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Abstract

Formally, a k-rank graph is defined as a small category Λ together with a functor d which
associates to each morphism λ ∈ Hom(Λ) an element ofNk , called its degree. The functor d
must satisfy a special factorisation property which at first glancemight not seem to restrict
much, but actually heralds intricate and complex properties, even in low dimensions.

In practise, it is oftenmore instructive to regard k-rank graphs as generalisations of graphs.
These manifest themselves as directed graphs with each edge painted one of k different
colours, which can be decomposed into a set of squares: subgraphs with four edges which
resemble a geometric square. Hazlewood, Raeburn, Sims andWebster demonstrated that,
if G is a k-coloured graph with a decomposition into squares such that the squares can be
assembled into cubes, then G induces a k-rank graph.

In this thesis, we generate twomain new infinite families of higher-rank graphs, exploiting
this cubical structure in order to do so. In two dimensions, we use a theorem of Vdovina
to construct for each complete connected bipartite graph a so-called tile complex which
induces two different 2-rank graphs. In higher dimensions, we define a class of groups
called domino groups which act freely and transitively on a k-dimensional affine building.
The quotient of this action on the building defines a k-dimensional cube complex, which
in turn induces a k-rank graph.

Perhaps most importantly, to each k-rank graph can be associated a C?-algebra. These
higher-rank graph algebras are extremely versatile, and have arisen in connection with
quantum spheres, Yang–Baxter equations, Thompson’s groups, and braid groups. We
show that the C?-algebras corresponding to all of our models of k-rank graphs are separ-
able, nuclear, unital, purely infinite, and simple, and hence that they are determined by
their K-groups. Some of our main theorems are dedicated to computations of the K-theory
of these infinite families of algebras, and theKirchberg–Phillips Classification Theorem tells us
that our examples are indeed new. Until now, there have been very few explicit computa-
tions of the K-theory of such algebras, so these results furnish a large part of this thesis.We
also identify some of the relationships between the structure of k-rank graph C?-algebras
and the algebras of lower-rank subgraphs, which we hope will simplify hitherto difficult
computations in high dimensions.

Each of the tile complexes and domino groups we employ in this thesis can be viewed geo-
metrically as a cube complex, andwe examine their topological properties.We compute the
cellular homology groups and again show how these can be retrieved from the geometry
of lower-rank subgraphs. Thuswe introduce a concrete link between the C?-algebra–based
theory of higher-rank graphs and the geometrical theory of affine buildings.

We used the computer algebra package MAGMA for many of the computations, and wrote
most of the algorithms for constructing the k-rank graphs in Python.
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Chapter 0

Introduction

§0.1 Thesis overview

Higher-rank graphs are archetypal of twenty-first century mathematics, uniting elements
of category theory, K-theory, and geometric group theory. Although higher-rank graphs
were initially defined in a categorical manner (1.1.4), they are primarily studied by func-
tional analysts for their associated graph algebras (1.3.3). These generalise classical (1-rank)
graph C?-algebras and the Cuntz–Krieger algebras of [CK80], and provide a rich source
of intricate and exciting mathematics (not least in [BNR14; ES12]). Despite 20 years of
study, however, there are remarkably few models of infinite families of k-rank graphs for
arbitrary k (one example can be found in [KPS08]), and even fewer which have incidence
matrices with entries in {0, 1} (another example, in [APS06]).

Our approach is geometrical: certain groups acting on buildings and products of trees
can be shown to induce higher-rank graphs, and hence can be associated to graph C?-
algebras. Indeed, the prototype of a higher-rank graph (of rank two) arose in [RS99] from
the action of a group on an affine building of type Ã1 × Ã1. Then in [KP00], Kumjian
and Pask solidified the status of a higher-rank graph as an abstract category, and the
building-like nature was largely overlooked until [KV15]. In this thesis, we consider both
the geometric and algebraic aspects of higher-rank graphs by using constructions we call
tile complexes (Chapter 2) and domino complexes (Chapters 3–5). These are cube complexes
which induce higher-rank graphs via functions which record the adjacency (2.2.1, 3.1.6)
of cells—vertices in the k-graph are indexed by the k-dimensional cells of the complexes.
A domino complex induces a natural domino group (3.2.1, introduced in [Vdo21]) which
acts freely and transitively on a type

∏k
i�1 Ã1 building (3.2.10), generalising the BM-groups

introduced in [BM97; Wis96], and the concepts of [RS99]. Such a generalisation is no mean
feat, owing to the associativity insisted upon by k-rank graphs, which only comes into play
when k ≥ 3. However, Rungtanapirom, Stix and Vdovina developed an elegant algorithm
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Chapter 0 §0.1 Thesis overview

in [RSV19] which generates k-domino groups for arbitrary k, and which we implement in
Chapter 5.

To each higher-rank graph Λ is bequeathed a universal C?-algebra A(Λ), and these are
often themain focus of study (see [EFG+22; Eva08; Sim06] for a flavour).We show in 2.3.12,
2.4.6 and 3.5.4 that our new models of higher-rank graphs induce algebras which satisfy
the conditions of the Kirchberg–Phillips Classification Theorem (2.3.11), and as such can be
completely determined by invariants called their K-groups (1.2.11–1.2.12). Using a method
of Evans, we can wholly understand the K-theory of the algebras of tile complexes, but
increasing the rank k dramatically decreases the amount of information we can obtain
about the K-groups of k-graph algebras. We give an analysis of what, by our methods,
is knowable about domino graph algebras in Chapter 4, and discuss the limitations of our
methods. In all cases, we learn enough about the K-theory to know that the algebras are
new, and in some sense irreducible, in that they do not arise as a direct result of the Künneth
Theorem for tensor products (1.2.18). We also highlight some promising ideas, including
the connectedness of Evans’ exact sequences with Matui’s HK-Conjecture (4.2.2) and with
the geometry of the domino complexes themselves.

Indeed, the geometry of the associated complexes provides some potential clues as to how
to simplify some of the notoriously difficult K-theory computations. The cellular homology
is easier to work out (2.6.2, 4.1.7) and is clearly linked with the K-theory (4.4.3), but a more
detailed investigation between the lower homology groups and the K-groups remains a
direction for future research. It should be remarked that the study of the geometry of
k-graphs has often yielded notable results (see [HRSW13; KPW21]), but that our approach
takes into account the geometry of a complex which is distinct from the graph itself.
We provide some suggestions on how to build higher-rank graph algebras by taking the
product of a domino group with a free group, and explore how this process affects the
geometry and the graph algebras in §4.4.

The new families of objects which we examine in this thesis usher in a new way of
thinking about higher-rank graphs as structures arising from groups acting on buildings,
reminiscent of the outlook of Robertson–Steger. We frequently interchange geometric and
algebraic language; since they are so intimately linked, this is very natural. We provide
new details of the K-theory of k-graph C?-algebras, focussing in particular on the case
where k � 3, which is complex enough to provide novel results, while still being tangible.
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Chapter 0 §0.2 Summary of contributions

§0.2 Summary of contributions

Chapter 1, save for a few examples, is standard material.

Chapter 2 has been published as the single-author paper [Mut22].

An abbreviated form of Chapter 3 appeared in the paper [MRV20], which was joint work
with Alina Vdovina and Aura-Cristiana Radu. Anything in that chapter which did not
also appear in that paper is the author’s own addition.

Some of the examples and computations of K-theory from §4.1–4.3 have also appeared
in [MRV20], but many are new and arise directly from the programs in Chapter 5. The
remainder of Chapter 4 comprises work entirely original to this thesis.

The code in the Appendix (Chapter 5) is the author’s own work. Previous versions were
drawn from in order to make some of the computations in [MRV20]. Other programs used
in this thesis are available from the author on request.
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Chapter 1

Background

Kumjian and Pask in [KP00], with motivation from [RS99], introduced the notion of a
k-rank graph as a higher-dimensional analogue of conventional directed graphs. Although
these objects can be treated as graphs, they are better considered abstractly, as categories
whose morphisms possess a special factorisation property (1.1.4). When the number of
dimensions k is less than 3, this factorisation property doesn’t restrict too much, but as
soon as k ≥ 3, it becomes increasingly tricky to construct interesting k-rank graphs. Since
we will be playing with these objects throughout the course of the thesis, we dedicate a
whole section to their introduction.

In the following, we use the notation N � {0, 1, 2, . . .}, and we write e1 , . . . , ek to denote
the standard generators ofNk as an additive Abelianmonoid: ei is the k-tuple with 1 in the
ith position, and 0 elsewhere. We often use 0 to denote the identity in Nk . For m, n ∈ Nk ,
we write m ≤ n whenever each co-ordinate of m is less than or equal to the corresponding
co-ordinate of n.

Throughout the chapter (and indeed the thesis), k is a positive integer unless otherwise
specified, and is sometimes referred to as the dimension.

§1.1 Higher-rank graphs

1.1.1 We might describe a directed graph G by its vertex set G0 and edge set G1; these sets can
be finite or countably infinite. An edge e ∈ G1 is an arrow connecting two vertices. We
write sG(e) for the arrow’s origin, and rG(e) for its target. A (finite) path in G is a sequence
of edges {ei}ni�1 such that rG(ei) � sG(ei+1) for all i. Let G∗ denote the set of all finite paths
in G, and let d : G∗ → N be the function which returns the length of such a path in G∗. By
writing Gn :� {{ei} ∈ G∗ | d({ei}) � n}, we recover the notation for the vertex and edge
sets of G.

We extend the origin and target maps to G∗ in a natural way: for a path λ � {λi}ni�1 ∈ G∗,
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Chapter 1 §1.1 Higher-rank graphs

where λi are edges, we define sG(λ) :� sG(λ1) and rG(λ) :� rG(λn). Two paths µ, ν ∈ G∗

of respective lengths m and n are said to be concatenatable whenever rG(µ) � sG(ν).
Concatenation of paths is usually denoted by a dot and written from left to right, that is,
µ · ν :� µ1 , . . . , µm , ν1 , . . . , νn . Clearly d(µ · ν) � d(µ) + d(ν).

Now we observe a seemingly banal property of G∗ and d which will turn out to have
interesting consequences when generalised to higher dimensions.

1.1.2 Path factorisation property of graphs Let G be a directed graph, and let λ ∈ G∗ be a path
with d(λ) � m + n for some m , n ∈ N. Then we can find unique paths µ, ν ∈ G∗ such that
d(µ) � m, d(ν) � n, and λ � µ · ν.

u

v

λ1

λ2

λ3

λ4

Figure 1.1: The path λ � λ1 , λ2 , λ3 , λ4 is one of a number of paths from u to v
with length 4. The path factorisation property (1.1.2) says that, for each m , n with
m+n � 4, we can find unique paths µ, ν such that d(µ) � m, d(ν) � n, and λ � µ ·ν.

In the example pictured with m � 1 and n � 3, it is clear that µ � λ1 (dashed blue),
and ν � λ2 , λ3 , λ4 (pink).

1.1.3 Figure 1.1 illustrates this property. It says that, given a finite path λ and a natural number
m not greater than its length, then there is exactly one place we can “snip” λ so that it
splits into two paths, with the first of length m.

We will see that a directed graph is equivalent to a category whose morphisms have this
factorisation property. Recall that a category Λ consists of a collection Ob(Λ) of objects,
and a collection Hom(Λ) of morphisms between the objects. For any objects u , v ∈ Ob(Λ),
we write HomΛ(u , v) for the set of morphisms from u to v. Composition of morphisms is
associative, and for each object u there exists an identity morphism idu ∈HomΛ(u , u) such
that idu λ � λ and λ idu � λ whenever λ is in HomΛ( ∗ , u) or HomΛ(u , ∗ ), respectively.

In what follows, it is useful to regard Nk as a category with one object, and morphisms ei .
Then, with the path factorisation property 1.1.2, we are able to generalise the notion of a
directed graph as follows:

1.1.4 Definition (Higher-rank graph) Let Λ be a category such that Ob(Λ) and Hom(Λ) are
countable sets, that is, a countable small category. For a morphism λ ∈ HomΛ(u , v), we
define domain and range maps s(λ) :� u and r(λ) :� v respectively.
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Chapter 1 §1.1 Higher-rank graphs

Let d : Λ→ Nk be a functor, called the degree map. We call the pair (Λ, d) a k-rank graph
(or simply a k-graph) if for each λ ∈ Hom(Λ), whenever d(λ) � m+n for some m, n ∈ Nk ,
we can find unique elements µ, ν ∈ Hom(Λ) such that d(µ) � m, d(ν) � n, and λ � νµ.
Note that for µ, ν to be composable, we must have r(µ) � s(ν). Sometimes we just write Λ
to denote a k-graph when the degree map d is obvious or not needed.

For n ∈ Nk , we write Λn :� {λ ∈ Λ | d(λ) � n}. By the above property, we may identify
Λ0 with Ob(Λ) and the identity morphisms in Hom(Λ); in this way, when we talk about
Λwe only need to consider Hom(Λ). We call the elements of Λ0 the vertices of (Λ, d), and
refer to the general elements of Λ � Hom(Λ) as paths.

1.1.5 Let us investigate why a directed graph defines a 1-rank graph. Indeed, given a directed
graph G as in 1.1.1, then we may regard the set of finite paths G∗ as a set of morphisms.
Thus we construct a countable small category G∗ with morphism set G∗ and object set G0;
again we identify G0 with the set of identity morphisms in G∗. We give to each morphism
λ ∈ G∗ the domain and rangemaps s(λ) :� rG(λ) and r(λ) :� sG(λ) respectively. Take heed
that, because paths in a graph are concatenated on the right and morphisms in a category
are composed on the left, the domain s of a path in G∗ is defined to be its target, and the
range r its origin. The pair (G∗ , d) is a 1-rank graph.

Conversely, we may regard any 1-rank graph (Λ, d) as a directed graph with vertex and
edge sets Λ0 and Λ1 respectively, and with arrows λ pointing from r(λ) to s(λ). Then
d : Λ→ N is just the graph path-length function from 1.1.1.

1.1.6 One might notice that a 1-rank graph is actually the path category generated by a directed
graph,with concatenationofpathswritten fromright to left to coincidewith the convention
for composition of functions. From now on we will always concatenate paths on the left.

We usually visualise a k-graph (Λ, d) as a collection of k different coloured graphs (described
in Definition 1.1.11) on the same set of vertices—we call this the 1-skeleton of (Λ, d). Not
all k-coloured graphs have the structure of a k-rank graph, since they may not have the
required factorisation property. We are sometimes able to shoehorn this in (see 1.1.16).

1.1.7 Example Consider a category Λwith Ob(Λ) � {u , v}, and Hom(Λ) generated by morph-
isms f1 : u → v, f2 : v → u, g1 : u → u, g2 : v → v under composition wherever it makes
sense. This is the path category generated by the graph in Figure 1.2a. Define a degree
functor d : Λ→ N2 by d( fi) :� (1, 0), d(gi) :� (0, 1).

Let m � (1, 1), n � (0, 0), and λ � g2 f1, so that λ is a path from u to v with degree
(1, 1) � m+n. Then we could set µ � g2 f1 and ν � idv in Definition 1.1.4, such that λ � νµ

and the degrees add up. But f1 g1 is another path from u to v with degree (1, 1), and it may
be that putting µ � f1 g1 also results in a valid decomposition. In order for (Λ, d) to define
a higher-rank graph, µ and ν must be unique; hence we force the equality g2 f1 � f1 g1 and,
as a notational short-cut, refer to this quotient category as Λ.
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Chapter 1 §1.1 Higher-rank graphs

u v
f1

f2

g1 g2

(a) Here, g2 f1 and f1 g1 are both
morphisms from u to v with de-
gree (1, 1). In order to preserve
the factorisation property of 1.1.4,
we must set g2 f1 � f1 g1. Like-
wise, we set g1 f2 � f2 g2.

u v
f1

f2

g1

g3

g2

g4

(b) Here, there is a choice of
commutativity relations. For ex-
ample, we could require that g3 f1

equal f1 g1 or f1 g2. Different sets
of such commuting squares define
different higher-rank graphs.

Figure 1.2: Two examples of 2-rank graphs, where pink and dashed blue arrows
have degrees (1, 0) and (0, 1), respectively. Depicted are the 1-skeletons, which are
just 2-coloured graphs; in order to define a higher-rank graph, we also need to
specify some commutativity relations.

Similarly, f2 g2 and g1 f2 both define paths of degree (1, 1) from v to u, and so we insist that
they be equal. The pair (Λ, d), together with the two commutativity relations g2 f1 � f1 g1,
f2 g2 � g1 f2, defines a 2-rank graph. �

1.1.8 Example Let Λ and d be as in 1.1.7, but with two additional morphisms g3 : u → u and
g4 : v → v; Λ is the path category generated by the graph in Figure 1.2b. Now, in order to
define a 2-rank graph, we may choose how to make the paths commute.

We could set g2 f1 � f1 g1, in which case g4 f1 � f1 g3, or we could set g2 f1 � f1 g3, in which
case g4 f1 � f1 g1. Then, independently of the first choice, we can also choose whether to
set g1 f2 equal to f2 g2 or f2 g4. Of these four sets of commutativity relations, two define
non-isomorphic higher-rank graphs, and we will see that this may change the structure of
the associated k-graph algebra. We explain nowwhat it means for two higher-rank graphs
to be isomorphic. �

1.1.9 Definition (Isomorphism in k-graphs) Given two k-rank graphs (Λ1 , d1) and (Λ2 , d2), we
define a k-graph morphism to be a functor Λ1 → Λ2 which respects the degree maps. The
k-graphs (Λ1 , d1) and (Λ2 , d2) are said to be isomorphic if there exist k-graph morphisms
F : Λ1 → Λ2 and F′ : Λ2 → Λ1 such that F′F � idΛ1 and FF′ � idΛ2 .

1.1.10 In Example 1.1.7, there was only one possible set of commutativity relations for the arrows
in the 1-skeleton (Figure 1.2a). In 1.1.8, however, different choices of path decomposi-
tion resulted in the higher-rank graphs being non-isomorphic, despite having the same
1-skeleton. Therefore when sketching k-graphs, it is necessary to include the set of com-
mutativity relations, unless there is no choice to be made.

7



Chapter 1 §1.1 Higher-rank graphs

Constructing higher-rank graphs from coloured graphs

Conversely, given a k-coloured graph, we may define criteria under which the induced
path category is a k-rank graph. For further detail, consult [HRSW13].

1.1.11 Definition (Coloured graph) A k-coloured graph is a directed graph G � (G0 ,G1 , sG , rG)
equippedwith amap c : G1 → {1, . . . , k}which assigns to each edge a colour.Writing F+

k to
denote the free semigroupon k generators,wemayextend thismap to a functor c : G∗ → F+

k
such that if λ � {ei}ni�1 ∈ Gn is a path of length n, then c(λ) � c(en)c(en−1) · · · c(e1).
Given two k-coloured graphs G1 and G2, a coloured-graph morphism is a (not necessarily
surjective) function G1 → G2 which respects the origin, target, and colour maps.

1.1.12 Example (Lattice k-coloured graph) Let m ∈ Nk be fixed. We write E � E(k ,m) for the
k-coloured graph with vertices E0 � {n ∈ Nk | n ≤ m}, and arrows zn

i of colour i from
n + ei to n, where ei is the ith canonical generator of Nk . This example of a k-coloured
graph clearly defines a k-rank graph, and will make a regular appearance in what follows.
See Figure 1.3 for an illustration.

We say that a coloured-graph morphism λ : E(k ,m) → G has degree d(λ) :� m, and
define domain and range maps s(λ) :� λ(m) and r(λ) :� λ(0) respectively. �

z(0,0)2 z(1,0)2 z(2,0)2

z(0,0)1 z(1,0)1

z(0,1)1 z(1,1)1

(0, 0)

(0, 1)

(2, 0)

(2, 1)

g3 g2 g1

f2 f1

f2 f1

u

u

v

v

u

u

λ

Figure 1.3: The 2-coloured graph E(k , (2, 1)). There is a coloured-graph morphism
λ : E(k , (2, 1)) → GΛ, where GΛ is the graph depicted in Figure 1.2b, sending z(0,0)2
to g3, z(1,0)2 to g2, z(2,0)2 to g1, z(1,0)1 and z(1,1)1 both to f1, and z(0,0)1 and z(0,1)1 both to
f2. This kind of diagram is useful for picturing sets of commutativity relations for
k-rank graphs: for example, relations g2 f1 � f1 g1 and g3 f2 � f2 g2 are shown here.

1.1.13 Example (Commuting squares in 1.1.8) Let E be the 2-coloured graph E(2, (2, 1)), and let
GΛ be the 2-coloured graph depicted in Figure 1.2b, that is, the 1-skeleton of the 2-rank
graph from Example 1.1.8. There are lots of coloured-graph morphisms from E to GΛ; one
example is the map λ : E→ GΛ described in Figure 1.3.

We’ll see in the rest of this section that coloured-graphmorphisms from the graphs E(k ,m)
can help us to visualise the commutativity relations of k-rank graphs as commuting squares.
For example, let Λ be the 2-rank graph with 1-skeleton GΛ as above and commutativity
relations

g2 f1 � f1 g1 , g4 f1 � f1 g3 , g3 f2 � f2 g2 , g4 f2 � f2 g3.

8



Chapter 1 §1.1 Higher-rank graphs

It is easy to extract some of these commutativity relations fromFigure 1.3which depicts the
image of E under the coloured-graph morphism λ. We might choose different coloured-
graph morphisms to visualise different sets of commutativity relations for Λ. �

1.1.14 The next definition and Theorem 1.1.16 will show us criteria on k-coloured graphs under
which they define k-rank graphs, making precise the rules which determine valid sets of
commutativity relations. We find it beneficial to use the geometric terminology from the
above examples, and to visualise the relations as squares in the images of coloured-graph
morphisms from lattices.

f

gh

h2

f 1

h1f 2

g2

g1f

gh

h2

f1

h1f2

g2

g1

Figure 1.4: A set of squares C is associative if, whenever a tri-coloured path h g f
defines two half-cubes as above, then the half-cubes actually form the twelve edges
of a single cube, that is, f2 � f 2, g2 � g2 and h2 � h2.

1.1.15 Definition (Complete associative collection of squares) Recall from Example 1.1.12 the
k-coloured lattice graphs E(k ,m). Let G be a k-coloured graph for k ≥ 2, and let i , j ∈
{1, . . . , k} be distinct colours.We define an i- j–square (or simply a square) in G to be a pair
of paths of length two, one coloured ji and one coloured i j, which have the same origin
and target as each other—that is, a coloured-graph morphism σ : E(k , ei + e j) → G. We
define a complete associative collection of squares to be a set C of squares in G with the
following properties:

C1 For each path of length two g f ∈ G2 with colour ji, there is a unique square σ ∈ C
such that σ

(
zei

j

)
� f and σ

(
z0

i

)
� g. In other words, for every path g f coloured ji

in G2, there is a unique path f ′g′ coloured i j such that µ and ν label the sides of a
square. We write g f ∼ f ′g′.

C2 In the case that k ≥ 3, suppose that h g f ∈ G3 is a path where f , g , h are different
colours, and that

g f ∼ f1 g1 , h f1 ∼ f2h1 , h1 g1 ∼ g2h2 ,

h g ∼ g1h1 , h1 f ∼ f 1h2 , g1 f 1 ∼ f 2 g2 ,

for some edges f1 , f2 , g1 , g2 , h1 , h2 and f 1 , f 2 , g1 , g2 , h1 , h2, as illustrated in Figure
1.4. Then f2 � f 2, g2 � g2, and h2 � h2.

9



Chapter 1 §1.1 Higher-rank graphs

If λ : E(k ,m) → G is a coloured-graph morphism and σ is an i- j–square in G, then we say
that σ occurs in λ whenever there exists some n ∈ Nk with n + ei + e j ≤ m, and

σ
(
z0

i

)
� λ

(
zn

i

)
, σ

(
z0

j

)
� λ

(
zn

j

)
, σ

(
zei

i

)
� λ

(
zei+n

i

)
, σ

(
z

e j

i

)
� λ

(
z

e j+n
i

)
.

We say that λ is C-compatible for some complete associative collection of squares C if
every square which occurs in λ belongs to C.

1.1.16 Theorem (Hazlewood, Raeburn, Sims and Webster, 2013) Consider a k-coloured graph G
with a complete associative set of squares C, and let µ : E(k ,m) → G and ν : E(k , n) → G be
C-compatible coloured-graph morphisms with ν(m) � µ(0). Then there is a unique C-compatible
morphism µν : E(k ,m + n) → G such that

(i) µν
(
zp

i

)
� µ

(
zp

i

)
, whenever p + ei ≤ m, and

(ii) µν
(
zp

i

)
� ν

(
zp−m

i

)
, whenever m ≤ p ≤ n − ei .

Consider the category whose morphism set is the set of k-coloured–graph morphisms Λ :� {λ :
E(k ,m) → G | m ∈ Nk}, with domain and range maps as defined in 1.1.12. It is convenient to
use Λ to denote this category. Define the functor d : Λ→ Nk by d(λ) :� m whenever the domain
of λ is E(k ,m), and domain and range maps s(λ) :� λ(m) and r(λ) :� λ(0) respectively, as in
Example 1.1.12. Then (Λ, d) is the unique k-rank graph such that Λei � c−1(i) for each i, and
g f � f ′g′ in Λ if and only if g f ∼ f ′g′ in G. �

1.1.17 So k-coloured graphs with a unique tri-coloured path factorisation property define k-rank
graphs. Our main examples in Chapter 3 arise in this way. When k � 2, it is sufficient for
a set of squares to satisfy property C1 from 1.1.15 in order to define a 2-rank graph. We
study such examples when k � 2 in Chapter 2.

For now, we present another fundamental example of a k-rank graph (the infinite version
of 1.1.12) which is easily visualised as a k-coloured graph.

1.1.18 Example (Infinite lattice k-rank graph) Let k ≥ 1, and let Ωk be the countable small
category defined by sets Ob(Ωk) :� Nk and Hom(Ωk) :� {(m, n) ∈ Nk × Nk | m ≤ n}.

We identify Ob(Ωk) with the set of identity morphisms {(m,m) | m ∈ Nk}, and hence
identifyΩk with Hom(Ωk). Define range and domain maps r(m, n) :� m and s(m, n) :� n,
respectively. ThenΩk togetherwith the degreemap d(m, n) :� n−m forms a k-rank graph.
We candraw the 1-skeletonGΩk of (Ωk , d) as an infinite k-dimensional non-negative integer
lattice with arrows of colour i from n + ei to n for all n ∈ Nk , as in Figure 1.5.

Any paths between the same two domain and range vertices are deemed to be equivalent
in the k-rank graph, thus the elements of (Ωk , d) can be visualised as rectangles in the
lattice (as in Example 1.1.7, we are recycling the symbol Ωk to denote the category Ωk

10



Chapter 1 §1.2 Introduction to operator algebras

(0, 0)

(0, 1)

(0, 2)

(1, 0) (2, 0)

m1

m2

z(0,1)2

z(0,1)1

z(3,1)2

z(3,1)1

Figure 1.5: The 1-skeleton of the 2-rank graph (Ω2 , d) from1.1.18,with somevertices
and edges labelled. While elements of Hom(Ω2) are paths between vertices, a path
of degree (n1 , n2) in the 2-rank graph is represented by a 2-dimensional rectangle
with shape n1 × n2. The paths (m1 , 0) and (m2 ,m1) of respective degrees (1, 1) and
(2, 1) are shaded above, for example. The path (m2 ,m1) ∈ Ω(2,1)2 should remind the
reader of the 2-coloured graph E(2, (2, 1)) from Figure 1.3.

together under this equivalence relation). Indeed, elements ofΩm
k (the paths of degree m)

will look like those k-coloured graphs E(k ,m) from Example 1.1.12, and can be indexed
by the k-coloured–graph morphisms λ : E(k ,m) → GΩk . The k-graph (Ωk , d) could be
regarded as the k-graph induced by E(k ,m)where each co-ordinate of m is∞. �

§1.2 Introduction to operator algebras

1.2.1 We will observe in §1.3 that any directed graph and any k-graph can be assigned a graph
algebra. These C?-algebras incorporate a good deal of interesting examples, both new and
classical (see [Rae05] and 1.3.4–1.3.6), while at the same time inheriting properties from
their underlying graphs.

The groupsK0(A) and K1(A) associated to a C?-algebraA prove to be powerful invariants,
and in all of our cases actually determine the algebras themselves—this means that by
computing the groups Kε (where ε ∈ {0, 1}) for each of our graph algebras, we can see at
a glance whether or not they are isomorphic.

In order to understand the impact of graph algebras and their generalisation to higher-
rank graph algebras, the reader ought to be familiar with some fundamentals of functional
analysis. We present in this section a very brief overview and direct the reader to reference
texts [Bla06; Bou07b, III–V; Rae05; WO93].

11



Chapter 1 §1.2 Introduction to operator algebras

1.2.2 Definition (Banach space) Consider a vector space V over a field K � C or R. A norm
onV is a function ‖ ∗ ‖ :V → R such that, for all x , y ∈ V and a ∈ K,

N1 ‖ax‖ � |a | · ‖x‖ (it is absolutely homogeneous),

N2 ‖x‖ � 0 if and only if x � 0 (it separates points),

N3 ‖x + y‖ ≤ ‖x‖ + ‖y‖ (it is subadditive, or satisfies the triangle inequality).

We call a vector space endowed with a norm a normed vector space. An infinite sequence
of elements x1 , x2 , . . . in a normed vector space V is said to converge in norm to a limit
x ∈ V if ‖xi − x‖ → 0 as i increases. Similarly, a sequence is called Cauchy if its elements
eventually get arbitrarily close to each other, that is, ‖x j − xi ‖ → 0 as i increases, for all
j > i.

In general, every convergent sequence in a normed vector space V is also a Cauchy
sequence, and if V � C or V � R then the converse is also true: sequences in C or R
converge if and only if they are Cauchy.We now generalise this by defining a type of space
where this is always the case.

A normed vector spaceV is said to be complete if every Cauchy sequence inV converges
in norm to some limit insideV.

The closure ofV comprises the limit points of all convergent (not just Cauchy) sequences
inV. The completion of a normed vector spaceV is a complete space inside whichV is
dense; the completion of a space always exists and is unique (see [Yos95, I.10]).

A complete normed vector space over C (or over R) is called a Banach space.

An algebra is a vector space A over a field K together with an associative multiplication
operationA ×A → A, written (t , u) 7→ tu, which satisfies

A1 t(u + u′) � tu + tu′ and (t + t′)u � tu + t′u, for all t , t′, u , u′ ∈ A,

A2 (at)(bu) � (ab)(tu) for all t , u ∈ A and a , b ∈ K.

We say that A is unital if, in addition, there is an element id ∈ A such that id t � t id � t
for all t ∈ A. All of the algebras in this thesis will be unital and defined over the field of
complex numbers C. The notions of norm, convergence, and completeness are all valid if,
instead of a vector space, A is an algebra over C—we need only replace each instance of
the words “vector space” with “algebra” above, and insist that the norm also satisfies

N4 ‖tu‖ ≤ ‖t‖ · ‖u‖ (the norm ‖ ∗ ‖ is submultiplicative).

Thus a Banach algebra is a complete normed algebra.

12



Chapter 1 §1.2 Introduction to operator algebras

1.2.3 While a norm gives us a measure of distance between two elements of a vector space or
algebra, an inner product can express the notion of angle. Consider a vector space V over
C, and let 〈 ∗ , ∗ 〉 :V → C be an inner product: a function which satisfies

IP1 〈x , a y + b y′〉 � a〈x , y〉 + b〈x , y′〉,

IP2 〈y , x〉 � 〈x , y〉,

IP3 〈x , x〉 ∈ R≥0 and 〈x , x〉 � 0 if and only if x � 0,

for all x , y , y′ ∈ V and a , b ∈ C. This function is designed to be reminiscent of the dot
product of two vectors in Cn . We callV an inner product space, and property IP3 ensures
that we can define a norm on V by ‖x‖ :�

√
〈x , x〉. An inner product space which is

complete with respect to this norm is called a Hilbert space.

1.2.4 Example (Sequence spaces `p) Let p be a positive real number and let I be a countable
index set. We write `p(I) to denote the set of all infinite sequences {xi ∈ C}i∈I such that
the series

∑
i |xi |p converges. Note that these constructions also work for sequences of real

numbers. Sequences are said to be summable if they are in `1(I), square-summable in
`2(I), and p-summable for all other p. In the case that p � ∞, the space `∞(I) comprises all
bounded sequences, those being sequences {xi}i∈I such that supi |xi | < ∞. The index set I
is most often the natural numbers N, so we usually denote `p(N) by the shorthand `p .

The sets `p(I) are vector spaces under co-ordinate–wise addition, and when 1 ≤ p < ∞
there is a norm ‖ ∗ ‖p on each respective space called the `p-norm, defined by

‖{xi}‖p :�
(∑

i

|xi |p
)1/p

and ‖{xi}‖∞ :� supi |xi | when p � ∞. Indeed, whenever p ≥ 1, the space `p(I) is complete
with respect to its `p-norm, and hence is a Banach space.

If the index set I is finite with |I | � n, then a sequence indexed by I is just an r-tuple with
entries in C. Clearly such a sequence is p-summable for all p, so `p(I) � Cn whenever
|I | � n. In this way, the `p spaces could be seen as a generalisation of Cn to infinite-
dimensional space.

Given any index set I, the space `p(I) is strictly contained in each space `q(I) whenever
p < q. In particular, all of the `p spaces are distinct from each other. Moreover, `2 is the
only `p space which is a Hilbert space, with inner product defined by

〈{xi}, {yi}〉 :�
∑

i

xi yi .
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Chapter 1 §1.2 Introduction to operator algebras

1.2.5 By comparing the inner product in a Hilbert space with the dot product in Cn , we arrive
at the generalised definition of orthogonality: two elements x , y ∈ H are orthogonal if
〈x , y〉 � 0. Given a subset S ⊆ H , we define the orthogonal complement S⊥ of S to be the
set of elements y ∈ H which are orthogonal to every x ∈ S. A vector subspaceV ⊆ H is
dense whenever V⊥ � {0}, or equivalently, if the closure (1.2.2) of V is equal to H . An
orthonormal basis for H is a sequence {xi ∈ H} of mutually orthogonal elements, with
‖xi ‖ � 1 for all i, andwhose span {∑i ai xi | ai ∈ C} is dense inH . A Hilbert space is called
separable if it admits an orthonormal basis.

Wehave discussed above that the `p spaces are generalisations ofCn to infinite dimensions,
and that `2 is the only one which is a Hilbert space. In fact, any separable Hilbert spaceH
is isometrically isomorphic to `2(I) for some finite or countable set I. The cardinality of I
is the dimension of H , as well as the length of any orthonormal basis of H (as seen, for
example, in [Bou07b, V, §2.4]).

1.2.6 Example (Bounded linear operators) Let H , {0} be a separable Hilbert space over the
complex numbers and let B(H) be the space of maps t : H → H which are continuous
with respect to the usual norm (1.2.3). These are precisely the bounded linear operators
onH : maps t which satisfy t(x + a y) � t(x)+ a · t(y) and for which there exists some c > 0
with ‖t(x)‖ ≤ c · ‖x‖, for all x , y ∈ H and a ∈ C. We define a norm on B(H), called the
operator norm, by ‖t‖ :� sup{‖t(x)‖/‖x‖ | x ∈ H , x , 0}.

For each bounded linear operator t ∈ B(H), there is a unique map t? ∈ B(H), called the
adjoint to t, which satisfies 〈x , t(y)〉 � 〈t?(x), y〉 for all x , y ∈ H . The space B(H) is a
Banach algebra with respect to the operator norm. Subalgebras of B(H) wheneverH is a
separable Hilbert space are often referred to as operator algebras. �

1.2.7 Definition (C?-Algebra) Abstractly, a C?-algebra A is a Banach algebra over the field C

together with a map? : A → A, written x 7→ x?, such that for all x , y ∈ A and a ∈ C:

?1 (x?)? � x (? is an involution),

?2 (x + y)? � x? + y? and (ax)? � ax?, where a is the complex conjugate of a (? is
conjugate-linear),

?3 (x y)? � y?x? (? is antimultiplicative),

?4 ‖x?‖ � ‖x‖ (? is isometric),

?5 ‖x?x‖ � ‖xx?‖ � ‖x‖2 (? satisfies the C? Identity),

Amapwith properties?1–4 is sometimes called a star operation, and an algebra equipped
with such a map is called a Banach?-algebra.

Equivalently, a C?-algebra is a subalgebra A of the operator algebra B(H) for some
separable Hilbert spaceH , which has the following properties:

14
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?a A is norm-closed in the sense that every convergent sequence inA has its limit (with
respect to the operator norm) inA,

?b A is closed under the adjoint operation (see 1.2.6).

Given two C?-algebras A and A′, a bounded linear operator π : A → A′ is called a
?-homomorphism if π(x y) � π(x)π(y) and π(x?) � π(x)? for all x , y ∈ A. We call a
bĳective?-homomorphism a?-isomorphism.

1.2.8 When we are regarding a C?-algebra as an operator algebra with properties ?a–b, we
sometimes describe it as concrete, else we might call it abstract.

Historically, the seconddefinition ofC?-algebraswas the first to appear, alongwith another
class of operator algebras called vonNeumann algebras. TheGelfand–Naı̆mark Theorem of 1943
allowed the studyofC?-algebras as abstract objectswithout consideringHilbert spaces (see
[Bla06, II.2.2]). The C?-algebras in this thesis are generated by bounded linear operators,
though we rarely care about the underlying Hilbert space.

1.2.9 Definition (Some qualities of operators) Consider a (unital) C?-algebraA concretely, as
an algebra of bounded linear operators on a Hilbert space H . A projection is an element
p ∈ A such that p2(x) � p(x) � p?(x) for all x ∈ H . A partial isometry is an operator t ∈ A
such that t(x) � tt?t(x) for all x ∈ H , or equivalently, one of tt? or t?t is a projection (in
which case both are projections). An operator t ∈ A is self-adjoint if t � t?.

An isometry is an operator t ∈ A which satisfies t?t(x) � x for all x ∈ H . If, in addition,
tt?(x) � x, then we say that t is unitary; we usually use u to symbolise an operator we
know to be unitary. An operator u on H is unitary if and only if it is surjective and
〈u(x), u(y)〉 � 〈x , y〉 for all x , y ∈ H .

