN algorithm 

is applied to track the same vehicles in different frames.              

In the second strategy (Shi et al., 2019a; Weng and Kitani, 2019a; Weng and Kitani, 2019b; Shi et 

al., 2020b; Weng et al., 2020a), objects are directly detected from original point clouds by deep 

learning technologies introduced in Section 2.4.2 and then tracked by a tracker either based on 

filtering algorithms or deep learning algorithms.         

In two typical studies of the second strategy (Weng and Kitani, 2019a; Weng et al., 2020a), two 

state-of-the-art 3D detectors from Shi et al. (2019a), Weng and Kitani (2019b) are experimented 

with in the detection stage to obtain the bounding boxes. The pre-trained models on the training 

set of the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) 3D object 

detection benchmark (Geiger et al., 2013) are adopted. In the tracking stage, a 3D KF predicts the 

state of associated trajectories from the previous frames to the current frame. Hereafter, a data 

association module based on Hungarian algorithm (Kuhn, 1955) matches the predicted 

trajectories from KF and detections in the current frame. Afterwards, KF updates the state of 

trajectories based on the matched detections. Finally, a module is designed to manage the birth 

and death of the objects.              

The tracker in the above work has been borrowed by Shi et al. (2020b) to obtain object IDs of the 

3D boxes generated from lidar data by an off-the-shelf 3D object detector, PV-RCNN. Besides, 

SECOND is used as the 3D object detector in the proposed tracking system considering the 

detection speed and effect by Wang et al. (2020a). 3D KF is used in the following tracking module. 

Different from the above work in which filtering algorithms are adopted in the tracking stage, 

deep learning based-method is used for data association by Weng et al. (2020b). To be specific, 

Graph Neural Network has been applied to multi-object tracking for the first time. Meanwhile, a 

novel feature interaction mechanism is introduced to make the affinity matrix more 

discriminative.                   
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2.4.5 Tracking-before-detection                     

Tracking-before-detection is normally adopted to track low-observable objects which are easily  

overlooked in the traditional tracking-by-detection scheme, or to reduce the complexity or 

remove the constriants on certain object categories in existing technologies.       

As described by Tong et al. (2010), making full use of the raw radar data, the tracking-before-

detection strategy is suitable for detection and tracking of low-observable objects. A classical 

PHD filter, with ‘standard’ multitarget measurement model, is proposed in this work to deal with 

multi-target tracking-before-detection problem. Besides, an efficient segmentation mask-based 

tracker which associates pixel-precise masks reported by the segmentation is presented by Ošep 

et al. (2018). This approach utilizes semantic information whenever available for classifying 

objects at track level, while retaining the capability to track generic unknown objects in the 

absence of such information. Mitzel and Leibe (2012) proposed a novel tracking-before-detection 

method that can track both known and unknown object categories in very challenging video 

sequences of street scenes. Gonzalez et al. (2019) raised a track-before-detect framework for 

multibody motion segmentation based on vehicle monocular vision sensors. The contribution of 

this work relies on a tightly coupled tracking-before-detection strategy intended to reduce the 

complexity of existing multibody structure from motion approaches. To remedy fragmented 

trajectories due to detection failures in the tracking-by-detection framework, a novel detection-

by-tracking method that prevents trajectory interruption was proposed by Chen and Tsukada 

(2019). Based on this method, objects’ accurate 3D bounding boxes can be recovered according 

to the tracking results in the situation of occlusions and missed detections.            

The aforementioned object tracking methods based on tracking-by-detection strategy 

(illustrated in Section 2.4.4) have been confirmed to be efficient in certain aspects. However, they 

are not qualified to provide more detailed HRMTD due to the negative influence from object 

detection process. Besides, although tracking-before-detection strategy (illustrated in Section 

2.4.5) has great potential to detach tracking from detection, the current small number of 

approaches for either radar or video sensors cannot be directly applied to lidar sensors. Therefore, 
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there is still much potential for object tracking from laser scanning systems especially roadside 

ones.      

2.4.6 Vehicle reconstruction                      

Object shapes from raw point clouds obtained from mobile or roadside laser scanning systems 

are always incomplete, which results in difficulties in further applications. In the field of traffic 

monitoring, vehicles are the most concerned investigation targets. Due to their incomplete 

geometric characteristics obtained from lidar data, it is more difficult to provide high-level traffic 

data by accurate monitoring of vehicle behaviours. Therefore, reconstructing vehicle shapes from 

partial lidar inputs shows great importance. The existing shape completion methods can be 

classified into geometry-based, template-based or learning-based, which are introduced in 

Sections 2.4.6.1 to 2.4.6.3.          

2.4.6.1 Geometry-based shape completion         

According to geometric cues (e.g., continuity of local surfaces or volumetric smoothness) of 

incomplete inputs, geometry-based approaches (Kazhdan et al., 2006; Tagliasacchi et al., 2011; 

Wu et al., 2015a) can successfully retouch small holes on surfaces of point clouds. When 

recovering significant missing regions, hand-designed heuristics are applied to complete the 3D 

shape of objects. For example, Schnabel et al. (2009) employed a series of combination of planes 

and cylinders to guide the 3D shape completion based on partial point clouds. Furthermore, Li et 

al. (2011) proposed an innovative method to learn global relationships between a set of locally 

fitted primitives. Considering that man-made objects usually have structural regularity, some 

studies proposed approaches to find regular or periodic structures in geometric models and then 

use them to complete missing surfaces (Pauly et al., 2008; Zheng et al., 2010). However, these 

methods heavily rely on the assumption that the input partial point clouds are already of 

moderate degrees of completion.         

2.4.6.2 Template-based shape completion         



35 
 

Another common shape completion strategy is to retrieve a reference from a large-scale 

database, then to deform or reconstruct the input shape according to the retrieved reference. 

Pauly et al. (2005) produced a complete 3D shape using geometric priors for missing regions from 

a given 3D shape database, but it requires manual interaction to limit categories of objects. 

Similarly, Rock et al. (2015) explored a method to complete a 3D model of any class automatically 

from one depth image. However, these methods strongly depend on the capacity of the 3D shape 

database. To avoid the high dependency of large databases, Shen et al. (2012) conducted an 

assembly approach of geometric primitives to recover 3D structures with a small-scale shape 

dataset. Sung et al. (2015) applied a method to predict the geometric information of an input 

model and then used a global optimization to reconstruct the entire underlying surface. However, 

the above methods suffer from several limitations. Firstly, the optimization schemes are too 

expensive in computational cost for online applications. Secondly, each shape in the pre-

prepared 3D shape database requires to be labelled and segmented manually. Finally, these 

methods are always sensitive to noise.     

2.4.6.3 Learning-based shape completion                

Recently, exploiting deep learning-based methods for 3D shape completion has become a 

popular topic. Most of these methods output complete shapes directly from partial inputs using 

an end-to-end artificial neural network. Wu et al. (2015b) constructed a large-scale synthetic 

object dataset named ModelNet and proposed a Convolutional Deep Belief Networks (CDBNs) to 

learn shape distributions for completing point clouds. Nguyen et al. (2016) integrated CDBNs and 

Markov Random Fields to recover incomplete shapes. However, these methods all select voxel 

as 3D data representation since it can be applied in the 3D convolution. Dai et al. (2017) explored 

a 3D Encoder-Predictor Network for estimating a sparse but complete shape, then refined this 

shape through the nearest-neighbour-based volumetric post-processing. One recent work  

proposed to directly operate on point clouds for 3D shape recovery (Yuan et al., 2018). 

Nevertheless, the shape completed using this approach is not uniform, with most of the regions 

over-concentrated. Also, there is some detailed information lost in the output point clouds.    
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The above three strategies have been proven to be effective in 3D shape completion. 

Nevertheless, the geometry-based strategy requires the partial point cloud to be of moderate 

degree of completion. This requirement cannot always be satisfied. For example, in roadside laser 

scanning system, the obtained scans cover different parts of the objects and the degrees of 

completion vary greatly. Besides, a pre-prepared 3D shape database is needed in the template-

based strategy. Constructing such a database is both labour and time consuming. Moreover, a 

large dataset is needed to train the network in learning-based strategy. However, creating such 

a dataset might be difficult if there is insufficient research data.         

In addition to relying on a general template or network as existing strategies do, another attempt 

is to implement reconstruction merely utilizing lidar data from the target object. As to vehicle 

reconstruction from roadside lidar, all the clusters of a vehicle are extracted and associated when 

vehicle detection and tracking are conducted. Each cluster represents an individual part of the 

vehicle, while successive clusters cover overlapped parts of the vehicle since the scanning 

frequency of the laser scanner is extremely high. Two successive clusters can be stitched based 

on the correlation between them. If a series of successive clusters are stitched together, a 

complete vehicle shape can be obtained. Regarding stitching two or a series of lidar scans, 3D 

registration and 2D image matching are two predominant methods according to related 

literature. 

2.4.6.4  Pairwise 3D registration (local registration)   

The Iterative Closest Point (ICP) algorithm, initially developed by Besl and McKay in 1992 (Besl 

and McKay, 1992), is often used for 3D point cloud registration. In pairwise registration, the 

notions ‘fixed’ and ‘moving’ are used to describe the point clouds in a point cloud pair. ’Fixed’, 

denoted as F, is the point cloud that is considered to have correct coordinate system. ’Moving’, 

denoted as M, is the point cloud that has to be moved to match the fixed one. The ICP algorithm 

computes the transformation parameters repetitively by reforming point associations between 

F and M. The algorithm iterates until one of the following conditions is satisfied: (1) the Mean 

Square Error (MSE) of the distances between the correspondences is sufficiently small; (2) the 

MSE difference between two consequent iterations is sufficiently small; (3) the maximum 
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allowed number of iterations is achieved. The transformation that matches M to F is calculated 

when the iteration is finished.                                                                  

ICP only provide optimal local registration results when the initial positions of the overlapping 

point clouds are close to the registration solution (Brenner, 2009; Shetty, 2017). However, the 

initial positions of the overlapping point clouds may be far away from each other. Additionally, 

ICP provides high quality results when all the points or many points in one scan have 

correspondences in the other (Trucco et al., 1999). While it is quite common in mobile laser 

scanning data that points in one scan do not have correspondences in the other. Moreover, the 

execution time of the registration with ICP is considerably high due to nearest neighbour search 

(Sanchez et al., 2017). To overcome these disadvantages, multiple modified versions of ICP have 

been developed to deliver improved results.                                           

The Iterative Closest Compatible Point (ICCP) algorithm developed by Godin et al. (1994) differs 

from ICP as it seeks the correspondences between two point clouds under a constraint. The 

search space is reduced since the corresponding point is searched only among points with similar 

intensities. Thus, the most computationally expensive operation of ICP, the detection of 

correspondences, is improved. ICCP, like ICP, performs suitably when most of the points in one 

point cloud have a correspondence in the other. Another algorithm, the Robust Iterative Closest 

Point (RICP) (Trucco et al., 1999), applies a Least Median Squares (LMS) method (Rousseeuw, 

1984) to eliminate the incorrect correspondences. Therefore, it provides better results than ICP 

if there is a large number of incorrect correspondences. The Trimmed-ICP algorithm, developed 

by Chetverikov et al. (2002), is based on Least Trimmed Squares (LTS) which was introduced by 

Rousseeuw in 1984 (Rousseeuw, 1984). This algorithm focuses on the distances between 

determined corresponding points in point cloud pairs. It indicates that the Trimmed-ICP can 

handle highly contaminated data. A limitation of this algorithm is that it assumes a fixed overlap 

of scans (Pomerleau et al., 2013).             

The algorithm Iterative Closest Point using Invariant Features (ICPIF) was developed by Sharp et 

al. (2002). It improves the correspondence selection by extracting features invariant to 3D rigid 

motion from the point clouds. The benefit of ICPIF algorithm is that fewer iterations are needed 
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than in the ICP to converge to a solution. However, the ICPIF can only construct correct point 

correspondences when the point clouds are free from noise.         

Another widely acknowledged algorithm for 3D point cloud registration is Normal Distribution 

Transformation (NDT). Instead of using the individual points of the point cloud as in ICP, NDT 

transforms the set of points residing within a voxel into a normal distribution(Biber and Straßer, 

2003). NDT firstly converts the reference point cloud into the normal distribution of 

multidimensional variables. If the transformation parameters can make the two sets of point 

clouds match well, the point cloud to be transformed will have high probability density in the 

reference. As a result, consideration may be given to using an optimized method to work out the 

transformation parameters that maximize the sum of the probability density, in which case, the 

two sets of point clouds will match the best (Liu et al., 2021).          

The NDT registration algorithm referred to in the study of Liu et al. (2021) utilizes the standard 

optimization technique to determine the optimal match between two point clouds. Since the 

NDT algorithm does not leverage feature calculation and matching of the corresponding points 

in the registration process, it is faster than other methods.                

As conventional NDT does not generate distributions in cells with the number of points smaller 

than the threshold, it would fail to represent the environment if the point cloud is divided by 

high-resolution cells. Also, it can lead to incorrect estimations of pose variations. To solve the 

problems, a probabilistic NDT representation is proposed by Hong and Lee (2017), in which the 

probability of a point sample is defined and the mean and covariance are computed based on the 

probability. The experimental results show that all of the occupied cells have distributions even 

if the point cloud is divided by high-resolution cells.                        

To deal with problems of low precision and slow speed when registering large point clouds by 

existing registration algorithms, Liu et al. (2018) propose a new registration method based on 

feature extraction and matching. The speed of feature point extraction is improved by the 

judgment of retention points and bumps in the rough registration stage, and the accuracy of the 

corresponding point pairs is improved by using the random sample consensus algorithm to 
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eliminate incorrect point pairs. More importantly, an improved NDT algorithm is used in the 

precise registration phase to further increase the registration accuracy.                                         

In addition to applying individual ICP or NDT algorithm to point cloud registration, efforts have 

been made to combine them in order to utilize the advantages of each of them. Either the original 

algorithms or the improved versions are used in the combination.                    

Registration based on the traditional ICP algorithm is slow, especially when the scale of the point 

clouds is relatively large. Therefore, Shi et al. (2019b) proposes a new registration algorithm in 

which NDT is used for coarse registration to speed up the process by avoiding using features of 

the corresponding points to calculate and match. The ICP algorithm is used as fine registration to 

further improve the accuracy of the overall registration.   

A new point cloud registration method based on NDT and improved ICP algorithm is proposed to 

solve the problem of point cloud registration of laser scanning workpiece position and pose data 

on industrial pipeline (Xue et al., 2019). Firstly, according to the fast point feature histogram 

algorithm, the feature points of the point cloud data are extracted to reduce data amount. Then 

NDT is used to achieve rough registration so that the two point clouds have relatively good initial 

position and posture. Finally, based on the traditional ICP algorithm, the kd-tree is used to 

accelerate the searching process of the corresponding point pairs and complete the accurate 

registration of the point clouds.          

In order to meet the needs of intelligent perception of the driving environments, a point cloud 

registration method based on 3D NDT-ICP algorithm is proposed to improve the modelling 

accuracy of tunnelling roadway environments (Yang et al., 2021). Firstly, voxel grid filtering 

method is used to pre-process the point cloud of tunnelling roadways to maintain the overall 

structure and reduce the data amount. Afterwards, the 3D NDT algorithm is used to solve the 

coordinate transformation of the point cloud. The cell resolution of the algorithm is optimized 

according to the environmental features of the tunnelling roadway. Finally, a kd-tree is 

introduced into the ICP algorithm for point pair search, and the Gauss–Newton method is used 

to optimize the solution of nonlinear objective function to complete accurate registration.    
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2.4.6.5 Groupwise 3D registration (global registration)          

Groupwise registration refers to the process of aligning all the point cloud scans that have been 

acquired from laser scanning systems in a common reference system (Nüchter et al., 2005). 

Traditionally, group registration is performed by repeat pairwise registration among all the laser 

scans (Evangelidis et al., 2014), such as sequentially strategy (Chen and Medioni, 1992; Blais and 

Levine, 1995) and one-versus-all strategy (Bergevin et al., 1996; Castellani et al., 2002). The 

algorithms for pairwise registration, ICP and NDT, are used in the sequentially pairwise 

registration strategy to update the parameters. These strategies are named as sequential ICP and 

sequential NDT. The main drawback of sequentially pairwise registration strategy is the error 

propagation in subsequent steps (Evangelidis et al., 2014; Evangelidis and Horaud, 2017). 

Simultaneous registration of multiple point sets is another strategy which brings further 

improvements to the sequential pairwise methods. The cumulative distribution functions 

Havrda-Charvát  (CDF-HC) (Chen et al., 2010), Rényi’s second order entropy (Giraldo et al., 2017), 

t-mixture model  (Ravikumar et al., 2018), and Joint Registration of Multiple Point Clouds (JRMPC) 

(Evangelidis et al., 2014; Evangelidis and Horaud, 2017) are several algorithms involved in this 

strategy. These algorithms are selected to conduct qualitative and quantitative experiments in 

the study from Zhu et al. (2019b). From the experiments that have been conducted on 2D and 

3D data, JRMPC outperforms others in both accuracy and computational complexity.     

2.4.6.6 2D image matching        

Since the above 3D registration algorithms are computationally complex, especially when the 

number of laser scans to be registered is large, many researchers attempt to solve the 

registration problem by using images generated from the point clouds (Christodoulou, 2018). In 

the method proposed by Lin et al. (2017), bearing angle images are generated from the 3D point 

clouds to highlight the edges formed by angles in diagonal directions, then a feature-based 

matching method is used to find corresponding pixels between an image pair. Thereafter, 50% 

of the best corresponding pixel pairs are used, and the corresponding 3D coordinates are tracked 

back. Lastly, those coordinates are used in least squares approximation to derive the 

transformation parameters. Initial alignment is not needed in this method and the computation 
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cost is significantly less than ICP. However, the precision is not better than that of generalised 

ICP.        

Langerwisch and Wagner (2010) presents a novel approach for registering indoor 3D range 

images using orthogonal virtual 2D scans. The 3D registration process is split into three 2D 

registration stages such that the computational cost is reduced. Experiments show that this 

approach is capable of registering 3D range images much more efficient than ICP algorithm. A 

method developed by Liang et al. (2016) retrieves perspective intensity images by applying 

central projection of the terrestrial lidar data from a viewpoint and employs corner points in the 

images as tie points to acquire transformation parameters. Thus, intensity is used to reflect the 

appearance and the geometric structures of objects in order to extract feature points and apply 

point cloud matching. This method has demonstrated the advantage of using images rather than 

point clouds for registration by showing the more distinguishable details of object structures.         

2.4.7 Vehicle classification        

Fine-grained vehicle classification, which refers to detailed categorization of vehicles belonging 

to the same general class, has been increasingly studied for detailed traffic understanding. 

Various vehicle classification methods have been developed based on different data sources 

including videos or images, on-board lidar data and roadside lidar data.              

Vision-based vehicle classification has been widely explored. Stark et al. (2011) firstly suggest the 

use of fine-grained category predictions as an input for higher-level reasoning, and secondly 

design a fine-grained object class representation that captures variations in object shapes and 

geometries in order to  match the object class of interest. Lin et al. (2014) propose to optimize 

3D model fitting and fine-grained classification jointly.        

Deep learning-based vehicle classification has also attracted much attention of researchers in 

recent years: vehicle classification using an ensemble of local experts and global networks was 

proposed by Taek Lee and Chung (2017); according to Yu et al. (2017), a Faster R-CNN-based 

model was firstly used to detect vehicles in the existing dataset and then generate images with 

only one vehicle. Afterwards, a CNN model and joint Bayesian network were exploited to classify 
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vehicles in a fine-grained way; Ma et al. (2019) realised fine-grained vehicle classification with 

channel max pooling modified CNNs.      

In addition to vision-based methods, many studies have also been conducted to use lidar data 

for vehicle classification. Lee and Coifman (2012) developed a lidar-based classification system 

that uses data from sensors mounted in a side-fire configuration next to the road. Vehicle shapes 

were represented with eight features for vehicle classification in this study. Hussain and Moussa 

(2005) proposed a laser-intensity-based vehicle classification system using a random neural 

network. The output of this system was one of five major categories: motorcycle, passenger car, 

pickup or van, single unit truck or bus, and tractor-trailer. Xiao et al. (2016b) classified vehicles 

from on-board lidar data into subcompact (mini or small), compact (hatchback), full-size vehicles 

(sedan, station wagon, SUV, MPV) and vans. Three sets of features, model, geometric, and the 

combination, were tested using both SVM and RF classifiers. Wu et al. (2019) presented a new 

approach for vehicle classification using roadside lidar sensor. Six features extracted from the 

vehicle trajectories were applied to distinguish different classes of vehicles. Naive Bayes, K-

nearest neighbour classification, RF, and SVM were applied as the classifiers.    

