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ABSTRACT 

Abilities such as visualization and interaction play essential roles in data mining since they 

can help people grasp and explore information more easily through their ability to bring 

out complex and multivariate patterns in data. The research presented in this thesis 

exploits and demonstrates the powerful combination of visual representation, domain 

knowledge and machine learning techniques to support challenges related to forming 

balanced groups. Teamwork is of substantial interest in academia and industry since 

interpersonal skills count in modern society. A  team can, for example, be defined as a 

group gathered around a common project. Education is one of the domains in which 

group studies are important, and research studies are done to increase the effectiveness 

of group studies. In this case, forming appropriate groups for tasks at hand may be 

overwhelming for educators, as several factors may affect the quality of the group output. 

The current research supports educators in the group formation process and explores 

how to form groups systematically with less bias. In this thesis, a holistic framework called 

GroupVis, is presented in which exploration, clustering and grouping are considered user 

workflow aspects of group formation. In the GroupVis, each of these aspects is designed 

as a module, and each module contains visualization and computational methods within 

itself. The framework is designed with a top-down flow, where the result of the higher 

modules acts as input to the lower modules. As part of the GroupVis research a novel 

glyph was designed and evaluated, as a method that supports the comparison of balanced 

patterns in multivariate data. The three main modules of the GroupVis support group 

formation with functions such as analysing the data attribute field, exploring the cluster 

field visually with different settings, creating desired type groups, and interactively 

examining and modifying the resulting groups. The effectiveness of the framework and 

its modules is evaluated through semi-structured interviews with target users as well as 

through a heuristic survey with domain experts in education. The approaches presented 

here were designed and developed to be practical and applicable for the formation of 

groups in a wide range of domains, with the educational setting being one of these 

domains where we recognized their usefulness. 
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Chapter 1 : INTRODUCTION 

1.1 OVERVIEW 

Research in a wide variety of fields, including health, education, and finance, has been 

spurred on by the rapid growth of large data sets and our desire to extract the data's 

inherent information. It is a common goal for these fields to help us better understand 

data, what it contains, and how to find the particularly important parts of that data. The 

primary areas required to attain this goal include classical statistics, data visualization, 

and the merged fields of data mining, pattern recognition, machine learning, and artificial 

intelligence.  

Visual analytics solutions provide technology that combines the strengths of human and 

electronic data processing 1. Information transformation is the overarching goal of visual 

analytics, much like how information visualization alters how we see databases. Visual 

analytics makes our information and data processing process transparent for analytical 

purposes. Instead than focusing only on the outcomes, visualizing these processes offers 

ways to communicate about information and approaches. 

Using visual representations, information visualization (InfoVis) takes advantage of 

humans' remarkable capacity to view, examine, and comprehend data at multiple levels 

of abstraction. More specially, people can use InfoVis approaches to swiftly spot patterns, 

trends, outliers, and clusters and obtain insights.  

 

The visualization process has been viewed as a pipeline that converts raw data into 

representations interpretable by the human perceptual system and amenable to additional 

processing. The representations are in the form of an organized set of graphical markers 

such as colours, size and space, which carry information in datasets 2. Graphical images 

can be interactive, which allows individuals to manipulate the views in real-time, such as 

zooming in on a relevant object. Visualization techniques are commonly used in data 

mining. Brodbeck et al. 3 posit "it is recognized that data mining algorithms alone are not 

enough. Without expressive visualizations and interfaces, it is hard to achieve the 

necessary flexibility to understand results, generate new hypotheses and test them on the 

fly in a natural interactive environment". When designed with intended audience in mind, 

data visualisation has the potential to make a significant contribution to teaching and 

communication 4. 

Teamwork or group-working is a substantial interest in academia and industry since 

interpersonal skills count in modern society. It is worth noting that team or group are used 

interchangeably throughout the thesis. Likewise, teamwork and groupwork mean the 

same thing. Teamwork has a common purpose of developing successful, mutual 
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interactions among team members to achieve team goals. Nonetheless, planning 

teamwork activities in an informed manner becomes critical; particularly, the 

establishment of groups is the most crucial factor influencing the overall quality of group 

activities 5. 

This thesis focuses on the problem of creating balanced groups and addresses this issue 

in the context of information visualization. One of the most productive areas to study a 

group formation problem is education. Due to the shift from instructor-centred pedagogy 

to constructivist pedagogy, learning designs have started to incorporate cooperative 

learning such as project-based, case-based, or problem-based scenarios. 

These learning designs promote knowledge development 6. The allocation of pupils to 

groups has been the subject of substantial study in the educational literature, as group 

formation is a critical component of providing a good collaborative experience 7, 8. The 

majority of allocation approaches are based on each student's ability or performance level 

in the class. These are followed by the characteristics such as personality, learning style, 

interest, and ethnicity 9. 

As well as such attributes, considering the factors affecting the formation of the group, 

such as the characteristics of the groups, the size of the groups, it seems that forming a 

group is far away from easy. Further, students' data is required to create these desired 

groups. 

The availability and accessibility of educational data repositories, such as educational 

statistics data sets, has given a foundation for educational data mining. Researchers that 

use data from such archives can skip time-consuming tasks like data collection. This type 

of data is usually collected from learning management systems, including Blackboard and 

Canvas, which are commonly used for managing educational material, monitoring 

learners, and customizing learning and teaching processes. Student attributes such as 

off-task behaviour, subject-learning outcomes, educational interests can easily be inferred 

in the data sets 9. 

There exist computational techniques supporting group formation based on various 

characters in collaborative learning contexts. Most of them are largely based on 

probabilistic models and work with a fixed set of parameters or features. They are heavily 

dependent on the nature of the problem domain. Generally, these models look like “black-

box”, so their decision-making process is not transparent. Moreover, some have 

difficulties putting all individuals into appropriate teams when working with limited data. 

In this thesis, a group building framework is presented in order to address the 

aforementioned limitations of current approaches as well as add expert knowledge to the 

group building process. The framework combines information visualization and machine 
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learning methods and domain knowledge for making the process more systematic. 

Further, this thesis touches on the topic of visual analytics. Visual clustering is a core 

visual analytics topic, and this analysis algorithm was integrated into the grouping 

framework presented. 

 

The provided mechanism includes various visualization methods alongside computational 

techniques applied to the data at hand. Target users can explore and understand the 

attribute space of students’ data via visual means. Based on gained insights and their 

opinion of students, the users can intervene with the computational methods or make 

changes to the outcome of the methods through the utilities provided in the tool. The 

approaches presented here were designed and developed to be useful and applicable for 

the formation of groups in a wide range of domains, with the educational setting being one 

of these domains where we recognized their usefulness. 

1.2 MOTIVATION AND RESEARCH QUESTIONS 

Many institutions, including educational bodies, collect their data using various 

technologies. For example, universities collect their students' data through tools such as 

learning management systems. 

The motivation of the research presented in this thesis is to help target users 

systematically form groups using attributes from the data they deem appropriate for the 

task at hand. In this process, using information visualization methods is the main focus of 

this thesis.  

To our best knowledge, there has been no research examining the role of visualization in 

the context of building balanced collaboration teams. 

In particular, the research project is guided by the following research questions: 

RQ1: How to create balanced project groups? 

RQ2: How to make the group formation process more systematic and less biased?  

RQ3: How can domain knowledge be integrated into the group building process? 

RQ4: How to use a glyph-based visualization approach as an integral part of 

investigating group features and evaluating the goodness of formed groups? 
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1.3 CONTRIBUTIONS 

This research aims to investigate how a framework can be designed in a way that is 

acceptable and feasible with target users to support forming balanced groups. From this 

starting point, the GroupVis framework is proposed, which is an interactive framework 

utilizing the combined benefit of visualization and data mining. 

Two modified clustering algorithms were implemented to improve the quality of forming 

groups regarding heterogeneity and homogeneity as the grouping algorithms utilize the 

clustering results as a basis. 

The research ultimately serves as an interdisciplinary approach that combines multiple 

methods from different domains. The methods are specific to the participants, context and 

research investigation needs. To summarize, the main contributions of the thesis are: 

o A novel glyph visualization for balancing/unbalancing structure in heterogeneous 

multivariate data 

o A group formation module (including algorithms, visualization methods and 

measurements) built on top of equal size clustering methods to generate 

heterogeneous/homogenous groups 

o Providing a new way of using student data to support learning and teaching in an 

educational context 

 

The terms balance, heterogeneity, fairness of groups is used interchangeably throughout 

the thesis. In such a group formation, individuals are assigned to teams, so that 

differences across teams regarding each attribute are a reasonable minimum level. Thus, 

the average academic performance of the teams must be approximately equal. The 

challenge in constructing groups from a pool of individuals, with each individual assigned 

to no more than one group, is to create teams that are as comparable as possible to the 

entire pool of individuals. It ensures that the groups are similar to one another because 

they are made to mirror the overall pool. Each group will have a diversity comparable to 

the variety of the pool as a whole. Conversely, it is not expected that diversity will be 

similar to the variety of the whole pool for groups that will be formed homogeneously. 

1.4 THESIS OUTLINE 

This section provides an outline of the thesis, alongside a brief overview of each chapter. 

It is organized as follows: 

Chapter 2 (Background) presents a contextual review of the literature gathered from the 

three domains of information visualization, machine learning and education. Here, firstly 

the overview of information visualization is provided, then multivariate visualization 
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approaches are discussed; finally, the use of InfoVis methods in the education domain, 

alongside existing group formation techniques, are presented. 

Chapter 3 provides a novel glyph-based design for investigating and comparing balance 

among data attributes in multivariate data. Two usability studies were carried out. An early 

user study was carried out with the purpose of analysing the performance of various 

current glyph designs, especially the Bar, Star, Whisker, and Ring, in the context of 

showing structures of balance or unbalance. Then, to assess the usability of the PeaGlyph 

design, a second user study was done in a manner identical to the first. The PeaGlyph 

was tested against the first study's top two performing glyphs. 

Chapter 4 introduces the GroupVis framework that comprises the methods introduced in 

previous chapters. This framework is divided into three components. The first presents 

the' Exploration module' for analysing data space, the second one is the 'Cluster module' 

that generates balanced size clusters to be used in a further step, and the final is the 

'Group Module' that includes group formation approaches, alongside visual methods for 

the exploration of formed Groups as well as evaluation of the goodness of the groups in 

terms of heterogeneity or homogeneous. The chapters 5, 6, and 7 detail these three main 

components of the GroupVis framework.  

Chapter 5 presents the initial module of the GroupVis framework. The module supports 

the exploration of given data sets through multiple projections. The module consists of 

several low dimensional embedding methods: Multidimensional scaling (MDS), t-

distributed stochastic neighbour embedding (t-SNE), Self-organizing maps (SOM), and 

includes some information visualisation methods. Additionally, the chapter provides a 

semi-automatic visual guide to help users select an optimal scatterplot from among the 

projections given for the following task (i.e., Clustering task). 

Chapter 6 uses a visual analytics approach, in which two modified clustering methods, 

Fuzzy c means (FCM) and K-means, are explored for constructing balanced clusters. 

Throughout the chapter, balanced clustering means that the obtained clusters have 

roughly equal sizes. It illustrates an interactive visual analysis procedure for the 

exploration of clustering results using Multiple Coordinated Views approach 10. The output 

clusters originating from this module will be inputs for the following module (i.e., Grouping 

module). 

Chapter 7 introduces the grouping component of the GroupVis, which is the final 

component of the system. The module offers two major grouping algorithms, several 

visual approaches, and metrics showing group similarities as well as visual 

representations of 'balanced/unbalanced' between groups that have been generated. 
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Chapter 8 evaluates the GroupVis with the heuristic survey and the semi-structured 

interviews. In this evaluation session, target users tested the functionalities of the tool and 

its usability regarding a list of visualization heuristics. The users' feedback and heuristics 

findings were discussed in this chapter. 

Chapter 9 (Conclusion) provides a summary of the key findings, including results of the 

quantitative and qualitative evaluations across the case studies and user interviews in this 

study. In addition, it summarized the thesis contributions and discussed future works and 

recommendations for how the research should proceed.  

 

Publication(s) 

Chapter 3 was published the under the title ‘PeaGlyph: Glyph design for investigation of 

balanced data structures’ 11  in Information Visualization journal.  

 

Demonstration  

The videos below show the components of the GroupVis tool. 

Overview 
https://youtu.be/4LkKzpwXGwI 
 
Attribute Module 
https://youtu.be/7H6pMFQa5SA 
 
Cluster Module 
https://youtu.be/A0BAYE-54w4 

 
Group Module 
https://youtu.be/T4_S1aXzSm0 
 
 
 

 

 

 

 

https://youtu.be/4LkKzpwXGwI
https://youtu.be/7H6pMFQa5SA
https://youtu.be/A0BAYE-54w4
https://youtu.be/T4_S1aXzSm0
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Chapter 2 : BACKGROUND 

 

The literature review includes four main sections, which together form the basis of the 

project. This chapter begins with a review of information visualization concepts and 

principles. It is accompanied by multivariate data visualization methods, including size 

reduction charts. This is followed by a summary of information visualization techniques in 

the context of education. Finally, current studies in the literature on establishing 

collaborative working groups in education are mentioned. 

2.1 REVISITING INFORMATION VISUALIZATION PRINCIPLES 

This part will present the principles of information visualization, including data attributes, 

marks and channels, and visual perception of encoding channels.  

The term "data visualization" can be defined in several ways. Most definitions focus on 

the connection between data and computer technology in order to transform data into a 

visual form. Card, Mackinlay, and Schneiderman 12  define data visualization as “the use 

of computer-supported, interactive, visual representations of data to amplify cognition” (p. 

6). Moreover, Friendly 13 defines it as “information which has been abstracted in some 

schematic form, including attributes or variables for the units of information”. The field of 

visual analytics and information/data visualisation are closely interlinked 14 and that the 

research presented in the thesis use a combination of information visualisation and visual 

analytic approaches. 

2.1.1 DATA ATTRIBUTES 

An attribute can be thought of as a data field containing information about a data instance's 

characteristics or properties. Data attributes are often classified into different types, and 

there exist various classification taxonomies in visualization and data mining literature. 

Figure 2-1 shows the different types of attributes. The primary distinction is between 

categorical and ordered classification, and the ordered classification is further subdivided 

into ordinal and quantitative categories 15. 
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Figure 2-1 The attribute types by Munzner 15 

There is no implicit ordering in categorical data. The ordering is not implicit in the attribute 

itself, but any externally arbitrary ordering can be imposed upon categorical data. We do 

not need any arithmetic comparison to rank ordinal data (i.e. ratings). Quantitative data 

are represented by numbers and support arithmetic comparison. 

The variety of data attributes limits the applicability of a single visual method to all types 

of data. The further subsection will address the visual variables that can be used to depict 

specific types of data attributes. 

2.1.2 MARKS AND CHANNELS 

A visual representation includes a number of visual building blocks that depict pieces of 

information. Each block, which is commonly called a mark or geometric primitive, is a 

fundamental unit for constructing any visualization. These are represented by a set of 

visual channels, which are retinal (visual) and planar (locational) variables proposed by 

Bertin 16. His six retinal variables are size, shape, value, orientation, hue and texture. In 

addition, there are planar variables that are a pair of two coordinates (x, y), which locates 

any graphical artefact on 2D plane. In spite of the fact that Bertin lists each of these 

variables separately, successful representation can contain a combination of several 

visual variables. Put simply, the appearance of a mark is controlled by channels, such as 

position, size, colour separately or a combination of them. In this thesis, visual channels 

or variables refer to both retinal and planar variables.  

Bertin’s visual variables include six key channels, and since then, the researchers have 

continued to add new ones to the set. Recently, Chen and Floridi 17 categorized a large 

collection of over 30 visual channels.  

Some of these channels are better perceived than others and lead to more accurate 

judgments than other channels with the same quantitative information. Maguire 18 
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provided a comprehensive overview of how these channels are processed by our visual 

system.  

The comprehension of the visual channels and knowing how to organize them effectively 

will increase the chances of communicating information by visual means. All visual 

variables are not equally effective at representing information; in other words, some are 

more effective than others at mapping specific attribute types of data 15. For instance, the 

length is a more appropriate channel for numerical data representation than the colour 

hue. The numerical values [1.0, 2.0] can be represented by using two parallel bars; one 

is twice the length of the other. Establishing such a relationship between colour hues is 

not possible. 

Four levels of how visual variables are perceived are described as follows 16 : 

Selective. Channels that enable viewers to isolate encoded data and ignore others, 

select it from a group, e.g., planar, size, brightness, texture, colour, and orientation 

variables 

Associative. Channels that enable viewers to perceive them as a group, texture, 

colour, orientation, and shape. 

Ordered. Channels that facilitate visual ranking of data, e.g., planar, size, 

brightness, and texture. 

Quantitative. Channels that enable viewers to obtain extraction of ratios, e.g. planer 

and size. 

The size variable, for example, is selective, associative, ordered and quantitative (with 

limited), whereas the shape is selective and associative, neither quantitative nor ordered. 

The attributes of the visual channels are examined in order to analyse the range of visual 

encoding alternatives.  

 

2.1.3 PERCEPTION OF VISUAL CHANNELS 

When constructing a visualization, it is critical to know which channel can most accurately 

represent which data type so that users, on average, are able to obtain the most accurate 

interpretation of visual objects. In this regard, Cleveland and McGill 19  studied the visual 

channels and ranked the various channels according to how effective they are at 

representing data. Since then, this ranking was extended to cover ordinal and categorical 

(nominal) data types by Mackinlay 20, as shown in Figure 2-2. 
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Figure 2-2 Reproduction of perception of visual channels ranking by Mackinlay 20 

 

A visual variable's ranking in Figure 2-2 can frequently be utilized to measure its relative 

effectiveness. For example, the position has a higher ranking than the area for encoding 

quantitative data. The accuracy ranking of position and length in quantitative perceptual 

tasks is higher than colour hue and density. In another study 21, the visual variables such 

as colour saturation, luminance, length, area, brightness have been investigated with 

regard to stimulus magnitude against perceived magnitude to determine their power. The 

findings showed that length was the most accurate channel while colour saturation was 

the weakest performer and produced a more perceived effect than the intended stimulus. 

Additionally, some channels are perceived as stronger than others due to their pre-

attentive processing 22 since the pop-out speed of visual variables is not always the same. 

A good example of this is colour, as its pop-out effect is higher compared to others, and 

this may be an advantageous property for directing the viewer’s attention to critical 

features inside a visualization. Maguire 18 reviewed visual qualities in detail in his 

publication. Chung et al. 23 studied on the perceptual orderability of visual channels, and 

showed that certain visual channels are perceived as more ordered while others are 

perceived as less ordered. 
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It is critical to remember that such design criteria should ideally correspond to perceptual 

principles. Visual channels are often used together to present multiple data attributes at 

once. The organization of different channels can also create various visual effects for 

information that is being conveyed. In this case, one channel representing a data attribute 

may interfere with the other one portraying data attribute value. For example, encoding 

one data attribute into the chrome channel and the other into luminance may reduce the 

user's ability to correctly interpret each attribute independently. Hence, in order to inform 

effective visualizations, a better knowledge of the interplay between multiple visual 

channels is required 24. 

2.2 MULTIVARIATE VISUALIZATION 

Datasets with only one and two dimensions are referred to as univariate and bivariate, 

respectively; whereas multivariate represents datasets with multiple dimensions. A 

collection of variables describes each record in a multivariate set. A standard structure of 

multivariate data is defined as a 𝑀𝑥𝑁 matrix where M denotes rows representing data 

items and N columns including variables. Multivariate data visualization is a class of 

visualization techniques that provide greater insight into such datasets.  

 

Figure 2-3 the scatterplot matrix at the left, the parallel coordinates at the right. Both methods showing Iris 

dataset 25 

 

A variety of visualization methods, including parallel coordinate plots 26, scatterplot 

matrices (SPLOMs) 27, as seen in Figure 2-3, treemap 28, and glyph-based visualization 

approaches 29, can be used to represent multivariate data and reveal insights into the 

data. There are advantages and disadvantages of each of these approaches. For 

example, like all high-dimensional plots, parallel coordinates (PCP) require fine-tuning 

processes such as scaling and sorting to expose information. They are particularly useful 

for comparing many variables at the same time and visualizing their relationships. 
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However, it is likely that geographical information in data will be lost through the use of 

these techniques. A data set is represented visually in glyphs by a collection of small 

visual primitives. The visual elements of a glyph such as size, colour and shape are 

mapped to numerous attributes of a data item. With this versatility, it is a highly ideal tool 

for communication as well as for  enabling multi-dimensional analysis 30. Aside from that, 

it is also possible to position glyphs either independently of or in conjunction with one 

another. Keim 31 provided an overview of multivariate approaches as well as a 

categorization scheme,  which is depicted in in Table 2-1. 

 

Geometric Icon-based Pixel-oriented Hierarchical Graph-based 

Scatterplot matrix 
27, parallel 

coordinates 26 

etc. 

Stick figures 
32, colour 

icons 33, etc. 

Circle segments 
34, Spiral 

techniques 35 

etc. 

Treemap28, 

dimension 

stack36 etc. 

Graph 

visualizations37 

etc. 

Table 2-1 Keim’s classification scheme with some multivariate visualization methods 

 

Besides the visualisation approaches to visualise multivariate data, interactivity is an 

effective means for analysing such data 38. Shneiderman 39 offered the most widely known 

visual information seeking mantra, which outlines the essential components of interacting 

with visually presented data. The mantra includes three aspects: Overview, zoom and 

filter, then details-on-demand. An overview gives you a general idea or “picture” of how 

the data looks. In both zooming and filtering, unnecessary information is removed from 

the data representation to reduce the complexity of the view, allowing for additional data 

organisation. Detail-on-demand delivers this additional information without the need for a 

shift in perspective. A simple action can provide these details, such as an onmouse-over 

or selection 40. 

 

2.2.1 DIMENSION REDUCTION PLOTS 

Multiple dimensionality is a term that is most commonly used to refer to datasets with a 

high degree of dimensionality. It can be challenging for a human to grasp multi-

dimensional concepts, and high-dimensional data may be challenging to visualize in its 

entirety since each dimension has so many possible values. 

In proportion to the dimensionality of high-dimensional data, the difficulty of developing an 

effective visualisation, which promotes understanding of such data, grows in proportion to 

it 30. Various approaches, collectively referred to as dimension reduction plots, have 

already been studied for displaying two-dimensional projections of multivariate data, such 
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as the principal component analysis (PCA) 41 model, the objective of which is to discover 

a lower-dimensional subspace that captures the majority of the variability in the dataset,  

t-SNE, in Figure 2-4 (b), which has been shown to generate interesting low-dimensional 

clusters of data faithful to the distributions in the original data space 42, multi-dimensional 

scaling (MDS) 43, in Figure 2-4 (a), in which the goal is to approximate high-dimensional 

data in a low-dimensional (often two-dimensional) space by arranging points in such a 

way that their distance in the low-dimensional are near to their distances in the original 

dimension. The two-dimensional projections often provide informative views of data. In 

general, such methods attempt to reduce the difference between observed distances and 

lower dimension distances. t-SNE uses a probabilistic framework for transformation of 

observed and lower dimensional distances taking their local variance in data into account. 

MDS, however, does not include any of this type of local structure embedding at all.  

a) MDS projection 43 

     

    b) t-SNE projection 42 

Figure 2-4 The dimensional reduction techniques (User Knowledge Modelling Dataset 44 was used) 

 

To this end, when it comes to data exploration, two-dimensional reduction methods have 

often been employed as an initial step 45-47. 

2.2.2 SELF-ORGANIZING MAPS 

Kohonen 48 proposed the self-organizing map, a type of artificial neural network. SOM 

visualises the relationships between instances in a high-dimensional dataset via 

dimensionality reduction based on attribute similarities. SOM produces both clusters as 

well as topology-preserved mapping of prototype vectors on a low- dimensional grid 

structure 49. 
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Figure 2-5 The architecture of Self organizing map 48 

Each neuron in the input layer is completely coupled to the nodes in output space, and 

the output of the SOM is a low-dimensional grid of nodes shown as circles in Figure 2-5. 

SOM is commonly used as a data visualization method in various applications. Qian et al. 
50 used SOM to visualize and validate attribute relations between commercial materials. 

The study shows how SOM can be utilized for clustering with stock data 51. This technique 

is rarely used in educational research. Silva et al. 52 aided in the formation of study groups 

by combining the SOM and k-means approach. In their study, k-means algorithm is 

performed on the output map to obtain the desired number of groups. Recently, Ahmad 

et al. 53 used SOM for clustering student browsing behaviours. In our research, SOM is 

used as a projection method to help investigate patterns and clusters in the multivariate 

data. 

2.2.3 QUALITY METRICS FOR SCATTERPLOTS 

A scatterplot is helpful for gaining a fast overview of the data and for highlighting any 

problems, unique qualities, or other noteworthy aspects of the data. One common task 

that supports the analysis in Scatter plot views is searching data groups and partitions 54. 