The K-theory of a C?-algebra

1.2.10 To every C?-algebra A, we can assign a pair of Abelian groups K0(A) and K1(A), called
the K-groups. These groups, as we shall see in Chapters 3–4, have the potential to encode
an enormous amount of data about their parent algebras, and can be used as invariants to
distinguish them from one another. We offer a whistle-stop description of K-theory in the
remainder of this section, and invite the reader to consult [Rae05, Chap. 7; RLL00; WO93]
when in need of more exposition or rigour.

1.2.11 The group K0 Write Mn(A) to denote the set of all n × n matrices with entries in some
unital concrete C?-algebra A; this has a natural C?-algebra structure. Consider the space
M∞(A) :�

⋃
n≥1 Mn(A). We can define an equivalence relation on the subset of projections

ofM∞(A), calling two projections p , p′ (Murray–von Neumann) equivalentwhenever we can
find a partial isometry t ∈ M∞(A) such that t?t � p and tt? � p′; write [p] to denote the
class of a projection p under this equivalence.
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Define the subset V(A) :� {[p] | p ∈ M∞(A) is a projection} and observe that this is an
additive Abelian semigroup under the operation [p] + [q] :� [p′ ⊕ q′], where p′ ∈ [p] and
q′ ∈ [q] are such that p′q′ � 0, and p′ ⊕ q′ is the block matrix with p , q on the diagonal and
the zero map elsewhere.

We define K0(A) to be the Grothendieck group of V(A), that is, the group

K0(A) :� {[p] − [q] | p , q ∈ V(A)}

of “formal differences” between equivalence classes of projections in M∞(A). This is an
Abelian group with addition defined by

([p1] − [q1]) + ([p2] − [q2]) :� ([p1] + [p2]) − ([q1] + [q2]).

The identity is the class which contains the zero matrices (all of whose entries are the
trivial projection 0, which sends everything to zero), since p is Murray–von Neumann
equivalent to p ⊕ 0.

1.2.12 The group K1 As above, letA be a concrete unital C?-algebra, and letMn(A) denote the
set of all n× n matrices with entries fromA. Consider the groupsUn(A) :�U(Mn(A)) of
unitary elements ofMn(A) for each n. We will call unitary matrices u , u′ equivalent if they
are homotopy equivalent, that is, if there is a continuous path [0, 1] → Un(A) valued u at
0 and u′ at 1. This extends to an equivalence relation onU∞(A) :�

⋃
n≥1Un(A), since we

can embedMn(A) inMn+1(A) via the map u 7→ u ⊕ idA . We write [u] for the equivalence
class of a unitary matrix u ∈ U∞(A).

Now, we set K1(A) as the multiplicative Abelian group

K1(A) :� {[u] | u ∈ U∞(A)},

with multiplication defined by [u] · [v] :� [u · v], where u · v is the block matrix with u , v
on the diagonal and the zero map elsewhere. The identity is the class containing those
matrices with each diagonal entry idA and the zero map elsewhere.

1.2.13 The groups K0 and K1 define functors from the category of C?-algebras to the category
of Abelian groups. The significance of this functoriality cannot be overstated; indeed, the
K-theory of C?-algebras can be characterised entirely by its properties as a functor (see
[WO93, Chap. 11]). Moreover, it is often easier to determine the properties of the algebras
by passing to the K-groups, as we shall see in the remainder of this thesis.

Modifications can be made to the above constructions which would let us associate K-
groups to non-unital algebras, but Proposition 1.3.13 will allow us to get away without
them.
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1.2.14 Definition (Tensor product) LetV ,V′ be vector spaces over a fieldK, and suppose there
is a map π taking (v , v′) ∈ V × V′ to an element v ⊗ v′ ∈ V ⊗ V′, which is multilinear,
that is, which satisfies

(i) (v + w) ⊗ w′ � v ⊗ w′ + w ⊗ w′ and v ⊗ (v′ + w′) � v ⊗ v′ + v ⊗ w′,

(ii) a(v ⊗ v′) � (av) ⊗ v′ � v ⊗ (av′),

for all v , w ∈ V, v′, w′ ∈ V′, and a ∈ K, and which satisfies the universal property:

(iii) Whenever ρ : V × V′ → W is a multilinear map into any vector spaceW, then
there exists a unique linear map ρ :V ⊗V′→W such that ρ ◦ π � ρ.

The space V ⊗ V′ is called the tensor product of V and V′. If {vi}ni�1 and {v′j}
n′
j�1 are

respective bases for V ,V′, then {vi ⊗ v′j} forms a basis for V ⊗ V′—the dimension of a
tensor product is therefore the product of the dimensions of the multiplicands.

For C?-algebras A and A′ we use a slightly different notation, since their tensor product
as vector spaces does not always induce a natural norm. We write A � A′ to denote the
algebraic tensor product, that is, their tensor product as vector spaces over C. This space
may admit different norms which satisfy the C?-identity ?5, under which the algebraic
tensor productA�A′ satisfies condition?a of 1.2.7, turning it into a C?-algebra?-algebra.
We call a C?-algebra A nuclear if, for every C?-algebra A′, there is a unique norm on the
tensor productA �A′ which makes it a C?-algebra. We writeA ⊗A′ for the completion
ofA � A′ with respect to this norm.

1.2.15 The class of nuclear C?-algebras comprises a lot of handy C?-algebras, including all matrix
algebrasMn(C), the Cuntz–Krieger algebras OA from 1.3.6 (by, for example, [EL99, §7]), and
any C?-algebra which is finite or approximately finite (see [WO93, §12.1]). Nuclearity is also
preserved under tensor products and quotients (the reader should consult [Bla06, II.9.4]
for a completer picture).

We present at the conclusion of this section a direct sum construction for C?-algebras, and
a useful feature of the K-groups of nuclear C?-algebras, as described in [WO93, §9.3].

1.2.16 A large and important category of C?-algebras introduced by Rosenberg and Schochet in
[RS87] is the bootstrap class. The precise composition of this category is not needed; let it
be sufficient to say that it is the smallest class containing those nuclear and separable (in
the sense of 2.3.5) C?-algebras which can be obtained from C through countably-many
“elementary K-theoretic operations” (see [Bla06, V.1.5]).

The bootstrap class contains a vast number of common C?-algebras, including all those
which are commutative, and it is an open question whether it is exactly the class of all
separable nuclear C?-algebras.
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1.2.17 Theorem (Direct sum of C?-algebras) LetA ,A′ be unitalC?-algebras. Then their direct sum
A⊕A′ :� {(x , x′) | x ∈ A , x′ ∈ A′} is a C?-algebra with co-ordinate–wise operations and norm
‖(x , x′)‖ :� max{‖x‖ , ‖x′‖}. Moreover, Kε(A ⊕ A′) � Kε(A) ⊕ Kε(A′), for ε � 0, 1. �

1.2.18 Theorem (Künneth Theorem for tensor products) LetA ,A′ be nuclear C?-algebras whose
K-groups are finitely-generated and torsion-free (that is, isomorphic to a direct sum of copies of Z).
Then ifA is in the bootstrap class, we have:

(i) K0(A ⊗ A′) � K0(A) ⊗ K0(A′) ⊕ K1(A) ⊗ K1(A′).

(ii) K1(A ⊗ A′) � K0(A) ⊗ K1(A′) ⊕ K1(A) ⊗ K0(A′). �

1.2.19 The construction of each C?-algebra in this thesis promises that each K-group be finitely-
generated, and hence we will be able to utilise Theorem 1.2.18.

§1.3 Graph algebras

1.3.1 Definition (Properties of k-graphs) Let (Λ, d) be a k-rank graph, let n ∈ Nk , and let
v ∈ Λ0. We write vΛn for the set of paths of degree n which map onto the vertex v, that is,
vΛn :� {λ ∈ Λn | r(λ) � v}.

We say that (Λ, d) is row-finite if the set vΛn is finite for each n ∈ Nk and v ∈ Λ0, and that
(Λ, d) has no sources if each vΛn is non-empty.

We say that (Λ, d) is locally convex if, whenever i , j ≤ k are distinct natural numbers
and µ ∈ Λei , ν ∈ Λe j are paths with r(µ) � r(ν), then the sets s(µ)Λe j and s(ν)Λei are
non-empty.

1.3.2 In [KPR98], a row-finite directed graph (1-graph) G with no sources was bestowed a so-
called graph algebra. This is a concrete C?-algebra generated by a set of projections and
partial isometries indexed by vertices and edges of G, respectively, andwhich satisfy some
multiplication conditions. The graph algebra is unique up to ?-isomorphism, and so we
have an extremely useful way of representing a graph in terms of Hilbert space operators.

1.3.3 Definition (Graph C?-algebra) Let G be a row-finite directed graphwith no sources, and
let

{
pv ∈ B(H) | v ∈ G0} and

{
te ∈ B(H) | e ∈ G1} be, respectively, sets of projections

and partial isometries on some separable Hilbert spaceH . We call the collection {pv , te} a
Cuntz–Krieger G-family if it satisfies

(i) pu pv � 0 for all u , v,

(ii) t?e te � ps(e) for all e ∈ G1,

(iii) pv �
∑
{e |r(e)�v} te t?e for all v ∈ G0.
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Let A(G) denote the C?-algebra which is universal in the following sense: if {Pv , Te} is
another Cuntz–Krieger G-family in some C?-algebra A′, then there is a homomorphism
π : A(G) → A′ with π(pv) � Pv and π(te) � Te for all pv , te . The algebraA(G) exists, and
we call it the graph algebra of G, and say that {pv , te} generatesA(G).

1.3.4 Example (Some easy graph algebras) Let G be the directed graph consisting of a single
vertex v and no edges. Then a Cuntz–Krieger G-family will have one generator pv , with
p2

v � pv � p?v , and no other relations. In this instance, pv behaves as the identity operator,
and since the universal algebra generated by id is isomorphic to C, we haveA(G) � C.

Now, consider the directed graph O1 which comprises one vertex v, and one directed edge
e from v to itself. The graph algebra A(O1) is the universal C?-algebra generated by a
projection pv and a partial isometry te which satisfies t?e te � pv � te t?e . Since te is a partial
isometry, we have pv te � te t?e te � te , and similarly te pv � te . This means that pv is the
identity operator, and hence that te is unitary. Let T :� {a ∈ C | |a | � 1} denote the unit
circle, and write C(T) for the algebra of all functions f : T → Cwhich are continuous with
respect to the norm ‖ f ‖∞ :� supa∈T {| f (a)|}—under this norm C(T) is a C?-algebra, with
complex conjugation as the involution. It is not difficult to show that the universal algebra
generated by the identity and a single unitary operator is isomorphic to C(T), using the
Continuous Functional Calculus together with the fact that the spectrum of a unitary element
is contained in C(T) (consult [Bla06, II.2.3] for details). We can therefore conclude that
A(O1) � C(T).

Using the index in [RLL00], we find the K-groups for the above graph algebras to be as
follows: K0(A(G)) � K0(A(O1)) � K1(A(O1)) � Z, whereas K1(A(G)) � 0. �

1.3.5 Example (Cuntz algebras) Now consider the directed graph On with one vertex v and n
loops around it labelled 1, . . . , n. We form a Cuntz–Krieger On-family {pv , ti | 1 ≤ i ≤ n}
with a single projection pv and partial isometries which satisfy t?i ti � pv �

∑
i ti t?i . As in

Example 1.3.4, we can deduce that pv is the identity operator in the universal C?-algebra
generated by such a family, and so each ti is an isometry (Definition 1.2.9). In [Cun77],
Cuntz defined the C?-algebra On to be the one generated by n isometries ti under the
relation

∑
i ti t?i � id. We now call these the Cuntz algebras, and this example shows that

each Cuntz algebra On is the graph algebra of a graph with one vertex and n directed
edges. The K-groups of Cuntz algebras are well-understood; in fact Cuntz himself showed
that K0(On) � Z/(n − 1) whenever n ≥ 2 and K1(On) � Z for all n (from the table of
K-groups in [RLL00]). �

1.3.6 So far, we have computed graph algebras by considering the edge-indexed partial iso-
metries individually, and studying how the relations in 1.3.3 affect them. In [CK80], the
Cuntz–Krieger algebra OA was introduced for each n × n matrix A with entries in {0, 1}
and with non-zero rows and columns. This is the universal C?-algebra generated by a set
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{ti | 1 ≤ i ≤ n} of partial isometries which satisfies t?i ti �
∑

j A(i , j)t j t?j , where A(i , j) is
the (i , j)-th entry in the matrix A.

Enomoto and Watatani showed in [EW80] that when G is a directed graph with a finite
number of vertices,A(G) can be expressed as a Cuntz–Krieger algebra for some matrix A.
We might naïvely consider setting A as the |G0 | × |G0 | vertex matrix:

AG(u , v) :� |{Edges e ∈ G1 | s(e) � u , r(e) � v}|

for u , v ∈ G0, but we quickly notice that this matrix might not have the entries in {0, 1}
required by a Cuntz–Krieger algebra. Instead, we define the edge matrix:

BG(e , f ) :�


1 if r(e) � s( f ),
0 otherwise,

which is a {0, 1}-matrix, and is such that OBG � A(G) by [Rae05 2.6–2.8 and references
therein]. Hence the graph algebras of finite directed graphs with no sinks or sources (that is,
where every vertex is the target of some edge and the origin of some edge) are isomorphic
to Cuntz–Krieger algebras. These methods have been adapted for graphs with sinks or
sources (for example in [BPRS00]), though we don’t need them here.

The Cuntz algebras On from Example 1.3.5 can be recovered as the Cuntz–Krieger algebra
OA, where A is the n × n matrix whose entries are all 1: the edge matrix for the graph On .

1.3.7 Theorem (Raeburn and Szymański, 2004) Let G be a row-finite directed graphwith n vertices
and no sources, and let AG be the corresponding vertex matrix defined in 1.3.6. Write 1 to denote
the n × n identity matrix, and consider the matrix ∂ :� 1 −AT

G as an endomorphism of Zn , where
the generators of Zn are indexed by the vertices of G.

Then K1(A(G)) � ker(∂) and K0(A(G)) � Zn/im(∂), the cokernel of ∂ [Rae05, 7.16]. �

1.3.8 The above theorem was proven for graphs with a countably-infinite number of vertices
in [RS04]. It gives us a taste of the deep connection between the structure of C?-algebras
and the geometry of graphs, which we further explore in 2.2.6 and 3.4.7. Note that these
K-theory computations use the vertex matrix and not the edge matrix (1.3.6) needed to
construct the Cuntz–Krieger algebra.

A natural question to ask at this point is: “is every C?-algebra the graph algebra for some
graph?” and the answer is: no! Theorem 1.3.7 asserts that K1(A(G)) be a subgroup of the
free Abelian group Zn , and hence is a free Abelian group itself. This means that no C?-
algebra whose K1 group has torsion can be represented as a graph algebra (and algebras
with such K1 do exist). An elegant converse to this was demonstrated by Szymański in
[Szy02]. We paraphrase his argument that, given countable Abelian groups G0 ,G1 where
G1 is torsion-free, then there exists a row-finite directed graph G (with finitely-many
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vertices) such that K0(A(G)) � G0 and K1(A(G)) � G1. This is to say that K1(A) of a graph
algebra A is destined to be free Abelian, but this is the only condition the K-groups need
satisfy.

1.3.9 Example (K-theory of a cyclic graph) Denote by C5 the directed graph depicted in Figure
1.6a, comprising five vertices v1 , . . . , v5 and five directed edges ei from vi to vi+1 (where
e5 points from v5 to v1).

The vertexmatrix AC5 has zeroes everywhere except in the five (i , i+1)-th positions. Hence
the map ∂ : Z5 → Z5 from Theorem 1.3.7 can be expressed by the matrix

∂ �



1 0 0 0 −1

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1


,

and it is straightforward to verify that ker(∂) � coker(∂) � Z. Hence the graph algebraA
of C5 has K-groups K0(A) � K1(A) � Z. �

1.3.10 As discussed in 1.2.1 and throughout this section, a wide range of useful C?-algebras arise
as graph algebras for some graph; additional examples include the matrix algebrasMn(C),
the algebra of compact operators on a Hilbert space K(H), and the Toeplitz algebra T . The
simplicity with which the graph algebra relations are defined allows us to paint a clearer
picture of the properties of certain C?-algebras, as in §2.3, for example.

Therefore, we would be very excited if it were possible to use graph algebras to model
more general algebras—namely, those without a free K1 group. This is where Kumjian and
Pask’s extension of the definition of graph algebras to higher-rank graphs takes to the stage.
Eventually (2.2.8 and beyond), we’ll use their pioneering constructions to develop new
classes of higher-rank graph algebras whose K1 groups have demonstrable torsion. Since
a directed graph is a 1-rank graph, it is easy to notice the parallels between the following
definition from [KP00] and that of 1.3.3.
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Higher-rank graph algebras

1.3.11 Definition (Higher-rank graph C?-algebra) Let (Λ, d) be a row-finite k-rank graph with
no sources. We define a Cuntz–Krieger Λ-family to be a set {tλ | λ ∈ Λ} of partial
isometries with the following properties:

CK1 The elements of
{

tv | v ∈ Λ0} are projections such that tu tv � 0 for all u , v,

CK2 If r(µ) � s(ν) for some µ, ν ∈ Λ, then tνµ � tν tµ,

CK3 For all λ ∈ Λ, we have t?λ tλ � ts(λ),

CK4 For all vertices v ∈ Λ0 and n ∈ Nk , we have

tv �

∑
λ∈vΛn

tλt?λ .

Note that without the row-finiteness condition,CK4 is not well-defined. Similarly, if (Λ, d)
has vertices which are sources, then the sets vΛn may be empty for some values of n and
non-empty for others. All of the examples of higher-rank graphs from this point on are
row-finite and without sources.

Let A(Λ) denote the C?-algebra generated by {tλ} which is universal in the following
sense: if {Tλ} is another Cuntz–Krieger Λ-family in some C?-algebra A′, then there is a
homomorphism π : A(Λ) → A′ with π(tλ) � Tλ for all λ ∈ Λ. Such an algebra exists, is
non-zero, and is unique up to ?-isomorphism by [Rae05, 1.21–1.22, 10.13]. We call A(Λ)
the k-rank graph C?-algebra of (Λ, d), and say that the family {tλ} generatesA(Λ).

1.3.12 We define analogues S, R :
{

tλ , t?λ
}
→ Λ0 of the domain and range maps, respectively, as:

S(tλ) :� s(λ), S
(
t?λ

)
:� r(λ), R(tλ) :� r(λ), R

(
t?λ

)
:� s(λ),

for each λ ∈ Λ. Thenwe canwrapCK2 andCK1up into the following equivalent condition:

tν tµ �


tνµ if R(tµ) � S(tν),
0 otherwise,

as in [KP00, 1.6; Rae05, 1.12]. A useful fact is that tv tλ � tλ whenever R(tλ) � v, and
tλtv � tλ whenever S(tλ) � v. Furthermore, the sum in CK4 need only range over the
paths λ ∈ vΛei , where ei are the standard generators of Nk .

1.3.13 Proposition Let (Λ, d) be a k-rank graph with finite vertex set Λ0. Then the sum
∑

v∈Λ0 tv is an
identity inA(Λ), and soA(Λ) is unital.
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� Proof Write Σ :�
∑

v∈Λ0 tv . By the observations in 1.3.12, tv tλ � 0 unless v � r(λ), so
Σtλ � tr(λ)tλ � tλ. Likewise, tλtv � 0 unless v � s(λ), so tλΣ � tλ (see [RS99, 3.4]). In fact,
the converse to this proposition is also true (see [KPR98, 1.4]). �

1.3.14 Example (k-rank graph tori) Consider the category Tk which consists of a single object
and has morphism set generated by k commuting morphisms f1 , . . . , fk . This means that
eachmorphism λ ∈ Hom(Tk)will be of the form λ � f n1

1 f n1
2 · · · f nk

k for some ni ∈ N. Define
a functor d : Tk → Nk by d(λ) :� (n1 , . . . , nk). Then (Tk , d) is a k-rank graph, which can be
viewed as the monoid Nk with generators indexed by f1 , . . . , fk . Its 1-skeleton comprises
a single vertex and k distinctly-coloured loops which we label 1, . . . , k.

The graph algebraA(Tk) is therefore the universal C?-algebra generated by partial isomet-
ries {t1 , . . . , tk}which commute (we can recover tv from the ti viaCK4). Notice that we are
in a different situation to that of the Cuntz algebras from 1.3.5, where the partial isometries
were not assumed to commute. From CK3 and 1.3.12 we know that t?i ti � tv � idA(Tk ),
that is, the ti are unitary inA(Tk).

Similarly to in 1.3.4 (and as in [Bla06, II.8.3.3]), it can be shown that the universal C?-algebra
generated by k-many commuting unitary operators is isomorphic to C(T k), the algebra of
continuous functions on the k-torus. ThusA(Tk) � C(T k).

The K-theory of this C?-algebra is also known, with K0(C(T k)) � K1(C(T k)) � Z2k−1 for all
k ≥ 1 (as documented in [RLL00]). This aligns with our understanding of the K-theory of
O1, the graph algebra of O1 from 1.3.4, since O1 and T1 are isomorphic as 1-graphs. �

1.3.15 Example (1.1.7 revisited) Consider again the 2-rank graph (Λ, d) from Example 1.1.7,
whose 1-skeleton is depicted in Figure 1.2a, and whose commuting squares are given by
g2 f1 � f1 g1 and g1 f2 � f2 g2. Write A to denote the 2-rank graph C?-algebra of (Λ, d).
Since Λ is generated by the morphisms fi , gi , the algebra A is generated by a family of
partial isometries

{
tu , tv , t f1 , t f2 , tg1 , tg2

}
subject to relations

(i) tg2 t f1 � t f1 tg1 and tg1 t f2 � t f2 tg2 by CK2 and the commuting squares,

(ii) t?f1 t f1 � t?g1 tg1 � tu and t?f2 t f2 � t?g2 tg2 � tv from CK3,

(iii) tu � t f2 t?f2 + tg1 t?g1 and tv � t f1 t?f1 + tg2 t?g2 from CK4.

We’ll try to decipher these in order to get a better idea of the structure of the graph algebra.
Firstly, from (i) we get t f2 tg2 t?f2 � tg1 t f2 t?f2 � tg1 tv � tg1 , and so from CK2 it follows that

t?g1 tg1 �
(
t f2 tg2 t?f2

)? (t f2 tg2 t?f2
)
� t f2 t?g2 t?f2 t f2 tg2 t?f2 � t f2 t?f2 .

But from (ii) we know that t?g1 tg1 � tu , and hence that t f2 t?f2 � tu . Similarly, t f1 t?f1 � tv .
Now, consider the elements x :�

(
t f1 + tg2

)
and y :�

(
t f2 + tg1

)
inA. We have

x?x �
(
t f1 + tg2

)? (t f1 + tg2

)
� t?f1 t f1 + t?f1 tg2 + t?g2 t f1 + t?g2 tg2 � t?f1 t f1 + t?g2 tg2 � tu + tv ,
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by 1.3.12 and (ii). Likewise, we see that y?y � tu + tv . But tu + tv is an identity for A by
1.3.13, so x?x � xx? � idA � y?y � y y?, that is, x and y are isometries inA. But also

xx? � t f1 t?f1 + t f1 t?g2 + tg2 t?f1 + tg2 t?g2 � t f1 t?f1 + tg2 t?g2 � tu ,

by 1.3.12 and (iii), so tu � idA . Similarly, we find that tv � idA . Notice that t f1 � xtu ,
t f2 � ytv , tg1 � ytu , and tg2 � xtv , so {x , y} generatesA. Moreover,

x yx?y? �
(
t f1 + tg2

) (
t f2 + tg1

) (
t f1 + tg2

)? (t f2 + tg1

)?
�

(
t f1 t f2 + 0 + 0 + t f1 tg1

) (
t?f1 t?f2 + 0 + t?g2 t?f2 + 0

)
, by 1.3.12

� 0 + t f1 t f2 t?g2 t?f2 + t f1 tg1 t?f1 t?f2 + 0, again by 1.3.12

� t f1 t f2 t?f2 t?g1 + tg2 t f1 t?f1 t?f2 , by (i) and CK2

� t f1 t?g1 + tg2 t?f2 , by CK2 and the fact that t f2 t?f2 � tu and t f1 t?f1 � tv

� x y?,

that is, x yx?y? � x y?. But then yx? � idA , so x y? � idA , and therefore x yx?y? � idA .
Since x and y are isometries, this means that x y � yx.

Conversely, for isometries X,Y, we can define a Cuntz–Krieger Λ-family {tλ} by setting
tv :� XX?, tu :� YY?, t f1 :� Xtu and so on, such that the C?-algebra generated by {X,Y} is
isomorphic toA(Λ). ThusA � A(Λ) is the universal C?-algebra generated by two unitary
elements which commute—this is isomorphic to C(T2), as we saw in Example 1.3.14. �

1.3.16 Proposition (Kumjian and Pask, 2000) Let (Λ1 , d1) and (Λ2 , d2) be k1- and k2-rank graphs,
respectively. Then (Λ1 × Λ2 , d) is a (k1 + k2)-rank graph, where Λ1 × Λ2 is the product category,
and d(λ1 , λ2) :� (d1(λ1), d2(λ2)), for λ1 ∈ Λ1, λ2 ∈ Λ2.

If (Λ1 , d1), (Λ2 , d2) are also row-finite, thenA(Λ1 ×Λ2) � A(Λ1) ⊗ A(Λ2) [KP00, 1.8, 3.5]. �

1.3.17 Example (Cyclic graphs) Denote by Cn the 1-graph comprising n vertices v1 , . . . , vn and
n morphisms ei : vi → vi+1 (where vn+1 � v1), as illustrated in Figure 1.6a. It is not hard
to show that A(Cn) � Mn(C(T)), the ring of n × n matrices with entries in C(T) (consult
[Rae05, 2.14] for one demonstration). According to the table in [RLL00], both K-groups of
Mn(C(T)) are isomorphic to Z, which confirms our calculations in Example 1.3.9.

Now consider the 2-graph Λ � C2 × C2 as depicted in Figure 1.6b. From Proposition
1.3.16 and the above, it follows that A(Λ) � M2(C(T)) ⊗ M2(C(T)). But there is a natural
isomorphism M2(C(T)) ⊗ M2(C(T)) � M4(C(T) ⊗ C(T)) via [Bou07a, III, §4.1], and by the
Stone–Weierstraß Theoremwe also have C(T) ⊗ C(T) � C(T2). HenceA(Λ) � M4(C(T2)).

Now, for any C?-algebra A and any natural number n, we have K0(A) � K0(Mn(A)) and
K1(A) � K1(Mn(A)) (see [RLL00, 4.3.8, 8.2.8]). Then from 1.3.14 we are able to conclude
that K0(A(Λ)) � K1(A(Λ)) � Z2. �
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v4

v5

(a) The 1-graph C5 has graph al-
gebra isomorphic to M5(C(T)).

(b) The 2-graph C2 ×C2. We need
not write the commuting squares
because there is no choice.

Figure 1.6: Higher-rank graphs can be formed as the direct product of graphs of
lower rank. The universal C?-algebra associated to the 2-graph in (b) is isomorphic
toM4(C(T2)); we will come back to this in Example 2.2.9

1.3.18 Example (1.1.8 revisited) Let (Λ, d) be one of the 2-rank graphs from Example 1.1.8, with
1-skeleton as depicted in Figure 1.2b. Imagine firstly that the commuting squares are
defined by g2 f1 � f1 g1 and g1 f2 � f2 g2, which force g4 f1 � f1 g3 and g3 f2 � f2 g4. Then
(Λ, d) is isomorphic to theCartesian product of O1 (pink) and O2 (dashed blue) from1.3.14,
and so A(Λ) � O1 ⊗ C(T) by Proposition 1.3.16. At this point, we can use the Künneth
Theorem (1.2.18) together with Theorem 2.3.6 and Examples 1.3.4 and 1.3.14 to deduce that
Kε(A(Λ)) � Z2 for ε � 0, 1.

Choosing g4 f1 � f1 g1 and g1 f2 � f2 g4 results in another 2-graph isomorphic to the one
above, with the isomorphism swapping g2 and g4.

If insteadwe require g2 f1 � f1 g1 and g3 f2 � f2 g2, thenwe can viewΛ as the crossed product
O2 ×α Z, where α is the automorphism which swaps g2 and g4. ThenA(Λ) is isomorphic
to the crossed-product algebra O2 ×α̃ Z, where α̃ is the unique automorphism of A(Λ)
with α̃(tλ) � tα(λ) for all λ ∈ Λ (see [FPS09, §3]).

Again, choosing g4 f1 � f1 g1 and g3 f2 � f2 g4 gives a 2-graph isomorphic to this one, which
means its graph algebra will also be isomorphic to O2 ×α̃ Z. �

1.3.19 The most desirable properties a C?-algebra can have for the purposes of this thesis are
summed up in Definition 2.3.5 as those of a Kirchberg algebra. The Kirchberg algebras in
the bootstrap class are classified by their K-theory, meaning that if two such C?-algebras
have the same associated K-groups, then the algebras themselves must be isomorphic.
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Tile systems

Our first new class of k-rank graphs are for k � 2. Using a result of Vdovina [Vdo02],
we may associate to any complete bipartite (undirected) graph κ a 2-dimensional square
complex, which we call a tile complex, whose link at each vertex is κ. We regard the tile
complex in two different ways, considering the squares as both pointed and unpointed;
these objects induce non-isomorphic 2-rank graphs. We compute the K-theory of each of
the corresponding graph algebras.

Then, we explore extensions of these methods to 2t-gon systems, constructed analogously
from 2-dimensional complexes consisting entirely of 2t-gons, where t ≥ 1. By the end of
the chapter, we will have associated 2-rank graph C?-algebras to five systems, with their
K-theory computed in the following theorems:

(i) Pointed and unpointed tile systems (Theorems 2.2.8, 2.4.4),

(ii) Pointed and unpointed 2t-gon systems, for even t (Theorems 2.5.7, 2.5.10),

(iii) Pointed 2t-gon systems, for arbitrary t (Theorem 2.5.15).

The respective systems in (ii) directly generalise those in (i), however there is another
intuitive way of building 2t-gon systems from polyhedra in (iii). The naturality of these
generalisations is discussed at the end of §2.5.

Our approach differs from that of Robertson and Steger in [RS99], who focussed on com-
plexes with one vertex. We take advantage of higher-rank graph terminology in order to
demonstrate the large intersection between the fields of k-graphs and geometry.

The majority of this chapter has appeared in [Mut22]. Throughout, α and β are positive
integers, and κ(α, β) denotes the complete connected bipartite graph on α white and β
black vertices.
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Chapter 2 §2.1 The tile system associated to a bipartite graph

§2.1 The tile system associated to a bipartite graph

2.1.1 Definition (Cube complex) An n-dimensional cube can be thought of as a product of
n unit intervals [0, 1] × · · · × [0, 1] ⊂ Rn ; its m-dimensional faces are the products of m
intervals [0, 1] with (n − m) copies of {0} or {1} or a mixture of both. We build a cube
complex by “gluing together” n-dimensional cubes along their faces isometrically (that
is, preserving distances). If S is a disjoint union of such cubes, and R is a collection of
isometries between their faces, then a cube complexM is the quotient space S/R, and the
cubes ofM are the images of the cubes under this quotient map. The dimension of a cube
complex is defined to be that of the highest-dimensional cube it contains.

We can form a general cell complex in the same way, where an n-dimensional cell is a space
which is homeomorphic to an n-dimensional cube. Cells might be polygons, polyhedra,
or balls, for example.

2.1.2 Definition (t-hedron) Let t ≥ 2 be an integer, and let A1 , . . . ,As be a sequence of solid t-
gons, each with directed edges labelled from some setU . By gluing together like-labelled
edges (respecting their direction), we obtain a two-dimensional cell complex P. We call
such a complex a t-hedron.

The link at a vertex z of P is the undirected graph obtained as the intersection of P with a
small k-sphere centred at z.

Au1v2

u1
1

v1
2

u2
1

v2
2 Au1v3

u1
1

v1
3

u2
1

v2
3 Au2v1

u1
2

v1
1

u2
2

v2
1

Figure 2.1: Method for constructing a 2t-hedron from 2.1.4. For each edge e � up vq

in a bipartite graph, draw a solid 2t-gon Ae and select a basepoint. Label the sides
anticlockwise from the basepoint by the sequence u1

p , v1
q , . . . , ut

p , vt
q , as shown. Then

glue together any corresponding sides, respecting their direction.

2.1.3 Theorem (Vdovina, 2002) Let G be a connected bipartite undirected graph on α white and β
black vertices, with edge set E(G). Then we can construct a 2t-hedron P(G) which has G as the
link at each vertex, for each t ≥ 1. �

2.1.4 We refer the reader to [Vdo02] for the full proof, since it suffices to describe just the
construction of the cell complex here:

Write U′ � {u1 , . . . , uα} for the set of white vertices of G, and V′ � {v1 , . . . , vβ} for the set
of black vertices. Let U be a set with 2tα elements, indexed u1

i , u
2
i , . . . , u

t
i , ū

1
i , ū

2
i , . . . ū

t
i for
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Chapter 2 §2.1 The tile system associated to a bipartite graph

each ui ∈ U′, and let V be the corresponding set with 2tβ elements. Define fixed-point-free
involutions ur

i 7→ ūr
i and vr

i 7→ v̄r
i in U and V respectively.

Every edge of the graph G joins an element of U′ to an element of V′; for each edge
e � up vq , we construct a 2t-gon Ae with a distinguished base vertex. Label the boundary
ofAe anticlockwise, starting from the base, by the sequence u1

p , v1
q , u2

p , v2
q , . . . , ut

p , vt
q , giving

each side of the boundary a forward-directed arrow. We denote this pointed oriented 2t-
gon by Ae �

[
u1

p , v1
q , . . . , ut

p , vt
q
]
. Then, glue the Ae together in the manner of Definition

2.1.2 in order to obtain a 2t-hedron P(G) (Figure 2.1).

We equate the involution x 7→ x̄ with the reversion of the direction of an arrow.

2.1.5 Definition (Pointed and unpointed tiles) In this chapter, we mainly concern ourselves
with 4-hedra: those polyhedra constructed by gluing together squares. We will refer to
4-hedra as tile complexes. For a connected bipartite undirected graph G, write TC(G) for
the tile complex P(G), and define the set

S(G) :�
{
Ae �

[
u1

p , v
1
q , u

2
p , v

2
q
]
,
[
ū1

p , v̄
2
q , ū

2
p , v̄

1
q
]
,[

u2
p , v

2
q , u

1
p , v

1
q
]
,
[
ū2

p , v̄
1
q , ū

1
p , v̄

2
q
] �� e � up vq ∈ E(G)

}
. (2.1)

We call elements of S(G) pointed tiles, and we define an equivalence relation which, for
each Ae , identifies the four corresponding pointed tiles in (2.1). We denote by S′(G) the
quotient of S(G) by this relation, and we use round brackets, writing A′e �

(
u1

p , v1
q , u2

p , v2
q
)

for the equivalence class of Ae in S′(G). Then S′(G) is the set of geometric squares (that
is, disregarding basepoint and orientation) of which TC(G) consists. We call elements of
S′(G) unpointed tiles.

Notice that by placing the basepoint at the bottom-left vertex, we can arrange that the
horizontal sides of each pointed tile be labelled by elements of U, and the vertical sides by
elements of V , such thatS(G) ⊆ U ×V ×U ×V . Indeed, the four tuples in (2.1) correspond
to the four symmetries of a pointed tile which preserve this property (Figure 2.2).

Note also that by design, any two pointed tiles in S(G) are distinct, and any two adjacent
sides of a tile uniquely determine the remaining two sides.

A

x1

y1

x2

y2 B

x1

y2

x2

y1 C

x2

y1

x1

y2 D

x2

y2

x1

y1

Figure 2.2: The four pointed tiles A � [x1 , y1 , x2 , y2], B � [x̄1 , ȳ2 , x̄2 , ȳ1], etc. are
distinct in S, but are equivalent as unpointed tiles in S′. The labels around each of
B, C, D are obtained from A through horizontal and/or vertical reflection.
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Chapter 2 §2.2 The higher-rank graphs induced by a tile system

2.1.6 Definition (Tile system) Let G be a connected undirected bipartite graph on αwhite and
β black vertices. Let U, V be sets with |U | � 4α, |V | � 4β, indexed as in 2.1.4, and let
S � S(G) ⊆ U × V × U × V be the corresponding set of pointed tiles. We call the datum
(G,U,V,S) a tile system.

2.1.7 The tile system is closely related to, and indeed modelled on, the VH-datum, introduced
in [Wis96] and developed further in [BM00]. We have stepped away from some of the
terminology used in these people’s work, instead making use of the language of higher-
rank graphs. One reason for this is to set up some of the higher-dimensional constructions
in Chapter 3, which also rely on certain properties of the adjacency matrices about to be
discussed.

§2.2 The higher-rank graphs induced by a tile system

2.2.1 Definition (Adjacency matrices) Let (G,U,V,S) be a tile system, and A � [x1 , y1 , x2 , y2]
and B � [x3 , y3 , x4 , y4] be pointed tiles in S. We define two 4αβ × 4αβ matrices M1, M2

with AB-th entries as follows:

M1(A, B) :�


1 if y1 � ȳ4 and x1 , x̄3,

0 otherwise,

M2(A, B) :�


1 if x2 � x̄3 and y1 , ȳ3,

0 otherwise.

We call M1 and M2 the horizontal and vertical adjacency matrix respectively, and say that
B is horizontally or vertically adjacent to A if M1(A, B) � 1 or M2(A, B) � 1, respectively
(see Figure 2.3).

2.2.2 Definition (UCE Property) Let (G,U,V,S) be a tile system, and letA, B, C be pointed tiles
in S(G) such that M1(A, B) � 1 and M2(A, C) � 1. We say that the tile system (G,U,V,S)
has the Unique Common Extension Property, or UCE Property, if there exists a unique
D ∈ S with M2(B,D) � M1(C,D) � 1.

2.2.3 Proposition Consider the complete bipartite graph κ � κ(α, β), and let (κ,U,V,S(κ)) be a tile
system with corresponding adjacency matrices M1, M2. Then:

(i) M1 and M2 are symmetric and commute with each other.

(ii) Each row and column of M1 and M2 contains at least one non-zero element.

