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Abstract
Energy efficiency and performance are two of the most important design considerations

for computing applications, e.g., artificial intelligence at the edge and Internet of things

empowered by limited energy supply from batteries or energy harvesters. For these

applications, arithmetic computation is key, with multiplication and addition being the

“must-have” core functionalities. Traditional approaches to these are primarily based on

cascaded logic chains with long carry propagation circuits that contribute to high energy

consumption and latencies. Additionally, these circuits exploit digital interfaces at both

inputs and outputs, which require complex signal conversion circuits when designed

using analogue methods. This thesis presents original research focused on developing

low-energy and high-speed multiplication hardware. The core technology developed in

this work is a novel digital-in/analogue-out mixed signal multiplication method based

on a single-bit multiplication cell. The cell consists of a resistive memory bit controlled by

a transistor switch. The single-bit memory cell is implemented using memristor devices,

which provide non-volatile storage and avoid capacitive or inductive elements. This

type of single-bit multiplication cell takes two single-bit input operands (multiplier and

multiplicand). One (e.g., the multiplier) is encoded in the form of a Boolean voltage and

the other (e.g., the multiplicand) is encoded in the memristor’s conductance, also set to

Boolean values. The cell current then encodes the Boolean product following the Ohm’s

Law. The single-bit multiplication cells are then assembled into multi-bit multipliers

using a crossbar matrix structure, which directly implements the long-multiplication

algorithm. Across the crossbar, Kirchhoff’s Current Law ensures that the cell currents are

summed up to form the final overall product, forming a digital-in/analogue-out mixed

signal design. The entire Ohm’s law-Kirchhoff’s Current Law operation is instantaneous

in the absence of capacitive and inductive elements. With Kirchhoff’s Current Law,
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this type of mixed-signal multiplier eliminates the need for passing carries to the left.

This saves both time and energy compared with conventional digital amplifiers, which

need costly and potentially long logic chains for carry handling. By using multiple

memristors in an single-bit multiplication cell, costly current mirrors can be avoided

from the crossbar. The core digital-in/analogue-out multiplication method can have

direct applications in Internet of things nodes, like multiplying digital-to-analogue

converters. One advantage of using the proposed multiplier in this application comes

from the asymmetry between the two input operands. One of them, saved in memoristor

conductances, is the best changed less frequently than the other, represented by voltages,

precisely what an multiplying digital-to-analogue converter aims for. This digital-

in/analogue-out multiplier is further developed into a digital-in/digital-out multiplier

with reduced output precision, with the same bit width for both the operands and the

product.

We envisage our design will be useful in applications where multiple multiply-and-

add units are assembled into larger structures, such as in neural networks. With the

same bit width for both inputs and outputs, multipliers of this design can be cascaded

a straightforward manner for larger networks. The multiplier designs are implemented

in 65 nm technology using Cadence Virtuoso based analogue simulations. The designs

are shown to have significant speed and energy advantages over existing state of the art

and the machine learning experiments demonstrate the correctness and usability of the

reduced-precision multiplication scheme for artificial intelligence applications.
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Chapter 11

Introduction2

1.1 Challenges in Emerging Applications3

Over the past half-century, the requirement of high energy efficiency and performance4

in computing has been sustained by the down-scaling of metal-oxide-semiconductor5

field-effect transistors (MOSFET). This method enabled complementary metal-oxide-6

semiconductor (CMOS) systems to maintain an exponential increase of the device’s7

density in per unit area at each technology generation [1]. In the recent nano-scale8

generation, the energy efficiency has stopped commensurately growing with circuit9

performance. It is partly because the thermal power density from a large number10

of devices in the unit area leads to device performance degradation. This is further11

exacerbated by the performance gap between the central processing unit (i.e., data12

processing part) and the computer memory (i.e., data storing part) increases as the data13

volume increases. These issues leads to difficulties when trying to meet performance14

and energy efficiency requirements of emerging electronic applications such as artificial15

intelligence (AI) and Internet of things (IoT) AI applications usually based on neuron16

networks (NNs) [2, 3].17

Machine learning using NNs and other AI methods involves multiple iterations of18

arithmetic operations, with data flow between processing elements and memory, and is19

a significant bottleneck for conventional computers [2–4], this phenomenon is known as20
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the ”memory wall” [5, 6]. In order to address the memory wall challenge, researchers21

have proposed a shift from traditional Von Neumann computing architectures to non-22

Von Neumann computing architectures. In-memory computing (IMC) is an example of23

non-Von Neumann computing architectures.24

IMC using non-volatile memory technologies, provide ways of reducing the amounts25

of data flow required for AI applications, including NNs [4, 7], by locating the compu-26

tation close to or at the memory. Using non-volatile memory, IMC can further reduce27

the number of data movements. Moreover, non-volatile data storage helps sustain the28

continuity of computing flow through power cuts or interruptions in edge devices,29

which are powered by unreliable supplies, such as energy harvester.30

As a result, non-Von Neumann architectures have been a popular area of research31

aimed at improving energy efficiency and performance. An example area of such32

research is related to the use of resistive memory such as memristors, which has33

shown promises of significantly improving key performance metrics such as operating34

frequency (increasing by 15% relative to the scaled supply voltage), energy efficiency35

(increasing by 35% for a given per switching performance), footprint area cost (reducing36

by 35% on chip), and scaled die cost (reducing by 20% while no more than 30% increase37

of wafer cost ) [8–10].38

Another application area that is seeing a similar rapid development as AI is the39

Internet of Things (IoT), devices communicate end-to-end to build the machine-to-40

machine interaction [11].41

Arithmetic operations are central to modern AI applications and IoT [12,13]. In these42

operations, multiplication plays a crucial role with significant impact on performance43

and energy efficiency, especially because traditional multiplier circuits feature complex44

partial product generation and carry propagation logic chains [14]. As such, reducing45

the energy consumption of multipliers, is an ongoing design challenge.46

For low-complexity multiplication, reducing precision is a promising method. For47

this, pruning the carry chains to a minimum proportion while also maintaining an ac-48

ceptable precision has been proposed by numerous approximate and speculative circuit49

designs [15]. These designs require careful synergy of operating voltages and frequencies50

to balance energy and performance trade-offs [16]. Moreover, the accumulation of51
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imprecision and errors in cascaded workloads needs mitigation strategies which adds52

more complexity to the logic chains [17]. Consequently, the usability of voltage-mode53

proportional carry pruning schemes is still limited.54

Many IoT applications, such as neuromorphic, signal processing and control, require55

the multiplier output in an analogue form with digital input interfaces [18, 19]. This56

is conventionally satisfied by attaching a digital-to-analogue converter (DAC) device to57

the output of a digital circuit [20]. Meanwhile, the increase of real-time data produced58

by relative sensors in edge devices and the number of edge devices set a much higher59

requirement for the processing speed in IoT applications. However, DAC circuits60

add to the energy and performance costs that depend on the precision of the digital61

multipliers. Therefore, resistive switch (RS) emerging devices bring analogue domain62

data processing in hardware back to the forefront [8, 9, 21].63

1.2 Energy-efficient Multiplier Design64

Since pure digital multiplier design needs positive related scale of DACs, the digital mul-65

tiplier will be costly in high density analogue to digital (A2D) conversion applications.66

Therefore, the inevitable A2D conversion in IoT edge devices and the higher requirement67

of processing speed and energy efficiency makes a limited space for pure digital design68

in IoT.69

Multiplication with mixed-signal arithmetic circuits is a potential alternative for70

achieving low-cost analogue output directly [22] and has a successful academic and71

commercial history. An example is the multiplying digital-to-analogue converter72

(MDAC) circuit, which multiplies a digital number by a usually analogue reference73

signal to produce an analogue output [23–25]. Digital-in/analogue-out (DI/AO), where74

both operands are digital, but the product is analogue, has remained under explored.75

One of the main areas of contribution by this thesis is in this area.76

Table 1.1 lists different types of multipliers (including MDACs) by the digital and77

analogue nature of their input and output signals. In digital design of DI/AO,78

both multiplication operands are in digital, and product is initially in digital. Thus79

DAC is needed for the analogue product. Conversely, analogue design has analogue80
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Table 1.1: Digital-in/Analogue-out Multiplier Designs

Design Multiplier Multiplicand Product
Non-

volatility

Digital Digital Digital Digital+DAC [20] Symmetric

Analogue [22] Analogue Analogue Analogue Symmetric

MDAC [23] Digital Analogue (Ref.) Analogue Symmetric

This Work

(Chapters 3&4)

Digital

(Voltage)

Digital

(Memductance)

Analogue

(Current)

Asymmetric

multiplication operands and analogue product. The MDAC design has digital multiplier,81

analogue multiplicand and analogue product. The proposed work in Chapter. 3 and 482

have digital multiplication operands and analogue product.83

The proposed designs have the both operands in digital form which removes the84

need for maintaining an analogue reference or other type of analogue input. These85

analogue signals will be costly in edge computing including IoT applications. Research86

in pure-digital input, pure-analogue output is, therefore, relevant for serving one of the87

important needs in the rapidly developing edge computing area.88

This thesis presents a design approach for mixed-signal DI/AO multipliers. These89

multipliers are based on transistor-memristor cells located at the nodes of a crossbar90

for fast and efficient operation. With one of the operands (inputs) held in non-volatile91

memory, such a multiplier is suitable for use in applications for which one of the92

operands has a relatively stable value, for instance a reference input. Such a multiplier93

can be used as a replacement for or an improvement on an MDAC.94

For AI applications such as NNs, on the other hand, the input and the output of a95

multiply-accumulate (MAC) unit should all be of the same format, e.g., digital, because96

the output of the multiplication usually is re-used as input for other MAC units in97

the NN [2, 3]. In order to extend the multipliers (presented in Chapters 3 and 4) for98

use in NNs, the analogue output needs to be converted to digital format. One strong99

reason for adapting these DI/AO multipliers is that they are based on the transistor-100
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memristor crossbar structure. In such multipliers, one of the operands is represented101

by memductance (memristor conductance), which is non-volatile. This is a good match102

for such applications as NNs and reference-based arithmetic, where one of the operands103

(e.g., the weight or the reference) tends to be relatively stable and requires only sporadic104

change [2–4,7]. Having that operand in non-volatile storage help reducing system energy105

consumption and operating latency.106

1.3 Research Questions and Contributions107

The energy-efficient multiplier design has set several fundamental requirements. How-108

ever, implementations of multiplier demands more than the basics.109

The arithmetic requirements from IoT nodes and NN cells on the edge pose the110

following research questions:111

Research Question (RQ): Can a method be found for designing hardware multipliers112

that satisfy the following:113

1. Both the operands (inputs) are digital and the product is analogue (DI/AO).114

2. Operands and product are all digital, and have the same bit-width (DI/DO).115

3. One of the operands is maintained in non-volatile memory (asymmetric non-116

volatility).117

4. Low latency and low energy operations.118

5. High precision and high bit resolution is not an important concern.119

Note that for both of these application areas, high precision and high bit resolution120

(bit-width) are not a major concern [23–26], and lower precision can be traded for121

complexity, energy and speed gains.122

This thesis seeks to answer these research questions and presents methods for making123

use of memristors to improve performance metrics including speed and energy efficiency124

of multipliers. The specific contributions of this thesis are as follows:125
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• A new, mixed-signal multiplier design method for multiplying two digital numbers126

and directly obtaining an analogue product without carry-chain and DAC complex-127

ities. (Addressing RQ. 1, 4 and 5)128

• Comparative analysis of energy/performance against state of the art existing work,129

demonstrating the advantages of this work through extensive theoretical and130

experimental investigations. (Addressing RQ. 1, 3, and 4)131

• Optimisation methods such as the elimination of current mirror (CM) by changing132

the topologies of memristor cells and investigating different memristor technolo-133

gies resulting in an order of magnitude improvements in accuracy, speed and134

energy for lower complexity design when compared with the high complexity135

structure with CM. (Addressing RQ. 3 and 4 )136

• A high energy efficiency end-to-end multiplication accumulation unit based on the137

transistor-memristor crossbar multiplier with mode transition for such applications138

as classification NNs. (Addressing RQ. 3, 4 and 5)139

• Validation of the MAC design using it as a perception in a non-Von Neumann NN140

implementation with quantization-aware training (QAT) solving a machine learn-141

ing problem of non-trivial size (MNIST hand-writing classification). (Addressing142

RQ. 2, 3, 4, and 5)143

1.4 Thesis Layout144

This thesis is organised as follows:145

Chapter 1 - Introduction. This chapter briefly presents the motivation for the thesis146

and summarises its contributions.147

Chapter 2 - Background and Literature Review. This chapter gives background148

theory of the technologies used in the designs in this thesis. These include amplification149

implementations, the theoretical base of CMs, methods of high energy efficiency AI150

hardware design, as well as the properties of the memristor.151

Chapter 3 - Transistor-memristor Crossbar Multiplier with Current Amplifiers. In152

this chapter, a design of crossbar array multiplier based on one transistor one memristor153
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(1T1M) is presented. The performance and characteristics are investigated. (Addressing154

RQ. 1, 3, and 4)155

Chapter 4 - Memristive Multiplier Design with In-cell Current Multiplication.156

This chapter presents a multiplication cell which amplifies current in cell without CM157

circuit, and its use in multipliers. The performance and characteristics are investigated.158

(Addressing RQ. 1, 3, and 4)159

Chapter 5 - Memristive Multiply-accumulate Unit Applied for Neural Network.160

The multiplier presented in the previous chapter is further developed into a MAC unit161

and an NN is constructed using such MAC units as perceptrons. The use of these162

types of NNs is investigated with real-world example machine learning applications.163

(Addressing RQ. 2, 3, 4, and 5)164

Chapter 6 - Conclusions and Future Work. The contributions of this thesis are165

summarised, and future research areas for the development of memristor-based design166

solutions for computing performance in AI applications are suggested.167
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Chapter 2168

Background and Literature Review169

In this chapter, the technology baseline and related work are discussed, and appropriate170

literature survey is also carried out.171

2.1 High Performance Arithmetic Circuit Design Techniques172

2.1.1 Multiplication Circuit Design173

Multipliers have been a computational building block or programming element in174

different computing and signal processing applications. These include filters, NNs,175

communication mixers, and communication modulators.176

Multiplication is traditionally implemented through a sequence of logic AND, ad-177

dition, subtraction, and shift operations. In other words, multiplication is a series of178

repeated additions [27]. The multiplicand is the number in addition, and the multiplier179

is the number of addition repetitions. Usually, multiplication is divided into several180

steps: partial product generation, partial product addition for two rows final addend and181

augend, and final product generation by adding row final addend and augend. Besides182

initial partial product generation procedure, each step of addition also generates a partial183

product. Carry propagation is along with the entire addition procedures [28]. The184

partial products addition procedure usually performed by digital adders. These circuits185
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generate delay and consume energy in the carry propagating procedure. Therefore,186

reducing the delay caused by carry propagation has been set as high-priority task about187

multiplication optimisation and widely investigated.188

Partial products are conventionally generated by adders in various logic operations.189

For instance, in radix b notation, integer x = (. . . x2x1x0)b and y = (. . . y2y1y0)b, sum190

with them will generate two integers, pxy = (. . . p2 p1 p0) and cxy = (. . . c2c1c0), and191

these two new integers has the relation as Eq. (2.1) [29] shows:192

0 ≤ si = xi + yi − bci+1 < b (i ≥ 0) (2.1)

In Eq. (2.1), cxy are the ”carry” digits with c0 = 0 as the least significant bit (LSB)193

cannot get carry from a lower significant bit. As the speed of addition be affected194

by carry propagating time, a single sum usually is operated in a single adder with195

additional circuits running the carry propagating procedure. In a multiplier, the scale196

of the additional circuit, which contributes hugely to logic complexity, will increase with197

the bit-width and this increase not be proportional.198

One way of reducing the carry propagation overhead is to reduce the number of199

addends and augends. In addition, Bedrij proposed a carry identification adder [30].200

This design generates two sub-sums for each addition with repeating sub-addends and201

sub-augends addition twice in the same addition sequence. One is forced with carry202

digits in these two sub-sums, and the other is not. Therefore, the selection of addition203

results can be directly forwarded without heavy back-propagation [30]. Therefore, the204

multiplier can be much faster with this light carry propagation.205

These conventional multipliers built with different adders show respective advan-206

tages for faster partial product generation. High-performance multiplier design needs207

to consider simplifying the number of addition operands, accelerating the generation208

of addition operands, and adding up all operators faster [31]. Wilkes tried to iterate209

the multiplication process for cutting down the number of addition operands [32]. This210

method is able to approximate the multiplication operands and shorten the digits for a211

quicker result than a full multiplication. As addition operands have the same amount212

as multiplier digits do, all addition operands need to be generated simultaneously. The213

efficient recording needs to be local operation with digit-shifted multiplicand. By doing214
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this, the number of addition operands will be halved. Normally, an addition operation is215

performed by a single adder that can only generate a single sum. Carry propagation216

grows when the number of bits increases, usually not in proportion. And the logic217

complexity also grows disproportionally with the increase of the number of bits. One218

way of mitigating this is to use carry-save schemes which reduce the horizontal passing219

of carry bits by delaying their resolution.220

Carries must exist in digital multiplication because a single bit cannot represent a221

numerical value higher than 1, but adding two such bits produce a higher than 1.222

Furthermore, time and energy costs are inevitably caused by carry processing. Thus,223

digital no-carry/carry-mitigation/carry-optimisation schemes are ultimately incapable224

of completely removing the complexity of dealing with carries in digital multiplication.225

On the other hand, analogue arithmetic does not need to deal with carries because226

an analogue signal is able to represent a range of values large enough to contain all227

possible arithmetic results at that digit position. The current in each column may be228

amplified according to the column’s bit significance. For instance, a current value stands229

for LSB can be amplified to the digit with respective significance. Simultaneously, KCL230

circuit adds up all currents and generates one current stands for the final calculation231

result. And this result naturally contains all carries. This will be discussed in detail in232

subsequent chapters (Chapter 3 and Chapter 4) as the multipliers presented in this thesis233

take advantage of this principle to eliminate carry processing.234

2.2 High-speed Analogue-to-digital Converter235

2.2.1 Flash Analogue-to-digital Converter236

In Chapter 5 of this thesis, there is a requirement for high-performance low-energy237

analogue to digital (A2D) conversion. Small size is also an important requirement as238

the analogue-to-digital converter (ADC) represents a significant part of the hardware239

design.240

A Flash ADC structure is presented in Fig. 2.1. With very high-speed architecture,241

flash ADC has its performance dominated by matching issues [33]. Also, the flash ADC242
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is a good fit for these requirements. Meanwhile, parallelism exists in both the current243

comparison and encoding operation by inputting the current into multiple comparisons244

while encoding multiple comparison results in one shot. This parallelism makes the flash245

ADC one of the fastest ADC schemes.246

Figure 2.1: Block diagram of flash ADC.

2.2.2 Current Mirror247

The CM was originally named after the equal channel current, which was generated by248

two identical MOS transistors with the same gate-source potentials [34]. Fig. 2.2 shows249

two CM structures, in them, (a) is n-channel CM structure, and (b) is p-channel CM250

structure.251

(a) n-channel CM (b) p-channel CM

Figure 2.2: Circuit diagram of CM.