From the above summary of vehicle classification technologies, it can be concluded that vision-

based strategies have been well developed with state-of-the-art deep learning approaches. 

While there is still much potential for vehicle classification based on lidar (especially roadside 

lidar) data as the amount of related literature is limited.                            

2.5 Summary.        

According to the literature reviews in this chapter, the following research gaps in traffic 

monitoring are identified:   

1. From an overall perspective, there is a lack of integrated traffic monitoring systems that can 

provide comprehensive traffic information in an end-to-end workflow, thereby determining the 

number of vehicles, vehicle dynamics, dimensions and types.          
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2.  For vehicle detection, state-of-the-art deep learning methods developed using on-board lidar 

data have not been applied to roadside lidar data. Although some traditional methods work well 

on roadside lidar data, there is a trend that they will be replaced by more advanced technologies.            

3. For vehicle tracking, the widely adopted tracking-by-detection strategy is not capable of 

providing high quality HRMTD, especially when detection results are weak. Besides, strategies 

that attempt to detach tracking from detection (either tracking-before-detection or 

simultaneous detection and tracking) are still immature, and the number of corresponding 

studies is quite small, particularly for roadside laser scanning systems. Moreover, due to the 

incompleteness of the scanned vehicle from the roadside lidar systems, vehicle speeds obtained 

from tracking procedures are often not accurate enough for HRMTD applications.        

4. In terms of vehicle reconstruction, existing strategies rely on a general template or a 

reconstruction network that needs to be constructed a priori, which might affect the accuracy 

and efficiency. Hence, it is necessary to develop a method that utilizes only the lidar data of the 

vehicles to be reconstructed or the results from other elements in the traffic monitoring system. 

5. Despite numerous well-developed vision and lidar-based vehicle classification technologies, 

vehicle classification based on roadside lidar data remains a huge challenge since the data is more 

sparse and incomplete.                                                   

These research gaps are investigated and addressed in this thesis. A roadside lidar-based traffic 

monitoring system integrating vehicle detection, tracking, reconstruction and classification is 

proposed in this thesis. For vehicle detection, both traditional machine learning and deep 

learning methods are proposed to 1) validate the performance of traditional machine learning 

methods on roadside lidar vehicle detection; 2) explore the potential of deep learning methods 

on roadside lidar vehicle detection. For vehicle tracking, to improve the accuracy of the obtained 

vehicle speeds, a vehicle tracking, and high accuracy speed estimation framework is propose; to 

detach tracking from detection, a joint vehicle detection and tracking framework is proposed. 

Since clusters of one vehicle has been associated by vehicle tracking, reconstruction of this 

vehicle is performed on clusters in the near field of the scanning area. Four methods are tested 
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and the optimal one is selected. Fine-grained vehicle classification is realised via a traditional 

machine learning method.                   

The corresponding methodologies are introduced in Chapter 3. Section 3.1 and Section 3.2 are 

about vehicle detection; Sections 3.3, 3.4, and 3.5 introduce the basic vehicle tracker and two 

proposed vehicle tracking frameworks; Section 3.6 is about vehicle reconstruction and 

classification; Section 3.7 is the summary of these methodologies.       
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Chapter 3. Methodology 

The overarching aim of traffic monitoring from roadside laser scanning systems is to derive critical 

parameters including vehicle numbers, dynamics, dimensions, and types. The first three 

parameters are acquired in this research by vehicle detection, tracking, and reconstruction, 

respectively, as shown in Figure 3.1. Due to insufficient training samples, fine-grained vehicle 

classification, the way to obtain the fourth traffic parameter, is incorporated in the vehicle 

reconstruction module.       

The three-step vehicle detection workflow (Subsection 3.1) is composed of moving point 

extraction, clustering, as well as vehicle and non-vehicle classification. The third step is realised 

by traditional machine learning methods. To further improve vehicle detection performance, a 

3D object detection network, PV-RCNN, is adopted as a vehicle detector (Subsection 3.2). PV-

RCNN is operated on the extracted moving points instead of original lidar data. As can be seen 

from Figure 3.1, there are two frameworks for vehicle tracking: in the first (Subsection 3.4), a 

tracking refinement module is designed to increase the accuracy of the estimated vehicle speeds, 

following an initial tracking procedure based on a tracking-by-detection strategy; in the other 

(Subsection 3.5), a Joint Detection And Tracking (JDAT) scheme is proposed in order to improve 

vehicle tracking. Vehicle reconstruction (Subsection 3.6) refers to restoring complete vehicle 

shapes by aggregating individual vehicle segments from successive frames of roadside lidar data. 

The complete vehicle shapes with more details are supposed to greatly benefit vehicle type 

classification in which vehicles are fine-classified into different categories such as cars, vans, 

trucks and buses.  

3.1 Vehicle detection based on a three-step workflow       

Vehicles, as the main research targets in this thesis, are expected to be distinguished from the 

background and other on-road objects. A three-step workflow, shown in Figure 3.2, and a 3D 

object detection network PV-RCNN, are employed to realize this goal. These two methods are 

explained in this section and Section 3.2.                                                                                                      
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Figure 3.1.  Overview of the methodology.
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                                                                                          (a)                                                                                                     (b)  

                                     

                                                                                       (c)                                                                                                        (d)                       

Figure 3.2. Vehicle detection: (a) Original point cloud; (b) Moving point extraction; (c) Clustering; (d) Vehicle and non-vehicle 
classification.        
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3.1.1 Moving point extraction                                                     

Original point cloud data of urban cities mainly contains moving points on road users or other 

moving objects, i.e., bushes and trees, and static points on the background, i.e., road and 

buildings. Since on-road vehicles are the targets of this research, moving points on them are first 

expected to be distinguished from others. To achieve this goal, the Max-Distance strategy 

presented by Xiao et al. (2016a) is adopted with the following principles: according to the 

operating mechanisms of the laser scanner, each laser beam rotates in a circle repetatedly with 

a proper angular resolution (Zhang et al., 2019). A point named as 𝑃𝑃𝑖𝑖×𝑗𝑗 is obtained when the  𝑖𝑖𝑡𝑡ℎ 

laser beam interacts with a surface at the azimuth angle 𝑗𝑗. The distance of this point to the laser 

scanner can be denoted as 𝐷𝐷𝑖𝑖×𝑗𝑗. The furthest point at (𝑖𝑖 , 𝑗𝑗) with the distance of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖×𝑗𝑗  should 

locate the static background (𝑅𝑅𝑏𝑏
𝑖𝑖×𝑗𝑗), since the laser beam is not supposed to penetrate the 

background. Meanwhile, if 𝐷𝐷𝑖𝑖×𝑗𝑗 < 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖×𝑗𝑗  , 𝑃𝑃𝑖𝑖×𝑗𝑗  is located on a moving object (𝑅𝑅𝑚𝑚

𝑖𝑖×𝑗𝑗) , as can be 

seen in equation (3-1). The background of each test site is constructed by determining the 

furthest point at every location in 𝑅𝑅𝑖𝑖×𝑗𝑗. The construction is normally conducted by observations 

from successive frames within a certain time interval when the number of moving objects is as 

small as possible.   

                       𝑃𝑃𝑖𝑖×𝑗𝑗  ∈ �
 𝑅𝑅𝑚𝑚

𝑖𝑖×𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖×𝑗𝑗  <  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖×𝑗𝑗   

𝑅𝑅𝑏𝑏
𝑖𝑖×𝑗𝑗 , 𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖×𝑗𝑗 =  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖×𝑗𝑗 𝑖𝑖 ∈ (1,2, … , 𝑛𝑛), 𝑗𝑗 ∈ (0, 360°)                         (3-1) 

3.1.2 Clustering       

The extracted moving points should be grouped to obtain individual objects, for which the ECE 

algorithm is exploited. Two important parameters in the clustering process are the cluster size, 

S, and the minimum distance between two clusters, d. The minimum cluster size, S1, and the 

maximum cluster size, S2, should be determined according to the dataset. In terms of d, if the 

value is too small, a real single object can be incorrectly observed as multiple clusters. Conversely, 

if the value is too large, multiple objects can be regarded as a single cluster. Therefore, heuristic 

testing on the dataset is required to determine the optimal value of d. The ECE algorithm is 

illustrated in the following steps:
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(1) Create a kd-tree representation of the point cloud dataset, P.                          

(2) Set up an empty list of clusters, C, and a queue of points needing to be processed, Q.   

(3) For every point pi in P, the following operations will be undertaken:                                      

i)  Add pi to Q.                                                                                                    

ii) For every point pk in Q, search the neighbouring points in a sphere with radius r < d. Then   

check each neighbouring point to see if it has already been processed, if not, add it to Q.  

      iii) If all points in Q have been processed, add Q to C and reset Q to empty.    

(4) Terminate when all the points in P have been processed and included in C.                      

3.1.3 Vehicle and non-vehicle classification         

The purpose of this step is to recognize vehicles from all the moving clusters obtained from the 

previous two steps. The remaining moving points after background removal belong to either 

vehicles or non-vehicles. Non-vehicles may include pedestrians, cyclists, motorcyclists and false 

alarms (e.g., swaying trees and bushes). Therefore, the vehicle detection task is simplified to a 

binary classification problem that can be realised by traditional machine learning methods. 

Traditional machine learning methods here refer to supervised learning methods for which 

feature selection and classifier training are two important factors. Low-level features mainly 

comprising shape information such as the number of points in the object cluster, object length 

and height profile, are widely used in vehicle and non-vehicle classification. Commonly used 

classifiers include SVM, RF, naive Bayes, etc.         

3.1.3.1 Feature selection           

Inspired by previous studies, the following sub-features are extracted from the object clusters to 

compose the final feature set: 𝐹𝐹 = [ 𝐹𝐹1,𝐹𝐹2,𝐹𝐹3,𝐹𝐹4].                                                                                                                                 

i) The volume size of the cluster 𝐹𝐹1 = [ 𝐴𝐴, 𝐿𝐿,𝑊𝑊,𝐻𝐻 ].                                   

𝐴𝐴: The area of the 2D minimum bounding box of the cluster.  

𝐿𝐿1 = max(𝑥𝑥) − min (𝑥𝑥) 

𝐿𝐿2 = max(𝑦𝑦)− min(𝑦𝑦) 

𝐿𝐿 = max (𝐿𝐿1, 𝐿𝐿2) 
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𝑊𝑊 = min (𝐿𝐿1,𝐿𝐿2) 

𝐻𝐻 = max(𝑧𝑧) − min(𝑧𝑧) 

ii) The standard deviation of points in the cluster: 𝐹𝐹2 = [ 𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠, 𝑧𝑧𝑠𝑠]  

iii) The vertical point distribution histogram of the cluster: the proportion of the overall number 

of points in each vertical section varies among different urban objects (Xiao et al., 2016b). The 

input cluster is divided into 20 vertical sections from its overall height to the ground:                              

𝐹𝐹3 = [ ℎ1,ℎ2, … ,ℎ20]               

iv) Height profile of the cluster                                                                                                                                                                        

This feature contains the detailed vehicle shape information along the vehicle length (Wu et al., 

2019). Each vehicle can be divided into n small equal columns covering the max z value and min 

z value along the vehicle length direction. In each column, the max height (𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻 ) can be 

calculated as max(𝑧𝑧) − min (𝑧𝑧). Then the height profile will be a 1 × 𝑛𝑛 vector with 𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻 of each 

column as sub-features. In the experiment, n is set to 10, according to practice.                                               

                                                         𝐹𝐹4 = [ 𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻1,𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻2, … ,𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻𝑛𝑛 ]       

3.1.3.2 The classifier                                                                                                                                

RF (Breiman, 2001) is adopted as the classifier in this research. RF takes a random number of 

features to build many decision trees which are assembled and averaged. The optimal 

parameters, such as number of trees, split quality function and tree depth, are exhaustively 

searched to acquire the best cross validation results. The handcrafted feature set normally 

contains a certain number of sub-features. These features are usually selected according to 

empirical knowledge or other similar works. Whether these sub-features are really helpful and 

how much they help in the task remains uncertain. One important advantage of RF is that it can 

evaluate the importance of each feature in the feature set, so that the feature set can be 

recomposed by features with high importance values. Those with low importance values can be 

discarded. For comparison, SVM classifier with radial basis function as the kernel function is also 

implemented as a classifier.                 
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3.2 Vehicle detection based on PV-RCNN                                                                                              

Although traditional classifiers perform well when the clusters of targeted objects are extracted, 

selecting distinguishable hand-crafted features is a laborious task that somewhat depends on 

personal experience. Fortunately, the widely and fast developed deep learning technologies 

provide comprehensive features for the objects through learning mechanisms. As introduced in 

Chapter 2, PV-RCNN is a recently proposed 3D object detection network that has integrated the 

advantages of the prevalent point-based methods and voxel-based methods. Besides, PV-RCNN 

has demonstrated good performance on KITTI data according to Shi et al. (2020a). Considering 

that the difference between data used in KITTI and in this study is primarily the data density, it is 

anticipated that PV-RCNN will also work well here. Specifically, PV-RCNN is operated on both 

original lidar data and processed lidar scans containing only moving points.                                                                                          

PV-RCNN is a two-stage 3D detection framework that utilizes a 3D voxel CNN with sparse 

convolution as the backbone for efficient feature encoding and proposal generation (as shown in 

Figure 3.3). Given each 3D proposal, to effectively pool its corresponding features from the scene, 

two novel operations are proposed: voxel-to-key-point scene encoding, which summarizes all the 

voxels of the overall scene feature volumes into a small number of feature key-points, and point-

to-grid Region Of Interest (ROI) feature abstraction, which effectively aggregates the scene key-

point features to RoI grids for proposal confidence prediction and location refinement.                                                                                                                                                                                                              

 

Figure 3.3. The workflow of PV-RCNN (Shi et al., 2020a). 

The two operations are described in detail as follows: 
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3.2.1 Voxel-to-key-point scene encoding via voxel set abstraction              

This step aggregates the multi-scale feature voxels into a set of key-points. The multi-scale 

semantic feature for the key point 𝑝𝑝𝑖𝑖 can be generated by aggregating the above features from 

different levels of the 3D voxel CNN.                              

                                       𝑖𝑖𝑖𝑖
(𝑝𝑝𝑝𝑝) = � 𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝1),𝑖𝑖𝑖𝑖
(𝑝𝑝𝑝𝑝2),𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝3),𝑖𝑖𝑖𝑖
(𝑝𝑝𝑝𝑝4)� , 𝑖𝑖 = 1, … ,𝑛𝑛                    (3-2)                                                                                 

Where 𝑖𝑖𝑖𝑖
(𝑝𝑝𝑝𝑝1), 𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝2), 𝑖𝑖𝑖𝑖
(𝑝𝑝𝑝𝑝3), 𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝4) are the feature vectors from four layers, respectively. Then 

the key-point features can be extended from the raw point clouds and the bird-view feature maps. 

Hence, the key-point feature for 𝑝𝑝𝑖𝑖 is further enriched as:               

                                              𝑖𝑖𝑖𝑖
(𝑝𝑝) = � 𝑖𝑖𝑖𝑖

(𝑝𝑝𝑝𝑝),𝑖𝑖𝑖𝑖
(𝑟𝑟𝑚𝑚𝑟𝑟), 𝑖𝑖𝑖𝑖

(𝑏𝑏𝑏𝑏𝑝𝑝)� , 𝑖𝑖 = 1, … ,𝑛𝑛                                    (3-3)                                                                                          

Where 𝑖𝑖𝑖𝑖
(𝑟𝑟𝑚𝑚𝑟𝑟) is the raw point-cloud feature,  𝑖𝑖𝑖𝑖

(𝑏𝑏𝑏𝑏𝑝𝑝) is the bird-view feature.                                  

3.2.2 Key-point-to-grid RoI feature abstraction                                                                      

For accurate and robust proposal refinement, 3D proposal (RoI) features are aggregated from the 

key-point features. Therefore, the key-point-to-grid RoI feature abstraction is proposed based on 

the set abstraction operation for multi-scale RoI feature encoding. As shown in Figure 3.4, the 

RoI-grid pooling module is proposed to aggregate the key-point features from the previous step 

to the RoI-grid points. Each 3D proposal includes 6 × 6 × 6 grid points. The proposal refinement 

network is able to predict the size and location (i.e., centre, size, and orientation) residuals 

relative to the input 3D proposal after obtaining each RoI feature. Box refinement can be 

achieved by the refinement network, which adopts a 2-layer MultiLayer Perceptron (MLP), and 

the position, orientation, and dimension of cuboid boxes can be obtained.  

The PV-RCNN framework is trained end-to-end by the self-created training dataset with the 

training loss that is the sum of the following three losses:  the region proposal loss rpnL , key-

point segmentation loss segL  and the proposal refinement loss rcnnL . The three losses are 

summed with equal loss weights. A Grid search algorithm (Syarif et al., 2016) is adopted in the 

training process to determine the optimum value for the most important hyperparameters such 
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as batch-size, epoch and voxel-size.   

 
Figure 3.4. RoI-grid pooling module (Shi et al., 2020a).                                                     

The original PV-RCNN algorithm was trained by samples of three classes including cars, 

pedestrians and cyclists from KITTI data. However, in our case, cyclists are not considered as a 

single class because the number of occurrences in the collected lidar data is extremely small. The 

two-class training dataset is created using a third-party point cloud labelling software called 

Supervisely (Deep Systems, 2017). Supervisely is a powerful platform for computer vision 

development, where individual researchers and large teams can annotate and experiment with 

datasets and neural networks. It provides a user-friendly interface, a clear documentation and a 

friendly and reactive support team.  For 3D point cloud annotation, the user-friendly navigation 

in three dimensions makes 3D space annotation easier. Along with additional viewports with top-

side-front perspectives using orthographic projections, it gives accurate representation of what 

you are dealing with. Besides, Supervisely provides more information for accurate labelling and 

identification with photo and video context. It automatically calculates correlation between 3D 

space and 2D context and projects the labelled objects on it to achieve unprecedented quality.         

3.3 The vehicle tracker              

The vehicle tracker in this research is composed of UKF and JPDAF, in which UKF is for 

initialization and prediction, while JPDAF is for data association. An iteration of the tracking 

process which includes prediction, data association and state update is introduced in this section 

(subsections 3.3.1-3.3.3). In addition, as important operations in tracking, track management 
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development, including the initialization of new tracks, removal of short trajectories and 

management of occlusions, is also described (subsections 3.3.4-3.3.6).        

3.3.1 Initialization and prediction           

A constant-velocity UKF is first initialized, which estimates the state of a vehicle by a nonlinear 

stochastic equation. In constant-velocity motion, the state vector of a vehicle is defined as 

 𝑥𝑥 = �𝑥𝑥 ; 𝑣𝑣𝑚𝑚 ;𝑦𝑦 ; 𝑣𝑣𝑦𝑦�. The state and measurement equations are as follows: 

𝑥𝑥𝑘𝑘+1 = 𝑖𝑖(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑡𝑡) + 𝑤𝑤𝑘𝑘 
(3-4) 𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘, 𝑡𝑡) + 𝑣𝑣𝑘𝑘 

where 𝑥𝑥𝑘𝑘 is the state at step  𝑘𝑘 ;  𝑖𝑖 is the state transition function;𝑢𝑢𝑘𝑘 is the control on the process. 

The motion may be affected by random noise perturbations𝑤𝑤𝑘𝑘.  ℎ is the measurement function 

that determines the measurements as functions of the state. Typical measurements are position 

and velocity or some functions of these, which can also include noise represented by 𝑣𝑣𝑘𝑘.               

The prediction is performed using UKF because it performs better than other filters when the 

predict and update functions are highly nonlinear. The better performance resulted from the 

usage of the unscented transformation, a deterministic sampling technique to pick a minimal set 

of sigma points around the mean. Specifically, the sigma points are propagated through system 

function,  𝑖𝑖, and the weighted sigma points are recombined into the predicted state and its 

corresponding covariance. New sigma points are then chosen to be propagated into 

measurement function ℎ. Finally, the weighted recombination of the sigma points is used to 

produce the covariance matrix, and the predicted measurement can be directly used to 

formulate the validation gate. The above steps are thoroughly described by Arya Senna Abdul 

Rachman (2017).                                                                            

3.3.2  Data association                                                            

JPDAF, a statistical approach, is used to associate measurements to tracks. Instead of choosing 

the most likely assignment to a target, JPDAF takes the minimum mean square error estimate for 

the state of each target. At each observation, it maintains its estimate of the target state as the 

mean and covariance matrix of a multivariate normal distribution.            

https://en.wikipedia.org/wiki/Minimum_mean_square_error
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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The measurement validation process is performed to choose associable measurements before 

passing them to the data association filter. It is realised by setting an elliptical gating area, as 

shown in Figure 3.5, in which Measurement 1 and Measurement 3 will be discarded because they 

are considered unlikely to be associated to the predicted track.   