(iii) (κ,U,V,S(κ)) has the UCE Property.
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A

x1

y1

x2

y2 B

x3

y3

x4

ȳ4

(a) The tile B � [x3 , y3 , x4 , ȳ1] is
horizontally adjacent to the tile
A � [x1 , y1 , x2 , y2], which is to
say that M1(A, B) � 1.

A

x1

y1

x2

y2

B
x̄3

y3

x4

y4

(b) Here B � [x̄2 , y3 , x4 , y4], such
that M2(A, B) � 1.

Figure 2.3: Horizontal and vertical adjacency of pointed tiles. In (a), if x̄3 � x1 or
x4 � x̄2, then we must set M1(A, B) � 0.

� Proof Firstly, it is straightforward to verify that the matrices M1 and M2 are symmetric.
Now,without loss of generality, consider some pointed tile A �

[
u1

i , v
1
j , u

2
i , v

2
j

]
∈ S(κ), and

let D :�
[
u2

p , v2
q , u1

p , v1
q
]
for some p , i, q , j. By the completeness of the graph κ and the

fact that α, β ≥ 2, we can find two more tiles B �
[
ū1

p , v̄2
j , ū

2
p , v̄1

j

]
and C �

[
ū2

i , v̄
1
q , ū1

i , v̄
2
q
]

in S(κ) such that M1(A, B) � M2(B,D) � 1 and M2(A, C) � M1(C,D) � 1 (see Figure 2.4).
This demonstrates (ii).

Since any two adjacent sides of a tile determine the remaining two sides (2.1.5), it follows
that B and C are unique, and hence that M2M1(A,D) � M1M2(A,D) ∈ {0, 1}. So, given
A, B, C ∈ S(κ) as above, this means that D is the unique tile adjacent to both B and C, and
so (κ,U,V,S(κ)) has the UCE Property. �

2.2.4 Proposition Let κ � κ(α, β) be a complete bipartite graph, and let (κ,U,V,S(κ)) be a tile
system with adjacency matrices M1, M2. This induces a 2-rank graph (Λ(κ), d), whose 1-skeleton
has vertex matrices M1, M2.

� Proof Following the method of 2.1.4, label the elements of the sets U, V such that

U �
{

u1
1 , u

2
1 , . . . , u

1
α , u

2
α , ū

1
1 , ū

2
1 , . . . , ū

1
α , ū

2
α

}
,

V �
{

v1
1 , v

2
1 , . . . , v

1
β , v

2
β , v̄

1
1 , v̄

2
1 , . . . , v̄

1
β , v̄

2
β

}
,

where u1 , . . . , uα and v1 , . . . , vβ are the white and black vertices of κ, respectively. Con-
struct the tile complex TC(κ), and consider the set S(κ) ⊆ U × V ×U × V of pointed tiles
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Chapter 2 §2.2 The higher-rank graphs induced by a tile system

A y1

x2

B

x4

C y3 D

Figure 2.4:A tile systemhas theUniqueCommonExtension Property (2.2.2) if, given an
initial pointed tileA, and horizontally and vertically adjacent tiles B, C, respectively,
then there is a unique tile D adjacent to both B and C as shown.

A tile system for a complete bipartite graph has the property that, given initial tiles
A and D, then B and C are uniquely determined in the above formation. This is
because two adjacent sides of a tile determine the remaining two sides (2.1.5).

of TC(κ). Since κ is complete, there is for each ui and v j an edge joining them, hence

S(κ) �
{[

u1
i , v

1
j , u

2
i , v

2
j

]
,
[
ū1

i , v̄
2
j , ū

2
i , v̄

1
j

]
,[

u2
i , v

2
j , u

1
i , v

1
j

]
,
[
ū2

i , v̄
1
j , ū

1
i , v̄

2
j

] �� 1 ≤ i ≤ α, 1 ≤ j ≤ β
}
.

Consider the corresponding adjacency matrices M1 and M2 as described in Definition
2.2.1. We construct a 2-coloured graph G as follows:

Let G0 � S(κ), and for each A, B ∈ G0, draw a pink arrow from B to A whenever
M1(A, B) � 1, and a blue arrow whenever M2(A, B) � 1. Then A → B → D ∈ G2 is
a pink-blue path of length two in G if and only if M1(A, B) � M2(B,D) � 1. But we
know from Proposition 2.2.3 that M1 and M2 commute, and that two adjacent sides of a
tile determine the remaining two sides. Hence this path defines a unique blue-pink path
A → C → D (compare with Figure 2.4), and together, all the pairs of paths A → B → D
and A→ C→ D define a complete associative collection of squares for G, as in Definition
1.1.15. It then follows fromTheorem 1.1.16 that G induces a 2-rank graph,whichwe denote
by (Λ(κ), d).

We have Λ(κ)0 � S(κ), and d(λ) :� (1, 0) (resp. (0, 1)) if λ is a pink (resp. blue) path of
length one in G. Thus elements of Λ(κ)(m ,n) are m × n lattices of paths, each traversing m
pink and n blue edges (see Figure 1.3). �

2.2.5 Fundamental Theorem of finitely-generated Abelian groups LetG be a finitely-generated
Abelian group. Then G is isomorphic to a direct sum of the form Zr ⊕

⊕
i Z/qiZ, for some non-

negative integer r and some prime powers qi . We write rk(G) to denote the so-called torsion-free
rank r, and write tor(G) :�

⊕
i Z/qi to denote the torsion part, or finite part of G.
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Chapter 2 §2.2 The higher-rank graphs induced by a tile system

2.2.6 Theorem (Evans, 2008) Let (Λ, d) be a row-finite 2-graph with no sources, finite vertex set Λ0

with |Λ0 | � n, and vertex matrices M1, M2. Then

K0(A(Λ)) � Zr0 ⊕ tor
(
coker

[
1 −MT

1 , 1 −MT
2
] )
,

K1(A(Λ)) � Zr1 ⊕ tor
(
coker

[
1 −M1 , 1 −M2

] )
,

where 1 is the n × n identity matrix, [ ∗ , ∗ ] denotes a block n × 2n matrix, and

r0 � r1 :� rk
(
coker

[
1 −MT

1 , 1 −MT
2
] )

+ rk
(
coker

[
1 −M1 , 1 −M2

] )
.

2.2.7 Corollary Let κ � κ(α, β) be a complete bipartite graph, and let (κ,U,V,S(κ)) be a tile system
with adjacency matrices M1, M2 as in Definition 2.2.1. WritingA(κ) � A(Λ(κ)), we have

K0(A(κ)) � K1(A(κ)) � tor
(
coker

[
1 −MT

1 , 1 −MT
2
] )
⊕ Zr ,

where r :� rk
(
coker

[
1 −MT

1 , 1 −MT
2
] )
.

� Proof Firstly, α, β < ∞ by assumption, and by the UCE Property of the tile system (Pro-
position 2.2.3) we know that each row and column of M1 and M2 has at least one non-zero
element. Hence Λ(κ) is row-finite, has no sources, and is such that |Λ(κ)0 | � 4αβ, whence
the result follows from Theorem 2.2.6. �

2.2.8 Theorem (K-theory for algebras of pointed tile systems) Let a , b ≥ 0, and let κ(a+2, b+2)
be the complete bipartite graph on a + 2 white and b + 2 black vertices. Without loss of generality,
we assume that a ≤ b. Write l :� lcm(a , b), and g :� gcd(a , b). Then, for ε � 0, 1:

(i) If a � b � 0, then Kε(A(κ(a + 2, b + 2)) � Kε(A(κ(2, 2))) � Z8.

(ii) If a ∈ {0, 1} and b ≥ 1, then

Kε(A(κ(a + 2, b + 2))) � (Z/b)2 ⊕ Z4(b+1).

(iii) If a , b ≥ 2 and a , b are coprime, then

Kε(A(κ(a + 2, b + 2))) � (Z/a)b−a ⊕ (Z/ab)a+1 ⊕ Z2(a+1)(b+1).

(iv) If a , b ≥ 2 and a , b are not coprime, then

Kε(A(κ(a + 2, b + 2))) � (Z/a)b−a ⊕ (Z/l)a+1 ⊕ (Z/g)a+2 ⊕ Z2(a+1)(b+1) ,

where (Z/a)0 is defined to be the trivial group in the case that a � b.
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Chapter 2 §2.2 The higher-rank graphs induced by a tile system

� Proof We begin by proving (iii) and (iv), since (i) and (ii) are special cases thereof.

So, let a , b ≥ 2, write α :� a + 2 and β :� b + 2, and for i ∈ {1, . . . , α} and j ∈ {1, . . . , β}, let
Ai j denote the pointed tile

[
u1

i , v
1
j , u

2
i , v

2
j

]
∈ S(κ). Similarly, write Bi j :�

[
ū1

i , v̄
2
j , ū

2
i , v̄

1
j

]
,

Ci j :�
[
ū2

i , v̄
1
j , ū

1
i , v̄

2
j

]
, Di j :�

[
u2

i , v
2
j , u

1
i , v

1
j

]
for the tiles with the same edge labels as

the horizontal reflection, vertical reflection, and rotation by π of Ai j , respectively; then
S(κ) � {Ai j , Bi j , Ci j ,Di j | 1 ≤ i ≤ α, 1 ≤ j ≤ β}. In order to use Theorem 2.2.6, we
need to find coker ∂1, where ∂1 : ZΛ0 ⊕ ZΛ0 → ZΛ0 is defined by the block matrix
∂1 �

[
1−MT

1 , 1−MT
2
]
, andZΛ0 represents the group of linear combination of the vertices

in Λ0 with coefficients inZ (explored in higher generality in 3.4.7). We represent elements
of ZΛ0 as formal sums of elements of Λ0. Then

coker � coker
[
1 −MT

1 , 1 −MT
2
]
�

〈
S ∈ S(κ)

����� S �

∑
T∈S(κ)

M1(S, T) · T

�

∑
T∈S(κ)

M2(S, T) · T
〉
. (2.2)

Now fix p ∈ {1, . . . , α}, q ∈ {1, . . . , β}, and notice the following:

• M1(Apq , T) � 1 iff T � Biq ; M1(Bpq , T) � 1 iff T � Aiq , for some i , p.

• M1(Cpq , T) � 1 iff T � Diq ; M1(Dpq , T) � 1 iff T � Ciq , for some i , p.

• M2(Apq , T) � 1 iff T � Cp j ; M2(Bpq , T) � 1 iff T � Dp j , for some j , q.

• M2(Cpq , T) � 1 iff T � Ap j ; M2(Dpq , T) � 1 iff T � Bp j , for some j , q.

Hence the relations of (2.2) are given by equations of the form Apq �
∑

i,p Biq �
∑

j,q Cp j ,
and so on for each Bpq , Cpq , and Dpq .

In particular, we can write Bpq �
∑

i,p Aiq and Cpq �
∑

j,q Ap j so that

Apq � (α − 1)Apq + (α − 2)
∑
i,p

Aiq and Apq � (β − 1)Apq + (β − 2)
∑
j,q

Ap j .

Define Jq :�
∑α

i�1 Aiq , and Ip :�
∑β

j�1 Ap j . Then (α − 2)Jq � (β − 2)Ip � 0, and viewing the
sum of all the tiles Ai j both as the sum of all the Ii and of the Jj , we conclude also that
gΣ � 0, where Σ :�

∑
i , j Ai j .

Now, we can also write Dpq (and all of the relevant relations) in terms of the Ai j , namely
Dpq �

∑
i,p

∑
j,q Ai j . Hence we can remove all the Bpq , Cpq , and Dpq from the list of

generators of coker, such that

coker �
〈
Apq

�� (α − 2)Jq � (β − 2)Ip � 0, Jq �
∑

i Aiq , Ip �
∑

j Ap j ,

for p ∈ {1, . . . , α}, q ∈ {1, . . . , β}
〉
. (2.3)
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We have the following equalities:

Ap1 � Ip −
β∑

j�2
Ap j , A1q � Jq −

α∑
i�2

Aiq , I1 � Σ −
α∑

i�2
Ii , J1 � Σ −

β∑
j�2

Jj .

Furthermore, A11 may be expressed in terms of Σ, Ip , Jq , and Apq for p , q ≥ 2, and so after
a sequence of Tietze transformations on (2.3), we find that

coker � 〈Σ, Ip , Jq ,Apq | (α − 2)Jq � (β − 2)Ip � gΣ � 0,

for p ∈ {2, . . . , α}, q ∈ {2, . . . , β}〉, (2.4)

where g :� gcd(α − 2, β − 2). This, after substituting a � α − 2 and b � β − 2, gives a
presentation for (Z/b)a+1⊕(Z/a)b+1⊕(Z/g)⊕Z(a+1)(b+1). Inparticular,wehave a+1 copies of
(Z/b)⊕(Z/a). It iswell-known that if a and b are not coprime, (Z/b)⊕(Z/a) � (Z/l)⊕(Z/g);
in case (iv), this together with Corollary 2.2.7 immediately gives the desired result.

In case (iii), where a and b are coprime, we instead have that (Z/b) ⊕ (Z/a) � (Z/ab), and
we are done.

Now consider case (i), where α � β � 2. Following the method above, coker is generated
by {Apq | p , q ∈ {1, 2}}with trivial relations, so coker � Z4. Thus by 2.2.7, Kε(C?(κ)) � Z8.

Similarly, when α � 2 and β ≥ 3, it is straightforward to show that

coker � 〈Ip ,Apq | (β − 2)Ip � 0, for p ∈ {1, 2} and q ∈ {2, . . . , β}〉,

and when α � 3 and β ≥ 3, we have

coker � 〈Σ, Ip , Jq ,Apq | Jq � (β − 2)Ip � Σ � 0, for p ∈ {2, 3} and q ∈ {2, . . . , β}〉,

both of which are presentations for the group (Z/(β − 2))2 ⊕ Z2(β−1); hence by 2.2.7, we
have proved (ii). �

2.2.9 Example (The tile system κ(2, 2)) Consider the tile system corresponding to κ(2, 2), as
illustrated in Figure 2.5. We see from the diagram that the (1-skeleton of the) 2-rank graph
Λ � Λ(κ(2, 2)) has four connected components—each component is the Cartesian product
C2 × C2 discussed in Example 1.3.17 and Figure 1.6b, so we can view Λ as the direct sum
of four copies of (C2 × C2).

From 1.3.17, we know that A(Λ) � (M4(C(T2)))4. Together with 1.2.17, this implies that
this algebra’s K-groups are both isomorphic to Z8, in agreement with Theorem 2.2.8. �

2.2.10 Theorem (Order of identity in K0 for pointed tile systems) Let α, β ≥ 3, let κ � κ(α, β)
be the complete bipartite graph on α white and β black vertices, and let A � A(Λ(κ)) be the
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[
ū2

2 , v̄
1
1 , ū

1
2 , v̄

2
1
]

[
u1

2 , v
1
2 , u

2
2 , v

2
2
]

[
u2

1 , v
2
1 , u

1
1 , v

1
1
]

[
ū1

1 , v̄
2
2 , ū

2
1 , v̄

1
2
]

[
ū2

1 , v̄
1
2 , ū

1
1 , v̄

2
2
]

[
u1

1 , v
1
1 , u

2
1 , v

2
1
]

[
u2

2 , v
2
2 , u

1
2 , v

1
2
]

[
ū1

2 , v̄
2
1 , ū

2
2 , v̄

1
1
]

Figure 2.5: The 2-graphΛ � Λ(κ(2, 2)). Each vertex is labelled by an element ofS(κ);
a handful have been shown here. A pink (resp. dashed blue) arrow connects vertex
A to B if and only if M1(A, B) � 1 (resp. M2(A, B) � 1). We omit the commuting
squares because there is only one choice.

By comparing this with Figure 1.6b, we see thatΛ consists of four copies of C2×C2.
The 1-skeleton of Λ(κ(α, β)) is strongly connected only when α, β ≥ 3.

induced graph algebra. Then the order of the class of the identity idA in K0(A) is equal to
g :� gcd(α − 2, β − 2).

� Proof From [KR02], it follows that the order of [idA] in K0(A(κ)) is equal to the order of
the sum of pointed tiles in S(κ); it follows from (2.4) in the proof of Theorem 2.2.8 that
this is g. �

§2.3 Aperiodicity and the Kirchberg–Phillips Classification

2.3.1 Definition (The Aperiodicity Condition) Recall from 1.1.18 the k-graph (Ωk , d), an in-
finite k-dimensional lattice with arrows of degree ei from n + ei to n for all n ∈ Nk .

For an arbitrary k-rank graph Λ, we define the infinite path space Λ∞ as the set of all
k-graph morphisms ϕ : Ωk → Λ. Given a vertex v ∈ Λ0, we write vΛ∞ for the set of
infinite paths which begin at v, that is, vΛ∞ :� {ϕ ∈ Λ∞ | ϕ(0) � v}.

Let p ∈ Zk , and let ϕ ∈ Λ∞. We say that p is a period for ϕ if, for each (m, n) ∈ Ωk with
m + p ≥ 0, we have ϕ(m + p, n + p) � ϕ(m, n). We call the path ϕ periodic if it has a
non-zero period.

For a path ϕ ∈ Λ∞ and some q ∈ Nk , define ϕq(m, n) :� (m + q, n + q). We say that ϕ
is eventually periodic if we can find some non-zero q ∈ Nk such that ϕq is periodic. We
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say that an infinite path ϕ is aperiodic if it is neither periodic nor eventually periodic, and
we say that Λ satisfies the Aperiodicity Condition—also referred to in the literature as
Condition (A)—if, for every vertex v ∈ Λ0, we can find an aperiodic path ϕ ∈ vΛ∞.

We say that Λ is cofinal if, for every vertex v ∈ Λ0 and every infinite path ϕ ∈ Λ∞, we can
find λ ∈ Λ and n ∈ Nk such that r(λ) � v and s(λ) � ϕ(n).

2.3.2 The Aperiodicity Condition is a generalisation of the condition on 1-graphs that every cycle
have an exit. Similarly, cofinality is a generalisation of the property that every vertex in a
1-graph be reachable from somewhere on every infinite path.

Kumjian and Pask in [KP00] have developed conditions under which the C?-algebra of
a k-rank graph is both simple and purely infinite (2.3.5–2.3.8). Shortly, we show that the
conditions are satisfied by the algebrasA(κ), and thus, by Kirchberg and Phillips’ work in
[Kir95; Phi00], that theA(κ) are completely classified by their K-theory (Corollary 2.3.12).

2.3.3 Lemma The 2-rank graph Λ(κ) induced by the complete bipartite graph κ(α, β) satisfies the
Aperiodicity Condition whenever α, β ≥ 3.

2.3.4 In order to get a feeling as to why this is true, consider Figure 2.6, which shows the 1-
skeleton of Λ(κ(3, 3)). Each vertex is labelled by a pointed tile from S(κ(3, 3)), and since
each tile is vertically adjacent to two others (and horizontally adjacent to two others), there
are two dashed blue and two pink arrows emanating from each vertex of Λ(κ(3, 3)). This
suggests that, analogously to the 1-graph condition, we can always find an exit to some
cycle inΛ(κ(3, 3)), namely by stopping mid-cycle at a vertex, and diverting the path down
the second of the two available edges. Hence, as long as α, β ≥ 3, there will be enough
choice at each vertex to be able to exit a cycle.

� Proof Firstly, write Λ � Λ(κ) and let A ∈ Λ0 be an arbitrary vertex. We construct an
aperiodic infinite path beginning from A in the following way:

Let x : Ω1 →
⋃

m≥0Λ
(m ,0) be a 1-graph morphism such that x(0) � A. The vertex A

represents a pointed tile in S(κ), which is horizontally adjacent to (β − 1)-many other
pointed tiles. Hence A is connected by bidirectional pink arrows to (β − 1) other vertices
in Λ. Choose two of these vertices, B1 and B2, say, and let x be such that

x(m ,m) �


A if m is even,

B1 if m � r2 + r + 1, for some r ≥ 1,

B2 otherwise,

for all m ∈ N. Since this forms an aperiodic sequence, there is no p ∈ Z such that
x(m ,m) � x(m + p ,m + p) for all m, nor any q ∈ N such that xq is periodic; hence x is an
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aperiodic path. Similarly, define y : Ω1 →
⋃

n≥0Λ
(0,n) by

y(n , n) �


A if n is even,

C1 if n � s2 + s + 1, for some s ≥ 1,

C2 otherwise,

for some vertices labelled by pointed tiles C1, C2 which are vertically adjacent to A. Then
y is also an aperiodic path. By the UCE Property (2.2.2), x and y uniquely determine an
infinite path ϕ : Ω2 → Λwith ϕ((m , 0), (m , 0)) � x(m ,m) and ϕ((0, n), (0, n)) � y(n , n).

Let D denote the unique pointed tile (other than A) adjacent to both B1 and C1. This
cannot also be adjacent to B2, nor to C2, and so ϕ((m , n), (m , n)) � D precisely when
m � r2 + r + 1 and n � s2 + s + 1, for some r, s ≥ 1. As above, there is no p ∈ Z2 such that
ϕ((m , n), (m , n)) � ϕ((m , n)+p, (m , n)+p), nor any q ∈ N2 such that ϕq is periodic. Since
our initial vertex A was arbitrary, we are done. �

2.3.5 Definition (Important properties of C?-algebras) Consider an arbitrary unital algebra
A, and let I ⊆ A be a subgroup ofA under the addition operation. We call I a two-sided
ideal if, whenever x ∈ A and i ∈ I, then xi ∈ I and ix ∈ I. If A is a C?-algebra and
I ⊆ A is a two-sided ideal which is closed in the sense of 1.2.2, then I is also a ?-algebra
under the star operation ofA. We say that a C?-algebraA is simple if it has no non-trivial
closed two-sided ideals (see [Bla06]).

Now suppose that A is a unital C?-algebra, and consider an arbitrary element x ∈ A.
We define x to be positive whenever x � y?y for some element y ∈ A (or equivalently, if
x � y y?). A C?-subalgebraA′ ⊆ A is called hereditary if, whenever x′ ∈ A′ is an element
such that x′ − x is positive, then x ∈ A′.

IfA is a simple C?-algebra, thenwe say that it is purely infinite if every non-zero hereditary
C?-subalgebra contains a projection p such that p � t?t and idA � tt? for some partial
isometry t ∈ A (this isMurray–von Neumann equivalence, which we first saw in 1.2.11).

A Kirchberg algebra is a unital C?-algebra which is nuclear (1.2.14), purely infinite, and
separable as a vector space—that is, there exists a countable subset S ⊆ A whose closure is
equal toA (see 1.2.2, and compare with 1.2.5).

2.3.6 Theorem (Kumjian and Pask, 2000) Let Λ be a k-rank graph. Then the associated universal
C?-algebraA(Λ) lies in the bootstrap class from 1.2.16, and hence is separable and nuclear. �

2.3.7 Theorem (Kumjian and Pask, 2000) Let Λ be a k-rank graph which satisfies the Aperiodicity
Condition. Then the associated universal C?-algebraA(Λ) is simple if and only if Λ is cofinal. �

2.3.8 Theorem (Kumjian and Pask, 2000; Sims, 2006) LetΛ be a k-rank graph which is cofinal and
which satisfies the Aperiodicity Condition. Suppose that for every v ∈ Λ0, we can find λ ∈ Λ with
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[
u1

1 , v
1
1 , u

2
1 , v

2
1
]

[
ū1

2 , v̄
2
1 , ū

2
2 , v̄

1
1
] [

ū1
3 , v̄

2
1 , ū

2
3 , v̄

1
1
]

Figure 2.6: The 2-graph Λ(κ(3, 3)). Again, we omit the commuting squares since
they are determined by the 1-skeleton. Note that it is always possible to exit a cycle.

r(λ) � v, and some cycle µ ∈ Λ with an entrance, such that d(µ) , 0 and s(λ) � r(µ) � s(µ).
ThenA(Λ) is purely infinite [KP00, 4.9; Sim06, 8.8]. �

2.3.9 Proposition The 2-rank graph Λ(κ) induced by the complete bipartite graph κ(α, β) is simple
and purely infinite whenever α, β ≥ 3.

� Proof Firstly, we observe that Λ(κ) is cofinal, since the 1-skeleton of Λ(κ) is strongly
connected. Hence from Theorem 2.3.7 it follows that C?(κ) is simple.

Now, let A ∈ Λ(κ)0 be an arbitrary vertex. Since each edge of the 1-skeleton of Λ(κ) is
bidirectional, we can set µ to be a path which begins at A and traverses a single pink edge
to some vertex B, before immediately returning to A. Then d(µ) � (2, 0), and since α, β ≥ 3,
then B is the range of some other blue edge, and so µ is a cycle with an entrance. Then by
strong-connectedness, the conditions of Theorem 2.3.8 are satisfied, and so Λ(κ) is purely
infinite. �
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2.3.10 We put all of the above theorems together in order to make use of the Classification Theorem
explained in [Kir95; Phi00]. Given a row-finite k-rank graph Λ with no sources, the C?-
algebraA(Λ) is a separable and nuclear algebra which lies in the bootstrap class of [RS87],
by 2.3.6. Furthermore, we have shown in 2.3.9 thatA(κ(α, β)) is simple and purely infinite
whenever α, β ≥ 3. Hence, from Theorem 2.3.11 we immediately have Corollary 2.3.12.

2.3.11 Theorem (Kirchberg–Phillips Classification) Let A be a Kirchberg algebra which is in the
bootstrap class (1.2.16). Then A is completely determined by its K-theory and the class of idA in
K0(A), up to isomorphism [Kir95; Phi00]. �

2.3.12 Corollary (Classification of graph algebras for pointed tile systems) Let α, β ≥ 3, and
let κ � κ(α, β) be the complete bipartite graph, which induces the 2-rank graph Λ(κ). Then the
isomorphism class of the associated C?-algebra A(Λ(κ)) is completely determined by the groups
K0(A(κ)) � K1(A(κ)) and the position of the class of the identity idA in K0(A(κ)) [Mut22]. �

§2.4 Unpointed tile systems

There is an alternative way in which we could have defined the adjacency matrices above,
which will lead to a different 2-rank graph structure.

2.4.1 Definition (Unpointed tile system) Define an unpointed tile system (G,U,V,S′) in the
same way as 2.1.6, but replacing S � S(G) with the set of unpointed tiles S′ � S′(G). We
will see that analogues of the results in §2.2 also hold for unpointed tile systems.

Let (G,U,V,S′) be an unpointed tile system, and let A′, B′ ∈ S′ be unpointed tiles, that is,
equivalence classes of some pointed tiles A, B ∈ S, respectively (under the equivalence of
2.1.5, which we’ll write as ∼). Recall the matrices M1, M2 from Definition 2.2.1. We define
analogous functions M′1 ,M

′
2 : S′ × S′→ {0, 1} as follows:

M′1(A′, B′) :�


1 if M1(A• , B•) � 1 for some A• ∼ A, B• ∼ B,

0 otherwise,

M′2(A′, B′) :�


1 if M2(A• , B•) � 1 for some A• ∼ A, B• ∼ B,

0 otherwise.

We write adjacency matrices M′1, M′2 accordingly.

2.4.2 Proposition Consider the complete bipartite graph κ � κ(α, β), and let (κ,U,V,S′(κ)) be an
unpointed tile system. Then the corresponding adjacency matrices M′1 and M′2 commute, and
(κ,U,V,S′(κ)) has the UCE Property.

Hence (κ,U,V,S′(κ)) induces a 2-rank graph (Λ′(κ), d).
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� Proof Given two unpointed tiles A′, B′ ∈ S′(κ), consider their respective sets of pointed
tiles SA ,SB ∈ S(κ) as defined in 2.4.1. Notice that M′1(A′, B′) � 1 if and only if, for some
A• ∈ SA, we can find some B• ∈ SB such that M1(A• , B•) � 1. The same is true for M′2.
Write A′ �

(
u1

i , v
1
j , u

2
i , v

2
j

)
, and define sets

XA :�
{
T ∈ S′(κ) | M′1(A, T) � 1

}
, YA :�

{
T ∈ S′(κ) | M′2(A, T) � 1

}
.

Then XA contains precisely those tiles of the form
(
u1

k , v
1
j , u

2
k , v

2
j

)
, where k , i, and YA

only those of the form
(
u1

i , v
1
l , u

2
i , v

2
l

)
, where l , j. The proof then proceeds in a similar

fashion to that of Proposition 2.2.3, and the 2-rank graph structure follows immediately
from [KP00, §6] as in Proposition 2.2.4. �

2.4.3 We write Λ′(κ) for the 2-rank graph induced by the adjacency matrices M′1 and M′2. It is
not difficult to verify that Λ′(κ) is row-finite, with finite vertex set and no sources. Hence
we can apply Evans’ Theorem 2.2.6, and we derive the following result:

2.4.4 Theorem (K-theory for algebras of unpointed tile systems) For a , b ≥ 0, let κ(a+2, b+2)
be the complete bipartite graph on a + 2 white and b + 2 black vertices. Without loss of generality,
we can assume that a ≤ b. WriteA(κ) � A(Λ′(κ)). Then, for ε � 0, 1:

(i) If a � b � 0, then Kε(A(κ(a + 2, b + 2)) � Kε(A(κ(2, 2)) � Z2.

(ii) If a � 0 and b ≥ 1, then

Kε(A(κ(a + 2, b + 2))) � (Z/2)b ⊕ (Z/(2b)).

(iii) If a , b ≥ 1, then

Kε(A(κ(a + 2, b + 2))) � (Z/2)(a+1)(b+1)−1 ⊕ (Z/2g),

where g :� gcd(a , b).

� Proof Again, we start with (iii), as (i) and (ii) follow. Write α :� a + 2, β :� b + 2,
and let α, β ≥ 3. For i ∈ {1, . . . , α} and j ∈ {1, . . . , β}, let A′i j be the unpointed tile(
u1

i , v
1
j , u

2
i , v

2
j

)
∈ S′(κ). Then

coker � coker
[
1 − (M′1)T , 1 − (M′2)T

]
�

〈
A′i j ∈ S

′(κ)
�����

A′i j �
∑

T′∈S′(κ)
M′1(A′i j , T

′) · T′ �
∑

T′∈S′(κ)
M′2(A′i j , T

′) · T′
〉
. (2.5)

Fix p ∈ {1, . . . , α}, q ∈ {1, . . . , β}, and notice that:
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• M′1(A′pq , T′) � 1 if and only if T′ � A′iq , for some i , p,

• M′2(A′pq , T′) � 1 if and only if T′ � A′p j , for some j , q.

Hence the relations of (2.5) are given by A′pq �
∑

i,p A′iq �
∑

j,q A′p j . Define

Jpq :�

(
α∑

i�2
A′iq

)
− A′pq and Ipq :�

( β∑
j�2

A′p j

)
− A′pq ,

for p , q ≥ 2. Then

2Jpq � 2

(
α∑

i�2
A′iq

)
− 2A′pq

� 2(A′2q + · · · + A′αq − A′pq) + A′1q − A′1q

� (A′1q + A′2q + · · · + A′αq − A′pq) + (−A′1q + A′2q + · · · + A′αq) − A′pq

� A′pq + 0 − A′pq � 0,

and similarly 2Ipq � 0. Now, Jpq � 0 or Ipq � 0 only if A′pq � A′1q or A′pq � A′p1 respectively.
But since α, β ≥ 3, these equivalences are not relations of (2.5), and so ord(Jpq) � ord(Ipq) �
2. Notice that we can write each A′1q and A′p1 in terms of the other A′i j , for p , q ≥ 2; hence
we can remove these from the list of generators by a sequence of Tietze transformations.

Also notice that we can write A′2q � J2q −
∑α

i�3 A′iq . Proceeding inductively, we can write
each A′pq in terms of the Jiq and the A′iq for i > p. Similarly, we can express each A′pq in
terms of the Ip j and the A′p j for j > q. Hence we can rewrite the generators of coker as A′11,
Ipq , Jpq , for p , q ≥ 2. But A′11 � −(A′p1 + Jp1) � −(A′1q + I1q) for all p , q ≥ 2, so

(α − 2)A′11 � −
α∑

i�3
(A′i1 + Ji1) � −

(
J21 +

α∑
i�3

Ji1

)
,

and so 2(α − 2)A′11 � 0. Similarly, we find that 2(β − 2)A′11 � 0, and hence that 2gA′11 � 0,
where g :� gcd(α − 2, β − 2).

Observe that, since Ipq is defined in terms of the A′p j , and each A′p j can be written in terms
of the Ji j , we can remove the Ipq from the list of generators of coker. Finally, we can rewrite
(2.5) as

coker � 〈J2q , Jp2 , Jpq ,A′11 | 2J2q � 2Jp2 � 2Jpq � 2gA′11 � 0,

for p ∈ {3, . . . , α} and q ∈ {3, . . . , β}〉,

and after substituting a � α−2 and b � β−2, this gives a presentation for (Z/2)(a+1)(b+1)−1⊕
(Z/2g); since there is no torsion-free part, this proves (iii).
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If α � 2, then A′1q � A′2q for all q ∈ {1, . . . , β}, so we can write

coker �

〈
A′1q

����� A′1q �

∑
j,q

A′1 j , for q ∈ {1, . . . , β}
〉
.

We adjust the proof above accordingly to obtain the result of (ii). Finally, in case (i)
where α � β � 2, we have A′11 � A′12 � A′21 � A′22 with no further relations, such
that coker � 〈A′11〉 � Z, and the result follows from Theorem 2.2.6. �

2.4.5 Theorem (Order of identity in K0 for unpointed tile systems) Write κ � κ(α, β) to denote
a complete bipartite graph for some α, β ≥ 3, and letA � A(Λ′(κ)) be the graph algebra induced
by an unpointed tile system. Write g :� gcd(α−2, β−2). Then the order of the class of the identity
idA in K0(A(Λ′(κ))) is equal to g if g is odd, and g/2 if g is even.

� Proof Consider the notation used in the proof of Theorem 2.4.4. As with Theorem 2.2.10,
we know that the order of [idA] in K0(A(κ)) is equal to the order of the sum of all tiles
A′i j ; we write Σ for this sum.

We have that A′pq �
∑

i,p A′iq �
∑

j,q A′p j , and so Σ � (α − 1)Σ � (β − 1)Σ. From this, it
follows that gΣ � 0. We also have A′pq �

∑
i,p

∑
j,q A′i j , so that

Σ � A′pq +
∑
i,p

A′iq +
∑
j,q

A′p j +
∑
i,p

∑
j,q

A′i j � 4A′pq ,

for any fixed p, q. But 2gA′pq � 0, and so if g � 2h for some integer h, then hΣ � 4hA′pq � 0,
andweknow that the order ofΣdivides h. But there are no further relations in presentation
(2.5) which further restrict the order of Σ, so we are done. �

2.4.6 Proposition (Classification of graph algebras for unpointed tile systems) Let α, β ≥ 3,
let κ � κ(α, β) be the complete bipartite graph, and letΛ′(κ) be the induced 2-rank graph. Then the
isomorphism class of the universal C?-algebra A(Λ′(κ)) is completely determined by its K-theory
and the position of the class of the identity idA in K0(A(Λ′(κ))).

� Proof The proof relies on identical results to those in §2.3. �
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§2.5 Pointed and unpointed 2t-gon systems

2.5.1 In this section we suggest generalisations of the methods above for constructing C?-
algebras associated to 2t-gon systems, both for even and arbitrary t ≥ 1.

When t � 2, we have an innate idea of what it means for two 2t-gons to be “stackable:”
functions we called horizontal and vertical adjacency in Definition 2.2.1. We extend this
notion to all even t ≥ 2 in as natural a way possible. The following directly generalises the
definitions at the beginning of §2.1.

2.5.2 Definition (Pointed polygon system) Let G be a connected bipartite undirected graph
on α white and β black vertices. Let U, V be sets with |U | � 2tα, |V | � 2tβ, and which
are gifted with fixed-point-free involutions u 7→ ū, v 7→ v̄ respectively. Construct using
U and V the 2t-hedron P(G) from Theorem 2.1.3 which has G as its link at each vertex,
and write S′(G) :� {Ae | e ∈ E(G)} for the set of 2t-gons which comprise P(G). We call
elements of S′t(G) unpointed 2t-gons, and denote them by Ae � (x1 , y1 , . . . , xt , yt).

Analogously to in Definition 2.1.5, we write [x1 , y1 , . . . , xt , yt] for a pointed 2t-gon, that
is, a 2t-gon labelled anticlockwise and starting from a distinguished basepoint by the
sequence x1 , y1 , . . . , xt , yt , for some xi ∈ U, yi ∈ V . Write St � St(G) for the set of 2tαβ
pointed 2t-gons. We call the datum (G,U,V,St) a 2t-gon system. Similarly we call the
datum (G,U,V,S′t) an unpointed 2t-gon system.

2.5.3 Consider the adjacencymatrices M1, M2 from 2.2.1.We can view two pointed tiles (4-gons)
A � [x1 , y1 , x2 , y2] and B as being horizontally adjacent if and only if, after reflecting A
through an axis connecting the midpoints of x1 and x2, and then replacing x1, x2 by some
x′1 , x1, x′2 , x2 respectively, we can obtain B.

Likewise, if and only if we can obtain B by reflecting A through an axis joining the
midpoints of the y edges, and then changing the labels of those edges, do we say that A
and B are vertically adjacent. This observation forms the basis of the definition of adjacency
in general 2t-gons.

2.5.4 Definition (U- and V -adjacency) Let t be an even integer, let (G,U,V,St) be a 2t-gon
system, and let A � [x1 , y1 , . . . , xt , yt] ∈ St be a pointed 2t-gon.

Reflect A through an axis joining the midpoints of sides labelled x1 and x(t/2)+1 to obtain
a new pointed 2t-gon

[
x̄1 , ȳt , x̄t , ȳt−1 , . . . , x̄2 , ȳ1

]
. We say that a pointed 2t-gon B ∈ St is

V-adjacent to A if B �
[
x̄′1 , ȳt , x̄′t , ȳt−1 , . . . , x̄′2 , ȳ1

]
, for some x′i , xi .