Visual quality metrics narrow the projection selection space for users by filtering out views 

that provide little information and a low signal-to-noise ratio. Behrisch et al. 55 present a 

comprehensive overview of quality metrics for the field of information visualisation.  

There exist some quality metrics identifying clusters, as seen in Figure 2-6, or group 

patterns in the scatterplots in the literature 56. Such cluster-preserving projections quantify 

scatterplots for the visibility of dense groupings of data records. The ranking measures 

cover both labelled and unlabelled data that can be applied to scatterplots. In relation to 



 

15 

 

the task, several factors have been taken into account to identify good views. Clumpiness 
57, a term coined by Tukey and collaborators, indicates the degree to which data points in 

a 2D embedding are concentrated locally while simultaneously expanding globally. Tukey 

and Tukey presented Scagnostics (i.e. the term means scatterplot diagnostics) 58 for 

characterizing a large of scatterplots regarding 2D distributions in these plots, using 

measures of density, skewness, shape, outliers, and texture. 

 

Figure 2-6 Scatter plot – Groups according to classified data 25 (Fisher’s Iris dataset was used) 

Several quality metrics for scatterplots of classified and unclassified data are presented 

by Sips et al. 59. Unlike these studies, Sedlmair and Aupetit proposed an evaluation 

framework for evaluating such measures through a broad set of human judgments 60. 

 

2.3 EDUCATIONAL DATA MINING AND VISUALIZATION IN EDUCATION  

Many education institutions have used tools to collect massive amounts of data from 

educational settings, such as intelligent tutoring systems and different learning 

environments 61, 62.  

Educators or administrators often use this type of data when developing a new program 

or making learning more effective. However, the huge volumes of data and complicated 

relationships between variables make data-driven decisions difficult. The field of study 

known as educational data mining (EDM) is primarily concerned with developing 

strategies for investigating data sets collected in learning environments. EDM often 

employs traditional data mining techniques such as classification, regression, and 

clustering to provide mechanisms for optimising the learning process 63. EDM objectives 
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are classified according to end users, namely learners, educators, administrators and 

researchers. 

Information visualization methods are often coupled with EDM to simplify and convey 

meaningful information in these data sets, as it is hard to acquire the necessary flexibility 

in understanding findings and generating new hypotheses without the use of expressive 

visualizations and user interfaces 3. Exploring the sequence of learning activities 64, 

tracing commonly taken paths by students when attempting to accomplish a certain goal 
65, exploring and understanding user interaction in educational systems 66, visualizing the 

activities in study groups 67, visually inspect students' understanding and performance in 

their courses 64, 68, 69 are among EDM tasks. Lacefield et al. 70 explored how machine 

learning, predictive analytics, and data visualisation can be used to analyse student 

information system records in real time to detect at-risk students for advising and provide 

academic coaching. In another study by Nguyen et al. 71 educational assessment data of 

students was visualized by interactive word-stream and word-cloud method to show 

student context-related topic evolution over time. They applied a natural language 

processing technique to the mass amount of this text data. A motivating study related to 

group activities in education was conducted by Kharrufa et al. 72. They presented an 

interactive visual evaluation tool, Grouper Spinner, which employed a radar chart for 

recognizing students' learning behaviours during group activities. A set of indicators 

forming the radar chart help teachers to keep track of a variety of group learning 

behaviours in their classes.  

Methods 

 
Literature 
 

2D  3D  Geometrically-
transformed 

Iconic Display Dense 
Pixel Display 

Stacked Display 

Mazza and Milani 68       
Chiritoiu et al. 65       
Johnson et al. 66       
Kay et al. 67       
Kharrufa et al. 72       
Vaitsis et al.73       
Raji et al. 74       
Siirtola et al. 75       
Saqr et al.76       
Santos and Brodlie 77       

Chen et al. 64       

Table 2-2 The use of multivariate visualization methods in education using Keim’s taxonomy 31 
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Visualization methods make analysis and interpretation easier for both instructors and 

students. For instructors, the methods are often used for training students and facilitating 

their learning. In addition to increasing the efficiency and quality of teachers’ work, 

educational sets that use visualisation techniques also help students better understand 

and retain the materials that are presented to them 2. Besides, the visual designs help 

decision-makers make more informed decisions based on that data. Sivanand and Frank 
78 reviewed the current information visualization tools and practices in education. In their 

survey, they grouped the uses of visualization in education based on the sources from 

which the data is obtained. Firat and Laramee 79 categorized papers in which the purpose 

of interactive visualization is to teach students a subject while helping to facilitate learning. 

Unlike their works, we grouped the examples of visualizations used in education that aim 

to help lecturers or teachers make educational decisions based on student data sets 

collected through using Keim’s taxonomy 31 in Table 2-2. 

2.4 FORMING COLLABORATIVE TEAMS IN EDUCATION 

Among the various instructional approaches to improve student performance mentioned 

in the education literature, collaborative learning is one of the well-documented. The 

benefits of collaborative learning have also been extensively researched 80, 81. 

In the context of collaborative learning, educators emphasize the potential benefits of 

learning through interaction. Thus, the adequate formation of groups is crucial to promote 

the occurrence of meaningful interactions between group members, which leads to better 

learning situations 82.  As stated by Gibbs 83, group formation under appropriate conditions 

enhances peer learning and promotes  providing students with an opportunity to clarify 

and deepen their grasp of subjects through discussion and repetition with peers. Many 

factors influence group formation, including the demographics of the group members, 

such as their age, gender, and race; group’s size, group allocation procedures, and other 

differences between individuals. In addition, without careful formation and planning, group 

work can frustrate students and instructors and feel like a waste of time 84.   

According to Wang et al. 85, in order for a group to work well in a given learning 

environment, teachers need to identify particular student characteristics such as gender, 

ability or psychological features such as learning styles 86, 87, self-efficiency 88 and the 

group types (homogeneous and heterogeneous) for learning activity. However, various 

teaming criteria and different goals make the team formation problem complicated and 

time-consuming 89. Members are typically assigned to groups using one of four methods: 

random assignment, self-selection, particular criteria or task assignment 90. The way 

student groups are formed has a marked impact on the quality of the end product 90. 

Numerous lecturers organise groups using some type of random appointment 

mechanism. The procedure is frequently used since it is reasonably simple to give and 
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requires little preparation. However, there are certain disadvantages to using the random 

appointment method. Students may feel as if they have no say in the selecting process. 

They may also be concerned about being allocated to a group that contains people that 

are incompatible with one another. In some cases, students are requested to establish 

groups on their own. Under these circumstances, pupils are more likely to know other 

students in their class and to choose to collaborate with them. Students who do not know 

anyone else in the class, on the other hand, may find it challenging, and it may be 

perceived as unfair to the rest of the class.  Specific criteria refer to the grouping process 

leading to homogeneous and heterogeneous groups. Homogeneity within a group means 

that students are grouped according to the same personality traits, skills or preferences; 

however, in the case of heterogeneity, students should differ in terms of background, 

ideas, personality, ethnicity, and gender 80. Furthermore, there are computer-based 

methods aimed at automating this process so that group formation can be done efficiently 

and effectively. 

Among the algorithms used in the studies, there are different computational techniques, 

including Bayesian Network, swarm intelligence algorithms, machine learning techniques 

and ontologies are other computational techniques 8. Group size has a marked impact on 

the quality of the end product that is assessed, as Kerr and Bruun 91 stated that individual 

motivation decreases if the group size increases. Four to six students seem to be ideal 83, 

with groups of eight or more creating significant problems, such as the difficulties of 

reaching decisions, allocating tasks, monitoring progress and the likelihood of ‘social 

loafing’ in groups where students can hide more easily. 

 

2.5 DISCUSSION 

After reviewing the many methods and tools that deal with the grouping problem, the 

following main conclusions are reached. 

Existing methods and tools generally: 

• heavily depend on the nature of the problem domain. 

• are unable to indicate the importance or impact of each individual factor on the 

decision made by the algorithm. 

• are black-box models (no transparency in the decision-making process) and too 

complicated for any human to comprehend. The explain-ability of the decision-

making process is crucial as they might need to know the rationale behind the 

decision that the algorithm has made- European Union's General Data 

Protection Regulation (GDPR, EU 2016/679) highlights the importance of being 

able to explain decision-making systems 92.  
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Moreover, most systems have difficulties in putting all individuals into appropriate teams 

when working with limited and incomplete data.  

 

When it comes to educational context, organizing different types of student groupings 

seems a time-consuming task and imposes an extra workload on educators 93 . While 

filling the above-mentioned gaps in our group creation tool, it is among our motivations to 

provide teachers with a practical and easy way. Information visualization methods are 

commonly used because of their ability to facilitate providing insights into complex student 

data sets and exploring students' learning activities. However, using information 

visualization methods to form balanced groups is an unmet need in the literature that 

needs to be addressed. The proposed framework in this research aims to deal with the 

weaknesses mentioned above by bringing visualization, machine learning and human 

knowledge together to generate collaboration groups with a “measurable” degree of 

balancing or unbalancing. Additionally, this approach provides a new way of using student 

data to support learning and teaching in the educational context. 
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Chapter 3 : VISUAL INVESTIGATION TO SUPPORT FORMATION OF 

BALANCED GROUPS 

 

This chapter contains materials previously published by Koc et al.11 , and it introduces a 

novel glyph-based visualization, PeaGlyph, which aims to support the understanding of 

balanced and unbalanced data structures, for instance, by using a frequency format 

through countable marks and salient shape characteristics. The glyph was designed 

mainly for relevance tasks for investigating properties of balanced and unbalanced groups, 

such as looking-up and comparing values.  

3.1  INTRODUCTION 

Recent research has argued that not only the relational attribute values across data items 

but also the dispersion of attribute values of each data item in the set are functions to be 

considered in several application fields. An example of this is related to behavioural 

decision-making in marketing. Chernev 94 investigated the role of the balanced dispersion 

of the properties (i.e., value, ease of use, quality) of the products on the consumer’ 

decision when choosing among alternatives.  

As in the example, for many data analysis tasks, the balancing between data attributes is 

at least as important as the actual values of items. At the same time, a comparison of 

values is implicitly desired for these tasks. Even with statistical methods available to 

measure the level of balance, human judgment and domain expertise plays an important 

role in judging the level of balance and whether the level of unbalance is acceptable or 

not. Accordingly, there is a need for techniques that improve decision-making in the 

context of multivariate balanced group formation that can be used as a visual complement 

to statistical analysis. 

Glyph-based visualization methods are commonly used to depict multivariate data sets 

and can be utilized both independently and as part of a composition of a set of data 

records. These methods provide flexible and useful abstractions for exploring and 

analysing multivariate data sets. Munzner 15 compares views with glyphs, and states that 

glyphs are small, nested, schematic regions; in contrast to views that are large, stand-

alone and highly detailed. Due to their usual small graphical appearance, glyphs can be 

used in various settings, such as within node-link diagrams, treemaps, tables, or 

geographic maps. Borgo et al. 95 stated that a glyph as a sign could potentially gain greater 

attention and stimulate more cognitive activity during visualization than other forms of 

visual design. 
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3.1.1 CONTRIBUTION 

This chapter presents PeaGlyph, a novel glyph design for communication of ‘balanced’ 

or ‘unbalanced’ dispersion of attribute values and the comparison of values. The 

PeaGlyph design was guided by established glyph design guidelines and an evaluation 

of existing glyphs in related literature. The limitations derived from the quantitative and 

qualitative results of the experiments were addressed in the glyph design by using 

countable objects (i.e., filled, unfilled, or part filled circles) to map related attribute values, 

rather than a pure length channel, as humans are good at counting and judging the 

relative frequencies of discrete objects 96. Filled and unfilled circles were used to increase 

the perceptual salience, to ensure that the glyph structure was kept simple and since 

symmetrical elements are useful for communicating information. 

The performance of the novel PeaGlyph was then compared to the best ‘performers’ of 

an initial study through evaluation. The results from the study are encouraging, and the 

proposed design may be a good alternative to the traditional glyphs for depicting 

multivariate data and allowing viewers to form an intuitive impression as to how balanced 

or unbalanced a set of objects are in terms of their multivariate attributes. 

The main contributions of this work are: 

• a flexible novel glyph representation for multivariate data, designed for investigation 

of structures with balanced and unbalanced attribute dispersion in data; 

• two experimental evaluations that compare the usability of existing glyphs and 

PeaGlyph in the context of revealing balanced and unbalanced objects; 

• utilization of a graph visualization approach to measuring the effectiveness of 

visualization methods from a cognitive load perspective. 

In addition to these inputs, a number of design concerns, including the scalability of the 

PeaGlyph, are discussed in detail. 

3.2 RELATED WORK 

The work presented in this paper is mainly related to the subjects of glyph design and 

usability experiments on data glyphs. Previous work in these areas is summarized in this 

section. 

 

3.2.1 GLYPH ENCODINGS 

Different data attributes can be encoded by a set of retinal (visual) channels such as 

shape, colour, size, and orientation. Bertin 16 proposed the categorization of semantic 

relevance for determining the suitability of different channels in representing certain types 

of information. Cleveland and McGill 19 performed experimental studies to order visual 

channels based on how accurately they can be perceived. The most accurate method is 

the position along a scale, followed by interval length, slope angle, area, volume, and 
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shading or colour saturation. In addition, adjacent properties of a glyph are generally 

easier to relate to and compare than nonadjacent ones. Ward 97 provided a data mapping 

taxonomy using these attributes. In one-to-one mapping, each data variable attribute is 

encoded into a distinct graphical primitive (i.e., visual channel). One-to-many mappings 

(redundant mappings) in which an attribute variable is mapped to more than one visual 

channel can be useful to improve accuracy. A many-to-one mapping represents multiple 

data attributes via the same kind of visual channel. 

The appropriate design of glyphs is a crucial factor for their usability, and a well-designed 

glyph can enable efficient and effective visual communication like other encoding 

methods. For effective glyph visualization, appropriate visual channels should be carefully 

chosen and combined. As a glyph is likely to be composed of a set of visual channels, 

the channel composition may affect how individual channels are perceived. Maguire et al. 
98 proposed a set of design principles of visual encoding based on the (findings) in 

perception and visible search areas. These are guidelines on semantic relevance, 

channel composition, pop-out effect and visual hierarchy. 

Furthermore, Chung et al. 99 proposed criteria for glyph design in the context of sorting 

glyphs visually. Borgo et al. 95 provided an extensive overview of glyph visualization 

research. Several principles of perceptual organization, such as similarity, connectedness 

and closure, were outlined by Gestalt psychologists to assist the information design 97 

and help readers save processing time. The glyph design described in this paper is based 

on these design guidelines and principles. 

 

3.2.2 GLYPH APPLICATIONS 

A large body of work exists for the application of different data glyph designs across 

multiple disciplines, from meteorological glyphs through geographically mapped medical 

data to sports visualization. This paper does not aim to provide an exhaustive summary 

of all but to provide examples of the diversity and flexibility of the concept of glyphs. 

Chernoff 29 is an early example of glyph-based visualization that uses human facial 

features to map multiple data dimensions into a single icon. Keogh et al. 100 utilized colour 

bitmaps for depicting time series data. Cao et al. designed a treemap-like icon 101 where 

each feature value was mapped to colour-coded cells, and then the cells were packed to 

produce individual icons. In PeopleGarden 102, the participants in a discussion group on 

web message boards were mapped as flowers in which the number of petals in the flower 

glyph represented the frequency of features. Glyph-based encoding has also been widely 

used in many analytic applications. Pearlman et al. 103 utilized data glyphs to understand 

large data sets in depth and diversity. SoundRiver by Jänicke et al. 104 is another example 

in which movie audio and video contents were depicted in glyphs. Ropinski and Preim 105 

investigated the use of glyphs in medical visualization. Legg et al. 106 delivered MatchPad, 

where actions and events in sports were mapped to data glyphs. Similarly, the 
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effectiveness of using glyphs in sports event analysis was shown by 99. For visualizing 

temporal geoinformation, Drocourt et al. 107 examined several icon-based visual designs. 

Visualizations making use of environmental cues are quite common. An example of such 

data-driven glyph design is the botanical tree metaphor by 108. However, the fruits and 

leaves are highly abstract representations (mainly coloured dots), and their shape does 

not change according to the data characteristics. The OECD’s Better life index 

visualization was developed by 109, where environmental cues were used to visualize 

multidimensional data about country characteristics. Recently, Khawatmi et al. 110 

developed a web-based application that enables users to create interactive glyph-

oriented microscopy data representations. 

 

3.2.3 GLYPH USABILITY STUDIES 

A large number of usability studies have been conducted for different glyph types and 

design variations to evaluate their performance in order to select the best performers for 

various tasks, as well as to provide design guidelines for effective information encoding 

in the glyph design space. Examples of well-researched data glyphs are Chernoff faces, 

profiles (or Bar glyphs) 15, and Star glyphs 111, which have been used in various 

applications 104, 112. These user studies can be divided into two categories:  comparing 

data glyphs against each other and testing design variations of the same glyph category. 

Fuchs et al. 113 reviewed experimental studies on data glyphs and provided a systematic 

overview of the types of glyphs, the design characteristics, data and tasks. In their review, 

they found that synoptic tasks (i.e., similarity search, visual search, trend detection) were 

more commonly preferred for the studies rather than elementary tasks. Moreover, they 

reported that a high number of studies used three categories of visual variables, 

Position/Length, Colour and Orientation, to depict data in glyphs. Face glyphs received 

utmost research attention, so they were evaluated frequently. Blascheck et al. 112 

presented a perception study to assess how quickly participants performed a simple data 

comparison task for small-scale visualisation on a smartwatch. Their research evaluated 

three common glyph types in smartwatches: Bar glyphs, Donut, and Radial bar glyphs. 

Their results showed that Bar and Donut encodings were preferred in small physical 

display spaces when quick data comparison is needed. Fuchs et al. 114 compared the 

performance of four glyphs for time-series data under a controlled experiment. They 

chose the Line, Stripe, Clock, and Star glyph for their study. Lee et al. 115 compared the 

ability of four different visualisation approaches for binary data sets. Two of these 

visualisations were Chernoff faces and star glyphs. The other encodings used a spatial 

arrangement of the objects based on a model of human mental representation (i.e. 

similarity) and distinctive features. The experiments confirmed that participants were 

faster, more confident and more accurate when an appropriate data visualisation was 

made available. Li et al. 116 used metaphor-based representations in their experiment 

and compared RoseShape glyphs against abstract polygons to visualise 
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multidimensional data about the educational level in America. The results indicated that 

participants were more accurate when working with more realistic faces. Testing design 

variations of a glyph also drew attention. Fuchs et al. 117 conducted three experiments to 

compare the Star glyph with its variations in the detection of data similarity. They used 

Star glyphs with contours (outlines) and reference structures (i.e., tick marks and 

gridlines) or without them as plain Star glyphs. Based on their findings, they provide 

design considerations regarding the use of contours and reference structures on Star 

glyphs. Klippel et al. 118 experimented with examining the shape characteristics of Star 

glyphs on classification tasks. They varied assignments of attributes located along the 

horizontal and vertical axis to obtain different shapes based on the same data. Miller et 

al. 119 reproduced Klippel’s study with the same settings, including coloured axes and the 

number of dimensions encoded. They used two different ordering strategies of star-glyph 

axes, similarity-based (homogeneous shape) and dissimilarity-based (spike shape), to 

gauge which one better supported users in visual clustering tasks. 

 

3.3 DESIGN AND IMPLEMENTATION OF PEAGLYPH 

This section will describe PeaGlyph, a novel glyph design that was built to facilitate the 

comparison of data values as well as represent overall structures in which the ‘balance’ 

between glyphs and encoded values is of interest. The design is based on established 

glyph design principles 95, 97-99 and on the results and feedback from the study presented 

in the ‘Evaluation of glyph designs’ section. PeaGlyph has been designed to be used 

either as a stand-alone visualization or in combination with other visualization methods, 

such as scatterplots, tables and maps. Furthermore, it is able to encode both categorical 

and numerical values, as well as meta-data for attributes, as detailed in the following 

subsections. 

 

3.3.1 GLYPH DESIGN 

The visual features of a pea inspired the PeaGlyph design. The overall appearance of a 

pea consists of the combination of the shape with boundary details of a pea- pod, and 

the seeds, as exemplified in Figure 3-1 (left). These two aspects are the main features of 

the glyph available for mapping data. In its basic form, each PeaGlyph represents either 

a record in the data set or an aggregation of a group of objects (such as the centroid 

representation of a cluster). The data attributes of a multivariate data set are each 

represented by a pea-pod in the glyph, such that the number of pea-pods in a glyph 

corresponds to the number of attributes in the represented data set. Figure 3-1 (right) 

displays an example where the values of six attributes are displayed in a PeaGlyph with 

six pea-pods. 
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Figure 3-1 Examples of the basic the PeaGlyph design. (Left) Each pea-pod includes a maximum of ten 

seed. Continuous values of attributes are depicted into discrete form: filled, semi-filled or empty circles. (Top 

right) Abstraction of seed and pods for six data attributes with a circular layout. (Bottom right) Using colour 

to distinguish between attributes. 

The basic glyph structure was intentionally kept simple with symmetrical elements that 

are useful for communicating information, as per the symmetry principle. The seeds and 

pods are highly abstract representations, as shown in Figure 3-1. The seeds are coloured 

circles, and their leaves are coloured with a light tone to show the shape of the pods. If 

there is a requirement to emphasize additional features according to the data, variation 

in colour or texture can be used for the pods, as described in Table 3-1, which 

summarizes the visual channels available for data representation in the PeaGlyph. 

In the PeaGlyph, the data of a numerical attribute is represented through ten circles 

(seeds) in a pod, a number that can easily be related to percent values. Furthermore, 

while more seeds could be used to represent more detail, a smaller number of objects 

can often be easier to comprehend 120. Based on the underlying data value, a number of 

circles will be filled, with all circles filled representing the maximum value of the attribute 

and no circles filled representing the minimum value. There is also an option to use semi-

filled circles to represent values at a higher granularity. In Figure 3-1 (bottom right), it is 

visible from the three filled circles that the value for the upwards pointing pea-pod 

(attribute) is 45% of the attribute’s maximum value, while the value of the attribute to the 

right is 15%. In a small setting, such as glyphs, filled and unfilled circles were preferred, 

as colour is a highly salient visual channel 98, making the value representation stand out 

from the background of pods. The result of the initial evaluation, as described in the 

Evaluation of glyph design section, indicated that the Bar glyph was the best performing 

representation for identification and comparison of values. Bar glyph utilizes length and 

position as the main visual channel for comparison of values, with the minimum value 
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position as a point of reference for comparison. The PeaGlyph makes use of a similar 

abstraction in terms of employing the minimum and maximum values as points of 

reference for the comparison of values. Additionally, the combination of coloured and 

empty circles, when compared to the representation only by length or position, enables 

the user to also use the number of empty circles as an indication to judge and compare 

values. Research in human perception shows that humans are generally much better at 

perceiving, counting, and judging the relative frequencies of discrete objects as long as 

their total number is not too large 96. To further facilitate the comparison of values across 

attributes, the glyph encodes an equal number of seeds for each pea-pod that represents 

a numerical attribute. 

 
Figure 3-2 Alternative approaches to represent categorical attributes in PeaGlyph, for a data attribute with 

four categorical values. (Left) Representation of the categorical value of a single record. (Centre) Using pea-

size to represent category frequencies for a group of records. (Right) Using semi-filled peas to represent 

category frequencies for a group of records. 

Categorical attributes can also be depicted through the pea analogy by representing each 

unique category of an attribute by a seed, thus creating a pea-pod with as many seeds 

as there are categories for the corresponding attribute. Figure 3-2 displays examples of 

a categorical attribute with four possible values. If a single record is represented by the 

PeaGlyph, the seed representing the categorical value of that record would be filled 

(Figure 3-2, left). Different approaches can be taken for categorical attributes where the 

PeaGlyph represents a group of records. One alternative is to size each categorical seed 

according to the relative frequency of the corresponding category in the group (Figure 3-

2, centre) or to use semi- filled circles where the fill level corresponds to the relative 

frequency of the category (Figure 3-2, right). 

As described earlier, the circles representing the data value of an attribute are enclosed 

by a pea-pod shaped frame to further indicate that they are of the same attributes. As 

suggested in Table 3-1, the orientation of the pea-pod can be used to represent, for 

example, attribute meta-data with a small number of categories or relationships between 

adjacent attributes. Besides the shape of the pea-pods, each attribute can be encoded 

with a distinct colour to make differences between attribute levels clear, thus supporting 

the discriminability principle 97. Attribute colouring can also be used to represent 

categories or groups of attributes, assigning a distinct colour to each group, which 
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supports the similarity principle 95. The combination of filled/unfilled circles, colour and 

shape as individual channels were selected as they normally do not affect each other in 

an integrated encoding, which is supported by the design principle of separability 99.  