In Fig. 2.2, iI is defined by an input current source, and iO is the output with the name252

”mirrored current”. In the n-channel CM, transistor M1 has the drain connected with253
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the gate. Therefore, VDS1=VGS which means M1 is working in saturation. Similarly, M2254

also needs to be set in saturation by VDS2+VT2≥VGS. In this way, the ratio of iO to iI255

can be written as Eq. (2.2). In the following equations, iI and iO are the input current256

and output current, L1 and L2 are channel length of M1 and M2, W1 and W2 are channel257

width of M1 and M2, VGS is the gate-source voltage on transistor, VT1 and VT2 are the258

threshold voltage of M1 and M2, VDS1 and VDS2 are drain-source voltage of M1 and M2,259

K
′
1 and K

′
2 are the process transconductance parameter of M1 and M2, λ is the device260

parameter of transistor.261

iO
iI

=

(
L1W2

W1L2

)(
VGS −VT2

VGS −VT1

)2
[

1 + λvDS2

1 + λvDS1

(
K
′
2

K′1

)]
(2.2)

Normally, the same physical parameters of MOS components in the same integrated262

circuit are identical. These include gate threshold voltage VT and process transconduc-263

tance K′. Therefore, Eq. (2.2) simplifies to Eq. (2.3).264

iO
iI

=

(
L1W2

W1L2

)(
1 + λvDS2

1 + λvDS1

)
(2.3)

In other words, the value of iO is proportional to the value of iI , achieving pure uni-265

directional current amplification. In other words, putting a CM on an input current to266

generate a proportional output current does not modify the former.267

Similarly, in the p-channel CM, transistor M1 has the drain connected with the gate.268

Therefore, VSD1 = VSG which means M1 is working in saturation. Similarly, M2 also269

needs to be set in saturation by VSD2 + VT2 ≥ VSG. In this way, the ratio of iO to iI can be270

written as Eq. (2.4).271

iO
iI

=

(
L1W2

W1L2

)(
VSG −VT2

VSG −VT1

)2
[

1 + λvSD2

1 + λvSD1

(
K
′
2

K′1

)]
(2.4)

It is reasonable to assume that the physical parameters, including the gate threshold272

voltage VT, and process transconductance K′, are the same for the same p-type transistor.273

Then Eq. (2.4) simplifies to Eq. (2.5).274

iO
iI

=

(
L1W2

W1L2

)(
1 + λvSD2

1 + λvSD1

)
(2.5)

If VDS1 = VDS2 (VSD1 = VSD2), then the ratio of iO/iI becomes Eq. (2.6).275
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iO
iI

=

(
L1W2

W1L2

)
(2.6)

To increase the current, the size ratio of the CM transistor can be adjusted [34].276

According to Eq. (2.6), a much larger multiplying transistor (M2) with W/L ratio greater277

than that of the reference transistor (M1) can be used in the CM to amplify current. This278

technique can also be applied to a p-type CM for current amplification.279

CMs and other purely transistor-based methods are not the only ways in which280

current can be tuned. In low-energy and high-speed applications, the latency and energy281

consumption of charging and discharging transistors are need to be avoided. In some of282

the multipliers presented in this thesis CMs are not used for this reason.283

2.2.3 Complementary Metal–Oxide–Semiconductor Current Comparator284

Figure 2.3: Circuit diagram of a current comparator thermometer code generator [35].

In ADC designs, comparing an analogue input signal with threshold features is a285
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prominent operation. When the input signals are in the form of voltages, this comparison286

requires a respective circuit structure to build a feedback path to sources such as source-287

coupled pairs and complementary device pairs of common-gate and common-drain. In288

comparison, if the input analogue signals are in the form of currents, the comparison can289

be implemented in a much more straightforward manner, resulting in faster responses290

in some cases [36].291

The current comparator incorporates CM circuits, which are shown in Fig. 2.3. The292

input is on the left, and the reference is on the right. In this design, p-MOSFETs (P1293

to PN) function as current sources, while n-MOSFETs (M1 to MN) act as current sinks.294

The p-MOSFET source current is mirrored from the input, while the n-MOSFET sink295

current is mirrored from the reference source. As a result, the voltage at the junction296

point between the p-MOSFET source and the n-MOSFET sink increases to Vdd when297

the p-MOSFET source current is greater than the n-MOSFET sink current. Conversely,298

if the n-MOSFET sink current is greater than the p-MOSFET source current, the junction299

point voltage drops to ground. The comparison of currents is therefore represented in300

voltages.301

To detect a small reference current, the sink can be constructed with multiple same302

channel length n-MOSFETs connected in series. When the differences between the input303

and reference currents are minimal, the output may not be resolved to logic levels. To304

address this, dual series-connected inverters in the buffer array amplify the comparator305

output to standard logic levels. With this setup, the gain inverter array produces a306

thermometer code where the boundary between 0 and 1 indicates the input current307

value.308

2.2.4 Thermometer Code to Binary Encoder309

After the current comparator generates its output in a thermometer code, the encoder310

needs to translate the thermometer code to binary code for output. The thermometer311

code to binary encoding consists of 2 procedures. First, it generates a one-hot code312

from the thermometer code. Second, it converts one-hot code to binary code. A 16-313

bit thermometer code to 4-bit binary code encoder is illustrated in Fig. 2.4. As can be314

seen, the one-hot code is generated by the AND gates. Then, the one-hot code is input315
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into a binary encoded ROM pattern. Finally, the binary output is buffered and sent out.316

Figure 2.4: Circuit diagram of ROM thermometer to binary encoder [35] [37]

During this procedure, the output of binary encoder generation needs to scan from317

the LSB to the most significant bit (MSB). LSB will keep swinging until all significant bits318

are encoded until the higher significant bits are set.319

2.3 Memristors320

In 1971, Leon Chua related the fundamental circuit variables charge (q) and flux321

linkage (ϕ) with a mathematical description of a component. Because this relationship322

includes non-volatility in the adjustable resistance state, it was called ”Memristor”,323

short for ”memory resistor” [19, 38, 39]. The memristor was proposed as the fourth324

element in the charge and flux taxonomy [19, 39] and had a number of promising325
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Figure 2.5: Details of memristor internal state [38].

characteristics. One of these is its potential in replacing semiconductor components in326

processing circuits. That is because, as a switchable device, a memristor can perform327

similar ON-OFF operations to a transistor, and this became more significant when328

practical memristor implementations appeared [38, 40]. The RS devices which come329

from emerging memory technologies are also known as resistive random access memory330

(RRAM) [41]. A memristor is an RRAM device, typically based on a metal-insulator-331

metal (MIM) structure. The proper voltage to the top electrode will generate conductive332

filament (CF) between the top and bottom electrodes. Thus the high density of CF333

makes the device in low resistance state (LRS). Figure. 2.5 shows in detail how memristor334

resistance state relates to doped region width (w) and device length (D). If the electric335

potential on the left side terminal of the doped region is higher than that on the right336

side terminal of the undoped region and over a threshold value, the doped region width337

will increase, and the memristor resistance will decrease, and vice versa [38, 39].338

Conversely, the rupture of CF by application of proper voltage to the bottom electrode339

will make the device in high resistance state (HRS) [42,43]. This kind of processing, called340

IMC, is a design for computing within the memory, thus eliminating the energy-intensive341

and time-consuming data movement. In this thesis, the design strategy applies the best342

memristor component with a transistor as individual functional cells.343

As a nonvolatile component, memristor has been used in memory device design,344

which is now called ”resistive memory” [44]. At the same time, the possibilities for345

performing arithmetic with memristors have also been explored, with multiplication346

being viewed as especially promising [45].347

The multiplier solutions presented in this thesis are centred around the use of348
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memristors in novel ways. Fundamentally, the methods presented by using any resistive349

non-volatile memory. Memristors are chosen for this work because of their support for350

integration into normal CMOS circuits, the existence of memristor devices with suitable351

properties and the availability of reliable and trustworthy models for investigating the352

performance of implemented hardware.353

2.3.1 Memristor Physical Models354

Titanium-dioxide Thin-film Memristor355

Inspired by Chua’s theoretical work, HP lab presented the first Titanium Dioxide (TiO2)356

thin-film memristor device. Strukov and colleagues built a physical model of a two-357

terminal electrical device that behaves like a perfect memristor [38]. In detail, the device358

state variable w specifies the distribution of dopants in the device. It is bounded between359

zero and D (maximum device length). R is the general resistance that depends on the360

device’s internal state, which has the highest value ROFF and the lowest value RON .361

The external bias v(t) across the device will move the boundary between the high-362

dopant region and low-dopant region by causing the drifting of charged dopants and363

generate respective current i(t). With average ion mobility µv, the simplest case of Ohmic364

electronic conduction and linear ionic drift in a uniform field can give us the following365

relations.366

v(t) =
(

RON
w(t)

D
+ ROFF

(
1− w(t)

D

))
i(t) (2.7)

dw(t)
dt

= µV
RON

D
i(t) (2.8)

From Eq. (2.8), the formula for w(t) is generated as:367

w(t) = µV
RON

D
q(t) (2.9)

Then the memristance of this system can be derived by inserting Eq. (2.9) into Eq. (2.7)368

with simplification from RON << ROFF,369
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M(q) = ROFF

(
1− µV RON

D2

)
q(t) (2.10)

TiOx devices have similar current-voltage (I-V) relations; meanwhile, I-V character-370

istic from a metal/oxide/metal cross-point device. This device applies the nanometer371

scale thick oxide film, which initially contained one layer of insulating TiO2 and one372

layer of oxygen-poor TiO2−x. This structure generates the boundary condition on the373

state variable of the device. A detailed model of TiO2 memristor is presented in Fig. 2.6.374

Figure 2.6: TiO2 memristor device architecture [38].

As can be seen, the oxygen vacancies are drifting in the applied electric field as mobile375

+2-charged dopants. Also, they shift the actual boundary between TiO2 and TiO2−x376

layers. This shifting performs the switching characteristic on the state variable of device.377

Meanwhile, this model’s ON/OFF memristance ratio ranged from 160 to 380. As will378

be discussed in later chapters, this type of digital-in/analogue-out multiplier does not379

represent Boolean 0 in the operands with true 0 values of physical parameters – the high380

resistive state (HRS) of a memristor cannot have a conductance of true 0 and the low381

resistive state (LHS) of a memristor cannot have a conductance of infinity. This means382

that Ii,j cannot be 0 amps even when it represents a Boolean value of 0. Consequently,383

when multiple Boolean 0’s are added together to produce an overall product P of 0, the384

actual value of Iout representing P = 0 is not 0 amps.385

The maximal precision of such a multiplier is therefore limited by the ratio between386
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RMH and RML, which is technology-dependent. This is because the value of Iout387

that represents P = 0 must be lower than the value of Iout that represents P = 1.388

Conservatively, this is true if Iout representing P = 0 is lower than the current Ii,j389

representing a single bit value of 1. In other words, if the following inequality is true, the390

multiplier precision is not violated at a specific word length.391

RMH > PmaxN × RML, (2.11)

where PmaxN is the maximal value of the product for an N × N-bit multiplier. For392

instance, for a four-bit multiplier Pmax4 = 225 and for a five-bit multiplier Pmax5 = 969.393

Thus, this can be usable in our low-precision multipliers.394

However, memristor still suffers from low endurance (105 cycles, the satisfactory395

switch endurance should be larger than 106 cycles), high write energy (2 nJ, reported396

satisfactory operational energy is 0.375 pJ), and high latency (100 ns, the required fast397

switch speed is 5 ns). This sets a low bar for performance which memristors based on398

other materials have been shown to improve on [43, 46, 47].399

Copper Doped: Zinc Oxide (Cu:ZnO) Thin-film Memristor400

Figure 2.7: Schematic of the fabricated Cu:ZnO memristor architecture [46].

Cu:ZnO is an emerging material that possesses both ferroelectricity and oxygen401

vacancies, the key factors for realising meaningful memristors [46]. Suresh and col-402

leagues presented their work in [48], where the fabricated, Cu:ZnO based, Set/Reset403
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devices exhibited low S/R voltages (+1.40/-1.2 V), high ON/OFF ratio (2 × 103), and404

high retention (up to 106 s period without degradation). The RS device based on this405

ferroelectric Cu:ZnO offers better performance when compared to the former lower406

temperature annealed Cu:ZnO devices. This character of Cu:ZnO memristor provides407

good temperature variation tolerance.408

As can be seen, the schematic of Cu:ZnO memristor illustrated in Fig. 2.7 shows that409

aluminium is used as the top electrode while indium tin oxide (ITO) acts as the bottom410

electrode. A thin film of Cu:ZnO on ITO/glass substrate provides the characters of a RS.411

In detail, Znx, Ox
o , and VO(oxygen vacancies) are considered as internal defects during412

the formation of oxygen vacancies and ions in the ZnO lattices. The Zni and VO defects413

in ZnO make ZnO show grown n-type behaviour. If a proper amount of Cu dopants is414

incorporated in the ZnO lattices to form an CuZn − VO acceptor complex, Cu:ZnO will415

show p-type conductivity. The internal details of the respective RS states of Cu:ZnO416

memristor are presented in Fig. 2.8. Under different bias, O2− and V2+
O ions move in417

their respective direction in the device, which depends on the polarity of the applied418

voltage. This is the reason for switching between HRS and LRS.419

The Cu:ZnO-based memristor technology is also suitable for the multipliers described420

in this thesis and will be compared with TiO2-based devices. The earlier TiO2 memristor421

device displayed clear and consistent memristive behaviour and stable logic TiO2422

memristor device performance [38, 49]. Its limited ON/OFF ratio fails to offer better423

performance for memristance variation tolerance in large-scale algorithm applications.424

Hence, we investigated the effects of memristor resistance variability. To this end, we425

selected the Cu:ZnO memristor device [50], which features a larger terminal resistance426

of more than 1000 and operates in a voltage range similar to our previous TiO2 memristor427

device.428

The Cu:ZnO device we chose exhibits a device-to-device (DD) variability of 59%429

for the high-resistance state (HRS) and 36% for the low-resistance state (LRS), while430

the cycle-to-cycle (CC) variability is 89% for the HRS and 51% for the LRS. Note that,431

although the CC variability is particularly high, it is impossible for RML to exceed432

RMH given that the baseline ratio between these two parameters is 1000 for the Cu:ZnO433

technology.434
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Figure 2.8: Schematic of the transport mechanism of the forming free Al/Cu:ZnO/ITO/glass

device [46].

2.3.2 The Voltage ThrEshold Adaptive Memristor Model435

In addition to the general mathematical model, analogue behavioural models (ABM)436

are developed for deeper research on memristor characteristics in circuits. The linear437

ion drift model has first developed from the basic memristive definition of memristor438

I-V relationship. This model uses the current-control method to adjust doped region439

width for changing memristor resistance [38]. The ideal assumption that the doped440

region width changes linearly is unrealistic and especially undesirable for logic circuits.441

With the assistance of window function, the relation between physical device size and442

resistance variation is also regulated. As a result, the nonlinear ion drift model was443

developed to present the complexity of fabricated memristive device state drift [51].444

As early-stage models, both the linear ion drift and the nonlinear ion drift models445

offer low accuracy for modelling the oxide region and doped oxide region like two446

serially connected resistors. Aiming at building a more realistic model, a more accurate447

physical model is built by serially connecting an electron tunnel barrier with a resistor.448

This one is called the Simmons tunnel barrier model, which shows a higher level of449

accuracy among TiO2 memristive devices without increasing model complexity [53, 54].450

For balancing accuracy and complexity of the model, Kavatinsky simplifies physical451

behaviour and mathematical functions complexity in the Simmons tunnel barrier model,452

then the threshold adaptive memristor model (TEAM) is generated with a reasonable453

balance between accuracy and computational efficiency [55]. Since the existence of454
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Table 2.1: Voltage ThrEshold Adaptive Memristor Model Parameters

Parameter
Memristor

TiO2 [52] Cu:ZnO [48]

αOFF 4 7

αON 4 5

VOFF (V) 0.3 0.9

VON (V) −1.5 −0.85

ROFF(Ω) 300k 152M

RON(Ω) 1k 150k

kOFF (m/s) 0.091 40

kON (m/s) −216.2 −80

wOFF (nm) 3 3

wON (nm) 0 0

threshold voltage is found from memristive devices, Kavtinsky updated ABM TEAM to455

voltage threshold adaptive memristor (VTEAM) [56, 57]. As a threshold-based voltage-456

driven model, VTEAM combines the advantage of the TEAM model with multiple457

freely chosen I-V characteristics that precisely estimates all reported physical device458

behaviours, such as linear ion drift [38], nonlinear ion drift [51] and the Simmons tunnel459

barrier [53]. At the same time, it exhibits superior computation efficiency especially for460

memory and logic applications [56–58].461

This thesis utilises the VTEAM memristor model for design and analysis purposes,462

with the relevant parameters listed in Table. 2.1. Notably, kOFF, kON , αOFF, and αON are463

constants, while ROFF and RON represent the terminal switching state resistances, and464

wOFF and wON denote the undoped region length. Additionally, VOFF and VON refer to465

the threshold voltages. A careful examination of these parameters reveals that both the466

TiO2 and Cu:ZnO memristors possess a 1.8V region between two threshold voltages. The467

Cu:ZnO memristor exhibits a more balanced working zone that enables dual direction468

bias setting for multiplication cell writing operation. Furthermore, in the case of multiple469
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memristor design, the 500× larger terminal switching state resistance (under worst-case470

variation of 50% ROFF(Cu:ZnO)/ROFF(TiO2)
× 1

2 )ensure that the memristor dominates the471

multiplication cell output current through the memristor resistance drop.472

2.3.3 Transistor Memristor Cell Design473

In functional circuit design, a major challenge memristors face is in array fabrication474

because of its requirement for high-quality metal thin film, which has high risks on475

current leakage between different functional units [59]. This requirement motivates476

mixing CMOS with memristor to mitigate the leakage issue [60]. Various types of477

transistor memristor combinations have been explored, such as one transistor two478

memristors (1T2M) [61], three transistors two memristors (3T2M) [62], eight transistors479

two memristors (8T2M) [63], etc. However, cell power efficiency still has room for480

improvement.481

Memristor cell methods have already featured in complex logic calculations such482

as ”material implication” (IMP) [64, 65] and majority inverter graph (MIG) [66]. These483

existing cases motivate the multiplication cell design presented in this thesis.484

2.4 Memristor-based Multiplier Design for Energy Efficiency485

Since computation and storage are physically separated in the predominant processing486

hardware architectures, the data traffic in a typical computing procedure cycle will start487

at importing data from the memory unit. Data will be transmitted to the processing unit488

(where computation takes place). Once the multiplication is completed, the data is sent489

back to the memory unit for storage. Fig 2.9(a) illustrates this conventional multiplication490

process. This data transfer between the processing unit and the memory unit can result491

in a fundamental bottleneck in computer performance, commonly referred to as the492

memory wall [67, 68]. One potential solution to overcome this bottleneck is to combine493

data loading and storage in the same block, as in the in-memory multiplication method494

depicted in Fig 2.9(b). The memristor’s unique properties, including non-volatility and495

scalability, make memristor a promising candidate as the target memory component.496

Electronic NNs based on RS memory array or memristor have also been proposed497
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in [18, 19, 69].498

(a)

(b)

Figure 2.9: Multiplication type. In (a), typical type. In (b), in-memory type.