Similarly, reflect A such that x1 7→ x̄(t/2)+1; we obtain a new pointed 2t-gon[
x̄(t/2)+1 , ȳt/2 , x̄t/2 , . . . , ȳ1 , x̄1 , ȳt , x̄t , . . . , x̄(t/2)+2 , ȳ(t/2)+1

]
. (2.6)
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Figure 2.7: Consider pointed 8-gons A � [x1 , y1 , . . . , x4 , y4], B � [x̄′1 , ȳ4 , . . . , x̄′2 , ȳ1]
and C � [x̄3 , ȳ′2 , . . . , x̄4 , ȳ′3] in S4. We say that A and B are V-adjacent, and A and
C are U-adjacent, and they can be arranged as shown. There is a unique octagon
D � [x′3 , y′3 , . . . , x

′
2 , y′2]which is both U-adjacent to B and V-adjacent to C.

We say that a pointed 2t-gon B ∈ St is U-adjacent to A if B is of the form (2.6), but with
all elements yi replaced with some y′i , yi (Figure 2.7).

We define theU- andV-adjacencymatrices, MU and MV respectively, to be the 2tαβ×2tαβ
matrices with AB-th entry 1 if A and B are U-adjacent (resp. V-adjacent), and 0 otherwise.

2.5.5 Proposition Let t be an even integer, and (κ,U,V,St(κ)) be a 2t-gon system with adjacency
matrices MU , MV . Then these matrices commute, and (κ,U,V,St(κ)) has the UCE Property.

Hence (κ,U,V,St(κ)) induces a 2-rank graph (Λt(κ), d).

� Proof Consider the pointed 2t-gon A �
[
u1

i , v
1
j , . . . , u

t
i , v

t
j

]
∈ St(κ); those 2t-gons corres-

ponding to its reflections and rotations are treated similarly. Then a pointed 2t-gon B is
V-adjacent to A if and only if B �

[
ū1

k , v̄
t
j , . . . , ū

2
k , v̄

1
j

]
, for some k , i. Suppose B is such a

2t-gon V-adjacent to A; then a pointed 2t-gon D is U-adjacent to B if and only if

D �

[
u(t/2)+1

k , v(t/2)+1
l , . . . , ut

k , v
t
l , u

1
k , v

1
k , . . . , u

t/2
k , vt/2

l

]
, (2.7)

for some l , j. Likewise, C is U-adjacent to A if and only if

C �

[
ū(t/2)+1

i , v̄t/2
l , . . . , ū1

i , v̄
t
l , . . . , ū

(t/2)+2
i , v̄(t/2)+1

l

]
,
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for some l , j. Clearly if C is such a 2t-gon, then D is V-adjacent to C if and only if it
is of the form (2.7). Exactly one such D exists in St(κ), so MU and MV commute. Then
the 2t-gon system (κ,U,V,St(κ)) has the UCE Property, and the 2-rank graph structure
follows from [KP00, §6] and the same arguments used in Proposition 2.2.4. �

2.5.6 Recall the 2-rank graph Λ(κ) induced from a tile system and its adjacency matrices M1,
M2 in §2.1, and recall its associated universal C?-algebra A(Λ) from Definition 1.3.11.
Similarly, we write Λt(κ) for the 2-rank graph induced from the U- and V-adjacency
matrices MU and MV , and observe that Λt(κ) is row-finite, with finite vertex set and no
sources. Hence from Evans’ Theorem 2.2.6, we can deduce:

2.5.7 Theorem (K-theory for algebras of pointed 2t-gon systems, t even) Let t ≥ 2 be an even
integer, and for α, β ≥ 2, let κ � κ(α, β) be the complete bipartite graph on α white and β black
vertices. Then, for ε � 0, 1:

Kε(A(Λt(κ))) � (Kε(A(Λ(κ))))t/2.

� Proof Fix t and assume without loss of generality that α ≤ β. Analogously to in the proof
of Theorem 2.2.8, we denote the pointed 2t-gons in St(κ) as follows:

• (Ar)i j :�
[
ur

i , v
r
j , . . . , u

t
i , v

t
j , u

1
i , v

1
j , . . . , u

r−1
i , vr−1

j

]
,

• (Br)i j :�
[
ūr

i , v̄
r−1
j , . . . , ū1

i , v̄
t
j , . . . , ū

r+1
i , v̄r

j

]
,

• (Cr)i j :�
[
ū(t/2)+r

i , v̄(t/2)+r−1
j , . . . , ū1

i , v̄
t
j , . . . , ū

(t/2)+r+1
i , v̄(t/2)+r

j

]
,

• (Dr)i j :�
[
u(t/2)+r

i , v(t/2)+r
j , . . . , ut

i , v
t
j , u

1
i , v

1
j , . . . , u

(t/2)+r−1
i , v(t/2)+r−1

j

]
,

for i ∈ {1, . . . , α}, j ∈ {1, . . . , β}, r ∈ {1, . . . , t/2}, and with addition in superscript indices
defined modulo t. Note that each S ∈ St(κ) takes exactly one of the above forms. Then

coker
[
1 −MT

U , 1 −MT
V

]
�

〈
(Ar)pq , (Br)pq , (Cr)pq , (Dr)pq

�����
(Ar)pq �

∑
i,p

(Br)iq �

∑
j,q

(Cr)p j ,

(Br)pq �

∑
i,p

(Ar)iq �

∑
j,q

(Dr)p j ,

(Cr)pq �

∑
i,p

(Dr)iq �

∑
j,q

(Ar)p j ,

(Dr)pq �

∑
i,p

(Cr)iq �

∑
j,q

(Br)p j ,

for p ∈ {1, . . . , α}, q ∈ {1, . . . , β}, and r ∈ {1, . . . , t/2}
〉
.
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But, comparing this to (2.2), we see this is precisely a presentation for the direct sum of
t/2 copies of coker

[
1 −MT

1 , 1 −MT
2
]
as in Theorem 2.2.8, and the result follows. �

2.5.8 Theorem (Order of identity in K0 for pointed polygon systems) Let α, β ≥ 3, let t ≥ 2 be
even, let κ � κ(α, β) be a complete bipartite graph, and let A � A(Λt(κ)) be the graph algebra
induced by a pointed 2t-gon system. Then the order of the class of the identity idA in K0(A(Λt(κ)))
is equal to g :� gcd(α − 2, β − 2).

Furthermore, the isomorphism class of A(Λt(κ)) is completely determined by the K-groups in
Theorem 2.5.7 and the order of [idA] in K0(A).

� Proof The result follows from Theorems 2.2.10 and 2.5.7, and similar arguments to those
considered in §2.3. �

2.5.9 If we extend the concept of U- and V-adjacency from Definition 2.5.4 in the obvious way,
we can obtain a generalisation of §2.4 for unpointed 2t-gon systems of complete bipartite
graphs.

Write (Λ′t(κ), d) for the 2-rank graph induced by these adjacency functions. We realise that
the proof of Theorem 2.4.4 does not depend on the number of sides 2t of the polygons;
hence nor do the K-groups associated to Λ′t(κ).

2.5.10 Theorem (K-theory for algebras of unpointed 2t-gon systems) For α, β ≥ 2, consider the
complete bipartite graph on α white and β black vertices κ � κ(α, β). Then

Kε(A(Λ′t(κ))) � Kε(A(Λ′(κ))),

for ε � 0, 1, and all t ≥ 1. �

2.5.11 Theorem (Order of identity in K0 for unpointed polygon systems) Let t ≥ 1 be an arbit-
rary integer. For α, β ≥ 3, let κ � κ(α, β) be a complete bipartite graph, and letA � A(Λ′t(κ)) be
the graph algebra induced by an unpointed 2t-gon system. Write g :� gcd(α − 2, β − 2). Then the
order of the class of the identity idA in K0(A) is equal to g if g is odd, and g/2 if g is even.

Furthermore, the isomorphism class of A(Λ′t(κ)) is completely determined by the K-groups in
Theorem 2.5.10 and the order of [idA] in K0(A). �

An alternative construction of a 2t-gon system

2.5.12 Theorem 2.5.10 gives us a collection of K-groups for algebras corresponding to systems of
2t-gons with an arbitrary even number of sides 2t—in the pointed case however, Theorem
2.5.7 insists on 2t being divisible by four. This is a consequence of howwe define adjacency
in each instance: in the 2t-hedron P(κ), each face is adjacent to every other, and since the
number of faces is not dependent on t, nor are the U- and V-adjacency matrices in an
unpointed 2t-gon system.
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Adjacency in the pointed case is more difficult to define canonically. When t � 2 and we
are dealing with tiles, there is an obvious pair of adjacency functions. We extended these
in Definition 2.5.4, thinking of two 2t-gons as adjacent if we can reflect one horizontally or
vertically in order to obtain the form of the other. This works since horizontal and vertical
reflections commute, and so the 2t-gon system will have theUCE Property. If t is not even,
then there are no two distinct reflections of 2t-gons which commute and preserve the
structure of pointed 2t-gons. We must pick the same two reflections for both adjacency
functions, else some combination of rotations and identity transformations. None of these
options is a direct extension of our horizontal and vertical adjacency functions from 2.2.1,
and so there is no natural choice.

We suggest that the following definitions of U- and V-adjacency for pointed 2t-gons are
the most intuitive for t ≥ 3, based on the idea that adjacent 2t-gons should have opposite
orientations. They do not, however, generalise the tile systems from §2.1–2.4, themselves
being the most natural constructions when t � 2. Hence, the previous constructions are
given the spotlight in this section up until now.

The proof of Proposition 2.5.14 is almost identical to that of 2.5.5, togetherwith Proposition
2.2.4. From this, along with Theorem 2.2.6, we can deduce Theorems 2.5.15 and 2.5.16.

2.5.13 Definition (Alternative U- and V -adjacency) Let t ≥ 1 be a fixed arbitrary integer, let
(G,U,V,St) be a 2t-gon system, and let A � [x1 , y1 , . . . , xt , yt] ∈ St be a pointed 2t-gon.

A pointed 2t-gon B ∈ St is V∗-adjacent to A if and only if B �
[
x̄′1 , ȳt , . . . , x̄′2 , ȳ1

]
for some

x′i , xi . Similarly, we say that a pointed 2t-gon C ∈ St is U∗-adjacent to A if and only if
C �

[
x̄1 , ȳ′t , . . . , x̄2 , ȳ′1

]
, for some y′i , yi . We define the U∗- and V∗-adjacency matrices

M∗U and M∗V respectively, as above.

2.5.14 Proposition Let (κ,U,V,St(κ)) be a 2t-gon system with adjacency matrices M∗U , M∗V . Then
(κ,U,V,St(κ)) induces a 2-rank graph Λ∗t(κ), which is row-finite, with finite vertex set and no
sources. �

� Proof Consider the pointed 2t-gon A �
[
u1

i , v
1
j , . . . , u

t
i , v

t
j

]
∈ St(κ); those 2t-gons corres-

ponding to its reflections and rotations are treated similarly. Then a pointed 2t-gon B is
V∗-adjacent to A if and only if B �

[
ū1

k , v̄
t
j , . . . , ū

2
k , v̄

1
j

]
, for some k , i. Suppose B is such a

2t-gon—then a pointed 2t-gon D is U∗-adjacent to B if and only if D �
[
u1

k , v
1
l , . . . , u

t
k , v

t
l

]
,

for some l , j.

Likewise, C is U∗-adjacent to A if and only if C �
[
ū1

i , v̄
t
l , . . . , ū

2
i , v̄

1
l

]
, for some k , i.

Clearly if C is such a 2t-gon, then D is the unique 2t-gon which is both U∗-adjacent to
B and V∗-adjacent to C. The induced 2-rank graph follows from [KP00, §6] and the same
arguments used in Propositions 2.5.5 and 2.2.4. �
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2.5.15 Theorem (K-theory for algebras of pointed 2t-gon systems, t arbitrary) Let t ≥ 1, and
for a , b ≥ 0, let κ � κ(a + 2, b + 2) be the complete bipartite graph on a + 2 white and b + 2 black
vertices. Without loss of generality, we assume that a ≤ b. Then, for ε � 0, 1:

(i) If a � b � 0, then Kε(A(Λ∗t(κ))) � Z4t .

(ii) If b ≥ 1 and a , b are coprime, then Kε(A(Λ∗t(κ))) � Z2t(a+1)(b+1).

(iii) If b ≥ 1 and a , b are not coprime, then

Kε(A(Λ∗t(κ))) � Z2t(a+1)(b+1) ⊕ (Z/g)t ,

where g :� gcd(a , b).

� Proof The proof unsurprisingly follows the same lines as those of Theorems 2.2.8, 2.4.4,
and 2.5.7. Write α :� a + 2, β :� b + 2, and let β ≥ 3. We denote the pointed 2t-gons in
St(κ) as:

• (Ar)i j :�
[
ur

i , v
r
j , . . . , u

t
i , v

t
j , u

1
i , v

1
j , . . . , u

r−1
i , vr−1

j

]
,

• (Br)i j :�
[
ūr

i , v̄
r−1
j , . . . , ū1

i , v̄
t
j , . . . , ū

r+1
i , v̄r

j

]
,

for i ∈ {1, . . . , α}, j ∈ {1, . . . , β}, r ∈ {1, . . . , t}, and with addition in superscript indices
defined modulo t. Observe that each S ∈ St(κ) is either of the form (Ar)i j or (Br)i j . Then

coker
[
1 − (M∗U)T , 1 − (M∗V )T

]
�

〈
(Ar)pq , (Br)pq

�����
(Ar)pq �

∑
i,p

(Br)iq �

∑
j,q

(Br)p j ,

(Br)pq �

∑
i,p

(Ar)iq �

∑
j,q

(Ar)p j ,

for i ∈ {1, . . . , α}, j ∈ {1, . . . , β}, and r ∈ {1, . . . , t}
〉
.

As in the proof of 2.2.8, define (Jr)q :�
∑α

i�1(Ar)iq , and (Ir)p :�
∑β

j�1(Ar)p j . Through a
sequence of Tietze transformations, and using observations from previous proofs, we see
that the above presentation for coker � coker

[
1 − (M∗U)T , 1 − (M∗V )T

]
is equivalent to

coker �

〈
(Ar)pq

����� (Ar)pq �

∑
i,p

∑
k,i

(Ar)kq �

∑
j,q

∑
l, j

(Ar)pl ,
∑
i,p

(Ar)iq �

∑
j,q

(Ar)p j

〉
�

〈
(Ar)pq

����� (α − 2)(Jr)q � (β − 2)(Ir)p � 0,
∑
i,p

(Ar)iq �

∑
j,q

(Ar)p j

〉
� 〈(Ar)pq | (α − 2)(Jr)q � (β − 2)(Ir)p � 0, (Jr)q � (Ir)p , for all p , q〉.
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Wecan rewrite each (Ar)i1 and (Ar)1 j in terms of the other (Ar)i j , the (Jr)q , and the (Ir)p , and
hence remove them from the list of generators. Then, since (Jr)q � (Ir)p for all p ∈ {1, . . . , α}
and q ∈ {1, . . . , β} we can remove all-but-one of these from the list of generators as well,
leaving

coker � 〈(Ar)pq , (Jr)1 | (α − 2)(Jr)1 � (β − 2)(Jr)1 � 0,

for p ∈ {2, . . . , α}, q ∈ {2, . . . , β}, and r ∈ {1, . . . , t}〉. (2.8)

We substitute a � α− 2 and b � β− 2, and write g :� gcd(a , b). Then (2.8) is a presentation
for Zt(a+1)(b+1) ⊕ (Z/g)t if g > 1, and Zt(a+1)(b+1) otherwise. If α � β � 2, then (2.8) gives a
presentation for Z2. Together with Theorem 2.2.6, this gives the desired result. �

2.5.16 Theorem (Order of identity in K0 for alternative pointed polygon systems) Let t ≥ 1 be
an arbitrary integer. For α, β ≥ 3, let κ � κ(α, β) be a complete bipartite graph, and write A to
denote the graph algebraA(Λ∗t(κ)) induced by the adjacency matrices from 2.5.13. Then the order
of the class of the identity idA in K0(A) is equal to g :� gcd(α − 2, β − 2).

Furthermore, the isomorphism class of A is completely determined by the K-groups in Theorem
2.5.15 and the order of [idA] in K0(A). �

§2.6 The homology of 2t-hedra

We round off this chapter with a brief discussion of the geometry of tile complexes and
2t-hedra. Similarly to Theorem 2.5.10, the proof of 2.6.2 does not change with the number
of sides 2t of the polygons, so Corollary 2.6.3 is immediate.

2.6.1 To each k-dimensional cell complex M can be associated a sequence {Hn(M)}n∈N of
Abelian groups, called the homology groups of M. The nth homology group Hn(M)
provides a measure of the number of k-dimensional holes in the complex, as well as an
idea of the “twistedness” ofM (see [Hat02, §2.1]). For each n ∈ {0, . . . , k}, write S′n to
denote the set of n-dimensional cells inM; we construct free Abelian groups Cn � ZS′n
whose generators are indexed by the elements ofS′n . Clearly Cn � 0 whenever n > k. Then
there is a sequence of functions δn where δn ◦ δn+1 � 0 as follows:

· · · → 0 −→ Ck
δk−→ · · · δn+1−−−→ Cn

δn−→ · · · δ2−→ C1
δ1−→ C0 −→ 0. (2.9)

This is called a chain complex, and the map δn : Cn → Cn−1 takes an n-cell to its boundary,
a formal sum of its (n − 1)-dimensional faces. We may choose how to order and orient the
list of faces which make up the boundary of a cell (see, for example, Figure 3.1), so long as
this decision is fixed beforehand. Thus δn : ZS′n → ZS′n−1 can be viewed as a |S′n | × |S′n−1 |
matrix with rows indexed by the n-cells ofM, columns by the (n−1)-cells, andwith AB-th

49



Chapter 2 §2.6 The homology of 2t-hedra

entry 1 if and only if B is a face of A (−1 if the cell B̄ with the opposite orientation to B
forms part of the boundary).

Some intricacies might arise if two faces in the boundary of a cell of dimension at least 2
are identical, but this can be avoided by subdividing the complex into smaller cells. Then
Hn :� ker(δn)/im(δn+1) is an Abelian group, and the torsion-free rank (see 2.2.5) of Hn

counts the number of n-dimensional “holes” inM.

2.6.2 Theorem (Homology of a tile complex) Let κ � κ(α, β) be the complete bipartite graph on
α ≥ 2 white and β ≥ 2 black vertices, let (κ,U,V,S′(κ)) be an unpointed tile system, and let
TC(κ) be its associated tile complex. Then the homology groups of TC(κ) are given by

Hn(TC(κ)) �



Z if n � 0,

Zα+β−2 if n � 1,

Z(α−1)(β−1) if n � 2,

0 if n ≥ 3.

� Proof As TC(κ) is a path-connected, 2-dimensional cell complex by construction, clearly
Hn(TC(κ)) � 0 for n � 0 and n ≥ 3.

The proof uses as its basis that of [NTV18, Prop. 3]. The boundary of each square in TC(κ)
is given by an element of S′(κ); write these elements as

(
u1

i , v
1
j , u

2
i , v

2
j

)
. By construction,

TC(κ) has four vertices: each one the origin of all directed edges labelled u1
i , v1

j , u2
i , and

v2
j respectively. Each tile is homotopy equivalent to a point; pick tile

(
u1

1 , v
1
1 , u

2
1 , v

2
1
)
and

contract it, thereby identifying the four vertices. Call the resulting tile complex TC1(κ);
this is a 2-dimensional cell complex whose edges are loops, and whose 2-cells comprise:

• (α − 1)(β − 1)-many unpointed tiles A′i j �
(
u1

i , v
1
j , u

2
i , v

2
j

)
,

• (α − 1)-many 2-gons X′i with boundaries described analogously by
(
u1

i , u
2
i

)
,

• (β − 1)-many 2-gons Y′j with boundaries described by
(
v1

j , v
2
j

)
,

for i ∈ {2, . . . , α} and j ∈ {2, . . . , β}. By construction, no two edges on the boundary of a
square are identical, so we can consider the chain complex associated to TC1(κ) by 2.6.1:

· · · −→ C3
δ3−→ C2

δ2−→ C1
δ1−→ C0 −→ 0.

Since TC1(κ) is 2-dimensional and has one vertex, this boils down to

0
0−→ C2

δ2−→ C1
0−→ 0,

and so H1(TC1(κ)) � C1/im(δ2), and H2(TC1(κ)) � ker(δ2). We have δ2(A′i j) � u1
i + v1

j +

u2
i + v2

j , δ2(X′i) � u1
i + u2

i , and δ2(Y′j) � v1
j + v2

j . Clearly ker(δ2) is generated by the set
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{A′i j − X′i − Y′j | 2 ≤ i ≤ α, 2 ≤ j ≤ β}, such that ker(δ2) � Z(α−1)(β−1).

Similarly, we have an Abelian group presentation for H1(TC1(κ)) as follows:

H1(TC1(κ)) �
〈
u1

i , v
1
j , u

2
i , v

2
j

�� u1
i + v1

j + u2
i + v2

j � u1
i + u2

i � v1
j + v2

j � 0,

for 2 ≤ i ≤ α, 2 ≤ j ≤ β
〉
,

which, after substituting u2
i � −u1

i and v2
j � −v1

j , gives

H1(TC1(κ)) �
〈
u1

i , v
1
j , for 2 ≤ i ≤ α, 2 ≤ j ≤ β

〉
.

This is a presentation for Zα+β−2, and since TC1(κ) is homotopy equivalent to TC(κ), we
are done. �

2.6.3 Corollary (Homology of a 2t-hedron) Let (κ,U,V,S′t(κ)) be an unpointed 2t-gon system,
and let P(κ) be its associated 2t-hedron. Then the homology groups of P(κ) do not depend on t,
that is:

Hn(P(κ)) �



Z if n � 0,

Zα+β−2 if n � 1,

Z(α−1)(β−1) if n � 2,

0 if n ≥ 3.

�
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Chapter 3

k-domino groups

In this chapterwe use the basic tools introduced in Chapter 2 to construct an infinite family
of k-rank graphs for arbitrary k.

Instead of forming sets of tiles, we look at sets of k-dimensional cubes, upon which we
define k-many adjacency functions. We can glue together these cubes whenever they are
adjacent (like dominoes), in a manner reminiscent of the t-hedra from Definition 2.1.2.
We design our sets of cubes such that the k-dimensional cube complexM obtained as a
result of this gluing has a particular link at each vertex—by doing this, we ensure that the
adjacency matrices have a k-dimensional UCE Property (3.3.4, to be compared with 2.2.2)
and induce a k-rank graph.

We define a k-domino group or k-cube group to be a group Γwhose generators and relations
are induced by the squares in M. A k-domino group acts freely and transitively on a
product of k trees, a k-rank affine building, and the quotient of this action isM. Through
these correspondences we are able to weave between geometric and group-theoretical
notions, eventually explaining what it means to have a cube in the group Γ.

Some facts about the K-theory of the C?-algebras associated to these higher-rank graphs
were demonstrated in [MRV20], which this chapter cites as its principal source, and which
was joint work with Aura-Cristiana Radu and Alina Vdovina. It was shown there that
the K-groups together with the order of the class of the identity in K0 determine the
C?-algebras uniquely, up to isomorphism.
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§3.1 Domino complexes

3.1.1 As in §2.1, we begin by constructing sets of squares with distinguished basepoints and
orientations. Let [a , b , c , d] denote the square whose boundary is labelled anticlockwise
and starting from the base vertex by the sequence a , b , c , d, and give each side of the
boundary a forward-directed arrow. We call such squares 2-dimensional dominoes, or
sometimes just pointed squares.

Let {Ei | 1 ≤ i ≤ k} be a family of alphabets: disjoint sets of respective even size mi , each
equipped with a fixed-point-free involution x 7→ x̄. For each p , q ∈ {1, . . . , k} with p , q,
we write F(p , q) to denote the set consisting of all those dominoes [a1 , b1 , a2 , b2], where
a1 , a2 ∈ Ep and b1 , b2 ∈ Eq . We identify the involution e 7→ ē with the reversion of the
direction of an arrow.

3.1.2 Definition (k-dimensional dominoes) Let E1 , E2 , E3 be alphabets of size at least 4, and
consider three pointed squares A1 � [a1 , b1 , a2 , b2] ∈ F(1, 2), B1 � [a′, c1 , a3 , c2] ∈ F(1, 3)
and C1 � [b′, c3 , b3 , c′] ∈ F(2, 3). If a′ � a1, then we can glue A1 and B1 together along
their common side, in the manner of 2.1.2. If, in addition, b′ � b̄2 and c′ � c2, then
we can slot C1 together with A1 and B1 to form half of a cube (as in Figure 3.1). We
might be lucky enough to find three more pointed squares A2 ∈ F(1, 2), B2 ∈ F(1, 3) and
C2 ∈ F(2, 3) which form the remaining three faces of the cube. If this is the case, then
we write S � [A1 , B1 , C1 ,A2 , B2 , C2] to denote the cube, regarded as oriented and with a
basepoint, and call S a 3-dimensional domino.

The choice of basepoints and orientations of the 3-dimensional domino and its faces is
arbitrary, but must remain fixed if we’re considering a set of multiple dominoes.

If E1 , . . . , Ek are alphabets of size at least 4, then we can generalise the above definition to
that of a k-dimensional domino: a pointed, oriented k-dimensional cube formed by gluing
together a compatible set of pointed squares, 2k−2 from each set F(p , q) for p < q.

3.1.3 We’re going to define adjacency (3.1.16) for k-dimensional dominoes whenever they share
a common face, similarly to in 2.2.1 and Figure 2.3 and as the terminology is designed to
suggest. Then, we’ll glue together adjacent dominoes to form k-dimensional analogues of
the t-hedra from Definition 2.1.2, which we call domino complexes (3.1.10).

Given some alphabets E1 , . . . , Ek , we aim to find a set of pointed squaresS2 ⊆
⊔

p<q F(p , q)
which yield domino complexes with a UCE Property (3.3.4). Definition 3.1.2 doesn’t tell us
how to build such a set S2, so we look at the converse construction, beginning from our
desired domino complex and seeing what its component squares look like. We describe
conditions on a set of pointed squares which allow them to be compiled into a domino
complex in 3.1.17.
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Figure 3.1: Depiction of the 3-dimensional domino S � [A1 , B1 , C1 ,A2 , B2 , C2],
which has faces A1 � [a1 , b1 , a2 , b2], B1 � [a1 , c1 , a3 , c2], C1 �

[
b̄2 , c3 , b3 , c2

]
, A2 �[

a3 , b̄3 , a4 , b4
]
, B2 � [a2 , c3 , a4 , c4], C2 �

[
b̄1 , c1 , b̄4 , c4

]
; the basepoint is represented

by the large black dot.

We use this ordering and orientation of faces for our 3-dimensional examples, but
as long as they are fixed beforehand, any other order and orientation are also valid.

Endowing a cube complex with an adjacency structure

3.1.4 For n ≥ 2, we define T(n) to be the regular tree of degree n. We may simply write T if the
degree is not important.

Let T(m1), . . . , T(mk) be regular trees, and consider the product T(m1) × · · · × T(mk). This
defines a k-dimensional cube complex (see 2.1.1) which we call ∆, and which is an affine
building of rank k (see 3.2.8–3.2.9).

3.1.5 Definition (Clique complex) An n-dimensional simplex is the convex hull of (n+1)-many
linearly-independent vertices vi ∈ Rn . Thus, a 3-dimensional simplex is a tetrahedron, a
2-dimensional simplex is a triangle, etc. The faces of a simplex are the lower-dimensional
simplices defined by subsets of {vi}. A (geometric) simplicial complex is a set of simplices
which have been “glued together” along their faces, in the samemanner as 2.1.1. Every face
of a simplex in the complex is also in the complex, and the intersection of two simplices
is a face of them both. The dimension of a simplicial complex is defined to be that of the
highest-dimensional simplex it contains.

Let G be an undirected graph. A clique in G is a collection of vertices, any two of which are
adjacent—that is, a collection of vertices which induces a complete subgraph. The clique
complex of G is a simplicial complex where each clique with (n + 1) vertices defines a
simplex of dimension n. In other words, if there are three vertices each connected by an
edge, then these defines a triangle in G; four mutually connected vertices always define a
tetrahedron, and so on.
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3.1.6 Definition (Adjacency structure) Let M be a k-dimensional cube complex with vertex
set S0 and directed edges labelled from an alphabet E. The link lkz(M) at a vertex z ∈ S0

is the (k − 1)-dimensional cell complex obtained from the intersection ofM with a small
2-sphere centred at z (compare with 2.1.2).

For each z ∈ S0, let E(z) be the set of directed edges originating at z. Suppose that we can
partition the edges E � E1 t · · · tEk in such a way that ē ∈ Ei whenever e ∈ Ei . If each link
lkz(M) is the clique complex of the complete k-partite graph with vertices labelled by the
elements of E(z) and partition E(z) � E(z)1 t · · · t E(z)k , then we say that the alphabets
E1 , . . . , Ek form an adjacency structure forM.

3.1.7 Proposition LetM be a k-dimensional cube complex. The universal cover ofM is a product of
k trees M̃ � T(m1) × · · · × T(mk) if and only if the link at each vertex ofM is the clique complex
of a complete k-partite graph on vertex sets of size |m1 |, . . . , |mk |.

� Proof This proposition is a generalisation of [BW99, 10.2]. Observe that if the link lkz(M)
at a vertex z ofM is such a clique complex, then lkz(M) is a (k − 1)-dimensional complex
such that every cycle has length at least k. Hence lkz(M) is CAT(1), and so by the Gromov
Link Condition [Gro88, §4.2],M must be CAT(0). The result then follows from a relatively
straightforward adaptation to [BW99, 4.3]. �

3.1.8 So, a cube complexM admits an adjacency structure if and only if its universal cover is a
product of trees. If this is the case, then the n-dimensional cells ofM are n-cubes whose
edges have labels from n of the alphabets E1 , . . . , Ek , and where parallel edges have labels
from the same alphabet. We’ll see how this looks in three dimensions to begin with.

3.1.9 Definition (3-dimensional domino complex) Let M be a 3-dimensional cube complex
with vertex set S0, directed edges labelled from some alphabet E, and adjacency structure
E1 , E2 , E3. Write S′2 � S′2(M) for the set of geometric squares of whichM consists. The
elements ofS′2 can bewritten as ordered 4-tuples of their oriented edge labels (a1 , b1 , a2 , b2)
for a1 , a2 ∈ Ep , b1 , b2 ∈ Eq . We will always have p , q here by the fact that the 1-skeletons
of the links ofM are tripartite graphs, meaning that adjacent vertices in the links cannot
have labels from the same alphabet Ei .

We use square brackets if we wish to emphasise that a square inM is labelled according
to some predetermined orientation and starting from some basepoint (compare with
Definition 2.1.5). For each such square S � [a1 , b1 , a2 , b2], write

SH :�
[
ā1 , b̄2 , ā2 , b̄1

]
, SR :� [a2 , b2 , a1 , b1], SV :�

[
ā2 , b̄1 , ā1 , b̄2

]
;

geometrically these can be interpreted as the pointed squares which lie in the same orbit
of S under reflections in the a and/or b directions. We define the set

S2 :� {S � [a1 , b1 , a2 , b2], SH , SR , SV | (a1 , b1 , a2 , b2) ∈ S′2}.
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We can identify the set F(p , q)with F(q , p) via the map ϕ : [a1 , b1 , a2 , b2] 7→
[
b̄2 , ā2 , b̄1 , ā1

]
.

Thus we can say that S2 is the set of all pointed squares of the form [a1 , b1 , a2 , b2] with
a1 , a2 ∈ Ep and b1 , b2 ∈ Eq for p < q.

Similarly, we write S′3 � S′3(M) for the set of geometric cubes of which M consists,
and we denote elements of S′3 by ordered 6-tuples of their faces (A1 , B1 , C1 ,A2 , B2 , C2),
where A1 ,A2 ∈ F(p , q), B1 , B2 ∈ F(p , r), and C1 , C2 ∈ F(q , r). As above, we use square
brackets to indicate that a cube is oriented and with a basepoint, and for each such cube
U � [A1 , B1 , C1 ,A2 , B2 , C2]we define

• UH :� [(A1)H , (B1)H , (C2)H , (A2)H , (B2)H , (C1)H],

• UR :� [(A1)R , B2 , C2 , (A2)R , B1 , C1],

• UV :� [(A1)V , (B2)H , (C1)H , (A2)V , (B1)H , (C2)H],

• UI :� [(A2)H , (B1)V , (C1)V , (A1)H , (B2)V , (C2)V ],

• UHI :� [A2 , (B1)R , (C2)R ,A1 , (B2)R , (C1)R],

• URI :� [(A2)V , (B2)V , (C2)V , (A1)V , (B1)V , (C1)V ],

• UVI :� [(A2)R , (B2)R , (C1)R , (A1)R , (B1)R , (C2)R].

These are the cubes [X1 , . . . ,X6] which belong to the same orbit as [A1 , B1 , C1 ,A2 , B2 , C2]
under action by the symmetry group of the cube, with the property that if A1 ∈ F(p , q),
then X1 ∈ F(p , q). We write S3 for the set which consists of each U ∈ S′3 and all of
the corresponding pointed cubes above, and refer to elements of S3 as dominoes or 3-
dimensional dominoes, and this definition coincides with 3.1.2. The complexM is called
a 3-dimensional domino complex. We write

F(p , q , r) :� {[A1 , B1 , C1 ,A2 , B2 , C2] ∈ S3 | Ai ∈ F(p , q), Bi ∈ F(p , r), and Ci ∈ F(q , r)},

and identify F(a , b , c)with F(a , c , b) via the isomorphism

(A1 , B1 , C1 ,A2 , B2 , C2) 7−→ (ϕ(A1), (C2)H , (B2)H , ϕ(A2), (C1)H , (B1)H).

Likewise we are able to identify F(a , b , c) with each of the sets F(σ(a , b , c)), where σ is
a permutation. This is all much more succinctly describable in pictures, so we urge the
reader to consult Figure 3.2.

3.1.10 Definition (k-dimensional domino complex) Now letM be a k-dimensional cube com-
plex with vertex set S0, directed edges labelled from some alphabet E, and adjacency
structure E1 , . . . , Ek . We define S2, S′2, S3 and S′3 as in 3.1.9, and for each n ∈ {4, . . . , k}
we define the sets S′n and Sn inductively as follows:
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Figure 3.2: Let U � [A1 , B1 , C1 ,A2 , B2 , C2] ∈ S3 be a 3-dimensional domino. Then
the seven cubes defined in 3.1.9 are also dominoes in S3. These are obtained by
reflecting S according to the above arrows (a composition of two reflections might
be denoted as a rotation by π). The symmetries keep the Ai , Bi and Ci faces “in the
same positions” relative to the basepoint (in this figure the Bi faces always appear
on the top and bottom of the dominoes, for example).

The black vertices represent the basepoints of the dominoes, while the blue vertices
show where the basepoint of S maps to under the symmetry actions.

Write S′n � S′n(M) for the set of geometric n-cubes of which M consists. We denote
elements of S′n by ordered (2n)-tuples of their faces, that is, the elements of Sn−1 which are
incident. We define the following sets inductively from 3.1.9:

F(p1 , . . . , pn) :�
{[

A1
1 , . . . ,A

n
1 ,A

1
2 , . . . ,A

n
2
]
∈ Sn−1

�� Ai
1 ,A

i
2 ∈ F

(
p1 , . . . , p̂n−i+1 , . . . , pn

)}
,

where the “hat” over p̂n−i+1 indicates to remove it from the list. As above, we can identify
the sets F(σ(p1 , . . . , pn)) for each permutation σ. Then Sn is the set of all (2n)-tuples
(X1 , . . . ,X2n) which belong to the orbit of some

(
A1

1 , . . . ,A
n
1 ,A

1
2 , . . . ,A

n
2
)
∈ S′n under the

action of the group of those reflections of the n-cube with the property that if A1
1 ∈

F(p1 , . . . , pn−1), then X1 ∈ F(p1 , . . . , pn−1). These are the reflections of the n-cube through
midplanes parallel to its faces.

We call the complexM a k-dimensional domino complex, and we call the elements of Sk

dominoes or k-dimensional dominoes. They are pointed, oriented k-dimensional cubes
whose k sets of parallel edges are labelled respectively from the alphabets E1 , . . . , Ek ,
and with edges labelled from each Ei always lying in the same orientation relative to the
basepoint (see Figure 3.2). This is compatible with 3.1.2.
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Constructing a domino complex from suitable sets of pointed squares

3.1.11 In 3.1.8 we learned that the cells of a k-dimensional domino complexM are n-dimensional
cubes with parallel edges labelled from the same alphabet Ei . In particular, the 2-cells can
be regarded as equivalence classes of elements of F(p , q) for some p , q ∈ {1, . . . , k} with
p < q, under the equivalence relation from 2.1.5. By choosing our initial set of pointed
squares carefully, we can ensure that they form a k-dimensional domino complex when
glued together.

3.1.12 Example (A suitable set of pointed squares) Consider the alphabetsE1 �
{

a1 , a2 , ā1 , ā2
}
,

E2 �
{

b1 , b2 , b̄1 , b̄2
}
, E3 �

{
c1 , c2 , c̄1 , c̄2

}
, and let T ′2 be the set of 12 geometric squares

T ′2 �
{(

ai , b j , āi , b̄ j
)
,
(
ai , c j , āi , c̄ j

)
,
(
bi , c j , b̄i , c̄ j

) �� i , j ∈ {1, 2}
}
.

Using this, we construct the corresponding set of pointed squares

T2 �
{
S, SH , SR , SV | S � [xi , y j , xi , y j] and (xi , y j , xi , y j) ∈ T ′2

}
,

as described in Definition 3.1.9. We have designed this set of squares in such a way as to be
able to glue them together into cubes; using Figure 3.1 as a template, we give the examples

• U �
[ [

a1 , b1 , ā1 , b̄1
]
,
[
a1 , c1 , ā1 , c̄1

]
,
[
b1 , c1 , b̄1 , c̄1

]
,[

ā1 , b1 , a1 , b̄1
]
,
[
ā1 , c1 , a1 , c̄1

]
,
[
b̄1 , c1 , b1 , c̄1

] ]
,

• V �
[ [

a1 , b1 , ā1 , b̄1
]
,
[
a1 , c2 , ā1 , c̄2

]
,
[
b1 , c2 , b̄1 , c̄2

]
,[

ā1 , b1 , a1 , b̄1
]
,
[
ā1 , c2 , a1 , c̄2

]
,
[
b̄1 , c2 , b1 , c̄2

] ]
,

• W �
[ [

ā1 , b̄1 , a1 , b1
]
,
[
ā1 , c1 , a1 , c̄1

]
,
[
b̄1 , c1 , b1 , c̄1

]
,[

a1 , b̄1 , ā1 , b1
]
,
[
a1 , c1 , ā1 , c̄1

]
,
[
b1 , c1 , b̄1 , c̄1

] ]
.