Further, there are  other visual channels, which can be added to the list of PeaGlyph 

given in Table 3-1, such as varying curvature, texture, angle between leaves and length 

of leaves, to represent different types of data. However, these channels have not been 

implemented and tested. 

 

 

Table 3-1 Possible visual channels of the PeaGlyph 

 

 

 

It is worth noting that the appropriateness of colouring as a method for distinguishing 

individual attributes will depend on the number of attributes of interest and should be 

decided on a case-by-case basis. There is a limitation in the number of distinguishable 

colours 98, and the hue channel should be used effectively 121. If the number of attributes 

to be shown is high, a single colour may be preferred, and at this point, the pea-pod 

frame still helps in perceiving each attribute separately. 
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3.3.2 LAYOUTS 

The examples provided in this paper are mainly focused on a radial layout, through this 

utilizing the strength of Whisker and Star glyphs in terms of evaluating structures of 

balance in the data. The glyph design can, however be used flexibly, as exemplified in 

Figure 3-3. 

 
Figure 3-3 Possible design layouts of PeaGlyph 

Pea-pods can be lined side by side or form a radial layout with a specific angle between 

each pea, as well as it can easily be adapted to a hierarchical layout. This flexibility can 

allow the user to choose the most suitable layout according to the task at hand. Building 

on the concept of the proximity principle 95, each data record, or each group of records, 

is represented by a set of pea-pods positioned close together in a glyph structure. To 

further emphasize belonging, an outer circle enclosing the pods can be used to visually 

separate the records or groups of records from each other, as seen in Figure 3-4. 

 
3.3.3 SCALABILITY 

PeaGlyph was designed for moderately sized multivariate data sets and thus has 

scalability limitations similar to the glyph designs compared in Section 3-4. For individual 

glyphs, the visual scalability is mainly related to the number of attributes. The ‘interesting’ 

attributes of data, or the representative attributes of the clusters in clustering analysis, 

are mapped to the pods of the PeaGlyph. Figure 3-4 shows examples of PeaGlyph with 

a different number of attributes displayed. It is likely that pea-pods will overlap after a 

certain number of attributes. This can, to some extent, be mitigated by not drawing the 

pod-shaped background, resulting in a level of overlap similar to that of the Star or 

Whisker glyph. To further prevent occlusions, the linear layout may be preferred instead 

of the radial. The visual scalability in relation to the number of glyphs that are displayed 

in a limited display space (i.e. the number of records or clusters) is highly dependent on 

the layout of the glyphs and directly comparable to the limitations of other glyph designs 

and approaches to overcome these limitations include the use of different layouts and 

interactive features. In an interactive system, the detailed attribute values may be shown 

as a tooltip to the users when hovering the mouse over the glyph of interest. Also, 

different interactive methods such as zoom in and pan to focus on glyphs can be used to 

facilitate the readability of the glyphs in small settings. 
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Figure 3-4 PeaGlyph with different number of attributes. The figure at the bottom left includes 13 

attributes. 

3.4 EVALUATION OF GLYPH DESIGNS 

An initial user study was conducted with the goal of examining the performance of 

different existing glyph designs in the context of revealing structures of balance or 

unbalance in data. The findings from this study were to be used to guide the design of 

the PeaGlyph visualization for the exploration of balanced structures. 

 
3.4.1 VISUALIZATION METHODS 

Based on the literature, four potential glyphs were chosen to compare their performance 

for a set of tasks. These were Bar, Star, Whisker and Radial Bar glyphs, as displayed in 

Figure 3-5. In the study, each glyph presents a record in a data set, and each data value 

is mapped to an appropriate visual channel to encode the relevant information. For all 

glyphs used in the study, line lengths express the value of an attribute, and colour 

represents different attributes in the data. For example, in a student data set, each record 

is a student shown as a glyph in which attributes such as ‘writing’ and ‘presentation’ is 

depicted in colour, and their values are encoded in length.  
 

 
Figure 3-5 Chosen Glyphs for the user study from left to right: Bar, Ring, Whisker and Star Glyph- 

depicting same data values 

 

Bar glyph was selected as it is one of the most utilized glyphs and visualization methods 

due to its linear layout. The data have multiple attributes, where each is represented by a 

unique colour, and the numerical values of the data items are represented by 
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length/height. Whisker glyph also represents data values by length but uses line 

segments radiating out from a central point rather than parallel bars, as shown in Figure 

3-5. Besides, two variations of the aforementioned glyphs were used, Ring and Star, to 

assess whether additional graphic features such as contours and basement layout affect 

the task-dependent performance of the glyph designs. A ring glyph is a variation of the 

Bar glyph that utilizes a circular design, where each Bar has a different radius, so each 

Bar is judged by its angle. Star glyph and Whisker glyph have the same layout, but the 

Star encoding has contours between attribute lines. 

 

3.4.2 EXPERIMENT OVERVIEW 

The experiment was designed as a within-subject study. It included two main tasks, where 

each question was tested across the four glyph designs. In total, each participant 

performed ten different questions, which were repeated for each glyph design, and no 

data set was used more than once for each question. The questions were multiple-choice 

questions, and participants had to select the option that they thought was correct among 

a set of glyphs. The performance of the visualization methods, in terms of accuracy and 

response time when performing the tasks, was analysed for each main task. The study 

was conducted individually by using an online experiment builder, Gorilla 122, with an 

interactive interface as in Figure 3-6. Ethical approval was received prior to the study. 

Prior to the experimental phase, a short questionnaire was used to collect information 

about the participants and their previous experience with data analysis. Short background 

information was provided to ensure that all participants possessed the basic knowledge 

needed to interpret the visual representations and understand the tasks. This was 

followed by a training period, including a small number of test tasks using the different 

visualization methods. The training was used as a way for the participants to become 

familiar with the tasks, visualization methods and experimental environments. For the 

experimental phase, the tasks and visualization methods were counterbalanced using a 

Latin-square procedure, resulting in a unique ordering for each participant and, hence, 

reducing the potential learning impact on the results. The participants were able to take 

breaks between each task but were asked not to take a break while answering questions 

since the response time was measured. The system recorded the participants’ answers 

and the time it took to answer the questions. The answers and response times were 

stored and later used to analyse the results. Upon completing each task, the participants 

were asked to rate their confidence in the chosen answer using a five-point Likert scale 

(1=low confidence, 5= high confidence). At the end of the study, participants were asked 

to select their preferred glyph for each of the two tasks. Besides that, some participants 

provided overall feedback on the study through email after completing the study. 
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Figure 3-6 Screenshots from the initial experiment. The image was taken from Task-1. 

 

3.4.3 TASKS AND DATA 

The tasks of the study were aimed to represent tasks of relevance for investigating 

aspects of balanced and unbalanced data structures. This included the identification of 

the attributes with the highest and lowest values and detection of balanced and 

unbalanced structures of the visual encoding, where the difference of the encoded values 

of attributes is minimum for a ‘balanced glyph’ and maximum for an ‘unbalanced glyph’. 

In other words, the dispersion between encoded attributes is lower than that of others for 

a ‘more balanced glyph’ and vice versa. The study tested the following hypotheses: 

 

 

H1. Bar glyphs will perform better than the other methods for identifying and comparing 

values. 

H2. Whisker glyphs will perform better than the other methods for tasks involving 

comparison of the overall structure of the glyphs or shape comparison, rather than 

identifying values.  

Artificially generated data sets were created to fully control the patterns and attribute 

values in the study. For this study, each record was produced with 11 distinct attributes. 

 
3.4.4 FIRST TASK 

In the first task (Task-1), which relates to H1, participants were asked to find the glyphs 

displaying the max and min values of an attribute. The distance was kept identical for the 
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different glyphs and, therefore, the same uniform small multiple layouts were used for all. 

As a consequence, it was essential to set a fixed aspect ratio for each glyph. A square 

aspect ratio was chosen for each glyph and a square framework to create a fairer 

comparison. For each trial, the same type of glyph showing different data was drawn at a 

resolution of 96 x 96 pixels, which is the same setting as in 114. The glyphs were randomly 

laid out in an N-by-N grid, as displayed in Figure 3-6. 

 

Results. 27 participants were recruited for the research study by leveraging the university 

network (i.e., sending e-mail to potential users in the university). Eighteen of them were 

male and nine females. 26 of them completed the study. Four of the participants were not 

included when evaluating the results, as their response times during tasks were too long 

or too short (being three standard deviations from the mean) compared to others. The 

participants were Master and PhD students from varying domains, recruited directly by 

the authors. A large portion of the participants were in fields other than computer and data 

science, and they reported that they had little or no experience in visualization and data 

analysis. The largest age group among participants was 29-38 years, followed by 20-28 

years. In addition to the results presented in this section, the descriptive statistics of the 

results are provided as supplemental material. Friedman test was used to analyse the 

main effect, followed by a post- hoc test using Wilcoxon signed-rank test with Bonferroni 

correction for pairwise comparison. 

Statistical testing confirmed significant differences for accuracy (X2(22) = 20.563, p<0.05).  

shows post-hoc results with significant differences highlighted in red using p<0.0125 

following Bonferroni correction. The difference in accuracy was significant when 

comparing Bar with Whisker (µBar=3.52, µWhisker=2.78). Meanwhile, the Star showed a 

performance close to the Whisker (µStar=2.66), with no significant difference. The Ring 

glyph (sometimes called a radial bar glyph) resulted in significantly better performance 

than the Star and Whisker. 

Despite having different layouts, the Ring performed as well as the Bar glyph, and the 

difference was not significant (µRing= 3.38). According to the Friedman test, there were 

no significant differences in task completion time (X2(22) = 4.909, p=0.179). Even so, the 

participants spent a long time answering the questions using the Star and Ring (µStar = 

37498, µRing= 42965) compared to the Whisker and Bar (µWhisker=29067, µBar =3259), 

with time measured in milliseconds. The existence of speed and accuracy trade-off for 

the Ring glyph should be considered as to whether it is a good candidate for visualization. 

When looking at the perceived confidence (X2(22) = 28.262, p<0.01) in Figure 3-7, the 

participants felt more confident answering the questions in Bar glyph, followed by Ring, 

Whisker and Star. The post- hoc analysis shows that all differences of Bar against other 

designs in perceived confidence were statistically significant. The results in the Star vs 

Ring (p = 0.02) and Whisker vs Ring (p=0.013) are near the significance threshold, which 

may be an example of a type-2 error caused by the Bonferroni measure being too strict 
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123. The mean values with 95% confidence intervals (CIs) are displayed in Table 3-3 and 

Figure 3-7. For mean accuracy, the confidence intervals for Whisker and Star almost 

overlapped completely. There was also an accuracy overlap between the Bar and Ring, 

while the CI of Bar glyph did not overlap with Whisker and Star. However, for the mean 

‘time’, the intervals overlap for all four glyph designs. 

 

 
Table 3-2 Post-hoc results (z- and p-values) from Wilcoxon signed rank test for different data glyphs. 

Significant differences are highlighted in red using p < 0.0125 in Task-1. (* denotes results near the 

significance threshold). 

 

  
Accuracy 
 

 
Response time (ms) 

Whisker [2.34, 3.20] [22594, 35549] 

Bar [3.25, 3.84] [24435, 40703] 

Star [2.38, 3.07] [24317, 50227] 

Ring [3.03, 3.79] [33557, 53604] 

The values in the bracket show [min, max] scores of the relevant methods. 
 

Table 3-3 Showing numerical values of CIs for mean of Accuracy and Response time  in Task-1. 
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Figure 3-7 Confidence intervals of mean perceived confidence in Task-1. (95% confidence intervals 

adjusted for four data glyphs). This figure refers to Table 3-3  

In summary, these results partially support the first hypothesis (see H1), with the Bar 

glyph displaying the best performance, while the Ring glyph was the second-best 

performer. 

 

Visualization efficiency Different visualization methods prompt different amounts of 

cognitive load. To create better visualization as well as make more accurate assessments, 

it is important to understand this concern. Huang et al. 124 proposed a three-dimensional 

method of measuring visualization efficiency (E) (see Equation -1), where PRE signifies 
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‘user preference’, RT is ‘response time’, and RA denotes ‘response accuracy’, and these 

values are normalized using the z-score normalization to adjust them to a common scale. 

We used a likert scale to obtain user preference (PRE). In this way, after answering each 

question given in the tasks, the participants rated their perceived confidence for the 

answer they gave. 

        Equation -1. 

𝐸 =
𝑍𝑅𝐴 +  𝑍𝑃𝑅𝐸 −  𝑍𝑅𝑇

√3
 

 

The higher the score, the better the visual efficiency of the visualization. Using this 

approach, the efficiency scores of the compared glyphs - Whisker, Bar, Star and Ring - 

are 0.345, 0.171, -0.170 and 0.158, respectively. Thus, the Whisker glyph performed best 

in terms of efficiency, followed by Bar, Ring, and Star. Interestingly, although Star and 

Whisker glyphs are visually similar, the Star glyph’s efficiency score was considerably 

worse, while there was only a slight difference between the scores of the Bar and Ring 

glyphs. In terms of visualization efficiency, these results do not support H1. 

 

3.4.5 SECOND TASK 

In the second task (Task-2), which relates to H2, participants were asked to select glyphs 

with a large variance, which indicates that numbers in the set are far from the mean and 

from each other, while a small variance indicates the opposite. In the experimental 

context, the glyphs with large variance were called unbalanced glyphs, and the glyphs 

with slight variance were called balanced glyphs. The participants answered the following 

questions in this task: 

Q1. Which one of the glyphs represents the most balanced group? 

Q2. Which one of the glyphs shows the least balanced group? 

 

Results. 21 participants completed this task. In terms of accuracy score, the results were 

significant (X2(21) = 11.400, p=0.001). 
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Table 3-4 Post-hoc results (z-and p-values) from Wilcoxon signed rank test, with significant differences 

highlighted in red using p < 0.0125 in Task-2. (* denotes results near the significance threshold, which may 

affected by the strictness of the Bonferroni adjustment 32) 

Table 3-4 shows post-hoc p-values for the task in which significant differences are 

highlighted in red using p < 0.0125 following Bonferroni correction. In particular, Whisker 

and Star glyphs (µWhisker= 1.66, µStar= 1.61) showed better performance than Bar and 

Ring (µRing= 1.33, µBar= 1.33). The number of accurate answers for Whisker was higher 

compared to Bar glyph, while there was no significant difference between the response 

times. Similarly, the Star glyph performed better compared to the Bar and Ring. When 

looking at response times (X2(21) =14.086, p=0.003), there was a significant difference. 

The participants spent significantly more time using the Ring glyph (µRing= 17126) 

compared to others (µBar= 6949, µWhisker = 7940, µStar= 7021). The Ring glyph showed 

worse performance than the Bar glyph in this task; however, the participants were 

perceived to have more confidence using the Bar glyph, followed by Whisker and Star. 

The statistical testing confirmed significant differences in perceived confidence (X2(21) 

=10.775, p=0.01).  

 

  
Accuracy 
 

 
Response time (ms) 

Whisker [1.44, 1.89] [6139, 9740] 
Bar [1.11, 1.55] [5020, 8877 ] 

Star [1.39, 1.84] [6001, 8042] 

Ring [1.11, 1.55] [8524, 25728] 

The values in the bracket show [min, max] scores of the relevant methods. 
 

Table 3-5 Showing numerical values of CIs for mean of Accuracy and Response time in Task-2.  

While CIs, in Figure 3-8, of accuracy for Whisker and Bar overlap slightly, the mean 

accuracy for Whisker was higher than for Bar glyph. Star and Whisker showed quite 

similar performance in Table 3-5. The CI for response time shows a clearly longer 

response time for the Ring glyph compared to the other designs, which largely overlap 

with each other. 
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Figure 3-8 Confidence intervals for Task-2. (95% confidence intervals adjusted for four data glyphs). This 

figure refers to Table 3-5. 

 

Visualization efficiency Using the approach suggested by Huang et al.[114], the 

efficiency of the Whisker (-0.183) and Star glyph (-0.191) is higher than for the Ring glyph 

(-0.229), and the Bar glyph (-0.278) had the lowest score for visual efficiency. Thus, the 

cognitive load was less using the Whisker and Star glyph compared to Bar and Ring. The 

results support H2 at large, as Whisker and Star have better accuracy than Bar and Ring; 

and showed better response times than Ring and more or less equal confidence. 
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3.4.6 DISCUSSION 

In the evaluation, the performance of four glyph designs was compared: namely Bar and 

Whisker as baseline glyphs and their variations, Star and Ring. The focus was on two 

relevant tasks for the investigation of balanced data structures. The first task involved the 

comparison of feature values within and between glyphs, and the second task focused on 

comparing whether the combined records formed balanced objects in terms of attribute 

values. The goal is to identify possible usability problems and evaluate the performance 

of the glyphs for the tasks at hand. The results paralleled the findings in the literature, 

confirming that the comparison of attributes for the circular versions is not straightforward. 

Based on the study results presented here, Bar glyphs showed better performance 

against the other glyph variations for the identification and comparison of values (Task-1), 

thus supporting H1. In specific cases (e.g. when ordering of dimensions is not desirable), 

attribute values may be less easily perceivable and comparable between Bar glyphs. 

While considering the radial bar layout, it may be harder to perceive the length of the lines 

due to the angle and perspective. This problem is even more apparent for small size 

visualization methods (i.e. glyphs). Furthermore, equal distances in data space should be 

perceived equally when encoding a data variable to a glyph property 95. This is clearly the 

case with the Bar glyph, which uses a combination of length and position in relation to a 

reference point, compared to the Radial glyph, which encodes equal values with different 

length bars. While Whisker and Star glyphs use perceptually uniform representations, the 

comparison of values may be complicated by the directional variation in relation to the 

reference point at the centre of the glyph. 

Whisker and Star glyphs performed best for tasks requiring comparison of 

balanced/unbalanced structures (Task-2), which support H2 at large. For these glyphs, 

identification of balance/unbalance is related to evaluating the symmetry of the glyph 

shape, with a symmetric shape generally corresponding to a balanced structure. The 

facilitation of pattern perception using simple and symmetric shapes is supported by 

visualization guidelines 95. The novel glyph design, PeaGlyph, described in the previous 

section, was designed taking the limitations of existing glyphs into account in the 

investigation of balanced and unbalanced data structures and comparison and 

identification of data values. In the following section, the performance of PeaGlyph is 

compared to the best performing glyphs in this initial study. 

3.5 EVALUATION OF THE NEW GLYPH DESIGN 

In order to evaluate the usability of the PeaGlyph design, a second user study was 

conducted following a similar approach to the initial study. The PeaGlyph was compared 

against two best performing glyphs from the first study, namely the Bar glyph and Whisker 

glyph. 
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3.5.1 DATA 

For this study, the Sustainable Society Index data set (SSI) was used, in which 154 

countries are included and it presents the level of sustainability of countries. SSI is a 

scoring system developed by Social Society Foundation to measure human wellbeing, 

environmental well-being and economic well-being every two years. ‘Human wellbeing’ 

indicators grouped into basic needs, personal development and well-balanced society 

are described by nine quantitative attributes. Each indicator has the interval [0.0 - 10.0] 

in the SSI scoring system. It is worth noting that a real dataset was preferred over a 

synthetic dataset for this study, as we want to see the performance of the glyphs in the 

study when comparing realistic data structures. Also, SSI dataset has enough number of 

features (i.e., 21 indicators) to be used for testing the performance of the glyph designs. 

 

3.5.2 EXPERIMENTAL DESIGN 

The experiment was designed the same way as the initial study, using a within-subject 

design and two main tasks where each question was tested across the glyph designs. The 

questions were multiple-choice questions, and participants selected the option that they 

thought was correct among a set of glyphs. The performance of the visualization methods 

was analysed for each main task in terms of accuracy and response time. The study was 

conducted individually by using the online experiment builder, Gorilla. Ethical approval 

was received prior to the study. In this second user study, each glyph represents a country 

in the data set, and each colour represents an attribute of the country. These attributes 

are Sufficient food, Sufficient drink, Safe sanitation, Education, Healthy life, Gender 

equality, Income distribution, Population growth, Good governance. The colour scheme 

used to encode each attribute was the Tableau-10 from Tableau colour palettes 125. 

 

 

The following hypotheses were tested: 

H1. PeaGlyph performs equally well or better, in terms of accuracy and response time 

than Bar and Whisker glyphs, for questions related to finding the highest or lowest values. 

H2. PeaGlyph performs equally well or better than Bar and Whisker glyphs for questions 

in which users are expected to compare balanced and unbalanced structures between 

glyphs. 

 

After the study, each participant completed a qualitative survey regarding their glyph 

preferences: 

Q1: Which of the three glyphs shown above is the best to compare values?   (i.e., finding 

the highest or lowest indicators) 

Q2: Which glyph shown above is better to show the unbalanced structure of glyph? 
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3.5.3 FIRST TASK 

The first task (Task-1) aimed to compare the performance of the three glyph designs 

(Figure 3-9) under elementary lookup tasks where participants focus on a single attribute 

of a glyph and read individual values. Here the participants were asked to find the glyph 

in a set of glyphs that displayed the maximum and minimum values of an attribute. 

 

The sample questions from this task were as follows: 

Q1. Which one of these glyphs represents the highest education indicator? 

Q2. Which one of these glyphs represents the lowest rate in safe sanitation indicator? 

 

 

 

Figure 3-9 The glyphs used in follow-up study, from left to right: Whisker, Bar, PeaGlyph, depicting the same 

data attributes. (The dataset was used in the visual designs 126) 

 

Results. 20 participants were recruited from various domains. 9 of them were females, 

and 11 were males. The analysis was performed in two stages. First, the performance of 

the three glyphs was considered, as this was the primary research question. To check for 

normality, a Shapiro-Wilk test was run on each distribution. Since the data was not always 

normally distributed, a non-parametric Friedman’s test was used with a standard statistical 

level of p < 0.05 to determine the statistical significance between conditions. 

  
Accuracy 
 

 
Response time (ms) 

PeaGlyph [3.44, 4.35] [26160, 44920] 

Whisker [2.93, 3.86] [19192, 49346] 

Bar [3.47, 4.32] [23854, 36730] 

The values in the bracket show [min, max] scores of the relevant methods. 
 

Table 3-6 Showing numerical values of CIs for mean of Accuracy and Response time in Task-1 of 

Experiment-2.  

 

The Wilcoxon singed-rank test with a Bonferroni correction was used as post-hoc analysis 

to identify which particular differences between pairs of means were significant. Table 3-7 

shows post- hoc p-values for the task in which significant differences for perceived 
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confidence with performance are highlighted in red using p<0.0167 following Bonferroni 

correction. 

The participants showed better performance with the PeaGlyph (µ=3.9) than the Whisker 

(µ=3.4), but the same as the Bar glyph (µ= 3.9) in terms of accuracy. Comparing the 

response time, Bar performed better concerning the average response time. While users 

spent less time obtaining the same number of correct answers with Bar, their intervals 

have a degree of overlap, as seen in Figure 3-10 and Table 3- 6.    Statistical testing did, 

however, not confirm significant differences for either accuracy (X2(20) = 3.825, p=0.148) 

or response time (X2(20) = 0.900, p=0.638).  However, the perceived confidence (X2(20) 

=13.245, p<0.01) of the PeaGlyph was higher than others, which may indicate that the 

participants found it easy to use and understand. 
 

 

 𝑧 
 

𝜌 

PeaGlyph vs Whisker 4.344 0.000 
PeaGlyph vs Bar 3.240 0.004 

Whisker vs Bar 
 

-1.453 0.163 

Table 3-7 Post-hoc results (z- and p-values) from Wilcoxon signed rank test. Significant differences for 

Perceived confidence with performance are highlighted in red using p< 0.0167 in Task-1. 

 

Visualization efficiency When calculating efficiency scores for the visualization 

methods, the most efficient glyph is PeaGlyph with E=-0.125, followed by Bar (E=-0.449) 

and Whisker (E=- 0.527). This indicates that the cognitive load was lower using PeaGlyph. 

The results in part support H1, with PeaGlyph being the most efficient glyph design for 

this task and performing equally good as Bar and better than Whisker in terms of accuracy. 
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Figure 3-10 Confidence intervals for Task-1. This figure refers to Table 3.6. 

 

3.5.4 SECOND TASK 

This part was organized the same way as the second task (Task-2) in the first experiment. 

It aimed to compare the three glyph designs according to their performance under a 

synoptic task where the overall structure of glyphs is evaluated in terms of ‘balanced’ and 

‘unbalanced’. The participants were asked to select the most balanced and unbalanced 

glyph in the glyph sets given. 
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Results. All participants in Task-1 finished Task-2 as well. Regarding the number of 

accurate answers, the participants showed better accuracy performance with PeaGlyph 

(µ=1.2), followed by Whisker (µ=0.8) and Bar (µ=0.7).  Statistical testing did however not 

confirm significant differences for accuracy (X2(20) = 0.840, p=0.689). 