                                      

                                          Figure 3.5. Gating process (Arya Senna Abdul Rachman, 2017).                     

3.3.3  State update                  

When a new measurement is associated to the track, the state of the track should be updated.    

Similar to the prediction step, a set of sigma points are to be derived and projected through the 

observation function h , as shown in Equation 3-5. The sigma points are recombined to produce 

the predicted measurement and its covariance, and further to generate UKF gain kK (Arya Senna 

Abdul Rachman, 2017). The final state update equation is given as Equation 3-6.                                                                                                                                                                                     

                                                           𝑍𝑍𝑘𝑘
𝑖𝑖 = ℎ(𝜒𝜒𝑘𝑘/𝑘𝑘−1

𝑖𝑖 )   𝑖𝑖 = 0, . . . , 2𝐿𝐿                                                                             (3-5) 

𝑋𝑋�𝑘𝑘/𝑘𝑘 = 𝑋𝑋�𝑘𝑘/𝑘𝑘−1 + 𝐾𝐾𝑘𝑘𝑣𝑣𝑘𝑘        (3-6) 

 

3.3.4 Initialization of new tracks                                    

In roadside lidar-based traffic monitoring systems, when a new object enters the scanning region 

or an object being tracked disappears due to heavy occlusion and reappears after a certain period, 

it is possible that some measurements could not be assigned to any existing tracks. Therefore, in 
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such instances a new track should be initiated. In the tracking process, if the association 

probability of a measurement within the assignment gate is lower than the initialization 

threshold, a new track will be generated. The association probability of a measurement is given 

as Equation 3-37 in the work of  Arya Senna Abdul Rachman (2017). The initialization threshold 

is specified as a scalar in the range [0,1].                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

3.3.5 Removal of short trajectories                  

The moving targets in this research mainly consist of on-road vehicles, pedestrians, cyclists and 

motorcyclists. However, there also may be false alarms existing in the extracted moving object 

clusters, for example from moving leaves on roadside trees or bushes. Through observation, it 

can be seen that the trajectories of such false alarms are extremely short, since points on such 

objects typically only move within a limited distance. Therefore, in order to simplify the following 

procedures, these false alarm trajectories are therefore removed based on their spatial lengths. 

Specifically, lengths of the extracted trajectories are obtained by calculating the distance 

between the first and the last cluster, and then compared with a threshold, 𝐿𝐿 . Trajectories with 

lengths shorter than 𝐿𝐿 are removed.                                                                                

3.3.6 Management of occlusions                                               

Occlusions are normal issues occurring in traffic data obtained from roadside laser scanning 

systems. In heavy traffic flow, if the object being tracked is completely occluded and 

consequently re-observed with an association probability lower than the initialization threshold, 

a new ID will be assigned to the subsequent detections (see initialization of new tracks).                   

However, in light occlusion, in which the vehicle being tracked is partially occluded for only a 

short period, some of the clusters will be incomplete and lower association probability may arise. 

To ensure continuous tracking in such situations, a small value in the range [0,1] should be 

assigned to the initialization threshold.          
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3.4 The vehicle tracking and high accuracy speed estimation framework                                                                                   

As previously mentioned, vehicles can only be partially scanned due to self-occlusion in roadside 

lidar systems. This has inevitably been responsible for unsatisfactory tracking results, particularly 

in terms of the accuracy of vehicle speeds, by many current centroid-based tracking 

methodologies. According to related literature, there has not been any further improvement to 

solve this issue. A new tracking refinement strategy is therefore proposed and introduced in this 

section.                                                                                                                                                                                                                     

As shown in Figure 3.6, the proposed vehicle tracking and speed estimation framework consists 

of vehicle detection, centroid-based tracking, tracking refinement and vehicle speed validation. 

Vehicles are detected via a three-step procedure, then tracked by the methodology introduced 

in Section 3.3. The tracker takes the centroid of the cluster as the vehicle’s position, resulting in 

biases in vehicle speeds due to the incompleteness of the scanned clusters. Accordingly, a 

tracking refinement module is developed to improve this situation. The core strategy in this 

module is image matching, in which the vehicle clusters are transformed to 2D images. The 

estimated speeds are validated against speeds from a reference system mounted on a test 

vehicle.  

3.4.1 Vehicle detection and centroid-based tracking                                                                             

Vehicle detection is realised by the three-step procedure introduced in Section 3.1. In the third 

step, traditional machine learning is used to classify vehicles and non-vehicles. The importance 

of each feature is evaluated by RF, and the full feature set is denoted as 𝐹𝐹37 =

[ 𝑖𝑖1,  𝑖𝑖2,  𝑖𝑖3, … ,  𝑖𝑖37]  with the sub-features arranged by the feature importance. In addition to 𝐹𝐹37, 

three other feature sets 𝐹𝐹3 = [  𝑖𝑖1,  𝑖𝑖2,  𝑖𝑖3] , 𝐹𝐹5 = [ 𝑖𝑖1,  𝑖𝑖2,  𝑖𝑖3,  𝑖𝑖4,  𝑖𝑖5 ] and 𝐹𝐹10 =

[ 𝑖𝑖1,  𝑖𝑖2,  𝑖𝑖3, … ,𝑖𝑖10 ] are also tested by RF to find the optimal performance for vehicle and non-

vehicle classification. After vehicle detection, clusters belonging to the same vehicle in 

consecutive frames are associated by the tracker described in Section 3.3.   

The success achieved in vehicle detection will have direct influence on vehicle tracking. Missed 

detections will lead to interruptions in the related trajectories, whilst false alarms will create  
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Figure 3.6. Overview of the proposed vehicle tracking and speed estimation framework.
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erroneous trajectories in the tracking results. Two parameters in the JPDAF algorithm are related 

to the first issue: c, the threshold for assigning detections to tracks, and d, the threshold for track 

deletion. c is usually set to a 1x2 vector [c1, c2], where c1 ≤ c2. Initially, a coarse estimation is 

performed to verify which combinations of {detection, track} require an accurate normalized 

distance calculation. Only combinations for which the coarse normalized distance is lower than 

c2 are calculated. Detections can only be assigned to a track if their normalized distance from the 

track is less than c1. The values should be increased if there are detections that are not assigned 

to any tracks and decreased if there are detections that are assigned to wrong tracks. d is usually 

set to [p, r], where a track will be deleted if it was unassigned at least p times in the last r updates. 

Two factors are critical in removing non-vehicle trajectories (either pedestrians crossing the road 

or other false alarms such as trees): orientation and length of the trajectories. If the orientation 

of a trajectory deviates too far from others, or its length is too short, the trajectory will be 

removed.        

3.4.2 Tracking refinement                   

In centroid-based tracking stage, the centroid of the cluster was adopted as the vehicle position. 

However, the relative position of the centroid changes frame by frame when the vehicle is 

passing through the roadside lidar sensor. Figure 3.7 (a) shows an example vehicle where F, C 

and R are the front, centre and rear points, respectively. Figure 3.7 (b) and (c) illustrate the spatial 

relations between the centroid of the point cloud cluster (C’ and C’’) and the real centroid C when 

the vehicle passes the lidar sensor. It can be seen that C’ is between F and C when the vehicle is 

approaching the lidar sensor and the front of the vehicle is scanned; C” is between R and C when 

it is departing and the rear of the vehicle is scanned. In the time-space diagram of the target 

vehicle (Figure 3.8), R,F and C are parallel, while the yellow line is not parallel with them as the 

centroid is closer to F when the vehicle is approaching the lidar sensor and closer to R when it is 

driven away. The proposed tracking refinement module is intended to rectify the yellow line so 

as to match the green line to a maximum extent.  

After centroid-based tracking, the individual cluster of each vehicle is identified and labelled by 

the minimum bounding box for subsequent tracking refinement. As to each vehicle ID, the                    
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Figure 3.7.  A vehicle and key tracking points: F, C, R represent the front, centre and rear, respectively (a) 
and their spatial relations between the centroid of the point cloud clusters (C’ and C”) when the vehicle is 
approaching (b) and leaving (c) the lidar sensor.                     

 

Figure 3.8. Time-space diagram of the target vehicle. 

optimized tracking refinement solution relies on determining the correct transformation 

between two successive clusters. The normal strategy for determining the transformation is 

frame registration. Enlightened by work from Christodoulou (2018), 3D point clouds can be 

converted to 2D images to solve the problem by image matching. It is noteworthy that the 

conversion here is implemented on the previously extracted 3D vehicle clusters rather than the 

entire lidar frame. The process of the proposed tracking refinement comprises three steps: 
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conversion from 3D cluster to 2D image, image matching, and 2D to 3D transformation. Tracking 

refinement is performed within pairs of successive vehicle clusters in the plan view. Figure 3.9 

displays the process for one example pair, which is described in the following subsections.                

       
Figure 3.9.  The proposed tracking refinement module. 

3.4.2.1 Conversion from 3D cluster to 2D image                     

As shown in Figure 3.9, Frame  𝑚𝑚 and Frame (𝑚𝑚 + 1) are projected to 2D in the plan view in the 

first instance, and all the points are in the laser scanner coordinate system 𝑋𝑋𝑋𝑋𝑋𝑋. Under this 
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condition, 𝑋𝑋𝑚𝑚+1(𝑋𝑋0,𝑋𝑋0) is the origin of the minimum bounding box around the vehicle cluster in 

Frame (𝑚𝑚 + 1). Correspondingly, 𝑋𝑋𝑚𝑚+1(0, 0) is the origin of the image, which is located in the 

image coordinate system 𝑥𝑥𝑥𝑥𝑦𝑦 . Equation 3-7 shows the conversion from a point on the vehicle 

cluster to a pixel in the corresponding image, where 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑧𝑧𝑝𝑝 refers to the resolution of the 

image.                                                                                   

𝑥𝑥 = (𝑋𝑋 − 𝑋𝑋0)/𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑧𝑧𝑝𝑝 
               (3-7) 

𝑦𝑦 = −(𝑋𝑋 − 𝑋𝑋0)/𝑝𝑝𝑖𝑖𝑧𝑧𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑧𝑧𝑝𝑝 
 

The parameter 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑧𝑧𝑝𝑝 can be decided by testing plausible values in the experiment. In our 

situation, two case studies in which a test vehicle was tracked have been used to determine the 

optimal value in a range from 1cm to 10cm (values outside of this range are considered either 

too small or too large according to the data density). RMSE between the estimated speeds and 

the reference is calculated for each pixel size. Based on the test, a pixel size of 3cm generated 

the lowest RMSE and was therefore chosen as the optimal value.                 

3.4.2.2 Image matching                                 

Image matching is intended to determine the optimum location of a template within a reference 

image. The image generated from Frame 𝑚𝑚 + 1 is regarded as the template, whereas Frame 𝑚𝑚 

is the reference. The template image shifts pixelwise over every possible location in the reference 

image. Based on the cross-correlation coefficient metric, a similarity score 𝑆𝑆(𝑥𝑥,𝑦𝑦) is calculated 

between the template and the corresponding sub-image in the reference, accordingly (see 

Equation 3-8). A score map with each pixel assigned a similarity value is formed after completion 

of the search process. The optimum matching location, namely the lightest point (red dot in 

Figure 3.9) in the scoremap, is where the largest score is determined (See Equation 3-9).                                                                                                                                                                                                
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                                   2 2
,

arg max( ( , )) , ( 1,..., ; 1,..., )
x y

P S x y x n y m= = =                                               (3-9) 

In Equation 3-8, 𝑇𝑇  is the template image with (𝑚𝑚1,𝑛𝑛1 ) pixels; 𝑅𝑅 is the reference with (𝑚𝑚2,𝑛𝑛2 ) 

pixels; (𝑥𝑥,𝑦𝑦) is the origin of the sub-image corresponding to 𝑇𝑇 in 𝑅𝑅. In Equation 3-9, 𝑃𝑃 is the 

optimal matching location in 𝑅𝑅.            

3.4.2.3  2D to 3D transformation           

Real-world coordinates are reserved for each pixel according to Equation 3-7. Consequently, 𝑃𝑃  

can be located on Frame 𝑚𝑚 , labelled as 𝑋𝑋𝑚𝑚+1
′ (𝑋𝑋0 

′ ,𝑋𝑋0′) in Figure 3.9. Considering its position 

𝑋𝑋𝑚𝑚+1 (𝑋𝑋0 ,𝑋𝑋0) in Frame 𝑚𝑚 + 1 , the displacement can be calculated and the vehicle speed 

obtained. The speed values during the entire tracking period will be estimated when a chain of 

the above operations has been fulfilled amongst all the tracked clusters of the same ID. A 

Gaussian window with size s=20 is used to smooth the acquired values so as to filter out noise.      

3.4.3 Vehicle speed validation           

In this section, the concept of the speed reference system is introduced and the calculation 

process of the reference speeds is explained.  

A test vehicle equipped with an independent speed reference system is used to validate 

estimated vehicle speeds. The reference system is composed of two Global Navigation Satellite 

System (GNSS) antennas, an Inertial Measurement Unit (IMU) unit and an odometer (seen as 

Figure 3.10). The GNSS and IMU unit are mounted on top of the vehicle, while the odometer is 

installed on one of the rear wheels to improve positional accuracy. The test vehicle is driven 

through the scanning area for several rounds at the test sites.  

The following operations are conducted to obtain the reference vehicle speeds: original vehicle 

position acquisition, post-processed vehicle position acquisition and vehicle speed calculation. 

The original data (.lpd) from the reference system is first parsed to GPS data (.gps) and lidar data 

(.pcap). The GPS data, renamed as .anpp from .gps, is then imported into Spatial Dual Manager 

(Advanced Navigation, 2020) to obtain the original vehicle positions (red trajectory in Figure 3.11). 
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The .anpp file is further processed using Kinematica (Advanced Navigation, 2021) to acquire more 

accurate vehicle positions (blue trajectory in Figure 3.11)).   

 

Figure 3.10. Installation of the speed reference system. 

    

Figure 3.11. Trajectories before (Red) and after (Blue) post-processing 

Since vehicle coordinates in the post-processed data are in the ETRS89 (European Terrestrial 

Reference system 1989) coordinate system, Grid InQuestII software (Ordnance Survey, 2016) is 

used to perform an accurate conversion from (Latitude, longitude, Height) to (Eastings, Northings, 

Height) in the OSGB36 National Grid coordinate system. 

3.5. The JDAT framework                     

The tracking-by-detection strategy illustrated in Section 3.4 has achieved promising performance 

in tracking all the detected objects. However, the resulting object trajectories might be shortened 

or discontinuous due to the fact that this strategy is sensitive to miss detections . To address the 

issue, a JDAT scheme, where object tracking is independent from object detection, is proposed  

in this research (Figure 3.12).  

① 

② 

①: GNSS+IMU Unit ②: Odometer 
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Figure 3.12.  Flowchart of JDAT                                                                                                                                                      
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The moving objects are segmented firstly by moving point extraction and then instance clustering.   

Afterwards, two procedures, object detection and tracking, are conducted in parallel. In object 

detection, PV-RCNN is employed to detect vehicles and pedestrians from the extracted moving 

objects. In object tracking, the tracker introduced in Section 3.3 is used to obtain the trajectories 

of all the moving objects. A certain number of representatives for each trajectory are then 

selected and the category of each representive can be determined from the results of the object 

detection procedure. Subsequently, the identities of the trajectories are determined.   

Compared with the vehicle tracking framework in Section 3.4, improvements of JDAT in this 

section mainly rely on the following aspects:  

Firstly, instead of adopting a tracking-by-detection strategy, as in the first framework, tracking 

starts immediately after moving object segmentation and in parallel with object classification, 

which guarantees all observable clusters can be associated to corresponding tracks. It should be 

noted that achievieving  maximum-range tracking is one of the aims of this framework, so small 

object clusters with a few number of points should be maintained, which means the parameter 

minNumber in the clustering stage should be as small as possible.     

Secondly, only clusters that are more distinguishable than others, namely the representatives, 

participate in trajectory classification. Two important processes, selection and identification of 

representatives; determination of trajectory categories, are elaborated as follows:   

3.5.1 Selection and identification of representatives       

After tracking, clusters of a single object have been associated across successive frames. However, 

not all of them are needed in the cassification process because they belong to the same category. 

Since clusters with larger sizes are more visible and distinguishable than those with smaller sizes 

on a trajectory, they can act as representatives of the trajectory to be fed into the classifier such 

that the negative influence from the low-observable clusters can be minimised.                                                            

The important operation after Representative Selection is to identify the categories of the 

representatives according to the results from object detection, so that the category of the 

corresponding trajectory can be determined.                                                                                                                                   
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One attribute of the representatives is the ID of the original lidar frame where the representative 

is extracted. As described in Section 3.2, PV-RCNN in object detection is operated on frames that 

only contain moving points abstracted from the corresponding original lidar frame, so the 

category of the representatives can be easily traced from the detection results by their frame IDs

3.5.2 Determination of trajectory categories                    

The number of representatives for an individual trajectory is 𝑛𝑛 . If at least 𝑝𝑝  (a ratio) of the 

representatives are classified as one of the classes in the detection results, the trajectory is 

classified into that class. 𝑛𝑛 and 𝑝𝑝  should be decided by the datasets and the performance of the 

classifier, which is discussed in Chapter 4.                                                                                                                                                                                                                                                                                                                                                    

3.6 Vehicle reconstruction                        

All clusters of a vehicle have been associated across successive frames after the tracking process. 

Each cluster represents an individual part of the vehicle according to the roadside laser scanner’s 

perspective. Therefore, in theory, if all vehicle portions are stacked together according to the 

transformations within the pairings, a more complete vehicle shape can be constructed. In 

practice, to reduce error accumulation and computing cost, vehicle reconstruction is only 

conducted in near field of the scanning range, which means only vehicle clusters with distance to 

the laser scanner smaller than a defined threshold will be considered in the reconstruction. To 

realize vehicle reconstruction, 2D image matching and 3D point cloud registration strategies are 

adopted in this research.            

3.6.1 Vehicle reconstruction by 2D image matching                    

As in the tracking refinement module in Section 3.4.2, two successive vehicle clusters from Frame 

𝑚𝑚  and Frame (𝑚𝑚 + 1)  can be converted to a pair of plan-view 2D images. In the following 

matching process (see Figure 3.13), the second image is regarded as the reference 𝑅𝑅, and the 

other is the template 𝑇𝑇. With the best matching position of 𝑇𝑇 in 𝑅𝑅 found as the brightest point in 

the score-map in Figure 3.13 (also 𝑃𝑃 in Equation 3-9), the transformation between two images is 

determined, given as Equation 3-10. With regard to vehicle reconstruction, a series of similar 
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image pairs are needed. If the first of these images is taken as the reference, all the others can 

be transferred to it according to the transformations, seen as Equation 3-11.      

 
Figure 3.13. Matching process between two images. 
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3.6.2 Vehicle reconstruction by 3D point cloud registration             

Vehicle shape reconstruction is essentially about merging a set of successive point clusters which 

represent different parts of the vehicle based on the transformations among them. Frame 

registration is the basic way to calculate those transformation parameters. Observed from the 

existing literature about multiple point cloud registration, sequentially pairwise registration and 

simultaneous groupwise registration are two predominant strategies. ICP and NDT are 

considered as two potential algorithms for registration within pairings. NDT is shown to converge 

from a larger range of initial pose estimates than ICP, and to perform faster. However, the poses 

from which NDT converged are not as predictable as ICP. Considering that there might be error 

accumulation in sequentially pairwise registration strategy, simultaneous groupwise registration 

in which the alignment of multiple point clouds is refined is regarded as a better option. GlobalICP 

is a predominant simultaneous groupwise registration algorithm. In order to make a thorough 

comparison, two strategies, including three algorithms, are experimented with in this study.        
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3.6.2.1 Sequentially pairwise registration                        

The idea of sequentially pairwise registration is to determine the transformation between each 

successive pair of point cloud scans, and transfer each scan to the coordinate system of the 

reference, which is usually the first scan by multiplying the transformations of scans in-between 

them. Sequential ICP and sequential NDT are two typical algorithms in this strategy, of which the 

basic algorithms are ICP and NDT, respectively. ICP is a well-known method in the field of point 

set registration for rigid transformation between two point clouds. The algorithm iteratively 

revises the transformation (combination of translation and rotation) needed to minimize an error 

metric such as the sum of squared differences between the coordinates of the matched pairs. 