In [18], the crossbar array of hafnium oxide (H f O2) memristor is used as a reconfig-499

urable analogue processor for edge computing. Transistors are the most mature option500

for precisely programming individual memristor with stronger sneak-current tolerance501

in access devices [70]. A vector of voltage outputs from a sensor can be applied directly502

to the rows of a memristor crossbar. The conductance of the crossbar multiplication503

cells stores the values of the appropriate matrix elements. The currents that appear504

on the array columns in real-time represent the output vector of the multiplication.505

To read out the results in parallel, a trans-impedance amplifier (TIA) will convert the506

current signal from each column to a voltage signal. Moreover, the 1T1M crossbar with507

linear I-V memristors enables accurate analogue vector-matrix multiplication (VMM).508

During memristor programming, the gate voltage applied to the transistor is controlled509

to generate the respective compliance current. For each of the TiO2 and Cu:ZnO510

technologies, the observed range between the two worst cases is then compared with511

24



the specified (ideal) range from the memristor models and checked for compliance with512

High Memoristor Conductance
225 > (Low Memoristor Conductance). After programming, during513

inference, all transistors are turned ON to perform a one-step VMM [70]. It yields a514

good approximation to the scalar product of a vector component and matrix element.515

These generate adequate accuracy and high speed-energy efficiency for IoT and edge516

network (i.e., signal spectrum analysis, image compression, and convolutional filtering).517

Simultaneously, a crossbar multiplier is potentially an area-saving solution because the518

memristor crossbar can be built on top of the transistor-related layers using a back-519

end-of-line process [71]. Therefore, the area can be smaller than the traditional CMOS520

multiplier used.521

2.5 Current-mode Arithmetic522

Current-mode arithmetic circuits have shown their promising characteristics in improv-523

ing energy efficiency [72]. In this mode, currents of varying amplitude in different524

circuit paths are driven by analogue bias voltages. Due to Ohmic elasticity of current525

paths this mode shows noticeable improvement in energy proportionality than the526

traditional voltage-mode digital circuits. Additionally, current-mode design generates527

high output charging speed per unit of time (slew rate) and simpler structure for528

arithmetic operations. For instance, directing a current path into a node or carrying529

a current path away from a node is equivalent to addition or subtraction. Moreover,530

adjusting the resistance of current generating cell enables low-complexity amplification,531

which is analogous to current multiplication or division. As such, when a network of532

current paths is generated it can be operated faster with lower energy consumption at533

significantly reduced circuit complexity [18, 19, 73].534

2.6 Multiplying Digital-to-analogue Converters535

An MDAC is a device which multiplies a digital (usually binary) numberDb with an536

analogue signal s to generate an analogue product P, such that P = s × Db [23]. It is537

most likely used to multiply a stream of variable digital numbers (input signal) to a538
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relatively constant analogue reference, or to multiply a constant digital number with a539

varying analogue input signal. In other words, the relatively stable or constant operand540

usually serves as a coefficient which is multiplied to a variable, i.e., P = s × Db(t) or541

P = Db × s(t) - a type of operation quite often found in signal processing and control542

applications, which feature prominently in IoT edge nodes. It also see applications in543

hardware neuromorphic computing serving as a synaptic node with the more stable544

operand as the weight and the varying operand as the input [23]. Requiring one of545

the operands to be analogue, which means that it has limited use in cases where both546

operands are the result of digital computation. And maintaining an analogue reference547

also require an energy overhead which could be objectionable for edge computing. The548

method can be applied to any resistive memory (RRAM) technology beyond memristors,549

so long as the crucial Ohm’s law and KCL combination holds at cell and crossbar levels.550

With better resistive memory technologies and paying with more design effort and551

operating energy, it may be possible to scale the precision or resolution of multiplication552

up, but given the exponential nature of the 1TxM cell design, the method’s significance553

for high-precision low-approximation arithmetic is limited.554

2.7 Neural Networks555

The NNs method predominates the existing AI systems. Modern NNs have developed556

into high complexity levels across different application domains compared with Rosen-557

blatt’s first neural automaton in 1957 [74]. Basically, NNs generate the weighted sum of558

all inputs in the training phase in multiple layers. Using activation functions, calculating559

weighted sums, and generating/adjusting the weights lead to heavy requirements560

of arithmetic circuits (i.e., MAC units) for modelling electronic neurons in hardware561

implementations. [75]. More inputs and added complexity of the problem will inevitably562

lead to a rapid increase of the number of MAC units in an NN [76]. Therefore, reducing563

the complexity of each MAC unit and improving its energy efficiency and speed are564

central design motivations.565

In traditional computer architecture, data is typically stored in a separate memory566

unit and then transmitted to the processing unit for computation. Once the computation567
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is completed, the data is sent back to the memory unit to be stored. This process is often568

limited by the speed of data transfer between the processing unit and memory unit, a569

phenomenon commonly referred to as the ”memory wall” [67].570

In-memory computing is a promising solution to the problem of the memory wall,571

where computation is performed directly on the memory. This approach reduces energy572

consumption and the time required for data movement, as the processor generates573

commands for calculations on the memory itself. By eliminating the need to transfer574

data between separate memory and processing units, in-memory computing can greatly575

improve computing performance. Concurrently, progress in memory architecture576

utilising resistive switching devices has facilitated the advancement of in-memory577

computing through their characteristic resistive switching properties. The ability to578

perform direct data processing within the memory module not only enhances energy579

efficiency but also reduces the required area for computation [67].580

In Chapter 5, we present the design of a low-energy and low-latency MAC unit. This581

unit can be utilized as a standardized component for the construction of energy-efficient582

neural network implementations.583

2.8 Summary584

In this chapter, we have discussed the technology baseline and related work. And we585

also carried out appropriate literature survey.586

Section 2.1 generally clarifies the core design requirement of high multiplication587

circuit. Besides the arithmetic circuit design, signal conversion circuit design is also588

a high significant part for latency shrinking. Respective high speed scheme has been589

reviewed in Section 2.2. Simultaneously, the core component used in the proposed590

multiplier design is introduced in Section 2.3. Besides the component, architecture591

applied in the proposed designs is also reviewed in Section 2.4. Meanwhile, several592

architectures applied for comparison with proposed work are reviewed in Section 2.5593

and Section 2.6. Finally, target implementing application is reviewed in Section 2.7.594
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Chapter 3595

Transistor-memristor Crossbar Multi-596

plier with Current Amplifiers597

AI and signal processing applications constitute the major driver of the IoT [12]. The598

dominant processing arithmetic used in these applications is multiplication. Addition-599

ally, in edge computing node applications, the results of these arithmetic operations600

must be presented in analogue form. However, the high stand-by latency and high601

power consumption caused by the complex logic chains and the additional carry602

propagation circuit used in conventional multipliers are major hindrances to their overall603

energy efficiency, particularly in the high density computing tasks of IoT and edge AI604

applications [12, 77]. DACs are also associated with high overheads.605

Over the years, researchers have investigated methods to reduce the energy cost606

and latency of multiplication operations. These methods have relied on adjustment of607

the carry chain length using ethier approximate [14, 78] or speculative circuits [79, 80]608

in CMOS logic based designs. However, the circuit’s precision, latency, and power609

consumption are still limited by the lengths of the carry chains. These designs use610

voltage-mode logic boundaries that are defined by Landauer’s limits by setting a set611

of fixed over-threshold voltage/frequency pairs. For low-power operation, the correct612

voltage/frequency pair is selected based on a combination of the carry propagation613
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length and the performance requirements [17].614

As a result, the design of multiplying circuits with reduced energy and increased615

speed remains an ongoing challenge. This chapter presents a carry-free multiplier design616

using resistive elements that takes input digital signals and produces an analogue output617

in the form of a current signal designated Iout. This multiplier circuit consists of an618

array of memristor-transistor cells that can be selected (i.e., turned ON or OFF) using619

a combination of DC bias voltages based on the operand values (See Fig. 3.1). When a620

cell is selected, it contributes to the current in the array path, which is then amplified621

by CMs with various transistor gate sizes. The different current paths are connected to622

a node to accumulate the currents required to produce the multiplier output directly.623

This approach removes the requirement to have the latency-sensitive carry propagation624

stages that are typically seen in traditional multipliers. One essential feature of this625

multiplier is its autonomous survivability, i.e., when the power falls below the normal626

functional threshold, one of the operands retains its value at zero cost because of the627

nonvolatile properties of the memristors.628

Figure 3.1: Block diagram of the proposed mixed-signal carry-free current-mode multiplier. This

diagram shows the connections between the different blocks of the proposed multiplier. The n-bit

signals M and N generate a (2n-1)-bit result via multiplication; here, M10 means the first bit of

M1, M11 means the second bit of M1, and the regulation also fits M2 and O.
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3.1 Single Transistor Single Memristor Multiplier629

3.1.1 Algorithm for the Crossbar Multiplier630

In a traditional (N×N) binary multiplier, two unsigned integers can be multiplied using631

N2 logic AND operations followed by up to 2N ADD operations. As an example,632

consider the multiplication of two 4-bit unsigned integers, where the multiplier is633

M1 : {m3m2m1m0} and the multiplicand is M2 : {n3n2n1n0}. The multiplication of634

these two numbers is implemented using the long multiplication algorithm shown in635

Table 3.1.636

Table 3.1: Binary Multiplication Algorithm with 4-bit Operands

m3 m2 m1 m0

× n3 n2 n1 n0

0 0 0 m3n0 m2n0 m1n0 m0n0 ← PP

0 0 m3n1 m2n1 m1n1 m0n1 0 ← PP

0 m3n2 m2n2 m1n2 m0n2 0 0 ← PP

m3n3 m2n3 m1n3 m0n3 0 0 0 ← PP

P7 P6 P5 P4 P3 P2 P1 P0 ← FP

As shown, the N2 logic AND operations produce partial product (PP) terms (i.e.,637

the minj bits), which can be generated rapidly in parallel. These terms are then added638

column-wise, with the columns having different numbers of PP terms. For the example639
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given here, the column-wise sums of the product terms can be expressed as follows:640

P0 = m0n0;

P1 = m1n0 + m0n1;

P2 = m2n0 + m1n1 + m0n2;

P3 = m3n0 + m2n1 + m1n2 + m0n3;

P4 = m3n1 + m2n2 + m1n3;

P5 = m3n2 + m2n3;

P6 = m3n3.

(3.1)

Equation (3.1) shows that when the number of PP bits in a column is two or more,641

carry propagation then becomes more likely, depending on the operand bit values. For642

example, if m1 = m0 = n1 = n0 = 1, P1 is then expected to produce a carry into P2. When643

both operands have all their bits set to 1, i.e., M1={1111} and M2={1111}, the multiplier644

then experiences the largest carry propagation chain between the columns, starting from645

the LSB to the MSB in the multiplier output.646

In traditional multipliers, the maximum delay between the longest PP addition (i.e.,647

P3 in the example shown in Table 3.1) and the carry propagation between the column-648

wise additions determine the critical path (i.e., the latency) and the energy consumption649

of the circuit. The latency can be reduced by applying a number of techniques including650

various carry save schemes with the last row of additon implemented via carry look-651

ahead (CLA) methods [81] or approximate equivalent methods [82]. However, full652

Boolean digital addition cannot avoid the carry processing and its associated overheads.653

In a mixed-signal circuit that uses currents to encode the PP values, addition654

operations can be implemented by converging the current paths into a single node.655

When the length of the chain of add operands increases, more paths can be added or656

enabled without causing any significant changes to the circuit delay. This provides the657

key motivation to design a mixed-signal multiplier circuit using our proposed approach,658

which will be described next.659

In our proposed multiplier, the column-wise terms (shown in Table 3.1) are expressed660

as non-Boolean values and programmed as current paths. In practice, this means that the661

current in a single wire can represent a wide range of values, with these values certainly662
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going beyond 0 and 1. When Eq. (3.1) is updated using this assumption, the values of663

the column-wise terms Pi, i = [0, 6], can be expressed as follows:664

P0 = 20 × (m0n0) ;

P1 = 21 × (m1n0 + m0n1) ;

P2 = 22 × (m2n0 + m1n1 + m0n2) ;

P3 = 23 × (m3n0 + m2n1 + m1n2 + m0n3) ;

P4 = 24 × (m3n1 + m2n2 + m1n3) ;

P5 = 25 × (m3n2 + m2n3) ;

P6 = 26 × (m3n3) .

(3.2)

Note that without the requirement for carry operations, there is no need for a signal665

P7, and each individual Pi, where i ∈ [0, 6], is not Boolean. The sum of all column-wise666

terms in Eq. (3.2) will then produce the multiplier output as follows:667

M1 ×M2 = ∑ Pc (c = 0, 2 . . . 2N − 2) , (3.3)

where Pc is the sum of the products on the cth column.668

Because the summation of a number of currents does not need to be performed in669

Boolean space, the resulting current can be used to encode numbers much greater than670

1. This eliminates the need to carry to the left.671

3.1.2 Crossbar Multiplier Architecture672

The multiplication algorithm given in Eqs. (3.2) and (3.3) can thus be simplified into673

three steps: 1) PP terms can be generated in parallel by switching the current paths ON674

or OFF; 2) each current path, as defined by using the column-wise terms in Eq. (3.2),675

is amplified in current mode, according to its position index i with the amplification676

coefficient 2i; and 3) the final output shown in Eq. (3.3) can be generated by summing677

the currents from all paths. In the following, we provide a briefly outline of the design678

approach for these three steps.679

The PP terms are generated by switching the current paths using the memristor-680

transistor cells, which are organised in a crossbar array as shown in Fig.3.2. The low-level681

circuit layout of the cell is shown in further detail in the pullout in Fig. 3.2.682
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Figure 3.2: Multiplier product generation and accumulation circuits.

In the crossbar architecture, the row lines (RLs) and the column lines (CLs) are683

connected at the cross point through this cell. This arrangement allows the current684

paths to be switched ON or OFF based on the multiplier bit-wise operand values. One685

of the operands used is the combination of control signal Vswitch, which switches all686

cell transistors on the same column, and the input signal Vin, which powers all cell687

memristors on the same row. Concurrent switching of the cells using Vswitch and Vin688

produces a bit-wise AND-like operation at each corresponding cell for target current689

path conduction. The other operand is represented by the cell’s passive memductance690

(i.e., the memristor conductance) G with the input voltage Vin and is used to generate the691

PP terms (current) in the multiplier.692

In a current-mode switching arrangement, the current paths that define the PP terms693

are generated according to Ohm’s law. Using this law, the currents in each pathway,694

which are denoted by Ik,i, k, i ∈ [0, N− 1] for an N× N bit multiplier, (where k is the row695

index that starts from 0 and ends at N − 1 and i is the column index that has the same696

range), is defined as follows697

Ik,i = Vink × Gk,i , (3.4)
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where Gk,i represents the memductance of the cell at the pathway between the kth row698

and the ith column. For convenience, we disregard the resistance value of the transistor699

during our reasoning process. However, this does not affect the generality of our analysis700

because this value is simply a constant offset term.701

As shown previously in Eq. (3.2), the column-wise term Pi is then generated by702

amplifying Iouti by a gain factor gi, where Iouti is the output current of the ith column.703

As a result, Pi can be expressed as:704

Pi = gi × Iouti . (3.5)

In the crossbar array, the column current Iouti is the sum of the currents from the cells705

selected based on the multiplier row operand values, which are given by Kirchhoff’s706

current law (KCL) as:707

Iouti =
N−1

∑
k=0
i=0

ak,iik,i , (3.6)

where ak,i is the number of cells that contribute to the PP term, i.e., the current on the708

ith column. The gain gi follows the relationship above as follows:709

gi = 2i . (3.7)

In current-mode, the amplification of the output current is achieved by using suitably710

selected CM ratios. Using Eq. (3.7) the column-wise term Pi can be expressed as:711

Pi = gi × Iouti = 2i
N−1

∑
k=0
i=0

ak,iVink Gk,i . (3.8)

The final product of the multiplication step is the accumulation (i.e., the sum) of all the712

column-wise terms as shown in Eq. (3.3). To enable completely carry-free accumulation713

of the current using the KCL, the column-wise terms after amplification are connected in714

parallel. As a result, the final product I can be written as:715
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I =
N−1

∑
i=0

Pi =
N−1

∑
i=0

gi × Iouti

=
N−1

∑
i=0

(2i
N−1

∑
k=0
i=0

ak,iVink Gk,i) .
(3.9)

To provide a detailed illustration, the following two examples are considered:716

Ex. 1 : M1 ×M2 = 1110× 1111 = 11010010b (210d) (3.10)

Ex. 2 : M1 ×M2 = 1101× 0110 = 01001110b (78d) (3.11)

For the examples above, the respective cell numbers for each of the cases are presented717

in Table 3.2. Assuming that Gk,i = m (i.e., the conductance of the memristor in the ON

Table 3.2: Cell Values and Path Currents in Eq. (3.11)Ex. 1 and Ex. 2

Case

k

αk,i

i

1 2 3 4 5 6 7

Ex.1

1 / / / 1 1 1 0

2 / / 1 1 1 0 /

3 / 1 1 1 0 / /

4 1 1 1 0 / / /

αi(Final Product Contributor Cell Number) 1 2 3 3 2 1 0

Ex.2

1 / / / 0 0 0 0

2 / / 1 1 0 1 /

3 / 0 0 0 0 / /

4 1 1 0 1 / / /

αi (Final Product Contributor Cell Number) 1 1 1 2 0 1 0

718

state) and Vink = n (i.e., the switching voltage on the cell row), the PP currents and the719
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corresponding transformations are given below for both examples. The ak,i values from720

Table 3.2 are used here to derive the output current I.721

Ex. 1:722

I = 0× 20 × mn + 1× 21 × mn + 2× 22 × mn +3× 23 × mn + 3× 24 × mn + 2×723

25 ×mn +1× 26 ×mn + 0× 27 ×mn = 210mn (Amp)724

725

Ex. 2: I = 0× 20 × mn + 1× 21 × mn + 1× 22 × mn +1× 23 × mn + 2× 24 × mn + 1×726

25 ×mn +0× 26 ×mn + 0× 27 ×mn = 78mn (Amp)727

728

As shown, the results above match the expected outcomes for the multiplication729

operations. In Section 3.1.5, the implementation details are presented, and later the730

experimental results will be studied and compared with those from the traditional731

multiplier circuits.732

3.1.3 Single Transistor Single Memristor Cell733

The building block for the crossbar array is a 1T1M cell, which is illustrated in Fig.3.3.734

The memristor values represent one set of operands, while the voltage signals in the RLs735

represent the other set of operands [18].736

Figure 3.3: 1T1M cell. This building block for the crossbar array consists of a memristor and a

transistor.

The 1T1M logic cell (LC) uses the memristor (W/L = 10 nm/10 nm [83]) as the737

memory unit, and the transistor (W/L = 1 µm/60 nm) as the switching unit. The738
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memristor is able to maintain its resistance state while using a below-threshold biasing739

power supply. When the memristor’s biasing voltage exceeds its threshold, a set voltage740

(SV) biases the memristor into a low resistance state (LRS) or a reset voltage (RSV) biases741

it into a high resistance state (HRS). We designate the LRS to be a logic ”1” and the HRS742

to be a logic ”0” for the memristor working states. Fig. 3.4 depicts the responses of a743

standalone memristor to different writing biasing voltages using its logic state variations744

on the crossbar multiplier. The label ’nx’ in Fig. 3.4 represents the amplification ratio at745

the output terminal. Figure 3.4(a) and (b)show that the writing speeds of the LCs with the746

different amplification ratios follow the same decreasing trend, i.e., 1×, 64×, 2×, 32×,747

4×, 16×, and 8×. This occurs because columns with fewer LCs exhibit lower resistance748

than columns with more LCs. During the writing operation, a column with fewer LCs749

will receive a higher voltage when compared with the voltage for a column with more750

LCs. Consequently, the column with fewer LCs has a faster writing speed than the751

column with more LCs. Additionally, the amplifying circuit at the output terminal has752

the same effect on the columns. Specifically, columns with the same number of LCs will753

still exhibit different writing speeds; a column with a more extensive amplifying circuit754

will be slower during writing operations. The results in Fig. 3.4 (c)-(g) demonstrate that755

slight variations in the biasing voltage will cause slight changes in the LC writing speeds756

for all columns.757

The LC operation involves three distinct processes, which are designated α, β, and758

γ. During process α, the tunable memristor resistance state is adjusted to be at a low759

level, which enables writing of a logic ”1”. Conversely, during process β, the tunable760

memristor resistance state is adjusted to be at a high level, which enables writing of a761

logic ”0”. In process γ, the memristor is used to perform reading and multiplication762

operations. The peak writing voltage value is given by write 1/write 0 = -3.5 V/3.5 V.763

In the context of process γ, a voltage of 0.4 V is designated as the logic ”1” in764

multiplier ”x”, while a voltage of 0 V is designated as the logic ”0”. The HRS and LRS765

of the memristor correspond to the logic ”1” and logic ”0”, respectively. The current766

product generated from the voltage/resistance pair can also be used to represent the767

logic ”1” and logic ”0”. Specifically, the logic ”1” current can only be generated by768

applying the logic ”1” voltage to the logic ”1” resistance.769
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Figure 3.4: Responses of the memristor to writing biasing. In (a) and (b), under biasing by a DC

voltage, the operations of writing logic 0 and logic 1, respectively, are shown.