 

 𝑧 
 

𝜌 

PeaGlyph vs Whisker 3.954 0.001 

PeaGlyph vs Bar 1.573 0.132 

Whisker vs Bar -4.200 0.000 

Table 3-8 Post-hoc results (z- and p-values) from Wilcoxon signed rank test. Significant differences for 

Response time are highlighted in red using p< 0.0167 in Task-2 

 

Regarding the response time (X2(20) = 17500, p<0.01), the test confirms significant 

differences. Table 3-8 shows post-hoc p-values for the task with significant differences for 

Response time highlighted in red, with a Bonferroni correction resulting in a significance 

level set at p<0.0167. Whisker glyph (p<0.001) did well in terms of response time, and the 

difference was significant against the PeaGlyph and Bar, while its confidence interval has 

a small degree of overlap with Bar in Figure 3-11, with Table 3-9. 
 

  
Accuracy 
 

 
Response time (ms) 

PeaGlyph [0.64, 1.76] [13630, 33612] 

Whisker [0.47, 1.13] [6818, 13869] 
Bar [0.36, 1.04] [12867, 27960] 

The values in the bracket show [min, max] scores of the relevant methods. 
 

Table 3-9 Showing numerical values of CIs for mean of Accuracy and Response time in Task-2 of 

Experiment-2. 

In addition, the testing did not confirm significant differences for the perceived confidence 

(X2(20) = 0.966, p=0.617). However, Bar had a slightly better confidence rate, followed 

by PeaGlyph and Whisker. The CIs of the perceived confidence is given in Figure 3-11, 

where the intervals almost entirely overlap. 

Visualization efficiency. Finally, considering their efficiency for Task-2, PeaGlyph 

obtained a higher score (E= 0.324) and showed higher efficiency and less cognitive load 

compared to Bar (E= -0.603) and Whisker (E= -1.052). While not supported by any 

statistical significance, the results in part support H2, with PeaGlyph having a higher 

efficiency score and higher accuracy. 
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Figure 3-11. Confidence intervals for Task-2. This figure refers to Table 3.9. 

3.5.5 DISCUSSION 

Overall, the number of accurate answers increased with the new PeaGlyph design, 

although the participants were more familiar with Bar and Whisker. Meanwhile, the users 

generally felt more confident answering the questions using PeaGlyph. These are 

promising results and a good indicator of the performance and usability of the new glyph 

design. With regards to response time, the slightly worse performance may be due to 

the PeaGlyph being a new visualization method and, thus, possibly requiring more training 

than Bar and Whisker. 
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Figure 3-12 Participant preferences for the Task-1 and Task-2 in the Experiment-2 

 

As seen in Figure 3-12, the participants widely preferred the Bar glyph followed by 

PeaGlyph for the look-up tasks (grey) and Whisker glyph was least preferred. 

Furthermore, PeaGlyph and Bar glyph were equally preferred for defining balanced 

structures, while PeaGlyph was least preferred for unbalanced structures. It is worth 

noting that the users’ preferences generally support the quantitative results obtained from 

the usability tests in Task-2. In order to decide which design would be the most appropriate 

method for the tasks at hand, two user studies were conducted. 



 

46 

 

 

Figure 3-13 Showing Experiment-1 results. The charts illustrate the average accuracy and response time 

with the standard deviation. The left-side figures showing the results of the look-up task (Task-1), and the 

right-side showing the results of finding balance/unbalance objects (Task-2) 

 

Figures 3-13 and 3-14 summarize the results from these studies in terms of accuracy and 

response time. The Bar glyph was the best performer for both experiments for lookup 

tasks in terms of accuracy and response time. The PeaGlyph showed similar performance 

as Bar for accuracy, although the response time increased. Compared to whisker glyph, 

the PeaGlyph had better accuracy, while the response time was more or less the same. 

For Task-2, the designs were evaluated in terms of how they help reveal balanced or 

unbalanced objects within formed multivariate groups. In the first evaluation, the Whisker 

was the best performer in terms of accuracy, although the Bar glyph was slightly better in 

terms of speed. For the second evaluation, PeaGlyph showed the best performance in 
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terms of accuracy over Whisker and Bar. However, response time was better for Whisker 

glyph in this task compared to the PeaGlyph and Bar. 

 

 

Figure 3-14. Showing Experiment-2 results. The charts illustrate the average accuracy and response time 

with the standard deviation. The left-side figures showing the results of the look-up task (Task-1), and the 

right-side showing the results of finding balance/unbalance objects (Task-2) 

 

It is worth noting that in information visualization, the methods are typically evaluated by 

comparing their differences in accuracy and response time. This situation makes design 

evaluation difficult in choosing one visualization over another [114]. Thus, we also 

evaluated the visualization efficiency of the designs. The efficiency results showed that 
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PeaGlyph was the best option by obtaining the highest score in both tasks in the second 

experiment. It is worth noting that we want to keep the Experiment -1 and Experiment -2 

consistent by not integrating the participant feedback about the glyph designs into study, 

although some of them emailed their thought after completing the Experiments.  Instead, 

we asked them to answer which glyph design they would prefer in the given tasks, and 

Figure 3-12 shows their preferences according to given tasks. 

In summary, the participants increased the accuracy of their responses using PeaGlyph; 

however, the task completion time increased marginally. In particular, PeaGlyph can be 

preferred for tasks where the overall accuracy level is more important rather than the 

response time. Furthermore, analysts may want to be able to interrogate data with a more 

complex nature. PeaGlyph comes with various visual channels that can be used to 

encode more complex data sets (see section ‘PeaGlyph Design’). We are aware that 

some channels are more efficient than others, so the visual designer can select among 

them to encode their data set. 

 

3.6 USE CASE STUDY 

This section demonstrates how the presented design(PeaGlyph) can be used to analyse 

the balanced and unbalanced within and between data attributes, as well as comparing 

data values. For this aim, A Better Life Index (BLI1) dataset was selected. As there will 

be groups of countries that are similar to each other and clearly different to other groups 

of countries, and as such it is a good representative for grouping and visualization of 

balanced/unbalanced structures. BLI1 includes multiple dimensions of the well-being of 

the OECD’s member countries. The OECD selected 11 indications of life to measure, 

which are the availability of housing, income, and work as well as the overall quality of 

life (community, education, environment, governance, health, life satisfaction, security, 

and work-life balance) - the selection of dimensions is explained by 120 in detail. All of the 

indicators are normalised to the range of 0 to 1. These variables make it possible to 

compare its member counties from many different perspectives. For the 2014 OECD 

Better Life Index, Decancq 127 introduced the distributional Better Life Index (BLI2), and 

countries are ranked according to their BLI2 scores representing each country’s overall 

well-being, taking the distribution of well-being into account. In Figure 3-15, the countries 

are mapped onto two-dimensional space based on their BLI2 loss (i.e. A country with a 

larger BLI2 loss due to multidimensional inequality will have a smaller BLI2 score). The 

countries on the lower end of the figure have a smaller loss compared to the countries 

on the upper side. For example, the countries such as Austria and Netherlands have 

higher average scores for the various dimensions of life. To make it clear, the PeaGlyph 

depicted the various life attributes of three of the countries selected from different areas 

of the projection, as seen in Figure 3-16. 

 



 

49 

 

Figure 3-15 BLI2 loss due to inequity. Source: OECD(2014), adapted from Decancq 127 

 

The countries encoded into the PeaGlyph can be compared to see which ’life indicators’ 

(i.e. data attributes in our context) are more distinctive or similar across countries. 

PeaGlyph helps analysts identify the numerical value or ratio represented by each 

variable by counting the filled, semi-filled or empty circles, allowing for easy matching of 

multiple attributes across countries. For example, in Figure 3-16, the user can quickly 

detect that the ‘job (J)’ and ‘income (I)’ of the country glyph (TUR) are lower than these 

values for the middle (ISR) and bottom glyphs (SWE). However, the same country (TUR) 

has higher values than for both ’Housing (H)’ and ‘Work-life balance (W)’ of the ISR and 

SWE. 
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Figure 3-16 Comparing the multi- attributes across the countries in interest 

Further, users can analyse the balance or imbalance between multiple attributes of each 

country, as shown in Figure 3-17. For this purpose, three of the projected countries were 

randomly selected, and their attributes were mapped to the PeaGlyph. Two versions of 

the glyph are displayed in the figure to demonstrate the flexibility of the design. The 

polygonal overlay structure on top of the PeaGlyph in the top part of Figure 3-17 serves 

to further emphasize the balance of attributes. The shape of the overlay is based on the 

underlying pea-based representation. The country glyph (PRT) at the top is perceived to 

be more balanced than the other country glyphs in the middle and bottom in terms of the 

distribution of its variables among themselves, as visible from both the top and bottom 

part of Figure 3-17. Also, the balance in (AUT) appears to be greater than that of the 

middle country (NZL). 
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Figure 3-17 Representing balance/unbalance within the multi attributes of three countries of interest, using 

two design variations of the PeaGlyph. The top figure includes a polygonal overlay on the Glyphs, while the 

bottom figure fades out the empty peas. 

Due to the strength of human visual perception, this type of comparison can be easily 

performed for moderately sized data using the PeaGlyph. Alternatively, it is necessary to 

consider the range and distribution together to decide on the balance or imbalance 

between the variables, which may be more cognitively demanding. 

3.7 CONCLUSION 

Glyph-based visualization is a common form of visual design that has attained great 

attention from researchers in the visualization domain. This chapter presents a new glyph 

design, PeaGlyph, which was designed based on established design principles and the 

results of a formal evaluation of four glyph designs. The PeaGlyph design aims to address 

the problems related to existing glyphs, as identified in the evaluation. The PeaGlyph is 

described in the paper, along with the introduction of design schemes for alternative 

usage and data types. Two usability studies are presented in this chapter. These compare 
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glyph designs for tasks of relevance for investigating structures of balance and unbalance 

in data. For the first study, four glyph methods were compared: Bar and Whisker as the 

baseline glyphs, and their variations Star and Ring. The study compared these four glyphs 

in terms of look-up and comparison of values and revealing balanced objects. The 

performance of the novel PeaGlyph was then evaluated against the best performers of 

the first study, Bar and Whisker. The results were encouraging, and the PeaGlyph 

performed as well as Bar glyph in terms of accuracy, although the response time for the 

new design was higher than Bar. These results may be affected by the PeaGlyph being 

a new visualization method and, thus, possibly requiring more training to use efficiently 

compared to Bar. 

Furthermore, the participants reported in their feedback a preference for the PeaGlyph 

and Bar over Whisker glyph for the look-up tasks. Whisker was the worst option for the 

studied balanced detection tasks. These results can be considered a good indicator of 

the potential of PeaGlyph as an intuitive data glyph. Finally, the utility of PeaGlyph is 

demonstrated through a use case example. Future work includes further evaluation of the 

glyph and additional use case testing in more realistic settings. Due to its visual simplicity 

and flexibility, the PeaGlyph has the potential to be used for a variety of scenarios. The 

future studies considered include cluster analysis and the formation of comparatively 

balanced teams 128, which will be presented in Chapter 6 and Chapter 7, respectively, in 

this thesis. The latter is particularly promising since the PeaGlyph has the ability to map 

summary attributes of groups as well as represent the balance across the attributes for 

each group. This allows facilitators to gain insight into the teams and change team 

members as needed to create the desired balance between teams. There is also a need 

to formally evaluate the number of data attributes that can be efficiently represented using 

the PeaGlyph design and the effect of the colour scale on the results. 
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Chapter 4 : GROUPVIS: AN OVERVIEW OF THE GROUP FORMATION 

FRAMEWORK 

 

In this chapter, GroupVis, a group formation framework to make the grouping process in 

systematic way, is introduced in the abstract. Furthermore, a set of criteria was defined 

based on the findings in the literature to inform behind the framework design. The chapters 

that follow this chapter detail the main components of the GroupVis listed here, 

respectively. 
 

4.1 INTRODUCTION  

Teamwork is a matter of skills and cooperation in which the goal is mutual learning and 

knowledge sharing. Group formation is an essential process for the group development 

lifecycle. It is not uncommon for distinct terminology to be used in literature to refer to the 

ideas of group and team. A team can be defined as a group of people assembled around 

a common goal, the accomplishment of which requires a variety of forms of agreement 

and cooperation. In a variety of organisational settings, the ability to operate in a team has 

become a critical component of recruitment and hiring 8. As Lockyer and Gordon stated 

the success or failure of the project organization and the quality and reliability of its product 

depends on the competency of its people 129. 

Collaborative learning is an educational strategy that enables students how to work in 

teams and acquire subject-matter knowledge 93. It becomes critical to identify 

characteristics of group construction that influence the effectiveness of individual and 

collaborative learning 130. Additionally, the composition and formation of successful teams 

is critical for businesses to maintain their competitiveness 131. 

Group formation is the process of allocating participants to groups and roles, which is not 

an easy undertaking. The instructor must select how to fill the groups. Assignments can 

be made by participants, moderators, or the system, and are based on parameters such 

as participant traits, educational level, and competence. A random selection of 

participants may result in an uneven group composition, therefore efficient groups may be 

improbable to form. There are features that have to be taken into account when creating 

effective study groups so that they can achieve the desired targets. Maqtary et al. 8 defined 

group formation as an atomic process affected by several factors. The authors categorized 

the factors into two categories: member and group attributes. The group attributes 

describe group characteristics such as homogeneous and heterogeneous or mixture as a 

whole, whereas member properties such as subject knowledge, learning skills describe 

the people in groups. When all of these aspects are considered, proposing an effective 

and pedagogically acceptable group formation becomes a challenging matter 132. 
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Computer-based approaches have been provided in the group formation context to make 

this process effectively. Among used techniques, evolutionary algorithms have been 

utilized most frequently, then followed by machine learning methods 8. Besides, these 

studies leveraged a fixed number of attributes to form desired groups. The most common 

chosen attribute in these studies was knowledge 132. Learning styles and personality traits 

are other commonly used attributes influencing group outcomes. 

Unlike existing methods, this research presented here considers visualization solutions 

as an aid to support group formation tasks. To our best knowledge, this is the first attempt 

to form balanced groups using a visual-based approach. We believe that visually depicting 

the diversity within groups and group balance can be employed in conjunction with existing 

methodologies as a complementary and adaptable approach. The study presents a 

framework that includes three well-defined components to make the group formation 

process more systematic, supported by humans in the loop design. Each component is 

organized according to the determined workflow, and each includes a number of visual 

and computation methods to address the grouping problem. The framework is used in 

forming project groups in the educational domain and evaluated by some domain experts. 

 

The contributions of this work are summarised as follows: 

- Providing a novel and modular framework bridging human, machine learning and 

visualization methods to form balanced groups in a systematic way, supported by 

a semi-automated approach. 

- Proposing a new way of using teaching and learning data sets through visual 

analytics 

- Design guidelines that can guide the development of a teacher tool were obtained 

through semi-structured interviews and heuristics. 

 

The following sections will discuss the visual methods and the computation methods in 

the framework presented to aid the grouping problem in education context. 

4.2 RELATED WORK 

This section is divided into two subsections to examine the feature space and the methods 

used in group formation in the literature. The first subsection highlights the attributes used 

to create the groups. In the next subsection, the computational methods commonly used 

for grouping in the literature are presented. These methods are grouped under four 

categories. Afterwards, the papers falling into these categories are listed in order of their 

publication date. 

4.2.1 ATTRIBUTE SPACE OF GROUP FORMATION  

Computer-assisted grouping is an automated process in which students are grouped 

based on data and constraints provided by the teacher (e.g., type and size of learning 
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group) 8. Belbin’s role theory 130, 133 (or Belbin’s role balance) is often used as an 

instrument in this context and states that balanced groups, where all roles are present, 

perform better and have a positive impact on the quality of teamwork compared to 

unbalanced groups. The Felder-Silverman model 134 is another approach that generates 

four dimensions of learning styles. Besides them, clustering algorithms for group formation 
135 are perfectly suited to group formation problems since group formation attempts to split 

the student data into multiple groups. Balance is achieved on the basis of a set of specific 

criteria that apply to the learning objective in question. In other words, the desired balance 

in terms of diversity can be achieved by including students with different levels of 

achievement and characteristics in each group. Also, among all formed groups, the 

distribution of the attributes (performance level) of learners should be as similar as 

possible for forming competitively balanced teams 128. Computer-supported collaborative 

learning (CSCL), which creates a collaborative learning environment 136, makes use of 

networking technology to facilitate social and instructional interaction between learners in 

small groups and learning communities. CSCL environment offers a variety of functions, 

including group creation, monitoring, and managing activities such as evaluation 137. The 

studies on efficient group formation are surrounded by the following research purposes: 

determining the most suitable features to be used in creating groups, developing 

techniques that will optimize the group creation process, or transferring new methods from 

different domains to create groups. The current study falls under the category of transfer 

of new methods since it applies an information visualization approach to the group 

formation problem. 

 

4.2.2 COMPUTATIONAL APPROACHES TO GROUP FORMATION 

Group formation as an application problem has been handled in many ways, as shown in 

Table 4-1, which indicates that genetic algorithms and machine learning methods are 

more commonly used as part of group formation compared to other approaches.  

A mathematical approach was proposed by Graf and Bekele 138 to maximize the 

heterogeneity of generated groups that were created based on the characters and 

performance of students, which are ‘group work attitude, interest for the subject, 

achievement motivation, self-confidence, shyness, level of performance in the subject, 

and fluency in the language of instruction’. The authors collected the student data records 

and tested their proposed algorithm for this specific dataset. According to Wi et al. 139, 

having a good leader in the role of team manager, as well as having competent workers 

collaborate as team members, is critical to the success of an institution’s business 

activities. They provided a framework for analysing the knowledge of all applicants for 

team formation and utilised a genetic algorithm and social network measure to choose a 

group manager and team members from a pool of candidates in their work. 
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                                   Methods 

 

 

Literature 

Genetic 

algorithms 

Ontologies (i.e. 

semantic 

ontologies) 

Machine 

learning 

algorithms (i.e. 

clustering) 

Other methods 

(i.e. ant colony, 

generic systems 

etc.) 

Graf and Bekele138     

Christodoulopoulos and 

Papanikolaou 140 

    

Ounnas et al. 141     

Isotani et al. 132     

Wi et al.139     

Craig et al. 142     

Strnad and Guid 143     

Abnar et al.144     

Moreno et al.145     

Arias-Báez et al.146     

Srba and Bielikova 147     

Zheng and Pinkwart 148     

Akbar et al.149     

Table 4-1 Several computational methods extracted from relevant studies in group formation. The 

computational methods commonly used in group formation are grouped under four categories. The papers 

falling into these categories were listed in order of publication date from oldest to newest. 

 

Christodoulopoulos and Papanikolaou 140 have used an algorithmic approach to form 

homogeneous and heterogeneous groups, and their experiment focused on the usage of 

low complexity algorithms.  Isotani et al. 132 proposed an ontology engineering solution to 

the problem of group creation in their paper. The technique makes use of ontology to 

express collaborative learning and the process that occurs throughout the learning. They 

used learning theories in the ontology framework to provide support for making 

pedagogical decisions, like creating project teams in a learning environment. Craig et al. 
142 developed a mathematical model that included person attributes, group-formation 

criteria and fitness metrics that allowed them to generate reasonably optimal groups in 

accordance with the instructor’s requirements. Strnad and Guid 143 proposed a novel 

fuzzy-genetic analytic model for the problem of team building. Their suggested 

methodology obtains fuzzy values for specific features using an employee database that 

contains information about the employee's experiences and specialisations. These 

attributes(values) were used to form project teams. Arias-Báez et al.146 presented a 

generic system that aims to create teams based on grouping criteria, including personal 

characteristics and knowledge about relevant collaboration capabilities and context. In 

another study by Akbar et al. 149, topic selection is combined with team building; students 
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are assigned to a topic in which they are interested or to a team of students who share 

their interest. They conducted their study using a hierarchical k-means technique.  

 

Among the methods described, probabilistic models like genetic algorithms are more 

commonly used to form groups in collaborative learning environments as such algorithms 

are capable of effectively generating groups from a huge number of variables 82. The 

computational methods are quite complicated, and their decision-making process is not 

interpretable. In addition, it is widely acknowledged that assembling an effective team is 

not always doable. The presence of numerous criteria and the intricacy of their 

combination necessitates a lengthy process, and the formation of functional teams is 

sometimes not assured 89. The study presented here aims to meet this gap by dividing the 

problem into well-defined components and utilizing information visualization methods in 

these components to make the process explainable for target users. 

 

4.3 SYSTEM DETAILS 

The present study offers a framework for group formation in order to facilitate the process 

of forming balanced teams as well as to address its relevant problems and also make this 

procedure more systematic and less biased, as illustrated in Figure 4-1. 

 

Figure 4-1 Proposed framework for group formation problem 

The overall task of grouping is formulated as three well-defined sub-tasks, namely the 

modules: Attribute(1) (Chapter V), Cluster(2) (Chapter VI), Group(3) (Chapter VII), and each 

of them implements a set of interactive visual representations and computational 

methods, alongside some interactive methods, which are chosen based on underlying 

tasks. The detail of the framework is described in the following sections. 
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The system architecture is given in Figure 4-2. In the system, JavaScript is used for data 

preparation and implementation of the algorithms and the metrics mentioned above. The 

front end communicates with generated data.   

 

Figure 4-2 The proposed system architecture 

D3.js binds the data to DOM elements and renders dynamic visualizations in web 

browsers. VUE.js is used for building user interfaces. In this system, users can interact 

with the model itself through changing feature sets or selecting a different clustering 

number (k), which leads to obtaining different clustering. Based on the changes made, the 

groups is regenerated to reflect the changes in clustering outcomes. Users can also 

compare the results obtained from given clustering algorithms in this framework. 

4.4 GROUPVIS FRAMEWORK 

This section described the criteria that guided our design of the GroupVis. It also presents 

the technical details of each component that collectively builds the framework. 

4.4.1 DESIGN REQUIREMENTS OF GROUPVIS 

This study treats visualization solutions as an aid to support group building tasks and aims 

to make the grouping process more systematic and visually explorable to achieve the 

desired type of groups. This also helps the target users understand and evaluate 

algorithmically generated decisions (i.e. groups). 

It is necessary for the GroupVis to meet a variety of requirements that were defined in 

connection with the research objects of this thesis, as follows: 

C1: The system should present a chained sequence of tasks in well-defined 

components where the output of a component can become the input to the next 

component (as seen in Figure 4-1).  

C2: The visualization system should facilitate rapid information seeking,  comparing 

of possible outputs and decision making for educators/lecturers at different 

granularities of the group formation process 
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C3: The target users should be able to incorporate domain knowledge into the input 

and/or output of automated methods to derive desired groups for the tasks at hand. 

C4: It is necessary for the system to highlight problematically formed groups to help 

the user identify them and make adjustments to them. 

C5: The visualizations should be intuitive for the intended users and need little 

learning and memorization (will be discussed in Chapter 8: Heuristics Evaluation 

of GroupVis). 

To summarise, this chapter provided an introduction to the GroupVis module as well as 

an outline of the five primary criteria upon which it is founded. The following sections will 

discuss the three analytical modules in the order they are used in the group building 

process. Also, how the above listed requirements are handled will be presented in the 

following chapters. 
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Chapter 5 : EXAMINATION OF DATA ATTRIBUTES THROUGH 

MULTIPLE PROJECTION 

 

The role of this module in the framework is to provide initial understanding of the whole 

data space to our target users. In a teaching and learning context, it could be around 

assisting lecturers/educators in understanding the knowledge space and diversity of 

student cohorts. The module components have been explained in the following 

subsections. 

5.1 INTRODUCTION 

The Attribute module in Figure 5-1  aims to help users explore data space with several 

visualizations, including Scatterplot view and Grid view, alongside common projection 

approaches multidimensional scaling, t-SNE, as well as Self-organizing maps.  

 

Figure 5-1 An overview of Attribute module that includes a Scatterplot and Grid view with the colour 

legend and the histogram representing the distribution of data instances 

The following sections will describe the methods mentioned above in details. 

5.2 SCATTERPLOTS 

The Attribute view starts with a scatterplot, as seen in Figure 5-1. It is a versatile technique 

for displaying correlation on pairing axes and patterns of low dimensional data 150, as well 

as providing a high-level view of a huge amount of data 151. Due to its adaptability, it has 
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been used in various fields to present and explore relevant content 54. Three frequently 

used scatterplot tasks are to select a subset of two dimensions, reduce the dimensionality 

to two dimensions using a dimensionality reduction approach, or display all dimensions 

pairwise. In the scatterplot, each data instance is encoded as a point, and their colours 

changes depending on the values of the selected attribute from the given drop-list widget. 

The Attribute module is designed to help explore data space and identify naturally formed 

clusters. For identifying data clusters, scatterplots have been found to have advantages 

over parallel coordinates 152. Furthermore, projecting high-dimensional data into 2D 

scatterplots helps visually identify cluster patterns. It is worth noting that a scatterplot 

matrix may not efficiently visualize the complete attribute space, so it often provides useful 

information when pairwise dependencies are what is of greatest interest 153. The 

projection approaches used in Attribute module of the GroupVis are described further in 

section 5.4 below. When increasing data size, cluttering is a common problem in the 

Scatter encodings, so to mitigate this case, the Grid-based visualization was placed 

adjacent to the scatterplot.  

