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Abstract

Energy efficiency and performance are two of the most important design considerations
for computing applications, e.g., artificial intelligence at the edge and Internet of things
empowered by limited energy supply from batteries or energy harvesters. For these
applications, arithmetic computation is key, with multiplication and addition being the
“must-have” core functionalities. Traditional approaches to these are primarily based on
cascaded logic chains with long carry propagation circuits that contribute to high energy
consumption and latencies. Additionally, these circuits exploit digital interfaces at both
inputs and outputs, which require complex signal conversion circuits when designed
using analogue methods. This thesis presents original research focused on developing
low-energy and high-speed multiplication hardware. The core technology developed in
this work is a novel digital-in/analogue-out mixed signal multiplication method based
on a single-bit multiplication cell. The cell consists of a resistive memory bit controlled by
a transistor switch. The single-bit memory cell is implemented using memristor devices,
which provide non-volatile storage and avoid capacitive or inductive elements. This
type of single-bit multiplication cell takes two single-bit input operands (multiplier and
multiplicand). One (e.g., the multiplier) is encoded in the form of a Boolean voltage and
the other (e.g., the multiplicand) is encoded in the memristor’s conductance, also set to
Boolean values. The cell current then encodes the Boolean product following the Ohm’s
Law. The single-bit multiplication cells are then assembled into multi-bit multipliers
using a crossbar matrix structure, which directly implements the long-multiplication
algorithm. Across the crossbar, Kirchhoff’s Current Law ensures that the cell currents are
summed up to form the final overall product, forming a digital-in/analogue-out mixed
signal design. The entire Ohm’s law-Kirchhoff’s Current Law operation is instantaneous

in the absence of capacitive and inductive elements. With Kirchhoft’s Current Law,



this type of mixed-signal multiplier eliminates the need for passing carries to the left.
This saves both time and energy compared with conventional digital amplifiers, which
need costly and potentially long logic chains for carry handling. By using multiple
memristors in an single-bit multiplication cell, costly current mirrors can be avoided
from the crossbar. The core digital-in/analogue-out multiplication method can have
direct applications in Internet of things nodes, like multiplying digital-to-analogue
converters. One advantage of using the proposed multiplier in this application comes
from the asymmetry between the two input operands. One of them, saved in memoristor
conductances, is the best changed less frequently than the other, represented by voltages,
precisely what an multiplying digital-to-analogue converter aims for. This digital-
in/analogue-out multiplier is further developed into a digital-in/digital-out multiplier
with reduced output precision, with the same bit width for both the operands and the
product.

We envisage our design will be useful in applications where multiple multiply-and-
add units are assembled into larger structures, such as in neural networks. With the
same bit width for both inputs and outputs, multipliers of this design can be cascaded
a straightforward manner for larger networks. The multiplier designs are implemented
in 65 nm technology using Cadence Virtuoso based analogue simulations. The designs
are shown to have significant speed and energy advantages over existing state of the art
and the machine learning experiments demonstrate the correctness and usability of the

reduced-precision multiplication scheme for artificial intelligence applications.
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Chapter 1

Introduction

1.1 Challenges in Emerging Applications

Over the past half-century, the requirement of high energy efficiency and performance
in computing has been sustained by the down-scaling of metal-oxide-semiconductor
tield-effect transistors (MOSFET). This method enabled complementary metal-oxide-
semiconductor (CMOS) systems to maintain an exponential increase of the device’s
density in per unit area at each technology generation [1]. In the recent nano-scale
generation, the energy efficiency has stopped commensurately growing with circuit
performance. It is partly because the thermal power density from a large number
of devices in the unit area leads to device performance degradation. This is further
exacerbated by the performance gap between the central processing unit (i.e., data
processing part) and the computer memory (i.e., data storing part) increases as the data
volume increases. These issues leads to difficulties when trying to meet performance
and energy efficiency requirements of emerging electronic applications such as artificial
intelligence (AI) and Internet of things (IoT) Al applications usually based on neuron
networks (NNs) [2,3].

Machine learning using NNs and other AI methods involves multiple iterations of
arithmetic operations, with data flow between processing elements and memory, and is

a significant bottleneck for conventional computers [2-4], this phenomenon is known as
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the “memory wall” [5/6]. In order to address the memory wall challenge, researchers
have proposed a shift from traditional Von Neumann computing architectures to non-
Von Neumann computing architectures. In-memory computing (IMC) is an example of
non-Von Neumann computing architectures.

IMC using non-volatile memory technologies, provide ways of reducing the amounts
of data flow required for Al applications, including NNs [4, 7], by locating the compu-
tation close to or at the memory. Using non-volatile memory, IMC can further reduce
the number of data movements. Moreover, non-volatile data storage helps sustain the
continuity of computing flow through power cuts or interruptions in edge devices,
which are powered by unreliable supplies, such as energy harvester.

As a result, non-Von Neumann architectures have been a popular area of research
aimed at improving energy efficiency and performance. An example area of such
research is related to the use of resistive memory such as memristors, which has
shown promises of significantly improving key performance metrics such as operating
frequency (increasing by 15% relative to the scaled supply voltage), energy efficiency
(increasing by 35% for a given per switching performance), footprint area cost (reducing
by 35% on chip), and scaled die cost (reducing by 20% while no more than 30% increase
of wafer cost ) [8H10].

Another application area that is seeing a similar rapid development as Al is the
Internet of Things (IoT), devices communicate end-to-end to build the machine-to-
machine interaction [[11].

Arithmetic operations are central to modern Al applications and IoT [12,13]. In these
operations, multiplication plays a crucial role with significant impact on performance
and energy efficiency, especially because traditional multiplier circuits feature complex
partial product generation and carry propagation logic chains [14]. As such, reducing
the energy consumption of multipliers, is an ongoing design challenge.

For low-complexity multiplication, reducing precision is a promising method. For
this, pruning the carry chains to a minimum proportion while also maintaining an ac-
ceptable precision has been proposed by numerous approximate and speculative circuit
designs [15]]. These designs require careful synergy of operating voltages and frequencies

to balance energy and performance trade-offs [16]. Moreover, the accumulation of
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imprecision and errors in cascaded workloads needs mitigation strategies which adds
more complexity to the logic chains [17]. Consequently, the usability of voltage-mode
proportional carry pruning schemes is still limited.

Many IoT applications, such as neuromorphic, signal processing and control, require
the multiplier output in an analogue form with digital input interfaces [18,/19]. This
is conventionally satisfied by attaching a digital-to-analogue converter (DAC) device to
the output of a digital circuit [20]. Meanwhile, the increase of real-time data produced
by relative sensors in edge devices and the number of edge devices set a much higher
requirement for the processing speed in IoT applications. However, DAC circuits
add to the energy and performance costs that depend on the precision of the digital
multipliers. Therefore, resistive switch (RS) emerging devices bring analogue domain

data processing in hardware back to the forefront [8,9,21].

1.2 Energy-efficient Multiplier Design

Since pure digital multiplier design needs positive related scale of DACs, the digital mul-
tiplier will be costly in high density analogue to digital (A2D) conversion applications.
Therefore, the inevitable A2D conversion in IoT edge devices and the higher requirement
of processing speed and energy efficiency makes a limited space for pure digital design
in IoT.

Multiplication with mixed-signal arithmetic circuits is a potential alternative for
achieving low-cost analogue output directly [22] and has a successful academic and
commercial history. An example is the multiplying digital-to-analogue converter
(MDAC) circuit, which multiplies a digital number by a usually analogue reference
signal to produce an analogue output [23-25]. Digital-in/analogue-out (DI/AQO), where
both operands are digital, but the product is analogue, has remained under explored.
One of the main areas of contribution by this thesis is in this area.

Table lists different types of multipliers (including MDACs) by the digital and
analogue nature of their input and output signals. In digital design of DI/AOQ,
both multiplication operands are in digital, and product is initially in digital. Thus

DAC is needed for the analogue product. Conversely, analogue design has analogue
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Table 1.1: Digital-in/ Analogue-out Multiplier Designs

Non-
Design Multiplier | Multiplicand Product

volatility
Digital Digital Digital Digital+DAC [20] | Symmetric
Analogue [22] | Analogue | Analogue Analogue Symmetric
MDAC [23] Digital Analogue (Ref.) | Analogue Symmetric
This Work | Digital Digital Analogue Asymmetric
(Chapters 3&4) | (Voltage) (Memductance) | (Current)

multiplication operands and analogue product. The MDAC design has digital multiplier,
analogue multiplicand and analogue product. The proposed work in Chapter. |3 and
have digital multiplication operands and analogue product.

The proposed designs have the both operands in digital form which removes the
need for maintaining an analogue reference or other type of analogue input. These
analogue signals will be costly in edge computing including IoT applications. Research
in pure-digital input, pure-analogue output is, therefore, relevant for serving one of the
important needs in the rapidly developing edge computing area.

This thesis presents a design approach for mixed-signal DI/AO multipliers. These
multipliers are based on transistor-memristor cells located at the nodes of a crossbar
for fast and efficient operation. With one of the operands (inputs) held in non-volatile
memory, such a multiplier is suitable for use in applications for which one of the
operands has a relatively stable value, for instance a reference input. Such a multiplier
can be used as a replacement for or an improvement on an MDAC.

For AI applications such as NNs, on the other hand, the input and the output of a
multiply-accumulate (MAC) unit should all be of the same format, e.g., digital, because
the output of the multiplication usually is re-used as input for other MAC units in
the NN [2,3]. In order to extend the multipliers (presented in Chapters 3 and 4) for
use in NNs, the analogue output needs to be converted to digital format. One strong

reason for adapting these DI/ AO multipliers is that they are based on the transistor-
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memristor crossbar structure. In such multipliers, one of the operands is represented
by memductance (memristor conductance), which is non-volatile. This is a good match
for such applications as NNs and reference-based arithmetic, where one of the operands
(e.g., the weight or the reference) tends to be relatively stable and requires only sporadic
change [2-4,7]]. Having that operand in non-volatile storage help reducing system energy

consumption and operating latency.

1.3 Research Questions and Contributions

The energy-efficient multiplier design has set several fundamental requirements. How-
ever, implementations of multiplier demands more than the basics.

The arithmetic requirements from IoT nodes and NN cells on the edge pose the
following research questions:

Research Question (RQ): Can a method be found for designing hardware multipliers

that satisfy the following;:
1. Both the operands (inputs) are digital and the product is analogue (DI/AO).
2. Operands and product are all digital, and have the same bit-width (DI/DO).

3. One of the operands is maintained in non-volatile memory (asymmetric non-

volatility).
4. Low latency and low energy operations.
5. High precision and high bit resolution is not an important concern.

Note that for both of these application areas, high precision and high bit resolution
(bit-width) are not a major concern [23-26], and lower precision can be traded for
complexity, energy and speed gains.

This thesis seeks to answer these research questions and presents methods for making
use of memristors to improve performance metrics including speed and energy efficiency

of multipliers. The specific contributions of this thesis are as follows:
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* A new, mixed-signal multiplier design method for multiplying two digital numbers
and directly obtaining an analogue product without carry-chain and DAC complex-
ities. (Addressing RQ. 1, 4 and 5)

¢ Comparative analysis of energy/performance against state of the art existing work,
demonstrating the advantages of this work through extensive theoretical and

experimental investigations. (Addressing RQ. 1, 3, and 4)

¢ Optimisation methods such as the elimination of current mirror (CM) by changing
the topologies of memristor cells and investigating different memristor technolo-
gies resulting in an order of magnitude improvements in accuracy, speed and
energy for lower complexity design when compared with the high complexity

structure with CM. (Addressing RQ. 3 and 4 )

* A high energy efficiency end-to-end multiplication accumulation unit based on the
transistor-memristor crossbar multiplier with mode transition for such applications

as classification NNs. (Addressing RQ. 3, 4 and 5)

¢ Validation of the MAC design using it as a perception in a non-Von Neumann NN
implementation with quantization-aware training (QAT) solving a machine learn-
ing problem of non-trivial size (MNIST hand-writing classification). (Addressing

RQ. 2, 3,4, and 5)

1.4 Thesis Layout

This thesis is organised as follows:

Chapter [1|- Introduction. This chapter briefly presents the motivation for the thesis
and summarises its contributions.

Chapter 2| - Background and Literature Review. This chapter gives background
theory of the technologies used in the designs in this thesis. These include amplification
implementations, the theoretical base of CMs, methods of high energy efficiency Al
hardware design, as well as the properties of the memristor.

Chapter 3| - Transistor-memristor Crossbar Multiplier with Current Amplifiers. In

this chapter, a design of crossbar array multiplier based on one transistor one memristor
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(1T1M) is presented. The performance and characteristics are investigated. (Addressing
RQ. 1, 3, and 4)

Chapter [4] - Memristive Multiplier Design with In-cell Current Multiplication.
This chapter presents a multiplication cell which amplifies current in cell without CM
circuit, and its use in multipliers. The performance and characteristics are investigated.
(Addressing RQ. 1, 3, and 4)

Chapter |5 - Memristive Multiply-accumulate Unit Applied for Neural Network.
The multiplier presented in the previous chapter is further developed into a MAC unit
and an NN is constructed using such MAC units as perceptrons. The use of these
types of NNs is investigated with real-world example machine learning applications.
(Addressing RQ. 2, 3, 4, and 5)

Chapter [6] - Conclusions and Future Work. The contributions of this thesis are
summarised, and future research areas for the development of memristor-based design

solutions for computing performance in Al applications are suggested.
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Chapter 2

Background and Literature Review

In this chapter, the technology baseline and related work are discussed, and appropriate

literature survey is also carried out.

2.1 High Performance Arithmetic Circuit Design Techniques

2.1.1 Multiplication Circuit Design

Multipliers have been a computational building block or programming element in
different computing and signal processing applications. These include filters, NNs,
communication mixers, and communication modulators.

Multiplication is traditionally implemented through a sequence of logic AND, ad-
dition, subtraction, and shift operations. In other words, multiplication is a series of
repeated additions [27]. The multiplicand is the number in addition, and the multiplier
is the number of addition repetitions. Usually, multiplication is divided into several
steps: partial product generation, partial product addition for two rows final addend and
augend, and final product generation by adding row final addend and augend. Besides
initial partial product generation procedure, each step of addition also generates a partial
product. Carry propagation is along with the entire addition procedures [28]. The

partial products addition procedure usually performed by digital adders. These circuits
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generate delay and consume energy in the carry propagating procedure. Therefore,
reducing the delay caused by carry propagation has been set as high-priority task about
multiplication optimisation and widely investigated.

Partial products are conventionally generated by adders in various logic operations.
For instance, in radix b notation, integer x = (...xx1x)p and ¥y = (...Yy2y1Y0)p, SUM
with them will generate two integers, px, = (...p2p1po) and cxy = (...c2c1¢p), and
these two new integers has the relation as Eq. [29] shows:

0<s;=x;+y;,—b <b(120) (2.1)

Civ1

In Eq. 2.3), cxy are the “carry” digits with cp = 0 as the least significant bit (LSB)
cannot get carry from a lower significant bit. As the speed of addition be affected
by carry propagating time, a single sum usually is operated in a single adder with
additional circuits running the carry propagating procedure. In a multiplier, the scale
of the additional circuit, which contributes hugely to logic complexity, will increase with
the bit-width and this increase not be proportional.

One way of reducing the carry propagation overhead is to reduce the number of
addends and augends. In addition, Bedrij proposed a carry identification adder [30].
This design generates two sub-sums for each addition with repeating sub-addends and
sub-augends addition twice in the same addition sequence. One is forced with carry
digits in these two sub-sums, and the other is not. Therefore, the selection of addition
results can be directly forwarded without heavy back-propagation [30]. Therefore, the
multiplier can be much faster with this light carry propagation.

These conventional multipliers built with different adders show respective advan-
tages for faster partial product generation. High-performance multiplier design needs
to consider simplifying the number of addition operands, accelerating the generation
of addition operands, and adding up all operators faster [31]. Wilkes tried to iterate
the multiplication process for cutting down the number of addition operands [32]. This
method is able to approximate the multiplication operands and shorten the digits for a
quicker result than a full multiplication. As addition operands have the same amount
as multiplier digits do, all addition operands need to be generated simultaneously. The

efficient recording needs to be local operation with digit-shifted multiplicand. By doing
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this, the number of addition operands will be halved. Normally, an addition operation is
performed by a single adder that can only generate a single sum. Carry propagation
grows when the number of bits increases, usually not in proportion. And the logic
complexity also grows disproportionally with the increase of the number of bits. One
way of mitigating this is to use carry-save schemes which reduce the horizontal passing
of carry bits by delaying their resolution.

Carries must exist in digital multiplication because a single bit cannot represent a
numerical value higher than 1, but adding two such bits produce a higher than 1.
Furthermore, time and energy costs are inevitably caused by carry processing. Thus,
digital no-carry/carry-mitigation/carry-optimisation schemes are ultimately incapable
of completely removing the complexity of dealing with carries in digital multiplication.
On the other hand, analogue arithmetic does not need to deal with carries because
an analogue signal is able to represent a range of values large enough to contain all
possible arithmetic results at that digit position. The current in each column may be
amplified according to the column’s bit significance. For instance, a current value stands
for LSB can be amplified to the digit with respective significance. Simultaneously, KCL
circuit adds up all currents and generates one current stands for the final calculation
result. And this result naturally contains all carries. This will be discussed in detail in
subsequent chapters (Chapter [3|and Chapter[) as the multipliers presented in this thesis

take advantage of this principle to eliminate carry processing.

2.2 High-speed Analogue-to-digital Converter

2.2.1 Flash Analogue-to-digital Converter

In Chapter 5 of this thesis, there is a requirement for high-performance low-energy
analogue to digital (A2D) conversion. Small size is also an important requirement as
the analogue-to-digital converter (ADC) represents a significant part of the hardware
design.

A Flash ADC structure is presented in Fig. With very high-speed architecture,
flash ADC has its performance dominated by matching issues [33]]. Also, the flash ADC

10



x:  is a good fit for these requirements. Meanwhile, parallelism exists in both the current
x4 comparison and encoding operation by inputting the current into multiple comparisons
»s  while encoding multiple comparison results in one shot. This parallelism makes the flash

2us  ADC one of the fastest ADC schemes.

Analogue — Digital
Input T-code to Output
— - — B-code ——

Encoder

Reference —

Source Comparators

Figure 2.1: Block diagram of flash ADC.

wr 2.2.2 Current Mirror

x The CM was originally named after the equal channel current, which was generated by
20 two identical MOS transistors with the same gate-source potentials [34]. Fig.[2.2/shows
x two CM structures, in them, (a) is n-channel CM structure, and (b) is p-channel CM

»1 structure.

U & y o T
+
+ M1 M2 + Vs
* M1 _ M2 *
Vbsi j : : E Vbs2
+ Vsp1 j b——q t Vsp2
- Vas -
— ir io
pe— 4 4
(a) n-channel CM (b) p-channel CM

Figure 2.2: Circuit diagram of CM.