Fig.3.6 shows an illustration of a 4-bit multiplier design using the proposed memristor-770

transistor transistor crossbar array. In the crossbar multiplier approach, voltage biasing771

is used to set all the operations; therefore, the voltage threshold memristor model is772

most appropriate for modelling of the operations of these multipliers. Simultaneously,773

stable and typical memristor behavior is also required in multiplier design. As a result,774

Kvatinsky’s Voltage ThrEshold Adaptive Memristor (VTEAM) model and its associated775

physical parameters are used in this work.776

Table 3.3: Voltage ThrEshold Adaptive Memristor Model Parameters taken from [52]

alphao f f 4 alphaon 4

Vo f f (V) 0.3 Von(V) -1.5

Ro f f (Ohms) 300K Ron(Ohms) 1K

ko f f (m/s) 0.091 kon(m/s) -216.2

wo f f (nm) 3 won(nm) 0
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Figure 3.4: Responses of the memristor to writing biasing. In (c), (d), (e), (f), and (g), the biasing

pulses have the same amplitude but differ in their rise/fall times, with voltage peak values of

3.5V/-3.5V. The pulse rise/fall time pairs are 10 ps/10 ps, 20 ps/20 ps, 30 ps/30 ps, 40 ps/40 ps,

and 50 ps/50 ps, respectively. 39



3.1.4 Current Amplification777

To improve energy proportionality, use of analogue current-mode arithmetic circuit778

designs has recently gained momentum [72]. These circuits operate using a dynamic779

range of currents (from µA to several mA)and provide considerably greater energy780

efficiency leverage than voltage-mode circuits, along with the added advantage of high781

slew rate and simpler circuitry. For example, when using CM networks, concurrent782

additions can be performed by directing the current paths into a single node, and783

subtractions can be performed by controlling the current paths away from a node.784

Because of their reduced circuit complexity, these networks can also offer faster operation785

with significantly reduced energy consumption [73, 84].786

Before being input into the current accumulation (CMA) circuit, all the output787

currents simply show the numbers of 1T1M cells in their working state on each result788

line. Binary multiplication has different digit orders. Therefore, there should be a789

link between the RL output current and the binary number system’s digit order. This790

pathway requires the use of groups of current amplifiers to provide the list of ratios791

according to Eq. (3.7). The corresponding CMA circuit also causes the jth RL to generate792

the jth digit of the result. In the proposed multiplier, the CMA circuit’s unit structure is an

Figure 3.5: Multi-amplifier design for the current summer circuit. This design is built using an

n-type CM that is series-connected to a p-type CM.

793

n-type CM that is coupled with a p-type CM as shown in Fig.3.5. The n-type CM takes in794

40



the output current from the crossbar structure, and the p-type CM generates the output795

current. During the amplification procedure, the current is amplified twice using the n-796

type CM and the p-type CM. The multi-amplifier design can reach its target gain with797

a smaller overall size. Meanwhile, the gate voltage must be maintained at a reasonable798

level. In this way, the multi-amplifying design can avoid the problem where the need for799

a high amplification ratio will require an extremely large transistor to be included in the800

single CM. In other words, the transistor used in the proposed CMA circuit can be much801

smaller than a single-layer CM intended for use in the same task. The current leakage802

generated in each multiplication cell can also be amplified and this appears to present a803

new problem. However, this effect is at a negligibly low level when compared with the804

output current [73].805

3.1.5 4-bit Crossbar Multiplier Implementation806

We discuss the implementation details of the multiplier in the following.807

In the multiplier circuit shown in Fig. 3.6, basic 1T1M cells are organised at each cross808

point (i.e., each node) via the mapping procedure. This design provides a combination of809

high-speed operation and accurate cell selection. Both the input and the control signals810

are applied in the form of a single bar source (SBS). Use of the SBS means that the source811

covers the power supplies of all 1T1M cells when they are connected to the same row812

bar, or it covers the control signals of all 1T1M cells when they are connected to the813

same column bar. For the same expression, the row bars that receive the input signals814

are called source lines (SLs), the column bars that receive the control signals are called815

gate lines (GLs), and the column bars that produce the output signals are called result816

lines. In our studies, we have used the VTEAM model [56] with the model parameters817

from [52] for the memristors used in the circuit. These parameters have been extracted818

from physical devices. This ensures that our design can be implemented in practice. The819

actual parameters are listed in Table 3.3.820

The input voltages are Boolean and each voltage represents one of the operands,821

with input4 being the MSB and input1 being the LSB. The output currents represent822

the product values at each output bit positions, having been accumulated from the bit823

multiplications that occur in each bit position. Because the current values go beyond the824
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Figure 3.6: 4 by 4 1T1M crossbar circuit with three line settings, one RL, and two parallel CLs that

are defined to give the circuit the ability to select any cell within the circuit.

Boolean values at each bit position, the multiplier only requires seven output columns825

rather than the 8 bits required for a digital multiplier with two 4-bit operands.826

3.2 Simulation Results827

The proposed design is based on UMC 65 nm circuit technology. The transistors are828

divided into two groups, designated LC and CM, as shown in Fig. 3.2. All LCs contain829

transistors of the same size; these transistors are 1000 nm width and 60 nm length. At830

the output terminal, the n-MOSFET and p-MOSFET CMs are connected in series to831

achieve high ratio output current amplification. Because the CMs work as amplifiers832

with individual gains, their transistor sizes differ as shown in Table 3.4.833

In simulation experiments, a 4 by 4 crossbar multiplier is used to illustrate the834

multiplication process. The multiplication operation is executed between two 4-bit835
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Table 3.4: Transistor Sizes for the Current Mirrors

Group
n-MOSFET p-MOSFET

M1 (nm) M2 (nm) M3 (nm) M4 (nm)

1 1520/60 400/60 80/60 240/60

2 2720/60 1600/60 80/60 260/60

3 3840/60 2400/60 80/60 720/60

4 5440/60 3200/60 80/60 1680/60

5 4080/60 4800/60 80/60 1920/60

6 2720/60 4800/60 80/60 2680/60

7 1520/60 1840/60 80/60 5120/60

binary operands. One of these operands, which is denoted by the input variable ”x”836

(voltage), ranges from 0 (0000) to 15 (1111), while the other operand, which is denoted837

by the weight or the reference ”ω” (memristance), remains constant at 1 (0001), 2 (0010),838

4 (0100) and 8 (1000). These values are chosen because they have only one bit high839

in binary representation, and any other number below 16 can be obtained by different840

combinations of them. The results of the multiplication operation, from both theory and841

the simulation, are presented in Fig. 3.7.842

Figure 3.7(a) illustrates the output obtained from the proposed multiplier when843

operating in current mode. For example, the final step shown in Fig. 3.7(a) represents844

the outcome of multiplying x = 1111 by ω = 0001, 0010, 0100 and 1000. In the circuit, this845

means that:846

1. The input voltage series to the crossbar in Fig.3.6 is input1 = 0.4 V, input2 = 0.4 V,847

input3 = 0.4 V, and input4 = 0.4 V.848

2. The switching voltage series to the crossbar in Fig.3.6 is Vswitch1 = 1.2 V, Vswitch2849

= 1.2 V, Vswitch3 = 1.2 V, Vswitch4 = 1.2 V, Vswitch5 = 1.2 V, Vswitch6 = 1.2 V, and850

Vswitch7 = 1.2 V.851

3. The memristors in selected LCs on the crossbar in Fig.3.6 are biased to the LRS,852

while all the remaining memristors are in the HRS. Starting from the right, for853
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Figure 3.7: Multiplication performance for a 4-bit case.

a pattern of 0001, the memristors in the first LC are in the LRS. For a pattern of854

0010, the memristors in the second LC are in the LRS. For the pattern of 0100, the855

memristors in the third LC are in the LRS. For the pattern of 1000, the memristors856
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in the fourth LC are in the LRS.857

It is clearly shown that in the 4 by 4 crossbar multiplier in Fig. 3.6, the LSB refers to858

different items in different cases. For an input voltage series, the LSB is ”input1” in the859

circuit; for the final product, the LSB is ”out1” in the circuit; and for the memory, the LSBs860

are ”M1”, ”M5”, ”M9”, and ”M13” in the circuit. Using the same method, the MSBs for861

the input voltage series, the final product, and the memory in the circuit are ”input4”,862

”out7”, and ”M4”, ”M8”, ”M12”, and ”M16”, respectively. The rising stairs characteristic863

means that the input ”x” binary value increases step-by-step from ”0000” to ”1111” with864

respect to the increasing input voltage series and generates specific currents to output the865

calculation result. The results graph presented in Fig.3.7(a) shows that the multiplication866

results increase with increasing input, as expected.867

Figure 3.8 shows the timing diagram of the control signals of the memristor which868

demonstrates the ability to select a specific cell or multiple cells for reading (multiplica-869

tion) and writing (operand setting) processes. Both tuning operations on the multipliers870

and the multiplicands are included.871
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Figure 3.8: Writing and multiplying procedures of 1T1M crossbar multiplier.

The complete writing and multiplication procedures are shown in Fig. 3.8 and can be872

divided into three operational stages, as follows. All reading procedures were set to use a873

45



0.2-µs pulse, the write logic 1 operation was set to use a 0.2-µs pulse, wand the write logic874

0 operation was set to use a 36-ns pulse; additionally, all transistors were used to isolate875

the deselected LCs. The first stage starts from the state in where all 1T1M cells are in the876

LRS. The target result for each RL is confirmed during the period from 0 µs to 0.2 µs. The877

second stage runs from 0.2 µs to 4.544 µs. This stage shows the procedure used to modify878

the 1T1M cell state to change the output state. All operations consist of modifying all the879

1T1M cells into the HRS, and then modifying all 1T1M cells on the same SL to return to880

the LRS until all the 1T1M cells are in the LRS. The results of each modification procedure881

are also monitored to show the changes in each RL output. The third stage runs over the882

period from 4.544 µs to 5.344 µs. This stage shows the procedure used to modify the883

input state to change the output state. All 1T1M cell states are kept in the LRS, and the884

input signals for each SL are then changed one-by-one from 0 V to 0.4 V. The third stage885

also provides the relationship between the current and the multiplication procedure. It886

is easy to see that both the 1T1M cell state modification process and the input variation887

procedure generated the same results. Therefore, the designed multiplier does indeed888

perform the multiplication operation. The step-by-step procedures shown in Fig. 3.8 can889

be described as follows:890

1. 0 µs-0.200 µs: execute 1111× 1111891

2. 0.200 µs-0.344 µs: change multiplier 1111 to 0000892

3. 0.344 µs-0.544 µs: execute 0000× 1111893

4. 0.544 µs-1.344 µs: change multiplier 0000 to 0001894

5. 1.344 µs-1.544 µs: execute 0001× 1111895

6. 1.544 µs-2.344 µs: change multiplier 0001 to 0011896

7. 2.344 µs-2.544 µs: execute 0011× 1111897

8. 2.544 µs-3.344 µs: change multiplier 0011 to 0111898

9. 3.344 µs-3.544 µs: execute 0111× 1111899

10. 3.544 µs-4.344 µs: change multiplier 0111 to 1111900
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11. 4.344 µs-4.544 µs: execute 1111× 1111901

12. 4.544 µs-4.744 µs: change multiplicand 1111 to 0001 and execute 1111× 0001902

13. 4.744 µs-4.944 µs: change multiplicand 0001 to 0011 and execute 1111× 0011903

14. 4.944 µs-5.144 µs: change multiplicand 0011 to 0111 and execute 1111× 0111904

15. 5.144 µs-5.344 µs: change multiplicand 0111 to 1111 and execute 1111× 1111905
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Figure 3.9: Comparative analyses of multiplier power, and delay. In (a), the power consumption

of the proposed design is 2.45 mW, that of Qiqieh’s approach [14] is 2.09 mW, and that of

Kulkarni’s approach [85] is 1.87 mW. In (b), the proposed multiplier shows a 40 ns delay, while

Qiqieh’s approach produces a delay of 2.673 ns, and Kulkarni’s approach [85] shows a delay of

3.45 ns.

To validate our multiplier design via comparison, the proposed multiplier is evalu-906

ated against existing approximate designs, e.g., by remapping theresulting product to907

a lower significance by compressing PPs [14] or applying a low precision multiplier908

(i.e. a 2×2 multiplier) as a building block for a larger multiplier [85]. For all validation909

experiments, the base parameter settings of the proposed multiplier are listed as follows:910

Vin = 0.4 V, Vdd = 1.2 V, RLRS = 1kΩ, and RHRS = 300k Ω. These parameters are applied911
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in the power model for energy consumption performance, and the values obtained from912

Qiqieh [14] and Kulkarni [85] are also used to perform a comparative analysis.913

(a) (b)

Figure 3.10: Comparative analysis of 4-bit multiplication accuracy. In (a), the low error level

comparison results show that the proposed design has the lowest mean error (ME) at 2%, followed

by that of Kulkarni at 2.6% with Qiqieh having the highest at 12.7%. In (b), the situation is

reversed in the high error level comparison progress, with Qiqieh having the lowest ME at 12.7%,

and Kulkarni still in the middle at 22.2%. The proposed multiplier shows the highest ME at 71%.

In Fig. 3.9 and Fig. 3.10, the 4-bit multiplication performances in terms of power914

consumption, delay, and mean error have been compared. The mean error (ME) shown915

in Fig. 3.10 is the product of the equation ME = ∑(simulation current−prediction current)
total number o f multiplication group ×916

100%, where the simulation current and the prediction current are the corresponding917

result currents in a single multiplication group. Fig. 3.9 compares the power and delay918

of the proposed design with the works in [85] and [14] for single 4-bit multiplication.919

The proposed design consumes 20% more power than the work in [85] and and 11%920

more than the work in [14]. The proposed design also has 92% longer delay than921

the work in [85] and and 94% longer than the work in [14]. However, when the922
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memristance operand is constant, the proposed design has almost zero delay, which923

is 97% shorter than both the work in [85] and the work in [14]. Figure 3.10 illustrates924

both the minimum case and maximum case of mean error (ME) between the different925

approximate multiplier designs and that of the proposed work. The work in [14]926

compresses PP by adding a logic gate between the tree adders, which performs the927

approximation operation in the middle of the multiplication progress. The work in [85]928

applies a low accuracy multiplier for a large multiplier, where the approximation is929

performed in the middle of the multiplication progress. The proposed work eliminates930

the need for both carry propagation and an explicit DAC, because its approximation is931

performed at the end of the multiplication progress. In details, in the minimum case, the932

proposed design shows an 84.25% lower ME than the work in [14] and a 23.08% lower933

ME than the work in [85]. In the maximum case, the proposed design has an 82.29%934

higher ME than that of the work in [14] and 69.04% higher than that of the work in [85].935

There are still some issues to be overcome in the early stages of the project. For936

example, several stairs were increased over the size of the next level. This is because937

the LRS of the LC causes a higher voltage drop than the HRS, which results in a lower938

current being generated for a logic ”1” and a higher current being generated for a logic939

”0”. Additionally, errors in the output current can be amplified by the CM circuit, which940

is also affected by the terminal voltages. In the case of the logic ”1” current, a higher941

voltage drop leads to a greater reduction in the CM amplifier gain, while the logic ”0”942

current with the lower voltage drop realizes higher gain than it actually should. As a943

result, the current level of the LSB logic ”1” can be lower than the corresponding level of944

the MSB logic ”0”.945

3.3 Summary946

In this chapter, we have presented a mixed-signal digital input (DI)/analog output947

(AO) multiplier that uses current-mode principles to achieve carry-free computation.948

The resulting reduction in circuit complexity leads to significant improvements in both949

computational latency and power consumption. To evaluate the proposed approach,950

we compare the proposed multiplier’s performance with that of existing 4-bit approx-951
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imate multiplier designs in terms of energy consumption, delay, and accuracy. Our952

results demonstrate that the proposed crossbar array offers deterministic precision and953

consumes much less energy than the other designs, yielding power savings of up to954

50%. This makes our proposed device particularly relevant for use in edge applications,955

where computation units are powered using limited energy sources with unpredictable956

or sporadic power supplies. Additionally, the use of memristors ensures the retention of957

the most stable operand in the face of power discontinuities.958

Current amplification using CMs may seem intuitive, but it results in a significant959

CMOS overhead during multiplier design, along with several disadvantages. These960

disadvantages include requirements for transistors of different sizes, latencies, and961

energy penalties because of the switch-on and switch-off processes of large transistors.962

Additionally, the delay that arises from switching of large transistors presents a signifi-963

cant challenge in terms of reducing the multiplier’s delay.964
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Chapter 4965

Memristive Multiplier Design with966

In-cell Current Multiplication967

The transistor-memristor crossbar multiplier scheme requires current amplification that968

corresponds to the bit locations of the current signals. Specifically, for the current at bit969

i, denoted as Ii, an amplification of 2i−1 is needed. As discussed in the previous chapter,970

the single transistor single memristor (1T1M) cell (shows in Fig. 4.1) can only generate971

Ii without amplification of 2i−1. Therefore, current amplification in the 1T1M crossbar972

multiplier is achieved through the use of amplifiers based on CMs. In this chapter,973

current amplification is further optimised by generating the correct current value directly974

within each transistor-memristor cell by using multiple parallel memristors in a cell.975

Intuitively, if an amplification of 2i−1 is needed, a cell with 2i−1 parallel memristors can976

satisfy this need because of this in-cell current amplification.977

By doing this, the CMA can be omitted removing the high-energy high-latency978

charging and discharging of potentially large capacitance and replacing them with in-979

cell resistive arithmetic according to Ohm’s Law, which has zero theoretical latency. The980

method presented in this chapter is based on the single transistor multiple memristor981

(1TxM) cell structure, shown in Fig. 4.2. Developed from 1T1M cell by extending amount982

of memristor in parallel with ratio of 2i−1 in single cell, 1TxM cell structure can be used in983

51



Figure 4.1: The structure of 1T1M cell with updated details. Transistor is in n-type, memristor

applied Cu:ZnO thin film.

the same crossbar structure from the 1T1M-based multiplication scheme presented in the984

previous chapter, by replacing each 1T1M cell with a 1TxM cell where x = 2i−1, i ∈ [0, N].985

With this crossbar the CMA circuits can be entirely removed and the significance of each986

current path is directly set by x and already correct at the cells.987

Individually, different current paths are then directed to the output node which988

accumulates the currents according to KCL, thus requiring no carry propagation. This989

allows for better performance and energy efficiency characteristics than conventional990

multipliers.991

Figure 4.2: 1TxM cell structure. For a cell along the current path for bit i, x = 2i−1.