5.3 GRID-BASED VISUALIZATION 

Unlike the Scatterplot, the Grid view is a grid full of circles (i.e. the grid layout uses circles 

for the grid cells) and represents the data instances of the Scatterplot in an organized 

manner. The order of grid circles is in the order of the data in its natural state (i.e. any 

point ordering is not specified for this tool prototype). The legend takes a scale based on 

the underlying data and derives a set of equally sized bins (or bands). The legend's colour 

scheme uses an array of light-to-dark reds, and darker colours represent higher attribute 

values, while lighter colours represent lower attribute values. Depending on a selected 

attribute, the colour of the grid circles is associated with the colour of the corresponding 

bins on the legend. In this module, the scatterplot and grid circles use the same colour 

scheme. Along with this colour-based legend, a histogram shows the frequency of 

instances falling in these bands. The legend is interactive, and legend-over behaviour 

emphasizes circle that fall inside a certain band while transparently de-emphasizing 

circles that do not fall within that band. As illustrated in Figure 5-1, the legend title, unit 

labels, suitable numerical formatting, and additional graphical elements utilised to 

highlight the breakpoints all contribute to the legend’s readability. 

5.4 2D PROJECTIONS OF DIMENSIONALITY REDUCTION METHODS 

The GroupVis supports common projection methods, namely Multidimensional scaling, t-

SNE and Self-organising maps (SOM). In general, those methods are all aimed at 

lowering the number of attributes in a dataset while retaining as much variance as possible 

in the original dataset; however, they use distinct approaches to mapping 18, 19. This 

prototype of GroupVis implemented the methods mentioned above; however, different 

projections methods could be added alongside them. In many cases, clusters exist in the 
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lower-dimensional subspace of the original dimensions. The reduction of data dimension 

thanks to these methods reasonably preserves patterns and clusters in the data set.  

In the current tool, MDS and t-SNE methods were implemented for enabling target users 

to analyse clustering results on the scatterplots. Also these methods preserve data 

structures within a large number of attributes when projecting onto 2D and 3D. MDS 

retains pair distance information in low-dimensional data space 43. MDS can be 

categorized into classical MDS, metric MDS, and non-metric MDS. In this prototype, 

metric MDS has been implemented, and it tries to preserve the distance of points in the 

embedding space, so in this method, the difference in distances of points in the input and 

in the embedding space. The metric MDS uses the distance metric in its optimization, and 

it minimizes the cost function called ‘Stress’. t-SNE is a non-linear dimension reduction 

approach for effectively separating clusters, which is the problem at hand. Much of the 

local structure of the high-dimensional data may be captured effectively by t-SNE while 

also displaying global structure such as the presence of clusters on a variety of different 

scales. 

As a result, t-SNE tends to produce a representation with discrete clusters for clusterable 

data, which are often in accord with the clusters formed by a devoted clustering technique. 

In the implementation of t-SNE for this current tool (system), the learning rate (i.e. epsilon) 

is set to 10, and roughly how many neighbours each point influences (i.e. perplexity) is 

set to 30, and iteration number is 1000, as seen Table 5-1. 

Original 

 

 

 Step:20,  

 Epsilon: 10, Perplexity; 30 

 

  Step:1000, 

  Epsilon: 10, Perplexity; 30 

Table 5-1 The illustration of t-SNE with different settings. The dataset used was generated synthetically by 

drawing random samples from a multivariate normal distribution, and includes two classes. 

In the implementation of t-SNE, the cost function was made by minimizing the Kullback-

Leibler divergence (KL) (Equation -2) between the low dimensional (Q) and high-

dimensional similarity (P) distributions, using a gradient-descent method. P and Q are two 

similar matrices. The measure of pairwise similarities in the high dimensional space is 

represented by the conditional probability pj|I, (i, j =1,2,..,N) while the measure of pairwise 



 

63 

similarities in the low dimensional space is the measure of pairwise similarities uses a 

student t-distribution (𝑞𝑖𝑗). 

The cost function in t-SNE 42: 

Equation -2. 

𝐾𝐿(𝑃||𝑄)  = ∑ 𝑝𝑖𝑗 

𝑖≠𝑗

𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
 

It is worth noting that the global geometry requires fine-tuning perplexity, so to deal with 

this problem and help users capture a good sense of clusters in the t-SNE scatterplot, the 

quantity metrics for t-SNE scatterplots were provided so users can choose the graph that 

shows the isolated clusters better among others, and continue their analysis through the 

selected one. 

The tool enables users to pick a ‘good’ scatterplot view, in Figure 5-2, in which separated 

groups are more visible among generated scatterplots based on the data at hand through 

semi-automated guidance (this meets C4 on page 59). The semi-automated guidance 

works on two metrics. Distance consistency metric (DSC) 59 (Equation -3) quantifies the 

proportion of data points with a violation of the centroid distance (CD). The centroid 

distance is the distance between a cluster member and its centroid, and it should be as 

small as possible in relation to the distance between all other centroids. 

Equation -3. 

Distance consistency (DSC) =  
|x ∈ 𝑣(𝑋):𝐶𝐷 (𝑥,𝑐𝑒𝑛𝑡(𝑐𝑥)) ≠𝑡𝑟𝑢𝑒|

k
 

𝑥 is a data point in the 2D projection and, 𝑐𝑒𝑛𝑡(𝑐𝑥) is the 2D projection of the centroid of 

class 𝑐𝑥. The result is normalized to a score between 0 and 100. 
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Figure 5-2 Multidimensional scaling scatterplot of original unclassified dataset. User Knowledge Modelling 

dataset 44 was used. (Source: Author’s own) 

 

Figure 5-3 Semi-automated visual guidance that displays the top four plots regarding cluster-preservation. 

The classified data (User Knowledge Modelling dataset 44) was used and this dataset includes 4 classes 

(Very low, Low, Medium, High), which label students’ overall performance over the given learning subjects. 

We used the colour scheme to depict the classes in the dataset- (Each points encodes a student). The 

clusters in the dataset are more clearly visible in the upper right figure when compared to the others so it 

obtains higher metrics scores (i.e. DSC and Silhouette coefficient). (Source: Author’s own)  
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The second metric used is the silhouette coefficient, which was originally introduced for 

the purpose of evaluating clustering algorithms, and it quantifies both cohesion and 

separation between clustered instances 154. The silhouette has a range of values between 

[-1, 1], and the larger value of the Silhouette means a better cohesion and separation. The 

technical details of silhouette coefficient will be discussed in Chapter 6. The guidance, as 

shown in Figure 5-3, displays the top four plots having visible useful partitions or clusters 

based on these metric scores, and users can select one from among them to use in their 

further analysis process. The number of presented plots was kept low (limited to 4 plots) 

so that it was aimed to make it easier for users to choose among them. 

In the current implementation, Self-organizing map is mainly used as a projection method 

for multivariate data sets. The SOM is represented as a square grid, where each grid cell 

can represent several data items, with similar cells grouped together towards one area, 

and colouring is used to reveal global distance structures as well as local neighbourhood 

relations 155. The authors in the study 156 employed Principal Component Analysis (PCA) 

to obtain three principal components of their multivariate data and they then mixed the 

components values into RGB colour channels with a linear function. Our approach follows 

their study by using the PCA approach and pairing the units with colour space. The code 

vectors (same dimension as the input vectors) of each node 𝑚𝑖 are used to derive the first 

principal component, whose values are continuous. These values are then mapped to an 

output range, which is determined by a custom interpolator function. The viridis colour 

scale, in Figure 5-4, was used as a primary option in the current tool, as the colour scale 

is perceptually uniform in hue and brightness 157. Alternative scales with similar properties 

can be used to encode SOM nodes. In the scale, the higher values are encoded into 

darker colours, and the lower ones are in lighter colours. The advantage of our approach 

is that it is easy to be customized to the purpose of use. 

sequentialScale  = 

d3.scaleSequantial(d3.interpolateViridis).domain([firstPrincipalComponents]) 

 

Figure 5-4 The scheme of viridis colour scale 

Deciding the optimum grid size of SOM is also challenging as different grid sizes lead to 

different map presentations of the same data set. A thumb rule proposed by Vesanto and 

Alhoniemi 158 is that the optimal size of SOM is calculated (Equation -4) as follows: 
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Equation -4. 

S = 5 √𝑁 , where N denotes the size of data samples 

However, it is likely to obtain empty nodes as the size of SOM will grow as well when the 

number of data samples is huge. That causes the degradation of the accuracy with a 

decrease in interpretability. The issue was addressed by Shalaginov and Franke 159 by 

taking the statistical properties of the data set, such as variables and coefficients, into 

account. However, this leads to a smaller grid size of SOM for small or moderate data 

sets, which is likely to prevent the complete representation of structures in multivariate 

SOM. Growing SOM (GSOM) 160 is another approach in which, firstly, a small map is 

generated, and then new nodes are added to specific coordinates until specified 

conditions are satisfied. However, this approach needs domain knowledge such as the 

growth threshold and the spread factor that the end user may not have to be integrated 

into this process.  

The current implementation considers the data size and generates a square grid of SOM 

in the following way: 

 

Equation -5. 

 𝑠𝑀𝑥𝑀 ≅ 
1

2
 (5 √𝑁 ), where N is sample size and M x M denotes a square grid.  
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Figure 5-5 a) Self-organizing map depicting in the colour-map generated through Principal components of 

the code vectors of relevant cells b) along with ‘dots’ showing the distribution of objects among SOM cells 

c) along with ‘Star glyphs’ showing the mean of objects in relevant cells. (User Knowledge Modelling dataset 
44 was used.)   
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The similar data samples fall into same node (cell) and the cells with similar attributes  are 

adjacent to each other in the Self organizing map. For example, a user can detect the 

clusters formed, which are coloured with a colour scheme. The figures (b) and (c) in Figure 

5-5 use the SOM layout (a) and giving extra information about the SOM. In other words, 

the pixel and Glyph-based methods are integrated into the top layer of SOM cells. 

When looking at the node with the mouse pointer at the upper right side, figure (c) gives 

how many data sample takes place in that node and figure (b) takes average of 

multivariate data samples over their attributes in the node, and the glyphs encode these 

average values for each node. The size of the SOM nodes was taken into account in the 

glyph design selection. The SOM with the glyph visualization gives overall insight about 

the underlying values of the code vectors in the node. The figures (b) and (c) are used as 

complements to the traditional SOM map. 

 

 

Figure 5-6 Each attribute in the dataset was shown with a separate SOM. The grid of each SOM is 7x7 as 

identical with Figure 5-5, whereas each cell depicting in a sequential colour scale was based on the relevant 

data attribute values normalized. In this colour scale, lower values depict on a lighter scale and higher values 

on a dark colour scale. (User Knowledge Modelling dataset was used. STG: The degree of study time for 

goal object materials, SCG: The degree of repetition number of user for goal object materials, STR: The 

degree of study time of user for related objects with goal object, LPR: The exam performance of user for 

related objects with goal object, PEG: The exam performance of user for goal objects) 

 

The heatmaps above show the data features used. Heatmaps can be visualized side-by-

side to detect patterns among attributes in the self-organizing map, as seen in Figure 5-

6. For example, the heatmaps show a similar feature between STR (user's runtime rating 

for target objects-related objects) and PEG (user's exam performance for target objects-

related objects), while LPR (user's exam performance for target-related objects) has an 

overall inverse relationship with these two features. Also, looking at the selected cell at 

the far right in the top row of each heatmap, STR and PEG have similar colour code (dark 

red). Again, both STG and SCG are coded in slightly lighter red for this cell. LPR, on the 

other hand, is encoded into almost white colour, which means it has a low value. These 

attributes together form a summary picture for this SOM cell, and the same inference can 

be easily obtained by looking at the Star glyph in this selected cell in Figure 5-5 (c). 
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5.5 CONCLUSION  

To sum up, the Attribute module of the GroupVis was presented in this chapter, whose 

role in this framework is to provide initial understanding of the whole data space. The 

module consists of several projections and visual methods that aim to help the users 

investigate their data.  

The dimensionality reduction methods, Multidimensional scaling, t-SNE and SOM 

methods, are implemented because they are able to preserve data structures within a 

large number of attributes when projecting onto 2D and 3D, while feature selection, which 

could be an alternative approach due to their explainability, would only preserve the 

structures of the two or three selected attributes when displayed in a 2D or 3D 

visualisation. With help of the dimensionality reduction projections, important insights can 

be gained by analysing these patterns (structures) in terms of clusters and much more. 

Moreover, the user can access all attributes of data items in dimensionality reduction 

views through the provided interactive methods (e.g., providing details of selected item 

with a tooltip). 

Moreover, the quality metric views for t-SNE scatterplot was provided, as its various 

parameter settings often result in different projections. Thus, the software selects four 

plots from among all plots generated based on the metrics score to assist target users in 

making choice. Unlike the scatterplot of MDS and t-SNE, the SOM is represented as a 

square grid, where each grid cell can represent several data items, with similar cells 

grouped together towards one area. Two visual approaches are used with SOM, which 

are pixel-based and glyph based methods. Once the users understand their data by using 

given methods above, they can move on to the next stage (Clustering analysis) of the 

group formation process, which will be discussed in the next chapter. 
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Chapter 6 : EXPLORATORY VISUAL CLUSTER ANALYSIS USING 

PEAGLYPH 

The Cluster module is intended to be used as an integral part of the GroupVis architecture. 

Users can explore cluster structures in a visual manner and analyse how these clusters 

are produced as well as their properties by utilising this module. This chapter introduces 

an interactive visual cluster analysis approach to make cluster analysis more intuitive. 

Through this approach, target users are provoked to ask new questions while exploring 

clustering outputs. The approach supports interactive exploratory analysis with multiple 

coordinated views to effectively help users analyse clustering results and facilitate 

practical cluster analysis for approximately equal-sized clusters coming from fuzzy and 

non-fuzzy clustering algorithms. The PeaGlyph is integrated as a complement to augment 

views by providing extra information and making the comparison of clusters and their 

relevant attribute values easier. 

6.1 INTRODUCTION 

When conducting data analysis, one of the most common tasks is the identification of 

groupings of dataset items that have common features with one another. Users will be 

able to obtain greater insight into their data, better comprehend it, and recognise trends 

as a result of this process. This, in turn, reduces the large dimensionality of the data. The 

term ‘clusters’ is used to refer to these conceptual groups. 

In data mining, clustering is a technique that unsupervisedly discovers ‘natural’ structures 

that are hidden within data. The unlabelled data samples are automatically grouped into 

clusters, with samples from the same cluster being more similar than samples from other 

clusters. Clustering or clustering analysis is widely used in various fields, such as 

bioinformatics and image processing. 

Numerous clustering techniques have been created, each with its own set of advantages 

and drawbacks. Due to the fact that traditional clustering methods do not put size 

constraints on clusters, they can result in severely unbalanced clustering 161. As a result 

these techniques are incompatible with applications that need identical or balanced cluster 

sizes. A good example of this is in marketing campaigns. To ensure that each salesperson 

has the same workload for the purposes of fairness and efficiency, the provided 

consumers are partitioned into equal-sized clusters, with each cluster being assigned to 

a salesman 156. Similarly, distributing students into equal size classes based on their 

abilities and tailoring teaching methods to the specific needs of each group. Most 

approaches treat the problem of obtaining equal sets as an optimisation problem. 

Clustering is inherently a subjective method since ground truth labels in a data set (often) 

are not available 91, and a number of clusters are based on the task at hand or intended 

use of the results. Thus, automating the analysis of unsupervised learning tasks like 
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clustering tasks is challenging, so practitioners may need to evaluate the validity of the 

analysis results using subjective factors. Moreover, it is an iterative process- there is no 

objectively ‘correct’ clustering algorithm for a particular problem- and often necessary to 

modify pre-processing and model parameters until the results achieve the desired 

priorities. Clustering outputs are used as inputs in the context of group formation, as 

discussed in Chapter 4. 

Understanding clustering results and their reliability, exploring what features of the data 

set are responsible for clusters, and adjusting parameters to obtain better results are 

challenging tasks, especially for novice users with no background in related disciplines. 

Information visualisation methods play a prominent role in addressing these problems. 

Visually analysing the balanced (equal or roughly equal) sized clusters that have emerged 

from the clustering algorithms taking the size constraint into account, can provide new 

insights from data, provoke users to ask further questions, and help understand the nature 

of the clustering structure as core or border points. The visualisations presented in this 

chapter allow users to interactively explore the border as well as core points to identify 

similarities (e.g. ‘similar’ should be understood as ‘which have close attributes‘) and 

distinct characteristics of clusters rather than necessarily to determine the optimal 

clustering algorithm for the data. 

The PeaGlyph design that was presented in Chapter 3 is used as a summary glyph of 

each cluster that encodes aggregated values of the data instances in generated clusters 

and as a complement to cluster views. Besides, the clustering results are visualised with 

the coordinated multiple views, which are the grid visualisation, scatterplot, and node-link 

diagram. Each visualisation technique offers its unique insight from the same clustering 

results, and interactive techniques allow target users to define the starting parameters of 

the provided clustering algorithms. In summary, the methods provided for cluster analysis 

are capable of providing valuable insights from the data and are worthy of further 

investigation. 

The major contributions of this chapter are as follows: 

• Methods for visual investigation of modified (size-constrained) fuzzy and hard 

clustering  

• An interactive visual analysis procedure for exploration of clustering results, using 

the Multiple Coordinated Views approach 

• PeaGlyph is integrated as a complement view that encodes averaged values of 

multivariate data samples in any cluster formed. 
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The proposed visualisation approaches and the clustering algorithms are discussed in 

detail in the rest of this chapter. 

6.2 RELATED WORK 

This part includes two subsections: the clustering methods with size constraints and visual 

tools or methods that are used for exploration clustering analysis. 

6.2.1 CLUSTERING WITH SIZE CONSTRAINTS 

Clustering algorithms developed to solve a particular problem, in a specialized field, 

usually make assumptions in favor of the application of interest. For example, the authors 
162 observed automatic methods for text event detection, and stated that a widely used 

family of algorithms to detect events is based on clustering techniques. Xu and Wunsch 
163 surveyed clustering algorithms and illustrated their applications in some benchmark 

data sets. 

Clusters with predetermined sizes are required in a number of real-world scenarios. To 

illustrate, clustering with size constraint can be used to solve problems such as job 

scheduling when a set of jobs is assigned to different machines, considering each 

machine has a different capacity. This kind of clustering is also beneficial in establishing 

more relevant initial clusters and avoiding highly imbalanced clusters 164. Finding clusters 

of roughly the same size using the k-means and Fuzzy-c-means algorithms is only 

possible when the data density is uniform. However, when the data distribution is not 

uniform, a single cluster covering can gain much more data instances than other clusters, 

and such cases may result in large differences in cluster sizes 165. In practice, empty 

clusters are possible when using the typical K-means algorithm, especially in the case of 

multidimensional data sets with a larger number of clusters. Constraint k-means clustering 

was proposed by Bradley et al. 166 to assure that each cluster has a minimum number of 

objects in it by explicitly adding k constraints to clusters. Wagstaff et al.167 presented an 

approach for constrained k-means clustering by the imposition of 'must-link' and 'cannot-

link' constraints. They are focused on incorporating users' domain-specific knowledge into 

the clustering process. Malinen and Fränti 168 focused on obtaining clusters of balanced 

size and, at the same time, optimizing the mean square error (MSE). Ganganath et al. 169 

demonstrated the modified k-means algorithm by setting size limitations on each cluster. 

They deliberately initialize the centroid of each cluster based on their prior knowledge, 

which decreases the likelihood of obtaining local minima and enables the extraction of 

clusters with preferred sizes. Additional data extracted from the data set can be used to 

create the limitations. In the study by Shalaginov and Franke 159, the 'soft clustering' 

problem was treated as a linear programming problem and solved using a heuristic 

technique. Instead of providing the precise size of each cluster, they discovered that 

utilizing a size range (e.g., the cluster size should not exceed 50) enhanced clustering 

performance. In the study by Höppner and Klawonn 165, the authors updated the model's 
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objective function to take into account clusters of equal size. They proposed that such 

additional constraints into the objective function cause clusters to cover the same number 

of data objects. They suggested that the size of a cluster corresponds to the sum of the 

membership values for that cluster. However, their method does not always yield the 

desired cluster sizes. Recently, Li et al. 170 developed a cluster size-constrained fuzzy c-

means algorithm intending to obtain the target size of clusters with varying data 

distributions. Their solution requires that the intended proportion of cluster sizes is known 

in advance for the clustering problem. 

In our system, creating balanced size pools (clusters) in which individuals with similar 

characteristics take place is significant within the context of creating heterogeneous study 

(project) groups. The study groups will be formed by bringing together individuals from 

each pool to ensure that each student group has the diversity available in the data set. 

6.2.2  VISUAL CLUSTER ANALYSIS 

Data entities that are similar to each other in multidimensional space are grouped 

together. It can be difficult to understand whether their similarities are mainly in all 

dimensions or in sub-features. Also, it is hard to identify an ideal solution because of the 

lack of ground-truth labels, and human judgement is required to determine what may be 

regarded as a satisfiable clustering result in the first place 171. Effective visual tools help 

successfully explore a clustering space as well as understand clustering results. The 

integration of cluster analysis with information visualisation techniques is denoted by the 

term ‘visual cluster analyses. In a comprehensive review of interactive clustering by Bae 

et al. 172, the reasons for favouring interactive clustering were described in four categories: 

improving the clustering quality, understanding final results, finding particularly interesting 

data in a particular context, and the subjective reasons of the clustering task. 

Hierarchical Clustering Explorer 173 is an early form designed for exploring hierarchical 

clusters that uses a heatmap encoding to allow users to explore clustering results from 

pairs of clusters. XCluSim174 supports interactive comparison of several clustering results 

in bioinformatics data, based on ’the visual information seeking mantra’ 39- i.e. overview 

first, zoom and filter, then details on demand. It uses several graphical displays such as 

parallel sets, tabular set view and dendrogram to enable users to explore cluster 

distributions while comparing multiple clustering results. As a relevant example to the 

XCluSim, the Matchmaker 175 encoded heatmaps in dimensional axes of parallel 

coordinate plots and then reveales the relations between items in the heatmaps. In order 

to make the comparison more manageable, the item values in each dimension are 

rearranged based on their average values. Similarly, Younesy et al. 176 provided a design 

including an interactive heatmap with a query interface for analysing epigenomic data. For 

grouping data into subsets, the tool provides options for k-means clustering and querying. 

Demiralp 177 introduced Clustrophile, which supports iterative computing of clusters and 

user interaction.  
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It enables users to explore multiple choices of algorithm parameters through 

visualisations, including scatterplots and heatmaps. Clustervision 178 is another visual 

analytic tool that helps a user find the right clustering among the variety of clustering 

techniques and parameters available. It provides several coordinated visualisation 

methods for exploring clusters and comparing their results based on several quality 

metrics. The quality metric values were represented by a radar chart shown along with 

the corresponding cluster plot. Another efficient example by Cao et al. 101, who presented 

DICON, which adopted a treemap scheme for icon design to represent the 

multidimensional cluster, the also presented a layout algorithm to facilitate cluster 

comparison and interpretation. Unlike the studies mentioned, Fuchs et al. 179 presented a 

visualisation application for teaching clustering algorithms which educators and students 

can benefit from. 

As mentioned in the previous sub-section, several different tools exist that integrate 

clustering methods in an interactive visualisation environment. In general, they perform 

cluster analysis on different types of datasets, including gene expression datasets, 

trajectory datasets and geoformation. A comparison of these different approaches are 

summarised in Table 6-1.   

   2D   3D Geometrically-
transformed 
Display 

Iconic Display Dense 
Pixel Display 

Stacked Display 

Choo et al.180       

Erra et al. 181       

Lee et al.182       

Arin et al.183       

Muller et al.184       

Tatu et al.185       

Xu et al.186       

Seo and 
Shneiderman 173 

      

Schreck et al.187       

Cao et al.101       

Van et al.188       

L’yi et al.174       

Kwon et al.178       

Demiralp177       

Table 6-1 The visualization techniques used in visual clustering analysis, given by Keim’s taxonomy  

As can be seen, some studies leveraged together more than two visual methods for 

clustering analysis. The absolute majority of visualizations used in clustering analysis rely 
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on standard 2D and are followed by geometrically transformed displays. Iconic displays 

were the least preferred method compared to others. Apart from the visualizations, colour 

as an encoding (visual) channel is the most commonly used method for displaying clusters 

in analysis. 

The clustering module (system) presented in this chapter utilizes the well-defined visual 

methods as well as the novel glyph design discussed above to enable users to explore 

the pool characteristics and compare them in terms of what makes the clusters (for 

example, identifying salient attributes in the clusters and use them to identify clusters). 