After a bit of staring we can deduce that any cube built from this set of squares has to be
of the form [A, B, C,AH , BH , CH] for some A, B, C ∈ T2. We write T3 for the set of all such
6-tuples, and call elements of T3 dominoes. With the notation of 3.1.9 we see that W � UR; in
other words, W and U define the same geometric cube, but different dominoes—we write
T ′3 for the set of these geometric cubes. Likewise, by comparing the first two faces (elements
of the 6-tuples) of U and V , we immediately see that they define different dominoes and
different geometric cubes. In fact, we just need to choose A and B, and then C and all of
the other faces are forced into place. This quality will be true of all domino complexes
(Theorem 3.1.18), and is hard to achieve by accident.

Now, we can form a cube complex from the set T ′3 by identifying the faces of two cubes
whenever they are the same (as long as this doesn’t result in two edges with the same
label pointing towards the same vertex, as in 3.1.16). This cube complex is a 3-dimensional
domino complex. �
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3.1.13 A combinatorial description of k-dimensional dominoes In 3.1.2wedefineddominoes
as pointed and oriented k-dimensional cubes with parallel edges given labels from one
of k alphabets. In the rest of this section and the next, we will require some notation for
dealingwith specific edges and faces of dominoes, but characterising themcombinatorially
becomes needlessly complicated very quickly. We therefore restrict ourselves to dominoes
built from a set of pointed squares which has a domino structure.

3.1.14 Definition (Domino structure) Let k ≥ 2, and let E1 , . . . , Ek be alphabets of respective
even cardinalities m1 , . . . ,mk , with each mi ≥ 4. For each distinct p and q, define the set
F(p , q) :� Ep × Eq × Ep × Eq . We can uniquely represent each element [a1 , b1 , a2 , b2] ∈⊔

i< j F(i , j) as a pointed square with the same labels, so it makes notational sense to use
square brackets for elements of

⊔
i< j F(i , j), and to refer to them as pointed squares.

Suppose that R ⊆ ⊔
i< j F(i , j) is a subset of pointed squares with the following properties:

D1 For every [a1 , b1 , a2 , b2] ∈ R, each of
[
ā1 , b̄2 , ā2 , b̄1

]
, [a2 , b2 , a1 , b1], and

[
ā2 , b̄1 , ā1 , b̄2

]
is also in R2, and all four such squares are distinct.

D2 Each of the projections of R onto the subproducts of the form Ep × Eq or Eq × Ep , for
all p , q, is bĳective.

If k � 2, then conditions D1 and D2 are enough for R to define the VH-datum of [BM97;
Wis96]. Under our terminology, we say that R is a set of pointed squares with a 2-domino
structure.

From now on, we denote by R(p , q) the set of pointed squares with labels from Ep and Eq ,
that is, R(p , q) :� R ∩ F(p , q).

As a last illustration before presenting a definition for arbitrary k, suppose that k � 3,
and consider two pointed squares [a1 , b1 , a2 , b2] ∈ R(p , q) and [a1 , c1 , a3 , c2] ∈ R(p , r),
where q , r. Also suppose that we can find some unique elements a4 ∈ Ep , b3 , b4 ∈ Eq ,
c3 , c4 ∈ Er such that

[
b̄2 , c3 , b3 , c2

]
,
[
b̄1 , c1 , b̄4 , c̄4

]
∈ R(q , r),

[
a2 , c3 , a4 , c̄4

]
∈ R(p , r), and[

a3 , b̄3 , a4 , b4
]
∈ R(p , q).

We may suppose that the same unique pointed squares can be found if we are instead
given [a1 , b1 , a2 , b2] ∈ R(p , q) and

[
b̄2 , c3 , b3 , c2

]
∈ R(q , r).

By interpreting these pointed squares purely geometrically (in the manner of Figure 3.1),
we see that each of a1 , . . . , a4, b1 , . . . , b4, c1 , . . . , c4 labels the edges of a cube. In themanner
above, we write S3 for the set of 6-tuples of elements of R which correspond to the faces
of all such cubes, pointed and oriented according to some predetermined orientation, in
the manner of 3.1.9.

Now fix k ≥ 3 and suppose that R is a set of pointed squares with properties D1 and D2;
we construct sets Sn of n-dimensional dominoes which are uniquely determined from
some initial set of n edges, one from each of n-many of the alphabets Ei .
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Consider a subset J ⊆ {1, . . . , k} of cardinality n ≥ 2, and fix n elements u j ∈ E j , one for
each j ∈ J. Each pair (ui , u j) uniquely defines a pointed square

[
ui , u i

j , ū
j
i , ū j

]
∈ R(i , j)

by D2. Presume that the set R is designed in order that, whenever L ⊆ J is a subset with
0 ≤ |L | ≤ (n − 1), then we can find unique elements of the form uL

i ∈ Ei such that

D3
[
uL

i , u
L∪{i}
j , ūL∪{ j}

i , ūL
j

]
∈ R(i , j), for all i , j ∈ J \ L with i < j.

Then we say that R is a set of pointed squares with an n-domino structure. We write
�(u j1 , . . . , u jn ) for the 2n-tuple of elements of R which comprises each

[
ui , u i

j , ū
j
i , ū j

]
and the pointed squares above which they uniquely determine, listed according to some
predetermined order. We write Sn for the set of all such 2n-tuples �(u j1 , . . . , u jn ), since
these can be regarded as n-dimensional dominoes whose basepoint is the vertex out of
which u and the w j are emitted (Figure 3.3).
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Figure 3.3: Above, we have illustrated the 4-dimensional domino �(u1 , u2 , u3 , u4).
If E1 , . . . , E4 are alphabets, and R ⊆ ⊔

i< j F(i , j) is a set of pointed squares with a
4-domino structure, then a 4-tuple (u1 , u2 , u3 , u4) ∈ E1 × · · · × E4 uniquely defines
a 4-dimensional domino whose basepoint emits u and the w j (thick lines). In this
example, the initial elements first define three mutually adjacent pointed squares[
u1 , u1

2 , ū
2
1 , ū2

]
,
[
u1 , u1

3 , ū
3
1 , ū3

]
,
[
u1 , u1

4 , ū
4
1 , ū4

]
, highlighted in grey. Then each of

the remaining elements uL
i ∈ Ei are uniquely determined such that they label the

edges of a 4-dimensional cube.

3.1.15 When R is a set of pointed squares with an n-domino structure, then it also has an m-
domino structure for all m ∈ {2, . . . , n}.
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In particular, any set of (n−m+1)-manymutually incident m-dimensional dominoes inSm ,
each in a different set R(p1 , . . . , pm), uniquely characterises an n-dimensional domino. We
sometimes find it convenient to write �

{[
up , u

p
j , ū

j
p , ū j

]}
j to represent the n-dimensional

domino uniquely characterised by (n − 1) pointed squares in R(p , j), for some fixed p ∈ J
and j ∈ J \ {p}. In these instances we also find it convenient to assume that the fixed
element p � 1; if it is not, we can of course rearrange the alphabets Ei so that the above
constructions still make sense.

3.1.16 Definition (Adjacency of k-dimensional dominoes) Let k ≥ 2, let E1 , . . . , Ek be alpha-
bets, eachwith at least four elements, and let R be a set of pointed squares with labels from
the sets Ei , and which has a k-domino structure. Consider two k-dimensional dominoes
U � �(u1 , . . . , uk) and V � �(v1 , . . . , vk) in Sk . We define adjacency matrices M1 , . . . ,Mk

to be square matrices with rows and columns indexed by Sk , and with UV-th entry
Mi(U,V) :� 1 whenever

(i) vL
j � uL∪{i}

j for all j < (L ∪ {i}),

(ii) vL
i , ūL

i ,

for each subset L ⊆ ({1, . . . , k} \ {i})with |L | ≥ 0. We set Mi(U,V) :� 0 otherwise. For each
i ∈ {1, . . . , k}, we say that V is adjacent in the Ei direction, or Ei-adjacent, to U whenever
Mi(U,V) � 1. Note that this definition of adjacency differs from those of §2.5.

3.1.17 Constructing a k-dimensional domino complex Let k ≥ 2, let E1 , . . . , Ek be alphabets,
each with at least four elements, and let R be a set of pointed squares with labels from the
sets Ei , and which has a k-domino structure. Write Sk to denote the set of k-dimensional
dominoes obtained via the domino structure, as constructed in 3.1.14, and let M1 , . . . ,Mk

be the corresponding adjacency matrices.

We can construct a cube complex M from the set of dominoes Sk by identifying the
relevant edges from 3.1.16(i)–(ii) whenever two dominoes are adjacent, in the manner of
2.1.1

3.1.18 Theorem Let R be a set of pointed squares with a k-domino structure, which gives rise to a set of
dominoes Sk . Consider the k-dimensional cube complexM obtained in 3.1.17 by identifying the
(k−1)-dimensional faces of elements ofSk whenever they are adjacent. ThenM is a k-dimensional
domino complex, in the sense of 3.1.10.

Conversely, any k-dimensional domino complex can be decomposed into a set of pointed squares
which has a k-domino structure.

� Proof Firstly, let E1 , . . . , Ek be alphabets of respective sizes mi , and let R ⊆ ⊔
i< j F(i , j) be

a set of pointed squareswith a k-domino structure. By propertyD2 of 3.1.14, the projection
from F(p , q) to each subproduct of the form Ep × Eq or Eq × Ep is a bĳection. This means
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that each k-dimensional domino constructed from R is Ei-adjacent to (mi − 1)-many other
dominoes, and gluing them together at their common face creates a vertex z whose link
contains vertices indexed by Ei . By gluing adjacent dominoes together in each direction,
we obtain a cube complexM, and lkz(M) has vertices indexed by E �

⊔
i Ei , and after this

procedure, z is the only vertex inM.

Then in lkz(M), there is an edge joining a to b for each pointed square�(a , b), where a ∈ Ep ,
b ∈ Eq . Furthermore, there is a solid triangle joining a, b, c whenever �(a , b , c) ∈ S3, for
a ∈ Ep , b ∈ Eq , c ∈ Er , and more generally there is an (n − 1)-dimensional simplex for each
element of Sn . Thus lkz(M) is a clique complex of a k-partite graph with partition sets
indexed by elements of E1 , . . . , Ek , and since z is the only vertex inM, this implies thatM
is a k-dimensional domino complex.

Conversely, suppose thatM is a k-dimensional domino complex with adjacency structure
E1 , . . . , Ek , and consider the setsSn(M) for each n ∈ {2, . . . , k}. Suppose for a contradiction
that there is some n-tuple (u1 , . . . , un) ∈

∏n
i�1 Ei which does not uniquely define an n-

dimensional domino via the construction in 3.1.14—this is to say that there are two distinct
n-dimensional dominoesU,U′ ∈ Sn whose basepoints emit verticeswith labels u1 , . . . , un .
Then there is some pair of pointed squares in S2 of the form A �

[
a1 , b1 , a2 , b2

]
, A′ �

[a1 , b1 , a′2 , b
′
2], where a2 , a′2 are in Ep and b2 , b′2 are in Eq for p < q (after potentially

reordering the alphabets Ei).

Now, consider the link lkz(M), where z is the vertex which receives edge b1 and emits
edges a2 and a′2. In order for the link z to be the clique complex of a complete k-partite
graph, there must be some other pointed square B �

[
a3 , b3 , a4 , b̄1

]
∈ F(p , q) with a4 , ā2

and a4 , ā′2, such that Mi(A, B) � Mi(A′, B) � 1. Since |Ei | ≥ 4 for each i, we know that
such elements exist. But then the link at z has two edges connecting a1 to b1, and so lkz(M)
cannot be a clique complex. So each n-tuple in

∏n
i�1 Ei uniquely defines an n-dimensional

domino in M, and hence the set of 2-dimensional dominoes S2(M) has an n-domino
structure for each n. �

§3.2 Identifying a domino complex with a domino group

3.2.1 Definition (k-domino group) Let k ≥ 2, let E1 , . . . , Ek be alphabets, and consider a set
R ⊆ ⊔

i< j F(i , j) of pointed squares. We define a group

Γ :� 〈E � E1 t · · · t Ek | x1 y1x2 y2 � 1 whenever [x1 , y1 , x2 , y2] ∈ R〉.

If R has a k-domino structure, then we call Γ a k-domino group or a k-cube group, and
we frequently use the notation Γ � 〈E | R〉. We call the alphabets E1 , . . . , Ek the adjacency
structure of the k-domino group Γ.
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3.2.2 In the case where k � 2 and R satisfies only D1 and D2 of 3.1.14, the group Γ � 〈E | R〉 is
called a BM-group, named after Burger andMozes, and first developed by them andWise
in [Wis96; BM97; KR02].

In [KV19], an alternative condition was given on R, which is equivalent to properties D1
and D2:

D1’ The product sets EiE j and E jEi are equal, contain no 2-torsion, and have cardinality
|EiE j | � |Ei | · |E j | � mi m j .

However, since there are multiple explicit constructions of domino complexes throughout
this thesis, we find it more convenient to deal with properties D1 and D2.

3.2.3 Lemma Let Γ � 〈E | R〉 be a k-domino group with adjacency structure E1 , . . . , Ek , and let
(Γ − p) � 〈(E − p) | (R − p)〉 ⊂ Γ denote the subgroup generated by E \ Ep and whose relations
are obtained by removing all pointed squares which contain elements of Ep from R. Then (Γ− p) is
a (k − 1)-domino group, with adjacency structure E1 , . . . , Êp , . . . , Ek .

By induction, we can form a (k − m)-domino subgroup by removing all elements of m-many
alphabets Ep1 , . . . , Epm from the generating set E. We denote such a group by (Γ − p1 − · · · − pm).

� Proof By disregarding all elements from some alphabet Ep , what remains are (k − 1)-
dimensional dominoes in R(1, . . . , p̂ , . . . , k), and as it was remarked in 3.1.15 that a set
of pointed squares R with an n-domino structure also has an m-domino structure for all
m < n, we know that these dominoes are uniquely defined by some initial (k − 1)-tuples
of elements of E \ Ep . �

3.2.4 Proposition Let Γ be a k-domino group with adjacency structure E1 , . . . , Ek , and consider

(Γ − p1 − · · · − pm) � 〈(E − p1 − · · · − pm) | (R − p1 − · · · − pm)〉,

the (k − m)-domino subgroup of Γ constructed in 3.2.3. Then

Γ �
( ( (
(Γ − 1) ∗〈(E−1)∩(E−2)〉 (Γ − 2)

)
∗〈(E−3)〉 (Γ − 3)

)
∗〈(E−4)〉 · · ·

)
∗〈(E−k)〉 (Γ − k),

where ∗G denotes the amalgamated free product over a group G.

� Proof Firstly, write G2 :� (Γ − 1) ∗〈(E−1)∩(E−2)〉 (Γ − 2), and then

Gi+1 :� Gi ∗〈(E−i)〉 (Γ − i),

for all i ∈ {2, . . . , k−1}. Then G2 is the group generated by E, with relations (R−1)∪(R−2).
At each step, we amalgamate over the free group generated by the intersection of E with
(E − i), which is (E − i). Hence each Gi is generated by E, and has relation set given by
(R − 1) ∪ · · · ∪ (R − i). But this set is equal to R, and so Gk � Γ. �
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3.2.5 It is important to note that the converse to 3.2.4 is not true—in general it is extremely rare
to find a family of k-domino groups whose amalgamated product over the subgroups
generated by their pairwise intersections forms a (k + 1)-domino group. We present one
method of [RSV19] for doing so in 4.1.6.

3.2.6 Wemay henceforth regard a k-domino group Γ � 〈E | R〉 geometrically as the correspond-
ing domino complex with edges labelled by elements of Γ and pointed squares in R. If a
clear distinction needs to be made, we might writeM(Γ) for the geometric realisation of
the domino complex. We often write Sn(Γ) for the set of n-dimensional dominoes arising
from R, and sometimes describe elements of Sn(Γ) as cubes or dominoes in Γ.

Domino complexes as buildings

3.2.7 Jacques Tits first introduced buildings in order to understand the structure of semi-simple
Lie groups over arbitrary fields. Since then, their intricate branching symmetries and
ability to be characterised both geometrically and by way of their algebraic groups have
enchanted mathematicians from fields as diverse as combinatorics and operator theory
(see, for example [Vdo02; KS91], respectively).

Proposition 3.2.10 gives an important connection between the geometries of domino com-
plexes and of buildings, and it is the branching property of buildings which ensures that
we can make the classification of domino algebras in §3.5.

3.2.8 Definition (Tits building) A (Tits) building of rank k is a k-dimensional simplicial com-
plex or cube complex ∆which can be expressed as the union of apartments, subcomplexes
Σ ⊆ ∆, which together have the following properties:

(i) Every cell (simplex or n-dimensional cube, for n ∈ {0, . . . , k}) in ∆ is contained in
a chamber, that is, a k-dimensional cell. Moreover, every cell in a subcomplex Σ is
contained in a chamber in Σ.

(ii) Each (k − 1)-dimensional cell in ∆ is contained in exactly two chambers.

(iii) Given any two chambers X,X′ ∈ Σ, we can find a sequence X � X0 ,X1 , . . . ,Xs � X′

of chambers such that Xi is adjacent to Xi+1 for each i.

(iv) Given any two cells in ∆, there is some apartment which contains both of them.

(v) If Σ,Σ′ are apartments which both contain two cells x , x′, then there is an isomorph-
ismΣ→ Σ′which respects the structure of the complex, andwhich fixes the vertices
of x and x′.

(vi) Each n-dimensional cell of ∆ is contained in at least three chambers, for all n < k.
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Property (vi) is that of thickness. Some authors reserve the term “building” for simplicial
or cube complexes which satisfy (i)–(v), awarding the term thick building to those which
also satisfy (vi).

All apartments Σ are isomorphic to one another. If each apartment is a tessellation of
Euclidean space, then we say that the building ∆ is affine (see [Bro89, VI]).

3.2.9 For our purposes, it is enough for chambers of a building to be k-dimensional cubes or
simplices, but it should be noted that Tits originally defined buildings as strictly simplicial
complexes (see [Bro89, IV]). In general, an apartment of a k-rank affine building can be
regarded as a tessellation of k-dimensional Euclidean space by products of simplices,
sometimes called polysimplices—then an n-dimensional cube is a product of n-many
1-dimensional simplices (edges). An affine building is said to be of type Ãn for n ≥ 1,
if its chambers are n-dimensional simplices. Thus a building whose chambers are 2-
dimensional squares has type Ã1 × Ã1, for example (see [BT72, §1]).

The product of k-many trees ∆ :� T(m1) × · · · × T(mk) is an example of an type
∏k

i�1 Ã1

building of rank k; if mi ≥ 3 for each i, then ∆ is thick. The characterisation of k-domino
groups in the following proposition was actually used as the definition in [Vdo21].

3.2.10 Proposition A group Γ is a k-domino group if and only if it is a torsion-free
∏k

i�1 Ã1 group, that
is, one which acts freely and transitively on the set of vertices of the product ∆ of k trees.

� Proof The proof that a torsion-free group of type
∏k

i�1 Ã1 is a k-domino group follows the
same argument as that of [KR02, 3.4]. By the same proof, the fact that a k-domino group
Γ acts on a product of k-many trees follows from 3.1.7 and considerations in [BW99]. It is
enough to note that elements of Γ correspond to paths in the 1-skeleton of ∆. Then to show
that the action is free and transitive, the remainder of [KR02, 3.4] can be easily generalised
from k � 2 to arbitrary k. �
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§3.3 The UCE Property in higher dimensions

In this section, we show that k-domino groups possess a k-dimensional Unique Common
ExtensionProperty, a cognate of 2.2.2. Before then,we take some time to familiarise ourselves
with k-domino groups by inspecting some examples.

3.3.1 Example (A 3-domino group with 24 cubes) Consider the alphabetsE1 �
{

a1 , a2 , ā1 , ā2
}
,

E2 �
{

b1 , b2 , b3 , b̄1 , b̄2 , b̄3
}
, E3 �

{
c1 , c2 , c3 , c4 , c̄1 , c̄2 , c̄3 , c̄4

}
, and define the group Γ �

Γ{3,5,7} :� 〈E � E1 t E2 t E3 | R〉, as first seen in [RSV19, 3.17], where

R �
{

a1b1a2b2 , a1b2a2 b̄1 , a1b3 ā2b1 , a1 b̄3a1 b̄2 , a1 b̄1 ā2b3 , a2b3a2 b̄2 ,

a1c1 ā2 c̄2 , a1c2 ā1c3 , a1c3 ā2 c̄4 , a1c4a1 c̄1 , a1 c̄4a2c2 , a1 c̄3a2c1 , a2c3a2 c̄2 , a2c4 ā2c1 ,

c1b1c3 b̄3 , c1b2c4 b̄2 , c1b3 c̄4b2 , c1 b̄3c4b3 , c1 b̄2c2b1 , c1 b̄1c4 b̄1 ,

c2b2 c̄3 b̄3 , c2b3c4b1 , c2 b̄3c3b3 , c2 b̄2c3b2 , c2 b̄1c3 b̄1 , c3b1c4b2
}
.

This is a 3-domino group with adjacency structure E1 , E2 , E3. The set of relations R as
displayed above is shorthand for the set of pointed squares

S2(Γ) �
{
S � [x1 , y1 , x2 , y2], SH , SR , SV | x1 y1x2 y2 ∈ R

}
,

fromwhich we construct the corresponding domino complexM(Γ) (see 3.2.6). Given each
relation corresponding to a pointed square S, the relations corresponding to SH , SR and
SV are all implied, so we have omitted them.

Writing |Ei | � mi , we compute that the domino complex M(Γ) comprises one vertex,
m1 +m2 +m3 � 18 directed edges (9 geometric edges), m1m2 +m1m3 +m2m3 � 104 pointed
squares (26 geometric squares), and m1m2m3 � 192 pointed cubes, or 3-dimensional
dominoes (24 geometric cubes). �

3.3.2 Example (A 3-domino group with 27 cubes) Now consider three alphabets E1, E2 and
E3, each of cardinality 6, and the group Γ � Γ′{2,3,4} which was defined in [RSV19, 2.36] as
Γ :� 〈E � E1 t E2 t E3 | R〉, where

R �{
a1b1 ā2 b̄3 , a1b2a3b3 , a1b3a3b2 , a1 b̄1 ā3 b̄1 , a1 b̄2a2 b̄2 , a1 b̄3 ā2b1 , a2b1 ā3b2 , a2b2 ā3b1 , a2 b̄3a3 b̄3 ,

a1c1 ā2c1 , a1c2 ā1 c̄2 , a1c3a3c3 , a1 c̄1a1 c̄3 , a2c1a2 c̄2 , a2c2 ā3c2 , a2c3 ā2 c̄3 , a3c1 ā3 c̄1 , a3c2a3 c̄3 ,

b1c1 b̄2 c̄3 , b1c2b3c3 , b1c3b3c2 , b1 c̄1 b̄3 c̄1 , b1 c̄2b2 c̄2 , b1 c̄3 b̄2c1 , b2c1 b̄3c2 , b2c2 b̄3c1 , b2 c̄3b3 c̄3
}
.

This is a 3-domino group with adjacency structure E1 �
{

ai , āi
}
, E2 �

{
bi , b̄i

}
, E3 �{

ci , c̄i
}
, and which acts freely and transitively on the product of three trees of valency six:

T(6) × T(6) × T(6), by Proposition 3.1.7. The corresponding cube complexM(Γ) has one
vertex, 27 geometric squares labelled with the relators in R (giving rise to 27 × 4 � 108
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pointed squares), and 27 geometric cubes (27 × 8 � 216 3-dimensional dominoes). We
present the set of 27 geometric cubes, that is, elements of S′3(M), in Figure 3.4. �

3.3.3 Lemma LetΓ be a k-domino groupwith adjacency structureE1 , . . . , Ek . Then each of the adjacency
matrices M1 , . . . ,Mk from 3.1.16 has entries in {0, 1}, and has at least three non-zero entries in
each row.

� Proof Consider the k-dimensional domino U � �
{[

u1 , u1
j , ū

j
1 , ū j

]}
∈ Sk(Γ), as construc-

ted in 3.1.14. By propertyD1 of k-cube groups and the fact that |Ei | ≥ 4 for all i, we are able
to find some k-dimensional domino V � �

{[
v̄1 , v j , v

j
1 , v̄

1
j

]}
, where v̄ j � u1

j and v1 , u1.

Property D2 then implies that v j
1 , u j

1 for all j. It follows that M1(A, B) � 1, and a similar
argument can be used for each i ∈ {2, . . . , k} to find a k-dimensional domino Wi with
Mi(U,Wi) � 1. Hence, in each row in each of the matrices M1 , . . . ,Mk , there are at least
three non-zero entries, and by definition these are {0, 1}-matrices. �

3.3.4 Definition (UCE Property in k dimensions) Let k ≥ 3, and let Γ be a k-domino group
with adjacency structure E1 , . . . Ek and adjacency matrices M1 , . . . ,Mk . Let U,Vp ,Vq ,Vr

be k-dimensional dominoes in Sk(Γ) such that Mp(U,Vp) � Mq(U,Vq) � Mr(U,Vr) � 1 for
some distinct p , q , r ∈ {1, . . . , k}. We say that the matrices Mi have the Unique Common
Extension Property or UCE Property if we can find unique dominoes Wpq ,Wpr ,Wqr ,X ∈
Sk(Γ) such that each of

Mp(Vq ,Wpq), Mp(Vr ,Wpr), Mq(Vp ,Wpq), Mq(Vr ,Wpr), Mr(Vp ,Wpr), Mr(Vq ,Wqr),

and each of
Mp(Wqr ,X), Mq(Wpr ,X), Mr(Wpq ,X)

is equal to 1 (see Figure 3.5). In the case where k � 2, the definition reduces to that of 2.2.2:
if A, B, C ∈ S2 are such that M1(A, B) � M2(A, C) � 1. Then M1 ,M2 have theUCE Property
if there exists a unique pointed square D ∈ S2 such that M2(B,D) � M1(C,D) � 1.

3.3.5 The definition of the Unique Common Extension Property could be extended to deal with
higher numbers of dominoes V1 , . . . ,Vk ∈ Sk , with each Vi being Ei-adjacent to some
initial domino U. By [RS99, 1.4], however, it turns out that given just three k-cubes Vp , Vq ,
Vr initially adjacent to U as above, having unique common extensions is enough to imply
unique common extensions for any number of initial dominoes Vi .

3.3.6 Proposition LetM be the k-dimensional cube complex with adjacency structure E1 , . . . , Ek , as
constructed in 3.1.17. Then its associated adjacency matrices M1 , . . . ,Mk commute, and have the
Unique Common Extension Property.
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Figure 3.4: Continued from page 68. An illustration of the 27 geometric cubes in the
group Γ � Γ′{2,3,4} from 3.3.2—each represents an element of S′3(Γ), and by acting
on this set by the group of reflections of the cube (see Figure 3.2), we obtain the 216
3-dimensional dominoes of S3(Γ).

Each triple (a , b , c) ∈ E1 × E2 × E3 appears exactly once as the set of arrows emitted
from a corner of one of the cubes above, for example the triple

(
ā2 , b3 , c̄1

)
appears

as the front-bottom corner of the first cube. Thus each such triple appears at the
basepoint of exactly one 3-dimensional domino, as we expect from 3.1.14–3.1.15.

� Proof In the case where k � 2, the result is proved in [KR02, 4.1].

Suppose, then, that k ≥ 3, and let U � �
(
u1 , . . . , uk

)
∈ Sk be a k-dimensional domino.

Pick distinct elements p , q , r ∈ {1, . . . , k}, define three more k-dimensional dominoes
Vp :� �(v(p)1 , . . . , v(p)k), Vq :� �(v(q)1 , . . . , v(q)k), Vr :� �(v(r)1 , . . . , v(r)k) in Sk , and
suppose that Mi(U,Vi) � 1 for each i ∈ {p , q , r}. Then by 3.1.16, we have v(i)Lj � uL∪{i}

j
and v(i)Li , ūL

i whenever L ⊆ ({1, . . . , k} \ {i}) and j < (L ∪ {i}).

By 3.3.3, we can find k-dimensional dominoes Wi j � �(w(i j)1 , . . . ,w(i j)k) ∈ Sk such that
M j(Vi ,Wi j) � 1whenever j ∈ ({p , q , r}\{i}). ThenWi j is theunique k-dimensional domino
with w(i j)l � u{i , j}l for all l ∈ ({1, . . . , k} \ {i , j}), and w(i j)i � v(i) ji and w(i j) j � v̄( j)ij . In
particular, we see that M j(Vi ,Wi j) � 1 if and only if Mi(Vj ,W ji) � 1, which is to say that
Mi j � M ji for each i , j.
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Figure 3.5: A visualisation of adjacency of k-dimensional dominoes when k � 3.
Presume that edges perpendicular to the pink faces are labelled by elements of an
alphabet E1, those perpendicular to blue and yellow faces are labelled by E2 and
E3, respectively. Domino V1 is E1-adjacent to U if the right face of V1 aligns with the
left face of U, and none of the pink edges of U is the inverse of the corresponding
pink edge of V .

Likewise, V2 and V3 are respectively E2- and E3-adjacent to U if the correct faces
match, and when they are glued together at their common face, no edge end up
incident to its inverse. We generalise the notion of adjacency to k-dimensional
dominoes by considering the similarity not just of face, but of (k − 1)-dimensional
sub-cubes (see 3.1.16).

The UCE Property from 3.3.4 would suggest, given k-dimensional dominoes U, V1,
V2 and V3 as above, the existence of unique dominoes W12, W13, W23 and X which
are adjacent in a way that completes the 2×2×2 configuration above. Each of those
eight dominoes shares the vertex z.

Finally, consider a k-dimensional domino X � �(x1 . . . , xk) ∈ Sk such that Mr(Wpq ,X) � 1;
such a k-cube exists which satisfies 3.1.16 by Lemma 3.3.3. Then X is the unique k-
dimensional domino defined by

• xi � u{p ,q ,r}i whenever i < {p , q , r},

• xi � w(i j)li , for i , j, l ∈ {p , q , r}.

It is clear that X is the unique k-dimensional domino which also satisfies Mq(Wpr ,X) �
Mp(Wqr ,X) � 1. �
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§3.4 The higher-rank graph induced by a domino group

3.4.1 Given a k-domino group Γ with adjacency structure, we can use the adjacency matrices
M1 , . . . ,Mk to construct a k-coloured directed graph G with vertex set G0 � Sk(Γ) and an
arrow of colour i from a domino V to another domino U whenever Mi(U,V) � 1.

3.4.2 The UCE Property is formulated slightly differently to the factorisation property of k-rank
graphs (compare with 1.1.4, Figure 1.4, and the associativity property C2 from 1.1.15). We
claim that the UCE Property implies this associativity.

Indeed, by property D2, any two consecutive sides of a geometric square in the complex
M(Γ) uniquely define the square. Then, n-many adjacent and mutually perpendicular
edges uniquely determine a geometric n-cube (and such an n-cube exists, since the link
at each vertex of M(Γ) is a clique complex of a complete k-partite graph). So, given k-
dimensional dominoes U and X arranged as in Figure 3.5, then the remaining dominoes
Vi , Wi j are determined by U and X, since each of them includes the vertex z common to
U and X, and in each domino Vi , Wi j we can find k-many mutually perpendicular edges
incident to z, which are also included in U or X.

This fact, together with 1.1.16 and 3.4.1, demonstrates that a k-domino group uniquely
induces a k-rank graph, which we sometimes refer to as a k-domino graph. Since the set
Sk(Γ) is finite, and the matrices Mi have non-empty rows by 3.3.3, we can write:

3.4.3 Theorem Let Γ be a k-domino group with adjacency matrices M1 , . . . ,Mk . Then Γ induces a
row-finite k-rank graph (Λ(Γ), d) with no sources, vertex set Λ(Γ)0 :� Sk(Γ), and where for all
vertices U,V ∈ Sk(Γ), there is a morphism λ : V → U of degree d(λ) � ei precisely when
Mi(U,V) � 1. �

Evans’ spectral sequence

3.4.4 As we learnt in 1.3.3, we can associate a unital C?-algebra to any row-finite higher-rank
graphwithno sources; shortlywewill do this for the k-dominographsΛ(Γ) above, and then
we investigate their K-theory. Firstly, however, it behoves us to introduce spectral sequences:
generalisations of exact sequences which are to be employed in the proofs of 3.4.7 and
3.4.11. We attempt to offer an overview of spectral sequences here, though their intricate
nature deserves much more attention—we direct any unsatisfied readers to [McC00] for
such a treatment.

3.4.5 Definition (Spectral sequence) Let C be anAbelian category (see [Mac78, I.8]). A spectral
sequence (of homological type) is a family of objects and maps {(Er , dr)}r≥1. For each
positive integer r, Er is an object bigraded by integers p and q, with

Er :�
⊕
p ,q∈Z

Er
p ,q
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for some Er
p ,q in Ob(C). Each dr is a map of degree (−r, r − 1) called a differential, with

dr : Er
p ,q −→ Er

p−r,q+r−1 , and dr : Er
p+r,q−r+1 −→ Er

p ,q ,

and which satisfies dr ◦ dr � 0. The differentials dr are not the same as the degree maps of
higher-rank graphs. We insist that

Er+1
p ,q � H(Er

p ,q) :�
ker

(
dr : Er

p ,q −→ Er
p−r,q+r−1

)
im

(
dr : Er

p+r,q−r+1 −→ Er
p ,q

) .
The collections

(
Er

p ,q
)
for fixed r are known as the sheets of the spectral sequence. We

“move to the next sheet” by taking the homology H, defined above. We call a spectral
sequence bounded if the sequence of objects Er

p ,q stabilises as r →∞; we denote this limit
by E∞p ,q , and call it the stable value.

We say that a bounded spectral sequence converges to a family of Z-modules {Kε}ε∈Z if
there exists a finite ascending filtration of modules

0 � Fs(Kε) ⊆ · · · ⊆ Fp−1(Kε) ⊆ Fp(Kε) ⊆ Fp+1(Kε) ⊆ · · · ⊆ Ft(Kε) � Kε , (3.1)

and an isomorphism
E∞p ,q � Fp(Kp+q)/Fp−1(Kp+q), (3.2)

for every pair (p , q).

Given a general chain complex A :� · · · → Ai+1
∂i+1−→ Ai

∂i−→ Ai−1 → · · · , we frequently
write Hi(A) to denote the ith homology ker(∂i)/im(∂i+1).

3.4.6 Lemma (Evans, 2008) There exists a spectral sequence {(Er , dr)} which converges to the family
of Z-modules {Kε}ε∈Z, where

Kε :�


K0(A(Λ)) if ε is even,

K1(A(Λ)) if ε is odd.

with E∞p ,q � E5
p ,q � 0 whenever p ∈ (Z \ {0, . . . , 4}) or q is odd.

3.4.7 Theorem (Evans, 2008) Define the sets

Nl :�


{
µ :� (µ1 , . . . , µl) ∈ {1, . . . , k}l

�� µ1 < · · · < µl
}

if l ∈ {1, . . . , k},
{ ∗ } if l � 0,

∅ otherwise,
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and for l ∈ {1, . . . , k} and µ ∈ Nl , define

µi :�

(µ1 , . . . , µ̂i , . . . , µl) ∈ Nl−1 if l > 1,

∗ if l � 1.

Let Λ be a row-finite k-graph with no sources. Then there exists a spectral sequence {(Er , dr)}
which converges to Kε(A(Λ)), with E∞p ,q � Ek+1

p ,q , and

E2
p ,q �


Hp(Dk) if p ∈ {0, 1, . . . , k} and q is even,

0 otherwise.

Here,Dk :� · · · → (Dk)p+1
∂p+1
−→ (Dk)p

∂p
−→ (Dk)p−1 → · · · is the chain complex with

(Dk)p :�

⊕

µ∈Np
ZΛ0 if p ∈ {0, 1, . . . , k},

0 otherwise,

whereZΛ0 represents the group of linear combinations of the elements ofΛ0 with coefficients inZ.
The differentials ∂p : (Dk)p → (Dk)p−1 are defined by

∂p :
⊕
µ∈Np

mµ 7−→
⊕
λ∈Np−1

∑
µ∈Np

p∑
i�1
(−1)i+1δλ,µi

(
1 −MT

µi

)
mµ ,

for each p ∈ {1, . . . , k}, where δλ,µi is the Kronecker delta function, which takes value 1 when
λ � µi , and 0 otherwise. �

3.4.8 Theorem (Evans, 2008; 3.4.7 when k � 3) Let Λ be a row-finite 3-graph with no sources, and
with adjacency matrices M1, M2, M3. Write 1 to denote the 3× 3 identity matrix, and consider the
chain complexD3:

0 −→ ZΛ0 ∂3−→
3⊕

i�1
ZΛ0 ∂2−→

3⊕
i�1

ZΛ0 ∂1−→ ZΛ0 −→ 0,

73



Chapter 3 §3.4 The higher-rank graph induced by a domino group

whose differentials ∂1, ∂2, ∂3 are defined by the block matrices

∂1 :�
[
1 −MT

1 1 −MT
2 1 −MT

3

]
,

∂2 :�


MT

2 − 1 MT
3 − 1 0

1 −MT
1 0 MT

3 − 1

0 1 −MT
1 1 −MT

2


,

∂3 :�


1 −MT

3

MT
2 − 1

1 −MT
1


.

Then for some subgroups G0 ⊆ coker(∂1) and G1 ⊆ ker(∂3), there exists a short exact sequence

0 −→ coker(∂1)/G0 −→ K0(A(Λ)) −→ ker(∂2)/im(∂3) −→ 0,

and an isomorphism
K1(A(Λ)) � ker(∂1)/im(∂2) ⊕ G1 ,

whereA(Λ) is the 3-rank graph C?-algebra associated to Λ, as defined in 1.3.11. �

3.4.9 Corollary (Evans, 2008; k � 3) In addition to the hypotheses of Theorem 3.4.8:

(i) If ∂1 is surjective, then:

(a) K0(A(Λ)) � ker(∂2)/im(∂3).
(b) K1(A(Λ)) � (ker(∂1)/im(∂2)) ⊕ ker(∂3).