252 In Fig. i1 is defined by an input current source, and ip is the output with the name

»3  mirrored current”. In the n-channel CM, transistor M1 has the drain connected with

11
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the gate. Therefore, Vpgs1=Vs which means M1 is working in saturation. Similarly, M2
also needs to be set in saturation by Vpgsy+Vr2>Vis. In this way, the ratio of ip to ij
can be written as Eq. (2.2). In the following equations, i; and ip are the input current
and output current, L; and L, are channel length of M; and M, W; and W, are channel
width of M; and Mj, Vs is the gate-source voltage on transistor, V1 and Vr; are the
threshold voltage of M; and M,, Vpg; and Vpg; are drain-source voltage of M; and My,
K/1 and K,2 are the process transconductance parameter of M; and M, A is the device

parameter of transistor.

io _ <L1W2> <VGS - VT2>2 1+ Avpsy (K,
T Wily ) \Ves — Vr1 1+ Avps1 \ K|

Normally, the same physical parameters of MOS components in the same integrated

(2.2)

circuit are identical. These include gate threshold voltage V1 and process transconduc-
tance K'. Therefore, Eq. (2.2) simplifies to Eq. (2.3).

o _ <L1W2> <1+AvDsz> 23)
i WiLy ) \ 1+ Avpgs; '

In other words, the value of ip is proportional to the value of ij, achieving pure uni-

directional current amplification. In other words, putting a CM on an input current to
generate a proportional output current does not modify the former.

Similarly, in the p-channel CM, transistor M1 has the drain connected with the gate.
Therefore, Vsp; = Vsg which means M1 is working in saturation. Similarly, M2 also

needs to be set in saturation by Vspy + V12 > Vsg. In this way, the ratio of ip to if can be
written as Eq. (2.4).

io _ <L1W2> <VSG - VT2>2
i WiL, Vs — Vi

It is reasonable to assume that the physical parameters, including the gate threshold

(2.4)

1+ )\USDZ Kflz
1+ AUSDl Kll

voltage V7, and process transconductance K’, are the same for the same p-type transistor.

Then Eq. simplifies to Eq. (2.5).

ig _ <L1W2> <1+)\Z}5D2> (25)
i[ Wle 1 +)\USD1 ’

If VDSl = VDSZ (VSDl = VsDz), then the ratio of io/i[ becomes Eq 1’ .

12
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To increase the current, the size ratio of the CM transistor can be adjusted [34].
According to Eq. (2.6), a much larger multiplying transistor (M2) with W/L ratio greater
than that of the reference transistor (M1) can be used in the CM to amplify current. This
technique can also be applied to a p-type CM for current amplification.

CMs and other purely transistor-based methods are not the only ways in which
current can be tuned. In low-energy and high-speed applications, the latency and energy
consumption of charging and discharging transistors are need to be avoided. In some of

the multipliers presented in this thesis CMs are not used for this reason.

2.2.3 Complementary Metal-Oxide-Semiconductor Current Comparator

i Comparator
i PinjHEPl 4# P2 ""'_OIHPN
: Iref
l
|
|
|
|
|

Ml M2 _TMN Mref

Mi 55/[out :“ :“ o o o o o el

Buffer

Array

Figure 2.3: Circuit diagram of a current comparator thermometer code generator [35].
In ADC designs, comparing an analogue input signal with threshold features is a
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prominent operation. When the input signals are in the form of voltages, this comparison
requires a respective circuit structure to build a feedback path to sources such as source-
coupled pairs and complementary device pairs of common-gate and common-drain. In
comparison, if the input analogue signals are in the form of currents, the comparison can
be implemented in a much more straightforward manner, resulting in faster responses
in some cases [36].

The current comparator incorporates CM circuits, which are shown in Fig. The
input is on the left, and the reference is on the right. In this design, p-MOSFETs (P;
to Py) function as current sources, while n-MOSFETs (M7 to My) act as current sinks.
The p-MOSFET source current is mirrored from the input, while the n-MOSFET sink
current is mirrored from the reference source. As a result, the voltage at the junction
point between the p-MOSFET source and the n-MOSFET sink increases to Vdd when
the p-MOSFET source current is greater than the n-MOSFET sink current. Conversely,
if the n-MOSFET sink current is greater than the p-MOSFET source current, the junction
point voltage drops to ground. The comparison of currents is therefore represented in
voltages.

To detect a small reference current, the sink can be constructed with multiple same
channel length n-MOSFETs connected in series. When the differences between the input
and reference currents are minimal, the output may not be resolved to logic levels. To
address this, dual series-connected inverters in the buffer array amplify the comparator
output to standard logic levels. With this setup, the gain inverter array produces a
thermometer code where the boundary between 0 and 1 indicates the input current

value.

2.24 Thermometer Code to Binary Encoder

After the current comparator generates its output in a thermometer code, the encoder
needs to translate the thermometer code to binary code for output. The thermometer
code to binary encoding consists of 2 procedures. First, it generates a one-hot code
from the thermometer code. Second, it converts one-hot code to binary code. A 16-
bit thermometer code to 4-bit binary code encoder is illustrated in Fig. As can be
seen, the one-hot code is generated by the AND gates. Then, the one-hot code is input
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into a binary encoded ROM pattern. Finally, the binary output is buffered and sent out.

Figure 2.4: Circuit diagram of ROM thermometer to binary encoder [35] [37]

During this procedure, the output of binary encoder generation needs to scan from
the LSB to the most significant bit (MSB). LSB will keep swinging until all significant bits

are encoded until the higher significant bits are set.

2.3 Memristors

In 1971, Leon Chua related the fundamental circuit variables charge (7) and flux
linkage (¢) with a mathematical description of a component. Because this relationship
includes non-volatility in the adjustable resistance state, it was called “Memristor”,
short for “memory resistor” [19,38,39]. The memristor was proposed as the fourth

element in the charge and flux taxonomy [19,39] and had a number of promising
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Figure 2.5: Details of memristor internal state [38].

characteristics. One of these is its potential in replacing semiconductor components in
processing circuits. That is because, as a switchable device, a memristor can perform
similar ON-OFF operations to a transistor, and this became more significant when
practical memristor implementations appeared [38,40]. The RS devices which come
from emerging memory technologies are also known as resistive random access memory
(RRAM) [41]. A memristor is an RRAM device, typically based on a metal-insulator-
metal (MIM) structure. The proper voltage to the top electrode will generate conductive
filament (CF) between the top and bottom electrodes. Thus the high density of CF
makes the device in low resistance state (LRS). Figure. shows in detail how memristor
resistance state relates to doped region width (w) and device length (D). If the electric
potential on the left side terminal of the doped region is higher than that on the right
side terminal of the undoped region and over a threshold value, the doped region width
will increase, and the memristor resistance will decrease, and vice versa [38,39].

Conversely, the rupture of CF by application of proper voltage to the bottom electrode
will make the device in high resistance state (HRS) [42,43]]. This kind of processing, called
IMC, is a design for computing within the memory, thus eliminating the energy-intensive
and time-consuming data movement. In this thesis, the design strategy applies the best
memristor component with a transistor as individual functional cells.

As a nonvolatile component, memristor has been used in memory device design,
which is now called “resistive memory” [44]. At the same time, the possibilities for
performing arithmetic with memristors have also been explored, with multiplication
being viewed as especially promising [45].

The multiplier solutions presented in this thesis are centred around the use of
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memristors in novel ways. Fundamentally, the methods presented by using any resistive
non-volatile memory. Memristors are chosen for this work because of their support for
integration into normal CMOS circuits, the existence of memristor devices with suitable
properties and the availability of reliable and trustworthy models for investigating the

performance of implemented hardware.

2.3.1 Memristor Physical Models

Titanium-dioxide Thin-film Memristor

Inspired by Chua’s theoretical work, HP lab presented the first Titanium Dioxide (TiO5)
thin-film memristor device. Strukov and colleagues built a physical model of a two-
terminal electrical device that behaves like a perfect memristor [38]. In detail, the device
state variable w specifies the distribution of dopants in the device. It is bounded between
zero and D (maximum device length). R is the general resistance that depends on the
device’s internal state, which has the highest value Rorr and the lowest value Rpy.
The external bias v(t) across the device will move the boundary between the high-
dopant region and low-dopant region by causing the drifting of charged dopants and
generate respective current i(f). With average ion mobility ji,, the simplest case of Ohmic
electronic conduction and linear ionic drift in a uniform field can give us the following

relations.

o(t) = (RON“’g)  Ropr (1 - u;g”)) i(t) 2.7)
T _ Ry @8)

From Eq. (2.8), the formula for w(t) is generated as:

w(t) = pr - g (1) 29)

Then the memristance of this system can be derived by inserting Eq. (2.9) into Eq. (2.7)

with simplification from Rony << Rorr,
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M(q) = Rorr <1 — V";‘W) q(t) (2.10)

TiOy devices have similar current-voltage (I-V) relations; meanwhile, I-V character-
istic from a metal/oxide/metal cross-point device. This device applies the nanometer
scale thick oxide film, which initially contained one layer of insulating TiO, and one
layer of oxygen-poor TiO,_. This structure generates the boundary condition on the

state variable of the device. A detailed model of TiO, memristor is presented in Fig.

—A)—

Figure 2.6: TiO, memristor device architecture .

As can be seen, the oxygen vacancies are drifting in the applied electric field as mobile
+2-charged dopants. Also, they shift the actual boundary between TiO, and TiO,_
layers. This shifting performs the switching characteristic on the state variable of device.
Meanwhile, this model’s ON/OFF memristance ratio ranged from 160 to 380. As will
be discussed in later chapters, this type of digital-in/analogue-out multiplier does not
represent Boolean 0 in the operands with true 0 values of physical parameters — the high
resistive state (HRS) of a memristor cannot have a conductance of true 0 and the low
resistive state (LHS) of a memristor cannot have a conductance of infinity. This means
that [; ; cannot be 0 amps even when it represents a Boolean value of 0. Consequently,
when multiple Boolean 0’s are added together to produce an overall product P of 0, the
actual value of I, representing P = 0 is not 0 amps.

The maximal precision of such a multiplier is therefore limited by the ratio between
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Rpp and Ry, which is technology-dependent. This is because the value of Io,:
that represents P = 0 must be lower than the value of I, that represents P = 1.
Conservatively, this is true if I,,; representing P = 0 is lower than the current L
representing a single bit value of 1. In other words, if the following inequality is true, the

multiplier precision is not violated at a specific word length.
Ryu > Ppaxn X Ry, (211)

where P,,,N is the maximal value of the product for an N x N-bit multiplier. For
instance, for a four-bit multiplier Py,;,4 = 225 and for a five-bit multiplier Py,;5 = 969.
Thus, this can be usable in our low-precision multipliers.

However, memristor still suffers from low endurance (10° cycles, the satisfactory
switch endurance should be larger than 10° cycles), high write energy (2 nJ, reported
satisfactory operational energy is 0.375 pJ), and high latency (100 ns, the required fast
switch speed is 5 ns). This sets a low bar for performance which memristors based on
other materials have been shown to improve on [43}46,[47].

Copper Doped: Zinc Oxide (Cu:ZnO) Thin-film Memristor

Al Electrodes

Figure 2.7: Schematic of the fabricated Cu:ZnO memristor architecture .

Cu:ZnO is an emerging material that possesses both ferroelectricity and oxygen
vacancies, the key factors for realising meaningful memristors [46]. Suresh and col-

leagues presented their work in , where the fabricated, Cu:ZnO based, Set/Reset
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devices exhibited low S/R voltages (+1.40/-1.2 V), high ON/OFF ratio (2 x 10%), and
high retention (up to 10° s period without degradation). The RS device based on this
ferroelectric Cu:ZnO offers better performance when compared to the former lower
temperature annealed Cu:ZnO devices. This character of Cu:ZnO memristor provides
good temperature variation tolerance.

As can be seen, the schematic of Cu:ZnO memristor illustrated in Fig. shows that
aluminium is used as the top electrode while indium tin oxide (ITO) acts as the bottom
electrode. A thin film of Cu:ZnO on ITO/glass substrate provides the characters of a RS.
In detail, Zn*, O}, and Vp(oxygen vacancies) are considered as internal defects during
the formation of oxygen vacancies and ions in the ZnO lattices. The Zn; and V| defects
in ZnO make ZnO show grown n-type behaviour. If a proper amount of Cu dopants is
incorporated in the ZnO lattices to form an Cuz, — V acceptor complex, Cu:ZnO will
show p-type conductivity. The internal details of the respective RS states of Cu:ZnO
memristor are presented in Fig. Under different bias, O?>~ and V(%Jr ions move in
their respective direction in the device, which depends on the polarity of the applied
voltage. This is the reason for switching between HRS and LRS.

The Cu:ZnO-based memristor technology is also suitable for the multipliers described
in this thesis and will be compared with TiO,-based devices. The earlier TiO, memristor
device displayed clear and consistent memristive behaviour and stable logic TiO;
memristor device performance [38,49]. Its limited ON/OFF ratio fails to offer better
performance for memristance variation tolerance in large-scale algorithm applications.
Hence, we investigated the effects of memristor resistance variability. To this end, we
selected the Cu:ZnO memristor device [50], which features a larger terminal resistance
of more than 1000 and operates in a voltage range similar to our previous TiO, memristor
device.

The Cu:ZnO device we chose exhibits a device-to-device (DD) variability of 59%
for the high-resistance state (HRS) and 36% for the low-resistance state (LRS), while
the cycle-to-cycle (CC) variability is 89% for the HRS and 51% for the LRS. Note that,
although the CC variability is particularly high, it is impossible for RML to exceed
RMH given that the baseline ratio between these two parameters is 1000 for the Cu:ZnO
technology.
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Figure 2.8: Schematic of the transport mechanism of the forming free Al/Cu:ZnO/ITO/glass

device [46].

2.3.2 The Voltage ThrEshold Adaptive Memristor Model

In addition to the general mathematical model, analogue behavioural models (ABM)
are developed for deeper research on memristor characteristics in circuits. The linear
ion drift model has first developed from the basic memristive definition of memristor
I-V relationship. This model uses the current-control method to adjust doped region
width for changing memristor resistance [38]. The ideal assumption that the doped
region width changes linearly is unrealistic and especially undesirable for logic circuits.
With the assistance of window function, the relation between physical device size and
resistance variation is also regulated. As a result, the nonlinear ion drift model was
developed to present the complexity of fabricated memristive device state drift [51].

As early-stage models, both the linear ion drift and the nonlinear ion drift models
offer low accuracy for modelling the oxide region and doped oxide region like two
serially connected resistors. Aiming at building a more realistic model, a more accurate
physical model is built by serially connecting an electron tunnel barrier with a resistor.
This one is called the Simmons tunnel barrier model, which shows a higher level of
accuracy among TiO, memristive devices without increasing model complexity [53,54].
For balancing accuracy and complexity of the model, Kavatinsky simplifies physical
behaviour and mathematical functions complexity in the Simmons tunnel barrier model,
then the threshold adaptive memristor model (TEAM) is generated with a reasonable

balance between accuracy and computational efficiency [55]. Since the existence of
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Table 2.1: Voltage ThrEshold Adaptive Memristor Model Parameters

Memristor

Parameter
TiO; [52] | Cu:ZnO [48]
XOFF 4 7
XON 4 5
Vorr (V) 0.3 0.9
Von (V) -15 —0.85
Rorr(©) 300k 152M
Ron(Q) 1k 150k
korr (m/s) 0.091 40
kon (m/s) —216.2 —80
worr (nm) 3 3
won (nm) 0 0

threshold voltage is found from memristive devices, Kavtinsky updated ABM TEAM to
voltage threshold adaptive memristor (VIEAM) [56,557]. As a threshold-based voltage-
driven model, VTEAM combines the advantage of the TEAM model with multiple
freely chosen I-V characteristics that precisely estimates all reported physical device
behaviours, such as linear ion drift [38], nonlinear ion drift [51] and the Simmons tunnel
barrier [53]. At the same time, it exhibits superior computation efficiency especially for
memory and logic applications [56-58].

This thesis utilises the VTEAM memristor model for design and analysis purposes,
with the relevant parameters listed in Table. Notably, korr, kon, orr, and xpn are
constants, while Rorr and Roy represent the terminal switching state resistances, and
worr and woy denote the undoped region length. Additionally, Vorr and Vpy refer to
the threshold voltages. A careful examination of these parameters reveals that both the
TiO, and Cu:ZnO memristors possess a 1.8V region between two threshold voltages. The
Cu:ZnO memristor exhibits a more balanced working zone that enables dual direction

bias setting for multiplication cell writing operation. Furthermore, in the case of multiple
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memristor design, the 500 x larger terminal switching state resistance (under worst-case
variation of 50% Rorr(cu:zno)/ Rorr(Tio,) X %)ensure that the memristor dominates the

multiplication cell output current through the memristor resistance drop.

2.3.3 Transistor Memristor Cell Design

In functional circuit design, a major challenge memristors face is in array fabrication
because of its requirement for high-quality metal thin film, which has high risks on
current leakage between different functional units [59]. This requirement motivates
mixing CMOS with memristor to mitigate the leakage issue [60]. Various types of
transistor memristor combinations have been explored, such as one transistor two
memristors (1T2M) [61]], three transistors two memristors (3T2M) [62], eight transistors
two memristors (8T2M) [63], etc. However, cell power efficiency still has room for
improvement.

Memristor cell methods have already featured in complex logic calculations such
as “material implication” (IMP) [64,65] and majority inverter graph (MIG) [66]. These

existing cases motivate the multiplication cell design presented in this thesis.

2.4 Memristor-based Multiplier Design for Energy Efficiency

Since computation and storage are physically separated in the predominant processing
hardware architectures, the data traffic in a typical computing procedure cycle will start
at importing data from the memory unit. Data will be transmitted to the processing unit
(where computation takes place). Once the multiplication is completed, the data is sent
back to the memory unit for storage. Fig[2.9a)|illustrates this conventional multiplication
process. This data transfer between the processing unit and the memory unit can result
in a fundamental bottleneck in computer performance, commonly referred to as the
memory wall [67,/68]. One potential solution to overcome this bottleneck is to combine
data loading and storage in the same block, as in the in-memory multiplication method
depicted in Fig The memristor’s unique properties, including non-volatility and
scalability, make memristor a promising candidate as the target memory component.

Electronic NNs based on RS memory array or memristor have also been proposed
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Figure 2.9: Multiplication type. In (a), typical type. In (b), in-memory type.

In [18], the crossbar array of hafnium oxide (HfO;) memristor is used as a reconfig-
urable analogue processor for edge computing. Transistors are the most mature option
for precisely programming individual memristor with stronger sneak-current tolerance
in access devices [70]. A vector of voltage outputs from a sensor can be applied directly
to the rows of a memristor crossbar. The conductance of the crossbar multiplication
cells stores the values of the appropriate matrix elements. The currents that appear
on the array columns in real-time represent the output vector of the multiplication.
To read out the results in parallel, a trans-impedance amplifier (TIA) will convert the
current signal from each column to a voltage signal. Moreover, the 1T1M crossbar with
linear I-V memristors enables accurate analogue vector-matrix multiplication (VMM).
During memristor programming, the gate voltage applied to the transistor is controlled
to generate the respective compliance current. For each of the TiO, and Cu:ZnO

technologies, the observed range between the two worst cases is then compared with
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the specified (ideal) range from the memristor models and checked for compliance with

High Memo”;gg Conductance (Low Memoristor Conductance). After programming, during

inference, all transistors are turned ON to perform a one-step VMM [70]. It yields a
good approximation to the scalar product of a vector component and matrix element.
These generate adequate accuracy and high speed-energy efficiency for IoT and edge
network (i.e., signal spectrum analysis, image compression, and convolutional filtering).
Simultaneously, a crossbar multiplier is potentially an area-saving solution because the
memristor crossbar can be built on top of the transistor-related layers using a back-
end-of-line process [71]. Therefore, the area can be smaller than the traditional CMOS

multiplier used.