ICP can be expressed as an optimization problem:                 

                                             
2, 1

1arg min ( )
M

j j
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y Rx t
M =

  − + 
  

∑                                                   (3-12)  

Where (𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖 ) is a correspondence pair; 𝑅𝑅 is the rotation matrix and  𝑡𝑡  is the translation vector 

of a correspondence pair; 𝑀𝑀 is the number of correspondence pairs.                  

NDT is a registration algorithm that is applied to the statistical model of 3D points and uses 

standard optimization techniques to determine the optimal match between two point clouds. Its 

main idea consists  of modelling point clouds with a set of normal distributions generated by 

discretising each point set into voxels (Slama, 2017). Pairwise point cloud registration based on 

ICP and NDT are illustrated in Figure 3.14.   

If there are a series of successive point cloud scans to be registered by sequentially pairwise 

registration, each scan should be transformed to the reference scan (usually the first scan) based 

on Equations 3-13 and 3-14. 𝑇𝑇𝑖𝑖,𝑖𝑖−1 is the transformation between the  𝑖𝑖𝑡𝑡ℎ scan and the (𝑖𝑖 − 1)𝑡𝑡ℎ 

scan, as denoted in Equation 3-13, in which 𝑅𝑅  represents the rotation and 𝑡𝑡  denotes the 

translation of two successive scans. The transformation of the 𝑗𝑗𝑡𝑡ℎ scan and the reference scan, 

𝑇𝑇𝑗𝑗,1, is shown in Equation 3-14. Sequentially pairwise registration is realised when all the scans 

are transformed to the reference scan according to Equation 3-14.      

 



70 
 

           
                                        (a)                                                                                             (b) 

      Figure 3.14. Workflows of pairwise point cloud registration based on  (a) ICP and (b) NDT algorthms.        

                                                    𝑇𝑇𝑖𝑖,𝑖𝑖−1 = [𝑅𝑅, 𝑡𝑡]                                           (3-13)     
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3.6.2.2  Simultaneous groupwise registration      

GlobalICP (Glira, 2015b) is used to optimize the alignment of multiple point clouds with the ICP 

algorithm, where a joint optimization of all the scans is implemented. A prerequisite is that all 

the point clouds should be approximately aligned, for which, sequential NDT is an optimal choice 

with high efficiency and acceptable registration accuracy. Consequently, the simultaneous 

groupwise registration scheme is indeed the combination of NDT and GlobalICP.       

There are seven steps involved in the GlobalICP algorithm, which are shown in Figure 3.15 and 

specifically introduced by taking a pair of point clouds from observed data as an example (Figure 

3.16). Firstly, the overlap area of the point clouds is determined by voxel hulls, then a subset of 
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points are selected within the overlap area in one of the point clouds, and the nearest neighbours 

of them in the other point cloud are found, forming a set of correspondences which might include 

several outliers. These outliers are removed later based on the compatibility of points. 

Afterwards, a weight between 0 and 1 is assigned to each correspondence according to the 

roughness attribute and the angle between normals of the corresponding points. The estimation 

of the transformation parameters (for the loose point cloud) is performed by a least squares 

adjustment which minimises the sum of squared point-to-plane distances. Finally, the loose point 

cloud is transformed with the estimated parameters. The above steps are iterated until the global 

minimum is reached.           

 
Figure 3.15. Functionality of the GlobalICP algorithm (Glira, 2015a)    

       
                                        (a) Initial state                                                          (b) Final state after using GlobalICP         

Figure 3.16.  The performance of GlobalICP 

3.6.3 Measurement of vehicle dimensions  

Vehicle size and vehicle type are two important parameters in vehicle emission studies according 

to Pinto et al. (2020). Vehicle reconstruction can benefit the acquisition of these two parameters. 

On one hand, vehicle dimensions can be measured from the reconstructed vehicle shape. On the 

other, it is easier to classify vehicles into different categories based on the complete vehicle 

shapes. Whilst the shape better identifies the vehicle type, key data such as Euro class, fuel type 
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and engine size that are needed to estimate emissions are not available. However, the improved 

classification better informs the National fleet, resulting in better estimates of emissions than 

those based on composition defined by loop detectors, for example.  

3.6.3.1 Length and width  

Figure 3.17 shows the plan-view of the reconstructed shapes of a vehicle example obtained from 

the four previously described methods. The shapes are rotated to a horizontal position to make 

it easier for the subsequent measurements. Vehicle length and width can be calculated from the 

minimum bounding box around the corresponding shape. It is noteworthy that the 

measurements from 2D matching method should be converted to real world scale through the 

pixelsize, as in Equation 3-7 in Section 3.4.2.    

 
Figure 3.17. Measurements of vehicle shapes from different methods. 

3.6.3.2 Height  

The algorithm to calculate the vehicle height can be described by the following steps:  

i) Label the road region manually and regress to a plane.    

ii) Calculate the centroid of the vehicle and define a window around the centroid which is parallel 

to the road plane.  

iii) Calculate the distance of each point within the window to the road plane. 

iv) Find the maximum distance which is regarded as the vehicle height.  

3.6.3.3 Construction of validation database  

In order to validate four different vehicle reconstruction methods, a database containing 30 

vehicles (two of them are shown in Figure 3.18) was created from video data simultaneously 

collected with lidar at the test sites. The make and model of each vehicle was identified according 
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to a voting strategy and its dimensions were acquired from manufacturer’s specifications. Due to 

inadequate image resolution, it was not easy to clearly identify the make and model of the 

vehicles from the video imagery. To solve the problem, crowdsourcing strategy was adopted: 20 

people at Newcastle University who are familiar with or greatly interested in vehicles contributed 

to the identification process. They named the make and model of each vehicle individually from 

their knowledge and experience. For each vehicle, there might be several makes, and models 

named. The final decision of it was the one with the highest voting number.  

These vehicles were reconstructed by the introduced four methods from the lidar data. With 

cross-reference to the simultaneously acquired video imagery, the obtained vehicle dimensions 

were compared with those from the validation database. 

                

(a) Fiat 500 

              

(b) Vauxhall Corsa 

Figure 3.18. Two vehicle examples with identified dimensions. 
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3.6.4 Fine-grained vehicle classification   

Fine-grained object classification has been increasingly studied for detailed 3D traffic scene 

understanding (Stark et al., 2011; Lin et al., 2014; Zia et al., 2015). In terms of vehicles, it is 

important to acknowledge their types for vehicle emission studies, amongst other applications. 

Vehicles are first discriminated from other objects and then further classified into different 

categories. The two stage approach  is usually reported to perform better  than when vehicle 

detection and classification are performed as a general classification problem by also introducing 

a non-vehicle class (Serna and Marcotegui, 2014).  Specifically, vehicles are intended to be 

classified into cars, vans, trucks and buses based on the observed data.  

According to the proposed JDAT framework, moving objects are classified into vehicles and 

pedestrians by identifying the representatives of corresponding trajectories. For one trajectory, 

the representatives are further input to the vehicle reconstruction algorithm. The obtained 

vehicle shape is supposed to be sent to the classifier for fine-grained vehicle classification, for 

which the classifier should be trained by complete vehicle shapes reconstructed on trajectories 

obtained from the observed lidar data.  Different from vehicle detection, RF is the only classifier 

adopted for vehicle classification since samples of each vehicle category are insufficient to train 

a multi-class PV-RCNN detector.  

3.7 Summary  

This chapter has introduced the proposed traffic monitoring system from the aspects of vehicle 

detection, tracking, and reconstruction. Both a three-step workflow and a deep learning method 

have been described in vehicle detection in Section 3.1 and Section 3.2. Traditional machine 

learning classifiers are applied in the final step of the first method and PV-RCNN is used as the 

vehicle detection network in the second method.  

Fundamentals of tracking are firstly elaborated in Section 3.3, followed by two vehicle tracking 

frameworks (vehicle tracking and high accuracy speed estimation; joint vehicle detection and 

tracking). Vehicle detection in the first framework is realised by the aforementioned three-step 

vehicle detection workflow. Vehicle tracking is firstly conducted by a centroid-based initial 
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tracking procedure, and accuracy of the obtained vehicle speeds is further improved by a tracking 

refinement module. In the second framework, moving object clusters are extracted via the first 

two steps in the three-step vehicle detection workflow. Afterwards, object detection and tracking 

are performed in parallel, with PV-RCNN employed in detection and trajectory identity 

determined by the class of corresponding representatives. Four methods proposed from both 2D 

and 3D perspectives are used for vehicle reconstruction in Section 3.6. The applications of vehicle 

reconstruction including vehicle dimension measurement and fine-grained vehicle classification 

have been depicted at the end of Section 3.6. Experiments as well as comprehensive analysis and 

comparison of the above methods explained in the next Chapter 4.   
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Chapter 4. Experiments and Analysis  

The lidar sensors and the study sites used in this research are introduced respectively in Sections 

4.1 and 4.2, followed by the analysis of the experiments regarding each element of the proposed 

traffic monitoring system (Sections 4.3 to 4.6). In each section, datasets and important 

parameters are analysed in the first instance if there are any. Subsequently, the performance is 

evaluated and comprehensive comparisons are made to demonstrate advantages of the 

proposed methods.  A thorough discussion is carried out to further assess the system and explore 

the potentials for improvement. The final section is a summary of this chapter. 

4.1. Equipment          

This research employs two lidar sensors. The first is a RS-LiDAR-32, a panoramic instrument from 

RoboSense. The sensor has a detection radius of up to 200m and is designed for various 

applications such as autonomous vehicles, robotics, and 3D mapping. It has 32 laser beams and 

collects data at a speed of 640,000pts/s. The scanning frequency is set to 10Hz in our tests. It 

covers a 360° horizontal FOV and a 40° vertical FOV with 15° upward and 25° downward looking 

angles. The second sensor is a Velodyne VLP-16, with 16 laser beams and a maximum detection 

range of 100m. The vertical field of view of the instrument is 30° with 15° upward and 15° 

downward. The scanning frequency is also 10Hz in our experiments. The reason why two sensors 

were used is as follows: Velodyne lidar is the most commonly used multi-beam lidar sensor 

around the world. However, Velodyne lidar sensors with the highest number of laser beams, such 

as HDL-32E and HDL-64E, were beyond the budget of this project, so a VLP-16 with 16 beams was 

chosen. From the initial experiments, 16 laser beams were not found to provide sufficient spatial 

detail on the vehicles for some required operations, such as vehicle reconstruction. Therefore, 

an alternative lidar sensor was needed. The Robosense RS-LiDAR-32, with 32 laser beams, 

provided a good choice when considering both the price and specifications. 

The lidar viewer used to display the captured data for RS-LiDAR-32 is RSView, and that for VLP-

16 is VeloView. CloudCompare is used to view a single lidar frame. A lidar frame can be displayed 

in different perspectives in CloudCompare, e.g. 3D view, plan view and side view. 3D view is 
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obtained when all the points are displayed with original X, Y and Z values.  When Z value of each 

point is set to 0, plan view can be obtained. When X or Y value of each point is set to 0, the lidar 

frame is shown in side view. Attributes of two lidar sensors are detailed in Table 4.1.  

Table 4.1.  Attributes of two lidar sensors: VLP-16 and RS-LiDAR-32 

Attributes VLP-16 RS-LiDAR-32 

Horizontal FOV 360° 360° 

Vertical FOV 30° (+15° to -15°) 40°( -25° to +15°) 

Rotation Rate 5 - 20Hz 5 - 20Hz 

Horizontal Angular Resolution 0.1°- 0.4° 0.09°- 0.36° 

Vertical Angular Resolution 2° At least 0.33° 

Laser Emitters 16 32 

Accuracy of Point Clouds ±3cm ±5cm 

Measurement range up to 100m 40cm to 200m 

4.2 Study sites 

Four different study sites were chosen in Newcastle upon Tyne, UK ( see Figure 4.1), to i) create 

datasets to train, validate or test vehicle detectors; ii) test methods or frameworks involved in 

the proposed traffic monitoring system under real-world traffic conditions. At  Study Site 1, a RS-

LiDAR-32 laser scanner was set up at a round corner along Queen Victoria Road, c.0.5m away 

from the first lane. At Study Site 2, a RS-LiDAR-32 laser scanner was set up along a straight road 

near a traffic light controlled pedestrian crossing. The lidar sensor was c. 2.5 m away from the 

first of two traffic lanes. At Study Site 3, a VLP-16 laser scanner was installed at a road intersection. 

It was c. 4.5m away from the first of multiple lanes. Study Site 4 was at a roundabout with busy 

traffic, where a VLP-16 was installed but with a shorter distance of c.2m to the nearest lane.  

Table 4.2 displays the specific function of each study site. The reasons why different study sites 

have different functions are explained as follows:  

(1)  The initial vehicle detectors and the newly trained RF classifier were trained, validated and 

tested at Study Sites 1 to 3. Study Site 4 was not included because it provided similar vehicle data 

as Site 3.  
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(a) Study Site 1: a section of Queen Victoria Road.  

 
(b) Study Site 2: a single straight section of Claremont Road running through Newcastle University 

campus. 

 

(c) Study Site 3: a junction of  the Great North Road and St Mary’s Place.           

 
(d) Study Site 4: a crossroad of Clayton Road and Osborne Road in the region of  Jesmond 

Figure 4.1.  Four study sites used in this research  
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Table 4.2.  Functions of the study sites used in this research 

Procedures Study Sites Functions  

  Vehicle detection 

SVM, RF, rule-based 1,2,3 Model training, validation, test 

Newly trained RF 1,2,3 Model training, validation, test 

PV-RCNN 1,2 Model training, validation, test 

Vehicle tracking 
Framework 1 2,3 Algorithm test 

Framework 2 2,3,4 Algorithm test 

Vehicle reconstruction 2 Algorithm test 

Vehicle classification 1,2 Model training, validation, test 

 
PV-RCNN was only performed on Study Sites 1 and 2. To train the network properly, a large 

training dataset was needed. Due to time limitation, it was difficult to create an adequate training 

dataset directly from Study Sites 3 and 4, or by adding a large number of samples from these two 

sites to the training dataset created from Sites 1 and 2. Moreover, the network trained using data 

from Study Sites 1 and 2 did not perform well when initially applied to Study Sites 3 and 4. 

Therefore, Study Sites 3 and 4 were not considered further with PV-RCNN at this stage.  

(2) At Study Site 1, as the near lane was a bus lane, vehicles in the far lane were occluded 

whenever a bus passed by. Therefore, neither of the two tracking frameworks was tested at 

Study Site 1. Data from Study Sites 2 and 3 were sufficient to test framework 1. However, many 

more vehicle samples were required in order to test tracking framework 2, therefore Study Site 

4 was used for this purpose.  

(3) Vehicle reconstruction and fine-grained classification require sufficient vehicle details, so 

these algorithms were not assessed on Study Sites 3 and 4 where a lidar sensor of only 16 laser 

beams was installed.  

Vehicle reconstruction was not tested on Study Site 1 because vehicles near the lidar sensor were 

distorted as the lidar sensor was located too close to the road edge. Also, as explained in (2), 

vehicles in the far lane were occluded whenever a bus passed by.  
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4.3. Vehicle detection  

At the early stage of this research, classifiers such as SVM and RF were initially trained for vehicle 

and non-vehicle binary classification based on the small amount of data possessed at that time. 

Since the vehicle tracking and high accuracy speed estimation framework is developed based on 

vehicle detection results from these classifiers, they are introduced in this section, although are 

replaced by new classifiers at a later stage. RF, a three-class classifier aimed at categorising 

objects into vehicles, pedestrians and other classes, was trained with a larger dataset and more 

distinguishable feature sets when more data was available. An advanced 3D object detection 

network, PV-RCNN, was further exploited attempting to improve vehicle detection performance. 

In this section, the datasets used to train the classifiers are introduced in the first place, followed 

by the determination of important parameters involved in vehicle detection and illustration of 

the training process. Comprehensive comparisons regarding different classifiers or different 

operations of the same classifier are made to better show the advantages of the classifiers.   

4.3.1 Datasets  

For initial classifiers, a dataset containing 316 vehicle clusters and 224 non-vehicle clusters was 

created manually from lidar data collected at Study Sites 1 to 3. Around 67% of these were used 

for training the SVM and RF classifier (210 vehicles and 150 non-vehicles), and the remaining used 

for validation. A test dataset of 697 clusters (300 vehicles, 397 non-vehicles) that was totally new 

to the classifier was then randomly selected from the lidar observations at three study sites. 

The classifiers in initial trials are for vehicle and non-vehicle binary classification. Since 

pedestrians (including a small number of cyclists and motorcyclists) are also important road users 

in addition to vehicles in urban cities, it is necessary to treat them as a single class with more 

traffic data available. In addition to road users, there are also some clusters from swaying trees 

or bushes in the extracted moving objects that need to be distinguished from vehicles and 

pedestrians. Therefore, a RF is trained for classification among three classes, i.e. vehicle, 

pedestrian and others. A dataset composed of 2928 clusters (1423 vehicle clusters, 1282 

pedestrian clusters and 223 others) was created manually from lidar data collected at Study Sites 
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1 to 3 to train and validate the RF classifier. A five-fold cross validation strategy was used to split 

the dataset. A test dataset of 583 clusters (271 vehicle clusters, 306 pedestrian clusters and 25 

others) that was totally new to the classifier was created from lidar observations at Study Site 2 

and Study Site 3. It is noteworthy that both training and test datasets include data from two laser 

scanners in order to make the classifier more generalised.  

For PV-RCNN, a dataset containing 3184 vehicles and 1563 pedestrians was created from 763 

lidar frames collected at Study Site 1 and Study Site 2. 360 vehicles and 368 pedestrians from 63 

frames (15 frames from Study Site 1 and 38 frames from Study Site 2) are composed of the test 

split. The remaining in the dataset are divided into train split and validation split by a ratio of 7:3. 

In our data, the numbers of cyclists and motorcyclists are so small that it is impossible to regard 

them as individual classes. Therefore, they are not considered in this study.      

4.3.2 Parameters and training process   

As for the three-step workflow, the background of each test site is constructed prior to moving 

point extraction (as described in Chapter 3). Background construction is normally conducted by 

successive frames in a certain time interval when the number of moving objects is as small as 

possible. In our experiments, for each of the four study sites, 100 successive frames in a quiet 

period were selected to perform background construction.  

In clustering, there are three important parameters: the minimum cluster size S1, the maximum 

cluster size S2, and the minimum distance d between two clusters. At four study sites of this 

research, the minimum distance between two vehicles is around 1.5m, and the minimum 

distance between a pedestrian and a vehicle is around 1.8m. Therefore, d is set to 1m in the tests. 

The cluster size is dependent on the number of beams of the sensors, thus needs to be adjusted 

for different sensors. According to comprehensive statistics, the largest vehicle cluster contains 

around 6000 points from RS-LiDAR-32, so S2= 6500. Since the point density is much lower from 

the VLP-16, the value is smaller: S2= 5500. As for vehicle tracking and high accuracy speed 

estimation framework, the tracking refinement module requires clusters to be of certain shape 

and size. The smallest cluster that meets the requirements contains around 200 points at Study 

Site 1 and Study Site 2 where the RS-LiDAR-32 was installed, so S1= 150 for these sites. A smaller 
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value S1= 50 is adopted for Study Site 3 and Study Site 4 where the VLP-16 was installed. 

Regarding the joint vehicle detection and tracking framework, small clusters with few points in 

the far scanning field are supposed to be maintained because the following object tracking step 

is aimed to associate all the visible clusters in the scanning region so that tracking can be 

continued to the maximum extent. According to the datasets from four study sites, 1S  is set to 5.  

In the vehicle and non-vehicle classification stage, an SVM classifier with radial basis function as 

the kernel function and an RF classifier with 20 trees were exploited in the initial trials. Two 

classifiers were trained using Matlab 2020b on a laptop with i7-2.8GHz CPU.  

As for PV-RCNN, the entire network was trained with batch size 4, learning rate 0.01 for 100 

epochs on a NVIDIA GeForce RTX 3090 GPU, which took around 8 hours. The detection range is 

set to -80m~80m for the X axis, -40~40m for the Y axis and -3m~1m for the Z axis. Other 

parameters including voxel size in the training process remain the same for KITTI data as in the 

work of Shi et al. (2020a).  