(ii) If
⋂

i ker
(
1 −MT

i

)
� 0, then there exists a short exact sequence

0 −→ coker(∂1) −→ K0(A(Λ)) −→ ker(∂2)/im(∂3) −→ 0,

and an isomorphism
K1(A(Λ)) � ker(∂1)/im(∂2).

�

3.4.10 In [MRV20], versions of 3.4.8–3.4.9 were presented for the cases where k � 4 and k � 5.
Although it is tempting to try to extend these results on k-graph C?-algebras to higher
k, in actuality we get ever fuzzier information about the K-theory as k increases. This is
because the groups Kε(A(Λ)) lie at the heart of a nest of short exact sequences, surrounded
by groups about which we only have partial information. Increasing the dimension k also
increases the number of sequences, as can be seen in 3.4.11, to the point where above k � 5
we can deduce very little about the K-theory.
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This being said,Corollaries 3.4.9 and 3.4.12 offer some conditions on the adjacencymatrices
of a higher-rank graph Λwhich allow us to make sharper deductions about the K-theory.
We present what is known about the K-theory of 4-rank graph algebras here.

3.4.11 Theorem (Mutter, Radu and Vdovina, 202-; 3.4.7 when k � 4) Let Λ be a 4-graph which is
row-finite and has no sources, and which has adjacency matrices M1 , . . . ,M4. Write 1 to denote
the 4 × 4 identity matrix, and consider the chain complexD4 defined by

0 −→ ZΛ0 ∂4−→
4⊕

i�1
ZΛ0 ∂3−→

6⊕
i�1

ZΛ0 ∂2−→
4⊕

i�1
ZΛ0 ∂1−→ ZΛ0 −→ 0,

whose differentials ∂1 , . . . , ∂4 are the group homomorphisms represented by block matrices

∂1 :�
[
1 −MT

1 1 −MT
2 1 −MT

3 1 −MT
4

]
,

∂2 :�



MT
2 − 1 MT

3 − 1 MT
4 − 1 0 0 0

1 −MT
1 0 0 MT

3 − 1 MT
4 − 1 0

0 1 −MT
1 0 1 −MT

2 0 MT
4 − 1

0 0 1 −MT
1 0 1 −MT

2 1 −MT
3


,

∂3 :�



1 −MT
3 1 −MT

4 0 0

MT
2 − 1 0 1 −MT

4 0

0 MT
2 − 1 MT

3 − 1 0

1 −MT
1 0 0 1 −MT

4

0 1 −MT
1 0 MT

3 − 1

0 0 1 −MT
1 1 −MT

2


,

∂4 :�



MT
4 − 1

1 −MT
3

MT
2 − 1

1 −MT
1


.

Write Hi(D4) :� ker(∂i)/im(∂i+1), and let F2 be a factor in the ascending filtration (3.1) of the
group K0(A(Λ)). Then, for some subgroups

G0 ⊆ coker(∂1), G1 ⊆ ker(∂4), G2 ⊆ H1(D4), G3 ⊆ H3(D4),

there exist short exact sequences as follows:
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(i) 0 −→ coker(∂1)/G0 −→ K0(A(Λ)) −→
K0(A(Λ))

coker(∂1)/G0
−→ 0,

(ii) 0 −→ coker(∂1)/G0 −→ F2 −→
ker(∂2)
im(∂3)

−→ 0,

(iii) 0 −→ F2 −→ K0(A(Λ)) −→ G1 −→ 0,

(iv) 0 −→ ker(∂1)/im(∂2)
G2

−→ K1(A(Λ)) −→ G3 −→ 0,

and sequence (iii) splits, such that K0(A(Λ)) � F2 ⊕ G1.

� Proof Write {(Er , dr)}r≥1 to denote the spectral sequence of homological type from 3.4.7.
We know from that theorem that {(Er , dr)} is bounded, and that the stable value of Er

p ,q is
E∞p ,q � Ek+1

p ,q � E5
p ,q . We may use the finite ascending filtration (3.1) and the isomorphism

(3.2) for each family of Z-modules {Kε}ε∈Z, since Lemma 3.4.6 tells us that the spectral
sequence converges to Kε(A(Λ)) � Kεmod 2(A(Λ)).

We split the proof into cases based on the total degree p + q. Firstly, consider K0(A(Λ)),
and write K0 � K0(A(Λ)) � Kp+q , as in [Eva08, 3.3].

Case I: Fix the total degree, p + q, to be zero.

We must have E5
p ,q � 0 unless p ∈ {0, 2, 4}, since if p is odd and p + q � 0, then q is

also odd. Suppose, then, that p < {0, 2, 4}, so that 0 � E5
p ,q � Fp(K0)/Fp−1(K0), and hence

Fp(K0) � Fp−1(K0). We can deduce that, in our filtration, we have F1(K0) � F0(K0), and
Fi+1(K0) � Fi(K0) for all i ≥ 2.

By the same argument, it follows that Fi(K0) � 0 for all i < 0, and so the filtration bubbles
down to

0 ⊆ F0(K0) ⊆ F2(K0) ⊆ K0.

Next, we consider the non-zero terms from the
(
E5

p ,q
)
sheet. From (3.2), we have:

• E5
0,0 � F0(K0).

• E5
2,−2 � F2(K0)/F1(K0) � F2(K0)/F0(K0).

• E5
4,−4 � F4(K0)/F3(K0) � K0/F2(K0).

We then obtain short exact sequences as follows:

(i’) 0 −→ E5
0,0 −→ K0 −→ K0/E5

0,0 −→ 0,

(ii’) 0 −→ E5
0,0 −→ F2(K0) −→ E5

2,−2 −→ 0,

(iii’) 0 −→ F2(K0) −→ K0 −→ E5
4,−4 −→ 0,
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which we use shortly to deduce the short exact sequences of the theorem. Before that,
however, we turn our attention to K1(A(Λ)).

Case II: Now fix the total degree p + q � 1.

Note that, in order for E5
p ,q to be non-zero, we must have p ∈ {0, . . . , 4} and q even. But,

the only pairs (p , q) of total degree 1 are (1, 0) and (3,−2). Thus, it follows analogously
from [Eva08, 3.17] that there is a short exact sequence

0 −→ E5
1,0 −→ K1(A(Λ)) −→ E5

3,−2 −→ 0. (3.3)

To complete the proof requires two more steps:

(a) For K1(A(Λ)), computation of the terms E5
1,0 and E5

3,−2 which appear in (3.3).

(b) For K0(A(Λ)), computation the terms E5
0,0, E5

2,−2, and E5
4,−4.

Step (a): E5
1,0 and E5

3,−2.

Consider the differentials d4, d3, and d2; since E4
p ,q � 0 whenever p ∈ (Z \ {1, . . . , 4}), we

necessarily have
d4 : E4

p ,q −→ E4
p−4,q+3 , d4 : E4

p+4,q−3 −→ E4
p ,q ,

for p ∈ {0, 4}. However, in either case this would imply that both of q and q + 3 or q and
q − 3 are even: a contradiction. Hence d4 must be the zero map.

Similarly, it follows that the only non-zero components of the d3 differential are

d3 : E3
3,q −→ E0,q+2 , d3 : E3

4,q −→ E3
1,q+2 ,

whenever q is even. Furthermore, we can deduce that d2 must also be the zero map, as in
[Eva08, 3.16]. We therefore have the following isomorphisms:

E5
1,0 � H

(
E4

1,0
)
�

ker
(
d4 : E4

1,0 → E4
−3,3

)
im

(
d4 : E4

5,−3 → E4
1,0

) � E4
1,0 ,

E4
1,0 � H

(
E3

1,0
)
�

ker
(
d3 : E3

1,0 → E3
−2,2

)
im

(
d3 : E3

4,−2 → E3
1,0

) � E3
1,0/im

(
d3 : E3

4,−2 → E3
1,0

)
.

Now, let G2 be a subgroup of E3
1,0 � H1(D4), namely G2 :� im

(
d3 : E3

4,−2 → E3
1,0

)
. Then

E3
1,0 � H

(
E2

1,0
)
� E2

1,0 � H1(D4),
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so E5
1,0 � (ker(∂1)/im(∂2))/G2, and it remains to compute E5

3,−2. We have isomorphisms:

E5
3,−2 � H

(
E4

3,−2
)
�

ker
(
d4 : E4

3,−2 → E4
−1,1

)
im

(
d4 : E4

7,−5 → E4
3,−2

) � E4
3,−2 ,

E4
3,−2 � H

(
E3

3,−2
)
�

ker
(
d3 : E3

3,−2 → E3
0,0

)
im

(
d3 : E3

6,−4 → E3
3,−2

) � ker
(
d3

3,−2
)
⊆ E3

3,−2.

Combining the above, we find that E5
3,−2 � ker

(
d3

3,−2
)
⊆ E3

3,−2 � H3(D4). Writing G3 :�
ker

(
d3

3,−2
)
, which is a subgroup of H3(D4), we now have the short exact sequence (iv):

0 −→ H1(D4)/G2 −→ K1(A(Λ)) −→ G3 −→ 0.

Step (b): E5
0,0, E5

2,−2, and E5
4,−4.

Now consider E5
0,0. We know that E5

0,0 � H(E4
0,0) � E4

0,0, since we have established that the
differential d4 is the zero map. We also know that

E4
0,0 � H

(
E3

0,0
)
�

ker
(
d3 : E3

0,0 → E3
−3,0

)
im

(
d3 : E3

3,−2 → E3
0,0

) � E3
0,0/im

(
d3

3,−2
)
.

Note that E3
0,0 � H(E2

0,0) � E2
0,0 � H0(D4) � coker(∂1), so that if we write G0 :� im(d3

3,−2),
then we obtain E5

0,0 � coker(∂1)/G0. This, together with the sequence (i’) above, gives us
the short exact sequence (i).

Turning our attention to E5
2,−2 and E5

4,−4 now, we know that E5
2,−2 � H(E4

2,−2) � E4
2,−2, by

virtue of d4 being the zero map. We also have an isomorphism

E4
2,−2 � H

(
E3

2,−2
)
�

ker
(
d3 : E3

2,−2 → E3
−1,0

)
im

(
d3 : E3

5,−4 → E3
2,−2

) � E3
2,−2 � H

(
E2

2,−2
)
� H2(D4),

from which we deduce that E5
2,−2 � H2(D4). Together with (ii’) and the above, this gives

us sequence (ii). We also know that E5
4,−4 � H(E4

4,−4) � E5
4,−4, and

E4
4,−4 � H

(
E3

4,−4
)
�

ker
(
d3 : E3

4,−4 → E3
1,−2

)
im

(
d3 : E3

7,−6 → E3
4,−4

) � ker
(
d3

4,−4
)
⊆ E3

4,−4 ,

and so E3
4,−4 � H

(
E2

4,−4
)
� E2

4,−4 � H4(D4). By writing G1 :� ker(d3
4,−4), and putting this

together with (iii’), we obtain the sequence (iii). Finally, we know that H4(D4) is a free
Abelian group, and since subgroups of such groups are also free Abelian, it follows that
G1 is free Abelian, and hence that sequence (iii) splits. �
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3.4.12 Corollary (Mutter, Radu and Vdovina, 202-; k � 4) In addition to the hypotheses of 3.4.11:

(i) If ∂1 is surjective, then there exists an isomorphism F2 � ker(∂2)/im(∂3), and the short
exact sequences 3.4.11(i)–(iv) reduce to an isomorphism and an exact sequence:

(a) K0(A(Λ)) �
ker(∂2)
im(∂3)

⊕ G1,

(b) 0 −→ ker(∂1)/im(∂2)
G2

−→ K1(A(Λ)) −→ ker(∂3)/im(∂4) −→ 0.

(ii) If the intersection
⋂

i ker
(
1 −MT

i

)
� 0, then K0(A(Λ)) � F2, and the sequences reduce to:

(a) 0 −→ coker(∂1)/G0 −→ K0(A(Λ)) −→ ker(∂3)/im(∂2) −→ 0,

(b) 0 −→ ker(∂1)/im(∂2) −→ K1(A(Λ)) −→ G3 −→ 0.

� Proof To demonstrate (i), we suppose that ∂1 is surjective, such that coker(∂1) � 0 and
F2(K0) � ker(∂2)/im(∂3). Then the split exact sequence (iii) from 3.4.11 gives us (i)(a).

Then, we also know that 0 � coker(∂1) � H0(D4) � E3
0,0, and so d3 : E3

3,−2 → E3
0,0 must

be the zero map. Hence ker(d3
3,−2) � E3

3,−2 � H3(D4), and we obtain (i)(b) by using the
sequence 3.4.11(iv).

Now, in order to show (ii), we suppose that
⋂

i
(
1 −MT

i

)
� 0. Then ker(∂4) � 0, and hence

G1 � 0 and K0 � F2. This gives us (ii)(a).

Finally, from 3.4.11(iv) we obtain the new sequence

0 −→ ker(∂1)/im(∂2)
G2

−→ K1 −→ G3 −→ 0,

where G2 and G3 are the groups defined by

G2 :� im
(
d3

4,−2 : E3
4,−2 −→ E3

1,0 � H1(D4)
)
,

G3 :� ker
(
d3

3,−2
)
⊆ ker(∂3)/im(∂4).

However, we also know that E3
4,−2 � H(E2

4,−2) � E2
4,−2 � H4(D4) � ker(∂4). But because

ker(∂4) � 0, it follows that the differential ∂3
4,−2 has domain 0, and is hence the zero map.

Therefore G2 � 0, and the result follows. �
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§3.5 Properties of domino graph algebras

3.5.1 Let Γ be a k-domino group with adjacency matrices M1 , . . . ,Mk ; by 3.4.3, there is a k-
rank graph Λ � Λ(Γ) which has vertices indexed by the set of k-dimensional dominoes
Sk(Γ), and amorphism between two dominoes whenever they are adjacent. We call k-rank
graphs which arise in this way k-domino graphs, and we call the universal C?-algebra of a
k-domino graph a k-domino graph algebra.

In this section we investigate some desirable properties of domino graph algebras, and
eventually show that they fall under the same classification as the tile systems of Chapter
2, meaning that they satisfy the criteria of Theorem 2.3.11.

3.5.2 Lemma Let Γ be a k-domino group with adjacency structure E1 , . . . , Ek . Then the induced k-rank
graph Λ(Γ) satisfies the Aperiodicity Condition of 2.3.1.

� Proof The proof is almost identical to that of 2.3.3, and follows as a result of the observa-
tions in [RS99, §2]. Since |Ei | ≥ 4 for each i, there are always at least two k-dimensional
dominoes which are Ei-adjacent to some domino U. Hence, we can always exit some cycle
by diverting our path down another edge in (the 1-skeleton of) Λ(Γ) at any vertex U.

Likewise, given a k-dimensional domino V , there are always at least three dominoes to
which V is Ei-adjacent. Thus we may always find an infinite aperiodic path, and Λ(Γ)
satisfies the Aperiodicity Condition. �

3.5.3 Lemma Let Γ be a k-domino group, and let Λ(Γ) be its induced k-rank graph. Then Λ(Γ) is
strongly connected, that is, for any two vertices U,V ∈ Λ(Γ)0, there is a path linking U to V .

� Proof We give a geometric proof involving the domino complexM(Γ), althoughwe point
out that this can also be proved in the manner of [KR02, 4.2].

Let Γ be a k-domino group with adjacency structure E1 , . . . , Ek , write |Ei | � mi for each
i, and consider a k-dimensional domino U in the domino complexM(Γ). Let UH be the
domino obtained by reflecting S through the edges labelled by elements of E1, leaving the
basepoint and orientation the same as in S (in the manner of Figure 3.2).

Firstly, we show that there is a sequence of k-dimensional dominoes U � V0 , . . . ,Vn � UH

such that M1(Vj ,Vj+1) � 1 for all j, that is, so that each domino is E1-adjacent to the next.

Each k-dimensional domino X inM(Γ) contains two (k−1)-faces ((k−1)-dimensional sub-
dominoes) labelled by elements of E2 , . . . , Ek . Since the dominoes have a predetermined
orientation, we can label these faces XL and XR, such that M1(X,Y) � 1 if and only if
YL � XR and Y , XH . We may therefore assign to each domino X the pair (XL ,XR) such
that, in any sequence (Vj) of adjacent dominoes, VL

j+1 � VR
j , and Vj+1 , (Vj)H , for all j.

Observe that each (k − 1)-dimensional domino appears as XL (resp. XR) for some X ∈ Sk

precisely m1 times, and that, by assumption, m1 ≥ 4. Write A0 :� UR, and let V1 be
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a k-dimensional domino which is E1-adjacent to U; such a domino exists by the above
observation. If VR

1 � A0, then M1(V1 ,UH) � 1 and we are done.

Assume then that VR
1 � A1 , A0, and let V2 be E1-adjacent to V1. If VR

2 � A0, then
M1(V2 ,UH) � 1 , and if VR

2 � A1, then M1(V2 , (V1)H) � 1, and M1((V1)H ,UH) � 1. In both
cases, we have constructed a sequence of adjacent dominoes linking U to UH .

If VR
q � VR

p for any p < q, then we obtain the sequence we desire. But also, by the fact
that each (k − 1)-dimensional domino appears as XR for some X ∈ Sk an even number of
times, there must be some q > p for which VR

q � VR
p . Hence such a sequence exists, and

there is a path connecting the vertices labelled U and UH in Λ(Γ).

In the samemanner,wemay show that there is a sequence of adjacent dominoes connecting
each U ∈ Sk to each of its symmetries, being the ones which belong to the same orbit as U
under the action of the group of reflections of the k-dimensional cube.

Now, we construct the set P of all k-dimensional dominoes which can be reached by a
sequence of adjacent dominoes (in any sequence of directions) from an initial domino U.
Certainly UH is in P, by the above. Moreover, by virtue of Proposition 3.1.7, P contains
(m1 − 1)-many more distinct dominoes which are E1-adjacent to U, to total m1 distinct
dominoes. Each of these dominoes is E2-adjacent to m2 dominoes by the same argument.
These are distinct from each other by the uniqueness property of D3 from 3.1.14.

We may proceed inductively to find that P must contain at least
∏k

i�1 mi distinct k-
dimensional dominoes, but this is precisely |Sk | � |Λ(Γ)0 |. Hence, given any two dominoes
U,V , there is a sequence of adjacent dominoes from U to V . Equivalently, given any vertex
labelled by U in Λ(Γ)0, there is a path from U to every other vertex. �

3.5.4 Theorem (Classification of domino graph algebras) Let Γ be a k-domino group with adja-
cency structure E1 , . . . , Ek , and let (Λ(Γ), d) be the induced k-graph. Then A(Γ) :� A(Λ(Γ)) is
separable, nuclear, purely infinite, simple, and satisfies the Universal Coefficient Theorem. Hence
A(Γ) is completely determined by its K-theory and the class of idA(Γ) in K0, up to isomorphism.

� Proof From 3.5.3 and 2.3.7, it follows thatA(Γ) is simple. Also by 3.5.3, together with the
fact that |Ei | ≥ 4 for all i, it follows that for every U ∈ Λ(Γ)0 we can find λ, µ ∈ Λ(Γ) such
that d(µ) , 0, r(λ) � U, and s(λ) � r(µ) � s(µ). Hence from Theorem 2.3.8 it follows that
A(Γ) is purely infinite.

FromTheorem 3.4.3we know thatΛ(Γ) is a row-finite k-graphwith no sources, and in 2.3.6
it is shown that such a k-graph has a corresponding C?-algebrawhich is separable, nuclear,
unital, and satisfies theUniversal Coefficient Theorem, thereby putting us in a situationwhere
we can apply the Kirchberg–Phillips Classification (Theorem 2.3.11). �

3.5.5 Proposition (Order of identity in K0 for domino graph algebras) Fix k ≥ 2 and let Γ be
a k-domino group with adjacency structure E1 , . . . , Ek , where |Ei | � mi for each i, and define
ρ :� gcd{(mi/2) − 1}i . Then the order of the class of idA in K0(A(Γ)) divides ρ.
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� Proof This proposition can be proved via a simple generalisation of the method used in
[KR02, 5.4]. �

3.5.6 Conjecture Let Γ be a k-cube group with adjacency structure E1 , . . . , Ek , where |Ei | � mi , and
define ρ :� gcd{(mi/2) − 1}i . Factorise ρ as 2q r, where r is an odd number: if ρ is odd then write
q � 0. Then the order of the class of idA in K0(A(Γ)) is at most ρ, and is:

(i) Equal to ρ if ρ is odd,

(ii) Divisible by ρ/(2q) whenever q ∈ {1, . . . , k − 1},

(iii) Divisible by ρ/(2k−1) whenever q ≥ (k − 1).

3.5.7 IfMatui’s HK-Conjecture (see 4.2 and [FKPS19; Mat16]) were to be confirmed in the case of
domino graph algebras, then we would be able to refine the statement of Proposition 3.5.5
to that of Conjecture 3.5.6 by means of the following argument:

Given a higher-rank graph Λ, Proposition 1.3.13 tells us that the sum of all elements of
A(Λ) of the form tv , where v ∈ Λ0, is an identity for A(Λ). In particular, for a k-domino
group Γ, the sum

∑
U∈S(Γ) tU is an identity operator inA(Γ). Now, recall the map

∂1 : ZΛ(Γ)0 −→
k⊕

i�1
ZΛ(Γ)0

defined in 3.4.7 by the matrix
[
1 −MT

1 , . . . , 1 −MT
k

]
. The Covariance Relation of [KR02, §5]

generalises to k-graphs, and so from [RS01] andMatui’s Conjecture it would follow that the
map

ϕ : coker(∂1) �
〈
U ∈ Sk

���� ∑
V∈Sk

Mi(U,V) ·U
〉
−→ K0(A(Γ)),

which takes a k-dimensional domino U to its class [U] in K0 is injective. But each column
of Mi has exactly (mi − 1) ones, the rest of the entries being zero, and so Σ � (mi − 1)Σ
for each i ∈ {1, . . . , k}, where Σ :�

∑
U∈Sk

. Since
∑

U∈Sk
tU is an identity in A(Γ), the class

[idA] ∈ K0 is the image of Σ under ϕ. By the above, we also know that (mi − 2)Σ is zero
for each i.

Write 2ρ � gcd{mi − 2}i , and define the map ψ : coker(∂1) → Z/2ρ by ψ(S) :� 1mod 2ρ,
as in the proof of [KR02, 5.4]. Now,∏

i

(mi − 2) �
(∏

i

mi

)
− 2k mod 2ρ,

and since (mi −2) � 0mod 2ρ, this means that ψ(Σ) � 2k mod 2ρ, and hence that ρ ·ψ(Σ) �
0mod 2ρ. If ρ is odd, then ψ(Σ) has order ρ inZ/2ρ. If ρ is even, then ρ � 2q r for some odd
number r, and ρ · ψ(Σ) � 2k+q r mod (2q+1r). Thus the order of Σ in coker(∂1) is divisible
by ρ in the former case, and by max{ρ/(2q), ρ/(2k−1)} in the latter.
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Chapter 4

The geometry and K-theory of
domino graph algebras

We now provide some explicit examples of k-rank graph algebras based on the models
introduced in Chapter 3, and we compute aspects of their K-theory. As we mentioned in
3.1.12, construction of a set of pointed squareswhich has a k-domino structure is very hard
without the right tools, but the Rungtanapirom–Stix–Vdovina Algorithm in 4.1.6 provides a
bountiful source.

In each case, we attempt to determine the K-theory of the associated k-rank graph algebra
(in a manner reminiscent of Chapter 2), and calculate the cellular homology (see 2.6.1) of the
k-dimensional domino complexes (à la §2.6). We discuss to what extent this is possible,
and observe in 4.4.5 some common themes in the calculations which might lead to a more
complete theory. We note in §4.2 that a more thorough classification of domino graph
algebras could be possible, pendingMatui’s HK-Conjecture (4.2.2).

One of our aims in this chapter and in the author’s research beyond this thesis is to expand
upon the theorem of Raeburn–Szymański that every free Abelian group arises as K1(A) of
some 1-graph algebraA; there is no such restriction on K1 of a higher-rank graph algebra.
We display in §4.1 a number of 3-rank graph algebras which between them engender a
wide variety of K-groups. The K-theory of certain domino graph algebra relies, at least in
part, on the greatest common divisor of the sizes of the alphabets (refer to §4.5). It would
be our ultimate aim to have a procedural method for constructing a higher-rank graph
algebra with any desired K-groups, and we provide suggestions for further research to
that end, and highlight potential limitations, throughout the chapter.
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§4.1 3-domino group computations

4.1.1 Example (3.1.12 revisited) Consider the direct product of three free groups, each with
two generators, defined as follows:

F3
2 :� 〈a1 , a2 , b1 , b2 , c1 , c2 | [ai , b j], [ai , c j], [bi , c j], for all i , j ∈ {1, 2}〉,

where [x , y] denotes the commutator x yx̄ ȳ. This is a 3-domino group with adjacency
structure E1 �

{
ai , āi

}
, E2 �

{
bi , b̄i

}
, E3 �

{
ci , c̄i

}
, which we first came across in 3.1.12.

We construct the chain complex D3 from 3.4.8 using the three adjacency matrices M1,
M2, M3; the domino complexM(Γ) comprises eight geometric cubes (64 3-dimensional
dominoes), so the adjacency matrices will be of dimension 64× 64. Writing 1 to denote the
3 × 3 identity matrix, we obtain the chain complex:

0 −→ Z64 ∂3−→ (Z64 ⊕ Z64 ⊕ Z64) ∂2−→ (Z64 ⊕ Z64 ⊕ Z64) ∂1−→ Z64 −→ 0, (4.1)

where the differentials ∂1, ∂2, ∂3 are defined via the adjacency matrices, as in 3.4.8. Using
the algebraic software package MAGMA (developed by [BCP97]), we compute the relevant
cokernels, kernels, and images of the differentials. We find that coker(∂1) � ker(∂3) � Z8,
and ker(∂2)/im(∂3) � ker(∂1)/im(∂2) � Z24. Then there is a short exact sequence

0 −→ Z8/G0 −→ K0(A(Γ)) −→ Z24 −→ 0,

and an isomorphism K1(A(Γ)) � Z24 ⊕ G1, where G0 and G1 are subgroups of Z8.

Since all of the groups from (4.1) are freeAbelian, then G0 and G1 must also be freeAbelian,
and so are K0 and K1. Hence, using arguments of Spielberg from [Spi91] and outlined in
[Rob00, §§1, 7], it can be shown that A

(
F3

2
)
� A

(
Λ

(
F2

2
) )
⊗ A(F2) (compare with [KR02,

6.1]). We can then use the Künneth Theorem for tensor products (1.2.18) and 2.2.6 to see that

K0
(
A

(
F3

2
) )
� K0

(
A

(
F2

2
) )
⊗ K0(A(F2)) ⊕ K1

(
A

(
F2

2
) )
⊗ K1(A(F2))

� Z8 ⊗ Z2 ⊕ Z8 ⊗ Z2

� Z32 ,

and similarly that
K1

(
A

(
F3

2
) )
� (Z8 ⊗ Z2 ⊕ Z8 ⊗ Z2) � Z32.

From this we are able to deduce that G0 � 0, and G1 � Z8. This complies with Matui’s
HK-Conjecture, which says that K1

(
A

(
F3

2
) )
� H1(D3) ⊕ H3(D3) (see 4.2.2). �

4.1.2 In the example above (and 4.3.1), the groups coker(∂1) have been torsion-free, allowing
for the deployment of the Künneth Theorem 1.2.18. This will not be the case for general
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k-domino groups, not even for products of free groups with more than two generators.
Indeed, it is notoriously hard to find higher-rank graph algebras whose K-theory we can
determine, and which are not obvious products of lower-rank algebras.

One other clue we can follow is the next useful proposition from [Eva08, 4.1]:

4.1.3 Proposition (Evans, 2008) Fix k ≥ 2, and let Λ be a k-rank graph which is row-finite, has no
sources, and has a finite number of vertices. Then the torsion-free rank (see 2.2.5) of K0(A(Λ)) is
equal to that of K1(A(Λ)). �

4.1.4 Example (Product of three free groups of order 3) Now consider the product Γ � F3
3 of

three free groups, each with three generators: this is a 3-cube group whose corresponding
cube complex has as universal cover T(6) × T(6) × T(6). We again construct the chain
complexD3 from 3.4.8 using the three 216 × 216 adjacency matrices, to find that:

• coker(∂1) � Z27 ⊕ (Z/2)37,

• ker(∂1)/im(∂2) � Z81 ⊕ (Z/2)74,

• ker(∂2)/im(∂3) � Z81 ⊕ (Z/2)37,

• ker(∂3) � Z27.

Hence we have a short exact sequence

0 −→ Z27 ⊕ (Z/2)37

G0
−→ K0(A(Γ)) −→ Z81 ⊕ (Z/2)37 −→ 0, (4.2)

for some G0 ⊆ Z27 ⊕ (Z/2)37, and an isomorphism K1(A(Γ)) � Zr ⊕ (Z/2)74, where
r ∈ {81, . . . , 108}. We deduce from (4.2) and the fact from 4.1.3 that K0 and K1 must have
the same rank r.

Write A, B, C for the adjacency structure of Γ. By 3.2.3, the three subgroups of Γ isomorphic
to F2

3 , obtained by removing one of A, B or C from the generating set, are each 2-domino
groups (or BM-groups). The 3-domino group Γ is a free product with amalgamation of
these three groups (by 3.2.4). The K-theory of their induced k-rank graph algebras is given
by

K0
(
A

(
Λ

(
F2

3
) ) )

� K1
(
A

(
Λ

(
F2

3
) ) )

� Z18 ⊕ (Z/2)7.

Compare this to the K-theory of the k-rank graph algebra induced by Γ, calculated above.
There is no immediately obvious structure inherited by the K-theory of A(Γ) from the
K-theory of the C?-algebras induced by its 2-domino subgroups. In 4.5.3, we investigate
how higher-rank domino groups can be obtained from those of lower rank by taking the
direct product with a free group, and we discuss how this impacts the K-theory of the
domino graph algebras. �
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4.1.5 A direct product Γ of k free groups, each of which has at least two generators, is always a
k-domino group. This follows from 3.2.10, since Γ acts freely and transitively on its Cayley
graph which is the 1-skeleton of a product of trees. The groups from 3.3.1 and 3.3.2 don’t
arise in this way, however. Rather, they are constructed by means of an algorithm first
developed in [RSV19, 2.8], and which we have implemented using Python in 5.1.2–5.1.3.
The algorithm unfolds as follows:

4.1.6 Rungtanapirom–Stix–Vdovina k-domino group Algorithm Let q be a prime number,
or a power of a prime number, and consider the field K � Kq2 with q2 elements. Let δ be
a generator of K \ {0} as multiplicative group, and let i , j ∈ A :� Z/(q2 − 1) be such that
i , j mod (q − 1). There is a unique element xi j ∈ A which satisfies δxi j � 1 + δ j−i . There is
another unique element yi j :� xi j + i − j for each xi j , such that δyi j � 1 + δi− j .

Now, define s , t ∈ A by s(i , j) :� i − xi j(q − 1) and t(i , j) :� j − yi j(q − 1). Consider a set X
indexed by elements of k-many cosets of A/(q − 1), that is,

X :�
{

ai
�� i ∈ Z/(q2 − 1), and i � j mod (q − 1) for some j ∈ J

}
,

where J ⊆ {0, . . . , q − 2} is a set of size k. Then, define the group ΓJ,δ by

ΓJ,δ :�
〈
ai ∈ X

�� ai+(q2−1)/2ai � 1 and ai a j at(i , j)as(i , j) � 1, for all i , j
〉
, (4.3)

whenever q is odd, and

ΓJ,δ :�
〈
ai ∈ X

�� ai ai � 1 and ai a j at(i , j)as(i , j) � 1, for all i , j
〉

(4.4)

if q is even. Then ΓJ,δ is a k-domino group, with adjacency structure given by the k-many
sets of the form {ai | i � j mod (q − 1)}, one for each j ∈ J.

4.1.7 Using the Smith normal form to compute cellular homology To any m × n matrix M
with integer entries, we can associate a unique diagonal matrix Smith(M) (not necessarily
square), whose diagonal entries α1 , . . . , αs are called the elementary divisors of M. Write
rk(M) to denote the rank of the matrix M; different from the torsion-free rank of an Abelian
group, the rank of a matrix is the dimension of the vector space spanned by its columns.
Then rk(M) ≤ min(m , n) and the elementary divisors are non-negative integers which
satisfy αi | αi+1 for each i < rk(M), and αi � 0 otherwise. The cokernel of Smith(M) is
isomorphic to the cokernel of M.

Now, presume thatM is a k-dimensional cell complexwith the property that the boundary
of each n-dimensional cell with n ≥ 2 contains no (n−1)-dimensional facemore than once.
Then from (2.9) we have the chain complex

· · · → 0
δk+1−−−→ Ck

δk−→ · · · δ2−→ C1
δ1−→ C0 −→ 0,
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and the homology groups are given by Hn(M) :� ker(δn)/im(δn+1). The boundary maps
δn are |Cn−1 | × |Cn | matrices. Then there are isomorphisms

Hn(M) � Z|Cn |−rk(δn)−rk(δn+1) ⊕
rk(δn+1)⊕

i�1
Z/αi ,

where αi are the non-zero elementary divisors of δn+1 (see, for example, [DHSW03] for
details). Observe that, for a k-dimensional complex, Hk will be torsion-free, since δk+1 is
the zero map.

4.1.8 Example (3.3.1 revisited) Recall the group Γ � Γ{3,5,7} from 3.3.1. This example of a 3-
domino group can be constructed via the RSV Algorithm (4.1.6), and we compute the
groups from 3.4.8 in order to glean some insight into the 3-rank graph algebraA(Γ).

To obtain coker(∂1), it suffices to list the elementary divisors of ∂1, since the cokernel of
a linear map is isomorphic to the cokernel of its Smith normal form. By using MAGMA, we
learn that Smith(∂1) is a 192 × 576 diagonal matrix with entries

1, . . . , 1︸  ︷︷  ︸
182 times

, 4, 4, 12, 0, . . . , 0︸  ︷︷  ︸
7 times

.

Then im(Smith(∂1)) ⊂ Z192 is a subspace isomorphic to Z182 ⊕ (4Z)2 ⊕ 12Z, and hence

coker(∂1) � Z192/im(Smith(∂1))
� Z7 ⊕ (Z/4)2 ⊕ (Z/12) � Z7 ⊕ (Z/3) ⊕ (Z/4)3.

Similarly, we compute ker(∂3) � Z7. Then, by writing the maps as homomorphisms (see
lines 270–288 in 5.1.6), we can ask MAGMA to compute:

• ker(∂1)/im(∂2) � Z21 ⊕ (Z/2)6 ⊕ (Z/3)2 ⊕ (Z/4)4,

• ker(∂2)/im(∂2) � Z21 ⊕ (Z/3) ⊕ (Z/4)3.

Then the short exact sequence from 3.4.8 is

0 −→ Z7 ⊕ (Z/3) ⊕ (Z/4)3
G0

−→ K0(A(Γ)) −→ Z21 ⊕ (Z/3) ⊕ (Z/4)3 −→ 0,

and there is also an isomorphism

K1(A(Γ)) � Z21 ⊕ (Z/2)6 ⊕ (Z/3)2 ⊕ (Z/4)4 ⊕ G1 ,

for some subgroups G0 ⊆ Z7 ⊕ (Z/3) ⊕ (Z/4)3 and G1 ⊆ Z7. From this and 4.1.3, we can
deduce that the torsion-free part of K0 is isomorphic to Zr , and that K1 � Zr ⊕ (Z/2)6 ⊕
(Z/3)2 ⊕ (Z/4)4, for some r ∈ {21, . . . , 28}.
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We also calculate the cellular homology of the domino complexM(Γ) through 4.1.7 and
4.1.9 to be as follows:

Hn(M) �



Z if n � 0,

(Z/2)2 ⊕ (Z/4)2 if n � 1,

(Z/2)2 ⊕ (Z/3) ⊕ (Z/4) if n � 2,

Z7 if n � 3,

0 if n ≥ 4.

�

4.1.9 In its present state, the cube complexM
(
Γ{3,5,7}

)
from 4.1.8 does not satisfy the conditions

of 2.6.1 since, for example, it contains the geometric square
(
a1 , c2 , ā1 , c3

)
. This would be

sent to a1 + c2 − a1 + c3 � c2 + c3 by the map δ2, which does not accurately describe
its boundary. This situation is likely to arise given a general domino complex M—to
overcome it we may consider the barycentric subdivision of M. Traditionally, this is a
simplicial complex formed by taking M, adding a vertex vX to the centre of each cell
X ∈ M (identifying vx � x if x is a vertex in M), and drawing an edge between two
vertices vX and vY whenever Y is a lower-dimensional cell contained in X, unless an edge
already exists (Figure 4.1a).

For our purposes, however, it is sufficient to include an edge between vX and vY only
when the dimension of Y is precisely one less than the dimension of X. In this way, the
subdivided complex remains a cube complex, which we denote byM′ (Figure 4.1b). The
barycentric subdivision ofM′ is homotopy equivalent toM, meaning in particular that its
cellular homology groups are unchanged. Furthermore, it is clear that M′ contains no
loops, nor cells which have repeated faces on their boundary; we can therefore apply 2.6.1
and 4.1.7 onM′ to find the homology of any domino complexM.

4.1.10 Example (3.3.2 revisited) Recall now the group Γ � Γ′{2,3,4} from 3.3.2; it has nine generat-
ors, which together label 108 2-dimensional dominoes, and 216 3-dimensional dominoes
(depicted in Figure 3.4).

As in Example 4.1.8, we use MAGMA to compute the relevant kernels and cokernels from
3.4.8, culminating with:

• coker(∂1) � Z9 ⊕ (Z/2) ⊕ (Z/4) ⊕ (Z/5)2 ⊕ (Z/16),

• ker(∂3) � Z9,

• ker(∂1)/im(∂2) � Z27 ⊕ (Z/2)4 ⊕ (Z/4)2 ⊕ (Z/8)2,

• ker(∂2)/im(∂3) � Z27 ⊕ (Z/2) ⊕ (Z/4) ⊕ (Z/5)2 ⊕ (Z/16).
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Ub2

a1
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va2
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vU

(a) On the left is a 2-cell U which
might occur in a domino complex
M. On the right is U as it would
appear after classical barycentric
subdivision.

vb2

va1

vb1

va2

vx vx

vx vx

vU

(b) Here is the image of U in
M′. Vertices vX and vY are joined
by an edge in the barycentric
subdivision only when dim Y �

dim X − 1.