2.5 Current-mode Arithmetic

Current-mode arithmetic circuits have shown their promising characteristics in improv-
ing energy efficiency [72]. In this mode, currents of varying amplitude in different
circuit paths are driven by analogue bias voltages. Due to Ohmic elasticity of current
paths this mode shows noticeable improvement in energy proportionality than the
traditional voltage-mode digital circuits. Additionally, current-mode design generates
high output charging speed per unit of time (slew rate) and simpler structure for
arithmetic operations. For instance, directing a current path into a node or carrying
a current path away from a node is equivalent to addition or subtraction. Moreover,
adjusting the resistance of current generating cell enables low-complexity amplification,
which is analogous to current multiplication or division. As such, when a network of
current paths is generated it can be operated faster with lower energy consumption at

significantly reduced circuit complexity [18,19,73].

2.6 Multiplying Digital-to-analogue Converters

An MDAC is a device which multiplies a digital (usually binary) numberD; with an
analogue signal s to generate an analogue product P, such that P = s x D, [23]. It is

most likely used to multiply a stream of variable digital numbers (input signal) to a
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relatively constant analogue reference, or to multiply a constant digital number with a
varying analogue input signal. In other words, the relatively stable or constant operand
usually serves as a coefficient which is multiplied to a variable, i.e., P = s x Dy(t) or
P = Dy x s(t) - a type of operation quite often found in signal processing and control
applications, which feature prominently in IoT edge nodes. It also see applications in
hardware neuromorphic computing serving as a synaptic node with the more stable
operand as the weight and the varying operand as the input [23]. Requiring one of
the operands to be analogue, which means that it has limited use in cases where both
operands are the result of digital computation. And maintaining an analogue reference
also require an energy overhead which could be objectionable for edge computing. The
method can be applied to any resistive memory (RRAM) technology beyond memristors,
so long as the crucial Ohm’s law and KCL combination holds at cell and crossbar levels.
With better resistive memory technologies and paying with more design effort and
operating energy, it may be possible to scale the precision or resolution of multiplication
up, but given the exponential nature of the 1TxM cell design, the method’s significance

for high-precision low-approximation arithmetic is limited.

2.7 Neural Networks

The NNs method predominates the existing Al systems. Modern NNs have developed
into high complexity levels across different application domains compared with Rosen-
blatt’s first neural automaton in 1957 [74]]. Basically, NNs generate the weighted sum of
all inputs in the training phase in multiple layers. Using activation functions, calculating
weighted sums, and generating/adjusting the weights lead to heavy requirements
of arithmetic circuits (i.e., MAC units) for modelling electronic neurons in hardware
implementations. [75]. More inputs and added complexity of the problem will inevitably
lead to a rapid increase of the number of MAC units in an NN [76]. Therefore, reducing
the complexity of each MAC unit and improving its energy efficiency and speed are
central design motivations.

In traditional computer architecture, data is typically stored in a separate memory

unit and then transmitted to the processing unit for computation. Once the computation
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is completed, the data is sent back to the memory unit to be stored. This process is often
limited by the speed of data transfer between the processing unit and memory unit, a
phenomenon commonly referred to as the “memory wall” [67].

In-memory computing is a promising solution to the problem of the memory wall,
where computation is performed directly on the memory. This approach reduces energy
consumption and the time required for data movement, as the processor generates
commands for calculations on the memory itself. By eliminating the need to transfer
data between separate memory and processing units, in-memory computing can greatly
improve computing performance. Concurrently, progress in memory architecture
utilising resistive switching devices has facilitated the advancement of in-memory
computing through their characteristic resistive switching properties. The ability to
perform direct data processing within the memory module not only enhances energy
efficiency but also reduces the required area for computation [67].

In Chapter 5, we present the design of a low-energy and low-latency MAC unit. This
unit can be utilized as a standardized component for the construction of energy-efficient

neural network implementations.

2.8 Summary

In this chapter, we have discussed the technology baseline and related work. And we
also carried out appropriate literature survey.

Section generally clarifies the core design requirement of high multiplication
circuit. Besides the arithmetic circuit design, signal conversion circuit design is also
a high significant part for latency shrinking. Respective high speed scheme has been
reviewed in Section Simultaneously, the core component used in the proposed
multiplier design is introduced in Section Besides the component, architecture
applied in the proposed designs is also reviewed in Section Meanwhile, several
architectures applied for comparison with proposed work are reviewed in Section

and Section Finally, target implementing application is reviewed in Section
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Chapter 3

Transistor-memristor Crossbar Multi-

plier with Current Amplifiers

Al and signal processing applications constitute the major driver of the IoT [12]. The
dominant processing arithmetic used in these applications is multiplication. Addition-
ally, in edge computing node applications, the results of these arithmetic operations
must be presented in analogue form. However, the high stand-by latency and high
power consumption caused by the complex logic chains and the additional carry
propagation circuit used in conventional multipliers are major hindrances to their overall
energy efficiency, particularly in the high density computing tasks of IoT and edge Al
applications [12,77]. DACs are also associated with high overheads.

Over the years, researchers have investigated methods to reduce the energy cost
and latency of multiplication operations. These methods have relied on adjustment of
the carry chain length using ethier approximate [14}78|] or speculative circuits [79,80]
in CMOS logic based designs. However, the circuit’s precision, latency, and power
consumption are still limited by the lengths of the carry chains. These designs use
voltage-mode logic boundaries that are defined by Landauer’s limits by setting a set
of fixed over-threshold voltage/frequency pairs. For low-power operation, the correct

voltage/frequency pair is selected based on a combination of the carry propagation
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length and the performance requirements [17].

As a result, the design of multiplying circuits with reduced energy and increased
speed remains an ongoing challenge. This chapter presents a carry-free multiplier design
using resistive elements that takes input digital signals and produces an analogue output
in the form of a current signal designated I,,;. This multiplier circuit consists of an
array of memristor-transistor cells that can be selected (i.e., turned ON or OFF) using
a combination of DC bias voltages based on the operand values (See Fig.[3.1). When a
cell is selected, it contributes to the current in the array path, which is then amplified
by CMs with various transistor gate sizes. The different current paths are connected to
a node to accumulate the currents required to produce the multiplier output directly.
This approach removes the requirement to have the latency-sensitive carry propagation
stages that are typically seen in traditional multipliers. One essential feature of this
multiplier is its autonomous survivability, i.e., when the power falls below the normal
functional threshold, one of the operands retains its value at zero cost because of the

nonvolatile properties of the memristors.

Cell
M2 | selector

I K
(0)
Og

- NbyN Jo 3 Toyt

M1 == crossbar | . —
Array
M1, O(2n1)
Sy RGN

Figure 3.1: Block diagram of the proposed mixed-signal carry-free current-mode multiplier. This
diagram shows the connections between the different blocks of the proposed multiplier. The n-bit
signals M and N generate a (2n-1)-bit result via multiplication; here, M1y means the first bit of

M1, M1; means the second bit of M1, and the regulation also fits M2 and O.

29



629

630

631

632

633

634

635

636

637

s the m;n; bits), which can be generated rapidly in parallel. These terms are then added

w0 column-wise, with the columns having different numbers of PP terms. For the example

3.1 Single Transistor Single Memristor Multiplier

3.1.1 Algorithm for the Crossbar Multiplier

In a traditional (N x N) binary multiplier, two unsigned integers can be multiplied using
N? logic AND operations followed by up to 2N ADD operations. As an example,
consider the multiplication of two 4-bit unsigned integers, where the multiplier is
My : {mgmymymg} and the multiplicand is M, : {ngnpyning}. The multiplication of

these two numbers is implemented using the long multiplication algorithm shown in

Table
Table 3.1: Binary Multiplication Algorithm with 4-bit Operands

ms3 ma my Mo

X ns np nq no
0 0 0 msng Mong ming mohg +— PP
0 0 msnq monq minq monq 0 — PP
0 msnyp Mmonyp mqny Moy 0 0 — PP
msns mons ming mons 0 0 0 «— PP
Py Py Ps Py P3 P Py Py — FP

As shown, the N? logic AND operations produce partial product (PP) terms (i.e.,
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given here, the column-wise sums of the product terms can be expressed as follows:

Py = mono;

Py = ming + mony;

Py = mong 4+ minq 4+ mony;

P3 = mgng + myny + myny + mons; (3.1)
Py = manq 4+ mony 4+ myns;

P5 = mgzHny + mMons,

P6 = ms3ns.

Equation shows that when the number of PP bits in a column is two or more,
carry propagation then becomes more likely, depending on the operand bit values. For
example, if my = mg = ny = ny = 1, P; is then expected to produce a carry into P,. When
both operands have all their bits set to 1, i.e., My={1111} and M;={1111}, the multiplier
then experiences the largest carry propagation chain between the columns, starting from
the LSB to the MSB in the multiplier output.

In traditional multipliers, the maximum delay between the longest PP addition (i.e.,
P5 in the example shown in Table and the carry propagation between the column-
wise additions determine the critical path (i.e., the latency) and the energy consumption
of the circuit. The latency can be reduced by applying a number of techniques including
various carry save schemes with the last row of additon implemented via carry look-
ahead (CLA) methods [81] or approximate equivalent methods [82]. However, full
Boolean digital addition cannot avoid the carry processing and its associated overheads.

In a mixed-signal circuit that uses currents to encode the PP values, addition
operations can be implemented by converging the current paths into a single node.
When the length of the chain of add operands increases, more paths can be added or
enabled without causing any significant changes to the circuit delay. This provides the
key motivation to design a mixed-signal multiplier circuit using our proposed approach,
which will be described next.

In our proposed multiplier, the column-wise terms (shown in Table are expressed
as non-Boolean values and programmed as current paths. In practice, this means that the

current in a single wire can represent a wide range of values, with these values certainly

31



663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

679

680

682

going beyond 0 and 1. When Eq. is updated using this assumption, the values of
the column-wise terms P;, i = [0, 6], can be expressed as follows:
Py = 2° x (mong) ;
Py =21 x (myng + mony) ;
Py = 22 x (mong + mynq + monz) ;
= 23 x (m3ng + mony + myny + monz) ; (3.2)
Py = 2% x (m3ny + mony + mynz);
Ps = 2° x (m3ny + mon3);
Py = 2% x (m3n3).
Note that without the requirement for carry operations, there is no need for a signal
P;, and each individual P;, where i € [0, 6], is not Boolean. The sum of all column-wise

terms in Eq. will then produce the multiplier output as follows:
MixM; =) P. (c=0,2...2N-2), (3.3)

where P is the sum of the products on the ¢y, column.
Because the summation of a number of currents does not need to be performed in
Boolean space, the resulting current can be used to encode numbers much greater than

1. This eliminates the need to carry to the left.

3.1.2 Crossbar Multiplier Architecture

The multiplication algorithm given in Egs. and can thus be simplified into
three steps: 1) PP terms can be generated in parallel by sw1tch1ng the current paths ON
or OFF; 2) each current path, as defined by using the column-wise terms in Eq. (3.2),
is amplified in current mode, according to its position index i with the amplification
coefficient 2; and 3) the final output shown in Eq. can be generated by summing
the currents from all paths. In the following, we provide a briefly outline of the design
approach for these three steps.

The PP terms are generated by switching the current paths using the memristor-
transistor cells, which are organised in a crossbar array as shown in Fig[3.2] The low-level

circuit layout of the cell is shown in further detail in the pullout in Fig.
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Figure 3.2: Multiplier product generation and accumulation circuits.

In the crossbar architecture, the row lines (RLs) and the column lines (CLs) are
connected at the cross point through this cell. This arrangement allows the current
paths to be switched ON or OFF based on the multiplier bit-wise operand values. One
of the operands used is the combination of control signal Vg, which switches all
cell transistors on the same column, and the input signal V;,, which powers all cell
memristors on the same row. Concurrent switching of the cells using Vi, and Vj,
produces a bit-wise AND-like operation at each corresponding cell for target current
path conduction. The other operand is represented by the cell’s passive memductance
(i.e., the memristor conductance) G with the input voltage V;,, and is used to generate the
PP terms (current) in the multiplier.

In a current-mode switching arrangement, the current paths that define the PP terms
are generated according to Ohm’s law. Using this law, the currents in each pathway,
which are denoted by Iy ;, k,i € [0, N — 1] for an N x N bit multiplier, (where k is the row
index that starts from 0 and ends at N — 1 and i is the column index that has the same

range), is defined as follows

Ik = Vin, X Gy, (3.4)
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where Gy ; represents the memductance of the cell at the pathway between the k;;, row
and the iy, column. For convenience, we disregard the resistance value of the transistor
during our reasoning process. However, this does not affect the generality of our analysis
because this value is simply a constant offset term.

As shown previously in Eq. (3.2), the column-wise term P; is then generated by
amplifying I, by a gain factor g;, where I, is the output current of the iy, column.

As a result, P; can be expressed as:

P = gi % lou, - (3.5)

In the crossbar array, the column current I, is the sum of the currents from the cells
selected based on the multiplier row operand values, which are given by Kirchhoff’s

current law (KCL) as:

N-1
Iout,— = Z Ak,ilk,i - (3.6)
k=0
i=0
where ay ; is the number of cells that contribute to the PP term, i.e., the current on the

iy, column. The gain g; follows the relationship above as follows:

In current-mode, the amplification of the output current is achieved by using suitably

selected CM ratios. Using Eq. (3.7) the column-wise term P; can be expressed as:

N-1
P = i X Lout; = 2 kZ%) i Vin, Gr.i - (3.8)

i=0
The final product of the multiplication step is the accumulation (i.e., the sum) of all the
column-wise terms as shown in Eq. (3.3). To enable completely carry-free accumulation
of the current using the KCL, the column-wise terms after amplification are connected in

parallel. As a result, the final product I can be written as:
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N-1
Z Z 8i X Iout

Z:

N-1 N-— (3.9)
Z 21 Z akZmGle)'
i=0
i=0
To provide a detailed illustration, the following two examples are considered:
Ex.1: Mj x M; =1110 x 1111 = 110100106 (2104) (3.10)
Ex.2: M; x My = 1101 x 0110 = 010011100 (784) (3.11)

For the examples above, the respective cell numbers for each of the cases are presented

in Table[3.2] Assuming that G;; = m (i.e., the conductance of the memristor in the ON
& ,

Table 3.2: Cell Values and Path Currents in Eq. (3.11)Ex. 1 and Ex. 2

Case N ; 1 2 3 4 5 6 7
k
1 / 1/ |/ |1 |1 |1 |0
2 / / 1 1 1 0 /
Ex.1
3 / 1 1 1 0 / /
4 1 1 1 0 / / /
«;(Final Product Contributor Cell Number) || 1 2 3 3 2 1 0
1 / |/ |/ |0 |0 |0 |O
2 / / 1 1 0 1 /
Ex.2
3 / 0 0 0 0 / /
4 1 1 0 1 / / /
«; (Final Product Contributor Cell Number) || 1 1 1 2 0 1 0

no  state) and Vj, = n (i.e., the switching voltage on the cell row), the PP currents and the
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= corresponding transformations are given below for both examples. The a; ; values from

= Table[3.2]are used here to derive the output current I.

= Ex. 1:
3 I=0x20xmn+1x2' xmn+2x22xmn+3x23xmn—+3x2*xmn+2x
- 25 x mn +1x 2% x mn 40 x 27 x mn = 210mn (Amp)

725

o Ex. 20 T =0x20xmn+1x2V xmn+1x22xmn +1x23 xmn+2x2* xmn+1 x
727 25 x mn +0 x 26 x mn 40 x 27 x mn = 78mn (Amp)

728

720 As shown, the results above match the expected outcomes for the multiplication
7 operations. In Section the implementation details are presented, and later the
= experimental results will be studied and compared with those from the traditional

7 multiplier circuits.

= 3.1.3 Single Transistor Single Memristor Cell

= The building block for the crossbar array is a 1TIM cell, which is illustrated in Fig[3.3]
»s  The memristor values represent one set of operands, while the voltage signals in the RLs

7 represent the other set of operands [18].

Vin szitch

M T

Iout

Figure 3.3: 1T1M cell. This building block for the crossbar array consists of a memristor and a

transistor.

77 The 1TIM logic cell (LC) uses the memristor (W/L = 10 nm/10 nm [83]) as the

7s  memory unit, and the transistor (W/L = 1 ym/60 nm) as the switching unit. The
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memristor is able to maintain its resistance state while using a below-threshold biasing
power supply. When the memristor’s biasing voltage exceeds its threshold, a set voltage
(SV) biases the memristor into a low resistance state (LRS) or a reset voltage (RSV) biases
it into a high resistance state (HRS). We designate the LRS to be a logic ”1” and the HRS
to be a logic ”0” for the memristor working states. Fig. depicts the responses of a
standalone memristor to different writing biasing voltages using its logic state variations
on the crossbar multiplier. The label 'nx” in Fig. |3.4{represents the amplification ratio at
the output terminal. Figure[3.4(a) and (b)show that the writing speeds of the LCs with the
different amplification ratios follow the same decreasing trend, i.e., 1x, 64x, 2%, 32X,
4x,16x, and 8x. This occurs because columns with fewer LCs exhibit lower resistance
than columns with more LCs. During the writing operation, a column with fewer LCs
will receive a higher voltage when compared with the voltage for a column with more
LCs. Consequently, the column with fewer LCs has a faster writing speed than the
column with more LCs. Additionally, the amplifying circuit at the output terminal has
the same effect on the columns. Specifically, columns with the same number of LCs will
still exhibit different writing speeds; a column with a more extensive amplifying circuit
will be slower during writing operations. The results in Fig. (c)-(g) demonstrate that
slight variations in the biasing voltage will cause slight changes in the LC writing speeds
for all columns.

The LC operation involves three distinct processes, which are designated «, B, and
. During process a, the tunable memristor resistance state is adjusted to be at a low
level, which enables writing of a logic “1”. Conversely, during process 8, the tunable
memristor resistance state is adjusted to be at a high level, which enables writing of a
logic ”0”. In process <y, the memristor is used to perform reading and multiplication
operations. The peak writing voltage value is given by write 1/write 0 =-3.5V/3.5V.

In the context of process 7, a voltage of 0.4 V is designated as the logic "1” in
multiplier “x”, while a voltage of 0 V is designated as the logic “0”. The HRS and LRS
of the memristor correspond to the logic “1” and logic “0”, respectively. The current
product generated from the voltage/resistance pair can also be used to represent the
logic ”1” and logic “0”. Specifically, the logic ”1” current can only be generated by
applying the logic “1” voltage to the logic ”"1” resistance.
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Figure 3.4: Responses of the memristor to writing biasing. In (a) and (b), under biasing by a DC

voltage, the operations of writing logic 0 and logic 1, respectively, are shown.