In this chapter, the 1TxM design will be compared with the 1T1M multiplier from the992

previous chapter. For fair comparison, the 1T1M-based crossbar multiplier is redesigned993

with an updated cell structure, shown in Fig. 4.1. The difference between the 1T1M cell in994
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Chapter 3 (Fig. 3.3) and the one in this chapter is that the p-type transistor of the previous995

chapter is replaced by the n-type transistor here. The p-type transistor works better as a996

current source, and the n-type transistor works better as a current sink. When operating997

in switching mode, these characteristics can affect the circuit’s output current. While this998

may not be significant for 1T1M cells, it is crucial for 1TxM cells, where n-type transistors999

perform better due to the elimination of the CMA below. To make a fair comparison,1000

both p-type and n-type transistors were placed after the memristor, resulting in all cells1001

having an n-type connection. Because of this cell update, the aspects and emphasise in1002

the comparative studies, and for the ease of reading, some of the aspects of the 1T1M1003

multiplier will be presented again in this chapter.1004

4.1 Number Representation and Encoding1005

This section further clarifies the method of representing numbers in the proposed1006

multipliers.1007

As proposed in Chapter 3, in a conventional (N×N) binary multiplier, two unsigned1008

integers can be multiplied using N2 logic AND operations, followed by up to 2N ADD1009

operations. Meanwhile, a carry propagation procedure is required for the generation of1010

each midterm product.1011

Multiplication is different in a crossbar multiplier, which directly implements the long1012

multiplication algorithm and whose structure can be seen in Fig. 4.3. The 1T1M cell1013

locates at each intersection of the crossbar, connecting a column (CL) to a row (RL). Such1014

a cell has its position indexed with both row k and column i according to its location1015

on the crossbar network and is called Ck,i. Ck,i connects the kth RL and the ith CL.1016

It gets voltage VCk, and its memductance is Gk,i. This cell implements the single-bit1017

multiplication between the operands VCk and Gk,i, with the product being ICk,i, according1018

to Ohm’s Law as described in Table 4.1. The particular indexing system used for the1019

memductance is relevant to implementing the multiplication algorithm in Table 3.1,1020

where the same operand bit mk features in diagonally placed cells from upper right1021

to lower left in the addition part of the algorithm. These cells thus implement the N2
1022

logic single-bit AND (bit-wise multiplication) operations required for the first step of1023
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Table 4.1: Single Transistor Multiple Memristors Cell Operations

Data Representation

Signal Logic 0 Logic 1

Operand 1 VC VClow VChigh

Operand 2 G Glow Ghigh

Product IC IClow IChigh

Memristor Operations

Writing VC > Vth

Reading VC < Vth

Multiplication IC = VC × GM (Ohm’s Law)

Truth Table VC GM IC

VClow (0) Glow(0) IClow (0)

VClow (0) Ghigh (1) IClow (0)

VChigh (1) Glow (0) IClow (0)

VChigh (1) Ghigh (1) IChigh (1)

multiplication, in parallel across all intersections of the crossbar.1024

For performing writing operation of cell Ck,i, the transistor in this cell should be in1025

the ON state. As the same gate biasing voltage is applied to cells along the same column,1026

when writing cell Ck,i, all other cells along column i should have their transistors in the1027

OFF state to maintain their memductance state. In this way, any single memductance Gk,i1028

can be set to its target logic state corresponding to the correct operand value. At the same1029

time, multiple gate biasing control allows the same writing operation for memristors on1030

the same row.1031

The single-bit data operations of a 1T1M cell is summarised in Table 4.1 when it is1032

used to perform single-bit multiplication. The cell voltage VC is used to represent one1033

operand and the memductance G is used to represent the other, whilst the cell current IC1034

represents the product of the two operands according to Ohm’s Law.1035

Note that the reading mode is when the multiplication result is read out, and therefore1036
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Figure 4.3: The architecture of 1T1M crossbar multiplier. The current amplification is

implemented with CM. Each MC is a 1T1M cell described in Fig. 4.1, and a CM amplifier has

one n-type CM and one p-type CM series connected.
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VChigh must be lower than Vth. For single-bit Boolean multiplication, there needs to be1037

enough separation between IChigh and the highest possible value of IClow to ensure logical1038

correctness. This can be realised by having VClow = GND = (0 V) and Ghigh >> Glow. In1039

this work we have up to Ghigh = 1000× Glow, a realistic margin of difference [48]. This,1040

as demonstrated later in this chapter, is more than enough for a multiplication precision1041

of 4 bits.1042

Since the result of the multiplication Iout is accumulated according to KCL, and1043

because of the logic ”0” and ”1” definitions for currents given in Table 4.1, there exists1044

the possibility that the accumulation of multiple VChigh × Glow currents, which is the1045

highest possible cell current value representing logic ”0”, pollute Iout enough to affect1046

the accuracy of the result.1047

Figure 4.4: The mapping of numbers onto the crossbar structure with multiplication operands

(M1, M2) and final product (P).

Fig. 4.4 illustrates how the long-multiplication algorithm maps onto the 1T1M1048
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crossbar multiplier. The operand M1 : {m3 m2 m1 m0} is represented by memductances1049

w1 : {G3 G2 G1 G0}, and M2 : {n3 n2 n1 n0} is represented by row voltages w2 :1050

{Vin3 Vin2 Vin1 Vin0} in Fig. 4.3. Single-bit multiplications at the cells are the result of1051

Ohm’s Law during reading mode, as described in Table 4.1. The output current of a1052

single cell is the partial product which can be denoted as Ik,i, where k and i are the row1053

and column indices, respectively. The operation is described by the following equation:1054

Ik,i = Vini × Gk,i, (4.1)

where k = 0, ..., 3 and i = 0, ..., 6.1055

From Fig. 4.4, it can be seen that the worst case for such potential inaccuracy happens1056

when the operands are M1 = {1 1 1 1} and M2 = {0 0 0 0}, a case preliminarily explored1057

in Chapter 3. Here we analyse it in detail. This multiplication results in all cells having1058

the same current Ik,i = VChigh × Glow. With the following relations, P0 = 20 × I0,0, P1 =1059

21 × (I0,1 + I1,0), P2 = 22 × (I0,2 + I1,1 + I2,0), P3 = 23 × (I0,3 + I1,2 + I2,1 + I3,0), P4 =1060

24 × (I1,3 + I2,2 + I3,1), P5 = 25 × (I2,3 + I3,2), and P6 = 26 × I3,3.1061

Respectively, we can get P0 = 20Vin0 G0, P1 = 21 (Vin0 G1 +Vin1 G0), P2 = 22 (Vin0G2 +1062

Vin1G1 + Vin2G0), P3 = 23 (Vin0 G3 + Vin1 G2 + Vin2 G1 + Vin3 G0), P4 = 24 (Vin1 G3 +1063

Vin2 G2 + Vin3 G1), P5 = 25 (Vin2 G3 + Vin3 G2), and P6 = 26 × Vin3 × G3. Finally, all the1064

partial product Pj current values are added up to generate Iout, which in this case can be1065

presented as Eq. (4.2)1066

Iout =
6

∑
j=0

Pj, (4.2)

which encodes the result of the multiplication (overall product). The total number of1067

digits for Pj shown in Fig. 4.4 is 1 bit less than that for the regular long multiplication1068

algorithm in Table 3.1. This is because carries are not propagated to the left in the 1T1M1069

crossbar mixed-signal multiplier.1070

Iout = (20 + 21 × 2 + 22 × 3

+ 23 × 4 + 24 × 3 + 25 × 2

+ 26)×VChigh × Glow

= 225×VChigh × Glow,

(4.3)
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The Iout value in Eq. (4.3) is supposed to encode logic ”0”. According to Table 4.1,1071

logic ”1” current at a single cell is1072

IChigh = VChigh × Ghigh . (4.4)

Combining Eq. (4.3) and Eq. (4.4), in order to avoid a bit error at the least significant1073

bit, whose value is a single IC, the following must be true1074

Ghigh > 225× Glow . (4.5)

We choose up to Ghigh = 1000× Glow, which provides a substantial error margin for1075

the 4-bit 1T1M crossbar multiplier. On the other hand, for a 5-bit multiplier with the same1076

architecture, the minimum requirement for accuracy at the LSB is Ghigh > 969× Glow.1077

Our chosen gap between Ghigh and Glow will be much less safe from accuracy problems1078

at that level of precision. In other words, the upper limit of bit-width for such a multiplier1079

depends on the chosen memristor technology and the multipliers are suitable mostly for1080

low-precision applications.1081

4.2 Single Transistor Multiple Memristors Multiplier1082

4.2.1 Baseline Design1083

The 1T1M crossbar multiplier employs three main types of components, transistors1084

serving as switches, memristors serving as adjustable conductance values, and CMs1085

serving as bit significance weighting manager (providing the 2i coefficients). CMs with1086

high amplification ratios require radically disproportional sizing of their constituent1087

transistors, as shown in Table 3.4. With more types of components involved in1088

an analogue system, managing the effects of parametric variations becomes more1089

complicated. In addition, the CMs used in the 1T1M crossbar multiplier all have different1090

amplifications and sizes, which usually necessitates careful per-component design.1091

The 1TxM crossbar multiplier design seeks to reduce system design complexity by1092

eliminating the need for CMs, thus reducing the types of used components. By moving1093

the functionality of bit significance weighting from the different amplifications of CMs1094
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Figure 4.5: The Architecture of 1TxM crossbar multiplier. The number of parallel memristors x in

a 1TxM cell is determined by its column location.

to the number of memristors in each cell, it also eliminates the need for components1095

of different specifications. This is implemented by constructing each 1TxM cell, which1096

connects a row with a column in the crossbar, with a single transistor switch controlling1097

x memristors in parallel, as shown in Fig. 4.2. With such a cell, the bit significance1098

weighting can be managed through the following equation xi = 2i, where xi is the1099

number of memristors in each cell in the ith column, i ∈ [0, 6] for the 4-bit 1TxM1100

multiplier. By setting xi values this way, the column-specific CMs in Fig. 4.5 are1101

functionally replaced by the number of memristors in the 1TxM cells (in Fig. 4.2). Note1102

that the numerical significance of every memristor is exactly the same across the entire1103

multiplier and parametric variations in any memristor have exactly the same degree of1104

effect on the overall product, no matter where the memristor is located. This simplifies1105

variation modelling and analysis as well as variations-aware design.1106

For this 1TxM multiplier, Eq. (4.1) no longer describes the cell current but instead1107
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Figure 4.6: The 1TxM crossbar mapping with multiplication operands (M1, M2) and final product

(P).

describes the current flowing through any one memristor within the cell located at1108

intersection {k, i} on the crossbar. With this revised understanding, P0 = 20 × I0,0 in1109

Eq. (4.2) remain the same. In other words, the 1TxM multiplier in Fig. 4.5 functions1110

exactly the same as the 1T1M multiplier in Fig. 4.3. Fig. 4.6 clarifies this point when1111

compared to Fig. 4.4. The multiplier precision analysis also remains the same.1112

A 1TxM multiplier using the same TiO2 memristor technology whose characteristics1113

are shown in Table 2.1 VTEAM MODEL parameters has been investigated. Memristor1114

writing voltages and biasing times need to be adjusted. Writing is slower but reading is1115

faster than the 1T1M cell.1116

4.2.2 Technology Improvements1117

So far in the analysis we have assumed that the transistor in a transistor-memristor cell1118

does not make a contribution to the Ohm’s Law single-bit multiplication. In other words,1119
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these transistors are assumed to be ideal switches with zero resistance in the ON state1120

and infinitely-large resistance in the OFF state. These assumptions are unrealistic and it1121

is possible for the resistance value of the transistor to affect both the writing and reading1122

modes of a transistor-memristor cell.1123

During the reading mode, for computational correctness, Eq. (4.1) needs to be as close1124

to reality as possible. This requires the following to be true:1125

RTON <<
1
G

, and

Rout <<
1

225× G
,

(4.6)

1126

where G is the memductance of single memristor, RTON is the source-to-drain resistance1127

of the cell transistor in its ON state, and Rout is the output resistance of the multiplier.1128

When these inequalities are true, the voltage-current relationship depends on the1129

memristors, not the transistors or the output resistor. This means that Eq. (4.1) is1130

approximately true and the design is appropriate.1131

Unlike for the case of using CMs to control the bit significance weighting, where CM1132

size tuning is obligatory, there is no logical/functional requirement to size transistors in1133

the 1TxM multiplier according to where they are located. For component standardisa-1134

tion, we take advantage of this fact and do not employ transistors of different sizes in our1135

1TxM multiplier design. This means that when there are a comparative large number1136

of memristors in parallel in a cell, the transistor’s resistance becomes more significant1137

and affect the accuracy of the cell’s multiplication. To offset this, the transistor size is1138

determined by the worst-case scenario, i.e., appropriate for cell {3, 6} located at the far1139

left edge of the crossbar. This in turn leads to using comparatively large transistors across1140

the multiplier, with negative implications on speed, current, leakage and general energy1141

consumption.1142

Instead of TiO2 memristors, using Cu:ZnO memristors addresses many of these1143

concerns. For instance, Cu:ZnO memristors have much higher resistance in reading1144

mode compared with TiO2 memristors (smaller Glow and Ghigh). This allows the use1145

of comparatively smaller switch transistors with higher resistances. The differences in1146

the other parameters also lead to large improvements in writing speed and some im-1147

provements in reading speed. The speed improvements can be observed by comparing1148
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Fig. 4.8(c) to Fig. 4.8(d) and Fig. 4.9(c) to Fig. 4.9(d).1149

With the parallel memristors in cells driven through a single transistor of fixed size,1150

the writing speed of 1TxM cannot compete with that of 1T1M. With Cu:ZnO technology1151

the reading speed is improved significantly. This means that these multipliers are well1152

used in cases where the operands are not operationally symmetrical. In other words,1153

these target cases have one operand that does not change frequently, which can be1154

represented by memductances, and another operand that changes frequently, which1155

is the best represented by voltages. This asymmetry, together with the asymmetry in1156

operand non-volatility, exactly matches applications in IoT edge nodes and NN neurons.1157

4.3 Simulation Results1158

The results of simulation studies concerning writing mode are shown in Fig. 4.7(a) and1159

Fig. 4.7(b). In these experiments, the cells are set in writing mode and the memristors1160

have their G values start in the maximum of their respective ranges, corresponding to1161

the RON values found in Table 2.1. The writing action attempts to adjust these values1162

to the minimum of their respective ranges, corresponding to the ROFF values found in1163

Table 2.1. The experiments are run for long enough time when G stabilises to a value1164

Gend which is checked to find how much of the range between RON and ROFF has been1165

completed in this writing action. This is called adjustment completeness and is shown1166

in percentage points in Fig. 4.7. The ideal result should be 100%, but it can be seen that1167

with the TiO2 technology, adjustment completion is very low with the largest cell size in1168

the 4-bit 1TxM multiplier (i.e., the 1T64M cell at intersection {3, 6}).1169

In general, the larger the transistor size, the higher adjustment completeness can be1170

achieved for the same biasing voltage, and the higher the biasing voltage, the higher1171

adjustment completeness can be achieved for the same transistor size. These trends1172

follow intuition. It is worth noting that TiO2 technology is inferior to Cu:ZnO in most1173

writing cases, except for writing 0 in 1T1M and 2x and 64x configurations, where TiO2 is1174

slightly better. This is because the non-ideal conductance variation of memristor in these1175

cell leads the voltage drop on them also varied in the same way. Conversely, the non-1176

ideal varied terminal voltage increases the non-ideal conductance variation of memrsitor.1177
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Figure 4.7: The behaviour of the 1TxM cell. In (a), biasing voltages are set as VTiO2 = 1.85 V and

VCu:ZnO = 1.2 V, and length of transistor in cell is also fixed at 60 nm. In (b), transistor size is fixed

at Width/Length = 500 nm/60 nm. For TiO2 model and Cu:ZnO model, the difference between

biasing voltage and threshold voltage are the same.

It is also evident that writing 0 in general takes less time than writing 1 for the 1TxM1178

multipliers which do not have CM delays. These points can be seen from Fig. 4.8 and1179
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Figure 4.8: The comparison of 1T1M crossbar writing operation. The writing has been presented

in (a) to (d), and the amplification ratios are marked with number and ”x”. (a) presents Cu:ZnO

memristor writes 0, (b) presents TiO2 writes 0, (c) presents Cu:ZnO memristor writes 1, and (d)

presents TiO2 writes 1.

Fig. 4.9.1180

Since the switching performance of component depends on the worst case scenario,1181

the results of writing operation of 1T1M crossbar in Fig. 4.8 shows that, in writing 01182

operation, both Cu:ZnO memristor and TiO2 memristor have a delay around 2.4 ns.1183
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Figure 4.9: The comparison of 1TxM crossbar writing operation. The writing has been presented

in (a) to (d). (a) presents Cu:ZnO memristor writes 0, and (b) presents TiO2 writes 0, (c) presents

Cu:ZnO memristor writes 1, and (d) presents TiO2 writes 1.

In writing 1 operation, Cu:ZnO memristor has a 27ps delay, while TiO2 memristor has1184

a 1.8 ns delay, which is 67× longer than the Cu:ZnO memristor. Moreover, Cu:ZnO1185

memristor writes memristor to the almost the maximum of device length, while TiO21186

memristor can’t achieve the same level of writing at even 1000× more time cost under1187

the same over-threshold biasing potential difference. The results of writing operation of1188
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1TxM crossbar in Fig. 4.9 illustrates that Cu:ZnO memristor performs 2× faster writing1189

0 operation and almost 1000× faster writing 1 operation than TiO2 memristor under the1190

same difference between biasing voltages and threshold voltages.1191

4.3.1 Cell Performance on Crossbar1192

In this section, we concentrate on the system’s capability of maintaining computational1193

correctness with a decent accuracy margin during reading mode. For this, we compare1194

the range of Ik,i, i.e., the ratio between the high (logic ”1”) and low (logic ”0”) current1195

values for memristors in 1TxM cells sited within complete crossbar multipliers, when1196

actual multiplications are being carried out. Four groups of binary multiplication are1197

executed. In decimal values, they are 15 × 15, 10 × 5, 5 × 10, and 15 × 0. From the1198

observations we find the worst-case scenarios, i.e., when the ratios between logic ”1”1199

and logic ”0” memductance values reduce the most by the theoretical ratios from the1200

memristor models in Table 2.1.1201

Note that these experiments are about the reading (computation) mode under the1202

assumption that the correct operand values have been written into the memristors, i.e.,1203

any preceding writing operations are correct.1204

The worst-case data is obtained at the particular memristor with the minimum1205

Ik,ihigh
(the lowest observed current value representing logic ”1”) found across the1206

entire space of all four experiments, and the memristor with the maximum Ik,ilow
(the1207

highest observed current value representing logic ”0”) found across the same data space.1208

These two worst cases do not involve the same memristor or happen during the same1209

multiplication, but they constitute the worst-case ratio. For each of the TiO2 and Cu:ZnO1210

technologies, the observed range between the two worst cases is then compared with the1211

specified (ideal) range from the memristor models, as well as checked for compliance1212

with Eq.(4.5).1213

Different transistor and memristor size combinations are tried and the best case1214

(showing the best/worst-case memristor range) for either technology is selected for1215

comparison.1216

In the case of TiO2, the ideal range of memductance adjustment from Table 2.1 is1217

ROFF
RON

= 300. The worst case min{Ik,ihigh
} loses 2% from the top of the range and the worst1218
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case max{Ik,ilow
} loses 0.5% from the bottom of the range. The observed range is 293,1219

reduced from 300 by 2.5%.1220

Investigating the case for Cu:ZnO in the same way, we find the observed range to be1221

997, reduced from 1000 by 0.26%.1222

From these observations it can be seen that, with appropriate transistor and memris-1223

tor sizing, it is possible to limit accuracy margin reductions from the ideal cases during1224

implementation. The accuracy requirement for a ratio of 225 between the lowest logic1225

”1” current and the highest logic ”0” current for a 4-bit multiplier given in Eq. (4.5) can1226

still be satisfied. It is worth noting that with the best design implementations, TiO2 loses1227

more accuracy margin than Cu:ZnO, which has a much larger margin to begin with.1228

4.3.2 Case Experimental Study: 4-bit Multiplier1229

The multipliers presented in this chapter are studied in more detail through analogue1230

simulations in Cadence and compared with relevant existing work. The main reference1231

work featured in these comparisons come from a body of research reported in [23],1232

[86–88] and [89]. The entirely novel nature of proposed pure digital-in, pure analogue-1233

out multiplication scheme, to the best of author’s knowledge, has no competing1234

designs solving the exact same problem. Therefore, the most reasonable comparisons1235

performed here are with low-power, low precision MDAC implementations which is1236

mixed digital- and analogue-in, pure analogue-out [23], and with memristor-based1237

full digital multipliers [86, 88, 89]. Since this chapter presents the first work on full1238

DI/AO multipliers, these citations represent the closest related methods available for1239

comparison.1240

For comparison fairness, we re-implement the existing work and our multipliers1241

using the same technology (65 nm UMC) in 4-bit resolution, and compare the results1242

obtained from simulations in the same environment (Cadence Virtuoso) under the1243

same operating conditions. Our re-implementations of existing work tend to perform1244

better than reported in their original papers, because we include optimisations such as1245

transistor size explorations with the best results selected to feature in the comparison.1246

For the memristor technologies, the VTEAM model used is the same across the entire1247

comparison.1248
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The results reported here are obtained by using the multipliers on a number of1249

different combinations of operand values from 0×0 up to 15×15. The entire set of input1250

data values across the 4-bit range [0, 15] is explored to ensure the numerical correctness1251

of the compared circuits.1252

4.3.3 Results and Comparisons1253

In order to compare total multiplication speed, the source of delays from all multipliers1254

in the comparison are analysed.1255

In one multiplication cycle, our 1T1M and 1TxM crossbar multipliers complete1256

two phases of work: writing, during which the operand values are copied to the1257

memductance values in the transistor-memristor cells, and reading, during which cell,1258

column and full system currents are generated to produce the result of the multiplication.1259

The multiplication operand for memristor on crossbar is in the form of a diagonal1260

vector. Meanwhile GL signals can control the transistors in cells on an entire column1261

simultaneously but not multiple columns at a time because the memductance values1262

along the same row are not always the same. This means that the writing operation1263

is normally processed one diagonal at a time. For an N × N multiplier, there are N1264

steps in the writing procedure. The reading or multiplication procedure costs only a1265

single step. Consequently, both the 1T1M and 1TxM crossbar multipliers cost N + 11266

steps per multiplication. For the 1TxM crossbar multiplier, the delay of the last step,1267

the reading phase, between input ready and output current stable, is shown as zero in1268