Also, the output of most clustering algorithms can be input into these visual methods. In 

the context of group formation, clustering results are provided as input to the grouping 

module; therefore, visualizing these results and allowing users to examine the results 

interactively will make this process transparent and understandable before the working 

groups are formed. 

6.3 CLUSTERING AND EXPLORATORY ANALYSIS 

This section will describe a new system for visual cluster analysis that has been developed 

as part of the research of this thesis. The system follows a visual analytic approach, and 

the outputs of it serve as input to Grouping module.  The design is open-ended in terms 

of which clustering approaches to use. K-means (a hard clustering method) and Fuzzy c-

means (FCM) (a soft clustering method) are being used to demonstrate the functionality 

of the system. Various visual methods including PeaGlyph are seamlessly used together 

in the workflow to analyse cluster results. 

6.3.1 CLUSTERING ALGORITHMS 

Finding hidden patterns in data can be accomplished by utilising a variety of clustering 

algorithms. Deciding between the cluster methods and parameters often depends on the 

data set and task. We chose two different clustering algorithms to show the effectiveness 

of our visualisation methods while analysing clustering results. 

 

 𝑈𝑚𝑘 =  [

 0.0 1.0
 1.0 0.0

. .
1.0 0.0

 ] 

 

             𝑈𝑚𝑓 = [ 

0.1 0.9
0.7 0.3

. .
0.4 0.6

 ]  

a) K-means metric where 

cluster number =2 

b) Fuzzy c means membership metric 

where cluster number =2 

Figure 6-1 The figure shows clusters columns (C=2) and N rows, where C represents  the total number of 

clusters and N presents the total number of data points. In metric (a) ‘’1” means the record belongs to the 

corresponding column (cluster), but ‘0’ is not. The metric (b) presents the membership values of each record 

across clusters; and for each data point, the sum of its membership values should be 1.0. 
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Due to its simplicity, K-means clustering 189 is one of the widely used clustering methods, 

and this method ensures that each data point is associated with a single cluster. More 

precisely, the algorithm seeds random points as cluster centroids and then data records 

are grouped based on their distance to the centroids while minimizing the algorithm's 

objective function. After, the mean of the data items in each cluster becomes new centre 

point of the relevant cluster. Then, the data instances are reassigned accordingly. The 

process is repeated until there are no longer changes in the clusters and convergence 

has been reached. 

When compared to K-means, Fuzzy c means (FCM) 190, a soft clustering method, is 

distinguished by the fact that each data point might belong to more than one cluster. The 

algorithm assigns a membership value to each member based on their distance to centre 

points (centroids). If a data record is closest to a particular centre, its membership value 

for that cluster is higher than others. The membership values are used to position the 

centre points of clusters. Figure 6-1 displays the difference in cluster membership 

assignment for hard and soft clustering. Both algorithms need prior knowledge of the 

number of clusters to create subsets accordingly. The appropriate number of clusters is 

related to the goals of the analyst and may be highly subjective. Besides, in Fuzzy c-

means, fuzzifier value is critical since a high value results in information loss, whilst a low 

one results in the inclusion of false observations arising from random noise. In numerous 

investigations, the value of the fuzzifier was set to 2, which is a common setting so is it in 

this thesis. 

6.3.1.1 MODIFICATION OF K-MEANS 

We adapt the approach introduced by Ganganath et al. 169, where the conventional k-

mean algorithm is initialized with selective initialization and size constraints are applied to 

clusters for obtaining preferred size clusters. They made the assumption that the users 

have prior knowledge of at least a few data points, which allowed them to selectively 

initialise the clusters. 

In current settings, seen in Algorithm 6-1, we do not make any assumptions; instead the 

K-means++ 191 centroid initialization technique was used to ensure that the centroids are 

initialized in a more intelligent manner and that the quality of clustering improves. The 

update and termination steps from the k-means method were left unchanged. To obtain 

roughly equal size clusters, in Figure 6-2, the size limitation to be applied to the clusters 

is found as in Equation -6, where the cluster size constraint (𝜻 ), the number of data 

instances (N) and the number of clusters (k) are shown. 
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Figure 6-2 Representing balanced size clusters (38, 37, 38, 37), (k=4). Iris dataset is well-known dataset 

that contains 3 classes with 50 instances each. This data set was used to demonstrate how the clustering 

algorithms work with different k values. 

Euclidean distance metric is used to calculate similarity which is basically the square root 

of the sum of squared differences between all data points to the cluster centroids. Besides, 

there are other metrics that are commonly used in data mining tasks. The city block 

(Manhattan) distance, for example, is the sum of absolute differences of 2-data points. 

The cosine similarity metric quantifies the similarity between two vectors in a 

multidimensional space by computing the cosine of the angle between them. 
 

Equation -6. 

 Cluster size constraint (𝜻) ≅  
𝑁

𝑘
  

Here the number of data instances (N) is divided by the cluster number (k). If not, the size 

of clusters will be  𝜻 ± 1.  |𝑐𝑗| denotes the size of cluster cj, and 1 ≤ 𝑗 ≤ 𝑘 , |𝑐𝑗|  ≤ 𝜁. 
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Algorithm : K means Algorithm 
Input 𝑋 = {𝑥𝑖}𝑖=1

𝑁   the set of data points and 𝒌 𝜺  𝑵 the number of clusters 

Output The set of representations (R) and cluster sets (C) 
 

1: function K-means(X, k): 
2:  𝑅𝑜is initialized via K means ++  method 
3:     repeat 
4:      Sorting values of distance proximity 
5:   Assigning data items to clusters, only if it satisfies |𝑐𝑗|  ≤  𝜁𝑖 

   
𝐶: 𝑐𝑗 = {𝑥𝑝: |𝑥𝑝 − 𝜇𝑗|

2
<  |𝑥𝑝 − 𝜇𝑖|

2
, ∀𝑖 ,  1 ≤ 𝑗 ≤ 𝑘  } 

 
6:   Updating the R ( 1  j  k) 
7:     until | 𝜇𝑗

(𝑡+1) − 𝜇𝑗
(𝑡) | <  

8:  return {R, cluster sets} 
 end function 

 
Algorithm 6-1 Constraint sized K-means pseudo-code- (*: the distances between data  points and cluster 

centres are given by ascending order, and the algorithm was limited to Euclidean distance) 

 

In the assignment step, the distances from the centre of the clusters to each data point 

are added to the item in an ordered array. If the first set in an item list meets the size 

constraint, the item is assigned to that set. If the priority set is full, the process is iterated 

till it finds a cluster satisfying the size limitation among sorted clusters, and the item is 

assigned to this cluster. After obtaining the equal size clusters, if there are any unassigned 

members, they are similarly assigned to the appropriate clusters in the same way as 

earlier. 

6.3.1.2 MODIFICATION OF FUZZY C MEANS 

The conventional Fuzzy c-means approach does not control the size of clusters by its own 

inherent mechanic, so it is necessary to explicitly add size constraints explicitly to clusters. 

Recently, Chakraborty and Das 192 proposed a variation of the original FCM method to 

obtain clusters with specified sizes. The original paper contains the specifics on how the 

implementation was carried out. Unlike their work, in the current implementation 

presented, seen in Algorithm 6-2, we initialized the Fuzzy c mean algorithm via the Fuzzy 

c means ++ by 193 for improving the quality of the clustering method. Secondly, it makes 

no such assumption and even if the number of data samples cannot be divided by the 

number of clusters. 
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Algorithm : Fuzzy c means Algorithm 
Input 𝑋 = {𝑥𝑖}𝑖=1

𝑁  the set of data points and k 𝜺 𝑵 the number of clusters 
Output U: the matrix of membership degrees, R: the set of representatives 

 
1: function FCM (X, k): 
2:        𝑈𝑂 is initialized via Fuzzy c -means++  method 
3:  repeat 
4:   Update the membership matrix U 
5:   Update the set of centroid p 
6:   Calculate the value of the objective function J using 
    

𝐽(𝑈, 𝑃) = ∑ ∑ 𝑢𝑖𝑗  
𝑚

𝑘

𝑗=1

n

i=0

|𝑥𝑖 − 𝑝𝑗|
2
 

7:  until | 𝐽𝑡+1 − 𝐽𝑡 | < e 
8:   return {U, R, cluster sets} 
9: end function 

 

Algorithm 6-2  Constraint sized Fuzzy c-pseudo-code 

After executing the standard FCM algorithm, the potential belongingness matrix U =  {uij } 

is obtained. Then optimization problem with size constraint is solved by using the following 

way: 

Equation -7. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥) =  ∑ ∑ 𝑚𝑖𝑗𝑦𝑖𝑗

𝑘

𝑗=1

𝑁

𝑖=1

,   

for i= 1,2, ..,N and mij is the membership value of i -point for the cluster j. A data instance 

is included into only one cluster with  

Equation -8. 

            ∑ 𝑦𝑖𝑗
𝑘
𝑗=1 = 1, yij  is a solution matrix.  

 

For example, given membership matrix (U) in Table 6-2, where columns represent clusters 

(0,1,.., k) and rows denote the data points (0,1,.., N). Looking at the membership matrix 



 

80 

below, item-0 goes to the cluster-1 (c1), as its membership value is the highest among 

other clusters in this row. 

 

 

 

 c0 c1  c2 c3 

item-0 0.12 0.65 0.15 0.08 

item-1 0.03 0.70 0.07 0.2 

item-2 … … … … 

item-3 0.55 0.24 0.15 0.06 

item-4 0.42 0.02 0.01 0.55 

Table 6-2 A sample of a membership matrix  

 

Here the solution matrix (y) (Table 6-3) is given for the membership matrix (U) above. 1s 

in the matrix show the assigned clusters, whereas 0s show the unassigned clusters. Each 

row should have only an '1'; in this way, a data instance is included in an only cluster. 

 

 c0 c1 c2 c3 

item-0 0 1 0 0 

item-1 0 1 0 0 

item-2 … … … … 

item-3 1 0 0 0 

item-4 0 0 0 1 

Table 6-3 The  solution matrix for the membership matrix  given in Table 6-2. 

The sum of each row must be 1 as a data point is included in only one cluster. The sum 

of each column gives the number of data items within the corresponding cluster. 
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Figure 6-3 Representing balanced size clusters (38, 37, 38, 37) with the variation of Fuzzy c-means  (Iris 

data,  k=4). Looking at the cluster on the left in the figure, the algorithm redistributed points with a lower 

belonging score in the cluster for creating balanced size clusters.  

 

In the study by 192, their assumption is that the number of data items (N) is exactly divisible 

by the number of clusters (k). In real-world cases, this is not always possible; hence our 

implementation did not assume it. Furthermore, in our implementation, the points far from 

cluster centres (i.e. the points located at the boundary of the cluster) are redistributed 

rather than points closer to cluster centres, as can be seen in Figure 6-3. 

6.3.2 VISUALIZATION SYSTEM OVERVIEW 

As previously noted in ‘Background’, visualisation of data is critical for cluster analysis. 

This section presents several well-structured visualization methods to help effective and 

interactive inspection of clustering results. 
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Figure 6-4 The overview of Cluster module . The legend at the bottom of the Grid view represents the 

colour scheme the clusters were encoded into. 

The system shown in Figure 6-4 delivers a single clustering result but utilises a variety of 

visualisation techniques to simultaneously convey many aspects of the result. 

Our approach is similar to previous research by Long and Linsen 188 and achieves a 

seamless balance of overview and details 194. Moreover, the system enables users to 

select one of the given clustering algorithms and flexibly define parameters of the relevant 

method like cluster numbers to account for the diversity of analysis questions. The 

proposed approach attempts to make it easier to explore variations between data points 

inside clusters (i.e. presenting variability within clusters) and to reason about clustering 

instances (i.e. What data attributes are informative in defining a given cluster). 

(a) Cluster Settings  (b) Grid clustering view 
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Additionally, the system enables the application of clustering and projection techniques to 

filtered data subsets. 

We focused on several requirements to make the system applicable to clustering tasks. 

The details of the system components are described in the following sections. The system 

is similar to existing studies in that it coordinates visuals in order to investigate clustering 

results. Additionally, the system supports iterative and interactive data exploration by 

allowing users to examine the algorithmic parameters, as well as given visuals. Further, 

extra functionalities, e.g. additional clustering algorithms, reordering approaches, and 

more visualizations, can be added to the system in order to support the different clustering 

tasks. 

6.3.2.1 SETTING PANEL  

The tool presents optimal cluster number that best capture the segmentation of the data 

set in terms of the attributes, using the Silhouette coefficient metric 195. Users can directly 

use this optimal number provided for the clustering algorithms. Besides, the users 

themselves have the ability to set the cluster number by using the slider given. The 

silhouette coefficient (Equation -9) is a commonly  used approach for determining the 

quality of clusters that incorporates both cohesion and separation. For item i’s, the 

silhouette coefficient is written as: 

Equation -9. 

𝑠𝑖 =
𝑏𝑖 −  𝑎𝑖

max(𝑎𝑖 , 𝑏𝑖)
 

Where 𝛼𝑖 is the average distance between item -i and all other items in its cluster (cA), 

and 𝑏𝑖 is the minimum of the average distance of the item -i to all items of any cluster (not 

containing cA). Equation -10 calculates the average silhouette coefficient of all items, 

which provides an overall estimate of the goodness of the clustering. 

Equation -10. 

𝑠𝑘 =
1

𝑁
∑ 𝑠𝑖

𝑁

𝑖=1

 

where N represents the total number of data instances contained within data set, and 𝑠𝑘 

is the average silhouette coefficient, which is calculated by taking the average of the 

silhouette coefficients of all items. When it comes to the silhouette coefficient, its score 

ranges between -1 and 1. A greater score indicates a higher degree of clustering quality, 

which means there are smaller dissimilarities within clusters, but higher dissimilarities 

between clusters. If desired, the user can set a different value to the clustering number 
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instead of the proposed number using the slider web widget. The color-coded clustered 

data samples are represented by the scatterplot, in Figure 6-6. 

Another property of the Clustering module allows users to create a new feature set by 

choosing from the attributes in the dataset to be used in clustering analysis by using their 

domain knowledge. As the data may have a large number of attributes and the irrelevant 

ones can ruin the clustering 196. Under such circumstances, selecting the most 

discriminative or representative attributes of a sample inevitably becomes an important 

issue. 

6.3.2.2 ENCODING CLUSTER ITEMS 

Colour and positions, which are highly efficient visual cues 93, are commonly used for 

representing and identifying clusters in scatterplots. Data encodings can be correctly 

deciphered with the help of a well-designed colour scheme 197.  

 

Figure 6-5 Ten-class paired from ColorBrewe2, these do not imply magnitude differences between classes 

and is used to create the primary visual differences between classes. 

 

The system provided in this chapter uses a qualitative hue scheme 198, as shown in Figure 

6-5, to mark the different cluster points on the Grid view in Figure 6-4 and the scatterplot 

of MDS or t-SNE in Figure 6-6. 
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Figure 6-6 The MDS scatterplot showing the clusters formed based on the settings in Figure 6-4. (User 

Knowledge Modelling dataset 44 was used.) 

Alongside the scatterplot projection, the grid visualization is presented, in which the data 

instances in the scatter view are given in an organized manner to mitigate the overplotting 

problem of the scatter plot. Each circle in the Grid view is colour-coded with the 

corresponding cluster. 
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Figure 6-7 The Grid view  (on the left side) has two options, ‘unsorted’-on the top left and ‘sorted’-on the 

bottom left. When selecting sorted, the items are organized in terms of color-coded clusters, at the same 

time the Grid view on the leftmost is sorted out according to the order of the relevant items  

The 'Sorted order' option helps to see the clusters more clearly compared to the 'unsorted' 

on the grid view, as on the scatterplot shown in Figure 6-6. The hue scheme for a given 

scatterplot is used in the Grid view to encode clusters, and the data items are encoded in 

the same colour of the cluster to which they are assigned.  

Two different views, the Scatterplot and Grid view of the same data were presented side 

by side. Correspondingly, if the user wants to see the details of the data samples, they 

can click on the circles in the grid view or on the scatterplot, and the detail of the relevant 

sample is given via the tooltip. The Grid view is quite scalable as the circles in pixel size 

can be scaled down in case too many data points need to be compared. This approach 

may provide an overview even for large amounts of comparison values. The data 

instances that are usually located in areas close to the distal border are not assigned to 

the nearest cluster due to the size constraints; instead, they are distributed to other 

neighbouring clusters (nearby clusters). The re-assigned items are encoded in a lighter 

tone of the hues of the clusters to distinguish them from other data instances in Figure 6-

8. 
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1)Initial cluster results 

with different sized 

clusters 

 

 

2)The cluster results 

are encoded in 

different colours 

 

3)The points near 

border are re-assigned 

(shown with a light 

tone of colour red as 

the points belong to 

the blue cluster with 

lower degree of  

belonging so the 

points are re-assigned 

to red to provide 

balanced size of 

clusters. 

 

4)All points projected 

on the scatterplot are 

given in the Grid view 

and the re-assigned 

points are shown in the 

a light tone of assigned 

cluster. The order of the 

data items within 

clusters is not 

significant. 

Figure 6-8 Sematic representation of fuzzy grid view 

In this way, users can recognize that although the items are in the same set, the degree 

of belonging to the cluster may differ. They can also distinguish data instances with lower 

degrees (i.e. usually located in the border regions) from the others within the cluster by 

following the lighter colour-coded data instance on the Grid view. 

6.3.2.3 VISUALIZATION OF CLUSTER SUMMARY 

A summary cluster glyph encodes the average of all attributes of the members in a cluster. 

The PeaGlyph in the cluster summary table depicts the summary values of each cluster. 

The summary glyphs are created to make a quick comparison between clusters and help 

understand what instances are dominant for the grouping of data points. Each instance 

value is mapped to a pod with filled/unfilled peas, then combined to form the PeaGlyph to 

facilitate quantitative comparison over clusters in case the peas encode the normalized 

values. The glyph gives the ability to explore salient features of clusters and assess the 

differences and similarities of clusters regarding their attributes. 
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Figure 6-9 The overview of ‘Cluster Summary Table’. The figure was generated  based on the dataset 

(Chapter 7) used to create student groups, (Settings: K means, cluster number: 6, and the data attributes 

used for clustering: STG, PEG, and LPR) 

 

The overall shapes of peas capture the similarity and difference clusters visually, which 

means the shapes of similar clusters appear similar or vice versa. In Figure 6-9, pea pods 

in the columns encode attribute values, the coloured circles in the Cluster column indicate 

hues for which the clusters are encoded, and each PeaGlyph combines the attributes that 

summarize a cluster to form a summary glyph. 

6.3.2.4 CLUSTER SIMILARITY VIEW 

It is possible to depict gauged similarity values between clusters in diverse clustering 

findings using a variety of ways. For example, a colour-coded similarity matrix can display 

how frequently each pair of items is clustered together or the number of items are shared 

by each pair of clusters 199. Typically, this sort of visualisation is limited to comparing a 

pair of clustering results. A graph layout was employed in the study 174 to display cluster 

results in more scalable manner, in which nearly identical findings are clustered together 

with thicker links. For displaying similarity in the graph layout view they used physical 

distance, which provides a perceptual benefit. When additional results are presented to 

the graph view, the size of the nodes has been reduced in order to maintain the scalability 
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of the view. A heatmap (matrix diagram) visualization can be used to show the results of 

a clustering result. In general, the number of clusters is represented by the heatmap's 

columns, and the features are represented by its rows. In each cell, the colour code 

represents the normalised average feature value for clusters, as shown in the Clustrophile 

tool by Demiralp 177, in Figure 6-10.  

 

                           (a) 

 

(b) 

 

(c) 

Figure 6-10 a) A pairwise stability matrix for density based clustering and K-means 199  b) A graph layout (a 

force-directed layout) showing similarity overviews of the different clustering algorithms 174 c) A matrix 

diagram of a discrete clustering in Clustrophile by Demiralp 177. 

In the node-link graph, general visual variables are encoded into nodes (data instance) 

and links (their relationship). In the graph, each node represents a cluster, and its colour 

is matched with the related to the colour of a cluster, making it easy for the users to 

differentiate the nodes of the graph. 

The length of the connection between the nodes indicates their distance from each other 

(i.e. the quantitative nature of the similarity of the clusters). This visualization component 

visualizing clustering results places similar clusters closer together, making it easier to 

detect similarities between them, which is supported by the Gestalt principle of proximity. 

 The fact that the connection between two nodes is shorter than the others indicates that 

these two clusters-coded nodes are more similar to each other. According to the different 

cases at hand, different measurements may work better than others. The current 

implementation uses Euclidean distance as the similarity metric. In the graph, when the 

user selects the relevant cluster node, that node becomes the central node, and other 

cluster nodes are connected to the central node based on their similarity to that central 

node. The node graph may be thought of as a starting point for exploring cluster results. 
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6.3.2.5 INTERACTIVITY 

The visualization methods are supported by several interaction techniques such as 

selecting, zooming & panning, and highlighting. For example, when selecting a point of 

interest in the ‘Grid view’, the point is highlighted in the scatterplot, alongside a tooltip that 

presents key attributes associated with the data item. When hovered over a point in given 

scatterplot, the zoom and pan behaviour appear by default, which facilitates seeing 

different areas of the zoomed region of the scatterplot. Besides, when a point is selected, 

the remaining points are shown with a low opacity without losing the context. The 

clustering stage itself is not interactive; however,  after getting the clustering results users 

can request another run of the clustering phase with different parameters and feature 

subsets to achieve desired cluster results. 

6.3.2.6 EVALUATING CLUSTERS 

Typically, what constitutes a ‘good’ clustering is determined by criteria relevant to a 

specific domain or application. The Cluster module is designed to assist users in 

comprehending clustering findings by allowing them to examine multiple synchronised 

views at the same time. Besides, it has two evaluation metrics to evaluate the quality of 

clusters in a quantitative way. 

The one of measurements implemented in this module is the Within-cluster sum of 

squares (WSS), which sums the average squared distance of all points in a cluster to the 

cluster centroid. The higher the WSS of a cluster, the greater the variation in the data 

inside the cluster. The other measurement in the module is the Between-cluster sums of 

squares (BSS), which sums the average squared distance between all cluster centroids. 

Having a large number indicates that clusters are spread apart, whilst having a small value 

indicates that clusters are near together. 

In Figure 6-11, it can be seen that when k is set to 3 for Iris dataset, the clustering output 

contains 3-cluster divisions, and a single group (the iris-setosa) is clearly distinguished 

from the others (the iris-versicolor and iris-virginica groups), whereas the others are not. 

For this case, the scores of WSS and BSS for traditional K-means and Fuzzy-c means 

seems close to each other. However, if clusters of roughly equal size are to be created, 

we can see that the scores of these metrics may be worsened as seen in Figure 6-12. 

The dataset is not properly clustered by using these two clustering methods as in the 

previous case. This is not surprising to see, since the dataset is inherently composed of 3 

classes of equal size, but the two classes are not well separable. At this point, it is useful 

to reiterate that our priority is not to obtain more optimal clusters, but to provide clusters 

of balanced size as input to the following  ‘group formation’' stage. 
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 K-means Fuzzy c-means 

 

 

 

 

k=3 

 

 

 

 

 

 

        

Within cluster variance  11.57 % Within cluster variance  11.68 % 

Between cluster variance 88.43 % Between cluster variance 88.32 % 

 

 

 

 

k=4 

 

 

  

Within cluster variance   8.42 % Within cluster variance  8.50 % 

Between cluster variance 91.58 % Between cluster variance 91.50 % 

Figure 6-11 The comparison of K-means and Fuzzy c-means in terms of WCSS and BCSS. The algorithms 

were applied on the Iris dataset with different cluster numbers (k) and the clusters encoded into hue. 
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 Variation of K-means (roughly eq.  size clusters) Variation of Fuzzy c-means(roughly eq. size clusters) 

 

 

 

 

 

 

k=3 

 

 

   

Within cluster variance  29.38 % Within cluster variance  29.39 % 

Between cluster variance 70.61 % Between cluster variance 70.60 % 

Iteration number for optimal solution 25 Iteration number for optimal solution 11 

   

 

 

 

k=4 

 

 

 

 

  

Within cluster variance  34.27 % Within cluster variance  38.35 % 

Between cluster variance 65.72 % Between cluster variance 61.64 % 

Iteration number for optimal solution 127 Iteration number for optimal solution 168 

Figure 6-12 The comparison of the variations of  K-means and Fuzzy c-means in terms of WCSS and BCSS. 

The algorithms were applied on the Iris dataset with different cluster numbers (k) and the clusters encoded 

into hue. 
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6.4 USE CASE STUDY 

This section demonstrates how the Clustering module can be used to detect student 

clusters and the characteristics of the clusters. For this aim, the User Knowledge 

Modelling dataset was selected. The data set includes five learning attributes (see 

Appendix -A) that  presents the students’ knowledge status about the subject of Electrical 

DC machines.  