Fig[3.6|shows an illustration of a 4-bit multiplier design using the proposed memristor-
transistor transistor crossbar array. In the crossbar multiplier approach, voltage biasing
is used to set all the operations; therefore, the voltage threshold memristor model is
most appropriate for modelling of the operations of these multipliers. Simultaneously,
stable and typical memristor behavior is also required in multiplier design. As a result,
Kvatinsky’s Voltage ThrEshold Adaptive Memristor (VTEAM) model and its associated

physical parameters are used in this work.

Table 3.3: Voltage ThrEshold Adaptive Memristor Model Parameters taken from [52

alphaysy 4 alphaoy, 4
Vorr(V) 0.3 Von(V) -1.5
Roff(Ohms) | 300K || Ron(Ohms) 1K
kogr(m/s) | 0.091 kon(m/s) | -216.2
W, ff(Nm) 3 Won(NM) 0
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Figure 3.4: Responses of the memristor to writing biasing. In (c), (d), (e), (f), and (g), the biasing
pulses have the same amplitude but differ in their rise/fall times, with voltage peak values of
3.5V /-3.5V. The pulse rise/fall time pairs are 10 ps/10 ps, 20 ps/20 ps, 30 ps/30 ps, 40 ps/40 ps,

and 50 ps/50 ps, respectively. 39



T

778

779

780

781

783

784

786

787

788

789

790

791

792

793

794

3.1.4 Current Amplification

To improve energy proportionality, use of analogue current-mode arithmetic circuit
designs has recently gained momentum [72]. These circuits operate using a dynamic
range of currents (from pA to several mA)and provide considerably greater energy
efficiency leverage than voltage-mode circuits, along with the added advantage of high
slew rate and simpler circuitry. For example, when using CM networks, concurrent
additions can be performed by directing the current paths into a single node, and
subtractions can be performed by controlling the current paths away from a node.
Because of their reduced circuit complexity, these networks can also offer faster operation
with significantly reduced energy consumption [73}84].

Before being input into the current accumulation (CMA) circuit, all the output
currents simply show the numbers of 1TIM cells in their working state on each result
line. Binary multiplication has different digit orders. Therefore, there should be a
link between the RL output current and the binary number system’s digit order. This
pathway requires the use of groups of current amplifiers to provide the list of ratios
according to Eq. (3.7). The corresponding CMA circuit also causes the j;;, RL to generate

the jy, digit of the result. In the proposed multiplier, the CMA circuit’s unit structure is an

Vg
I

III M; M,

Figure 3.5: Multi-amplifier design for the current summer circuit. This design is built using an

n-type CM that is series-connected to a p-type CM.

n-type CM that is coupled with a p-type CM as shown in Fig[3.5| The n-type CM takes in
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the output current from the crossbar structure, and the p-type CM generates the output
current. During the amplification procedure, the current is amplified twice using the n-
type CM and the p-type CM. The multi-amplifier design can reach its target gain with
a smaller overall size. Meanwhile, the gate voltage must be maintained at a reasonable
level. In this way, the multi-amplifying design can avoid the problem where the need for
a high amplification ratio will require an extremely large transistor to be included in the
single CM. In other words, the transistor used in the proposed CMA circuit can be much
smaller than a single-layer CM intended for use in the same task. The current leakage
generated in each multiplication cell can also be amplified and this appears to present a
new problem. However, this effect is at a negligibly low level when compared with the

output current [73]].

3.1.5 4-bit Crossbar Multiplier Implementation

We discuss the implementation details of the multiplier in the following.

In the multiplier circuit shown in Fig.|3.6| basic 1T1M cells are organised at each cross
point (i.e., each node) via the mapping procedure. This design provides a combination of
high-speed operation and accurate cell selection. Both the input and the control signals
are applied in the form of a single bar source (SBS). Use of the SBS means that the source
covers the power supplies of all 1TIM cells when they are connected to the same row
bar, or it covers the control signals of all 1TIM cells when they are connected to the
same column bar. For the same expression, the row bars that receive the input signals
are called source lines (SLs), the column bars that receive the control signals are called
gate lines (GLs), and the column bars that produce the output signals are called result
lines. In our studies, we have used the VTEAM model [56] with the model parameters
from [52] for the memristors used in the circuit. These parameters have been extracted
from physical devices. This ensures that our design can be implemented in practice. The
actual parameters are listed in Table

The input voltages are Boolean and each voltage represents one of the operands,
with input4 being the MSB and inputl being the LSB. The output currents represent
the product values at each output bit positions, having been accumulated from the bit

multiplications that occur in each bit position. Because the current values go beyond the
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GL: gate line  SL:source line RL:resultline M: memrisor T: transistor

Vswitch7 Vswitch6é Vswitch5 Vswitch4 Vswitch3 Vswitch2 Vswitchl

G| | 6Ls GL4 GL3 GL2 61| |eto
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input2 | T4'|‘ T3 724. T1f!
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out?7 out6 out5 out4 out3 out2 outl

Figure 3.6: 4 by 4 1T1M crossbar circuit with three line settings, one RL, and two parallel CLs that

are defined to give the circuit the ability to select any cell within the circuit.

Boolean values at each bit position, the multiplier only requires seven output columns

rather than the 8 bits required for a digital multiplier with two 4-bit operands.

3.2 Simulation Results

The proposed design is based on UMC 65 nm circuit technology. The transistors are
divided into two groups, designated LC and CM, as shown in Fig. All LCs contain
transistors of the same size; these transistors are 1000 nm width and 60 nm length. At
the output terminal, the n-MOSFET and p-MOSFET CMs are connected in series to
achieve high ratio output current amplification. Because the CMs work as amplifiers
with individual gains, their transistor sizes differ as shown in Table

In simulation experiments, a 4 by 4 crossbar multiplier is used to illustrate the

multiplication process. The multiplication operation is executed between two 4-bit
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Table 3.4: Transistor Sizes for the Current Mirrors

n-MOSFET p-MOSFET

Group
M1 (nm) | M2 (nm) | M3 (nm) | M4 (nm)

1 1520/60 | 400/60 80/60 240/60

2 2720/60 | 1600/60 80/60 260/60

3 3840/60 | 2400/60 80/60 720/60

4 5440/60 | 3200/60 80/60 1680/60

5 4080/60 | 4800/60 80/60 1920/60

6 2720/60 | 4800/60 80/60 2680/60

7 1520/60 | 1840/60 80/60 5120/60

binary operands. One of these operands, which is denoted by the input variable ”x”
(voltage), ranges from 0 (0000) to 15 (1111), while the other operand, which is denoted
by the weight or the reference "w” (memristance), remains constant at 1 (0001), 2 (0010),
4 (0100) and 8 (1000). These values are chosen because they have only one bit high
in binary representation, and any other number below 16 can be obtained by different
combinations of them. The results of the multiplication operation, from both theory and
the simulation, are presented in Fig.

Figure illustrates the output obtained from the proposed multiplier when
operating in current mode. For example, the final step shown in Fig. represents
the outcome of multiplying x = 1111 by w = 0001, 0010, 0100 and 1000. In the circuit, this

means that:

1. The input voltage series to the crossbar in Fig[3.6is inputl = 0.4 V, input2 = 0.4V,
input3 =0.4V, and input4 =0.4 V.

2. The switching voltage series to the crossbar in Fig[3.6)is Vswitchl = 1.2'V, Vswitch2
=1.2V, Vswitch3 =12V, Vswitch4 = 1.2 V, Vswitch5 = 1.2 V, Vswitch6 = 1.2 V, and
Vswitch7 =1.2 V.

3. The memristors in selected LCs on the crossbar in Fig are biased to the LRS,

while all the remaining memristors are in the HRS. Starting from the right, for
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Figure 3.7: Multiplication performance for a 4-bit case.

854 a pattern of 0001, the memristors in the first LC are in the LRS. For a pattern of
855 0010, the memristors in the second LC are in the LRS. For the pattern of 0100, the
856 memristors in the third LC are in the LRS. For the pattern of 1000, the memristors
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in the fourth LC are in the LRS.

It is clearly shown that in the 4 by 4 crossbar multiplier in Fig. the LSB refers to
different items in different cases. For an input voltage series, the LSB is “inputl” in the
circuit; for the final product, the LSB is “outl” in the circuit; and for the memory, the LSBs
are "M1”, "M5”, "M9”, and "M13” in the circuit. Using the same method, the MSBs for
the input voltage series, the final product, and the memory in the circuit are “input4”,
“out7”, and "M4”, "M8”, "M12”, and “M16”, respectively. The rising stairs characteristic
means that the input ”"x” binary value increases step-by-step from “0000” to “1111” with
respect to the increasing input voltage series and generates specific currents to output the
calculation result. The results graph presented in Fig[3.7(a)|shows that the multiplication
results increase with increasing input, as expected.

Figure [3.8| shows the timing diagram of the control signals of the memristor which
demonstrates the ability to select a specific cell or multiple cells for reading (multiplica-
tion) and writing (operand setting) processes. Both tuning operations on the multipliers

and the multiplicands are included.
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Figure 3.8: Writing and multiplying procedures of 1T1M crossbar multiplier.

The complete writing and multiplication procedures are shown in Fig.|3.8/and can be

divided into three operational stages, as follows. All reading procedures were set to use a
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0.2-us pulse, the write logic 1 operation was set to use a 0.2-us pulse, wand the write logic
0 operation was set to use a 36-ns pulse; additionally, all transistors were used to isolate
the deselected LCs. The first stage starts from the state in where all 1T1M cells are in the
LRS. The target result for each RL is confirmed during the period from 0 ys to 0.2 us. The
second stage runs from 0.2 s to 4.544 us. This stage shows the procedure used to modify
the 1T1M cell state to change the output state. All operations consist of modifying all the
1T1M cells into the HRS, and then modifying all 1T1M cells on the same SL to return to
the LRS until all the 1T1M cells are in the LRS. The results of each modification procedure
are also monitored to show the changes in each RL output. The third stage runs over the
period from 4.544 us to 5.344 us. This stage shows the procedure used to modify the
input state to change the output state. All 1TIM cell states are kept in the LRS, and the
input signals for each SL are then changed one-by-one from 0 V to 0.4 V. The third stage
also provides the relationship between the current and the multiplication procedure. It
is easy to see that both the 1T1M cell state modification process and the input variation
procedure generated the same results. Therefore, the designed multiplier does indeed
perform the multiplication operation. The step-by-step procedures shown in Fig.[3.8|can

be described as follows:

—_

. 0 us-0.200 ps: execute 1111 x 1111

N

. 0.200 pus-0.344 us: change multiplier 1111 to 0000
3. 0.344 us-0.544 ps: execute 0000 x 1111
4. 0.544 ps-1.344 ps: change multiplier 0000 to 0001
5. 1.344 us-1.544 us: execute 0001 x 1111
6. 1.544 ps-2.344 us: change multiplier 0001 to 0011
7. 2.344 us-2.544 us: execute 0011 x 1111
8. 2.544 1s-3.344 ps: change multiplier 0011 to 0111
9. 3.344 us-3.544 us: execute 0111 x 1111

10. 3.544 ps-4.344 ps: change multiplier 0111 to 1111
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11. 4.344 pus-4.544 ys: execute 1111 x 1111

12. 4.544 us-4.744 ps: change multiplicand 1111 to 0001 and execute 1111 x 0001
13. 4.744 us-4.944 us: change multiplicand 0001 to 0011 and execute 1111 x 0011
14. 4.944 1us-5.144 us: change multiplicand 0011 to 0111 and execute 1111 x 0111

15. 5.144 us-5.344 us: change multiplicand 0111 to 1111 and execute 1111 x 1111
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Figure 3.9: Comparative analyses of multiplier power, and delay. In (a), the power consumption
of the proposed design is 2.45 mW, that of Qiqieh’s approach [14] is 2.09 mW, and that of
Kulkarni’s approach [85] is 1.87 mW. In (b), the proposed multiplier shows a 40 ns delay, while
Qigieh’s approach produces a delay of 2.673 ns, and Kulkarni’s approach [85] shows a delay of
3.45 ns.

To validate our multiplier design via comparison, the proposed multiplier is evalu-
ated against existing approximate designs, e.g., by remapping theresulting product to
a lower significance by compressing PPs [14] or applying a low precision multiplier
(i.e. a 2x2 multiplier) as a building block for a larger multiplier [85]. For all validation
experiments, the base parameter settings of the proposed multiplier are listed as follows:

Vin =04V, V;; =12V, Rigs = 1k, and Rygs = 300k (). These parameters are applied
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in the power model for energy consumption performance, and the values obtained from

Qigieh [14] and Kulkarni [85] are also used to perform a comparative analysis.
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Figure 3.10: Comparative analysis of 4-bit multiplication accuracy. In (a), the low error level
comparison results show that the proposed design has the lowest mean error (ME) at 2%, followed
by that of Kulkarni at 2.6% with Qiqieh having the highest at 12.7%. In (b), the situation is
reversed in the high error level comparison progress, with Qiqgieh having the lowest ME at 12.7%,

and Kulkarni still in the middle at 22.2%. The proposed multiplier shows the highest ME at 71%.

In Fig. and Fig. the 4-bit multiplication performances in terms of power

consumption, delay, and mean error have been compared. The mean error (ME) shown

Y- (simulation current—prediction current)
total number of multiplication group

in Fig. 3.10| is the product of the equation ME =

100%, where the simulation current and the prediction current are the corresponding
result currents in a single multiplication group. Fig.[3.9|compares the power and delay
of the proposed design with the works in [85] and [14] for single 4-bit multiplication.
The proposed design consumes 20% more power than the work in [85] and and 11%
more than the work in [14]. The proposed design also has 92% longer delay than
the work in [85] and and 94% longer than the work in [14]. However, when the

48



924

925

926

927

928

929

930

932

933

934

935

936

937

938

939

940

941

943

944

946

947

948

949

950

951

memristance operand is constant, the proposed design has almost zero delay, which
is 97% shorter than both the work in [85] and the work in [14]. Figure illustrates
both the minimum case and maximum case of mean error (ME) between the different
approximate multiplier designs and that of the proposed work. The work in [14]
compresses PP by adding a logic gate between the tree adders, which performs the
approximation operation in the middle of the multiplication progress. The work in [85]
applies a low accuracy multiplier for a large multiplier, where the approximation is
performed in the middle of the multiplication progress. The proposed work eliminates
the need for both carry propagation and an explicit DAC, because its approximation is
performed at the end of the multiplication progress. In details, in the minimum case, the
proposed design shows an 84.25% lower ME than the work in [14] and a 23.08% lower
ME than the work in [85]. In the maximum case, the proposed design has an 82.29%
higher ME than that of the work in [14] and 69.04% higher than that of the work in [85].

There are still some issues to be overcome in the early stages of the project. For
example, several stairs were increased over the size of the next level. This is because
the LRS of the LC causes a higher voltage drop than the HRS, which results in a lower
current being generated for a logic ”1” and a higher current being generated for a logic
”0”. Additionally, errors in the output current can be amplified by the CM circuit, which
is also affected by the terminal voltages. In the case of the logic "1” current, a higher
voltage drop leads to a greater reduction in the CM amplifier gain, while the logic ”0”
current with the lower voltage drop realizes higher gain than it actually should. As a
result, the current level of the LSB logic “1” can be lower than the corresponding level of
the MSB logic ”0”.

3.3 Summary

In this chapter, we have presented a mixed-signal digital input (DI)/analog output
(AO) multiplier that uses current-mode principles to achieve carry-free computation.
The resulting reduction in circuit complexity leads to significant improvements in both
computational latency and power consumption. To evaluate the proposed approach,

we compare the proposed multiplier’s performance with that of existing 4-bit approx-
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imate multiplier designs in terms of energy consumption, delay, and accuracy. Our
results demonstrate that the proposed crossbar array offers deterministic precision and
consumes much less energy than the other designs, yielding power savings of up to
50%. This makes our proposed device particularly relevant for use in edge applications,
where computation units are powered using limited energy sources with unpredictable
or sporadic power supplies. Additionally, the use of memristors ensures the retention of
the most stable operand in the face of power discontinuities.

Current amplification using CMs may seem intuitive, but it results in a significant
CMOS overhead during multiplier design, along with several disadvantages. These
disadvantages include requirements for transistors of different sizes, latencies, and
energy penalties because of the switch-on and switch-off processes of large transistors.
Additionally, the delay that arises from switching of large transistors presents a signifi-

cant challenge in terms of reducing the multiplier’s delay.
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Chapter 4

Memristive Multiplier Design with

In-cell Current Multiplication

The transistor-memristor crossbar multiplier scheme requires current amplification that
corresponds to the bit locations of the current signals. Specifically, for the current at bit
i, denoted as I;, an amplification of 2i-1 js needed. As discussed in the previous chapter,
the single transistor single memristor (1T1M) cell (shows in Fig. can only generate
I; without amplification of 2i=1  Therefore, current amplification in the 1T1M crossbar
multiplier is achieved through the use of amplifiers based on CMs. In this chapter,
current amplification is further optimised by generating the correct current value directly
within each transistor-memristor cell by using multiple parallel memristors in a cell.
Intuitively, if an amplification of 2"~ is needed, a cell with 2/~! parallel memristors can
satisfy this need because of this in-cell current amplification.

By doing this, the CMA can be omitted removing the high-energy high-latency
charging and discharging of potentially large capacitance and replacing them with in-
cell resistive arithmetic according to Ohm’s Law, which has zero theoretical latency. The
method presented in this chapter is based on the single transistor multiple memristor
(1TxM) cell structure, shown in Fig. Developed from 1T1M cell by extending amount

of memristor in parallel with ratio of 2~ in single cell, 1TxM cell structure can be used in
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—
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From, | KCL
G

iMultiplication cell

Figure 4.1: The structure of 1T1IM cell with updated details. Transistor is in n-type, memristor

applied Cu:ZnO thin film.

the same crossbar structure from the 1T1M-based multiplication scheme presented in the
previous chapter, by replacing each 1T1M cell with a 1TxM cell where x = 2i~1,i € [0, N].
With this crossbar the CMA circuits can be entirely removed and the significance of each
current path is directly set by x and already correct at the cells.

Individually, different current paths are then directed to the output node which
accumulates the currents according to KCL, thus requiring no carry propagation. This
allows for better performance and energy efficiency characteristics than conventional

multipliers.

from RL

From

GL

Figure 4.2: 1TxM cell structure. For a cell along the current path for bit i, x = 2/~1.

In this chapter, the 1TxM design will be compared with the 1T1IM multiplier from the
previous chapter. For fair comparison, the 1T1M-based crossbar multiplier is redesigned

with an updated cell structure, shown in Fig. The difference between the 1T1M cell in
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Chapter [3|(Fig. and the one in this chapter is that the p-type transistor of the previous
chapter is replaced by the n-type transistor here. The p-type transistor works better as a
current source, and the n-type transistor works better as a current sink. When operating
in switching mode, these characteristics can affect the circuit’s output current. While this
may not be significant for 1T1M cells, it is crucial for 1TxM cells, where n-type transistors
perform better due to the elimination of the CMA below. To make a fair comparison,
both p-type and n-type transistors were placed after the memristor, resulting in all cells
having an n-type connection. Because of this cell update, the aspects and emphasise in
the comparative studies, and for the ease of reading, some of the aspects of the 1T1IM

multiplier will be presented again in this chapter.