4.3.3 Evaluation Metrics    

As pointed out by Zhang et al. (2020), three indices, precision, recall and F1-score, were used to 

assess the performance of the classifiers. Macro F1 is used to measure the overall performance 

of the newly trained RF regarding to 3 classes, vehicles, pedestrians and others, shown in 

Equation (4-1).  

                            Macro F1  = (F1  (vehicles)  + F1  (pedestrians)  + F1  (others)  )/3                                              (4-1)   

To evaluate the performance of PV-RCNN, Average Precision (AP) (Padilla et al., 2020) is also 

adopted in order to make comparisons with results from Shi et al. (2020a). According to Padilla 

et al. (2020), related concepts are explained as follows. N is the number of ground truths; IOU 

(Intersection Over Union) means the area of intersection over the area of union between the 

ground truth bounding box and the detected bounding box.      

1) True Positive (TP):  A correct detection with IOU ≥ threshold.    

2) False Positive (FP): A wrong detection with IOU < threshold.    

3) Precision: TP/(TP+FP).   

4) Recall: TP/N.                           
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5) F1 score: 2* Precision*Recall/(Precision+Recall).   

4.3.4 Results and analysis         

The results of the initial trials are analysed firstly. A RF classifier for vehicle and non-vehicle 

classification using the first 28 features introduced in Section 3.1.3 was trained and the weights 

for each of the features were obtained, shown in Figure 4.2. It can be concluded that 

a,  𝑊𝑊𝑖𝑖𝑑𝑑𝑡𝑡ℎ ,  𝑥𝑥𝑠𝑠 , 𝐿𝐿𝑝𝑝𝑛𝑛𝐿𝐿𝑡𝑡ℎ  and  𝑦𝑦𝑠𝑠 are the five features with high importance, among which a is the 

most important one. As a result, we retrained the SVM and RF classifiers using the following 

feature sets: 𝐹𝐹1 = 𝑀𝑀,  𝐹𝐹3 = [𝑀𝑀,𝑊𝑊𝑖𝑖𝑑𝑑𝑡𝑡ℎ, 𝑥𝑥𝑠𝑠 ],  𝐹𝐹5 = [𝑀𝑀,𝑊𝑊𝑖𝑖𝑑𝑑𝑡𝑡ℎ, 𝑥𝑥𝑠𝑠, 𝐿𝐿𝑝𝑝𝑛𝑛𝐿𝐿𝑡𝑡ℎ,𝑦𝑦𝑠𝑠 ],  𝐹𝐹28 = [𝑣𝑣1, 

𝑣𝑣2, … , 𝑣𝑣20 , 𝑥𝑥𝑠𝑠 ,𝑦𝑦𝑠𝑠 , 𝑧𝑧𝑠𝑠 , 𝐿𝐿𝑝𝑝𝑛𝑛𝐿𝐿𝑡𝑡ℎ,𝑊𝑊𝑖𝑖𝑑𝑑𝑡𝑡ℎ,𝑀𝑀𝑀𝑀𝑥𝑥_ℎ𝑝𝑝𝑖𝑖𝐿𝐿ℎ𝑡𝑡,𝑀𝑀𝑖𝑖𝑛𝑛_ℎ𝑝𝑝𝑖𝑖𝐿𝐿ℎ𝑡𝑡,𝑀𝑀]. In addition, a simple rule-

based method using the size of the clusters’ bounding boxes was implemented for comparison 

with these two classifiers. Three indices, precision, recall and F1-score, were used to assess the 

performance. From comparison results shown in Table 4.3, it is found that the overall 

performance of the three classifiers on four feature sets can be regarded as relatively 

indistinguishable. Both SVM and RF performed slightly differently with different number of 

features. When the feature set changes from 𝐹𝐹1  to 𝐹𝐹28, F1 scores produced by SVM are 0.91, 0.92, 

0.88 and 0.95, respectively. F1 scores from RF are 0.91 for feature set 𝐹𝐹1, and 0.93 for feature 

sets 𝐹𝐹3  , 𝐹𝐹5  and 𝐹𝐹28 . The rule-based method performed best in terms of recall (0.99) with a 

decent precision as 0.92. In order to keep as many vehicles as possible to facilitate the tracking 

process, the rule-based method is adopted in the vehicle tracking and high accuracy speed 

estimation framework even though its overall performance is not the best.  

As for results from the newly trained RF, it can be seen from Table 4.4 that for vehicle and 

pedestrian, F1 is over 0.9 for both validation and test datasets. However, macro F1 is lower than 

0.9 due to low F1 values of ‘others’ (0.83 for validation dataset and 0.75 for test dataset). To be 

specific, the precision of ‘others’ is comparable with the other two classes (0.88 and 1 for 

validation and test, respectively), whereas recall is much lower (0.79 for validation and 0.6 for 

test). The poor performance results from the limited number of clusters belonging to others 

(mainly refer to false alarms) in the training dataset. Since the number of false alarms in the test 
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datasets from Study Sites 2 and 3 is quite small, this classifier is regarded as competent to 

distinguish vehicles and pedestrians.   

 

Figure 4.2.  Estimation of feature importance.             

Table 4.3.  Peformance of classifiers trained by different feature sets.    

 
                          SVM                                                          RF                                   Rule-based 

Precision   Recall      F1 Precision  Recall     F1 Precision Recall    F1 

        F1    0.86 0.96    0.91    0.90                             0.92   0.91    0.86  0.99 0.92 

        F3    0.88 0.96    0.92    0.91                              0.95   0.93    

        F5    0.78              1.00    0.88    0.92   0.94                 0.93    

        F28    0.96                 0.94    0.95    0.90    0.96                  0.93      

Table 4.4.  Performance of RF classifier. 

    Classes    P    R    F1 Macro F1 

Validation 

Vehicles 0.92 0.93 0.92 

 0.89 Pedestrians 0.92 0.92 0.92 

Others 0.88 0.79 0.83 

     Test 

Vehicles 0.86 0.95 0.90 

 0.85 Pedestrians 0.95 0.87 0.91 

Others 1.00 0.60 0.75 
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The performance of PV-RCNN is analysed as below:  

In the KITTI benchmark, cars, pedestrians and cyclists are detected. However, in our study, 

cyclists in the observed data are so few in number that it is impossible to regard them as an 

individual class. They are regarded as pedestrians in the current work because they are closer to 

pedestrians than to vehicles in appearance. In addition to cars, there are other categories in the 

observed data such as bus, truck and van. These categories are all regarded as vehicles currently 

due to data limitation. Unlike the newly trained RF, the class ‘others’ is not taken into   

consideration for PV-RCNN due to insufficient samples. Only vehicles and pedestrians are 

detected by PV-RCNN in this study.  

As can be seen from Table 4.1, PV-RCNN has been tested at Study Site 1 and Study Site 2. The 

results are shown in Figure 4.3 and Figure 4.4. Table 4.5 displays the corresponding statistics. For 

vehicle class, the results outperform the reported accuracy from Shi et al. (2020a) with obvious 

margins, i.e. AP for vehicle at Site 1 is 96.6%, higher than the reported 90.3% for easy cars. At Site 

2, AP for vehicle is 85.0%, higher than the reported accuracy 81.4% for moderate cars (Shi et al. 

2020a). For pedestrian class, AP values at two sites are 78.7% and 54.2%, higher than the 

reported accuracy 52.2% for pedestrians (Shi et al. 2020a). What needs to be addressed is that 

vehicle class in our data includes various categories such as car, van, bus and truck, which makes 

vehicle and pedestrian classification more difficult than single category. Despite this fact, PV-

RCNN achieves better results for vehicle class on our data than car class on KITTI data. F1 of 

vehicle at Site 1 is 88.8%, 10.6% higher than that at Site 2. F1 of pedestrian at Site 1 is 6.5% higher 

than that at Site 2. At both Sites, F1 of pedestrian is more than 10% lower than that of vehicle. 

The poorer performance at Study Site 2 is resulted from the smaller amount of training samples. 

The worse results for pedestrians can be explained as proposed by Shi et al. (2020a): the limited 

number of key-points may harm the performance of objects with small sizes.   
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                                     (a)  Ground truths                                                     (b) Detection results   

Figure 4.3.  PV-RCNN detection results of Study Site 1. 

 

(a)  Ground truths                                                    (b) Detection results  

Figure 4.4.  PV-RCNN detection results of Study Site 2.  

   Table 4.5.   Statistics of detection results from PV-RCNN. 

Study               
Sites 

     Class   N       TP    FP  F1 (%)       AP(%) IoU 

       1 
    Vehicle      178      174    40 88.8       96.6 0.5 

Pedestrian    222                                                 200   121 73.7       78.7 0.5 

       2 
    Vehicle          182      158    64 78.2       85.0 0.5 

 Pedestrian      146       89    30  67.2       54.2 0.5 

4.3.5 Comparison between PV-RCNN on original lidar data and moving points        

PV-RCNN was developed on original lidar data as an object detector by Shi et al. (2020a). However, 

it was operated on extracted moving points in this research to avoid some potential false alarms 

by removing unrelated points beforehand. Figure 4.5 and Figure 4.6 show the comparison of the 

results, and Table 4.6 displays corresponding statistics.  

vehicles

pedestrians
vehicles

pedestrians

vehicles

pedestrians

vehicles

pedestrians
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                           (a) Ground truth                                      (b) Detection on moving points                              (c) Detection on original data                                                                                    

Figure 4.5.  Comparison results of Study Site 1. 

 

 

 

                     (a) Ground truth                                              (b) Detection on moving points                      (c)  Detection on original data                                                                                    

Figure 4.6. Comparison results of Study Site 2. 
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Table 4.6.  Comparison between PV-RCNN on original data and moving points.   

       Sites                                            Data     Class       N      TP FP 
Recall 

(%) 
Precision 

(%) 
  F1 (%) 

        1 

Original 
   Vehicle 178 174 40 97.8 81.3 88.8 

Pedestrian 222 200 121 90.1 62.3 73.7 

Moving 
points 

   Vehicle 178 177 41 99.4 81.2 89.4 

Pedestrian 222 192 69 86.5 73.6 79.5 

         2 

Original 
    Vehicle 182 158 64 86.8 71.2 78.2 

 Pedestrian 146 89 30 61.0 74.8 67.2 

Moving 
points 

    Vehicle   182 136 27 74.7 83.4 78.8 

Pedestrian   146 106 56 72.6 65.4 68.8 

It can be seen from Table 4.6 that at two study sites, performance of vehicle and pedestrian 

classification has been improved by performing PV-RCNN on moving points. To be specific, at 

Study Site 1, F1 of vehicle has increased from 88.8% to 89.4%, while F1 of pedestrian has reached 

79.5% from 73.7%. At Study Site 2, F1 of vehicle is slightly enlarged by 0.6%. The increment of F1 

for pedestrian is 1.7%. It is noteworthy that the improvements of pedestrian (5.8% and 1.7%) are 

more obvious than those of vehicle (0.6% and 0.6%). The main reason is that unrelated points in 

the original data has a bigger negative impact on small size objects such as pedestrians, thus the 

removal of those points benefits more for pedestrians than for vehicles. The increments of F1 for 

vehicle and pedestrian are smaller at Study Site 2 than at Study Site 1. As can be seen from Figure 

4.5 and Figure 4.6, the environment of Study Site 1 is more complicated than that of Study Site 

2, therefore, simplifying the data by removing static background makes bigger contributions to 

object classification at Study Site 1 than at Study Site 2. The comparison and analysis demonstrate 

the advantages of performing PV-RCNN on moving points over original lidar data in terms of 

vehicle and pedestrian detection.                                                                                                                                                                                                                                                                                                                                                                                       
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4.4 Vehicle tracking and high accuracy speed estimation                             

4.4.1 Parameter analysis            

Some important parameters in the centroid-based tracking stage of the vehicle tracking and high 

accuracy speed estimation framework are specified in Table 4.7. These parameters are involved 

in three stages of tracking including initialization, data association and track management. The 

description, setting as well as the reason of the setting for each parameter is shown in the table. 

‘Initialization threshold’ is used to start a new track. If the association probability of a detection 

within the assignment gate is lower than the threshold, a new track will be generated. This 

parameter is usually set as a scalar in [0,1]. In this study, the default value 0.1 in JPDAF algorithm 

was assigned to this parameter. ‘Confirmation threshold’ is a parameter to confirm a track and 

normally specified as [M, N]. A track is confirmed if it recorded at least M hits in the last N updates. 

Thus, the first M-1 clusters of an object are not assigned to the corresponding track. To avoid 

missing any potential targets, the confirmation threshold in this study was set to [1,3]. 

‘Assignment threshold’ is the pivotal parameter in data association. It controls the range in which 

the detections are assigned to tracks, namely, the assignment gate. If the value is too small, some 

detections that should be assigned to a track might be overlooked. Otherwise, there will be false 

assignments. In this study, it was set to 4m, considering both the average vehicle speed and lidar 

sensor frame rate.  

There are two parameters in track management worth mentioning: the first one is ‘Deletion 

threshold’, used to delete a track. It is normally set as [P,R], which means  a confirmed track will 

be deleted if it is not assigned to any detection in P of the last R tracker updates. The default 

value in the JPDAF algorithm is [5,5] and this value was adopted in this study. The other one is  

‘Length threshold’, a parameter used to delete trajectories that do not belong to road users. It 

was set to 3m with the following considerations: according to the data, non-road users are mainly 

moving tree leaves that could not be removed by moving point extraction. A bunch of such tree 

leaves compose a big cluster. There are several such clusters in the processed data. Based on 

experimental tests, the maximum diameter of those clusters is around 3m. In practice, the 

trajectories of moving on-road users must be longer than 3m and the observation lasts for a 



90 
 

certain period (The minimum recording time in this research is 42s, and no users remain static 

throughout the recording).                          

Table 4.7.   Parameter setting in the centroid-based tracking stage.  

Procedure       Parameter Description Setting Basis of setting 

Initialization 

Initialization 
threshold 

Threshold to initialize a track        0.1 Default 

confirmation 
threshold 

Threshold for track confirmation       [1,3] Experiment  

Data 
association 

Assignment 
threshold 

Detection assignment threshold [4, Inf] 
Practice and   

empirical        
knowledge 

      Track 
management 

Deletion 
threshold 

Threshold for track deletion       [5,5] Default 

Length 
threshold 

Threshold to delete a non-
vehicle trajectory 

        3 
Experiment and 

practice 

4.4.2 Vehicle tracking performance                          

In order to validate the speed estimation under different traffic flow conditions at Study Sites 2 

and 3, six recordings covering the test vehicle when it was passing through the scanning area—

three from each site—were taken as three study cases. As described in the experimental design 

of the speed reference system (Section 3.4.3), a recording is defined as: when the test vehicle is 

near the scanning area, recording starts. After the test vehicle leaves the scanning area, recording 

stops. The six study cases were not selected at random. The first three were from Study Site 2. 

Date collection was conducted in the afternoon when the traffic was busy. Even though six 

recordings in total were collected at Study Site 2, not all of them can be properly used because 

of heavy occlusion. Three were used with the following reason: the test vehicle in case 1 and case 

2 showed different dynamics, with one driving through and the other showing a pattern of stop-

and-go. The lidar sensor was set to a different angle of view in case 3, as an aid to understand 

how best to configure the optimal vertical FOV. The other three were from Study Site 3. Date 

collection was conducted at noon when the traffic was freely flowing. Six recordings were 
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available to be used from this site, but only three representatives were used in order to reflect 

different patterns of movement: turning right, turning left, driving straight forward. In each of 

the six cases, two sets of vehicle speeds were acquired through the tracking process: initial values 

from centroid-based tracking and refined values after tracking refinement. Both were compared 

with the reference datasets so as to assess the accuracy improvement. Case 1 and case 5 are 

illustrated in detail.  

Figure 4.7 and Figure 4.8 show the trajectories and speeds of all the tracked vehicles in case 1 

and case 5. In case 1, the recording was shown for 43.3s and tracking continued through the 

whole period, with all 18 vehicles that appeared in the scanning area during this period 

successfully tracked. The tracking range of the approach is c. 45m. Short trajectories were 

generated from vehicles that were either close to the edge of the scanning area at the beginning 

of the observation period, or that were occluded by other vehicles during tracking process. In 

case 5, tracking was shown c. 2s before the test vehicle entered the scanning range and stopped 

c. 2s after it left. The whole process lasted for c. 8s and all six vehicles (including one bus) were 

tracked. Two vehicles that were turning left were continuously tracked. Tracking of another two 

vehicles which were turning right, including the test vehicle, were also successively implemented. 

The trajectories of the remaining vehicles were very short, for example, one in the second lane. 

The successful tracking range in this case was c. 18m.  

      
                                                        (a)                                                                                             (b)                                              

Figure 4.7. Trajectories of centroid-based tracked vehicles in case 1 (a) and case 5 (b). Each colour 
represents a vehicle with a unique ID.   
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(a) Speeds of all tracked vehicles in case 1 (Centroid-based)       (b) Speeds of all tracked vehicles in case 1 (Refined)       

 
(c)  Speeds of all tracked vehicles in case 5 (Centroid-based)  (d) Speeds of all tracked vehicles in case 5 (Refined) 

Figure 4.8. Speeds of tracked vehicles in case 1 and case 5: (a) and (c) show the centroid-based speeds; 
(b) and (d) show the refined speeds. Each colour represents a vehicle with a unique ID.    

4.4.3 Evaluation of the reference speeds                     

The uncertainty of vehicle speeds from the reference system was evaluated, which was first 

implemented when the test vehicle was stationary so that the true speed was known to be 0 m/s. 

Two sections (shown in Figure 4.9) from Study Site 2 were chosen to create the statistics based 

on the following indices: Standard Deviation (SD), Mean, and Root Mean Square Error (RMSE). In 

the two cases, the durations when the vehicle was stationary were 23s and 41s, respectively. As 

shown in Table 4.8, the average RMSE of two cases was 0.024m/s, which means the displacement 

deviation is within 3mm per frame (frame rate 0.1s).           

 
Figure 4.9. Reference speeds from two stationary sections.    
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Table 4.8.  Analysis of reference speeds in two stationary sections. 

 
SD(m/s) Mean(m/s)        RMSE(m/s) 

Stationary 
period(s) 

Section 1 0.006      0.023   0.028 19 to 42 

Section 2 0.005       0.019   0.020 10 to 51 

4.4.4 Comparison among three sets of vehicle speeds 

Comparison among three sets of speeds (the centroid-based speeds; the refined speeds; the 

reference) was conducted for all the six cases. Figure 4.10 shows the comparison results of the 

test vehicle in six cases at  Study Site 2 and Study Site 3. The test vehicle at Study Site 2 was either 

moving forward with a constant speed or with a pattern of “stop-and-go.” The test vehicle at 

Study Site 3 was turning left and right in the first two cases, while going forward with a constant 

speed in the third case. It is also noteworthy that the test vehicle was going generally faster at 

Study Site 3 than at Study Site 2. Despite the movement variability, the refined speeds and the 

reference are in close accordance with the roughly estimated moving trends, whereas centroid-

based speeds obviously deviate further from the reference. Therefore, it is clear that the tracking 

refinement step has improved the speed accuracy for all six example cases.  

RMSE and mean absolute error (MAE) are used to quantitatively evaluate the three sets of speeds. 

As seen from Table 4.9, the accuracy of the estimated speeds was improved by the refinement 

module, under different vehicle dynamics. The overall mean RMSE value has decreased from 

0.4m/s to 0.2m/s and the overall mean MAE has decreased from 0.3m/s to 0.2m/s. Meanwhile, 

the two different lidar sensors employed at the two study sites produce slightly different results, 

with RMSE value of 0.2m/s at Study Site 2 and 0.3m/s at Study Site 3.  

However, direct comparison of performance between study sites is difficult since there are 

mainly four primary variables relating to the experiment configuration that might influence the 

achieved RMSE at different sites. These are: object distance to lidar sensor, number of lidar laser 

beams, vehicle speed and vehicle movement patterns. The test vehicle was observed at different 

distances to the lidar sensor at the two study sites: the test vehicle was approximately 10m to 

15m from the sensor at Study Site 3; while the vehicle was only around 5m from the sensor at 
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Study Site 2. Also, the lidar sensor used at Study Site 3 had only 16 laser beams and that used at 

Study Site 2 had 32 beams. A further distance to the lidar sensor and fewer laser beams may 

result in deficiency in acquiring points on the vehicles, particularly the roofs. Speed estimates 

with lower precision and accuracy may therefore be obtained as there is insufficient detail in the 

image matching process during tracking refinement.  