Figure 4.1:Diagramshowing the twonotions of barycentric subdivisionof a geometric
square U from 4.1.9. In (a), U is subdivided until it becomes a simplicial complex,
whereas in (b), it is divided into a cube complex; the definition corresponding to
(b) is the one we use. The barycentric subdivisionM′ of a domino complexM has
no loops, even ifM does.

Then we obtain the short exact sequence

0 −→ Z9 ⊕ G
G0

−→ K0(A(Γ)) −→ Z27 ⊕ G −→ 0,

where G � (Z/2) ⊕ (Z/4) ⊕ (Z/5)2 ⊕ (Z/16), and there is an isomorphism

K1(A(Γ)) � Z27 ⊕ (Z/2)4 ⊕ (Z/4)2 ⊕ (Z/8)2 ⊕ G1 ,

for some groups G0 ⊆ Z9 ⊕ G and G1 ⊆ Z9. The torsion-free rank of K0 is r, and K1 �

Zr⊕(Z/2)4⊕(Z/4)2⊕(Z/8)2, for some r ∈ {27, . . . , 36}. TheK1 group inparticular is distinct
from those of Examples 4.1.4 and 4.1.8, so we may use Theorem 3.5.4 to conclude that the
3-rank graph C?-algebras induced by each of the domino complexes are non-isomorphic.

We now calculate the cellular homology of the domino complexM(Γ), via the barycentric
subdivisionM′. We find that:

Hn(M) �



Z if n � 0,

(Z/2)3 ⊕ (Z/5)2 if n � 1,

(Z/4) ⊕ (Z/5)2 ⊕ (Z/8) if n � 2,

Z9 if n � 3,

0 if n ≥ 4.

�
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Chapter 4 §4.1 3-domino group computations

4.1.11 Example (A 3-domino group arising from 4.1.6 with q � 7) Let us nowperform theRSV
Algorithm (4.1.6)with input parameter q � 7. As a set,wemay regard thefinite fieldK � K49

with 49 elements as the set of polynomials {α+βz | α, β ∈ Z7}. We use the Python package
finitefield from [Kun14] alongwith the algorithmgiven in 5.1.2 to find that δ � 2+z ∈ K
is a primitive element of K, that is, a generator of K \ {0} as a multiplicative group. Then
a subset of integers J ⊆ {0, . . . , 5} of size k defines a k-domino group ΓJ,δ by 4.1.6—in
this example we choose J � {0, 1, 5} such that Γ � Γ{0,1,5},δ is a 3-domino group. Our
implementation of the algorithm in Python outputs the following list of lists of elements
of Z/48:

[[0,1,42,1], [0,5,18,5], [0,7,6,7], [0,11,42,23], [0,13,0,43], [0,17,6,29],

[0,19,36,25], [0,23,42,11], [0,25,36,19], [0,29,6,17], [0,31,12,37],

[0,35,30,35], [0,37,12,31], [0,41,0,47], [1,5,31,11], [1,6,19,6], [1,11,31,5],

[1,17,25,41], [1,18,7,30], [1,23,19,29], [1,29,19,23], [1,30,7,18],

[1,35,1,47], [1,36,31,36], [5,6,47,6], [5,7,41,7], [5,12,11,12], [5,13,29,37],

[5,19,17,19], [5,36,17,42], [5,42,17,36], [6,13,12,13], [6,23,12,35],

[6,35,12,23], [6,37,18,43], [6,41,36,41], [6,43,18,37], [7,11,37,17],

[7,17,37,11], [7,23,31,47], [7,42,37,42], [11,13,47,13], [11,18,17,18],

[11,19,35,43], [12,19,18,19], [12,47,42,47], [13,17,43,23], [13,23,43,17]]

For each integer i that appears above, we let ai be a generator for Γ, and each 4-tuple
(i , j, t , s) defines a relation ai a j at as � 1, as in (4.3). Finally, we identify āi with ai+24mod 48,
so that Γ can be expressed as a group with 12 generators and 48 relations:

Γ{0,1,5},δ �
〈
a0 , a6 , a12 , a18 , a1 , a7 , a13 , a19 , a5 , a11 , a17 , a23

�� a0a1 ā18a1 , a0a5a18a5 , . . .
〉
.

We can then feed these relations into Programs 5.1.4 and 5.2.2, which output:

• coker(∂1) � Z28 ⊕ (Z/2)2 ⊕ (Z/3)2 ⊕ (Z/4) ⊕ (Z/7)2 ⊕ (Z/9),

• ker(∂3) � Z28,

• ker(∂1)/im(∂2) � Z84 ⊕ (Z/2)8 ⊕ (Z/3)8,

• ker(∂2)/im(∂3) � Z84 ⊕ (Z/2)2 ⊕ (Z/3)2 ⊕ (Z/4) ⊕ (Z/7)2 ⊕ (Z/9),

and

Hn(M) �



Z if n � 0,

(Z/2)3 ⊕ (Z/7)2 if n � 1,

(Z/2)2 ⊕ (Z/3) ⊕ (Z/7)2 ⊕ (Z/9) if n � 2,

Z28 if n � 3,

0 if n ≥ 4.

90



Chapter 4 §4.2 The HK-Conjecture

Then K0(A(Γ)) satisfies

0 −→ Z27 ⊕ G
G0

−→ K0(A(Γ)) −→ Z84 ⊕ G −→ 0,

where G is the finite part of coker(∂1), and K1(A(Γ)) satisfies

K1(A(Γ)) � Z84 ⊕ (Z/2)8 ⊕ (Z/3)8 ⊕ G1 ,

for some groups G0 ⊆ Z27⊕G and G1 ⊆ Z27. Then, similarly to in Examples 4.1.4, 4.1.8 and
4.1.10, we can deduce that K0 � Zr ⊕ G′ and K1 � Zr ⊕ (Z/6)8, for some r ∈ {84, . . . , 111},
and some finite Abelian group G′. �

4.1.12 Even given an initial parameter q and a primitive element δ of Kq2 , it should be noted
that the choice of subset J ⊆ {0, . . . , q − 2} still affects the group produced by the RSV
Algorithm. For example, with an identical set-up to 4.1.11, picking J � {2, 4, 5} leads to
a group Γ{2,4,5},δ whose associated domino complex has identical cellular homology to
that of Γ{0,1,5},δ, but whose domino graph algebra is different. Namely, the torsion part of
K1

(
A

(
Γ{2,4,5},δ

) )
is isomorphic to (Z/6)8, and the group denoted by G in 4.1.11 is instead

(Z/2)4 ⊕ (Z/3)2 ⊕ (Z/7)2 ⊕ (Z/9).

4.1.13 For each of the 3-domino groups Γ above, we computed two things: the exact sequences
of Evans’ from 3.4.8, and the cellular homology of the complexM(Γ). These calculations
require the manipulation of large matrices and homomorphisms, for which we used
computer algebra software MAGMA. We wrote algorithms in Python3 which compute the
matrices in a manner which MAGMA can recognise: a technique called metaprogramming.
Most of these codes have been reproduced in Chapter 5, and any which have not are
available from the author upon request.

§4.2 The HK-Conjecture

4.2.1 Kumjian and Pask in [KP00] constructed a groupoid GΛ (that is, a category in which every
morphism is invertible) for each higher-rank graph (Λ, d). To each groupoid G can be
associated a (reduced) C?-algebra C?r (G) by a method of [Ren80], and in [KP00, 3.5] it was
also shown thatA(Λ) � C?r (GΛ).

Then, in [FKPS19] it was shown that the homology of the chain complex Dk from 3.4.7 is
equivalent to the homology of the groupoid GΛ (see, for example, [Mat11; LSV20, §7]). When
(Λ, d) is a 1- or 2-rank graph, then the isomorphism (4.5) below holds. Furthermore, we
know from [FKPS19, 7.9] that any 3-rank graph which satisfies the criteria of Corollary
3.4.9(ii) is also one for which the HK-Conjecture is verified.
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4.2.2 Matui’s HK-Conjecture Let G be a groupoid which satisfies the conditions of [Mat16, 3.5].
Then there is an isomorphism

Kε(C?r (G)) �
∞⊕

p�0
H2p+ε(G).

4.2.3 With the considerations in 4.2.1, we can rephrase 4.2.2 in the context of higher-rank graphs:
if (Λ, d) is a k-rank graph such that GΛ is a groupoid which satisfies the same conditions
of [Mat16, 3.5], then

Kε(A(Λ)) �
∞⊕

p�0
H2p+ε(Dk), (4.5)

whereDk is the chain complex from 2.2.6.

4.2.4 It is not known precisely under which conditions Conjecture 4.2.2 holds, but it is known
not to be true in general, as counterexamples have been found (for example, by Scarparo
in [Sca20]).

Were the conjecture verified in the case of 3-domino graph algebrasA(Γ), then we would
have an isomorphism K1(A(Γ)) � H1(D3)⊕H3(D3). In particular, thiswouldmean that the
torsion-free ranks r of Kε(A(Γ))would be maximal in their respective ranges, which were
established in each of the examples in §4.1. We would then have a precise characterisation
of K1 in each case.

§4.3 Higher dimensions and limitations

Using the RSV Algorithm, we can construct sets of relations for k-domino groups. As we
discussed in 3.4.10, however, the quality of information we are able to deduce from Evans’
Theorem about k-domino graph algebras diminishes sharply as k increases.

4.3.1 Example (Product of k-many free groups of order 2) Now fix k ≥ 2 and consider the
group Γ � F k

2 : the product of k-many free groups of order two. This can be presented with
generating set E �

⊔k
p�1 Ep where Ep �

{
x1

p , x2
p
}
, and relation set

R �
{

x i
p x j

q x̄ i
p x̄ j

q
�� p , q ∈ {1, . . . , k} with p , q , and i , j ∈ {1, 2}

}
.

It is a k-domino group, and k-dimensional dominoes in Γ will look like k-dimensional
cubes where parallel edges all have the same label and orientation—as such, there will
be 4k � 22k elements of Sk(Γ). By iterating the arguments employed in 4.1.1, we find that
K0(A(Γ)) � K1(A(Γ)) � Z2k−1.

By using the algorithm in 5.1.4, we can write down the adjacency matrices M1 , . . . ,Mk

which correspond to the set Sk(Γ). When k � 4, for example, these matrices will have
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dimension 256 × 256. Then the construction from 3.4.11 begets sequences:

(i) 0 −→ Z16/G0 −→ K0
(
A

(
F4

2
) )
−→

K0
(
A

(
F4

2
) )

Z16/G0
−→ 0,

(ii) 0 −→ Z16/G0 −→ F2 −→ Z96 −→ 0,

(iii) 0 −→ F2 −→ K0
(
A

(
F4

2
) )
−→ G1 −→ 0,

(iv) 0 −→ Z64/G2 −→ K1
(
A

(
F4

2
) )
−→ G3 −→ 0,

for some subgroups G0 ,G1 ⊆ Z16 and G2 ,G3 ⊆ Z64. Since K0 � K1 � Z128 and each
group in the above sequences is free Abelian, we can deduce that G2 � 0, G3 � Z64, and
G0 ⊕ G1 � Z16. �

4.3.2 Example (A 4-domino group) Wecanperform theRSVAlgorithm to construct a k-domino
group for arbitrary k ≥ 2. For this example, consider k � 4 and q � 7, so that we can recycle
the primitive element δ � 2+ z ∈ K49 from 4.1.11. Then choosing a subset J ⊂ {0, . . . , 5} of
size four defines a 4-domino group ΓJ,δ.We appoint J � {1, 2, 3, 4} this time. The algorithm
outputs a group Γ � Γ{1,2,3,4},δ � 〈X | R〉 with generators

X � {a1 , a2 , a3 , b1 , b2 , b3 , c1 , c2 , c3 , d1 , d2 , d3},

and 54 relations. We have renamed the generators in order to better emphasise the adja-
cency structure. Then Γ has relations:

a1b1 ā3b1 , a1 b̄1 ā2b3 , a1b2a2b2 , a1 b̄2a3 b̄3 , a1b3 ā2 b̄1 , a1 b̄3a3 b̄2 , a2b3a3b3 , a3b1 ā2b2 , a3b2 ā2b1

a1c1 ā2c1 , a1 c̄1a1 c̄3 , a1c2 ā1 c̄2 , a1c3a3c3 , a2c1a2 c̄2 , a2c2 ā3c2 , a2c3 ā2 c̄3 , a3 c̄1 ā3c1 , a3c2a3 c̄3

a1d1 ā3d3 , a1 d̄1a2d2 , a1d2a2 d̄1 , a1 d̄2a1 d̄3 , a1d3 ā3d1 , a2d1a2 d̄3 , a2 d̄2a3d3 , a2d3a3 d̄2 , a3d1a3d2

b1c1 b̄3c1 , b1 c̄1 b̄2c3 , b1c2b2c2 , b1 c̄2b3 c̄3 , b1c3 b̄2 c̄1 , b1 c̄3b3 c̄2 , b2c3b3c3 , b3c1 b̄2c2 , b3c2 b̄2c1 ,

b1d1 b̄2d1 , b1 d̄1b1 d̄3 , b1d2 b̄1 d̄2 , b1d3b3d3 , b2d1b2 d̄2 , b2d2 b̄3d2 , b2d3 b̄2 d̄3 , b3 d̄1 b̄3d1 , b3d2b3 d̄3

c1d1 c̄3d1 , c1 d̄1 c̄2d3 , c1d2c2d2 , c1 d̄2c3 d̄3 , c1d3 c̄2 d̄1 , c1 d̄3c3 d̄2 , c2d3c3d3 , c3d1 c̄2d2 , c3d2 c̄2d1.

4.3.3 In Example 4.3.2, Γ is a 4-domino group whose corresponding adjacency matrices are of
size 64 × 64. The version of MAGMAwe have been using has a limit on the dimensions of the
input, which these matrices exceed. To overcome this, it might be possible to instead con-
sider the cellular homology of the associated domino complex—it is much less expensive
to perform computations on the boundary matrices δn of 2.6.1 than it is to work with the
homologies of 2.2.6, and we now turn to discuss the potential connections between these
two invariants.
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§4.4 The geometry of k-domino complexes

4.4.1 At this point, let us re-examine the examples of 3-domino groups in §4.1, namely 4.1.10–
4.1.11. In each instance, we used the algorithms fromChapter 5 to compute the differential
maps of Theorem 3.4.8 and the cellular homology groups of the corresponding 3-domino
complex.We notice that in every example the groups H3(M(Γ)) and ker ∂3 are isomorphic,
infinite Abelian groups with the same torsion-free rank as that of coker ∂1. Indeed, a
theorem of [Rob05] establishes that H2(M(Γ)) � ker ∂2 whenever Γ provides a 2-domino
group. While Theorem 4.4.3 is a k-dimensional generalisation of this result, we firstly con-
sider the case where k � 3, which allows us to make use of diagrams and the terminology
of the symmetry of cubes for clarity.

4.4.2 Theorem (Third homology of a 3-domino complex) Let Γ be a 3-domino group with ad-
jacency structure E1 , E2 , E3, let M1 ,M2 ,M3 be the adjacency matrices from 3.1.16, and let
M be the associated 3-dimensional domino complex formed by gluing together adjacent dom-
inoes. Recall the map ∂1 : (ZS3)3 → ZS3 from 3.4.7, and consider its matrix transpose
∂T

1 � [1 −M1 , 1 −M2 , 1 −M3]T . Then H3(M) � ker
(
∂T

1
)
.

� Proof Write S2 for the set of all pointed squares, and S3 for the set of all 3-dimensional
dominoes (pointed and oriented cubes) in Γ. Write F � [x1 , y1 , x2 , y2] to denote a pointed
square in S2, and write

X � [A1(X), B1(X), C1(X),A2(X), B2(X), C2(X)]

to denote a 3-dimensional domino inS3. Assume that M1, M2, M3 are thematrices describ-
ing adjacency in directions parallel to reflection in the H, V and I directions, respectively,
according to Figure 3.2. Then M1(X,Y) � 1 only if C1(Y) � C2(X)H , M2(X,Y) � 1 only if
B1(Y) � B2(X)H , and M3(X,Y) � 1 only if A1(Y) � A2(X)H , and as long as no edges cancel
out after identifying adjacent dominoes—that is, 3.1.16(i)–(ii) are satisfied. Define three
functions Ti : ZS3 → ZS3 by:

T1(X) :�
∑

M1(X,Y)�1

Y � −XH +

∑
C2(X)H�C1(Y)

Y,

T2(X) :�
∑

M2(X,Y)�1

Y � −XV +

∑
B2(X)H�B1(Y)

Y,

T3(X) :�
∑

M3(X,Y)�1

Y � −XI +
∑

A2(X)H�A1(Y)
Y.

(4.6)

Now define a family of functions ψn : S′n → Sn for n ∈ {1, 2, 3} which selects a rep-
resentative element from each coset of S′n � Sn/(Z/2)n , that is, a function which takes
a geometric n-cell of M and gives it a basepoint and orientation, turning it into an n-
dimensional domino. Denote these maps by ψn : X′ 7→ X, and write S+

n :� ψn
(
S′n

)
. In
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the instance where n � 1, the set S+

1 ⊂ (E1 t E2 t E3) can be written as S+

1 :� {x | x , x̄ ∈
(E1 t E2 t E3) define the same geometric edge}. Then define ϕ : ZS+

3 → ZS3 by:

ϕ(X) :� X − XH − XV − XI + XHV + XHI + XVI − XHVI ,

where X � ψ3(X′). We have

(1 − T1)(X) � XH + X −
∑

C2(X)H�C1(Y)
Y,

(1 − T1)(XH) � X + XH −
∑

C2(XH )H�C1(Y)
Y,

(1 − T1)(XV ) � XHV + XV −
∑

C2(XV )H�C1(Y)
Y,

and so on, such that

(1 − T1) ◦ ϕ(X) � −
∑

C2(X)H�C1(Y)
Y +

∑
C2(XH )H�C1(Y)

Y

+

∑
C2(XV )H�C1(Y)

Y +

∑
C2(XI )H�C1(Y)

Y

−
∑

C2(XHV )H�C1(Y)
Y −

∑
C2(XHI )H�C1(Y)

Y

−
∑

C2(XVI )H�C1(Y)
Y +

∑
C2(XHVI )H�C1(Y)

Y,

for each X ∈ S+

3 . The formulas are similar for (1 − T2) ◦ ϕ(X) and (1 − T3) ◦ ϕ(X). Now, S2

can be expressed as the disjoint union

S2 � S+

2 t
(
S+

2
)

H t
(
S+

2
)

V t
(
S+

2
)

HV , (4.7)

where
(
S+

2
)

i :�
{
Fi

�� F ∈ S+

2
}
. Consider the function ε2 : ZS2 → ZS+

2 defined by

ε2(A) �



F if F ∈ S+

2 ,

−FH if F ∈
(
S+

2
)

H ,

−FV if F ∈
(
S+

2
)

V ,

FHV if F ∈
(
S+

2
)

HV .

The elements of each set S+
n are in one-to-one correspondence with the n-dimensional

cells inM, and we define a boundary map δ2 : ZS+

3 → ZS+

2 by

δ2(X) :� ε2(A1(X) + B1(X) + C1(X) − A2(X) − B2(X) − C2(X)),
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such that the cellular homology group H3(M) � ker ∂2. Now we define another function
ϕ′ :� ZS2 → ZS3 ⊕ ZS3 ⊕ ZS3 by

ϕ′(F) :�


0 ⊕ 0 ⊕ L(C, F) if F ∈ F(2, 3),
0 ⊕ L(B, F) ⊕ 0 if F ∈ F(1, 3),
L(A, F) ⊕ 0 ⊕ 0 if F ∈ F(1, 2),

where
L(t , F) :� −

∑
t1(Y)�F

Y +

∑
t1(Y)�FH

Y +

∑
t1(Y)�FV

Y −
∑

t1(Y)�FHV

Y, (4.8)

and F(p , q) is the set of all pointed squares in S2 with labels from alphabets Ep and Eq .
Notice that ϕ′(F) � ϕ′ ◦ ε2(F) for all F ∈ S2. Then we have the following diagram:

ZS+

2

ZS+

3

(ZS3)3

ZS3

δ2

ϕ′

ϕ

(1 − T) :�
[

1−T1
1−T2
1−T3

]
(4.9)

which we claim is commutative. To see why, let X ∈ S3, and observe that from (4.8) we get

L(C, C1(X) − C2(X)) �

∑
C1(Y)�C1(X)

Y −
∑

C1(Y)�C1(X)H

Y

−
∑

C1(Y)�C1(X)V

Y +

∑
C1(Y)�C1(X)HV

Y

+

∑
C1(Y)�C2(X)

Y −
∑

C1(Y)�C2(X)H

Y

−
∑

C1(Y)�C2(X)V

Y +

∑
C1(Y)�C2(X)HV

Y.

But also

C2(X) � C2(X), C2(X)H � C2(XV ), C2(X)V � C2(XI), C2(X)HV � C2(XVI),

C1(X) � C2(XVH), C1(X)H � C2(XH), C1(X)V � C2(XHVI), C1(X)HV � C2(XHI),

so it follows that L(C, C1(X) −C2(X)) � (1−T1) ◦ϕ(X) for each X ∈ S+

3 . Similarly, it can be
shown that L(B, B1(X) − B2(X) � (1−T2) ◦ϕ(X) and L(A,A1(X) −A2(X) � (1−T3) ◦ϕ(X).
Hence (1 − T) ◦ ϕ � ϕ′(A1(X) + B1(X) + C1(X) − A2(X) − B2(X) − C2(X)), which is to say
that the diagram in (4.9) commutes.

At this point, we demonstrate that the homomorphisms ϕ and ϕ′ are injective. Firstly, the
function ϕ : ZS+

3 → ZS3 takes as its argument some 3-dimensional domino X• ∈ S+

3 , but
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S+

3 contains exactly one representative from the orbit of each domino X ∈ S3. Since ϕ(X•)
is the sum of elements from the same orbit as X•, this means that ϕ is injective.

To show that ϕ′ is an injection when restricted to ZS+

2 , define ξ : (ZS3)3 → ZS+

2 by
ξ(X,Y, Z) :� ε2(C2(X) + B2(Y) + A2(Z)), such that ξ ◦ ϕ′(F) � nF for some n ∈ Z. By
applying ε2 we ensure that n , 0 for all F ∈ S+

2 , and so ξ ◦ ϕ′ : ZS+

2 → ZS+

2 is injective; it
follows then that ϕ′ is also injective.

Now, we know that diagram (4.9) commutes and that ϕ, ϕ′ are injective. Therefore, if
ϕ(X) ∈ ker(1 − T), then ϕ′ ◦ δ2(X) � 0, and so δ2(X) � 0. In other words, X is a domino
which, as a geometric cube, would lie in H3(M). Conversely, if X′ ∈ H3(M), then δ2 ◦ ϕ′ ◦
ψ3(X′) � (1 − T) ◦ ϕ(X′) � 0, and so ϕ(X′) ∈ ker(1 − T). Hence there is an isomorphism
H3(M) � ϕ

(
ZS+

3
)
∩ker(1−T) given by the restriction of ϕ to H3(M). It is straightforward

to check that ker(1 − T) � ker
(
∂T

1
)
, so that H3(M) � ϕ

(
ZS+

3
)
∩ ker

(
∂T

1
)
.

Finally, it follows from [Rob05, 4.4] that ϕ
(
ZS+

3
)
∩ ker(1 − T) � ker(1 − T), and so we can

conclude that H3(M) � ker
(
∂T

1
)
. �

4.4.3 Theorem (kth homology of a k-domino complex) Consider a k-domino group Γ with adja-
cency structure E1 , . . . , Ek . Let M1 , . . . ,Mk be the adjacency matrices from 3.1.16, and letM be
the associated k-dimensional domino complex. Recall the map ∂1 : (ZSk)k → ZSk from 3.4.7, and
consider its matrix transpose ∂T

1 � [1 −M1 , · · · , 1 −Mk]T . Then Hk(M) � ker
(
∂T

1
)
.

� Proof The arguments are identical to those in the proof of Theorem 4.4.2, with the fol-
lowing modifications:

As usual, we write Sn for the set of all n-dimensional dominoes (pointed and oriented
n-cubes) in Γ, for each n ∈ {1, . . . , k}. Then we define k-many functions Ti : ZSk → ZSk

analogously to (4.6).

Similarly, define a family of functions ψn : S′n → Sn for n ∈ {1, . . . , k} which selects
a representative element from each coset of S′n � Sn/(Z/2)n . Denote these maps by
ψn : X′ 7→ X, and write S+

n :� ψn
(
S′n

)
. Then define ϕ(X) :�

∑
j(−1) jX j , where X j ∈ Sk

lies in the same orbit as X under the action of the reflection group, and can be obtained
from X (in the sense of Figure 3.2) via a minimum of j-many reflections.

Proceed as in the proof of Theorem 4.4.2, writing expressions for each (1 − Ti) ◦ ϕ(X).
Notice that Sk−1 can be partitioned into 2k−1-many sets in the manner of (4.7)—we use the
notation

(
S+

k−1
)
α :�

{
Fα | F ∈ S+

k−1
}
, where α represents a sequence of reflections.

Define a map εk−1 : ZSk−1 → ZS+

k−1 which returns (−1) jF j whenever F j ∈
(
S+

k−1
)

j can be
obtained from F through j-many distinct reflections. The elements of each set S+

n are in
one-to-one correspondence with the n-dimensional cells inM, and we define a boundary
map δk−1 : ZS+

k → ZS+

k−1 such that δk−1(X) is the sum of the (k − 1)-dimensional faces of
X, prefixing by (−1) exactly one face from each set of the form F(1, . . . , n̂ , . . . , k), before
passing this sum through the function εk−1.
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Wedefine the function ϕ′ :� ZSk → (ZSk)k analogously to its namesake in Theorem 4.4.2,
so that

ZS+

k−1

ZS+

k

(ZSk)k

ZSk

δk−1

ϕ′

ϕ

(1 − T) :�


1 − T1
...

1 − Tk


(4.10)

commutes. It is straightforward to show that the functions ϕ, ϕ′ are injective, and further-
more that ker(1 − T) � ker

(
∂T

1
)
. Hence Hk(M) � ϕ

(
ZS+

k

)
∩ ker

(
∂T

1
)
.

Together with the fact from [Rob05, 4.4] that ϕ(ZS+

k ) ∩ ker(1 − T) � ker(1 − T) for each k,
this proves the result. �

4.4.4 Proposition Let Γ be a k-domino group with adjacency structure E1 , . . . , Ek and adjacency
matrices M1 , . . . ,Mk . Consider the maps ∂1 and ∂k from 3.4.7. Then Hk(M(Γ)) � coker(∂1) �
ker(∂k) ⊕ G for some finite Abelian group G.

� Proof Firstly, as elementary row operations on matrices do not affect their kernels, then
we can successively multiply rows of ∂k by (−1) and rearrange them to find that

ker(∂k) � ker



1 −MT
k

MT
k−1 − 1
...

(−1)k
(
MT

1 − 1
)

� ker


1 −MT

k
...

1 −MT
1


� ker


1 −MT

1
...

1 −MT
k


. (4.11)

We claim that the row space (the vector space of linear combinations of row vectors) of MT
i

is isomorphic to that of Mi for each i ∈ {1, . . . , k}. To see why, let X ∈ Sk(Γ) be an arbitrary
k-dimensional domino in Γ—then Mi(X,Y) � 1 if and only if Y is Ei-adjacent to X. For a
domino S ∈ Sk , let Si ∈ Sk denote the domino obtained by reflecting S in the direction
parallel to the edges labelled from alphabet Ei (for example, the dominoes named SH ,
SV , and SI in Figure 3.2). Then Mi(X,Y) � 1 if and only if Mi(Yi ,Xi) � 1, if and only if
MT

i (Xi ,Yi) � 1. Then there is an isomorphism from the row space of Mi to the row space
of MT

i given by the map taking each generator S ofZSk to Si . In particular, this means that
ker(1 −Mi) � ker

(
1 −MT

i

)
for each i, and together with (4.11), that ker(∂k) � ker

(
∂T

1
)
.

Finally, it is well-known that the kernel of a matrix map between vector spaces must have
the same rank as the cokernel of its transpose, and so we are done. �

4.4.5 Observe that the cellular homology of a k-dimensional domino complexM(Γ) is closely
related to the K-theory of its induced k-rank graph algebraA(Γ). Apart from the fact that
Hk(M) is isomorphic to the infinite part of coker(∂1) by Theorem 4.4.3, it is not clear exactly
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how. Looking at the case where k � 3, we see that the orders of the cyclic subgroups of
Hn(M) have the same prime factors as those of the homologies ker(∂1)/im(∂2) in each of
the examples from §4.1, but we do not know their precise relationship. Furthermore, it
seems as though

ker(∂2)/im(∂3) � coker(∂1) ⊕ Z2 rk(coker(∂1)) ,

meaning that the torsion-free rank r of K0(A(Γ)) and K1(A(Γ)) lies somewhere in the range
r ∈ {3 rk(coker(∂1)), . . . , 4 rk(coker(∂1))}. An affirmation ofMatui’s Conjecture (4.2.2) in the
case of domino graph algebras would suggest that r � 4 rk(coker(∂1)).

4.4.6 To round off this section, we present a formulation of the relationship between the Euler
characteristic (see [Hat02, §2.2]) and the homology of a cell complex, which allows us to
find the torsion-free rank of a homology groupwhenever we know the ranks of the others.

4.4.7 Proposition (Euler characteristic in terms of homology) Let Γ be a k-domino group with
adjacency structure E1 , . . . , Ek of respective cardinalities m1 , . . . ,mk , and consider the domino
complexM �M(Γ). Then

k∑
n�1
(−1)n |S′n(Γ)| �

k∑
n�1
(−1)n rk(Hn(M)).

� Proof Consider the barycentric subdivisionM′ ofM from 4.1.9: by 4.1.7, the torsion-free
rank of Hn(M′) is equal to that of |C′n | − rk(δn) − rk(δn+1), where rk(δ) is the dimension
of the vector space spanned by the columns of the matrix δ, and |C′n | is the number of
geometric n-cubes inM′. By alternating addition and subtraction of these equations, we
obtain the result. �

§4.5 Products of free groups

We established in 4.1.5 that a direct product of k-many free groups, each of order at least
two, defines a k-domino group. We explore some of their properties as k-domino groups.

4.5.1 Theorem Let Γ � Fα1 × · · · ×Fαk , and consider the associated domino complexM �M(Γ). Then

Hn(M) �


Z if n � 0,

Zσ(n) if n ∈ {1, . . . , k},
0 otherwise,

where, for each n ∈ {1, . . . , k}, we define

σ(n) :�
∑

1≤ti≤k ,
ti distinct

αt1 · · · αtn .
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� Proof Consider the chain complex (2.9):

0→ Ck → · · · → Cn+1
δn+1−−−→ Cn

δn−→ Cn−1 → · · · → C0 → 0,

from 2.6.1, where Cn is the free Abelian group whose generators are indexed by the
n-dimensional geometric cubes inM. Then Cn � Zσ(n) for each n ∈ {1, . . . , k}.

The boundary maps δn take n-cubes inM to the formal sum of their (n − 1)-faces. Since
Γ is a product of free groups, the 2-cubes (geometric squares) in M are all of the form
A � (x , y , x̄ , ȳ), for x ∈ Fα, y ∈ Fβ. This means that δ2(A) � x + y − x − y � 0 for all A ∈ C2.
Inductively, we can see that the opposite (n − 1)-faces of each n-cube inM are the same
geometric (n − 1)-cube but with opposite orientations, leading to different signs in the
formal sum. Hence each map δn for n ≥ 2 is the zero map.

Thus Hn � ker(δn)/im(δn+1) � Cn/{0} � Cn for each n ≥ 2. Furthermore, M has one
vertex—call this v—so δ1(x) � v − v � 0 for all edges x ∈ M, and hence H1 � C1. Finally,
sinceM is connected and k-dimensional, we have H0 � Z and Hn � 0 for all n > k. �

Building 3-domino groups from 2-domino groups

4.5.2 Using Proposition 3.2.4, we can build k-domino groups whose generators and relations
are induced by those of k-many (k − 1)-domino groups. A simple way to do this is to take
a 2-domino group Γ′ and let Γ � Γ′ × Fγ, where Fγ is the free group on γ generators.

In effect, we are turning 2-dimensional dominoes into “square prisms,” as depicted in
Figure 4.2.

4.5.3 Theorem Let Γ′ be a 2-domino group with adjacency structure E1, E2 and adjacency matrices
M′1, M′2. Consider the map ∂Γ′ : ZS2(Γ′) ⊕ ZS2(Γ′) → ZS2(Γ′) from 2.2.6 and 3.4.7 defined by
the block matrix ∂Γ′ :�

[
1 − (M′1)T , 1 − (M′2)T

]
.

Let C′ :� coker(∂Γ′), which by the Fundamental Theorem of finitely-generated Abelian groups
(2.2.5), we canwrite as

⊕
i Z/ti for some non-negative integers i, whereZ/0 :� Z. Let Γ � Γ′×Fγ,

for some γ ≥ 2, and regard Γ as a 3-domino group with adjacency structure E1, E2, F, where
F �

{
c1 , c̄1 . . . , cγ , c̄γ

}
generates Fγ, and write M1, M2, M3 to denote the respective adjacency

matrices.

Consider ∂1, the differential map from 3.4.8 corresponding to Γ. Then

coker(∂1) � (C′)γ ⊕
⊕

i

Z/gcd(ti , γ − 1),

where gcd(0, x) :� x.
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x2

x1

y2 y1

x2

x1

y2
y1

c

c

c
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Figure 4.2:Consider a (k−1)-dominogroupΓ′with adjacency structureE1 , . . . , Ek−1,
and another alphabet F �

{
c1 , c̄1 , . . . , cγ , c̄γ

}
, where γ ≥ 2. Let L be the set of

pointed squares {[x , c , x̄ , c̄] | x ∈ E1 t . . .tEk−1 and c ∈ F}. Then S2(Γ′) ∪ L is a set
of pointed squares with a k-domino structure, and Γ � Γ′×FF is a k-domino group.

Pictorially, to obtain a k-dimensional domino inΓ,weduplicate a (k−1)-dimensional
domino fromΓ′, and join thematching vertices of the two copieswith edges labelled
by an element of F.

� Proof Firstly, we have

coker(∂Γ′) �
〈
A ∈ S2(Γ′)

���� A �

∑
B∈S2(Γ′)

M′1(A, B) · B �

∑
B∈S2(Γ′)

M′2(A, B) · B
〉
,

and
coker(∂1) �

〈
X ∈ S3(Γ)

���� X �

∑
Y∈S3(Γ)

Mi(X,Y) · Y, for i ∈ {1, 2, 3}
〉
.

By construction, |S3(Γ)| � 2γ · |S2(Γ′)|, since each pointed square A �
[
a , b , ā , b̄

]
∈ S2(Γ′)

gives rise to 2γ-many 3-dimensional dominoes of the form �
(
[a , b , ā , b̄

]
,
[
a , ci , ā , c̄i

] )
,

using the notation of 3.1.15. Then, potentially after reordering the elements of the alphabets
E1 and E2, we see that M1 and M2 are (2γ · |S2(Γ′)|) × (2γ · |S2(Γ′)|) block matrices with 2γ
copies of M′1 (respectively M′2) down the diagonal, and 0 elsewhere.

Thus, to find coker(∂1), we can take 2γ copies of the generators and relations of coker(∂Γ′),
each indexed by an element of F. But these are not all of the relations; we have yet to
consider those induced by M3. Indeed, for each domino X ∈ S3(Γ), we have to add the
relation

X � X +

∑
X,Y∈S3(Γ)

(Y + YI),

to coker(∂1), where YI is obtained by reflecting Y in the F direction, as in Figure 3.2. By
summing all of these, we have (γ − 1)(X + XI) � 0, for all X ∈ S3(Γ). We partition the
set S3(Γ) into two sets S+

3 , S−3 of equal size, where S−3 :�
{
X+

I

�� X+ ∈ S+

3
}
. We may then
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replace the set S3(Γ) of generators of coker(∂1) with the set S+

3 ∪
{
(X+ + X+

I )
�� X+ ∈ S+

3
}
,

and we note that each of the relations involving X+

I will also satisfy (γ − 1)
(
X+ + X+

I

)
� 0.

Hence, instead of 2γ copies of Γ′, we have γ copies of Γ′ corresponding to the elements
of S+

3 , and then γ-many generators of the form Z �
(
X+ + X+

I

)
, which satisfy relations

tiZ � 0 and (γ − 1)Z � 0, that is, gcd(ti , γ − 1)Z � 0. �

4.5.4 Whenever Γ � Γ′ × Fγ is one of these 3-domino groups constructed from prisms, 4.5.3 and
4.4.4 give us a formula for the highest cellular homology group H3(M(Γ)) in terms of the
adjacency matrices of the 2-domino group Γ′. Theorem 4.5.5 presents similar formulas for
the remaining cellular homology groups of such a complex.

4.5.5 Theorem Let Γ′ be a 2-domino group with corresponding domino complexM′ �M(Γ′), and let
Γ � Γ′ × Fγ be the 3-domino group described in 4.5.3, which has corresponding domino complex
M �M(Γ). Then H1(M) � H1(M′) ⊕ Zγ and H2(M) is equal to the direct sum of γ copies of
H1(M′), plus one copy of H2(M′).

� Proof Firstly, consider the chain complexes from 2.6.1 corresponding toM andM′:

0→ C3
δ3−→ C2

δ2−→ C1
δ1−→ C0 → 0, 0→ C′2

δ′2−→ C′1
δ′1−→ C′0 → 0;

the groups Cn and C′n are free Abelian groups whose generators are indexed by the
n-dimensional cells of Γ and Γ′, respectively.

Denote by Gab the Abelianisation of a group G; conventionally we write “+” to represent
the group operation of an Abelian group, such that

Γab � 〈x ∈ C1 | δ2(A)whenever A ∈ C2 , and x + x′ � x′ + x for all x , x′ ∈ C1〉.