4.1 Number Representation and Encoding

This section further clarifies the method of representing numbers in the proposed
multipliers.

As proposed in Chapter 3, in a conventional (N x N) binary multiplier, two unsigned
integers can be multiplied using N? logic AND operations, followed by up to 2N ADD
operations. Meanwhile, a carry propagation procedure is required for the generation of
each midterm product.

Multiplication is different in a crossbar multiplier, which directly implements the long
multiplication algorithm and whose structure can be seen in Fig. The 1TIM cell
locates at each intersection of the crossbar, connecting a column (CL) to a row (RL). Such
a cell has its position indexed with both row k and column i according to its location
on the crossbar network and is called Cy;. Ci; connects the kth RL and the ith CL.
It gets voltage V¢, and its memductance is Gy ;. This cell implements the single-bit
multiplication between the operands V¢, and Gy ;, with the product being I¢y ;, according
to Ohm’s Law as described in Table The particular indexing system used for the
memductance is relevant to implementing the multiplication algorithm in Table
where the same operand bit my features in diagonally placed cells from upper right
to lower left in the addition part of the algorithm. These cells thus implement the N2

logic single-bit AND (bit-wise multiplication) operations required for the first step of
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Table 4.1: Single Transistor Multiple Memristors Cell Operations

Data Representation

Signal Logic0 | Logicl
Operand 1 Ve Vi Vg
Operand 2 G Gilow Ghigh
Product Ic Iy Icyq

Memristor Operations

Writing Ve > Vy,

Reading Ve < Vi,

Multiplication | Ic = V¢ x Gy (Ohm's Law)

Truth Table Ve Gm Ic

Ve 0 | Giow(0) | I, (0)
Vo 0 | Grign (1) | Ic,,, (0)
Ve D | Giow 0) | I, (0)

Vchigh (1) Gl’ligh (1) Ichigh (1)

multiplication, in parallel across all intersections of the crossbar.

For performing writing operation of cell Cy ;, the transistor in this cell should be in
the ON state. As the same gate biasing voltage is applied to cells along the same column,
when writing cell Cy ;, all other cells along column i should have their transistors in the
OFF state to maintain their memductance state. In this way, any single memductance Gy ;
can be set to its target logic state corresponding to the correct operand value. At the same
time, multiple gate biasing control allows the same writing operation for memristors on
the same row.

The single-bit data operations of a 1T1IM cell is summarised in Table {4.1) when it is
used to perform single-bit multiplication. The cell voltage V(- is used to represent one
operand and the memductance G is used to represent the other, whilst the cell current I
represents the product of the two operands according to Ohm’s Law.

Note that the reading mode is when the multiplication result is read out, and therefore
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Vg6 Vg5 Vg4 Vg3 Vg2 Vgl VgO

’ 1
RL3 TIM CI“
G—
26 22 21 20
CM cM> oM
MC: Multiplication cell CM: Current Mirror I Tout l Rout
RL: Row line GL: Gate line CL: Column line I ]

Figure 4.3: The architecture of 1TIM crossbar multiplier. ~The current amplification is
implemented with CM. Each MC is a 1T1IM cell described in Fig. and a CM amplifier has

one n-type CM and one p-type CM series connected.
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VG, must be lower than Vj,. For single-bit Boolean multiplication, there needs to be
enough separation between Ic,, g and the highest possible value of Ic, = to ensure logical
correctness. This can be realised by having V¢, = GND = (0 V) and Gpjg, >> Gjgpp- In
this work we have up to Gy;g;, = 1000 x Gjoy, a realistic margin of difference [48]. This,
as demonstrated later in this chapter, is more than enough for a multiplication precision
of 4 bits.

Since the result of the multiplication I,,; is accumulated according to KCL, and
because of the logic ”0” and ”1” definitions for currents given in Table there exists
the possibility that the accumulation of multiple V¢, , X Gjo currents, which is the
highest possible cell current value representing logic ”"0”, pollute I,,; enough to affect

the accuracy of the result.
Vg6 VgS Vg4 Vg3 Vg2 Vgl VgO
Q Q Q Q Q Q | Q
no 2 CL6| |,CL5| (D CL4| [CL3| (5 CL2| [ECL1| £ CLO

4 1 1 1 1
RLO | oH HmH e HmwH

e (o o]

RL2 [moh (]
1 1 1
RES | e b Mo M H

6‘7 5‘7 4‘7 3 2 y 1 y O y
leves> Zloves> Zlo> 2 Zienes> Zlev> Zlemt

Ps Ps Ps P; P P: Po
Iout l Rout

Figure 4.4: The mapping of numbers onto the crossbar structure with multiplication operands

(M1, My) and final product (P).

Fig. illustrates how the long-multiplication algorithm maps onto the 1T1M
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crossbar multiplier. The operand My : {m3 my mj my} is represented by memductances
w1 @ {Gs Gy G1 Go}, and My : {n3 np nq np} is represented by row voltages w; :
{Viuz Vina Vin1 Vino} in Fig. Single-bit multiplications at the cells are the result of
Ohm’s Law during reading mode, as described in Table The output current of a
single cell is the partial product which can be denoted as I; ;, where k and i are the row

and column indices, respectively. The operation is described by the following equation:
Ik = Vini X Gy, (4.1)

wherek =0,...,3andi =0, ..., 6.

From Fig. it can be seen that the worst case for such potential inaccuracy happens
when the operands are My = {1111} and M, = {0000}, a case preliminarily explored
in Chapter [3l Here we analyse it in detail. This multiplication results in all cells having
the same current I ; = Vchigh X Glow- With the following relations, Py = 2° x Iy, P =
28 % (Iox + L), o = 22 % (Iop 4+ hip+ o), Ps = 22 x (I + Lip+ L+ I3p), Ps =
28 x (hz+ o+ 131), Ps=2° x (I3 + I32), and Ps = 2° x 3.

Respectively, we can get Py = 20V}, Go, P; = 2! (Vi0 G1 + Vipy Go), P2 = 22 (VioGo +
Vin1G1 + VinaGo), P3 = 2% (Vino G3 + Vit G2 + Vina G1 4 Viug Go), Py = 2* (Viy G3 +
Vina Go + Vigz G1), Ps = 2° (Viyp Gs + Vi Gy), and Pg = 2° x Vj,3 X Gs. Finally, all the
partial product Pj current values are added up to generate I,,;, which in this case can be
presented as Eq.

6
Iout — Z P'/ (42)
j=0

which encodes the result of the multiplication (overall product). The total number of
digits for P; shown in Fig. is 1 bit less than that for the regular long multiplication
algorithm in Table This is because carries are not propagated to the left in the 1T1M

crossbar mixed-signal multiplier.

Lyt = (2 +2' x 2422 %3
+28x 4424 x342°x2
) (4.3)
+2°) x Vyign X Glow

=225 X Vchigh X Glow,
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The Ioy: value in Eq. is supposed to encode logic "0”. According to Table

logic ”1” current at a single cell is

IChigh = Vchz'gh X Ghigh - (4.4)

Combining Eq. (4.3) and Eq. (4.4), in order to avoid a bit error at the least significant

bit, whose value is a single I¢, the following must be true
Ghigh > 225 X Gjpyp - (4.5)

We choose up to Gyjgr, = 1000 X Gy, which provides a substantial error margin for
the 4-bit 1T1M crossbar multiplier. On the other hand, for a 5-bit multiplier with the same
architecture, the minimum requirement for accuracy at the LSB is Gyjgr, > 969 X Gjpp-
Our chosen gap between Ghigh and Gj,y, will be much less safe from accuracy problems
at that level of precision. In other words, the upper limit of bit-width for such a multiplier
depends on the chosen memristor technology and the multipliers are suitable mostly for

low-precision applications.

4.2 Single Transistor Multiple Memristors Multiplier

4.2.1 Baseline Design

The 1TIM crossbar multiplier employs three main types of components, transistors
serving as switches, memristors serving as adjustable conductance values, and CMs
serving as bit significance weighting manager (providing the 2/ coefficients). CMs with
high amplification ratios require radically disproportional sizing of their constituent
transistors, as shown in Table With more types of components involved in
an analogue system, managing the effects of parametric variations becomes more
complicated. In addition, the CMs used in the 1T1M crossbar multiplier all have different
amplifications and sizes, which usually necessitates careful per-component design.

The 1TxM crossbar multiplier design seeks to reduce system design complexity by
eliminating the need for CMs, thus reducing the types of used components. By moving

the functionality of bit significance weighting from the different amplifications of CMs
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Figure 4.5: The Architecture of 1TxM crossbar multiplier. The number of parallel memristors x in

a 1TxM cell is determined by its column location.

to the number of memristors in each cell, it also eliminates the need for components
of different specifications. This is implemented by constructing each 1TxM cell, which
connects a row with a column in the crossbar, with a single transistor switch controlling
x memristors in parallel, as shown in Fig. With such a cell, the bit significance
weighting can be managed through the following equation x; = 2/, where x; is the
number of memristors in each cell in the ith column, i € [0,6] for the 4-bit 1TxM
multiplier. By setting x; values this way, the column-specific CMs in Fig. are
functionally replaced by the number of memristors in the 1TxM cells (in Fig.[4.2). Note
that the numerical significance of every memristor is exactly the same across the entire
multiplier and parametric variations in any memristor have exactly the same degree of
effect on the overall product, no matter where the memristor is located. This simplifies
variation modelling and analysis as well as variations-aware design.

For this 1TxM multiplier, Eq. (4.1) no longer describes the cell current but instead
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Figure 4.6: The 1TxM crossbar mapping with multiplication operands (M;j, M») and final product
(P).

describes the current flowing through any one memristor within the cell located at
intersection {k,i} on the crossbar. With this revised understanding, Py = 20 % Ipp in
Eq. remain the same. In other words, the 1TxM multiplier in Fig. functions
exactly the same as the 1T1M multiplier in Fig. Fig. clarifies this point when
compared to Fig. The multiplier precision analysis also remains the same.

A 1TxM multiplier using the same TiO, memristor technology whose characteristics
are shown in Table 2.1 VTEAM MODEL parameters has been investigated. Memristor
writing voltages and biasing times need to be adjusted. Writing is slower but reading is

faster than the 1T1M cell.

4.2.2 Technology Improvements

So far in the analysis we have assumed that the transistor in a transistor-memristor cell

does not make a contribution to the Ohm’s Law single-bit multiplication. In other words,

60



1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

these transistors are assumed to be ideal switches with zero resistance in the ON state
and infinitely-large resistance in the OFF state. These assumptions are unrealistic and it
is possible for the resistance value of the transistor to affect both the writing and reading
modes of a transistor-memristor cell.

During the reading mode, for computational correctness, Eq. needs to be as close

to reality as possible. This requires the following to be true:

1
Ryyy << and

G’ (4.6)

Rout << 355G

where G is the memductance of single memristor, Ry, is the source-to-drain resistance
of the cell transistor in its ON state, and R, is the output resistance of the multiplier.
When these inequalities are true, the voltage-current relationship depends on the
memristors, not the transistors or the output resistor. This means that Eq. is
approximately true and the design is appropriate.

Unlike for the case of using CMs to control the bit significance weighting, where CM
size tuning is obligatory, there is no logical/functional requirement to size transistors in
the 1TxM multiplier according to where they are located. For component standardisa-
tion, we take advantage of this fact and do not employ transistors of different sizes in our
1TxM multiplier design. This means that when there are a comparative large number
of memristors in parallel in a cell, the transistor’s resistance becomes more significant
and affect the accuracy of the cell’s multiplication. To offset this, the transistor size is
determined by the worst-case scenario, i.e., appropriate for cell {3,6} located at the far
left edge of the crossbar. This in turn leads to using comparatively large transistors across
the multiplier, with negative implications on speed, current, leakage and general energy
consumption.

Instead of TiO; memristors, using Cu:ZnO memristors addresses many of these
concerns. For instance, Cu:ZnO memristors have much higher resistance in reading
mode compared with TiO; memristors (smaller Gy and Gygp). This allows the use
of comparatively smaller switch transistors with higher resistances. The differences in
the other parameters also lead to large improvements in writing speed and some im-

provements in reading speed. The speed improvements can be observed by comparing
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Fig. to Fig. and Fig. to Fig.

With the parallel memristors in cells driven through a single transistor of fixed size,
the writing speed of 1TxM cannot compete with that of 1T1IM. With Cu:ZnO technology
the reading speed is improved significantly. This means that these multipliers are well
used in cases where the operands are not operationally symmetrical. In other words,
these target cases have one operand that does not change frequently, which can be
represented by memductances, and another operand that changes frequently, which
is the best represented by voltages. This asymmetry, together with the asymmetry in

operand non-volatility, exactly matches applications in IoT edge nodes and NN neurons.

4.3 Simulation Results

The results of simulation studies concerning writing mode are shown in Fig. and
Fig. In these experiments, the cells are set in writing mode and the memristors
have their G values start in the maximum of their respective ranges, corresponding to
the Rpoy values found in Table The writing action attempts to adjust these values
to the minimum of their respective ranges, corresponding to the Rorr values found in
Table The experiments are run for long enough time when G stabilises to a value
Geng Which is checked to find how much of the range between Rpy and Rorr has been
completed in this writing action. This is called adjustment completeness and is shown
in percentage points in Fig.[4.7} The ideal result should be 100%, but it can be seen that
with the TiO, technology, adjustment completion is very low with the largest cell size in
the 4-bit 1TxM multiplier (i.e., the 1T64M cell at intersection {3, 6}).

In general, the larger the transistor size, the higher adjustment completeness can be
achieved for the same biasing voltage, and the higher the biasing voltage, the higher
adjustment completeness can be achieved for the same transistor size. These trends
follow intuition. It is worth noting that TiO, technology is inferior to Cu:ZnO in most
writing cases, except for writing 0 in 1T1IM and 2x and 64x configurations, where TiO; is
slightly better. This is because the non-ideal conductance variation of memristor in these
cell leads the voltage drop on them also varied in the same way. Conversely, the non-

ideal varied terminal voltage increases the non-ideal conductance variation of memrsitor.
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Figure 4.7: The behaviour of the 1TxM cell. In (a), biasing voltages are set as Vo, = 1.85 V and
Veuzno = 1.2V, and length of transistor in cell is also fixed at 60 nm. In (b), transistor size is fixed
at Width/Length = 500 nm/60 nm. For TiO, model and Cu:ZnO model, the difference between

biasing voltage and threshold voltage are the same.

us It is also evident that writing 0 in general takes less time than writing 1 for the 1TxM

uwe  multipliers which do not have CM delays. These points can be seen from Fig. 4.8 and
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Figure 4.8: The comparison of 1T1M crossbar writing operation. The writing has been presented
in (a) to (d), and the amplification ratios are marked with number and “x”. (a) presents Cu:ZnO
memristor writes 0, (b) presents TiO, writes 0, (c) presents Cu:ZnO memristor writes 1, and (d)

presents TiO, writes 1.

Fig. 1.9
Since the switching performance of component depends on the worst case scenario,
the results of writing operation of 1T1M crossbar in Fig. shows that, in writing 0

operation, both Cu:ZnO memristor and TiO, memristor have a delay around 2.4 ns.
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Figure 4.9: The comparison of 1TxM crossbar writing operation. The writing has been presented
in (a) to (d). (a) presents Cu:ZnO memristor writes 0, and (b) presents TiO, writes 0, (c) presents

Cu:ZnO memristor writes 1, and (d) presents TiO, writes 1.

In writing 1 operation, Cu:ZnO memristor has a 27ps delay, while TiO, memristor has
a 1.8 ns delay, which is 67x longer than the Cu:ZnO memristor. Moreover, Cu:ZnO
memristor writes memristor to the almost the maximum of device length, while TiO,
memristor can’t achieve the same level of writing at even 1000x more time cost under

the same over-threshold biasing potential difference. The results of writing operation of

65



1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1TxM crossbar in Fig. |4.9]illustrates that Cu:ZnO memristor performs 2x faster writing
0 operation and almost 1000 x faster writing 1 operation than TiO; memristor under the

same difference between biasing voltages and threshold voltages.

4.3.1 Cell Performance on Crossbar

In this section, we concentrate on the system’s capability of maintaining computational
correctness with a decent accuracy margin during reading mode. For this, we compare
the range of I ;, i.e., the ratio between the high (logic ”1”) and low (logic "0”) current
values for memristors in 1TxM cells sited within complete crossbar multipliers, when
actual multiplications are being carried out. Four groups of binary multiplication are
executed. In decimal values, they are 15 x 15, 10 x 5, 5 x 10, and 15 x 0. From the
observations we find the worst-case scenarios, i.e., when the ratios between logic 1"
and logic "0” memductance values reduce the most by the theoretical ratios from the
memristor models in Table

Note that these experiments are about the reading (computation) mode under the
assumption that the correct operand values have been written into the memristors, i.e.,
any preceding writing operations are correct.

The worst-case data is obtained at the particular memristor with the minimum
D (the lowest observed current value representing logic “1”) found across the
entire space of all four experiments, and the memristor with the maximum Iy; ~(the
highest observed current value representing logic “0”) found across the same data space.
These two worst cases do not involve the same memristor or happen during the same
multiplication, but they constitute the worst-case ratio. For each of the TiO; and Cu:ZnO
technologies, the observed range between the two worst cases is then compared with the
specified (ideal) range from the memristor models, as well as checked for compliance
with Eq.(4.5).

Different transistor and memristor size combinations are tried and the best case
(showing the best/worst-case memristor range) for either technology is selected for
comparison.

In the case of TiO,, the ideal range of memductance adjustment from Table is

% = 300. The worst case min{lk,l-hl,gh} loses 2% from the top of the range and the worst
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case max{li; } loses 0.5% from the bottom of the range. The observed range is 293,
reduced from 300 by 2.5%.

Investigating the case for Cu:ZnO in the same way, we find the observed range to be
997, reduced from 1000 by 0.26%.

From these observations it can be seen that, with appropriate transistor and memris-
tor sizing, it is possible to limit accuracy margin reductions from the ideal cases during
implementation. The accuracy requirement for a ratio of 225 between the lowest logic
”1” current and the highest logic ”0” current for a 4-bit multiplier given in Eq. can
still be satisfied. It is worth noting that with the best design implementations, TiO, loses

more accuracy margin than Cu:ZnO, which has a much larger margin to begin with.

4.3.2 Case Experimental Study: 4-bit Multiplier

The multipliers presented in this chapter are studied in more detail through analogue
simulations in Cadence and compared with relevant existing work. The main reference
work featured in these comparisons come from a body of research reported in [23],
[86-88] and [89]. The entirely novel nature of proposed pure digital-in, pure analogue-
out multiplication scheme, to the best of author’s knowledge, has no competing
designs solving the exact same problem. Therefore, the most reasonable comparisons
performed here are with low-power, low precision MDAC implementations which is
mixed digital- and analogue-in, pure analogue-out [23], and with memristor-based
full digital multipliers [86,|88,[89]. Since this chapter presents the first work on full
DI/AO multipliers, these citations represent the closest related methods available for
comparison.