 
                                               (a)                                                                                                     (b)          

Figure 4.10. Comparison results of the test vehicle in six cases at Study Site 2 and Study Site 3: red: 
centroid-based speeds; blue: refined speed; green: the reference. (a) Test vehicle speeds in case 1 to case 
3. (b) Test vehicle speeds in case 4 to case 6.    

Other factors that may influence RMSE values are vehicle speeds and movement patterns. The 

faster the vehicle is being driven, the smaller the overlap area between two successive vehicle 

clusters will be. As long as the overlap area accounts for a sufficient percentage of the whole 

vehicle body such that  that matching can be performed smoothly, the accuracy of the estimated 

vehicle speeds would not be adversely affected. It is worth exploring the relationship between 

RMSE and the required percentage of overlap. In theory, the moving pattern would not influence 
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the matching performance as long as there is no sudden motion change. When the vehicle is 

turning right or left smoothly, matching would still be achieved within high quality. Unfortunately, 

due to time constraints, data collection was curtailed. A small number of data samples has limited 

statistical rigour and therefore more robust analysis would require further data collection.    

Table 4.9.  Evaluations of six case studies. 

             RMSE(m/s)            MAE(m/s)  Mean speed of test 
vehicle (m/s) 

Vehicle travel 
direction       RMSE13                RMSE23       MAE13              MAE23 

Study 
Site      
2 

Case 1 0.4      0.1      0.3      0.1      3.7      Straight on 
Case 2 0.2      0.1      0.1      0.1      0.7      Straight on 
Case 3 0.4      0.     3 0.3      0.3      2.6      Straight on  

      Mean 0.3      0.2      0.2      0.1        
Study 
Site      
3 

Case 4 0.5      0.2      0.5      0.2      6.1      Turning left 
Case 5 0.5      0.3      0.4      0.2      5.8      Turning right 
Case 6 0.4      0.3      0.4      0.3      7.3      Straight on 

     Mean 0.5      0.3      0.4      0.2        
    Overall mean 0.4      0.2      0.3      0.2        

4.4.5 Comparison with other methods      

The estimated speeds were validated against a reference system (seen as Figure 3.10 in Section 

3.4.3) that is considered to provide a higher order of accuracy. The RMSE of the reference data 

was about one-tenth of that of the lidar data. In the work from Zhao et al. (2019), speed validation 

was conducted by a test vehicle with an on-board diagnostics logger. The average absolute speed 

difference between speeds from lidar data and reference data, which is equivalent to MAE in the 

study of this thesis, is as high as 0.6m/s. In comparison, the average MAE of all the cases in the 

work reported here was 0.2m/s. A more accurate reference system allowed full exploration of 

the capacity of lidar speed estimation.   

In a vision-based vehicle tracking method (Bell et al., 2020), four cases were from Study Site 2 in 

the study of this thesis and the adopted speed validation system was the same as that in this 

study. The reported average RMSE and average MAE values of four cases were 0.6m/s and 0.5m/s, 

around three times of corresponding values in Table 4.9 (0.2m/s and 0.2m/s). Therefore, it can 

be concluded that the proposed lidar-based vehicle tracking and speed estimation method 

performances better than vison-based method.     
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4.5 Performance of JDAT      

The most important parameters in this framework are determined in Section 4.5.1. A 

segmentation-tracking-classification (STC) scheme is implemented to make comparison with the 

proposed framework in Section 4.5.2, in order to demonstrate that the proposed framework has 

stronger ability of trajectory classification. STC is a framework to track and identify vehicles with 

the same intention, as of the proposed JDAT, to mitigate negative influence from vehicle 

detection in traditional tracking-by-detection method. A tracking-by-detection method is 

conducted in Section 4.5.3 to show that the proposed framework has the ability to improve the 

quality of object trajectories  

4.5.1 Parameter analysis       

Settings for critical parameters in object detection based on PV-RCNN have been illustrated in 

Section 4.3.2. Parameter settings in object tracking can be seen in Table 4.7 in Section 4.4.1. 

There are two important parameters in trajectory classification: n, the number of representatives 

of a trajectory; p, the ratio of those identified as vehicles to all the representatives. Six study 

cases, the first three from Study Site 2, the fourth and fifth from Study Site 3 and the last from 

Study Site 4, have been tested with different values (n= [10, 20, 30], p= [0.5, 0.6, 0.7, 0.8]) to 

decide the optimal n and p with regard to the trajectory classification performance which is 

measured by the F1 score. According to Figure 4.11, the best classification performance can be 

achieved when n=30 and p=0.5.     

   

                                    Figure 4.11.  Classification performance with different n and p values.       
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4.5.2 Comparison with STC scheme                            

In STC scheme, three procedures including moving object segmentation, object tracking and 

trajectory classification (RF is utilized) are conducted in sequence. n=30, p=0.5 are used in 

trajectory classification stage in both methods.       

Trajectory classification results from two methods for two study sites are shown in Figure 4.12. 

The corresponding statistics are shown in Table 4.10. The indexes TP, FP and F1 are defined in 

4.3.3. In this situation, TP means the number of correctly classified trajectories; FP refers to the 

number of falsely classified trajectories; Ground Truth (GT) is the total number of trajectories of 

each class, which is manually identified from the tracking results. Although RF used in STC is 

trained to classify objects into vehicles, pedestrians and others, the last two classes are combined 

into one class, ‘non-vehicle’, in the statistics since the number of ‘others’ is pretty small at Study 

Site 1 and Study Site 2. Overall, the proposed method outperforms STC in trajectory classification 

regarding both vehicles and non-vehicles. Specifically, at Study Site 1, F1 of vehicle from the 

proposed method is 83.6%, 3.6% higher than that from STC. F1 of non-vehicle is increased by 2% 

by the proposed method. At Study Site 2, F1 for both vehicle and non-vehicle have been increased 

by larger percentages than Study Site 1 which is located in a more complicated environment, 9% 

for vehicle and 14% for non-vehicle. The results demonstrate that the proposed method 

outperforms STC in representative-based trajectory classification especially in simpler 

environments. 

Table 4.9.  Comparison between STC and JDAT 

   Study 
   Sites         

STC                            JDAT 
GT 

 TP FP F1 (%) TP FP F1 (%) 

Vehicle 
1 26 8 80.0 28 8 83.6 31 
2 18 16 66.7 14 3 75.7 20 

Non-
vehicle 

1 36 5 84.7 36 3 86.7 44 
2 29 2     76.3 42 6 90.3 45 
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(a) trajectory classification from STC at Study Site 1                (d)  trajectory classification from STC at Study Site 2 

             

 (b) trajectory classification from JDAT at Study Site 1               (e) trajectory classification from JDAT at Study Site 2 

                        

                             (c) Ground Truth at Study Site 1                                                  (f) Ground Truth at Study Site 2 

Figure 4.12.  Trajectory classification performance of STC and JDAT. 
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4.5.3. Comparison with tracking-by-detection method               

In the tracking-by-detection method, tracking is implemented after the objects are detected. A 

total of 15 vehicle examples from Study Sites 2, 3 and 4 were used to compare the proposed 

method with the tracking-by-detection method with regard to both the range and the continuity 

of the trajectories. Nine vehicle examples, three from each site, were used to compare the ranges 

of the trajectories. The other six vehicle examples, two from each site, were used to compare  

continuity of the trajectories. One vehicle example refers to the case in which a vehicle enters 

the scanning region, then passes by the lidar sensor, and finally leaves the scanning region. 

Different patterns of movement, i.e. turning right, turning left and driving straight forward, were 

involved in the 15 vehicle examples. The maximum tracking ranges of two commonly used lidar 

sensors are further measured. The trajectories of these vehicle examples are shown in Figure 

4.13 to Figure 4.19, and the statistics about ranges of the first nine examples are displayed in 

Table 4.11.  

4.5.3.1 Ranges of the trajectories    

Nine vehicles travelling across the entire scanning region are used to compare two methods. For 

each vehicle, two trajectories are obtained from two methods, individually. The start frame and 

the end frame of each trajectory are recorded in Table 4.11, so is the total number of frames the 

trajectory covers which is denoted as N1 for the tracking-by-detection method and N2 for the 

proposed method. By checking the vehicle clusters from the original data, the corresponding 

ground truth (the number of frames is denoted as N in Table 4.11) which refers to the frames 

where the vehicle actually exists can be obtained and regarded as the reference to compare the 

performance of two methods. N1/N, N2/N are used as indexes for the comparison.    

From a qualitative perspective, as shown in Figure 4.13, trajectories from the proposed method 

are longer than those from the tracking-by-detection method. The differences mainly lie in one 

(examples 1, 4, 6, 7, 8, 9) or two ends (examples 2, 3, 5) of the trajectories, which is in line with 

the assumption that low-observable clusters in the far field are highly likely to be absent in the 

tracking-by-detection method. From a quantitative perspective, seen as the comparison results 
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in Table 4.11, the proposed method obviously outperforms the tracking-by-detection method: 

except for examples 2, 3, 4 and 6, N2/N can be over 90% with several values even reaching 100%. 

Nevertheless, the highest N1/N value from the tracking-by-detection method is only 83.9%. The 

lowest N1/N value is 60% in example 7, indicating that nearly half of the clusters are missing. Even 

though this is an extreme example, it indeed happens when the classifier is not properly trained. 

It has been proven that the proposed method is effective to improve such situation as N1/N has 

been increased from 60% to 100% in example 7. The tracking ranges of nine vehicles are shown 

in Table 4.12, which has further demonstrated the ability of JDAT to increase trajectory ranges.      

                

                                                                (a) Vehicle examples 1-3 from Test Site 2     

                    

                                                          (b) Vehicle examples 4-6 from Test Site 3   

          

                                                        (c) Vehicle examples 7-9 froFm Test Site 4    

Figure 4.13.  The trajectories of nine vehicle examples from two methods: blue is from the tracking-by-
detection method and red is from the proposed method.                                                            
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Table 4.10. Comparison between the tracking-by-detection method and JDAT regarding the range of 
vehicle trajectories.                                     

Study 
Sites  

Vehicle 

Examples 

Tracking-by-detection              JDAT          Ground Truth      Comparison  

Start 
frame 

End 
frame 

N1 
Start 
frame 

End 
frame 

N2 
Start 

frame 
End 

frame 
N 

N1/N 
(%) 

N2/N(%)  
N2/N- 
N1/N 

2 

     1  777                  849 73 743 849 107 741 849 109  67.0 98.2 31.2 

     2  878 967 90    875              976 102                865   991 127                70.9            80.3 9.4 

     3 4880        4971 92  4871   4979 109 4863 4996 134  68.7      81.3 12.6 

3 

     4 4221 4274 54 4219 4284 66 4219 4302 84 64.3 78.6 14.3 

     5 9110 9163 54 9100 9173 74 9100 9181 82 65.9  90.2 24.3 

     6 9105 9162  58  9104  9174 71  9104   9185  82  70.7     86.6 15.9 

4 

     7                     0                                20 21 0 34   35     0    34  35  60.0     100  40 

     8 766    836  71   766   858   93   766  858   93      76.3  100 23.7 

     9  926  977 52 926   987   62   926 987   62  83.9  100 16.1 

Mean                                                                                                                                                            69.7          90.6         20.9                                                               

             

         Table 4.11. Tracking ranges of nine vehicle examples from Tracking-by-detection(D1) and JDAT(D2).             

Study Sites 
Vehicle 

examples 
D1 (m) D2 (m) 

2 

1 53.26 92.22 

2 48.52 56.81 

3 47.71 57.21 

3 

4 19.87 26.92 

5 21.15 27.15 

6 17.29 22.16 

4 

7 11.04 18.68 

8 24.03 31.01 

9 17.41 19.78 
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4.5.3.2 Continuity of the trajectories          

Six vehicle examples, denoted as vehicle examples 10-15 from three study sites (10 and 11 from 

Study Site 2, 12 and 13 from Study Site 3, 14 and 15 from Study Site 4), are used to justify that 

the proposed method has the ability to bridge the trajectory gaps caused by miss-detections from 

the tracking-by-detection method.              

In vehicle example 10 at Study Site 2, the trajectory from the tracking-by-detection method (left 

in Figure 4.14) is chopped into two at the front end due to a short-time occlusion. While the 

corresponding trajectory from the proposed method (right in Figure 4.14) is successive because 

clusters that are lost in the tracking-by-detection method are retained on the trajectory. In 

vehicle example 11 at Study Site 2, the trajectory from the tracking-by-detection method is 

divided into three parts from the rear end (blue, green and red in the left in Figure 4.15) because 

some low-observable clusters are missing after vehicle detection. The problem is avoided in the 

proposed method and a continuous trajectory is generated (right in Figure 4.15).     

As to example 12 from Study Site 3 (Figure 4.16), there is a slight occlusion at the beginning (after 

around 2s when the vehicle started to be tracked) and several affected clusters are overlooked 

in the detection stage in the tracking-by-detection method, resulting in the interruption of the 

trajectory. Nevertheless, tracking proceeds smoothly from the beginning to the end in the 

proposed method. Vehicle example 13 at Study Site 3 is turning right. When the vehicle is being 

tracked for around 3.5s, the vehicle clusters become too weak to the classifier due to self-

occlusion. Thus, tracking is suspended in the tracking-by-detection method until clusters are 

recovered 0.5s later. As a result, two trajectories turning right are generated, (see left figure in 

Figure 4.17). While there is no such problem in the proposed method because those low visible 

clusters are assigned to the trajectory directly in the tracking stage and they do not contribute to 

the subsequent trajectory classification.   

Vehicles 14 and 15 from Study Site 4 are both suffering from occlusions caused by other vehicles. 

As for vehicle 14, occlusion is severe and the affected clusters only appear to be blurred 

boundaries. Accordingly, tracking is paused for around 1.5s in the tracking-by-detection method 

(left in Figure 4.18). While there is no negative influence in the proposed method as can be 
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concluded from the integral trajectory in Figure 4.18. In terms of vehicle 15 from Study Site 4, 

despite discontinuous occlusions, tracking is conducted without any resistance in the proposed 

method. Unfortunately, tracking in the tracking-by-detection method is interrupted twice, 

generating a trajectory that is cut into three pieces from the rear end (blue, black, and red see 

right figure in Figure 4.19).     

 

        

Figure 4.14.  Vehicle example 10 from Study Site 2. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method.      

   

Figure 4.15.  Vehicle example 11 from Study Site 2. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method.       

                   

Figure 4.16.  Vehicle example 12 from Study Site 3. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method.       
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Figure 4.17.  Vehicle example 13 from Study Site 3. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method. 

         

Figure 4.18.  Vehicle example 14 from Study Site 4. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method.  

      

 

                                 

Figure 4.19. Vehicle example 15 from Study Site 4. Left: trajectories from the tracking-by-detection 
method; right:  trajectory from the proposed method.        

From the aforementioned comparisons (Sections 4.5.3.1 and 4.5.3.2) based on 15 vehicle 

examples from three study sites, it can be concluded that moving object trajectories from the 

JDAT method are of wider ranges than corresponding ones from the tracking-by-detection 
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method. Besides, the trajectory gaps resulted from the tracking-by-detection method can be 

stitched by the JDAT method, therefore, the continuity of vehicle trajectories can be improved.        

4.5.3.3 The maximum tracking range       

As demonstrated above, the proposed method is capable of increasing the ranges of the object 

trajectories. Therefore, it is reasonable to assume that the tracking range of the lidar sensor can 

also be increased. The maximum tracking ranges of two lidar sensors at three study sites are 

measured by the two methods, with statistical results shown in Table 4.13. Figure 4.20 shows the 

trajectories that are the furthest away from the lidar sensor at three study sites (the one 

highlighted by a black box).  

Observed from Table 4.13, the maximum tracking range at Study Site 2 by RS-LiDAR-32 has been 

increased from 108m to 111.3m by the proposed method. Even though there is no obvious 

difference between two methods in the measurements at Study Site 3 and Study Site 4, the 

results have confirmed that the tracking range by VLP-16 can reach 112.4m. The tracking ranges 

at Study Site 3 and Study Site 4 are different (112.4m vs 98.2m) despite that the same lidar sensor, 

VLP-16, was set up. This can be interpreted by the road conditions of two study sites: at Study 

Site 3, there are no vertical lanes in front of the sensor to the open road, but two such lanes exist 

at Study Site 4. Therefore, the sensor at Study Site 3 is more likely to ‘see’ further of the open 

road than the sensor at Study Site 4.    

Table 4.12. The maximum tracking range of two lidar sensors at three study sites.     

                                                    Study Site 2(RS-LiDAR-32) Study Site 3 (VLP-16)                                   Study Site 4 (VLP-16)                                  

Maximum         
tracking 

range (m) 

Tracking-by detection       108.0           112.4              98.2 

    JDAT       111.3           112.4               98.2 

The vehicle that reaches the furthest to the sensor at Study Site 2 are tracked from frame 1478 

to frame 1672 in the proposed method (right in Figure 4.20 (a)), while tracking only lasted for a 

few frames in the tracking-by-detection method before it stopped due to influence of occlusions 

(left in Figure 4.20 (a)). At Study Site 3 and Study Site 4, the vehicle at the furthest of an open 
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road branch is a bus (Figure 4.20 (b) and (c) ). Buses are higher than normal cars, so they are less 

likely to be occluded by other vehicles and thus have more points remained on the clusters in the 

far field. Those far-field clusters are not easily to be overlooked in tracking-by-detection method, 

therefore, the bus is being tracked until the end of the recording by both methods, resulting in 

same maximum tracking ranges from two methods.          

                                                  

(a) The furthest trajectories at Study Site 2 from the tracking-by-detection method (left) and the proposed 
method (right) (Frames 1-1750)           

                        

(b) The furthest trajectories at Study Site 3 from the tracking-by-detection method (left) and the proposed 
method (right) (Frames 1-1000) 

          

(c) The furthest trajectories at Study Site 4 from the tracking-by-detection method (left) and the proposed 
method (right) (Frames 600-1200)     

Figure 4.20. The trajectories furthest to the lidar sensor from two methods at three test sites (highlighted 
with yellow box).                   

Van Van 

Bus Bus 

      Bus       Bus 
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The algorithm proposed by Wu et al. (2018) filters the background by dividing the space into grids 

with equal size and only considers points within 60m. Therefore, the maximum object detection 

range can only reach 60m. Based on this background filtering algorithm, vehicles with a max 

distance of 29.1m from the lidar sensor can be detected and tracked by Wu (2018a). Another 

background construction algorithm has increased vehicle detection range to 100m (Zhang et al., 

2019). The above works are all based on a VLP-16 lidar sensor. In a newly proposed tracking-by-

detection procedure (Zhang et al., 2020), the tracking ranges at two test sites with two different 

lidar sensors, RS-LiDAR-32 and VLP-16, are 45m and 18m, respectively. Compared with the above 

research, object tracking range in our work has reached 111.3m by RS-LiDAR-32 and 112.4m by 

VLP-16 tested at three study sites.                 

4. 6. Vehicle reconstruction and fine-grained classification                 

Four vehicle reconstruction methods, sequential ICP, sequential NDT, GlobalICP and 2D matching, 

are validated by a database created from two recordings at Study Site 2. The database includes 

20 vehicles with dimensions identified visually through images, among which, No.1 to No.7 are 

from recording 1 and the others are from recording 2. The clusters of each vehicle within the 

entire scanning range are associated by the centroid-based tracking procedure in Section 3.4. 

Those in the far field of the scanning range are prone to inaccurate registration, so vehicle 

reconstruction is based on clusters in the near field, which means only vehicle clusters with 

distance to the laser scanner smaller than d are considered in the reconstruction. Four 

reconstruction methods are both qualitatively and quantitatively evaluated and compared based 

on vehicles in the validation database.       

4.6.1 Visual results of vehicle reconstruction     

The point cloud clusters for vehicles in the validation database are retained after the tracking 

procedure, and then processed by four methods to obtain complete vehicle shapes. The results 

of four random vehicle examples are shown in Figure 4.21, with each vehicle shape displayed on 

both the plan-view (left column) and the side-view (right column).   
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The vehicles are displayed in two views (side and plan) to facilitate the measurement of the 

length, width and height. Analysed from visual perspective, sequential ICP performs weaker on 

plan-view as there is an obvious false registration of vehicle 3 (Figure 4.22(c)); sequential NDT 

and 2D matching perform worse on the side view.  For vehicle 1, there is clear error accumulation 

from 2D matching since the shape is higher than those from other methods (Figure 4.22(a)). Also, 

there are not enough details such as windows in the shape from 2D matching. For vehicle 2, there 

is a big distortion near the front wheel in the shape from sequential NDT (Figure 4.22(b)). 