Since M only has one vertex, each edge x in C1 is a loop, and so ker(δ1) � C1. Then
H1(M) � ker(δ1)/im(δ2) � C1/im(δ2). But this is exactly � Γab, sinceM having only one
vertex means that Γ � π1(M), the fundamental group of the complexM. The same is true
for H1(M′). Writing E1, E2 for the adjacency structure of Γ, and E1, E2, F for that of Γ, we
have Γ′ � 〈E1 , E2 | R〉, where

R :� {x1 y1x2 y2 | [x1 , y1 , x2 , y2] ∈ S2(Γ′)},

and so
Γ � 〈E1 , E2 , F | R ∪ {[a , ci], [b , ci] | a ∈ E1 , b ∈ E2 , ci ∈ F}〉,

which is isomorphic to Γ′ ⊕ Zγ. Hence H1(M) � H1(M′) ⊕ Zγ.

Now,we aim to find H2(M) � ker(δ2)/im(δ3). Each geometric 3-cube X′ ∈ S′3(Γ) ismapped
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under δ3 to a sum of the form

A +
(
a1 , ci , ā1 , c̄i

)
+

(
b1 , ci , b̄1 , c̄i

)
+

(
a2 , ci , ā2 , c̄i

)
+

(
b2 , ci , b̄2 , c̄i

)
− A

�
(
a1 , ci , ā1 , c̄i

)
+

(
b1 , ci , b̄1 , c̄i

)
+

(
a2 , ci , ā2 , c̄i

)
+

(
b2 , ci , b̄2 , c̄i

)
,

where A �
(
x , ci , x̄ , c̄i

)
∈ S′2(Γ′), and c′i �

{
ci , c̄i

}
is a pair of mutually inverse elements

of F (a geometric edge inM). Elements of im(δ3) can be therefore indexed by such pairs(
A, c′i

)
; clearly im(δ3) is isomorphic to the direct sum of γ copies of im

(
δ′2

)
. Now, any

geometric square inM which has some edge from F must be in ker(δ2), since it will be
of the form S �

(
x , ci , x̄ , c̄i

)
, so that δ2(S) � x + ci − x − ci � 0; write L ⊂ S′2(Γ) to denote

the set of all such geometric squares. Furthermore, if X ∈ ker
(
δ′2

)
, then X ∈ ker(δ2), so

ker(δ2) ⊇ ker
(
δ′2

)
∪ L; the reverse inclusion is clear, so these two sets are actually equal.

Then

H2(M) �
ker(∂2)
im(∂3)

�
ker(∂2)(
im

(
∂′2

) )γ � ker
(
∂′2

)
∪ L(

im
(
∂′2

) )γ .
We calculate that L/

(
im

(
∂′2

) )
)γ is isomorphic to{(
x , ci , x̄ , c̄i

)
| x ∈ E1 t E2 , ci ∈ F

}{(
x1 , ci , x̄1 , c̄i

)
+

(
y1 , ci , ȳ1 , c̄i

)
+

(
x2 , ci , x̄2 , c̄i

)
+

(
y2 , ci , ȳ2 , c̄i

) �� (x1 , y1 , x2 , y2) ∈ S′2(Γ′)
} ,

which is isomorphic to the direct sum of γ copies of H1(M′). It remains to compute
ker

(
∂′2

)
/
(
im

(
∂′2

) )γ, but since no elements of the denominator appear in the numerator,
this is just C′2, which is H2(M′). Hence H2(M) � H1(M′)γ ⊕ H2(M′). �

4.5.6 Example (Product of three free groups) Consider Theorems 4.5.3 and 4.5.5when applied
to the product of three free groups Γ � Fα × Fβ × Fγ—here, Γ′ � Fα × Fβ can be considered
as the corresponding 2-domino group. From [KR02, 6.1], we find that

coker
(
∂Γ′

)
� Zαβ ⊕ (Z/(α − 1))β ⊕ (Z/(β − 1))α ⊕ (Z/g),

where g :� gcd(α − 1, β − 1). Then from 4.5.3, we get

coker(∂1) � Zαβγ ⊕ (Z/(α − 1))βγ ⊕ (Z/(β − 1))αγ ⊕ (Z/(γ − 1))αβ

⊕ (Z/g(α, β))γ ⊕ (Z/g(α, γ))β ⊕ (Z/g(β, γ))α ⊕ (Z/g(α, β, γ)),

where g(x1 , . . . , xs) :� gcd(x1 − 1, . . . , xs − 1). Setting α � β � γ � 3, we recover the group
coker(∂1) � Z27 ⊕ (Z/2)37 which we computed in Example 4.1.4.

Likewise, we showed in 4.5.1 that H1(M(Γ′)) � Zα+β, and H2(M(Γ′)) � Zαβ. Then, writing
M � M(Γ) and referring to Theorem 4.5.5, we must have H1(M) � (Zα+β) ⊕ Zγ, and
H2(M) � (Zα+β)γ ⊕ Zαβ. By Proposition 4.4.4 and the above, we also know that H3(M) �
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Zαβγ, so that:

Hn(M(Γ)) �



Z if n � 0,

Zα+β+γ if n � 1,

Zαβ+αγ+βγ if n � 2,

Zαβγ if n � 3,

0 if n ≥ 4,

as expected. �

§4.6 Future directions

4.6.1 Recall from 1.3.7–1.3.8 Raeburn’s and Szymański’s observations that no C?-algebra whose
K1 group has torsion can be represented as a graph algebra, and conversely, that any two
finitely-generated Abelian groups, one of which having no torsion, are the K-groups of
some graph algebra. In this section, we have presented a new class of higher-rank graph
C?-algebras, and have deduced a number of facts about their K-theory, including the finite
(torsion) part of their K1 groups, which is often non-trivial. A compelling question would
be, then, what conditions are there on the K-groups of higher-rank graph C?-algebras?
Moreover, is there a constructive method for finding a higher-rank graph algebra with
some predetermined K-groups?

As we have discussed in 3.4.10 and §4.3, determining the K-theory of higher-rank graph
algebras is no walk in the park, but the new models of higher-rank graphs we present in
this thesis indicate some links between the structure of the algebras and the geometry of
the associated cell complexes. Since it is often easier to work with the complexes than with
the algebras, it would be fruitful to pin down the exact relationship between the geometric
and algebraic invariants.

We have suggested one potential way to simplify computations in §4.5, by showing how
increasing the dimension of a k-domino group in a predictable way affects the associated
graph algebra and complex, allowing for a wider variety of higher-rank graph algebras
to be studied, while maintaining familiarity with their K-theory. Alternatively, one could
work from the top down—now that there is a solid source of examples of k-rank graphs
for arbitrary k (namely, 4.1.6), it would be interesting to look at their relationship with
their lower-rank components (in the manner of 3.2.4).
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Appendix: Programs for generating
domino groups

In this appendix, we exhibit some of the programswe used to generate the domino groups
and the information about them, including the relevant cokernels and kernels from 3.4.8,
and the cellular homology groups of the domino complexes.

§5.1 K-theory computations for domino groups

5.1.1 Recall the RSV Algorithm from 4.1.6, which takes as input a prime power q and a list of
k-many integers between 0 and (q − 2), and outputs a set of pointed squares which has a
k-domino structure. We implement this using Python3, using the package finitefield
of [Kun14]. The RSV Algorithm requires arithmetic be done in a field of order q2, and this
package generates finite fields of arbitrary prime-power order. In a slight deviation from
the description in 4.1.6, our realisation of the algorithm using finitefield takes as input
a set J of k-many indices between 0 and (p − 2) (not (q − 2)) which will label the alphabets
of the k-domino group. We present the first part of the algorithm below, with an example
input of q � 5, and J � {1, 2, 3}.

5.1.2 Finding a primitive element of a finite field

import functools

from finitefield import FiniteField

from finitefield import generateIrreduciblePolynomial

#FiniteField takes two arguments , p, n, and generates the field of order p^n

5 p = 5

n = 1

q = p^n
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# label is a list of k-many integers from 0..p-2.

# It is used to generate the alphabets for the k-domino group.

10 label = [1,2,3]

dimension = len(label)

F = FiniteField(p, 2∗n)
def change_base(i, p):

"""Assumes i, p integers.

15 Returns a list with digits of i in base p (in reverse order)."""

digits = []

while i:

digits.append(int(i % p))

i //= p

20 return digits

@functools.lru_cache(maxsize=None)

def field_elts(q, p, n):

"""Finds a generator d for the multiplicative group of F.

Returns an ordered list of elements of F,

25 the ith element is the ith power of d."""

def find_generator_q2():

generator_found = False

for i in range(p, s):

first = F(change_base(i, p))

30 ith = first

elt_list = [first]

while ith != 1 and len(elt_list) < s:

ith = ith∗first
elt_list.append(ith)

35 if len(elt_list) == s:

generator_found = True

elt_list.insert(0,elt_list.pop())

break

else: continue

40 if generator_found == True:

return elt_list

if generator_found == False:

print("No generator found")

return find_generator_q2()

45 multiplicative_group = field_elts(q, p, n)

d = multiplicative_group[1]

print("The field F = F_{} has primitive element d = {}.".format(q∗∗2, d))
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5.1.3 With the above parameters, the algorithm outputs:

The field F = F_25 has primitive element d = 3 + 1 x^1 ∈ F_{5^2}

which we can then use to build the relations of the k-domino group ΓJ,δ. We omit the
Python implementation of the rest of the RSV Algorithm, as it is fairly routine. Now, the
output of the algorithm is a list of lists, each of length 4, representing the pointed squares
in ΓJ,δ. Wemight choose to relabel some of the individual elements for clarity (for example,
in 5.1.4 we have chosen to represent inverse elements of ΓJ,δ by a change of sign).

Below is the algorithm we used to generate the 3-dimensional dominoes, given a set of
pointed tiles with 3-domino structure. We have a k-dimensional version, which works by
similar principles.

5.1.4 Program for building 3-dimensional dominoes from a list of squares

import time

50 # The prime power q used to build the relations of Gamma.

q = 5

# Each generator of Gamma is in one of the alphabets {i mod a}, for a in label.

label = [1,2,3]

# The RSV Algorithm (4.1.6) will give us a list of relations: unpt_sqs.

55 # These example relations come from a product of three free groups F2^3.

unpt_sqs = [

[1, 2, −1, −2], [1, 6, −1, −6], [5, 2, −5, −2], [5, 6, −5, −6],
[3, 1, −3, −1], [3, 5, −3, −5], [7, 1, −7, −1], [7, 5, −7, −5],
[3, 2, −3, −2], [3, 6, −3, −6], [7, 2, −7, −2], [7, 6, −7, −6]

60 ]

start_time = time.time()

print(’Here is the list of relations (squares):’, unpt_sqs)

# In which set of the form F(a,b...) are the squares/cubes X?

65 def edge_labels(X):

"""Assumes X either a list of 4 (square) or of 6 (cube).

Returns a list of 2 or 3, a sublist of label"""

if len(X) == 4:

return [abs(X[0]) % (q−1), abs(X[1]) % (q−1)]
70 elif len(X) == 6:

return [abs(X[0][0]) % (q−1), abs(X[0][1]) % (q−1), abs(X[1][0]) % (q−1)]
# e.g. the first row of elements in unpt_sqs have edge_labels = [1,2].

def sqs_type_x(inpt, x):

"""Assumes inpt is a list of squares or cubes, x is a list of 2 or 3 int.

75 Returns all elements of inpt with the same edge_labels as x."""
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outpt = []

for X in inpt:

if edge_labels(X) == x:

outpt.append(X)

80 return outpt

# The following functions assume A is an element of unpt_sqs,

# treated as a pointed square (an ordered list).

# They return a pointed square (list of 4) corresponding to a symmetry of A.

85 def Sh(A):

return [−A[0], −A[3], −A[2], −A[1]]
def Sv(A):

return [−A[2], −A[1], −A[0], −A[3]]
def Sr(A):

90 return[A[2], A[3], A[0], A[1]]

# sqs is a list of all pointed squares. It has length 4 times that of unpt_sqs.

sqs = []

for A in unpt_sqs:

sqs.extend([A, Sh(A), Sv(A), Sr(A)])

95 # Finally, all_sqs contains each square in sqs twice:

# once of type F(a,b) and once of type F(b,a).

# This makes it easier to find squares which are adjacent.

all_sqs = []

for A in sqs:

100 all_sqs += [A, [A[1], A[2], A[3], A[0]]]

def cubes_based_at(A):

"""Assumes A is a square (list of 4) from all_sqs.

Returns a list of cubes (lists of 6) whose first element is A."""

105 cube_list = []

adj = []

sqs_same_type = []

sqs_other_type = []

# Firstly, decide which of all_sqs are adjacent to A, and add them to adj.

110 for B in all_sqs:

if set(edge_labels(B)) != set(edge_labels(A)):

sqs_other_type.append(B)

if edge_labels(B)[1] == edge_labels(B)[0] and B[3] == −A[0]:
adj.append(B)

115 else:
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sqs_same_type.append(B)

# Now, build a cube uniquely defined by A and B from adj.

for B in adj:

cube = [A,B,0,0,0,0]

120 for C in sqs_other_type:

if C[0] == −A[3] and C[3] == −B[0]:
cube[2] = C

for D in sqs_same_type:

if D[0] == −B[1] and D[1] == −C[2]:
125 cube[3] = D

for D in sqs_other_type:

if D[0] == −C[1] and D[1] == −A[2] and D[3] == −cube[3][2]:
cube[4] = D

if D[0] == −A[1] and D[1] == −B[2] and D[2] == −cube[3][3]:
130 cube[5] = D

if 0 in cube:

print("Error: no valid square found to complete cube:", cube)

else:

cube_list.append(cube)

135 return cube_list

def cubes_with_base_in(squareset):

"""Assumes squareset is a list of squares.

Returns a list of cubes whose first elements are elements of squareset."""

140 cubes_list = []

for A in squareset:

cubes_list = cubes_list + cubes_based_at(A)

return cubes_list

# all_cubes is a list of all 3-dimensional cubes in all orientations.

145 all_cubes = cubes_with_base_in(all_sqs)

# Many of the cubes in all_cubes will be duplicates , or will be

# symmetries of one another. We sort this out now.

# The following functions are 3-d analogues of the symmetry functions Sx.

150 def Ch(U):

return [Sh(U[0]), Sv(U[1]), Sh(U[5]), Sh(U[3]), Sv(U[4]), Sh(U[2])]

def Cv(U):

return [Sv(U[0]), Sh(U[4]), Sh(U[2]), Sv(U[3]), Sh(U[1]), Sh(U[5])]

def Cr(U):

155 return [Sr(U[0]), Sr(U[4]), U[5], Sr(U[3]), Sr(U[1]), U[2]]
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def Ci(U):

return [Sh(U[3]), Sh(U[1]), Sv(U[2]), Sh(U[0]), Sh(U[4]), Sv(U[5])]

def Chi(U):

return [U[3], Sr(U[1]), Sr(U[5]), U[0], Sr(U[4]), Sr(U[2])]

160 def Cvi(U):

return [Sr(U[3]), U[4], Sr(U[2]), Sr(U[0]), U[1], Sr(U[5])]

def Cri(U):

return [Sv(U[3]), Sv(U[4]), Sv(U[5]), Sv(U[0]), Sv(U[1]), Sv(U[2])]

# cube_symmetries takes a cube and returns a list of its eight symmetries.

165 def cube_symmetries(U):

return [U, Ch(U), Cv(U), Cr(U), Ci(U), Chi(U), Cvi(U), Cri(U)]

# eliminate_dupl removes duplicates and symmetries from a set of cubes.

def eliminate_dupl(cubeset):

cube_syms = []

170 small_cubeset = []

for U in cubeset:

if U in cube_syms:

continue

else:

175 small_cubeset.append(U)

cube_syms.extend(cube_symmetries(U))

return small_cubeset

# pt_cubes the list of all 3-d dominoes.

# unpt_cubes is the list of all 3-d dominoes modulo symmetries.

180 pt_cubes = []

unpt_cubes = []

for U in eliminate_dupl(

cubes_with_base_in(

sqs_type_x(all_sqs ,[label[0], label[1]])

185 )

):

unpt_cubes.append(U)

pt_cubes.extend(cube_symmetries(U))

print(

190 "Those relations give rise to", len(unpt_cubes), "geometric cubes, and",

len(pt_cubes), "dominoes."

)

print("Here is the list of cubes formed from those relations:")

for U in unpt_cubes:

195 print(U)
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print("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗")
end_time = time.time()

total_time = end_time − start_time
print("This took", round(total_time , 3), "seconds.")

5.1.5 The above algorithm, upon input of the relations of a product of three free groups, each
on two generators, outputs the following:

200 Here is the list of relations (squares): [[1,2,−1,−2], [1,6,−1,−6],
[5,2,−5,−2], [5,6,−5,−6], [3,1,−3,−1], [3,5,−3,−5], [7,1,−7,−1], [7,5,−7,−5],
[3,2,−3,−2], [3,6,−3,−6], [7,2,−7,−2], [7,6,−7,−6]]
Those relations give rise to 8 geometric cubes, and 64 dominoes.

Here is the list of cubes formed from those relations:

205 [[1,2,−1,−2], [3,1,−3,−1], [2,3,−2,−3], [−1,2,1,−2], [−3,1,3,−1], [−2,3,2,−3]]
[[1,2,−1,−2], [7,1,−7,−1], [2,7,−2,−7], [−1,2,1,−2], [−7,1,7,−1], [−2,7,2,−7]]
[[1,6,−1,−6], [3,1,−3,−1], [6,3,−6,−3], [−1,6,1,−6], [−3,1,3,−1], [−6,3,6,−3]]
[[1,6,−1,−6], [7,1,−7,−1], [6,7,−6,−7], [−1,6,1,−6], [−7,1,7,−1], [−6,7,6,−7]]
[[5,2,−5,−2], [3,5,−3,−5], [2,3,−2,−3], [−5,2,5,−2], [−3,5,3,−5], [−2,3,2,−3]]

210 [[5,2,−5,−2], [7,5,−7,−5], [2,7,−2,−7], [−5,2,5,−2], [−7,5,7,−5], [−2,7,2,−7]]
[[5,6,−5,−6], [3,5,−3,−5], [6,3,−6,−3], [−5,6,5,−6], [−3,5,3,−5], [−6,3,6,−3]]
[[5,6,−5,−6], [7,5,−7,−5], [6,7,−6,−7], [−5,6,5,−6], [−7,5,7,−5], [−6,7,6,−7]]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
This took 0.168 seconds.

These are thedominoeswhichExample 3.1.12 leadsus to expect.We thendesign aprogram
which determines when two dominoes are adjacent, and which outputs three adjacency
matrices.

215 import math

import numpy as np

n = len(pt_cubes)

# The functions fi take two dominoes from pt_cubes as arguments ,

# and return 1 if they are adjacent in the i direction , and 0 else.

220 def f1(U, V):

if U[1] == Sh(V[4]) and U[0][1] != −V[0][1]:
adjacency = 1

else: adjacency = 0

return adjacency

225 def f2(U, V):

if U[2] == Sh(V[5]) and U[0][0] != −V[0][0]:
adjacency = 1

else: adjacency = 0
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return adjacency

230 def f3(U, V):

if U[0] == Sh(V[3]) and U[1][0] != −V[1][0]:
adjacency = 1

else: adjacency = 0

return adjacency

235 # Now we construct the adjacency matrices from 3.1.16.

M = [[], [], []]

def f(U, V):

return [f1(U,V), f2(U,V), f3(U,V)]

for U in pt_cubes:

240 new_row = [[], [], []]

for i in range(3):

for B in pt_cubes:

new_row[i].append(f(A, B)[i])

M[i].append(new_row[i])

245 M = [np.array(i) for i in M]

MT = [np.transpose(i) for i in M]

print("Matrices done")

# I and O are the n x n identity and zero matrices.

I = np.eye(n, dtype=int)

250 O = np.zeros((n,n), dtype=int)

# dn are the matrices representing the differentials in 3.4.8.

d1 = np.block([I−MT[0], I−MT[1], I−MT[2]])
d2 = np.block([[MT[1]−I,MT[2]−I,O], [I−MT[0],O,MT[2]−I], [O,I−MT[0],I−MT[1]]])
d3 = np.block([[I−MT[2]], [MT[1]−I], [I−MT[0]]])

5.1.6 Finally, we write a short script which converts the above matrices into a format which
MAGMA can interpret.

255 def group_rels(d, y):

"""Assumes d is one of the block matrices di, y is a variable (string).

Returns a string of relations."""

rels = ""

num_rows = len(d)

260 num_cols = len(d[0])

for j in range(num_cols):

for i in range(num_rows):

if d[i][j] == 0:

pass

265 else:
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rels += str(d[i][j]) + "∗" + y + "[" + str(i+1) + "] + "
rels = rels[0:len(rels)−3] + ", "

rels = rels[0:len(rels)−2]
return rels

270 def print_homs():

"""Takes no input. Prints relations readable by MAGMA and returns None."""

txtfile = "3_cubes_q_{}_label_{}.txt".format(q, label)

f = open(txtfile, "a")

print(

275 ’A<[a]> := FreeAbelianGroup(’,len(d3[0]),’);\n’,

’B<[b]> := FreeAbelianGroup(’,len(d2[0]),’);\n’,

’C<[c]> := FreeAbelianGroup(’,len(d1[0]),’);\n’,

’D<[d]> := FreeAbelianGroup(’,len(d3[0]),’);’, file=f

)

280 print(

’d1 := hom< C −> D | ’,group_rels(d1,’d’),’>;\n’,
’K1 := Kernel(d1);\n’,

’d2 := hom< B −> K1 | ’,group_rels(d2,’c’),’>;\n’,
’K2 := Kernel(d2);\n’,

285 ’d3 := hom< A −> K2 | ’,group_rels(d3,’b’),’>;\n’,
’K3 := Kernel(d3);’, file=f

)

f.close()

Running the function print_homs() outputs something which looks like

A<[a]> := FreeAbelianGroup( 64 );

290 B<[b]> := FreeAbelianGroup( 192 );

C<[c]> := FreeAbelianGroup( 192 );

D<[d]> := FreeAbelianGroup( 64 );

d1 := hom< C −> D | −1∗d[17] + −1∗d[19], −1∗d[18] + −1∗d[20], −1∗d[17] ...
K1 := Kernel(d1);

295 d2 := hom< B −> K1 | 1∗c[33] + 1∗c[34] + −1∗c[81] + −1∗c[83], 1∗c[33] ...
K2 := Kernel(d2);

d3 := hom< A −> K2 | −1∗b[9] + −1∗b[13] + 1∗b[97] + 1∗b[98] + −1∗b[145] ...
K3 := Kernel(d3);

which MAGMA interprets as a sequence of homomorphisms; this is precisely the chain
complex from 3.4.8. We can suffix this by the MAGMA functions

> D / Image(d1); // Returns coker(d1)

300 > K1 / Image(d2); // Returns ker(d1) / im(d2)
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> K2 / Image(d3); // Returns ker(d2) / im(d3)

> K3; // Returns ker(d3)

in order to retrieve the desired kernels, cokernels and homologies.

5.1.7 It is easy to extend Algorithm 5.1.4 in order to build 4-domino groups with a function
along the line of “hypercubes_based_at(C),” analogous to the one on line 102. Indeed,
since the edges of a k-dimensional domino can be enumerated systematically (as in 3.1.14
and Figure 3.3), and can be encoded as an ordered 2k-tuple of (k − 1)-dominoes, it is also
straightforward to extrapolate this to a programwhich constructs k-dimensional dominoes
from a set of squares which has a k-domino structure.

This being said, the computation software MAGMAwhich we rely on to provide the relevant
groups has a limit on the size of data input. Even the smallest example of a 4-domino group
obtained by Algorithm 4.1.6, Example 4.3.2, has adjacency matrices which are too large
for the standard installation of MAGMA to parse. Since the information about the K-theory
of k-rank graph algebras via Theorem 2.2.6 gets more and more nebulous as k increases,
computation of the (co)kernels and images of the differentials becomes less pertinent as
well.

§5.2 Computing the homology of a domino complex

5.2.1 To compute the cellular homology groups of a domino complexM, we ought firstly to
consider the barycentric subdivisionM′ (by 4.1.7 and 4.1.9). The following algorithm is
designed to run after 5.1.4, using the list of geometric cubes unpt_cubes obtained at line
182 as an input. With the list of squares obtained as relations of F3

2 we’ve been using as an
example so far, these are the cubes displayed at line 204.

5.2.2 Program to compute the cellular homology of a 3-domino complex We retain the same
preamble as 5.1.4, and use the same values for q, label, and unpt_sqs. Note that MAGMA
dictates that matrices act on the right, so the matrices we construct below are transpose to
the ones in 4.1.7.

import sys

np.set_printoptions(threshold=sys.maxsize)

305 # Input a name for the group.

name = "F_2^3"

# gens is a list of generators for the 3-domino group.

# sizes returns a list of the number of generators in each alphabet,

# that is, a list [m1 / 2, m2 / 2, m3 / 2].

310 gens = list(set([abs(i) for sq in unpt_sqs for i in sq]))

sizes = [len([i for i in gens if i % (q−1) == a]) for a in label]
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# bn is the number of cells of dimension n in the cube complex.

b0 = 1

b1 = sizes[0] + sizes[1] + sizes[2]

315 b2 = sizes[0]∗sizes[1] + sizes[0]∗sizes[2] + sizes[1]∗sizes[2]
b3 = sizes[0]∗sizes[1]∗sizes[2]
# cn is the number of n-dimensional cells in the barycentric subdivision.

c0 = b0 + b1 + b2 + b3

c1 = 2∗b1 + 4∗b2 + 6∗b3
320 c2 = 4∗b2 + 12∗b3

c3 = 8∗b3
if len(gens) != b1 or len(unpt_sqs) != b2 or len(unpt_cubes) != b3:

raise ValueError("Something wrong with sizes of the labelling sets.")

# Recall the functions Sh, Sv, Sr from line 82.

325 def all_syms(A):

"""Assumes A is a square from unpt_sqs (a list of length 4).

Returns a list of length 8, the eight symmetries (incl. rot by pi) of A."""

A2 = [A[1], A[2], A[3], A[0]]

return [A, A2, Sh(A), Sh(A2), Sv(A), Sv(A2), Sr(A), Sr(A2)]

With this set-up, we can now compute the boundary matrices ∂i of the chain complex

0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 −→ 0,

where Cn � cn is a free Abelian group with generators indexed by the cells of dimension
n in the complex M′. Then each ∂n is a |Cn | × |Cn−1 | matrix, with rows indexed by n-
dimensional cells, and columns indexed by (n − 1)-dimensional cells. In the barycentric
subdivisionM′, each vertex is labelled by some cell fromM: below these are represented
by lists c0_b0, c0_b1, c0_b2, c0_b3 of vertices. Then there are

( ∑3
n�1 2n |Bn |

)
-many edges

inM′, represented by lists c1_b1, c1_b2, c1_b3.

330 # d1 is a c1 x c0 matrix.

# It is the map which sends edges to their start and end vertices.

# Every row contains exactly one -1 and one +1.

d1 = np.zeros((c1, c0)).astype(int)

# The columns are labelled by vertices indexed by c0_b0, c0_b1, c0_b2, c0_b3.

335 # The rows are labelled by edges of the form a0, a1 for a in b1,

# by A0, A1, A2, A3 for A in b2, and by U0,..., U5 for U in b3.

c1_b1 = [[2∗a, 2∗a + 1] for a in range(b1)]
last_c1_b1 = c1_b1[−1][−1]
c1_b2 = [[last_c1_b1 + 1 + 4∗A + i for i in range(4)] for A in range(b2)]

340 last_c1_b2 = s1_sqr[−1][−1]
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c1_b3 = [[last_c1_b2 + 1 + 6∗U + i for i in range(6)] for U in range(b3)]
# Firstly, we map edges a0, a1 in c1_b1 to x in c0_b0 and a in c0_b1.

for edg in c1_b1:

d1[edg[0]][0], d1[edg[1]][0] = −1, 1
345 d1[edg[0]][c1_b1.index(edg) + 1], d1[edg[1]][c1_b1.index(edg) + 1] = 1, −1

# Next, map the Ai in c1_b2 to A in c0_b2 and some a in c0_b1.

for edg in c1_b2:

for i in range(4):

d1[edg[i]][b0 + b1 + c1_b2.index(edg)] = 1

350 for gen in gens:

if abs(unpt_sqs[c1_b2.index(edg)][i]) == gen:

d1[edg[i]][1 + gens.index(gen)] = −1
break

# Finally, map the Ui in c1_b3 to U in c0_b3 and some A in c0_b2.

355 for edg in c1_b3:

for i in range(6):

d1[edg[i]][b0 + b1 + b2 + c1_b3.index(edg)] = 1

for sq in unpt_sqs:

if unpt_cubes[c1_b3.index(edg)][i] in all_syms(sq):

360 d1[edg[i]][1 + b1 + unpt_sqs.index(sq)] = −1

Similarly, the rows of the |C2 | × |C1 | matrix ∂2 are indexed by the 2-cells ofM′; there are
four of these for each geometric square inM, and 12 for each geometric cube. The columns
of ∂2 are indexed in the same way as the rows of ∂1. The map ∂2 sends a square to its four
boundary edges, so each row of ∂2 will have exactly four non-zero entries.

d2 = np.zeros((c2, c1)).astype(int)

c2_b2 = [[4∗A + i for i in range(4)] for A in range(b2)]
last_c2_b2 = c2_b2[−1][−1]
c2_b3 = [[last_c2_b2 + 1 + 12∗U + i for i in range(12)] for U in range(b3)]

365 # Firstly, we map the four small squares formed by subdividing each A in b2,

# A20, A21, A22, A23, to their boundaries.

# Subsquare A21 is adjacent to two edges A0, A1 in the interior of A,

# and two edges u, v on the boundary of A.

def edg_exterior(edg):

370 """Assumes edg is an element of a pair c1_b1.

Returns, based on the sign of edg, its index in the pair."""

sgn = np.sign(edg)

if sgn == 1: return 0

elif sgn == −1: return 1
375 else: raise ValueError("Something is wrong: one of the labels is 0")
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for sq in c2_b2:

for i in range(4):

k = (i − 1) % 4
d2[sq[i]][last_c1_b1+1+sq[i]], d2[sq[i]][last_c1_b1+1+sq[0]+k] = 1, −1

380 for gen in gens:

u = unpt_sqs[c2_b2.index(sq)][i]

v = unpt_sqs[c2_b2.index(sq)][k]

if gen == abs(u):

d2[sq[i]][c1_b1[gens.index(gen)][edg_exterior(u)]] = np.sign(u)

385 if gen == abs(v):

d2[sq[i]][c1_b1[gens.index(gen)][1 − edg_exterior(v)]] = np.sign(v)
# We deal with the 12 small squares formed by subdividing each cube in b3.

# Each square is adjacent to two edges on the interior of U,

# and two edges u, v on the surface of U.

390 # If we walk in a cycle around the outside of a cube,

# here are the faces we will visit (depending on the direction).

cycles = [[1,5,4,2], [2,3,5,0], [0,4,3,1]]

# This function tells us the interior labels.

def sq_interior(sq):

395 q = int(np.floor(sq/4))

r = sq % 4

# The sgn here tells us whether the matrix entry will be +1 or -1.

return [

{"edg": cycles[q][r], "sgn": +1},

400 {"edg": cycles[q][r−1], "sgn": −1}
]

# This function tells us the exterior labels.

def sq_exterior_no_symmetry(sq):

interior = sq_interior(sq)

405 r = sq % 4

edg_numbers = [[0,3], [1,2], [2,3], [1,0]]

return [[interior[i], edg_numbers[r][i]] for i in range(2)]

def sym_number(face):

"""Assumes face is a list of len 4.

410 Returns the sq from unpt_sqs which is the same geometric square,

and the index of all_syms(sq) which is the same pointed square."""

for sq in unpt_sqs:

syms = all_syms(sq)

if face in syms:

415 return {"sq_number": unpt_sqs.index(sq), "sym": syms.index(face)}
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def sq_exterior(cube, position):

"""Assumes cube is a cube (list of len 6),

and position is an interior subsquare (int from 0--11).

Returns the labels of the interior subsquare."""

420 A = sq_exterior_no_symmetry(position)

n = [sym_number(face)["sym"] for face in cube]

# p asks which cycle from cycles are we looking at: 0, 1 or 2?

p = int(np.floor(position/4))

r = position % 4

425 adj_faces = [cycles[p][r], cycles[p][r−1]]
change = [n[f] for f in adj_faces]

for i in [0,1]:

# If one of the relevant faces of the cube is from the following set of

# parallel faces, then flipping the face horizontally changes the edge

430 # labels of the interior subsquare by +2.

if adj_faces[i] in [cycles[p][1], cycles[p][3]] and change[i] >= 4:

change[i] += 2

A[i][1] = (A[i][1] + change[i]) % 4

return A

435

for sq in c2_b3:

for i in range(12):

for j in sq_interior(i):

d2[sq[i]][last_c1_b2 + 1 + 6∗c2_b3.index(sq) + j["edg"]] = j["sgn"]
440 cube = unpt_cubes[c2_b3.index(sq)]

ext_labels = sq_exterior(cube, i)

for j in ext_labels:

sq_index = sym_number(cube[j[0]["edg"]])["sq_number"]

d2[sqr[i]][last_c1_b1 + 1 + 4∗sq_index + abs(j[1])] = j[0]["sgn"]

Finally, we build the differential map ∂3 as a |C3 | × |C2 | matrix, with columns indexed in
the same way as the rows of ∂2, and with eight rows for each cube inM corresponding to
the eight subcubes obtained after barycentric subdivision.

445 d3 = np.zeros((c3, c2)).astype(int)

c3_b3 = [[8∗c + i for i in range(8)] for c in range(b3)]
# Each cube is adjacent to six faces on the inside of U,

# and three faces on the outside of U, for U in b3.

def cub_interior(cub):

450 r = cub % 8

face_numbers = [
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[[0,−1], [4,−1], [8,−1]],
[[1,−1], [7,−1], [8,+1]],
[[2,−1], [7,+1], [9,+1]],

455 [[3,−1], [4,+1], [9,−1]],
[[0,+1], [5,−1], [11,−1]],
[[1,+1], [6,−1], [11,+1]],
[[2,+1], [6,+1], [10,+1]],

[[3,+1], [5,+1], [10,−1]]
460 ]

# The sgn here tells us whether the matrix entry will be +1 or -1.

return [{"face": i[0], "sgn": i[1]} for i in face_numbers[r]]

# This function tells us the exterior labels of an element of c3_b3.

def cub_exterior_no_symmetry(cub):

465 """Assumes cub is an index of c3_b3.

Returns int 0--5, the face number, and int 0--2, the subface number."""

r = cub % 8

face_numbers = [

[[0,0], [1,0], [2,0]],

470 [[0,1], [1,3], [5,1]],

[[0,2], [4,2], [5,0]],

[[0,3], [4,1], [2,1]],

[[3,1], [1,1], [2,3]],

[[3,0], [1,2], [5,2]],

475 [[3,3], [4,3], [5,3]],

[[3,2], [4,0], [2,2]]

]

return face_numbers[r]

# Recall the functions Ch, Cv, Cr, Ci, Chi, Cvi, Cri,

480 # and cube_symmetries from line 149.

def cube_sym_number(cube):

"""Assumes cube is an element of pt_cubes (list of len 6).

Gives an index of cube_symmetries(cube) corresponding to

the orientation of cube w.r.t. the standard orientation.

485 Returns the cube number, and then the symmetry number."""

for unpt_cube in unpt_cubes:

syms = cube_symmetries(unpt_cube)

if cube in syms:

return {

490 "cube_number": unpt_cubes.index(unpt_cube), "sym": syms.index(cube)

}
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else: return None

def subface_labels(face):

n = sym_number(face)["sym"]

495 labels = [

{"sq_number": sym_number(face)["sq_number"], "subsquare": i, "sgn": +1}

for i in range(4)

]

if n < 4:

500 labels = [labels[(i+n) % 4] for i in range(4)]

if n >= 4:

labels = [labels[(n−i+1) % 4] for i in range(4)]
for label in labels: label["sgn"] = −1

return labels

505 # This function makes adjustments to the sign of exterior labels,

# based on the sym_number of the cube, analogously to that on line 416.

def cub_exterior(cube, position):

"""Assumes cube is an element of pt_cubes,

position is a subcube 0--7 for which we want the exterior labels.

510 Returns a list of three signed subsquares which form the exterior faces."""

X = cub_exterior_no_symmetry(position)

new_labels = [subface_labels(face) for face in cube]

return [new_labels[X[i][0]][X[i][1]] for i in range(3)]

515 for cub in c3_b3:

for i in range(8):

for j in cub_interior(i):

d3[cub[i]][last_c2_b2 + 1 + 12∗c3_b3.index(cub) + j["face"]] = j["sgn"]
cube = unpt_cubes[c3_b3.index(cub)]

520 for j in cub_exterior(cube, i):

d3[cub[i]][4∗j["sq_number"] + j["subsquare"]] = j["sgn"]

Now we have the differential matrices, we print them in a format which can be parsed by
MAGMA.

# Check the differential matrices form an exact sequence.

d21 = np.matmul(d2, d1)

d32 = np.matmul(d3, d2)

525 print("Do the dn form an exact sequence?", np.all(d32 == 0))

# Print code readable by MAGMA.

def flatten(matr):

return [j for i in matr for j in i]
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def print_matrices():

530 txtfile = "bdry_matrices_{}.txt".format(name)

f = open(txtfile, "a")

print("The geometric squares are",unpt_sqs, file=f)

print("The geometric cubes are",unpt_cubes , file=f)

print(

535 "height_d1:={}; width_d1:={}; height_d2:={}; height_d3:={};".format(

len(d1), len(d1[0]), len(d2), len(d3)

), file=f

)

print(

540 "d1 := Matrix(IntegerRing(),{},{},{});".format(

len(d1), len(d1[0]), flatten(d1)

), file=f

)

print(

545 "d2 := Matrix(IntegerRing(),{},{},{});".format(

len(d2), len(d2[0]), flatten(d2)

), file=f

)

print(

550 "d3 := Matrix(IntegerRing(),{},{},{});".format(

len(d3), len(d3[0]), flatten(d3)

), file=f

)

f.close()

555 print("done")

print_matrices()

Finally, in MAGMAwe can run the functions Rank(dn) and ElementaryDivisors(dn)which
provide the ranks of the matrices δn and the entries in Smith(δn), the data needed to
calculate the cellular homology groups in 4.1.7.
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