For comparison fairness, we re-implement the existing work and our multipliers
using the same technology (65 nm UMC) in 4-bit resolution, and compare the results
obtained from simulations in the same environment (Cadence Virtuoso) under the
same operating conditions. Our re-implementations of existing work tend to perform
better than reported in their original papers, because we include optimisations such as
transistor size explorations with the best results selected to feature in the comparison.
For the memristor technologies, the VTEAM model used is the same across the entire

comparison.
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The results reported here are obtained by using the multipliers on a number of
different combinations of operand values from 0x0 up to 15x15. The entire set of input
data values across the 4-bit range [0, 15] is explored to ensure the numerical correctness

of the compared circuits.

4.3.3 Results and Comparisons

In order to compare total multiplication speed, the source of delays from all multipliers
in the comparison are analysed.

In one multiplication cycle, our 1TIM and 1TxM crossbar multipliers complete
two phases of work: writing, during which the operand values are copied to the
memductance values in the transistor-memristor cells, and reading, during which cell,
column and full system currents are generated to produce the result of the multiplication.
The multiplication operand for memristor on crossbar is in the form of a diagonal
vector. Meanwhile GL signals can control the transistors in cells on an entire column
simultaneously but not multiple columns at a time because the memductance values
along the same row are not always the same. This means that the writing operation
is normally processed one diagonal at a time. For an N x N multiplier, there are N
steps in the writing procedure. The reading or multiplication procedure costs only a
single step. Consequently, both the 1TIM and 1TxM crossbar multipliers cost N + 1
steps per multiplication. For the 1TxM crossbar multiplier, the delay of the last step,
the reading phase, between input ready and output current stable, is shown as zero in
Cadence because of the resistive Ohm’s Law and KCL. For the 1T1M crossbar multiplier,
additional delays are incurred from the CM circuits during the reading phase. According
to [86], the existing multipliers in the comparison all require more discrete steps for each
complete round of multiplication. The smallest number of steps (2N) is required by the
MAD gate version of Shift-and-Add multiplier.

The theoretical number of discrete steps needed is regarded as a main technology-
independent criterion by the authors of [23] and [86], but equally important is the time
required to complete a multiplication. Our experiments include full-multiplier execution
runs whose latency values are recorded. For each multiplier, both the writing and

reading delays are reported in two types. The writing delays are overwriting an existing
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e 0 with 1 and overwriting an existing 1 with 0 in each cell. The reading delays are fast and
o slow cases depending on the input data values. These delays are reported in Table
et in addition to the required number of steps.

1282 Note that we do not compare with multiplier methods based on reducing the partial
1zes  product additions using tree structures, such as Wallace and Dadda trees. This is because
1 these methods are not relevant for low-precision multipliers and our methods are not
s relevant for high-precision multipliers. Therefore, to make a fair DI/AO comparison
1z With the work in [86]], we have included a high-performance DAC [90]. Assuming the
e conversion is completed in one clock cycle, the delay and power of DAC are 0.625 ns and
e 40 mW, respectively.

1269 It can be seen from the results in Fig. and Fig. that the CM circuits incur
o significant additional delays, which strengthens the case for eliminating them by moving
o from 1T1IM to 1TxM cells.

1292 For MDAC operation, writing operation is irrelevant as either the reference or the
123 incoming data is assumed to be constant. As a result, if our proposed multipliers are
s used in MDAC mode, the writing of memristances happens only once when setting the
s reference or incoming constant data, and this delay is shared across many multiplication
s cycles and per-cycle writing delay becomes negligible. This is why writing delay is not
o7 included for the MDAC in [23] in the comparison.

1208 Our 1TxM multiplier using Cu:ZnO technology is 100—300 x faster than the memrister-
e based digital multipliers in [86] in multiplier mode, and faster than the low-power
o MDAC in [23] in MDAC mode because of the latter’s reading delays.

1301 The next metric studied and compared is the numbers of transistors and memristors
2 required by each multiplier design. This is hardware complexity by component count.
s These metrics are reported in Table As can be seen, the proposed 1TxM approach
s uses the smallest number of transistors and the greatest number of memristors in the
s 4-bit case. Compared to the 1T1IM cell, adding parallel memristors does not increase
s Writing latency per cell. However, the elimination of the CMs reduces the full-multiplier
oy Writing latency significantly.

1308 Peak power dissipation is studied next. The recorded power typically fluctuates

e during each multiplication round, and here the maximum power value recorded during
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Table 4.2: Multiplier Operation Steps and Delay per Multiplication

The Worst
4-bit Writing 4-bit Reading

Multiplier Steps Case

Write Write

Fast Case | Slow Case
Logic | Logic Total Delay
15x0 15x15

I/1/I IIOI/
1TIM (TiO) | N +1 (CM

1.87ns | 22ns 36 ns 36 ns 38.2ns
(This Work) Delay Exists)
1TxM (TiOy)

N+1 0.05ns | 0.23ns | O 0 0.23 ns

(This Work)
1TxM
(Cu:Zn0O) N+1 4.7 ps 0.1ns 0 0 0.1ns
(This Work)
Shift-and-
Add (IMPLY | N2+ N 149ps | 9.75ns | 0.67 ns 233 ns 12.13 ns
Logic) [86]
Shift-
and-Add 2N 31.0ns | 29.0ns | 0.68ns 1.18 ns 32.23 ns
(MAD) [86]
MDAC [23] 1 N/A N/A 10.3 ps 0.816 ns 0.816 ns

each of the writing and reading phases are reported. For this comparison, the best-
performing multiplier designs from [23], [86] and [89] are compared with the best-
performing multiplier design presented in this chapter, the 17TxM multiplier based on
Cu:ZnO memristors. The results are given in Table[.4] As expected, our best multiplier
returns competitive power figures when operating in multiplier mode. When operating
in MDAC mode, the writing power dissipation is negligible because a single write is
shared by many multiplication cycles.

Our best multiplier is worse in peak power than the IMPLY multiplier in [86] for
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Table 4.3: Circuit Complexity of Memristor Based Multipliers

4-bit Multiplier

Multiplier Memristor Transistor
Complexity
1TIM (TiO,) (This 16 Memristors,
N? N2 +4(2N —1)
Work) 76 MOSFETs
1TxM  (Cu:ZnO) 225 Memristors,
(2N _ 1)2 N2
(This Work) 16 MOSFETs
Shift-and-Add 29 Memristors,
7N +1 15N —1
(IMPLY Logic) [86] 59 MOSFETs
Shift-and-
20 Memristors,
Add (MAD | 5N 17N +2

70 MOSFETs
Logic) [86,88]

0 Memristors,

MDAC [23] 0 2N +13

21 MOSFETs

89 Memristors,
Array [65] 7N? —8N +9 132N + 6

534 MOSFETs
IMPLY Semi- 38 Memristors,

2N?2+ N +2 2N?% + 3N 4 3(N > 2)

Serial Adder [65] 45 MOSFETs

writing 0, but because the writing 0 delay is only slightly more than 1% of that required
by the IMPLY multiplier (See Table 4.2), the energy consumed for writing 0 is much
smaller. Because our 1TxM multiplier with Cu:ZnO memristors has negligible reading
delay, reading power only matters in the sense that it should not peak too high for the
sake of safety and longevity. In this case the peak reading powers stay competitive with
the compared designs.

The last metric compared is energy consumption per multiplication, with the results
reported in Table A "multiplication” here refers to an entire cycle including the
writing and reading phases and the energy figures are obtained through integrating

power over time across the entire operation. For the multipliers based on memristor
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1328

1329

1330

1331

1332

1333

1334

s which are based on conventional CMOS digital multiplier principles including oblig-

technology, the memristors start with digital 0 in the initial state before writing. This

arbitrary choice of initial state does not favour any method, but does result in some cases

of zero energy being recorded as nothing happens (product directly available) in some of

the multipliers in those cases. Our 1TxM multiplier with Cu:ZnO memristors return the

best-in-comparison figures in all experiments, with orders of magnitude improvements

over the compared designs.

Table 4.4: Multiplier Peak Power per Phase

4-bit Writing Power 4-bit Reading Power
Multiplier
Write Write
Logic Logic 15 %0 15 x 15
//1// /IO//
1TxM (Cu:ZnO) (This Work) | 8.40 yW | 270 yW 0.67 yW 655 uW
Shift-and-Add (IMPLY) [86] | 656 yW | 98.1 yW | 40.1 mW 441 mW
Shift-and-Add (MAD) [86] 732 uW | 1.52W 40.6 mW 40.4 mW
MDAC [23] N/A N/A 98.4 uW 489 uW
Table 4.5: Energy per Multiplication Corner Cases
Energy Consumption
Multiplier
0x0 0x15 15 x 0 7x8 8x7 15 x 15
1TxM (Cu:ZnO) (This Work) | 0 0.158aJ | 0 0.118 aJ | 0.039 aJ | 0.158 aJ
107.72 108.18
Shift-and-Add (IMPLY) [86] | 25 pJ 26.59 pJ 76.71p] | 127.8 p)
pJ pJ
Shift-and-Add (MAD) [86] 25.04p] | 4133 p] | 2511 p] | 8919p] | 3.15n] | 4134 p]
MDAC [23] 1.407f] | 196.4a] | 30.96f] | 105.3f] | 110.4{] | 214.3f]

In principle, the reference items from [86] and similar work are memristor multipliers
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atory carry-passing and/or sequential operations with more steps. Implementation-
wise they also require a substantial amount of switching logic compared to the number
of memristors used, leading to worse area, power and speed. In comparison, by
representing data in three different physical quantities, our designs leverage laws of
physics such as Ohm’s Law and KCL for naturally parallel operations across resistive
elements, with much-reduced memristor writing operations and virtually delay-free

reading, saving delay, power and energy costs.

44 Summary

In this chapter, novel multiplier designs that make use of transistor-memristor cells for
bit-wise multiplication are presented. Working in mixed-signal mode, these designs
remove the need for carry-to-the-left operations in conventional digital multipliers, and
directly provide an analogue output. The elimination of carry propagation and DAC
circuits, whilst maintaining digital input interfaces, is important in edge computing
because this allows the majority of the computation to remain digital, with its associated
advantages, but produces the required analogue output directly. The designs take
advantage of the substantial margin of memristance differences between the ON and
OFF states of a memristor. High and low analogue current values with large separation
conveniently represent logic “1” and ”0” and provide sufficient accuracy for analogue-
out multipliers.

The multiplication is performed by mapping one of the operands to memductance
values. With non-volatile memristors as the core in-memory compute units, the
multipliers benefit from intrinsic data retention in a number of scenarios. These include
when an input variable is multiplied by a constant coefficient, or when a variable number
is multiplied by a relatively constant reference, or when a fixed number is multiplied by a
variable reference, which are frequently seen in control, signal processing, Al and MDAC
applications.

By using multiple memristors in parallel in each cell, we relocate the bit significance
weighting function from CMs to the number of memristors in a cell. It is clear to see that

TiO, memristor decreases nearly 90% writing 0 time cost and 97% writing 1 time cost
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in one multiplication. In other words, the same proportions of energy consumption are
also saved from the multiplication. Also, this allows the proposed 1TxM based multiplier
with Cu:ZnO to outperform recently reported designs in terms of hardware complexity,
performance and energy while staying competitive on peak power. Moreover, the
Cu:ZnO memristor itself also performs better energy efficiency and speed in crossbar
multiplier than TiO, memristor, and most existing work is based on the TiO; memristor.

However, these advantages come at the cost of limits in the memductance adjustment
range, which affect the large scale implementations beyond a 4-bit multiplier, which is
nonetheless sufficient for many micro-edge applications [91]. In our future work, the
input/output characteristics of our 1TxM multiplier will be modelled as a perceptron
to design a new machine learning accelerator. Other resistive memory units can also be

investigated in similar memristor architectures.
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Chapter 5

Memristive Multiply-accumulate Unit

for Neural Networks

Al applications implemented using NNs require extensive arithmetic capabilities through
MAC units. Their designs based on traditional voltage-mode circuits feature complex
logic chains in both the multiplication as well as accumulation operations. Additionally,
as the data loading and storage operations are performed using a separate memory
block (i.e., using Von Neumann architecture), each data movement incurs further on-
chip communication bottlenecks. The effect of these manifests in terms of high latency
and power consumption for MACs in hardware acceleration. MACs for NNs require
both digital inputs and digital outputs. This is a major difference between the work
reported in this chapter and that of the previous chapters.

Many modern applications, such as neuromorphic, signal processing and control,
require the multiplier output in an analogue form with digital input interfaces [18]. This
is conventionally satisfied by attaching a digital-to-analogue conversion (DAC) device
to the output of a digital circuit [20]. However, DAC circuits add to the energy and
performance costs that depend on the precision of the digital multipliers.

Multiplication with mixed-signal arithmetic circuits is a potential alternative [22] and

has a successful academic and commercial history. An example is the multiplying DAC
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(MDAC) circuit, which multiplies a digital number by a usually analogue reference
signal to produce an analogue output [23]]. Digital-in analogue-out, where both operands
are digital but the product is analogue, has remained under-explored. This chapter
addresses this problem. Table 1.1]lists different types of multipliers (including MDACs)
by the digital and analogue nature of their input and output signals.

This chapter presents a novel MAC unit based on a single-bit multiplication cell
(SBMC) consisting of a number of memristors and transistor switches which is called
multiple transistors multiple memristors (yIxM), a development from the 1TxM cell
structure presented in Chapter 4l Apart from this difference, the crossbar multiplier
structure remains unchanged from the previous chapters.

The input voltage and memristor self-conductance represent the multiplication
operands, and the current represents the product, according to Ohm’s Law. In the
arithmetic design from Chapter [} the multiplication operands are expressed in the
mixed form (voltage, conductance, and current) for achieving better calculating speed
and energy efficiency. Single-bit multiplication comes naturally with Ohm’s law, with
voltage input representing one operand, conductance the other, and current the product.
In addition, KCL takes care of the addition operations. With KCL, addition and
subtraction are equivalent to joining multiple current paths into a node and removing
current paths from a node. Most of these design aspects of the crossbar multiplier are
maintained in this chapter, up to the analogue product represented by the current sum,
with the only extension being the yTxM cell structure, which provides more fine-tuning
capabilities for matching with the additional circuits required to convert the analogue
product to digital form.

When converting the intermediate current product conventional voltage-encoded
multi-bit digital format, targeting multi-MAC applications such as NN, there is a built-
in bit-precision reduction that makes the output the same bit resolution as the inputs.
This is unlike typical digital multipliers, which have double the number of bits in their
products compared with the operands. This helps keep the precision of multi-layer NNs
constant and energy and latency under control.

Our MAC unit consists of the memristor-transistor crossbar multiplier and mixed-

signal flash ADC shown in Fig.[5.1] This chapter introduces the main parts of this MAC
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Figure 5.1: The structure of MAC units.

unit.

For this design, the computation latency consists of memory writing and result
encoding operations, with the Ohm’s Law and KCL operations contributing negligible
delay. This is because the crossbar structure eliminates the need to deal with carries.
When compared with other memristor-based multipliers in UMC 65-nm technology,
the proposed work shows an order of magnitude improvement in latency in 4-bit
implementations. In addition, the energy consumption per multiplication cycle of the
proposed work is shown to improve by up to 92%. To investigate the usefulness of
this MAC design in machine learning applications, its input and output relationship
has been characterised to represent a 4-bit input perceptron which is then replicated to
demonstrate multi-layer perceptrons (MLPs) to classify the well-known dataset of hand-
written digits, modified national institute of standards and technology (MNIST). This
case study implements a hyper-parameter search to find configurations of the MLP that

lead to high accuracy for this classification problem.
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5.1 Multiple-transistor Multiple-memristor Multiplier

5.1.1 Resistive Multiple Memristors Multiplication Cell

Taking advantage of memristor resistivity, the resistive xM cell can perform amplification
by adjusting the cell Ry for the target operand. The most straightforward method is
to keep single-memristor resistances the same across the multiplier, but build 1TxM
cells with different numbers (x values) of parallel memristors corresponding to their bit
significances. For example, we use 1M for bit 0, 2M for bit 1, 4M for bit 2, 8M for bit 3,
etc. In this way, the cells perform the required current amplification, removing the need
for CMs. When applied to the crossbar architecture, both 1M and xM cells help reduce
the energy cost and latency. Additionally, the space cost of multipliers based on these
cells can also be lower [18].

This type of mixed-signal multiplier is DI/AO. Because transistor switching only
happens when setting the memristor values and connecting the input voltages, the
only delay is associated with making the operands (multiplier and multiplicand) ready.
After that, the multiplication operation itself only involves resistive Ohm’s Law which
together with KCL can be regarded as instantaneous. This means that the product is
immediately obtained once the operands are ready. This compares to regular digital
schemes that have to go through multi-stage addition and carry-handling operations
once the bit products appear.

Another advantage of such transistor-memristor crossbar multipliers is that one of
the operands is represented by memductance Gy = ﬁ, which is non-volatile. This is
a good match for applications such as NNs and reference-based arithmetic where one of
the operands tends to be relatively stable and requires only sporadic change. For multi-
stage operations such as NNs, a digital-in/digital-out (DI/DO) MAC unit is required.
If this type of mixed-signal multiplier is to be used, additional circuits are needed to
generate the appropriate digital output from the intermediate current that encodes the
product.

Fig. represents the SBMC. The serial connection of multiple memristors (xM)

and multiple transistors (yT) generates the basic multiplication cell in the proposed
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Figure 5.2: The structure of yTxM multiplication cell.

multiplier.

A memristor can be set in two interchangeable states: a high conductance state (HCS)
and a low conductance state (LCS). These two states are used to represent the value on
one of the two single-bit operands (inputs). When providing/preparing the value of this
operand, the cell works in writing mode, with the input voltage used to write either a
HCS or an LCS into the memristor. After this operand is set, the cell can work in reading
mode, which is the multiplication operation. In reading mode, the input voltage takes
the value of the other operand and is in either of the two states: the high voltage state
(HVS) or low voltage state (LVS). The cell current then forms the output (product) of
the single-bit multiplication according to Ohm’s law, and is also in Boolean format with
high and low states. The transistors additionally serves the purpose of turning the cell
off (not-writing and not-reading, but holding the operand encoded in the memductance
state).

Therefore, the operation of the multiplication cell can be easily used to encode
Boolean logic: HCS and HVS represent logic ”1”, while LCS and LVS represent logic ”0”.
Similarly, the output current also has high and low states that can encode logic ”1” and
logic ”70”. In this way, a memristor-transistor cell can perform single bit multiplication

(same as logic AND).
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5.1.2 Crossbar Multiplier Current Identification

SBMCs (shown in Fig. are then composed into a multi-bit multiplier using a crossbar
structure, with KCL taking charge of the partial product addition step. A 4-bit case is
shown in Fig. with the updated part being that the 1TxM MC in Fig. 4.2|is replaced
by yIxM MC in this chapter.