Cadence because of the resistive Ohm’s Law and KCL. For the 1T1M crossbar multiplier,1269

additional delays are incurred from the CM circuits during the reading phase. According1270

to [86], the existing multipliers in the comparison all require more discrete steps for each1271

complete round of multiplication. The smallest number of steps (2N) is required by the1272

MAD gate version of Shift-and-Add multiplier.1273

The theoretical number of discrete steps needed is regarded as a main technology-1274

independent criterion by the authors of [23] and [86], but equally important is the time1275

required to complete a multiplication. Our experiments include full-multiplier execution1276

runs whose latency values are recorded. For each multiplier, both the writing and1277

reading delays are reported in two types. The writing delays are overwriting an existing1278
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0 with 1 and overwriting an existing 1 with 0 in each cell. The reading delays are fast and1279

slow cases depending on the input data values. These delays are reported in Table 4.2,1280

in addition to the required number of steps.1281

Note that we do not compare with multiplier methods based on reducing the partial1282

product additions using tree structures, such as Wallace and Dadda trees. This is because1283

these methods are not relevant for low-precision multipliers and our methods are not1284

relevant for high-precision multipliers. Therefore, to make a fair DI/AO comparison1285

with the work in [86], we have included a high-performance DAC [90]. Assuming the1286

conversion is completed in one clock cycle, the delay and power of DAC are 0.625 ns and1287

40 mW, respectively.1288

It can be seen from the results in Fig. 4.8, and Fig. 4.9 that the CM circuits incur1289

significant additional delays, which strengthens the case for eliminating them by moving1290

from 1T1M to 1TxM cells.1291

For MDAC operation, writing operation is irrelevant as either the reference or the1292

incoming data is assumed to be constant. As a result, if our proposed multipliers are1293

used in MDAC mode, the writing of memristances happens only once when setting the1294

reference or incoming constant data, and this delay is shared across many multiplication1295

cycles and per-cycle writing delay becomes negligible. This is why writing delay is not1296

included for the MDAC in [23] in the comparison.1297

Our 1TxM multiplier using Cu:ZnO technology is 100—300× faster than the memrister-1298

based digital multipliers in [86] in multiplier mode, and faster than the low-power1299

MDAC in [23] in MDAC mode because of the latter’s reading delays.1300

The next metric studied and compared is the numbers of transistors and memristors1301

required by each multiplier design. This is hardware complexity by component count.1302

These metrics are reported in Table 4.3. As can be seen, the proposed 1TxM approach1303

uses the smallest number of transistors and the greatest number of memristors in the1304

4-bit case. Compared to the 1T1M cell, adding parallel memristors does not increase1305

writing latency per cell. However, the elimination of the CMs reduces the full-multiplier1306

writing latency significantly.1307

Peak power dissipation is studied next. The recorded power typically fluctuates1308

during each multiplication round, and here the maximum power value recorded during1309
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Table 4.2: Multiplier Operation Steps and Delay per Multiplication

Multiplier Steps
4-bit Writing 4-bit Reading

The Worst

Case

Write

Logic

”1”

Write

Logic

”0”

Fast Case

15×0

Slow Case

15×15
Total Delay

1T1M (TiO2)

(This Work)

N + 1 (CM

Delay Exists)
1.87 ns 2.2 ns 36 ns 36 ns 38.2 ns

1TxM (TiO2)

(This Work)
N + 1 0.05 ns 0.23 ns 0 0 0.23 ns

1TxM

(Cu:ZnO)

(This Work)

N + 1 4.7 ps 0.1 ns 0 0 0.1ns

Shift-and-

Add (IMPLY

Logic) [86]

N2 + N 14.9 ps 9.75 ns 0.67 ns 2.33 ns 12.13 ns

Shift-

and-Add

(MAD) [86]

2N 31.0 ns 29.0 ns 0.68 ns 1.18 ns 32.23 ns

MDAC [23] 1 N/A N/A 10.3 ps 0.816 ns 0.816 ns

each of the writing and reading phases are reported. For this comparison, the best-1310

performing multiplier designs from [23], [86] and [89] are compared with the best-1311

performing multiplier design presented in this chapter, the 1TxM multiplier based on1312

Cu:ZnO memristors. The results are given in Table 4.4. As expected, our best multiplier1313

returns competitive power figures when operating in multiplier mode. When operating1314

in MDAC mode, the writing power dissipation is negligible because a single write is1315

shared by many multiplication cycles.1316

Our best multiplier is worse in peak power than the IMPLY multiplier in [86] for1317
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Table 4.3: Circuit Complexity of Memristor Based Multipliers

Multiplier Memristor Transistor
4-bit Multiplier

Complexity

1T1M (TiO2) (This

Work)
N2 N2 + 4(2N − 1)

16 Memristors,

76 MOSFETs

1TxM (Cu:ZnO)

(This Work)
(2N − 1)2 N2

225 Memristors,

16 MOSFETs

Shift-and-Add

(IMPLY Logic) [86]
7N + 1 15N − 1

29 Memristors,

59 MOSFETs

Shift-and-

Add (MAD

Logic) [86, 88]

5N 17N + 2
20 Memristors,

70 MOSFETs

MDAC [23] 0 2N + 13
0 Memristors,

21 MOSFETs

Array [65] 7N2 − 8N + 9 132N + 6
89 Memristors,

534 MOSFETs

IMPLY Semi-

Serial Adder [65]
2N2 + N + 2 2N2 + 5N

2 + 3(N ≥ 2)
38 Memristors,

45 MOSFETs

writing 0, but because the writing 0 delay is only slightly more than 1% of that required1318

by the IMPLY multiplier (See Table 4.2), the energy consumed for writing 0 is much1319

smaller. Because our 1TxM multiplier with Cu:ZnO memristors has negligible reading1320

delay, reading power only matters in the sense that it should not peak too high for the1321

sake of safety and longevity. In this case the peak reading powers stay competitive with1322

the compared designs.1323

The last metric compared is energy consumption per multiplication, with the results1324

reported in Table 4.5. A ”multiplication” here refers to an entire cycle including the1325

writing and reading phases and the energy figures are obtained through integrating1326

power over time across the entire operation. For the multipliers based on memristor1327

71



technology, the memristors start with digital 0 in the initial state before writing. This1328

arbitrary choice of initial state does not favour any method, but does result in some cases1329

of zero energy being recorded as nothing happens (product directly available) in some of1330

the multipliers in those cases. Our 1TxM multiplier with Cu:ZnO memristors return the1331

best-in-comparison figures in all experiments, with orders of magnitude improvements1332

over the compared designs.1333

Table 4.4: Multiplier Peak Power per Phase

Multiplier
4-bit Writing Power 4-bit Reading Power

Write

Logic

”1”

Write

Logic

”0”

15× 0 15× 15

1TxM (Cu:ZnO) (This Work) 8.40 µW 270 µW 0.67 µW 655 µW

Shift-and-Add (IMPLY) [86] 656 µW 98.1 µW 40.1 mW 44.1 mW

Shift-and-Add (MAD) [86] 732 µW 1.52 W 40.6 mW 40.4 mW

MDAC [23] N/A N/A 98.4 µW 489 µW

Table 4.5: Energy per Multiplication Corner Cases

Multiplier
Energy Consumption

0× 0 0× 15 15× 0 7× 8 8× 7 15× 15

1TxM (Cu:ZnO) (This Work) 0 0.158 aJ 0 0.118 aJ 0.039 aJ 0.158 aJ

Shift-and-Add (IMPLY) [86] 25 pJ
107.72

pJ
26.59 pJ

108.18

pJ
76.71 pJ 127.8 pJ

Shift-and-Add (MAD) [86] 25.04 pJ 413.3 pJ 25.11 pJ 891.9 pJ 3.15 nJ 413.4 pJ

MDAC [23] 1.407 fJ 196.4 aJ 30.96 fJ 105.3 fJ 110.4 fJ 214.3 fJ

In principle, the reference items from [86] and similar work are memristor multipliers1334

which are based on conventional CMOS digital multiplier principles including oblig-1335
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atory carry-passing and/or sequential operations with more steps. Implementation-1336

wise they also require a substantial amount of switching logic compared to the number1337

of memristors used, leading to worse area, power and speed. In comparison, by1338

representing data in three different physical quantities, our designs leverage laws of1339

physics such as Ohm’s Law and KCL for naturally parallel operations across resistive1340

elements, with much-reduced memristor writing operations and virtually delay-free1341

reading, saving delay, power and energy costs.1342

4.4 Summary1343

In this chapter, novel multiplier designs that make use of transistor-memristor cells for1344

bit-wise multiplication are presented. Working in mixed-signal mode, these designs1345

remove the need for carry-to-the-left operations in conventional digital multipliers, and1346

directly provide an analogue output. The elimination of carry propagation and DAC1347

circuits, whilst maintaining digital input interfaces, is important in edge computing1348

because this allows the majority of the computation to remain digital, with its associated1349

advantages, but produces the required analogue output directly. The designs take1350

advantage of the substantial margin of memristance differences between the ON and1351

OFF states of a memristor. High and low analogue current values with large separation1352

conveniently represent logic ”1” and ”0” and provide sufficient accuracy for analogue-1353

out multipliers.1354

The multiplication is performed by mapping one of the operands to memductance1355

values. With non-volatile memristors as the core in-memory compute units, the1356

multipliers benefit from intrinsic data retention in a number of scenarios. These include1357

when an input variable is multiplied by a constant coefficient, or when a variable number1358

is multiplied by a relatively constant reference, or when a fixed number is multiplied by a1359

variable reference, which are frequently seen in control, signal processing, AI and MDAC1360

applications.1361

By using multiple memristors in parallel in each cell, we relocate the bit significance1362

weighting function from CMs to the number of memristors in a cell. It is clear to see that1363

TiO2 memristor decreases nearly 90% writing 0 time cost and 97% writing 1 time cost1364
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in one multiplication. In other words, the same proportions of energy consumption are1365

also saved from the multiplication. Also, this allows the proposed 1TxM based multiplier1366

with Cu:ZnO to outperform recently reported designs in terms of hardware complexity,1367

performance and energy while staying competitive on peak power. Moreover, the1368

Cu:ZnO memristor itself also performs better energy efficiency and speed in crossbar1369

multiplier than TiO2 memristor, and most existing work is based on the TiO2 memristor.1370

However, these advantages come at the cost of limits in the memductance adjustment1371

range, which affect the large scale implementations beyond a 4-bit multiplier, which is1372

nonetheless sufficient for many micro-edge applications [91]. In our future work, the1373

input/output characteristics of our 1TxM multiplier will be modelled as a perceptron1374

to design a new machine learning accelerator. Other resistive memory units can also be1375

investigated in similar memristor architectures.1376
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Chapter 51377

Memristive Multiply-accumulate Unit1378

for Neural Networks1379

AI applications implemented using NNs require extensive arithmetic capabilities through1380

MAC units. Their designs based on traditional voltage-mode circuits feature complex1381

logic chains in both the multiplication as well as accumulation operations. Additionally,1382

as the data loading and storage operations are performed using a separate memory1383

block (i.e., using Von Neumann architecture), each data movement incurs further on-1384

chip communication bottlenecks. The effect of these manifests in terms of high latency1385

and power consumption for MACs in hardware acceleration. MACs for NNs require1386

both digital inputs and digital outputs. This is a major difference between the work1387

reported in this chapter and that of the previous chapters.1388

Many modern applications, such as neuromorphic, signal processing and control,1389

require the multiplier output in an analogue form with digital input interfaces [18]. This1390

is conventionally satisfied by attaching a digital-to-analogue conversion (DAC) device1391

to the output of a digital circuit [20]. However, DAC circuits add to the energy and1392

performance costs that depend on the precision of the digital multipliers.1393

Multiplication with mixed-signal arithmetic circuits is a potential alternative [22] and1394

has a successful academic and commercial history. An example is the multiplying DAC1395
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(MDAC) circuit, which multiplies a digital number by a usually analogue reference1396

signal to produce an analogue output [23]. Digital-in analogue-out, where both operands1397

are digital but the product is analogue, has remained under-explored. This chapter1398

addresses this problem. Table 1.1 lists different types of multipliers (including MDACs)1399

by the digital and analogue nature of their input and output signals.1400

This chapter presents a novel MAC unit based on a single-bit multiplication cell1401

(SBMC) consisting of a number of memristors and transistor switches which is called1402

multiple transistors multiple memristors (yTxM), a development from the 1TxM cell1403

structure presented in Chapter 4. Apart from this difference, the crossbar multiplier1404

structure remains unchanged from the previous chapters.1405

The input voltage and memristor self-conductance represent the multiplication1406

operands, and the current represents the product, according to Ohm’s Law. In the1407

arithmetic design from Chapter 4, the multiplication operands are expressed in the1408

mixed form (voltage, conductance, and current) for achieving better calculating speed1409

and energy efficiency. Single-bit multiplication comes naturally with Ohm’s law, with1410

voltage input representing one operand, conductance the other, and current the product.1411

In addition, KCL takes care of the addition operations. With KCL, addition and1412

subtraction are equivalent to joining multiple current paths into a node and removing1413

current paths from a node. Most of these design aspects of the crossbar multiplier are1414

maintained in this chapter, up to the analogue product represented by the current sum,1415

with the only extension being the yTxM cell structure, which provides more fine-tuning1416

capabilities for matching with the additional circuits required to convert the analogue1417

product to digital form.1418

When converting the intermediate current product conventional voltage-encoded1419

multi-bit digital format, targeting multi-MAC applications such as NNs, there is a built-1420

in bit-precision reduction that makes the output the same bit resolution as the inputs.1421

This is unlike typical digital multipliers, which have double the number of bits in their1422

products compared with the operands. This helps keep the precision of multi-layer NNs1423

constant and energy and latency under control.1424

Our MAC unit consists of the memristor-transistor crossbar multiplier and mixed-1425

signal flash ADC shown in Fig. 5.1. This chapter introduces the main parts of this MAC1426
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Figure 5.1: The structure of MAC units.

unit.1427

For this design, the computation latency consists of memory writing and result1428

encoding operations, with the Ohm’s Law and KCL operations contributing negligible1429

delay. This is because the crossbar structure eliminates the need to deal with carries.1430

When compared with other memristor-based multipliers in UMC 65-nm technology,1431

the proposed work shows an order of magnitude improvement in latency in 4-bit1432

implementations. In addition, the energy consumption per multiplication cycle of the1433

proposed work is shown to improve by up to 92%. To investigate the usefulness of1434

this MAC design in machine learning applications, its input and output relationship1435

has been characterised to represent a 4-bit input perceptron which is then replicated to1436

demonstrate multi-layer perceptrons (MLPs) to classify the well-known dataset of hand-1437

written digits, modified national institute of standards and technology (MNIST). This1438

case study implements a hyper-parameter search to find configurations of the MLP that1439

lead to high accuracy for this classification problem.1440
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5.1 Multiple-transistor Multiple-memristor Multiplier1441

5.1.1 Resistive Multiple Memristors Multiplication Cell1442

Taking advantage of memristor resistivity, the resistive xM cell can perform amplification1443

by adjusting the cell RM for the target operand. The most straightforward method is1444

to keep single-memristor resistances the same across the multiplier, but build 1TxM1445

cells with different numbers (x values) of parallel memristors corresponding to their bit1446

significances. For example, we use 1M for bit 0, 2M for bit 1, 4M for bit 2, 8M for bit 3,1447

etc. In this way, the cells perform the required current amplification, removing the need1448

for CMs. When applied to the crossbar architecture, both 1M and xM cells help reduce1449

the energy cost and latency. Additionally, the space cost of multipliers based on these1450

cells can also be lower [18].1451

This type of mixed-signal multiplier is DI/AO. Because transistor switching only1452

happens when setting the memristor values and connecting the input voltages, the1453

only delay is associated with making the operands (multiplier and multiplicand) ready.1454

After that, the multiplication operation itself only involves resistive Ohm’s Law which1455

together with KCL can be regarded as instantaneous. This means that the product is1456

immediately obtained once the operands are ready. This compares to regular digital1457

schemes that have to go through multi-stage addition and carry-handling operations1458

once the bit products appear.1459

Another advantage of such transistor-memristor crossbar multipliers is that one of1460

the operands is represented by memductance GM = 1
RM

, which is non-volatile. This is1461

a good match for applications such as NNs and reference-based arithmetic where one of1462

the operands tends to be relatively stable and requires only sporadic change. For multi-1463

stage operations such as NNs, a digital-in/digital-out (DI/DO) MAC unit is required.1464

If this type of mixed-signal multiplier is to be used, additional circuits are needed to1465

generate the appropriate digital output from the intermediate current that encodes the1466

product.1467

Fig. 5.2 represents the SBMC. The serial connection of multiple memristors (xM)1468

and multiple transistors (yT) generates the basic multiplication cell in the proposed1469
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Figure 5.2: The structure of yTxM multiplication cell.

multiplier.1470

A memristor can be set in two interchangeable states: a high conductance state (HCS)1471

and a low conductance state (LCS). These two states are used to represent the value on1472

one of the two single-bit operands (inputs). When providing/preparing the value of this1473

operand, the cell works in writing mode, with the input voltage used to write either a1474

HCS or an LCS into the memristor. After this operand is set, the cell can work in reading1475

mode, which is the multiplication operation. In reading mode, the input voltage takes1476

the value of the other operand and is in either of the two states: the high voltage state1477

(HVS) or low voltage state (LVS). The cell current then forms the output (product) of1478

the single-bit multiplication according to Ohm’s law, and is also in Boolean format with1479

high and low states. The transistors additionally serves the purpose of turning the cell1480

off (not-writing and not-reading, but holding the operand encoded in the memductance1481

state).1482

Therefore, the operation of the multiplication cell can be easily used to encode1483

Boolean logic: HCS and HVS represent logic ”1”, while LCS and LVS represent logic ”0”.1484

Similarly, the output current also has high and low states that can encode logic ”1” and1485

logic ”0”. In this way, a memristor-transistor cell can perform single bit multiplication1486

(same as logic AND).1487
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5.1.2 Crossbar Multiplier Current Identification1488

SBMCs (shown in Fig. 5.2) are then composed into a multi-bit multiplier using a crossbar1489

structure, with KCL taking charge of the partial product addition step. A 4-bit case is1490

shown in Fig. 4.5, with the updated part being that the 1TxM MC in Fig. 4.2 is replaced1491

by yTxM MC in this chapter.1492

In this updated architecture, all SBMCs are included in the Ohm’s law zone (enclosed1493

in brown dashed lines). All wires and nodes through which currents flow belong to1494

the KCL zone, enclosed in purple dashed lines. In the KCL zone, nodes ”Digit1” to1495

”Digit7” represent partial products whereas the current through the load resistor Rout is1496

the final product. Note that, unlike the common long-multiplication algorithm, there is1497

no attempt to find horizontal partial products and no attempt to pass carries horizontally.1498

All partial products are generated vertically. Carries can be avoided because the vertical1499

partial products and the final product are encoded in currents with higher upper limits1500

to their values than that which encodes a single logic ”1”. In other words, the currents at1501

the Digit1 to Digit7 nodes and Iout can take values that are multiples of the high current1502

state across a single memristor, which encodes logic ”1” at the lowest level of detail. For1503

instance Digit2’s current can be up to four times this single-memristor logic ”1” and the1504

maximum value of the partial product at Digit2 is therefore 4 (because each MC2 can1505

generate twice the maximum current compared with MC1), instead of 2 in the case of a1506

typical digital multiplier at this bit position.1507

Because the multiplication is performed by fixed voltage values for 0 and 1 from the1508

voltage operand, the output currents of cells in each column corresponding to logic ”1”1509

at these cells need to be set according to the column’s digit significance. Avoiding CM1510

amplifiers, this can be implemented using x memristors in parallel with the appropriate1511

x value. The relationship between x and the digit significance N follows Eq. (5.1):1512

x = 2N−1 (5.1)