GlobalICP performs the best without obvious distortions for all the four vehicles.          

      

Figure 4.21. Completed shapes of four vehicles by four methods. Each vehicle shape is displayed on both 
the plan-view (the left column) and the side-view (the right column).                          

          

                                 (a)                                                   (b)                                                         (c)  

Figure 4.22. Distorted examples: (a) side view of vehicle 1; (b) side view of vehicle 2; (c) plan view of 
vehicle 3.  

4.6.2 Measurement of reconstructed vehicles           

The dimensions (length, width and height) of the reconstructed vehicles are determined by the 

minimum bounding box in line with the orientation of the vehicle, as shown in Figure 4.23. Table 

4.14 shows the comparison between the obtained vehicle dimensions and the corresponding 

Original 

Sequential ICP

Sequential NDT

GlobalICP

2D matching

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
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references. RMSE values regarding three dimensions, denoted as R_L, R_W and R_H, are adopted 

as the evaluation metrics. To make an overall evaluation, the mean RMSE value of three 

dimensions is also used as an index, named as Ave_LWH.               

          

Figure 4.23.  The measurements for vehicles constructed from ICP (left), NDT (middle left) and GlobalICP 
(middle right) and 2D matching (right). 

Table 4.13.  RMSE of the reconstructed shapes from four methods. 

 R_L(m)  R_W(m) R_H(m)           Ave_LWH(m) 

Diff_ICP 0.24 0.17 0.08 0.16 

Diff_NDT 0.15 0.16 0.13 0.15 

Diff_GlobalICP 0.12 0.13 0.03 0.09 

Diff_2D 0.15 0.17 0.15 0.16 

It can be seen from the overall statistics that GlobalICP outperforms the other three methods 

with the smallest Ave_LWH value. It shows more obvious superiority in height calculation with 

R_H to be only 3cm. NDT performs slightly better than ICP and 2D matching which show 

equivalent ability.           

In our experiments, a series of values ranging from 5m to 10m have been tested in order to 

determine the optimal value for d. It turned out that the reconstruction results were the best 

when d equals to 6m.  

In addition to vehicle dimension measurement, another application of completed vehicle shapes 

is to improve the performance of fine-grained vehicle classification. Unfortunately, according to 

the observed data, it is difficult to create a decent training dataset containing sufficient complete 

vehicles of different categories, especially trucks and buses. Since the lidar data covers urban 

areas, the number of trucks is quite small. Besides, although there is a relatively larger number 

of buses in the original data, it is impossible to generate enough high-quality complete shapes 

due to lack of details on the top of buses.                              
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4.6.3 Fine-grained vehicle classification        

As explained above, it is unrealistic to implement fine-grained vehicle classification on complete 

vehicle shapes. Therefore, it is still performed on vehicle clusters, specifically, the representatives 

of the vehicle trajectories. The feature set exploited to train the classifier is the same as that for 

newly trained RF in vehicle detection, whereas with a different ranking of sub-feature importance, 

seen as Figure 4.24.         

 

                                                   Figure 4.24. The importance of the sub-features.  

A dataset including 551 car clusters, 423 van clusters, 93 truck clusters and 268 bus clusters was 

built based on lidar data from Study Site 1 and Study Site 2 (some samples are shown in Figure 

4.25). The dataset is split into three subsets, 0.6 of it for training, 0.25 of it for validation and the 

remaining for testing.           

        

                    (a)                                              (b)                                           (c)                                              (d)            

Figure 4.25.  Samples of each vehicle category: (a) car; (b) van; (c) truck; (d) bus. 

The confusion matrices on both validation and test subsets are shown in Figure 4.26 and 

corresponding statistics are displayed in Table 4.15. Overall, classification performance is 
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promising with macro F1 values of four classes on both subsets to be over 0.95. It can be seen 

from the results of the test set that truck is the most difficult to be distinguished because F1 score 

is the lowest. One possible reason is that the number of training samples of truck is smaller than 

those of the other three categories. However, it is impossible to achieve any improvements 

currently due to data limitation.                                             

Table 4.14.  Performance of classifier on validation and test subsets. 

 bus car truck van 
Macro F1 

 P R F1 P R F1 P R F1 P    R   F1 

Validation 0.98 0.96 0.97 0.97 0.99 0.98 0.96 0.96 0.96 0.95 0.95 0.95    0.97 

    Test 0.98 0.95 0.96 0.96 0.98 0.97  0.87      0.93     0.90          0.95     0.94      0.95    0.95 

 

 

                                                (a)                                                                                            (b)         

Figure 4.26. Confusion matrix of (a) validation set and (b) test set. 

4.7 Discussion       

Based on the experiments and results, details or potential of the developed traffic monitoring 

system are further discussed in this section, considering real-world applications.                               
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4.7.1 Traditional vehicle classifiers                        

After static point removal, in the initial stage of this research, vehicle detection was simplified to 

a vehicle and non-vehicle classification problem and a simple rule-based classifier and two 

machine learning-based classifiers, SVM and RF, were realised. The training dataset was sufficient 

for a classifier intended to distinguish vehicles from other moving objects despite the small 

number of samples. On one hand, in urban environments, “other moving objects” mainly refer 

to pedestrians, cyclists, motorcyclists, and a few number of false alarms. Since their features are 

rather different to that of vehicles, they can be distinguished easily from vehicles. Therefore, the 

resulting precision and recall were relatively high and this step should not be considered as a 

bottleneck for future experiments at early stage. The rule-based approach produced higher recall 

and was hence adopted for the vehicle tracking and high accuracy speed estimation framework.    

With more lidar data available, another RF was trained with more distinguishable feature sets. 

Rather than vehicle and non-vehicle binary classification, the new classifier aims to classify 

moving objects into three classes, vehicles, pedestrians and others, which provides opportunities 

for wider traffic applications. For example, it is possible to predict pedestrians’ crossing intention 

and thus avoid the collision between vehicles and pedestrians once their trajectories are 

obtained in the later tracking procedure. One common road user category in urban city 

environments, ‘cyclist’, should ideally be regarded as a single class. However, it is currently 

ignored due to the small number in the available lidar data. It is necessary to treat cyclists 

separately when more data available. In terms of ‘others’, even though there is no such class in 

KITTI vision benchmark suite (Geiger et al., 2013), it is regarded as a single class in this research 

since there are some moving clusters from trees or moving bushes that could not be discarded 

after clustering. However, the classification results for ‘others’ through RF are much poorer than 

the other two classes due to insuffient training samples.       

4.7.2 PV-RCNN vehicle detector                                  

The advanced 3D object detection network, PV-RCNN, has been applied in this research. It 

outperformed the reported results in the original work (Shi et al., 2020a) with large margins. The 
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performance of pedestrian was worse than vehicle according to the inference that the limited 

number of key-points may harm the performance of objects with small sizes (Shi et al., 2020a), 

which is also the reason why enlarging the number of training samples of pedestrians by adding 

KITTI data did not provide any improvement. Vehicles were firstly detected by PV-RCNN and later 

fine-grained classified into different categories by the RF classifier, with the consideration that 

discriminating vehicles from other objects first and further classifying them into different 

categories can usually provide better performances. It would be interesting to apply PV-RCNN as 

a multi-class detector when more training data is obtained. Moreover, PV-RCNN was used as an 

object detector in the way it was originally presented. It is more interesting and efficient to use 

it as a classifier in this work because moving object clusters can be easily extracted beforehand 

through the first two steps in the three-step vehicle detection workflow. Further trials aim at 

adapting the network to make it directly operate on object proposals. PV-RCNN was operated on 

moving points and it has also been tested on original lidar data to provide comprehensive 

comparisons. There should also be a comparison between PV-RCNN and RF at later stage.       

One important threshold in the evaluation metrics is IoU. According to Shi et al. (2020a),  0.7 is 

set for vehicle, 0.5 is set for pedestrian. While in the experiments of this research, 0.5 is set for 

both classes. Trials have been made to adjust the values but resulted in very minor changes in 

the results.  

4.7.3 Transferability                       

The above 3D object classifiers and detector were trained from data collected from the first three 

study sites. The dataset for initial SVM and RF was from Study Site 1 and Study Site 2, but it has 

been demonstrated that the two classifiers could be adapted to Study Site 3 very well. The new 

RF was trained from data collected from Study Site 1 to Study Site 3. It also delivered good 

performance on Study Site PV-RCNN was trained by data from Study Site 1 and Study Site 2, and 

only tested at these two sites at present. Further tests on Study Site 3 and Study Site 4 are needed 

to validate the transferability.          
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4.7.4 The vehicle tracking and high accuracy speed estimation framework            

As for vehicle tracking and high accuracy speed estimation, several parameters in the centroid-

based tracking stage are important, as shown in Table 4.7. One of these parameters is the 

initialization threshold. If the association probability of a detection within the assignment gate is 

lower than the threshold, a new track will be generated. This parameter is critical to decide if a 

track should end when severe occlusion appears. For example, in heavy traffic flow, if the vehicle 

being tracked is completely occluded and consequently reobserved with an association 

probability lower than the initialization threshold, a new ID will be assigned to the subsequent 

detections. Thereafter, tracking refinement will resume for the new ID. Whereas, in light 

occlusion, in which the vehicle being tracked is partially occluded for a short period, some of the 

clusters will be incomplete and lower association probability may arise. To keep tracking 

continuous in this situation, a small value of 0.1 is assigned to the initialization threshold. In 

subsequent tracking refinement, if one image of a pair is partly affected, matching can still be 

conducted between them. Issues may arise that the matching accuracy is low and the estimated 

speed could be noisy. To tackle this issue, a smoothing algorithm is utilized in the final stage to 

filter out noise in the speed values.     

The performance of the centroid-based tracking mainly relies on the vehicle detection results. In 

the framework, the tracking accuracy was not quantitatively assessed as all detected vehicles 

were correctly tracked at both Study Site 2 and Study Site 3, based on visual inspection. This 

mainly results from the high lidar sensor frame rate (0.1s), which implies that clusters of a vehicle 

in two successive frames can be easily associated due to the small spatial distance between them. 

False tracks are mainly caused by false positives (non-vehicle road users, trees, or similar objects) 

in the detection stage. Tree like objects can be easily filtered by the length of the trajectories 

since they are almost stationary throughout the tracking period. However, some non-vehicle 

road users, such as pedestrians walking closely together along the road, cannot easily be 

discarded. According to Zhang et al. (2020), a potential improvement to enhance the detection 

accuracy could be integrating semantic constraints, such as extracting road boundaries 

beforehand to exclude pedestrians. As a new RF classifier has been trained based on more 

distinguishable feature sets and could provide a 91% detection accuracy for pedestrians, the 



115 
 

aforementioned false tracks can be easily removed from the detection stage. Tree like 

trajectories that could not be removed by trajectory length can be singled out by the new RF 

since it is a three-class classifier.        

The estimated speeds from the first framework are validated against a reference system that is 

considered to provide a higher order of accuracy. The RMSE of the reference data was about one-

tenth of that of the lidar data. Speed validation was also conducted by a test vehicle with an on-

board diagnostics logger recently by Zhao et al. (2019). The reported average absolute speed 

difference between speeds from lidar data and reference data, which is equivalent to MAE in our 

work, is as high as 0.639m/s. In comparison, the average MAE of all the cases in our work is 

0.18m/s. A more accurate reference system and a high accuracy speed estimation framework 

allowed full exploration of the capacity of lidar speed estimation. 

4.7.5 The JDAT framework         

Nine vehicle examples from three study sites have been used to show that the proposed JDAT 

framework has improved the object trajectories by increasing their lengths. Another six examples 

from three study sites have justified that the proposed framework has also improved the 

continuity of the object trajectories. The effectiveness has been assessed through both the 

qualitative and the quantitative analysis of various examples from different traffic scenes. Point 

cloud data from three study sites has been processed to demonstrate that the proposed method 

has enlarged the object tracking range of two commonly used lidar sensors compared with the 

tracking-by-detection method. As can be seen from the experiments, the difference at Study Site 

2 was obvious (108m vs 111.3m), which can be explained by the ability of the proposed method 

to keep the continuity of the object trajectory under light occlusions and reduced points. Even 

though there was no obvious difference in the measurements from two methods at Study Site 3 

and Study Site 4, the results have confirmed that the maximum tracking range of a VLP-16 lidar 

sensor is 112.4m, which is important guidance for real-world lidar sensing applications.         

In addition to the proposed JDAT framework, a STC scheme is introduced in 4.4.2 to alleviate the 

negative influence that tracking is suffering from detection in traditional tracking-by-detection 

method. In STC, three procedures, segmentation, tracking and classification, are conducted in 
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sequence, while vehicle detection and tracking are conducted as two parallel diagrams in the 

proposed framework. PV-RCNN, as an object detector, cannot be directly applied to individual 

representatives that are selected from object trajectories as the way RF is used in STC. Efforts 

have been made to place the representatives from all the obtained trajectories into one uniform 

frame and send it to PV-RCNN. Unfortunately, the results were not satisfactory. A better solution 

is to perform PV-RCNN on original lidar frame (or the frame that only contains moving points as 

in this research), and then locate the representatives in the detection results to determine the 

categories of them. It turned out that the proposed method provided better classification results 

than STC. However, the results just mean the proposed method performs better than STC in 

terms of the whole framework. Ablation studies are needed when PV-RCNN is adapted to a 

classifier at a later stage when it will be worth replacing RF with PV-RCNN in STC scheme to make 

fairer comparisons.                

The input of the JDAT framework is original lidar data and the output are trajectories of vehicles 

and pedestrians. Detection and tracking are performed in parallel in the framework. In a similar 

work where joint object detection and tracking is also performed (Huang and Hao, 2021), the 

realization of parallelism relies on an object detection network and an object correlation network. 

The object correlation network is only part of the object tracking procedure, which means 

detection and tracking in this work are not totally in parallel. Although object tracking in the JDAT 

framework is not based on advanced deep learning strategies, it is totally independent from 

object detection, which makes it more flexible and capable of generating higher quality outcomes 

such as trajectories with wider range and better continuity.      

4.7.6 Vehicle reconstruction and fine-grained classification      

In the current reconstruction procedure, only clusters that with distance to the laser scanner 

smaller than d are considered. d should be adjusted according to the traffic conditions and the 

location where the laser scanner is installed. Currently, the algorithm has only been tested at 

Study Site 2 with d set to 6m. Further tests on other study sites are needed especially at Study 

Site 3 and Study Site 4 where a different laser scanner, VLP-16, is installed. An alternative way is 

to perform reconstruction on the representatives of the trajectory as they maintain predominant 
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features of the vehicle. One issue that should be addressed is occlusion. If occlusion appears in 

the near field where reconstruction is conducted, the performance would be affected due to 

defective clusters irrespective of the way clusters are chosen as input into the reconstruction.  

In the first way, the defected clusters would be used in reconstruction, resulting in distortion. In 

the second way, the defected clusters might not be used in reconstruction because of small sizes 

or small areas. However, as a result, the exploited clusters are not consecutive, which might 

cause registration error. Fortunately, GlobalICP has better ability than the other three methods 

to deal with this issue as the least squares adjustment strategy is adopted to estimate the overall 

transformation parameters.        

Shape completion on lidar data is generally conducted with supervised strategies in which paired 

training data is needed to learn generative models. Following the paradigm of PCN (Yuan et al., 

2018), point clouds can be completed with neural networks trained from artificial CAD in graphics 

datasets, such as ShapeNet (Chang et al., 2015), VPC-Net (Xia et al., 2021) and S2U-Net (Xia et al., 

2020a). However, it is expensive to acquire CAD models and they are limited to some categories. 

Considering the mentioned drawbacks, the proposed method in this thesis could utilize temporal 

lidar data to complete vehicle shapes in an unsupervised manner. Completion starts once the 

vehicle under tracking enters the reconstruction zone, thus, it can be further integrated into a 

real-time traffic monitoring system without affecting the efficiency.              

The completed vehicle shapes were evaluated in a macro perspective by a validation database 

containing 20 vehicles with specific dimensions. The estimated values for length, width and 

height of the completed shapes were compared with corresponding values from the validation 

database. While the evaluation metrics adopted in state-of-the-art methods are Chamfer 

Distance3 and Earth Mover’s Distance4 between the completed point cloud and ground truth 

which are calculated on point level (Xia et al., 2020a), in a micro perspective. Through the 

evaluation method in the work of this thesis, not only the completion methods can be validated, 

but also vehicle dimensions can be obtained.            

 
3  Chamfer Distance (CD) is an evaluation metric for two point clouds. For each point in each cloud, CD finds the 
nearest point in the other point set, and sums the squares of distances up. 
4 Earth Mover's Distance is a measure of the distance between two probability distributions over a region D. 

https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Probability_distribution
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As for fine-grained vehicle classification, the principal drawback is the low accuracy of ‘truck’ 

caused by small number of training samples. It is impossible to make obvious improvement based 

on the current data. As there are 488 trucks in KITTI data, it might be helpful to add them into 

the training dataset.     

4.8 Summary        

In this chapter, the lidar sensors employed in this research were introduced in Section 4.1, 

followed by the description of the study sites in Section 4.2. For vehicle detection (Section 4.3), 

the performance of several classifiers in initial trials, a newly trained RF and PV-RCNN has been 

demonstrated, respectively. Particularly, a comparison was conducted between PV-RCNN on 

original lidar points and moving points. The advantages of two vehicle tracking frameworks have 

been evaluated by various case studies in Section 4.4 and 4.5. Three sets of vehicle speeds, 

centroid-based speeds, refined speeds and the reference, were compared in Section 4.4 to 

thoroughly confirm the ability of the vehicle tracking and potential to create a more accurate 

speed estimation framework. Both a tracking-by-detection method and a STC scheme were 

compared with the proposed JDAT framework in Section 4.5. Vehicle reconstruction and fine-

grained classification were introduced in Section 4.6. Following the experiments and results, 

there is a comprehensive discussion section with regard to each element of the developed system 

to further explore the possibilities of this research. Inspired by the developed system, further 

discussion on real-world lidar-based traffic monitoring is conducted in Chapter 5.        

 

 

 

 

 

 

 



119 
 

   Chapter 5. Discussion    

Based on the study in this thesis, further discussion on lidar-based traffic monitoring is carried 

out, to provide insights and guidance for real-world implementations. Influential factors related 

to built-in features of lidar sensors, installation strategies for real-world applications and several 

external aspects that have impact on lidar data processing are discussed in this chapter.                   

5.1. Influence from built-in features of lidar sensors                 

As shown in Table 4.1, built-in features of lidar sensors mainly include the number of laser beams, 

horizontal and vertical FOV, horizontal and vertical angular resolution, accuracy of point clouds, 

et.al. The number of laser beams matters greatly in traffic monitoring operations because the 

point density would vary to a large extent. Laser beams are vertically distributed based on the 

vertical angular resolution, either evenly or non-linearly, resulting in different numbers of points 

from the same object with different distances to the lidar sensor. The high accuracy 3D 

information of lidar data makes it easier to obtain high accuracy trajectory-level traffic data. 

However, inherent lack of colour information of Red, Green and Blue (RGB) colour information 

makes the identification of objects less straightforward than using video imagery  

5.1.1 Number of laser beams             

In traffic monitoring, the number of lidar points collected from road users is limited since the 

majority of the lidar data are unrelated background points. In this regard, road users should be 

scanned by as many laser beams as possible so that sufficient points could be obtained to 

facilitate further operations such as vehicle detection, reconstruction and classification which 

relate to Objectives 1, 3, and 4 of this research.             

High-profile lidar sensors with 64 beams or 128 beams are still too expensive to deploy as 

mainstream sensors for infrastructure-based traffic monitoring (Zhao et al. 2020) . Therefore, 

two lower-profile lidar sensors, VLP-16 (16 beams) and RS-LiDAR-32 (32 beams) were employed 

in this research. Other lidar sensors such as Ultra Puck (VLP-32C) or HDL-64ES2 from Velodyne 
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can also be tested when available (Zhao et al. 2020). A suggested experimental design is as 

follows:   

Three lidar sensors of different number of laser beams, HDL-64ES2, VLP-32C (or RS-LiDAR-32) and 

VLP-16, are adopted to collect lidar data in the experiment. The objective of this experiment is to 

quantitatively show the influence of the number of laser beams. Vehicle detection, vehicle 

reconstruction and classification will be realised based on lidar data from three sensors.  