In this updated architecture, all SBMCs are included in the Ohm’s law zone (enclosed
in brown dashed lines). All wires and nodes through which currents flow belong to
the KCL zone, enclosed in purple dashed lines. In the KCL zone, nodes ”Digitl” to
"Digit7” represent partial products whereas the current through the load resistor R,y is
the final product. Note that, unlike the common long-multiplication algorithm, there is
no attempt to find horizontal partial products and no attempt to pass carries horizontally.
All partial products are generated vertically. Carries can be avoided because the vertical
partial products and the final product are encoded in currents with higher upper limits
to their values than that which encodes a single logic ”1”. In other words, the currents at
the Digitl to Digit7 nodes and I,,; can take values that are multiples of the high current
state across a single memristor, which encodes logic “1” at the lowest level of detail. For
instance Digit2’s current can be up to four times this single-memristor logic “1” and the
maximum value of the partial product at Digit2 is therefore 4 (because each MC, can
generate twice the maximum current compared with MC;), instead of 2 in the case of a
typical digital multiplier at this bit position.

Because the multiplication is performed by fixed voltage values for 0 and 1 from the
voltage operand, the output currents of cells in each column corresponding to logic ”1”
at these cells need to be set according to the column’s digit significance. Avoiding CM
amplifiers, this can be implemented using x memristors in parallel with the appropriate

x value. The relationship between x and the digit significance N follows Eq. :

x =2N-1 (5.1)

Let us use the 4-bit multiplier in Fig. as an example, assuming that the cell
transistors are ideal switches, with Vg and V) as the high voltage and low voltage

operand inputs, and Ryy and Ry as the high and low cell resistance (memristor
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resistance) operand inputs. The possible output current states in each cell are shown
in Fig.as I1, I, I3, and I4. Because the logic “1” state is defined by Vg and Ryyz, I4 is
the output current representing logic “1”, whereas the other three current states Iy, I and
I3 all represent logic “0” because at least one of their input operands encodes 0. Given the
cell structure, none of I;, I and I3 can be true 0 A. This is because Ry gy cannot be true
infinity and to maintain the commutative property of multiplication, true 0 V should
not be used in the voltage input operand either. Because of KCL, a potentially large
number of relatively small Iy, I and I3 values accumulated with the sum still required
to represent a product value of 0. In other words, a single I; needs to be greater in value
than the sum of a large number of Iy, I; and I3 values to differentiate 0 and 1 at the final
product.

The final result I,,; matrix shown in Fig. illustrates this issue in detail by
enumerating all possible I,,; values across all possible combinations of input operand
values. This current map assumes that the operand encoded in the voltage is called
the multiplier and the other operand encoded in the memristor resistance is called the
multiplicand, without losing generality. Each operand is 4 bits wide and takes values
from 0 to 15. When the multiplier increases from 0 to 15 we move from left to right
along the i axis, 0 < i < 15, and when the multiplicand increases from 0 to 15 we move
from top to bottom along the j axis, 0 < j < 15. At each position (i,j) in the matrix, I;
encodes the product of multiplying (multiplier = i) by (multiplicand = j). To simplify
the presentation, we use four coefficients a,b,c¢ and d to differentiate all the output
currents and define I; j as I;j = aly + bl + cl3 + dly. This means that moving down in
the matrix, a2 decreases and c increases, with b and d held constant, and move right in the
matrix, b decreases and d increases, with a and ¢ held constant. Because 15 x 15 = 225,
a+b+c+d = 225. The four corner cases of the matrix are therefore I,,; = 2251,
Loyt = 2251y, Ioy+ = 22513, indicating final product values of 0 =0 x 0 =0x 15 =15 x 0,
and I+ = 22514 which indicates a final product value of 225 = 15 x 15.

For the 4-bit crossbar multiplier shown in Fig. the coefficients a,b,c and d are
related to the operand values i and j according to Eq. - Eq. B.9).
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Figure 5.3: The mapping of all multiplication output current.

a=ixj—(2*—1)i—(2* - 1)j+ (2* - 1)?
b= (2" —1)i—ixj

c=(2—1)j—ixj

d=1ixj
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s BQq. (5.9), where0 <i < (2N —1)and 0 <j < (2N —1).

a=ixj— (2N -1)i— 2N —1)j+ 2N —1)?

b=(2N —1)i—ixjf

c=(02N —1)j—ixj

d=1ixj

1547

s found according to Eq. (5.10).
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(5.2)
(5.3)
(5.4)
(5.5)

For a general N x N-bit multiplier, the equations above are replaced by Eq. -

(5.6)
(.7)
(5.8)
(5.9)

From these, the output current for position (i, ) in the result current matrix can be



Ljj=lixj— (Y =1)i— 2N =1)j+ 2" = 1)1,
+ (2N —1D)i—ixjlL+[2N =1)j—ixjllz+ (i%j)ly (5.10)

1549 Assuming a base voltage Vy # 0 and base resistance Ry # 0, we can relate the high

s and low memristor voltages and resistances to these base values as in Eq. (5.11):

Vma = aVy Vi = ﬁVO Ry = vRo Ry = AR (lX > /3 >0, 7v>A> O) (5.11)

1551 Then, the base current Iy = V{y/ R can be substituted into I; — I, resulting in Eq. (5.12)
1552 — Eq " .

_ Vme

h= g = 510 (5.12)
L = XMZ\/II:I — %10 (5.13)
I = I‘?& - %10 (5.14)
I = ‘1?;; - %10 (5.15)

1553 Substituting Eq. (5.12) — Eq. (5.15) into Eq. (5.10) and simplifying the result, we obtain
1554 Eq 516

=i _fA)”_A) h+ (N -1) [(2N _ 1)5 + (j’;i+ ﬁ;) - f(i—l—j)} I (5.16)

1555 It is evident that the multiplication is commutative if % = . In practice, this is
s ensured by adjusting the parameters of the cell components to make the contributions of

157 both operands symmetrical and linear.

s 5.2 Analogue-to-digital Conversion

o After the analogue output [; ; is generated, its value needs to be represented as a 4-bit

s (or N-bit in the general case) digital value either as a memristor resistance or voltage
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encoding for the entire MAC unit to function in a multi-MAC NN using copies of the

same MAC hardware. Because the memristor resistance values are written in by digital

voltage signals, we do not lose generality if a 4-bit MAC outputs a 4-bit voltage encoded

product (4 Boolean voltage signals).

We implement this functionality using a flash ADC, designed from components

adapted from [35,37]. The choice of using thermometer code as an intermediate step

comes from the desire to make this MAC approximate in the sense of generating a 4-bit

product from input operands that themselves are also 4 bits in width. This ADC consists

of a single-action multiple-current comparator, buffer array and a read only memory

(ROM) encoder. The following subsection describes this part of the system in detail.

5.2.1 Thermometer Code Generating Current Comparator

Table 5.1: Thermometer Code Generator Transistor Size

Component Size Component Size Component | Size Component Size
M;, 3.2 ym Mer 1.6 ym P 100 nm Py 80 nm
Mous 1.6 ym P, 140 nm P 100 nm
M, 100 nm My 715 nm P 80 nm Pi3 100 nm
M, 110 nm My 785 nm Py 80 nm Py 100 nm
M;s 310 nm My 850 nm Ps 80 nm Pis 100 nm
My 365 nm Mio 965 nm Py 80 nm Pig 100 nm
M5 440 nm Mz 1 ym Py 80 nm
Mg 510 nm My 1.11 ym P 80 nm
My 580 nm M5 1.19 ym Py 80 nm
Mg 650 nm Mg 1.27 ym Py 80 nm

Fig.[2.3represents the current comparator. Given that the digital output is expected to

be in 4 bits, the comparator is set to 16-value thermometer code output. The input current

is mirrored by a p-type CM that generates a row of pull up current sources; similarly, the

reference current is mirrored by an n-type CM that generates a row of pull down current
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sinks. By adjusting the size of M; to My, the reference current can be set to different
levels. If a current source has a higher value than the corresponding current sink, the
voltage at the junction point is pulled up to Vdd; otherwise, the junction point voltage is
pulled down to ground. Therefore, the comparator will generate a thermometer code in
the buffer array.

To make this design work for our 4-bit crossbar mixed-signal multiplier, the transistor
sizes need to be tuned to fit the multiplier current output characteristics. Details of the

MOS transistor size choices are listed in Table[5.1]

5.2.2 Thermometer Code to Binary Encoder

The thermometer code is an intermediary format that, after serving the purpose of fast
comparison and product precision adjustment, has to be converted into a voltage binary
code for MAC output. The structure of the thermometer to binary encoder is shown in
Fig. This encoder consists of an AND gate array and a ROM encoder. For a 4-bit
digital output, the 16-value thermometer code is first converted by the AND array to a
16-digit one-hot code, which is then fed to the ROM encoder to generate a 4-bit binary
output.

The complete MAC unit therefore accepts as inputs a multiplier in the form of 4-
bit binary voltage signals and a multiplicand in the form of 4-bit binary memductance
values, and generates a product in the form of 4-bit binary voltage signals. This voltage-
encoded 4-bit binary number can then be used directly as the multiplier for another
MAC of the same configuration, or used to write the multiplicand for it. This means
that the digital-to-digital MAC can be instantiated multiple times to form an NN or other

machines that require a number of distinct MAC units of the same type working together.

5.3 Neural Network Implementation

This section presents a case study to validate the proposed MAC unit. In this section, a
machine learning algorithm (MLA) NN is created using copies of our MAC unit servicing
as perceptrons. The machine learning problem solved with this NN is the classification

of the MNIST data set.
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As our MAC unit supports only 4-bit inputs (integers), we need to apply a quantiza-
tion technique to preserve the high accuracy while using such low-precision numbers.
Two state of the art techniques exist for this: post-training quantization (PTQ) and QAT.
The weights used in the PTQ will be quantified to the target bit-width after the floating-
point based training. This is a simple technique, yet not suitable for <8-bit resolution
applications because of the increase in quantization error [92]. Alternatively, the QAT
technique injects the quantization error during training. This allows the lower-resolution
NN to learn and improve its weights appropriately. Previously, 98% accuracy for MNIST
classification using 4-bit NN with the QAT technique has been shown in [93]. Therefore,
this technique will be applied in our NN training.

The most challenging issue in our NN training is that the output of our MAC unit
contains variations because of its analogue nature. To overcome this issue, we will
use the same idea as QAT; the variations will be included in our training so that the
NN can learn these variations and adjust its accuracy accordingly. In summary, this
section contributes the QAT technique analysis to inject the MAC unit variations, the
demonstrates NN training for MNIST classification and compares the accuracy of our
NN trained MAC unit with the basic 4-bit QAT NN. Note that, for ease of computation
analysis, our NN consists of fully-connected layers only. We are considering extra
software library development to include the proposed MAC unit in the convolution

layers as future work.

5.3.1 Quantization-aware Training Analysis

Fundamentally, fully-connected NN computation contains dot-product operations be-
tween weight matrices and input vectors. Eq. means that the resulting matrix
element r3 at row i and column k is obtained from the sum of the products between the
pairs of the weight matrix elements r; at row i and the input vector elements r; at column

k. In general, these variables are presented precisely in floating-point format.
() _ i), )
ry" = Zrl' ry’ (5.17)
j=1
To compute the above equation using integer-arithmetic hardware, we need to
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quantify these real numbers. Following [94], any real numbers can be quantified,
resulting in positive quantified-values g in integers minus the zero-point Z and scaled
by the scale factors S as shown in (5.18). In addition, the range of g is between 0 and
2"=1 where 1 is the number of bits. Therefore, in this work g is in the range [0, 15] (4-bit
unsigned integer).

=S(g—2) (5.18)

Replacing the weights r; and inputs r; in (5.17) by Eq. (5.18) yields Eq. (5.19) which
can be re-written as Eq. (5.20):

A0 =Y sy () - 22) 52 (489 - 22) 519

j=1

7~ g5, (Nle2 ~ 7 % g — 7, Z g\ + Z g\ gy ) (5.20)
j=1

In Eq. there is no dot-product operat1on on ﬂoatmg—pomt numbers; this
happens only in term Zj]il qgi’j )qg’k) where both operands are integers, and therefore
our multiplier is applicable to this operation.

Another issue is that our MAC unit is centred around an analogue product. It
therefore contains a non-ideal effect where its multiplication results deviate from the
expected values as shown in Table In Eq. (5.21), we add Zjlil C (qg Ll k)) to sum up
the variation from every multiplication. The value of C can be found at column qgi’j ) and
row qg ®) of Table This allows the NN to learn and adjust its weights according to

our multiplier’s numerical characteristics.

i =515, <Nzlzz —ny P -z Z a + Z g0 - 3 i ))>
= = (5.21)
From Eq. (5.21)), we can separate the loss term from the main bracket by multiplying
the scale factors S1 and S, as expressed in Eq. (5.22). It can be seen that the large term
remains the same as in Eq. (5.20). We can thus conclude that the variation in our MAC
unit can be simulated by subtracting the product of both scale factors and the sum of the

MAC unit’s errors from the basic dot-product’s result. Eq. (5.23) will be added to our
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Table 5.2: Multiplication Errors of the Proposed Multiply Accumulate Unit

Multiplier
Result

O |1 2 |3 |4 |5 |6 |7 |8 |9 |10|11 12|13 |14 |15

oo (oo o0ojoj|o0oj{o0jo0jo0 oo 0|0 |0 |0 |O
1 /0 1|11 |-1}|-1}|-2(=2|-1|-1]|-1]-2]-2]-2]-=2]-2
2/0 |1}|2|2|1|2]|2|2|3|3|3|4|3|3|-3]|-4
3|10 |2|2|2|2|2|3|3|3|3|3|4|4|4|4]|-4
4 |10 |2|2|2|3|3|3|3|4|4|3|4|4|5|4)|-4
5/0 |2|2|2|3|3|3|4|3|4|4|4)|4|5]|4]|+4
o 6 |0 2|2 |3 |2|3|4|-3|4]|3|4|4|4|4|4]|+4
§ 710 |3|2|3|3|3|3|4|3|4|3|4|3|4|3|4
% g8 l0 |2(2|2|3|3|3|3|4|3|4|3|4|3|4]|4
= 910 |23|2|3|3|3|3|3|4|3|3|3|3|4]-3
(0 |23}3|23|3|3|3|3|3|-3|-3[-3|-3]|-3
1/0 (233|223 |3 |2|2|3|3|2]-2]-2]-=2
2/0 |2|2|-3|-3|2]|2|2|3|2|2]|2]-2]-2]-=2]-1
3/0 2223|383 |2|=2|2|2|-1]|-1]-2]-2]-1]-1

140 (2|22 |2|2|2|1|2|2]|2]-2]|-1]-1]-1]0

50 |2|2|2|2|2|2|2|-1|-1]-1|-1]0 |0 |0 |O

wss  training graph as explained in the next section.

. N .
rél/k)zslsz (Nzlzz—zlzqg' — 7y qu,] —l—qu’] ) SSZZC(

=1
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5.4 Simulation Results

5.4.1 Multiple Transistors Multiple Memristors Multiplication Cell Perfor-

mance

1T2M current (nA) 7T16M current (nA)
15

n70 B 237.0

2075 2075
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Figure 5.4: The yTxM MC output current mapping in all 4 by 4 multiplications.

The structure of our multiplication cell is presented in Fig. the parallel-connected

e Mmemristors and transistors are marked in brown to indicate them operating under Ohm’s

weo law. Similarly, the cell output current path to CL is marked in purple to indicate the

89



1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

operation of KCL. Because the multiplication cell works as a conductive component
on the crossbar, both the memristors and transistors contribute to the cell conductance.
It is therefore important to ensure that the memristor dominates the cell conductance,
because we use the transistors as (ideal) switches. In other words, even in ON state, the
low resistance state transistor still contributes current to multiplication cell. In order to
eliminate the transistor effect, memductance should be much larger than the ON state
transistor conductance. Additionally, the OFF state transistor conductance should be
small enough to isolate a selected cell from the rest of the crossbar so that it can be
in holding mode while other cells are written. With the memristor count for each cell
determined by the digit significance, the transistor count and size need adjustments to
balance that. Therefore, our proposed 4-bit crossbar multiplier uses cells with fixed ratios
for the memristor count and transistor count.

In Fig. and Fig. comparisons between the crossbar with the respective
yIxM cell shown. The 4-bit crossbar multiplier generates the same levels of I,,; with
different count transistor-memristor cells, and the product values are symmetric between
multiplicand and multiplier indicating commutative multiplication. The 1T2M cell
stands out in the error rate comparison. The maximum error rate for the crossbar
multiplier is 0.58% with the 1T2M cell, 0.72% with the 7T16M cell, and 0.86% with the
15T32M cell.

Therefore, apart from the LSB using a 1T1IM cell, all the multiplication cells in this
4-bit multiplier follow the memristor-transistor ratio for the 1T2M; i.e., two memristors

for each transistor in a cell.

5.4.2 Crossbar Multiplier Performance

The 4-bit crossbar multiplier shown in Fig. 4.5 has two operations in each multiplication,
writing (operand preparation) and reading (multiplying) operation. When multipli-
cation starts with a new multiplicand, all multiplication cells will be clear to LCS by
each RL; then the multiplicand is written by each GL column. Finally, the reading
(multiplier) voltages are applied on all RLs. Meanwhile, all cell transistors are switched
ON. The multiplication result can be obtained from the ADC out terminal (see Fig.[2.4).

When multiplying with an existing multiplicand, the writing step is omitted and the
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Figure 5.5: The yTxM MC output current error rate mapping in all 4 by 4 multiplications.

reading step starts directly. That is why this multiplier is well suited for asymmetrical

multiplication applications such as multiplying variables to coefficient/reference values

found in applications such as monitoring and control and certain operations in neural

networks where one of the operands (i.e., the multiplicand) does not change too often.

ADC transistor design parameters are presented in Table |5.1{ and writing operation

setting parameters are presented in Table To reduce latency, the writing operations

are parallelised on a per-row basis. To match the values of high and low memductance,

the reading (multiplier) voltage has values of 0.42 V as logic “0” and 0.7 V as logic “1”.

The total delay in each multiplication is 2 ns, which is almost entirely ADC delay. Three
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Figure 5.6: The output current details of three multiplication cases. The red dash steps are the
threshold for each digital output. 0-2.97 ns is 15 x 15, 4.57 ns-7.13 ns is 0 x 0, and 10.77 ns-13.2 ns

is9 x 6.

Table 5.3: Multiplier Operation Design Details

Area Time (ns) Voltage (V)

Write 1 | Write 0 | Write 1 | Write O

Entire Crossbar

0.43 16.9 1.8 -2
Write1 | Write 0 | Write 1 | Write O
Single Row
0.275 0.43 1.8 -2
Write1 | Write 0 | Write 1 | Write O
Single Cell

0.261 / 1.8 /

multiplications, 15 x 15, 15 x 0 and 9 x 6 are tested on the 4-bit multiplier. The results

are presented in Figs.[5.6|and
The red dashed steps in Fig. |5.6|are the thresholds for the current comparator, which

translates currents to thermometer code. For instance, I, = 100 uA translates to the

thermometer code value of 8, and 9 x 6 results in I,,; ~ 90 A, which translates to a
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Figure 5.7: The binary pulse output details of three multiplication cases. 0-2.97 ns is 15 x 15, 4.57
ns-7.13nsis 0 x 0, and 10.77 ns-13.2 nsis 9 x 6.

thermometer code of 7. The output bit voltages are recorded in Fig. Here B3 is the
MSB and B0 the LSB. It can be seen that the ADC delay is data-dependent and the more
bits that are 1 the longer the delay. This is because the less significant bits are settled
after the more significant bits, and before then they have swings. The output value of
1111, corresponding to 15 x 15, takes just less than 2 ns to become stable, which is the
worst-case delay for the MAC. In comparison, 0 x 0 incurs almost no delay.