Let us use the 4-bit multiplier in Fig. 4.5 as an example, assuming that the cell1513

transistors are ideal switches, with VMH and VML as the high voltage and low voltage1514

operand inputs, and RMH and RML as the high and low cell resistance (memristor1515
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resistance) operand inputs. The possible output current states in each cell are shown1516

in Fig. 5.3 as I1, I2, I3, and I4. Because the logic ”1” state is defined by VMH and RML, I4 is1517

the output current representing logic ”1”, whereas the other three current states I1, I2 and1518

I3 all represent logic ”0” because at least one of their input operands encodes 0. Given the1519

cell structure, none of I1, I2 and I3 can be true 0 A. This is because RMH cannot be true1520

infinity and to maintain the commutative property of multiplication, true 0 V should1521

not be used in the voltage input operand either. Because of KCL, a potentially large1522

number of relatively small I1, I2 and I3 values accumulated with the sum still required1523

to represent a product value of 0. In other words, a single I4 needs to be greater in value1524

than the sum of a large number of I1, I2 and I3 values to differentiate 0 and 1 at the final1525

product.1526

The final result Iout matrix shown in Fig. 5.3 illustrates this issue in detail by1527

enumerating all possible Iout values across all possible combinations of input operand1528

values. This current map assumes that the operand encoded in the voltage is called1529

the multiplier and the other operand encoded in the memristor resistance is called the1530

multiplicand, without losing generality. Each operand is 4 bits wide and takes values1531

from 0 to 15. When the multiplier increases from 0 to 15 we move from left to right1532

along the i axis, 0 ≤ i ≤ 15, and when the multiplicand increases from 0 to 15 we move1533

from top to bottom along the j axis, 0 ≤ j ≤ 15. At each position (i, j) in the matrix, Ii,j1534

encodes the product of multiplying (multiplier = i) by (multiplicand = j). To simplify1535

the presentation, we use four coefficients a, b, c and d to differentiate all the output1536

currents and define Ii,j as Ii,j = aI1 + bI2 + cI3 + dI4. This means that moving down in1537

the matrix, a decreases and c increases, with b and d held constant, and move right in the1538

matrix, b decreases and d increases, with a and c held constant. Because 15× 15 = 225,1539

a + b + c + d = 225. The four corner cases of the matrix are therefore Iout = 225I1,1540

Iout = 225I2, Iout = 225I3, indicating final product values of 0 = 0× 0 = 0× 15 = 15× 0,1541

and Iout = 225I4 which indicates a final product value of 225 = 15× 15.1542

For the 4-bit crossbar multiplier shown in Fig. 5.3, the coefficients a, b, c and d are1543

related to the operand values i and j according to Eq. (5.2) – Eq. (5.5).1544
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Figure 5.3: The mapping of all multiplication output current.

a = i ∗ j− (24 − 1)i− (24 − 1)j + (24 − 1)2 (5.2)

b = (24 − 1)i− i ∗ j (5.3)

c = (24 − 1)j− i ∗ j (5.4)

d = i ∗ j (5.5)

For a general N × N-bit multiplier, the equations above are replaced by Eq. (5.6) –1545

Eq. (5.9), where 0 ≤ i ≤ (2N − 1) and 0 ≤ j ≤ (2N − 1).1546

a = i ∗ j− (2N − 1)i− (2N − 1)j + (2N − 1)2 (5.6)

b = (2N − 1)i− i ∗ j (5.7)

c = (2N − 1)j− i ∗ j (5.8)

d = i ∗ j (5.9)

From these, the output current for position (i, j) in the result current matrix can be1547

found according to Eq. (5.10).1548
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Ii,j = [i ∗ j− (2N − 1)i− (2N − 1)j + (2N − 1)2]I1

+ [(2N − 1)i− i ∗ j]I2 + [(2N − 1)j− i ∗ j]I3 + (i ∗ j)I4 (5.10)

Assuming a base voltage V0 ̸= 0 and base resistance R0 ̸= 0, we can relate the high1549

and low memristor voltages and resistances to these base values as in Eq. (5.11):1550

VMH = αV0 VML = βV0 RMH = γR0 RML = λR0 (α > β > 0, γ > λ > 0) (5.11)

Then, the base current I0 = V0/R0 can be substituted into I1 – I4, resulting in Eq. (5.12)1551

– Eq. (5.15).1552

I1 =
VML
RMH

=
β

γ
I0 (5.12)

I2 =
VMH
RMH

=
α

γ
I0 (5.13)

I3 =
VML
RML

=
β

λ
I0 (5.14)

I4 =
VMH
RML

=
α

λ
I0 (5.15)

Substituting Eq. (5.12) – Eq. (5.15) into Eq. (5.10) and simplifying the result, we obtain1553

Eq. (5.16).1554

Ii,j =
i ∗ j(α− β)(γ− λ)

γλ
I0 + (2N − 1)

[
(2N − 1)

β

γ
+

(
α

γ
i +

β

λ
j
)
− β

γ
(i + j)

]
I0 (5.16)

It is evident that the multiplication is commutative if α
β = γ

λ . In practice, this is1555

ensured by adjusting the parameters of the cell components to make the contributions of1556

both operands symmetrical and linear.1557

5.2 Analogue-to-digital Conversion1558

After the analogue output Ii,j is generated, its value needs to be represented as a 4-bit1559

(or N-bit in the general case) digital value either as a memristor resistance or voltage1560
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encoding for the entire MAC unit to function in a multi-MAC NN using copies of the1561

same MAC hardware. Because the memristor resistance values are written in by digital1562

voltage signals, we do not lose generality if a 4-bit MAC outputs a 4-bit voltage encoded1563

product (4 Boolean voltage signals).1564

We implement this functionality using a flash ADC, designed from components1565

adapted from [35, 37]. The choice of using thermometer code as an intermediate step1566

comes from the desire to make this MAC approximate in the sense of generating a 4-bit1567

product from input operands that themselves are also 4 bits in width. This ADC consists1568

of a single-action multiple-current comparator, buffer array and a read only memory1569

(ROM) encoder. The following subsection describes this part of the system in detail.1570

5.2.1 Thermometer Code Generating Current Comparator1571

Table 5.1: Thermometer Code Generator Transistor Size

Component Size Component Size Component Size Component Size

Min 3.2 µm Mre f 1.6 µm P1 100 nm P11 80 nm

Mout 1.6 µm P2 140 nm P12 100 nm

M1 100 nm M9 715 nm P3 80 nm P13 100 nm

M2 110 nm M10 785 nm P4 80 nm P14 100 nm

M3 310 nm M11 850 nm P5 80 nm P15 100 nm

M4 365 nm M12 965 nm P6 80 nm P16 100 nm

M5 440 nm M13 1 µm P7 80 nm

M6 510 nm M14 1.11 µm P8 80 nm

M7 580 nm M15 1.19 µm P9 80 nm

M8 650 nm M16 1.27 µm P10 80 nm

Fig. 2.3 represents the current comparator. Given that the digital output is expected to1572

be in 4 bits, the comparator is set to 16-value thermometer code output. The input current1573

is mirrored by a p-type CM that generates a row of pull up current sources; similarly, the1574

reference current is mirrored by an n-type CM that generates a row of pull down current1575
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sinks. By adjusting the size of M1 to MN , the reference current can be set to different1576

levels. If a current source has a higher value than the corresponding current sink, the1577

voltage at the junction point is pulled up to Vdd; otherwise, the junction point voltage is1578

pulled down to ground. Therefore, the comparator will generate a thermometer code in1579

the buffer array.1580

To make this design work for our 4-bit crossbar mixed-signal multiplier, the transistor1581

sizes need to be tuned to fit the multiplier current output characteristics. Details of the1582

MOS transistor size choices are listed in Table 5.1.1583

5.2.2 Thermometer Code to Binary Encoder1584

The thermometer code is an intermediary format that, after serving the purpose of fast1585

comparison and product precision adjustment, has to be converted into a voltage binary1586

code for MAC output. The structure of the thermometer to binary encoder is shown in1587

Fig. 2.4. This encoder consists of an AND gate array and a ROM encoder. For a 4-bit1588

digital output, the 16-value thermometer code is first converted by the AND array to a1589

16-digit one-hot code, which is then fed to the ROM encoder to generate a 4-bit binary1590

output.1591

The complete MAC unit therefore accepts as inputs a multiplier in the form of 4-1592

bit binary voltage signals and a multiplicand in the form of 4-bit binary memductance1593

values, and generates a product in the form of 4-bit binary voltage signals. This voltage-1594

encoded 4-bit binary number can then be used directly as the multiplier for another1595

MAC of the same configuration, or used to write the multiplicand for it. This means1596

that the digital-to-digital MAC can be instantiated multiple times to form an NN or other1597

machines that require a number of distinct MAC units of the same type working together.1598

5.3 Neural Network Implementation1599

This section presents a case study to validate the proposed MAC unit. In this section, a1600

machine learning algorithm (MLA) NN is created using copies of our MAC unit servicing1601

as perceptrons. The machine learning problem solved with this NN is the classification1602

of the MNIST data set.1603
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As our MAC unit supports only 4-bit inputs (integers), we need to apply a quantiza-1604

tion technique to preserve the high accuracy while using such low-precision numbers.1605

Two state of the art techniques exist for this: post-training quantization (PTQ) and QAT.1606

The weights used in the PTQ will be quantified to the target bit-width after the floating-1607

point based training. This is a simple technique, yet not suitable for <8-bit resolution1608

applications because of the increase in quantization error [92]. Alternatively, the QAT1609

technique injects the quantization error during training. This allows the lower-resolution1610

NN to learn and improve its weights appropriately. Previously, 98% accuracy for MNIST1611

classification using 4-bit NN with the QAT technique has been shown in [93]. Therefore,1612

this technique will be applied in our NN training.1613

The most challenging issue in our NN training is that the output of our MAC unit1614

contains variations because of its analogue nature. To overcome this issue, we will1615

use the same idea as QAT; the variations will be included in our training so that the1616

NN can learn these variations and adjust its accuracy accordingly. In summary, this1617

section contributes the QAT technique analysis to inject the MAC unit variations, the1618

demonstrates NN training for MNIST classification and compares the accuracy of our1619

NN trained MAC unit with the basic 4-bit QAT NN. Note that, for ease of computation1620

analysis, our NN consists of fully-connected layers only. We are considering extra1621

software library development to include the proposed MAC unit in the convolution1622

layers as future work.1623

5.3.1 Quantization-aware Training Analysis1624

Fundamentally, fully-connected NN computation contains dot-product operations be-1625

tween weight matrices and input vectors. Eq. (5.17) means that the resulting matrix1626

element r3 at row i and column k is obtained from the sum of the products between the1627

pairs of the weight matrix elements r1 at row i and the input vector elements r2 at column1628

k. In general, these variables are presented precisely in floating-point format.1629

r(i,k)3 =
N

∑
j=1

r(i,j)1 r(j,k)
2 (5.17)

To compute the above equation using integer-arithmetic hardware, we need to1630
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quantify these real numbers. Following [94], any real numbers can be quantified,1631

resulting in positive quantified-values q in integers minus the zero-point Z and scaled1632

by the scale factors S as shown in (5.18). In addition, the range of q is between 0 and1633

2n−1, where n is the number of bits. Therefore, in this work q is in the range [0, 15] (4-bit1634

unsigned integer).1635

r = S(q− Z) (5.18)

Replacing the weights r1 and inputs r2 in (5.17) by Eq. (5.18) yields Eq. (5.19) which1636

can be re-written as Eq. (5.20):1637

r(i,k)3 =
N

∑
j=1

S1

(
q(i,j)1 − Z1

)
S2

(
q(j,k)

2 − Z2

)
(5.19)

1638

r(i,k)3 = S1S2

(
NZ1Z2 − Z1

N

∑
j=1

q(j,k)
2 − Z2

N

∑
j=1

q(i,j)1 +
N

∑
j=1

q(i,j)1 q(j,k)
2

)
(5.20)

In Eq. (5.20) there is no dot-product operation on floating-point numbers; this1639

happens only in term ∑N
j=1 q(i,j)1 q(j,k)

2 where both operands are integers, and therefore1640

our multiplier is applicable to this operation.1641

Another issue is that our MAC unit is centred around an analogue product. It1642

therefore contains a non-ideal effect where its multiplication results deviate from the1643

expected values as shown in Table 5.2. In Eq. (5.21), we add ∑N
j=1 C

(
q(i,j)1 ,q(j,k)

2

)
to sum up1644

the variation from every multiplication. The value of C can be found at column q(i,j)1 and1645

row q(j,k)
2 of Table 5.2. This allows the NN to learn and adjust its weights according to1646

our multiplier’s numerical characteristics.1647

r(i,k)3 = S1S2

(
NZ1Z2 − Z1

N

∑
j=1

q(j,k)
2 − Z2

N

∑
j=1

q(i,j)1 +
N

∑
j=1

q(i,j)1 q(j,k)
2 −

N

∑
j=1

C
(

q(i,j)1 ,q(j,k)
2

))
(5.21)

From Eq. (5.21), we can separate the loss term from the main bracket by multiplying1648

the scale factors S1 and S2 as expressed in Eq. (5.22). It can be seen that the large term1649

remains the same as in Eq. (5.20). We can thus conclude that the variation in our MAC1650

unit can be simulated by subtracting the product of both scale factors and the sum of the1651

MAC unit’s errors from the basic dot-product’s result. Eq. (5.23) will be added to our1652
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Table 5.2: Multiplication Errors of the Proposed Multiply Accumulate Unit

Result
Multiplier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ul

ti
pl

ic
an

d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 -1 -1 -1 -1 -1 -2 -2 -1 -1 -1 -2 -2 -2 -2 -2

2 0 -1 -2 -2 -1 -2 -2 -2 -3 -3 -3 -4 -3 -3 -3 -4

3 0 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4

4 0 -2 -2 -2 -3 -3 -3 -3 -4 -4 -3 -4 -4 -5 -4 -4

5 0 -2 -2 -2 -3 -3 -3 -4 -3 -4 -4 -4 -4 -5 -4 -4

6 0 -2 -2 -3 -2 -3 -4 -3 -4 -3 -4 -4 -4 -4 -4 -4

7 0 -3 -2 -3 -3 -3 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4

8 0 -2 -2 -2 -3 -3 -3 -3 -4 -3 -4 -3 -4 -3 -4 -4

9 0 -2 -3 -2 -3 -3 -3 -3 -3 -4 -3 -3 -3 -3 -4 -3

10 0 -2 -3 -3 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

11 0 -2 -3 -3 -2 -2 -3 -3 -2 -2 -3 -3 -2 -2 -2 -2

12 0 -2 -2 -3 -3 -2 -2 -2 -3 -2 -2 -2 -2 -2 -2 -1

13 0 -2 -2 -2 -3 -3 -2 -2 -2 -2 -1 -1 -2 -2 -1 -1

14 0 -2 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -1 -1 -1 0

15 0 -2 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 0 0 0 0

training graph as explained in the next section.1653

r(i,k)3 = S1S2

(
NZ1Z2 − Z1

N

∑
j=1

q(j,k)
2 − Z2

N

∑
j=1

q(i,j)1 +
N

∑
j=1

q(i,j)1 q(j,k)
2

)
− S1S2

N

∑
j=1

C
(

q(i,j)1 ,q(j,k)
2

)

(5.22)1654

r(i,k)3 =
N

∑
j=1

r(i,j)1 r(j,k)
2 − S1S2

N

∑
j=1

C
(

q(i,j)1 ,q(j,k)
2

)
(5.23)
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5.4 Simulation Results1655

5.4.1 Multiple Transistors Multiple Memristors Multiplication Cell Perfor-1656

mance1657

(a) (b)

(c)

Figure 5.4: The yTxM MC output current mapping in all 4 by 4 multiplications.

The structure of our multiplication cell is presented in Fig. 5.2, the parallel-connected1658

memristors and transistors are marked in brown to indicate them operating under Ohm’s1659

law. Similarly, the cell output current path to CL is marked in purple to indicate the1660
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operation of KCL. Because the multiplication cell works as a conductive component1661

on the crossbar, both the memristors and transistors contribute to the cell conductance.1662

It is therefore important to ensure that the memristor dominates the cell conductance,1663

because we use the transistors as (ideal) switches. In other words, even in ON state, the1664

low resistance state transistor still contributes current to multiplication cell. In order to1665

eliminate the transistor effect, memductance should be much larger than the ON state1666

transistor conductance. Additionally, the OFF state transistor conductance should be1667

small enough to isolate a selected cell from the rest of the crossbar so that it can be1668

in holding mode while other cells are written. With the memristor count for each cell1669

determined by the digit significance, the transistor count and size need adjustments to1670

balance that. Therefore, our proposed 4-bit crossbar multiplier uses cells with fixed ratios1671

for the memristor count and transistor count.1672

In Fig. 5.4 and Fig. 5.5, comparisons between the crossbar with the respective1673

yTxM cell shown. The 4-bit crossbar multiplier generates the same levels of Iout with1674

different count transistor-memristor cells, and the product values are symmetric between1675

multiplicand and multiplier indicating commutative multiplication. The 1T2M cell1676

stands out in the error rate comparison. The maximum error rate for the crossbar1677

multiplier is 0.58% with the 1T2M cell, 0.72% with the 7T16M cell, and 0.86% with the1678

15T32M cell.1679

Therefore, apart from the LSB using a 1T1M cell, all the multiplication cells in this1680

4-bit multiplier follow the memristor-transistor ratio for the 1T2M; i.e., two memristors1681

for each transistor in a cell.1682

5.4.2 Crossbar Multiplier Performance1683

The 4-bit crossbar multiplier shown in Fig. 4.5 has two operations in each multiplication,1684

writing (operand preparation) and reading (multiplying) operation. When multipli-1685

cation starts with a new multiplicand, all multiplication cells will be clear to LCS by1686

each RL; then the multiplicand is written by each GL column. Finally, the reading1687

(multiplier) voltages are applied on all RLs. Meanwhile, all cell transistors are switched1688

ON. The multiplication result can be obtained from the ADC out terminal (see Fig. 2.4).1689

When multiplying with an existing multiplicand, the writing step is omitted and the1690
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(a) (b)

(c)

Figure 5.5: The yTxM MC output current error rate mapping in all 4 by 4 multiplications.

reading step starts directly. That is why this multiplier is well suited for asymmetrical1691

multiplication applications such as multiplying variables to coefficient/reference values1692

found in applications such as monitoring and control and certain operations in neural1693

networks where one of the operands (i.e., the multiplicand) does not change too often.1694

ADC transistor design parameters are presented in Table 5.1 and writing operation1695

setting parameters are presented in Table 5.3. To reduce latency, the writing operations1696

are parallelised on a per-row basis. To match the values of high and low memductance,1697

the reading (multiplier) voltage has values of 0.42 V as logic ”0” and 0.7 V as logic ”1”.1698

The total delay in each multiplication is 2 ns, which is almost entirely ADC delay. Three1699
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Figure 5.6: The output current details of three multiplication cases. The red dash steps are the

threshold for each digital output. 0-2.97 ns is 15× 15, 4.57 ns-7.13 ns is 0× 0, and 10.77 ns-13.2 ns

is 9× 6.