After analysing the data set in Attribute module, she wants to analyse student clusters in 

dataset using one of the given clustering algorithms, and decided to use Fuzzy-c means 

algorithm. The algorithm requires the number of clusters to be specified, and so she 

continued with the optimal cluster number (k = 7) the tool provided for the dataset (for the 

five quantitative attributes), and also she used all attribute in data set, and applied the 

algorithm on them, in Figure 6-13. 

  

 
Figure 6-13 Cluster module. Left: t-SNE scatterplot showing clusters formed, encoded in colour scheme. 
Right: Cluster settings including algorithms, feature set area, cluster selection slider, and the Grid view.  
 

The module showed the clusters formed in the Scatterplot and Grid view (Figure 6-13). In 

the grid view, she observed the organized clusters and their members, and the same 

colouring scheme is used at both Scatterplot and Grid view. When looking at the t-SNE 

scatterplot she observed that the clusters which are similar to each other in terms of their 

properties are located next to each other.  To understand the similarity ratio between these 

clusters, he examined the Similarity view (Figure 6-14). With the help of the Similarity 

view, she compared the clusters formed visually and quantitatively, and found that the 

clusters located next to each other on the Scatterplot are also coded as two nodes, close 

to each other on this node-link graph, with a short distance between them. 
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Figure 6-14 The length of links between the nodes depicts the similarity ratio. Each node colour represents 
the relevant cluster. Based on the selected cluster (placed in centre of the graph), the similarity score is 
calculated for each cluster. When clicking any cluster node in the graph, the selected one will be the centre 
node. 

 
To understand the properties of these clusters and their differences in terms of the 

attributes, she opened the Cluster Summary view (Figure 6-15).  

 

 
 

Figure 6-15 Comparing the clusters of interest through PeaGlyph. The clusters in Blue, Green, Brown 

having similar properties when compared to the Red-coded cluster. 

By looking at the summary glyph, she got an overview of the members (students) of each 

cluster, as each summary glyph reflects the average values of its members' attributes. 

When compared the clusters’ attributes coded in the PeaGlyph, she observed that LPE 

and PEG attributes in the clusters in red are quite different in the clusters in blue, green, 

and brown. There are also slightly small differences among other.  Then, she found the 
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students in the red coloured- cluster are overall good in terms of LPR (the exam 

performance of user for related objects with goal object) but not good in PEG (the exam 

performance of user for goal objects) when compared with the other clusters. Based on 

the observations, she understood she would customize her teaching materials based on 

the clusters. As an example, she would prepare additional materials to help the students  

in relevant clusters improve their lower-valued qualifications. She thought that the 

balanced (heterogeneous groups) would be formed by mixing the students in the red 

coloured cluster with the students in the blue, green and brown clusters, so that they can 

complement each other while working together. Also, she would divide the clusters into 

smaller homogeneous groups or combine similar groups to form a larger homogeneous 

group. In this way, she comprehend how Cluster module serves as an input to the 

Grouping module and the rationale behind the grouping algorithms (homogeneous and 

heterogenous) presented in the thesis. 

6.5 CONCLUSION 

Clustering analysis is often used in a variety of areas because of its usefulness for 

exploring a dataset without necessarily requiring ground truths from the data. As part of 

the GroupVis, the Cluster module was introduced in this chapter so that target users could 

grasp the clustering process and explore the balanced size clusters before proceeding to 

the group creation process, which is based on the clusters gathered from this module. 

The approach provided supports interactive cluster exploratory analysis with multiple 

coordinated views that make the analysis more intuitive. The scatterplot provides a good 

overview of clustering results, and the Grid view presents the scatterplot instances in an 

organized way to deal with the overlapping dots. The PeaGlyph was also leveraged as a 

complement to augment views by providing extra information as well as making the 

comparison of clusters and their relevant attribute values easier. Besides the visualization 

techniques, two partitioning clustering methods, K-means and Fuzzy-c, which take into 

account size constraints, were applied to generate clusters with balanced dimensions. 

However, despite the fact that what defines a good clustering is typically determined by 

domain-specific and application-specific factors, two objective metrics were added into 

the system in order to assess the quality of clustering results. The system also includes 

another metric that guides users to select an appropriate clustering number based on the 

underlying feature set. The approaches shown here would be evaluated with datasets of 

varying sizes and types, as well as with multivariate datasets. If, for example, the offered 

methods are incompatible with the hierarchical dataset, it may be necessary to incorporate 

new clustering methods into the system. This is on our to-do list as a future work. 

Moreover, future research includes expanding the visualizations to cope with different 

multivariate data sets, including temporal and hierarchical, and performing user studies to 

evaluate the visual methods in this study for the clustering analysis task.  
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Chapter 7 : GROUP FORMATION THROUGH COMBINED 

INTERACTIVE AND SEMI-AUTOMATED APPROACHES 

 

This chapter presents the creation of different types of groups by combining interactive 

and semi-automatic approaches. The module consists of ‘Grouping settings’, ‘Node-link 

view’, 'Structure group analysis view’, and ‘Metrics view’. Each will be discussed in detail 

in the respective subsections. 

7.1 INTRODUCTION 

The third module of the framework is Group Module, as seen in Figure 7-1, which splits 

individuals from the equally sized cluster into structurally defined groups to facilitate 

collaboration. 

 

Figure 7-1 Overview of group view. The main view of  Group module includes 3 parts, Group setting, Node-

link view, and Metric view. Group setting allows to change Group type and appearance of given views. 

Node-link view represents groups formed. Metric view includes 3 different metrics to visually show the 

goodness of formed groups in terms of homogeneity and heterogeneity. (User Knowledge Modelling data 

was used.) 

The groups formed are represented as node-link graphs where nodes depict group 

members, and edges show the relationship among group members. As there is no data 

attribute describing the relationships of members, equal size undirected links are utilized 

Donut chart for balancing 

Similarity to Base Group  

MDS Similarity plot 

Group Settings 

Node-link view 

Metrics View 
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for encoding. All formed groups are represented with a force-layout diagram in which each 

group is an individual node-link graph in Figure 7-2. There is a central node and the other 

group members are aligned circular around the centre node, as shown in Figure 7-3. The 

centre node (member) for each group is randomly selected among the members of the 

groups. Although the tool does not aim to assign any role to the members in this version, 

the centre node may be used to map the team leader of a group. 

 

a-Homogeneous groups 

 

 b-Heterogeneous groups  

Figure 7-2 Representing two types of groups supported by the software. The groups are encoded in node-

link graph where nodes are group members and the width of links (edges) between the centre node and 

other members representing relation (similarity) – The thicker edge, the more similar member pairs in terms 

of their attributes. 

 

 

Figure 7-3 Making the node (member) of interest a central node. in this way, users can easily compare 

members in a group with the selected member (centre) 

 

The mean of attribute values of each formed group is mapped to PeaGlyph, as shown in 

Figure 7-4 (b), due to its ability to the comparison of attribute values as well as in the 

judgement of balancing/unbalancing among attribute groups (this meets C2 on page 59). 
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Figure 7-4 Node-link graphs with relevant PeaGlyph. Two groups are formed with 10 members. Each 

member has 4 attributes. At the bottom figures, the attribute numbers are mapped to pea pods, and the 

averaged values of attributes within relevant groups are mapped to peas, which are abstracted as full-filled 

circles, semi-filled circles or empty ones. The averaged values are scaled and approximated with 10-dots. 

 

Node-link diagrams can express a wide of information types. They are widely used to map 

social networks200 where human relationship matters, and the diagram abstracts particular 

entities and relationships among them. Similarly, a node-link diagram maps the overall 

group members and the interrelationships (i.e. similarity) of group members in our case. 

As an alternative, matrix-based representation could be preferred; however, the node-link 

diagrams are more readable and familiar than matrix representations for small graphs 201. 

For each group, a PeaGlyph is generated to summarize the group attributes, and in this 

way, the representations complement each other. The position of a node-link diagram 

depicting a group in the Standard graph layout  in Figure 7-4 (a),  also indicates the position 

of the PeaGlyph related to that group in the Summary layout Figure 7-4 (b). In this way, 

users easily ‘lookup’ 15 the groups of interest quickly as they already know both what they 

are looking for and where is it. Also, both layout representations allow users to compare 

the groups from different aspects (i.e. the relations of members, the attributes of the 

groups, balancing among the groups). 

7.2 GROUPING ALGORITHMS  

Two different algorithms were built on the output of clustering algorithms, and based on 

the user preference heterogeneous and homogeneous groups can be generated.  

a) Node-link diagram for each group (Standard layout) 

b) PeaGlyph mapping averaged values of data attributes for 

corresponding groups (Summary layout) 
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Figure 7-5 The workflow: the clustering outputs are  transmitted to the group module 

This workflow in Figure 7-5 summarizes the processes between the Cluster module and 

Group module (this meets C1 on page 58). The generated clusters, including a number 

of clusters, are provided as an input to the grouping algorithms (i.e. heterogeneous and 

homogeneous) for obtaining the desired type of groups and each group will include 

roughly (k number of members), as shown in Algorithm 7-1  and Algorithm 7-2. Finally, 

the goodness of formed groups is evaluated with a set of metrics, including highlighting 

‘problematically formed groups’ to get the attention of target users in further exploration. 

The degree to which groups are homogeneous or heterogeneous may be characterized 

a group feature. According to 202, the definition of heterogeneity,  

‘Heterogeneous group is a group where all the possible values of the learner space 

are present.’ 

In the educational context, a homogeneous group is a group in which the members are 

similar to one another in several attributes according to American Psychological 

Association 203. When more than one criterion is used, it becomes even harder to define 

group heterogeneity. In order to reach some level of heterogeneity, a random procedure 

may be useful, especially if the level of group heterogeneity does not need to be the 

highest feasible. 

In the present implementation, the rationale for forming heterogeneous groups is to pick 

a member from the clusters to provide desired heterogeneity of the groups, considering 

the quality of each formed group is relatively similar. However, homogenous groups are 

formed by dividing each cluster into several more homogeneous clusters. The output of 

group formation algorithms includes groups, their members, and relationships between 

them. For visually depicting these outcomes, a traditional node-link diagram was used 

where the members are connected to each other in a group, but there is no connection 

between groups by default. 
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Algorithm 7-1 Specified for generating homogeneous groups 

In this homogeneous algorithm, the formed clusters are presented as input data to the 

algorithm. After the total number of groups to be formed is determined, homogeneous 

groups are formed, as seen in Figure 7-6, by randomly selecting elements as much as the 

number of clusters from each cluster. This process continues until there is no unassigned 

data instance. 

 

Figure 7-6 The homogeneous group algorithm divides the clusters horizontally (randomly selected data 

items) to form groups with similar members within themselves. 
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Algorithm 7-2 Specified for generating heterogeneous groups 

Heterogeneous groups are formed by randomly selecting one element from each cluster. 

Since each group will contain as many elements as the number of clusters, the groups to 

be formed, as seen in Figure 7-7, by taking elements from each cluster will provide 

heterogeneity within groups and a balance between the groups to be created. 

 

Figure 7-7 The heterogeneous group algorithm divides the clusters vertically (randomly selected data items) 

to form groups with different members within themselves, ensuring balance between the groups. 
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Figure 7-8 Structure view (left): The summary of formed groups is encoded into PeaGlyph Group layout 

(middle): The formed groups are depicted as Node-link graphs. List view (bottom): The formed groups are 

given in the List format. Metric view (right): It visually depicts the goodness of formed groups in terms of 

homogeneity and heterogeneity. The groups highlighted in red are detected as outliers by the metrics. 

 

Besides the visualization of the network of the formed groups, the listed view represents 

groups with the group members, as shown in Figure 7-8. The view was considered as a 

locomotive for all formed visualizations. This view enables users to interactively exchange 

individuals between groups (this meets C3 on page 59). The changes within the List view 

are reflected in the charts that encode the metric results, as well as the relevant 

visualizations in the module.  

 

Figure 7-9 Representing star glyph with contour at the left, and the shape filled  on the right by Fuchs et 

al.117 

Each group member is coupled with a polygon shape (filled star-glyph shape), in Figure 

7-9, in the List view, and the shape reflects the underlying data values hence the data 

instances with similar data attributes have similar shapes as star glyphs are commonly 
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used for similarity search and grouping analysis task 117, 204. The filled star glyph is 

employed for a rapid overview and detecting similarities, not for providing precise values 

of data attributes. 

7.3 GOODNESS OF GROUPS 

Two different metrics are presented to measure the quality of heterogeneous and 

homogeneous of formed groups. 

7.3.1 ANALYSIS OF GOODNESS OF GROUPS 

The statistics here aim to measure the quality of the formed groups in terms of 

'heterogeneity and homogeneity'. More specifically, given heterogeneous groups, the 

dispersion within-group is expected to be high; however, it is low for homogeneous groups 

because such groups consist of similar members in attribute space.  

Suppose we have k groups; we use the index j for these, and each group consists of a 

sample of size nj. For the sample elements the index i will be used. Then, the total sample 

consists of all the elements :  

{ 𝑥𝑖𝑗: 1 ≤ 𝑖 ≤  𝑛𝑗, 1 ≤ 𝑗 ≤ 𝑘} 

The abbreviation �̅�𝑗 will be used for the mean of the j-th group sample (called the group 

mean) and �̅� for the mean of the total sample (called the total or grand mean). 

Let the sum of squares for the j-th group be; 

Equation -11. 

𝑆𝑆𝑗 =  ∑(𝑥𝑖𝑗 − �̅�𝑗)
2

𝑖

 

Equation -12. 

SST is the sum of the squared deviations from the grand mean for the total sample; 

𝑆𝑆𝑇 =  ∑  ∑(𝑥𝑖𝑗 − �̅�)
2

𝑖𝑗

 

 

Equation -13. 

SSB is the weighted sum of the squared deviations of the group means from the grand 

mean; 
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𝑆𝑆𝐵 =  ∑ 𝑛𝑗

𝑗

(�̅�𝑗 − �̅�)
2

 

Equation -14. 

SSW is the sum of the squared means across all groups 

𝑆𝑆𝑊 =  ∑ 𝑆𝑆𝑗

𝑗

=    ∑ ∑(𝑥𝑖𝑗 − �̅�𝑗)
2

𝑖𝑗

 

 

The relationship between the three types of sum of squares can be summarized by the 

following equation; 

Equation -15. 

𝑆𝑆𝑇 =  𝑆𝑆𝑊 + 𝑆𝑆𝐵 

Finally, we define the following degrees of freedom (df) and the mean squares (MS) as:  

Equation -16. 

𝑑𝑓𝑇 = 𝑛 − 1  and 𝑀𝑆𝑇 =  𝑆𝑆𝑇
1

𝑑𝑓𝑇
 

𝑑𝑓𝐵 = 𝑘 − 1  and 𝑀𝑆𝐵 =  𝑆𝑆𝐵
1

𝑑𝑓𝐵
 

𝑑𝑓𝑊 = 𝑛 − 𝑘  and 𝑀𝑆𝑊 =  𝑆𝑆𝑤
1

𝑑𝑓𝑤
 

The donut view, in Figure 7-8,  shows the degree of heterogeneity or homogeneity of the 

formed groups by providing the proportion of the total dispersion within the groups against 

the total dispersion between the groups.  

 

Proximity of groups to overall (grand) 

Imbalance between formed groups is measured depends on the distance of their 

attributes to the grand average, in Figure 7-10, The data distance is found using the 

Euclidian metrics. For quantitative attributes, the average values of quantitative attributes 

across all team members would be identical to the population-wide average values. 
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Figure 7-10 The mean of JTH group sample are compared with the grand mean, thereby determining the 

similarity of the group averaged values to the population-wide averaged values. In this way, the groups are 

positioned relative to the reference point (grand mean) on the Similarity plot  in Figure 7-8. 

An imbalance in quantitative attributes in a team can be measured numerically by 

determining how far the team average differs from the population average 205. 

We have k groups, j index is used: { 𝑥𝑖𝑗: 1 ≤ 𝑖 ≤  𝑛𝑗, 1 ≤ 𝑗 ≤ 𝑘} 

�̅�𝑗 will be used for the mean of the j -th group sample, and �̅� for the mean of the total 

sample (grand mean). Then, the similarity between (�̅�𝑗) and grand mean (�̅�) is calculated 

with following equation; 

Equation -17. 

𝑑 (�̅�𝑗 , �̅�) = √∑(�̅�𝑗 − �̅�)
2

𝑗

 

 

Based on the similarity measurements of the team to grand mean (�̅�), the teams differing 

from the majority of a set of the team are found, and the system identifies them as outliers 

(this meets C4 on page 59), and through using colour highlighting, the system makes the 

information stand out and get the attention of users. In particular, the ‘outliers’ are more 

or less than 2.5 standard deviation distance from the grand mean. The distance values 

are sorted in descending order, and the Bar chart view encodes these sorted distances in 

length channel. The scatterplot of MDS for multivariate distance data takes place 

alongside the Bar view. In the graph, the point representing grand mean is positioned in 

the middle zone of the plot. Other items representing the groups formed are positioned 

relative to the grand mean. Some interactive elements, such as highlighting and zooming 

with panning, are supported by the tool, allowing users to communicate with information 

that has been encoded in a visual format. Besides, the web utilities (i.e., sliders, checkbox, 
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etc.) and mouse-over and single-clicking behaviour, commonly used in web-based tools, 

are available as interactive options to complete the tasks. Grouping module logs each 

operation performed by users while swapping groups members, enabling them to 

undo/redo a single operation. Further, the linked views paradigm is used. In this way, 

several views are linked together so that when to be interacting with one view, the other 

views will update and show the results of such an interaction. For example, user can 

exchange members among the formed groups by using the List view. The changes made 

on groups are reflected on the Group view and the Structure view, as well as the metrics 

scores are updated according to the changes, so they are observed on the Metrics view. 

7.4 CONCLUSION 

In this chapter, the overview of the GroupVis framework was presented. The design 

criteria on which the GroupVis tool is based have been created to make the group 

formation process systematic and explorable for target users. This framework includes 

three main task-centric components: the Attribute module, the Cluster module, and 

Grouping module, whose computational and visualization methods were explained in 

detail in this chapter. The next chapter will present the heuristic evaluation of the three 

main components of the GroupVis framework, which have been explained in detail in the 

Chapters 5, 6 and 7.
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Chapter 8 : HEURISTIC EVALUATION OF GROUPVIS FRAMEWORK 

8.1 INTRODUCTION 

A thorough examination of tools, including their visualisation techniques, is critical for 

providing effective support to tool users, and ensure its usefulness and usability. 

Performance and subjective characteristics are frequently cited as relevant indicators of 

data visualisation usability 206. The usability of the software presented in this thesis was 

evaluated by considering heuristic criteria. Heuristic evaluation methods 207 are widely 

used which allows finding potential problems in user interface, and prioritizes the problems 

to tackle 208, 209. Recently, Wall et al. 210 proposed a heuristic technique for quantifying the 

potential benefit of a visualisation in terms of data comprehension. Their methodology 

ICE-T includes four value components: Insight, Confidence, Essence and Time. The 

participants are expected to evaluate the visualizations using the individual heuristics 

within each component. Each heuristic for a visualization has a 7-level ranking ranging 

from 1 -strongly disagree to 7 -strongly agree, and N/A -not applicable. A heuristic 

approach based on the methodology suggested by Wall et al, was used to evaluate the 

GroupVis, and that the evaluation was conducted through online interview and survey. 

8.2  EVALUATION PROCESS 

Data. We used the User Knowledge Modelling Dataset 44 to evaluate the functions of the 

software (GroupVis). The data set is described by 6 different attributes, one of which is 

categorical (the knowledge level of user), and the remaining ones are quantitative, namely 

“STG (the degree of study time for goal object), SCG (the degree of repetition number of 

user for the materials), STR (the degree of study time of user for related objects with goal 

object), LP (the exam performance of user for related objects with goal object), PEF (the 

exam performance of user for goal object)”. The data set contains 403 instances. 

Recruiting Participants. GroupVis has been designed to be used mainly in colleges and 

universities, but that it could be usable in different settings as well. The first phase of the 

study was a demonstration of the tool functionality, and the second phase included a semi-

structures interviews (see Appendix -A) and discussions where the participants had a 

chance to test out the tool and give feedback. 

Demonstrating Process. The interviews were conducted with two college teachers of 

science and mathematics, four university lecturers from different domains and one 

education specialist, details shown in Table 8-1. In the sessions, the participants took 

control of the software using the feature of the Microsoft Team tool, and used the software 

(GroupVis) to create study groups. 

During the session, the participants were encouraged to explore the dataset and to 

generate clusters and visually explore them, as well as to create balanced groups and to 
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identify groups that may be unbalanced compared to others. The dataset in CSV file 

format was uploaded into the software (web-based) using file upload library before starting 

the session.  The evaluation of the tool was done online via Microsoft Teams and each 

interview session was recorded as this allowed us to fully focus on  interview rather than 

note taking. The individual interviews took on average 40 minutes.  The participants 

provided their feedback on the views and functions of the GroupVis. After the interview 

session, each participant was asked to complete the visualization heuristics survey and 

return it to us. The survey (see Appendix-B) includes 19-heuristic items to be rated via 

Likert scale and also provided the option of typing comments about each heuristic.  

 

Participants Subject 

P1 Mathematics (Secondary education) 

P2 Science (Secondary education) 

P3 Statistics (University) 

P4 Computing (University) 

P5 Assessment and  evaluation (University) 

P6 Educational Technology (University) 

P7 Specialist in education (Department of Education) 

Table 8-1 The participants’ codes with their domains 

 

Interpreting and Reporting. One of the aims was to explore the potential benefits of 

GroupVis to educators in the context of forming balanced groups, as well as quantify its 

usability. The questions of the interview were guided by these goals. Participants were 

interviewed about their own experiences with cooperative learning, how to use GroupVis 

in a classroom setting, its perceived usefulness, their grasp of visual approaches, and 

their feedback on the tool's ease of use and areas for development. The analysis was 

shaped by codes as given in Table 8-2,  based on research and the interview questions.  

 

 

 

 



 

109 

Themes: Collaboration  Usability Visualizations Computational methods 

 

Codes: 

Education, 

grouping, team  

Interface, 

colour(s), ease 

to use, 

intuitiveness, 

guidance, 

wording 

Scatterplot, Grid 

views, PeaGlyph, 

Node-link 

diagrams, metric 

views, SOM map 

MDS, t-SNE, SOM, k-

means, fuzzy c-means, 

Homogenous groups 

heterogenous groups 

Table 8-2 The Coding sets for analysing the  interview transcripts 

 

The themes and codes were specified related to the research goal prior to the interview, 

and these created a framework of the interview questions. Then, the excerpts that fit the 

codes were found in the interview transcripts.   

Collaboration learning: At the beginning of the interview the participants were encouraged 

to share their own experiences and views on educational approaches, including group-

based learning. All of them agree with the statement that students become better problem 

solvers in better formed groups. They used collaboration method if the team project is as 

part of their courses. They asked their students to form groups of 8-10 people. One 

lecturer (P5) allows larger study groups (i.e., more than 10).  They did not use any specific 

method or tool for creating groups even though they admit that their approach is 

problematic from a pedagogical point of view. 

The participants provided feedback and comments that demonstrate the usefulness of the 

system, as well as indicating potential areas of improvement. The following sections 

summarize the main comments made by participants. The heuristic evaluation form used 

in the thesis can be seen in Appendix -B. 

Overview: P3 described using the tool : “the application can be especially useful for 

classroom use. The versatile display of the data  make it more useful’. Similarly P1: “I 

enjoyed using the tool and it is presented with an easy interface.” P6 said that “I have 

found it easy to use. I believe that it can be easily used when creating groups, especially 

experimental studies”.  P4 ‘if you have a data set and want to create groups; and make 

sure your groups are competitive, it will quickly create the groups.’  

P2 and P7 said that they struggled with the technical names or abbreviations at first. After 

the demonstration, P7 said ‘it became clear’. Also she stated that a short tutorial could be 

prepared for its use in classroom. Likewise, P6 said : ‘some abbreviations ( i.e. MDS and 

t-SNE) are not understandable’.   

P2 suggested an alternative usage of the tool:  “When I consider the use of this tool in the 

classroom, maybe it can give us insights about the readiness of students. I think it could 
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definitely help if you have got a new class and you do not know the students in detail 

there. This would actually give you a visual way of seeing students’ strengths and 

weaknesses”. P1 described “As a data analysis program it is superb’.  

Attribute Module 

(see Appendix -B) 

Self-organizing map. P2, P5, and P7 found Self-organizing maps confusing compared to 

other views. When we explained what the method does and its structure, they said it 

helped them for seeing of data groups. P7 said: ‘the colours made it easier to see them 

(the groups formed)’. In addition, all of them found  the use of star shape and SOM together 

more informative than SOM with an empty cell.   

Grid view.  All participants found the Grid view useful for comparison of multiple data 

entities regarding attributes.  