Value-wise, 15 x 15 results in 1111 (the largest number possible out of 4 bits), 15 x 0
results in 0000 and 9 x 6 results in 0111. These values work well for a 4-bit digital-in and
4-bit digital-out MAC unit.

5.4.3 Energy Efficiency

Our study is mainly based on the worst-case delay assumptions. The worst-case
multiplication cycle includes 4 row-writing 0 (reset) operations with a 1.72-ns delay,
4 row-writing 1 (set) operations with a 1.1-ns delay, and one entire crossbar reading

(multiply+ADC) operation with a 2-ns delay. The average power is 290 uW. The average

93



1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

energy consumption per multiplication cycle for the 4-bit 1T2M crossbar multiplier is
1.39 pJ over a 4.82-ns period.

The worst-case energy per multiplication cycle happens with 15 x 15 because it has
the longest delay and the highest I,,; value (187.3 pA) among all multiplication cases.
This worst-case cycle has an energy consumption of 3.91 pJ. The most optimal scenario
occurs when computing 0 x 0, which requires a minimal energy input of approximately
0.01 pJ. This outcome is attributed to the parameter settings, particularly the uniform
transistor size on the crossbar of width/length = 500 nm/60 nm. This low energy
consumption can be attributed to the insignificant time taken during writing by the
crossbar and Analogue-to-Digital Converter (ADC), as well as the low current and
voltage values involved in the single multiplication sample. On the other hand, the
worst-case reading scenario occurs when computing 15 x 15, which consumes 0.84 pJ
over a period of 2.97 ns.

In Fig. the best-case and the worst-case energy consumption figures for our
multiplier are compared with state-of-the-art memristor multipliers. The figure shows
that the proposed MAC saves 83.7% and 74.1% of energy per multiplication cycle
more than the MAD Shift-and-Add multiplier and the optimised MAD Shift-and-Add
multiplier and 82.6% per multiplication energy cost than MDAC in their respective worst
cases. In the best case, the comparative energy savings can reach up to almost 99%. Even
the average energy consumption of the proposed MAC unit, at 1.39 pJ, is significantly

lower than the best-case figures achieved by the competition.

5.4.4 Neural Network Training and Results

To demonstrate the application of the proposed MAC unit in our NN training, we con-
structed three fully-connected layers for MNIST classification as illustrated in Fig. [5.9(a).
The numbers of neurons in the input/hidden/output layers were 800/500/10. The
forward-pass calculation for each layer follows the graph in Fig.[5.9(b). Regarding the
QAT concept, the inputs and weights of each layer were quantified and dis-quantified
based on Eq. to simulate the quantization error. Note that this procedure is known
as fake quantization in the literature [93]. In addition, the resolution g was set to 4 bits,

which is consistent with the input resolution of our MAC unit.
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Figure 5.8: The comparison of energy consumption per multiplication with MAD Shift-and-
Add multiplier, optimised MAD Shift-and-Add multiplier [86], MDAC [23], and alphabet set
multiplier (ASM) [95]. This work consumes the least energy in both worst case and best case.
When compared the memristive multiplier [86], the proposed design saves 83.7% and 74.1%
energy in the worst case, and saves up to over 99% energy in the best case. When compared
with MDAC [23], proposed design still has 82.6% energy cost reduction in worst case and up
to over 99% energy saving in the best case. When compared with alphabet set multiplier, the

proposed design has 98% energy efficiency advantage in the best case.

Subsequently, we performed the dot-product operation between the inputs and
weights, followed by the addition of biases. To ensure output stability, we incorporated
a MAC block that subtracted the dot-product results by our MAC’s output variations,
as elaborated in Section The resulting values from the MAC block underwent
rectified linear unit (ReLU) activation function, and then underwent another round of
fake quantization of the activation. The output of this layer was then used as the input
for the following layer.

The NN configurations presented in Table 5.4 were implemented using the PyTorch
library [96]. The first NN, which served as the baseline, was a 4-bit QAT NN obtained
from [93] without any convolution layers. Stochastic gradient descent was employed for
the backward pass, while the fake quantization blocks were handled using the straight

through estimator. The key parameters were batch size of 64, learning rate of 0.01, and
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Table 5.4: Modified National Institute of Standards and Technology (MNIST) Classification

Accuracy Comparison

NN Configuration Training Acc. (%) | Testing Acc. (%)
4-bit QAT NN (Baseline) 93 94
4-bit QAT NN W /O MAC Variation Training 93 30
4-bit QAT NN With MAC Variation Training 89 93
3-bit QAT NN With Precise Multiplier 90 92
2-bit QAT NN With Precise Multiplier 84 86

momentum of 0.5.

To analyse the impact of the MAC unit’s output variations, a second NN was trained
following the aforementioned procedure, with variations only being injected during
the testing phase. Finally, variations were included in both the training and testing
phases to evaluate the accuracy improvement. The baseline model produced an accuracy
of 94%, indicating only a 4% decline in accuracy compared to the convolutional NN
implementation in [93]]. This suggests that a pure fully-connected layer is adequate for
MNIST classification. Nonetheless, the accuracy drops substantially to 30% in the 4-bit
scenario when the MAC unit’s impact on the NN training is not simulated, underscoring
the importance of MAC unit simulation in the training phase.

After training, the accuracy of the 4-bit scenario was restored to 93% when the
NN was trained with the MAC unit’s output variations. Moreover, we compared
the performance of the proposed work in the NN configuration with lower-precision
multipliers. The 2-bit precise scenario had an accuracy of 86%, while the 3-bit precise
scenario had an accuracy of 92%. This suggests that the proposed MAC unit is suitable
for NN applications, and that variation injection is required during NN training to
maintain accuracy. The designed approximate 4-bit multiplier outperformed the 2-bit

and 3-bit precise multipliers in terms of accuracy.
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Figure 5.9: The NN structure and training graph. (a) presents NN structure to demonstrate
MNIST classification using the proposed MAC unit. It consists of three fully-connected layers,
each of which (input/hidden/output) contains 800/500/10 neurons. The traditional MAC unit
will be replaced by the proposed one. (b) presents the training graph of the NN. We added the
MAC block (highlighted in blue) where the output of the dot-product will be subtracted by the
non-ideal effect of our MAC unit following Eq. and the multiplication errors in Table

This allows the NN to learn the loss regarding the proposed MAC unit.

5.4.5 Effects of Technology Parametric Variations

However, device parametric variation in multiplication cell may lead to additional
and substantial analogue output error. Devices may have different properties or
technology parametric variations. For our MAC, we consider faster/slower operating

speeds of transistors and higher/lower Ry and Ry values of memristors. Therefore,
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the multiple-component cell design in this work risks large accuracy drops resulting
from such variations. Both the transistor variation and memristor variation have
been investigated to show the relation between variation and NN accuracy of MNIST
classification.

The variability transistor models are investigated first. The fabricated transistor’s
performance are studied for the Fast-Fast (FF), Typical-Typical (TT), and Slow-Slow (SS)
corners. analogue simulations of the MAC corresponding with these corners are used to
generate modified MAC input to output error maps in the same style as Table Then
respective NN simulation using the method given in Section[5.4.4|generates the accuracy
results reported in Table 5.5

In this study, we investigate the impact of memristor resistance variability. According
to the findings presented in reference [50], our selected technology (Cu:ZnO) demon-
strates a device-to-device (DD) variability of 59% for the high resistance state (HRS) and
36% for the low resistance state (LRS). Furthermore, the cycle-to-cycle (CC) variability is
particularly significant, with the HRS exhibiting 89% variability and the LRS exhibiting
51% variability. It is worth noting that, despite the considerable CC variability, the
resistance of the low resistance state (LRS) cannot exceed that of the high resistance
state (HRS), as the baseline ratio between these two parameters is fixed at 1000 for the
Cu:ZnO technology. Even in the worst-case scenario, the Cu:ZnO technology’s OFF state
resistance is only 640 times greater than the ON state resistance, which is considerably
better than technologies with smaller ON/OFF ratios. In fact, under CC variation, the
ON/OFF ratio remains at 227, which is adequate to fulfil the precision requirements of a
4-bit multiplier.

Similar to the case of transistor variation investigations, our simulation investigations
include analogue simulations of one MAC unit with all possible corner cases of expected
variability in the memristors. The result of these simulations is put into digital models
in the form of input value to output value correspondence error maps in the form of
Table[5.2} These corner case models are then used in NN training exercises on the MNIST
dataset, using exactly the same method described in Section The accuracy results
are reported in Table In addition, distribution of the sum current of each column

has also been put in Table since the multiplication cell current includes transistor’s
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Table 5.5: QAT NN with MAC Component Variation Training.

Transistor Training acc. (%) Testing acc. (%)
Slow-Slow 96 96
Typical-Typical 96 96
Fast-Fast 90 85
Memristor Training acc. (%) Testing acc. (%)
Average | Worst | Average Worst
DD 95 86 94 79
CcC 95 95 95 94
Distribution of Column Sum Current
Slow-Slow CL6(MSB) | CL5 | CL4 CL3 CL2 CL1 CLO(LSB)
Relative Standard | 7,¢f 13.3 13.3 | 13.3 13.3 13.3 13.3 13.3
Deviation (%) ion 7.65 7.65 | 7.65 7.65 7.65 7.65 7.65
Typical-Typical CL6(MSB) | CL5 | CL4 CL3 CL2 CL1 CLO(LSB)
Relative Standard | 7,f 12 12 12 12 12 12 12
Deviation (%) ion 7.53 753 | 753 7.53 7.53 7.53 7.53
Fast-Fast CL6(MSB) | CL5 | CL4 CL3 CL2 CL1 CLO(LSB)
Relative Standard | i,y 0.667 0.667 | 0.667 | 0.667 0.667 0.667 0.660
Deviation (%) ion 5.88 588 | 5.88 5.87 5.87 5.87 5.46

contribution, different transistor models are listed as name for the relative standard

deviation data group. This relation proves the fixed proportional I-V relation derived

from Eq. (5.16)

In presenting these results we focus on investigating how the worst-case scenarios of

memristor variability may affect the NN application and compare with the average case.

The worst case happens when Ry p takes the lowest possible value coinciding with Rz,

taking the highest possible value. This maximally reduces the margin between these two

values and hence reduce the precision of the multiplier part of the MAC, as discussed in
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Section

The reported average case results are the average values obtained from all different
corner cases and do not correspond with any one particular set of parameter value.
It is noteworthy that some of the accuracy numbers reported in Table are actually
better than those reported in the last row of Table This is because in many cases,
the technology parametric variation corner cases have smaller errors in their input-
output relation error maps than the non-variation case of Table This is a result of
effective cancellations between the two kinds of errors. The true global worst case results,
however, do happen with worst-case memristor parametric variation combinations.

As can be seen from the results, in all experiments both training and testing always
successfully complete, but in the highlighted cases the accuracy does not achieve better
than 90%. Even the global worst case of 79% accuracy should be tolerable for low-power
edge Al applications. It is also noteworthy that NN operations seem to be especially
resistant to the CC type of parametric variability. This is likely because NN operations
usually include a substantial number of cycles during which CC variability in the MACs

is moderated by a kind of low-pass filtering process.

5.5 Summary

This chapter presents a MAC unit based on the crossbar multiplier. Using memristor-
transistor SBMCs with mixed-signal design, this crossbar multiplier saves the time
required for carry propagation, and reduces the circuit complexity by avoiding long
logic chains. Multiplying by passive current generation across resistive elements only,
the multiplication step itself can be regarded as instantaneous according to Ohm’s law
and KCL. Using a mixed-mode, flash A2D conversion step, latency is kept under control
for the ultimate DI/DO unit by employing single-action thermometer code generation.
This means that the worst-case delay depends only on writing memristor values and
converting thermometer code to binary code. This latency management means that the
MAC unit has a relatively low working latency of 5.36 ns, the worst latency scenario
includes reset (4 row write 0 operations), fully write (4 row write 1 operations), and read

(1 read operation).

100



1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

At the same time, the energy efficiency is also improved over conventional digital
multipliers using memristors by eliminating the need for costly carry-to-the-left opera-
tions.

The proposed MAC unit also has the same precision for both input and output,
which means that it can be used to compose multi-MAC structures such as NNs without
worrying about bit-conversion when fitting the outputs of one layer to the inputs of
another layer. The approximation happens in the thermometer code generation step
where it leads to reductions in circuit size and complexity in subsequent circuitry
without sacrificing precision unnecessarily.

To validate this MAC unit, it is used as the basic perceptron in the creation of an NN of
multiple neurons and layers, and the resulting NN is used to classify the MNIST dataset.
The low precision and multiplication errors attributed to the analogue product from the
crossbar multiplier are shown to be compensatable through an extended use of QAT.
With such compensation techniques, the proposed case study NN achieves comparable
learning accuracy to the same NN based on fully-digital QAT MAC units of the same bit
width. In doing this, this chapter additionally demonstrates the potential for extending
QAT to compensate for any characterisable imprecision beyond quantization effects
in the perceptron unit. The effects of parametric variability for both transistors and
memristors are also investigated demonstrating the usability of this type of MAC units.
These have shown promising results and further development of this demonstrates that
this MAC design approach opens up future research opportunities in low-energy, low-

latency, edge Al applications.

101



1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Contributions

In this research, memristor-transistor cell-based design solutions have been proposed to
improve energy efficiency in IoT devices for higher-level standard requirements.

For the algorithm circuit design, we present novel multiplier designs that use
transistor-memristor cells for bit-wise multiplication. By working in a mixed-signal
mode, these designs remove the need for carry-to-the-left operations in conventional
digital multipliers and provide an analogue output. It is important to eliminate
carry propagation and DAC circuits while maintaining edge computing digital input
interfaces. Because this allows the majority of the computation to remain digital, with
its associated advantages, but produces the required analogue output directly. The
substantial margin of memristance differences between the ON and OFF states of a
memristor provides this design several advantages. The major advantage is sufficient
accuracy for analogue-out multipliers, also the ability to represent logic “1” and “0” with
large separation between high and low analogue current values.

The multiplication is performed by mapping one of the operands to memductance

values. The multipliers benefit from intrinsic data retention in several scenarios with
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non-volatile memristors as the core, in-memory compute units. These scenarios include
when an input variable is multiplied by a constant coefficient, a variable number
multiplied by a relatively constant reference, or a fixed number multiplied by a variable
reference. These use cases are frequently seen in control, signal processing, Al, and
MDAC applications.

Using multiple memristors in parallel in each cell, we relocate the bit significance
weighting function from current mirrors to the number of memristors in a cell. This
allows the proposed multiplier, which is based on a single transistor multiple Cu:ZnO
memristor (1TxM), to outperform recently reported designs in hardware complexity,
performance, and energy while staying competitive on peak power. However, these
advantages come at the cost of limits in the memductance adjustment range, which affect
the large-scale implementations beyond a 4-bit multiplier, which is nonetheless sufficient
for many micro-edge applications [91].

All our multiplication circuit implementation are based on 4-bit cases. The upscale
of the circuit could be realised through algorithm adjustment with the same level
performance [97,98].

Also, a MAC unit based on a crossbar multiplier is presented. Using memristor-
transistor SBMCs with a mixed-signal design, this crossbar multiplier removes the
need for carry propagation. It also reduces circuit complexity by avoiding long logic
chains. Multiplying by passive current generation across resistive elements only, the
multiplication step can be regarded as instantaneous according to Ohm’s law and KCL.
By using a mixed-mode, flash ADC conversion step, latency is kept under control for the
ultimate DI/DO unit through single-action thermometer code generation. The worst-
case delay depends only on writing memristor values and converting thermometer code
to binary code. This latency management means that the MAC unit has a relatively high
working frequency of (20.7 MHz).

The proposed MAC unit also has the same precision for input and output. It
can be used to compose multi-MAC structures such as NNs without worrying about
bit-conversion when fitting outputs of one layer to the inputs of another layer. The
approximation happens in the thermometer code generation step, leading to circuit

size and complexity reductions in subsequent circuitry without sacrificing precision

103



1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

unnecessarily.
To validate this MAC unit, a basic perceptron based on it is used in the creation of an

NN of substantial size, and the resulting NN is used to classify the MNIST dataset.

6.1.2 Limitations of the Research

The numbers of memristors and transistors in a single cell are in reality limited by such
problems as leakage. At some point this would overwhelm any additional bit resolution
increase predicted by theory. The number of memristors per cell increases exponentially
with the number of multiplier bits, leading to practical difficulties if the precision needs
to be scaled up.

Memristors have better characteristics in some ways and worse characteristics in
other ways compared with other forms of RRAM technologies. This work does not
demonstrate whether memristors are the best RRAM technology of choice for these types
of multiplier designs. It only shows that it is possible to realise working designs using
Cu:ZnO memristors. The design approach and crossbar structure should be applicable
to cells based on any type of RRAM - this remains unexplored.

The design’s low multiplication energy consumption claim is based on the energy
consumed between points in time regarded as the start and end of multiplication. The
end of multiplication is defined as when a usable product first appears. In reality, this
output needs to be maintained for some time for the user to make effective use of it and
this further holding time is not included in the energy estimate. This is because the user
of the output of the multiplier is outside the scope of the thesis and the required holding
time is therefore unknown.

One of the real-world problems encountered during this work is that memristor
and transistor widths need to be carefully selected because the unintended tuning (UT)
caused by over threshold voltage, when the memristance is too high, or the transistors

are too wide (with low channel resistances).
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6.2 Future Work

This thesis opens up possibilities for future research in energy-efficient high-performance

arithmetic circuit design. Below we discuss several possible work for next step:

1. Design Up-scaling — Although one crucial problem with these multiplier solutions

is that the multiplier bit-width is limited by the ratio between the ON and OFF
currents in the RRAM technology, it is possible to scale up the number of bits
of a multiplication by using multiple copies of low-bit multipliers. Whether
this is a realistic proposition for the multipliers presented in this thesis remains
unexplored. The principles of the design approach should be applicable for any
RRAM technology which is an opportunity for future work, as and when good
SPICE-level models of current and future proposed RRAM technologies appear.

. Practical Implementation —- Whether the DI/ AO multipliers can be used effectively

in real-world edge computing applications remains unexplored. Opportunities
exist in exploring the use of such multipliers in a wide range of potential application

systems, especially for computing at the edge.

. Robust Test — More sophisticated NNs and learning automata, and larger and more

complex data sets have not been explored with the MAC unit presented in this
thesis. Given the promising results achieved so far, further explorations in such
uses of multipliers and MACs designed using the methods presented in this thesis

have good potential of yielding good results.
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