Table 5.3: Multiplier Operation Design Details

Area Time (ns) Voltage (V)

Entire Crossbar
Write 1 Write 0 Write 1 Write 0

0.43 16.9 1.8 -2

Single Row
Write 1 Write 0 Write 1 Write 0

0.275 0.43 1.8 -2

Single Cell
Write 1 Write 0 Write 1 Write 0

0.261 / 1.8 /

multiplications, 15× 15, 15× 0 and 9× 6 are tested on the 4-bit multiplier. The results1700

are presented in Figs. 5.6 and 5.7.1701

The red dashed steps in Fig. 5.6 are the thresholds for the current comparator, which1702

translates currents to thermometer code. For instance, Iout = 100 µA translates to the1703

thermometer code value of 8, and 9× 6 results in Iout ≈ 90 µA, which translates to a1704
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Figure 5.7: The binary pulse output details of three multiplication cases. 0-2.97 ns is 15× 15, 4.57

ns-7.13 ns is 0× 0, and 10.77 ns-13.2 ns is 9× 6.

thermometer code of 7. The output bit voltages are recorded in Fig. 5.7. Here B3 is the1705

MSB and B0 the LSB. It can be seen that the ADC delay is data-dependent and the more1706

bits that are 1 the longer the delay. This is because the less significant bits are settled1707

after the more significant bits, and before then they have swings. The output value of1708

1111, corresponding to 15× 15, takes just less than 2 ns to become stable, which is the1709

worst-case delay for the MAC. In comparison, 0× 0 incurs almost no delay.1710

Value-wise, 15× 15 results in 1111 (the largest number possible out of 4 bits), 15× 01711

results in 0000 and 9× 6 results in 0111. These values work well for a 4-bit digital-in and1712

4-bit digital-out MAC unit.1713

5.4.3 Energy Efficiency1714

Our study is mainly based on the worst-case delay assumptions. The worst-case1715

multiplication cycle includes 4 row-writing 0 (reset) operations with a 1.72-ns delay,1716

4 row-writing 1 (set) operations with a 1.1-ns delay, and one entire crossbar reading1717

(multiply+ADC) operation with a 2-ns delay. The average power is 290 µW. The average1718
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energy consumption per multiplication cycle for the 4-bit 1T2M crossbar multiplier is1719

1.39 pJ over a 4.82-ns period.1720

The worst-case energy per multiplication cycle happens with 15× 15 because it has1721

the longest delay and the highest Iout value (187.3 µA) among all multiplication cases.1722

This worst-case cycle has an energy consumption of 3.91 pJ. The most optimal scenario1723

occurs when computing 0 × 0, which requires a minimal energy input of approximately1724

0.01 pJ. This outcome is attributed to the parameter settings, particularly the uniform1725

transistor size on the crossbar of width/length = 500 nm/60 nm. This low energy1726

consumption can be attributed to the insignificant time taken during writing by the1727

crossbar and Analogue-to-Digital Converter (ADC), as well as the low current and1728

voltage values involved in the single multiplication sample. On the other hand, the1729

worst-case reading scenario occurs when computing 15 × 15, which consumes 0.84 pJ1730

over a period of 2.97 ns.1731

In Fig. 5.8, the best-case and the worst-case energy consumption figures for our1732

multiplier are compared with state-of-the-art memristor multipliers. The figure shows1733

that the proposed MAC saves 83.7% and 74.1% of energy per multiplication cycle1734

more than the MAD Shift-and-Add multiplier and the optimised MAD Shift-and-Add1735

multiplier and 82.6% per multiplication energy cost than MDAC in their respective worst1736

cases. In the best case, the comparative energy savings can reach up to almost 99%. Even1737

the average energy consumption of the proposed MAC unit, at 1.39 pJ, is significantly1738

lower than the best-case figures achieved by the competition.1739

5.4.4 Neural Network Training and Results1740

To demonstrate the application of the proposed MAC unit in our NN training, we con-1741

structed three fully-connected layers for MNIST classification as illustrated in Fig. 5.9(a).1742

The numbers of neurons in the input/hidden/output layers were 800/500/10. The1743

forward-pass calculation for each layer follows the graph in Fig. 5.9(b). Regarding the1744

QAT concept, the inputs and weights of each layer were quantified and dis-quantified1745

based on Eq. (5.18) to simulate the quantization error. Note that this procedure is known1746

as fake quantization in the literature [93]. In addition, the resolution q was set to 4 bits,1747

which is consistent with the input resolution of our MAC unit.1748
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Figure 5.8: The comparison of energy consumption per multiplication with MAD Shift-and-

Add multiplier, optimised MAD Shift-and-Add multiplier [86], MDAC [23], and alphabet set

multiplier (ASM) [95]. This work consumes the least energy in both worst case and best case.

When compared the memristive multiplier [86], the proposed design saves 83.7% and 74.1%

energy in the worst case, and saves up to over 99% energy in the best case. When compared

with MDAC [23], proposed design still has 82.6% energy cost reduction in worst case and up

to over 99% energy saving in the best case. When compared with alphabet set multiplier, the

proposed design has 98% energy efficiency advantage in the best case.

Subsequently, we performed the dot-product operation between the inputs and1749

weights, followed by the addition of biases. To ensure output stability, we incorporated1750

a MAC block that subtracted the dot-product results by our MAC’s output variations,1751

as elaborated in Section 5.3.1. The resulting values from the MAC block underwent1752

rectified linear unit (ReLU) activation function, and then underwent another round of1753

fake quantization of the activation. The output of this layer was then used as the input1754

for the following layer.1755

The NN configurations presented in Table 5.4 were implemented using the PyTorch1756

library [96]. The first NN, which served as the baseline, was a 4-bit QAT NN obtained1757

from [93] without any convolution layers. Stochastic gradient descent was employed for1758

the backward pass, while the fake quantization blocks were handled using the straight1759

through estimator. The key parameters were batch size of 64, learning rate of 0.01, and1760
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Table 5.4: Modified National Institute of Standards and Technology (MNIST) Classification

Accuracy Comparison

NN Configuration Training Acc. (%) Testing Acc. (%)

4-bit QAT NN (Baseline) 93 94

4-bit QAT NN W/O MAC Variation Training 93 30

4-bit QAT NN With MAC Variation Training 89 93

3-bit QAT NN With Precise Multiplier 90 92

2-bit QAT NN With Precise Multiplier 84 86

momentum of 0.5.1761

To analyse the impact of the MAC unit’s output variations, a second NN was trained1762

following the aforementioned procedure, with variations only being injected during1763

the testing phase. Finally, variations were included in both the training and testing1764

phases to evaluate the accuracy improvement. The baseline model produced an accuracy1765

of 94%, indicating only a 4% decline in accuracy compared to the convolutional NN1766

implementation in [93]. This suggests that a pure fully-connected layer is adequate for1767

MNIST classification. Nonetheless, the accuracy drops substantially to 30% in the 4-bit1768

scenario when the MAC unit’s impact on the NN training is not simulated, underscoring1769

the importance of MAC unit simulation in the training phase.1770

After training, the accuracy of the 4-bit scenario was restored to 93% when the1771

NN was trained with the MAC unit’s output variations. Moreover, we compared1772

the performance of the proposed work in the NN configuration with lower-precision1773

multipliers. The 2-bit precise scenario had an accuracy of 86%, while the 3-bit precise1774

scenario had an accuracy of 92%. This suggests that the proposed MAC unit is suitable1775

for NN applications, and that variation injection is required during NN training to1776

maintain accuracy. The designed approximate 4-bit multiplier outperformed the 2-bit1777

and 3-bit precise multipliers in terms of accuracy.1778
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Figure 5.9: The NN structure and training graph. (a) presents NN structure to demonstrate

MNIST classification using the proposed MAC unit. It consists of three fully-connected layers,

each of which (input/hidden/output) contains 800/500/10 neurons. The traditional MAC unit

will be replaced by the proposed one. (b) presents the training graph of the NN. We added the

MAC block (highlighted in blue) where the output of the dot-product will be subtracted by the

non-ideal effect of our MAC unit following Eq. (5.23) and the multiplication errors in Table 5.2.

This allows the NN to learn the loss regarding the proposed MAC unit.

5.4.5 Effects of Technology Parametric Variations1779

However, device parametric variation in multiplication cell may lead to additional1780

and substantial analogue output error. Devices may have different properties or1781

technology parametric variations. For our MAC, we consider faster/slower operating1782

speeds of transistors and higher/lower RMH and RML values of memristors. Therefore,1783
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the multiple-component cell design in this work risks large accuracy drops resulting1784

from such variations. Both the transistor variation and memristor variation have1785

been investigated to show the relation between variation and NN accuracy of MNIST1786

classification.1787

The variability transistor models are investigated first. The fabricated transistor’s1788

performance are studied for the Fast-Fast (FF), Typical-Typical (TT), and Slow-Slow (SS)1789

corners. analogue simulations of the MAC corresponding with these corners are used to1790

generate modified MAC input to output error maps in the same style as Table 5.2. Then1791

respective NN simulation using the method given in Section 5.4.4 generates the accuracy1792

results reported in Table 5.5.1793

In this study, we investigate the impact of memristor resistance variability. According1794

to the findings presented in reference [50], our selected technology (Cu:ZnO) demon-1795

strates a device-to-device (DD) variability of 59% for the high resistance state (HRS) and1796

36% for the low resistance state (LRS). Furthermore, the cycle-to-cycle (CC) variability is1797

particularly significant, with the HRS exhibiting 89% variability and the LRS exhibiting1798

51% variability. It is worth noting that, despite the considerable CC variability, the1799

resistance of the low resistance state (LRS) cannot exceed that of the high resistance1800

state (HRS), as the baseline ratio between these two parameters is fixed at 1000 for the1801

Cu:ZnO technology. Even in the worst-case scenario, the Cu:ZnO technology’s OFF state1802

resistance is only 640 times greater than the ON state resistance, which is considerably1803

better than technologies with smaller ON/OFF ratios. In fact, under CC variation, the1804

ON/OFF ratio remains at 227, which is adequate to fulfil the precision requirements of a1805

4-bit multiplier.1806

Similar to the case of transistor variation investigations, our simulation investigations1807

include analogue simulations of one MAC unit with all possible corner cases of expected1808

variability in the memristors. The result of these simulations is put into digital models1809

in the form of input value to output value correspondence error maps in the form of1810

Table 5.2. These corner case models are then used in NN training exercises on the MNIST1811

dataset, using exactly the same method described in Section 5.4.4. The accuracy results1812

are reported in Table 5.5. In addition, distribution of the sum current of each column1813

has also been put in Table 5.5, since the multiplication cell current includes transistor’s1814
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Table 5.5: QAT NN with MAC Component Variation Training.

Transistor Training acc. (%) Testing acc. (%)

Slow-Slow 96 96

Typical-Typical 96 96

Fast-Fast 90 85

Memristor Training acc. (%) Testing acc. (%)

Average Worst Average Worst

DD 95 86 94 79

CC 95 95 95 94

Distribution of Column Sum Current

Slow-Slow CL6(MSB) CL5 CL4 CL3 CL2 CL1 CL0(LSB)

Relative Standard io f f 13.3 13.3 13.3 13.3 13.3 13.3 13.3

Deviation (%) ion 7.65 7.65 7.65 7.65 7.65 7.65 7.65

Typical-Typical CL6(MSB) CL5 CL4 CL3 CL2 CL1 CL0(LSB)

Relative Standard io f f 12 12 12 12 12 12 12

Deviation (%) ion 7.53 7.53 7.53 7.53 7.53 7.53 7.53

Fast-Fast CL6(MSB) CL5 CL4 CL3 CL2 CL1 CL0(LSB)

Relative Standard io f f 0.667 0.667 0.667 0.667 0.667 0.667 0.660

Deviation (%) ion 5.88 5.88 5.88 5.87 5.87 5.87 5.46

contribution, different transistor models are listed as name for the relative standard1815

deviation data group. This relation proves the fixed proportional I-V relation derived1816

from Eq. (5.16)1817

In presenting these results we focus on investigating how the worst-case scenarios of1818

memristor variability may affect the NN application and compare with the average case.1819

The worst case happens when RMH takes the lowest possible value coinciding with RML1820

taking the highest possible value. This maximally reduces the margin between these two1821

values and hence reduce the precision of the multiplier part of the MAC, as discussed in1822
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Section 2.3.1.1823

The reported average case results are the average values obtained from all different1824

corner cases and do not correspond with any one particular set of parameter value.1825

It is noteworthy that some of the accuracy numbers reported in Table 5.5 are actually1826

better than those reported in the last row of Table 5.4. This is because in many cases,1827

the technology parametric variation corner cases have smaller errors in their input-1828

output relation error maps than the non-variation case of Table 5.5. This is a result of1829

effective cancellations between the two kinds of errors. The true global worst case results,1830

however, do happen with worst-case memristor parametric variation combinations.1831

As can be seen from the results, in all experiments both training and testing always1832

successfully complete, but in the highlighted cases the accuracy does not achieve better1833

than 90%. Even the global worst case of 79% accuracy should be tolerable for low-power1834

edge AI applications. It is also noteworthy that NN operations seem to be especially1835

resistant to the CC type of parametric variability. This is likely because NN operations1836

usually include a substantial number of cycles during which CC variability in the MACs1837

is moderated by a kind of low-pass filtering process.1838

5.5 Summary1839

This chapter presents a MAC unit based on the crossbar multiplier. Using memristor-1840

transistor SBMCs with mixed-signal design, this crossbar multiplier saves the time1841

required for carry propagation, and reduces the circuit complexity by avoiding long1842

logic chains. Multiplying by passive current generation across resistive elements only,1843

the multiplication step itself can be regarded as instantaneous according to Ohm’s law1844

and KCL. Using a mixed-mode, flash A2D conversion step, latency is kept under control1845

for the ultimate DI/DO unit by employing single-action thermometer code generation.1846

This means that the worst-case delay depends only on writing memristor values and1847

converting thermometer code to binary code. This latency management means that the1848

MAC unit has a relatively low working latency of 5.36 ns, the worst latency scenario1849

includes reset (4 row write 0 operations), fully write (4 row write 1 operations), and read1850

(1 read operation).1851
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At the same time, the energy efficiency is also improved over conventional digital1852

multipliers using memristors by eliminating the need for costly carry-to-the-left opera-1853

tions.1854

The proposed MAC unit also has the same precision for both input and output,1855

which means that it can be used to compose multi-MAC structures such as NNs without1856

worrying about bit-conversion when fitting the outputs of one layer to the inputs of1857

another layer. The approximation happens in the thermometer code generation step1858

where it leads to reductions in circuit size and complexity in subsequent circuitry1859

without sacrificing precision unnecessarily.1860

To validate this MAC unit, it is used as the basic perceptron in the creation of an NN of1861

multiple neurons and layers, and the resulting NN is used to classify the MNIST dataset.1862

The low precision and multiplication errors attributed to the analogue product from the1863

crossbar multiplier are shown to be compensatable through an extended use of QAT.1864

With such compensation techniques, the proposed case study NN achieves comparable1865

learning accuracy to the same NN based on fully-digital QAT MAC units of the same bit1866

width. In doing this, this chapter additionally demonstrates the potential for extending1867

QAT to compensate for any characterisable imprecision beyond quantization effects1868

in the perceptron unit. The effects of parametric variability for both transistors and1869

memristors are also investigated demonstrating the usability of this type of MAC units.1870

These have shown promising results and further development of this demonstrates that1871

this MAC design approach opens up future research opportunities in low-energy, low-1872

latency, edge AI applications.1873
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Chapter 61874

Conclusions and Future Work1875

6.1 Conclusions1876

6.1.1 Contributions1877

In this research, memristor-transistor cell-based design solutions have been proposed to1878

improve energy efficiency in IoT devices for higher-level standard requirements.1879

For the algorithm circuit design, we present novel multiplier designs that use1880

transistor-memristor cells for bit-wise multiplication. By working in a mixed-signal1881

mode, these designs remove the need for carry-to-the-left operations in conventional1882

digital multipliers and provide an analogue output. It is important to eliminate1883

carry propagation and DAC circuits while maintaining edge computing digital input1884

interfaces. Because this allows the majority of the computation to remain digital, with1885

its associated advantages, but produces the required analogue output directly. The1886

substantial margin of memristance differences between the ON and OFF states of a1887

memristor provides this design several advantages. The major advantage is sufficient1888

accuracy for analogue-out multipliers, also the ability to represent logic ”1” and ”0” with1889

large separation between high and low analogue current values.1890

The multiplication is performed by mapping one of the operands to memductance1891

values. The multipliers benefit from intrinsic data retention in several scenarios with1892
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non-volatile memristors as the core, in-memory compute units. These scenarios include1893

when an input variable is multiplied by a constant coefficient, a variable number1894

multiplied by a relatively constant reference, or a fixed number multiplied by a variable1895

reference. These use cases are frequently seen in control, signal processing, AI, and1896

MDAC applications.1897

Using multiple memristors in parallel in each cell, we relocate the bit significance1898

weighting function from current mirrors to the number of memristors in a cell. This1899

allows the proposed multiplier, which is based on a single transistor multiple Cu:ZnO1900

memristor (1TxM), to outperform recently reported designs in hardware complexity,1901

performance, and energy while staying competitive on peak power. However, these1902

advantages come at the cost of limits in the memductance adjustment range, which affect1903

the large-scale implementations beyond a 4-bit multiplier, which is nonetheless sufficient1904

for many micro-edge applications [91].1905

All our multiplication circuit implementation are based on 4-bit cases. The upscale1906

of the circuit could be realised through algorithm adjustment with the same level1907

performance [97, 98].1908

Also, a MAC unit based on a crossbar multiplier is presented. Using memristor-1909

transistor SBMCs with a mixed-signal design, this crossbar multiplier removes the1910

need for carry propagation. It also reduces circuit complexity by avoiding long logic1911

chains. Multiplying by passive current generation across resistive elements only, the1912

multiplication step can be regarded as instantaneous according to Ohm’s law and KCL.1913

By using a mixed-mode, flash ADC conversion step, latency is kept under control for the1914

ultimate DI/DO unit through single-action thermometer code generation. The worst-1915

case delay depends only on writing memristor values and converting thermometer code1916

to binary code. This latency management means that the MAC unit has a relatively high1917

working frequency of (20.7 MHz).1918

The proposed MAC unit also has the same precision for input and output. It1919

can be used to compose multi-MAC structures such as NNs without worrying about1920

bit-conversion when fitting outputs of one layer to the inputs of another layer. The1921

approximation happens in the thermometer code generation step, leading to circuit1922

size and complexity reductions in subsequent circuitry without sacrificing precision1923
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unnecessarily.1924

To validate this MAC unit, a basic perceptron based on it is used in the creation of an1925

NN of substantial size, and the resulting NN is used to classify the MNIST dataset.1926

6.1.2 Limitations of the Research1927

The numbers of memristors and transistors in a single cell are in reality limited by such1928

problems as leakage. At some point this would overwhelm any additional bit resolution1929

increase predicted by theory. The number of memristors per cell increases exponentially1930

with the number of multiplier bits, leading to practical difficulties if the precision needs1931

to be scaled up.1932

Memristors have better characteristics in some ways and worse characteristics in1933

other ways compared with other forms of RRAM technologies. This work does not1934

demonstrate whether memristors are the best RRAM technology of choice for these types1935

of multiplier designs. It only shows that it is possible to realise working designs using1936

Cu:ZnO memristors. The design approach and crossbar structure should be applicable1937

to cells based on any type of RRAM - this remains unexplored.1938

The design’s low multiplication energy consumption claim is based on the energy1939

consumed between points in time regarded as the start and end of multiplication. The1940

end of multiplication is defined as when a usable product first appears. In reality, this1941

output needs to be maintained for some time for the user to make effective use of it and1942

this further holding time is not included in the energy estimate. This is because the user1943

of the output of the multiplier is outside the scope of the thesis and the required holding1944

time is therefore unknown.1945

One of the real-world problems encountered during this work is that memristor1946

and transistor widths need to be carefully selected because the unintended tuning (UT)1947

caused by over threshold voltage, when the memristance is too high, or the transistors1948

are too wide (with low channel resistances).1949
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6.2 Future Work1950

This thesis opens up possibilities for future research in energy-efficient high-performance1951

arithmetic circuit design. Below we discuss several possible work for next step:1952

1. Design Up-scaling – Although one crucial problem with these multiplier solutions1953

is that the multiplier bit-width is limited by the ratio between the ON and OFF1954

currents in the RRAM technology, it is possible to scale up the number of bits1955

of a multiplication by using multiple copies of low-bit multipliers. Whether1956

this is a realistic proposition for the multipliers presented in this thesis remains1957

unexplored. The principles of the design approach should be applicable for any1958

RRAM technology which is an opportunity for future work, as and when good1959

SPICE-level models of current and future proposed RRAM technologies appear.1960

2. Practical Implementation – Whether the DI/AO multipliers can be used effectively1961

in real-world edge computing applications remains unexplored. Opportunities1962

exist in exploring the use of such multipliers in a wide range of potential application1963

systems, especially for computing at the edge.1964

3. Robust Test – More sophisticated NNs and learning automata, and larger and more1965

complex data sets have not been explored with the MAC unit presented in this1966

thesis. Given the promising results achieved so far, further explorations in such1967

uses of multipliers and MACs designed using the methods presented in this thesis1968

have good potential of yielding good results.1969
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