Quality metrics.  The participants found the semi-automated guidance quite useful, except 

P1 who said that  ‘I do not think the semi-automated guidance would be entirely necessary 

for what the tool is being used for unless it was for a management perspective and 

managing lots of groups.’  

Cluster Module 

(see Appendix -B) 

Colour scheme. All participants liked colour scheme used for showing clustering results. 

For example, P1 said ‘when I look at the colours, I can deduce that they have different 

entities. However, P4 stated that ‘I thing providing various colour options to be selected 

by the users who have colour vision deficiency can make it accessible for’.  

PeaGlyph. All participants agreed that clustering summary table alongside Node-link 

diagram is quite easy to understand. When we showed them the table with the numbers 

instead of the pea glyph, they preferred the pea glyph version.  A quote from P6 , ' the 

cluster summary table allows you to compare clusters’ and added ‘the pea-like shapes 

made values easily comparable when compared to the numbers in another table.’ P4 was 

the only one who commented on the node-link diagram. He mentioned node-link shows 

the relationship between clusters in “a simple way”, and it can serve as a jumping off point 

for further investigation. 

Cluster setting panel. While testing the tool out, they were asked to select some features 

in the features of the test data set and then to run one of the clustering methods by 

choosing a certain number of clusters. As P2 said “I initially found the setting panel 

complex as there were too many options to be used”. After trying it out, they  got familiar 
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with the options. P7 suggested that  “giving a short description right next to the options 

can help choose one of the options”. 

Grouping Module 

(see Appendix -B) 

Settings. All participants referred to the value of the grouping options (homogeneous and 

heterogeneous). According to P7, “predictably, I think many teachers would find it to be 

really useful.” 

PeaGlyph. P1 stated that ‘I can see how balanced attributes of across groups. Exactly, 

that’s probably the best way of looking at it.’ P4 said  ‘Apart from the tool, I think the pea-

like shapes can be used to analyse whether the groups are balanced or not’.  

Metrics (metric views). P7 stated that  ‘‘they convey the data in concrete way for the users 

like me who are not good with numbers”. The participants were intrigued by highlighting 

problematically formed groups. P2 said:  ‘See it and go for that group makes the process 

quicker’. No one gave any negative feedback on them. 

List view. The participants liked the list views, especially the ability of swapping the 

students between the group lists. As P7 said: I liked it because the final decision about 

students still belongs to instructors’.  Similarly, P4 : “this is what I want to see in this kind 

of tool”.   

8.3 HEURISTIC EVALUATION 

The ICE-T methodology was adapted for heuristic evaluation of the GroupVis tool. Some 

of the components were renamed to cover the heuristics in our evaluation set. Hence, the 

term ‘Understanding’ (U) for the Insight, Time (T), Intuitiveness (I) for the Confidence, and 

Essence & Guidance (E&G) instead of ‘Essence’. The participants rated the visualizations 

using the individual heuristics within each component. The participants’ ratings are broken 

down by the four value components. The summary ratings of the participants on the 

heuristics with respect to each of the components are shown in Table 8-3.  

GroupVis received an overall cumulative score of 6.27, in which the maximum score is 

7.0. In the original paper 210 of the method, visualizations with a score of 4 or less are 

identified candidates for redesign but a score of 5 or higher represents valuable and good 

visualizations. Figure 8-1 represents the participants’ scores for each component. The 

component E&G scores relatively higher and followed by component U (Understanding). 

Overall ratings of the participants are consistent among the components. The participant 

P7 did not respond to the heuristic form.  
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Figure 8-1 Showing average scores of participants’ (p) ratings for each component. Also, it represents the 

consistency among participants’ ratings. (T: Time, U: Understanding, I: Intuitiveness, E/G: Essence and 

Guidance) 

The study results verified the efficiency of our design principles. The techniques  given 

have facilitated data discovery and balanced group formation according to the quantitative 

results as shown in Table 8-3.  

In the evaluation session, the most striking feature of the tool was that the groups which 

were relatively unbalanced were automatically highlighted by the tool so that the 

participants identified them easier. This was followed by the PeaGlyph that was reported 

as being useful in analysing the cluster features and formed groups, as the participants 

said it was easier with PeaGlyph to see the properties of the clusters and to compare the 

clusters on these attributes. They also used very similar expressions for this glyph design 

to analyse the created groups. 

Also, the participants highly rated the interaction techniques supported by the tool and 

found them practical. However, there are some points indicated by the result to be 

improved. At first, the users found the SOM structure a bit confusing, which was revealed 

in the interview session we made with the participants. Another point that the participant 

evaluated as relatively weak is the transitions between views. In addition, as one of the 

participants did not fully understand the two heuristic items (H7 and H11) in the form, he 

noted that he gave 4 points to these two questions. 
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Comp. Heuristic items µ  max min 

   

Ti
m

e
 

H1 -The tool interface provides a meaningful spatial organization of the data. 6.33 0.52 7 6 

H2- The visualization avoids complex commands and textual queries by providing direct interaction with the 

data representations 

6.67 0.84 7 6 

H3- The visualization supports smooth transitions between the views 5.66 0.82 7 5 

H4- The polygon shapes for each member are intuitive and help users to notice similar/different members 

across groups at a glance. 

6.33 0.52 7 6 

 

U
n

d
er

st
an

d
in

g 

  

H5- Visualizations expose individual data cases and their attributes (e.g., you can easily see whatever the 

items in the dataset represent as well as easily compare their attribute values) 6.67 0.52 

7 6 

H6- The visualization provides useful interactive capabilities to help investigate the data in multiple ways 6.50 0.55 7 6 

H7- The visualization helps generate data-driven questions 6.00 1.10 7 4 

H8- The visualization shows multiple perspectives about the data 6.17 0.41 7 6 

H9- The visualization provides useful interactive capabilities to help investigate the data in multiple ways. 6.50 0.55 7 6 

 

In
tu

it
iv

en
es

s 

H10- The representations in the cluster summary table are intuitive of what constitutes a cluster and which 

attributes differ among clusters 6.33 0.52 

7 6 

H11- The relationship between Grid view and Scatterplot is intuitive 6.17 1.33 7 4 

H12- The representations of the metrics are intuitive. 6.33 0.52 7 6 

H13- The representations in the detail view are intuitive, and provide clear information about differences 

between groups 6.33 0.52 

7 6 

H14- The Self organizing map has an intuitive structure 5.50 1.22 6 3 

 

Es
se

n
ce

 &
 G

u
id

an
ce

    

H15- The dimension reduction view provides an objective indication of the quality of the plots that helps   

users choose from among the plots provided 5.83 0.75 

7 5 

H16- The colouring of the SOM cells helps reveal cluster structures 6.17 0.75 7 5 

H17- PeaGlyph helps reveal balanced /unbalanced groups features as well as compare them. 6.50 0.84 7 5 

H18- Highlighting the groups in this view that were marked as outliers by the metric was a useful guidance 

for the starting point of the analysis. 7.00 0.00 

7 7 

H19- The visualization provides a comprehensive and accessible overview of the data 6.33 0.51 7 6 

Table 8-3 Including the four components, and the constituent heuristics for each component. The figure also 

shows summary (average) ratings for the three visualizations on each of the heuristics, as well as the 

standard deviation of each rating. 
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8.4 DISCUSSION 

The participants offered their opinions on GroupVis' existing capabilities as well as 

suggestions for how the tool could be improved in the future. At the beginning, all 

participants stated that collaborative learning is beneficial, and they used this learning 

approach in their modules. They also agree that the way they form groups has a huge 

impact on the output of the groups. They found the GroupVis useful, as it helps to create 

different type groups of students. 

According to the findings, the tool can be used for data analysis, alongside creating 

balanced groups. Besides, the visuals of the tool are intuitive (this meets C5 on page 59) 

and the process-flow steps to form balanced groups is logical. Although some users 

expressed some concerns such as abbreviations, technical names,  about the usability of 

the tool's interface, they understood the relevant points after a short presentation. Thus, 

we think to provide adaptive user interfaces 211 based on the users’ profile or experiences 

in the future version of the software, as well as to prepare a tutorial for classroom use of 

the tool functionalities. Although the tool’s main aim is to support educators for obtaining 

competitively balanced groups, the some participants expressed that the tool can be used 

for different tasks such as exploring student readiness. The PeaGlyph was the most 

prominent visualization in the interviews with the participants. They found it very useful 

both in comparing data values and in giving information about the balance. This is 

supported by the score of participants’ score for it in Table 8-3. Similarly, highlighting 

unbalanced groups to draw users' attention to unbalanced groups was the tool's top rated 

feature, while SOM's intuitiveness scored the least average relatively. Since there is no 

score of 4 or less in the table, it can be said that the visuals are quite effective, which 

supports the feedbacks of participants in the interview sessions. Surprisingly, six of the 

participants did not want to use any tool or method in this context. Although they are aware 

of the existence of some methods, they are not willing to learn to use them. Thinking about 

the ease of use and the time it would save, they said that they could use this tool in their 

own modules to form student teams. As a limitation, as a general student dataset is used 

in this section to illustrate the functions of the tool, it will not be possible to interact with 

the students in the groups created by GroupVis to see their progress and experience. In 

our next agenda  we are considering using our own dataset and analyse the experiences 

and results of the students in GroupVis-created groups compared to the students in non-

GroupVis-created groups. 
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Chapter 9 : CONCLUSION 

 

The research presented in this thesis has introduced a group formation framework that 

includes three main components: data exploration, clustering and grouping. These 

components, or modules, are  ordered following the workflow of the users in the context 

of group formation. Each component is provided with relevant computational methods and 

visualization methods; which enables users to perform module-related tasks that as a 

whole leads to the creation of balanced groups in a more systematic and interpretable 

way. More specifically, the main focus of the work has been on the use of visualization 

methods, along with algorithms, to help establish 'balance' between groups as well as to 

explore the distribution within groups. Further, the combination of computational and 

visualization methods designed for group formation in such a way that domain knowledge 

of the users is made of use. This section will serve as an overview of the contributions, 

followed by discussions of the findings reached from the work and recommendations for 

future study directions. 

9.1 OVERVIEW OF CONTRIBUTIONS  

The contributions of this thesis haven been highlighted in the Chapters above. The 

following ones are the most significant research contributions made by this research 

study: 

o A novel glyph visualization for balancing/unbalancing structure in multivariate 

data 

 

Chapter-3 presented PeaGlyph, which was designed based on established design 

principles and the results of a formal evaluation of four glyph designs.  The chapter 

was published in the Information Visualization journal, under the title: PeaGlyph: 

Glyph design for investigation of balanced data structures. The performance of 

novel PeaGlyph shows that it is a feasible option for representing multivariate data 

and allows viewers to acquire an intuitive sense of how balanced or imbalanced a 

set of objects is. The glyph based visualization can represent features of 

aggregated data and can be used both as an enhancement to existing visualization 

methods, and as a stand-alone visualization method. Further, we also evaluated 

the effectiveness of the PeaGlyph in showing the balance and imbalance between 

groups formed in Chapter -8. 

 

o A group formation framework (including algorithms, visualization methods and 

measurements) built on top of the equal size clustering methods to generate 

heterogenous/homogenous groups 
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The final software prototype is itself a research output, as the software was 

implemented as a web-based tool. Based on the findings in the balanced group 

formation literature, the issues and requirements were defined and in order to help 

surmount these issues as well as meet the requirements a group formation 

framework was proposed. The frameworks is made of three main components 

which are ordered as a user workflow for creating balanced groups in a more 

systematic manner. Balanced grouping is about the task of grouping individuals 

into proper teams to make teams similar across multiple attributes. The groups 

created as problematic are automatically detected and the user may be interested 

in examining further or changing members between the groups to obtain the 

desired distribution within the groups. Even while putting people in groups and 

making sure those groups are balanced and fair is not a new challenge, we believe 

this is the first time it has been approached from a visual way assisted by machine 

learning approaches, making it a significant contribution to the field. 

 

o By providing a new way of using student data sets (i.e. the learning data of 

students in software engineering module) to support learning and teaching in 

educational context 

 

The application scope of digital technologies in various formats is expanding. The 

collection of data through the technologies offer an opportunity to solve real world 

problems. For example, data collected from sports games can enable us to monitor 

players' abilities, deficiencies, and make predictions about their performance for 

future games. Likewise, student data sets collected while using digital learning 

systems are frequently used to develop strategies or make decisions to optimize 

students' performance. In this research, the usefulness and ease of use of the tool 

by educators in process of creating balanced groups in cooperative learning was 

demonstrated. With help of the GroupVis, educators can create desired type 

groups, semi-automatically using the student attributes related to the task-based 

knowledge, or they can modify the automatically formed groups based on their 

knowledge about them. The formed groups are given in different visualization 

methods. The interactivity enables the users to make desired changes on the 

groups. Consequently, the tool as a whole provides a new way of using student 

data to support learning and teaching in education context.   

9.2 DISCUSSION 

This thesis has primarily concerned the application of information visualization and visual 

analytics approaches in the context of balanced group formation. As previously discussed 

in the thesis, it offers a framework in which balanced groups can be generated in more 

systematic way and the output groups are more explainable compared to the purely 

automated methods in this context, as the modules in the framework is supported by 
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efficient visual methods. The GroupVis helps decision-makers both to understand why the 

computational algorithm end up with a decision and to analyse the individuals before 

engaging them in project groups. The findings in the evaluations in Chapter VIII shows 

that the tool can be used efficiently within the group formation context in educational 

settings. The users found it easy to use and the visualization methods along with 

computational methods are intuitive. The strengths and weaknesses of the methods of 

each component of the GroupVis were discussed in the relevant sections.  

Apart from the matters mentioned in the chapters, it is an important issue to provide the 

data in an appropriate format. The log datasets from technology products are large, 

multivariate, and complex, so pre-processing is often necessary in order to use them in 

an implementation. In addition, the extent to which the data obtained from the learning 

systems are reliable and how some usage measures such as time spent, error rates 

should be modelled to make the data more accurate is a separate issue and is beyond 

the scope of this thesis. Additionally, some data attributes in the data sets may be missing 

and need to be handled carefully.  

In the software presented in this thesis, users can make arrangements such as not 

separating pairs of friends, and splitting people who cannot work together into separate 

groups, using the interactive features of the tool. If such constraints are presented as 

external inputs to the algorithms during group creation, it may be more practical for users, 

especially in cases where the number of individuals is large, saving users time. 

The tool has a modular structure and is open-ended that means new computational 

methods for clustering and grouping can be added. Also, the provided visual methods, i.e. 

the PeaGlyph and Grid view, are generic and may be useful for a range of analytical tasks. 

Specific guidance was provided in the attribute module and grouping module, similarly 

user specific guidance can be provided in cluster analysis or user can guide cluster 

algorithm to improve cluster quality. For the latter, the knowledge of the domain in 

unsupervised learning  is necessary and may not be suitable for those out of the field. It 

is also worth saying that the purpose of this research was to obtain the desired clusters 

to solve the task at hand, rather than to increase the qualities of the clusters. More 

specifically, the expectation is to determine the parameters related to the task by the user, 

and then to obtain clusters of almost equal size based on these parameters (i.e. cluster 

number, data attributes). Two types of glyph based methods, the Star glyph and 

PeaGlyph, were used in the implementation, due their intuitiveness. Their visual 

complexity will remain constant as the number of data elements increases, however, an 

increasing number of attributes likely impact the usability of them. The selection of 

attributes due to the task content may reduce the visual complexity. As mentioned before, 

exact number of variables depends not only the glyph size but also layout being used. 

Also, we are aware of these glyphs are designed for moderately sized multivariate data 

set. 
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The findings from the visual heuristics surveys and the interviews with the experts showed 

that the visual methods of the tool are intuitive and tool interface are easy to use. However, 

having a demonstration of how the tool can be used in the relevant environments can be 

beneficial for the effective use of the available functionalities. In addition, simplifying the 

terms used or re-naming them differently will make the tool more accessible for non-

domain users, this concern was expressed by the participants in the interviews. Similarly, 

if the interface can be customized according to the domain of the user, expert users in the 

domain can continue with the existing method and explanations, while non-domain users 

can continue the task with a simpler interface. Balanced grouping is a real-world problem 

and we can encounter it in different fields as discussed above. We chose the field of 

education as the application area and demonstrated the ability of the tool to assist the 

teacher in creating balanced groups. However, evaluation of the tool by participants from 

different fields to find problems with visual heuristics and ease of use can provide clues 

for making the methods and tool abilities more useful. In addition, the mechanism that 

supports the group formation can be useful in an environment where students do not know 

each other.  

9.3 FUTURE WORK 

The evolution of information facilities and increase of data being logged present an 

opportunity to solve real-world problems. Data analysis and information visualization 

methods have reached a certain maturity, there is an increasing demand to integrate them 

into applications. Creating balanced groups is a real world issue and apart from the use 

case here, it has been explained in the chapters above that there is a problem of creating 

balanced groups in different domains. For example, the golf scramble problem 212 is 

among these problems, in which players are separated into four equal-sized groups based 

on their integer-valued handicaps defined by skill level, and then one player from each 

group is selected to create a team in a ‘equitable (balanced)' manner. Further, testing the 

applicability of this tool for different users from different domains to solve similar problems 

(i.e. the golf scramble problem) 212 is among our plans.  

As a future work, how to use the GroupVis in the Computer-supported collaborative 

learning environment, and its effect on students engagement and performance in group 

work will be investigated.  In the Group module, the random selection method built on 

balanced size clusters provides a reasonable level of fairness (balancing); however, the 

design of optimally balanced teams can be achieved through a variety of methods like 

heuristics approach. Making such improvements is in our future agenda. Moreover, it has 

been stated in the literature that mixed groups can be more successful in solving some 

problems than the groups that are formed in homogeneous or heterogenous way. 

Consequently, a blended approach may be added in the next version so that a group can 

be produced as a mixed group that is homogeneous in some traits and heterogeneous in 

some traits.  
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Due to time and access constraints, we were only able to conduct online video calls with 

participants to hold interviews throughout the pandemic. It is therefore part of our future 

agenda to conduct a contextual research 15 to observe the current functions of the tool in 

the real environment of the target users. Further, more candidates from a variety of 

backgrounds should be recruited for usability testing as the research might be biased 

because of the low diversity of user groups. Including questions from the technology 

acceptance model 213 in the evaluation process can help us see the attitudes of target 

users towards the prototype of the software.  

Creating competitively balanced teams with players assigned according to specific 

positions (roles) is a desirable factor for gamers in online games, and creating such groups 

with aid of the visual methods could be an interesting research direction. 
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APPENDICES 

 

APPENDIX -A 

 

Topic Guiding Questions  Some Follow-up questions 

Overview usage of tool (in 

education settings)  

Do you find the tool applicable 

to the classroom settings? 

How to use it in your classroom? 

Collaboration learning 

(methods, significant 

attributes) 

What are your thoughts about 

collaboration learning? 

Are you preferring project-based 

learning in your classroom? 

Which grouping method is better 

over others? 

Which group characteristics 

(homogeneity/heterogeneity) 

may help most for students? 

While forming groups, which 

attributes may be significant? 

Visual methods and 

interactions supported by 

the tool 

How do you find the visuals of 

a particular component? 

Which visual method or methods 

did you find useful in its own 

context or vice versa? 

 

Aspects/points of tools that 

need to be improved 

(including technical names) 

We want to know how to 

improve the tool’s 

functionalities and make it 

usable and accessible to 

instructors /teachers. 

What made it hard for you to 

form the desired teams via the 

tool? 
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APPENDIX -B 

Group Formation Framework - Heuristic Survey 
 
The goal of this study is to evaluate a tool called GroupVis, a JavaScript based web application designed to support 
the formation of balanced homogenous and heterogeneous collaboration teams.  The tool has three modular 
structure- Attribute view, Clustering View and Grouping view. The first phase of the study will consist of 
a demonstration of the tool functionality. While the second phase is a semi-structured interview and discussion 
where you will have a chance to test out the tool and give feedback.  

 

Presented here are a list of visualisation heuristics. You will be using to evaluate the tool, each heuristic is measured 
through a Likert scale. A description of each component is listed below alongside its heuristics, each component will 
be explained during the demonstration.  While the discussion is recorded, there is a space below each heuristic if you 
wish to make any written notes. 
 
 
The Dataset 
 This a real dataset about the students' knowledge status-  

The dataset has 5 attributes, namely :  
 
STG: the degree of study time for goal object materials, 
SCG: the degree of repetition number of used for goal object materials 
STR: The degree of study time of user for related objects with goal object 
LPR: The exam performance of user for related objects with goal object 
PEG: The exam performance of user for goal objects 
UNS: The knowledge level of user (Very low , low, middle, high) 

 

 

 

 

 

Attribute 
Module1 Clustering 

Module2 Grouping 
Module3
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Time 

 

 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

Note: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2. The visualization avoids complex commands and textual queries by providing direct interaction with the 
data representations  

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Figure 0-1 the scatterplot in Attribute module 

 

 



 

138 

Note: 

 

H3. The visualization supports smooth transitions between the views 
 

How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

   x    

 

Note: 
 

 

 

Figure 0-2 List view 

 

H4. The polygon shapes for each member are intuitive and help users to notice similar/different members 
across groups at a glance. 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

    x   
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Note: 
 

 

Understanding 

 

Figure 0-3 the components of Grouping module 

H5. Visualizations expose individual data cases and their attributes (e.g., you can easily see whatever the 
items in the dataset represent as well as easily compare their attribute values) 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

Note: 

 

H6. The visualization provides useful interactive capabilities to help investigate the data in multiple ways 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 
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Disagree 

 
 

     x  

Note:  
 

 

H7. The visualization helps generate data-driven questions 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
 

 

 

Figure 0-4 Attribute module 

 

H8- The visualization shows multiple perspectives about the data 

 
How would you rate your agreement with the above statement ? 
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Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
 

 

 

H9- The visualization provides useful interactive capabilities to help investigate the data in multiple ways. 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

 

Intuitiveness 

 

Figure 0-5 Cluster Summary Table integrating PeaGlyph alongside the Cluster Node-Link graph 
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H10- The representations in the cluster summary table are intuitive of what constitutes a cluster and which 
attributes differ among clusters 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 

 

 

Figure 0-6  Scatterplot alongside Cluster Module components 

 

H11- The relationship between Grid view and Scatterplot is intuitive 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

  x     

 

Note: 
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Figure 0-7 Metric View showing the goodness of formed clusters 

H12- The representations of the metrics are intuitive. 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
 

 

H13- The representations in the detail view are intuitive, and provide clear information about differences 
between groups 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
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Figure 0-8 Self organizing map alongside Grid view with Interactive color legend 

 

H14- The Self organizing map has an intuitive structure 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

    x   

 

Note: 
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Essence & Guidance 

 

Figure 0-9 Overview of Attribute Module 

H15- The dimension reduction view provides an objective indication of the quality of the plots that helps   
users choose from among the plots provided 
 

How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

    
 

 x  

 

Note: 

 

H16- The colouring of the SOM cells helps reveal cluster structures 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 



 

146 

Note: 
 

 

H17- PeaGlyph helps reveal balanced /unbalanced groups features as well as compare them. 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
 

 

H18- Highlighting the groups in this view that were marked as outliers by the metric was a useful guidance 
for the starting point of the analysis. 

 
How would you rate your agreement with the above statement ? 

Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

Note: 
 

 

H19- The visualization provides a comprehensive and accessible overview of the data 
 

How would you rate your agreement with the above statement ? 
Strongly 
Disagree 

Disagree Somewhat 
Disagree 

Neither 
Agree nor 
Disagree 

Somewhat 
Agree 

Agree Strongly 
Agree 

N/A 

 
 

     x  

 

1) Have you found the tool easy to use in general ? 
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APPENDIX-C 

 

                           EXPERIMENT -1 

TASK -1   

(on page 32) 

 

Figure 0-10 The result of Task -1 of the Experiment -1 in the Chapter -3. The Box plots on the left show the 

performance of the Whisker, Bar, Star, and Ring, respectively. The charts on the right show the confidence 

intervals of the visual designs in the Task -1. 
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TASK -2 

(on page 35) 

 

Figure 0-11 The result of Task -2 of the Experiment -1 in the Chapter -3. The Box plots on the left show the 

performance of the Whisker, Bar, Star, and Ring, respectively. The charts on the right show the confidence 

intervals of the visual designs in the Task -2. 
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                EXPERIMENT -2 

TASK -1 

(on page 40) 

 

Figure 0-12 The result of Task -1 of the Experiment -2 in the Chapter -3. The Box plots on the left show the 

performance of the PeaGlyph, Whisker, and Bar, respectively. The charts on the right show the confidence 

intervals of the visual designs in the Task -1. 
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TASK -2 

(on page 43) 

 

Figure 0-13 The result of Task -2 of the Experiment -2 in the Chapter -3. The Box plots on the left show the 

performance of the PeaGlyph, Whisker, and Bar, respectively. The charts on the right show the confidence 

intervals of the visual designs in the Task -2. 
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