Data collection  

At the test site, there are two ways to install the three lidar sensors: (a) if there are more than 

four people involved in data collection, three lidar sensors can be installed at the same time. A 

camera is recommended to install near the lidar sensors; (b) if there are less than four people for 

data collection, three lidar sensors are suggested to be installed one at a time. Again, a camera 

is recommended to install near the lidar sensor. The recording duration for each lidar senor will 

be determined by the traffic situation to achieve an appropriate number of vehicle observations 

to train the algorithms.   

Data processing     

Vehicle detection, vehicle reconstruction and vehicle classification will be performed three times 

based on data from three sensors. More data will be collected until sufficient data to construct a 

training dataset for vehicle detection or vehicle classification is achieved.      

Result analysis and comparison     

Comprehensive analysis of the results will be conducted when the processing is  completed. 

Comparisons among three sets of results will be made before conclusions are drawn.       

5.1.2 Distance to the lidar sensor       

The density of lidar point clouds changes with the distance to the lidar sensor. If an object is 

located near the lidar, intensive data points are collected and thus present a finely resolved 

description of the object. If an object is far away from the lidar, only sparse data points are 

collected, particularly for the small-sized objects. This is the motivation for developing the JDAT 

framework in this study, which relates to Objective 2 of this research. Besides, to use the best 
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data for better accuracy, vehicle reconstruction, the method to realise Objective 3 of this 

research, is only conducted in the near field. It is worth exploring some new algorithms which 

take distances to the lidar sensor into account, to improve procedures such as clustering (e.g. , 

such as a modified DBSCAN clustering algorithm proposed by Zhao et al. (2019). Minimal Points 

(MinPts) and searching radius (ɛ) are the two primary parameters of the traditional DBSCAN 

algorithm (Ester et al., 1996). If the number of data points within a searching area is greater than 

or equal to a predefined MinPts value, those data points will be clustered to form an object. 

Because of the unique features of roadside LiDAR data, it is difficult to obtain accurate clustering 

results by using fixed MinPts and searching radius. Therefore, the modified DBSCAN clustering 

algorithm effectively adjusts the MinPts and searching radius at different locations. The detailed 

process can be referred to the work from Zhao et al.          

5.1.3 Adjustable horizontal FOV         

The default value of the horizontal FOV of lidar sensors is recognized as 360° according to the 

configurations in the manual. It is noteworthy that this attribute is adjustable even though the 

default value was used in the current work. For example, according to the manual of VLP-32C 

(Velodyne, 2016), the horizontal FOV can be customized by setting values to ‘FOV Start’ and ‘FOV 

End’ in the configuration screen. Inspired by this guidance, the horizontal FOV of the lidar sensor 

in roadside traffic monitoring systems could be adjusted according to the road conditions in order 

to reduce the amount of unrelated data. To be specific, when collecting data at straight roads, 

the horizontal FOV is set to 180° facing the road; when collecting data at intersections where the 

lidar sensor is deployed at the corner, the horizontal FOV is set to 270°, covering the intersection; 

when the lidar sensor is installed at a roundabout, the horizontal FOV is set to 360°. For large-

scale real-world traffic monitoring, the above suggestion is useful because reducing the amount 

of unrelated data is necessary. A robust experimental design is needed based on this suggestion 

and according to the road conditions at the test site. For example: when collecting data at a 

straight road section, the lidar sensor is installed at a known distance to the road edge, and the 

horizontal FOV is set to 180°. Whilst looking through the lidar viewer the location of lidar to the 
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road edge could then be adjusted to make sure the complete road is covered. When all the 

preparations are completed, data collection could then be officially started.                          

5.1.4 High accuracy 3D information         

Another feature of lidar sensors is that they capture the environments with 3D points. The 

measurement accuracy of these points can be as high as 3cm (Velodyne, 2016). On the basis of 

the high accuracy 3D information, higher quality traffic data such as higher accuracy vehicle 

speeds, part of what Objective 2 expects, could be obtained according to the study in this thesis. 

Whereas, it cannot be guaranteed that equivalent performance could be achieved by video data, 

as seen from the comparison in Section 4.4.5.                         

5.1.5 Lack of textural information     

Although lidar has shown superiority in traffic monitoring, there are inherent disadvantages in 

lidar points such as sparsity, irregularity and lack of textural information. This study has shown 

that lack of RGB information is a drawback of lidar data in traffic monitoring. It has negative effect 

on vehicle reconstruction and vehicle classification, which relate back to Objective 3 and 

Objective 4 of this research: i) the validation database for vehicle reconstruction was constructed 

with the aid of video imagery to identify the make and model of the target vehicles; ii) The 

database for fine-grained vehicle classification was created with the help of video imagery to 

identify vehicles whose categories could not be identified from lidar data  

5.2. Suggestions for real-world lidar installation                     

In agreement with Zhao et al. (2020), location, height and inclination are three important factors 

in real-world lidar installation. In addition to them, installation of multiple lidar sensors and 

installation for specific purpose are also illustrated in the following sections:         

5.2.1 Location                   

Lidar sensors can be temporarily installed on a tripod for short-term data collection or 

permanently mounted on roadside infrastructures for long-term data collection. The first 
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strategy was adopted in this research, in which the distance 𝑑𝑑 between the tripod and the road 

edge is pivotal.     

When the height of the lidar sensor (horizontally installed) is fixed, the undetectable range is also 

fixed (seen as Figure 5.1, the undetectable range is the maximum horizontal distance between 

the lowest laser beam and lidar’s central axis). If the lidar sensor is too close to the road edge, 

more road region is located in the undetectable range, which might cause some road users to be 

missed. On the contrary, if the lidar sensor is too far from the road edge, some laser beams may 

shoot outside of the road and there might not be enough points collected from the road region. 

In this research,  𝑑𝑑  was determined at each study site by visual observation from the lidar viewer 

(VeloView and RSView).       

 
Figure 5.1. Undetectable range of the lidar sensor (Zhao et al., 2020) 

5.2.2 Height          

Height of the installation refers to the vertical distance between the lidar sensor and the ground 

surface. How far the laser beams can reach is determined by the height of installation and the 

built-in features of the lidar sensor, as well as the location and height of the target object.           

Once the distance between the tripod and the road edge  𝑑𝑑 is settled, installing the lidar sensor 

at a higher position can minimize the effect of occlusion. However, the undetectable region may 

become larger if the sensor is installed too high. In this research, lidar sensors are erected at 1.8 
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metres, higher than cars, cyclists and pedestrians and lower than large vehicles such as vans and 

buses.                   

5.2.3 Inclination                                    

Ideally, the lidar sensor should be installed on a horizontal plane. Since all the laser beams are 

rotated along the sensor’s central axis forming conical surfaces, target objects with the same 

distance to the sensor but in different orientations are scanned identically because the angle of 

each laser beam relative to the horizontal plane is fixed. However, in practice, there is inevitably 

an inclination either because the lidar sensor is not totally levelled or because the ground surface 

is not horizontal. With this inclination, target objects with the same distance to the lidar sensor 

but in different orientations are scanned differently. If the difference is obvious, operations to 

adjust the data to a horizontal plane must be conducted. Therefore, it is important to install the 

lidar sensor as horizontal as possible in real-world applications to avoid extra workload in data 

processing.              

5.2.4 Multiple lidar sensors                             

Occlusions from other road users are unavoidable if only one lidar sensor is used even though 

the problem can be minimized by increasing the height of the sensor. Also, there is no evidence 

that the proposed JDAT framework is capable of dealing with heavy occlusion. Hence, multiple 

lidar sensors are recommended, if available. Two corresponding sensors should be located at 

different sides of the road, with certain distance ( a  in Figure 5.2(a)) along the road. The value 

of a  should be determined by considering the effective tracking ranges of the lidar sensors 

provided by this research. At a crossing, one lidar sensor at each corner is expected in order to 

provide enough overlapped data for each arm of the junction  (Figure 5.2(b)). At a roundabout, a 

lidar sensor is needed in the central region in addition to those at the corners to make sure there 

is overlapped data for objects from all directions (Figure 5.2(c)).     
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                  (a) A road section                                    (b)  A crossing                                           (c) A roundabout                                                                    

Figure 5.2.  Installation of multiple lidar sensors. 

5.3. External factors                 

5.3.1 Study Sites            

There are four study sites in the city employed in this research: around a corner on a road, a 

straight road section, a road intersection and a roundabout. Even though these sites cover both 

busy and quiet traffic conditions, the number of them is still small and they are only constrained 

to urban areas. For further comprehensive research, more study sites inlcuding those on 

highways and in suburbs (to cover more vehicle categories), both in the UK and beyond, are 

required.                

5.3.2 Weather conditions             

Wojtanowski et al. (2014) found that lidar is susceptible to adverse weather conditions such as  

rain, fog, snow and wind. Therefore, investigating how to improve the accuracy of traffic data 

under adverse weather is significant for traffic applications.     

The current data processing algorithms for roadside lidar are usually developed assuming normal 

weather conditions. For example, all the lidar data used in the study contained in this thesis was 

collected on sunny days. Adverse weather could be challenging for data processing especially for 

road user detection including background filtering and object clustering (Wu et al., 2020). For 

example, the method proposed by Zhao et al. (2019) could not cluster the points correctly under 

snowy weather. Jokela et al. (2019) found that lidar sensors’ performance decreased with the 

increasing density of fog and the distance between the target and the lidar. It is still necessary to 
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quantitatively analyse the influence of different adverse weather conditions on roadside lidar 

and to adapt the methods to accommodate such conditions.   

5.4. Summary     

In this chapter, several built-in features of lidar sensors (number of laser beams, distance from 

the road to the lidar sensor, adjustable horizontal FOV, higher accuracy 3D information and lack 

of textural information) that need to be considered in real-world applications have been 

estimated and suggestions on further study or application related to each factor are given. 

External factors including study sites and weather conditions have also been mentioned in this 

chapter. For real-world lidar installation, suggestions on location, height, inclination as well as 

the use of multiple lidar sensors are provided, all of which are helpful to practitioners. 

Comprehensive conclusions from this research by revisiting the research aims and objectives, 

research contributions, summary and further work are made in Chapter 6.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

Chapter 6. Conclusions  

In this chapter, the aims and objectives of this research are revisited, and the contributions of 

this research are clarified. Conclusions are drawn and anticipated work that can improve this 

research is also summarized.                        

6.1 Revisit research aims and objectives            

The research reported in this thesis aimed to develop an integrated lidar-based roadside traffic 

monitoring system that can provide fundamental traffic information, including the number of 

vehicles, vehicle dynamics, vehicle dimensions and vehicle types. The overall aim of the PhD 

project was achieved via fulfilment of the following objectives.  

Quantification of vehicle numbers by vehicle detection                     

As illustrated in Sections 3.1, 3.2 and 4.3, this objective has been achieved through two methods: 

i) a three-step detection method in which traditional machine learning classifiers SVM and RF 

were used in the third step to distinguish vehicles and non-vehicles; ii) a deep learning method 

where PV-RCNN was adopted as the vehicle detector. In the first method, SVM and RF were 

initially trained using a small amount of data, resulting in an overall accuracy higher than 0.92, 

which is competitive or even better than most of the existing traditional machine learning-based 

3D vehicle detection methods. A three-class RF classifier was trained with a larger dataset and 

more distinguishable feature sets when more data was available, resulting in a F1 score of vehicle 

and pedestrian of around 0.9. Macro F1 of the three classes was 0.85, with high possibility to be 

increased when more samples are available for the third class. In the other method, an advanced 

3D object detection network PV-RCNN was exploited attempting to improve vehicle detection 

performance. The results outperformed the reported accuracy from the original work with 

obvious margins: AP values for vehicle at two study sites (96.6 and 85.0) are higher than those 

for either easy (90.3) or moderate (81.4) cars from the original work, despite the fact that vehicles 

in our work include various categories. AP values for pedestrians (78.7 and 54.2) are higher than 

the reported accuracy for easy pedestrians (52.2).   
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Acquisition of high-quality vehicle trajectories through vehicle tracking     

According to Sections 3.4, 3.5, 4.4 and 4.5, this objective has been addressed by two vehicle 

tracking frameworks developed from two popular strategies, i.e. tracking-by-detection and joint 

vehicle detection and tracking. The first framework intends to obtain higher accuracy vehicle 

speeds by introducing a tracking refinement module in addition to the centroid-based tracking 

procedure. An individual speed reference system is utilized to validate the estimated vehicle 

speeds. It has been proven that this framework can provide a mean speed accuracy of 0.2m/s, 

with an improvement of 46.3% compared with centroid-based tracking. The other is a joint 

vehicle detection and tracking framework in which tracking, and detection are conducted in 

parallel so that misdetections from the vehicle detection stage can be mitigated. The average 

range of vehicle trajectories are increased by c. 21% from the results of different scenes. The 

continuity of the trajectories is also enhanced and the maximum effective tracking ranges of both 

tested laser scanners in different traffic scenes are found to exceed 110m.     

Measurement of vehicle dimensions through vehicle reconstruction       

As can be seen from Sections 3.6 and 4.6, this objective has been fulfilled by implementing vehicle 

reconstruction from the perspectives of both 2D and 3D (four methods in total) on the tracking 

results from Objective (2). The measurement of vehicle dimensions is accordingly realised from 

the completed vehicle shapes. The obtained vehicle dimensions are assessed by a validation 

database with a RMSE value smaller than 0.16m on the average of length, width and height 

measurements.  

Identification of vehicle type through fine-grained vehicle classification      

According to the data we possess, it is difficult to create a training dataset containing sufficient 

complete vehicles of different categories, especially trucks and buses. Therefore, fine-grained 

vehicle classification has only been realised via the clusters obtained from Objective (2). Vehicles 

are classified into different categories with F1 score greater than 0.90 for all the four categories. 

F1 score is larger than 0.95 for categories other than truck, which is higher than the reported 

highest classification accuracy 0.92 from a closely related work (Wu et al., 2019).        
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6.2 Research contributions                              

The contributions of the research contained in this thesis can be summarised as:          

1. Based on roadside lidar data, an integrated traffic monitoring system that can provide 

fundamental traffic information including the number of vehicles, vehicle dynamics, vehicle 

dimensions and vehicle types has been developed. The system has been demonstrated through 

different urban scenarios using two different lidar sensors to provide insight on real-world 

implementations of panoramic lidar sensors for traffic monitoring applications.             

2. An advanced 3D object detection network, PV-RCNN, has been applied to our custom data to 

detect vehicles and pedestrians. The effectiveness of the network has been demonstrated by 

incremental improvement of the detection accuracy.   

3. Two comprehensive vehicle tracking frameworks are presented in the traffic monitoring 

system to solve different problems. The first framework is intended to improve the accuracy of 

the estimated vehicle speeds through the use of a tracking refinement module. The true 

achievable accuracy of speed estimation using panoramic lidar was determined and the reliability 

of results are assured by independently validating the estimated speeds against an accurate 

vehicle speed reference system. The second framework aimed at improving the quality of the 

vehicle trajectories which might otherwise be shortened or interrupted in traditional strategy. In 

the meantime, the maximum tracking range of commonly used lidar sensors are determined by 

this framework, providing guidance for real-world lidar-based traffic applications.                        

4.  A vehicle reconstruction module that is independent from any prior information or pre-trained 

deep learning models was proposed in this research. Reconstruction can be performed flexibly 

for any interested vehicles because it is based on vehicle trajectories with unique IDs. Moreover, 

two new applications of complete vehicle shapes can be prospected: 1) vehicle dimensions 

measurement; 2) fine-grained vehicle classification.         

6.3 Summary              

This research has developed a 3D lidar-based traffic monitoring system that can provide 

comprehensive traffic information through an end-to-end workflow, thereby determining 
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fundamental traffic parameters including the number of vehicles, vehicle dynamics, dimensions 

and types. Both traditional machine learning and deep learning methods have been 

experimented with vehicle detection, with the highest detection accuracy reaching 94%. A 

tracking refinement module has successfully improved the accuracy of determined vehicle 

speeds from 0.4m/s to 0.2m/s, surpassing the accuracy reported in contemporary literature. The 

quality of vehicle trajectories have been improved with regard to both the range and continuity 

by the joint vehicle detection and tracking framework. Complete vehicle shapes and vehicle types 

could also be obtained in addition to vehicle dynamics.  

The results have demonstrated that roadside multi-beam lidar sensors are able to monitor traffic 

in various urban environments such as straight road sections, road intersections and crossroads. 

Main road users can be detected and tracked, where vehicles can be tracked at a range of speeds 

in line with typical urban environments. This work has also shown that a speed accuracy of c. 

0.2m/s can be expected from high-precision 3D lidar data and this could benefit more detailed 

and accurate traffic flow or behaviour analysis. Trajectory interruption problems caused by light 

occlusion can be alleviated by detaching object tracking from object detection. The object 

tracking range of adopted lidar sensors can be extended to the furthest location where reflection 

from the object is extremely weak. It is concluded that the proposed system has the potential to 

be effectively employed for 3D urban traffic monitoring applications, but with the following 

limitations:      

i) Heavy occlusion issues have not been successfully resolved where only a single lidar sensor is 

exploited.         

ii) Real-time traffic monitoring cannot be realised in the current system as code is not optimized 

and computing power is limited, but near real-time processing can be achieved.      

iii) The identification of vehicles is less straightforward than when using video imagery due to 

inherent lack of RGB information.           



131 
 

6.4 Future work   

Based on the identified limitations of the developed system, the following aspects have been 

identified as potential areas to extend the work contained in the thesis:            

• Multi-sensor utilization to address heavy occlusion issues      

In roadside laser scanning systems, vehicles in the furthest lanes from the sensor are likely to 

be occluded by those from the nearer lanes, especially in busy traffic. If the vehicle being 

tracked is completely occluded for some time, tracking as well as other related procedures 

would be affected. If there is another lidar sensor scanning from the other side of the road, 

this vehicle would be scanned. Sensors should be located properly to guarantee sufficient 

overlapped scanning region for point cloud registration. For the installation of the lidar 

sensors, refer to Section 5.2.4.       

• Algorithm optimization to realize real-time traffic monitoring   

The proposed traffic monitoring system is not real-time, so optimization of the algorithms 

would be necessary in order to realize real-time traffic monitoring. Based on the real-time 

traffic monitoring system, urgent applications such as collision avoidance and anomaly 

detection can be enabled.                          

• Fusion of lidar sensor and video camera  

As pointed out in Chapter 5, one drawback of lidar data is the lack of textural information, 

which has made the identification of vehicles from lidar less straightforward. Therefore, 

database creation for vehicle reconstruction and vehicle classification in this research has to 

be aided by visually checking the video data. If lidar data and corresponding video data are 

fused, the above operations would become less laborious. From this aspect, fusing the raw 

data from lidar sensor and video camera is recommended in the future.   

• Further exploration of PV-RCNN or other recently proposed networks to better facilitate 3D 

vehicle detection    

Two potential suggestions to better utilize PV-RCNN or PV-RCNN++ (Shi et al., 2021) in the 

research would be to: i) adapt PV-RCNN(PV-RCNN++) from an object detector to an object 
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classifier. PV-RCNN was developed for object detection from the original lidar data. In this 

research, PV-RCNN was used on both the original lidar and the extracted moving points as a 

vehicle detector. Since moving points can be detected and object clusters subsequently 

extracted, 3D box proposals are generated. The remaining work is to classify these clusters 

into different categories using an object classifier. PV-RCNN can be used as the classifier after 

network adaption.   

ii) apply PV-RCNN (PV-RCNN++) as a multi-class detector to directly obtain different 

categories of vehicles. In the current research, a hierarchical strategy was adopted: first 

vehicles were detected by PV-RCNN as one class and then fine-grained classified into different 

categories namely bus, car, truck and van. It is recommended in the future, research should 

regard PV-RCNN as a multi-class detector, which means bus, car, truck, van and pedestrian 

can be detected at the same time.       

Utilization of latest object classifiers such as CurveNet (Xiang et al., 2021) could also be a 

promising research aspect.  

• Adoption of deep learning strategies for object tracking    

Deep learning strategies have very recently achieved state-of-the-art performance in object 

tracking in 3D points, while a traditional filtering approach was still employed for vehicle 

tracking in this research. For further improvement in the tracking performance, it is worth 

adopting an object tracking network into the vehicle tracking frameworks in the proposed 

traffic monitoring system. One example is a ‘tracklet’ proposal network named as PC-TCNN 

(Wu et al., 2021), for multi-object tracking on point clouds.  This network first generates 

‘tracklet’ proposals, then refines these ‘tracklets’ and associates them to generate long 

trajectories.   
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